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Abstract

This dissertation focuses on the problem of tiny object detection in high-resolution images, with
applications in real-time systems such as autonomous robots and UAVs. Existing methods of-
ten require significant computational resources, are too slow or achieve poor detection quality,
when objects are very small. To address these limitations, a modular framework (SegTrack-
Detect) is developed. It combines a lightweight local detector, that operates on selected full
resolution areas of the input image, with three supporting modules: ROI Estimation based on
semantic segmentation, ROI Prediction using object tracking, and Global Filtering with two
novel algorithms to reduce redundant partial detections. Together, these components allow se-
lective high-resolution inference on relevant image regions, improving speed, detection quality,
and computational efficiency.

The first component, the ROI Estimation Module, uses semantic segmentation to guide the place-
ment of detection windows. By aligning window selection with meaningful image content, this
approach reduces redundant computation while retaining important contextual information, of-
fering a more efficient alternative to uniform sliding-window techniques. The second component,
the ROI Prediction Module, integrates object tracking to recover regions that may be missed by
the Estimator because of its low input resolution. By exploiting temporal continuity, it ensures
that small and difficult-to-detect objects remain visible to the system, while at the same time
lowering the computational cost of the segmentation branch. The third component, the Global
Filtering Module, addresses one of the core limitations of window-based methods: partial de-
tections in overlapping regions of the detection windows. It introduces two novel algorithms —
Overlapping Box Suppression (OBS), which favors complete detections, and Overlapping Box
Merging (OBM), which combines multiple partial detections into a full one. Together, they
provide a strong alternative to standard Non-Maximum Suppression and significantly improve
quality by lowering both false positive and false negative detections.

Through the integration of these three modules, SegTrackDetect enables selective full-resolution
inference on relevant subregions of high-resolution images. This modular design allows balancing
detection quality, computational efficiency, outperforming traditional sliding-window and several
state-of-the-art approaches while remaining lightweight enough for real-time deployment. The
dissertation demonstrates that segmentation, tracking, and advanced filtering strategies can be
combined into customizable framework for efficient tiny object detection and provides an open-
source implementation for real-world applications.






Streszczenie

Niniejsza rozprawa dotyczy problemu detekcji bardzo malych obiektéw na obrazach wysokiej
rozdzielczodci, ze szczegblnym uwzglednieniem zastosowanl wymagajacych dzialania w czasie rze-
czywistym na robotach autonomicznych czy dronach. Istniejace metody czesto wymagaja znacz-
nych zasobow obliczeniowych, dziataja zbyt wolno lub charakteryzuja sie niska jakoscia detekc;ji,
zwlaszcza gdy obiekty sa bardzo mate. Aby przezwyciezy¢ te ograniczenia opracowano wielo-
modutowy system detekcji SegTrackDetect. System ten taczy lekki lokalny detektor, dziatajacy
na wybranych obszarach obrazu w pelnej rozdzielczosci, z trzema modulami wspierajacymi:
Estymacja ROI oparta na segmentacji semantycznej, Predykcja ROI wykorzystujaca Sledzenie
obiektow oraz Filtrowaniem Globalnym, ktére obejmuje dwa nowe algorytmy redukujace problem
czedciowych detekcji. Potaczenie tych moduléw umozliwia selektywna analize istotnych obsza-
row obrazu w wysokiej rozdzielczosci, poprawiajac czas dzialania, jakosé detekcji i efektywnosé

obliczeniowa.

Pierwszy modut, Estymacja ROI, wykorzystuje segmentacje semantyczng do wyznaczania po-
lozenia okien detekcji. Dopasowujac obszary do istotnych fragmentéw obrazu, zmniejsza on
nadmiarowe obliczenia, jednoczesnie zachowujac kontekst, co stanowi bardziej efektywna alter-
natywe dla prostych metod wykorzystujacych okno przesuwne. Drugi modul, Predykcja ROI,
integruje Sledzenie obiektéw w celu przywrécenia regiondéw pominietych przez estymator z po-
wodu jego niskiej rozdzielczoséci wejsciowej. Przez wykorzystanie ciaglosci danych wejsciowych,
zapewnia on widocznos$¢ bardzo matych i trudnych do wykrycia obiektow, przy jednoczesnym
obnizeniu kosztéw obliczeniowych segmentacji. Trzeci modul, Filtrowanie Globalne, rozwia-
zuje jedno z gltéwnych ograniczeri metod opartych na oknach: czesciowe detekcje we wspoélnych
obszarach okien detekcji. Wprowadza on dwa nowe algorytmy: Overlapping Box Suppression
(OBS), ktory zachowuje pelne detekcje, oraz Overlapping Box Merging (OBM), ktory ltaczy
fragmentaryczne wyniki w jedna spdjna detekcje. Razem stanowia one alternatywe dla klasycz-
nego Non-Maximum Suppression, poprawiajac jakos¢ poprzez ograniczenie zaréowno falszywie

pozytywnych czesciowych detekcji, jak i pominietych obiektow.

Integracja tych trzech moduléw sprawia, ze SegTrackDetect umozliwia selektywna analize w
pelnej rozdzielczosci tylko na istotnych podobszarach obrazu. Modularna konstrukcja pozwala
zachowaé réwnowage miedzy jakoscia detekcji a efektywnoscia obliczeniows, przewyzszajac tra-
dycyjne metody sliding-window oraz szereg najnowoczesniejszych metod z literatury, a jedno-
cze$nie pozostajac wystarczajaco lekka do zastosowan w czasie rzeczywistym. Wykazano, ze
poprzez potaczenie segmentacji, $ledzenia obiektéw oraz zaawansowanych strategii filtrowania
uzyskano elastyczng i wydajng metode detekcji bardzo matych obiektow, ktora zostata publicz-
nie udostepniona umozliwiajac zastosowanie w rzeczywistych problemach zaréwno naukowych

jak i wdrozeniowych.
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False Negative Associations
False Positive
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Chapter 1

Introduction

1.1 Motivation

Object detection is a fundamental computer vision task with wide-ranging applications, including
autonomous driving, industrial inspection, and robotic perception. Over the past decade, deep
learning has significantly advanced the field, enabling models to detect and classify objects with
high accuracy using features learned from large-scale datasets. These advances have been largely
driven by powerful convolutional architectures and benchmark challenges such as the MS COCO

dataset [81], which evaluates performance across objects of varying sizes.

In robotics, object detection is essential for scene understanding, navigation, and human-robot
interaction. Mobile and aerial robots, in particular, often rely on onboard perception systems
to make real-time decisions in dynamic environments. Unlike offline image processing, robotic
systems impose strict constraints on latency, memory usage, and computational resources — es-
pecially when deployed on embedded platforms or battery-powered UAVs. As a result, detection
models in robotics must strike a balance between accuracy and efficiency. The work presented
in this dissertation is directly motivated by an industrial problem: real-time detection of wind
turbine defects. This challenge is being addressed in an ongoing applied research project within
the Cufix company, where the system proposed in this work is being developed and deployed.
Although the work is driven by the wind turbine inspection problem, public benchmarks are used

for the evaluation of the proposed method to compare the system against established baselines.

Standard object detection models [12, 62, 136] are typically evaluated using the COCO bench-
mark [81], which reports performance in terms of Average Precision (AP) and Average Recall
(AR) across three object scales: small, medium, and large. Even for the latest state-of-the-art
methods, a significant gap remains between the detection performance on small and medium
objects. This discrepancy stems mainly from the limited number of pixels that represent small
objects. In COCO, small objects are defined as those with an area below 322 pixels. However,
this definition does not adequately reflect the scale of objects in more challenging settings such
as UAV or vehicle-mounted detection systems, where objects of interest may occupy just a few

dozen pixels in images that exceed full HD resolution. Tiny object detection becomes especially

1



Introduction 2

FiGure 1.1: Challenges posed by tiny object detection in high-resolution images: (a) infer-

ence at the original resolution preserves object features but is resource-intensive; (b) downsam-

pling enables fast and lightweight inference but greatly reduces spatial information; (c) naive

sliding-window preserves features but is time-consuming and causes object fragmentation; (d)

standard Non-Maximum Suppression struggles in window-based settings — depending on the

confidence and IoU thresholds, it may retain fragmented detections if their score is higher than
the full detection (top row) or keep both detections if their IoU is low (bottom row).

critical in such robotic scenarios. For example, drones may need to detect distant vehicles or
people, and ground robots may need to identify small tools. These small objects often have a
significant impact on the task at hand. However, detecting tiny objects remains challenging be-
cause their visual features are easily lost during image downsampling. Even advanced detectors
struggle with low-resolution or heavily occluded instances. In addition, tiny object detection
is sensitive to factors such as receptive field size, anchor box design, and spatial resolution of

backbone feature maps.

In these higher-resolution domains, often starting at 1280x 720 and frequently reaching or exceed-
ing 1920x 1080, standard object detectors struggle. Inference running on full-resolution images
becomes computationally expensive and slow, which is not suitable for mobile robotics and real-
time systems (Fig. 1.1a). Although input downsampling can reduce processing time (Fig. 1.1b), it
often causes tiny objects to vanish entirely from the feature maps, leading to missed detections.
A simple workaround is a naive sliding-window approach, which applies a fixed-size detector
across overlapping patches of the original image. While this improves recall for tiny objects, it
greatly increases runtime and causes the fragmentation of larger objects (Fig. 1.1c). To overcome
this trade-off, a class of window-based object detection methods emerged, designed to identify
promising regions for high-resolution inference. These typically rely on initial region selection
mechanisms, such as clustering [157], density maps [34, 75], or preliminary detections [71, 169],
to estimate the likely object-rich areas. However, most of these methods are optimized for dense

scenes and are not well suited for detecting sparsely distributed objects.

Many window-based detection strategies attempt to maintain performance on large objects by
combining full-image and tile-based predictions [75, 96, 142, 155, 157, 169]. However, training
with mixed-resolution inputs can lead to inconsistencies in object scale, which may reduce overall
detection quality. To mitigate such issues, some systems dynamically adapt image resolution
based on object scale estimates, for example, by upsampling the entire image [178] or selectively
enhancing relevant tiles [31]. Others focus on the post-processing stage, introducing methods

like Incomplete Box Suppression (IBS) [71] to address detection fragmentation across tiles.

While numerous approaches exist for object detection in high-resolution imagery, most suffer
from one of two key limitations: high computational cost due to dense sliding-window oper-

ations, or diminished performance due to aggressive downsampling. Moreover, few existing

16:5201881462



Introduction 3

solutions are designed to support both dense and sparse scenes or to operate effectively in real-
time video applications. This thesis addresses these gaps by proposing an efficient modular
system for real-time tiny object detection in high-resolution video data. The system combines
segmentation-based and tracking-based ROI selection with novel post-processing algorithms to
improve detection performance while reducing computational cost. This modular design allows
it to adapt to both dense and sparse object layouts and makes it particularly well-suited for

robotics applications.

1.2 Problem Statement

Tiny object detection in high-resolution images presents a unique set of challenges that are not
sufficiently addressed by conventional object detection pipelines. Standard methods typically
operate on downsampled images, which leads to the loss of critical fine-grained features neces-
sary for detecting small objects. This problem is particularly evident in high-resolution domains
such as UAV-based monitoring, surveillance, and mobile robotics, where objects of interest often
occupy only a few pixels and appear at multiple scales. Sliding-window approaches offer a brute-
force alternative by exhaustively scanning high-resolution inputs with overlapping tiles. While
effective in improving recall for small objects, this strategy is computationally expensive and
impractical for real-time applications. To reduce computational cost, a class of window-based
detection systems has been proposed that aims to infer promising subregion ROIs, where full-
resolution detection should be performed. However, many of these systems rely on clustering or
density estimation, which limits their applicability to crowded scenes and compromises general-
ization to sparse layouts. Furthermore, existing methods often neglect the temporal structure of
video data, treating each frame independently. This disregards valuable motion cues that could
help recover missed detections, especially in low-contrast or occluded settings. Post-processing
strategies such as Non-Maximum Suppression (NMS) also fall short in window-based systems,
where overlapping tiles often produce redundant or fragmented detections that may not be prop-
erly filtered, as illustrated in Fig. 1.1d.

To address these limitations, this thesis proposes a modular object detection system that inte-
grates: a segmentation-based ROI Estimator trained directly on masks extracted from detection
labels, a lightweight ROI Predictor based on object tracking, and novel post-processing algo-
rithms designed to operate globally across detection windows. Together, these components aim
to improve detection accuracy, inference speed, and robustness across dense and sparse scenar-
ios. The system is particularly well-suited for high-resolution video streams in computationally
constrained environments, such as autonomous or embedded robotic platforms. Building on this

motivation, the main research hypothesis investigated in this dissertation is as follows:

Selective full-resolution inference on image subregions identified by Region of Interest Estimator
and Object Tracker improves the tiny object detection performance on high-resolution images,

measured by Average Precision (AP), Average Recall (AR), and inference speed.

This main hypothesis is supported by three auxiliary theses, each corresponding to one of the

key components of the system:
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1. ROI Estimation: Estimating ROIs using a deep neural network model enhances both

detection quality and inference speed compared to the naive sliding-window approach.

2. ROI Prediction: Incorporating an additional ROI source, such as an object tracker, into
the ROI-based object detection system further improves detection quality, inference speed,

and computational efficiency over state-of-the-art tiny object detection methods.

3. Global Filtering: False positive partial detections in window-based systems can be re-
duced through post-processing techniques such as Overlapping Box Suppression (0BS)

and Overlapping Box Merging (OBM).

1.3 Proposed Method

To address the challenges of object detection in high-resolution images, this thesis proposes a
modular detection system consisting of two complementary ROI selection stages. The first stage,
the ROI Estimator, performs binary segmentation on low-resolution inputs to identify candidate
regions. The Estimator is trained directly on masks generated from the detection labels, avoiding
reliance on density or clustering assumptions and improving generalization to sparse and multi-
scale scenarios. The second stage, the ROI Predictor, is implemented as an object tracker that
leverages temporal information in video sequences to complement the ROI selection, enhancing
recall over time, particularly for objects missed in individual segmentation masks. These two
modules guide a lightweight, general-purpose object detector to focus exclusively on relevant
high-resolution image regions likely containing objects. Detection windows are generated from
ROI masks by the Detection Window Proposal Block, which applies multiple processing steps
to effectively handle ROIs of varying sizes and shapes. The system is designed to robustly detect
both densely clustered tiny objects and sparsely distributed objects across multiple scales. This
robustness comes from two key mechanisms. First, the object tracker improves recall for tiny
objects by compensating for frames where the segmentation-based ROI Estimator misses regions
of interest. Second, the Detection Window Proposal Block processes large ROI regions using
a hybrid approach that combines sliding-windows and crop-and-resize techniques. This strategy
preserves fine details critical for tiny object detection while maintaining sufficient context for
larger objects, which are otherwise prone to fragmentation by fixed detection windows. To
further improve detection quality, two complementary algorithms are introduced within the
Global Filtering Block. The Overlapping Box Suppression (0BS) algorithm filters out
fragmentary false positive detections caused by overlapping detection windows and partial views
of objects. Conversely, the Overlapping Box Merging (0BM) algorithm merges fragmented
detections into complete ones when no full detection is present. This global filtering approach

outperforms standard Non-Maximum Suppression (NMS) in window-based detection scenarios.

The modular design of the system allows for straightforward customization and independent up-
dating of each component as advances are made in their respective areas. The method overcomes
the low detection quality commonly found in traditional single-shot detectors that downsample
high-resolution inputs, while offering significant computational savings compared to naive sliding-

window approaches. The ROI Estimator, relying on binary semantic segmentation at relatively
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large input resolutions, provides high-quality ROI proposals. However, in resource-constrained
environments, this can be computationally expensive. Therefore, the ROI Predictor, based on
object tracking, enables a reduction in segmentation input size and overall computational com-
plexity, accelerating inference while maintaining detection quality. Throughout this thesis, it is
demonstrated that this dual-ROI approach achieves superior detection performance compared
to several state-of-the-art methods, with fewer trainable parameters. The Detection Window
Proposal Module further accelerates processing by filtering initial detection windows, and the
combination of multi-scale ROI handling with the Global Filtering Block ensures robust de-

tection across object sizes.

1.4 Contributions

The novelty of the proposed system lies in its modular design that uniquely combines segmenta-
tion-based ROI Estimation with a lightweight tracking-based ROI Prediction, enabling effi-
cient and accurate object detection in high-resolution images and video streams. Unlike many
existing window-based methods that prioritize accuracy at the expense of runtime efficiency [75,
155, 157], this system emphasizes real-time processing suitable for resource-constrained environ-
ments. Its segmentation module learns ROI masks directly from detection labels, avoiding com-
plex intermediate representations like density maps or clusters, as used in prior works [34, 71, 75],
thus ensuring robust performance across both dense and sparse object distributions. The inte-
gration of a tracking-based ROI Predictor significantly reduces computational load by allowing
lower-resolution segmentation inputs without sacrificing detection quality [69]. Furthermore, the
system’s dedicated handling of large ROIs balances the preservation of fine details for tiny objects
with the necessary context for larger or multi-scale objects [132]. Complementing these advances
are novel postprocessing algorithms, namely Overlapping Box Suppression and Overlapping
Box Merging, specifically designed to address challenges in window-based detection by filter-
ing redundant partial detections and merging fragmented ones, outperforming traditional NMS
approaches. Together, these innovations deliver a flexible and computationally efficient detec-
tion framework with open-source implementation [70], making it highly suitable for practical

applications such as robotics and embedded systems.

The main contributions of this doctoral dissertation can be summarized as follows:

e a modular, window-based tiny object detection system that combines lightweight local de-
tectors operating on small sub-windows with an efficient ROI selection process, supporting
real-time, high-quality detection of both tiny and multi-scale objects in high-resolution

images,

e a data-driven ROI Estimation Module that leverages the low-resolution current frame to
estimate regions of interest for fine-grained detection. Ground-truth masks are generated
directly from the detection labels, enabling support for both dense and sparse object dis-
tributions, in contrast to density- or clustering-based ROI selection methods that favor

high-density regions,
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e a lightweight, non-trainable ROI Prediction Module that exploits the temporal consis-
tency of real-time data streams using tracking. This module supports ROI selection for
the most difficult-to-detect occluded and tiny objects, allowing recovery of regions missed

by the Estimator operating on highly downsampled input,

e support for both tiny-only and multi-scale scenarios through a dual ROI handling strat-
egy, which combines sliding-window detection within large ROIs with a crop-and-resize
approach to maintain the integrity of larger instances while preserving fine-grained repre-

sentation of smaller objects,

e a dedicated Global Filtering Block for window-based systems, integrating the novel
Overlapping Box Suppression (0BS) and Overlapping Box Merging (0BM) algorithms,
designed to merge and filter fragmented detections commonly encountered in focus-and-

detect systems,

e a highly customizable, open-source framework for window-based detection.

1.5 Thesis Organization

To guide the reader through the structure and contributions of this work, the dissertation is
organized into eight chapters. Each chapter addresses a distinct aspect of the research, begin-
ning with the motivation and literature review, followed by a description of the proposed system
and detailed experimental evaluation of the most important modules. The core of the thesis
is structured around three main components of the system: ROI Estimation (Chapter 4), ROI
Prediction (Chapter 5), and the Global Filtering Block (Chapter 6). This work does not
include a standalone “Results” chapter. Instead, experimental results and ablation studies are
presented within the individual chapters that introduce the corresponding methods, closely fol-
lowing the structure of the related publications. The following overview briefly summarizes the

content and purpose of each chapter:

1. Introduction - This chapter introduces the problem of tiny object detection in high-
resolution images, with a particular focus on its relevance to mobile robotics applications.
It explains the challenges associated with detecting small objects, such as scale variance
and limited visual cues, and justifies the need for specialized window-based approaches.
The chapter outlines the research motivation, problem statement, and objectives of the
dissertation. It also briefly presents the proposed method, situating it within the broader
context of general object detectors and other window-based techniques. Finally, it states

the main research theses and summarizes the key contributions of the work.

2. Related Work - This chapter reviews the existing literature relevant to the three core
components of the proposed system: object detection, Region of Interest (ROI) selection,
and object tracking. It begins with an overview of commonly used object detection metrics,
including those specific to small and tiny object detection, and introduces the evaluation
protocol applied throughout the thesis. Next, several high-resolution image and video

datasets are compared, providing justification for the benchmark selection used in this
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work. The chapter then offers an in-depth analysis of tiny object detection, emphasizing
the specific challenges involved, particularly in real-time, high-resolution scenarios. Var-
ious method categories are introduced and systematically compared, with the proposed
system positioned within the “Focus-and-Detect” family of approaches - those that direct
the detector’s attention to selected image regions likely to contain objects. The subsequent
section on Region Generation explores this focus mechanism in more detail, laying the
groundwork for understanding the ROI Estimation component of the system discussed in
Chapter 4. Since the proposed method incorporates not only image-based cues but also
temporal information, the chapter concludes with a literature review on object tracking,
emphasizing its role in refining ROI selection and justifying its integration into the system.
The effectiveness of the tracker-based ROI Prediction is further analyzed experimentally
in Chapter 5.

3. Proposed Tiny Object Detection System - Provides a high-level overview of the
SegTrackDetect framework, introducing its key components and their interactions. The
main elements include segmentation-based ROI Estimation, ROI Prediction using object
tracking, a Fusion Module that generates the final ROI mask, the Detection Windows
Proposal Module, the Local Object Detection Module, and the Global Filtering
Block. This chapter serves as an overview of the complete system pipeline, which is
explored in more detail in the following three chapters, and also discusses the datasets

used as well as the core contributions and novelty of the proposed system.

4. ROI Estimation-based Tiny Object Detection System - This chapter describes the
segmentation-based detection pipeline, covering both the initial TinyROI prototype and
its evolved estimation-only configuration within SegTrackDetect. It begins by presenting
the key contributions introduced by the ROI estimation-based approach, followed by a
detailed discussion of the relevant system components, with emphasis on the differences
between the TinyROI prototype and the advanced SegTrackDetect architecture. The chap-
ter focuses on Auxiliary Thesis #1: “Estimating ROIs using a deep neural network model
enhances both detection quality and inference speed compared to the naive sliding-window
approach”. To support this, the SegTrackDetect variant is benchmarked against TinyROI
and the sliding-window methods across several challenging datasets. Then, the TinyROI
system is evaluated against single-shot detection with downsampling and sliding-window
method. Finally, the ablation study provides justification for various architectural deci-
sions, including the ROI estimator training pipeline, the Detection Windows Proposal

Module, and the necessity of a dedicated Global Filtering Block.

5. ROI Estimation and Prediction-based Tiny Object Detection System - This
chapter extends the previous design by incorporating object tracking for ROI Prediction
into the ROI selection module. It begins with an overview of the main contributions and
the proposed method, highlighting the key modifications compared to the SegTrackDe-
tect variant described in Chapter 4, specifically the addition of tracking and ROI Fusion.
Experimental results demonstrate that the fusion-based system outperforms several state-
of-the-art methods (covering general, video, and tiny object detection) on two challenging
datasets. The ablation study aims to validate Auxiliary Thesis #2, showing that inte-

grating ROI Prediction reduces computational load, accelerates inference, and improves
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detection quality beyond existing state-of-the-art approaches. By enabling a lower input
resolution for the segmentation-based Estimator, the ROI Prediction Module reduces
computational complexity and increases processing speed, while maintaining detection

quality by recovering regions containing tiny objects missed at low resolution.

6. Detection Filtering Methods - This chapter introduces two novel algorithms devel-
oped to enhance post-processing of window-based object detection outputs: Overlapping
Box Suppression (0BS) and Overlapping Box Merging (0BM). The chapter begins by
motivating the need for improved filtering techniques tailored to the unique challenges
of window-based detection systems, where overlapping detection windows often produce
redundant or partial detections, particularly for larger objects. A detailed description of
the 0BS algorithm follows, explaining how it selectively suppresses partial detections while
preserving full correct detections, thereby reducing false positives and improving preci-
sion. Next, the 0BM method is presented as a complementary approach designed to merge
fragmentary detections that together represent a single object but are detected separately
across overlapping windows. The chapter compares the performance of these methods
against the widely used Non-Maximum Suppression (NMS) baseline, demonstrating the su-
perior ability of 0BS and 0BM to handle detection fragmentation and improve overall detec-
tion accuracy. Experimental evaluations on the multi-scale SeaDronesSee dataset illustrate
how these filtering strategies contribute to the robustness of the proposed system. This
chapter addresses Auxiliary Thesis #3 by demonstrating that specialized post-processing
methods, such as 0BS and 0BM, can further enhance detection quality in window-based

object detection systems.

7. Implementation Details - This chapter focuses on the practical aspects of the disserta-
tion and the conducted research. It begins with a detailed discussion of the open-source,
highly customizable SegTrackDetect framework, covering its core functionalities and de-
sign. The chapter then addresses the integration of the system on embedded devices,
presenting a discussion of the trade-offs between detection quality and processing speed
when deploying the system in resource-constrained environments. This section is crucial
for demonstrating the system’s applicability in real-world mobile robotics scenarios, em-
phasizing its practical relevance. Due to company confidentiality, details regarding the

embedded system implementation remain proprietary.

8. Conclusions - This chapter summarizes the main findings of the dissertation with a focus
on how the research theses were validated through the conducted studies and experiments.
It highlights the key contributions made, emphasizing their significance within the context
of tiny object detection in high-resolution images. The chapter also critically reflects on the
strengths and limitations of the proposed methods and system design. Finally, it outlines
promising directions for future research to further improve detection accuracy, efficiency,

and applicability in real-world scenarios.

The research presented in this dissertation was supported by the Ministry of Education and
Science under the "Doktorat Wdrozeniowy” program (grant number DWD/5/0203,/2021). The
author gratefully acknowledges this financial support, which was essential for the successful

completion of this work.
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1.6 Publications

The research carried out throughout this doctoral project has led to several scientific publications.
Some of these publications emerged directly from the core topic of the dissertation, and the
results they present are used and discussed in detail within the thesis. Others address related
problems and were developed in parallel as part of a broader research effort in object detection
and computer vision. While these latter works concern similar application areas, their specific
results are not included in the dissertation. Together, these contributions have been published in
peer-reviewed journals and international conference proceedings and reflect the iterative nature
of the research process. The following lists include all publications that emerged during the

course of the dissertation.

Journal Articles

1. Kos, A., Belter, D., and Majek, K. “Deep Learning for Small and Tiny Object Detection:
A Survey.” Pomiary Automatyka Robotyka, vol. 27, no. 3, 2023. MNiSW: 100.

Summary: This paper presents a structured overview of deep learning methods for small
and tiny object detection, covering relevant datasets, evaluation metrics, and the key chal-
lenges specific to detecting small objects in high-resolution images. It also distinguishes
between relatively small objects in high-resolution contexts and absolutely small objects

in terms of pixel count. The content is partially used in Chapter 2.

2. Kos, A., Belter, D., and Majek, K. “Enhanced Lightweight Detection of Small and Tiny
Objects in High-Resolution Images Using Object Tracking-Based Region of Interest Pro-
posal.” Engineering Applications of Artificial Intelligence, vol. 153, 2025, 110852. IF: 7.5,
MNiSW: 140.

Summary: This paper presents a Region of Interest (ROI) proposal method that com-
bines ROI Estimation with a tracking-based ROI Prediction component to enhance the
detection of small objects. It demonstrates improved performance over systems that rely
solely on estimation and is validated on real-world datasets against several state-of-the-art

detection methods. The content is contextually aligned with Chapter 5.

3. Kos, A., Belter, D., and Majek, K. “SegTrackDetect: A Window-Based Framework for
Tiny Object Detection via Semantic Segmentation and Tracking.” SoftwareX, vol. 30,
2025, 102110. IF: 2.4, MNiSW: 200.

Summary: The introduces an open-source, real-time framework for window-based tiny ob-
ject detection. The system is used throughout this dissertation to implement both image-
and video-based detection pipelines described in Chapters 4, 5, and 6. In subsequent chap-
ters, the term SegTrackDetect refers to the final version of the detection system, including

both estimation-only and fused configurations.

4. Kos, A. “Overlapping Box Suppression and Merging Algorithms for Window-Based Object
Detection.” Foundations of Computing and Decision Sciences, vol. 50(3), pp. 403-423,
2025. IF: 1.8, MNiSW: 40.



Introduction 10

Summary: This paper introduces two algorithms, Overlapping Box Suppression (0BS)
and Overlapping Box Merging (0BM), designed to improve post-processing in window-
based object detection systems. Both methods address limitations of traditional Non-
Maximum Suppression (NMS) by filtering out redundant or fragmentary detections across
overlapping windows. The algorithms are evaluated on high-resolution datasets and are

directly analyzed in Chapter 6.

Conference Proceedings

1. Kos, A., Majek, K., and Belter, D. “Where to Look for Tiny Objects? ROI Prediction for
Tiny Object Detection in High-Resolution Images.” In: Proceedings of the 17th Interna-
tional Conference on Control, Automation, Robotics and Vision (ICARCV 2022), IEEE,
2022. MNiSW: 140.

Summary: Presents the initial estimation-based system, referred to as TinyROI, evaluated
on the Mapillary Traffic Sign Dataset. This system serves as the estimation-only baseline
and later evolves into the SegTrackDetect estimation-only configuration, which is further

analyzed in Chapter 4.

2. Kos, A., and Majek, K. “CNN-Based Traffic Sign Detection on Embedded Devices.” In:
Proceedings of the 3rd Polish Conference on Artificial Intelligence (PP-RAI 2022), Gdynia,
Poland, 25-27 April 2022, pp. 108-111. Uniwersytet Morski w Gdyni, 2022. MNiSW: 20.

Summary: Presents a lightweight convolutional detection system for traffic signs optimized
for embedded deployment. While not directly used in the dissertation, this work inspired
the thesis topic and highlighted the limitations of standard detection methods when applied

to small objects in high-resolution images with complex backgrounds.

3. Kos, A., and Majek, K. “BDOT10k-seg: A Dataset for Semantic Segmentation.” In: Wo-
jciechowski, A., Lipinski, P. (Eds.), Progress in Polish Artificial Intelligence Research 4,
Monografie Politechniki ¥.6dzkiej, no. 2437, Wydawnictwo Politechniki Lodzkiej, ¥.6dz,
2023. MNiSW: 20.

Summary: Describes the creation of an object detection and segmentation dataset derived
from the BDOT10k database. Although not directly used in the thesis, the dataset is
thematically aligned with this work and features extremely high-resolution images. It is

included in the overview of the datasets in Chapter 2.

4. Kos, A. “Overlapping Box Suppression Algorithm for Window-Based Object Detection.”
In: Progress in Polish Artificial Intelligence Research 5, Proceedings of the 5th Polish
Conference on Artificial Intelligence (PP-RAI 2024), Warsaw, Poland, 18-20 April 2024,
pp- 325-330. MNiSW: 20.

Summary: Introduces the initial version of the Overlapping Box Suppression (0BS)
algorithm for filtering redundant detections in window-based object detection. This method

is subsequently extended and comprehensively evaluated in Chapter 6.

5. Kos, A., Majek, K., and Belter, D. “Dataset Augmentation for Detecting Small Objects in
Fisheye Road Images.” In: Lecture Notes in Artificial Intelligence, Proceedings of the 24th
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International Conference on Artificial Intelligence and Soft Computing (ICAISC 2025),
Zakopane, 2025. MNiSW: 20. (in press)

Summary: Introduces a data augmentation pipeline aimed at improving the detection of
small objects in distorted fisheye images from the FishEye8K dataset. While addressing
related challenges, such as small object distortion in non-high-resolution images, this work

is not part of the main dissertation.
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Chapter 2

Related Work

2.1 Introduction

Recent advances in computer vision, driven by deep learning and the availability of large an-
notated datasets, have significantly improved performance across tasks such as image classifi-
cation, segmentation, and object detection. Within object detection, considerable progress has
been made on detecting medium and large objects, but tiny object detection remains an open
challenge due to factors like low-resolution objects, complex backgrounds, and limited contextual
information. To address these challenges, many existing approaches follow a focus-and-detect
strategy, where specific regions of an image are prioritized for detailed analysis. The system
that is introduced in this work builds on this principle by integrating both segmentation and
tracking to guide ROI selection, enabling accurate detection of small objects while maintain-
ing computational efficiency. To position the proposed system within the context of existing
literature, this chapter begins with the review of general object detection with a focus on the
challenges and advancements in tiny object detection (Section 2.2). This includes a discussion
of commonly used evaluation metrics (Section 2.3), datasets (Section 2.4), and detection meth-
ods (Section 2.5). Existing tiny object detection approaches are categorized into seven distinct
groups with a detailed comparison among them. Given that the proposed system leverages tem-
poral information for ROI selection, the literature review also includes video object detection
methods (Section 2.6). Furthermore, methods for ROI selection (Section 2.7) and object tracking
(Section 2.8) are discussed, as the proposed approach combines both spatial and temporal cues

to guide the detection process.

2.2 Object Detection

Object detection is a fundamental task in computer vision that involves two key subtasks: accu-
rately localizing objects within an image and correctly classifying them. Localization is typically

represented by bounding box coordinates, either in the form of horizontal bounding boxes (HBB)
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or oriented bounding boxes (OBB), depending on the application’s requirements. In this dis-
sertation, the focus is on HBB - however, the proposed method could be extended to OBB by
using a different Local Detector and making minor algorithmic adjustments, while following

the same general paradigm.

In recent years, deep learning, especially convolutional neural networks (CNNs), has led to major
improvements in object detection. Popular detectors perform well on standard benchmarks. On
the COCO dataset [81], these models reach Average Precision (AP) scores of around 60% for
medium objects and 70% for large ones [140, 190|. However, detecting small objects is still
a major challenge. Small objects often contain fewer pixels, lack strong features, and can be
blurred or distorted by sensor noise. These factors make both classification and localization
more difficult. Additionally, most modern detectors rely on downsampling in their backbone
networks, and images are often scaled down during preprocessing, which can cause small objects
to disappear entirely [82, 84]. Traditional anchor-based detection methods are also less effective
when objects are very small [170]. The proposed solution employs shallow, general-purpose
detectors at the local level, which helps preserve the spatial detail present in high-resolution

imagery and reduces the negative effects of aggressive downsampling in deeper architectures.

Object detection methods are typically divided into two categories: two-stage and one-stage
detectors. Most traditional detectors are anchor-based, but more recent approaches have in-
troduced anchor-free designs. Two-stage methods, such as R-CNN [44], Fast R-CNN [43], and
Faster R-CNN [110], first generate region proposals and then refine them through classifica-
tion and bounding box regression. These models are generally accurate but slower, since they
require an extra step to generate proposals. One-stage detectors, like YOLO [12, 107-109], Reti-
naNet [83], and SSD [85], skip the proposal step and predict object locations and classes in one
pass based on the predefined set of anchors. This makes them faster, though often slightly less
accurate. Recent anchor-free methods, such as CenterNet [180] and FCOS [128], eliminate the
need for predefined anchor boxes entirely, simplifying the architecture and improving perfor-
mance in some scenarios. To better handle objects of different sizes, Feature Pyramid Networks
(FPN) [82] combine feature maps from multiple levels of the network to provide richer multi-
scale representations. The modular system proposed in this work employs lightweight one-stage
architectures for Local Object Detection, combined with an additional ROI selection step to

avoid exhaustive analysis of background-only regions common in high-resolution imagery.

In general detection, some key challenges include large appearance variations within object classes
(intra-class), similarities between different classes (inter-class), and noisy backgrounds. The
COCO dataset [81], alongside Pascal VOC [36], is a common benchmark for evaluating detectors.
As evaluation metrics, it includes APs and average precision (AP) for objects smaller than 32x32
pixels. The performance gap between AP, and AP (objects larger than 96x96 pixels) can reach
around 30 percentage points [136], even for the models with the best performance. This highlights
the difficulty of detecting small objects. Small objects tend to appear at low resolution, are
often blurred, and contain limited visual information. Additionally, downsampling operations in
backbone networks reduce the visibility of small objects in deeper feature maps, further degrading
detection performance. In datasets that focus on small or tiny objects, particularly those with

high-resolution images, foreground objects may occupy only a tiny fraction of the image. This
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low signal-to-noise ratio significantly increases the risk of false positives. To address this issue,
several new datasets have been introduced, specifically targeting small-scale object detection.
Examples include AI-TOD [138, 153] and SODA [24], both of which emphasize extremely small
objects. Many of these datasets, especially those in the remote sensing domain [24, 32, 66],

contain ultra-high-resolution images, further increasing the complexity of the detection task.

The following sections of this literature review are organized as follows: first, the evaluation
metrics used in object detection are discussed, followed by an overview of relevant datasets. Each
section begins with a general object detection perspective before addressing the specific challenges
unique to tiny object detection, clearly distinguishing between the two contexts. Additionally,
definitions of object size in the literature are reviewed, comparing relative and absolute size
definitions, along with a detailed analysis of seven groups of methods developed specifically for
tiny object detection. Given the focus on developing a real-time video-based tiny object detection
system, video object detection methods are also briefly reviewed. These approaches leverage the
sequential nature of video data to improve detection quality, rather than applying image-based

detection methods independently to each frame.

2.3 Object Detection Metrics

Metrics are a fundamental pillar of benchmarking, not only in computer vision but across all
engineering and scientific disciplines. They enable fair and consistent comparison between meth-
ods, and the unification of evaluation metrics is crucial for ensuring uniformity across studies.
In object detection, the most commonly used metrics are true positive count (TP), false positive
count (FP), false negative count (FN), precision, recall, as well as Average Precision (AP) and
Average Recall (AR). Object detection involves two main tasks: localizing objects within an
image and classifying them correctly. For a detection to be considered a true positive, it must
both predict the correct class and significantly overlap with a corresponding ground-truth object.
This overlap is commonly quantified using the Intersection over Union (IoU), defined for two
rectangles - A (the detected bounding box) and B (the ground truth) as:

_|AnB|

IoU = .
Y T lAuB

(2.1)

Although IoU is widely adopted for evaluating detection performance, it has a major limitation
in training neural networks: its value is zero for non-overlapping boxes. To address this issue,

several extensions of IoU have been proposed:

e Generalized Intersection over Union (GIoU) [111], which introduces a third rectangle (C),

defined as the smallest rectangle enclosing both A and B. It is computed as:

C\(AUB)|

GIloU = IoU —
IC]

(2.2)

e Distance Intersection over Union (DIoU) [177], designed to improve the convergence of the

training process. It adds a penalty term representing the normalized Euclidean distance
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between the centers of A and B:

%(a,b
DIoU = IoU — %. (2.3)
where a, b are the center points of A and B, ¢ is the diagonal length of C, and p(-) denotes

the Euclidean distance

e Complete Intersection over Union (CIoU) [177] which in addition to penalizing the distance

between A and B, also emphasizes the similarity of the aspect ratio between A and B:

2 2
B ~ pla,b) v
ClIoU = IoU ) A= Tol) 1o’ (2.4)
where: A W
v = —Q(arctan—A - arctan—B)Q, (2.5)
™ A B

and Wu,H 4, Wg,Hp are the widths and heights of rectangles A and B, respectively.

The extension of the IoU for video data is the Spatio-Temporal Tube Intersection over Union
(STT-IoU) defined as the ratio of the intersection volume to the union volume of all merged

detections and ground truth objects.

One of the fundamental sets of metrics in object detection includes precision (precision =
TP TP
TP+FP TP+FN
rics alone do not assess localization accuracy. For a prediction to be considered a true positive

), recall (recall = ), and the precision-recall (PR) curve. However, these met-
(TP), two conditions must be met: the predicted class must be correct, and the Intersection over
Union (IoU) between the predicted and ground-truth bounding boxes must exceed a predefined
threshold. Predictions that meet the class condition but fail the IoU threshold are counted as
false positives (FP), while false negatives (FN) are ground-truth objects not matched by any
prediction. The IoU quantifies the spatial overlap between predicted and ground-truth bound-
ing boxes. Older datasets [32, 33, 158] typically use metrics introduced by the Pascal VOC
benchmark [36], whereas more recent datasets [24, 73, 132, 138, 184] more commonly adopt
the evaluation protocol defined by MS-COCO [81]. Both Pascal VOC and MS-COCO rely on
Average Precision (AP), defined as the area under the precision-recall curve. The main differ-
ences lie in the interpolation method and the IoU thresholding. Pascal VOC computes AP using
11-point interpolation at a single IoU threshold of 0.5. In contrast, MS-COCO uses 101-point
interpolation and evaluates performance at multiple IoU thresholds: 0.5 (APy5), 0.75 (APy.75),
and the average over thresholds from 0.5 to 0.95 in steps of 0.05 (reported as AP). Addition-
ally, COCO reports AP and Average Recall (AR) for objects of different sizes (small, medium,
and large), as well as AR metrics based on the number of detections per image: ARy, ARy,
and ARyp9. To gain deeper insight into detector performance under varying conditions, Average
Precision (AP) is often reported separately for each class [24, 32, 73, 138, 153, 158] or object
size [24, 81, 138, 153, 158, 163|. In aerial imagery datasets, AP is also frequently broken down by
UAV altitude or viewing angle [33, 132]. Average Recall (AR) is sometimes customized to reflect
the characteristics of a specific dataset. For example, VisDrone and AI-TOD report ARs5q0 and
ARy500, respectively, due to the high average number of objects per image. In the TinyPerson

dataset, a reduced IoU threshold of 0.25 is adopted to emphasize object detection over precise
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localization, acknowledging the difficulty of accurately localizing extremely small objects. The
proposed solution is evaluated using modified COCO metrics based on the relative size thresh-
olds described later in this section. Chapter 3 provides a detailed overview of the exact metrics

used for each evaluation dataset.

While the same metrics are usually used to evaluate the quality of Tiny and Small Object
Detection as for generic object detection [36, 81], in [153] the reduced effectiveness of the IoU in
small object detection was shown. This is because the IoU is highly sensitive to position deviation
when applied to small objects. The authors note the following implications - anchor-based
detectors that use IoU to discriminate between positive and negative samples tend to classify
an anchor as negative based on a slight location shift, and tiny objects get few positive samples
compared to normal-scale ones, making the detector biased towards detecting large objects. The
issues were addressed with the introduction of the Normalized Gaussian Wasserstein Distance
(NWD), which can model the position relation even for non-overlapping rectangles. [152] authors
argue that an IoU as well as its all variations (Generalized IoU, Distance IoU and Complete IoU)
are unsuitable for tiny object detection, and thus propose a Dot Distance (DotD) metric. DotD is
defined as the normalized Euclidean distance between the central points of two bounding boxes.
In [154] Receptive Field Distance (RFD) was introduced. RFD measures the distance between
the ground-truth bounding-boxes and the receptive fields of the feature points by modeling their
Gaussian distributions. It can be applied for both anchor-based and anchor-free detectors. The
Normalized Wasserstein Distance (NWD), that was proposed in [153], measures the similarity
between two bounding-boxes using Gaussian distributions placed at their centers, with the middle

pixel having the greatest weight.

A common approach to evaluating detection performance is to assess it across different object
sizes, where the size of an object is typically defined in one of three ways: by its absolute
area [24, 81], by the geometric mean of its height and width [138, 163] (referred to as object
size in this work), or by a single dimension such as height [158]. For consistency, all thresholds
in this work are expressed in terms of object size defined as the square root of the area; when
datasets use alternative definitions, thresholds were converted accordingly. Many datasets follow
the COCO convention, which reports Average Precision (AP) and Average Recall (AR) for three
size categories: small, medium, and large [14, 35]. In some cases, performance is reported per
class [32, 184|. There is no strict definition of a tiny object. However, based on definitions used
in datasets like TinyPerson and AI-TOD, the tiny category is typically introduced to distinguish
objects that fall within the lower end of the small category in COCO. An exception is SODA,
which defines objects larger than 32 pixels as small and sets the upper limit for tiny objects at

32 pixels.

The COCO evaluation protocol is widely accepted as a standard for evaluating object detectors.
However, within the small object detection literature, it is common to introduce additional, finer-
grained size categories [24, 138] by subdividing the small category. As shown in Tab. 2.1, datasets
dedicated to tiny object detection usually exclude large instances. For example, TinyPerson, Al-
TOD, and SODA have upper bounds of 32, 64, and 45 pixels respectively. These datasets often

define a lower size limit as well, such as 2 pixels in TinyPerson and AI-TOD. Two scenarios in
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TABLE 2.1: Threshold values for object size categories as defined by various datasets. Where
applicable, values are converted to object size (i.e., the square root of the object area). For
WIDER-FACE, object height thresholds are shown.

Dataset tiny small medium large

MS COCO [81] - 0-32 32-96 96—inf

WIDER FACE [158] — 10-50 50-300 300—inf
TinyPerson [163] ti2r15§1 tgli?'zz tllzr?ég 20-32 - o
AL-TOD [138] Vergﬁ;iny g’f% 16-32 3264 -
SODA [24] OiTG 15?24 24%32 32-45 - -

TABLE 2.2: Absolute and relative thresholds for six predefined object sizes. Relative thresholds
are used as proposed in [67].

Size Relative range Range at COCO resolution
micro 0 - 0.38% 0 -2 px

very tiny 0.38 — 1.52% 2 - 8 px

tiny 1.52 - 3.05% 8 — 16 px

small 3.05 - 6.10% 16 — 32 px

medium 6.10 — 18.29% 32 — 96 px

large 18.29 — 100% 96 — 525 px

which the problem of tiny object detection arises can be distinguished: small-only and multi-
scale detection. Small-only datasets (TinyPerson, AI-TOD) explicitly cap object size, thereby
reducing scale variation. In contrast, multi-scale datasets (DOTA, xView) span a wide range
of object sizes (from very small to large) but are typically dominated by tiny instances. High-
resolution images introduce additional challenges. Absolute thresholds, such as those in Tab. 2.1,
do not account for image size. As a result, an object of a given pixel area is treated identically
across datasets, regardless of image resolution. Datasets like DOTA, xView, and SODA con-
tain high-resolution images that cannot be processed at full scale due to memory constraints.
Downsampling leads to information loss, while patch-wise processing significantly increases run-
time. These three challenges, small-only, multiscale (in both absolute and relative terms), and

high-resolution detection, require different strategies to address effectively.

While some high-resolution small object detection methods retain COCO’s fixed small object
threshold of 32 pixels [24, 138], others increase this value to better suit datasets with larger
average image sizes [32, 45]. In this work, a hybrid strategy that combines six size categories
(micro, very tiny, tiny, small, medium, and large) is adopted together with relative size thresholds
proposed in [67]. The absolute thresholds are derived from [163] for the very tiny, tiny, and
small categories, and from [81] for medium and large. These are converted to relative thresholds
with respect to the average image size in COCQO, resulting in a scaling mechanism that adjusts
to the resolution of each dataset. Using relative size thresholds follows a similar approach
to [32, 45], with scaling performed automatically based on the image size in the dataset. This
accounts for images that are significantly larger than those in COCO while emphasizing the
focus on computational efficiency and lightweight detection methods for high-resolution images.
Processing large images is challenging due to computational costs, particularly for small object
detection, where excessive downsampling can degrade detection quality. The precise relative

thresholds used are presented in Tab. 2.2.
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Relative thresholds Sr are made independent of the actual image size S; by normalizing the
absolute thresholds Sp using the geometric mean image size in coco_ test2017, which is St = 525

pixels:
SO w-h
Sp = —-100% =
R =g, W00 =g
Here, w and h denote the width and height of the object, while W and H refer to the image

dimensions!.

-100%. (2.6)

2.4 Object Detection Datasets

Publicly available benchmarks for small and tiny object detection largely reflect the primary
applications of such systems. These benchmarks can be grouped into the following categories:
remote sensing [23, 24, 32, 66, 73, 78, 131, 145, 153], where images are mostly captured by
satellites for agricultural, urban planning, and environmental monitoring purposes. In these
applications, images tend to be large, but processing is typically performed offline, so real-time
performance is not a requirement. In contrast, UAV-based applications [33, 132, 147, 163, 164,
184], commonly used for urban traffic analysis, crowd detection and counting, or search and
rescue missions, often require that all computations be performed onboard, under strict memory
and time constraints. Similarly, in automotive applications [24, 35, 161, 162, 188] related to
vehicle autonomization or traffic and traffic sign detection, real-time detection is essential. In
most cases, the small size of objects results from the distance between the sensor and the object
(e.g., the high altitude of a UAV or the long range from a vehicle). Particularly in automotive
scenarios, early detection is critical to allow sufficient time for mechanical systems to respond.
The primary focus of this work is real-time tiny object detection in high-resolution images for

mobile robotics, emphasizing computational efficiency and fast processing.

Table 2.3 summarizes the key characteristics of several datasets that either explicitly focus on
small/tiny object detection or contain a large number of instances that are small or tiny in terms
of their relative size within the image. For each dataset, the average image size (Simage) and
average object size (Sobject) are computed as the geometric mean of height and width, also shown
in Tab.2.3. Additionally, Fig. 2.1 presents size distributions across all datasets, analyzed in both
absolute and relative terms. To facilitate comparison of object instance distributions across size
categories, the percentage share of each category within the entire dataset is reported. The
distinction between absolute and relative object sizes, as well as the importance of accounting
for image resolution in real-time robotics applications, was previously discussed in Section 2.3.
Objects that are small in absolute terms (i.e., few pixels) pose challenges related to visual feature
extraction and detector resolution. In contrast, objects that are small in relative terms (i.e.,
compared to the image size) often raise issues related to computational efficiency, since large
input resolutions are required to preserve detail. Importantly, objects that are small in relative
terms (i.e., occupy a small portion of the overall image) can still remain difficult to detect even

when cropped and processed at full resolution, as their absolute size in pixels may also be small.

IThe full evaluation protocol is publicly available at: https://github.com/Cufix/tinycocoapi
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TABLE 2.3: Comparison of key characteristics across object detection datasets. The number

of images and annotated objects is reported for subsets with publicly available labels. Simage

and Sobject denote the average image and object sizes, respectively. Datasets that include
video and multiple object tracking (MOT) data are marked with .

dataset tasks images objects classes Simage Sobject
BDD100K [162] traffic 80k 1.5M 10 960+0 51.3+£64.3
SODA-D [24] traffic 25k 278k 9 27904597 25.4+10.0
WoodScapes [161] traffic, fisheye 8k 124k 5 111240 53.34+59.1
FishEye8K [45] traffic, fisheye 8k 157k 5 1267+249 50.7+40.7
MTSD [35] traffic signs 42k 206k 314 29674840 63.1£71.6
TT100K [188] traffic signs 10k 26k 182 204840 45.9+31.6
xView [73] aerial 0.8k 602k 62 31484317 34.9£39.9
BDOT10k [66] aerial 61k 41M 286 12367+8939 442.1+1022.7
AI-TODv2 [153] aerial 14k 377k 8 80040 12.74£5.7
DIOR |[78] aerial 23k 193k 20 800+0 65.6+£91.7
DOTAv2 [32] aerial 2k 350k 18 3756+3536 33.0+49.0
iSAID [145] aerial 2k 471k 15 316541606 22.7+35.2
SODA-A [24] aerial 3k 873k 10 3627+162 15.6£7.7
SeaPerson [164] aerial, people 4k 304k 1 1456207 23.0£13.3
DroneCrowd” [147] aerial, people 33k 4.8M 1 1440+0 20.0£0.8
TinyPerson [163] aerial, people 2k 73k 2 1540+£527 18.9423.0
SeaDronesSee” [132]  aerial, people 10k 67k 5 2644+831 62.6+71.3
UAVDT" [33] aerial, traffic 40k 764k 3 74343 31.6+20.8
VisDrone [184] aerial, traffic 9k 471k 12 12004250 35.1+32.4
BDD100K - 0.0 164 347 256 18.0 52 BDD100K- 00 08 198 346 322 126
SODAD- 58 88 02 00 00 SODA-D- 00 16 104 286 00
WoodScapes - 0.0 172 320 288 19.2 28 WoodScapes - 00 086 145 312 407 130
FishEye8K - 00 57 27 150 09 w0 FishEye8K- 00 00 23 354 “ o3 wg
MTSD- 30 26.2 148 62 03 b4 MTSD- 00 06 100 288 433 172 -4
TT100K- 0.0 408 378 184 29 0.0 5\7 TT100K- 00 00 54 370 74 g
wiew- e [N 7 s o8 00 3 Wew- 00 ” 549 s 553 4 i
ALTODV2- 02 “ 101 38 03 00 50% ALTODV2- 00 125 124 18 00 agé
2 DIOR- 00 120 269 286 207 18 2 2 DIOR- 00 34 15 308 302 181 §
8 DOTAV2- 24 429 144 71 28 04 £ & DOTAV2- 00 97 282 308 266 46 s
SODA-A- 00 00 00 00 '4°§ SODA-A- 00 145 312 40 00 '40§
SeaPerson- 21 a2 38 02 00 5 SeaPerson- 00 73 245 201 02 k)
OroneCrow- 00 20 o0 00 o0 £ OroneCroud- 00 00 os o0 00 )
TinyPerson- 98 157 43 20 00 g TinyPerson- 0.0 268 364 224 124 20 g
SeaDronesSee- 0.1 319 166 60 04 04 SeaDronesSee- 00 00 50 a7 15 208
UAVDT - 0.0 21 343 127 05 UAVDT- 00 00 145 364 17
VisDrone - 07 317 348 233 93 02 VisDrone - 00 66 213 341 330 50
BDOT10k- 95 408 223 144 106 23 BDOT10k- 00 05 16 42 268
micro very tiny tiny small medium large o micro very tiny tiny small medium large o
Relative size Absolute size
(a) Relative size thresholds. (B) Absolute size thresholds.

FIGURE 2.1: Heatmap showing the percentage share of each size category across selected ob-

ject detection datasets. Six predefined size categories are used, based on relative size thresh-

olds (a): micro (0-0.38 %), very tiny (0.38-1.52 %), tiny (1.52-3.05 %), small (3.05-6.10 %),

medium(6.10-18.30 %), large (18.30-100 %), and based on absolute size thresholds (b): micro

(0-2 px), very tiny (2-8 px), tiny (8-16 px), small (16-32 px), medium(32-96 px), large (96-00
pX).

Among the traffic-oriented datasets, the Mapillary Traffic Sign Dataset (MTSD) [35] and SODA-
D [24] are characterized by some of the largest image sizes. Although SODA-D explicitly focuses
on small objects, with an average object size of only 25 pixels, MTSD exhibits greater variability
in object scales. This is evident in the object size distributions shown in both Fig. 2.1b and
Fig. 2.1a, where MTSD spans several size categories. SODA-D shares most of its 25k images
with the Mapillary Vistas dataset [94]; however, instances with an absolute area larger than
2000 pixels, as well as heavily occluded objects, are typically annotated but tagged as ignored,
leading to a smaller effective object size distribution. BDD100K [162] is similar to SODA-D in
terms of camera perspective and the set of annotated classes. Both use images captured from
vehicle-mounted cameras and focus on onboard traffic detection. However, the relatively small

image size in BDD100K limits its relevance for evaluating methods targeting high-resolution,
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tiny object detection as addressed in this work. Like BDD100K and SODA-D, MTSD [35] and
TT100k [188] also use a vehicle-mounted perspective, but are dedicated to traffic sign detection.
While SODA-D contains smaller objects, MTSD poses a greater challenge due to its large number
of classes, high inter-class similarity, and broad variability in object and image scales. These
characteristics make MTSD especially relevant for this study, which focuses on window-based

tiny object detection in high-resolution images.

Detecting road objects is of particular importance in both autonomous driving and traffic surveil-
lance. The FishEye8K dataset [45] is, to the best of current knowledge, the first to employ
fixed-position fisheye surveillance cameras with a wide field of view for traffic analysis. While
several other datasets also focus on traffic scenes [26, 33, 40, 161, 162, 184], most of them rely on
standard cameras mounted either on UAVs [33, 184] or cars [26, 35, 40, 162]. WoodScape [161],
similar to FishEye8K, uses fisheye optics, but the cameras are mounted on vehicles, resulting
in a different composition and perspective of the scene. The key advantage of fixed-position
fisheye cameras, as in FishEye8K, lies in their ability to cover a wide area with a single sen-
sor. However, this introduces new challenges akin to those in small and tiny object detection.
FishEye8K images often feature a top-down view and include numerous small objects, especially
around the periphery, where heavy distortion occurs. This places it closer in character to aerial
tiny object detection datasets such as VisDrone [184], UAVDT [33], TinyPerson [163], SeaPer-
son [164], AI-TODv2 [153], DOTAv2 [32]. Despite this resemblance, the strong distortion present
in FishEye8K and WoodScapes means that full-resolution inference alone cannot compensate for
lost details near image edges. Therefore, these datasets are excluded from experiments focused
on high-resolution detection. However, a data augmentation pipeline was designed to simulate
optical distortion, which successfully improved detection quality on FishEye8K using standard
detectors [68]. This method is further discussed in Section 2.5.2.

Aerial datasets can be broadly categorized into two main groups: UAV-based and satellite-
based. UAV datasets primarily focus on urban surveillance and traffic analysis (VisDrone [184],
UAVDT [33]), people detection and counting (SeaPerson [164], DroneCrowd [147|, TinyPer-
son [163]), or search and rescue applications, as in SeaDronesSee [132]. In contrast, satellite-based
datasets such as xView [73], SODA-A [24], and BDOT10k [66] are generally aimed at urban and
agricultural surveillance, and are typically characterized by significantly larger average image
sizes. Some datasets, including DOTA [32] and iSAID [145|, draw from both satellite and UAV
sources, but their overall design and focus are more closely aligned with satellite-based collec-
tions (urban and engineering objects detection vs people and small vehicle detection). Satellite
datasets (e.g., SODA-A and xView) tend to include multi-scale objects when considering abso-
lute dimensions. However, due to the extremely high resolution of the images, most objects fall
into the micro, very tiny, or tiny categories when a relative size definition is applied. A simi-
lar trend is observed in UAV-based datasets such as VisDrone, SeaDronesSee, SeaPerson, and
TinyPerson. Yet, due to their lower image resolutions, these datasets generally lack micro-scale
objects. Two exceptions stand out: AI-TODv2, which is explicitly designed for tiny object detec-
tion and therefore excludes large instances entirely, and UAVDT, where most objects fall into the
medium, small, or tiny categories regardless of the size definition used. Overall, satellite datasets
such as DOTA, xView, and SODA-A have significantly larger average image sizes compared to

drone-based datasets. The low signal-to-noise ratio caused by massive and complex backgrounds,
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the large variations in object densities and sizes, and nontrivial orientations make segmentation
and detection in aerial images particularly challenging. For these reasons, despite the significant
progress that has been made in generic computer vision in recent years, aerial-based computer

vision is still an unsolved problem.

The DOTA-v2.0 [32] dataset stands out for its wide range of image sizes (from 800x800 px to
nearly 30000x30000 px) and oriented bounding box (OBB) annotations, which suit the high
density and rotation variability of aerial objects. Although DOTA includes tiny objects from
version 1.5, its primary strength lies in its diversity of object classes (18 in v2.0) and detailed
categorization of object sizes. In contrast, xView [73] features a much broader class diversity
(60 subclasses under 6 parent classes), although with horizontal bounding boxes and a highly
imbalanced class distribution. AI-TOD [153] is specifically designed for tiny object detection,
built by filtering and merging several aerial datasets including DOTA and xView. It restricts
object sizes to below 64 pixels and introduces finer granularity in object size categorization,
making it a focused benchmark for evaluating detection of extremely small objects. Its updated
version, AI-TODv2, refines the annotations while maintaining the same image set. Addition-
ally, the DroneCrowd dataset focuses on small object detection in drone-captured crowd scenes,
providing high-resolution images with varying crowd densities. SODA-A [24], another dataset
targeting small object detection, differs in its inclusion of high-resolution Google Earth images
and four clearly defined small object size categories based on area. It provides OBB annotations
and focuses on variability in density, orientation, and scene complexity. TinyPerson [163] and
its larger successor, SeaPerson [164], are both specialized in detecting people from afar in mar-
itime environments. While TinyPerson uses internet-sourced video frames, SeaPerson collects
its own high-resolution data, expanding significantly in both image count and instance anno-
tations. Both datasets annotate challenging conditions such as crowds, ambiguous reflections,
and uncertain poses. SeaDronesSee [132] is designed for maritime search and rescue tasks and
provides high-resolution drone footage annotated with detection, tracking, and sensor metadata.
Although its objects may not be absolutely small, relative size thresholds reveal a significant
proportion of tiny objects. UAVDT [33] and VisDrone [184]|, meanwhile, focus on vehicle and
pedestrian detection in UAV footage, but differ in scope. UAVDT emphasizes vehicle detection
and tracking in video data, while VisDrone supports multiple tasks and includes both video
and image data. BDOT10k [66], a recently released dataset, significantly expands the scale of
aerial benchmarks. Covering nearly the entire territory of Poland (314,000 km?), it provides
over 60,000 high-resolution orthoimages annotated with more than 40 million instances across
286 topographical object classes. Unlike most datasets that tile images or downsample resolu-
tion, BDOT10k retains native orthoimage dimensions, resulting in an average image size of over
12,000 px, and offers annotations for both semantic and instance segmentation, as well as object
detection. Object sizes vary significantly, with many tiny and small instances (Fig. 2.1a). Com-
pared to other remote sensing datasets with satellite images, BDOT10k introduces the highest
variability in both image and object scale, making it especially valuable for multi-scale and small

object detection tasks.

Among the aerial datasets discussed, the focus is primarily on UAV-based datasets suitable
for real-time detection systems. Video sequences, required for this purpose, are available only

in SeaDronesSee, DroneCrowd, UAVDT, and VisDrone. DroneCrowd and SeaDronesSee were
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selected due to their challenging characteristics. DroneCrowd is notable for its large number of
tiny instances and complex backgrounds, while SeaDronesSee offers greater variability in object
sizes and classes, larger images, and simpler backgrounds, making it an ideal complement to
DroneCrowd. VisDrone and UAVDT are excluded due to their smaller image sizes and less

complex scenarios, which do not present sufficient challenges for the objectives addressed.

Together, DroneCrowd, SeaDronesSee, and MTSD offer a diverse and challenging benchmark
for the proposed method. DroneCrowd focuses on very small objects in crowded scenes, making
it useful for testing detection in dense and cluttered environments with complex backgrounds.
SeaDronesSee, on the other hand, has fewer objects per image but includes a wide range of object
sizes and classes, larger images, and simpler backgrounds. These two datasets also provide video
sequences, which are important for evaluating the ROI Prediction part of the system that
works across consecutive frames. MTSD complements them by providing a large number of
independent high-resolution images with more than 300 traffic sign classes. It includes objects of
many different sizes and is collected under various sensor types and weather conditions, making
it a strong benchmark for the image-based mode of the system. Together, these datasets help

test the proposed method under a wide range of real-world conditions and use cases.

2.5 Tiny Object Detection Methods

Small/tiny object detection methods differ from standard object detection techniques due to
the limited number of pixels representing the object in an image. In high-resolution images,
the total pixel count may be higher, but processing such large images significantly slows down
detection. To increase the relative size of small objects, sliding-window approaches can be applied
to high-resolution images [151]|. However, this method requires processing the entire image and is
computationally expensive. Focus-and-detect methods aim to guide the detector to concentrate
on specific regions of interest within high-resolution images. In aerial datasets, for example,
objects often appear in clusters, while large parts of the image may contain no relevant objects
at all. Visual recognition of tiny objects shares many challenges with generic object detection,
such as intra-class appearance variation and cluttered or noisy backgrounds that can lead to

false positives. However, there are also challenges unique to detecting small objects:

Limited appearance information Tiny objects occupy very few pixels, resulting in poor
visual representation that makes both classification and localization difficult. Several methods
address this by enhancing object features using contextual information from surrounding areas or
by transforming small object representations (at the image, region, or feature level) to resemble

those of larger objects.

Low signal-to-noise-ratio This issue is particularly pronounced in high-resolution aerial im-
agery, where objects are concentrated in specific regions and backgrounds are complex. Attention
mechanisms are often used to emphasize informative features and suppress noise. Many solutions

adopt a coarse-to-fine approach, performing full-resolution detection only in selected regions.
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Pipeline-specific challenges Standard convolutional backbones downsample feature maps,
which can cause small object features to disappear or become overwhelmed by background noise.
To address this, specialized feature fusion techniques have been developed. In addition, standard
anchor assignment strategies and the Intersection over Union (IoU) metric are often ineffective

for tiny objects, which led to the development of alternative assignment methods and metrics.

Annotation-specific challenges Deep learning models require large, accurately labeled data-
sets. For very small objects, accurate annotation is difficult due to blurred object boundaries,

increasing the likelihood of imprecise or inconsistent bounding boxes, even by human annotators.

High-resolution images Ultra-high-resolution images are common in aerial surveillance and
satellite data, where small objects must be detected across large scenes. Although high detail
helps preserve small object features, it also increases memory usage and slows down processing,
posing a challenge for real-time applications. A typical workaround is to split images into smaller
tiles, but this often wastes resources when many tiles contain only background. To improve effi-
ciency, focus-and-detect methods use region selection and adaptive resizing to focus computation

on the most relevant areas.

In the following sections, the major groups of small and tiny object detection methods are
discussed: Focus-and-Detect (window-based), Data Augmentation, Sampling-Based, Attention-
Based, Scale-Aware, Context-Aware, and Feature-Imitation methods. Focus-and-Detect methods
guide the detector toward regions of interest, making them particularly effective when objects are
sparsely distributed and clustered within specific areas of high-resolution images. The detection
system described in this dissertation falls within this category. The Data Augmentation subsec-
tion explores various augmentation strategies tailored for small object detection. Sampling-Based
methods address the limitations of anchor-based detectors for tiny objects and often include al-
ternative metrics for anchor assignment. Attention-Based approaches enhance relevant features
while suppressing background noise, improving detection under low signal-to-noise conditions.
Scale-Aware methods, frequently based on the Feature Pyramid Network (FPN) [82], introduce
additional modifications to better handle small-scale objects. Context-Aware methods leverage
surrounding visual information to support detection. Finally, Feature-Imitation methods apply
techniques such as image, region, or feature-level super-resolution, or use similarity learning to
enrich small object representations. Many solutions combine elements from multiple categories

to improve performance.

2.5.1 Focus-and-Detect

Focus-and-detect methods primarily target the detection of small objects in high-resolution im-
ages, i.e., objects with small relative size. In imagery captured from drones or satellites, objects
often appear clustered in specific areas, while large portions of the image contain no relevant
content. A straightforward approach to handling small objects is to apply a sliding-window over

the full-resolution image. However, this is computationally inefficient, especially when many
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windows contain only a background. To overcome this, various methods introduce an additional

step to identify regions worth analyzing at high resolution.

In [116], a two-step method for detecting people in high-resolution images is proposed. In both
steps, a full-resolution image is divided into tiles using a grid, and each tile is downsampled to a
fixed resolution before being passed to the detector. The first step uses a coarser grid, and the
second step uses a finer one. Bounding boxes from the first stage are projected onto the original
image, and only fine-grid tiles overlapping with detections are used in the second stage. This
method has notable limitations: if an object is missed during coarse detection, it will be skipped
entirely in the final step; and the regular grid may cause objects to span multiple tiles, requiring
merging and increasing the risk of errors. A similar two-stage strategy is used in [38], where
downsampled images are used to predict coarse detections, and zoom-in regions are generated
dynamically using a reinforcement learning strategy. This method selects regions most likely to
improve detection accuracy while considering computational cost. In [96], a static tiling method
based on a regular grid is applied on top of PeleeNet [139] in a micro aerial vehicle (MAV)
scenario. The detector processes both the full image and the individual tiles. The confidence of
detections is adjusted based on whether an object is detected in a tile (favoring small objects)
or in the global image (favoring large objects). Unlike the previously mentioned works, this
approach processes all tiles regardless of their content. Method proposed in [102] also uses fixed-
size tiles, but since the data consists of videos, memory and attention mechanisms help select
tiles in each frame. For example, tiles may be processed cyclically across consecutive frames
to maintain coverage over time. Other methods attempt to reduce redundant processing by
filtering tiles that do not contain any objects. In [151], an auxiliary neural network called the
Objectness Activation Network (OAN) supports a simple sliding-window detector by discarding
background-only tiles. A similar filtering step is employed in R?CNN [99].

More complex systems incorporate region proposal and scale estimation. For instance, Clus-
Det [157] first predicts object clusters (regions with high object density) and then resizes each
tile accordingly before final detection. Unlike grid-based approaches, tiles here may be padded
or divided to preserve object scale. The results of both the tiles and the global image are
merged. However, ClusDet requires cluster annotations, which are typically unavailable in stan-
dard datasets. A related idea is explored in [169], where a Difficult Region Estimation Network
(DREN) selects regions with many hard-to-detect objects. These “difficult” tiles, along with
the global image, are passed to the detector. Unlike ClusDet, DREN skips scale estimation
and instead relies on preliminary detections to localize challenging regions. In [75], the authors
also select tiles non-uniformly, but instead of using a separate detector, they predict a density
map for each image. A sliding-window is used to find high-intensity areas, and regions that
exceed a threshold are aggregated into tiles. These are processed together with the global im-
age. The approach in [71] also relies on supervised region learning. A two-stage pipeline is
used, with one detector trained to identify object-dense regions in the global image, and another
trained to detect objects within those regions. Tile ground truths are generated via a Gaussian
Mixture Model fitted to detection annotations. To handle partial detections at tile borders, the
authors propose the Incomplete Box Suppression (IBS) algorithm in addition to standard NMS.
CDMNet [34] introduces a lightweight dual-head network to predict low-resolution density and

segmentation maps. These are fused to reduce noise, and only pixels marked as foreground are
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used to generate tiles. After a closing operation and scale-aware rescaling, the tiles are sent to

the detector. Unlike previous approaches, CDMNet omits global image detection entirely.

CRENet [142] proposes an unsupervised approach to tile selection by clustering initial detections
to identify densely packed regions. A clustering algorithm is used to identify difficult regions with
densely packed objects, while regions classified as easy are skipped to reduce computational cost.
Like [75, 157, 169], final results combine detections from tiles and the global image. Notably,
CRENet is anchor-free in both stages to better accommodate variable object sizes. Some meth-
ods focus on learning where to zoom without manual annotations. AdaZoom [155] addresses the
ambiguity in defining ground-truth focus regions by using deep reinforcement learning. The tile
selector is jointly trained with the detector, using detection-based rewards. The tiles vary in
shape and scale, and the final predictions merge the output of both the tiles and the full image.
SAIC-FPN [178] tackles the challenge of inter-image scale variation in UAV data. The method
estimates the smallest object relative scale (ORS) for each image using a neural network. Based
on this, the image is either upsampled via bilinear interpolation or super-resolution GAN, and
then tiled uniformly for detection. This combines both focus-and-detect and feature-imitation
techniques. A similar three-step framework is introduced in [31]. Here, a super-resolution net-
work upsamples only selected tiles, not the entire image. Detection is performed twice: on the
downsampled global image and on the upsampled tiles, with results merged. Training is end-to-
end and incorporates original, cropped, and upsampled by super-resolution images as augmented

inputs.

In general, many window-based detection strategies use full-image predictions to preserve per-
formance on large objects [75, 96, 142, 155, 157, 169]. However, training with both full images
and tiles leads to scale inconsistency, hurting detector accuracy. To mitigate tiling-related issues,
some methods adjust the image resolution based on estimated object scales (either by upsampling
the entire image [178] or selectively enhancing tiles [31]) before detection, while others address
fragmented detections by introducing specialized post-processing techniques such as Incomplete
Box Suppression (IBS) [71].

The system presented in this dissertation [67, 69, 70] belongs to the Focus-and-Detect category.
A key challenge in two-step window-based systems is the risk of missing relevant regions due
to false negatives in ROI selection. To address this, an additional ROI source is introduced
that leverages the sequential nature of video data: tracking is incorporated into the architecture
to compensate for errors in learned ROI selection, particularly for the smallest, hardest-to-
detect objects and under occlusion. Unlike methods that rely on a regular grid [96, 116, 151],
the proposed system places windows adaptively, reducing the risk of fragmentations for larger
objects and ensuring that cropped sub-windows are better aligned with image content. In that
sense, the proposed system is similar to more complex window-based architectures [142, 157, 169].
In contrast to approaches that process entire downsampled frames [75, 96, 142, 155, 157, 169],
the system avoids quality loss on larger objects by employing a dual ROI strategy: within
large ROIs, sub-windows are generated both by sliding-window and by crop-and-resize, which
preserves spatial detail for tiny instances while maintaining continuity for larger ones. Finally,
the proposed 0BS and 0BM algorithms ensure high-quality outputs. While 0BS is conceptually

related to IBS [71], the lack of an available IBS implementation prevents a direct comparison.
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2.5.2 Data Augmentation

Data augmentation is widely used in generic object detection and other computer vision tasks
to diversify training data and reduce the risk of overfitting [12]. In this section, the focus is on
data augmentation methods specifically developed for improving the detection of small objects.
In [63], a simple small-object enhancement method is introduced. The authors duplicate im-
ages containing small objects and apply a copy-paste operation to increase the number of small
instances. This method is motivated by the under-representation of small objects in datasets
such as COCO. However, to avoid introducing artifacts or noise, a semantic mask is required to
accurately crop the object before pasting it into another location. Moreover, in domain-specific
tasks such as traffic sign detection or aerial imagery, objects tend to appear in characteristic
areas. Pasting them into random locations may affect performance. To address this, [19] uses
an additional semantic segmentation network to extract road maps from UAV imagery. A size
scaling factor is also computed based on nearby objects, ensuring that pasted objects are appro-
priately sized and positioned. RRNet also introduces a two-step detection strategy to improve
the performance of anchor-based detectors on small objects. The first step uses an anchor-free
coarse detector to predict object class, center point, and size. The second step refines the result
using a regression module similar to Faster R-CNN [110]. In [141], each object is cropped from
the image so that the center of the bounding box becomes the center of the new image, the crop
size being proportional to the size of the object. In [172], a simpler cropping strategy is used,
where the images are split into smaller patches using a fixed grid. Both methods incorporate
multi-model fusion: [172] trains two separate detectors, one for frequent classes and another for
rare classes, while [141] selects the model based on the resolution of the input image. A differ-
ent augmentation strategy is introduced in [16], which uses a Downsampling-GAN (DS-GAN) to
synthesize small objects from larger ones. These synthetic objects are then placed in appropriate
positions and merged with the background using image inpainting and blending techniques. Like
the methods in [63] and [19], this approach helps increase the number of small object instances
in the dataset. In [68], the authors address small object detection in heavily distorted fisheye
images. To reduce the effect of distortion on detection quality, they design a data augmentation
pipeline that simulates such distortions in other traffic-oriented datasets. This approach improves
detection performance on the original dataset. The augmentation pipeline includes pixel-level
transformations and GAN-based style transfer, all applied offline, ensuring no negative impact

on inference time during deployment.

While the proposed system does not introduce a novel data augmentation strategy, its modular
architecture allows the Local Detection Block to be customized. This means that specialized
augmentation techniques (such as those designed for specific domains or object types) can be

seamlessly integrated during training to further improve performance on a given sub-problem.

2.5.3 Sampling-Based

Sampling-based methods address the limitations of anchor-based architectures when applied to
small object detection. As noted in [170], anchor-based detectors struggle with small instances

because the corresponding feature maps contain limited information and the anchor sizes are
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often too large. In addition, small objects receive few positive anchor matches and the presence
of many negative anchors increases the risk of false positives. To address these issues, several
approaches have been proposed [152-154, 170, 182]. In [170], anchor matching is performed
at multiple depths within the backbone network to ensure suitable anchor scales for objects of
varying sizes. The matching strategy is modified to a two-step process using lower-than-usual
ToU thresholds. Additionally, a max-out background label is introduced to suppress negative
anchors. However, this method was tailored for face detection, so it uses square anchors, with
the smallest size being 16 pixels. To improve anchor-object alignment, [182] introduces a new
anchor design strategy alongside the Expected Max Overlapping (EMO) score, which measures
the average IoU between anchors and ground-truth boxes. Their method reduces anchor stride
by enlarging the feature map, uses shifted anchors, and applies random object shifts during
training. In [159], the Sampling Fusion Network (SF-Net) combines feature up-sampling, multi-
level feature aggregation, and an inception module to increase the receptive field and improve

anchor sampling quality for small object detection.

In [152-154], new metrics were proposed to replace the Intersection over Union (IoU) in the
label assignment process. IoU has been shown to be highly sensitive to small location shifts,
which makes it unreliable for small object detection. To address this, the DotD, NWD, and RFD
metrics were introduced as alternatives to IoU for anchor matching. These metrics have already

been discussed in detail in Section 2.3.

In contrast to specialized sampling-based methods, the proposed system does not modify anchor
assignment directly. Instead, its modular design allows Local Detectors that implement such
strategies to be seamlessly integrated, making the system complementary to approaches that

improve anchor design or label assignment for small objects.

2.5.4 Attention-Based

When detecting tiny objects in high-resolution images, the signal-to-noise ratio is often very low.
To address this, many attention-based methods [37, 79, 88, 106, 159, 160] have been developed
to suppress background noise and emphasize relevant features. These methods are frequently
combined with multi-level feature fusion [37, 79, 88, 106, 159] to enhance the representation of

small objects.

In [160], a Recurrent Neural Network (RNN) with attention is used to guide the detector to
focus on relevant areas, such as roads for vehicles or roadsides for traffic signs. In [37], the
authors propose an Attention-Guided Balanced Pyramid (ABP) that adaptively fuses features
from different pyramid levels. This fusion is controlled by a two-part attention mechanism: a
Level-Based Attention (LA) module that learns weights for each feature level, and a Spatial
Attention Network (SA) that highlights regions likely to contain objects. Several works [88,
106, 159] adapt the channel attention mechanism based on the Squeeze-and-Excitation (SE)
Block [52] to highlight channels important for detection and noise suppression. Other attention
modules include pixel attention in [159] and spatial attention in [88]. In [79], the authors further

model spatial relationships between pixel pairs to improve attention precision.
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Unlike feature-level attention modules, the proposed SegTrackDetect system exploits the sequen-
tial nature of video data to improve focus on relevant regions. By incorporating object tracking
into the ROI selection step, the system acts as a form of temporal attention, recovering regions
with consistent motion across frames. This method reduces the risk of missing tiny objects
that may be missed by the ROI Estimator and mitigates noise without requiring additional

feature-level attention.

2.5.5 Scale-Aware

Tiny objects are typically represented by only a few pixels, and due to the downsampling in
convolutional layers, high-level feature maps used for detection often contain little to no infor-
mation about them. To mitigate this issue, many methods fuse feature maps from different
layers [46, 49, 87, 168], combining the rich semantic information of deep layers with the fine
spatial resolution of shallow layers. Feature Pyramid Network (FPN) [82] and Adaptive Spa-
tial Feature Fusion (ASFF) [84], originally proposed for generic object detection, have since
been adapted to tiny object detection. For example, in [168], global features are fused with
multi-scale ROI features. In [87], the authors introduce the Image Pyramid Transformation
Module (IPGT) to address misalignment between deep and shallow features, and then apply
the Image Pyramid Fusion Module (IPGF) to combine them. Gong et al [46] demonstrate that
naive FPN-based fusion degrades the performance for tiny object detection. To counter this,
they propose a statistically-estimated fusion factor that dynamically controls the contribution
of deep and shallow features. In [49], the authors combine an attention mechanism with fea-
ture fusion. The Context Attention Module (CAM) produces multi-scale attention heatmaps,
while the Scale Enhancement Module (SEM) guides the network to focus on appropriate object
scales in each layer. Features from subsequent layers are then fused. Other methods that in-
tegrate feature fusion with attention mechanisms include [37, 79, 86, 88, 106, 159]|, which are
discussed in more detail in Section 2.5.4. R2CNN [99] applies feature pyramid pooling to reduce
false positives in high-resolution satellite imagery. It follows a focus-and-detect strategy using a
sliding-window, but speeds up computation by pre-classifying tiles to filter out background-only
regions. DSFD [76], the Dual Shot Face Detector, includes a Feature Enhancement Module
(FEM) that processes a set of multi-scale feature maps through upsampling, concatenation, and
dilated convolutions. These enhanced features are then passed to the detection head. DSFD
also employs a sampling strategy to increase the number of positive anchors, combining feature

fusion with anchor optimization.

Alternative approaches to scale-awareness avoid traditional feature pyramids. In [93], the Sin-
gle Stage Headless Face Detector (SSH) replaces the feature pyramid with multiple detection
modules, each applied to feature maps with different strides. SSH is fully convolutional and
relatively lightweight. QueryDet [156] addresses the high computational cost of high-resolution
feature maps by performing multi-stage fusion at the feature map level. Low-resolution features
are first combined with higher-resolution ones to create a sparse representation that filters out
background pixels. This approach resembles focus-and-detect methods, but operates entirely in
feature space. In [141], multi-model fusion is used, with three detectors trained on images of dif-

ferent resolutions. DetectoRS [103] introduces feedback connections that link each pyramid layer
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to its corresponding backbone layer. It also employs Switchable Atrous Convolutions, enabling

each feature to be examined multiple times with different receptive fields.

Unlike most scale-aware methods that rely on feature fusion, the proposed system achieves
scale robustness through its ROI handling strategy. Large ROIs spanning multiple windows are
processed with sliding detection windows to preserve tiny object features, while crop-and-resize
maintains continuity for larger instances. This dual mechanism ensures that both small and
large objects are represented at appropriate scales. Moreover, thanks to the modular design,

feature pyramid-based detectors can also be integrated as Local Detectors when needed.

2.5.6 Context-Aware

Due to the limited visual information present in small objects, especially in the deep layers of
convolutional networks, numerous methods have been proposed to improve detection by incorpo-
rating contextual cues from surrounding regions |7, 20, 53, 54, 80, 126, 167]. In [20], the authors
extend R-CNN [44] with a simple two-branch pipeline: one branch encodes the object proposal
region, and the other encodes its surrounding context. The resulting features are concatenated
and passed to the classification head. The Inside-Outside Net (ION) [7] extracts context features
using a Recurrent Neural Network (RNN) and fuses them with multi-scale ROI features, mak-
ing the model both context- and scale-aware. Similarly, [53], proposed for tiny face detection,
combines context-aware and scale-aware strategies by employing a coarse image pyramid and
dedicated detectors for each scale, all sharing a common backbone. The context is captured

through enlarged receptive fields that include surrounding background regions.

One way to increase the receptive field is through skip connections, as in [137], where a Spatial
Refinement Module (SRF) is introduced to recover spatial information lost through skip con-
nections, thereby improving localization. In [126], a semi-supervised learning approach is used
to learn relevant context classes (e.g. the human body for face detection), which help in the de-
tection of associated small objects. The authors of SINet [54] argue that standard ROI Pooling
in two-stage detectors harms contextual reasoning. They introduce Context-Aware ROI Pooling
based on deconvolutions to retain broader contextual cues. SINet is also scale-aware, using sepa-
rate detection heads tailored to different object sizes. CAD-Net [167] proposes a Context-Aware
Detection Network for small object detection in satellite imagery. It combines global contextual
features, a pyramid of local contextual features, and an attention mechanism to enhance detec-
tion accuracy. In [80], spatial context is used to re-detect low-confidence objects. Based on the
observation that certain classes often cluster spatially in UAV imagery, the authors re-weight the
class probabilities of low-confidence detections by considering their proximity to high-confidence

ones.

While the system proposed in this thesis does not explicitly include dedicated context modeling
modules, as many context-aware methods do, it preserves context through its ROI Estimation
and ROI Prediction stages. The coarse ROI regions retain surrounding scene structure, and
detection windows are placed at the centers of meaningful regions rather than on a regular grid,

ensuring that the context around objects is maintained.
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2.5.7 Feature-Imitation

To address the weak representation of small objects in deep feature maps, several methods [5,
6, 56, 57, 77, 95] leverage advances in Generative Adversarial Networks (GANs). The Per-
ceptual Generative Adversarial Network (Perceptual GAN) [77] highlights that naive feature
enhancement, such as combining features from shallow layers, does not always improve detec-
tion. Instead of using multi-level pyramids or feature/image upsampling, the authors propose
a super-resolution approach at the feature level to make small-object representations resemble
those of larger objects. The perceptual discriminator has a dual role: distinguishing between
generated and real features, and evaluating whether the generated feature maps aid the detection
task. A similar feature-level GAN approach is introduced in [95], which adds direct supervision
during training. In this setup, a downsampled image is passed through a generator, while the
original high-resolution image is fed directly into a feature extractor. The generated features are
then compared with features extracted from the original image, enabling supervised training of

the generator.

Other approaches apply GANs directly to image regions extracted by a baseline detector. In [5],
small and blurry face regions are enhanced via super-resolution, and the discriminator is trained
to distinguish generated from real images as well as to classify face versus non-face images.
Classification loss is back-propagated through the generator to improve training. This idea is
extended to multi-class object detection in [6], where the discriminator additionally outputs
class probabilities and bounding-box offsets. Unlike the single-class case, both classification and
regression losses are used to guide the generator. The image-level superresolution is also explored
in [56, 57] to detect small objects in satellite imagery. These methods apply super-resolution

directly to the input image before detection.

Beyond super-resolution, other strategies perform feature imitation in alternative ways. In [149],
a knowledge distillation approach called Self-Mimic Learning (SML) is proposed to improve the
features of small pedestrians. A mimic loss is used to teach small object features to resemble
those of larger instances. This method does not increase the inference time and can be integrated
into any detector. In [61], small pedestrian detection is enhanced by mimicking the cued recall
process observed in human memory. Embedding learning is used to help detect small objects by
recalling the appearance of similar larger objects. Unlike SML, this method can also leverage
clues from larger instances during inference. Finally, the Self-supervised Feature Augmentation
Network (SFANet) [97] uses a self-supervised learning paradigm. During training, the network
receives a pair of images, one upsampled and one downsampled, and extracts features from both.
Features from the higher-resolution image are then used to guide those from the lower-resolution

image, improving the robustness of small-object representations.

Unlike feature-imitation methods that use GANSs, super-resolution, or knowledge distillation
to enhance small-object features, the SegTrackDetect system proposed in this thesis preserves
high-resolution information through ROI Estimation and tracking-based ROI Prediction. This
ensures that Local Detectors operate on regions that retain fine details without the extra
computation required for feature enhancement. As a result, the system remains lightweight and

suitable for real-time applications, while still achieving strong performance.



Related Work 32

2.6 Video Object Detection Methods

Video object detection focuses on identifying objects across sequences of video frames, rather
than in single images. Unlike static image detection, these methods can take advantage of the
fact that objects usually move smoothly over time. By using information from nearby frames,
video-based detectors can better handle issues like motion blur, occlusions, and low visibility.
This has led to the development of methods that go beyond standard image detectors to improve

accuracy in challenging video conditions.

A comprehensive review of video object detection methods is provided in [58]. One recent ap-
proach is DiffusionVID [113], which addresses these challenges using an object-centric cascade
refinement architecture composed of multiple self-refinement modules. The model efficiently
aggregates information from object proposals through Adaptive Condition Generation and Con-
ditioned Refinement, improving denoising quality by using adaptive conditions based on a spatio-
temporal coreset. TransVOD [179] proposes a spatial-temporal Transformer-based architecture
that aggregates features across frames. Its encoder captures the relationships between objects
in consecutive frames. However, this method is only evaluated on standard-sized objects and
has not been tested for small or tiny object detection. Cui et al. [27] introduced modules that
enhance feature representation by modeling temporal relationships between neighboring frames
and feature maps. While effective, the approach achieves only 10.1 FPS on the ImageNet VID

validation set, limiting its real-time applicability.

Another group of methods focuses on feature propagation via optical flow [186]. YOLOV [121]
builds on this idea by introducing a feature aggregation strategy tailored for one-stage detec-
tors. The resulting feature set is more robust to motion blur and occlusion than single-frame
detectors. Similarly, the MEGA method consolidates global context features into local features
and then uses a Long Range Memory (LRM) module to merge both global and local information
into keyframes, thereby enhancing detection performance. Flow-Guided Feature Aggregation
(FGFA) [185] aggregates features from neighboring frames to mitigate the effects of degraded
object appearance. Relation Distillation Networks (RDN) leverage Region Proposal Networks
(RPN) to generate object proposals, then compute relationships between proposals in a reference

frame and a supportive pool, enhancing features through relational reasoning.

While these methods improve robustness under varying exposition and motion conditions, they
often struggle with full or partial occlusions. In this work, this issue is addressed by using a
Kalman filter to propagate previous detections into the current frame. This guides the detector,
particularly in cases where small objects become partially or fully invisible, improving both the

continuity and the accuracy of detection across frames.

2.7 Region of Interest Generation

The concept of Region of Interest (ROI) generation was introduced in early deep learning-
based object detectors [43, 44, 47, 110]. In the first two-stage models, ROIs were generated
using relatively simple algorithms - Selective Search [130] in [43, 44] and Edge Boxes [189]
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in [47]. While these methods enable object localization, they significantly increase inference
time, which is particularly problematic in time-sensitive applications such as mobile robotics.
A major breakthrough came with Faster R-CNN [110], which introduced the Region Proposal
Network (RPN) - a convolutional network that generates ROI and shares computations with the
object detector. This allowed all processing to be performed on the GPU, substantially improving
the detection speed to around 7 FPS. However, this is still insufficient for real-time applications
by modern standards. Today, many state-of-the-art general-purpose object detectors [12, 18,
135, 136] adopt a single-stage architecture that eliminates explicit ROI generation in favor of
faster inference. Nonetheless, ROI-based methods remain relevant, particularly in window-based
approaches [38, 75, 102, 116, 157], where they are used to focus processing on selected regions
and improve detection quality for small objects. In the context of this work, which focuses on
window-based tiny object detection, the ROI generation is defined as the process of selecting
detection window coordinates for full-resolution inference. Although window-based methods

were already discussed in Section 2.5, this section delves deeper into their ROI generation step.

Uniform overlapping tiles are employed in several window-based methods [38, 96, 102, 116,
151]. These represent the simplest form of ROI generation - tiles are generated using a regular
sliding-window grid, but additional mechanisms are applied to discard empty or uninformative
regions. In [116], ROI selection follows a two-step process, both stages relying on a regular
grid and image downscaling. Since the target objects are relatively large by modern tiny object
detection standards, the authors can afford significant downscaling without severely harming
detection performance. First, a coarse detection step is applied using large sliding-window tiles
downscaled by a substantial factor. In the second step, a finer sliding-window grid is applied, and
only the tiles that overlap with the initial coarse detections are selected for further processing.
Importantly, the second stage does not operate at full resolution either - the selected tiles are
also downscaled before detection, although to a lesser degree. Notably, like in the proposed
system, this method processes video data and exploits temporal continuity by reusing ROIs
across consecutive frames, which improves efficiency by avoiding redundant computations. One
limitation, however, is that the same detector is used in both stages, potentially leading to
inconsistencies in object scale between coarse and fine detections. Similar to [116], the Dynamic
Zoom-in Network (DZN) [38] also uses a two-stage approach where coarse detections inform fine-
grained inference. However, DZN introduces a key difference: instead of using coarse detections
directly to select tiles, it employs a reinforcement learning (RL) policy that takes as input both
the coarse detections and the history of previously selected tiles. The policy then selects regions
that are likely to benefit most from high-resolution refinement. Unlike [116], DZN performs
coarse detection on a downsampled full image without any sliding-window. While this aggressive
downsampling may harm small object detection, the learned RL policy is better equipped to
compensate for it through informed tile selection. Like the previous method, DZN also relies on
a regular tile grid, though it allows for slight positional adjustments of selected tiles to maximize
gain. Final detections are obtained by replacing coarse detections with those obtained from
zoomed-in regions. Another approach to tile selection is proposed by Plastiras et al. [102],
where, unlike in [116] or [38], there is no preliminary coarse detection stage on a downsampled
image. Instead, the authors leverage the temporal continuity in video data to selectively process

a subset of uniform full-resolution tiles in each frame. Initially, the tiles from the entire image
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are processed, but in subsequent frames, tiles that contain no objects are skipped to reduce
computation. To achieve this, the system employs attention and memory mechanisms: the
attention module helps prioritize tiles, while the memory keeps track of past detections, under
the assumption that objects are unlikely to appear or disappear abruptly between consecutive
frames. To mitigate the negative impact of false negatives, where an object might be missed in a
single frame and subsequently ignored, they introduce a reset mechanism, which ensures that each
tile is periodically revisited after a fixed number of frames. In contrast to the two-step coarse-
to-fine pipeline in [116], where tile selection is based on detections from a downscaled image,
Plastiras et al. avoid downsampling entirely. Compared to DZN [38], which learns to select tiles
using reinforcement learning and a history of zoomed-in regions, they rely on simpler heuristics
and temporal consistency. Their method is particularly well-suited for scenarios where motion
is minimal and frame-to-frame consistency can be exploited to reduce redundant computation.
The Objectness Activation Network (OAN) proposed in [151] aims to filter out empty regions
from processing in extremely high-resolution aerial images. OAN employs a uniform grid to
divide the image into patches, similar to sliding-window approaches like those in [116] and [102].
However, instead of applying detection to every patch, it predicts an objectness activation map,
which is then thresholded to decide whether a given patch should be passed to the detector.
This enables selective processing without the need for coarse-to-fine pipelines or reinforcement
learning strategies as in [38]. Moreover, OAN shares its backbone with the detector, which
improves computational efficiency compared to two-stage systems where region proposal and
detection are handled by separate models. Unlike methods that reuse temporal information
(e.g., [102]), OAN is applied independently per image, without temporal memory. Nonetheless,
its modular design allows integration into any detection architecture, making it a flexible filtering
mechanism for large-scale images. In contrast, [96] applies the simplest possible approach: no
filtering is performed, and all uniformly selected tiles along with the full-resolution image are
passed to the detector. The final predictions are then obtained by merging detections from both
the full image and all tiles. This approach may be suitable for dense scenes where objects are
uniformly distributed, as the additional complexity of implementing a filtering mechanism may
not offer significant benefit. However, in sparser scenarios, this strategy can introduce substantial

overhead due to unnecessary processing of empty tiles.

In ClusDet [157], regions of interest are selected using the Cluster Proposal Network (CPNet),
which predicts coarse cluster regions from the global image. These clusters are then passed to
the Scale Estimation Network (ScaleNet), which estimates the object scale within each cluster
to avoid downsampling areas with very small objects - a common cause of missed detections.
Unlike earlier methods such as [38, 96, 102, 116, 151] that rely on uniform tiling, ClusDet uses
a more targeted, data~-driven approach to focus computation on dense object regions. Redun-
dant clusters are refined using the Iterative Cluster Merging (ICM) module, but overlapping
areas between clusters are not fully addressed. Instead, standard non-maximum suppression
(NMS) is applied to the final detections, which can lead to false positives in overlapping zones.
Another limitation is that ROI generation is supervised, requiring ground-truth cluster annota-
tions, which are difficult to define and introduce ambiguity into training. To preserve object scale
during detection, selected ROIs may be divided into smaller tiles and padded to fit the detector
input size, rather than being directly resized. ScaleNet and CPNet share a backbone with the
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initial global detector, but the fine detector used on selected clusters is a separate model, poten-
tially increasing the complexity and inference time of the system. A similar non-uniform tiling
strategy is employed in DMNet [75], where regions of interest are selected based on predicted
object density. The method uses a density map generation network, inspired by crowd counting
approaches such as MCNN [175], to estimate a density map from the input image. This map
is processed using a sliding-window: for each tile, the number of objects is estimated by adding
the density values. Tiles exceeding a predefined object count threshold are marked as active in
a binary density mask. Connected regions in this mask are then converted into detection win-
dows, while low-density areas are discarded to avoid wasting computation on the background.
Like ClusDet [157], DMNet requires supervised training, including ground-truth density maps
for the density prediction module. This dependence on additional supervision introduces extra
labeling effort and potential uncertainty in how density annotations are defined. CDMNet [34]
builds upon the idea of density-guided ROI selection but introduces a coarse-grained approach to
reduce computational cost. Instead of producing a high-resolution density map and binarizing it
using a sliding-window, as done in DMNet [75], CDMNet jointly predicts a low-resolution density
map and a binary segmentation mask, which is used to identify object-dense regions. Like in
ClusDet [157], CDMNet performs adaptive resizing of selected ROIs based on estimated object
density to avoid excessive downsampling and better preserve object scale. The approach in [71]
treats region selection as an object detection task, where ground truth labels for focal regions are
generated using a Gaussian Mixture Model. Similarly to [34, 75], this introduces a dependency
on additional supervision. However, unlike density-based maps, this method directly leverages

the spatial distribution of objects, offering a more explicit formulation of ROI generation.

Some recent methods avoid relying on manually annotated regions by learning tile selection in
an unsupervised or reinforcement learning manner. CRENet [142] proposes an unsupervised
approach in which initial coarse detections are clustered to identify dense regions, and easy
regions are skipped to save computation. Similarly, AdaZoom [155] uses reinforcement learning
to address the ambiguity of defining ground-truth focus regions. It jointly trains a tile selector
and detector using detection-based rewards, allowing adaptive selection of tile shapes and scales
without annotated region labels. This differs from prior supervised approaches by providing
an end-to-end learnable solution for zoom-in policies, eliminating the need for manual region

annotations.

The quality of ROI generation is typically evaluated indirectly through general object detection
metrics like Average Precision (AP) and Average Recall (AR). This thesis focuses specifically on
ROI Estimation and Prediction by employing lightweight segmentation and tracking methods.
By leveraging the sequential nature of video data, ROI selection is improved while relying on
standard object detectors to perform the final detection step. This approach enables efficient
and accurate detection of tiny objects without requiring complex or heavily supervised ROI

generation networks.
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2.8 Object Tracking

Object tracking is a core task in computer vision that focuses on maintaining the identities
of objects as they appear in consecutive video frames. In Multiple Object Tracking (MOT),
the goal is to link individual detections over time to form continuous tracks, despite challenges
such as occlusions, missed detections, and changes in appearance. This capability is essential
in many real-world applications, including autonomous driving, video surveillance, and robotics,
where understanding the movement of objects over time is crucial to safe and effective system
behavior. Bounding boxes are the most common label format used in object tracking, although
segmentation masks (MOTSs) are sometimes also used. In Single Object Tracking (SOT) on the
other hand, there is always one object to be tracked. The focus of this work is on MOT, due to

dealing with real-life applications where several objects appear in each frame.

MOT algorithms can be divided into two groups: tracking-by-detection [1, 9-11, 21, 25, 50, 144,
148, 174, 183| and joint detection and tracking [124, 143, 150, 166, 173, 181] approaches. In the
first case, the outputs of an object detector are used as inputs to a separate tracking algorithm,
with both components operating independently. The tracking algorithm can be relatively simple
and may not use any image information. In contrast, the second approach performs detection
and tracking jointly within a single neural network. Given reliance on a modular system for

object detection, only tracking-by-detection methods are considered.

As in object detection, the performance of object tracking is evaluated using standard metrics
such as the number of true positives (TP), false positives (FP), false negatives (FN), as well as
precision and recall. Additionally, the number of false alarms per frame (FAF) is often reported.
For trajectory-level evaluation, identity switches (IDSW) are a key metric. An identity switch
occurs when a track is lost and then re-initialized with a new ID after N frames, or when the ID
changes between consecutive frames. [8] introduced two widely used metrics: Multiple Object
Tracking Accuracy (MOTA) and Multiple Object Tracking Precision (MOTP). MOTA is defined

as
FN, + FP, + IDSW,)

T
MoTA =1 - 20 =
o GT;

: (2.7)

where T is the total number of frames in the sequence, F'N;, FP;, and IDSW; are the numbers
of false negatives, false positives, and identity switches in frame t, respectively, and GT; is the
number of ground-truth objects in frame ¢t. MOTP, on the other hand, measures the localization

accuracy and is defined as the average IoU over all true positive assignments across the sequence:

1 A
MOTP = B > 10U(B;, B;), (2.8)
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where |TP| is the number of true positives and IoU(B;, B;) is the IoU between the predicted
bounding box B; and the ground truth bounding box B;. To assess the quality of tracked trajec-
tories, additional metrics are used. These include MT (Mostly Tracked), PT (Partially Tracked),
and ML (Mostly Lost), which represent the number of ground-truth trajectories that are tracked
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for more than 80%, between 20%-80%, and less than 20% of their lifetime, respectively. A frag-
mentation (Frag) is counted each time a ground-truth trajectory is interrupted and not matched

to any tracker output.

Identification metrics were introduced in [112] to evaluate the accuracy of associating predicted
trajectories with ground-truth ones. Each ground-truth trajectory is assigned to exactly one pre-
dicted trajectory. The number of true positive identity matches (IDTP) corresponds to matched
trajectory points in overlapping regions. False positive matches (IDFP) refer to unmatched
segments of predicted trajectories or predictions not assigned to any ground-truth trajectory.
Similarly, false negatives (IDFN) are unmatched segments of ground-truth trajectories or ground-
truth tracks without any corresponding prediction. Based on these values, identification precision

and recall are defined as

IDTP

IDP = IDTP +IDFP’ (2.9)
IDTP

IDR = IDTP+IDFN’ (2.10)

Luiten et al. [89] proposed the Higher Order Tracking Accuracy (HOTA) metric, which explicitly
accounts for association quality over time. For each true positive object c, they define sets of
true positive associations (TPA), false positive associations (FPA), and false negative associations

(FNA). The per-object association score is given by

|TPA(c)|
Ale) = . 2.11
() = [TPAQ) + |FNA()| + [FPA() (211)
The overall HOTA score is computed as
A
HOTA, = Lcerp AlO) (2.12)

|TP|+ |FN|+ |FP|’
where « is the localization threshold.

MOT algorithms are employed primarily to enhance detection quality rather than focusing on
tracking itself. Consequently, the tracking component of the system is evaluated indirectly using

the object detection metrics discussed in Section 2.3.

Among datasets dedicated to MOT, a significant portion belongs to the Multiple Object Track-
ing Benchmark collection [4, 28, 29, 74, 91, 125, 133, 134, 146]. The MOT15 [74], MOT16 [91],
MOT17 [91], MOT20 [29], MOTS [133], Head Tracking [125], and STEP [146] datasets pri-
marily focus on pedestrian tracking. Although MOT16 introduces 11 additional classes, these
are not considered during evaluation. The Head Tracking dataset was created by replacing
the MOT20 labels with head annotations, significantly improving object visibility in crowded
scenes. The CTMC [4] dataset captures cell migration and division, characterized by chaotic
motion. In MOTS, the annotations are segmentation masks, while in the STEP dataset, each
pixel is assigned an object ID. TAO [28], GOT-10k [55], and TrackingNet [92] contain multi-
ple object classes, but these are examples of single object tracking (SOT) datasets. MOT-style
annotations are also present in datasets focused on autonomous driving [39, 123, 162], video

surveillance [33, 147, 184], and search and rescue missions [132]. Most MOT datasets contain
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either a limited number of object instances (e.g., MOT15, MOT16, KITTI) or feature large ob-
ject sizes (e.g., MOT15, MOT16, MOT17, MOT20, CTMC, KITTTI). As discussed in Section 2.4,
the SeaDronesSee [132] and DroneCrowd [147] datasets are selected to evaluate the video object
detection system due to their challenging conditions, wide variability in object sizes, and diverse

background characteristics.

In object tracking algorithms, several subproblems can be identified, including trajectory esti-
mation and association, similarity metrics, and re-identification. To predict the future location
of objects based on past observations, the Kalman filter is commonly used [60]. One of the
earliest methods to apply this approach was SORT [9], which uses the Kalman filter for mo-
tion prediction, followed by matching detections to predicted tracks using the Hungarian Algo-
rithm [72] and Intersection-over-Union (IoU) as the similarity metric. In [148], IoU is replaced
with a Deep Association Metric, which incorporates both appearance information (cosine dis-
tance in feature space) and motion information (Mahalanobis distance between predicted and
measured states). In [10, 11], association is performed purely on the basis of IoU across adjacent
frames, enabling high-speed operation but limiting the method to scenarios where the object
displacements between frames are small. The methods proposed in [1, 21, 25, 50, 144, 174, 183|
introduce new trajectory association strategies, while [42] presents a motion estimation approach
based on repeated neural networks. The comparison of state-of-the-art object trackers is pro-
vided in [3]. The review includes Deep OC-SORT [90], ByteTrack [174], StrongSORT [165], and
OC-SORT [17]. Cao et al. [17] show that the Kalman filter can obtain state-of-the-art tracking
performance when the noise accumulated during occlusion is fixed. They use object observations
provided by the detector to compute the trajectory of the object during the occlusion. Object
localization is more accurate when derived from detection rather than from state estimations
based on the linear motion assumption in the Kalman filter. If an object can be associated
with the detection method after a period of being untracked, it cannot be associated with the
previous trajectory estimated by KF due to the temporal error magnification. Thus, the OC-
SORT method from [17] re-updates the Kalman gain and a posteriori estimate covariance using
the virtual trajectory estimated for the objects that were not detected. In the improved Deep
OC-SORT [90], visual appearance (deep visual embedding) is used to enhance the accuracy of
visual object association for Multi-Object Tracking. The StrongSORT [165] method demon-
strates that global association can be performed without relying on object appearance and that
Gaussian process regression can effectively address the issue of missing detections. Zhang et
al. [174] propose the ByteTrack method, which suggests that incorporating detection boxes with
low detection scores and filtering out background detections provides better results compared to

tracking only high-score detections.

The goal of this thesis is to propose a lightweight method that improves small object detection in
the sequence of high-resolution images by utilizing object tracking. A similar system is presented
in [59]. However, in [59], the goal of the TLD (Tracking-Learning-Detection) is to enable long-
term tracking of an unknown object in advance. The system contains two standard components:
a tracker that follows the object from frame to frame and a detector that localizes the object in
the image. An additional learning component estimates the detector error and uses it to update
the detector. The considered system is pretrained to detect known categories of objects. In the

proposed system, the tracking component guides the detector to focus on specific areas of the
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image. This strategy aims to improve the performance of small object detection in large images
while avoiding computationally expensive detectors that operate on the entire image or low-
quality detectors that work on images with reduced resolution. This can be achieved by utilizing
lightweight pretrained object detectors and a standard tracking method, as demonstrated later
in this dissertation. Taking into account the drawbacks of the discussed tracking methods, heavy
reliance on the tracking module is avoided. Instead, a ROI Prediction Module is proposed to

serve only as a guide, making it less sensitive to errors introduced by the tracking system.
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Chapter 3

Proposed SegTrackDetect System
for Tiny Object Detection

3.1 System Architecture

Detecting objects in high-resolution images presents considerable computational challenges. In
theory, such images could be processed either at full resolution in a single pass or by applying
an exhaustive sliding-window approach. However, the first option demands substantial compu-
tational resources, while the second leads to very slow processing times. These limitations make
both strategies unsuitable for practical applications, especially in robotics, where real-time per-
formance is essential and computational resources are often limited. A common alternative is to
downscale the input image, but this causes small and tiny object features to vanish. To address
these challenges, the modular system proposed in this thesis introduces a guidance mechanism
that directs the detector to specific regions of interest, allowing it to perform full-resolution
inference selectively. This strategy enables both accurate detection and efficient processing.
The proposed framework is also highly customizable, allowing users to balance speed and ac-
curacy based on the specific requirements of a given application. It supports both tiny object
detection and multi-scale detection in high-resolution images, making it suitable for a wide range

of real-world scenarios.

The proposed approach, shown in Fig. 3.1, is based on a focus-and-detect paradigm. Instead of
relying on single-shot detection with downscaling or applying a naive sliding-window strategy, the
system directs the detector’s attention to specific, fixed-size Regions of Interest (ROIs) in high-
resolution images for efficient object detection. These ROIs are derived from two complementary
sources: (1) a lightweight semantic segmentation network that estimates foreground regions at
a low resolution, and (2) a tracking-based ROI Prediction Branch that propagates previously
detected objects across time. While ROI Estimation alone can achieve good detection quality
when applied to high-resolution inputs, incorporating tracking-based ROI Prediction enables

the system to operate on lower-resolution data without compromising recall. By merging these
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two sources, the system maintains high detection performance while significantly improving com-
putational efficiency. Once the fused ROI mask is obtained, the Detection Windows Proposal
Module extracts fixed-size crops, which are then passed independently through a lightweight ob-
ject detector. The detected bounding boxes are mapped back to the global image coordinates
and postprocessed to remove redundant and partial detections using the Global Filtering
Module. This filtering step is essential to mitigate common issues associated with window-based

inference, such as duplicated or fragmented boxes.

While the system architecture presented in Fig. 3.1 illustrates the core components of the final
refined version of the SegTrackDetect system, multiple variants and iterative improvements were
developed throughout the research process. These versions are discussed in detail in Chapters 4,
5, and 6, where their differences are highlighted and justified through ablation studies that
support key design choices. This chapter presents a detailed pipeline for each module, while the
simplified diagrams in the following three chapters focus on high-level architectural differences

that illustrate the evolution of the system.

All three chapters build upon the author’s previous work published in [65, 67, 69, 70]. The final
system is tailored for applications with constrained computational resources that require real-
time performance, while also offering high adaptability for specific deployment scenarios. This
chapter introduces the full system architecture (Fig. 3.1), detailing each component from ROI
generation to detection postprocessing. It also includes an analysis of the datasets, focusing on
spatial resolution and object scale, which provides the necessary foundation for the subsequent
experimental validation. Throughout this thesis, the proposed system is evaluated using four
challenging datasets: the Mapillary Traffic Sign Dataset (MTSD) [35], and three sequential
datasets (SeaDronesSee [132], DroneCrowd [147], and ZebraFish [100]) used across the following
three chapters due to their temporal structure. MTSD, which consists of individual images,
is not suitable for experiments involving video object detection and is therefore limited to the
evaluation presented in Chapter 4. For an in-depth discussion on architectural design and the
influence of individual modules on performance, refer to Chapter 4 (ROI Estimation Module),
Chapter 5 (ROI Prediction Module), and Chapter 6 (Global Filtering Block).

3.1.1 Region of Interest Estimation

The ROI Estimation Module, shown in Fig. 3.1, leverages visual cues from the current frame to
estimate regions likely to contain foreground objects of interest. These regions are obtained using
a segmentation network operating at reduced resolution, based on a U-Net-like architecture [114]
with a shallow ResNet-18 backbone. This choice helps preserve details of smaller objects that
might otherwise disappear in deeper architectures. Binary ground-truth masks are generated as
exact representations of bounding box annotations. The effectiveness of these design decisions

is validated experimentally in Chapter 4, using the initial version of the system (TinyROI).

In the subsequent chapters, several segmentation resolutions are evaluated. In the final version
of the system, segmentation is performed at a lower resolution compared to the estimation-only

variant. This reduction significantly increases the processing speed. Thanks to the Prediction
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FiGure 3.1: Overview of the proposed small and tiny object detection system architec-
ture. The system focuses the detector’s processing on selected fixed-size regions within high-
resolution images to enable efficient detection of small objects. These regions are identified
using two ROI sources: ROI Estimation generated by low-resolution binary segmentation of
the current frame (Rf) and ROI Prediction derived from an object tracker (Rf). The com-
bined ROI mask (Rtf ), created via element-wise OR, is transformed into detection windows
by the Detection Windows Proposal Module. These windows are analyzed by a lightweight
detector, and the resulting detections are projected back onto the original image coordinates
(Detection aggregation). To reduce false-positive partial detections, the Global Filtering
Block filters and merges the detections before updating the tracker’s state, which supports
ROI Prediction in future frames.

Module (discussed next), which leverages temporal cues from object motion, ROI quality (partic-

ularly for the smallest objects) can still be preserved through tracking. As a result, the combined

use of lower-resolution segmentation and lightweight tracking enables a substantial boost in frame

rate without compromising detection coverage.
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3.1.2 Region of Interest Prediction

The ROI Prediction Module, illustrated in Fig. 3.1, complements the segmentation-based Es-
timator by leveraging object motion to recover regions that may be missed due to low resolution
or challenging visual conditions. It initializes object tracks from detections found within esti-
mated ROIs of the initial N frames and subsequently predicts object positions in later frames
using a constant-velocity motion model. These predictions are converted into binary masks and
fused with the current segmentation mask to guide the detection process. The output of the
Tracker Position Prediction (Fig. 3.1) stage consists of bounding box coordinates, which are then
converted into a binary mask format representing the predicted ROI. This mask is fused with

the current segmentation-based ROI to guide the detection process.

Implemented using a lightweight multi-object tracker inspired by SORT [9], the module maintains
per-object state using a Kalman filter and performs data association based on IoU. Although
the tracker may occasionally lose accuracy in crowded scenes, its sole purpose is to propose ROIs
rather than preserve object identities, which ensures minimal computational overhead. This
design allows the system to benefit from temporal consistency and improved recall for small
or occluded objects, while maintaining high processing speed. The effectiveness of this module
is further analyzed in Chapter 5, where it is shown to stabilize detections and increase recall,

particularly for objects prone to being missed by segmentation alone.

3.1.3 Region of Interest Fusion

The ROI Fusion Module combines the outputs of the segmentation-based Estimation Module
and the motion-based Prediction Module to generate a unified ROI mask. Both branches
produce binary heatmaps at a fixed resolution, which are merged using an element-wise logical
OR operation. Since the Prediction Module outputs bounding box coordinates, these are first
converted into a binary mask format aligned with the resolution of the segmentation map to
ensure compatibility during fusion. The resulting fused ROI mask serves as the input for the

Detection Window Proposal stage.

While the system supports operation with either branch individually, the default configuration
employs both. This joint setup enables high detection recall while minimizing unnecessary
computation in non-relevant areas of high-resolution video frames. Alternative configurations,
such as estimation-only and tracking-only, are revisited in the ablation study in Chapter 5 to
highlight the trade-offs between speed and detection performance. Notably, the tracking-only
mode offers a lightweight alternative for fast inference in static scenes where new object entries

are infrequent.

In addition, the sliding-window variant of the SegTrackDetect system is also evaluated. This con-
figuration is implemented by replacing the fused ROI mask with an all-foreground mask, thereby
prompting the Detection Window Proposal Module to perform exhaustive window-based cov-
erage. This setup enables a fair comparison against conventional sliding-window methods, while

minimizing differences in other system components and hyperparameters.
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Fi1GURE 3.2: The zoomed-in architecture of the Detection Windows Proposal Module.

3.1.4 Detection Windows Proposals

For clarity, the more precise architecture of the Detection Windows Proposal Module is pre-
sented in Fig. 3.2. This module converts the fused ROI mask, produced by combining seg-
mentation and tracking-based proposals into a set of fixed-size candidate image regions for the
object detector (Detection Subwindows in Fig. 3.2). Connected foreground regions are extracted
from the binary ROI mask, and their bounding boxes form an initial list of detection window
candidates (Set of ROI Coordinates in Fig. 3.2). Based on these ROI bounding boxes and the
detector’s input size, an unfiltered set of detection windows is generated by placing windows

centered within each region.

The final SegTrackDetect version of this module handles ROIs larger than the detector input size
by combining two strategies: cropping with downscaling to preserve contextual integrity, and
sliding-windows within ROIs to retain fine features of tiny objects. This approach enables lower-
ing the detector input size close to the average object size in the dataset, while properly handling
outliers. Consequently, the system supports multi-scale detection without compromising speed
or accuracy, as smaller detector inputs can be effectively used. The unfiltered set of detection
windows is then filtered to remove redundancy; for detailed information on the filtering method
and its evaluation, please refer to Chapter 4. These filtered windows are subsequently passed to
the Batch Generator, which crops the final detection windows from the original high-resolution
image. Unlike earlier designs (e.g., TinyROI in Chapter 4) that allowed detection windows to ex-
tend beyond image boundaries requiring padding, this system constrains all windows to lie fully
within the image frame. This modification eliminates padding artifacts that could degrade de-
tection quality and reduces unnecessary background processing. This flexible Window Proposal
strategy balances runtime efficiency and detection performance, enabling the system to process
high-resolution images in real time while maintaining high-quality results for both tiny-object

and multi-scale detection scenarios.
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3.1.5 Local Object Detection

The Local Object Detection Module performs object detection within the proposed subre-
gions extracted from the original high-resolution image. By restricting inference to these selected
ROIs, the system significantly reduces computational load while maintaining full spatial resolu-
tion for tiny and small objects. The module leverages an adaptive detection window strategy
that enables the use of lightweight detectors such as YOLOv7 Tiny [136] across diverse datasets.

For the SeaDronesSee and DroneCrowd datasets, detection operates at an input resolution of
512x512 pixels, while a smaller resolution of 160x256 is used for the simpler ZebraFish dataset.
These relatively low input sizes are made possible by the earlier Window Proposal Module,

which tiles or downsamples larger ROIs as needed to maintain coverage of all relevant regions.

YOLOv7 Tiny was chosen for its balanced trade-off between speed, accuracy, and stability,
outperforming or matching newer variants in the evaluated scenarios while requiring fewer com-
putational resources. Training follows the protocol described in Chapter 4, including preparation
of cropped subwindows, scale augmentation, and inclusion of negative samples to reduce false
positives. During inference, local detections are filtered via Non-Maximum Suppression (NMS)
and mapped back to the full image coordinates (Detection Aggregation in the Global Filtering

Block of Fig. 3.1), ensuring accurate global localization.

3.1.6 Global Filtering Block

The Global Filtering Module finalizes object detections across all proposed sub-windows by
removing redundant and fragmentary results - common artifacts in systems that rely on overlap-
ping detection windows (Fig. 3.3). An effective Global Filtering step is essential to improve

detection quality in such setups, as shown in Chapter 6.

In SegTrackDetect, this is handled by two proposed complementary algorithms: Overlapping
Box Suppression (0BS) and Overlapping Box Merging (OBM). 0BS improves upon standard
Non-Maximum Suppression (NMS) by incorporating information about the origin of each detec-
tion. This allows it to distinguish full-object detections from incomplete fragments caused by
intersecting windows, helping to reduce false positives without discarding correct results - a com-
mon issue with NMS in dense scenes. While 0BS works well when full detections are available, it
cannot recover objects that are only partially visible across multiple windows. To address this,
0BM is used to merge partial detections from overlapping windows when no complete detection is
present. This is particularly useful when large ROIs are tiled into multiple sub-windows, as often
happens when objects are large or ROI localization is imprecise. Together, 0BS and 0BM form
the Global Filtering stage of the system, ensuring that both false positives and incomplete
detections are effectively handled. This improves the system’s ability to perform multi-scale

detection without sacrificing precision or recall.
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Fi1GURE 3.3: The zoomed-in architecture of the Global Filtering Block.

The experimental sections in the following chapters explore several configurations of the Global
Filtering Block. In the baseline TinyROI system (Chapter 4), standard Non-Maximum Sup-
pression (NMS) is used as the sole filtering mechanism. In contrast, both versions of Seg-
TrackDetect, introduced in Chapters 4 and 5, adopt the more context-aware Overlapping Box
Suppression (0BS) algorithm. The Overlapping Box Merging (0BM) method is introduced
later in Chapter 6, where its integration with 0BS forms the final version of the filtering block.
This progression enables an in-depth comparison of global post-processing techniques, ultimately
demonstrating that the combined 0BS+0BM strategy provides the most robust and accurate de-

tection results across a range of conditions.

3.2 Overview and Evaluation of Benchmark Datasets

The proposed modular object detection system is evaluated across four benchmark datasets:
the Mapillary Traffic Sign Dataset (MTSD) [35], SeaDronesSee [132], DroneCrowd [147], and
ZebraFish [100]. Each of these datasets presents distinct challenges and supports the evaluation

of different aspects of the detection pipeline.

The Mapillary Traffic Sign Dataset (MTSD) is a large-scale dataset of traffic signs captured in
diverse real-world conditions. Its complexity stems from the high intra-class variability, diverse
backgrounds, and dense urban scenes. Despite its relevance to real-world autonomous driv-
ing applications, MTSD consists solely of individual frames, without any temporal continuity.
Consequently, it is utilized exclusively in Chapter 4, where the evaluation is restricted to the

estimation-based variant of the system operating on single images. A comparative analysis with
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Ficure 3.4: Comparison of object scale distributions (based on relative size thresholds) across
all annotated splits of the four evaluated datasets. Since not all datasets contain labeled test
sets, additional val dev splits were extracted from the training sets to be used for evaluation
in training and hyperparameter tuning, while the original validation sets served as test sets.
The following mapping is used: in DroneCrowd, the original labeled test split is used as is; in
MTSD and SeaDronesSee, val dev was artificially extracted from the training set, with the
original validation sets used as test; in ZebraFish, which only provides a training set and an
unlabeled test set, two sequences from the train set were used as val_ dev.

other traffic sign datasets is provided later in this chapter to illustrate the specific challenges
MTSD presents.

Tracking-oriented datasets are used to evaluate the full system. This includes SeaDronesSee,
which features high-resolution images and focuses on UAV-based search and rescue missions
in open sea environments; DroneCrowd, initially developed for crowd detection and counting
from aerial footage, but used here through its available 2D bounding box annotations; and the
comparatively simple ZebraFish dataset, which centers on tracking a single fish class in tank
environments. Despite its simplicity, the ZebraFish dataset includes large images and small
object instances. It was used extensively during the development of the final SegTrackDetect
system due to its visual clarity, which makes it particularly well suited for presenting qualitative

examples and illustrating the algorithmic workflow in a transparent and interpretable manner.

All three datasets are analyzed in detail in the following sections, with a focus on image res-
olution, object scale, general characteristics, and the data splits used for training, validation,
and testing (Fig. 3.4). The differences between them are highlighted to demonstrate that, taken
together, they constitute a comprehensive benchmark. This diversity enables the evaluation
of the proposed system across a range of detection scenarios, underscoring its versatility and

adaptability to different real-world use cases.

Image Detection Dataset Tab. 3.1 summarizes key properties of five traffic sign detection
datasets relevant to object detection in high-resolution images. The size of the image and
the object is represented by the geometric mean of width and height (s = vw-h). From
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TABLE 3.1: Comparison of traffic sign detection datasets, with image and object dimensions
summarized by their geometric mean s = vw - h

Dataset Images Objects Classes Image size Object size
BTSD [129] 9006 13480 117 1418 91456
GTSDB [51] 506 852 43 1043 43+32
RTSD [118] 59188 104358 198 1052+189 39+23
TT100K [188] 16811 26349 182 2048 45431
MTSD [35] 41909 206388 314 283714911 63171
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Figure 3.5: Distribution of relative object areas in the MTSD dataset.

these, the Mapillary Traffic Sign Dataset (MTSD) was selected due to its combination of high-
resolution images, large object instance count, and diverse class set. MTSD contains 41909
labeled training images and 10544 unlabeled test images. Each object is annotated with an axis-
aligned bounding box and assigned to one of 314 classes grouped into five semantic categories:
information, complementary, requlatory, warning, and other-sign, with the latter accounting for
roughly 70% of all annotated objects. The dataset’s class imbalance is addressed in the proposed
detection system by applying a weighted loss during training. Most images exceed 10 megapixels,
while over 99% of objects occupy less than 1% of the image area, emphasizing the need for efficient
small object detection strategies capable of handling large, high-resolution inputs. Figure 3.5
presents a histogram of relative object areas in the MTSD dataset, calculated as the ratio of each
bounding box area to the corresponding image area. The distribution confirms that the majority
of objects occupy less than 1% of the image area, with very few medium or large objects present.
A strong predominance of small object sizes motivates a detection system design that emphasizes
efficient processing of high-resolution images by focusing on selected Regions of Interest (ROIs)
containing objects. This histogram highlights the challenge presented by MTSD and supports
the need for ROI-based approaches combined with effective filtering and merging algorithms
specifically tailored for the detection in high resolution images. The multiscale nature of the
dataset pose additional challenges compared to tiny-only detection and facilitates the need for
efficient large ROI handling strategy together with the measuring and filtering postprocessing
algorithms. Figure 3.4 shows the distribution of object scales within MTSD, highlighting a strong
dominance of small objects and only sparse medium-to-large objects. This characteristic aligns
well with the target application of the ROI-based detection framework, which focuses detector
attention on selected regions containing objects in high-resolution imagery. Since MTSD does
not provide ground-truth annotations for the test split, performance evaluation is conducted
on the official validation set. For training and hyperparameter tuning, a validation dev split

is extracted from the training data, equal in size to the official validation set, ensuring proper
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FIGURE 3.6: Example frames from the four datasets used in this thesis (MTSD, ZebraFish,
SeaDronesSee, and DroneCrowd), illustrating the diversity of detection scenarios.

separation of training and evaluation.

Video Detection Datasets To evaluate the proposed detection system in varied real-world
conditions, three publicly available video-based datasets are utilized: SeaDronesSee, Drone-
Crowd, and ZebraFish. Originally developed for multi-object tracking (MOT), all datasets

provide frame-level annotations from which object detection labels are extracted.

The SeaDronesSee dataset [132] consists of drone-captured aerial imagery focused on maritime
search and rescue operations. It includes multiple object classes such as people, life jackets, and
boats, covering a wide range of object scales - from extremely small to large instances (Fig. 3.4).
Due to the open-sea environment, the dataset is characterized by sparse object distribution and
relatively uniform backgrounds, making it a representative benchmark for evaluating detection
performance in low-density scenes with minimal visual clutter, but with multi-scale object set-
tings. In contrast, the DroneCrowd dataset [147] features drone footage recorded in dense urban
environments. It focuses on detecting individual human heads in crowded public spaces, where
objects are consistently small and densely packed. The complex, cluttered backgrounds and
heavy occlusions present a challenging scenario for tiny object detection algorithms, particularly
in terms of robustness to noise. The third dataset, ZebraFish [100], captures underwater se-
quences of fish moving within aquarium tanks. It includes both 2D and 3D tracking annotations
and features a small number of object instances per frame. Despite its simpler structure, Ze-
braFish provides a controlled environment in which to assess system performance, particularly

the ability to detect small, fast-moving objects against dynamic backgrounds.

Figure 3.4 illustrates the distribution of object sizes across these datasets, confirming their
relevance for tiny and multi-scale object detection in high-resolution images. Example frames

from all datasets are presented in Fig. 3.6.

Evaluation Metrics The evaluation protocol used in this work follows the general structure
of the COCO benchmark but extends it to better suit the challenges of small object detection

in high-resolution imagery. In particular, detection quality is assessed using multiple object
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TABLE 3.2: Object size thresholds used in the evaluation of the proposed tiny object de-

tection system. Relative thresholds follow the image-size-adaptive scheme introduced in [67],

enabling consistent scale categorization across datasets with varying resolutions. For refer-

ence, absolute size thresholds (in pixels) are also provided, computed based on dataset-specific

image dimensions. The evaluated datasets include MTSD [35], SeaDronesSee [132] (SDS),

DroneCrowd [147] (DC), and ZebraFish [100] (ZeF20). In the case of MTSD, average image
size was used to derive pixel-based thresholds due to variability in resolution.

size range [%] MTSD range [px] SDS range [px] DC range [px] ZeF20 range [px]
micro 0.00-0.38 0-12 0-10 0-5 0-7

very tiny 0.38-1.52 12-47 10-43 5-21 7-30

tiny 1.52-3.05 47-94 43-87 21-43 30-61

small 3.05-6.10 94-188 87-175 43-87 61-123
medium 6.10-18.29 188-564 175-526 87-263 123-370
large 18.29-100.00 > 564 > 526 > 263 > 370

size categories, defined by relative size thresholds rather than fixed pixel values. This strategy
allows for consistent evaluation across datasets with varying resolutions and image dimensions.
Inspired by previous work [24, 138], the standard COCO small category is divided into six finer-
grained groups: micro, very tiny, tiny, small, medium, and large. These categories follow the
relative thresholding scheme proposed in [67], where thresholds scale automatically based on
image resolution. This scaling strategy highlights the system’s focus on computational efficiency

in high-resolution scenarios.

Table 3.2 presents the precise relative thresholds along with their corresponding absolute pixel
values for each dataset. Relative object size distributions are illustrated in Fig. 3.4. The full
evaluation protocol is available online'. For SeaDronesSee, MTSD, and ZebraFish, evaluation
uses COCO-style IoU thresholds (0.50 : 0.95 : 0.05), with a cap of 100 detections per image.
DroneCrowd, due to the high object density and annotation imprecision, is evaluated using a

single ToU threshold of 0.5 and a maximum of 500 detections per image.

Together, the four benchmarks used in this work provide a diverse and well-balanced foundation
for evaluating the proposed SegTrackDetect framework. They span a range of application scenar-
ios, from high-resolution image detection to real-time video analysis, and cover both single-class
and multi-class tasks across varying object scales and background complexities. This diversity
ensures that all components of the system Estimation, Prediction, Filtering, and Window
Proposal Generation are thoroughly validated under realistic and challenging conditions (see
Fig. 3.6 and Fig. 3.4).

3.3 Novelty of the proposed system

The SegTrackDetect system [67, 69, 70] introduces a novel modular approach to high-resolution
object detection with a strong emphasis on computational efficiency and real-time performance —
capabilities largely absent in existing window-based methods such as ClusDet [157], DMNet [75],
and AdaZoom [155]. These prior works often focus on accuracy at the cost of flexibility or

runtime efficiency.

Ihttps://github.com/Cufix/tinycocoapi
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At its core, the system features a segmentation-based ROI Estimation Module that directly
learns from detection labels, bypassing the need for intermediate representations such as density
maps or region clustering, which are commonly used in methods like Focus-and-Detect [71],
DMNet [75], and CDMNet [34]. This simplification enables consistent performance across both
sparse and dense detection scenarios - conditions where crowd-based estimation techniques often
by design struggle to detect isolated or non-clustered objects. The thesis (Chapter 4) shows that
the proposed ROI Estimation strategy consistently outperforms three different sliding-window
implementations, including a baseline uniform tiling approach and the publicly available SAHI
framework [2], in terms of both computational efficiency and detection quality, as evaluated on

four diverse benchmark datasets.

To further improve efficiency in sequential scenarios, a lightweight ROI Prediction Module
based on tracking is introduced. This component enables substantial computational savings
by reducing the resolution requirements of the Estimation Network, an advantage particularly
relevant in robotics, where video streams are the norm and single-frame inference is rare. When
the outputs of both ROI branches are fused, the resulting system outperforms several state-of-
the-art models, including general object detectors [62, 135, 136, 140], tiny-object methods [103,
156], and video-based approaches [113], while maintaining a significantly lower parameter count.
As shown in Chapter 5, ablation studies confirm that this improvement stems directly from
the Prediction Module, enabling real-time operation with comparable detection quality to the

estimation-only variant at much lower input resolution.

The system’s versatility is enhanced by a dedicated large ROI handling strategy, which retains
essential features for tiny objects while preserving structural context necessary for multi-scale de-
tection. This dual benefit enables reduced detector input size, lowering computational complexity
and increasing throughput, while maintaining robustness in real-world environments where scale

variability and dynamic object motion are common [132].

In addition, two new post-processing algorithms are introduced: Overlapping Box Suppres-
sion (0BS) and Overlapping Box Merging (0BM). Designed specifically for window-based de-
tection systems, these methods exploit spatial window layout to eliminate redundant detections
and recover fragmented instances. Although conceptually related to Incomplete Box Suppression
(IBS) from Focus-and-Detect [71], 0BS and 0BM are distinct, have open-source implementations,
and are validated in multiple experiments. As shown in Chapter 6, the proposed methods outper-
form traditional NMS when applied globally across detection windows, improving both precision

and recall.

The complete SegTrackDetect system is released as an open-source, end-to-end framework with
extensive customization capabilities and support for embedded deployment. To date, it is the
only publicly available modular framework for efficient, window-based object detection with
support for segmentation- and tracking-driven ROI generation, aside from SAHI [2], and is

designed for practical integration in robotic systems, as discussed in Chapter 7.

The effectiveness of each major component of the proposed system is validated through extensive
experiments: Chapter 4 supports the first auxiliary thesis on efficient ROI Estimation, Chapter 5

confirms the benefits of the lightweight ROI Prediction Module for real-time video processing,
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and Chapter 6 demonstrates the superiority of the proposed filtering and merging strategies.
Together, these results provide comprehensive evidence to support the three auxiliary theses

presented in this work.
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Chapter 4

ROI Estimation-based Tiny Object

Detection

4.1 Introduction

Object detection involves localizing and classifying objects in images, typically using axis-aligned
bounding boxes. While considerable progress has been made in detecting medium and large
objects, tiny object detection remains a persistent challenge, particularly in high-resolution sce-
narios where targets occupy only a few pixels. This limitation is especially relevant for real-world
applications like mobile robotics, aerial imagery, or traffic analysis, where detectors must operate

under strict runtime constraints while maintaining high accuracy.

High-resolution input images are often downscaled to meet the memory and speed requirements
of real-time applications. However, this downsampling affects the smallest objects, rendering
many of them undetectable due to the loss of spatial detail. Increasing input resolution or model
complexity could improve detection, but at a significant computational cost, which is undesirable
in embedded or real-time settings. An alternative approach is the sliding-window method, which
divides the image into overlapping patches that are processed independently. While this improves
recall for tiny objects, it also introduces substantial computational overhead due to the large
number of background-only tiles evaluated (Fig. 4.2b). To address these limitations, this chapter
proposes a detection pipeline based on learned Region of Interest (ROI) Estimation. In-
stead of processing all parts of the image equally, the system predicts which regions are likely
to contain objects using a lightweight semantic segmentation model operating on a downscaled
version of the input. The identified ROIs are then used to guide full-resolution detection, pre-
serving important visual details only where needed and greatly reducing the number of detector
calls compared to the naive sliding-window approach. This strategy achieves a balance between
detection accuracy and computational efficiency, outperforming single-shot detection with down-

sampling while being significantly faster than the sliding-window method (Fig. 4.1).

To validate the proposed estimation-based approach, two variants of the proposed system are

introduced:

95
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single-shot sliding-window TinyROI

FIGURE 4.1: Detection of small objects in high-resolution images. Single-shot detection on

a downsampled image fails to capture tiny objects. The sliding-window approach improves

accuracy but is computationally intensive and slow. The proposed method achieves accurate
results more efficiently, with significantly reduced computational cost.

e TinyROI, a minimal implementation of the learned ROI estimation pipeline,

e SegTrackDetect, an enhanced framework that integrates large ROI handling strategy,
Global Filtering via Overlapping Box Suppression (0BS), and several runtime op-

timizations.

Both systems are assessed against traditional baselines, including single-shot detection with
downsampling and multiple implementations of the naive sliding-window method. These base-
lines represent two extremes on the speed-accuracy spectrum: one prioritizes computational
efficiency at the cost of small object recall, while the other maximizes recall through exhaustive
search at high computational cost. To ensure a robust and meaningful comparison, all systems
are evaluated on datasets featuring a wide range of object densities and sizes. This includes
scenes with both clustered and sparsely distributed targets, as well as significant scale variation
across objects of the same class. By maintaining a consistent detection backbone and preprocess-
ing pipeline across all experiments, the evaluation isolates the impact of the ROI Estimation
strategy itself. While SegTrackDetect includes a more sophisticated Global Filtering Block
implementing 0BS (compared to NMS in TinyROI), this does not affect the comparison: within
each framework, both the sliding-window and estimation-based versions use the same Global
Filtering Block. This ensures that any observed differences in detection quality and speed
are solely due to the ROI Estimation method, demonstrating the advantage of the estimation-

based pipeline over the naive sliding-window approach. Results are reported in terms of standard
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detection metrics (AP, AR), computational cost (FPS, detector calls), and qualitative visualiza-
tions. Additionally, the framework is benchmarked against SAHI [2], a widely used open-source

sliding-window implementation.

Through the comprehensive evaluation, the chapter aims to validate Auxiliary Thesis #1: “Esti-
mating Regions of Interest (ROIs) using a deep neural network enhances both detection quality
and inference speed compared to the naive sliding-window approach”. The findings support
this claim by showing that the proposed ROI-based method reduces the number of windows
required for high detection performance, achieves comparable or better recall of tiny objects,
and significantly improves runtime efficiency, making it well suited for embedded and real-time

applications.

4.2 Contribution

The system proposed in this chapter introduces a learned ROI Estimation stage into the window-
based tiny object detection pipeline. It is developed as an alternative to the naive sliding-window
approach, which is often used to improve detection quality for small and tiny objects. While ef-
fective at detecting smaller objects compared to single detection with downsampling, this method
introduces significant computational overhead, especially when objects are sparsely located, by
processing a large number of background-only tiles. The proposed alternative is designed to
offer similar or even better improvements in detection quality while reducing computational cost
by discarding empty regions using a deep learning-based ROI Estimation stage that selects

promising areas for full resolution inference.

All three approaches are illustrated in Fig. 4.2. Single detection (Fig. 4.2a) requires only a single
image to be passed through the detection network. However, this approach does not allow the
entire high-resolution image to be processed at once due to memory and runtime constraints,
so downsampling is required. While fast and effective for detecting large objects, it reduces
the visibility of small object features, making them undetectable. The sliding-window method
(Fig. 4.2b) addresses this limitation by dividing the image into fixed-size tiles and processing
each in full resolution. This allows the system to detect tiny objects, but significantly increases
processing time. Moreover, the regular grid layout can cause larger objects to be fragmented
across multiple tiles, reducing detection quality in multi-scale scenarios. To address this while
maintaining real-time performance for tiny and multi-scale object detection in applications like

mobile robotics, this work proposes integrating a learned ROI selection stage.

The author argues that with standard deep learning-based architectures, it is possible to improve
detection quality over both Fig. 4.2a and Fig. 4.2b, while substantially reducing computation
time compared to the sliding-window approach (Fig. 4.2b), potentially achieving real-time per-
formance. Instead of processing detection windows selected on a regular grid, the proposed
system introduces an additional segmentation-based ROI Estimation Block. This block op-
erates on a low-resolution version of the input image and produces foreground regions, which

are then converted into non-uniformly distributed detection windows by the Detection Window
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FIGURE 4.2: General architectures of the detection systems compared in this chapter: single

detection with downsampling (a), often fast but misses tiny objects; naive sliding-window (b),

which enhances tiny object detection recall but is slow and suboptimal due to the large number

of empty windows processed; and the proposed ROI-based tiny object detection system (c),

which introduces a learned ROI Estimation step that improves speed compared to the naive
sliding-window while maintaining quality.

Proposal Block. To improve efficiency, the module also suppresses redundant windows, reduc-
ing the number of detector calls during inference. The remaining pipeline is shared between
the sliding-window and the proposed system. Both approaches process multiple detection win-
dows (Local Object Detection in Fig. 4.2b and Fig. 4.2¢), then aggregate the detections and
pass them through a Global Filtering Module to remove false positives caused by overlap-
ping detection regions. In the following sections, two versions of the proposed system are dis-
cussed. These versions primarily differ in the ROI Estimation, Detection Window Proposal,

and Global Filtering components. The differences between them are explained in detail later
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in this chapter.

In contrast to existing window-based methods, which often rely on uniform grids [2, 38, 102,
116, 151] or supervised density and cluster annotations [34, 75, 157], the proposed system em-
ploys a lightweight semantic segmentation model to estimate regions of interest directly from full
frames in low resolution. This approach enables class-agnostic, per-pixel objectness estimation,
bypassing the need for manually labeled cluster or density maps. Unlike methods that treat ROI
generation as a supervised regression or classification problem, the proposed segmentation-based
estimation offers an interpretable and modular mechanism for selecting high-resolution tiles.
While the overall framework integrates temporal cues through a separate Prediction Branch,
this section focuses exclusively on the ROI Estimation Branch, which processes each frame in-
dependently. Compared to unsupervised or reinforcement learning-based methods [142, 155], the
segmentation-based strategy remains fully deterministic, easier to train, and readily adaptable
to new datasets. Moreover, since the segmentation backbone can be extremely lightweight, this
component introduces minimal overhead, making it suitable for real-time or embedded applica-

tions.

In this chapter, the proposed ROI estimation-based tiny object detection system (Fig. 4.2¢)
is examined and compared comprehensively with two widely used baselines: the naive sliding-
window approach (Fig. 4.2b) and single detection with downsampling (Fig. 4.2a). The goal is
to validate Auxiliary Thesis #1 that estimating Regions of Interest (ROIs) using a deep neural
network improves both detection quality and inference efficiency compared to the naive sliding-

window strategy. To demonstrate this:

e the limitations of single-shot detection with downsampling are analyzed in the context of

high-resolution images, where tiny objects are often missed due to reduced spatial detail,

e an ROI estimation-based detection framework is introduced and compared against the naive
sliding-window baseline. To ensure a fair and controlled comparison, both approaches are
integrated into a unified detection pipeline, keeping all other parameters and components
consistent. The evaluation includes two variants of the proposed system, each differing
primarily in their Detection Window Proposal strategy and Global Filtering mecha-

nisms, in order to show consistent improvements across configurations,

e a comparative evaluation is performed against SAHI [2], a state-of-the-art open-source im-
plementation of the sliding-window approach, to benchmark the system against an external

baseline,

e a detailed experimental analysis of the ROI Estimation and Window Proposal modules is

conducted to validate the architectural choices made in the design of the system.

The following sections build upon the author’s previous works [67, 69, 70], with a specific focus
on comparing the purely ROI estimation-based tiny object detection system against the sliding-

window approach and single-shot detection with downsampling.
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4.3 Proposed method

The proposed system addresses the challenges of tiny object detection in high-resolution images
by improving detection quality over single-shot detectors while significantly reducing processing
time compared to the sliding-window approach. This is achieved by limiting the number of
detection windows processed during inference. The general architecture of the proposed object
detection framework is illustrated in Fig. 4.2c. During inference, the system comprises the

following core components:

e Region of Interest (ROI) Estimation Network - operates on a low-resolution version

of the input image to suppress background-only regions,

e Detection Window Proposal Module - converts the binary segmentation mask into a set

of non-redundant detection windows,

e Local Object Detector - runs independently on each selected window, followed by Non-

Maximum Suppression (NMS) as a local post-processing step,

e Detection Aggregation Module - Transforms local detections into the coordinate system

of the original image and merges outputs,

e Global Filtering Block - Filters out redundant detections in overlapping regions to

produce the final result.

While the overall system also incorporates temporal cues in its full configuration, this section
focuses exclusively on the segmentation-based ROI Estimation pipeline. Two versions of the ROI
Estimation-based detection system are evaluated, both representing successive developments of

the same core idea:

e TinyROI - a simplified system introduced in [67] that includes a basic Detection Windows
Proposal Module and applies standard NMS in the Global Filtering Block,

e SegTrackDetect - an advanced system based on [69, 70], featuring a refined Detection
Windows Proposal Module designed to support both tiny and multi-scale objects. This
version integrates the novel Overlapping Box Suppression (0BS) method within the
Global Filtering Block.

Detailed descriptions of each component are provided in the following sections. Differences be-

tween the two versions are discussed individually per module. Evaluation results clearly indicate

which system variant is being referenced.

4.3.1 ROI Estimation Module

In high-resolution imagery, small and distant objects often shrink to just a few pixels when

the input is downscaled for inference, making detection challenging. Increasing model size and
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input resolution can improve performance but at a significant computational cost during both
training and inference. To address this, the proposed system incorporates a Region of Interest
(ROI) Estimation Module that operates on downsampled images to predict regions with a high
likelihood of containing objects. The ROI Estimation Network suppresses background-only
regions and highlights areas likely to contain objects. This segmentation-based prior guides the
detection stage, enabling the main object detector to operate selectively at full resolution within
the identified ROIs. As a result, fine-grained spatial details of tiny objects are preserved without
the need to process the entire image at full resolution. To minimize computational overhead, this
step utilizes shallow backbones and operates on downscaled inputs. Depending on the dataset,
the ROI Estimator is implemented either using U%-Net! [104] for MTSD [35], or a UNet [114]
with a ResNet18 backbone for all other datasets.

ROI generation is formulated as a binary segmentation task, where foreground pixels (objects) are
labeled as 1 and background pixels as 0. In both TinyROI and SegTrackDetect, ground-truth
segmentation masks are derived from object detection annotations. By default, the ground-
truth binary masks are constructed as rectangular regions corresponding to bounding boxes,
with extremely small objects (below 1 px) represented as single pixels. Section 4.5 further
investigates alternative label generation strategies, including morphological expansion of ground-
truth masks by a fixed number of pixels (N), where N is defined either globally based on image
size or dynamically based on both image and object dimensions. Additionally, the influence of

different input resolutions on the performance of the ROI Estimation Module is also analyzed.

During the analysis of optimal training settings for the ROI Estimator (detailed in Section 4.5.2),
additional metrics were introduced to evaluate the relationship between standard segmentation
performance and the correctness of the returned ROI regions. Unlike conventional semantic
segmentation tasks, ROI estimation does not require precise pixel-wise masks or accurately
defined object edges. Instead, the goal is to ensure that foreground regions sufficiently cover
object locations, even with coarse resolution. To better reflect this objective, the following

task-specific metrics were defined:

Pprecisionror = T Prot] (4.1)
|T Prorl| + |F'Prox|’ .
TP
recallror = 7' Pro| (4.2)

|T Proz| + |FNror|

These metrics operate at the ROI level rather than at the pixel level. A true positive (T'Pror)
is registered if the estimated ROI mask for the i-th sample (P;) intersects with the ground-truth
binary mask generated for a single ROI (GT,;), such that Y GT,;NP; > 0. In this formulation,
precisiongo; reflects the proportion of proposed regions that actually contain relevant objects,
closely related to the number of unnecessary detector runs, while recallror captures the ability
to include all object-containing regions, corresponding to the number of missed detections due

to incomplete ROI coverage.
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FI1GURE 4.4: Architecture of the Detection Windows Proposal Block in the SegTrackDe-
tect [69, 70] system.

4.3.2 Detection Windows Proposal

The Detection Windows Proposal Block transforms the segmentation mask produced by the
ROI Estimation Network into a set of detection windows, based on the detector’s input size, the
original image, and the predicted foreground regions. Figures 4.3 and 4.4 illustrate the differences
between the TinyROI and SegTrackDetect variants of this module. While the overall pipeline
remains consistent, the specific implementations of detection window generation and cropping
differ, as highlighted by the intermediate outputs. In both systems, the heatmap from the ROI
Estimation Module is first binarized to identify individual ROI regions. The boundaries of
these regions are used to generate an initial set of unfiltered detection windows. These are then
aggregated and filtered to reduce redundancy (see “Detection Windows Filtered” in Figs. 4.3
and 4.4). The resulting refined subwindows are cropped from the original image and forwarded

to the Local Object Detection Module for inference.

The key differences in the Detection Windows Proposal Module between TinyROI (Fig. 4.3)
and SegTrackDetect (Fig. 4.4) lie in their handling of ROI size variability and window cropping
strategy. In TinyROI, there is no mechanism to handle ROIs larger than the detector’s input
size, so the detector window must be chosen based on the expected maximum object size. This
assumption works for static, closed-world datasets with sufficiently large detection windows. In
TinyROI, detection windows are centered on each ROI and padded with gray pixels if they
extend beyond the image boundaries (Fig. 4.3).

In contrast, SegTrackDetect employs a more adaptive and robust strategy tailored to real-time
applications with significant object scale variation. It combines crop-and-resize and sliding-
window techniques within the same ROI when necessary. For large ROI regions, a sliding-window
is applied across the cropped area to preserve detection quality and mitigate the effects of down-
sampling. In cases where the ROI contains medium or large objects, moderate downsampling of

the cropped region may be used, particularly when a single object exceeds the default detector
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Algorithm 1 Detection Windows Proposal; parts of the algorithm used only in SegTrackDe-
tect and not in TinyROI are highlighted in blue.

Require: Fro; € (0,1)Hiow*Wiow > Low-resolution fused ROI mask
Require: Io.ig € R7righXWhigh X3 > Original high-resolution RGB image
Require: (Hget, Waet) > Detector input size
Ensure: X € RBX3xHaetXWaet > Batch of detection subwindows
1: Step 1: Extract ROI Contours

2. FrorlFror > 0] < 255 > Threshold Fror
3: C + FindContours(Fror) > Extract contours from Fror
4: R < ContoursToXYXY(C) > Convert contours to bounding boxes (xyxy)
5: R < RescaleToOriginal(R, Hnigh, Whigh) > Scale bounding boxes to Iy, shape
6: Step 2: Generate Unfiltered Detection Windows

7: Wunfittered < 0 > Initialize unfiltered detection windows set
8: for each ROI bounding box r € R do

9: if Size(r) > (Hget, Wyet) then > If ROI is larger than detector input size
10: Wan fittered < Wanfitterea U {r} > Include original large ROI
11: Wean fittered < Wan filterea U SlidingWindows(r, Hger, Waet) > Generate sliding windows
12: else > If ROI is smaller than detector input size
13: w — CenterWindow (7, Hget, Wyet) > Create centered detection window
14: Wean fittered < Wanfittered U {w} > Only add centered window
15: end if

16: end for

17: Step 3: Filter Detection Windows
18: for w € Wynfitterea do

19: s(w) < count(r € R) > Compute score as number of r each w encapsulates
20: end for

21: Sort (r,w) € (R, Wunilterea) by s(w) descending > Prioritize windows covering multiple ROIs
22: Wyiltered < 0 > Initialize filtered detection windows set
23: for each (r,w) in sorted (R, Wuynfiitered) do

24: if r is not enclosed by any w’ € W¢jjtereqd then > Check if ROI is not already covered
25: Wriltered < Writterea J {w} > Add non-redundant detection window
26: end if

27: end for

28: Step 4: Generate Batch of Detection Subwindows

29: B < [Writtered| > Number of final detection windows
30: X+ 0 > Initialize output batch
31: for each w € Wrjitereq do

32: x < CropAndResize(lorig, W, Haet, Waet) > Crop and resize subwindow from I,
33: X +— X U{z} > Add subwindow to batch
34: end for

35: return X € REX3xHdetXWaee > Final batch of detection subwindows

window size. When the ROI is smaller than the detector’s input dimensions, a single window
is centered on the region, following the same approach as in TinyROI. This hybrid strategy
enables SegTrackDetect to operate with smaller detection windows without losing coverage, as
large or complex ROIs are dynamically processed using multiple subwindows or scaled appro-
priately. To avoid passing empty or invalid regions to the detector, window positions are also
adjusted to remain within image boundaries, eliminating the need for gray padding used in Tiny-
ROI. The discussion of TinyROI highlights the design decisions and evolution that led to the
adaptive, multi-scale approach of the final SegTrackDetect system.

Both systems use the same filtering strategy, with naive filtering with sorting adopted as the
default configuration. This approach is detailed in Alg. 1, which describes the procedure used in
SegTrackDetect. Section 4.5.3 evaluates this component using TinyROI to compare alternative
strategies, no filtering and naive filtering without sorting, in terms of runtime and detection
quality. The results support the use of the default filtering method in both TinyROI and Seg-
TrackDetect. While Algorithm 1 reflects the more advanced and adaptive pipeline of SegTrack-

Detect, TinyROI relies on a simplified version based on fixed-size, center-aligned windows with
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gray padding when needed.

4.3.3 Local Object Detection

This component is responsible for performing object detection within the proposed subregions of
the original image. Rather than applying the detector to the full resolution frame, detection is
executed only on selected ROlIs, significantly reducing computational cost while preserving fine
spatial details. Both TinyROI and SegTrackDetect use lightweight YOLO models but differ in

their strategies for window sizing, scaling, and runtime optimization.

In the TinyROI system, object detection is carried out within fixed-size cropped regions centered
on each proposed ROI. This design assumes that a single detection window can adequately
capture each region of interest, simplifying the pipeline by eliminating the need for dynamic
resizing or multi-scale handling. However, the approach incurs higher computational cost per
window and lacks flexibility when dealing with large or densely packed ROIs. SegTrackDetect
introduces several optimizations to improve detection efficiency and scalability, particularly for
real-time applications and scenarios involving variable object sizes. SegTrackDetect allows for
using lower input sizes due to the adaptive handling of large ROIs in the Detection Windows

Proposal Block, which ensures full ROI coverage without compromising detection quality.

In all experiments presented in this Chapter, MTSD uses YOLOv4 [12] with an input resolution
of 960x960 pixels, while for all other datasets the detector is replaced with YOLOvT Tiny [136],
a lightweight architecture with only 6 million parameters and an input size of 512x512 pixels.
Despite the availability of newer YOLO variants such as YOLOv10 [135] and YOLOv12 [127],
YOLOv7 Tiny was selected due to its balance between runtime efficiency, architectural stability,
and consistent performance across tasks. While some newer models offer fewer parameters, they
often require more operations (FLOPs) and are harder to train or deploy. Moreover, as shown in
Tab. 5.1 and Tab. 5.2, the largest YOLOv10 variant (YOLOv10x) does not exhibit a significant
quality advantage over YOLOvT7-eGe.

To train both systems, datasets are generated by cropping annotated full-resolution images into
detection windows, adjusting the bounding boxes to the local coordinate system. Negative
(empty) windows are included to discourage false positives in background regions. A scale-
augmentation procedure is also applied to enrich the training data with multiple object size

variants, mitigating potential mismatches between training and test distributions.

During inference, preliminary post-processing is applied using Non-Maximum Suppression (NMS)
within each detection window. The final Detection Aggregation step maps detected bounding-
boxes back to the original image space. In SegTrackDetect, this transformation includes a scaling
factor if the crop-and-resize method was used, while in TinyROI, no such scaling is needed due

to fixed-resolution processing.
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4.3.4 Global Filtering Module

After aggregating detections from multiple sub-windows, a second-stage filtering step is required
to eliminate redundant or partial detections. These typically arise from objects being only par-
tially visible in individual windows, especially in overlapping regions. In TinyROI, this Global
Filtering step uses standard Non-Maximum Suppression (NMS), identical to the method ap-
plied during local filtering. An evaluation of alternative filtering strategies is presented in Sec-

tion 4.5.3, which justifies the use of NMS and its hyperparameters in the final TinyROI design.

In contrast, SegTrackDetect introduces a more tailored solution, Overlapping Box Suppres-
sion (0BS), which significantly enhances the robustness of the Global Filtering process.
The design and evaluation of 0BS, including comparisons to NMS, are detailed in Chapter 6.
The focus of this Chapter, however, is to demonstrate that incorporating ROI estimation im-
proves both detection quality and speed relative to the sliding-window approach. To enable a
fair comparison, sliding-window implementations are included in both TinyROI and SegTrack-
Detect. This ensures that any differences in the Global Filtering Blocks do not affect the

isolated analysis of ROI estimation versus sliding-window performance.

4.4 Experimental results

This section presents the main results of TinyROI and SegTrackDetect, each compared against
their respective sliding-window baselines. To ensure fairness, the sliding-window methods were
integrated directly into the proposed pipelines, as illustrated in Fig. 4.2b, minimizing architec-
tural differences across setups. Both proposed systems are evaluated in their final, optimized
configurations, as described in Section 4.3 and quantitatively justified through the ablation study
in Section 4.5. Both frameworks are further compared with the open-source framework SAHI [2],
omitting the single-shot baseline due to training issues discussed later. All sliding-window ex-
periments use an overlap fraction of 0.01 to minimize discrepancies across frameworks. For each
dataset, identical pre- and post-processing steps and consistent hyperparameter configurations
are applied - such as the IoU thresholds used in the Global Filtering stage (0BS for Seg-
TrackDetect, NMS for TinyROI). The results demonstrate that incorporating a learned region
estimation step into the focus-and-detect pipeline not only improves inference speed compared to
the traditional sliding-window approach but also can yield superior detection accuracy. Quan-
titative results are reported following the evaluation protocol and the relative size definition
introduced in [67].

The comparisons in this section are designed to directly validate Auxiliary Thesis #1, while
a broader comparison including all three detection strategies from Fig. 4.2 is provided in Sec-
tion 4.5.1.
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TABLE 4.1: Quantitative results comparing TinyROI and SegTrackDetect frameworks in var-
ious configurations with SAHI [2]| using three datasets: MTSD, SeaDronesSee and ZebraFish.
All experiments were performed on NVIDIA RTX A6000 and evaluated with the protocol

proposed in [67]. The confidence threshold of 0.1 was used for all experiments.
Dataset Framework Method AP APs0AR AP, AP,i APy AP; AP,, AP, FPS
SAHI [2] sliding-window 35.5 77.1 46.7 13.9 34.6 43.6 40.0 37.3 34.3 1.2
TinyROI sliding-window 45.9 82.2 56.9 15.7 44.4 527 53.2 47.6 39.5 3.5
MTSD SegTrackDetect  sliding-window  43.4 75.1 54.3 13.3 44.7 51.3 47.8 36.1 26.5 4.1
TinyROI estimation 47.4 80.8 56.6 14.1 45.0 53.7 55.8 49.4 36.7 12.5
SegTrackDetect estimation 46.2 77.6 56.6 15.0 43.9 53.4 54.4 489 357 14.9
SAHI [2] sliding-window 42.1 775 53.5 - 33.6 424 494 18.6 0.1 1.7
TinyROI sliding-window  40.9 76.4 52.6 - 31.5 379 50.3 164 0.1 6.0
SeaDronesSee SegTrackDetect sliding-window  42.7 79.4 52.5 - 33.2 40.8 509 17.8 0.1 17.3
TinyROI estimation 499 834 59.3 - 31.9 46.6 58.1 34.3 36.6 20.7
SegTrackDetect estimation 52.6 83.5 60.9 - 32.0 51.9 61.6 36.4 67.5 44.5
SAHI [2] sliding-window 18.2 52.3 33.1 - - 2.1 15.8 21.0 - 1.6
TinyROI sliding-window 21.3 56.3 375 - - 4.2 17.8 25.1 - 2.4
ZebraFish SegTrackDetect  sliding-window  22.1 58.0 37.9 - - 7.3 18.7 253 - 18.0
TinyROI estimation 52.7 78.1 60.1 - - 20.1 54.3 519 - 41.5
SegTrackDetect estimation 80.7 95.7 83.8 - - 41.2 76.1 87.7 - 78.0

4.4.1 Quantitative Results

The primary results for all three datasets are summarized in Tab. 4.1, reporting overall detection
quality metrics (AP, APsp, and ARqq0), size-specific Average Precision values, and inference
speed in frames per second (FPS). These metrics are also presented in Fig. 4.5 to provide a

clearer and more intuitive comparison between methods.

In the MTSD dataset, both ROI estimation and sliding-window methods achieve relatively high
average precision (AP), with TinyROI (ROI Estimation) reaching the top score of 47.4%. In-
terestingly, sliding-window methods perform unusually well compared to the other datasets;
TinyROI sliding-window achieves an AP of 45.9%, only slightly below its estimation variant.
This can be explained by the large detection window size (960x960) used across all MTSD
methods. Such a large window increases the chance of fully capturing even large or mid-size
objects in a single tile, thereby reducing the dependency on precise region selection. The high
performance of all sliding-window methods supports this interpretation. However, SegTrackDe-
tect with ROI Estimation, despite being more efficient (14.9 FPS), slightly underperforms in
terms of AP (46.2%) compared to TinyROI. This is attributed to suboptimal detector training,
which involved the use of crops and downsampled images, reducing the ability to accurately
recover large object quality, clearly visible in the relatively low AP across all methods. This
represents a limitation of the detector itself rather than the framework, as evidenced by Seg-
TrackDetect’s strong performance for larger objects on the SeaDronesSee and ZebraFish datasets.
Furthermore, it is important to note that SegTrackDetect’s key improvements primarily target
three areas: handling large ROIs that exceed the detector’s input size, filtering out false posi-
tive partial detections, and enhancing inference efficiency. On MTSD, where detection windows
are already large (960x960) and typically contain full objects, the benefits of partial detection
filtering and large ROI management have reduced effectiveness. For fairness, the same detector
was used in both TinyROI and SegTrackDetect; however, SegTrackDetect could operate with

smaller input sizes thanks to its ROI handling strategy, which on other datasets has been shown
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FIGURE 4.5: Quantitative comparison of multiple sliding-window methods with the proposed

estimation-based approaches in TinyROI and SegTrackDetect frameworks. Quality and speed

was measured for three datasets: MTSD, SeaDronesSee and ZebraFish. All experiments were

performed on NVIDIA RTX A6000 and evaluated with the protocol proposed in [67]. The con-
fidence threshold of 0.1 was used for all experiments.

100
- = TinyROlestimati

- saH -

= SegTrackDetectsliding-window 80

AR AP,

AP APs

80 80

6
AP APsg AR AP, AP, AP APs AP, AP, FPS

60

A
|| | i II ||| ‘ |I| ‘
III I.II o I |.|I III ..I
APy AP FPS AP APsy AR AP, AP. AP, FPS

S
S

N
oS
N
1<)

0 APsg

to improve inference speed without compromising detection quality. Since large objects cannot
be fully restored due to detector limitations, no framework-level improvement can overcome that
bottleneck. Additionally, the SegTrackDetect relative improvement in FPS on MTSD is the
smallest among all datasets, because the large input size of the detector leads to considerable
background being processed regardless of ROI selection. In contrast, on SeaDronesSee and Ze-
braFish, SegTrackDetect achieves significantly higher speedups by leveraging smaller input sizes
and applying efficient ROI management, which reduces redundant background processing and

maximizes inference speed.

Although SeaDronesSee has image resolutions similar to MTSD, it uses a much smaller detec-
tion window size (512x512), which limits the effectiveness of sliding-window methods. These
approaches struggle with large objects that get fragmented across tiles and also waste compu-
tation in the background, leading to modest performance (AP 41-43%) and poor results for
medium and large objects. SegTrackDetect with ROI Estimation overcomes these issues by
accurately identifying regions of interest and adapting its processing strategy. It achieves this
through dedicated large ROI handling logic, which combines sliding-window and crop-and-resize
strategies to manage oversized ROIs. The method splits large ROIs into smaller overlapping
tiles while preserving object integrity. This approach enables the use of small detector input
sizes without losing the context of large objects, effectively balancing detection accuracy and
computational efficiency. Additionally, partial detection filtering further boosts precision by
suppressing redundant detections near tile boundaries. As a result, SegTrackDetect reaches an
AP of 52.6%, AR of 60.9%, and strong performance across all object sizes (e.g., AP} = 67.5%),
all while running at 44.5 FPS - over 25 times faster than SAHI. These results demonstrate how
smart ROI management and filtering enable efficient and accurate detection, even for large ob-
jects, without relying on large input sizes or excessive background processing. In both TinyROI
and SegTrackDetect, the estimation-based approach outperforms the sliding-window baseline,

thereby confirming Auxiliary Thesis #1.

The ZebraFish dataset, while not the most challenging, represents a relatively simple case where
the smallest detection windows are used. This setup highlights the importance of choosing
detector window sizes according to the dataset’s characteristics. With a strategy that effec-
tively handles large ROIs, smaller windows can be employed without sacrificing the detection of
large outliers. Sliding-window methods struggle here, yielding low AP scores between 18% and

22% and almost no large object detections. In contrast, SegTrackDetect with ROI Estimation
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FIGURE 4.6: Qualitative comparison of the sliding-window approach (within the SegTrack-
Detect framework) with TinyROI and the SegTrackDetect system. All visualizations use a
confidence threshold of 0.1 for consistency.

achieves an AP of 80.7%, APs5q of 95.7%, and 83.8% AR, significantly outperforming baselines
like TinyROI (52.7% AP) while running at 78 FPS.

4.4.2 Qualitative Results

Figure 4.6 presents a qualitative comparison between the SegTrackDetect system, the initial
estimation-based variant (TinyROI), and the best-performing sliding-window method imple-
mented within the SegTrackDetect framework. All examples are taken from the SeaDronesSee
dataset, and a uniform confidence threshold of 0.1 is applied across all methods to ensure a
consistent comparison. In some cases, particularly when objects are sparse and well-separated,
as shown in Fig. 4.6a, all three methods achieve similarly high detection quality. However, the
limitations of the sliding-window approach become more evident when objects are fragmented

across uniform tiles, as illustrated in Fig. 4.6d-e. These particular results were obtained before

82:7531384481



ROI Estimation-based Tiny Object Detection 69

the integration of the Overlapping Box Merging (0BM) algorithm into the Global Filtering
Block. As a result, fragmented detections are sometimes incorrectly filtered (e.g., Fig. 4.6d),
leading to imprecise bounding boxes for larger boats, or fail to be merged into a single detection
(Fig. 4.6e). The latter clearly demonstrates the necessity of a dedicated merging mechanism in
window-based pipelines, which is addressed later in Chapter 6. The TinyROI variant does not
include the large ROI handling strategy used in SegTrackDetect, and as ROI sizes increase, its
detection quality degrades more noticeably (see Fig. 4.6e). Some of the qualitative results also
highlight the benefits of the advanced Global Filtering Module used in SegTrackDetect, par-
ticularly its ability to suppress partial false positives, as seen in the rightmost column of Fig. 4.6
(rows ¢ and d) - this is also analyzed in more detail in Chapter 6. Additionally, the exhaustive
nature of the sliding-window method occasionally produces false positives in background regions,
as shown in row b. In contrast, the segmentation-based ROI selection in SegTrackDetect acts as
a filter, helping to prevent such errors. Still, the number of false positives for the sliding-window
method remains low in the examples shown, which confirms the effectiveness of the adopted
training strategy that included background-only tiles to discourage false-positive detections in

case of false-positive ROIs.

Across datasets, ROI Estimation consistently improves both accuracy and inference time, espe-
cially where object scale variability or density make naive sliding-window methods ineffective.
Sliding-window approaches can still perform relatively well when detection windows are large
enough to contain entire objects, as in MTSD, but this comes at the cost of slower inference
and poorer scalability. Overall, SegTrackDetect’s learned region selection demonstrates clear ad-
vantages, particularly on challenging datasets, confirming that deep ROI Estimation enhances
detection precision and enables faster inference in high-resolution, small-object detection sce-
narios. These findings directly prove Auxiliary Thesis #1: “Estimating ROIs using a deep
neural network model enhances both detection quality and inference speed compared to the
naive sliding-window approach”. The slight drop in AP on MTSD is likely due to training data

limitations rather than any deficiency in the framework itself.

4.5 Ablation study

This ablation study documents the key experiments conducted during the development of Tiny-
ROI and SegTrackDetect, with the goal of optimizing the ROI estimation-based pipeline and
refining its architectural components. The study begins with a comparison of the three detection
strategies illustrated in Fig. 4.2, using the MTSD dataset and the initial TinyROI framework.

It then analyzes design choices in both systems.

For TinyROI, experiments focused on how to best train the ROI Estimator, including input
resolution and binary mask label generation, as well as evaluating ROI filtering and detection
filtering strategies in terms of accuracy and efficiency. In SegTrackDetect, the focus shifted to
methods for handling large ROIs. Together, these analyses informed the design of the final

versions of both frameworks, which were used to report the main results in the previous section.
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TABLE 4.2: Comparison of detection quality, inference speed (measured on a GeForce RTX
3080 Ti), and the average number of detector calls (detection windows) per image (DW).
Three methods are evaluated: single-shot detection with downsampling (SD), sliding-window
(SW), and the proposed approach (TinyROI). All methods use the same NMS settings and a
detector input resolution of 9602 px with a batch size of 1. Results are reported on the MTSD
validation set. AP and AR metrics are presented in separate subtables for clarity.

(a) Detection performance - AP metrics

Method DW FPS ‘ AP APso AP7s AP, AP.. APy APs AP. AP

SD 1 17.4 | 33.8 60.1 34.5 0.2 10.4 45.2 58.6 63.2 73.8
SW 14.7 1.2 46.2 82.6 46.9 15.9 447 53.0 53.6 47.9 39.5
TinyROI 1.8 7.9 47.7 813 514 144 45.4 53.9 56.1 50.4 36.9

(b) Detection performance - AR metrics

Method DW FPS ‘ AR:; ARi0o ARio0o AR, AR, ARy ARs AR. AR,

SD 1 17.4 | 40.7 47.1 47.2 1.1 22.9 58.3 67.6 69.0 75.3
SW 147 1.2 51.4 58.5 58.5 25.1 55.2 62.0 624 53.4 40.1
TinyROI 1.8 7.9 51.6 58.2 58.2 19.9 54.1 61.6 63.0 56.7 37.6

4.5.1 Comparison of Detection Strategies

Table 4.2 summarizes the final evaluation of the TinyROI system in comparison to two baseline
approaches: single-shot detection with downsampling (SD) and the traditional sliding-window
method (SW). For a fair comparison, all three approaches employ the same YOLOv4 detector
trained on the MTSD dataset, using input samples at 960? pixels composed of both downsampled
images and random crops. The single-shot approach involves resizing the entire input image to
9602 pixels, performing detection, then upscaling the resulting bounding boxes to the original
resolution. The sliding-window method uses overlapping detection windows, with an overlap
fraction of 5%, and processes each window individually at full resolution. All methods share the
same Non-Maximum Suppression (NMS) parameters: an IoU threshold of 0.45 and a confidence
threshold of 0.01 with weighted merging. In addition to the detection metrics, Tab. 4.2 reports
the average number of detector invocations (detection windows) per image and inference speed
measured in frames per second (FPS). Importantly, the inference timing includes not only the

detector runtime but also NMS execution, ROI Estimation and Global Filtering.

Described results demonstrate that TinyROI achieves detection accuracy nearly equivalent to
the sliding-window approach while delivering a substantial speedup, approximately sevenfold
faster inference. Specifically, TinyROI reaches a COCO-style mean Average Precision (AP) of
47.7%, outperforming the single-shot downsampling method by nearly 15 percentage points and
exceeding the sliding-window method by 1.5%. The detailed AP scores at IoU thresholds 0.50
(APsp) and 0.75 (APy5) are 81.3% and 51.4%, respectively. These represent significant gains over
the single-shot method and closely match the sliding-window performance. The relative improve-
ments in both AP and AR metrics when switching from single-shot detection to window-based
approaches (represented by the relative gain) are visualized in Fig. 4.7. Notably, both Tiny-
ROI and sliding-window strategies yield substantial enhancements in detecting micro, very tiny,

and tiny objects. For example, the AP for micro-objects (AP, icr0) improved by 7850% with
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FIGURE 4.7: Relative metric gain caused by replacing the single-shot detection with window-
based full resolution approaches - simple sliding-window and TinyROI.

the proposed method compared to single-shot detection, demonstrating the efficacy of focus-
ing detection at full resolution on selected ROIs. As shown in Tab 4.2 micro scale objects are
practically undetectable in a single-shot approach. While TinyROI and sliding-window deliver
nearly identical AP,; and AP, scores, TinyROI incurs a slight drop relative to sliding-window
in some very small object categories. This minor difference is likely attributable to the ROI
selection, which while efficient, may occasionally omit relevant regions captured by exhaustive
sliding-windows. As illustrated in Fig. 4.8 and Fig. 4.9, the ROI Estimation Network some-
times fails to highlight areas containing very tiny objects. This limitation is likely due to the
relatively deep architecture of the estimation backbone, which may overlook low-level cues as-
sociated with minuscule targets. This observation was an important factor in the development
of the SegTrackDetect system, where more recent versions employ shallower ROI Estimation
Networks designed to better preserve fine-grained spatial details and improve sensitivity to tiny
objects. Despite this occasional omission, the overall impact is mitigated. In real-world scenes
such as traffic environments, relevant objects, especially traffic signs, often appear in spatial
clusters. As a result, even if a specific object is not directly detected by the ROI Estimator, its
neighboring context is likely to be included, enabling the detector to recover most of the missed

content during inference.

For larger object categories (small, medium, and large), the single-shot detection method achieves
the highest AP and AR scores among the three. This is presumably because both the sliding-

window and TinyROI methods process images at a single scale, which may be suboptimal for
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single-shot

sliding-window

FIGURE 4.8: Qualitative results comparing ground-truth annotations with single-shot de-
tection using downsampling, and window-based approaches: naive sliding-window and the
proposed TinyROI system incorporating a learned ROI Estimation Module. Black rectangles
indicate detection windows, while orange regions in the TinyROI row represent returned ROIs.
Single-shot detection often misses tiny objects, which can be recovered by full-resolution in-
ference in both the sliding-window and TinyROI approaches. However, the sliding-window
method introduces more false positives, likely due to object fragmentation and complex back-
grounds. In contrast, the learned ROI Estimation Module in TinyROI acts as an initial fil-
tering step, helping to reduce false positives. While this may occasionally result in missed
detections, the significantly reduced processing time justifies the trade-off.

larger objects spanning multiple detection windows. Larger objects are prone to being frag-
mented across window boundaries, and despite the use of NMS, the absence of more sophisti-
cated merging or filtering methods can lead to duplicated or missed detections, reducing overall
precision. Additionally, it is suspected that the training process (using both downscaled images
and full-resolution crops) hindered the detection of larger objects, especially in such unevenly
distributed classes as in MTSD. This setup introduces disparity in object scales, as the dataset
includes a wide variety of image sizes. In SegTrackDetect, the training procedure was revised to
exclude downscaled images. Instead, full-resolution crops are combined with slightly larger and
smaller regions, to mitigate the impact of size distribution imbalance between the training and

test subsets.

86:1123775597



87:4578767079

ROI Estimation-based Tiny Object Detection 73

sliding-window single-shot ground-truth

TinyROI

FIGURE 4.9: Qualitative results comparing ground-truth annotations with single-shot de-
tection using downsampling, and window-based approaches: naive sliding-window and the
proposed TinyROI system incorporating a learned ROI Estimation Module. Black rectangles
indicate detection windows, while orange regions in the TinyROI row represent returned ROIs.
Single-shot detection often misses tiny objects, which can be recovered by full-resolution in-
ference in both the sliding-window and TinyROI approaches. However, the sliding-window
method introduces more false positives, likely due to object fragmentation and complex back-
grounds. In contrast, the learned ROI Estimation Module in TinyROI acts as an initial fil-
tering step, helping to reduce false positives. While this may occasionally result in missed
detections, the significantly reduced processing time justifies the trade-off.

Figures 4.8 and 4.9 present qualitative results for the TinyROI system on the MTSD dataset,
comparing its outputs to the ground-truth, single-shot detection, and the sliding-window ap-
proach. Both figures show results from the aforementioned systems; however, due to the com-
plexity of the scenes and the high resolution of the images, the visualizations were split into
two separate figures for clarity. To avoid ambiguity, all examples presented in Figs. 4.8, 4.9 were
generated using single-label NMS. As illustrated, single-shot detection consistently fails to detect
tiny objects. In Fig. 4.8a, no objects are detected in the zoomed-in region, whereas both the
sliding-window and TinyROI approaches successfully recover all of them. A similar situation is
shown in Fig. 4.8b, where larger objects are detected correctly in the single-shot result, but three
smaller objects are completely missed. Although both the sliding-window and TinyROI detect

these missed objects, the sliding-window method introduces several false positives - highlighting
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the need for a more robust filtering strategy (discussed in Chapter 6), as standard NMS is unable
to handle such fragmentary detections effectively. Similar false positives are observed in Figs 4.8e
and 4.9c, where the sliding-window yields more noisy detections than TinyROI. In Fig. 4.8¢c, a
false positive (building) appears due to a lack of contextual information, an issue mitigated in
TinyROI by placing windows more centrally within relevant ROIs, which better preserves sur-
rounding context. Figure 4.8c also shows multiple overlapping detections of the same object class
(“other-sign”), where small object sizes lead to insufficient suppression by IoU-based NMS, as
visually overlapping small objects often yield low IoU values that fail to trigger suppression. In
Figs. 4.9a and 4.9b, small objects missed by single-shot detection are accurately detected using
both window-based methods. Finally, Fig. 4.9c shows that single-shot detection captures only

one stop sign, whereas both window-based approaches successfully detect more.

Overall, TinyROI produces fewer false positives than the sliding-window and achieves similar or
better detection quality in terms of false positives, while requiring significantly fewer detection
windows, highlighting a clear advantage in efficiency and robustness. From these experiments,
several key insights were gained: better filtering techniques are necessary to improve detection
quality; shallower networks might be more suitable for the ROI Estimator; training should
avoid using downsampled images to maintain true object sizes and aspect ratios; and more
effective methods for handling large ROIs are needed, since increasing the window size often
results in detection windows containing predominantly background. All these improvements
have been incorporated into the SegTrackDetect framework, presented in the previous section,
which demonstrates that the ROI estimation-based system achieves higher detection quality and

speed than the sliding-window approach.

4.5.2 Training of the ROI Estimator

During the development of the TinyROI detection system, optimal training settings for the ROI
Estimator were established. This configuration was subsequently adopted in the SegTrackDe-
tect system. All experiments discussed in this section employ the ROI-level metrics introduced
in equations 4.1 and 4.2, alongside standard segmentation metrics. These ROI-level metrics
focus primarily on assessing the coverage of regions of interest rather than the precision of the

segmentation masks.

Image Resolution To determine the optimal training and inference resolutions for the Es-
timator, three variants of the U2?-Net! model were trained for 120 epochs using the Adam
optimizer (learning rate = 0.001) and a batch size of 16. The experiments were conducted
at three different resolutions: 1442, 2882, and 5762 pixels. Regardless of the input resolution
used during training, validation was performed at all three resolutions to assess the model’s
scalability and generalization across different input sizes. For each model, results reported in
Tab. 4.3 correspond to the checkpoint selected based on the highest recall of ROI generation
(rror) at the resolution the model was trained on. This metric was prioritized because, within
the scope of this work, achieving full coverage of all objects of interest is more critical than

minimizing false positives that could trigger additional detector runs.
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TABLE 4.3: Segmentation and ROI-level metrics for Estimator models trained with three
input resolutions (trainyes 1442, 2882, 5762) and evaluated at each of them (valies). Results
from the TinyROI detection system with the Mapillary Traffic Sign Dataset.

Trainges Valies ioura PFG rFG Flrc PROI rROI Flro1
144 32.6 79.6 55.9 65.7 71.0 27.6 39.7
144 288 35.8 87.9 46.2 60.3 76.8 31.2 44.3
576 32.0 88.0 23.3 36.9 76.0 31.8 44.8
144 31.8 72.1 60.7 66.0 69.0 26.7 38.5
288 288 50.7 85.0 71.0 77.4 73.9 46.2 56.9
576 57.9 89.9 61.5 72.8 74.4 60.0 66.3
144 12.1 81.5 34.1 48.1 87.1 8.6 15.6
576 288 43.4 81.2 70.3 75.4 78.1 37.4 50.4
576 61.3 87.0 Tr.7 82.1 76.4 60.2 67.3

As shown in Tab. 4.3, reducing the inference resolution generally degrades segmentation and
ROI generation quality. However, training at a lower resolution allows for inference at resolu-
tions up to eight times higher while improving overall performance across all models. Notably,
the model trained at 288 x 288pixels delivers strong performance when inferred at both 2882
and 5762 resolutions. The difference in F1gor between training at 2882 and inference at 5762
versus training at 5762 and inferring at 5762 is marginal (approximately one percentage point),
indicating comparable quality. From a practical standpoint, especially for deployment consid-
erations, the model trained at 2882 is preferable. It maintains robust performance across both
2882 and 5762 inference resolutions, offering greater flexibility to balance the trade-off between
computational speed and accuracy. Conversely, the model trained at 5762 suffers a significant
drop in quality when inferred at 2882, limiting its usability in scenarios requiring lower inference
resolution. These results highlight the benefit of training models at moderate resolutions (2882),
which strike an effective balance between inference flexibility and detection quality, especially

for ROI selection within the scope of tiny object detection.

Label Generation Method Using an input resolution of 2882 pixels, the impact of different
label generation methods on the quality of ROI Estimation was examined. Four experiments
were conducted where object masks were generated by expanding bounding boxes with fixed
pixel margins N set to 0, 2, 8, or 16 pixels. Additionally, two adaptive methods were tested: one
with N varying inversely with object size (N in Tab. 4.4) and another with N varying directly
with object size (Np in Tab. 4.4), with N constrained between 2 and 16 pixels in both cases. All
models were evaluated against the original dataset (Ng), in which masks precisely correspond
to the original object detection labels. Since the ROI precision (pror) and recall (rror) metrics
assess region coverage rather than exact mask precision, they remain valid and comparable even

when training and validation labels differ.

The version based on Ng was selected as the default configuration due to its consistently strong
performance across both ROI-related and object detection metrics. As shown in Tab 4.4, al-
though all configurations with N>0 exhibit higher ROI recall (rroi), they tend to suffer from a
decrease in ROI precision (proi), with the exception of Nyg. This indicates that as N increases,
the generated ROI masks may become less specific, potentially leading to a higher number of

false positives. This is likely due to the reduced alignment between the ROI labels and the actual
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TABLE 4.4: Comparison of ROI and segmentation metrics for models trained on datasets

with differently generated labels. Validation was performed on the Ny dataset, with all models

trained at an input resolution of 2882 pixels. The TinyROI detection system was evaluated

on images from the MTSD dataset. Additionally, basic object detection metrics are reported

for each ROI Estimation Model to analyze the relationship between ROI selection quality and
object detection performance within these regions.

Model  iourg PFG rFG Flrc PROI rROI Flror AP APs5o AP75
No 59.0 88.6 64.2 74.4 72.9 61.7 66.8 48.5 80.7 53.8
No 46.0 69.3 68.2 68.7 67.1 62.5 64.7 46.4 77.4 51.3
Ng 21.9 33.5 71.1 45.4 67.7 70.5 69.1 48.0 80.2 53.1
Nis 12.5 17.1 68.6 27.4 73.2 75.5 74.3 43.3 71.8 48.5
Na 43.2 64.2 68.3 66.2 72.4 61.8 66.7 46.9 78.7 51.7
Np 14.5 21.9 71.8 33.5 72.8 71.6 72.2 46.0 76.7 51.6

TABLE 4.5: Effect of detection window filtering methods on the total number of detection
windows (and average per image), as well as detection quality measured by AP and AR in the
TinyROI system evaluated on MTSD.

Filtering Detection Windows AP APso APr7s5 ARioo
— 19669 (3.7) 51.0 81.3 58.9 62.5
Naive 10297 (1.9) 48.4 80.8 53.4 59.4
Naive, sorted 9536 (1.8) 48.5  80.7 53.8 59.3

object features at larger dilation levels. Interestingly, the relationship between N and ROI quality
is non-linear, while N4 achieves the best scores in both precision and recall, its object detection
performance is the weakest, highlighting an important insight from system development: strong

ROI metrics do not necessarily translate to strong object detection results.

Throughout the development of SegTrackDetect, each component was assessed using final object
detection performance as the guiding criterion rather than intermediate ROI scores alone. This
ensures that design choices reflect their true impact on end-task performance. The current results
were obtained using simple Non-Maximum Suppression (NMS) in Global Filtering Module,
which may not adequately handle overlapping detection windows, potentially leading to suppres-
sion of valid detections or presence of partial detections. To mitigate this, the Overlapping Box
Suppression (0BS) method was introduced later in the development process. 0BS was specifi-
cally designed to filter out partial and redundant detections arising from object fragmentation,

and its integration into the pipeline allows for more reliable detection outcomes.

4.5.3 Detection Windows Proposal

Filtering Algorithms To justify the design choices, an ablation study was conducted compar-
ing different window filtering techniques in the Detection Windows Proposal Block (Fig. 4.3).
The method of region filtering directly influences the number of detector runs, and consequently,
the inference time. For an ideal ROI Estimator, however, this should not impact detection qual-
ity, assuming partial detections are properly filtered. Tab. 4.5 presents a comparison of detection
quality and the number of detection windows on the full validation set (5320 images) of the MT'SD
dataset using the TinyROI system. The naive filtering algorithm nearly halved the number of
required regions from 19669 to 10297. Further reduction was achieved by adding a sorting step,
which lowered the number of ROIs to 9536. This sorted filtering approach is detailed in Algo-
rithm 1. As the number of windows decreased, both Average Precision (AP) and Average Recall

(AR) showed slight declines, potentially due to imprecise regions. Another possible reason is the
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FIGURE 4.10: Effect of combining sliding-window and resizing strategies for oversized ROIs
on detection quality across different object sizes. Results shown for SeaDronesSee and
DroneCrowd datasets using the SegTrackDetect system.

use of Non-Maximum Suppression (NMS) rather than Overlapping Box Suppression (0BS),
which can mishandle partial detections. However, NMS in a Global Filtering Block would
more likely degrade detection quality as the number of detection windows increases. A compre-
hensive analysis of 0BS and its advantages over NMS in window-based systems is provided in
Chapter 6. It is suspected that the observed quality drop stems from imprecise ROIs. However,
a considerable reduction in processing time is prioritized over a marginal decline in detection

performance.

This window filtering method was used in the final implementations of both TinyROI and Seg-
TrackDetect.

Large Region Handling Approaches While the system was originally tailored for detecting
tiny objects in high-resolution imagery (TinyROI), SegTrackDetect extends its capabilities to
handle objects of varying scales. This enhancement ensures that detection quality is preserved
not only for small, but also for medium and large objects commonly present in more diverse
datasets. Evaluation was conducted on two benchmarks: SeaDronesSee, which features objects
of various sizes, and DroneCrowd, which is focused on densely packed tiny objects. In con-
trast to TinyROI, which handled larger objects by increasing the detector’s input resolution,
without explicitly managing oversized regions of interest, SegTrackDetect incorporates a hybrid
mechanism. For ROIs exceeding the detector’s input size, the system combines a sliding-window
approach with downsampling and cropping strategies. This design allows for precise detection
across all sizes. The impact of this hybrid method is illustrated in Fig. 4.10. In SeaDronesSee,
relying solely on the sliding-window technique results in reduced performance for medium and
large objects. Incorporating resized ROIs enhances detection performance across all object sizes.
In DroneCrowd, where large ROIs typically correspond to crowded scenes rather than large
individual objects, the sliding-window approach alone remains sufficient for high detection qual-

ity. This combined approach enables SegTrackDetect to provide accurate detections in complex
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TABLE 4.6: Detection post-processing results under different configurations. Merge =
weighted averaging of overlapping boxes. Evaluated on MTSD (validation subset) with the
TinyROI system.

NMSjocal NMSgiobal AP APso AP75 ARioo

Non-Merge 23.8 48.8 19.2 49.4
Non-Merge 32.7 73.1 21.7 43.9
— 32.3 50.4 38.6 61.5

Merge Non-Merge 46.2 78.4 50.8 54.7
Merge 50.0 78.8 58.0 58.6

visual scenes, retaining the core advantages of TinyROI for small objects while addressing its

limitations in handling large ROIs and multi-scale object distributions.

4.5.4 Local and Global Detection Filtering Methods

High-resolution inference often requires splitting the input into smaller overlapping windows.
While Non-Maximum Suppression (NMS) is typically applied within each window independently
(denoted as NMSjoca1 in Tab. 4.6), this local filtering does not account for redundancies across
windows. Overlapping detection windows frequently produce multiple partial detections of the
same object, which degrades precision and leads to redundant bounding boxes in the final out-
put. This observation motivates the need for a Global Filtering stage that operates after

aggregating detections across all windows.

Early experiments in TinyROI considered global NMS (NMSgiopai) as a straightforward extension
to NMSjocal- Results in Tab. 4.6 confirm that applying a second-stage NMS on the aggregated
detections improves AP, although it may slightly reduce AR due to its tendency to suppress full
detections instead of the partial ones. This trade-off highlights the limitations of conventional
NMS when used in a multi-window detection pipeline. The evaluation in Tab. 4.6 includes varia-
tions in NMS stages and bounding box merging strategies (weighted averaging). All experiments
use a 576%px ROI Estimator, 960?px input resolution of the Local Detector Module, and an
ToU threshold of 0.45 and a confidence threshold of 0.01. The validation set from the annotation

version Ny was used.

The results show that omitting global NMS maximizes Average Recall (AR;q0), but significantly
lowers Average Precision (AP). Introducing global NMS increases AP at the cost of recall. Fur-
ther gains are achieved when using merged box coordinates. These findings make a strong case
for incorporating Global Filtering mechanisms in window-based detection systems; a concept
designed and refined beyond standard NMS in this dissertation (Chapter 6). The final version of
TinyROI adopts the best-performing configuration from Tab. 4.6, applying both local and global
NMS with merged box coordinates.
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4.6 Conclusions

This chapter examined the role of learned Region of Interest (ROI) Estimation in improv-
ing the efficiency and accuracy of window-based object detection systems. Two system vari-
ants were evaluated: TinyROI [67], a simple initial version of the framework, and SegTrackDe-
tect [69, 70], a full-featured, ROI-based detection system. Both were compared against conven-

tional sliding-window approaches across multiple datasets with diverse object scales and densities.

The primary contribution of SegTrackDetect over TinyROLI lies in its large ROI handling strategy.
By dynamically combining crop-and-resize with a sliding-window applied only within oversized
ROIs, SegTrackDetect supports smaller detector input sizes, reduces background processing,
and improves runtime efficiency without compromising detection quality. In addition, sev-
eral architectural refinements and runtime optimizations were introduced to stabilize perfor-
mance across scales and to further improve the inference speed. Although SegTrackDetect also
integrates the Overlapping Box Suppression (0BS) algorithm within its Global Filtering
Block, this component does not influence the direct comparison between ROI Estimation and
sliding-window methods. To ensure fairness, sliding-window baselines were implemented in both
TinyROI and SegTrackDetect, making the Global Filtering identical across estimation-based
and non-estimation pipelines. The specific impact of 0BS and other Global Filtering improve-

ments is analyzed separately in Chapter 6.

The ablation study evaluated three object detection pipelines: single-shot detection with down-
sampling, a sliding-window method integrated into TinyROI, and the estimation-based version
of TinyROI. This comparison revealed key limitations of the initial framework that motivated
the development of SegTrackDetect. The study then examined the design choices underlying

both frameworks.

The first part of the evaluation focused on TinyROI, using the Mapillary Traffic Sign Dataset
(MTSD). Two baselines were considered: single-shot detection with downsampling and a sliding-
window implementation embedded in TinyROI to ensure fairness. The single-shot baseline, while
fast and effective for large objects, failed to detect smaller ones (e.g., AR,=1.1%, AP,=0.2%,
AR:=22.9%, AP,;=10.4%), highlighting the limitations of moderate downsampling, even with
relatively large inputs (960x960 px). While the sliding-window method can restore small-object
features by performing full-resolution inference over a regular grid, this comes at the cost of
significantly slower inference (1.2 FPS on an RTX 3080 Ti) and reduced performance on larger
objects (AP,=47.9%, AP1=39.5%). In contrast, TinyROI’s learned ROI Estimation Block
provides an almost seven-fold speed-up (7.9 FPS) while maintaining comparable quality to the

sliding-window method.

These findings established ROI Estimation as a promising alternative to sliding-window, though
TinyROI mainly delivered speed improvements rather than clear quality gains. The subsequent
SegTrackDetect framework was designed to overcome these limitations, introducing further ar-
chitectural refinements that allow it to outperform sliding-window approaches in both efficiency

and accuracy.
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Building on the ablation study results, the SegTrackDetect framework addresses several archi-
tectural limitations identified in TinyROI. First, by incorporating a large ROI handling strategy,
SegTrackDetect significantly reduces the required input size of the detector, aligning it more
closely with the average object size. This increases computational efficiency without sacrificing
the detection quality of larger objects. Furthermore, larger objects (more prone to fragmentation
and lacking contextual cues) benefit from 0BS, which replaces NMS in the Global Filtering
stage, improving quality across scales. As shown in Tab. 4.1, this particularly benefits datasets
such as SeaDronesSee and ZebraFish. The lack of performance improvement on MTSD by Seg-
TrackDetect is attributed not to limitations of the framework, but rather to a suboptimal training
process. Specifically, the training data involved random cropping and aggressive downscaling,
which led to underrepresentation of large objects in full resolution. As a result, the detector was
not trained effectively to recognize them on a full scale. In contrast, SeaDronesSee and ZebraFish
used cropped training images with slight up/downscaling, helping the network generalize better
across object sizes and resolutions, which explains the strong performance of SegTrackDetect in

these datasets.

SegTrackDetect consistently outperforms both TinyROI and all sliding-window methods in de-
tection quality and inference speed. For example, on SeaDronesSee it achieved AP=52.6%,
AP50=83.5%, AR100=60.9%, with strong results across all object sizes (AP.=32.0%,
AP=51.9%, APs=61.6%, AP,,=36.4%, AP,=67.5%) at 44.5 FPS. On ZebraFish, it achieved
AP=80.7%, AP50=95.7%, AR100—83.8%, with small and medium-scale metrics reaching
AP=41.2%, AP,=76.1%, AP,,=87.7%, at 78.0 FPS. In MTSD, while SegTrackDetect was the
fastest, quality improvements were not observed, again likely due to the training regime discussed

above.

These results strongly support Auxiliary Thesis #1: “Estimating ROIs using a deep neural net-
work model enhances both detection quality and inference speed compared to the naive sliding-
window approach”. The proposed ROI estimation-based system demonstrates that incorporating
learned region selection not only reduces computational overhead but also improves overall de-
tection quality by preserving contextual cues and avoiding redundant processing. The next
chapter introduces a tracking-assisted ROI selection mechanism. Together, these allow the ROI
Estimation Network to be further reduced in size without degrading performance, thereby
improving runtime efficiency and enabling broader deployment of high-resolution small-object

detection systems in real-time resource-constrained applications.



Chapter 5

ROI Estimation and
Prediction-based Tiny Object

Detection

5.1 Introduction

The SegTrackDetect system, introduced in the previous chapter, uses the ROI Estimation
Module to select regions for high-resolution inference. This approach provides a strong base-
line for real-time, resource-constrained environments, consistently outperforming sliding-window
baselines in terms of detection quality, computational efficiency, and inference speed. However,
despite operating on inputs significantly smaller than the original high-resolution images, the ROI
Estimation Module may still be too resource-demanding for the most constrained platforms.
Some applications require even lower GPU memory usage or faster processing speeds, which can
only be achieved by further reducing the Estimator’s input resolution. While this reduction de-
creases computational demand and speeds up inference, it comes at the cost of detection quality.
Another limitation of the previous design is that it processes each frame independently, without
exploiting the sequential nature of video data. In many real-time scenarios, objects persist across
frames, and their trajectories provide valuable cues that could be leveraged to refine the region
selection process. By ignoring this temporal continuity, the system may risk missed detections

when objects are temporarily occluded or blurred.

To address these limitations, this chapter introduces an additional ROI source that leverages tem-
poral information. The proposed ROI Prediction Module exploits tracking across frames, en-
abling lower computational demand without sacrificing detection quality. In resource-constrained
scenarios, it allows the Estimator to operate at even further reduced resolutions while recover-
ing missed regions. Conversely, when accuracy is prioritized, it complements a relatively high-
resolution Estimator by improving ROI coverage with minimal overhead. In summary, the
ROI Prediction Module improves both efficiency and accuracy by exploiting a fundamental

characteristic of real-time applications — the continuity of the data.
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Ficure 5.1: Illustrative application scenario: this work addresses the challenge of detecting
small objects in high-resolution imagery. The method in (a), corresponding to the estimation-
only approach from Chapter 4, uses segmentation-based estimated ROIs (blue masks) and fails
to capture certain regions containing tiny objects. Incorporating tracking-based predicted
ROIs (orange masks), as shown in (b), helps recover these missed regions. The proposed
system in (c) fuses segmentation- and tracking-based ROIs to improve coverage of small objects
and applies a Global Filtering stage using the Overlapping Box Suppression algorithm,
resulting in a clean, false-positive-free output. Detection windows are indicated by black
rectangles.

Processing full-resolution images in a single pass demands extensive computational power often
unavailable in embedded or robotic platforms. To achieve real-time speeds, many methods reduce
image resolution or simplify detector architectures. Popular general-purpose detectors such as
YOLOvT7 [136], YOLOv12 [127], and transformer-based models like DETR [18, 190] operate on
downscaled inputs, trading off detail for speed. However, downsampling frequently eliminates the
subtle features of tiny objects, resulting in missed detections. Alternatively, dividing images into
tiles and processing each independently [2, 96, 151, 178] preserves detail but is computationally
expensive and unsuitable for real-time constraints. Attention-based methods improve efficiency
by focusing detection on promising regions [15, 31, 34, 67, 71, 75, 142, 155, 157, 169|, significantly
reducing detector invocations. Yet, even these methods risk overlooking some objects if their

corresponding regions are not selected.

Tracking algorithms have been widely used to associate small objects in video frames [17, 90, 147,
176, 184, 187|. However, tracking is rarely utilized as a feedback mechanism to guide and improve

detector focus and accuracy, this represents the main innovation presented in this chapter.

The approach simultaneously improves detection accuracy and computational efficiency by lever-
aging an attention mechanism to prioritize the most promising image regions for detection. To re-
cover missed detections from initially unselected areas, tracking-based ROI Prediction identify
regions likely to contain hard-to-detect objects. By combining segmentation-driven Estimation
with tracking-guided Prediction, the method increases the probability of detecting small ob-
jects missed due to resolution limits or occlusions. This results in a novel window-based detection
framework tailored for tiny and multi-scale objects in high-resolution images. The system in-
tegrates two ROI modules: a segmentation-based branch analyzing a downscaled current frame
to estimate candidate regions, and a tracking-based branch leveraging historical detection data
to predict object locations. Fusing their outputs recovers areas missed by segmentation alone,

reducing the number of detector invocations compared to exhaustive sliding-window methods

96:3884275737
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while maintaining speed. Within large ROIs, a hybrid of downscaling and sliding-window de-
tection is applied, complemented by an Overlapping Box Suppression (0BS) algorithm to
suppress partial false positives. An overview of these components and their effect on detection
output is illustrated in Figure 5.1. Evaluations on challenging datasets such as SeaDronesSee and
DroneCrowd demonstrate that this framework achieves superior performance compared to state-
of-the-art detectors. While this Chapter focuses on isolating the impact of the ROI Prediction
Module, the advancements in the Global Filtering Block are analyzed in detail in Chapter 6.

5.2 Contribution

While the detection systems presented in Chapter 4 focused on improving detection speed and
quality over naive sliding-window approaches through per-frame ROI Estimation, this section
extends that concept by leveraging temporal consistency, which is inherent in many real-world
video-based applications. Such consistency is especially relevant in domains like mobile robotics,
autonomous navigation, UAV surveillance, and marine or aerial monitoring, where objects tend
to persist across consecutive frames and their motion is often predictable. This characteristics
may be used as an advantage to improve the ROI selection, while maintaining or improving the
computational efficiency of the detection system with lightweight tracking component. By ex-
ploiting this consistency, the proposed system improves ROI selection while maintaining, or even

enhancing, computational efficiency through the integration of a lightweight tracking component.

The proposed SegTrackDetect framework is enhanced with an ROI Prediction Branch that uses
previous detections to predict object locations in the current frame [69, 70]. This dual estimation-
and tracking-based ROI approach brings several key benefits: improved detection recall, espe-
cially for small objects that may be missed in a single frame, reduced computational complexity
by allowing a lower input resolution for the Estimation Branch without sacrificing accuracy,
and increased robustness through fusion of estimated and predicted ROIs, enabling more com-
plete object coverage. Compared to the estimation-only variant of SegTrackDetect, the main
contributions presented in this chapter are the introduction of the ROI Prediction Branch
and the ROI Fusion Module, both of which are discussed in detail in the following sections.
These architectural enhancements, particularly the integration of temporal ROI Prediction
with frame-wise Estimation, combined with a robust Detection Windows Proposal Module
and postprocessing strategies, allow SegTrackDetect to achieve a strong balance between ac-
curacy and efficiency. Instead of relying on exhaustive tiling, the system selectively processes
relevant regions, improving recall for small or previously missed objects while significantly re-
ducing computational overhead. These improvements make the system especially well-suited for

real-time, resource-constrained applications.

To put the proposed method into context, it is important to highlight how it differs from and
improves upon existing small and tiny object detection approaches. These methods face unique
challenges, as small objects occupy only a few pixels, making them hard to detect. In high-
resolution images, although the total pixel count increases, processing the entire image becomes
computationally expensive. A common solution is to apply a sliding-window strategy over high-

resolution images to artificially enlarge the relative size of the objects. However, this approach
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processes all regions of the image, including background, making it inefficient, especially in do-
mains like aerial imagery, where objects often appear in small clusters and large parts of the
image are empty. Focus-and-detect methods attempt to address this by identifying promising
regions before detection. For example, [151] supplements the sliding-window approach with a
lightweight neural network to filter out background-only tiles. However, the detection windows
in that method are aligned to artificial grids rather than actual object clusters. In contrast, Seg-
TrackDetect aligns detection windows with estimated and predicted regions containing objects.

This approach is more adaptive and better maintains the detection context.

Several coarse-to-fine strategies also follow this general idea [34, 71, 75, 142, 157, 169], first
locating candidate regions using low-resolution features and then performing high-resolution
detection. ClusDet [157], for instance, predicts coarse locations using a low-resolution network
and refines them using high-resolution features, but it focuses only on clusters containing at
least three objects. This biases the model towards dense regions and makes it ineffective for
detecting isolated or sparse objects. Similarly, [34, 75] use density maps to prioritize densely
populated areas, missing sparse detections. Moreover, these approaches often require training
labels for clusters or density maps, information not directly available in standard detection
datasets. In contrast, SegTrackDetect leverages binary segmentation masks generated directly
from detection labels, and combines them with a lightweight, non-trainable tracking-based ROI
Prediction Branch. This allows the system to effectively handle both densely clustered and
sparsely distributed objects. The tracking branch also improves robustness under occlusions
and motion blur by incorporating temporal information from previous frames. Additionally,
while other methods introduce scale estimation modules to handle resizing and cropping [34, 75,
157], the proposed Detection Window Proposal Module directly generates ROIs that match
the input size of the detector, using a mix of resized and sliding-window regions when needed.

This keeps the system efficient and avoids additional computational costs.

The method in CDMNet [34] also merges ROIs from two sources (density map and segmentation
map), but its segmentation map is a binarized version of the density map. In the proposed
approach, segmentation labels are directly derived from ground truth detection labels, and the
second source is a tracking module, not another trained map. Other methods like CRENet [142]
rely on clustering after initial detection to guide fine detection but cannot recover missed objects.
DREN |[31] attempts to address this by applying super-resolution to enhance low-quality object
regions, but this significantly increases computational requirements. Instead, SegTrackDetect
restores such regions using low-resolution segmentation and tracking, supporting fast detection

with a lightweight detection model.

Another challenge in window-based detection is how to combine detections from overlapping
regions. Most systems [34, 75, 142, 157, 169] use standard Non-Maximum Suppression (NMS),
which can struggle with partial or fragmented detections. In SegTrackDetect, the limitations of
standard NMS have already been mitigated by integrating the Overlapping Box Suppression
(0BS) algorithm into the Global Filtering Block. However, in this chapter the evaluation
isolates the ROI Prediction Module, so all improvements in metrics can be attributed directly
to the Predictor. The impact of filtering methods such as OBS and OBM is analyzed separately

in Chapter 6. Finally, the SegTrackDetect system can work together with recent advances in
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small object detection architectures that improve feature extraction and label assignment [19,
75, 103, 153, 154]. Techniques like Switchable Atrous Convolutions, attention mechanisms, and
Gaussian receptive field-based assignment can be used inside the framework to further boost
performance. In this way, SegTrackDetect combines strong ROI proposal and fusion based
on temporal consistency with flexibility to use state-of-the-art small object detection methods,

creating a powerful and efficient solution for challenging detection problems.

The research presented in this chapter aims to validate and support Auxiliary Thesis #2, which
states: “Incorporating an additional ROI source, such as an object tracker, into the ROI-based
object detection system further improves detection quality, inference speed, and computational
efficiency over state-of-the-art tiny object detection methods”. To this end, the proposed detec-
tion framework (which combines spatial and temporal cues to select Regions of Interest (ROIs)
and corresponding detection windows) is evaluated against several state-of-the-art detection ap-
proaches. The comparison is conducted in terms of both detection accuracy and computational
efficiency. To ensure a fair and comprehensive evaluation, the benchmark includes general-
purpose object detectors, methods specifically designed for small and tiny object detection, and
video object detection approaches. While SegTrackDetect system leverages temporal informa-
tion through tracking, it does not rely on sequence-based training; nevertheless, video object
detection methods are included in the comparison for completeness. Based on the literature re-
view presented in this section and Chapter 2, the following representative methods were selected

for comparison with the proposed SegTrackDetect framework:

e General Object Detection: SAM [62], InternImage [140], YOLOv7 [136], YOLOv10 [135]
e Small and Tiny Object Detection: DetectoRS [103], QueryDet [156],

e Video Object Detection: DiffusionVID [113], DFF [186], FGFA [185], RDN [30], MEGA [22].

Beyond the main quantitative and qualitative evaluations, an extensive ablation study is also
included to analyze the effect of the tracking-based ROI Prediction component on the overall
detection quality, speed and computational cost compared to a purely segmentation-based ROI
Estimation strategy. In summary, the main contributions to the state-of-the-art demonstrated

in this chapter are as follows:

e a lightweight, ROI-based video object detection system that integrates standard detection
models, tailored specifically for detecting small and tiny objects in high-resolution images,

and achieving superior performance compared to existing methods,

e a novel ROI Fusion Module that combines tracking-based ROI Prediction with low-
resolution, segmentation-based ROI Estimation, enabling precise localization of objects

across varying scales,

e a comprehensive component-wise evaluation using three datasets (SeaDronesSee, Drone-
Crowd, and ZebraFish) along with detailed comparisons to multiple state-of-the-art detec-

tion methods on the challenging DroneCrowd and SeaDronesSee benchmarks.

The content of the following sections is derived from and consolidates the author’s earlier pub-

lications [69, 70], which form the foundation of this part of the dissertation.
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5.3 Proposed method

Figure 5.2 illustrates the overall architecture of the proposed SegTrackDetect object detection
framework, tailored for detecting small and tiny objects in high-resolution video data. The design
is specifically optimized for time-sensitive applications in embedded systems such as autonomous
vehicles [162] and UAV-based monitoring platforms [184], where both high detection accuracy
and low inference latency are essential. High-resolution imagery increases the computational
load, often reducing the inference speed of standard object detectors. To address this, the system
restricts inference to selected subregions within each frame, rather than performing dense sliding-
window detection across the full image. The proposed approach is grounded in the premise that
real-time detection of small and tiny objects is feasible using lightweight detectors - provided
their attention is guided by efficient auxiliary modules. To this end, the architecture integrates
two complementary mechanisms: ROI Estimation and ROI Prediction, which work together to
identify the most promising regions for object detection. By narrowing the focus of the detector
to these regions, the system reduces computational overhead while maintaining or improving

detection accuracy.

Processing begins with the current high-resolution frame I;. Drawing on region proposal concepts
from classical object detection methods [48], an ROI Estimation Module is used to produce a
binary heatmap Rg, highlighting areas with higher object probability. This allows the system
to ignore large background areas and significantly reduce the number of regions passed to the
detector. The estimation-based version of this approach, relying solely on the segmentation-
derived ROI mask RY, was already presented and analyzed in Chapter 4. It was shown to
be effective in improving detection quality, particularly for medium and large objects, while
significantly reducing processing time compared to naive sliding-window approaches. The focus
of this chapter is to extend that baseline by introducing further optimizations, including the use
of temporal consistency via tracking, and to benchmark the resulting system not only against the
sliding-window baseline but also against state-of-the-art full-frame object detectors. Compared
to Chapter 4, the system is extended with a tracking-based ROI Prediction Branch and a
Fusion mechanism that combines both sources of information. These additions aim to improve
detection quality, speed, or both, by compensating for missed regions and leveraging temporal

consistency.

Detecting small or partially occluded objects in a single frame remains challenging due to limited
visibility and low contrast. Human perception, however, benefits from temporal consistency,
using motion cues across time to identify such objects. Inspired by this mechanism, a second ROI
Prediction Branch is incorporated to leverage temporal continuity through object tracking.
This module predicts the current position of previously detected objects using past detections,
resulting in a heatmap R! that marks likely regions of interest. By incorporating this prior
knowledge, detection performance is improved for objects that were visible in earlier frames but

are now partially obscured or harder to distinguish due to size or contrast issues.

The outputs of the ROI Estimation and ROI Prediction Modules (R¢ and R! respectively)
are merged via an element-wise OR operation to produce a Fused ROI Mask (Rtf ). This mask

is used by the Detection Window Proposal Module to define a set of fixed-size windows within
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FI1GURE 5.2: Architecture of the proposed system for detecting small and tiny objects. The de-
tector is guided toward selected fixed-size regions in the high-resolution input image to improve
efficiency. These regions are identified using two complementary ROI branches: (1) current-
frame Estimation from a low-resolution binary segmentation map (Ry) and (2) Prediction
from an object tracker (R!). The union of these masks forms the fused ROI mask (R]),
which is processed by the Detection Window Proposal Module. A lightweight Local Object
Detector is then applied to these subregions, and detections are projected back to the orig-
inal image coordinates. Finally, the Overlapping Box Suppression (0BS) used in a Global
Filtering Module filters redundant outputs before updating the object tracker, enabling pre-
dictive ROI generation in the next frame.

the high-resolution frame where detection is to be performed. In scenarios where the ROI
spans a larger area than the detector’s input size (e.g., dense object clusters, large objects),
either downsampling or a localized sliding-window strategy is employed to ensure coverage, while
maintaining context. The proposed windows are passed through a lightweight object detector,
and the resulting bounding boxes are then rescaled to match their corresponding locations in
the original image. To eliminate false positives and duplicate detections arising from overlapping
windows, the Overlapping Box Suppression (0BS) algorithm is applied (Global Filtering
Module in Fig. 5.2). Unlike traditional Non-Maximum Suppression (NMS), 0BS operates across
detections from multiple windows and is especially effective when objects are split across regions,
improving detection quality in multi-scale settings. While the improvements from the Global
Filtering Block are analyzed in Chapter 6, the focus here is exclusively on the contributions of
the ROI Prediction Module — its impact is isolated in the ablation studies so that all observed

performance gains can be directly attributed to the Predictor.

Subsequent sections provide descriptions of each system component, including the segmentation-
based ROI Estimation, tracking-based ROI Prediction, Window Generation process, and the
0BS algorithm for post-processing. Several of these modules, particularly those related to
segmentation-based ROI Estimation and Detection Windows Proposal, were already intro-
duced in the context of the estimation-based SegTrackDetect variant in Chapter 4. For these
shared components, only a concise summary is provided here, emphasizing the differences and
design choices motivated by the ablation studies presented in the previous chapter. In con-
trast, the tracking-based ROI Prediction and ROI Fusion mechanisms, which represent novel

extensions in this chapter, are described in detail.
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5.3.1 ROI Estimation Module

To efficiently detect small objects in high-resolution imagery, the proposed system leverages a
Region of Interest (ROI) Estimation Module (Fig. 5.2), shared with the solely estimation-based
version of the SegTrackDetect system introduced in Chapter 4. As in the prior system, ROI
Estimation is formulated as a binary segmentation task, with ground-truth masks generated
directly from bounding box annotations. Following the findings from Chapter 4, ground-truth
masks are constructed to exactly match the bounding box geometry. This exact alignment

between labels was shown to yield superior detection performance.

The Estimation Module is implemented using a U-Net [114] with a ResNet18 backbone and
operates on input images resized to a fixed resolution. In this chapter, however, the Estimation
Network is used in conjunction with an additional ROI Prediction Branch based on object
tracking, which compensates for regions the segmentation-based Estimator might miss. As
shown in the ablation study later in this chapter, this fusion allows a reduced input resolution
for the Estimation Module compared to Chapter 4, improving the processing speed without
sacrificing detection quality. Unlike Chapter 4, which evaluated the ROI Estimation Module in
isolation, this chapter evaluates both ROI components indirectly through their impact on overall
object detection performance. For the two evaluated datasets, the Estimation Branch operates
on inputs of 448x 768 for SeaDronesSee and 192x320 for DroneCrowd. Additional resolution

settings for SeaDronesSee are explored and discussed in the ablation study.

5.3.2 ROI Prediction Module

In many cases, low-resolution segmentation-based ROI Estimators struggle to consistently lo-
calize tiny objects, especially across consecutive frames, leading to unstable detection results.
To address this, an additional tracking-guided ROI Prediction Module is introduced (Fig. 5.2).
This module serves as a complementary source of ROIs, helping to recover object regions that

may be missed by the segmentation branch alone.

The prediction process begins with initializing object tracks using the detections found within
the estimated ROIs of the first frame (¢ = 0). For all subsequent frames (¢ > 0), object locations
are inferred using a constant velocity motion model, allowing the system to predict new ROIs
based on previously observed motion patterns. The predicted locations are initially represented
as bounding-box coordinates and are converted into binary mask format prior to fusion with the
current segmentation-based ROI proposals. The fused ROI mask is then used to guide detection,

and the resulting filtered detections are used to update the internal state of the tracker.

This module is implemented using a simplified multi-object tracking scheme inspired by the
SORT algorithm [9]. Specifically, a Kalman filter is employed to maintain the internal state
of each track, and frame-to-frame data association is performed by minimizing a cost matrix
defined using IoU between predicted and observed bounding boxes. Each object’s Kalman state
vector x consists of geometric and kinematic properties: the bounding box center coordinates

(e, ye), area A, aspect ratio r, and their respective velocities (i, 9., A). The corresponding



ROI Estimation and Prediction-based Tiny Object Detection 89

measurement vector z includes only the observable elements: [z.,y., 4, r]. The system assumes

constant velocity and a fixed aspect ratio, leading to the following state transition model:

Xt-‘rl\t = Fxt, (51)
with the transition matrix F defined as:
(1 000 1 0 0
01 00010
0010001
F=10 0 0 1 0 0 0O (5.2)
0000100
000 0O0OT1TFO
00000 0 1]
The projection model z; maps the state vector to the measurement space:
Zy = HXt, (53)
with:
10 0 0 0 0 O
01 00 0O0O
H= (5.4)
001 00 O0O
0001 0 O0O0

Each track is initialized using the first detection and assumes zero velocity at startup. During

each prediction step, the system estimates the new state x¢¢_; and error covariance Py¢_y:
Xep—1 = FX¢_qpt—1, (5.5)
Pyi—1=FPy_q1FT + Q. (5.6)
where Q is the process noise matrix.

When new detections become available, the filter performs a correction step:
Xgp = Xeje—1 + Ke(ze — Hxgpp—1), (5.7)

Pt‘t == (I - KtH)Pt‘t—la (58)
where K; is the Kalman gain.

This tracking-based ROI Prediction approach is especially helpful for small or partially occluded
objects that might be missed by the segmentation-based Estimator due to fast motion, low
contrast, or lack of clear visual features. By using temporal information, the system can recover
such objects based on their earlier positions, making the detection process more stable and
reliable across frames. This improves recall for hard-to-detect objects and increases the overall
robustness of the pipeline. To keep inference fast, the system uses a lightweight tracking module,

instead of more complex approaches relying on deep features [90, 148]. Since the goal is not to
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maintain full object tracks but only to suggest additional regions for detection, high tracking
accuracy across long sequences is not required. This design choice ensures efficient motion
prediction and object association without significantly increasing computational load. While the
tracker can occasionally lose object identity or drift in crowded scenes, such errors have little
impact on detection results because the tracker is used only to propose ROIs, not to manage

object identities.

In the implemented system, the tracker is configured with a maximum age of 10 frames, meaning
a track can persist for up to 10 consecutive frames without receiving a new detection before
it is discarded. A new object hypothesis is confirmed after a single detection, allowing for
rapid adaptation to newly appearing objects, ths improving ROI recall. For association between
predicted and observed bounding boxes, a minimum Intersection over Union (IoU) of 0.3 is
required. To improve prediction stability in the early part of each video, the tracking module
introduces a frame delay of 3 during the first few frames. This delay helps accumulate enough
detections before initializing motion-based ROI predictions, reducing the risk of early tracking

errors due to sparse or noisy detections.

5.3.3 ROI Fusion Module

The ROI Fusion Module combines the outputs of the two ROI selection branches: the segmenta-
tion-based Estimation Module and the tracking-based Prediction Module. Each branch pro-
duces a binary heatmap indicating regions likely to contain objects. These heatmaps are aligned
to the same spatial resolution and then merged into a single binary mask using an element-wise
logical OR operation. This fused mask defines the final Regions of Interest and serves as input
to the Detection Windows Proposal stage. To ensure compatibility, the bounding boxes pre-
dicted by the tracking branch are first converted into a binary mask format that matches the

resolution of the segmentation output.

While the Fusion Module supports different configurations, here the primary focus is on the
combined use of both ROI branches. Using only the Estimation Module (as discussed in Chap-
ter 4) is possible and is revisited here in the ablation study for comparison. This baseline
configuration helps quantify the improvements brought by incorporating the tracking branch,
both in terms of detection quality and runtime efficiency. In tracking-only mode, the tracker is
first initialized using standard sliding-window detection for a fixed number of frames (N). After
this warm-up phase, new ROIs are predicted solely based on object motion. Although this mode
is not the primary focus of the system, it offers a lightweight alternative for fast video inference,

especially effective in relatively stable environments where new objects rarely appear.

In general, the fusion of both branches allows the system to maintain high detection recall while
reducing redundant processing, especially in high-resolution video settings. The ablation study
presented later in this chapter compares these configurations to demonstrate the benefits of the

joint approach.
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5.3.4 Detection Windows Proposal

The Detection Windows Proposal Module converts the fused ROI mask, produced by combin-
ing segmentation-based and tracking-based proposals, into a set of image subregions that are
processed by the object detector. The implementation of this component remains consistent
with the architecture described in Chapter 4, and is illustrated in Figs. 3.1 and 4.4. As in the
earlier version, the fused ROI heatmap is first binarized to extract individual foreground regions.
The bounding boxes of these regions are used to generate an initial, unfiltered list of candidate
windows. These are then aggregated and filtered to eliminate redundancy (see “Detection Win-
dows Filtered” in Fig. 4.4). The resulting refined set of windows is extracted from the original

input image and forwarded to the Local Object Detection Module.

As discussed in Chapter 4, SegTrackDetect introduces a more flexible and adaptive strategy
for constructing detection windows, designed to address the challenges of varying object scales
and real-time constraints. This hybrid approach combines cropping with both resizing and
sliding-window tiling when the ROI exceeds the detector input size. In contrast, when the
ROI is smaller than the detector input size, a single-centered crop is extracted without resizing.
Unlike TinyROI, which used fixed-size detection windows and applied gray padding when they
extended beyond the image boundaries, SegTrackDetect constrains all windows to lie fully within
the image area. This eliminates padding artifacts and enables the use of smaller input sizes for
the detector, improving overall computational efficiency. The filtering stage follows the same
naive sorting-based approach validated in Chapter 4. As shown in the ablation studies presented
there, this simple method offers a trade-off between runtime and detection quality. The complete
pseudocode for the window generation and filtering pipeline is provided in Algorithm 1, which

remains applicable here.

5.3.5 Local Object Detection

As in the system described in Chapter 4, this component is responsible for performing object
detection within the proposed subregions of the original image. By restricting inference to the
selected ROIs, the system reduces computational load without compromising spatial resolution.
Thanks to the adaptive detection window generation strategy introduced in SegTrackDetect,
lightweight detectors such as YOLOv7 Tiny [136] can be employed effectively across diverse
scenarios. For both the SeaDronesSee and DroneCrowd datasets, the model operates with an
input resolution of 512x512 pixels. For the less complex ZebraFish dataset, a smaller resolution
of 160x256 is used instead. These low input resolutions are feasible because large ROIs are
either tiled or moderately downsampled in the Detection Windows Proposal Block, ensuring

that all relevant regions are covered.

Although newer YOLO variants (e.g., YOLOv10 [135], YOLOv12 [127]) are available, YOLOv7
Tiny was selected for its favorable balance of inference speed, stability, and accuracy. As shown
in Tables 5.1 and 5.2, even the largest YOLOv10 variant (YOLOv10x) does not consistently

outperform YOLOv7-e6e in the tested scenarios, despite requiring significantly more resources.
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Training and inference procedures are consistent with those outlined in Chapter 4. Detection
datasets are prepared by cropping annotated full-resolution frames into subwindows and adjust-
ing bounding boxes to local coordinates. Negative samples are included to reduce false positives,

and scale augmentation is used to improve generalization across object sizes.

During inference, detections within each window are post-processed using Non-Maximum Sup-
pression (NMS). The final aggregation step transforms local detections back to the global image

space, incorporating scaling adjustments when applicable.

5.3.6 Global Filtering Module

To finalize the detection results across all sub-windows, a Global Filtering step is performed
to remove redundant or fragmentary detections - common artifacts in systems that rely on
overlapping detection windows. As demonstrated in the ablation study in Chapter 4, Global
Filtering plays a critical role: on the MTSD dataset, TinyROI’s performance measured by AP
increased from 32.3% to 50.0% when global NMS was applied. This highlights the importance

of an effective global post-processing step.

In SegTrackDetect, this role is fulfilled by the Overlapping Box Suppression (0BS) method,
a dedicated filtering algorithm tailored to the window-based detection setting. Unlike standard
NMS, which evaluates boxes solely based on confidence scores and spatial overlap, 0BS also con-
siders the position of the detection windows from which each box originates. This additional
context enables it to distinguish between full-object detections and incomplete fragments caused
by intersecting detection windows. By accounting for how each object was viewed across the set
of overlapping regions, 0BS provides more precise suppression decisions, reducing false positives
while preserving true positives that standard NMS may incorrectly discard. This becomes espe-
cially important in dense scenes, where overlapping views are frequent. A detailed breakdown

of the 0BS algorithm and its comparison to NMS is provided in Chapter 6.

5.4 Experimental results

The experimental evaluation presented in this section begins with a quantitative comparison of
the SegTrackDetect framework (featuring a dual ROI selection strategy) against several state-of-
the-art detection methods. This comparison includes three main groups of detectors: (1) general-
purpose object detectors, ranging from lightweight YOLO [136] architectures to transformer-
based models [190]; (2) tiny object detection methods; and video object detectors (3) that
incorporate temporal consistency during training. Although SegTrackDetect employs standard
image-based detection models, it leverages temporal information during inference via a tracking

module. Therefore, video object detectors are included in the comparison to ensure fairness.

The system is evaluated on two challenging datasets: SeaDronesSee, which features high-reso-
lution images, multiple object classes, and a wide range of object sizes (from micro to large) in
relatively simple backgrounds; and DroneCrowd, which contains lower-resolution images, more

complex backgrounds, and densely packed tiny objects. This dual-dataset evaluation enables a
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TABLE 5.1: Evaluation of the proposed ROI-based approach against a range of state-of-the-

art object detectors on the DroneCrowd test set. The assessment follows the protocol defined

in [67], with a true positive IoU threshold of 0.5 and a detection cap of 500 per image. All
models were trained with their respective original configurations.

method params AP AP50 AP75 APVt APt AR Ath ARt
InternImageT-DINO-LWLR [140] 48.6M 11.6 32.1 5.7 32.3 273 405 40.5 42.2
InternIlmageL-DINO-LWLR [140] 240.9M 18.6 48.3 10.3 48.1 66.7 69.9 69.9 729
YOLOv7 [136] 36.5M 10.1 313 3.7 34.2 103 51.7 51.8 53.2
YOLOvT7e6e [136] 164.9M 18.5 47.6 10.5 484 364 627 62.7 68.7
YOLOv10x [135] 29.5M 179 476 9.0 478 450 69.5 69.5 715
SAM+CLIP-ViT-H-32points [62, 105] 635.8M 0.0 0.0 0.0 1.0 0.0 0.3 0.3 0.1

SAM+CLIP-ViT-H-64points [62, 105] 635.8M 0.0 0.0 0.0 1.0 0.0 0.8 0.8 0.2

DFF-GenRCNN-R101 [186] 194.6 M 0.4 1.8 0.1 1.8 4.7 144 143 19.2
FGFA-GenRCNN-R101 [185] 198.3M 0.6 2.3 0.1 2.4 3.0 154 154 185
RDN-GenRCNN-R101 [30] 169.5M 0.7 2.7 0.1 2.7 5.0 156 15.6 18.5
MEGA-GenRCNN-R101 [22] 172.5M 0.6 2.4 0.1 2.5 1.5 15.0 15.0 16.7
DiffusionVID-DiffusionDET-SwinB [113]  145.3M 8.1 273 2.2 314 5.5 43.3 434 422
DetectoRS-CascadeRCNN-R50 [103] 124.0M 10.0 272 5.0 271 391 354 354 394
SegTrackDetect [69, 70] 20.3M 22.8 53.8 15.2 53.9 60.0 73.3 73.4 758

comprehensive assessment of the system under different detection scenarios and demonstrates

its strong performance across real-world use cases.

Following the quantitative results, qualitative detection examples are presented alongside an
analysis of common detection errors and their implications. While this section focuses on bench-
marking against state-of-the-art methods, Section 5.5 isolates the impact of the ROI Prediction
Module and compares it to both ROI estimation-only and ROI prediction-only versions of the

SegTrackDetect system.

All results in this section use the following configuration. Local Object Detection is performed
using the lightweight YOLOvT Tiny [136] architecture with an input resolution of 512x512 pixels.
The ROI Estimation Module is based on a UNet [114] with a ResNet18 backbone, with input
resolutions of 192x320 pixels for DroneCrowd and 448x768 pixels for SeaDronesSee. The ROI

Prediction Module uses default hyperparameters as detailed in Section 5.3.2.

5.4.1 Quantitative results

The SegTrackDetect framework is evaluated on two challenging datasets: DroneCrowd and
SeaDronesSee. Quantitative results are presented in Tab. 5.1 and Tab. 5.2, comparing the
system against a wide range of state-of-the-art object detection methods. These include general-
purpose detectors [62, 135, 136, 140, 190]|, methods specifically designed for tiny object detec-
tion [103, 156], and video object detectors [22, 30, 113, 185, 186] that leverage temporal infor-
mation during training or inference. Although SegTrackDetect is trained solely on individual
frames, the use of a tracking module during inference allows the system to utilize temporal con-

text in a lightweight and modular way, justifying the inclusion of video methods for comparison.

Tab. 5.1 shows the results obtained on the DroneCrowd dataset, where SegTrackDetect outper-

forms most evaluated models across nearly all metrics. Despite relying on compact components,
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TABLE 5.2: Object detection performance on the SeaDronesSee validation dataset. The pro-

posed system is compared with state-of-the-art object detectors in terms of detection quality

(AP, AR) and model complexity (parameter count). Evaluation follows the protocol defined

in [67], using standard IoU thresholds from 0.5 to 0.95 (step size 0.05) and a maximum of 100
detections per image.

method params AP APggAP75AP {AP; APs AP, AP| AR AR,;ARy ARs ARmAR;
Tnternlmage T-DINO-LWLR[140] 48.6M 50.5 83.8 53.1 264 48.1 61.0 41.4 69.4 60.0 36.3 60.3 699 47.4 72.7
InternImageL-DINO-LWLR[140] 240.9M 50.7 84.9 53.1 26.1 47.1 62.5 44.1 69.9 59.9 35.2 59.3 70.2 50.9 73.5
YOLOv7[136] 36.5M 45.9 82.9 45.7 23.7 44.0 57.6 47.4 71.8 55.3 32.2 56.6 66.1 54.4 76.9
YOLOvT7e6e[136] 164.9M 51.7 86.9 54.2 20.5 50.7 62.1 46.3 67.0 60.0 35.6 62.4 68.9 53.4 76.4
YOLOv10m[135] 15.4M 43.1 73.8 44.1 11.4 40.4 59.9 43.0 58.6 51.2 18.8 51.0 68.3 49.8 63.2
YOLOv10x[135] 29.5M 47.4 82.0 49.5 24.2 44.4 59.3 39.0 51.3 57.3 33.5 62.2 67.1 46.9 54.5
SAM+CLIP-ViT-H-32points[62, 105] 635.8M 18.4 31.5 20.4 2.8 80 32,9 16.1 51.0 29.1 4.1 185 47.1 26.7 58.6
SAM+CLIP-ViT-H-64points[62, 105] 635.8M 18.7 33.3 20.0 6.1 85 357 15.6 51.8 34.1 11.3 25.5 54.3 28.3 60.7
DFF-GenRCNN-R101[186] 194.6M 15.5 40.6 9.0 1.3 5.2 26.7 17.1 50.2 21.5 2.8 10.7 36.3 24.0 54.6
FGFA-GenRCNN-R101[185] 198.3M 21.4 51.6 14.9 4.9 11.6 36.3 27.5 55.0 28.6 10.6 19.9 45.7 35.2 60.0
RDN-GenRCNN-R101[30] 169.5M 24.7 51.2 21.6 7.5 17.6 37.9 28.6 61.5 34.3 12.4 27.0 50.8 43.9 64.0
MEGA-GenRCNN-R101[22] 172.5M 26.2 61.2 19.2 8.1 21.0 42.7 32.1 52.5 35.2 11.8 31.4 52.8 39.6 54.2
DiffusionVID-DiffusionDET-R101[113] 101.4M 44.3 80.2 43.8 19.8 41.8 59.7 43.6 71.6 54.4 29.1 52.6 68.5 50.5 75.9
DiffusionVID-DiffusionDET-SwinB[113]  145.3M 46.4 83.5 45.3 24.1 42.2 59.9 51.5 68.5 56.3 32.8 52.9 69.5 59.5 76.9
QueryDet-RetinaNet-R50[156] 39.3M 19.8 50.0 11.0 10.6 27.9 22.2 3.7 0.0 29.3 23.5 37.7 32.4 4.7 0.0
DetectoRS-CascadeRCNN-R50[103] 124.0M 45.1 74.9 48.4 20.4 45.3 585 36.7 62.3 52.0 24.6 53.8 66.6 40.5 63.7
SegTrackDetect [69, 70] 20.3M 53.1 85.0 57.7 34.3 52.1 61.7 37.4 70.9 62.1 40.8 62.6 69.9 43.8 75.5

including a 6M-parameter YOLOv7 Tiny detector and a lightweight ROI Estimator, the sys-
tem achieves AP=22.8%, AP50=53.8%, AR75=15.2%, AP,;=53.9%, AP;=60.0%, AR500=73.3%,
AR =73.4%, AR=75.8%, while using significantly fewer parameters than larger models. Only
the InternIlmage-L [140] architecture surpasses it in APy, but it requires over 12 times more train-
able parameters (params in Tab. 5.1). Performance on the tiny object subset is notably affected
by dataset characteristics: this class constitutes only 2% of test annotations and is concentrated
in a single video sequence, where annotation granularity and object scale differ substantially from
the rest of the dataset. Most DroneCrowd annotations loosely enclose entire persons from a dis-
tance, whereas the tiny subset includes bounding boxes around smaller regions, such as heads,
in closer views. Transformer-based models like Internlmage may be better suited to such vari-
ability due to their higher capacity and complexity, which likely contributes to their advantage
in this narrow subset. Among the compared models, only Internlmage (both base and large vari-
ants), YOLOvV7 (standard and e6e), YOLOv10, DiffusionVID, and DetectoRS reach acceptable
detection quality on this dataset. Other architectures fail to adequately handle the fine-grained
instances characteristic of DroneCrowd. DetectoRS was evaluated with anchor settings adapted
to match the dataset’s object size distribution, but performance remained significantly lower
than that of SegTrackDetect. SAM, which was evaluated without training, struggled due to its
sparse sampling strategy. While increasing the number of sampled points did improve recall,
it rendered inference impractically slow, taking hours per image in some configurations. Addi-
tional difficulties arose during training of YOLOv10m and YOLOv10x at a reduced resolution
of 640x640 px. These issues likely resulted from the way the original training pipeline handles
image resizing, which further diminishes the visibility of already small objects. To ensure a fair

comparison, neither the training procedures nor the model architectures were altered.

Overall, the results demonstrate that SegTrackDetect delivers strong and consistent performance
across a wide range of metrics, despite the extreme challenge posed by datasets dominated exclu-
sively by tiny objects. Its ability to maintain high detection quality while keeping computational
demands low highlights its suitability for real-world applications, especially in scenarios where

both precision and efficiency are critical.

On the SeaDronesSee validation set (Tab. 5.2), the proposed method outperforms all compared



ROI Estimation and Prediction-based Tiny Object Detection 95

approaches in detecting very tiny and tiny objects, achieving the highest scores in both Average
Precision (APy¢ = 34.3%, APy = 52.1%) and Average Recall (ARy¢ = 40.8%, ARt = 62.6%). It
also delivers strong results in localization accuracy, with AP and AP75 values exceeding those
of significantly larger models. For large objects, performance remains highly competitive, with
AP; = 70.9% and AR, = 75.5%, only marginally lower than the best-performing methods by
0.9 and 1.4 percentage points, respectively. These results confirm the effectiveness of a hybrid

sliding-window and resizing strategy.

The most notable performance drop occurs in the medium-sized object category. Manual in-
spection reveals that this is likely due to inconsistencies in annotations, including imprecise or
poorly placed bounding boxes. Furthermore, a subset of the validation set contains horizontal
medium-sized human figures not present in the training data, which presents a generalization
challenge for the lightweight detector. Larger models appear to generalize better in such cases,
showing a smaller performance degradation. Nevertheless, all methods exhibit reduced perfor-
mance for medium objects, with both AP, and ARy, lower than the scores for smaller object
categories - an unusual trend given their typically higher detectability. Interestingly, the video
detection model DiffusionVID achieves the highest performance for medium objects, suggesting

that leveraging temporal cues may help counteract the effects of noisy annotations.

Overall, SegTrackDetect achieves the highest Average Precision (53.1%) and Average Recall
(62.1%) across all evaluated models on the multi-scale SeaDronesSee dataset, while maintaining
one of the smallest model sizes (20.3M parameters). This complements earlier findings that
demonstrated SegTrackDetect’s strong performance specifically in tiny-object-only scenarios,
highlighting its versatility across a wide range of object scales. The results demonstrate a bal-
ance between detection quality and computational efficiency, confirming the system’s robustness
for both tiny and multi-scale detection tasks. Such performance reinforces SegTrackDetect’s

suitability for deployment in resource-constrained environments.

5.4.2 Qualitative results

Detection examples from the SegTrackDetection system on the SeaDronesSee dataset are pre-
sented in Fig. 5.3. Black rectangles represent the detection windows, while each object is marked
with a bounding box and a predicted class - each class is visualized in a distinct color. For
visual clarity, the original class label “swimmer with life jacket” has been replaced with “swim-
mer+PFD”, where PFD stands for Personal Flotation Device. The confidence threshold for
visualization was set to 0.1. For visual clarity, the predicted and estimated ROIs are omitted in
this visualization to avoid overcluttering; these are shown and discussed in the Ablation Study

further in this chapter.

As illustrated by these examples, the detections are of very good quality for both tiny objects
(as in sequence 001) and larger ones. There are no false positive partial detections in the
overlapping regions of the detection windows, which validates the effectiveness of the Global
Filtering Block. Redundant or unnecessary detection windows are rare; in these examples,
they are present only in sequences 000 and 016. In the former, an empty detection window

appears due to a still-active tracklet corresponding to an object that has moved beyond the
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sequence 010

Fi1cure 5.3: Examples of detections in the SeaDronesSee validation subset and SegTrackDe-
tect with dual ROI selection strategy.

image borders. In the latter, a black rectangle, used as an anonymization tool in the original
data, is mistakenly identified as foreground by the ROI selection module, resulting in a detection
window being placed over it. However, the detector correctly outputs no detections within this
window. These false-positive detection windows are infrequent and do not affect the overall
detection quality. Their occurrence has a minimal impact on processing time, primarily because
they are rare and therefore only marginally increase the number of windows processed. Since
the majority of detection windows are placed based on valid ROIs, the few unnecessary windows
that are occasionally introduced do not significantly alter the computational load or slow down

the system.

In addition to the detection examples across different sequences, Fig. 5.4 presents selected de-
tection errors on the SeaDronesSee dataset. To avoid obscuring the tiny object instances with
additional data, the full input images are shown without any annotations, while zoomed-in re-
gions display the ground-truth labels (on the left or top) and the corresponding detections (on
the right or bottom).

In the SeaDronesSee validation subset, medium-sized swimmers present a range of detection
challenges (see Fig. 5.4a). These instances are often confused with swimmers wearing personal

flotation devices (PFDs), localized with inaccurate bounding boxes, frequently capturing only
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FiGure 5.4: Illustrative examples of detection errors generated by SegTrackDetect on the

SeaDronesSee [132] validation set. For each case, the original image is presented alongside

zoomed-in views that display both the ground-truth and the corresponding predicted bounding
boxes.

the head instead of the full body, or result in redundant detections. In Fig. 5.4b, detection is
limited to a small fragment of a clearly visible swimmer. Such errors appear to be linked to
an imbalance in the training data, where the vast majority of annotated swimmers are distant
and barely visible, typically reduced to small head-sized regions. This distribution mismatch
reduces the model’s ability to generalize to nearer, full-body instances. The shallow depth of the
detection network may also constrain its adaptability to such scale and perspective variations.
Expanding the diversity of swimmer scales during training through targeted augmentation could
help enhance robustness. Furthermore, the duplicated detection in Fig. 5.4a remains after NMS
due to a low IoU between boxes. Since both detections fall within a single detection window, they
bypass the Overlapping Box Suppression (0BS) module, which only addresses inter-window

overlaps.

False positives can also result from visual patterns resembling human motion. In Fig. 5.4f, the
white wake left behind a moving boat is incorrectly classified as a swimmer. This likely stems
from similarities in texture and structure between wakes and areas surrounding active swimmers.
A possible contributing factor is that many boats in the training set are static, limiting the

model’s exposure to dynamic water features. Figure 5.4c illustrates a frame captured during
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sequence 011 sequence 015

sequence 061

sequence 075 sequence 095

Ll

sequence \1}

FIGURE 5.5: Examples of detections in the DroneCrowd test subset and SegTrackDetect with
dual ROI selection strategy.

sudden drone acceleration, producing significant motion blur. In this instance, bounding boxes
appear shifted or duplicated, while the ground-truth labels lack spatial precision. It is difficult to
determine whether these anomalies are detection-related or the result of imprecise annotations.
Other sequences with rapid motion exhibit similar labeling inconsistencies. In the same image,
a partially visible boat is correctly detected but unlabeled; since this object is not annotated, it
is not considered a detection error. Complex backgrounds further contribute to false positives,
as seen in Fig. 5.4d. In such cases, the ROI Estimation stage misidentifies background regions
as foreground, which then leads to incorrect detections. This issue may be addressed through

enhanced data augmentation or loss functions that emphasize error-prone regions. Including
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more background-only samples in the training data could also improve discrimination. Tiny
swimmer instances in Fig. 5.4d and Fig. 5.4e result in duplicate detections that are not eliminated
by NMS. A similar problem is apparent in the DroneCrowd dataset (Fig. 5.6a and Fig. 5.6¢),
where extremely small targets amplify the limitations of fixed-threshold suppression. These
cases could benefit from adaptive IoU thresholds or the adoption of suppression methods that

explicitly account for object scale.

Similarly to SeaDronesSee, qualitative examples and detection errors for the DroneCrowd dataset
are analyzed in detail. The detection results are presented in Fig. 5.5, while common error cases
are illustrated in Fig. 5.6. Due to the high complexity of backgrounds in this dataset, detection
windows are not shown in the visualizations, and zoomed-in regions are provided only for selected
areas because of the dense scenes. The overall detection quality on the DroneCrowd dataset is
notably strong in urban environments featuring streets and buildings, where most people are
accurately detected and false negatives are infrequent. However, detection performance tends
to decline in industrial or semi-rural scenes, such as those in sequences 017 and 044, where an
increased number of false positives in background regions and occasional missed detections oc-
cur. These challenges are explored further in the following discussion of detection errors. This
discrepancy is likely due to the urban focus of the training dataset, which can be effectively ad-
dressed through targeted data enhancement strategies designed to enhance the model’s exposure
to less common landscapes, thus improving robustness in diverse environments. Despite the over-
all high detection quality, particularly in urban scenes, the DroneCrowd dataset presents several
challenges. False positives (in terms of both ROIs and detections) are common in areas with
visually complex backgrounds (Fig. 5.6b, Fig. 5.6¢), where darker textures or cluttered regions
are often misclassified as foreground by the ROI Estimator and subsequently misdetected as
people. As observed in the SeaDronesSee dataset, such errors may be mitigated by emphasizing
difficult samples during training and applying stronger penalization to difficult regions in both
the estimation and detection models. False negatives also occur, though less frequently, and typ-
ically result from missed ROIs (Fig. 5.6a and Fig. 5.6¢). However, many of these regions are later
recovered through temporal association via the tracker component in the ROI Fusion Module.
Similar to SeaDronesSee, perspective distortions and variations in object distance further com-
plicate detection (Fig. 5.6b). In certain sequences, people appear closer to the camera and are
annotated using head-only bounding boxes, whereas other sequences use full-body labels. As a
result, successful detection in such cases often depends on the visibility of the head. Additional
difficulties are observed under low-light conditions, particularly in night scenes (Fig. 5.6d), which
are underrepresented in the training set. These limitations suggest that integrating more diverse
augmentations, especially targeting perspective shifts and nighttime imagery, could significantly

enhance robustness in future iterations.

In general, the SegTrackDetect framework demonstrates strong performance in diverse scenarios
and datasets, effectively balancing detection accuracy and computational efficiency. Quantitative
results on both DroneCrowd and SeaDronesSee highlight the system’s ability to accurately detect
objects at multiple scales, from tiny to large, while maintaining the smallest parameter count
among compared state-of-the-art methods. Qualitative results show that the system performs

well in both densely and sparsely populated environments. Most detection errors are related to
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FIGURE 5.6: Examples of detection errors generated by the proposed SegTrackDetect method

on the DroneCrowd [147] test set. Each sample displays the original image with zoomed-in

areas that show both the ground-truth and detected bounding boxes. Class labels are omitted
for clarity, as the dataset consists of only one object category.
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specific dataset issues like inconsistent annotations or limited variety in training data. The fol-
lowing section presents a detailed ablation study isolating the impact of the ROI Prediction
Module. This study demonstrates that adding the module speeds up inference and improves

detection results, supporting its important role in the SegTrackDetect design.

5.5 Ablation Study

Several architectural choices adopted in the final version of the SegTrackDetect system were

already extensively discussed in Chapter 4. These include the following;:

e the design of the ROI Estimation training pipeline, which uses ground-truth binary masks
as exact representations of bounding-box detection labels, validated to yield superior results

compared to dilation, based mask generation approaches,

e the input resolution of the ROI Estimator, revisited here to enable an in-depth analysis of
the quality-vs-speed trade-offs, particularly in relation to the addition of the tracking-based
ROI Prediction Module,

e the sorting-based filtering method in the Detection Windows Proposal Block, which was
shown to offer the best balance between detection quality and processing speed, as demon-

strated in Chapter 4,

e the large-ROI handling strategy, which combines crop-and-resize (to preserve contextual

integrity) with a sliding-window approach within ROIs (to preserve features of tiny objects),

e the Global Filtering Block, which ensures that the system output remains free of false

positives.

While the ablation study in this chapter focuses exclusively on the impact of the ROI Prediction
component within the SegTrackDetect framework, the remaining architectural decisions were ei-
ther analyzed in Chapter 4 or are addressed in Chapter 6, which discusses the Global Filtering
Block and evaluates the impact of the 0BS and 0BM algorithms on detection quality.

The first part of this section compares three ROI Fusion approaches: estimation-only, prediction-
only, and the combined method proposed in this Chapter. This comparison includes both qual-
itative and quantitative evaluations utilizing the SeaDronesSee dataset. In the second part,
both estimation-only and combined methods are analyzed across several input resolutions. This
experiment directly demonstrates that the inclusion of the Prediction Branch enables a signifi-
cant reduction in the input size required by the Estimation Block, without degrading detection
quality. As a result, the overall complexity of the system is reduced, making it more efficient
and better suited for deployment on resource-constrained platforms. All variants of the Seg-
TrackDetect system (estimation-only, prediction-only, and combined estimation and prediction)
use identical configurations and hyperparameters for all other modules. This ensures that any
observed differences in performance can be directly attributed to the ROI selection method, and

specifically highlights the benefits of incorporating the tracking-based ROI Prediction Branch.
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This section contributes not only a direct evaluation of the proposed fusion strategy, but also
provides strong empirical evidence supporting Auxiliary Thesis #2: “Incorporating an addi-
tional ROI source, such as an object tracker, into the ROI-based object detection system further
improves detection quality, inference speed, and computational efficiency over state-of-the-art
tiny object detection methods”. The experiments clearly demonstrate that combining prediction
and estimation not only improves detection quality but also enables substantial reductions in
input resolution and system complexity, confirming the practical benefits of multi-source ROI

generation.

5.5.1 Different ROI Selection Strategies

This section presents a comparison of various ROI selection strategies. Specifically, it evaluates
the estimation-only and prediction-only approaches against the proposed combined strategy,
which fuses ROI masks generated by both segmentation and tracking modules. Extensive quali-
tative and quantitative experiments demonstrate that combining both sources yields the highest

detection performance, outperforming either method used in isolation.

Figure 5.7 illustrates a qualitative comparison between segmentation-based ROI selection (ROI
Estimation), tracking-based ROI selection (ROI Prediction), and the proposed fusion ap-
proach (ROI Fusion). The fusion strategy consistently produces superior results. Segmentation-
based methods tend to miss tiny objects due to limited sensitivity, whereas tracking-based ap-
proaches fail to detect newly appearing objects, as they depend solely on the regions of previously
tracked objects initialized by a sliding-window at the beginning of the sequence and lack access
to the global scene context. By integrating both ROI sources, the system successfully recovers
tiny objects missed by the segmentation network and captures new objects that would otherwise
be ignored by the tracker. In the visualization, the estimated ROIs from segmentation (shown
in orange in the first and third columns of Fig. 5.7) remain consistent, as the same image is
processed regardless of the fusion strategy. In contrast, tracking-based ROIs (blue regions) can
vary over time due to differences in detection window placements, leading to differences be-
tween the second and third columns of Fig. 5.7. Notably, both the segmentation-only and fused
ROI approaches use a reduced input resolution for the ROI Estimation Module (128x192 px),

highlighting the system’s efficiency at lower image scales.

Rows (a), (b), (d), and (f) in Fig. 5.7 illustrate how the proposed ROI Fusion strategy effec-
tively combines the strengths of both ROI sources. In Fig. 5.7a, a group of tiny swimmers is
correctly recovered thanks to tracking, while the large boat is successfully detected through ROI
Estimation. This highlights a key limitation of the tracking-only approach, which being initial-
ized at the start of the sequence, lacks global context and cannot detect newly appearing objects.
Similarly, in Fig. 5.7b, a swimmer missed by the segmentation network is still detected due to
successful tracking across frames. Rows (b) and (c) further emphasize that newly appearing
objects are consistently missed by tracking-based ROI selection, but can be captured through
ROI Estimation. For instance, in both rows, two boats are correctly identified as foreground
objects via segmentation. However, in Fig. 5.7f, one of the boats is missed due to the limited

input resolution used for the Estimation Network. This issue could be mitigated by increasing
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ROI Estimation ROI Prediction ROI Fusion

FIGURE 5.7: Example results comparing segmentation-based detection (first column),
tracking-based detection (second column), and the proposed method that integrates ROIs
from both segmentation and tracking modules (third column). Blue regions indicate predicted
ROIs, orange regions represent estimated ROIs, thin black boxes show detection windows, and
thick black boxes denote detected objects. All examples are drawn from the SeaDronesSee [132]
dataset. In the proposed architecture, the ROI Estimation and Prediction Branches operate
in coordination rather than independently; therefore, the ROIs shown in the third column are
not a simple union of those in the first and second columns.

the input size, though it would come at the cost of higher computational load. Figure 5.7d
provides a clear example of the ROI Fusion method outperforming both individual components.
In the first column, a small boat is missed by the segmentation network, and as it was not
present at the start of the sequence, the tracker also fails to capture it. However, the fusion

approach correctly detects all relevant objects by combining the partial segmentation mask with
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TABLE 5.3: Detection metrics across three ROI approaches: estimation-only, prediction-only,

and the proposed fusion method combining both segmentation- and tracking-based ROI masks.

All experiments were conducted on the SeaDronesSee validation subset with a confidence
threshold of 0.1. When applicable, the Estimator input size was set to 128x192.

Method AP APs50 AP75 APyt APy APs AP, AP AR ARyt ARy ARs ARm AR
ROI Estimation 48.5 75.9 53.5 23.7 46.5 62.1 36.1 69.9 553 274 55 68.7 40.5 T3.7
ROI Prediction  35.7 56.6 379 287 414 26.6 153 51.3 422 334 502 29.3 19.8 522

ROI Fusion 51.9 81.9 57.1 31.7 50.1 62.1 36.2 70.0 59.3 37.1 59.1 68.7 40.6 74.8

information retained by the tracker. For very small objects, segmentation often produces correct
ROIs in some frames; tracking then ensures these regions are consistently forwarded to the de-
tector, enabling reliable detection, illustrated by the boat in the last column of Fig. 5.7d, which
is missed in both individual methods. The example in Fig. 5.7e represents a closed environment
where no new objects enter the scene. In this case, the tracking-only method achieves complete
detection, and the fused approach performs identically. Nevertheless, it still outperforms the
segmentation-only strategy, highlighting the added robustness provided by tracking. Conversely,
in Fig. 5.7f, the segmentation network accurately captures all ROIs, so the fused output matches
the segmentation-only result. However, the tracking-only approach fails to detect several objects
that were not present at initialization. Additionally, segmentation masks offer resilience during
sudden changes in object shape or orientation, where predicted locations from the tracker may

initially be inaccurate until it adjusts to the new motion trajectory.

These observations underscore the importance of combining both segmentation- and tracking-
based ROI sources. The fusion approach not only enhances detection robustness and coverage
but also enables the use of smaller input resolutions for the ROI Estimator, critical for meeting
real-time processing requirements. In time-constrained applications, where fast inference is es-
sential and computational resources are limited, this synergy allows the system to maintain high

detection performance without sacrificing speed or efficiency.

A quantitative comparison of the three ROI selection strategies is presented in Tab. 5.3, with
all hyperparameters kept constant across methods. In the prediction-only configuration, the
tracker was initialized using detections obtained from a uniform sliding-window placement over
the first three frames. Each of the three ROI strategies is evaluated using both general detection
metrics (AP, APsg, AR) as well as Average Precision and Average Recall scores with respect to
object scales. For both, the estimation-only and fused approaches, the ROI Estimator operated
on an input size of 128x192 pixels, and a confidence threshold of 0.1 was applied across all
configurations. As shown in Tab. 5.3, the fused ROI strategy consistently outperforms both
individual methods in all metrics. These results support the qualitative findings shown in Fig. 5.7,
demonstrating that the combined approach leverages the strengths of both estimation- and
prediction-based methods to achieve superior performance, particularly for tiny and multi-scale
object detection in low-resolution Estimator settings. Across all object scales, the proposed
method delivers the highest detection quality. It maintains performance comparable to the
estimation-only approach for larger objects (see Fig. 5.8), while significantly improving AP
and APy by 8.0 and 3.6 percentage points, respectively, over the estimation-only baseline, and

by 2.9 and 8.7 points compared to the prediction-only variant. Figure 5.8 illustrates how the



119:3971507246

ROI Estimation and Prediction-based Tiny Object Detection 105

90
+253 +6.0 B ROI Prediction
80 B ROl Estimation
mmm ROl Fusion
70 +18.7 0.1
+35.5 +0.0
60 +17.1 +4.0
+16.2 +3.4 87 46
50
o
<

+29 +8.0

APsqo

AP

|
— e
40 +20.9 +0.2
30
20
10 I
0
AP AR AP, AP, AP, AP,

FiGUurE 5.8: Comparison of selected detection metrics across three ROI approaches:
estimation-only, prediction-only, and the proposed fusion method combining both
segmentation- and tracking-based ROI masks. Gains from using the fused method are high-
lighted in green, alongside the percentage-point advantage it provides over each individual
ROTI approach. All experiments were conducted on the SeaDronesSee validation subset with a
confidence threshold of 0.1. When applicable, the Estimator input size was set to 128x192.

fused method combines the accuracy of estimated ROIs for larger objects with the precision of
tracking-based ROIs for the smallest objects, consistently producing the highest-quality results.
While this subsection focuses exclusively on detection quality, the next subsection extends the
analysis to multiple Estimator input resolutions, ranging from tiny to large, and examines
the trade-offs between inference speed and detection performance. There, it is shown that the
fused ROI method also enables substantial reductions in input resolution without compromising

detection quality.

5.5.2 Impact of the ROI Fusion on Detection Quality and Processing
Speed

The proposed ROI Fusion strategy combines information from two complementary sources: a
segmentation-based ROI Estimation Network and a tracking-based ROI Prediction Module.
This hybrid approach enhances the detection of objects of various sizes in dynamic scenes while
maintaining high processing efficiency. To evaluate its impact, experiments were conducted using
different input resolutions of the ROI Estimation Network, analyzing both detection quality
and processing speed. Although increasing resolution improves segmentation accuracy, it also
introduces significant inference overhead. By incorporating tracking-based Prediction, the
system maintains high detection quality even when segmentation masks are coarse, enabling the
use of smaller input resolutions with minimal accuracy loss. All experiments were performed
using an NVIDIA RTX 4090.

Table 5.4 presents a comparative analysis for four input resolutions (64x96, 128x192, 224x 384,
and 448 x 768 px) of the segmentation network. The UNet architecture with a ResNet18 backbone
was used for ROI Estimation. The metrics include AP, AR, and FPS for both segmentation-
only (superscript e) and fusion-based (superscript f) ROIs. The inclusion of the tracking-based
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TABLE 5.4: Impact of adding the ROI Prediction Module to the ROI Estimation Network

on object detection metrics for the SeaDronesSee dataset. AP, AR, and FPS refer to Average

Precision, Average Recall, and frames per second (for both the whole system and the ROI

selection process). Superscripts e and f denote metrics using only the segmentation-based

ROIs and the fused ROIs (segmentation + tracking), respectively. Values in parentheses

indicate the performance gain due to the Prediction Module. Experiments run on GPU
(NVIDIA RTX 4090), confidence threshold of 0.1.

size AP° AR® FPS:,, FPSS APf ARf FPSZ,. FPS/
64x06 415 17.0 60.9 123 514 (+9.9) 592 (+12.2) 50.0 (-10.9) 340 (-83)
128x192 485 55.5 54.9 377 52.4 (+3.9)  60.2 (+4.7)  47.7 (-7.2) 303 (-74)
224x384  52.3 60.5 49.6 195 53.3 (+1.0)  61.9 (+1.5)  43.3 (-6.3) 169 (-26)
448x768  52.9 61.5 44.4 82 53.3 (+0.4)  62.0 (+0.5)  40.8 (-3.6) 77 (-5)
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FIGURE 5.9: Effect of including the ROI Prediction Module on Average Precision (a), Average
Recall (b) across object sizes, and processing speed measured by FPS (a, b), compared to
segmentation-only ROIs, evaluated at different input resolutions.

ROI Prediction Module consistently improves detection performance, especially at lower input

resolutions and for smaller object sizes, where segmentation masks are less accurate.

Although the tracking module introduces a minor computational overhead, its impact is signifi-
cantly smaller than that of increasing the input resolution. All configurations maintain real-time
performance, with the fastest speeds reaching 60.9 FPS for the Estimator alone and 50.0 FPS for
the full fused system. The increase in total processing time for lower-resolution configurations
is not primarily due to slower ROI selection (FPS,.;) caused by the inclusion of the tracking
component, but rather to the increased number of detection windows resulting from more com-
plete ROI coverage. This enhanced coverage leads to a higher number of correctly localized tiny
objects, thereby improving overall detection quality at the cost of slightly reduced processing
speed. This is evident from the differences between ROI selection speed (FPS,i) and overall
system speed (FPSgys). The modest impact of the tracking component on FPS,; confirms its
efficient implementation, while the larger drop in FPSgys reflects the processing cost of correctly

handling a greater number of detections.

The ROI fusion approach achieves performance comparable to the high-resolution (448x768)
segmentation-only baseline while operating at a significantly lower resolution (128x192) and
achieving nearly four times higher processing speed (FPS,;). Specifically, it yields 52.4% AP,
60.2% AR, and 303 FPS, compared to 52.9% AP, 61.5% AR, and 82 FPS for the high-resolution
segmentation-only method. Further downscaling to 64x96 input resolution increases the ROI
selection speed to 340 FPS, with only a modest decline in detection quality (51.4% AP, 59.2%
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F1GuRrE 5.10: Qualitative comparison between segmentation-only and fusion-based ROI selec-

tion, illustrating the recovery of missed tiny objects. Orange regions indicate ROIs generated

by the segmentation module, while blue regions represent predicted ROIs from the tracking

component. The fusion approach enables the system to identify and retain previously omitted
targets across consecutive frames.

AR). At the system level, overall processing speed improves from 44.4 FPS for the segmentation-
only baseline to 47.7 FPS and 50.0 FPS for the fused system at 128x192 and 64x96 input

resolutions, respectively.

As shown in Fig. 5.9, the tracking-based ROI Prediction Module is particularly effective in
restoring detection performance for very tiny and tiny objects. While segmentation quality for
smaller objects degrades significantly at lower input resolutions, the fusion approach recovers
both AP and AR across all object sizes. Importantly, the proposed method does not degrade
detection quality under any configuration. Its impact is consistently beneficial, introducing only a
slight increase in ROI selection time, most notably at lower resolutions where segmentation masks
are less precise. At higher resolutions, where the initial masks are already of high quality, the
added overhead is minimal. This slight increase in processing time is primarily due to the greater
number of correctly identified regions that require further processing, rather than inefficiencies in
the fusion pipeline itself. The modest difference between ROI-level and system-level FPS further
confirms the efficiency of the implementation. The ROI fusion method achieves an effective
balance between detection quality, computational efficiency, and processing speed, substantially
improving performance for small objects while maintaining strong detection for medium and
large ones. By integrating the ROI Prediction Module, the ROI selection module operates at
303 FPS using low-resolution inputs (128x192), yet delivers detection quality comparable to the
highest-performing segmentation-only configuration, which achieves similar accuracy, but runs
at just 82 FPS.

Figure 5.10 illustrates how the tracking-based ROI Prediction Module complements the seg-
mentation-based ROI Estimation by recovering regions missed in low-resolution masks. The fig-
ure shows six consecutive frames from a SeaDronesSee sequence. The segmentation-only method
consistently fails to capture the smallest objects, particularly those near the edges of detec-
tion windows. In contrast, the fusion-based approach incorporates predicted ROIs (blue) that

gradually expand coverage to include previously missed objects. As these peripheral regions
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are identified and tracked, the system introduces new detection windows that persist across
subsequent frames, allowing reliable identification of small targets. This process demonstrates
the temporal consistency introduced by tracking, which is critical for detecting objects that are

otherwise lost due to segmentation inaccuracies.

The experiments presented in this chapter demonstrate that combining segmentation-based ROI
Estimation with tracking-based Prediction significantly enhances small object detection in
high-resolution video streams, while allowing for smaller computational demand and faster infer-
ence speeds compared to high resolution estimation-only baselines. The proposed ROI Fusion
Module improves detection quality across all object sizes while maintaining real-time perfor-
mance, even for larger segmentation inputs. Through both quantitative and qualitative eval-
uation, it was shown that the fusion strategy mitigates the limitations of coarse segmentation
masks without imposing a substantial computational burden. Ablation studies confirm that the
added tracking component is most beneficial at low resolutions and for very small objects, while
having negligible impact on performance at higher resolutions. This trade-off between speed and
accuracy makes the approach well-suited for real-time applications with constrained resources.
The experiments also directly demonstrate that integrating the ROI Prediction Module im-
proves processing speed and computational efficiency by enabling the use of lower-resolution
Estimators, achieving better-than-state-of-the-art performance, and providing strong empirical

support for Auxiliary Thesis #2.

5.6 Conclusions

Real-time detection of small objects in high-resolution video is particularly challenging in UAV-
based robotics applications, where both accuracy and efficiency are critical under limited com-
putational resources. To address this, the ROI estimation-based detection system introduced
in Chapter 4 is extended by incorporating a lightweight tracking component. This addition
enables the use of lower-resolution inputs to the Estimator Network, significantly reducing
computational demand and improving inference speed while maintaining high detection quality.
By combining low-resolution semantic segmentation with tracking-driven ROI Prediction, the
system efficiently identifies relevant regions and supports accurate multi-scale detection. Exten-
sive evaluation demonstrates that the proposed approach outperforms several state-of-the-art
detectors, achieving higher accuracy with significantly fewer parameters and delivering robust

performance across different object sizes and datasets.

Compared to other approaches in the literature, the proposed dual-ROI strategy leverages data-
driven region selection, which better preserves the detection context than uniform tiling strate-
gies, such as the one proposed in [151], which tend to fragment larger objects. The proposed
method effectively handles both small and large objects by using a hybrid large ROI handling
technique: sliding-windows within each ROI capture tiny objects, while a crop-and-resize strategy
maintains the integrity of larger objects. As a result, the SegTrackDetect system delivers high-
quality performance in both tiny-only and multi-scale object detection scenarios. The method
has been validated across varied detection settings and proved effective in both densely popu-

lated datasets, such as DroneCrowd, and sparse environments like SeaDronesSee. Notably, the
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latter scenario is often overlooked by ROI selection methods that rely solely on clustering or
density-based heuristics [34, 75, 157], which focus detection on regions containing multiple ob-
jects. These methods also typically require annotations that are not straightforward to derive
from standard detection labels, for example, cluster-level or density-based annotations, which
introduces a degree of subjectivity. This challenge is mitigated in the proposed approach by rely-
ing on segmentation masks generated directly from detection labels and a non-trainable tracking
component. Finally, while some related methods rely on additional networks for scale estimation,
the proposed method eliminates this need. Thanks to the dual large ROI handling strategy, tiny
objects are detected through sliding-window operations, and larger objects, often fragmented by

such windows, can still be detected accurately in resized detection windows.

The proposed approach outperforms several state-of-the-art detectors on the DroneCrowd data-
set, achieving superior results with the smallest number of model parameters (20.3M). In the
multi-scale detection scenario of the SeaDronesSee dataset, it demonstrates strong performance
for very tiny and tiny objects, while maintaining competitive accuracy for larger objects. These
results highlight the effectiveness of the dual large ROI handling strategy in addressing common
challenges faced by window-based detection systems. Overall, the method emphasizes the criti-
cal role of object tracking in enhancing the detection of small and tiny objects. By integrating
Regions of Interest (ROIs) derived from both tracking and segmentation, the system achieves
higher detection accuracy than other approaches [62, 103, 113, 136, 140, 156], while maintain-
ing computational efficiency. Its robustness in multi-scale scenarios is particularly valuable in
dynamic, real-world environments, where rapid changes in object scale due to sensor or object
movement are common. The SegTrackDetect system is designed to handle such variability ef-
fectively. Moreover, its lightweight architecture and reduced parameter count make it especially

well-suited for deployment in resource-constrained applications, such as mobile robotics.

These findings validate the third thesis of this work, demonstrating that incorporating an ad-
ditional ROI source, specifically object tracking, not only enhances detection quality but also
improves the computational efficiency beyond what is achievable with existing state-of-the-art
methods in tiny object detection. To directly attribute these improvements to the tracking
component, an ablation study was conducted. This study focused on isolating the impact of
tracking on both detection quality and inference speed. The SeaDronesSee dataset was used as

a representative example to validate these effects in a realistic, multi-scale detection scenario.

Several architectural choices in SegTrackDetect were previously validated in the preceding chap-
ter, which focused exclusively on ROI Estimation. That analysis covered the training pipeline,
input resolutions for the segmentation-based ROI component, filtering methods for ROI pro-
posals, the large ROI handling strategy, and the rationale for introducing a Global Filtering
Block tailored specifically to window-based detection. In this chapter, the emphasis shifts to

evaluating the impact of the ROI Prediction component.

The proposed ROI Fusion Module was extensively evaluated in comparison to purely segmenta-
tion-based and purely tracking-based ROI selection strategies. Notably, the ROI Estimator was
used with a reduced input resolution of 128x192 in both the estimation-only and fusion-based
configurations. This setup enabled a direct analysis of how the inclusion of tracking contributes to

recovering regions containing tiny objects that are often missed by the low-resolution Estimator



ROI Estimation and Prediction-based Tiny Object Detection 110

alone. The results, both qualitatively and quantitatively, confirm that the fused strategy is the
most robust. It outperforms both individual modules and, in some cases, even surpasses naive
aggregation of their independent outputs. This is particularly evident in sequences where the
segmentation-based Estimator detects regions with small objects inconsistently; in such cases,
the tracking module fills in the missing areas by leveraging temporal continuity. In contrast, the
Estimation Module proves to be more effective in identifying newly appearing objects that a
tracking-only system would miss. These findings demonstrate that the strengths of both modules
are complementary, and their integration significantly enhances detection reliability across object
sizes and motion patterns. These findings also demonstrate that reduced detection performance
for tiny objects caused by lower-resolution segmentation can be effectively mitigated by incor-
porating the ROI Prediction Module. This directly supports the conclusion that tracking not
only reduces computational complexity (by enabling lower-resolution input) but also improves
detection accuracy for the smallest objects. These results provide strong validation for the sec-
ond Auxiliary Thesis, which states that incorporating an additional ROI source, such as object
tracking, enhances detection quality, inference speed, and computational efficiency beyond what
is achievable using segmentation-based Estimation alone. While inference speed was not di-
rectly measured in this part of the study, it is addressed in the following section of the ablation
study, which compares both ROI Fusion and ROI Estimation strategies across four different
input resolution settings, offering a comprehensive analysis of detection quality and processing

speed under each configuration.

To further assess the effectiveness of the ROI Prediction Module, an extended ablation study
was conducted using four different input resolutions (64x96, 128x192, 224x384, and 448X 768
pixels) on the SeaDronesSee dataset (Tab. 5.4). This analysis focused on how varying the resolu-
tion of the ROI Estimation input affects both detection quality, ROI selection speed, and infer-
ence speed, particularly when fused with the tracking-based Prediction component. The results
show that integrating the tracking module with low-resolution segmentation allows the system
to match the detection quality of high-resolution segmentation while significantly increasing the
processing speed. For example, using the combined ROI strategy at 128x192 resolution, the
system achieves 52.4% AP, 60.2% AR and an FPS,; of 303 FPS on a NVIDIA RTX 4090. In
contrast, a segmentation-only baseline using 448x 768 resolution reaches a comparable 52.9%
AP and 61.5% AR but operates at only 82 FPS. Importantly, the more pronounced decrease in
system-level throughput (FPSsys) in lower-resolution configurations does not stem from ineffi-
ciencies in the ROI selection process itself. Rather, it reflects the increased number of detection
windows required to recover missed regions, particularly those containing tiny objects, which
are more frequently overlooked when segmentation is performed at lower resolutions. The ROI
Prediction Module effectively compensates for these omissions, ensuring more complete cover-
age and higher detection quality. At the same time, the relatively small drop in ROI module
speed (FPS,.i) demonstrates that the tracking-based Prediction Branch introduces minimal
overhead. This highlights its efficiency compared to simply increasing the input resolution of
the segmentation network. By enabling accurate ROI recovery with minimal computational
cost, the Predictor proves to be a lightweight yet powerful addition to the system, significantly
boosting detection performance for small and very tiny objects without incurring the high cost

of large input sizes. These findings demonstrate that tracking enhances the quality of tiny object
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detection, especially when operating at reduced input resolutions, recovering regions missed by

segmentation, and maintaining strong performance across all object sizes (see Fig. 5.9, Fig. 5.10).

This chapter introduced a lightweight, window-based detection system that integrates segmen-
tation- and tracking-driven ROI selection. By fusing these complementary modules, the system
achieves efficient detection of both large and tiny objects without increasing overall computa-
tional load. Experimental results confirm that this fusion strategy outperforms segmentation-
only or tracking-only variants while maintaining real-time processing. These findings strongly
support the second Auxiliary Thesis of this dissertation: that incorporating an additional ROI
source not only improves detection quality, but also enhances computational efficiency, and
processing speed. Tracking, in particular, enables the use of lower-resolution inputs without
sacrificing accuracy, making the approach practical for high-resolution video streams in resource-

constrained applications.

Future research may explore optimizing system complexity by experimenting with various de-
tector backbones to find configurations that best balance detection accuracy and computational
efficiency for tiny object detection. The modular design, motivated by deployment requirements,
facilitates flexibility and adaptability in the system architecture. Independently, integrating the
backbones of the ROI Estimation Network and the object detector could be pursued to reduce
trainable parameters and accelerate both training and inference. Incorporating more advanced
motion models, such as non-linear trajectory estimations, could further improve robustness in sce-
narios involving rapid camera or object movements common in drone-based sensing systems. Ad-
ditionally, refinement of the Global Filtering Block through the application of Overlapping

Box Merging is addressed in the following chapter.
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Chapter 6

Detection Filtering Methods

6.1 Introduction

Numerous methods have been developed specifically for detecting small and tiny objects [24],
with many relying on external guidance to focus the detector on small, relevant regions cropped
from the original, typically high-resolution image. These focus-and-detect approaches [24] in-
crease the relative size of target objects, making their features more prominent and thus easier to
detect. While window-based methods are commonly used for small object detection, they may
also introduce additional challenges. Partially visible objects and overlapping detection windows
often lead to false positives and reduced detection quality, particularly for larger objects. Com-
mon strategy in object detection is to apply Non-Maximum Suppression (NMS) to eliminate
redundant bounding boxes. However, in window-based settings, partial detections frequently
exhibit low Intersection over Union (IoU) with full detections, allowing them to bypass NMS
filtering. Furthermore, since NMS retains only the highest-confidence detection, it can mistak-
enly discard the most complete detection if it has a lower confidence score than a fragmentary
detection. Additionally, if the object of interest is not fully visible in any detection window,
either because it is larger than the window or due to inaccuracies in the retrieved Region of

Interest (ROI), both false positive and false negative partial detections may be introduced.

Fragmented detections in window-based systems give rise to several challenges. Figure 6.1c
illustrates a situation where partial detections appear alongside a correct full detection. Because
these fragments have low overlap (ToU) with the full detection, standard NMS fails to suppress
them, resulting in false positives. Figure 6.1d shows another common problem, where an object
is only partially visible in several overlapping windows, and no single window captures it fully. In
such cases, merging the fragmentary detections can lead to a more complete and accurate result.
Another error scenario is shown in Fig. 6.1a, where an object is only partially detected within a
single window. Since all fragments originate from the same window, merging across windows is
not possible, and the failure is due to the detector itself missing parts of the object. This type of
error cannot be corrected through post-processing. Subplot Fig. 6.1b depicts a correct detection

for reference.
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FIGURE 6.1: Examples of detection cases discussed in this work: (a) fragmentary detec-
tions within a single detection window that cannot be merged or filtered; (b) a correct detec-
tion; (c) partial detections coexisting with a full detection, handled by the Overlapping Box
Suppression (0BS) method; and (d) partial detections without any corresponding full detec-
tion, addressed by the proposed Overlapping Box Merging (0BM) method. Black rectangles
represent the detection windows, while detected objects are shown in blue.

To address these challenges (Fig. 6.1c and Fig. 6.1d), two complementary post-processing algo-
rithms are proposed: Overlapping Box Suppression (0BS) and Overlapping Box Merging
(0BM) [64, 65, 69]. Most existing window-based object detection systems rely on NMS as the
default post-processing step to filter redundant detections (34, 75, 142, 157, 169]. However,
NMS is not designed to handle inter-window inconsistencies, often resulting in either missed
detections or the persistence of fragmented boxes (see Fig. 6.2b). To overcome these limita-
tions, OBS and 0BM were developed as specialized alternatives. 0OBS eliminates partial detections
when a more complete detection is available (Fig. 6.2c¢), while 0BM merges fragmented detections
across overlapping windows when no full detection exists (Fig. 6.2d). Together, they provide
a robust replacement for NMS in the context of window-based detection, effectively addressing
fragmentation between detection windows. The two methods are integrated into a unified Global
Filtering Module. They are architecture-agnostic and can be applied to any window- or ROI-
based detection framework, such as [43], as long as detection results and window coordinates are
accessible. However, it is important to note that 0BS and OBM are specifically designed to resolve
inter-window detection errors and do not address errors occurring within a single window (such
as Fig. 6.1a).

The effectiveness of the proposed Filtering Module is evaluated on the SeaDronesSee data-
set [132], using the video object detection framework introduced in [70], which builds on the
architecture detailed in Chapter 5. Experimental results, both qualitative and quantitative,
indicate that the proposed method consistently surpasses traditional Non-Maximum Suppression
(NMS) in terms of precision and recall. Illustrative examples in Fig. 6.2 highlight how the two
components, 0BS and 0BM, operate in practice. 0BS assumes that at least one sub-window is likely
to capture the full object and uses both the detection results and the coordinates of detection
windows to eliminate redundant partial detections. In contrast, OBM targets situations where no
single window contains the complete object. It progressively merges detection fragments from
overlapping windows, improving the final output by addressing both missed detections and false

positives.
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FiGuRE 6.2: Example application of the Overlapping Box Suppression (0BS) and
Overlapping Box Merging (OBM) algorithms. When combining detections from multiple sub-
windows, intersecting detection windows and large objects can introduce false positives. With-
out global filtering, this results in poor detection quality (a). While NMS removes some re-
dundant detections (b, bottom row), it struggles with small partial detections. 0BS effectively
removes all partial detections (¢, bottom row), but objects that are partially visible across
all windows lack a complete detection. 0BM addresses this by merging such partial detections
into a single, complete detection (d), delivering a false-positive-free output from the detection
system.

6.2 Contribution

Traditional Non-Maximum Suppression (NMS) [115] aims to eliminate redundant detections by
retaining only the bounding box with the highest confidence score when multiple boxes over-
lap significantly. While effective, this strategy can lead to the suppression of valid detections,
especially in cluttered scenes. To address this limitation, Soft-NMS|[13] was introduced as a
refinement. Instead of removing overlapping boxes outright, Soft-NMS progressively lowers their
confidence scores, reducing the likelihood of suppressing relevant but overlapping instances, par-
ticularly for foreground objects that dominate the visual field. Further advancements include
the use of learning-based approaches. For instance, a deep reinforcement learning framework
was proposed in [101], where an attention mechanism is optimized to dynamically select re-
gion proposals. This learned policy replaces the traditional greedy approach by enabling better
placement of detection windows, thereby improving localization and object coverage. The time
required for these filtering steps has also been questioned. Shapira et al. [119] reveal how ineffi-
cient NMS configurations can be exploited, resulting in excessive processing delays. To address
this, parallelized versions like the one in [171] have been developed, which speed up the filtering
and can fully replace NMS at all stages of the detection pipeline. In contrast, this work pro-
poses postprocessing methods that are independent of the detection approach used, making them
compatible with any object detection backbone or proposal generation method. The focus is on
tackling a key challenge specific to window-based detection pipelines: fragmented and redundant
detections caused by overlapping sub-windows. NMS-like methods struggle in window-based de-
tection settings because fragmentary detections often have low IoU with full detections. As a
result, these partial detections are not effectively suppressed, leading to redundant or incomplete

predictions remaining in the output.
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Several alternative techniques to standard NMS have emerged in the literature. The Conflu-
ence method [120], for instance, introduces a proximity-based strategy that selects the most
central detection within a group and suppresses nearby redundant boxes based on a Manhattan
distance-like metric. In contrast, Gilg et al. [41] present a probabilistic framework that directly
estimates the likelihood of duplication for each detection and adjusts confidence scores accord-
ingly, avoiding explicit suppression. Some methods attempt to compensate for the suppression
of occluded objects. The Suppression and Enhancement (SE) algorithm [98] increases the scores
of detections partially hidden from view, preserving them in the final output. Feature-based
filtering, such as FeatureNMS [117], leverages deep features to identify duplicates by comparing
learned embeddings. Additionally, the Weighted Boxes Fusion algorithm [122] takes a different
route: instead of discarding any detections, it merges them into a single prediction by calculat-
ing a weighted average based on confidence scores. This strategy has shown better results than
both NMS and Soft-NMS on popular datasets such as COCO and Open Images. However, it
was originally designed to merge outputs from multiple detection models rather than handling

partial detections within window-based approaches.

This work presents a unified filtering system that both removes false positives caused by overlap-
ping detection windows and merges detections of the same object appearing in multiple windows.
While many recent window-based methods [34, 75, 142, 157, 169] use some form of NMS to filter
detections from different windows, they often do not properly handle the problem of fragmentary
detections. A conceptually related strategy was introduced in [71], which shares similarities with
Overlapping Box Suppression (0BS). However, their approach depends solely on Intersection
over Union (IoU) as a suppression criterion. The proposed 0BS method extends this by integrat-
ing IoU with the detection confidence and the bounding box area to prioritize the removal of
partial, uncertain detections. Unfortunately, due to the lack of an official implementation of [71],

a direct comparison could not be conducted.

This chapter presents experimental results supporting Auxiliary Thesis #3, which states that the
proposed postprocessing techniques effectively mitigate a key limitation of window-based detec-
tion systems like fragmentary detections that degrade overall detection performance. The main

contributions discussed in this section are as follows:

e introduction of the Overlapping Box Suppression (0BS) algorithm, which filters par-
tial false-positive detections more effectively than traditional Non-Maximum Suppression

(NMS), achieving higher precision and recall in multi-scale window-based object detection,

e development of the Overlapping Box Merging (0BM) algorithm, designed to merge par-
tial detections when no complete detection is available, thereby enhancing the Global

Filtering stage,

e a detailed evaluation comparing 0BS to both NMS and unfiltered detection outputs, high-
lighting its superior performance and including an ablation study on key OBS hyperparam-

eters,

e an in-depth analysis of 0BM, demonstrating consistent improvements in both precision and

recall, independent of the global filtering method or specific parameter settings.
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FIGURE 6.3: Simplified window-based detection pipeline. Detection occurs within independent

windows, with detections filtered twice - first with NMS-style local filtering at the window level,

then with Global Filtering at the image level. This study compares NMS and 0BS for Global

Filtering and examines the impact of the 0BM algorithm on detection quality. NMS is always
applied as postprocessing within separate subwindows.

6.3 Proposed method

Figure 6.3 presents a high-level overview of a typical window-based object detection pipeline.
These systems generally begin with a pre-processing step that identifies candidate regions and
discards background areas. Detection is then performed on multiple cropped sub-windows de-
rived from the original image. The window proposals are often generated using a segmentation
model that predicts Regions of Interest (ROIs), which are then resized or transformed to match
the input dimensions required by the detector. Fach sub-window is processed independently,
with local Non-Maximum Suppression (NMS) applied within each window to eliminate redun-
dant detections. The resulting outputs are then projected back to the coordinate space of the
full image. In standard pipelines, a second round of NMS is typically used as a global filtering
step to resolve duplicate detections originating from overlapping windows. However, this ap-
proach is often suboptimal due to the low IoU between fragmented and complete detections. To
address this issue, the proposed Global Filtering Block introduces two complementary steps:
Overlapping Box Merging (0BM), which fuses partial detections into complete bounding boxes,
and Overlapping Box Suppression (OBS), a more robust alternative to NMS designed to sup-

press false positives arising from window overlaps.

The detection framework used for experiments [69] incorporates a Region of Interest (ROI)
selection step into a high-resolution detection pipeline. Full-resolution detections are performed
only within sub-windows chosen based on two sources: a binary segmentation network that
identifies foreground regions in the current frame, and a SORT-based [9] object tracker that
extrapolates object locations from previous frames. The detections from these independent
windows are then aggregated and mapped back to the original image coordinates. Earlier versions
of the system [67] employed Non-Maximum Suppression (NMS) alone for global filtering, to
eliminate redundant detections arising from overlapping sub-windows. In this approach, the
global NMS stage is replaced with Overlapping Box Suppression (0BS), which additionally
leverages window location information to suppress false positives more effectively, a common
challenge in window-based detection. Overlapping Box Merging (0BM) is also incorporated
to consolidate fragmented detections across window boundaries. Although the experimental

setup builds on the system described in [69], the proposed 0BS and 0BM methods are model-
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Global Filtering Final Detections

Aggregated Detections

without 1\ | |
OBM

FI1GURE 6.4: Detailed architecture of the experimental setup for the Global Filtering Block
used in this study. The proposed approach, combining 0BM and 0BS, is highlighted in green. In
total, six global filtering strategies are evaluated: merging with 0BM followed by one of three
options: no filtering (None), 0BS, or NMS, as well as the same three filtering methods applied
without merging. Zoomed-in regions from the final detection outputs are shown to clearly
illustrate the differences between methods (full images are omitted for clarity).

and framework-agnostic and can be integrated into any window-based detection pipeline, as
illustrated in the generalized architecture in Fig. 6.3. The exact implementation of the system

used in the experiments is detailed in Chapter 5.

Figure 6.4 illustrates the experimental setup used to evaluate the proposed Global Filtering
strategy. The primary method introduced in this study, combining Overlapping Box Merging
(0BM) with Overlapping Box Suppression (0BS), is highlighted in green. To isolate the effect
of 0BM independently of the filtering method, three configurations are included in which OBM
is applied before one of three filtering options: None (no filtering), 0BS, or NMS. These are
compared against the same three configurations applied without 0BM, resulting in a total of
six global filtering configurations. This structure enables a detailed comparison of detection
quality across all combinations, allowing to assess the individual and combined benefits of 0BM
and 0BS. The zoomed-in output samples included in the figure visually demonstrate how each
method handles partial and overlapping detections, providing insight into both the qualitative
and quantitative differences observed in the experiments. The following sections present extensive
experiments across multiple confidence and IoU thresholds, as well as varying hyperparameters
for NMS, 0BS, and OBM.

6.3.1 Overlapping Box Suppression Algorithm

Window-based detection systems are particularly well-suited for small and tiny object detection,
as they increase the relative object size within each cropped region. However, overlapping de-
tection windows frequently lead to duplicate and fragmented detections, which in turn raise the
number of false positives and degrade overall precision. Traditional Non-Maximum Suppression
(NMS) is effective at removing duplicate detections when objects are fully visible, but it fails to
handle fragmented detections arising from partial views. When an object is only partially visible
within a detection window, its resulting detection may have a low Intersection over Union (IoU)
with the full detection of that object in another window, allowing it to bypass traditional Non-
Maximum Suppression (NMS). Lowering the IoU threshold to catch these partial detections risks

removing valid detections of nearby objects, especially in crowded scenes where objects are close
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Ficure 6.5: Simplified illustration of the 0BS algorithm. Detection windows W; and W3
contain partially visible objects, while W> contains only a fully visible object (a). Aggregating
detections from windows Wi, Wa, and W3 produces the correct object detections DI, D3, and
D3, along with partially visible detections D3 and D3. The intersection I (Wj,Di‘c ) between
sub-window W; and detected bounding box Dk (b,c,d,e) is calculated to eliminate false pos-
itives (f). Among all found intersections (I(W1, D3), I(W3, D3), I(W1, D3), and I(Ws, D1)),
the intersections I(Wi, D3) and I(Ws, D1) exhibit high ToU with detections D3 and D3, re-
spectively: thus, detections D3 and D? are suppressed.

to each other, thereby increasing false negatives. To address these challenges, the Overlapping
Box Suppression (0BS) algorithm uses the coordinates of detection windows to identify and
remove partial detections. For each detected bounding box, 0BS first calculates its intersection
with every detection window, essentially determining the visible portion of that detection from
the perspective of each window. Then, it computes the Intersection over Union (IoU) between
these visible parts and the full detections found. Partial detections typically exhibit a high IoU
with these visible parts, enabling 0BS to recognize them as redundant. By filtering out detections
with high overlap to visible fragments, the algorithm effectively suppresses fragmented detections

while preserving the most complete and accurate bounding boxes. Moreover, partially visible
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Algorithm 2 Overlapping Box Suppression

Require: detections € RV*6 > Detections (xmin, ymin, xmax, ymax, score, class)
Require: windows € RN** > Detection windows (xmin, ymin, xmax, ymax)
Require: th € (0,1) > IoU threshold for suppression (default th = 0.6)
Require: filters € {’all’, 'iou’, 'area’, ’score’} > Criteria for suppression
Require: class_agnostic € {True, False} > Apply filtering across all classes or within same class
Ensure: filtered detections € RLx6 > Filtered detections after suppression
Ensure: filtered windows € REx4 > Filtered detection windows
1: Step 1: Compute Intersections Between Detections and Detection Windows
2: W, < unique(windows) > Find unique detection windows W, € RM*4
3: I < intersect(detections[:,: 4], W) > Find intersection I € RY*Mx*4
4: Step 2: Compute IoU Matrix Between Intersections and Full Detections
5: jous  empty tensor (ious € RY*M*N) > Initialize IoU tensor
6: for each w € W, index 7 do
7 tous|:,4,:] < box_iou(I[:,1,:], detectionsl:,: 4]) > Compute IoU for each intersection
8: end for
9: if not class_agnostic then
10: same_class < (detections[:, 5] == detections[:,5]") > Same-class mask, shape: (N, M, N)
11: ious < tous X same_ class > Filter only within same class
12: end if
13: jous < [ious > th] > Filter to keep only IoUs greater than threshold th
14: to_del <+ find where ious > th > Find detections candidates for removal to_ del € R**?
15: if no IoU greater than th then
16: return windows, detections > Return original windows and detections if no overlaps
17: end if
18: Step 3: Create Cost Vector for Deletion Candidates
19: costs < empty vector of length K > Initialize cost vector
20: for each detection candidate ¢ in to_del[:, 2] do
21: conf < 1 — normalize(detections|i, 4]) > Normalize confidence score
22: area < 1 — normalize(area of detection][i]) > Normalize area of the detection
23: iou < normalize(ious|i]) > Normalize IoU for this detection
24: cost_map < {’all’ : mean([conf, area,iou]),’iou’ : iou, ’area’ : area, 'score’ : conf}
25: costs[i] «— cost _map|filters] > Select the appropriate cost
26: end for
27: Step 4: Get Detections for Removal
28: to_del < (to_del, cost) > Append cost to deletion candidates
29: to_del ids < unique sorted indices from to_del > Remove detections based on costs

30: Step 5: Filter Windows and Detections

31: filtered windows < windows[not in to_del ids] > Filter out detections to delete
32: filtered detections  detections[not in to_del ids] > Filter out corresponding detections
33: return filtered_windows, filtered_detections > Return filtered windows and detections

objects appearing in multiple overlapping windows can produce several high-confidence detec-
tions. NMS typically retains only the highest-scoring detection, which is not always the most
complete representation of the object. The 0BS algorithm addresses this by using a combination

of confidences, areas, and IoUs as filtering criteria to preserve the most complete detection.

The 0BS algorithm is illustrated in Fig. 6.5, with its pseudocode detailed in Alg. 2. 0BS functions
by examining the intersections between detected bounding boxes and the detection windows
and then calculating the Intersection over Union (IoU) for every detection-intersection region.
Detections exceeding a specified high IoU threshold are suppressed, as they are likely redundant
fragments of the same object. Specifically, consider a detection D{ located in sub-window W;
corresponding to object j. If this detection has a substantial overlap with the intersection

(W, Di), where Di is another detection of the same object from a different sub-window Wy,
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then Df is classified as a false positive. This significant overlap indicates that both detections
refer to the same object, and thus one is redundant. For example, in Fig. 6.5, the detections D3
and D3 show a high overlap with intersections I(Wy, D3) and I(W3, D1), respectively, leading

to their removal and leaving only the complete detections D}, D3 and D3.

Unlike traditional NMS, which mainly depends on confidence scores, 0BS incorporates a combined
cost metric involving IoUs, bounding box areas, and confidence scores. It prioritizes removal of
detections that are smaller, have lower confidence, and exhibit high IoU with partial views, thus
ensuring that the most complete detection of each object is retained. This is done by computing
a normalized cost vector for each detection that determines the order in which detections are

suppressed. The full details of the algorithm can be found in Alg. 2.

This study explores different configurations of the cost vector and demonstrates that combining
confidence, area, and IoU metrics yields better performance than using any single metric alone.
A class-agnostic version of 0BS proves more effective in filtering fragmentary detections, as partial
detections tend to be misclassified. Furthermore, the effect of varying IoU thresholds on detection
quality is analyzed, alongside a detailed comparison between 0BS and traditional NMS filtering

methods.

6.3.2 Overlapping Box Merging Algorithm

The Overlapping Box Suppression (0BS) method efficiently filters out false positives caused
by overlapping detection windows and partial object views within those windows. However, 0BS
relies on the presence of a complete detection. In certain situations, only partial detections exist,
either due to imprecise window proposals or because objects are larger than a single detection
window and span multiple windows. To address this, the Overlapping Box Merging (OBM)
algorithm was designed to combine partial detections coming from several sub-windows when a
full detection is not available. This often happens when the Region of Interest (ROI) is bigger
than the input size of the detector, a common scenario in dynamic environments where objects
move quickly relative to the sensor. One common solution is to crop a large area and resize it
to the detector’s input size. While this works well for large objects, it may reduce the detail
of smaller objects within the ROI. For regions with small objects, applying a sliding-window
approach inside the ROI is preferable, as it preserves more detail. However, this introduces
the problem of merging partial detections of larger objects spread across multiple windows,
which 0BM is specifically designed to solve. Moreover, 0BM also handles cases where imprecise
ROIs cause objects to appear partially in multiple windows without any complete detection in
a single window. Although less frequent, such situations also benefit from the merging capabil-
ities of 0BM. To validate 0BM’s utility, two approaches are examined for processing ROIs larger
than the detector’s input size: cropping and resizing versus using a sliding-window on the ROI.
The sliding-window method increases the need for 0BM to combine partial detections. By inte-
grating 0BM with OBS into a unified Global Filtering step, the system can maintain the fine
details necessary for detecting tiny objects while effectively merging partial detections of larger
objects. This combination provides a robust solution for multi-scale detection in high-resolution

images.
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FIGURE 6.6: A simplified visualization of the 0BM algorithm. Detection windows W7 and W

include partial detections D1, D2, and D3 (a). The algorithm iteratively merges detection

pairs that overlap near the shared window boundaries (b,c,d), ultimately producing a single
consolidated detection Dy 3 (1,2) (d).

The 0BM algorithm operates by first identifying groups of overlapping detection windows, then
locating clusters of overlapping detections within those window groups. It merges detection
pairs if both are positioned near their respective window boundaries inside the overlapping
region. This merging process happens iteratively, combining pairs step-by-step until a single
consolidated detection remains. The final class label for the merged detection is computed as
a weighted mean of the class probabilities and confidence scores from the individual partial
detections. A tolerance of 10 pixels is used to decide whether a detection lies close enough to
its window edge to be considered for merging. Figure 6.6 illustrates the 0BM workflow. In the
example, three partial detections, D1, D5, and D3, appear in two overlapping detection windows,
W1 and Wy, without a full detection present. Within the cluster of overlapping windows W7 and
Ws, two separate groups of intersecting detections exist: one containing Dy and D, and another
containing D; and Ds3. These pairs are merged into intermediate detections D; o and D 3,
which are then further merged to form the final detection Dy 3) (12). A detailed step-by-step
description of the 0BM algorithm can be found in Alg. 3.

In the next sections, the 0BM’s performance is evaluated under three different global merging
strategies: Non-Maximum Suppression (NMS), Overlapping Box Suppression (0BS), and no
global filtering (denoted as NONE). Both qualitative and quantitative analyses demonstrate
0BM’s effectiveness in recovering fragmented detections, whether the input ROIs are processed by
cropping and resizing or through a sliding-window approach. For detailed experimental setting

of the Global Filtering Block, please refer to Fig. 6.4.

136:2044484521



Detection Filtering Methods 123

Algorithm 3 Overlapping Box Merging

Require: detections € RV*6 > Detections (xmin, ymin, xmax, ymax, score, class)
Require: windows € RN** > Detection windows (xmin, ymin, xmax, ymax)
Require: th € R > Tolerance for ending at the boundary (default th = 10)
Ensure: merged detections € REXS > Filtered detections after merging
Ensure: merged windows € R¥** > Filtered detection windows
1: Step 1: Find clusters of overlapping windows
2: md, mw < 0,0 > Initialize merged detections and windows
3: Wy, <« unique(windows) > Find unique detection windows
4: Cy < cluster(Wy,) > Find clusters of intersecting detection windows
5: Step 2: Find clusters of overlapping detections within each cw € C,,
6: Wer + Wy[cw] > Detection windows within the cluster
7: if |unique(We)| = 1 then
8: continue > Skip processing if only one window within cluster
9: end if
10: D¢ < detections|cw] > Detections within the cluster
11: Cq + cluster(D.;) > Clusters of intersecting detections
12: Step 3: Find merge candidates within each cd € Cjy
13: Dge + Deed] > Detections within the detection cluster
14: Waer < Weed] > Corresponding detection windows
15: if ‘Ddcll =1 then
16: continue > Skip processing if only one detection
17: end if
18: I,  intersection coords(Wae) > Intersecting regions of detection windows
19: merged < > Initialize empty vector for merged coordinates
20: indices < () > Initialize empty vector for merged indices
21: for i =1 to |I,| do
22: idx1,idxs < indices]i] > Get indices of intersecting detections
23: dety,dets < Dgeilidz1], Daei[idza) > Retrieve detections
24: if ends_on_boundary(deti[: 4], Iw[i],th) A ends _on_boundary(deta[: 4], Iu[i], th) then
25: merged__coords < get _coodinates([det1, dets])
26: merged < merged U {merged coords} > Add merged detection coordinates
27: indices < indices U {idx1,idx2} > Add merged detection indices
28: end if
29: end for
30: Dger ¢ Dgeilindices] > Detections to be merged
31: Waer < Waalindices] > Detection windows to be merged
32: merged_cluster coords < get coodinates(merged) > Compute coordinates of final merged

detection within cd
33: merged_cls,merged conf < get weighted mean(Dgq[:, 5], Daci[:,4]) > Compute final class and
confidence as a weighted mean

34: merged_detection < (merged_cluster _coords U [merged _cls,merged_conf]) > Get merged
detection
35: md <~ md U merged_detection > Append to already merged detections

36: merged window < [min(Waq[:, 0]), min(Waq[:, 1)), max(Waa:, 2]), maz(Waea|:, 3])] > Get merged
window coordinates

37: mw + mw U (merged_cluster _coords U [merged _cls,merged_conf]) > Append to already
merged windows

38: Step 4: Finalize results
39: if ~ md then

40: return detections, windows > No further objects to be merged
41: end if

42: detections <— md U nmd > Combine merged detections and non merged detections
43: windows + mw U nmw > Combine merged windows and non merged windows

44: Repeat merging process from Step 1 until no objects can be merged
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TABLE 6.1: Object detection results on SeaDronesSee sequences using two different strategies

for handling large ROIs. AP - Average Precision; TP - true positives, FP - false positives, FN

- false negatives; P - precision; R - recall. All metrics are computed with a fixed IoU threshold

of 0.5 and confidence threshold of 0.1. The * symbol indicates use of the 0BM algorithm in the
Global Filtering Block. Local NMS used an IoU threshold of 0.3.

(A) Cropping and resizing for large ROIs.

method AP APso TP FP FN P R F1

None 46.7 4.7 42846 23196 4832 64.9 89.9 75.4
None* 48.1 76.6 42813 19141 4865 69.1 89.8 78.1
NMS 48.5 80.8 41602 9275 6076 81.8 87.3 84.4
NMS* 49.2 80.8 41655 9085 6023 82.1 87.4 84.6
OBS 52.3 83.4 42652 9042 5026 82.5 89.5 85.8
OBS* 52.3 83.4 42682 8825 4996 82.9 89.5 86.1

(B) Sliding window for large ROIs.

method AP APso TP FP FN P R F1

None 42.6 69.6 40618 26289 7060 60.7 85.2 70.9
None* 47.8 76.1 42536 19905 5142 68.1 89.2 7.3
NMS 44.2 75.1 39281 12205 8397 76.3 82.4 79.2
NMS* 49.1 80.6 41439 9315 6239 81.6 86.9 84.2
OBS 47.5 7.5 40425 11832 7253 7.4 84.8 80.9
OBS* 51.7 82.6 42273 9049 5405 82.4 88.7 85.4

6.4 Experimental results

To evaluate the effect of the proposed Global Filtering Block and isolate the individual
contributions of 0BS and 0BM, a series of experiments was conducted as outlined in Fig. 6.4.
The object detection system used in this study is based on the prior work [69], previously de-
scribed in detail in Chapter 5. All experiments were performed on validation sequences from the
SeaDronesSee dataset, using NMS as the local filtering method. Local NMS was applied in a

class-aware manner with an IoU threshold of 0.3 and a confidence threshold of 0.1.

To investigate the impact of different Global Filtering strategies, six configurations are con-
sidered: three without 0BM (NMS, 0BS, and no global filtering), and three with 0BM combined
with each of these global strategies (0BM+NMS, 0BM-+0BS, and 0BM+None). Global NMS and
0BS were applied in a class-agnostic manner with an IoU threshold of 0.1. For 0BS, the cost
matrix was calculated using normalized confidence scores, IoU values, and bounding-box areas.
The metrics reported in Tab. 6.1a and Tab. 6.1b reflect the best-performing configurations for
each strategy, selected based on the F1 score. These experimental results are further analyzed
and discussed in the following section. Two strategies were evaluated for processing large ROIs
that exceed the detector’s input size: crop-and-resize (Tab. 6.1a) and a sliding-window approach
(Tab. 6.1b). The sliding-window setting introduces more fragmented detections, providing a
suitable context to assess 0BM’s ability to merge partial detections. In both tables, the * symbol
indicates configurations where 0BM was used within the Global Filtering Block. Each ROI

handling strategy was tested in six configurations (see Fig. 6.4), totaling 12 experiments.

Regardless of the method used to handle large ROIs, both NMS and 0BS generally improve
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detection performance across most metrics compared to no global filtering (None), with the ex-
ception of true positives (TP), false negatives (FN), and recall (R). When aggregating detections
from multiple independent subwindows, overlapping regions can lead to partial false-positive
detections. As a result, both NMS and 0BS yield substantial improvements in AP, APsq, false
positives (FP), precision (P), and F1 score. As presented in Tab. 6.1a and Tab. 6.1b, both meth-
ods consistently increase precision by effectively reducing false positives, although their effect on
recall is less uniform. In particular, 0BS reduces false positives by 61% and 55% in Tab. 6.1a
and Tab. 6.1b, respectively, while causing only a slight increase in false negatives (4% and 3%)
and a negligible reduction in true positives (less than 1%). In contrast, NMS introduces a higher
number of false negatives and demonstrates a more limited ability to suppress false positives
compared to 0BS. Incorporating the 0BM algorithm into the Global Filtering Block (denoted

by *) leads to further gains in true positives, false positives, and false negatives.

As shown in Tab. 6.1a and Tab. 6.1b, 0BS consistently achieves higher F1 scores than NMS by
effectively reducing false positives while preserving true positives. Without 0BM, 0BS improves
the F1 score by approximately 10 percentage points compared to the absence of global filtering,
and by approximately 8% when combined with 0BM (denoted by * in the tables). Moreover,
0BS has minimal impact on recall, underscoring its advantage over NMS in preserving true
positives. Its superior ability to suppress high-confidence partial false positives is reflected in
consistently higher precision. These results confirm that while both 0BS and NMS enhance
detection performance by reducing false positives, 0BS delivers a better balance of precision and

recall, regardless of the large ROI handling strategy used.

The benefits of the 0BM algorithm are especially apparent when large ROIs are processed using
a sliding-window approach (Tab. 6.1b), as opposed to the crop-and-resize method (Tab. 6.1a).
This is likely because the crop-and-resize strategy already yields high-quality ROIs, resulting in
fewer fragmented detections that require merging. Despite this, 0BM consistently enhances both
precision and recall in different global filtering techniques and large ROI handling strategies,
demonstrating its robustness in addressing fragmented predictions. Unlike 0BS, which contributes
mainly by reducing the number of false positives, 0BM improves the overall detection accuracy
by also reducing false negatives. It achieves this by merging fragmented detections into more
complete boxes, thereby increasing their overlap with ground-truth annotations and improving

the likelihood of true positive matches.

In this dataset, the crop-and-resize method generally produces slightly better results than the
sliding-window approach. This is likely due to the high sparsity of objects in the SeaDronesSee
validation subset and the fact that small and tiny objects seldom coexist in the same detection
windows as larger objects. These observations reflect overall trends related to ROI handling
strategies within this particular dataset, rather than the performance of the Global Filtering
Block itself. In particular, the difference in effectiveness between the two ROI handling methods
decreases when 0BM is applied, underscoring the strong potential of 0BM to improve multiscale

object detection.

Figure 6.7 presents a qualitative comparison of global filtering strategies, None, NMS, and 0BS,
across four representative detection scenarios. Without any global filtering (None), numerous

partial false-positive detections appear in rows (a), (b), and (¢). NMS is able to suppress some of
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None NMS OBS

FIGURE 6.7: Qualitative comparison of no global filtering (None), NMS, and 0BS. Without
global filtering, many false positives remain. NMS retains a high-confidence partial detection,
incorrectly suppresses a full detection, and fails to remove all fragmentary boxes. In contrast,
0BS effectively eliminates all false positives without causing false negatives, preserving all
correct detections. Additionally, because of the low IoU threshold, NMS suppresses a correct
detection that 0BS correctly retains by leveraging the detection window coordinates.

these (as in row c¢), but due to its reliance on confidence-based filtering, it often removes correct
full detections while retaining partial ones with higher confidence scores (rows a-c). For instance,
in row (b), three false-positive partial detections are shown: NMS fails to suppress two of them
due to low IoU with full detections and retains the third because of its higher confidence, even
though it is a fragment. Similar cases appear in rows (a) and (c), where fragmentary detections
are retained instead of the full detections. The relatively low IoU threshold of 0.1 used in NMS

helps suppress some fragmentary boxes (as seen in row c), but also increases the risk of removing
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without OBM with OBM

FIGURE 6.8: Qualitative comparison of the system with and without the 0BM algorithm using

a sliding-window strategy for large ROIs. 0BM demonstrates its ability to merge fragmented

detections across multiple windows (b), correct misclassified detections by assigning the correct

class to the final detection (a), and partially recover missed objects (c), resulting in more
complete and accurate outputs.

true detections, as illustrated in row (d). In that example, NMS incorrectly eliminates a valid
detection due to its high overlap with another object. In contrast, OBS leverages the visible
portion of the object when computing IoU, which allows it to retain correct detections even at
very low IoU thresholds. Additionally, OBS applies a joint cost matrix based on confidence, area,
and IoU, which enables better suppression of overlapping boxes. As shown consistently across
all rows, OBS eliminates all partial false positives while preserving full detections, delivering a
cleaner and more accurate final output. While the negative impact of the low IoU threshold
used in NMS on detection quality may not be fully reflected in metrics, due to the sparse object
distribution in the dataset, it would likely become more pronounced in scenarios with denser
object layouts. Overall, this comparison highlights the robustness of OBS in scenarios where
NMS fails.

The results of the 0BM algorithm are illustrated in Fig. 6.8. In the first example (a), 0BM produces
a full bounding box with the correct class label, despite the presence of a false positive in the

adjacent detection window, thanks to its weighted class estimation. In the second example
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(b), 0BM merges fragmented detections that span multiple windows, even when the object fully
occupies one or more detection windows. Finally, in the third example (c), although one partial
detection is missed (false negative), the O0BM still successfully reconstructs the complete bounding
box for the boat. These examples highlight the robustness of 0BM in resolving fragmented

detections, correcting misclassifications, and recovering missed objects.

Considering both qualitative and quantitative findings, it is evident that 0BS outperforms NMS as
a global filtering strategy in window-based detection scenarios by more effectively reducing false
positives without compromising recall. The addition of 0BM further refines detection outcomes
by resolving fragmented, overlapping, and misclassified predictions, thus recovering missed ob-
jects and improving class consistency. Together, 0BS and 0BM form a robust and complementary
Global Filtering Block that significantly boosts detection accuracy. These results strongly
support the third Auxiliary Thesis, demonstrating that the proposed filtering mechanisms im-

proves the quality of window-based tiny object detection in high-resolution images.

6.5 Ablation Study

To better understand the design choices and parameter configurations of the proposed 0BS and
0BM algorithms, a series of ablation experiments was conducted. While previous results focused
on comparing NMS and 0BS using their optimal settings, the following sections delve deeper into
the influence of specific design aspects. The effect of varying loU thresholds is analyzed, different
formulations of the OBS cost vector are explored, and class-agnostic versus class-aware filtering
strategies are compared. Additionally, the contribution of the 0BM algorithm to overall detection
performance is investigated in greater detail. To broaden the evaluation and facilitate clearer
analysis of the Global Filtering Block, results from two additional datasets are included:
DroneCrowd, which focuses on detecting tiny pedestrians in dense scenes, and ZebraFish, a sim-
pler dataset with only a few objects per image, providing improved visual clarity for illustrating

the behavior of the proposed methods.

The analysis begins with an evaluation of the performance of NMS and 0BS under varying
confidence and IoU thresholds, with a focus on their impact on precision and recall. This is
followed by a comparison of NMS and 0BS in terms of F1 score across three datasets, assessing
the robustness of 0BS in diverse scenarios. The design decisions presented in earlier sections
are then justified through experiments evaluating both methods under different hyperparameter
settings. Finally, the influence of the 0BM algorithm on precision, recall, and F'1 score is examined
when combined with each of the three global filtering strategies: NMS, 0BS, and no filtering
(None).
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FIGURE 6.9: Comparison of NMS and the proposed 0BS algorithm as global filtering methods
in window-based object detection. Precision and recall are reported across varying confidence
and IoU thresholds on the validation subset of the SeaDronesSee dataset.

6.5.1 Overlapping Box Suppression

The Overlapping Box Suppression (0BS) method was specifically designed to address key
limitations of traditional Non-Maximum Suppression (NMS) in window-based object detection
pipelines, particularly when detections span multiple overlapping sub-windows. NMS struggles
in such settings because the Intersection-over-Union (IoU) between full and partial detections is
often low and insufficient to trigger suppression even when both boxes refer to the same object.
As a result, NMS frequently fails to remove redundant partial detections and may even suppress

correct full detections due to the confidence score filtering condition.

To highlight the benefits of 0BS, an ablation study using the SeaDronesSee dataset was con-
ducted. The goal was to evaluate how different IoU and confidence threshold settings influence

precision and recall for both NMS and 0BS (Fig. 6.9). In the case of NMS, lowering the ToU
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threshold leads to a drop in recall, as the method tends to suppress nearby true positive detec-
tions that slightly overlap. OBS, on the other hand, leverages the spatial layout of sub-windows
and a more complex cost matrix (including confidence scores, IoU values, and bounding box
areas) to distinguish between valid detections and redundant partials. As shown in Fig. 6.9,
0BS consistently outperforms NMS in preserving recall while achieving superior precision. These
results confirm that by taking the window context into account, OBS offers a more reliable filter-
ing mechanism for high-resolution, window-based detection systems. This makes OBS especially
well-suited for aerial imagery and small object detection tasks, where maintaining high preci-
sion without sacrificing recall is critical. 0BS consistently delivers superior precision and recall
compared to NMS, regardless of the chosen IoU and confidence thresholds. The performance
gap, especially in recall, becomes more evident at lower confidence thresholds, demonstrating
that OBS is more effective at retaining true positives while eliminating false positives. The strong
performance of both filtering methods at low IoU thresholds is likely due to the sparse distri-
bution of objects in the SeaDronesSee dataset, which minimizes the likelihood of accidentally

suppressing valid overlapping detections.

On the densely packed DroneCrowd dataset, the optimal F1 score is reached with an IoU thresh-
old of 0.4 for NMS and 0.5 for 0BS (Fig. 6.10), further supporting the idea that lower IoU
thresholds are preferable when objects are spread out. Figure 6.10 illustrates the variations in
the F1 score for NMS and 0BS under different IoU settings in three datasets (ZebraFish, SeaD-
ronesSee and DroneCrowd) using a fixed confidence threshold of 0.1 and a true positive IoU
threshold of 0.5. 0BS is particularly effective in multi-scale, window-based detection pipelines.
While such methods improve small object detection by enabling full-resolution analysis, they
often fragment larger objects across multiple detection windows. 0OBS mitigates this issue by ef-
fectively suppressing partial and redundant boxes, significantly boosting performance on datasets
like ZebraFish and SeaDronesSee. In contrast, on DroneCrowd, where partial detections are rare
even with overlapping windows, NMS performs competitively or slightly better in reducing du-
plicate detections, though it tends to introduce more false negatives than 0BS. Despite being
designed to suppress partial detections, 0BS also performs reliably when filtering full, redundant

predictions, demonstrating its robustness across various detection scenarios.

The following paragraphs present a detailed analysis of the design decisions and parameter
configurations used in both NMS and 0BS. Since partial detections are frequently misclassified,
filtering is recommended in a class-agnostic manner when addressing such cases. Figures 6.11
and 6.12 illustrate the comparison between class-based and class-agnostic filtering strategies in
0BS and NMS across different IoU thresholds, and, in the case of 0BS, under various filter cost
vector settings. Across all tested configurations, class-agnostic filtering consistently outperforms
the class-based approach. This strategy effectively reduces the number of false positives without
significantly increasing the false negative rate in either method. The improvement in precision is
particularly pronounced at lower IoU thresholds, likely because higher thresholds limit the pool

of candidates available for filtering.

Traditional NMS often fails to preserve the most complete detections because it selects only
the detection with the highest confidence, disregarding other relevant factors. To overcome this

limitation, the 0BS method introduces a multi-criteria filtering strategy that incorporates not only
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DroneCrowd datasets. Evaluations were conducted using a confidence threshold of 0.1 and a
true-positive IoU threshold of 0.5.

confidence scores but also Intersection-over-Union (IoU) and bounding box area. This enables
the removal of the smallest, least confident and most overlapping detections, those most likely to
be partial. As shown in Fig. 6.11, this combined approach delivers better 0BS results compared
to confidence-based filtering alone. Both Fig. 6.11 (for 0BS) and Fig. 6.12 (for NMS) show that
relying solely on confidence scores results in a higher false positive rate, particularly at lower
IoU thresholds. This is because multiple partial detections can have similar confidence values,
making it difficult to distinguish between complete and fragmentary predictions. The proposed
method, which jointly considers confidence, IoU, and area, proves to be more effective across
a range of IoU thresholds and filtering modes (class-based and class-agnostic), as illustrated in
Fig. 6.11. By normalizing these three metrics during filtering, it is possible to improve precision

with minimal compromise on recall.

0BS addresses the challenge posed by low IoU between partial and full detections by leveraging

detection window coordinates to estimate the visible portion of each object from the perspective
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FIGURE 6.12: Assessment of class-based
and class-agnostic filtering in NMS at
various IoU thresholds, highlighting how
class-agnostic filtering better manages
the trade-off between precision and recall
compared to class-based methods.

of individual windows. This approach allows 0BS to more accurately identify and filter redun-
dant partial detections. As illustrated by the discussed figures, 0BS consistently reduces false
positives more effectively than NMS, while having a considerably smaller negative impact on
recall, regardless of the specific hyperparameter configuration. The difference in performance
between the two methods is especially pronounced at lower IoU thresholds, where NMS often
suppresses nearby true positives due to overlapping bounding boxes. In contrast, O0BS preserves
these detections by applying a more informed filtering criterion. Across a wide range of confi-
dence and IoU thresholds, 0BS achieves higher F1 scores, confirming its ability to provide more

reliable and accurate filtering in window-based detection scenarios.

6.5.2 Overlapping Box Merging

Overlapping Box Merging (OBM) algorithm was introduced to effectively handle cases where
multiple partial detections originate from overlapping sub-windows, particularly in situations
where no full detection is present, thus rendering the Overlapping Box Suppression (0BS)
algorithm inapplicable. 0BM is designed to be highly adaptable, allowing seamless integration
into any window-based detection pipeline, including naive sliding-window approaches and more
advanced ROI-based methods. To demonstrate the broad applicability and impact of 0BM, its
effect on detection quality was evaluated across a wide range of global filtering configurations.
Detection performance was assessed in terms of precision, recall, and F1 score, using a true
positive IoU threshold of 0.5 and a confidence threshold of 0.1. Large ROIs were processed via a
sliding-window strategy. Experiments were conducted for each global filtering method, including
0BS with all previously tested filtering criteria (IoU, area, confidence, and their combinations),
using multiple IoU thresholds from 0.1 to 0.9 in increments of 0.1 for both NMS and 0BS, and for

both class-agnostic and class-based filtering schemes. In total, 182 experiments were performed:
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FIGURE 6.13: Effect of the 0BM algorithm on detection performance, measured by precision,

recall, and F'1 score across three global filtering strategies: NONE, NMS, and 0BS. Large ROIs

were processed using a sliding-window method with a true positive IoU threshold of 0.5 and

a confidence threshold of 0.1. The evaluation includes multiple IoU thresholds (0.1:0.9:0.1),
both class-agnostic and class-based filtering, and all 0BS filtering variants.

2 without global filtering, 36 with NMS, and 144 with 0BS. The disparity in experiment counts

reflects the greater number of hyperparameters in 0BS.

As shown in Fig. 6.13, applying 0BM (marked as True) consistently improved both precision and
recall across all filtering methods. The greatest gains in precision were observed when no global
filtering was applied, while the recall improvements were stable across the NONE, NMS, and
0BS approaches. These results highlight the strong capability of 0BM to simultaneously reduce
false positives and recover missed detections by effectively merging fragmented partial boxes.
Crucially, 0BM enhances detection quality in a robust manner that is largely insensitive to the
choice of filtering hyperparameters. In summary, 0BM complements existing filtering strategies
by addressing their common blind spots, fragmented detections spread across windows, and
thus plays a vital role in improving the overall robustness and accuracy of window-based object

detection systems.
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6.6 Conclusions

This thesis addresses a fundamental challenge in window-based object detection systems: im-
proving detection quality in the presence of intersecting windows and partial detections. Such
systems are frequently employed to enhance the visibility of small and tiny objects by increas-
ing their relative size within the input image. However, the overlapping nature of detection
windows introduces a range of issues, including redundant partial detections and false positives
that may not be adequately filtered by standard techniques such as Non-Maximum Suppression
(NMS). Notably, NMS often fails to suppress partial false positives when their overlap with a
full detection is low and tends to discard complete detections based solely on confidence scores,
ignoring other informative cues such as object size. In many practical scenarios, no complete
detection is available at all, only multiple fragmented ones, leading to both false positives and
false negatives. These limitations motivate the global filtering strategy proposed in this chap-
ter, which builds upon earlier research [64, 65, 69] and introduces two key contributions: the
Overlapping Box Suppression (0BS) algorithm for suppressing redundant partial detections,
and the Overlapping Box Merging (0BM) algorithm for consolidating multiple fragments into

a single object when no full detection exists.

A comprehensive experimental comparison of 0BS and NMS against a baseline with no global
filtering demonstrates that 0BS consistently outperforms NMS in reducing false positives while
better preserving true positives. This advantage is reflected in higher precision and a less pro-
nounced negative effect on recall, even at lower IoU thresholds where NMS typically struggles.
Qualitative analysis further reveals 0BS’s ability to prioritize the most complete detections while

discarding small and ambiguous fragments that often bypass confidence-based filtering.

In-depth ablation studies highlight the performance of 0BS in a variety of configurations, includ-
ing different IoU thresholds, filtering criteria (confidence, area, and IoU), and class-based versus
class-agnostic filtering. The results confirm that a combined filtering scheme that leverages all
three parameters, normalized and integrated into a cost matrix, yields the most robust perfor-
mance. This method notably improves recall under low IoU conditions, where confidence-based
filtering alone proves insufficient. Furthermore, class-agnostic filtering consistently outperforms
class-specific variants in both 0BS and NMS, likely due to the high rate of misclassifications

observed in partially visible objects.

The 0BM algorithm further extends the robustness of window-based systems by merging frag-
mented detections across intersecting windows. Its application significantly boosts detection
quality by recovering objects that would otherwise be missed or counted as false positives. 0BM
was shown to improve precision, recall, and F1 score in all three global filtering baselines (None,
NMS, and 0BS) especially when applied to systems using a sliding-window strategy to pro-
cess large ROIs. Although it also contributes positively in crop-and-resize scenarios, the gains
are more modest due to the lower frequency of partial detections. The extensive experimen-
tal analysis demonstrates 0BM’s consistent improvements regardless of the underlying filtering

configuration, underscoring its effectiveness and versatility.
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When 0BS and OBM are applied together, the overall detection quality improves significantly.
In the SeaDronesSee validation dataset, their combined use increases the F1 score from 75.4%
to 86.1% when using a crop-and-resize ROI strategy, and from 70.9% to 85.0% with a sliding-
window approach, surpassing NMS by 1.7 and 6.2 percentage points, respectively. These re-
sults provide strong empirical support for Auxiliary Thesis #3, which states that the common
problem of false positive partial detections in window-based systems can be mitigated through
post-processing techniques such as Overlapping Box Suppression (0BS) and Overlapping
Box Merging (0BM). The improvements achieved across both ROI strategies clearly demon-
strate the advantages of the proposed methods over conventional NMS in handling overlapping

regions and fragmented detections.

In the future, more work is planned to extend the applicability of 0BS and 0BM to additional detec-
tion frameworks, including naive sliding-window systems and various domain-specific datasets.
Exploration of class-aware merging strategies for 0BM may also yield additional gains in scenarios
with highly imbalanced or visually similar object classes. Furthermore, the development of a
learned suppression and merging mechanism, using 0BS and 0BM output as a foundation, presents
a promising direction for further enhancing detection quality. These future efforts aim to extend
the capabilities of window-based systems by addressing their most persistent weaknesses: partial

detections resulting from intersecting detection windows.

Together, 0BS and 0BM offer a practical and extensible framework for improving precision and
recall in object detection tasks characterized by overlapping regions and multi-scale objects.
Their introduction lays a strong foundation for continued innovation in this space, where accurate

detection remains a persistent challenge.
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Chapter 7

Implementation Detalils

7.1 Introduction

Sliding-window methods [96, 151, 178] enhance tiny object detection by increasing the relative
object scale but come with high computational cost. Region-focused approaches [34, 67, 75, 155,
157], on the other hand, improve efficiency by localizing and processing only selected Regions of
Interest (ROIs), thereby achieving a better trade-off between accuracy and speed. While these
methods reduce computational load and retain high-resolution processing, there is a noticeable
lack of open-source frameworks that simultaneously prioritize detection accuracy, computational
efficiency, and inference speed. Existing approaches often lack official implementations, rely on
fixed architectures with limited configurability, or are not optimized for real-time applications

such as robotics, navigation, or surveillance.

The proposed SegTrackDetect framework fills this gap by offering a highly modular and cus-
tomizable pipeline. The system combines segmentation-based ROI Estimation and tracking-
based ROI Prediction to identify regions for full-resolution inference. To handle partial detec-
tions from multiple sub-windows, it introduces the Overlapping Box Suppression (0BS) and
Overlapping Box Merging (0BM) algorithms, which help eliminate redundancies and improve
results. By combining OBS and 0BM with large ROI handling strategies, the system efficiently
handles both tiny-only and multi-scale detection scenarios in high-resolution images, making it
suitable for deployment in resource-constrained environments. Designed with real-world appli-
cations in mind, it supports both image and video input while balancing detection accuracy with

computational efficiency.

Most of the experiments presented in this thesis were conducted using the SegTrackDetect frame-
work, with precise architectural components and configurations described in detail in their re-
spective chapters. This chapter focuses on the system-level implementation, outlining the frame-
work’s capabilities, supported tasks, and available customization options. The first part of the
chapter describes the desktop implementation, in which all models are deployed in native Torch-

Script format. This version of the system has been released as open-source software [70], enabling
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Ficure 7.1: High-level architecture of the SegTrackDetect framework. Modules that support
user-defined customization are marked with the “cog” icon. All other components can also be
configured via arguments passed to the inference script (Python CLI).

broad accessibility and reproducibility. The second part discusses the embedded deployment us-
ing TensorRT, providing a discussion of performance gains and trade-offs in quality and inference
time. This part reflects the applied nature of the research conducted within the framework of an
industrial PhD program. Due to commercial considerations, only the desktop implementation

has been made publicly available, while the embedded version remains proprietary.

7.2 SegTrackDetect

SegTrackDetect [70] is an open-source framework for efficient small and tiny object detec-
tion in high-resolution images. It performs inference only within selected regions of interest
(ROIs), substantially reducing the computational load compared to exhaustive sliding-window
approaches. Within these selected regions, full-resolution inference is preserved, enabling the
use of lightweight detectors without compromising accuracy. The system employs two com-
plementary ROI selection mechanisms. The ROI Estimation Module produces binary masks of
potential object locations via semantic segmentation, while the ROI Prediction Module uses an
object tracker to predict ROIs based on previous frame detections. This dual approach enables
compatibility with both image-based and sequential detection tasks. Detections obtained from
individual windows are aggregated and post-processed via Global Filtering Block implement-
ing both Overlapping Box Suppression and Overlapping Box Merging to remove redundant
results and produce high-quality outputs. Detailed descriptions of all system components are
provided in Chapter 3, with additional extensions and validations discussed in Chapters 4, 5,
and 6. The focus here shifts from architectural design and experimental validation to practical

usability and application from the end-user perspective.

SegTrackDetect is designed with modularity and extensibility in mind. All core modules (ROI
Estimation, ROI Prediction, and Object Detection) can be replaced with user-defined mod-

els, as long as they are exported to TorchScript and follow the required pre- and post-processing
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structure. This flexibility allows users to adapt the system to different performance constraints
and application requirements, whether prioritizing speed, accuracy, or model complexity. The
framework automatically determines whether input data is image- or video-based and supports
both CPU and GPU execution (with GPU recommended for faster inference). A Dockerfile and
accompanying scripts are provided to streamline setup, and the Python-based interface allows
configuration via command-line arguments or configuration files. Users can customize pre- and
post-processing pipelines, and integrate any dataset by following the required structure outlined
in the manual. The overall architecture, closely aligned with the design presented in Chapter 5,
is illustrated in Fig. 7.1. Components that support user-defined customization are marked with
a “cog” icon. These include the ROI Estimation Module, ROI Prediction Module, Object
Detection Module, and the dataset interface (indicated at the input image stage), as the frame-
work is designed to facilitate seamless integration of custom datasets and models. The remaining
components also offer a degree of configurability, which can be adjusted via command-line argu-

ments.

SegTrackDetect supports four datasets for benchmarking:

Mapillary Traffic Sign Dataset (MTSD) [35] for image-based traffic sign detection,

SeaDronesSee [132] for drone-based person and boat detection in video sequences,

DroneCrowd [147] for video aerial crowd detection,

ZebraFish [100] for sequential fish detection in laboratory tanks.

Example configurations include pre-trained models such as YOLOv4 [12], YOLOv7 [136], U-
Net [114], and U2-Net [104]. The SORT-based tracker [9] is used in the default implementation
of the ROI Prediction Module, but users are encouraged to incorporate their own architectures
into any part of the pipeline. SegTrackDetect facilitates rapid experimentation by allowing
researchers and developers to focus on architectural design rather than framework engineering.
This is, to the best of current knowledge, the first window-based detection framework offering
this degree of modularity and configurability for small and tiny object detection. The system
has been used in previous work focused on UAV-based detection pipelines [69] and was widely

used throughout the experiments discussed earlier in this work.
The main contributions of SegTrackDetect are as follows:
e a complete and modular system for real-time small and tiny object detection in high-
resolution imagery,

e configurable modules for ROI Estimation, ROI Prediction, and Object Detection, sup-

porting both pre-trained and custom models,

e integrated support for four publicly available datasets: SeaDronesSee, DroneCrowd, Ze-
braFish, and Mapillary Traffic Sign Dataset (MTSD).

The code is publicly available at https://github.com/deepdrivepl/SegTrackDetect.
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7.2.1 Software Functionalities and Default Settings

The SegTrackDetect framework is organized around a modular pipeline designed to support ef-
ficient detection of small and tiny objects in high-resolution images. Its architecture includes
three core components: the ROI Estimation Module, the ROI Prediction Module, and the
Detection Module. These are supported by auxiliary components such as the ROI Fusion
Module, Detection Windows Proposal, and the Global Filtering Block. The ROI Estima-
tion Module extracts coarse binary masks from input images, reducing the search space for the
detector. When operating in video mode, the ROI Prediction Module complements this pro-
cess by predicting object locations based on temporal continuity using a tracker. The outputs
from both modules are combined by the ROI Fusion Module to then form a set of detection sub-
windows. Optionally, the framework supports a sliding-window mode in which the fused mask
is replaced with the all-foreground output. Given the binary mask, the Detection Windows
Proposal Module creates the batch of detection subwindows for the Local Object Detector
to process at high resolution. Detected boxes are projected back to the original image coordinate
system and filtered to eliminate duplicates. If video mode is active, filtered detections are used
to update the tracker state. Users may replace the default models and logic for ROI Estimation,
ROI Prediction, and Object Detection, as well as modify pre- and post-processing functions.
These advanced customization procedures are discussed in detail in the next section. Additional
configuration is supported through the Python CLI. Modules that enable model-level customiza-
tion are highlighted with a “cog” icon in Fig. 7.1, while other settings can be adjusted via script

arguments.

Pre-trained components and example configurations are provided for several tasks:

e traffic sign detection in image mode using the Mapillary Traffic Sign Dataset (MTSD) [35],
with an integrated YOLOv4 detector and a U2-Net-based ROI Estimator,

e maritime object detection in drone video sequences using the SeaDronesSee dataset [132],
employing a trained YOLOv7 detector and U-Net-based Estimators with various input

resolutions,

e crowd detection in drone video footage using the DroneCrowd dataset [147], integrating
YOLOv7 with multiple U-Net-based ROI Estimators,

e fish detection in laboratory recordings using the ZebraFish dataset [100], combining a
YOLOv7 detector with a U-Net-based ROI Estimator.

All three video-based use cases employ the lightweight SORT-based tracker integrated into the
SegTrackDetect framework. To ensure ease of use, SegTrackDetect provides a Docker-based envi-
ronment that manages all dependencies. Installation requires Docker Engine and NVIDIA Con-
tainer Toolkit for GPU execution. Scripts are provided to build the image, run the pipeline, and
download both pre-trained models and demo datasets. The main inference script, inference. py,
supports both the image and the video modes, with the appropriate mode automatically in-
ferred from the structure of the dataset. Its behavior can be extensively customized via a set of

command-line arguments.
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TABLE 7.1: Command-line arguments supported by the inference script inference.py.

Argument Type Description

--roi_model str Specifies the ROI model to use. All available ROI models: MTSD, ZeF20,
SDS_tiny, SDS_small, SDS_medium, SDS_large, DC_tiny, DC_small,
DC_medium

--det_model str Specifies the detection model to use. All available detectors: MTSD, ZeF20,
SDS, DC

--tracker str Specifies the tracker to use. All available trackers: sort.

--data_root str Path to the dataset directory (e.g., /SegTrackDetect/data/MTSD).

--split str Data split to use (e.g., val). If present, the script saves detections using
COCO image IDs defined in val. json.

--flist str Alternative to --split; specifies a file containing absolute paths to input
images.

--name str Name for the flist input. A COCO-style name. json file will be saved
in the dataset root directory.

--bbox_type str Type of detection window filtering algorithm: all (no filtering), naive,
or sorted.

--allow_resize flag Enables resizing of cropped detection windows. Otherwise, sliding win-
dows are used within large ROIs.
--obs_iou_th float IoU threshold for Overlapping Box Suppression (default: 0.7).

--cpu flag Forces CPU execution. If not set, CUDA is used.
--out_dir str Directory to save output results (e.g., results).
--debug flag Enables saving visualizations in out_dir.

--vis_conf_th float Confidence threshold for visualized detections (default: 0.3).

Through the Python CLI, users can control key components of the framework. In image mode,
frames are processed independently using only the ROI Estimation Module. In contrast, video
mode treats inputs as a continuous sequence, enabling ROI Prediction through tracking. All de-
tections are saved in the output directory as results-<split>. json or results-<name>. json,
depending on the evaluation split or provided name. The complete list of command-line argu-
ments with detailed explanations is provided in Tab. 7.1. For step-by-step usage instructions,

please refer to the manual at https://github.com/deepdrivepl/SegTrackDetect/README.md.

Figure 7.2 illustrates a sample output from the system. The orange regions represent the binary
mask produced by the ROI Estimation Branch, while the black rectangles mark the detection
windows. The detected objects are labeled with their class names and confidence scores. Aside
from the zoomed-in insets shown for clarity, the image is an unaltered debug output generated
by the framework. All detections are saved in the COCO-compatible JSON format.

7.2.2 Advanced Customization Options

The SegTrackDetect framework has been designed with a strong emphasis on modularity and ex-
tensibility, facilitating advanced customization of its core components. The system architecture
supports seamless substitution and modification of the ROI Estimation, ROI Prediction, and
Object Detection Modules, making it suitable for both academic research and industrial ap-
plications. Users can integrate custom models, datasets, and processing pipelines with minimal
effort, while the internal behavior of each component can be configured via dedicated configura-

tion dictionaries.
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FIGURE 7.2: Sample debug output from the SegTrackDetect framework using the Mapillary
Traffic Sign Dataset.

The following paragraphs outlines the available customization options, including parameter tun-
ing for integrated models and the integration of new architectures. A more detailed step-by-step

explanation is available in the project manual.

ROI Estimation Models For integrated ROI estimation models, users can adjust the be-
havior of the module by modifying its configuration file. This includes changes to pre- and
post-processing routines, as well as to specific hyperparameters such as thresholds or morpho-
logical dilation settings. New models may be incorporated by adhering to the required dictionary

format (Listing 7.1).

CustomModel = dict(
weights = ’weights/my_custom_model_weights.pt’,
in_size = (h,w),
postprocess = postprocess_function,
postprocess_args = dict(),
preprocess = preprocess_function,

preprocess_args = dict ()

LisTiNG 7.1: Example configuration dictionary for a custom ROI Estimator.
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Custom preprocessing and postprocessing functions must comply with the expected input and
output formats, which are documented in detail in the accompanying user manual at https:

//github.com/deepdrivepl/SegTrackDetect.

ROI Prediction The default implementation of the ROI Prediction Module relies on a
SORT-based object tracker, which can be customized by editing its configuration. Adjustable
parameters include max_age, min_hits, iou_threshold, min_confidence, and frame_delay.
To integrate a custom tracking algorithm, users need to implement a tracker class with sepa-
rate prediction and update stages. Once implemented, the tracker can be incorporated into the

system via the corresponding configuration entry (Listing 7.2).

CustomTracker = dict(
module_name = ’rois.predictor.CustomTracker’,
class_name = ’CustomTracker’,

args = dict (),
frame_delay = 3,
)
PREDICTOR_MODELS = {
’sort’: sort,

custom’: CustomTracker,

LisTING 7.2: Configuration dictionary for a custom ROI Predictor.

Object Detection The Object Detection Module can also be fully customized. Similarly
to the ROI Estimator, new models must be registered via a configuration dictionary that spec-
ifies the model weights, input resolution, preprocessing and postprocessing functions, and class
definitions (Listing 7.3).
CustomModel = dict(

weights = ’/SegTrackDetect/weights/my_custom_model_weights.pt’,

in_size = (h,w),

preprocess = preprocess_function,

preprocess_args = dict(),

postprocess = postprocess_function,

postprocess_args = dict(),

classes = [’class_a’, ’class_b’, ’class_c’, ...],

colors = [(255, O, 0), (0, 255, 0), (0, O, 255), ...]

LisTiNG 7.3: Configuration dictionary for a custom Object Detector.

This structure allows integration of detection networks with arbitrary input requirements and

classes, provided that the appropriate IO interface is respected.

New Datasets SegTrackDetect supports datasets in both image-based and video-based for-
mats. To integrate a new dataset, users must follow the required directory structure and anno-

tation format, as shown in Listing 7.4.

SegTrackDetect/data/YourVideoDataset/

|-- images/

| |-- seql/ # Sequence 1 with A~ images
| |-- seq2/ # Sequence 2 with B images
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| |-- seq3/ Sequence 3 with C images
| |-- seq4/

| +o- L

Sequence 4 with D images
Additional sequences as needed
|-- split_x.json Annotations in COCO format

|-- split_y.json Annotations in COCO format

H OH OH OH OB B

+-- split_z.json Annotations in COCO format

SegTrackDetect/data/YourImageDataset/

|-- images/ # All images should be placed directly in this directory
| |-- imagel.jpg # Image file 1

| |-- image2. jpg # Image file 2

| |-- image3.png # Image file 3

| +-- ... # Additional image files as needed

|-- split_x.json # Annotations in COCO format

|-- split_y.json # Annotations in COCO format

+-- split_z. json # Annotations in COCO format

LisTING 7.4: Required directory structure for new datasets.

Annotations should follow the COCO format, and the file_name field in each annotation entry
must contain an absolute path to the corresponding image. Once the structure and annota-
tion files are correctly configured, the dataset can be used seamlessly within the framework for

inference or evaluation.

7.2.3 'Trade-off Analysis of SegTrackDetect Configurations

This section presents example results that illustrate the trade-offs associated with different con-
figurations of the SegTrackDetect framework. In Table 7.2, three operating modes are considered:
(1) video mode, which combines both ROI Estimation and ROI Prediction; (2) image mode,
which uses only ROI Estimation; and (3) a sliding-window mode, which disables both ROI
modules and simulates a full uniform tiling across the image. To contextualize performance, the

SAHI sliding-window object detection framework [2] is included as a baseline for comparison.

Evaluation is performed using the protocol from [67], tailored to high-resolution tiny object detec-
tion with relative size thresholds. The protocol extends standard COCO metrics with additional
object size categories, enabling finer-grained performance analysis across scales. The results re-
port Average Precision (AP) for micro to large object categories and inference speed in frames
per second (FPS). The same detection models (YOLOv7 Tiny, YOLOv7, and YOLOvVT e6e) are
used in all experiments. SegTrackDetect is configured with a UNet-based ROI Estimator (with
ResNet18 backbone and input size of 448 x768) and a SORT-based ROI Predictor, while SAHI
is tested with identical subwindow sizes, overlap ratios, and post-processing parameters as the
sliding-window mode in SegTrackDetect. Across all detection models, SegTrackDetect in video
mode delivers the highest detection accuracy by leveraging both Estimation and Prediction.
The addition of the tracking-based ROI Predictor improves recall, especially for small and dis-
continuously visible objects (as thoroughly discussed in Chaper 5), at a modest computational
cost approximately 7-11% reduction in speed depending on model size. Despite this, real-time
performance is preserved, with frame rates between 18.4 and 33.5 FPS for video mode, and
between 20.3 and 36.3 FPS in image mode. In image mode, where only ROI Estimation is used,

a small drop in detection quality is observed along with a moderate improvement in processing
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TABLE 7.2: Quantitative results comparing SegTrackDetect (STD) in three modes (video,
image, and sliding-window) with SAHI [2] using the SeaDronesSee validation dataset. All
experiments run on NVIDIA RTX 4090 and use the evaluation protocol from [67].

Framework Estimator Predictor Detector AP AP50AP. AP APs AP, AP, FPS

STD UNet Sort yolov7tiny 53.2 84.7 33.8 52.4 61.9 37.6 69.0 33.5
STD UNet — yolov7tiny 529 83.9 32.2 52.2 61.9 37.3 68.1 36.3
STD — — yolov7tiny 47.1 79.3 33.2 46.3 52.8 29.2 30.6 18.1
SAHI [2] — — yolov7tiny 45.0 80.4 33.4 49.3 54.5 19.7 16.7 1.2
STD UNet Sort yolov7 53.6 86.0 35.8 51.5 61.7 41.6 68.4 26.4
STD UNet — yolov7 53.5 85.2 34.5 51.5 61.8 41.6 67.4 29.7
STD — — yolov7 44.7 78.7 33.0 44.2 50.7 27.3 37.0 7.9
SAHI [2] — — yolov7 39.2 764 32.1 42.6 48.9 21.8 179 1.1
STD UNet Sort yolov7e6e 52.3 86.3 34.3 51.8 61.3 45.6 69.4 18.4
STD UNet — yolov7ebe 52.1 85.6 32.3 51.8 61.4 45.6 67.7 20.3
STD — — yolov7e6e 45.3 80.2 32.6 46.4 51.1 34.8 48.5 4.9
SAHI [2] — — yolov7e6e 40.3 77.7 31.8 46.8 51.5 25.6 17.2 0.8

speed. This configuration may be preferable in scenarios where inference speed is the primary
constraint. Alternatively, the video mode, leveraging both ROI Estimation and Prediction,
can be used with a reduced input resolution for the Estimation Module to achieve a more fa-
vorable balance between detection quality, computational efficiency, and runtime performance.
Finally, the SegTrackDetect implementation of the sliding-window approach demonstrates that
it can match or surpass the accuracy of SAHI while offering significantly faster inference due to
its more efficient window management and internal optimizations. The greatest performance ad-
vantage is observed for medium and large objects, which benefit from the framework’s large-ROI
handling strategy and the Global Filtering Block, two key contributions discussed earlier
in this thesis that effectively consolidate redundant detections and improve overall detection

quality.

Increasing detector size (e.g., moving from YOLOV7 tiny to e6e) leads to longer inference times
but does not consistently improve detection quality. This effect is likely due to the fixed input
resolution across models and the dataset-specific class imbalance. The greatest improvements
are observed in the underrepresented medium-size category, where the capacity of the model
may contribute more significantly to generalization. These results underscore SegTrackDetect’s
flexibility: By selecting appropriate operating modes and detectors, users can tailor the system

to meet specific speed and accuracy constraints in a variety of deployment contexts.

7.2.4 Conclusions

SegTrackDetect introduces a flexible, modular, and efficient solution for small and tiny object
detection in high-resolution imagery that do not compromise the quality for larger objects.
The framework integrates ROI Estimation, ROI Prediction, and Detection Modules into a
unified pipeline that enables real-time performance without sacrificing detection accuracy. By
focusing inference only on relevant sub-regions of the image, SegTrackDetect reduces computa-

tional cost while maintaining high precision, particularly for small-scale objects. Unlike prior
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window-based approaches, which often rely on rigid architectures or lack available implemen-
tations [34, 67, 75, 155, 157], SegTrackDetect emphasizes adaptability and reproducibility. Its
architecture supports easy replacement or modification of individual components, such as using a
different estimators, trackers, or detectors, while maintaining providing standardized interfaces.
This is further supported by Docker-based deployment, which streamlines setup and ensures
reproducibility across platforms. A key strength of the system lies in its Global Filtering
Block, which employs the 0BS and OBM algorithms to eliminate redundant detections across
overlapping windows. This mechanism directly addresses one of the main challenges in window-

based detection and plays a central role in maintaining high precision in the final outputs.

Beyond its core capabilities, SegTrackDetect serves as an extensible research and prototyping
platform. Its support for COCO-format outputs, detailed documentation, and customizable
modules lowers the entry barrier for new users while enabling advanced experimentation by
experienced researchers. The system has already supported the research [69], demonstrating its

practical utility in developing new detection algorithms.

The experimental results confirm the efficiency and robustness of the framework in multiple
configurations. SegTrackDetect achieves superior accuracy compared to SAHI [2] while running
significantly faster, even when operating in sliding-window mode. When used with the video-
mode, it achieves over 25 FPS with YOLOvT7 and over 30 FPS with its lightweight variant,
making it suitable for real-time applications. In summary, SegTrackDetect is a comprehensive
publicly available solution for customizable ROI-based detection pipelines. It provides both a
practical tool for real-world deployment and a research platform for advancing the field of small

object detection.

7.3 Embedded Device Implementation

Optimization for embedded devices is a critical practical consideration for robotic computer
vision systems. A brief analysis of the quality-speed trade-offs is presented here. Since this
aspect relates primarily to implementation rather than the core scientific contributions of the
dissertation, the discussion is kept concise. Furthermore, the evaluation is performed on the
initial TinyROI system rather than the full SegTrackDetect framework, as the latter has been

optimized for embedded platforms in a proprietary version maintained for commercial use.

The TinyROI system was deployed and evaluated on an embedded device with limited memory
and computational resources. The experiments were conducted on a Jetson AGX Orin 64GB
platform. To reduce memory requirements, the neural network models used in the system were
optimized for the device’s hardware architecture. The impact of reduced model weight precision
on inference time and detection quality was also examined. For this purpose, TensorRT was
employed, and three levels of weight precision were evaluated: FP32, FP16, and INT8. Both
trained components of the system were subject to optimization, namely the UNet [114] semantic
segmentation model used by the ROI Estimator and the YOLOv7 Tiny [136] employed for
Local Object Detection. During performance measurements (FPS), the inference times of

both models were included. Reported values were determined as the average inference time per



Implementation Details 147

TABLE 7.3: Object detection metrics on the SeaDronesSee validation set for different formats
and weight precisions. T'S — TorchScript, TRT — TensorRT. Measurements conducted on the
Jetson AGX Orin 64GB.

format _ precision FPS AP  APgg APy5 AP,y APy APg AP, AP; AR ARy ARy ARs ARy AR

TS FP32 12.2 53.1 85.0 57.7 34.3 52.1 61.7 37.4 70.8 62.1 40.8 62.6 69.9 43.7 75.6
TRT FP32 28.2 53.1 85.0 57.7 34.3 52.2 61.7 37.5 71.2 62.1 40.9 62.7 69.9 43.8 76.1
TRT FP16 35.1 53.1 85.0 57.7 34.4 52.1 61.7 37.5 71.0 62.1 40.9 62.6 69.9 43.8 75.3
TRT INTS8 39.4 28.6 56.1 27.1 25.9 31.1 25.7 18.8 49.5 45.1 34.7 46.0 46.3 30.4 50.9

image across the entire SeaDronesSee [132] validation set. The experimental results are presented
in Tab. 7.3. As a reference for both detection quality and inference speed, TorchScript-based
models with FP32 precision weights were used, as prepared and described in [69]. The batch

size for both the segmentation model and the detector was set to 1.

Optimization of the trained models with TensorRT enabled more than a twofold increase in
inference speed — from 12.2 FPS to 28.2 FPS. Furthermore, reducing weight precision from FP32
to FP16 provided an additional speedup to 35.1 FPS without any loss in detection quality.
INTS weights offered even greater acceleration, though at the cost of a noticeable degradation in
quality. These results highlight the practical trade-off between speed and accuracy, and confirm
that reducing the model weights and optimizing the model for a specific hardware allows efficient

deployment on resource-constrained systems.
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Chapter 8

Conclusions

8.1 Summary

The primary goal of this dissertation was to design a modular object detection system based on
deep neural networks, tailored for detecting tiny and multi-scale objects in high-resolution im-
ages. The system was developed with an emphasis on achieving not only high detection accuracy
but also low computational cost and fast inference, enabling deployment in resource-constrained
environments such as mobile robots. The proposed system comprises several components working

together to balance accuracy and efficiency:

e alow-resolution, segmentation-based ROI Estimator that selects Regions of Interest (ROIs)

from each frame; analyzed in detail in Chapter 4,

e a ROI Prediction Module that leverages object tracking in video mode to restore regions

potentially missed by the Estimator; described in Chapter 5,

e a ROI Fusion Module that combines the masks generated by both the Estimation and

Prediction branches into a single unified ROI mask; presented in Chapter 5,

e aDetection Window Proposal Block responsible for converting the fused ROI mask into

a set of detection windows; discussed in Chapter 4,

e a lightweight Local Object Detector applied independently to each cropped windows;
implementation details are provided in both Chapter 4, and Chapter 5,

e a Global Filtering Module, incorporating the proposed Overlapping Box Suppres-
sion (0BS) and Overlapping Box Merging (OBM) algorithms, designed specifically to
address redundancy and fragmentation in window-based detection; described and evalu-
ated in Chapter 6.

Together, these components form a complete detection framework optimized for small object
detection in large-scale images, while remaining suitable for real-time deployment on embed-

ded systems. The proposed system is evaluated against several baselines throughout this work.

149
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The main experimental results in Chapter 4 compare both TinyROI (an initial version of the
framework) and SegTrackDetect (a final, more robust version) with sliding-window implementa-
tions integrated into each system. For broader context, the comparison also includes SAHI [2],
a widely used open-source framework for sliding-window detection. In addition, the ablation
studies presented in Chapter 4 analyze three distinct detection strategies (single-shot detection
on downsampled full images, the sliding-window approach, and the estimation-based TinyROI)
highlighting the strengths and limitations of each. In Chapter 5, the complete SegTrackDetect
framework, incorporating both the Estimator and Predictor, is benchmarked against state-
of-the-art object detection methods across three categories: general-purpose detectors, tiny ob-
ject detectors, and video object detectors, providing a broad quantitative comparison. Finally,
Chapter 6 evaluates the proposed Global Filtering Block, which includes both 0BS and 0BM,

against the baseline Non-Maximum Suppression (NMS) approach.

While modern general-purpose object detection methods perform well on medium and large
objects in benchmark datasets such as COCO, their performance on small objects remains sig-
nificantly lower. Furthermore, such benchmarks typically include relatively low-resolution images
and do not require downsampling of the input data. When these general-purpose methods are
applied to high-resolution inputs, both processing time and computational resource requirements
increase dramatically. This is especially problematic for transformer-based architectures, which
often require several gigabytes of GPU memory to process even moderately sized images. In-
creasing the input resolution, which is essential for detecting tiny objects, therefore leads to
a steep rise in memory and computation demands. Conversely, reducing the input resolution
causes the features of small objects to vanish, making them difficult or impossible to detect.
Additionally, most modern detectors include downsampling layers in their feature extractors,
which further degrade the visibility of small-scale objects. A straightforward way to address
this is to apply a small detection window over the high-resolution image using a regular sliding
grid. This increases the relative size of tiny objects within each window and improves recall.
However, this approach is computationally expensive and unsuitable for real-time applications,
particularly when detections are sparse and most regions contain only background. Addition-
ally, in multi-scale detection, larger objects are more likely to be split across multiple windows
when using a regular grid. The proposed system employs lightweight, shallow, general-purpose
detectors in the Local Object Detection Block. Their shallow design mitigates the effects of

downsampling in backbone networks while keeping the system efficient and fast.

To overcome these limitations, a class of methods known as window-based or focus-and-detect
approaches has emerged. These methods aim to select detection windows in a more data-driven
approach, rather than relying on exhaustive sliding-window scanning. Typically, they include
a learned preprocessing step that identifies informative regions. In the proposed system, a
lightweight, low-resolution binary segmentation network is used to estimate Regions of Interest
(ROIs), which are then used to select areas for full-resolution detection. Unlike other methods
that rely on clustering or density estimation, the proposed approach generates precise ROIs
in both dense and sparse scenes. This is achieved by directly training the segmentation net-

work on detection labels, without requiring additional annotations or assumptions about object
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density. Moreover, the proposed system eliminates the need for separate scale estimation mech-
anisms, which are often found in related methods. By combining sliding-window and crop-and-
resize strategies within large ROIs, the system can detect objects across a wide range of scales.
The complete design and evaluation of the ROI Estimation-based system are discussed in detail
in Chapter 4. In addition to comparing TinyROI and SegTrackDetect against single-shot detec-
tors and sliding-window methods, this chapter includes extensive ablation studies that guided
the development of the final SegTrackDetect pipeline. These studies cover the training pipeline
for the ROI Estimator (including input resolution choices and label generation methods), the
filtering strategies within the Detection Window Proposal Block, and the large ROI handling
strategy within the same module. Furthermore, this chapter demonstrated the initial need for
a Global Filtering Block, which was later extended through the development of the novel
0BS and 0BM algorithms, described in Chapter 6. Overall, the analyses presented in Chapter 4
support Auxiliary Thesis #1, which states: “Estimating ROIs using a deep neural network model
enhances both detection quality and inference speed compared to the naive sliding-window ap-

proach”.

In Chapter 5, the proposed SegTrackDetect system is extended with a second ROI source de-
rived from a SORT-like object tracking module. This addition was inspired by how humans
often detect small or partially occluded objects by leveraging motion cues. Since many mobile
robotics applications operate on temporally coherent video streams rather than independent im-
ages, incorporating a lightweight tracking component becomes feasible and, when implemented
effectively, can improve detection quality without introducing significant computational over-
head. Alternatively, it enables a trade-off: maintaining comparable detection quality while re-
ducing computational demands by lowering the input resolution required for the ROI Estimator.
This design enhances the system’s adaptability to embedded, resource-constrained environments
and demonstrates that tracking-based ROI Prediction serves as an effective complement to
segmentation-based Estimation. Extensive experiments described in Chapter 5 demonstrate
that incorporating an additional ROI source from the object tracker makes it possible to im-
prove detection quality, inference speed, and computational efficiency over state-of-the-art tiny
object detection methods. First, the final SegTrackDetect system was compared to several state-
of-the-art detectors and consistently delivered competitive results in terms of detection quality,
while significantly reducing the number of trainable parameters. Later, ablation studies showed
that these improvements in computational efficiency and processing speed, along with strong
detection performance, were directly enabled by the inclusion of the ROI Prediction Module.
Specifically, thanks to object tracking, the Estimator can operate at lower input resolutions
without sacrificing detection quality, resulting in faster inference and reduced resource usage.
Together, these findings validate Auxiliary Thesis #2.

While window-based approaches, such as the one proposed in this thesis, significantly improve
recall for tiny objects by increasing their relative size and preserving the original detail, they
can also introduce new challenges. In particular, these methods often produce partial detec-
tions near the edges of detection windows, where objects are only partially visible. Due to the
limited overlap between such fragments, standard Non-Maximum Suppression (NMS) struggles

to filter them effectively, often leading to clusters of redundant false positives. To address this,
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the proposed Overlapping Box Suppression (0BS) algorithm incorporates the detection win-
dow coordinates into the filtering process, allowing it to better identify and suppress partial
detections from the perspective of each window. By increasing the effective overlap with frag-
mentary detections, 0BS improves filtering performance even at lower IoU thresholds, reducing
false positives without eliminating true positives. In addition, the Overlapping Box Merging
(0BM) algorithm is introduced to merge partial detections in cases where no complete detec-
tion is present, a common issue in sliding-window pipelines and multi-scale object scenarios.
Together, these two algorithms are described in detail in Chapter 6. There, 0BS and 0BM are
extensively evaluated against two baselines: a system using only standard NMS and a variant
with no global filtering. Experiments conducted on the SeaDronesSee dataset demonstrate that
“The common issue of false positive partial detections in window-based systems can be miti-
gated through post-processing techniques such as Overlapping Box Suppression (0BS) and
Overlapping Box Merging (0BM)”, directly supporting Auxiliary Thesis #3.

The final part of this thesis, presented in Chapter 7, focuses on the implementation of this work,
conducted as part of the “Doktorat Wdrozeniowy” program. The proposed SegTrackDetect
system is released as an open-source, highly customizable framework that not only provides the
precise implementations described in Chapters 4 and 5, but also serves as a flexible foundation for
developing window-based detection methods. All major components, such as the ROI Estimator,
ROI Predictor, and Local Detector, are designed to be easily customizable. Users can modify
pre- and post-processing functions or even integrate entirely new models, encouraging extensive
experimentation. To the best of the author’s knowledge, this is the first high-level window-
based detection framework that offers such a degree of customization. Furthermore, Chapter 7
presents a brief analysis of deploying the system on embedded devices. Due to proprietary
restrictions on the full SegTrackDetect implementation, the experiments focus on the initial
TinyROI framework, examining the quality-speed trade-offs on resource-constrained embedded

hardware.

Together, these contributions establish SegTrackDetect as a customizable framework that not
only advances window-based tiny object detection through novel algorithmic improvements but
also supports practical deployment, addressing real-world constraints encountered in mobile

robotics applications.

8.2 Conclusions

This work addressed the problem of efficient tiny and multi-scale object detection in high-
resolution video, with a particular emphasis on robotics and UAV-based applications. To balance
accuracy and computational efficiency, a modular detection system SegTrackDetect was pro-
posed, combining segmentation-based ROI Estimation, tracking-based ROI Prediction, and a
custom Global Filtering Module designed to handle partial false positive detections common
in window-based systems. Together, these components enable high detection performance with

reduced model sizes, supporting deployment in real-time and resource-constrained environments.
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The first core contribution, a segmentation-based ROI Estimation Module, discussed in de-
tail in Chapter 4, enables context-aware selection of detection windows. Unlike uniform tiling
strategies, this approach uses coarse segmentation masks to guide window placement, aligning it
with meaningful image features and preserving detection context more effectively than sliding-
window methods. The initial version of the framework, TinyROI, was evaluated against two
baselines, single-shot detection with downsampling and a uniform sliding-window approach, all
implemented within the same codebase to ensure fair comparison. Experiments on the challeng-
ing Mapillary Traffic Sign Dataset (MTSD) showed that TinyROI achieved comparable detection
quality to the sliding-window baseline while reducing processing time by nearly a factor of eight.
Both window-based methods substantially improved detection of small objects and maintained
performance for medium-sized ones, though they initially underperformed on large objects. Fur-
ther analysis attributed this drop in quality to the training procedure of the detector, which
was kept identical across all evaluated methods, single-shot, sliding-window, and TinyROI, and
trained on a mix of cropped and downsampled images to maintain consistency. Although this
ensured fair comparison, it also introduced a compromise: the detector could not be fully opti-
mized for the window-based approaches. In subsequent experiments with SegTrackDetect, the
training strategy was adjusted to include only cropped images. This change led to noticeable
improvements in detecting larger objects. Additional improvements included a large ROI han-
dling strategy, which allowed lowering the detector input size, while ensuring that exceptionally
large ROIs were still accurately processed. This enhanced computational efficiency and reduced
inference time, as confirmed by extensive evaluation on three datasets: MTSD, SeaDronesSee,
and ZebraFish (Tab. 4.1). SegTrackDetect consistently outperformed both TinyROI and all
three sliding-window variants in terms of detection quality and speed. On SeaDronesSee and
ZebraFish, the system delivered robust performance across all object sizes, achieving 44.5 FPS
and 78.0 FPS, respectively. In MTSD, while SegTrackDetect was the fastest, it did not yield
a quality improvement, again likely due to the previously discussed limitations of the detec-
tor’s training setup. Compared to naive sliding-window strategies, the learned ROI Estimator
in SegTrackDetect reduced redundant computation and improved detection quality by better
preserving spatial context. These findings support the first Auxiliary Thesis of this work: “esti-
mating ROIs using a deep neural network model enhances both detection quality and inference

speed compared to the naive sliding-window approach”.

The second major contribution is the integration of object tracking into ROI selection via a
lightweight ROI Prediction Module, as detailed in Chapter 5. By leveraging temporal continu-
ity, this module effectively recovers regions missed by the low-resolution segmentation branch.
Extensive quantitative and qualitative evaluations demonstrate that the proposed dual-ROI
strategy outperforms several state-of-the-art object detectors on the challenging SeaDronesSee
and DroneCrowd datasets. On both datasets, the SegTrackDetect system achieves the highest
detection accuracy for the smallest objects, while also delivering competitive performance for
larger objects in the multi-scale detection scenario represented by SeaDronesSee. Notably, this
high detection quality is achieved with the smallest number of parameters among all compared

methods, highlighting the lightweight nature of the proposed system.

An ablation study confirms that the combination of high accuracy, low computational complex-

ity, and fast inference speeds is a direct result of integrating the ROI Prediction Module. On
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SeaDronesSee, the fusion-based configuration with a 128x192 input resolution achieves 52.4%
AP, 60.2% AR, and an ROI selection speed of 303 FPS, closely matching the 52.9% AP and
61.5% AR of a 448x 768 segmentation-only baseline, which operates at only 82 FPS. These re-
sults show that tracking enables lower-resolution processing without degrading detection quality.
Qualitative analysis further supports these findings: the segmentation branch is most effective
at detecting newly appearing objects, while the tracking branch compensates for inconsistently
segmented regions, especially in the case of very tiny objects. Together, these results validate
the second Auxiliary Thesis: “incorporating an additional ROI source, such as an object tracker,
into the ROI-based object detection system further improves detection quality, inference speed,

and computational efficiency over state-of-the-art tiny object detection methods”.

The third major contribution of this thesis is the introduction of a dedicated Global Filtering
Module, designed to address a key limitation of window-based detection systems: the presence
of partial detections in overlapping regions between detection windows. This module introduces
two complementary algorithms, Overlapping Box Suppression (0BS) and Overlapping Box
Merging (0BM). 0BS improves upon standard Non-Maximum Suppression (NMS) by leveraging
a cost-based filtering scheme that integrates object size, confidence, and spatial overlap. Unlike
NMS, which relies solely on IoU and often discards complete detections due to low overlap
or suboptimal confidence, OBS utilizes the coordinates of detection windows to infer partial
views of full objects from each window’s perspective. Combined with a unified cost matrix, this
approach enables high overlap between partial detections and partial object views, effectively
prioritizing the most complete instances. 0BM complements 0BS by merging fragmented detections
across intersecting windows, allowing recovery of objects that lack a single complete detection.
Extensive experiments on the SeaDronesSee dataset confirm the effectiveness of both algorithms:
0BS consistently outperforms NMS in terms of precision and recall, especially under low-IoU
conditions, while 0BM provides additional gains by consolidating fragments into full detections.
When applied together, 0BS and 0BM improve F1 scores by more than 10 percentage points
in some settings. These findings validate the third Auxiliary Thesis: “false positive partial
detections in window-based systems can be reduced through post-processing techniques such as

Overlapping Box Suppression (0BS) and Overlapping Box Merging (OBM)”.

Overall, this work demonstrates that selective full-resolution inference on dynamically chosen im-
age subregions, guided by learned segmentation and tracking-based ROI selection, offers a highly
effective strategy for detecting small and tiny objects in high-resolution imagery. The SegTrack-
Detect system integrates three core components: a segmentation-based ROI Estimator that
improves upon naive sliding-window methods, a tracking-based ROI Predictor that enhances
temporal consistency and recall, and a custom Global Filtering Module that mitigates com-
mon issues with partial detections using 0BS and 0BM. Together, these components confirm all
proposed theses: that learned ROI Estimation and tracking-based Prediction considerably
improve both detection quality and inference speed compared to traditional methods, and that
postprocessing specifically designed for overlapping-window artifacts further enhances detection
quality. Evaluations across diverse datasets demonstrate that SegTrackDetect provides a scal-

able, real-time solution for small object detection in high-resolution images.
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8.3 Future work

Most limitations of the initial system (TinyROI) were addressed during the development of
the SegTrackDetect framework. However, as noted in Chapter 2, the IoU-based assignment
commonly used for training and evaluating deep neural networks has several shortcomings when
applied to tiny objects. The training of the Estimator could be improved by replacing IoU
with a metric specifically designed for tiny objects, such as the Normalized Wasserstein Distance
(NWD) [153] adapted for semantic segmentation. This limitation is particularly pronounced
for the Estimator, which is trained on highly downsampled images, in contrast to the Local

Object Detector, where objects are processed at their original resolution.

While the proposed Local Object Detection Block has proven highly effective for small and
tiny objects under a relative-size definition, the framework could be further extended to handle
small objects defined in absolute terms — that is, objects with very low pixel counts where
preserving the original resolution alone may be insufficient. To achieve this, traditional methods
for small object detection could be integrated within the Local Detector, such as Scale-Aware
approaches based on Feature Pyramid Networks (FPN) [82]. Additionally, video object detection
techniques could be leveraged to exploit temporal continuity during training, further improving

detection robustness.

Another promising direction is to enhance the ROI Prediction Module with non-linear motion
models. The current approach assumes linear motion between frames, which can introduce in-
accuracies in scenes with abrupt or complex object trajectories. Incorporating more advanced
predictive models could improve ROI stability and object recovery in such scenarios. Addition-
ally, the ROI Estimator could be applied at higher resolution at the start of a sequence during
inference to improve recall for smaller objects, which would then be accurately tracked by the
Predictor. However, a more detailed analysis would be required to evaluate the speed-quality

trade-offs in this setup.

The Global Filtering Module, comprising 0BS and 0BM, also presents opportunities for further
development. Future research could explore class-aware merging strategies, particularly for cases
involving visually similar object classes. Moreover, a learned suppression and merging mechanism
based on the outputs of 0BS and OBM could generalize these techniques to a broader range of

scenarios, further enhancing the robustness and adaptability of window-based detection systems.

Although the modular design of SegTrackDetect ensures flexibility and ease of customization,
future work could investigate tighter integration between the ROI Estimation and Detection
Modules. Specifically, unifying their backbones via shared feature extractors or multitask ar-
chitectures may significantly reduce computational overhead and memory usage, enabling more
efficient deployment without compromising detection quality. Such integration was intentionally
avoided in this thesis to maintain modularity, but it may offer clear advantages in resource-

constrained environments.

Collectively, these extensions have the potential to further improve the quality, efficiency, and
adaptability of ROI-based small object detection systems for high-resolution images, particularly

in resource-constrained environments.
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