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Abstract

Glaucoma is a group of eye diseases which result in damage to the optic nerve. The
disease affects many millions of patients worldwide and it is a substantial public health
challenge. There is no single examination that can efficiently detect different types
of glaucoma. Diagnostic routine includes diverse tests and requires significant level of
experience.

Current approach for detecting glaucomatous structural damage is based mainly on
optical coherence tomography. While it provides high-quality tomograms of anatomical
structure of the eye, we can’t use the images to track dynamic changes in this complex
system which is influenced by many external factors that vary over time.

New diagnostic options independent of standard imaging techniques became avail-
able in the recent years as use of wearable medical devices is growing in many fields
of healthcare. Triggerfish (Sensimed) device is based on a contact lens sensor with
embedded strain gauge that measures ocular volume changes during 24-hour session.
Triggerfish measurements are related to intraocular pressure changes and it can record
low-amplitude ocular pulsations related to the heart rate.

This thesis considers application of machine learning techniques for analysis of data
acquired using Triggerfish contact lens sensor and devices for continuous monitoring of
cardiovascular system properties. Overview of basic machine learning concepts is pro-
vided before presenting the results of the research. Development of new machine learning
models for glaucoma diagnosis is described thoroughly. Predictive performance of the
models was estimated using cross-validation and many relevant metrics. Heart moni-
toring data associated with Triggerfish measurements can be used to more accurately
detect glaucoma. We can improve predictive performance of the models by including
measurements of the corneal biomechanical properties (e.g. corneal hysteresis).

System for the support of glaucoma diagnosis and control is proposed. It enables ap-
plication of predictive models based on multi-sensor data and clinical measurements. Ser-
vices for data sharing, management and visualization facilitate clinical decision-making
and collaborative research.

This thesis also refers to the aspects of personalized medicine and the concept of
transdisicplinarity.
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Streszczenie

Jaskra to grupa postępujących neuropatii nerwu wzrokowego, przy jednoczesnych morfo-
logicznych zmianach warstwy włókien nerwowych siatkówki. Wiele milionów pacjentów
na całym świecie choruje na jaskrę, a jej wykrywanie i leczenie jest poważnym wyzwaniem
dla systemu opieki zdrowotnej. Nie zaproponowano dotychczas uniwersalnej, skutecznej
metody diagnozowania różnych typów jaskry. Procedura diagnostyczna obejmuje wiele
badań i wymaga znacznego doświadczenia klinicznego.

Aktualne metody wykrywania zmian patologicznych związanych z jaskrą bazują przede
wszystkim na optycznej tomografii koherencyjnej (OCT). Tomogramy anatomicznych
struktur oka nie umożliwiają jednak obserwacji dynamicznych zmian w funkcjonowa-
niu tego złożonego układu, na który oddziałuje wiele zewnętrznych czynników. Wraz z
wprowadzeniem przenośnych urządzeń monitorujących stan pacjenta, pojawiły się w os-
tatnich latach nowe opcje diagnostyczne, niezależne od standardowych technik obrazowa-
nia stosowanych w okulistyce. Urządzenie Triggerfish (Sensimed) wykorzystuje soczewkę
kontaktową z wbudowanym tensometrem oporowym do pomiaru zmian kształtu rogówki
w ciągu doby. Względne zmiany objętości gałki ocznej zarejestrowane tą metodą umożli-
wiają ocenę zmian ciśnienia wewnątrz gałki ocznej.

W rozprawie opisano zastosowanie technik uczenia maszynowego w analizie danych
zarejestrowanych za pomocą sensora Triggerfish i urządzeń monitorujących w sposób
ciągły parametry układu sercowo-naczyniowego. Rozprawa zawiera też przegląd pod-
stawowych koncepcji i algorytmów uczenia maszynowego. Szczegółowo opisano proces
transformacji danych i właściwości zaproponowanych modeli predykcyjnych. Przedstaw-
iono porównanie oszacowania efektywności predykcyjnej modeli z uwzględnieniem wielu
kryteriów oceny (z zastosowaniem m.in. walidacji krzyżowej). Wykazano, ze uwzględ-
nienie pomiarów właściwości biomechanicznych gałki ocznej (np. histereza rogówki)
poprawia efektywność predykcyjną modeli.

Zaprezentowano koncepcję systemu wspomagającego diagnostykę jaskry, który wyko-
rzystuje opracowane modele predykcyjne bazujące na danych sensorycznych i klinicznych.
Omówiono scenariusze wspierania współpracy badawczej i podejmowania decyzji klin-
icznych z wykorzystaniem udostępniania, wizualizacji i eksploracji danych.

Perspektywa wdrożeniowa zaproponowanych rozwiązań została przedstawiona z uwzględ-
nieniem założeń medycyny personalizowanej i badań transdyscyplinarnych.
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Chapter 1

Introduction

The presented research was conducted as part of Applied Ph.D. Programme supported
by Ministry of Science and Higher Education (DWD/4/24/2020).

1.1 Motivation
Glaucoma is a worldwide vision threatening disease that is a significant public health
challenge. Substantial efforts has been made to improve noninvasive diagnostic methods
based on retinal fundus images or optical coherence tomography (OCT) [1]. Alternative
diagnostic options have become available in the recent years [2, 3]. Eye and cardiac
sensors can continuously record data during 24-hour session. Acquired sensor data can
be processed to build patient’s diagnostic profile that provides insights independent
of imaging techniques commonly used in ophthalmology [4]. There is a consensus
that Triggerfish measurements are related to the changes of intraocular pressure and
properties of such relation were investigated and analysed [5, 6]. Triggerfish contact
lens sensor (CLS) can also record low-amplitude ocular pulsations [7] related to the
heart rate with good accuracy in a majority of eyes [8]. Biomechanical properties of the
eye have influence on the recorded CLS signal values [9], therefore such factors should
be taken into consideration in the analysis of the CLS output. In addition, cardiovascular
system properties have impact on ocular blood flow [10]. Increasing availability of sensor
based devices enables observation of subtle interactions of cardiovascular system and eye
function during the whole day [11].

Deep convolutional neural networks can perform optic disc, cup and retinal vessel
segmentation and enable objective quantification of the optic nerve head changes [12].
Over the last years OCT technology has been significantly refined and the cost of single
examination decreased. It is now commonly used in diagnosing glaucoma and other
retinal diseases.

Although OCT provide high-quality tomograms of anatomical structure of the eye,
we can’t use the images to observe dynamic changes in this complex system which is
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1.2. Goals and scope of the thesis 2

affected by many external factors that vary over time.
Clinical routine for glaucoma detection includes diverse tests and requires extensible

experience. Intraocular pressure (IOP) measurement is one of the most important as-
sessment criteria in the diagnosis and management of glaucoma patients. Conventional
tonometric techniques only allow IOP to be measured several times a day at the clinic.
Such sparse data don’t provide enough information for detailed assessment of the eye
as it responses to the factors related to the patient’s activities (e.g. stress) and normal
circadian biorhythm (e.g body position). Using Triggerfish CLS it is possible to record
series of measurements every 5 minutes during the whole day (including the sleep time).
Data acquired by continuous monitoring of the physiological signals can be essential in
development of reliable diagnostic methods and management standards for the disease.

Application of machine learning techniques for analysis of Triggerfish CLS record and
cardiac sensor data can lead to accurate assessment of the eye in early glaucoma stages
and potentially allow more precise control of the condition.

1.2 Goals and scope of the thesis
The thesis of this research can be summarized as follows:

It is possible to efficiently support glaucoma diagnosis and control using machine
learning techniques for analysis of Trigerfish CLS and cardiac sensor data supplemented
with selected clinical measurements of the eye.

Development of analytical tools and application of machine learning models for diag-
nosis of glaucoma can be seen as implementation of personalized (or precision) medicine
premise assuming that individual patient data can be used to more precisely detect or
treat a disease.

Selection of appropriate statistical methods and machine learning algorithms (ML) is
required to perform valuable assessment of a single case or specific groups of cases. In
medicine it is important to understand how input data affect prediction of a ML model.
Consequently, this research mainly considers interpretable methods where the output can
be explained in terms closely related to the basic data properties and common clinical
concepts.

In practice, software system which supports efficient application of ML models may
address the requirements arising in diagnostic and analytic scenarios. Specific functions
for data sharing and analysis can be provided to facilitate adoption of the system in the
medical community. Exploratory data analysis approach can be used for comprehensive
characterization of the available data properties (including data recorded by Triggerfish
CLS and devices for continuous monitoring of cardiovascular system parameters). Ulti-
mately, the retrieved data-based knowledge combined with the experience in the field of
ophthalmology enables clinical hypothesis evaluation and refinement.
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1.3 Key contributions
This thesis describes the following key contributions:

◦ Implementation of raw data processing workflow that quantifies relationship of
Triggerfish CLS and cardiac sensor data in time intervals defined according to the
physiological circadian cycle properties. It can be used to characterize patient
subgroups and may contribute to understanding the pathogenesis and progression
of the disease.

◦ Development of efficient predictive ML models for glaucoma diagnosis support that
involve Triggerfish CLS and cardiac sensor data. Consideration of functional prop-
erties of the eye enables accurate assessment of conditions in early glaucoma stages.
Models supplemented with measurements of corneal biomechanical properties have
better performance metrics.

◦ Conception and initial implementation of the software system for glaucoma diag-
nosis support based on ML models involving sensor data and selected clinical mea-
surements of the eye properties. Provision of data visualization functions facilitates
identification of specific features related to the course of disease and prognosis.

◦ Proposal of collaborative research scenarios for the eye doctors and data scientists
with reference to the aspects of transdisciplinarity and personalized medicine.



Chapter 2

Clinical decision support and
personalized medicine

This chapter briefly describes concept of personalized medicine, clinical decision support
and provides examples of application of ML methods in medicine.

2.1 The role of ML in personalized medicine
The aim of personalized (also known as precision) medicine is to provide a more precise
approach for diagnosis and treatment of disease. It harnesses innovative methods to
characterize a specific case on the basis of its comprehensive data profile (including
genomic and environmental information). ML and statistical techniques are used in many
fields of modern medicine. Radiomics is quantitative analysis of medical images involving
deep learning algorithms [13] and advanced geometrical and topological methods [14].
Bioinformatics is using assembled DNA and RNA sequencing data for assessment of
disease at the cellular level.

Integration of clinical data acquired by multiple diagnostic tools can facilitate initial
case classification and the assessment of selected treatment. Quantitative features ex-
tracted from different imaging modalities output can be used in combination with other
patient information to improve patient management and clinical resource allocation.
Challenges related to the integration of heterogeneous health data sources also include
sharing and privacy issues [15].

Within the field of glaucoma detection and control there are several approaches that
can be recognized as individualized or personalized [16]. One of the aims of personalized
or precision medicine is identification of patient subgroups that have specific characteris-
tic related to diagnosis or management of a disease. There are reports (describing mainly
single nucleotide polymorphisms) on genetic variants associated with risk and progres-
sion of particular glaucoma types [17, 18]. Such preliminary studies may contribute to

4



2.2. Clinical decision support 5

understanding the pathogenesis of the disease, but in clinical practice it seems useful
to identify subgroups according to the available data such as correlations of Triggerfish
and cardiac signal in particular time intervals [19], eye biomechanical properties [20] and
selected clinical data of the patient.

Interpretability of predictive models is an important issue in application of the models
developed in research process. Identification of domain-specific set of constrains that
make reasoning process understandable is essential in medicine. General properties of
the models involving e.g. relative attribute importance can be provided for the users to
help adequate model choice and comparison of results. Prediction of an interpretable
model for an individual case can be explained in terms known for the users, providing
description in the form of inference rules or relevant quantitative summary.

Generally, there is no tradeoff between accuracy and interpretability when we con-
sider the full process of turning data into knowledge that can be used in practice.
Interpretability is useful for troubleshooting or comprehensive asessment of the models,
which leads to better accuracy, not worse. We should expect both performance metric
and interpretability metric to be iteratively refined in the multi-step process of model
development [21]. Interpretability is also a key element of trust for ML models as users
can decide whether predictions are reliable for specific cases and general model properties
are consistent with expected characteristics.

2.2 Clinical decision support
Clinical decision support systems (CDSS) are intended to improve healthcare delivery by
providing essential clinical knowledge, patient information and other health data relevant
to decision-making [22]. Currently CDSS are software systems with web interface that
can be connected to data sources such as electronic health records (EHR) and repositories
of diagnostic data.

CDSS can be based on the set of reference information (knowledge base). Clini-
cal structured information is processed by algorithms in the system inference engine to
produce rules that can be used in decision-making for an individual case. This type of
CDSS implements evidence-based guideline recommendations that address both preven-
tive practices and management of disease. GLIDES (Guidelines Into Decision Support)
is an example of such a system that has been created at Yale University School of
Medicine (USA). It provided clinical decision support for pediatric asthma and obesity
management using recommendations of National Institutes of Health (NIH) and Centers
for Disease Control and Prevention (CDC) [23].

ML-based (or AI-based) CDS systems don’t use structured knowledge base or any
explicit reference information representation. These systems facilitate decision-making
by using ML models designed for handling specific clinical scenarios.
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ML models for multiple disease detection based on standard laboratory tests can
facilitate initial patient assessment [24]. Predictive performance of these models is
relatively decent compared to standard routine in clinical environment, especially when
time allocated for patient is limited. Application of the models can prevent the oversight
of important diagnostic factors when the range of clinical data available for patient is
large. Implementation of comprehensive visualization and data management methods in
the system enable embedding ML model results in the extended context of the patient’s
data [25].

Combined ML and rule-based approach also has been proposed for EHR data pro-
cessing in CDSS (e.g. for detection of patient allergies [26]).

CDSS can increase compliance with specific guidelines and standards in clinical envi-
ronment. Important requirements and suggestions can be provided as alerts or reminders
for CDSS users. Tracking and controlling functions can reduce risk of errors. CDSS can
enable efficient scheduling and selection of diagnostic path for a patient. CDSS also can
include reporting services for clinical documentation maintenance.

Potential pitfalls of CDSS include negative impact on users and clinical process due to
inappropriate design of some services, limited customization or introduction of too many
constraints in a dynamic healthcare environment. Initial cost of CDSS deployment may
be relatively high as it usually encompasses implementation of organizational changes in
the clinic, user training and engineering support.



Chapter 3

Glaucoma

This chapter provides basic knowledge about the eye and glaucoma. Application of ML
techniques in diagnosis and control of the disease was also described.

3.1 Basic medical knowledge
Advances in understanding anatomical structure of the eye and its physiology facilitate
development of new diagnostic methods and therapeutic standards in ophthalmology.

Eyes dynamically adapt to changing external conditions. Light enters the eye through
the clear cornea. The amount of light is controlled by the circular pupil located in the
center of the thin iris. The lens which lies behind can change its shape to focus the
light onto the light sensitive tissue called retina. Retina contains photoreceptor cells
that absorb the photons and finally produce electrical impulses that are transmitted via
the fibres of the optic nerve to the visual cortex in the brain.

The aqueous humour is a transparent fluid inside the front part of the eyeball. In-
traocular pressure (IOP) depends on the balance between aqueous humor production and
its drainage through the trabecular meshwork and ciliary muscle. Ocular aqueous humor
is produced continuously in the ciliary processes of the ciliary body to supply nutrients
to the lens, cornea and avascular tissues. It flushes away their metabolic waste products,
provides stabilization of the ocular structure and regulation of the homeostasis of eye
tissues [27]. Diverse pathological conditions affecting IOP can develop when the bal-
ance between inflow and outflow is disturbed. Understanding the complex mechanisms
that regulate aqueous humor circulation is essential for better diagnosis and control of
glaucoma.

Glaucoma is a group of eye diseases that lead to damage of the optic nerve. This
neurodegenerative disorder is characterized by progressive loss of retinal ganglion cells
and optic nerve axons. It is the second leading cause of blindness worldwide (after
cataract) and the most frequent cause of irreversible vision loss. Prevalence of glaucoma

7



3.2. ML in glaucoma diagnosis and control 8

was investigated in many studies for different populations [28, 29]. It is estimated within
the range 1%-4% for European populations.

Primary open-angle glaucoma (POAG) is the most common type of glaucoma. POAG
is classified into high tension glaucoma (HTG) and normal tension glaucoma (NTG).
Elevated intraocular pressure is the main feature in HTG, whereas in NTG, the IOP
value is within the normal range (IOP ≤ 21 mm Hg) for the population.

Main risk factors for glaucoma include older age, family history of the disease and
high myopia. Comprehensive eye examination is necessary to detect glaucoma early.
Diagnostic routine includes diverse tests and requires significant clinical experience. IOP
measurement is one of the most important assessment criteria in the diagnosis and
management of glaucoma patients [29].

Optical coherence tomography (OCT) is common diagnostic approach for detecting
glaucomatous structural damage [30]. OCT enables objective quantification of optic
nerve head changes in glaucoma [31]. Analysis of retinal images taken by high-resolution
fundus camera is another diagnostic method [32].

While development of techniques for image data processing is quite intensive there
are other diagnostic options that became available in recent years [33]. Eye and cardiac
sensors continuously register data that can be processed to build patient’s diagnostic
profile that provides insights of the eye and cardiovascular system interactions. It is the
main research issue considered in this thesis.

Automated perimetry is also used for visual field testing. It enables monitoring of
disease progression.

Treatment in glaucoma is usually focused on reduction of IOP with various drugs
or minimally invasive surgical procedures. Emerging stem cell therapies are aiming at
restoring function of the eye by reconstructing ocular tissue. Trabecular meshwork stem
cells can be used in regenerative or protective treatment. Preliminary experimental
results seem promising but there are many challenges related to the stem cell delivery,
integration and safety [34].

3.2 ML in glaucoma diagnosis and control
Introduction of new diagnostic devices and advances in ML techniques enable progress
in ophthalmology and fundamental eye research.

Optical coherence tomography is noninvasive and safe method of examining soft
tissue. Since 1991 OCT has demonstrated its applicability in detailed, cross-sectional
visualization of the eye’s structure. It allows a qualitative assessment of tissue features
and detection of pathological changes. An OCT tomogram is a cross-sectional image
representing the optical reflectance properties of the examined tissues.
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Annotation of 3D structures requires analysis of a series of cross-sections, that can
include several hundred images (depending on the device and scanning protocol). It is
not possible to make extensive analysis of such amount of data manually in a limited time
(what is common in clinical practice). Automatic parameterization of the retinal images
can support understanding the effects of structural changes in the eye on vision quality.
Application of ML algorithms for image segmentation and comprehensive analysis of
OCT data allows quick assessment of the features relevant to many eye pathologies such
as diabetic retinopathy (DR), age-related macular degeneration (AMD) and glaucoma.
Currently it is possible to determine thickness of the retinal nerve fiber layer (RNFL),
structure of the optic nerve head (ONH) and morphology of vascular network of the
retina [35].

Figure 3.1 shows sample tomograms of the ONH. ONH cupping is the common
clinical feature of glaucoma. Prelaminar cupping of the ONH surface is characterized by
progressive loss of the prelaminar neural tissues, which results in the increase of the depth
and width of the cup (thus increasing the cup to disk ratio). In most cases, glaucoma
leads to damage and remodeling of the laminar connective tissues and progressive loss of
retinal ganglion cell (RGC) axons [36]. Figure 3.2 shows topografic thickness information
of the RNFL for the same eyes as in figure 3.1.

Figure 3.1: Sample OCT tomograms of the optic nerve head (ONH). Healthy eye images on the
left. Images of the eye with glaucomatous optic neuropathy on the right (increased average cup to disc
ratio). Image courtesy of Robert Wasilewicz.
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Many advanced deep learning architectures have been introduced in the last years [37].
Quality of the OCT imaging output has improved (quantified by the histogram-based
maximum tissue contrast index (mTCI), image resolution or other metrics). Inherent
issues affecting the quality of OCT data output can be technology-based (noise, acquisi-
tion errors) and biology-based (eye movement, heterogeneous tissue reflectivity, shadows
related to the blood flow).

Figure 3.2: Sample OCT imaging output providing topographic thickness information of the retinal
nerve fiber layer (RNFL). Healthy eye images on the left. Images of the eye with glaucomatous optic
neuropathy on the right (retinal nerve fiber layer assymetry and decreased average thickness). Image
courtesy of Robert Wasilewicz.

Convolutional neural networks (CNN) have been used for automated segmentation
and classification of OCT images of cases with suspected glaucomatous neuropathy [38].
CNN are feed forward (i.e. without recurrent connections) neural networks applied for
solving computer vision task in many fields of medicine. CNN is a sequence of layers
that are specifically useful for transformation of the input raw images (composed of
many channels). Convolutional layer is the basic building block of CNN. This layer
computes dot product of the filters (kernels) and local regions of the input volume. It is
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called feature (or activation) map. Pooling layer is usually placed after a convolutional
layer. It performs downsampling operation on the previous layer volume to reduce the
amount of parameters, which can prevent overfitting of the network. Average and max
pooling of squared region are the common operations in this layer. Transition to fully-
connected layers at some point is a standard network pattern for CNN architecture. The
last fully-connected layers are used to handle complex hierarchical relations in feature
representation produced by the previous layers. Objectives such as class scores are finally
determined. Rectified linear unit (ReLU) is the common activation function used in
CNN. It is a simple, nonlinear function that will output the input directly if it is positive,
otherwise, it will output 0. It allows use of backpropagation for efficient network training.

Fully connected networks (FCN) have been also proposed for image segmentation
and classification. This architecture uses CNN to extract image features and performs
transposed convolution to produce output image that has the same dimensions as the
input and can represent predicted class for the input pixels [37].

Deep learning models provide the highest overall performance for segmenting the
different structures of the optic nerve head [38]. Common network architectures include
U-Net based on FCN [39] and deep CNN such as VGGNet with reduced set of network
parameters [40].

Deep learning algorithms require a large amount of training data [41]. Several data
augmentation methods have been proposed for efficient generation of new artificial in-
stances that are similar to the instances from the available clinical datasets [42].

Predictive models of long-term glaucoma progression based on initial ONH structural
features, IOP and selected clinical data have been proposed for POAG cases. RNFL
thinning can be predicted using random forest model with lamina cribrosa (LC) curvature
index (considered as indicator of LC deformation related to the degree of mechanical
strain on the LC) and IOP as the most important attributes [43].

Genome-wide association studies have revealed many genetic variants associated with
variation in IOP. CNN have been used to investigate impact of gene variations on the
trabecular meshwork cells morphology. Cell painting protocol for multiple fluorescent
channels was applied to generate images suitable for morphological profiling. Differences
in cellular morphology quantified by CNN indicated significant effect of gene knockout
(e.g. LTBP2, BCAS3) for overall morphological variation or individual organelles (e.g.
ANAPC1) [44]. This approach enables analysis of the complex genetic background
related to the development of glaucoma.



Chapter 4

Machine learning basic concepts

In this chapter, basic concepts related to the scope of the thesis are introduced. It
provides an overview of machine learning (ML) algorithms, model performance metrics
and remarks on the interpretability and explanations for predictive models.

4.1 Overview
In 1950 Alan Turing published a famous paper [45] in which he asked if machines can
think and proposed a test that can be used to distinguish between a (digital) computer
and human. Since the mid-20th century, we have seen significant progress in the fields
related to computational intelligence.

ML is a broad research field that lies at the intersection of the artificial intelligence
(AI) and data science. Data science considers data collection, organization and analysis
in order to extract important data properties or knowledge. AI concerns problems that
seem to require intelligence when solved by humans and uses computational methods
to find reliable solutions. ML algorithms can learn from experience in the form of
observational data or interactions with an environment. We train or use ML algorithm
for available data instead of explicitly writing a code to handle all possible cases or
patterns (which is often infeasible or impractical).

Suppose x1, x2, ..., xp are independent variables (called predictors or features) and
y is an output variable (called response). We assume that relationship between X =
(x1, x2, ..., xp) and y can be written in the general form as y=f(X) + ε, where f is
some fixed but unknown function of X, and ε is random error term (called noise). Noise
ε is independent of X, has zero mean and variance V ar(ε). ML refers to methods for
estimating f and evaluating of the results. In order to predict output ŷ for given features
X we generate f̂ which is an estimate for f , i.e. ŷ = f̂(X). In general the accuracy
(quality) of prediction ŷ depends on reducible error and irreducible error. Inaccuracy
related to the fact that f̂ will not be a perfect estimate of f will introduce some error.
It can be reduced as it is possible to improve accuracy of f̂ by using the most suitable

12
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ML technique to estimate f . There will be other unmeasured or unknown variables that
contribute to y, including measurement error. Irreducible error is an upper bound on the
accuracy of prediction for y and is generally unknown in practice [46].

Other important questions in ML are related to the properties of predictive models in
the context of inference, i.e. relationship between X and y. These questions refer to the
association of predictors with response and adequate representation and interpretation
of this association.

In supervised learning approach we consider set of observations (containing both the
inputs and outputs) called training set. In the process known as learning by example
difference of reference output and predicted value i.e. yi − f̂(Xi) for the observations
is used to build a general model of input and output relationship.

In the approach known as unsupervised learning we don’t have reference output
and there is no direct measure of success. For the most of unsupervised algorithms it is
difficult to assess quality of the results. Unsupervised techniques are used to characterize
specific patterns in big datasets or summarize properties of groups of similar objects.

4.2 Regression
One of the common problems in ML is prediction of continuous output variable on the
basis of a set of continuous input variables (features).

Linear regression is a standard statistical method based on the assumption of linear
relations in dataset. For a vector of inputs XT = (x1, x2, ..., xp) we predict output y
using the following model

ŷ = β̂0 +
p∑

j=1
xjβ̂j (4.1)

If we include β̂0 called intercept as the first element in the column vector of coefficients
β̂ and include x0 = 1 as the first element in X, it can be written as a product

ŷ = XT β̂ (4.2)

There are many different methods of fitting linear model to a given dataset, but the
most common is the least squares method. We choose the coefficients of β to minimize
the residual sum of squares (RSS) which is a quadratic function of the parameters

RSS(β) =
N∑

i=1
(yi − XT

i β)2 (4.3)

Let X be N x (p+1) matrix which contains N input vectors as rows, and vector Y contains
relevant outputs. Final solution can be written as

β̂ = (XT X)−1XT Y (4.4)

providing XT X is invertible (nonsingular).
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4.3 Classification
In classification we predict discrete class labels (i.e. qualitative output) on the basis of a
set of continuous input variables (features). Regression and classification problems have
a lot in common, and both can be viewed as approximation of a function. If we have
more than two distinct class labels defined it is called multiclass classification. Binary
classification is a specific type of the problem where only two distinct class labels are
defined. This thesis refers mainly to the binary classification algorithms.

4.4 Algorithms
Wide range of ML algorithms have been proposed for analysis of various data types.
There is no single approach that outperforms all others across all possible datasets. In
practice, one of the most challenging tasks in ML is selecting the best algorithm for a
given dataset. This section contains overview of the algorithms that were applied to
analysis of the experimental data.

Logistic regression
Logistic function can be applied to model relationship of X and probability p(X) =
P (y = 1|X) i.e. conditional probability that response equals 1 given the predictors.
The fitted logistic curve has the following form:

p(X) = eβ0+XT β

1 + eβ0+XT β
(4.5)

It can be written as
ln( p(X)

1 − p(X)) = β0 + XT β (4.6)

Decision boundary for this model is the set of points {X : β0 + XT β = 0} which is a
hyperplane.

Logistic regression model is usually fitted by maximum likelihood method. Likelihood
is probability density function of a given data seen as a function of the parameters of a
model. It can be written as

l(β0, β) =
∏

i:yi=1
p(Xi)

∏
j:yj=0

(1 − p(Xj)) (4.7)

Plot of the sample sigmoidal curve is shown in the figure 4.1.

Naive Bayes
Naive Bayes algorithm is based on the simple/naive assumption of independence of the
predictors [47]. For an input vector X = (x1, ..., xp), m class labels C1, ..., Cm using



4.4. Algorithms 15

Figure 4.1: Example of the fitted logistic regression curve (blue) for glaucoma predictive model
based on one continuous input variable (CH). Points (black) represent predictions of complex logistic
regression model involving CH, CRF and Triggerfish data for the relevant CH values.

Bayes theorem we can write:

p(Ci|X) = p(Ci)p(X|Ci)
p(X) (4.8)

We try to determine class label of X, p(X) is the same for each class and can be skipped.
Let C(X) means selection of class with the highest probability for X:

C(X) = arg max
i

p(Ci)p(X|Ci)
p(X) = arg max

i
p(Ci)p(X|Ci) (4.9)

Prior probability p(Ci) refers to the assignment of Ci class label without any specific
condition. Application of the chain rule for conditional probability and assumed inde-
pendence of the predictors give

p(X|Ci) =
p∏

j=1
p(xj|Ci) (4.10)

Finally
C(X) = arg max

i
p(Ci)

p∏
j=1

p(xj|Ci) (4.11)

where p(Ci) and p(xj|Ci) are easy to calculate for the given input data.

Decision tree
Decision tree is a binary branching structure used in methods for solving classification and
regression problems. Each node in the tree involves simple feature comparison against
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some value (i.e. logic conditon for a feature). Predictor space is divided into a number
of distinct and non-overlapping regions. It is non-parametric approach (i.e. without
assumptions on data distribution) provided that no constraint on maximum tree depth
is set. Many techniques such as pruning are used to limit complexity of the resulting
tree by testing sequence of subtrees generated according to diverse strategies in order
to reduce prediction error. It is possible to improve prediction accuracy by combining
a large number of trees, with some loss in interpretability of the results. This led to
ensemble methods like random forest or gradient boosting.

Random forest
High variance is one of the disadvantages of standard decision trees: small change in
the input data can result in different sequence of splits and different prediction result.
Bagging (also called bootstrap aggregation) is a technique for reducing variance that
is particularly useful for decision trees. In bagging we generate B training sets using
random sampling with replacement for a given input data. We draw a fixed number
of samples for each of the training sets. Subsequently we build the relevant separate
trees using only a randomly selected subset of features for the each split in tree. Final
prediction f̂ for new observation x is by obtained by averaging (in regression) output
from the all trees (similarly by majority voting in classification):

f̂(x) = 1
B

B∑
b=1

f̂b(x) (4.12)

Low correlation among the trees in the ensemble is possible due to the high variance of
a single decision tree. Error rate for the ensemble is usually considerably lower than for
any of the trees.

Gradient Boosting Machine (GBM)
Boosting is yet another technique that can improve performance of decision trees. In
GBM trees are grown sequentially, each tree is built using information from the previously
grown trees [48]. For the each step new tree is fitted to residuals of the ensemble.
This tree is added to the model to update the residuals. The shrinkage parameter
0 < λ ≤ 1 controls learning rate and improves generalization properties of the final
model. Recurrence relation for subsequent approximations of GBM model can be written
as:

ŷm = ŷm−1 + λ∆m(X), (4.13)

where X is a matrix of observations and ∆m is a tree built so as to minimize differentiable
loss function using residual vector. Usually the trees are small (i.e. number of splits is
limited). Typical values of λ are small and a large number of trees is required to achieve
good performance.
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Clustering
Clustering refers to unsupervised learning techniques for finding clusters or subsets in a
dataset. Dataset is divided into distinct clusters so that the observations within each
cluster are more similar to each other than compared with observations assigned to
different clusters. Choice of the relevant measure of distance or dissimilarity between
observations is the basis of reliable cluster analysis. Properties of distance function d
defined for a set M containing observations are determined by the axioms of metric
space:

1. Positivity:
d(x, y) ≥ 0 (4.14)

2. Identity:
d(x, y) = 0 ⇐⇒ x = y (4.15)

3. Symmetry:
d(x, y) = d(y, x) (4.16)

4. Triangle inequality:

d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ M (4.17)

In the thesis we only consider M which is a set of vectors of fixed length. Euclidean
distance is the common metric defined as

dE(x, y) =

√√√√ p∑
i=1

(xi − yi)2 (4.18)

It is related to the shortest straight line between points in space. Many other distances
are used, e.g. Manhattan (taxicab) distance based on paths along the rectangular grid:

dT (x, y) =
p∑

i=1
|xi − yi| (4.19)

Clustering can be used for data reduction of large datasets (for processing or visualiza-
tion) or outlier detection (finding possible errors).

K-means

K-means is a simple and efficient algorithm for partitioning a dataset into specified num-
ber of clusters. It is a centroid-based method in which each cluster is represented by a
central vector that doesn’t have to be a member of the dataset. K-means uses iterative
refinement approach and is intended for squared Euclidean distance. Observations are
randomly assigned to the K clusters C1, ..., CK at the beginning. These assignments
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are updated in each step using measure W (Cl) of the amount by which the observa-
tions within a cluster differ from each other such that total within-cluster variation is
minimized:

arg min
C1,...,CK

K∑
l=1

W (Cl) (4.20)

K-means algorithm finds local optimum, therefore it should be run multiple times with
different random initial cluster assignments. Finally we select solution for which the
objective is smallest. Many methods for determining the relevant/adequate number
of clusters in a given dataset have been proposed (e.g. elbow heuristic based on the
explained variance as a function of K).

Hierarchical clustering

Hierarchical clustering is a combinatorial algorithm processing the observations without
any direct reference to an underlying probability distribution. Connectivity-based clus-
tering produces hierarchical representation (i.e. ordered sequence of groupings) in which
the clusters at each level of the hierarchy are created by merging clusters at the nearest
preceding level. Two groups with the smallest intergroup dissimilarity are selected for
merge at the next level in the most common agglomerative strategy. Distance between
clusters X and Y is defined as the linkage criterion D(X,Y). The following main linkage
types are used:

◦ Single linkage is the smallest distance between the observations from X and Y
(minimal intercluster dissimilarity):

D(X, Y ) = minx∈X,y∈Y d(x, y) (4.21)

◦ Complete linkage is the largest distance between the observations from X and Y
(maximal intercluster dissimilarity):

D(X, Y ) = maxx∈X,y∈Y d(x, y) (4.22)

◦ Average linkage is based on the average distance between the observations from X
and Y (mean intercluster dissimilarity):

D(X, Y ) = 1
|X| |Y |

∑
x∈X

∑
y∈Y

d(x, y) (4.23)

4.5 Feature selection
Feature (or attribute) subset selection is the process of choosing a subset of features
according to some requirements (or criteria). Main aim of feature selection is usually
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improvement of model performance. Another aim is selection of the most important fea-
tures to facilitate interpretation of model and understanding of properties of the available
data. Feature selection can also reduce complexity of model as some redundant features
can be removed. Feature selection problem is particularly important in bioinformatics
(for datasets where the number of features is greater than the number of observations).

There are 2p possible subsets for the given p features that have to be considered in
order to solve the feature selection problem. It is computationally infeasible to directly
check all candidate sets for large p values. Many efficient methods have been proposed
for choosing the optimal subset. Wrapper methods use output of ML model to find
solution (e.g. recursive feature elimination). Filter methods determine subset indepen-
dently of ML algorithms, on the basis of statistical or information related properties of
the features (e.g. minimum redundancy maximum relevance or χ2 test for categorical
features). Embedded methods use internal properties of specific ML algorithm (e.g.
lasso or elastic net).

Stepwise feature selection
Stepwise feature selection is one of the common wrapper methods. Forward stepwise
selection begins with an empty set of features. One feature is added to the set in sub-
sequent iteration steps. Feature that mostly improves performance of a model for the
enhanced set is chosen at each step (we compare feature sets of equal size using e.g.
residual sum of squares for regression). At the end we build models for the generated sub-
sets and select one that has the best performance estimate (using e.g. cross-validation).
Backward stepwise selection begins with the set containing all features. In the next
steps we remove the least useful feature (regarding model performance). This method
gives results close to the forward selection. There are hybrid approaches where features
are added sequentially to the model and some features that no longer improve model
performance can be removed at each step.

Ridge regression and LASSO
Ridge regression and LASSO (least absolute selection and shrinkage operator) are tech-
niques that allow shrinking coefficients or regularization of a fitted model by introducing
penalties. Ridge regression is similar to the least squares fitting method but includes ad-
ditional penalty term that has impact on the final coefficient estimates. Ridge regression
coefficients minimize the following expression

N∑
i=1

(yi − β0 −
p∑

j=1
βjxij)2 + λ

p∑
j=1

βj
2 = RSS + λ

p∑
j=1

βj
2 (4.24)

As tuning parameter λ ≥ 0 increases, the coefficients estimates are shrunken towards 0.
For λ equal 0 coefficients are the same as in the least squares method. Increasing the
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value of λ will not result ultimately in setting any coefficient to 0. In LASSO the penalty
term in the above expression is replaced by λ

∑p
j=1 |βj|. This change results in different

solution: LASSO performs feature selection as some coefficients are set exactly to 0 for
sufficiently large λ values. Optimal value of λ can be determined using cross-validation
for a grid of λ values.

4.6 ML model performance evaluation
Assessment of prediction capability of a ML model is very important in practice, since
it defines the scope of its application. Generalization error is especially significant, as
it refers to the prediction error for independent test dataset and selected loss (cost)
function. Training and test data need to be drawn from the same distribution to achieve
reliable results of model assessment. Training error is the average loss over the training
dataset. It is not a good estimate of the test error as training error decreases when we
increase complexity (also called capacity) of the model. More complex model can adapt
to complicated patterns in the training dataset and fit to some irrelevant properties or
noise. Eventually such overfitting leads to poor generalization performance of the model.
On the other hand, if complexity of the model is too little, it generalizes poorly because
it can’t fit to the all relevant patterns in the dataset.

Expression for the expected prediction error of regression estimate f̂ of f at an input
point X = x0 and squared loss can be written as

E[(y − f̂(x0))2|X = x0] = V ar(f̂(x0)) + Bias2(f̂(x0)) + V ar(ε) (4.25)

This expression (known as bias-variance decomposition) refers to the mean squared
error tested at x0 and f estimated multiple times using a large number of training sets.
V ar(f̂(x0)) term quantifies variability of f̂ in reference to its mean. Squared bias term is
related to the error of approximation of a complicated real function f by a simpler model.
It is the amount by which the average of estimate f̂ differs from the true/reference value
f(x0) The last term is related to the irreducible error ε (noise) for f.

Bias-variance tradeoff is an important challenge regarding any supervised learning
technique as we are trying to balance the bias and variance of a model while we have
limited knowledge of all properties of the problem and incomplete data resources.

4.6.1 Cross-validation
Cross-validation (CV) is a resampling method used for estimation of the test error for
predictive ML algorithms. In the 1970s publications it was referred to as a statistical
method for assessment of the quality of any data-derived quantity [49]. It can be
applied in model selection scenario to find the optimal model parameters (or complexity).
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It is also a standard approach in model assessment scenario when we are estimating
generalization performance of the selected predictive model and availability of data is
limited.

In K-fold cross-validation the available dataset is randomly sorted at the beginning.
Then it is splitted into K non-overlapping subsets (folds) of equal size. In K consecutive
steps, a fold selected in the current iteration is used as a validation set and the data
from the remaining K-1 folds is used as a training set. At the end we compute average
estimate for the results:

CVK(f̂) = 1
N

N∑
i=1

L(yi, f̂χ(i)(xi)), (4.26)

where χ : {1, ..., N} 7→ {1, ..., K} is an indexing function that returns index of the
fold assigned for the observation, f̂χ(i) is the function fitted for the fold relevant to i-th
observation, L is loss function or metric.

In the approach known as leave-one-out cross-validation we have K=N and validation
set contains only one observation whereas training set contains the remaining data. It
can be computationally expensive compared to the K-fold approach since we have to
build N models. It also can have higher variance because training sets are similar with
each other [46]. Optimal value of K depends on the size of available dataset and its
distribution (usually K close to 10 is selected).

4.6.2 Evaluation metrics
We can assign predicted binary classification label (0/1 or negative/positive) for an
observation to the one of four categories: true positive (TP) for correctly predicted
positive label, true negative (TN) for correctly predicted negative label, false positive
(FP) for incorrectly predicted label of negative observation and false negative (FN) for
incorrectly predicted label of positive observation. Confusion matrix (2x2) is convenient
representation of such information for a predictive model.

Class-specific performance is commonly used in life sciences (especially in medicine).
Binary classification model usually returns (raw) numerical value for an observation.
Suitable classification (discrimination) threshold t ∈ (0, 1) is needed to assign a relevant
class label for the predicted probability. It is determined depending on implementation
scenario, domain knowledge and the cost/risk associated with the specific classification
errors. The following threshold-dependent metrics are commonly used in evaluation of
binary classification models:

◦ Sensitivity (recall, true positive rate):

|TP |
|TP | + |FN |

(4.27)



4.6. ML model performance evaluation 22

◦ Specificity (true negative rate):
|TN |

|TN | + |FP |
(4.28)

◦ Precision (positive predictive value):
|TP |

|TP | + |FP |
(4.29)

◦ False positive rate (fall-out):
|FP |

|TN | + |FP |
(4.30)

◦ Accuracy:
|TP | + |TN |

|TP | + |FN | + |TN | + |FP |
(4.31)

Sensitivity and specificity are usually reported together (as precision and recall). Accu-
racy is inappropriate for imbalanced datasets (as it is high for a classifier that assigns
majority class for the all observations).

F-score is a metric that combines precision and recall using weighted harmonic mean
(with equal importance/weights for F1):

F1 = 2 precision · recall

precision + recall
(4.32)

General F-score for parameter β is defined by

Fβ = (1 + β2) precision · recall

β2 · precision + recall
(4.33)

Real number β > 0 is chosen such that recall is considered β times as important as
precision.

Matthews correlation coefficient (MCC or ϕ coefficient) is a metric that summarizes
the properties of confusion matrix for model. It is defined as

MCC = |TP | · |TN | − |FP | · |FN |√
(|TP | + |FP |)(|TP | + |FN |)(|TN | + |FP |)(|TN | + |FN |)

(4.34)

It is related to Pearson correlation coefficient of the predicted labels (0/1) and reference
(actual) labels for observations. MCC equals 1 for perfect classifier, 0 for random class
assignment and -1 for the entirely inverted classification output.

Classification threshold is determined as a result of partly subjective decision related
to the application scope of model and assessment of the cost of wrong label assignment.
It may lead to misleading conclusions regarding model properties. Predictive models
commonly return raw probability value and class distribution can be imbalanced. More-
over, categorizing continuous outcomes of model results in information loss (e.g. small
change in predicted probability for an observation can change its class label) and makes
their interpretation difficult [50]. Many metrics not based on classification threshold
have been proposed for estimation of performance of the models.
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Brier score

Brier score (squared loss) is defined as

BS = 1
N

N∑
i=1

(yi − ŷi)2, (4.35)

where yi is reference (true) label (i.e. 0/1), ŷi ∈ [0, 1] is predicted value for the i-th
observation. For regression (yi, ŷi ∈ R) problems it is known as mean squared error
(MSE).

If we set classification threshold t ∈ (0, 1) we can replace ŷi with ŷi(t) that depends on
t in the parameterized formula for BS(t). We assign ŷi(t) = 0 when ŷi ≤ t and ŷi(t) = 1
otherwise. Then BS(t) = 1

N
(|FP | + |FN |). It gives 1 − BS(t) = 1

N
(|TP | + |TN |)

which is accuracy.

AUC

Receiver operating characteristics (ROC) graph shows (true positive rate) and FPR (false
positive rate) pairs for the range of possible classification thresholds. Diagonal line (y=x)
is the ROC plot for a model that randomly assigns labels (we can say it has no useful
information related to classification).

Area under the ROC curve (AUC) metric is numerical (scalar) representation of model
performance based on the approximation of area under the ROC curve. AUC equals
1 for perfect model, 0.5 for random class assignment and 0 for the entirely inverted
classification output. AUC of a model is equivalent to the probability that the model
will rank a randomly chosen positive observation higher than a randomly chosen negative
observation [51]. We can use AUC metric when a model returns uncalibrated scores or
class distribution is imbalanced (as ROC depends on TPR related to positive class and
FPR related to negative class and these are proportions separately computed for the
each class).

Logistic loss

Logistic loss (log loss) estimates how close predicted values (uncalibrated probabilities)
are to the actual values. It increases exponentially as the difference gets larger, equals
0 for perfect predictions and is defined as

log loss = − 1
N

N∑
i=1

(yilog(ŷi) + (1 − yi)log(1 − ŷi)), (4.36)

where N is the count of observation dataset, yi is reference (actual) value, ŷi is the
predicted value for the i-th observation. This metric is used mainly for fitting ML
models.
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4.7 Explanations for predictive ML models
Complex predictive ML models built for large datasets can involve a big number of
variables and parameters. It may be impossible to understand how input variables affect
prediction of a model. Moreover, complex models may in many cases not work as well
as it is assumed. IBM Watson for Oncology system was delivering unsafe and inaccurate
recommendations [52]. Predictive performance of Google Flu Trends model deteriorated
due to data drift over time [53].

Many explainable artificial intelligence (XAI) techniques have been proposed to ad-
dress the issues of model prediction validation and justification. We would like to know
how strong the evidence is that supports a prediction of model. Also we would like to
understand which variables affect prediction and to what extent [54].

Model can be interpretable by design as linear models, rule-based models or basic
classification trees. However predictive performance reduction may be the cost of direct
model interpretability. We can explain predictions of complex (or black-box) models by
using adequate simplifications or approximations. Many model-specific techniques for
model properties exploration has been proposed. For example, there are methods for
measuring variable importance in generalized linear models, random forests and neural
networks. Model-agnostic explanations seem particularly useful as new ML algorithms
are constantly being developed.

Break-down plots
Break-down plot is a model-agnostic method that can be applied to any predictive model
that returns numeric value. It estimates effect of explanatory variables on prediction of
a model.

We can assume that prediction of a model is an approximation of the expected value
of dependent variable y given values of explanatory variables X. Break-down profile
quantifies contribution of an explanatory variable to model prediction by calculating the
shift in the expected value of y, when the values of other variables are fixed [55]. The plots
are compact and easy to understand. Basic version is suitable for the additive attributions
and depends on the ordering of explanatory variables. There is also extended version
of break-down profile for models with interactions (when the effect of an explanatory
variable depends on the values of other variables) [54].

Shapley Additive Explanations
Shapley Additive Explanations (SHAP) use Shapley values developed in cooperative
game theory. This method is based on averaging the value of attribution for a variable
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over all possible orderings. Subsampling can be used to efficiently compute SHAP for a
large number of variables. Shapley values have the following properties:

◦ (additivity) if a model m is sum of two models g and h, then the Shapley value for
m is sum of Shapley values for g and h

◦ if a given explanatory variable doesn’t contribute to any prediction for any set of
remaining explanatory variables, then its Shapley value is equal to 0

◦ (local accuracy) the sum of Shapley values match the difference between prediction
and a baseline (expected) value

Standard SHAP methods can incorrectly estimate contributions of correlated variables.
Asymmetric Shapley technique has been proposed for such input data.

LIME
Local Interpretable Model-agnostic Explanations (LIME) method is useful for sparse
(with a limited number of variables) explanation of predictive models with a very large
number of input variables [56]. Complex (black-box) model f is locally approximated
around a given instance (case) x∗ by a simple (interpretable) model. We minimize loss
function L to find optimal approximation ĝ:

ĝ = arg min
g∈G

L(f, g, v(x∗)) + Ω(g), (4.37)

where g belongs to a class G containing interpretable models (e.g. linear models or
decision trees), v(x∗) is neighbourhood of approximation, L measures difference between
models f and g in the neighbourhood, Ω(g) is penalty for complexity of model g.

Black-box model f is defined on high-dimensional space, whereas glass-box model
is defined on low-dimensional space of explanatory variables. In the case of tabular
input data continuous variables can be discretized to obtain interpretable categorical
and combination of categories can be used for categorical variables. New, artificial data
points are often required to build a glass-box model as there may not be enough points in
high-dimensional input dataset which is usually very sparse. New data can be generated
using various perturbations of the instance of interest (e.g. adding Gaussian noise to
continuous variables).

Combining the results of various techniques for instance-level explanation can provide
additional insights and more detailed view of the predictive model properties. The scope
of application of a particular method depends on the data characteristics, specifically it
is determined by relationship between the input variables [54].

The methods presented in this section can also be used in many tasks in the iterative
modelling process:
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◦ Model refinement/debugging: investigation of the reasons for incorrect predictions
for selected cases may provide hints for model improvement

◦ Domain-specific validation: user can consider a model as reliable or plausible when
the influence of the explanatory variables on model predictions is consistent with
expectations based on the domain knowledge.

◦ Model selection: if overall performance of models is similar, we may use explanation
techniques to select one of the candidates by the examination of instance (case)
predictions.

◦ Extraction of new knowledge: if domain knowledge is limited or unavailable then
we can extract valid information by the assessment of dependencies between model
explanatory variables.



Chapter 5

Sensor data and clinical data

This chapter refers to the basic types of patient data involved in the research and relevant
measurement methods.

5.1 Triggerfish contact lens sensor
The doctor is able to perform eye measurements regarding the IOP only at single point in
time (when patient visits clinic or hospital). This does not provide complete information
for reliable assessment as the eye changes during the day in response to the factors
related to the patient’s activities (e.g. stress) and normal circadian biorhythm (e.g body
position).

Figure 5.1: Sample series of Triggerfish sensor measurements (one burst). Two peaks recorded after
20 seconds from the begining of the burst are probably related to the eye blink.

Soft disposable silicone contact lens sensor can record circumferential changes at the
corneoscleral area. Triggerfish (Sensimed) device [8] is based on a contact lens sensor
(CLS) with embedded strain gauge that measures ocular volume changes during 24-hour

27
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session. Series of measurements is recorded every 5 minutes in the units of milllivolt
equivalents with sampling rate of 10 samples/s (each series called burst has 300 values).
Adhesive antenna is placed around the eye. It wirelessly receives the information from
the CLS. The data is transmitted via a thin cable from antenna to the portable recorder.
The recorded data is transferred via Bluetooth interface to the computer at the end of
the recording session (usually at doctor’s office). Triggerfish device can be used during
the whole day, assuming normal daily activity not affecting external antenna around the
eye. Triggerfish is safe and generally well tolerated by patients. Side effects are rather
rare and include dry eye or eye irritation. CLS is supplied in a pre-packed sterile delivery
unit. It has been designated as a single use device. Figure 5.1 shows measurements
of the one series, where low-amplitude ocular pulse can be noticed. Triggerfish record
for 24-hour session is presented in Figure 5.2. There is a consensus that Triggerfish
(TF) measurements are related to IOP changes and properties of such relation were
investigated and analysed [5, 6]. CLS can also record low-amplitude ocular pulsations
[7] related to the heart rate with good accuracy in a majority of eyes [8]. Biomechanical
properties of the eye have influence on CLS signal values [9], therefore such factors
should be taken into consideration in the analysis of the CLS output. As the CLS is
placed on the eye surface for many hours it affects corneal surface and may change
measurements especially at the end of a long recording session. Such inaccuracy of
the output is not exactly known and depends on many factors such as biomechanical
properties of the cornea.

Sensimed is developing novel pressure measuring contact lens sensor for direct moni-
toring of IOP in mm Hg (standard units for tonometry) instead of relative units used by
Triggerfish. This CLS is based on a Micro-Electro-Mechanical System (MEMS) [57] that
acquires data with sampling rate of 51 samples/s (series of measurements is recorded
every 3 minutes). Current bioengineering research involves soft contact lenses designed
to release medication into the eye over an extended period of time. They can be used
to treat some ocular conditions including glaucoma [58]. Future research challenges
encompass contact lenses with integrated eye monitoring and therapeutic capabilities
(i.e. controlled drug release dependent on continuous CLS measurements).

5.2 Noninvasive continuous blood pressure
monitoring and related physiological parameters

Continuous monitoring of arterial blood pressure is important for accurate assessment
and control of many conditions. Simple devices based on the cuff inflated at equal
time intervals don’t provide sufficiently precise results (especially during sleep time).
Currently some wearable devices are able to continuously monitor cardiovascular sys-
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Figure 5.2: 24-hour session Triggerfish CLS output for a normal (healthy) patient. Each black point
represents median of one TF series (one burst) in the units of milllivolt equivalents [mV eq]. Two grey
vertical lines mark the beginning and the end of sleep period. Smoothed blue line is the loess (locally
weighted polynomial regression) approximation of TF.

tem parameters with accuracy comparable to the professional ambulatory equipment.
Measurement method can be based on the piezoelectric sensors encapsulated with flex-
ible silicone, providing soft and conformal contact between the sensors and the artery
located skin region. It allows accurate conversion of local deformation of the sensor
caused by the expansion or contraction of the artery into electrical output [59]. Other
methods involve photoplethysmography (PPG), ultrasound wall tracking, bioimpedance
or capacitive sensors [60]. Cardiovascular system properties have impact on ocular blood
flow [10]. Increasing availability of sensor based devices enables observation of subtle
interactions of cardiovascular system and eye function during the whole day [11].

Somnomedics noninvasive continuous blood pressure monitor (SOMNOtouch NIBP)
[61] is a cuff-less, compact device (see plot of the values recorded for the one burst in the
Figure 5.3). It measures blood pressure beat-to-beat, on the basis of pulse transit time
(PTT), which is determined by a 3-lead ECG (electrocardiogram) and the PPG from the
finger clip. PTT is the time required for the pulse wave to propagate along the vessel
wall between two defined points. In SOMNOtouch NIBP it is the distance from the left
ventricle of the heart (defined by the R peak of the ECG) to the finger tip (determined
by PPG). It uses complex algorithm for estimation of the following parameters:
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Figure 5.3: Plot of the TF joined with cardiac sensor signal for the one sample burst (about 30
seconds). Initial times of Triggerfish and SOMNOtouch NIBP are synchronized.

◦ blood pressure (SAP: systolic arterial pressure, DAP: diastolic arterial pressure,
MAP: mean arterial pressure), reported in mm Hg

◦ heart rate (HR), reported in beats per minute

◦ blood oxygen saturation (SpO2), reported in percent

Initial calibration at the beginning of the session is required for the device (independent
measurement of blood pressure). Although SOMNOtouch NIBP and similar devices have
undergone preliminary evaluation and clinical tests, they are not used on a large scale.
In some cases, measurement inaccuracy can be higher than expected therefore further
clinical assessment is needed [62].

5.3 Clinical data

5.3.1 Intraocular pressure
Intraocular pressure (IOP) is measured in millimeters of mercury (mm Hg). IOP is the
main risk factor for glaucoma and its assessment is important in eye conditions related
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to the ocular hypertension (OH) when the IOP is higher than normal without detectable
glaucomatous neuropathy.

Goldmann applanation tonometry (GAT) is a standard technique for measurement of
IOP. It is based on Imbert–Fick law that can be used for description of axially symmetric
ellipsoidal elastic shell loaded with internal pressure and flattened over a small surface
[63]. The ratio of the external force and the area of the flattened cornea surface is
the measure of IOP. GAT results depend on central corneal thickness (CCT) and axial
radius of the external corneal curvature. Area of the applanation surface is controlled
during measurement. Appropriate calibration (correction) values for these parameters
are required to calculate the final IOP value [63].

Dynamic contour tonometry (DCT) is a new technique for noninvasive IOP measure-
ment. DCT is based on a miniature piezoresistive pressure sensor embedded within a
tonometer tip that approximates shape of the corneal surface when the pressures on both
sides are equal. It is less dependent on the effect of individual biomechanical properties
of the cornea, as is the case in applanation tonometry. It measures IOP in a continuous
way and provides a pressure curve that is synchronous with the cardiac cycle for a period
of several seconds [7]. DCT is independent noninvasive method for IOP assessment as
correction formulas for GAT are not uniformly accepted or validated.

Another common technique for IOP measurement is non-contact tonometry. It is
useful for screening tests. Non-contact tonometer uses a jet of air that flattens external
surface of the cornea. Light that is reflected from the central cornea is used for indirect
determination of the IOP.

5.3.2 Properties of the cornea
Hysteresis is a measure of the viscoelastic response of the cornea affected by the external
force. Cornea has elastic properties (associated with reversible deformation) and time-
dependent viscous resistance to an applied force. Reichert ocular response analyzer
(ORA) is a device for measuring corneal compensated IOP and biomechanical properties
of the cornea that uses brief pulse of air to perturb its surface. Data recorded by the
ORA when the air pressure is affecting the outer cornea can be used to build the model
of the viscoelastic corneal surface [64]. Surface of the cornea reflects infrared light which
is recorded by the detector. The reflected light is maximally aligned with the detector
when the cornea undergoes applanation (is flattened). Loading (P1) and unloading (P2)
applanation pressures are different and P1 is higher than P2. Difference between P1 and
P2 is reported as corneal hysteresis (CH) in mm Hg. Corneal resistance factor (CRF)
measured by ORA also depends on the values of P1 and P2. It can be considered an
indicator of the overall resistance of the cornea and is reported in mm Hg.

Central corneal thickness (CCT) is important parameter in refractive surgery and
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assessment of the conditions related to ocular hypertension. It is usually reported in
micrometers (µm). Measurement techniques of CCT include ultrasound pachymetry,
optical coherence tomography (OCT) and corneal topography. CTT measurements are
not directly comparable for different types of devices [65].

5.3.3 Other data
The following data were also collected for the patients:

◦ axial length (AL) is the distance from the corneal surface to the retinal pigment
epithelium (in optical measurements). Large AL (e.g. related to myopia) can
have influence on biomechanical properties of the eye and may lead to progressive
thinning of some of the retinal layers.

◦ other patient’s data: age, sex, underlying medical conditions (e.g. diabetes).



Chapter 6

Development of machine learning
models for glaucoma detection

This chapter is based on the results which were published in the article written by the
author (see [A2]).

Development and application of machine learning models in the field of ophthalmol-
ogy focused on glaucoma can be seen as implementation of personalized medicine [66]
premise assuming that individual patient data can be used to more precisely detect or
treat a disease. Application of wearable medical devices is growing in many fields of
healthcare. Data acquired by continuous monitoring of the physiological signals can be
essential in development of reliable diagnostic methods and management standards for
disease. Identification and evaluation of the relationship between time series recorded
by multiple sensors can be a way to better understanding the nature of condition. The
great majority of existing papers on use of AI in the field of glaucoma detection is related
to deep learning methods (mainly convolutional neural networks) for structural image
analysis (fundus photos or OCT) [30, 31]. Previous research in using ML for sensor
data is limited to the assessment of models involving Triggerfish signal. Investigation
of relationship between eye sensor signal and cardiac activity can result in refinement of
detection models and facilitate automatic diagnostic decision support for the disease.

Research hypothesis in this study assumes that heart monitoring data associated with
Triggerfish measurements can be used to more accurately detect glaucoma. We continue
investigation on influence of cardiovascular system on 24-hour ocular volume changes
measured with CLS [67] where correlation of Triggerfish and cardiac sensor data was
examined for healthy and POAG cases. Earlier studies concerned daily biorhythms of
the eyeball volume changes and cardiovascular system functional properties depending
on diagnosis [68]. This thesis reports results for predictive models involving wide range
of sensor data based attributes. Particularly, it presents new approach for division of
recording period according to physiological circadian cycle properties. Main innovative
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Figure 6.1: Overview of data flow in development and application of machine learning models for
glaucoma detection and control.

aspect of the research is incorporation of data from cardiovascular system monitoring
device that is aligned to the eye sensor signal. We also show that models supplemented
with measurements of corneal biomechanical properties have better performance metrics.

General schema of the proposed method is shown in Figure 7.2. Diagram components
refer to data acquisition (24-hour recording session for Triggerfish and SOMNOtouch
devices), data preprocessing (involving feature/attribute extraction), model performance
evaluation and application of the model in diagnostic decision support.

The key contributions of the research can be summarised as follows:

1. Machine learning approach involving Triggerfish CLS record and cardiac data con-
siders functional properties of the eye that can lead to accurate assessment of
conditions in early glaucoma stages and potentially allow more precise control of
the disease. For comparison, deep learning techniques involving OCT imaging data
detect structural changes which are typically related to progression of glaucoma
[30, 31].

2. New models presented in the thesis don’t rely on IOP value that can be registered
(e.g. by Goldmann applanation tonometer) no more than few times a day. Instead
we consider Triggerfish and cardiac sensor data based attributes for 24-hour moni-
toring session (that is essential e.g. in characterization of normal tension glaucoma
cases).

3. Techniques applied for processing of sensor data and clinical data results in im-
proved performance of classification models that can be included in diagnosis sup-
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port system for glaucoma. Relation of Triggerfish and cardiac signal in selected
time intervals which is considered in the study can be used to identify/characterize
patient subgroups and may contribute to understanding the pathogenesis and pro-
gression of the disease.

6.1 Input data
Input data was collected at [Wasilewicz] Eye Clinic in Poznań. Main input dataset
contains 105 cases (67 females and 38 males). According to the diagnosis it includes 45
high tension glaucoma (POAG/HTG), 21 normal tension glaucoma (POAG/NTG) and
39 control/healthy (NORM) cases. Prevalence of glaucoma in different populations was
investigated in many studies [29] and is estimated within the range 1%-4%. Prevalence
and characteristics of glaucoma depends on many factors (e.g. age) and the minority
class involves common diagnosis types that are labeled in the thesis as NOT NORM
(also as glaucomatous neuropathy). Standard random undersampling approach was
applied during data collection process to obtain closer case count of the both classes
from the dataset. Randomly selected cases in the majority class (NORM) were skipped.
The resulting distribution is more balanced and seems appropriate for the chosen binary
classification algorithms.

Initial intraocular pressure (IOP) was measured by Goldmann applanation tonometer
[63] before application of Triggerfish contact lens sensor (CLS). Basic biomechanical
parameters of the cornea i.e. corneal hysteresis (CH) [69] and corneal resistance factor
(CRF) were measured additionally. Systolic/diastolic arterial pressure (SAP/DAP) and
heart rate (HR) were being recorded continuously during 24-hour period by SOMNO-
touch NIBP (see description of the devices and measurement methods in 5). Table 6.1
summarises the basic attributes of the input dataset. 24-hour CLS record (containing
288 bursts) is available for the each case. Triggerfish and SOMNOtouch NIBP device in-
ternal times were synchronized to enable derivation of reciprocal relation of the acquired
signals.

attribute min Q.25 median Q.75 max mean sd
age [years] 22.00 46.0 59.0 69.0 86.0 56.4 14.32
initial IOP [mm Hg] 10.00 15.0 18.0 21.0 52.0 18.6 5.71
CH [mm Hg] 6.30 9.0 10.3 11.4 14.8 10.2 1.73
CRF [mm Hg] 7.50 10.2 11.2 12.4 16.8 11.3 1.78
systolic [mm Hg] in SLEEP WAKE interval 84.00 107.0 121.0 130.1 154.0 119.8 16.59
diastolic [mm Hg] in SLEEP WAKE interval 34.50 64.5 71.0 81.0 106.0 72.5 11.78
heart rate [bpm] in SLEEP WAKE interval 45.00 57.0 61.6 67.0 82.0 61.8 6.92

Table 6.1: General statistical summary of the input dataset selected properties. Lower and upper
quartile (Q.25 and Q.75) were included.
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6.2 Data preprocessing
Sensor raw signals are transformed in order to get data suitable for feature (attribute)
construction which is the next step in the development of ML models considered in
this chapter. We compute separate median value for the each raw signal in time in-
tervals overlapping Triggerfish series (bursts). This low-dimensional representation was
proposed earlier [70] and captures the underlying characteristics of the high-dimensional
input data. Median TF dispersion during 24-hour session is shown in Figure 6.2. Scatter
plot left panel’s NORM group contains healthy and ocular hypertension (OH) cases, right
panel’s NOT NORM (glaucomatous neuropathy) group contains POAG cases. Scatter
plot was generated for almost 300 cases using ggplot2 library in R (median TF black
points were plotted partially transparent to reduce effect of overlapping).

Figure 6.2: Comparison of 24-hour TF variability in NORM (healthy) and NOT NORM (POAG cases)
group. Each black point represents median of one TF series (one burst). Additionally, scatterplot
contains smoothed color lines which are TF approximation generated by the loess function (locally
weighted polynomial regression) for the enumerated initial IOP ranges.

According to the protocol proposed by Robert Wasilewicz and on the basis of the
physiological circadian cycle properties [71], 24-hour session is divided into the consec-
utive time intervals. Main division contains the following base time points: start of
the recording session (START), begin of the main/night sleep period (SLEEP), end of
the main/night sleep period (WAKE), end of the recording session (END). SLEEP and
WAKE time points were determined from Triggerfish record, where sleep period is con-
sidered generally as time interval without eye blinks. Table 6.2 shows main time intervals
used for attribute generation.

We can derive attributes that provide characteristics of Triggerfish, cardiac sensor
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interval name time range
START TP1 START until SLEEP-5h
TP1 SLEEP SLEEP-5h until SLEEP
SLEEP TP2 SLEEP until SLEEP+2h
TP2 WAKE SLEEP+2h until WAKE
WAKE TP3 WAKE until WAKE+2h
TP3 END WAKE+2h until END

Table 6.2: Main time intervals range for 24-hour session.

signal or relation of CLS and cardiac sensor signal record for the each time interval [19].
Median value for each burst measurements was generated in the earlier transformation.
The following attributes were defined for the input sensor data:

1. Sum of Triggerfish (TF) in the interval. Constant TF value between consecutive
bursts was assumed (sum).

2. Slope (in radians) of linear regression line for TF fitted using standard least
squares method in the interval (slope).

3. Amplitude of signal in the interval i.e. difference of the maximal value and the
minimal value (ampl). We also computed modified amplitude for cardiac signal
(SAP, DAP or HR) as 95 % quantile minus the minimal value (flat ampl).

4. Sum of the numerical approximation of TF second derivative in the interval
(sec deriv integral). It estimates total change of TF variability rate in the interval.

5. Correlation coefficient of TF and cardiac signal (SAP, DAP or HR) in the inter-
val (cor). We also divided correlation value range at points {-0.65,-0.25,0.25,0.65}
and mapped these intervals onto five integer levels (cor level).

6. Aggregated measures (summary statistics in the form of mean and sum of
numerical approximation of the second derivative) for linear convolution of TF and
cardiac signal (SAP, DAP or HR) in the interval (conv).

In 1. and 2. we computed sum and slope for raw TF values and TF scaled into [0,20]
range separately for each case (TFs).

In 5. we generated Spearman’s rank correlation coefficient to determine monotonic
relation of TF and cardiac signal. It is less sensitive to outliers than standard Pear-
son’s coefficient. Figure 6.3 shows heatmap generated by pheatmap library in R for
SLEEP WAKE interval. Clusters of cases with strong negative (red) or strong positive
(green) correlation coefficient of TF and arterial pressure can be found for this time inter-
val. Heatmaps and clustering techniques can be used to explore patterns in correlations
generated for different time intervals listed in Table 6.2.
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In 6. we use convolve function from stats library in R to compute linear convo-
lution values (setting type=”open” in the function call). We considered convolutional
attributes only for short (no longer than 2 hours) intervals starting at SLEEP time point.
Generally, TF curve increases substantially in this period, after the patient changes their
position from vertical to horizontal [72].

We also took account of alternative time intervals for the main division defined in
Table 6.2. Any shift (in hours) of interval begin or end is specified in squared brackets at
the end of the attribute description (e.g. wake [tp3+3h] means WAKE until WAKE+5h
range). Short interval starting at SLEEP time point and spanning 15 bursts (75 minutes)
is labelled as b15.

Figure 6.3: Correlations of TF and cardiac sensor signal: DAP, SAP, MAP (mean arterial pressure),
HR, SpO2 (peripheral oxygen saturation) in the main/night sleep period (SLEEP WAKE). Cases (rows)
in the heatmap are ordered according to the hierarchical clustering results for euclidean distance mea-
sure.

6.2.1 Detection of peaks in Triggerfish CLS signal
Triggerfish signal contains high peaks that are mainly related to the eye blinks and con-
sidered a noise in most analytical scenarios. Median value for each TF burst measure-
ments is generated during initial transformation of the input data. This low-dimensional
representation of TF signal sufficiently reduces impact of the high peaks and captures
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important properties of the signal. Most of the predictive ML models presented in the
thesis involve features based on median TF values.

However in some analytical scenarios we need high-dimensional input data without
peaks (e.g. in spectral analysis). Additionally, continuous TF increase over long time
interval (i.e. large shift of TF level) can be related to shift of CLS on the eye surface.
It also can be considered as an undesirable effect. Basic peak detection procedure has
been implemented by the author in R language using find peaks function from ggpmisc
package. The procedure is based on the variation of TF loess approximation and TF
derivative (slope of a tangent at a given point).

Figure 6.4 and 6.5 show the output of the procedure of selection of TF fragments
(ranges) without peaks and large level shifts. Blue horizontal line represents median of
the burst. Original TF measurements are plotted as blue circles connected by auxiliary
yellow line. Black crosses represent TF values left after removing peaks and large level
shifts. Auxiliary smooth green curve is the loess approximation of TF (without high
peaks) shifted by its standard deviation (sd) value.

Figure 6.4: TF fragments (ranges) without sharp peaks and large level shifts marked with black
crosses. The burst contains two sharp peaks around 21:44:57 and 21:45:03.
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Figure 6.5: TF fragments (ranges) without sharp peaks and large level shifts marked with black
crosses. The burst contains one rounded peak in the middle and continuous TF increase can be seen
from 23:35:17 to 23:35:21.

6.2.2 Spectral analysis of sensor data
We performed basic spectral analysis of TF and cardiac sensor signal. We generated pe-
riodograms to investigate important frequency components in the signals. Periodogram
is an estimator of the spectral density computed using the discrete Fourier transform
(DFT) of a signal. It represents distribution of signal energy in the frequency domain
[73].

Figure 6.6 shows raw TF and HR measurements for a one burst (time interval of
30 s). Heart rate is directly related to the ocular blood flow and has influence on the
changes in TF signal.

Large peaks were removed from the raw TF signal. Missing TF measurements were
substituted with the median of a burst. Linear trend was removed initially from the
data. Periodograms of raw TF were generated for sleep wake interval. Peaks around 1
Hz are related to the heart rate. We computed frequency of the main components and
maximum and mean power in the relevant peak clusters. Preliminary evaluation of the
selected ML models enhanced with these numerical features didn’t show improvement
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of classification performance.

Figure 6.6: Plot of raw TF (blue circles) and HR (red dashes) values for one sample burst. Sampling
rate for TF is 10 samples/s and 1 sample/s for HR. Range of the values is indicated on the axes.

6.3 Predictive ML models for glaucoma detection

6.3.1 Algorithms
There are many ML algorithms that can solve binary classification problem (see de-
scription of the algorithms in 4.4). Here we consider assigning NORM label for healthy
and NOT NORM for the other cases (diagnosed as POAG/HTG or POAG/NTG) in our
dataset. Given the size of the dataset and data distribution two basic ML algorithms
were selected: logistic regression and random forest which are common methods in med-
ical data analysis. Logistic regression is based on properties of sigmoidal curve used for
modelling the probability of belonging to a class. Logistic regression is fast algorithm
and produces results that are quite easy to interpret. It is a linear classification algorithm
i.e. its decision boundaries are linear. Random forest is an ensemble learning method
that generalizes standard decision trees. It efficiently handles non-linear relations and
outlier values. We build and test models with H2O framework which is open source,
distributed and scalable ML and predictive analytics environment [74]. H2O Flow web
interface was used for model evaluation and visualization of the results.

Determining the best subset of attributes in order to achieve high prediction perfor-
mance of the models requires a considerable computational cost due to the large number
of possible candidates. For initial attribute selection we used LASSO regularization (least
absolute selection and shrinkage operator) [46] and RSM (Random Subspace Method)
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Figure 6.7: Periodogram of raw TF for a
normal case.

Figure 6.8: Periodogram of raw TF for a NTG
case.

[75] technique. LASSO enables selection of a small number of attributes by penalizing
coefficients magnitude of the fitted linear models. We used LASSO regularization avail-
able in H2O for generalized linear models (GLM). Ranking of attributes in RSM is based
on fitting linear models on small randomly chosen subsets of attributes. Final subset
of the attributes is chosen using information criteria or validation set. We have chosen
parallel version of RSM implemented in regRSM package for R.

6.3.2 Evaluation
We applied cross-validation (CV) resampling procedure to estimate model prediction
performance. In standard k-fold CV input dataset is randomly divided into k equally
sized subsets. In each of the k steps we subsequently use one subset as validation/test
data and the remaining subsets as training data. Prediction performance (for the selected
metrics) is computed for test data in each step and average of the results is the final
estimation. We have chosen CV fold size equal to 8 considering given input dataset
count (105 cases). Additionally, full CV procedure was repeated 50 times to assess
variance of the estimation for the each model.

Quality of the results of binary classification models can be evaluated with many
different metrics. The following metrics were computed:

1. Accuracy which is the ratio of correctly classified cases to the all cases count.
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2. Brier score (BS) given by the formula BS = 1
N

∑N
i=1(yi − ŷi)2, where N is the

all cases count, yi is the actual value (assigned to the reference class), ŷi is the
predicted value (probability) for the case.

3. Logistic loss (log loss) estimates how close predicted values (uncalibrated prob-
abilities) are to the actual values and increases exponentially as the difference gets
larger. log loss = − 1

N

∑N
i=1(yilog(ŷi)+(1−yi)log(1−ŷi)), where N is the all cases

count, yi is the actual value (assigned to the reference class), ŷi is the predicted
value (probability) for the case.

4. Area under the ROC curve (AUC) is an estimate based on properties of the
plot containing value pairs of TPR (true positive rate: probability of positive pre-
diction for truly positive case) and FPR (false positive rate: probability of positive
prediction for truly negative case) for different classification threshold values.

For the selected models we reported classification threshold dependent metrics such
as sensitivity, specificity, precision, negative predictive value (NPV) and F-score.

Additionally, assessment of the results was performed using SMOTE: Synthetic Mi-
nority Over-sampling Technique [76] for the input dataset to oversample NORM class.
We generated balanced set containing 70 NORM and 69 NOT NORM cases (i.e. 139
total). AUC and accuracy of the selected models for synthetic data are similar or higher
than the cross-validation results for the original data with a slightly greater variance.
Results for the original dataset were reported in the tables.

6.3.3 Models involving sensor data
Existing papers on application of ML techniques to Triggerfish data analysis provide re-
sults for models involving only CLS signal based attributes, optionally with IOP included
[3]. In this section we present models for input data that includes TF and cardiac signal
derived attributes. In Table 6.3 we enumerated attributes for the models with highest
AUC value estimated in CV repeated routine. We evaluated diagnostic performance
metrics for the logistic regression (LR) and random forest (RF) algorithms. We didn’t
perform full hyperparameter optimization/tuning for random forest so it is possible that
some RF predictive performance results can be slightly refined. We built two versions
of model: one involving cardiac signal derived attributes and the shorter one with TF
derived attributes only to compare each other performance estimates.

Model s5 (LR) achieved the best performance with mean AUC of 0.74±0.02, Brier
score at 0.20±0.01 and accuracy at 0.71±0.01. It is based on TF slope, sum, sec
deriv integral attributes and cardiac attributes (correlation and amplitude related ones).
Model s4 has the same TF attributes as s5 and no additional cardiac attributes. AUC
estimate for s5 is higher respectively for LR and RF algorithms compared to s4, and
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id type attributes

s1.LR
s1.RF

logistic regression
random forest

slope TFs tp1 sleep, sec deriv integral TF sleep [tp2+1h],
sum TFs wake [tp3+3h], sec deriv integral TF wake [tp3+3h],

cor SAP sleep wake, conv sec deriv integral HR sleep b15, cor HR tp2 wake
s2.LR
s2.RF

logistic regression
random forest

slope TFs tp1 sleep, sec deriv integral TF sleep [tp2+1h],
sum TFs wake [tp3+3h], sec deriv integral TF wake [tp3+3h]

s3.LR
s3.RF

logistic regression
random forest

slope TFs tp1 sleep, sec deriv integral TF sleep [tp2+1h],
sec deriv integral TF [wake-4h] wake, sum TFs [wake-4h] wake,

sum TFs wake [tp3+3h], ampl HR sleep b15,
cor SAP sleep wake, cor HR tp2 wake

s4.LR
s4.RF

logistic regression
random forest

slope TFs tp1 sleep, sec deriv integral TF sleep [tp2+1h],
sec deriv integral TF [wake-4h] wake, sum TFs [wake-4h] wake,

sum TFs wake [tp3+3h]

s5.LR
s5.RF

logistic regression
random forest

slope TFs tp1 sleep, sec deriv integral TF sleep [tp2+1h],
sec deriv integral TF [wake-4h] wake, sum TFs [wake-4h] wake,

sum TFs wake [tp3+3h], ampl HR start sleep,
flat ampl DAP sleep wake, cor level HR tp2 wake

Table 6.3: Summary of the attributes selected for the models based on sensor data only.

the difference (0.04 for LR) is above the standard deviation range. This comparison
shows that additional cardiac attributes joined with TF data can improve predictive
performance of model involving only sensor data.

id type AUC log loss Brier score
s1.LR logistic regression 0.66±0.02 0.65±0.02 0.23±0.01
s1.RF random forest 0.69±0.03 0.62±0.01 0.21±0.01
s2.LR logistic regression 0.67±0.02 0.63±0.02 0.22±0.01
s2.RF random forest 0.67±0.03 0.61±0.01 0.21±0.01
s3.LR logistic regression 0.71±0.02 0.63±0.02 0.21±0.01
s3.RF random forest 0.70±0.02 0.61±0.01 0.21±0.01
s4.LR logistic regression 0.70±0.02 0.61±0.02 0.21±0.01
s4.RF random forest 0.68±0.02 0.61±0.01 0.21±0.01
s5.LR logistic regression 0.74±0.02 0.59±0.02 0.20±0.01
s5.RF random forest 0.71±0.02 0.61±0.01 0.21±0.01

Table 6.4: Performance metrics for the models defined in Table 6.3.

6.3.4 Models involving sensor data and clinical data
IOP is recognized as the important risk factor in glaucoma onset and progression. It has
been shown that IOP combined with attributes based on CLS record can improve accu-
racy of classification models for POAG and NORM cases [3]. Detailed role of IOP level
and its influence on optic nerve head in glaucoma is not fully explained so far. There
is OH group, where high ocular pressure doesn’t result in disease progression. On the
other hand, NTG group contains cases with alterations of the optic nerve despite nor-
mal IOP level. In this section we focus on the alternative attributes that can replace or
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complement IOP in classification models. General relationship between IOP and corneal
biomechanical properties was investigated [77] but its complex nature is not fully ex-
plained across the spectrum of glaucoma at the present time. Overall, IOP measured by
Goldmann applanation tonometer is affected by eye biomechanical properties quantified
by CH and CRF [78]. We have included these measurements in extended attribute set
for our models.

id type attributes
m1.LR logistic regression IOP
m2.LR logistic regression IOP, CRF
m3.LR logistic regression CH
m4.LR logistic regression CH, CRF
m5.LR
m5.RF

logistic regression
random forest

IOP, CRF, slope TFs tp1 sleep, sec deriv integral TF sleep [tp2+1h],
sum TFs wake [tp3+3h], cor HR tp2 wake, cor SAP tp3 end

m6.LR
m6.RF

logistic regression
random forest

IOP, CRF, slope TFs tp1 sleep, sec deriv integral TF sleep [tp2+1h],
sum TFs wake [tp3+3h]

m7.LR
m7.RF

logistic regression
random forest

CH, CRF, slope TFs tp1 sleep, sec deriv integral TF sleep [tp2+1h],
sum TFs wake [tp3+3h], cor HR tp2 wake

m8.LR
m8.RF

logistic regression
random forest

CH, CRF, slope TFs tp1 sleep, sec deriv integral TF sleep [tp2+1h],
sum TFs wake [tp3+3h]

m9.LR
m9.RF

logistic regression
random forest

CH, CRF, slope TFs tp1 sleep, sec deriv integral TF sleep [tp2+1h],
sum TFs wake [tp3+3h], ampl HR start sleep, flat ampl DAP sleep wake,

cor level HR tp2 wake

Table 6.5: Summary of the attributes selected for the models with clinical data. Simple models (m1
to m4) added as a baseline reference.

id type AUC log loss Brier score
m1.LR logistic regression 0.65±0.01 0.62±0.01 0.22±0.01
m2.LR logistic regression 0.80±0.01 0.53±0.01 0.18±0.01
m3.LR logistic regression 0.79±0.01 0.54±0.01 0.18±0.01
m4.LR logistic regression 0.79±0.01 0.56±0.01 0.18±0.01
m5.LR logistic regression 0.86±0.01 0.48±0.02 0.15±0.01
m5.RF random forest 0.76±0.02 0.59±0.01 0.20±0.01
m6.LR logistic regression 0.85±0.01 0.48±0.02 0.16±0.01
m6.RF random forest 0.76±0.02 0.57±0.01 0.20±0.01
m7.LR logistic regression 0.83±0.01 0.50±0.02 0.17±0.01
m7.RF random forest 0.84±0.01 0.53±0.01 0.18±0.01
m8.LR logistic regression 0.82±0.01 0.52±0.02 0.17±0.01
m8.RF random forest 0.84±0.01 0.52±0.01 0.17±0.01
m9.LR logistic regression 0.87±0.01 0.46±0.02 0.15±0.01
m9.RF random forest 0.85±0.01 0.51±0.01 0.17±0.01
m9.XGB XGBoost 0.84±0.02 0.54±0.04 0.17±0.01
m9.GBM GBM 0.86±0.01 0.46±0.02 0.15±0.01
m9.NB naive Bayes 0.80±0.01 0.58±0.02 0.18±0.01

Table 6.6: Performance metrics for the models defined in Table 6.5.
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Table 6.5 enumerates attributes of the models involving clinical data (i.e. IOP, CH
and CRF). We built m1 - m4 LR models as baseline reference for the extended models.

Model m5 (LR) with IOP achieved the best performance with mean AUC of 0.86±0.01,
Brier score at 0.15±0.01 and accuracy at 0.81±0.01. Model m6 contains the same at-
tributes except cardiac derived ones which were left out. It has slightly lower AUC
estimate for LR and the recorded difference with m5 is within the standard deviation
range. Model m7 is based only on sensor data and corneal biomechanical measurements.
It has mean AUC of 0.84±0.01, Brier score at 0.18±0.01 and accuracy at 0.78±0.01.
Model m8 is based on m7 attributes without cardiac derived ones. It has mean AUC
estimates similar to m7. AUC estimate for m7 (RF) is significantly greater by 0.04 than
AUC for the best baseline model (m2) based on clinical data only. Therefore sensor
data derived attributes can be regarded as complementary to CH and CRF measure-
ments. Also IOP joined with biomechanical corneal properties and sensor attributes lead
to improved predictive performance as in (LR) model m5 or m6.

Finally we check the models supplemented with cardiac attributes describing SAP,
DAP, HR range summary (amplitude, flat amplitude) in the main time intervals. Model
m9 (LR) has mean AUC of 0.87±0.01 that is higher than AUC for m8 model and
the corresponding difference is above the computed standard deviation range. Mean
accuracy estimate for m9 is 0.81±0.01. Training and mean cross-validation ROC curve
for m9 (LR) is shown in Figure 6.9 and 6.10. All ROC curves generated in cross-validation
for the selected random division of the input data set are shown in Figure 6.11. This
extended cardiac based attribute set joined with TF data and CH, CRF yields improved
estimate of logistic loss and Brier score for LR. Summary of m9 metrics depending
on classification threshold is shown in Table 6.7. Table 6.8 lists hyperparameters with
optimal values determined for the m9 model.

Additionally we assessed predictive performance of several other ML algorithms for m9
attribute set. XGBoost mean AUC is 0.84±0.02, Brier score is 0.17±0.01 and accuracy
is 0.79±0.02. Gradient Boosting Machine (GBM) mean AUC is 0.86±0.01, Brier score
is 0.15±0.01 and accuracy is 0.80±0.02. Naive Bayes classifier performance is weaker
than the other algorithms: it has mean AUC of 0.80±0.01 and accuracy at 0.78±0.02.
Performance of GBM model is close to the estimate of LR.

Figure 6.12 shows relative attribute importance for the m9 (LR) model. In the
bar chart of standardized coefficient magnitudes for logistic regression we can see that
highest values are assigned to CH, sum TFs wake [tp3+3h], cor level HR tp2 wake,
ampl HR start sleep. Figure 6.13 shows supplementary SHAP (Shapley additive expla-
nations) summary plot of attribute contribution for m9 (RF) model. CH, flat ampl DAP
sleep wake and sum TFs wake [tp3+3h] have the highest rank. Approximation of at-
tribute importance for the models using Shapley values depends on the available dataset
size and data distribution [79]. Sum under TF curve in the time interval of length 5h
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beginning at WAKE time point seems to be the most important attribute related to
Triggerfish for the input dataset.

Specific eye tissue properties are different for healthy and glaucoma positive cases
and can have impact on biomechanical phenomena leading to glaucomatous process [3].
It is possible that value of attribute sum TFs wake [tp3+3h] (associated with change
of ocular volume and shape of the eye surface) can be intermediately related to such
tissue properties as it refers to time interval after the end of sleep, considerably long
time since application of Triggerfish lens having an influence on the eye surface. Au-
toregulatory capacity of the eye requires adequate ocular blood flow which depends on
cardiovascular system efficiency. Attributes related to heart rate (ampl HR start sleep)
and diastolic arterial pressure (flat ampl DAP sleep wake) can quantitatively approxi-
mate some properties of such mechanism. Ratio of nocturnal and daytime level of blood
pressure association with POAG progression was investigated in [10]. Case-specific rela-
tionship between TF and HR in nighttime interval is quantified by cor level HR tp2 wake
attribute.

metric name metric value for LR metric value for GBM
F1 0.86 0.85
F2 0.88 0.87
F0point5 0.83 0.83
accuracy 0.81 0.80
precision 0.82 0.82
sensitivity (recall) 0.89 0.88
specificity 0.68 0.68
NPV (negative predictive value) 0.80 0.78

Table 6.7: Summary of m9 (logistic regression and GBM) model performance metrics.

6.3.5 Models for the extended input dataset
This section reports results for the selected ML models built using extended input
dataset. Methods described earlier in this chapter were applied in development and
evaluation of these predictive models.

Input data

Input data for the research was collected at [Wasilewicz] Eye Clinic in Poznań. Input
dataset contains 138 cases. It has been supplemented with the new ones since the
results presented in previous sections were published in [19]. Some minor corrections were
introduced in the dataset (including removal of one case with low quality SAP/DAP/HR
data). The following diagnosis labels were assigned to the cases:
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Figure 6.9: Training dataset ROC curve of
the model m9.LR (logistic regression). Train-
ing dataset AUC is estimated at 0.92, relevant
accuracy at 0.86.

Figure 6.10: Mean cross-validation ROC curve
for the m9.LR model (logistic regression). Black
point on the curve represents (FPR,TPR) value
pair for the maximal accuracy classification thresh-
old. Accuracy of the model is estimated at
0.81±0.01.

Figure 6.11: ROC curves for the all cross-validation folds in selected random division of the input
data set (m9.LR model).
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Figure 6.12: Attribute importance summary for the m9.LR (logistic regression) model. Blue color of
bar refers to the negative sign of coefficient.

Figure 6.13: SHAP summary plot for the m9.RF (random forest) model shows the contribution of
its attributes ranked by importance.
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Figure 6.14: 24-hour overview of attributes in the input dataset for healthy (NORM) and POAG
cases (glaucomatous neuropathy). Each point represents median of the values within one series (one
burst). Scatterplots contain smoothed color lines which are attribute approximation generated by loess
function (locally weighted polynomial regression) for TF [mV equivalents], SAP/DAP [mm Hg], HR
[beats per minute].
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hyperparameter value description
random forest

ntrees 180 number of trees

max depth 5 maximum depth to which each tree will
be built

min rows 11 minimum number of observations for a leaf
required to split

nbins 20
maximum number of bins included in
the histogram for determining the split of
the attribute space

sample rate 0.67 row sampling rate set to improve
generalization and reduce validation error

logistic regression
lambda 0 LASSO regularization penalty

XGBoost
ntrees 130 number of trees

learn rate (eta) 0.27 specifies shrinkage of the feature weights
after each boosting step

GBM
ntrees 160 number of trees

learn rate (eta) 0.09 specifies shrinkage of the feature weights
after each boosting step

Table 6.8: Main hyperparameters of the machine learning models. Optimized values for the m9
model.

◦ 50 high tension glaucoma (POAG/HTG)

◦ 30 normal tension glaucoma (POAG/NTG)

◦ 58 control/healthy (NORM)

Figure 6.14 shows 24-h overview of the sensor data from the extended input dataset.

Predictive models

Table 6.9 enumerates attributes for the models with highest AUC value estimated in
repeated 10-fold CV routine for the input dataset. Model G0 is based only on TF and
cardiac data derived attributes. Additional cardiac attributes joined with TF data can
improve predictive performance of model. Quantification of the reciprocal relation of
TF and cardiac signal (e.g. correlation coefficient) seems particularly valuable. Model
G1 is based on sensor data supplemented with measurements of corneal biomechanical
properties (CH, CRF) [77]. Such models can be a tool suitable for glaucoma detection
regardless of direct IOP measurements. Sensor data derived attributes are complemen-
tary to CH and CRF with the highest mean AUC of 0.88±0.01 for G1 (see Figure 6.15
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Figure 6.15: Training dataset ROC curve
of the model G1 (logistic regression). Training
dataset AUC is estimated at 0.92.

Figure 6.16: Mean cross-validation ROC curve
of the model G1 (logistic regression). AUC of the
model is estimated at 0.88±0.01.

and 6.16). Best performance metrics estimated for the logistic regression model (see
Table 6.10) are similar to the results reported for the earlier (initial) input dataset [19].

Model id Attributes

G0

slope TFs [sleep-5h] sleep, sec deriv integral TFs sleep [sleep+3h],
sum TFs [wake-4h] wake, sum TFs wake [wake+5h], ampl HR start sleep,
flat ampl DAP sleep wake, cor level HR [sleep+2h] wake

G1

CH, CRF, slope TFs [sleep-5h] sleep, sec deriv integral TF sleep [sleep+3h],
sum TFs wake [wake+5h], ampl HR start sleep, flat ampl DAP sleep wake,
cor level HR [sleep+2h] wake

Table 6.9: Summary of the attributes selected for the model G0 involving only sensor data derived
attributes and G1 with corneal biomechanical measurements (CH and CRF).

Model id Type AUC Brier score Accuracy

G0
logistic regression 0.77±0.01 0.20±0.01 0.73±0.01
XGBoost 0.70±0.02 0.22±0.01 0.70±0.01
naive Bayes 0.68±0.02 0.23±0.01 0.68±0.01

G1
logistic regression 0.88±0.01 0.14±0.01 0.83±0.01
XGBoost 0.85±0.01 0.15±0.01 0.81±0.01
naive Bayes 0.84±0.01 0.16±0.01 0.82±0.01

Table 6.10: Estimation of performance metrics for the models from Table 6.9.

6.4 Conclusions
Glaucoma detection and control requires acquisition of data from multiple sources in-
cluding standard measurements of eyeball properties (using e.g. Goldmann applanation
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tonometry), imaging techniques, Triggerfish CLS and devices for monitoring cardiovas-
cular system properties. Currently IOP is the main identified risk factor [80] for glaucoma
which can be modified. We focused our study on TF joined with cardiac data derived
attributes that can be candidate for additional modifiable risk factors in extended ML
models. We also evaluated models involving CH, CRF and sensor data based attributes
without IOP. Such models can be a tool suitable for glaucoma detection independently
of direct IOP measurements. Sensor data derived attributes are complementary to CH
and CRF with the highest mean AUC of 0.87 for m9 (or 0.88 for G1). Cardiac data de-
rived attributes are also complementary to TF based attributes as mean AUC estimate
is higher for extended models built for TF joined with cardiac data based attributes.
Predictive performance metrics improvement is noticeable for such extended models
based on sensor data only and for models based on sensor data along with CH, CRF
measurements.

Comprehensive patient’s data profile which involves Triggerfish and cardiac sensor
record can provide new insights into glaucoma detection and control. Such integrated
approach for monitoring of the disease can also facilitate advances in research focused
on understanding basic pathological mechanisms related to the retinal function [66].

Machine learning models based on joint CH and sensor data are important part of
the study. Previous publications reported results for either CH or sensor data [3, 81].
Performance estimates for our extended models that include CH measurements are better
than results for the models based only on corneal biomechanical properties or the models
based only on Triggerfish derived data. Such extension of the attribute set of the models
can be considered as an advantage. Important aspect of the work is introduction of
cardiac data derived attributes that can be regarded as prospective modifiable risk factors
of glaucoma and element in patient profiling or treatment recommendation.



Chapter 7

System for glaucoma diagnosis and
collaborative research support

This chapter is based on the results which were presented in the article written by the
author (see [A1]) and included in the description of invention in the patent application
(see [P1]). This chapter also contains some ideas and the results presented at the 10th
World Glaucoma Congress (see [C1]).

Diagnostic support services were designed and implemented by the author using R,
Python and Java programming languages.

7.1 System overview
Triggerfish is a relatively new device and there are no extensive software tools for sup-
porting complete analysis of its data output. Current cost of a single examination
(disposable contact lens) is relatively high, can be many times higher than OCT scan
(see description of OCT imaging technique in 3.2) and there are no specific multi-sensor
data based clinical protocols ready to apply in glaucoma detection and treatment. The
majority of ML-based systems for glaucoma diagnosis is intended for structural analysis
of image data [16] and the range of implemented functions is usually limited. One of the
few systems that handle clinical data is Maggelan which supports diagnosis using OCT
extracted features and selected clinical data including parameters based on visual field
(VF) test and IOP. However this system can’t use any sensor data for case assessment
[82].

System designed for management and analysis of the sensor data can address many
of the aforementioned issues in the context of glaucoma diagnosis. Deployment of the
system will increase availability of the data that is typically stored in isolated/closed
repositories. It will encourage research on the personalized approaches focused on the
multi-sensor data and the exchange of new ideas.

54
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Figure 7.1: Data flow and interactions of users of the system. Clinical data include measurements
such as age, CH, CRF, CCT (central corneal thickness), etc.

This thesis proposes comprehensive system for glaucoma diagnosis and collaborative
research support. The system has the following aims:

1. Support of glaucoma detection and control using multiple ML techniques.

2. Provision of collaborative research platform for medical specialists in ophthalmology
and data scientists.

3. Supply of data management services (focused on time series acquired using Trig-
gerfish contact lens sensor and devices for continuous monitoring of cardiovascular
system properties).

4. Facilitation of using various data sources in clinical hypothesis assessment and
refinement.

Users of the system can be assigned with the following basic roles:

1. Ophthalmologists experienced in glaucoma diagnosis and clinical research. They
can set new directions for the research and assess the practical value of the imple-
mented solutions.

2. ML engineers or data scientists experienced in application of ML methods in
biomedical data analysis. These specialists can collaborate with the doctors to
design and develop new analytic components for the users.
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3. Eye doctors who want to gain experience in the field of glaucoma detection and
control. They can participate in collection and validation of clinical data.

General outline of the proposed approach is shown in Figure 7.1. Components of the
diagram refer to data acquisition (Triggerfish and SOMNOtouch devices, clinical meta-
data), data management (storage, reference dataset collection, sharing), application
and evaluation of ML models, data visualization, eye doctors and data science experts
collaboration in clinical research related to glaucoma diagnosis and treatment.

7.1.1 ML-based system architecture
Increasing adoption of ML techniques has given rise to many challenges related to system
development, deployment and management [22]. These challenges should be addressed
along with the issues typical for standard software system engineering. ML-based system
view is divided into ML subsystem and software subsystem in some high-level approaches
[83]. Such view on architecture is in line with different characteristics, functions and
key stakeholders of the each subsystem. Distinct nature of the each subsystem has
an impact on requirements analysis and design assumptions. Development team can
use different methodology and organizational principles regarding ML field with specific
roles like data scientist, data engineer and domain expert. Typical concerns of the ML
field include quality of data, hyperparameter tuning for algorithms, model performance
assessment, visualization and explanation of the results. On the other hand standard
software engineering deals with the concerns like security, availability, testing, system
maintenance and update. New important role in development team may be assigned for
an expert that has experience in both software engineering and application of ML. Main
coordinator can more efficiently spot and manage design issues or trade-offs that arise
due to the complexity of ML-based system.

Microservices architecture is getting common over the last years. This architectural
paradigm assumes that system is composed of many loosely coupled components (or ser-
vices) which are independently deployable [84]. Different technology stack, programming
languages and data sources can be used for different components. Such design capa-
bilities seem to be especially valuable in development of complex ML-based systems.
Scalability and update flexibility of this approach outweigh the potential performance
gains of monolithic architecture [85].

7.1.2 Data integration
Early diagnosis of glaucoma is a challenging task. Diagnostic routine includes diverse
examinations and the resulting data require appropriate interpretation. The use of wear-
able medical devices is constantly growing in many fields of health care [86]. Continuous
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monitoring of the physiological signals can provide data essential for the development of
reliable diagnostic methods and management standards for the disease.

One of the important aspects of data integration is combining data from different
sources and delivering unified view of them for the users of the system [87]. Notion of
the case or, equivalently, set of examinations were introduced in the system to integrate
series of patient examinations in time slot assigned for diagnosis. The main focus is on
the analysis of sensor data therefore typical case involves Triggerfish and SOMNOtouch
data from one 24-hour session. Measurements like IOP, CH, CRF, CCT (central corneal
thickness) and the other anatomical readings of the eye features are also included. Any
relevant examination data can be added to the case e.g. OCT, fundus images or selected
optometric test results. Integration based on the notion of the case enables sharing of the
sensor data and creating research data sets available for the selected users. Statistical
analysis of such large data sets can lead to identification of patient subgroups that have
specific characteristic related to diagnosis or management of a disease.

Figure 7.2: Overview of the basic system components.

7.1.3 Application services
The system is comprised of backend components, data storage and web application
interface (see Figure 7.2). Core backend components are implemented in Java using
Play Framework for Java. Frontend web interface is built using JavaScript libraries
including Plotly Graphing Library for making interactive plots of multiple data formats.
PostgreSQL is currently used as a relational database management system.
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Scripting component is responsible for running Python and R code for basic process-
ing of sensor data and application of the selected ML techniques. R language offers many
libraries for data processing and the recent ML algorithms. Reference implementation
of R (i.e. GNU R) works well in practice, but it is quite complex. Several attempts have
been made to create an implementation of the R language that provides better perfor-
mance while keeping compatibility with the original version of R [88]. Java environment
is the basis for implementation of the main system therefore JVM-based interpreters
for R (e.g. Renjin) seemed appropriate to examine in practice. Such approach could
contribute to the closer integration of data processing components with the core sys-
tem. Nevertheless, it is challenging to map semantics of scripting language like R that is
significantly differ from the JVM bytecode. At this moment JVM-based interpreter for
R requires additional modification/adjustment of the scripts and imposes constraints for
specific R library versions. One of the objectives of the system is to run generic code in
the scripting component with possibility of enhancement and fast deployment. Finally
implemented solution is based on Java ProcessBuilder class to execute the scripts as op-
erating system processes. This approach enables easy script update and use of multiple
libraries.

7.1.4 ML environment
H2O has been chosen as the main ML framework for the system. It is open source,
scalable platform providing implementation of a wide range of ML algorithms and tools.
H2O can be connected to the multiple data sources such as relational databases, plain
files, Apache Hadoop, Spark or Amazon S3 clusters.

ML models created and evaluated in H2O can be deployed into production environ-
ment using POJO (Plain Old Java Object) or MOJO (Model Object, Optimized) formats
[74]. MOJO and POJO model files can be easy deployed in Java applications. Exported
zip file with a model contains one dependency in h2o-genmodel.jar. Model package can
be loaded using H2O Java API containing MojoModel class. Raw model prediction can
be generated quickly as no connection to a running H2O cluster is required.

H2O provides Web Flow interface for model creation, tuning and evaluation. User
can view model hyperparameters and detailed training and validation metrics. Variable
importance plot, confusion matrix, ROC curve and other diagrams can be generated for
a model. It is also possible to check model predictions for the selected dataset.
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7.2 Application scenarios

7.2.1 Glaucoma diagnosis
Diagnosis is inherently individual assessment of a patient based on available data and
clinical experience of medical doctor [89]. In the scenario focused on clinical decision
support we consider supplementary information generated by ML model that can be
used in evaluation of the most relevant diagnostic hypotheses.

Figure 7.3: View of a single case data in the system. It contains Triggerfish CLS and SOMNOtouch
NBIP output files (for 24-hour session), clinical measurements (e.g. CH, CRF, IOP etc.) and other
data (sex, age, patient ID etc.). Correlation coefficient of Triggerfish CLS and cardiac sensor data (HR,
SAP, DAP, MAP, SpO2) is shown at the bottom (based on median values for bursts in the selected
time interval). User can choose time interval from the list on the left (e.g. sleep wake).

Figure 7.4: Prediction result for the model selected by user. Simple measure of confidence is
computed for the predicted class label (blue bar). It is based on the distance between predicted
probability (red bar) and reference threshold of model. If the distance is small then confidence is low
(close to 0%). If the distance is large then confidence is high (close to 100%).

Diagnostic support scenario is intended for the medical professionals. They can check
basic output of ML model which is predicted probability of glaucomatous neuropathy
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(positive) diagnosis for a case (see Figure 7.4). The result is shown as numeric proba-
bility attached to the single bar chart. Class label (NORMAL/NOT NORMAL) relevant
to the predicted probability is also shown. It is based on a comparison with optimal clas-
sification threshold determined for the model. Diagram with explanation of the model
prediction is shown to allow interpretation of the result by a user (see Figure 7.5). Un-
derstanding and comparing how a model uses the attributes to make a given prediction
can provide opportunity to get insight of its properties [21]. Currently we use LIME
(Local Interpretable Model-agnostic Explanations) and DALEX visualization techniques
for generation of explanation of particular prediction. LIME method assumes that every
complex model is linear on a local scale and can be approximated with an interpretable
model [56]. DALEX break-down plots are fast approximations of Shapley values [90].
Such local explanations enable evaluation of the practical usability of the model by oph-
thalmologists experienced in glaucoma diagnosis. This approach can lead to refinement
of the model attributes by data scientists or ML engineers working together with the
doctors.

Figure 7.5: Prediction for particular case can be decomposed onto model attributes using DALEX
break-down profile generated on the basis of conditional responses of the model. User can assess the
contribution of each attribute to the prediction (0.883) for the instance. Positive attribute contributions
are shown as pink bars (e.g. CH), negative as green bars (e.g. CRF). Intercept can be interpreted as
mean value (an estimate of the expected value of the model’s predictions for all cases).
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Figure 7.6: Comparison of IOP [mm Hg] measurements distribution in the selected sets of cases.
Box plots for the 6 sets of cases defined on the basis of diagnosis: s1:NORM, s2:suspected OH (ocular
hypertension), s3:OH, s4:suspected POAG/HTG, s5:POAG/HTG, s6:POAG/NTG.

7.2.2 Data visualization
Embedding model results in extended context of the available patient data can facilitate
identification of specific features related to the course of disease and prognosis. Following
recommendations of the domain experts we provided box plot [91] view of distribution of
data included in a set of selected cases. This type of plot is common in scientific papers
and usually is correctly interpreted by the medical professionals. Box plots supports visual
comparison of data distribution properties across different sets of cases (see Figure 7.6).
User can define set of cases using filtering by diagnosis or the range of value of the
selected measurements (IOP, CH, CRF etc.). It is also possible to generate heat map
view of Triggerfish and cardiac signal correlations for a set of selected cases (in time
intervals chosen by the user). Rows (cases) in the heat map matrix can be ordered
according to the result of hierarchical clustering for Euclidean distance (see Figure 7.7).
Identification of subgroups of cases with significant positive or negative correlations
and specific properties quantified by the other measurements can lead to more efficient
diagnostic or treatment recommendations (related to properties of the cardiovascular
system).

7.2.3 Collaborative research
Collaborative research is a way of tackling complex problems. Clear communication is
essential for effective collaboration. Design of the system assumes creation of research
projects that support activities related to development and application of personalized
medicine techniques. Users working on the selected issue can add notes/comments
containing multiple content in workspace of a project. Entries added by the users can
contain text, images, links and embedded results of analytic functions provided by the
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Figure 7.7: Heat map view of the Spearman’s rank correlation coefficient values for TF and cardiac
sensor signal: SAP, DAP, MAP (mean arterial pressure), HR in the first 2 hours of the main/night
sleep period (SLEEP [SLEEP+2h]). View generated for the set of 50 cases.

system. Default order of entries is aligned with the main timeline of the project. Each
analytic result includes its timestamp and the details of set of cases for which it was
created. Precise identification of the analytic results (such as box plots, heat maps
and the other graphs) helps in tracking of discussion and development of the research
conclusions.

Users can share access to selected cases from their repository (see view of a case in
Figure 7.3). It encourages data collection and application of the analytic functions to
assess specific properties of the data. Data sharing is one way to prompt more frequent
use of sensor data in development of new glaucoma diagnosis and control standards
based on continuous monitoring of eye and cardiovascular system properties. System is
intended to enable flexible exploration of data and exchange of new ideas. Constraints
related to research workflow in the system are assumed to be soft and primarily intended
to improve coordination and reproducibility of the results.

7.3 Transdisciplinarity
Many complex research issues entail application of methods from multiple disciplines.
Boundaries of the fields in science and technology are not ultimately determined and can
change over time. Integration of knowledge and experience from many disciplines may
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yield new ideas and improve credibility of research. Effective organizational structures
can foster innovative science projects by introducing policies, practices and recommenda-
tions for the transdisciplinary research (addressing issues such as provision of additional
resources or long-term funding) [92].

7.3.1 Transdisciplinary research
Transdisciplinarity concept has roots in discussions about the need for new forms of
interdisciplinary collaboration [93]. It encompasses the following key characteristics:

◦ focus on specific, complex, real-word problems that are important for society

◦ transformative approach (i.e. support of action or change of the status quo)

◦ contemplation of broad context of the research and compatibility of its parts

◦ development of integrated knowledge that crosses disciplinary boundaries

Transdisciplinarity provides framework for the research projects and highlights importance
of validation of the outcomes from different perspectives [94]. Many aspects of the
research presented in the thesis are linked to the basic concepts of transdisciplinarity.

Glaucoma affects many millions of patients in the world and remains a major problem
for health care system. As the age is one of the significant risk factors, the disease is an
important issue in the aging population. One of the aims of the research is development
of new diagnostic methods based on multi-sensor data. These methods can supplement
current options available for patients and change diagnosis and treatment standards.

Services of the system can be extended and accommodated to handle different data
formats. New system scenarios can be proposed regarding possible data sources. For
example, using genotyping arrays to find single nucleotide polymorphisms (SNP) across
genome will allow identification of genetic variants associated with risk of progression
in particular glaucoma types [17]. Adding new system capabilities to handle such SNP
data with consideration of its relationship with the other data will be consistent with
transdisciplinarity assumptions related to compatibility and development of integrated
knowledge. Involvement of users from many clinical and research fields is in line with
the transdisciplinary attitude to the crossing of disciplinary boundaries.

7.3.2 Community adoption
Lack of adequate tools for management, sharing and analysis of collected data reduces
productivity of the research [87]. Design of the system is focused on the services for
handling Triggerfish and cardiac sensor data. Data collection workflow in the system
is similar to the approach common in clinical practice. It facilitates adoption by the
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eye doctors and customization of the services. We can assume evolution of the system
and incremental implementation of the functions that address new requirements arising
in the diagnostic and analytic scenarios. As the users of the system have different
experience and knowledge it is important to introduce guidelines for application of the
ML techniques to diagnosis of glaucoma. Relevant issues in this context include:

◦ quality of sensor data in relation to patient activity during the day

◦ understanding limitations of the ML models and appropriate assessment of the
predicted output

◦ using statistical guidelines as well as clinical knowledge in interpretation of data
exploration results

Appropriate organizational perspective can support setting of priorities for system
development and its application. Establishment of the center of excellence for glaucoma
research can provide high performance computational resources for implementation of
the latest ML techniques in the field of ophthalmology, support maintenance of the
system and collaborative development of personalized medicine standards.

7.4 Conclusions
In recent years, many new devices for continuous monitoring of patient health parameters
have become available [86]. Latest ML algorithms are able to efficiently process complex
data. It makes possible to develop personalized approach in many fields of medicine. 24-
hour Triggerfish record joined with cardiac sensor data can be used to more accurately
diagnose and track progression of glaucoma. Nevertheless, large amount of data is
required to build reliable ML models [95]. At this moment Trigerfish device is not
commonly used in clinical practice and software tools for sensor data processing usually
offer only simple analytic functions.

While availability of the research data is limited, inclusion of new users in the system
will facilitate development of the analytical services and evaluation of clinical obser-
vations. Support for scenarios involving application of ML techniques for assessment
of specific cases can encourage medical professionals to collect and share more sensor
data for patients. Consequently, greater availability of the data can increase interest in
collaborative research scenarios for novel approaches in glaucoma diagnosis and control.



Chapter 8

Data analysis scenarios for
collaborative research

This chapter presents exploratory data analysis scenarios that have been implemented
during the research. Triggerfish and devices for continuous monitoring of cardiovascular
system parameters have been introduced relatively recently into the clinical toolkit.
Relation of Triggerfish CLS signal and cardiac activity with clinical data has not been
extensively studied yet and there are few detailed medical knowledge sources that could
facilitate interpretation of such data for specific cases. Existing publications use different
data analysis methods and usually report the properties of small patient groups. These
results can’t be directly compared with each other or immediately used as the basis for
guidelines of clinical routine.

Exploratory data analysis is an approach that uses standard data science techniques
for comprehensive characterization of properties of the available data. To answer basic
questions about data properties we can use statistical tests, clustering, principal com-
ponent analysis (PCA) and various data visualization methods (diagrams such as box
plots, scatterplots and heatmaps are commonly used in natural sciences and medicine).

Source code for the scenarios described in this chapter was created by the author using
R and Python programming languages. R is scripting language designed particularly for
statistical analysis and data visualization. Python is general, object-oriented, scripting
language that is widely used for implementing complex and scalable ML solutions.

Current diagnostic routine in ophthalmology involves many measurements. Even
imaging modalities (such as OCT) extract numerical parameters describing diagnostic
output. Such data is usually saved (e.g. in CSV files/tables) and over time a considerable
amount of data may be collected in clinic. Collaboration of the doctor with data scientist
and ML engineer enables efficient data merging and basic inference. Clinical decisions
can be made according to the complex patient data profile involving multiple modalities
output. Application of statistical and ML techniques for comprehensive evaluation of
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individual patient based on the available data resources can be seen as implementation
of personalized medicine premises.

8.1 Relationship of Triggerfish CLS and cardiac
sensor data derived attributes with clinical
measurements

Figure 8.1: Correlation matrix for the normal case group (NORM).

In this scenario we investigate relation of clinical data with attributes derived for
Triggerfish (TF) and SOMNOtouch data. Working hypothesis assumes that there is a
relationship between clinical measurements (especially IOP or biomechanical eye proper-
ties: CH, CRF) and TF attributes derived for sleep [sleep+3h] time interval. Additionally
we focus on the increase of TF value at the beginning of the night sleep. Typically the
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Figure 8.2: Correlation matrix for the glaucomatous neuropathy case group (POAG).

rate of TF increase stabilizes at some timepoint. We can mark this point as a vertex V
and try to fit two straight lines (arms of the angle) to TF data to estimate exact time
value for the vertex. Application of the stochastic optimization algorithm from SciPy
library in Python (scipy.optimize.differential evolution) gives correct timepoint value for
most cases. Manual correction of the timepoint (within 30m range) was performed ad-
ditionally for selected cases. Input dataset contains 43 normal and 46 POAG cases with
the timepoint V located up to sleep+3.5h.

We divided sleep [sleep+3h] interval using V value into the initial part (L) and final
part (R). For these intervals we computed rawTF 2 sumL/R: sum under the TF curve
(median values for the bursts) and rawTF 2 slopeL/R: slope (in radians) of linear re-
gression line for TF fitted using standard least squares method. Sum, ratio and product
( plus, div, mult) for some of the attributes were also considered in the analysis. GAT
denotes IOP measured using GAT, AL1 refers to the axial length of the eye (see details
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var1 var2 n r p.val lower.ci upper.ci
rawTF 2 sumL rawTF 2 sumL div slopeL 43 0.85 <0.001 0.74 0.92
rawTF 2 sumL rawTF 4 sum 43 0.69 <0.001 0.49 0.82
rawTF 2 sumR rawTF 2 slopeL 43 0.64 <0.001 0.42 0.79
rawTF 2 slopeL rawTF 2 sumL div slopeL 43 -0.40 0.008 -0.63 -0.11
rawTF 2 slopeR rawTF 2 sumR div slopeR 43 0.51 <0.001 0.25 0.70
AGE mean MAP 38 0.42 0.008 0.14 0.64
AGE median MAP 38 0.41 0.010 0.13 0.64
CH CRF 43 0.84 <0.001 0.72 0.91
rawTF 2 sumL div slopeL rawTF 4 sum 43 0.55 <0.001 0.30 0.73

Table 8.1: Selected correlation coefficient values (r) from the matrix for the normal case group.

in 5.3), TF 4 sum refers to the (scaled/raw) sum under TF curve in wake [wake+5h] in-
terval. Mean/median value of SAP/DAP/MAP/HR in sleep wake interval were included
in the correlation matrix.

Squared (symmetrical) matrices contain Spearman’s rank correlation coefficient val-
ues generated for the attribute pairs (see Figure 8.1 and 8.2). It is a nonparametrical
statistical measure of monotonic relation between variables. Table 8.1 and 8.2 enumer-
ate correlation coefficient values for the selected attribute pairs (r), count of non-empty,
correct values in the relevant data (n), p-value of the statistical significance test (i.e.
test if correlation coefficient is significantly different from 0 in population) and estimated
confidence intervals (ci).

Positive correlation of rawTF 2 slopeL with IOP (GAT) and mean/median DAP can
be observed in POAG case group. But there is no significant correlation of these at-
tributes in normal case group. Such relations are potentially valuable and can be further
investigated as IOP is one of the most important factors related to development of the
glaucoma.

There is no direct, significant correlation of CH and CRF with TF attributes derived
for TF. Preliminary evaluation of predictive models involving CH and CRF showed that
addition of the considered TF attributes (derived for the L/R interval) essentially don’t
improve predictive performance of the models.

8.2 Comparison of sensor data derived attributes in
case groups based on the diagnosis and
additional criteria

In this scenario we define case groups based on diagnosis (NORM, NTG and POAG)
and Spearman’s rank correlation coefficient value for selected intervals. We considered
relation of TF (Triggerfish) and SAP/DAP/HR (SOMNOtouch) measurements. We
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var1 var2 n r p.val lower.ci upper.ci
rawTF 2 sumL rawTF 2 sumR 46 0.52 <0.001 0.27 0.70
rawTF 2 sumL rawTF 2 sumL div slopeL 46 0.94 <0.001 0.89 0.97
rawTF 2 sumL rawTF 4 sum 46 0.71 <0.001 0.53 0.83
rawTF 2 sumR rawTF 2 sumL div slopeL 46 0.40 0.006 0.12 0.62
rawTF 2 sumR rawTF 4 sum 46 0.61 <0.001 0.38 0.76
rawTF 2 slopeL GAT 46 0.48 0.001 0.22 0.68
rawTF 2 slopeL mean DAP 42 0.47 0.002 0.21 0.67
rawTF 2 slopeL median DAP 42 0.50 0.001 0.24 0.69
rawTF 2 slopeL median MAP 42 0.41 0.008 0.13 0.62
rawTF 2 slopeR rawTF 2 sumR div slopeR 45 0.48 0.001 0.22 0.68
AGE AL1 18 -0.54 0.021 -0.72 -0.29
rawTF 2 sumL div slopeL rawTF 4 sum 46 0.60 <0.001 0.38 0.76

Table 8.2: Selected correlation coefficient values (r) from the matrix for the glaucomatous neuropathy
case group.

selected results for division based on correlation of TF with HR for presentation in this
section. If correlation coefficient modulus (absolute value) is greater or equal to 0.20
(custom threshold) for interval then we include a case in negative (relatively strong
negative correlation) or positive group (relatively strong positive correlation).

Input dataset contains 116 cases. We focus on start sleep, sleep wake and tp2 wake
time intervals as the day and night SAP/DAP level difference can be related to the
ocular blood flow and eye function.

We compared distribution of arithmetic means of TF, SAP, DAP, MAP, HR in the
intervals. Figures 8.3 and 8.4 show box plots for these attributes and additionally AGE,
CH, CRF, GAT. Border color represents sign of the correlation criterion for the group
(negative: red, positive: green). Fill color refers to diagnosis (NORM: blue, NTG: white,
POAG: pink).

Box plots provide useful representation of variable distribution. Central horizontal bar
marks the median, lower and upper edges of the box represent the first (Q1) and third
quartile (Q3). Whiskers are usually drawn within the 1.5 interquartile range (Q3-Q1)
from the box edges. Values outside the whiskers range are called outliers.

Nonparametric Mann–Whitney U test (known as Wilcoxon rank sum test) was used
to compare attribute distributions and check if differences observed in the box plots are
statistically significant (see selected comparisons in Table 8.3, 8.4, 8.5, 8.6). Output of
the test depends on the shape and location parameters of the compared distributions.

Comparing NORM positive and NORM negative groups we can see difference in
distribution of TF mean values in the considered time intervals. There are no significant
attribute distribution differences for comparison of NORM positive with NTG positive
case groups. Comparing NORM negative with NTG positive we can see difference in
distribution of TF mean values in sleep wake and tp2 wake interval.
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Comparing NORM negative and NTG negative we can see difference in distribution of
SAP and MAP mean values in the considered time intervals. Comparing NORM positive
vs. NTG negative we can see difference in distribution of SAP and MAP mean values
in the considered time intervals.

Based on the comparisons we can suppose that SAP, MAP mean values in NTG
negative case group (in the considered intervals) can be important factors in the group
and modification of the SAP, MAP mean levels can potentially affect ocular blood flow
and eye function. Such exploratory analysis of the specific case groups may lead to
detailed characterization of group properties and factors related to the condition.

Figure 8.3: Side-by-side box plots for the groups based on diagnosis (fill color) and correlation of TF
with HR in sleep wake time interval (border color).
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p.val lower.conf.int upper.conf.int p.val<0.05
start sleep SAP mean 0.903 -10.86 13.37
start sleep DAP mean 0.542 -8.88 5.16
start sleep MAP mean 0.903 -8.39 6.84
start sleep HR mean 0.165 -11.66 2.69
start sleep TF mean 0.018 0.08 2.53 T
start sleep SAP-DAP mean 0.715 -7.08 13.80
sleep wake SAP mean 0.614 -9.33 17.61
sleep wake DAP mean 0.715 -7.56 5.63
sleep wake MAP mean 0.821 -7.27 9.42
sleep wake HR mean 0.497 -7.52 2.84
sleep wake TF mean 0.015 -3.86 -0.26 T
sleep wake SAP-DAP mean 0.302 -4.03 15.88
tp2 wake SAP mean 0.614 -8.16 18.19
tp2 wake DAP mean 0.821 -7.01 6.64
tp2 wake MAP mean 0.794 -6.73 10.14
tp2 wake HR mean 1.000 -5.75 4.88
tp2 wake TF mean 0.005 -4.19 -0.73 T
tp2 wake SAP-DAP mean 0.336 -3.27 16.10
AGE 1.000 -11.00 12.00
CH 0.296 -1.50 0.50
CRF 0.272 -2.10 0.60
GAT 0.943 -2.00 2.00

Table 8.3: Statistical significance of attribute distribution difference between the groups according
to Mann–Whitney U test (comparison of NORM positive and NORM negative).

p.val lower.conf.int upper.conf.int p.val<0.05
start sleep SAP mean 0.001 6.70 22.24 T
start sleep DAP mean 0.010 2.60 14.39 T
start sleep MAP mean 0.001 4.02 15.33 T
start sleep HR mean 0.589 -6.72 9.26
start sleep TF mean 0.903 -0.72 1.17
start sleep SAP-DAP mean 0.319 -2.79 13.35
sleep wake SAP mean 0.006 3.59 22.43 T
sleep wake DAP mean 0.057 -0.32 16.18
sleep wake MAP mean 0.018 1.95 17.32 T
sleep wake HR mean 0.794 -5.19 7.53
sleep wake TF mean 0.154 -0.24 3.40
sleep wake SAP-DAP mean 0.542 -3.89 13.24
tp2 wake SAP mean 0.002 3.93 22.14 T
tp2 wake DAP mean 0.053 -0.65 16.83
tp2 wake MAP mean 0.013 1.73 17.74 T
tp2 wake HR mean 0.794 -4.49 7.94
tp2 wake TF mean 0.154 -0.37 3.80
tp2 wake SAP-DAP mean 0.542 -3.76 13.79
AGE 0.235 -19.00 7.00
CH 0.010 0.60 2.80 T
CRF 0.012 0.50 4.00 T
GAT 0.020 0.00 5.00 T

Table 8.4: Statistical significance of attribute distribution difference between the groups according
to Mann–Whitney U test (comparison of NORM negative and NTG negative).
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p.val lower.conf.int upper.conf.int p.val<0.05
start sleep SAP mean 0.024 0.87 38.60 T
start sleep DAP mean 0.040 0.75 13.01 T
start sleep MAP mean 0.031 1.29 18.89 T
start sleep HR mean 0.605 -11.68 4.48
start sleep TF mean 0.077 -0.07 2.86
start sleep SAP-DAP mean 0.190 -4.24 25.86
sleep wake SAP mean 0.024 1.39 36.92 T
sleep wake DAP mean 0.077 -0.66 16.27
sleep wake MAP mean 0.040 0.69 21.31 T
sleep wake HR mean 0.796 -8.59 5.61
sleep wake TF mean 0.605 -3.72 2.50
sleep wake SAP-DAP mean 0.136 -2.59 29.12
tp2 wake SAP mean 0.024 2.81 35.05 T
tp2 wake DAP mean 0.040 0.03 17.09 T
tp2 wake MAP mean 0.031 1.24 22.35 T
tp2 wake HR mean 0.730 -7.44 7.89
tp2 wake TF mean 0.605 -4.70 2.19
tp2 wake SAP-DAP mean 0.113 -2.12 30.64
AGE 0.377 -23.00 10.00
CH 0.094 -0.30 2.70
CRF 0.145 -0.80 3.80
GAT 0.083 0.00 6.00

Table 8.5: Statistical significance of attribute distribution difference between the groups according
to Mann–Whitney U test (comparison of NORM positive and NTG negative).

p.val lower.conf.int upper.conf.int p.val<0.05
start sleep SAP mean 0.412 -6.59 15.28
start sleep DAP mean 0.255 -2.99 8.93
start sleep MAP mean 0.286 -4.27 11.36
start sleep HR mean 0.200 -2.72 12.12
start sleep TF mean 0.080 -2.28 0.03
start sleep SAP-DAP mean 0.876 -7.74 9.02
sleep wake SAP mean 0.986 -9.95 12.13
sleep wake DAP mean 0.741 -6.82 7.95
sleep wake MAP mean 0.821 -6.76 8.86
sleep wake HR mean 0.497 -3.77 7.41
sleep wake TF mean 0.023 0.28 4.38 T
sleep wake SAP-DAP mean 0.821 -7.25 7.09
tp2 wake SAP mean 0.986 -10.66 11.29
tp2 wake DAP mean 0.876 -7.48 7.59
tp2 wake MAP mean 0.986 -7.73 8.54
tp2 wake HR mean 0.958 -4.62 6.00
tp2 wake TF mean 0.004 1.42 5.42 T
tp2 wake SAP-DAP mean 0.768 -8.00 6.98
AGE 0.056 -26.00 0.00
CH 0.002 0.60 2.40 T
CRF 0.001 1.10 3.40 T
GAT 0.130 -1.00 3.00

Table 8.6: Statistical significance of attribute distribution difference between the groups according
to Mann–Whitney U test (comparison of NORM negative and NTG positive).
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Figure 8.4: (continued) Side-by-side box plots for the groups based on diagnosis (fill color) and
correlation of TF with HR in sleep wake time interval (border color).

8.3 Clustering clinical data
In this scenario we perform clustering analysis of the set of 95 cases. We consider basic
clinical measurements: GAT IOP, DCT (Dynamic Contour Tonometry IOP), OPA (ocular
pulsation amplitude), IOPCC (ORA corneal compensated IOP), CH, CRF. Unsupervised
ML methods such as clustering are used to characterize structure of multidimensional
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datasets and identify subgroups of cases with specific properties. Hierarchical clustering
is a common approach for clustering mixed-type or clinical data [96]. In this study we
applied agglomerative hierarchical clustering algorithm with Ward’s criterion (minimum
variance method).

Dendrogram is an interpretable representation of the hierarchical clustering output.
Leaf (terminal) nodes which represent single observations are plotted at zero height.
The height of each node in the binary tree is proportional to the value of the intergroup
dissimilarity between its two children. We receive the partition of the dataset into disjoint
clusters by cutting the dendrogram horizontally at a particular height. It is equivalent to
termination of the algorithm when intergroup dissimilarity exceeds a certain threshold
value [46].

Principal component analysis (PCA) is a linear dimensionality reduction technique.
The first principal component is a linear combination of the original variables that ex-
plains the most variance (the first PC line minimizes the sum of squared perpendicular
distances of each point from the line). The second principal component is a linear
combination of the original variables that is orthogonal to the first PC and explains the
most (remaining) variance assuming this constraint. PCA plot is a scatter plot based on
the first principal components that is commonly used to visualize output of clustering
multidimensional data.

Clustering output can be used for assessment of dispersion of the IOP measured
by different techniques in clusters of cases with similar biomechanical eye properties
(quantified by CH and CRF) [97]. Figure 8.5 shows dendrogram tree for the input
dataset. We compared 4 groups using box plots (see Figure 8.6) and PCA plot (see
Figure 8.7). Group no. 2 is clearly separated from the others. It contains 8 positive
cases with high IOP values. The remaining groups are larger and include positive and
negative cases in different proportions. Dispersion of IOP seems to be higher for positive
cases than for negative cases in most groups. Selected new cases can be compared with
cases from the clusters to identify outliers. Selected individual cases can be compared
with the delineated clusters to identify outliers.

Exploratory data analysis can be seen as an important part of any quantitative re-
search. It can explain some data properties and at the same time lead to generation
of new questions. It is a multi-step process involving data cleaning, imputation and
transformation. Collaboration of doctors, scientists and engineers will enable selection
of the most appropriate scenarios for implementation in clinical environment.
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Figure 8.5: Dendrogram tree cut into 4 groups (color rectangles). Leaves are labeled with case ID
and diagnosis.

Figure 8.6: Comparison of 4 case groups shown in the dendrogram. Box plots are split according to
the diagnosis (negative/positive).



8.3. Clustering clinical data 76

Figure 8.7: PCA plot with 4 clusters from the dendrogram. Cases are represented by points in the
plot based on the first two principle components (dimensions).



Chapter 9

Summary

This thesis was focused on the development of efficient support for glaucoma diagnosis
based on Trigerfish CLS and cardiac sensor data supplemented with selected clinical
measurements of the eye. This approach can be considered as an innovative application
of machine learning techniques for analysis of the data acquired by the devices that have
recently became available to doctors.

Although modern OCT devices allow for detailed visualization of the eye morphologi-
cal structures these imaging modalities don’t enable tracking of dynamic changes in this
complex system which is influenced by many external factors during the whole day. As
for other commonly used diagnostic methods, IOP measurements can only be performed
several times a day using standard tonometric techniques.

Incorporation of data from cardiovascular system monitoring device that is aligned
to the Triggerfish CLS signal enables assessment of the eye during 24-hour session. In
addition, the long monitoring period can be divided into time intervals according to the
physiological circadian cycle properties.

The following contributions were presented in the thesis:

◦ Development of efficient predictive ML models for glaucoma diagnosis support that
involve Triggerfish CLS and cardiac sensor data. These models don’t depend on
standard IOP measurements made using applanation tonometry. Instead, inclusion
of the measurements of corneal biomechanical properties improves performance
metrics. Furthermore, predictions of the models can be interpreted in terms related
to the basic data properties and common clinical concepts.

◦ Implementation of raw data processing methods for assessment of relationship be-
tween Triggerfish CLS and cardiac sensor data in time intervals defined according
to the physiological circadian cycle properties. This is an important relationship as
the autoregulatory capacity of the eye requires adequate ocular blood flow which
depends on cardiovascular system efficiency.

77
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◦ Design conception and initial implementation of the software system for glaucoma
diagnosis support based on ML models involving sensor data. Data management
and visualization services can be used in diagnostic and collaborative research sce-
narios for the eye doctors and data scientists.

Solutions proposed by the author can be applied in clinical setting to support glau-
coma diagnosis and development of personalized approaches for the management of the
disease.

Possible future directions of the research include development of deep neural networks
for processing sensor data that can provide diagnostic information supplementary to
the presented solutions. Statistical analysis of the sensor data collected repeatedly
over long (i.e. many years) time for the relatively large group of patients seems an
important direction, once such data will be available. Comprehensive investigation of
the longitudinal data may lead to more accurate assessment of the eye in early glaucoma
stages and identification of specific case subgroups.
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