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Abstract

Clinical trials are crucial for advancing medical knowledge and introducing new ther-
apies to the market. However, the recruitment of patients is a significant challenge,
often leading to delays and trial terminations. A major contributor to this issue is
the manual process of patient screening, which is highly inefficient due to the strin-
gent and complex nature of eligibility criteria. These criteria are written in free text,
making them difficult to process with existing algorithms. Currently, there is no tool
capable of automating this process effectively. This thesis explores the potential of
neural language models, particularly recent advances in natural language processing
(NLP), to transform clinical trial eligibility criteria into a machine-readable format,
and consequently automate and optimize the recruitment process.

The study begins by investigating the impact of trial design on trial execution
performance, followed by a comprehensive exploration of available biomedical NLP
resources. A critical scoping review reveals that the majority of approaches to pars-
ing eligibility criteria rely on outdated and non-generalizable methods such as reg-
ular expressions, rule-based systems, and early word embedding techniques like
word2vec and FastText. Surprisingly, only a small portion of recent studies have em-
ployed pretrained transformer models, with a few leveraging generative AI, despite
its rapid advancements.

The experimental phase of this research involves evaluating text embeddings in
the biomedical domain for semantic textual similarity (STS) tasks and comparing the
performance of BERT models with GPT-4 in named entity recognition (NER) from
eligibility criteria. This work is conducted within the context of an industrial PhD
program, where scientific findings are applied in practice. The implementation phase
includes organizing a hackathon at Roche to assess the potential of large language
models (LLMs) in parsing eligibility criteria and developing a Proof of Concept (PoC)
tool using GPT-4o, along with advanced prompt engineering. The tool was devel-
oped in collaboration with domain experts and evaluated in a carefully designed
experiment involving their participation. The results emphasize its practical utility
in the pharmaceutical industry.

The findings indicate that the problem of criteria processing is complex and ex-
tends beyond basic STS or NER tasks. Effective parsing requires the extraction of
more nuanced information, including relationships between entities and advanced
reasoning—a task where generative LLMs demonstrate significant potential, partic-
ularly in the context of limited annotated data. Additionally, the support of domain
experts is crucial for the successful implementation of such tools. The research also
identifies a gap in benchmark datasets for evaluating models that process eligibility
criteria and a lack of reliable methods for evaluating LLMs in information retrieval
tasks, highlighting an area for future exploration.
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The contributions of this thesis include the most updated and extensive scop-
ing review in the field, practical requirements for implementing NLP tools in the
pharmaceutical industry, a comparison of BERT models and LLMs in biomedical ap-
plications, and the design and development of a PoC tool guided by domain expert
input and advanced prompt engineering techniques. The conclusions underscore the
need for further refinement of the PoC for broader applicability across different ther-
apeutic areas and criteria types, more rigorous evaluation under diverse conditions,
and enhanced collaboration with domain experts. Despite these challenges, the re-
search demonstrates that integrating NLP with domain expertise can significantly
improve patient recruitment processes in clinical trials.

Keywords: generative AI, large language models, transformers, named entity recog-
nition, information retrieval, eligibility criteria, clinical trials



Streszczenie

Badania kliniczne są kluczowe dla rozwoju medycyny i wprowadzania nowych me-
tod leczenia na rynek. Rekrutacja pacjentów do badań klinicznych stanowi istotne
wyzwanie, które często powoduje opóźnienia lub nawet przerwanie badań. Jedną
z głównych przyczyn tego problemu jest ręczny proces selekcji pacjentów, który
jest wysoce nieefektywny ze względu na bardzo rygorystyczne i złożone kryteria
kwalifikacji. Kryteria te są pisane hermetycznym językiem medycznym, co utrud-
nia ich bezpośrednie przetwarzanie przez istniejące algorytmy. Obecnie nie ist-
nieje żadne narzędzie, które skutecznie zautomatyzowałoby proces porównywania
danych pacjentów z tymi kryteriami. Niniejsza praca doktorska bada potencjał mod-
eli językowych opartych na sieciach neuronowych w przekształcaniu kryteriów kwa-
lifikacji do badań klinicznych w ustrukturyzowaną formę czytelną dla algorytmów,
w konsekwencji badając, czy te modele mogą pomóc w automatyzacji i optymalizacji
procesu rekrutacji.

Rozprawa rozpoczyna się od analizy wpływu elementów projektu badania klin-
icznego na jego przebieg, a następnie opisuje dostępne zasoby do przetwarzania tek-
stu w dziedzinie biomedycyny. Wnikliwy przegląd literatury ujawnia, że większość
badań wokół przetwarzania kryteriów kwalifikacji używa przestarzałych metod, ta-
kich jak wyrażenia regularne, algorytmy oparte na regułach oraz stare techniki wek-
toryzacji tekstów, takie jak word2vec i FastText. Co ciekawe, tylko niewielka część
publikacji wykorzystuje modele oparte o architekturę Transformer, a zaledwie kilka
bazuje na generatywnych modelach językowych, które bardzo szybko rozwijają się
w ostatnich latach.

Faza eksperymentalna rozprawy obejmuje ocenę metod wektoryzacji tekstów
biomedycznych w zadaniu podobieństwa semantycznegoc (STS) oraz porównanie
modeli opartych o BERT i modelu GPT-4 w zadaniu rozpoznawania nazwanych jed-
nostek (NER) w tekstach kryteriów kwalifikacji. Ze względu na to, że praca ta jest
doktoratem wdrożeniowym, jej wyniki naukowe są wdrażane w przemyśle. Faza
implementacyjna obejmuje organizację hackathonu w firmie Roche w celu oceny po-
tencjału dużych modeli językowych (LLM) w przetwarzaniu kryteriów kwalifikacji
oraz opracowanie prototypu narzędzia (PoC) parsującego te kryteria. Narzędzie to
wykorzystuje model GPT-4o oraz zaawansowane technki inżynierii zachęt, uwzględ-
niające wyspecjalizowaną wiedzę domenową. Narzędzie zostało zbudowane we
współpracy z ekspertami dziedzinowymi, a jego efektywność oceniono w starannie
zaprojektowanym eksperymencie ewaluacyjnym z udziałem tychże ekspertów. Wyniki
ewaluacji podkreślają jego praktyczną użyteczność w branży farmaceutycznej.

Rozprawa dowiodła, że problem przetwarzania kryteriów kwalifikacji jest bardzo
złożony i wykracza poza podstawowe zadania NLP, takie jak STS, czy NER. Przetwo-
rzenie kryteriów do formatu użytecznego w rekrutacji pacjentów wymaga wydoby-
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cia bardziej złożonych informacji, na przykład relacji między kryteriami, i zaawan-
sowanego rozumowania. Jest to zadanie, w którym generatywne duże modele języ-
kowe osiągają wysokie wyniki, szczególnie w przypadku braku dużych zbiorów
uczących. Ponadto wsparcie ekspertów domenowych jest kluczowe dla skutecznego
rozwoju i wdrożenia takich narzędzi. W rozprawie rozpoznano deficyt dostępnych
referencyjnych zbiorów danych, które mogłyby być użyte do oceny modeli proce-
sujących kryteria kwalifikacji, a także brak rzetelnych metod mierzenia dokładności
modeli generatywnych w zadaniach ekstrakcji informacji z tekstu. Zidentyfikowano
tutaj potancjalny obszar dalszych badań naukowych.

Kontrybucja tej pracy obejmuje najbardziej aktualny i rozległy przegląd literatu-
rowy w tej dziedzinie, zebranie praktycznych wymagań dotyczących wdrożenia na-
rzędzia NLP w przemyśle farmaceutycznym, porównanie modeli BERT i LLM w dzie-
dzinie biomedycznej oraz zaprojektowanie i zbudowanie narzędzia PoC, które inte-
gruje wiedzę domenową z najnowszą technologią. Dalsze badania w tym obszarze
powinny skupić się na poszerzeniu zakresu zastosowania opracowanego narzędzia
o nowe obszary terapeutyczne i typy kryteriów, opracowaniu bardziej rygorysty-
cznego sposobu ewaluacji tego narzędzia oraz włączenie większej liczby ekspertów
domenowych. Pomimo ograniczeń, wyniki rozprawy pokazują, że integracja NLP
z wiedzą ekspercką może znacząco poprawić efektywność rekrutacji pacjentów do
badań klinicznych.

Słowa kluczowe: generatywna sztuczna inteligencja, duże modele językowe, trans-
former, BERT, GPT, NER, ekstrakcja informacji, kryteria kwalifikacji, badania kli-
niczne
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Chapter 1

Introduction

Clinical trials are essential for the advancement of medicine, because they validate
the efficacy and safety of new treatments before they reach the market. They also
play a crucial role for patients, offering early access to innovative therapies that may
be their only treatment options, sometimes serving as critical, life-saving interven-
tions. A fundamental component of those trials are the eligibility criteria, which
define the characteristics of participants suitable for a study. Efficient parsing and
interpretation of these criteria are vital for successful patient recruitment, which, in
turn, influences the success of the trial. Patient recruitment has been identified as the
biggest obstacle to the successful completion of trials, causing delays and even ter-
minations, as finding eligible patients who meet the inclusion and exclusion criteria
of clinical trials is challenging and time-consuming.

In recent years, advancements in Natural Language Processing (NLP) have cre-
ated new opportunities for automating the parsing of eligibility criteria. Neural lan-
guage models like BERT and its biomedical variants, and particularly large language
models (LLMs) like GPT-3 and GPT-4, have demonstrated significant performance in
human language understanding and generation. This thesis explores the applications
of these advanced models in eligibility criteria parsing, aiming to increase the efficacy
of patient recruitment for clinical trials. Current manual and semi-manual methods
are very labour-intensive and not scalable. Developing an automated recruitment
system requires a machine-readable format of eligibility criteria. Therefore, this re-
search seeks to develop a robust and reliable AI-powered system that can assist in
structuring eligibility criteria, which can be further utilized in automated patient
eligibility screening.

This problem is both interesting and significant due to the high complexity of
the eligibility criteria expression, which makes it a non-trivial task to structure the
criteria. It requires not only the knowledge of recent advances in NLP, but also
medical expertise to design the solution and structure the criteria correctly. This
subject combines the disciplines of artificial intelligence, natural language processing,
medical informatics, and medical sciences. Developing a solution that can handle this
complexity is a challenging task with significant influence in the biomedical domain.

This subject is critically important for Roche, a pharmaceutical company that
launches over 50 new trials each year, seeking for participants in numerous countries.

1



2 Introduction

Currently there are 1361 Roche clinical trials recruiting patients in over 30 countries.
All of them have planned enrollment numbers that need to be met in order to deliver
significant evidence on treatment efficacy and safety. The company relies on clini-
cal representatives to recruit patients for trials, but this process is highly inefficient.
Each day of delay incurs significant costs. Numerous trials at Roche have ended in
a failure due to an insufficient number of patients, resulting in wasted money and
resources. Efficiently parsing eligibility criteria can lead to a more automated recruit-
ment process, reduce trial delays, and accelerate the introduction of new therapies to
the market.

The research hypothesis guiding this thesis is that neural language models can
significantly enhance the efficacy of parsing clinical trial eligibility criteria, out-
performing traditional methods and consequently enhancing patient recruitment
in clinical trials.

The primary objective is to investigate the potential of neural language models
to effectively handle the complexity and variability of eligibility criteria in order to
produce a robust and generalize parsing solution that can be integrated into clinical
trial management systems. This research aims to:

• analyze the complexity of eligibility criteria and challenges of parsing them,

• review previous works related to this context,

• evaluate the performance of various NLP models and techniques in differ-
ent NLP tasks related to eligibility criteria, including traditional methods and
cutting-edge LLMs,

• gather practical requirements for a parsing tool implementation at Roche,

• develop and test a prototype tool to automate the extraction and structuring of
eligibility criteria,

• assess the business impact of the proposed tool.

The key elements of the new proposal include:

• Utilizing large language models: applying state-of-the-art neural language
models such as GPT-4 to parse the eligibility criteria;

• Few-shot prompt engineering: utilizing in-context learning capabilities of LLMs
to improve parsing accuracy with limited annotated data;

• Chain-of-thought approach: leveraging chain-of-thought prompting to guide
the model through the reasoning process;

• Explainability: ensuring that the model’s decisions are transparent and under-
standable by providing the source criterion for each of the parsed outputs;

1Counted based on ClinicalTrials.gov records accessed on July 13, 2024.
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• Domain expertise: engaging domain experts in the development process and
incorporating their insights to refine and evaluate the solution.

The original contributions of this thesis are:

• Scoping review: the most comprehensive and up-to-date scoping review on
NLP and ML solutions for parsing eligibility criteria;

• NLP resource overview: a broad overview of available resources for biomedical
NLP;

• Sentence embeddings evaluation: the most extensive evaluation of various
sentence embeddings for biomedical domain;

• Comprehensive evaluation of GPT vs. BERT: conducting extensive experi-
ments comparing LLMs with BERT-based models in low-resource setting;

• Innovative prompt engineering techniques: introducing and evaluating com-
plex prompts, including few-shot templates, chain of thought, and domain
knowledge instructions;

• Practical insights: providing practical guidelines and insights on the develop-
ment and implementation of such a tool in a real-world pharmaceutical context;

• Development of a prototype tool: creating a working prototype that demon-
strates the feasibility of using LLMs in eligibility criteria parsing.

The thesis is structured as follows:

• Chapter 2: Clinical Trial Eligibility Criteria - provides an overview of clinical
trials and their main pain points, the importance of eligibility criteria , and the
challenges related to parsing these criteria. It lays the foundation for under-
standing the context and significance of the research problem.

• Chapter 3: Machine Learning Prediction of Clinical Trial Operational Effi-
ciency - studies the impact of trial features, including eligibility criteria, on
trial recruitment and overall operational efficiency.

• Chapter 4: NLP Resources for Biomedical Domain - explores various re-
sources available for biomedical NLP, including ontologies, knowledge bases,
and pretrained language models. It offers an overview of the tools applicable
for this research.

• Chapter 5: Natural Language Processing in Clinical Trial Eligibility Criteria
Parsing - provides a comprehensive scoping review of studies on NLP applica-
tions for clinical trial eligibility criteria. It discusses the findings and identifies
research gaps and potential directions of future research.



4 Introduction

• Chapter 6: Biomedical Semantic Textual Similarity - explores different tech-
niques of sentence embedding in the biomedical domain and evaluates them in
a semantic textual similarity task.

• Chapter 7: Named Entity Recognition in Eligibility Criteria - examines the
ability of the GPT-4-turbo model to recognize named entities in the eligibility
criteria and compares this model with the state-of-the-art pretrained Trans-
former models based on the BERT architecture in a scenario of limited anno-
tated data.

• Chapter 8: Prompt Engineering Hackathon at Roche - describes the hackathon
conducted to explore prompt engineering feasibility in eligibility criteria pars-
ing and provides the key findings from the event.

• Chapter 9: Requirements for an Eligibility Criteria Parsing Tool Using LLMs
- defines the requirements for developing and implementing a robust and com-
pliant AI-driven tool for criteria parsing at Roche, covering aspects such as data
standardization, MLOps practices, and security.

• Chapter 10: Implementation of the Eligibility Criteria Parsing Tool: A Proof
of Concept - presents the design and implementation of the parsing tool, detail-
ing the methodology, tool architecture, user interface, and evaluation results.

• Chapter 11: Conclusions - summarizes the research findings, discusses the
limitations, and suggests future research directions.

The research was conducted as part of the Polish Ministry of Education and Sci-
ence’s Industrial Doctorate Program implemented from 2020 to 2024 (Contract No.
DWD/4/24/2020).



Chapter 2

Clinical Trial Eligibility Criteria

This chapter examines the crucial role of eligibility criteria in the context of clinical
trials, which are essential for the development and approval of new treatments. It
focuses on the critical obstacles and opportunities in optimizing clinical trial execu-
tion.

Section 2.1 outlines the key aspects of clinical trials, emphasizing their signifi-
cance in advancing medical science and offering critical treatment options to patients.
Section 2.2 describes the challenges of trial recruitment, a critical factor that affects
the success and efficiency of a clinical trial. Section 2.3 explores technical difficulties
associated with eligibility criteria parsing.

2.1 Clinical trials

A clinical trial is a research study that tests new drugs, treatments and medical
devices on selected groups of volunteers or patients. Its goal is to determine effi-
cacy and safety of the studied product. Clinical trials are crucial to the progress of
medicine and serve important roles for both pharmaceutical companies and patients.
Each drug must be evaluated in a clinical trial before it can be approved for market
introduction, which motivates drug manufacturers to conduct trials as efficiently and
swiftly as possible. For patients, clinical trials offer access to innovative therapies be-
fore they are publicly available. These trials often provide critical treatment options
that may be pivotal for their health and life. Efficient execution of the trial is also
very important to patients not involved in the studies, because the sooner the drug
is approved, the sooner it is available as an additional - and sometimes the only -
treatment option on the market.

Clinical trials consist of four phases, which differ in objectives and patient num-
bers:

• Phase 1: Evaluates the safety of the therapy, testing it on a small group of
people (tens), most often healthy volunteers.

• Phase 2: Validates the efficacy of the therapy and continues safety monitoring.
The treatment is given to a larger group of people (hundreds) with a specified
disease.

5
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• Phase 3: Assesses whether the therapy is more effective or safer than existing
treatments. Large group of people (thousands) is involved in the study.

• Phase 4: Evaluates long-term effects after the therapy has been introduced to
the market.

An example of clinical trial metadata is illustrated in Figure 2.1. The figure
presents a Phase 3 clinical trial on breast cancer, designed for HER2-positive patients.

Figure 2.1: An example of a breast cancer trial published on ClinicalTrials.gov.

The complexity of conducting clinical trials results in lengthy execution times,
typically around 90 months [1], and substantial financial burdens for pharmaceutical
companies. Recent studies indicate that bringing a new drug to market costs an aver-
age of $1.3 billion [2] and clinical trials are the most expensive part of that process [3].
The cost of a clinical trial varies by therapeutic area, but estimates suggest that con-
ducting all three phases can range from $50 millions to about $100 millions [1]. Phase
3 is notably the most expensive stage of a trial, as it involves the largest group of pa-
tients.

ClinicalTrials.gov is the primary registry for clinical trials, which serves as a
database for ongoing and past trials, and as a repository for their results. As of
April 2024, the database contains over 377 500 trials conducted in 223 countries, in-
cluding more than 64 000 active studies. Figure 2.2 shows that the number of newly
registered trials has been increasing annually. Among the registered studies, there
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are over 36 000 trials that have been terminated or withdrawn, indicating a trial fail-
ure. Such outcomes result in significant financial losses for pharmaceutical compa-
nies, with costs rising in later study phases due to larger participant groups and the
completion of prior phases.

Figure 2.2: Number of newly registered clinical trials per year.

2.2 Patient recruitment

One of the key aspects of clinical trials is patient recruitment. Clinical trials require
an appropriate sample size to validate the efficacy and safety of a new treatment.
Patients must meet specific requirements, which are defined in eligibility criteria.
These criteria specify the characteristics of the trial population, such as required age,
gender, medical history, and current health status. They not only ensure the safety
of the patients but also guarantee that the data collected during the study provide
the answers to the research questions stated at the beginning of the trial. The eligi-
bility criteria are divided into two sections: inclusion criteria and exclusion criteria,
which define the conditions that must or must not be met, respectively, to include pa-
tients in a trial. Trial screening, which is the process of comparing eligibility criteria
against patient records, is currently performed manually by the research personnel.
This method is time-consuming, labor-intensive and prone to human errors [4]. It
limits the number of patient that can be screened. On average, screening takes 15-20
minutes per patient per trial, but for more complex studies, it can take more than 2
hours to assess patient eligibility [5]. The cost of screening a single patient has been
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estimated to range from approximately $130 to $340 [6]. However, not all screened
patients are eligible and enrolled in the study. Many candidates are evaluated more
than once, for various trials, and often, evaluations are repeated over time due to
disease progression. For a pharmaceutical company, this means a waste of resources
and time, for patients, it extends the waiting time for potentially life-saving treat-
ment.

Patient recruitment, also known as patient accrual, is a crucial determinant of
a trial’s success [7]. Low accrual is the most frequent reason for trial failure, with
over 40% of terminated trials failing because they did not manage to recruit enough
patients [8]. Additionally, up to 85% of all trials experience delays due to low patient
enrolment [9], and each day of delay can cost the pharmaceutical company between
$600 000 and $8 millions [10]. However, this does not imply a lack of eligible individ-
uals. Studies have shown that even 60% of eligible patients are not considered in the
recruitment process [11], often due to a lack of awareness of available studies among
both patient and clinician [12]. This not only slows down the advancement of med-
ical science but also deprives patients of the opportunity to participate in a therapy,
which sometimes is the only option for their cure. It has been observed that only
3-5% of cancer patients participate in clinical trials, although 20% are eligible [13].
These issues surrounding trial recruitment affect not only the pharmaceutical com-
panies, but also the quality of healthcare and patients’ lives.

Eligibility screening is considered a trial bottleneck and one of the largest barri-
ers to the successful completion of clinical trials. Therefore, the National Institutes
of Health has prioritized enrolment improvements in recent years [14]. The screen-
ing issue has two facets: patients are unaware of trials for which they are eligible,
and trial staff is unable to identify eligible patients within the planned timeframe.
The volume of available trials and potential participants overwhelms the capacity
of clinical research staff and patients. Currently, there is no centralized clinical trial
database with an effective search engine. While ClinicalTrials.gov allows searches for
trials recruiting patients with a specific condition, such as "breast cancer", it does not
enable filtering based on more detailed eligibility criteria, such as "breast cancer AND
ER+ AND no surgery in the past AND HIV allowed". A search for "breast cancer" on
ClinicalTrials.gov returns over 1800 currently recruiting clinical trials.1 Each trial has
its own set of inclusion and exclusion criteria that need to be analysed along with
patient data, which is a task demanding medical expertise due to the complex and
often implicit language used in these criteria. This information overload results in
enrolment difficulties. Automating the patient-trial matching process could signifi-
cantly benefit the pharmaceutical industry, accelerate recruitment and increase the
number of successful trials.

1State as of April 2024.
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2.3 Complexity of eligibility criteria parsing

There are numerous challenges associated with patient screening automation, one of
which is parsing the eligibility criteria. These criteria are included in the trial proto-
col and written in free text form, which must be converted into a computer-readable
format for processing by a patient-trial matching algorithm. As presented in Fig-
ure 2.3, the language used in the criteria is complex, including medical terminology,
acronyms, numerical values, and units. Additionally, the same measurements might
be expressed in different units, and there are many synonyms which refer to the same
medical conditions. The syntax of the criteria also introduces significant challenges,
including:

• Negations: The inclusion criteria section contains exclusions, eg. "Inclusion
Criteria: [...] patients must not have had a blood transfusion within 28 days prior to
registration."2

• Exceptions: An inclusion or exclusion criterion may not apply in specific situa-
tions, eg. "Exclusion Criteria: [...] Systemic corticosteroids (oral or injectable) within
7 days of first dose of 852A (topical or inhaled steroids are allowed)."3

• Logical dependencies: Not all criteria need to be met to include or exclude a
patient from the trial, eg. "Stage I to III breast cancer with surgical resection of the
primary tumor that is confirmed to be either: TNBC, irrespective of BRCA status or
HR+/HER2- breast cancer."4

• Temporal restrictions: Some criteria are only applicable if a condition was
met within a defined period, eg. "Subjects must have ended hormonal replacement
therapy (HRT) at least 1 month (30 days) prior to receiving the first dose of randomized
therapy."5

• Subpopulations: Certain criteria apply only to specific groups of people, eg.
"For participants with bilateral BC, HER2-positive status must be demonstrated in
both locations or in a metastatic site."6

Furthermore, not all conditions are explicitly stated in the text. Experienced clini-
cal staff can deduce additional required or excluded conditions based on other terms
mentioned. For example, the criterion "metastatic breast cancer" implies that the par-
ticipant must have stage IV breast cancer. Similarly, "triple-negative breast cancer"
translates to "no expression of HER2, ER and PR biomarkers". Also, the phrase: "no
prior systemic anti-cancer therapy" excludes patients who have undergone chemother-
apy, hormonal therapy, immunotherapy, targeted therapy, or biological therapy.

2NCT02595905 trial
3NCT00319748 trial
4NCT04915755 trial
5NCT00073528 trial
6NCT03153163 trial
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All these factors make parsing criteria into a reliable form a difficult task that re-
quires medical expertise and a sophisticated system capable of handling the complex
dependencies mentioned above. Simple regular expressions, rule-based approaches,
or basic named entity recognition models may not be sufficient for this task.
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Figure 2.3: An example of clinical trial eligibility criteria.
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Chapter 3

Machine Learning Prediction of
Clinical Trial Operational Efficiency

As outlined in Chapter 2, many clinical trials struggle with low efficiency which re-
sults in high costs, trial failures, and fewer drug approvals. In recent years, trials
have become significantly more expensive due to their increased complexity [15], in-
volving more endpoints, procedures, eligibility criteria, countries, sites, and patients
than in the previous decade [16]. Therefore, there is a great need to improve the op-
erational efficiency of trials in order to reduce costs and shorten the lag in improving
patient access to novel and innovative treatments. The expertise of the trial designer
has been shown to be a significant factor in determining trial success [17].

This chapter describes a study on predicting multiple operational efficiency met-
rics using machine learning models and identifying the the trial design features that
influence these metrics. It is a condensed version of a research article published in
The AAPS Journal [18], in which I was a co-author. The other authors of this pa-
per are: Kevin Wu,1 Eric Wu,2 Michael DAndrea,3 Nandini Chitale,3 Melody Lim,3

Marek Dabrowski,4 Hanoor Rangi,5 Ruishan Liu,2 Marius Garmhausen,6 Navdeep
Pal,3 Chris Harbron,7 Shemra Rizzo,3 Ryan Copping,3 James Zou.1,2 My contribu-
tions to this study included preparing the dataset, supervising the experimentation
process, providing feedback on the content, and reviewing the publication. This was
the first research related to clinical trials that I was involved in, which revealed the
importance of trial design features (including eligibility criteria) on efficiency and
sparked my interest in the topic.

Section 3.1 defines the metrics used to measure the trial operational efficiency.
These are the target variables of the fitted ML models. Section 3.2 presents other
works investigating the impact of clinical trial complexity on operational efficiency
and determines how this study differ from them. Section 3.3 describes the dataset

1Department of Biomedical Data Science, Stanford University, Stanford, California, USA
2Department of Electrical Engineering, Stanford University, Stanford, California, USA
3Genentech, South San Francisco, San Francisco, California, USA
4Roche Pharmaceuticals, Warsaw, Poland
5Roche Pharmaceuticals, Mississauga, Canada
6Roche Pharmaceuticals, Basel, Switzerland
7Roche Pharmaceuticals, Welwyn Garden City, UK
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used in the experiments, while Section 3.4 outlines the data preprocessing method,
selected model, and evaluation metrics. Section 3.5 presents the results, and Sec-
tion 3.6 discusses the findings.

3.1 Measuring Operational Efficiency

Complex trials often include extensive patient recruitment requirements and protocol-
related delays, leading to significant operational inefficiencies. The rise in protocol
procedures and amendments greatly increases site work burden and operational de-
lays. In this study, trial operational efficiency is assessed through various metrics
associated with patient recruitment and trial duration.

Patient recruitment is assessed via two distinct metrics:

• Screen failure ratio: The fraction of screened patients that do not end up en-
rolled in a trial. This metric is commonly used to measure patient recruitment
efficiency [19, 20, 21]. A high screen failure ratio indicates that a trial requires
more money and time to acquire its patients.

• Dropout ratio: The fraction of enrolled patients that do not complete the trial.
This is an important metric to estimate in the study design phase [22]. Patients
can be withdrawn from a trial for various reasons, such as adverse events,
noncompliance, protocol deviations, and safety issues. Excessive dropout can
lead to costly protocol amendments or under-powered studies [23], affecting
the quality of data that can be used to improve patient outcomes.

Trial duration is measured with the use of three metrics, capturing different com-
ponents of trial execution:

• Pre-enrollment duration: The median number of days per site between site
selection and the enrollment of the first patient. This measures the time re-
quired to complete organizational prerequisites (e.g., contract negotiation and
site training). A lengthy pre-enrollment period can imply a high regulatory
and organizational burden.

• Enrollment duration: The median number of days per site between enrolling
the first patient and the last patient across sites. Extended site enrollment delays
can be due to unnecessarily stringent eligibility criteria and screening protocols,
rare patient populations, and competing clinical trials.

• Study duration: The median number of days per site between site activation
and the last patient visit, capturing the end-to-end time required for a study to
complete across sites.

All five metrics are visualised in Figure 3.1.
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Figure 3.1: Patient recruitment metrics displayed across the patient funnel from
screening to completion and trial duration metrics across an abridged timeline of
clinical trials (the timeline presented applies to a single site and these events can be

asynchronous between sites).

3.2 Related works

There exists extensive literature studying the growing complexity of clinical trials [24,
25, 26, 27, 28], including patient recruitment and trial duration [15, 29, 23, 19, 20, 21,
30, 31, 22, 32, 33, 34, 35, 36]. Fogel [23] provides a systematic overview of how
operational inefficiencies impact the likelihood of overall trial success.

Getz et al. [37] show that more complex trials with more procedures perform
worse in patient recruitment and retention compared to low complexity trials. Ross et
al. [38] find that complex trials discourage trial participants, while Boericke and
Gwinn [39] identify that trials with more eligibility criteria tend to be more prone
to delays. Additionally, Andersen et al. [40] find that patient dropout is much higher
in more complex trials.

This study aims to unify these analyses by modeling a variety of trial features
in relation to patient recruitment and trial duration. By doing so, it is possible to
estimate the collective impact of multiple trial features on trial efficiency.

Prior work in applying machine learning methods to improve clinical trial effi-
ciency includes natural language processing methods for patient recruitment and ex-
tracting structured data from eligibility criteria [41, 42]. Machine learning has been
applied to clinical trial data for the purpose of predicting the overall likelihood of
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approvals [43, 44, 45]. This study differs from prior research by focusing on specific
efficiency metrics, a level of granularity that is of particular interest to trial designers.

3.3 Data

The dataset comprises 2051 completed clinical trials conducted by Roche, with start-
ing dates ranging from 2009 to 2020. Due to varying levels of missing data across
different efficiency metrics, the analyses include 1922 trials for enrollment duration,
1395 for screen fail ratio, 932 for pre-enrollment duration, 526 for study duration, and
361 for withdrawal ratio. These discrepancies are caused by differences in the data
collection process; for instance, enrollment duration is more easily calculated with
start and end dates, while withdrawal ratios require follow-up reports for each pa-
tient. The study incorporates a total of 23 operational features, detailed in Table 3.1.
These features include study phase, therapeutic area, experimental design, number
of endpoints, number of eligibility criteria, and specifics about planned procedures.
The data represent 288 unique drugs and 219 unique indications, with an average of
11 inclusion criteria, 15 exclusion criteria, and 4 countries per trial.

3.4 Methods

3.4.1 Data Preprocessing

Categorical features, including drug names and indications, are encoded using a one-
hot encoding scheme. To manage the rare feature values (appearing in less than 1%
of the data), we grouped them into a single category labeled “other”. Missing values
are imputed using the mean. Trials with target variables falling outside two standard
deviations are considered outliers and are excluded from the dataset.

3.4.2 Model

In the study, we chose the LightGBM algorithm due to its high performance on
tabular data. Separate models were trained for each of the five target variables.
Although AutoSklearn was also executed on the data, LightGBM remained the top-
performing model, confirming it as a suitable choice for this purpose.

To support study design decisions, both specific point estimates and the uncer-
tainty around them are provided. This uncertainty is quantified by producing pre-
dictive intervals using a quantile loss function, trained at quantiles 0.05 and 0.95 to
achieve a 90% predictive interval. Point estimates are derived from the 0.5 quantile,
representing the median.

The dataset is split into training, test, and validation sets in a 60/30/10% ratio.
Model performance is optimized through a grid search of hyperparameters on the
validation set and evaluated using the test set.
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Table 3.1: Descriptions of trial features used in the model predicting trial operational
efficiency.

Feature Name Description
Study Phase Trial phase (ie. I, II, III, IV)
Therapeutic Area Oncology, I2O (Immunology, Infectious Dis-

eases, and Ophthalmology), Neuroscience,
and Other

Distribution Single-site, Single-country, Multi-country
Comparison Active controlled, Non-controlled, etc.
Randomization Randomized, Non-randomized
Intervention Interventional study, Non-interventional

study
Blinding Open label, Double blind, Single blind
Num Primary Endpoints Number of distinct primary endpoints
Num Secondary Endpoints Number of distinct secondary endpoints
Num Inclusion Criteria Number of inclusion criteria
Num Exclusion Criteria Number of exclusion criteria
Num Countries Number of countries planned for the study
Min Age Minimum eligible age
Max Age Maximum eligible age
Patient Gender Eligible gender
Num Planned Examination Procedures Number of planned examination procedures

(physicals, observations, questionnaires, and
other measurements)

Num Planned Diagnostic Procedures Number of planned diagnostic procedures
(lab work such as blood tests and imaging
work/biopsies that are usually performed by
technicians).

Num Planned Core Procedures Number of planned core procedures (manda-
tory and common procedures such as adverse
events and informed consent)

Num Planned Non-Core Procedures Number of planned non-core procedures
(procedures not counted as core procedures)

Num Planned Drug Treatment Proce-
dures

Number of planned drug treatment proce-
dures (administering treatment to patients)

Num Planned Visits Number of unique planned visits
Num Planned Enrollment Target number of patients to enroll
Drug Name Name of drug being studied
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3.4.3 Evaluation

To evaluate the models consistently across different regression tasks, the c-index is
used. It measures the proportion of correctly ordered pairs in the test set, indicat-
ing the proportion of concordant pairs among all evaluation pairs in the test set. A
c-index of 1 indicates perfect prediction accuracy, while a c-index of 0.5 suggests per-
formance no better than chance. For example, if the actual screen failure ratios for
two trials are 0.75 and 0.90, predicted values of 0.60 and 0.80 would count as a con-
cordant pair. The c-index thus reflects the model’s ability to predict the direction of
change in operational efficiency based on trial features. Additionally, the R-squared
score and mean absolute error (MAE) are reported.

3.5 Results

For each target metric, we evaluate model performance on all trials from the test
set as well as subsets selected by therapeutic area and study phase. The c-index
results are presented in Table 3.2. Models predicting patient recruitment perform
excellently with c-index values around 0.80, while those predicting trial duration
metrics have c-index values around 0.70, indicating that predicting study duration
is more challenging than predicting patient recruitment. The R-squared scores and
MAE are reported in Table 3.3.
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Table 3.2: The c-index results for the LightGBM models evaluated across all trials and stratified by therapeutic area and study
phases.

Efficiency Metric
Overall
C-Index

Therapeutic Area (C-Index) Study Phase (C-Index)
I2O Neuroscience Oncology Other I II III IV

Screen Failure Ratio 0.801 0.795 0.765 0.789 0.808 0.622 0.788 0.802 0.771
Dropout Ratio 0.791 0.750 0.651 0.715 1.000 0.784 0.801 0.804 0.771

Pre-Enrollment Duration 0.705 0.724 0.635 0.611 0.687 0.675 0.565 0.587 0.597
Enrollment Duration 0.706 0.680 0.709 0.683 0.672 0.764 0.692 0.647 0.609

Trial Duration 0.728 0.644 0.766 0.624 0.756 0.808 0.656 0.610 0.666
Average 0.746 0.719 0.705 0.684 0.784 0.731 0.700 0.690 0.683

Table 3.3: R-squared score and mean absolute error from the LightGBM models across five operational efficiency metrics.

Efciency metric R-squared Mean absolute error
Screen failure ratio 0.463 0.097

Dropout ratio 0.513 0.179
Pre-enrollment duration 0.319 60.0

Enrollment duration 0.26 245
Study duration 0.32 405

Average 0.375 -
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Two additional validations are conducted:

• Evaluation on unseen drugs: To assess the potential overfitting due to trials
on the same drug appearing in both the training and test sets, the data is split
based on randomly selected sets of drugs. The model is trained on 209 unique
drugs and tested on 79 different unique drugs. The results, included in Ta-
ble 3.4, show that performance slightly decreases without prior knowledge of
the drug, indicating that such knowledge can support the prediction of trial
efficiency, though the impact is not large.

• Evaluation on newest trials: The models are evaluated for potential time-
specific biases by splitting the data into two periods: 2009-2011 (training and
validation set) and 2012-2020 (test set). The c-index for each metric is reported
in Table 3.5. The overall performance is slightly lower due to a smaller training
set size, but no significant differences in performance are observed.

Table 3.4: Validation on unseen drugs across five efficiency metrics.

Validation on Unseen Roche
Drugs (C-index)

Training Drug Set
(N=339)

Testing Drug Set
(N=359)

Screen Failure Ratio 0.781 0.712
Dropout Ratio 0.757 0.738

Pre-Enrollment Delay 0.674 0.634
Enrollment Duration 0.673 0.665

Trial Duration 0.699 0.679
Average Across Metrics 0.717 0.686

Table 3.5: Validation of trials from two time periods across five efficiency metrics.

Validation Across
Time (C-index)

Trials completed 2009-2011
(N=439)

Trials completed 2012-2020
(N=376)

Screen Failure Ratio 0.742 0.726
Dropout Ratio 0.630 0.682

Pre-Enrollment Delay 0.673 0.680
Enrollment Duration 0.711 0.669

Study Duration 0.704 0.717
Average 0.692 0.695

To quantify how actionable features of trial design correlate with operational ef-
ficiency metrics, a separate multivariate regression model is fitted. Features that
are fixed aspects of a trial are used as covariates but excluded from the table (eg.
trial phase, therapeutic area, randomization), while the features that can be changed
during trial design (e.g., number of eligibility criteria, endpoints, countries, and pro-
cedures) are assessed and presented in the Table 3.6.
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Table 3.6: Coefficients of a multivariate linear model fitted on trial features (next to the coefficients, the p-values for each feature
in each model are reported for each cell: * <= 0.05, ** <= 0.01, *** <= 0.001, ns = no significance).

Trial Operational Feature
Screen Failure
Ratio

Dropout Ratio
Pre-Enrollment
Duration

Enrollment
Duration

Study Duration

Num Primary Endpoints 0.0064 ** ns ns ns ns
Num Secondary Endpoints 0.0046 *** ns ns -7.2121 ** ns
Number Planned Countries 0.0036 *** ns 1.2799 ** -7.9442 *** 10.2753 **
Num Eligibility Criteria ns ns ns 1.5514 * ns
Num Planned Examination
Procedures

ns 0.0114 ** ns ns ns

Num Planned Diagnostic
Procedures

ns ns ns ns ns

Num Planned Non-Core
Procedures

-0.0029 * ns ns ns ns

Num Planned Drug Treatment
Procedures

ns ns ns ns ns

Num Planned Core Procedures ns ns ns ns ns
Num Unique Planned Visits ns 0.0024 *** -0.2941 * 0.9518 * 3.7001 ***
Planned Patient Enrollment ns ns ns 0.0164 ** ns
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Key findings include:

• A higher number of countries is associated with a longer pre-enrollment and
study duration, and a higher screening failure ratio, but a shorter site-specific
enrollment duration.

• A higher number of primary and secondary endpoints is associated with a
higher screen fail ratio.

• A higher number of planned patient visits correlates with an increased dropout
ratio and a longer study duration.

• A higher planned patient enrollment is correlated with a longer enrollment
duration.

Additionally, the feature importance for the LightGBM, defined as the informa-
tion gained from each feature with respect to the loss function, is calculated and
presented in Figure 3.2. For visual clarity, the importance scores are normalized to
sum to one for each metric. Moreover, for interpretability, only the importance of a
subset of actionable features is reported, rather than the whole set of features used
by the model. The analysis shows that planned patient enrollment and the number
of eligibility criteria are among the most important features, which were not iden-
tified by the linear model. This indicates a strong nonlinear relationship between
those features and operational efficiency. The analysis also reveals that the number
of planned visits has a significant impact on the dropout ratio.

3.6 Conclusion

The results of this study indicate that trial features can be robust predictors of the
trial operational efficiency. We observe consistent outcomes across drug names, time
periods, sponsor companies, therapeutic areas, and study phases. Notably, complex
trials generally achieve worse results in patient recruitment and trial duration. The
analysis demonstrates that models predicting patient recruitment perform better than
those forecasting trial duration when using the selected features.

Operational efficiency is multifaceted and influenced by the interaction of multi-
ple trial features. Trial investigators, however, must balance operational and scientific
efficiency - a task that sometimes involves retaining complex trial designs due to their
scientific value. This study also highlights that the relationships between trial fea-
tures and operational efficiency are not strictly linear. Furthermore, it is critical to
note that some features, such as the number of eligibility criteria and the numbers of
procedures, are considered at a high level, without analyzing their specific content.
For instance, criteria related to gender and age are usually less restrictive than those
concerning specific cancer biomarkers and stages, which could significantly narrow
down the eligible patient population and complicate recruitment. Nonetheless, the
feature importance analysis reveals that even a general count of criteria significantly
influences model prediction.
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Figure 3.2: The importance of features used in the LightGBM models predicting trial
operational efficiency metrics.

This experiment demonstrates the potential of machine learning to predict op-
erational metrics of clinical trials using design features. It explores the impact of
modifiable features on efficiency and provides insights valuable for planning and
design future trials. However, the current study does not examine the impact of
the specific content of eligibility criteria on trial efficiency, due to the complexities
involved in parsing these criteria. This gap in research, along with the absence of
reliable methods for parsing eligibility criteria - which limits various analyses and
the automation of trial processes - has directly motivated my doctoral project. There
is a need for future research to focus on developing methods that parse and analyze
the content of eligibility criteria. This advancement is crucial for further enhancing
trial design and operational efficiency.
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Chapter 4

NLP Resources for Biomedical
Domain

The increasing availability of biomedical text data has led to rapid developments in
the field of biomedical natural language processing (BioNLP). This field supports
the optimization of healthcare-related processes by integrating natural language pro-
cessing, bioinformatics, medical informatics, and computational linguistics [46]. The
effectiveness of BioNLP is supported by the availability of numerous reusable re-
sources, which are crucial in overcoming common challenges, such as the lack of
large annotated corpora and the complexity of semantics and syntax in biomedical
texts.

This chapter reviews widely used BioNLP resources, including knowledge bases
(Section 4.1), ontologies (Section 4.2), and pretrained language models (Section 4.3).
Section 4.4 discusses large language models and the Generative AI revolution.

4.1 Knowledge bases

Knowledge bases are essential components of the Biomedical NLP field, acting as
repositories of both structured and unstructured biomedical information. They con-
tain extensive knowledge on various healthcare topics, such as medical conditions,
treatments, drugs, and procedures. This section examines the most commonly used
biomedical knowledge bases.

4.1.1 PubMed

One of the fundamental biomedical resources is PubMed, a literature database cre-
ated by the National Center of Biotechnology Information at the U.S National Library
of Medicine and available since 1996 [47]. It provides access to more than 37 million
citations and abstracts from biomedical literature, coming from three sources [48]:

• MEDLINE - a primary bibliographic database maintained by the U.S. National
Library of Medicine and available since 1971. It contains over 31 million refer-
ences to publications on life sciences, with main focus on biomedicine. It is the
largest component of PubMed.

25



26 NLP Resources for Biomedical Domain

• PubMed Central (PMC) - an archive of full-text journal articles, author
manuscripts and preprints on biomedical and life sciences, which is a part
of the U.S. National Library of Medicine collection. It contains over 8 million
records.

• Bookshelf - a repository of books and documents on life sciences and health-
care. It includes over 9000 records.

4.1.2 UMLS

Another resource is the Unified Medical Language System (UMLS), which is a collec-
tion of biomedical vocabularies created by the U.S. National Library of Medicine [49].
It includes 2.5 million names mapped to about 900 000 concepts from over 60 fam-
ilies of biomedical vocabularies and more than 12 million relations between those
concepts. A concept in the UMLS is a meaning that can have different names. It is
a cluster of synonymous terms, linked to other concepts in the database, forming a
rich graph. There are three main components of the UMLS [50]:

• Metathesaurus: A large multi-lingual vocabulary database containing infor-
mation about biomedical concepts and their relations. It includes terms and
codes from various vocabularies, e.g. RxNorm, SNOMED-CT, MeSH, and ICD-
10. This component maintains the hierarchy of terms, their definitions, and
attributes. It is the central element of the UMLS.

• Semantic Network: Provides categorization for the Metatheasurus concepts. It
includes a set of 127 categories (semantic types) and a set of 54 relationships
between these types (semantic relations). This network simplifies the Metathe-
saurus by grouping concepts into semantic types, which are the nodes of the
network, connected by links (relations).

• SPECIALIST Lexicon and Tools: A large syntactic lexicon of biomedical and
general English terms, including morphological, orthographic, and syntactic
information for each term form, along with a collection of processing tools for
term normalization and creating lexical variants.

Additionally, the UMLS is integrated with MetaMap, an application developed by
National Library of Medicine, which maps biomedical terms to concepts in the UMLS
Metathesaurus. It is very useful for information extraction or term normalization
purposes.

4.1.3 DrugBank

DrugBank is a database of drugs and their targets, created by the University of Al-
berta in 2006 [51]. It is considered a gold standard knowledge resource for drug data,
including chemical, pharmacological and pharmaceutical properties. For instance, it
provides information on drug indications, mechanism of action, metabolism, toxic-
ity, adverse events, and interactions with other drugs and food. The database also
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includes a list of various brand names for each drug and provides data on related
proteins such as targets and transporters.

The latest release of DrugBank in March 2024 includes 16 602 drugs and 5293
distinct proteins, such as drug targets, enzymes, transporters, and carriers, which
are linked to these drugs [52].

4.2 Ontologies

Biomedical ontologies are crucial for structuring and standardizing domain knowl-
edge. An ontology serves as a catalog of entities, outlining the relationships between
them. Each entity is associated with a unique concept identifier, which connects to
all entities that share the same semantic meaning. Typically, this includes at least one
entity but often extends to several due to the presence of many synonyms [53]. For
instance, in an ontology, the entity "liver cancer" should share the same identifier as
"hepatocellular carcinoma", and this identifier should also be linked to other natural
language terms, such as "liver neoplasm", "HCC", "liver carcinoma", etc.

A biomedical ontology is an invaluable resource in numerous BioNLP tasks, such
as text normalization and named entity recognition. The biomedical language con-
tains a vast number of medical terms and abbreviations that require specialized med-
ical knowledge for accurate processing by AI systems. An ontology can incorporate
this knowledge into the system, consequently enhancing the effectiveness of the so-
lution. This section provides an overview of the main biomedical ontologies and
ontology-like vocabularies.

4.2.1 SNOMED CT

SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms) is a multi-
lingual clinical terminology released in 2002, used by over 80 countries and consid-
ered to be the most comprehensive clinical vocabulary in the world [54]. It allows for
a standardized representation of clinical terms in healthcare systems. The terminol-
ogy consists of 3 components [55]:

• Concepts: These are the basic elements of the terminology. Each concept rep-
resents a unique clinical meaning and is associated with a unique numeric
identifier.

• Descriptions: These are the unique names of the concepts and their synonyms,
for example, "liver cancer" is the unique name, and the synonyms include "liver
neoplasm" and "hepatocellular carcinoma".

• Relationships: These are links between two concepts, which are machine-
readable and maintain semantic connections.

SNOMED CT includes over 350 000 concepts and 1 million relationships [55]. The
types of concepts range from clinical findings and procedures to substances, pharma-
ceutical products, and body structures. All concepts are arranged into hierarchical
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structures with an "IS A" relationship, such as "viral pneumonia" IS A "infective pneu-
monia". There are 19 separate hierarchies in SNOMED CT. Concepts from different
hierarchies are linked by attribute relationships (e.g. "finding site", "causative agent").
For example, the "finding site" relationship connects the "viral pneumonia" concept
with the "lung" concept, whereas these concepts originate from the different hierar-
chies of clinical findings and body structures, respectively. Fig. 4.1 shows the hierar-
chy of SNOMED CT concepts for "Diabetes mellitus type 2", which stem from "Clinical
finding" hierarchy, and a list of relations to other hierarchies - "body structures" in that
example.

Figure 4.1: Hierarchy of Diabetes mellitus type 2 in SNOMED CT (screenshot from:
https://browser.ihtsdotools.org/).

4.2.2 MeSH

Medical Subject Heading (MeSH) is a thesaurus for the biomedical domain, created
by the U.S. National Library of Medicine (NLM) in 1960 [56]. It was developed to
index life sciences publications on PubMed. Each record in PubMed is tagged with
a set of MeSH terms, which are subject descriptors that facilitate the searching of
publications. This vocabulary allows users to enter various terms in a search query
in PubMed and retrieve a consistent set of records, even if the terms are different
but related to the same concept. For example, searching for "myocardial infraction"
will also return articles on "heart attack", "acute myocardial injury", and their plural
variants.

MeSH serves as an ontology by providing a hierarchical structure of medical
terms. This hierarchy is particularly useful for searching in PubMed, where using
broader terms can yield papers indexed under narrower related terms. For instance,
a search for "neoplasms" publications will not only retrieve records tagged with "neo-
plasms", but also those under "breast neoplasms", "lung neoplasms", etc. A fragment of
the "Lung Neoplasms" hierarchy is presented in Fig. 4.2.

MeSH consists of three types of records:

https://browser.ihtsdotools.org/
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Figure 4.2: Hierarchy of Lung Neoplasms in MeSH (screenshot from https://meshb.
nlm.nih.gov/).

• Descriptors: These are terms that describe the subject of publications in PubMed
and other NLM databases.

• Qualifiers: These are narrower terms that complement descriptors. They spec-
ify details of the discussed subject. For example, in a publication about drug
treatment for lung neoplasms, "Lung Neoplasms" is a descriptor, while "drug
therapy" is a qualifier.

• Entry Terms: These are synonyms and closely related terms to descriptors,
which can be used interchangeably in searching publications. For instance,
"lung cancer" and "pulmonary cancer" are entry terms for "lung neoplasms".

An illustration of entry terms and qualifiers for the "Lung Neoplasms" descriptor is
shown in Fig. 4.3

4.2.3 ICD

The International Classification of Diseases (ICD) is a global standard for classify-
ing and coding health information, such as diseases, symptoms, injuries, causes of
death, and other medical conditions [57]. Since 1948, the World Health Organiza-
tion (WHO) has been responsible for publishing and maintaining this system. ICD
provides a common language for the healthcare industry, enabling the sharing and
interpretation of medical data at various medical sites and by different professionals
across countries and regions. It has been translated into 43 languages and is uti-
lized by a diverse group of stakeholders, including physicians, nurses, policymakers,
insurers, and IT professionals working with medical data.

As a medical terminology and classification framework, ICD maps medical terms
to unique codes organized into a hierarchical structure, thus serving as a medical

https://meshb.nlm.nih.gov/
https://meshb.nlm.nih.gov/
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(a) (b)

Figure 4.3: Records for Lung Neoplasms in MeSH. (a) Entry terms. (b) Qualifiers.
(screenshots from: https://meshb.nlm.nih.gov/)

ontology that supports the development of NLP systems. ICD includes all diseases,
each associated with their diagnostic characteristics and unique identifiers, composed
of alphanumeric characters. The latest version, ICD-11, contains over 120 000 medical
terms linked to 17 000 codes ranging from 1A00.00 to ZZ9Z.ZZ [58] [59]. The initial
character of a code indicates a chapter, such as "Diseases of the visual system", or "Sleep-
wake disorders", and the subsequent characters detail specific conditions. For example,
the code 2A00.00 corresponds to "Glioblastoma of brain", which is the most detailed
level in the hierarchy, as illustrated in Fig. 4.4. Higher levels include "Gliomas of
brain" (2A00.0), "Primary neoplasms of brain" (2A00), and "Neoplasms of brain or central
nervous system" (2A0), up to the broader "Neoplasms" chapter indicated by the code 2.

Figure 4.4: ICD-11 hierarchy for Glioblastoma of brain (screenshot from: https://icd.
who.int/browse/2024-01/mms/en).

https://meshb.nlm.nih.gov/
https://icd.who.int/browse/2024-01/mms/en
https://icd.who.int/browse/2024-01/mms/en
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4.2.4 LOINC

Logical Observation Identifiers Names and Codes (LOINC) is another biomedical
standardized vocabulary created by the Regenstrief Institute and released in 1995 [60].
It supports the electronic exchange of clinical results, such as laboratory tests and
clinical observations, by providing universal identifiers for them. The current ver-
sion of LOINC contains over 103 000 records. Unlike ICD or SNOMED CT, LOINC
does not incorporate hierarchical information within the observation codes. Codes
are assigned sequentially as observations are added to the system. LOINC includes
codes not only for laboratory tests like microbiology, chemistry, or serology, but also
for clinical observations, such as EKG measurements, vital signs, or radiology report
findings [61].

Each LOINC record is assigned a unique code and name, composed of five or six
parts, which include [61]:

• Component: The substance or element being measured, e.g. hemoglobin, hep-
atitis C antigen.

• Property: The type of measurement property, e.g. mass, length, volume.

• Timing: The time interval over which the measurement is taken, e.g. point in
time, 24-hour urine collection.

• System: The type of sample or organ examined, e.g. urine, chest, blood.

• Scale: The measurement scale type, e.g. quantitative, nominal, ordinal.

• Method: The method used to obtain the measurement, e.g. manual count,
immuno blot; this is the only optional part of the name.

Fig. 4.5 illustrates the LOINC hierarchy and fully-specified name structure for a
laboratory test, BAL, which detects bacteria in the lungs, with the specific code 95074-
1. Additionally, LOINC is one of the source vocabularies for the Unified Medical
Language System (UMLS), discussed in Section 4.1.2 [60].

4.2.5 RxNorm

RxNorm is a terminology for all medications available in the United States, contain-
ing both generic and branded names. It was developed by the U.S. National Library
of Medicine in 2001 [62]. The primary stakeholders of RxNorm include hospitals,
pharmacies, and other organizations that use electronic systems to process and store
drug information. Each brand name of a drug in RxNorm is linked to a normalized
name, which consists of three components: ingredient, strength, and physical form,
for example, "Naproxen 250 MG Oral Tablet". The branded normalized name includes
the brand enclosed in square brackets at the end, e.g. "Naproxen 250 MG Oral Tablet
[Prosaid]" [63].

A key element of RxNorm is the Concept Unique Identifier (RxCUI), which is as-
signed to each drug enity. The identifier points to a concept with a common meaning,
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Figure 4.5: The LOINC hierarchy for a BAL test in lungs (screenshot from: https:
//loinc.org/search/).

allowing synonymous drug names to share the same RxCUI. RxNorm also maintains
relationships between concepts, which indicate how substances relate to one another,
such as "Naproxen Pills" HAS_INGREDIENT "Naproxen", or "Naproxen 250 MG Oral
Tablet" IS_A "Naproxen Oral Tablet". Moreover, RxNorm serves as a source vocabulary
for the Unified Medical Language System.

4.2.6 MEDCIN

MEDCIN is a standardized clinical terminology for encoding medical information
in Electronic Health Records (EHRs), developed by the Medicomp Systems and re-
leased in 1978 [64]. It comprises over 400 000 clinical concepts that are linked through
various relationships [65]. The MEDCIN vocabulary includes diagnoses, symptoms,
patient histories, therapies, tests, and physical exams. Each concept within MEDCIN
is a clinical statement meaningful to clinicians at medical sites.

MEDCIN structures its concepts into two distinct hierarchies: one that organizes
terms from more general to more specific, and another that links concepts to specific
diagnoses. Each concept is assigned a unique six-digit numeric identifier. Addition-
ally, MEDCIN enhances its concepts with parameters such as prefixes, modifiers, and
statuses. Prefixes help distinguish between different instances of a clinical concept,
such as personal vs. family history of a diagnosis. Modifiers provide additional in-
formation about a condition’s severity, for example, indicating "stage IV" in breast
cancer. Statuses describe the condition’s progression, such as stable, in remission, or
worsening.

Fig. 4.6 illustrates how the same concept, "Breast Cancer", can vary when different
parameters are applied within MEDCIN.

https://loinc.org/search/
https://loinc.org/search/
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Figure 4.6: Variability in the representation of the "Breast Cancer" concept
with different parameters in MEDCIN (screenshot from: https://medicomp.com/

medcin-details/).

4.2.7 MedDRA

The Medical Dictionary for Regulatory Activities (MedDRA) is a standardized med-
ical terminology designed for regulatory reporting, widely used by regulatory au-
thorities, healthcare professionals, and pharmaceutical companies since 1999. It was
developed by the International Council for Harmonisation of Technical Requirements
for Pharmaceuticals for Human Use (ICH), with significant contributions from the
UK Medicines Control Agency [66]. MedDRA is applied in both pre-market and
post-market activities, including registration, documentation, and safety monitoring
of medical products.

MedDRA provides terminology for reporting a variety of adverse events, such as
signs, symptoms, diagnoses, medical tests, procedures, patient histories, and device
issues. It does not cover patient demographics, clinical trial design, numerical values,
or qualifiers. The vocabulary is organized into a five-level hierarchy, where the most
basic unit is the Preferred Term, a distinct descriptor for a unique condition repre-
sented in MedDRA. This hierarchy facilitates the linkage between synonyms and the
relationship between more detailed and more general terms [67].

4.3 Pretrained language models

Another useful group of BioNLP resources are biomedical language models. In re-
cent years, Transformer-based pretrained language models have significantly influ-
enced the NLP field. A Transformer is a neural network architecture that utilizes
an attention mechanism, which allows each token in a sequence to dynamically ad-
just its representation based on the relevant tokens in the input sequence, output
sequence, or the sequence itself [68]. When the attention is computed based on the
tokens in the same sequence, it is known as a self-attention. Transformer models
include variations built on the Encoder, Decoder, or combined Encoder-Decoder ar-
chitectures. The original Encoder architecture comprises six blocks, each containing
a multi-head self-attention layer and a fully-connected feed-forward layer, while the
Decoder includes an additional multi-head masked attention layer in its six blocks.
Different models may incorporate varying numbers of Transformer blocks. This sec-
tion focuses on Encoder models.

A key example of a Transformer Encoder model is BERT (Bidirectional Encoder

https://medicomp.com/medcin-details/
https://medicomp.com/medcin-details/


34 NLP Resources for Biomedical Domain

Representations from Transformers) [69]. BERT is a Masked Language Model (MLM)
which randomly masks tokens in its input and is trained to correctly fill those gaps
based on their context. A second training objective is Next Sentence Prediction (NSP),
where BERT predicts whether a second sentence logically follows the first. BERT is
pretrained on the general-domain corpuses, the English Wikipedia and the Book
Corpus [70].

A major strength of Transformer-based models is their architecture, particularly
the attention mechanism, that addresses the loss of contextual information in long
sequences - an issue prevalent in the previously dominant Recurrent Neural Net-
works (RNNs). This attention mechanism has revolutionized NLP. It also introduced
bidirectional representation learning, which enables models to incorporate context
from both preceding and succeeding tokens - a capability not feasible with tradi-
tional sequential models such as RNNs. Another critical feature of Transformers is
transfer learning, which mitigates the challenge of insufficient training data by lever-
aging knowledge acquired during pretraining. This underscores the importance of
domain-specific pretrained models, which apply pre-acquired knowledge to special-
ized tasks without extensive training on large labeled datasets, a frequent limitation.
Consequently, numerous domain-specific models, including biomedical models, have
been developed. These models demonstrate higher performance on domain-specific
tasks than general-domain models [71], but retaining general knowledge in these
models can also provide benefits.

Biomedical pretraining leverages several key data sources:

• PubMed: This database contains abstracts of biomedical publications and links
to full-text articles from PubMed Central (PMC), as discussed in Section 4.1.1.

• MIMIC-III (Medical Information Mart for Intensive Care III): This database
includes Electronic Health Records (EHRs) from 58 976 hospital admissions in-
volving over 38 000 patients, collected between 2001 and 2012 at the Beth Israel
Deaconess Medical Center [72].

• UMLS (Unified Medical Language System): This repository contains biomed-
ical terminologies, providing information on the synonyms and relationships
of medical concepts, as detailed in Section 4.1.2.

There are two types of biomedical Transformer models, which differ in their
pretraining setup: mixed-domain pretraining and domain-specific pretraining from
scratch [71]. This section explores BERT-based models from both categories.

4.3.1 Mixed-domain pretrained language models

Mixed-domain pretrained models utilize a continual pretraining approach, begin-
ning with weights from an existing pretrained model like BERT and continuing
self-supervised learning on domain-specific corpora. This method allows models
to retain general language knowledge from the initialization of the training process.
Examples of biomedical language models trained with that approach include:
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• BioBERT: Initialized with BERT’s weights and further pretrained on PubMed
abstracts and PMC full-text articles [73].

• ClinicalBERT: Initialized with BioBERT’s weights and further pretrained on
clinical notes from MIMIC-III [74].

• BlueBERT: Initialized with BERT’s weights and further pretrained on both
PubMed abstracts and MIMIC-III clinical notes [75].

• CODER: Initialized with PubMedBERT’s weights (model referenced in Sec-
tion 4.3.2) and further pretrained on UMLS concepts and relations [76].

4.3.2 Domain-specific language models pretrained from scratch

In contrast, domain-specific language models pretrained from scratch do not begin
with any pretrained language model. They start their learning process with ran-
domly initialized weights. This approach requires the models to acquire language
knowledge directly from their domain-specific training data, since they do not have
any general language understanding at the beginning. Examples of these models
include:

• SciBERT: Utilizes a non-initialized BERT architecture and is pretrained on a
random sample of full-text scientific publications from Semantic Scholar, with
a mix of biomedical (82%) and computer science (18%) articles [77].

• PubMedBERT: Utilizes a non-initialized BERT architecture and is pretrained
on PubMed abstracts and PMC full-text articles [71].

4.4 Generative AI

Currently, a particular group of language models has attracted significant attention
from society. These are generative models based on the Transformer Decoder archi-
tecture, trained with the objective of next word prediction, also referred to as Causal
Language Models. The latest GPT (Generative Pretrained Transformer) models, such
as GPT-3 [78] and especially GPT-4 [79], have achieved state-of-the-art performance
in numerous NLP tasks. Their results are comparable to human-level performance
in natural language understanding and reasoning. The strength of these models lies
in their vast training data and the number of their parameters - 175 billion parame-
ters in GPT-3 and trillions of parameters in GPT-4 (exact number undisclosed). This
is why these models are called large language models (LLMs). In contrast, BERT
base model has 110 million parameters, and its large version has 340 million parame-
ters. Additionally, the recent GPT models (GPT-3.5 and GPT-4) utilize Reinforcement
Learning with Human Feedback (RLHF), where human reviewers score outputs from
a pretrained model, and those scores are used in model fine-tuning [80]. This method
helps guide the model towards more accurate and human-like outputs.
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The GPT-3.5 model, a modified version of GPT-3, forms the core of the first Chat-
GPT version, released in 2022. It quickly gained interest of people around the world,
allowing users to interact with it via its chatbot interface at chatgpt.com. ChatGPT, an
LLM conversational tool, was trained on a huge corpus of text data, including books,
articles and websites [81]. It has learnt various phrases, relations between them and
contexts, hence it is able to generate human-like responses in conversations [82].

Recent generative models are capable of performing numerous NLP tasks, such
as text classification, question answering, machine translation, and summarization,
without additional training. They address the issue of limited task-specific training
data. These models have these capabilities because they learn a vast amount of
linguistic features and patterns from the data they are pretrained on, and they are
able to generalize this knowledge to new tasks and domains.

Additionally, large language models offer a new mode of interaction known as
prompt engineering, which is a technique of deliberately crafting an input to a lan-
guage model in order to achieve a desired output. A prompt in generative models
is the textual input provided by the user to the model, which leads to content gen-
eration [83]. It can be a simple question, or a detailed instruction with input data
and examples. By giving the model a specific prompt, one can control and guide
the output of the model to generate relevant and meaningful results. More precise
prompts result in better outcomes, making prompt engineering an important field
of research in AI. Many prompt patterns have been discovered, including Persona,
Alternative Approaches, or Flipped Interaction patterns, which increase the accuracy of
the generated output [84].

The development of GPT-3 and especially the ChatGPT tool started a new chapter
in AI development, a Generative AI era. They have inspired new research directions
in Artificial Intelligence and prompted the industry transformations, with more and
more LLM-based systems being utilized in many applications. The release of GPT-4
in 2023, which surpasses human-level performance in many tasks, demonstrated that
these models could serve as human assistants across various domains. Currently, an
increasing number of competitors are releasing more LLMs. Fig. 4.7 illustrates the
evolution of generative models and the rising number of new releases in recent years.

Despite the significant performance, large language models are not without limi-
tations. Some of them include [83]:

• Hallucinations: They can generate incorrect content that sounds truthful but
has no basis in facts.

• Knowledge cut-off: Their knowledge is limited to their training dataset; they
do not have access to data that appeared after their pretraining.

• Inconsistency in generated output: As probabilistic models, their outputs may
vary for the same prompt.

• Limited context window: Their architecture limits the number of tokens they
can process in a single input, e.g. 16 385 tokens for GPT-3.5 and 128 000 tokens
for GPT-4 [85].

chatgpt.com
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Figure 4.7: The evolution of large language models. Source: https://bit.ly/3WHHej8

• No continuous retraining: They are static models that do not learn from expe-
rience.

• Costly execution: Their large size (billions of parameters) results in suboptimal
performance and may require substantial infrastructure.

A deep understanding on how LLMs work, combined with well-crafted prompts
and careful checking of the generated output, can mitigate some of these limitations.

https://bit.ly/3WHHej8
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Chapter 5

Natural Language Processing in
Clinical Trial Eligibility Criteria
Parsing

As discussed in Chapter 2, one of the primary obstacles to the success of clinical
trials is the recruitment process, which is highly inefficient, labor-intensive, time-
consuming, and prone to human errors. Automating this process could significantly
benefit patients and the healthcare industry. However, a major challenge in this au-
tomation is parsing the eligibility criteria. Using Machine Learning (ML) and Natural
Language Processing (NLP) offers a potential solution, although the complexity of
the syntax and semantics of the eligibility criteria presents significant challenges for
existing ML and NLP methods.

In recent years, we have witnessed an explosion of ML and NLP models capable
of streamlining the patient accrual process. This chapter presents the most compre-
hensive scoping review of the scientific literature on the use of machine learning and
natural language processing for parsing eligibility criteria from clinical trial proto-
cols. The survey, conducted strictly according to the PRISMA methodology, covers
papers published between January 1st 2020 and July 2nd 2024. The search queries ex-
ecuted against four databases resulted in the initial pool of 9160 potentially relevant
publications. The final scoping review contains 88 publications analyzed using 17
criteria. Full results of the scoping review are published as an interactive dashboard
and available at https://drudis-d-23-00233r1.streamlit.app.

Section 5.1 discusses previous scoping reviews on this topic. Section 5.2 outlines
the methods used to conduct this review, including the research questions, search
strategy, study selection, and data charting. Section 5.3 presents the results of the
publication selection process and the main findings from the review. Section 5.4
discusses the research questions in light of the study findings, lists the limitations of
the review, and identifies potential future research directions.

39
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5.1 Previous reviews

In the last few years, several reviews on the use of machine learning and artificial
intelligence in clinical trial parsing have been published. Table 5.1 summarizes their
scope and design protocols. Below we describe these studies, and, in particular,
discuss their shortcomings that prompted us to prepare the current scoping review.

Idnay et al. [86] conducted a systematic review focused on the use of NLP systems
in eligibility prescreening. They searched five databases and selected 11 publications
that evaluate ready-to-use NLP systems. These studies were required to pertain
to clinical eligibility prescreening tasks, involve real patient medical records, and
include a non-NLP baseline for comparison. The authors assessed the publications’
quality and their impact on the clinical process, noting that the limited number of
studies might suggest this application of NLP is understudied.

Askin et al. [87] reviewed the application of AI and ML thorough all stages of
clinical development - from pre-clinical research to trial design, recruitment, con-
duct, analysis, and regulatory documentation. They identified 48 publications and 9
regulatory documents from Europe and the USA, published between 2017 and 2021.
Their review broadly examines the use of AI in clinical trials, discussing the oppor-
tunities, challenges, and implications for practice but does not delve into specific AI
methods and technicalities.

Bhatnagar et al. [88] analyzed NLP applications in drug development and discov-
ery, focusing on different NLP libraries and models. Beyond traditional publication
databases, they also searched code repositories. They identified 20 possible solutions
and stratified them according to drug development stages, which resulted in 12 ap-
plications used in the patient-trial matching area. The authors highlighted the need
for more research into model explainability in drug development applications.

Kim and Quintana [89] investigated the evaluation metrics of NLP systems for
clinical trial matching based on five publications. They noted difficulties in compar-
ing tool performance due to the lack of a gold standard for trial eligibility matching
applications. Of the systems reviewed, four were assessed manually by multiple
raters. The review emphasized the need for creating a standardized benchmark for
evaluating patient-trial matching algorithms.

Su et al. [90] reviewed over 60 papers on the use of computer technologies in pro-
cessing eligibility criteria, categorizing them into four groups: natural language pro-
cessing, patient pre-screening, eligibility criteria evaluation, and clinical trial query.
Dominated by AI applications, the review identifies significant challenges, which
include the need for interdisciplinary expertise, data availability, and large-scale test-
ing.

A common limitation among these studies is their narrow focus and the small
number of publications reviewed. The review by Idnay et al. [86] is the most relevant
to the current work but it is much more narrow in scope and does not address the
main question informing this study: does the current revolution in machine learning
and natural language processing impact the field of clinical development?
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Table 5.1: Previous reviews.

Title Objective Databases # art. Search date Filters
A systematic review on natu-
ral language processing sys-
tems for eligibility prescreen-
ing in clinical research.

To review the use of NLP sys-
tems in eligibility prescreen-
ing.

PubMed, Em-
base, CINAHL,
IEEE, ACM

11 Feb 2021 use of real patient data; non-
NLP baseline; evaluation of
NLP system ready to use in
real-world setting; business
task: eligibility prescreening

Artificial Intelligence Ap-
plied to clinical trials: oppor-
tunities and challenges.

To review the use of ML and
AI in clinical trials.

PubMed,
Scopus, In-
ternational
Pharmaceuti-
cal Abstracts,
Google Scholar

48 Oct 2021 publication year: since 2017;
research area: EU and US; re-
ferring to AI or ML applica-
tions in clinical trials

How can natural language
processing help model in-
formed drug development?:
a review.

To review NLP applications
in drug discovery and devel-
opment.

PubMed,
Google Scholar,
GitHub

20 Feb 2022 publication year: since 2010;
programming languages:
Python, Java, Scala, C++,
R; transformer models
pre-trained on biomedical
corpora; NLP systems not
involving speech analysis or
generation

Review of the Performance
Metrics for Natural Lan-
guage Systems for Clinical
Trial Matching.

To review the performance
metrics of NLP systems for
clinical trial matching.

PubMed, ACM,
IEEE, Sci-
enceDirect

5 May 2021 publication year: since 2016;
direct evaluation of CT
matching system perfor-
mance; definition of gold
standard

A review of research on eligi-
bility criteria for clinical tri-
als.

To review the use of com-
puter science in CT eligibility
criteria processing.

Google Scholar,
arXiv, Nature,
NIH

> 60 not specified not specified
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5.2 Methods

Scoping reviews are considered a valid method of summarizing knowledge in sci-
ence [91]. By presenting a broad overview of the existing literature, scoping reviews
allow to identify key concepts, methods, datasets, and dominating research themes
in a specific domain. More importantly, scoping reviews help clarify definitions and
conceptual frameworks, thus allowing to identify gaps in the research. This is par-
ticularly useful in complex or emerging fields where it might be difficult to carry out
a systematic review. Finally, scoping reviews can be done more rapidly than sys-
tematic reviews, making them practical for informing decision-making and research
design. They serve as valuable tools in the scientific research process, providing a
comprehensive and accessible summary of existing literature. This scoping review
follows the PRISMA methodology outlined by Khan et al. [92].

5.2.1 Questions informing the scoping review

This study presents a broad scoping review on the use of machine learning and nat-
ural language processing tools for parsing clinical trial eligibility criteria. As it was
already mentioned, the failure to match sufficient patient cohorts to eligibility crite-
ria is the primary cause of unsuccessful clinical trials. We see machine learning and
natural language processing as powerful tools that can address this problem. Recent
advances in the area of machine learning, particularly the emergence of generative
large language models, might indicate the beginning of a new chapter in automated
patient-trial matching, significantly boosting the success rate of clinical trials.

In order to design the scoping review, a systematic approach must be developed
for the selection of features extracted from the literature search results. One solution
is to design a set of questions that will inform the scoping review, in particular, the
selection of sources, the design of search queries, and the development of the data
charting protocol. Questions selected for the presented scoping review are as follows:

• Question 1: How are recent generative language models being adopted for
clinical trial eligibility criteria parsing?

• Question 2: What NLP methods, models, and tools are commonly used in
patient-trial matching?

• Question 3: What resources are currently lacking or insufficient for the
widespread adoption of ML and NLP techniques in patient-trial matching?

5.2.2 Search strategy

Four scientific literature databases have been selected as sources for potential pub-
lications: Scopus, EMBASE, Web of Science, and PubMed. The search query has
been designed in such a way as to cover publications discussing ML or NLP in the
context of clinical trials. A publication must have met all the following criteria to be
considered for inclusion in the review:
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• The paper must address patient-trial matching: title or abstract must include
any of the following terms: enrollment, enrolment, recruitment, screening, crite-
ria, eligibility, matching, cohort selection, cohort ascertainment, accrual, prescreening,
phenotyping, population enrichment.

• The title or abstract must contain the word trial.

• The paper must mention ML or NLP: title or abstract includes any of the fol-
lowing terms: transformer, bert, named entity recognition, NER, textual entailment,
natural language inference, language model, semantic similarity, semantic textual sim-
ilarity, entity linking, information extraction, natural language processing, NLP, deep
learning, machine learning, attention mechanism, generative AI, GPT.

• The paper must have been published after the year 2000.

• The paper must be written in English

5.2.3 Study selection

In order to select publications for inclusion in the scoping review, two annotators
independently screened titles and abstracts using the Prodigy annotation tool and
a custom-built annotation recipe, as illustrated in Figure 5.1. The interface displays
the title, the DOI, and the abstract of a paper. Annotators can accept or reject the
paper using buttons or keyboard shortcuts. They also have the capability to navigate
backward in the annotation history to correct any previous annotations. For more
clarity, keywords from the literature search string are highlighted. To avoid selection
bias, the annotators were not given access to the publication’s metadata, such as the
list of authors or the venue of publication. After study selection the publications
were randomly assigned to one of the annotators for data charting.

5.2.4 Data charting

The purpose of data charting is to establish and follow a protocol for extracting rel-
evant information from the selected studies. This process involves the selection of
features and the categorization of their values, which must be agreed between an-
notators. The selected features and their categorization are designed to assist in an-
swering the research questions that define the scoping review. Table 5.2 summarizes
the features extracted from the studies, provides the rationale behind each feature,
and indicates the specific research question each feature addresses.

5.3 Results

5.3.1 Search results

Figure 5.2 presents the flowchart of the literature selection process. The initial search
yielded 9160 papers, with the largest number of papers coming from the Scopus
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Figure 5.1: Annotation of publications in Prodigy.

database (3220), followed by Embase (2436), Web of Science (1934), and PubMed
(1543). In the first step, papers lacking a DOI or an abstract were removed (480
positions), which resulted in 8680 remaining papers. In the subsequent deduplication
step, which considered DOI, abstract, and a combination of title and publication year,
the number was reduced to a final pool of 4249 publications viable for the scoping
review screening.

Out of the pool of papers accepted for screening, 4,049 were rejected after title and
abstract screening, leaving 200 papers to the full reading phase. The inter-annotator
agreement, measured by Cohen’s Kappa, was substantial (κ = 0.767) [93]. The se-
lected papers were then divided between two researchers for data charting. During
the full reading phase, 112 publications were rejected from the scoping review. The
main reasons for paper rejection at this late stage were as follows:

• The publication was only available as a short abstract or conference communi-
cation.

• The publication did not contain any NLP methods.

• The publication did not contain any ML methods.

• Only the abstract was in English, the publication was in a language different
than English.

• The publication did not mention clinical trial eligibility criteria.

• The text of the publication was behind a paywall (3 publications)

Finally, 88 publications (83 papers and 5 reviews) were accepted into the current
scoping review.
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Table 5.2: Features extracted from studies.

Feature Description Rationale Question
year year of publication to observe the dynamics of

publications on NLP in CT
parsing

Q1

author country the country of affilia-
tion of the authors

to identify leading countries
conducting research in the
field of NLP in CT parsing

Q1

research country the country where re-
search was conducted

to identify leading countries
conducting research in the
field of NLP in CT parsing

Q1

therapeutic area the area of medicine of
clinical trials

to identify dominating medi-
cal areas of research

Q1

general type the general character-
istics of the paper (re-
search, review, etc.)

to better understand research
on NLP in CT parsing

Q1

business objective the main medical goal
of the research

to better understand the
needs of medical community

Q1

NLP methods main NLP techniques,
tools, and tasks

to better understand research
on NLP in CT parsing

Q2

metrics main metrics used to
evaluate and report re-
search results

to better understand research
on NLP in CT parsing

Q2

datasets public datasets with
EHRs, CTs, and ECs

to make inventory of NLP re-
sources in the area of clinical
trial parsing

Q3

protocol source public databases of
CTs

to make inventory of NLP
resources in the area of CT
parsing

Q3

auxiliary datasets additional public
databases of EHRs,
CTs, and ECs

to make inventory of NLP
resources in the area of CT
parsing

Q3

knowledge bases public databases of
medical terms

to make inventory of NLP
resources in the area of CT
parsing

Q3

contribution the main scientific con-
tribution of the paper

to better understand research
on NLP in CT parsing

Q2

ground truth the method of creating
ground truth in model
evaluation

to make inventory of NLP
resources in the area of CT
parsing

Q3

preprocessing main NLP methods of
data preprocessing

to better understand research
on NLP in CT parsing

Q2

shallow ML methods main non-neural ML
tools and techniques
reported in the paper

to better understand research
on NLP in CT parsing

Q2

neural models pretrained and fine-
tuned language mod-
els used for research

to better understand research
on NLP in CT parsing

Q2
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Figure 5.2: Flowchart of the literature selection process.

5.3.2 Study demographics

This subsection presents the general characteristics of the papers included in the
review. It focuses on demographic data, such as the year of publication, country of
origin of the studies, and the general character of the papers. This allows to assess
the scope and the breath of the scoping review.

5.3.2.1 Year of the publication

Figure 5.3 illustrates the number of works included in the study published each
year. The interest in applying modern ML & NLP techniques to clinical trial de-
scriptions has steadily grown in recent years. A significant surge in the number of
papers published in 2021 can be attributed to advancements in NLP, particularly the
emergence of foundational models and the increased availability of domain-specific
smaller models.
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Figure 5.3: Number of publications per year.

5.3.2.2 Main contribution

Most studies focus on the presentation of new methods and algorithms (Figure 5.4),
which aligns with general publication bias that encourages novelty elements in ac-
cepted studies. A large number of studies evaluate pretrained models or healthcare
systems in narrow tasks (efficacy of pretrained BERT models in semantic similar-
ity matching of eligibility criteria [94], the performance of IBM Watson in matching
prospective subjects to a cancer study [95], etc.). Additionally, there are contributions
in the form of dataset curation (Chia – annotated dataset of eligibility criteria [96],
Leaf clinical trials corpus [97], the knowledge base of clinical eligibility criteria [98]).

Figure 5.4: Main contribution of the study.

5.3.2.3 Author country

A majority of the studies are published by authors affiliated with American insti-
tutions (Figure 5.5), which confirms the USA’s dominance in biomedical and AI re-
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search. However, this distribution may be skewed by the review’s selection criteria,
which limit the scope to papers published in English. Notably, original works written
in other languages, in particular in Chinese, were excluded from the review.

Figure 5.5: Country of affiliation of authors.

5.3.2.4 Therapeutic area

The papers span a broad range of therapeutic areas (Figure 5.6). Most discuss
general-purpose methods that are not limited to a particular disease or area of
medicine (39 papers). However, a significant number focus on developing methods,
datasets, rules, and frameworks for narrowly defined areas. Oncology is the most
frequently addressed field (25 papers in total), with papers particularly focusing on
breast cancer (10 papers) and pediatric oncology (3 papers). Alzheimer’s disease is
also a common topic of study (9 papers). As the collection of papers for the review
has been conducted shortly after the coronavirus pandemic, the review includes 5
papers related to COVID-19 clinical trials.

5.3.2.5 Research country

Figure 5.7 summarizes the countries in which the reviewed studies have been con-
ducted. Most studies are universal and not limited to any specific country, or the
papers do not explicitly limit their conclusions to a particular country. However,
when geographic limitations are mentioned, the USA is frequently the country of
research, most likely due to the particular format of Electronic Health Records pro-
cessed in these studies.

5.3.2.6 General character of the paper.

Each paper included in the scoping review has been broadly classified based on
its general character. As illustrated in Figure 5.8, the majority of publications (35
papers) are research papers that introduce new methods, algorithms, and solutions.
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Figure 5.6: Therapeutic area discussed in the paper.

Figure 5.7: Country of research.

The second most frequent type of publication is model evaluation (24 papers), which
typically involves applying a particular pretrained language model to clinical trial
eligibility criteria. Additionally, a number of studies discuss the efficacy of specific
software for EHR processing, patient-trial matching, medical text normalization, etc.
These works were categorized as software presentations (18 papers). Finally, 6 papers
introduce new datasets relevant to ML/NLP, such as annotated sets of eligibility
criteria, new ontologies of medical concepts, and lexicons of relevant terms.
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Figure 5.8: General character of the paper.

5.3.3 Study findings

This section presents the results from the data charting process, with features cate-
gorized as described in Table 5.2.

5.3.3.1 Business objective

A critical aspect of the practical application of machine learning is selecting the main
business objective and the subsequent alignment of both training and evaluation met-
rics with the relevant business metrics. This scoping review assesses how modern
NLP models and tools assist medical practitioners in successfully conducting clini-
cal trials. Evaluation of the business objectives in the included works supports the
hypothesis that the primary business goal in this area is to enhance the success rate
of clinical studies by focusing on patient-trial matching. As illustrated in Figure 5.9,
the majority of studies explicitly state that improving patient-trial matching is their
main business objective. The second most common business objective is clinical trial
description parsing, which is a broader objective serving multiple practical purposes.
The third business objective supports medical practitioners in designing clinical tri-
als, in particular, by assisting the designers to specify better eligibility criteria based
on successes or failures of previous clinical trials.

5.3.3.2 NLP tasks

Modern NLP models address a wide range of tasks, including text classification,
sentiment analysis, relational entailment, entity recognition, entity disambiguation,
and linking, to name a few. Despite these capabilities, the adoption of modern NLP
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Figure 5.9: Main business objective.

in the reviewed publications is not widespread. As documented in Figure 5.10, the
majority of studies focus on named entity recognition (NER) as the main NLP task.
This is not surprising given the importance of identifying medical terms in free-form
clinical trial descriptions. Many studies target the patient-trial matching objective
through text normalization, aiming to identify relevant terms in trial descriptions, el-
igibility criteria, and Electronic Health Records, and perform matching based on this
extracted knowledge. The second most frequent NLP task is general information
retrieval (IR), which involves non-specific searches within clinical trial descriptions.
More advanced NLP tasks include representation learning (RL), a task of using pre-
trained language models to generate dense numerical text representations for better
semantic matching, text classification, and entity linking (EL). However, these tasks
are not the most common applications of NLP tools.

5.3.3.3 Datasets

The standardization of datasets with eligibility criteria is minimal, as illustrated in
Figure 5.11. Most researchers either do not specify the datasets, or describe them
as internal datasets. Usage of publicly available datasets, such as ELilE, Covance,
or MUSC warehouse, is incidental. The datasets used across several studies are the
Chia dataset and the N2C2 dataset.
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Figure 5.10: NLP tasks.

Figure 5.11: Datasets used in studies.

5.3.3.4 Protocol source

In contrast to the lack of annotated datasets, there is a high degree of standardiza-
tion in the source of clinical trial protocols, as shown in Figure 5.12. The online
database ClinicalTrials.org is the largest collection of clinical trial and observational
study descriptions, and is the dominant source of clinical trial records. Clinical trials
available in this database are semi-structured and significant work is required to ex-
tract more structured data, e.g., regarding particular types of inclusion or exclusion
criteria. Therefore, some studies use internal collections of protocols that have been
further preprocessed and annotated.

ClinicalTrials.org
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Figure 5.12: The source of clinical trial protocols.

5.3.3.5 Auxiliary datasets

Throughout the data charting process, various auxiliary datasets were identified, as
depicted in Figure 5.13. Most of these datasets contain Electronic Health Records
from different patient cohorts, including general EHR datasets and the MIMIC-III
dataset. A few auxiliary datasets are utilized for normalizing medical terms, for
instance, by providing additional information on drug-drug interactions or general
drug information. Term normalization is also supported by domain-specific dictio-
naries the National Cancer Institute dictionary. Annotated examples of patient-trial
matching, such as those provided by IQVIA, represent another category of auxiliary
datasets. However, it is important to note that the use of these auxiliary datasets is
quite limited in the existing literature.

Figure 5.13: Auxiliary datasets used in studies.
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5.3.3.6 Knowledge bases and ontologies

This section differentiates between auxiliary datasets, previously discussed, and the
use of knowledge bases, which are highly structured repositories of normalized
medical information, including ontologies and ontology-like vocabularies. These
resources are utilized in many studies for tasks such as term disambiguation, entity
linking, and semantic similarity evaluation. The most widely used knowledge base is
the Unified Medical Language System (UMLS) mentioned in 18 studies (Figure 5.14).
The SNOMED Clinical Terms collection, another comprehensive set of medical terms,
codes, synonyms, and definitions, is the second most utilized resource. Other popu-
lar resources for processing clinical trial descriptions include DrugBank, the Obser-
vational Medical Outcomes Partnership (OMOP) Common Data Model (CDM), the
International Classification of Diseases (ICD), and the RxNorm vocabulary of drug
names.

Figure 5.14: Knowledge bases and ontologies used in studies.

5.3.3.7 Ground truth

The dominant method for establishing ground truth in reported experiments is the
manual curation of the test dataset (Figure 5.15). Evaluations are often performed
through post hoc annotation of results, where the output of an algorithm is assessed
by human annotators. Only a few studies use trial descriptions from ClinicalTrials.
org as the source of ground truth. Some studies, typically originating from re-
search groups affiliated with commercial entities, employ internal benchmarks as
the ground truth.

5.3.3.8 Preprocessing

Almost every study included in the scoping review describes some form of text pre-
processing. The most common form of preprocessing clinical trial descriptions is
text and term normalization (Figure 5.16). Text normalization encompasses a vari-
ety of techniques, including stop-word removal, identification of measurement unit

ClinicalTrials.org
ClinicalTrials.org
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Figure 5.15: Methods for establishing ground truth.

markers, correcting the casing of names, converting numbers to a common format,
expanding common abbreviations, etc. Term normalization, on the other hand, specif-
ically refers to the disambiguation of medical terms - such as names of drugs, dis-
eases, medical procedures, and conditions - often supported by external knowledge
bases, ontologies, and dictionaries. Additionally, sentence segmentation (i.e. the
discovery of sentence boundaries) is an often employed technique. Beyond the tradi-
tional tasks of part-of-speech tagging, text vectorization, and keyword filtering, the
studies also commonly use regular expressions and identification of negation mark-
ers.

5.3.3.9 Shallow machine learning methods

A large variety of ML models have been utilized in the papers included in the study,
but unquestionably the most common method can be described as custom rule-based
models. This general term encompasses studies where the researchers present pro-
cessing pipelines with significant manual feature and model engineering. This is
quite surprising given recent advances in the design and development of end-to-end
models, particularly in the field of NLP. Also, the common use of dated methods,
such as Support Vector Machines (SVM) and logistic regression suggests that many
studies in the field rely heavily on statistical software packages with ready imple-
mentations of these methods. These findings, evidenced in Figure 5.17, underscore a
gap between cutting-edge research and practical application in the field.
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Figure 5.16: NLP preprocessing methods.

Figure 5.17: Shallow machine learning models.

5.3.3.10 Neural models

Before starting the scoping review, it was anticipated that there would be numerous
studies utilizing modern neural language models due to a Cambrian-like explosion
of pretrained language models (such as BERT, RoBERTa, XLNet), pretrained word
embeddings (word2vec, GloVe, FastText), and large language models (GPT, Gopher,
Codex), along with their versions fine-tuned for the medical domain (BioBERT, Clin-
icalBERT, PubMedBERT, BioRoBERTa, BioBERT-CRF, MedPaLM). However, it was
found that neural models are relatively scarce in the literature (Figure 5.18), with
their usage mostly limited to pretrained embeddings (most frequently word2vec) or
to the original BERT, a model released back in 2018, whose capabilities have been
long surpassed by much larger and more robust language models. Only 4 studies
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used generative large language models such as Llama or GPT.

Figure 5.18: Deep neural models.

5.3.3.11 Number of protocols and criteria

Figures 5.19 and 5.20 display the distributions of the numbers of protocols and cri-
teria processed in the analyzed studies, respectively. Three general types of stud-
ies emerge. Studies focusing on a narrowly defined domain (e.g. clinical trials on
Alzheimer’s disease) perform experiments on a small number of protocols (below
1000), usually selected via the API of ClinicalTrials.gov. Studies targeting a broader
medical domain (e.g. oncological clinical studies) experiment with a larger sample
of protocols (between 1000 and 10 000). Finally, studies introducing general methods,
not bound to a particular medical domain, utilize large samples of clinical protocols
(over 10 000). A similar pattern is observed with eligibility criteria: narrowly focused
studies process only specific criteria (below 100), a group of studies addresses eligi-
bility criteria in a specific domain (below 10 000), and the largest group of studies
does not impose limits on the number of processed eligibility criteria.

5.4 Discussion

At the beginning of the survey, three questions were posed to define the scope of
the survey and the data charting protocol. The following subsections return to these
questions.

5.4.1 Adoption of recent generative language models

The scoping review reveals a surprising lack of common adoption of the large lan-
guage models that have been published in recent years. Most identified works uti-
lize models developed between 2013 (word2vec embeddings) and 2018 (BERT and
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Figure 5.19: Number of clinical trial protocols.

Figure 5.20: Number of eligibility criteria.

its many successors). Foundational large language models are rarely employed to
extract information from clinical trial descriptions. There appears to be substantial
opportunity for incorporating generative language models in the processing of clini-
cal trials.

5.4.2 NLP methods, models, and tools in patient-trial matching

By far, the most common NLP method used in patient-trial matching is text and term
normalization. This involves standardizing numbers, units, casing, and sentence seg-
mentation to make source texts more coherent. Additionally, there is a need to align
medical terms, such as names of drugs, medical procedures, medical conditions,
etc. Learning of text representations is rare and limited to either pretrained word
embeddings or even simpler vectorization methods like bag-of-words and TF-IDF.
Regular expressions are frequently used by researchers to define custom text trans-
formations, but these solutions often struggle to optimize both precision and recall
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– precise matching rules result in a low recall, and universal matching rules result
in low precision of transformations. An interesting finding of the scoping review is
the popularity of the NegEx algorithm, a 20-year-old technique to detect markers of
negations in text. Detecting negation in complex eligibility criteria is challenging.
For instance, consider the following exclusion criterion for a clinical trial: "Patients
must not have a negative history of non-adherence to non-pharmacological interventions in
cardiovascular-related treatments". It is beyond non-trivial to judge if a patient, whose
EHR states "[. . . ] has demonstrated consistent compliance with dietary changes and regular
physical therapy sessions", qualifies for the study.

5.4.3 Resources for ML and NLP in patient-trial matching

One of the most striking findings from the scoping review is the absence of common
standardized benchmarks, which negatively affects the robustness and trustworthi-
ness of reported results. Almost all evaluations are performed either manually, or
via user surveys, making it extremely difficult to conduct meta-analyses or compare
results across studies. The lack of benchmarks also influences the way results are
presented – the researchers are allowed to cherry-pick metrics that produce the most
optimistic results, leading to studies with custom-tailored, unusual metrics of eval-
uation. This issue is compounded by a prevalent positive publication bias afflicting
all science, where nearly all studies included in the current review claim to report
success or partial success, and none present unequivocally negative results.

The lack of benchmark datasets for model training and evaluation is the most
consequential problem identified in this review. Researchers are forced to perform
painstaking and tedious work on the same clinical trial descriptions downloaded
from ClinicalTrials.gov, wasting time and resources. The absence of benchmark
datasets impedes effective evaluation and comparison of studies. Significantly dif-
ferent results across similar studies due to non-standardized evaluation protocols
make it difficult to draw actionable conclusions. Addressing the lack of benchmark
datasets is crucial and should be prioritized by the research community. Benchmark
datasets should cover the following NLP tasks:

• Criterion identification: Determining whether a given text contains an eligibil-
ity criterion.

• Criterion similarity: Deciding if a text, such as a criterion or fragment of an
EHR, entails a given criterion.

• Criterion NER: Identifying named entities within the eligibility criterion.

• Criterion entailment: Given two criteria, assessing if one criterion subsumes,
contradict, or has no logical relation to another.

5.4.4 Limitations

This review has notable limitations. Firstly, the search protocol explicitly excluded
all works published in languages other than English. This causes the omission of
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a significant research, particularly in Chinese. Anecdotally, a few papers from the
review at the full-paper reading phase had to be rejected because, despite the titles
and abstracts being written in English, the full texts of papers were in Chinese.

Secondly, the bibliographic search was limited to four major databases: Scopus,
Embase, Web of Science, and PubMed. Sources like Google Scholar, arXiv, Science
Direct, or bioRxiv were not included in the search to ensure the inclusion of only
peer-reviewed publications. Distinguishing peer-reviewed papers from pre-prints,
such as those on arXiv or bioRxiv, is challenging. Besides, it was assumed that a
work published as a preprint, if accepted by a journal or conference, would be visible
in the databases used in this search.

5.4.5 Future research directions

The most urgent need is the compilation of a normalized and standardized bench-
mark dataset for clinical trial descriptions and eligibility criteria. This represents
the most significant obstacle impeding the development of research on automatic
patient-trial matching. Given the vast number of published clinical trials and the
non-standardized nature of trial descriptions, this task is very challenging, yet ex-
tremely important to address.

Another promising research direction, that only recently appears in the current
research record, is exploring the capabilities of generative large language models for
parsing clinical trial descriptions and eligibility criteria. These models demonstrate
unprecedented versatility in extracting knowledge from free-form text. For instance,
as shown by Gu et al. [99], large language models can be successfully used to ex-
tract complex terms from biomedical texts. This area of research is rapidly evolving,
presenting many intriguing scientific and engineering challenges. As of the time of
writing, we have identified only four published papers that address the use of the
generative AI to parse clinical trials, but this is obviously subject to change in the
incoming months.



Chapter 6

Biomedical Semantic Textual
Similarity

Biomedical texts, including clinical trial eligibility criteria, encode semantics in do-
main vocabulary, extensive use of acronyms, proper nouns, named entities, and nu-
merical values with implied meaning. This layer of complexity is often absent from
the surface form of the text, making semantic textual similarity challenging for mod-
els trained on the general English corpora.

This chapter evaluates various techniques for sentence embedding and their ef-
fectiveness in semantic textual similarity searches within the biomedical domain.
It compares static embeddings, transformer-based representations (with a focus on
models fine-tuned to the biomedical domain), and sentence transformers. These tech-
niques are also relevant for processing clinical trial eligibility criteria among many
NLP tasks, as the text requires embedding before further algorithmic processing.

Section 6.1 discusses the biomedical semantic similarity task, its challenges, and
the scope of this study. Section 6.2 lists studies and research related to semantic tex-
tual similarity in the biomedical field. Section 6.3 presents the data used in the exper-
iments and Section 6.4 outlines the models being evaluated in this study. Section 6.5
describes the experimental setup, the evaluation metrics used, and directional expec-
tation tests. Section 6.6 discusses the findings from the experiments and Section 6.7
summarizes the conclusions derived from the study.

This research was presented at the 20th International Conference on Artificial
Intelligence in Medicine and published in the conference proceedings [100].

6.1 Study motivation and scope

The primary objective of semantic textual similarity (STS) is to determine the similar-
ity score between two texts based on the likeness of meaning (semantics), rather than
on lexical features of compared texts. To compute STS, one must select an appro-
priate text representation. Before the advent of neural networks, the most popular
text representations included various bag-of-word models, such as TF-IDF, combined
with lexical features like part-of-speech tags, dependency tags, named entities, and
dictionary-based taggers. Recently, dense vector representations (embeddings) have

61
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gained popularity. The results of STS are vital for many downstream tasks, such as
information retrieval, recommendation systems, filtering, and document clustering,
serving as an intrinsic method for evaluating the quality of text embeddings.

Due to the specialized language and terminology used in the biomedical field,
STS presents significant challenges, including dealing with rare words, acronyms,
and numerical values with specific semantic implications. While Transformer En-
coder models trained on general English corpora are capable of solving general
semantic similarity tasks, they often lack precision when dealing with specialized
biomedical texts, such as eligibility criteria for clinical trials. Corpus annotation for
supervised training of domain-adapted models is very expensive. The annotation
task cannot be crowd-sourced, and medical experts do not have sufficient time to an-
notate corpora large enough to train language models. Consequently, the only viable
solution is training models on general English corpora and performing unsupervised
fine-tuning of these models.

This chapter examines the effectiveness of various unsupervised text represen-
tations in biomedical STS tasks, evaluates popular text preprocessing methods, and
explores text representations including static embeddings, general language models,
language models fine-tuned to the biomedical domain, and sentence transformers.
It also demonstrates how auxiliary techniques like principal component reduction
and word frequency weighting can improve the results of STS task for most models,
when applied to embeddings. The experiments utilize two benchmark datasets for
biomedical STS and explore how directional expectation tests can provide deeper
insights into the characteristics of sentence representations for biomedical STS.

6.2 Related work

Blagec et al. [101] evaluated several sentence embedding models for biomedical se-
mantic text similarity, including fastText [102], sent2vec [103], Skip-Thought [104],
and Paragraph Vector [105]. They concluded that the Paragraph Vector model
yields the best representations, achieving a Pearson correlation of 0.819. However,
sent2vec, a more cost-effective model, also achieves a competitive Pearson correla-
tion of 0.798. Their findings indicate a significant performance difference between
the skip-gram and CBOW models (0.766 vs. 0.253 Pearson correlation), suggesting
that rare domain-specific words pose a challenge to CBOW.

Ranasinghe et al. [106] explored contextualized word representations in the
biomedical STS task. Their analysis compared ELMo [107], BioBERT, Flair [108],
and a stacked ELMo+BioBERT model, using word2vec embeddings as a baseline.
Evaluation metrics included the cosine similarity of averaged word vectors, Word
Mover’s Distance, and cosine similarity with Smooth Inverse Frequency (SIF) [109].
Interestingly, only the stacked ELMO+BioBERT model surpassed the baseline when
using cosine similarity with SIF, and other models did not outperform the baseline.

Koroleva et al. [110] investigated the similarity of clinical trial outcome descrip-
tions, framing it as a binary classification task. The models assessed whether two de-
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scriptions related to the same medical concept. The study included BERT, BioBERT,
and SciBERT, with BioBERT achieving the best F1-score without reliance on external
knowledge sources like UMLS or WordNet. However, the error analysis revealed
that some sentences required additional domain knowledge for accurate similarity
judgement.

The current study differs from the works listed above as it evaluates and compares
sentence representations derived from static embeddings, biomedical pretrained Trans-
formers, and general-domain Sentence Transformers, enhanced with two modifica-
tions - word frequency weighting and principal component reduction. Additionally,
it introduces a new method of evaluation - directional expectation tests.

6.3 Data

Currently, there are no benchmark datasets specifically for semantic textual similarity
on clinical trial eligibility criteria. Therefore, this study utilizes two public benchmark
datasets from the biomedical domain:

• BIOSSES dataset: This dataset consists of 100 sentence pairs extracted from
biomedical literature [111]. The pairs have been manually annotated by five
medical experts, with similarity scores ranging from 0.0 (unrelated) to 4.0 (se-
mantically equivalent). Table 6.1 presents a sample of the BIOSSES dataset.

• Clinical Outcomes (CO) dataset: This dataset is composed of pairs of texts
extracted from 3938 randomized controlled trials published in PMC [110]. Each
pair includes one phrase from the primary outcomes and one phrase from the
reported outcomes of the same trial. Medical experts manually annotated these
pairs with a binary label to indicate whether both outcomes refer to the same
medical concept. The training set includes 2108 pairs of unrelated texts and 616
pairs of similar texts, while the test set contains 226 pairs of unrelated texts and
78 pairs of similar texts. A sample of this dataset is presented in Table 6.2.

One of the main differences between these datasets is the length of the texts. The
BIOSSES dataset consists of complete sentences, whereas CO includes only single
words or phrases extracted from sentences. This variation suggests that contextual-
ized models might perform better on the BIOSSES dataset, where they can leverage
the full context of each sentence. In contrast, the CO dataset requires models to un-
derstand abbreviations or synonyms, since the context is often missing. A detailed
text length comparison is provided in Table 6.3.

The experiment operates under the assumption that the results obtained on those
datasets are transferable to clinical trial eligibility criteria. Nevertheless, directional
expectation tests are conducted on texts from eligibility criteria to validate this as-
sumption.
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Table 6.1: BIOSSES dataset sample.

Sentence 1 Sentence 2 Score
The in vivo data is still prelim-
inary and other potential road-
blocks such as drug resistance have
not been examined.

The GEM model used in this study
retains wild-type Tp53, suggest-
ing that the tumors successfully
treated with bortezomib and fa-
sudil might not be as aggressive as
those in most NSCLC patients.

0.0

It has recently been shown that
Craf is essential for Kras G12D-
induced NSCLC.

It has recently become evident that
Craf is essential for the onset of
Kras-driven non-small cell lung
cancer.

4.0

Three programs, PicTar, miRanda,
and TargetScan, were used to pre-
dict the targets of miR-21.

The genes that decreased 2-fold
or more were further screened for
possible miR-372/3 target sites us-
ing a local version of the Tar-
getScan algorithm.

2.4

Table 6.2: Clinical Outcomes dataset sample.

Sentence 1 Sentence 2 Label
FEV 1 (% predicted) in the two
groups at 1, 5, 15, 30, 60 min after
administration of the study drug

FEV1 (% predicted) 1

The proportion of children achiev-
ing a well clinical response and
time to a well clinical response

Mortality 0

Blood pressure Glycated hemoglobin A1c 0
ICP control Uncontrollable intracranial pres-

sure
1

Table 6.3: Text length comparison of the BIOSSES and the CO datasets.

Dataset Median word
count

Min. word
count

Max. word
count

Nb. of unique
words

BIOSSES 22 7 49 1309
CO 4 1 47 1132

6.4 Models

The experiment evaluates static text embeddings and neural-based sentence repre-
sentations. As a baseline for comparison, GloVe pretrained vectors [112] are em-
ployed. Three variants of GloVe vectors are examined: 50-dimension and 300-dimen-
sion GloVe models built on Wikipedia corpus, and 300-dimension model trained on
the Common Crawl. Additionally, the BERT model [69] trained on BookCorpus and
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English Wikipedia was chosen for neural-based sentence representations.
Recently, many new transformer models trained on biomedical texts have been

introduced, as detailed in Section 4.3. This experiment evaluates six such models:
BioBERT, SciBERT, PubMedBERT, BlueBERT, ClinicalBERT, and CODER. The train-
ing objective of BERT involves two related NLP tasks: predicting the masked word
and predicting the next sentence. However, BERT is not designed to provide accurate
sentence representations, as it focuses on token-level embeddings. Sentence vectors
are typically generated by averaging token vectors or extracting the [CLS] token em-
bedding, but these methods have been shown to be less effective than averaged GloVe
embeddings.

Sentence-BERT (SBERT) [113] represents a new model specifically trained to gen-
erate semantically rich sentence representations. SBERT uses Siamese and triplet net-
work architectures to produce meaningful sentence representations for downstream
regression and classification tasks. This study examines the performance of four sen-
tence transformers, SMiniLM (all-MiniLM-L6-v2), SRoBERTa (all-distilroberta-v1),
SMPNet (all-mpnet-base-v2) and SBERT (multi-qa-distilbert-cos-v1). These models
are based on different architectures including distilled RoBERTa [114], MiniLM [115],
MPNet [116], and distilled BERT [114], respectively. They all were trained on general
English corpora. Currently, there are no sentence transformers specifically fine-tuned
to the biomedical domain.

6.5 Experiments

The experiments assess the performance of various text preprocessing techniques
combined with different sentence representations on the biomedical semantic textual
similarity task. Text preprocessing techniques includes lower-casing, lemmatization,
word splitting at punctuation marks, stop-word removal and filtering of punctuation
and numbers, implemented using Python libraries: spaCy and NLTK. Text repre-
sentations are generated from language models through [CLS] token embedding,
extraction from the last layer, the second to last layer, and the first layer. Sentence
representations are then computed either by averaging or max-pooling of token em-
beddings.

6.5.1 Weighting embeddings by word frequency

This study introduces two techniques that can be easily applied to any embedding
extracted from a language model. The first technique, inspired by Smooth Inverse
Frequency [109], weights individual token embeddings by the token’s relative fre-
quency in general English.1 Three modes of weighting embeddings are considered:

• Simple weighting: Token frequency is added as a weight when calculating the
average sentence embedding.

1The wordfreq Python library is used which calculates token frequencies based on Google Books,
Leeds Internet Corpus, Wikipedia and Para Crawl
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• Concatenation: Tokens are split into rare and frequent tokens based on a fre-
quency threshold, and average or max-pooled embeddings are calculated for
these two sets of tokens before concatenating the resulting vectors.

• Rare words: Frequent tokens are filtered out before vectorization using a pre-
defined frequency threshold.

The rationale behind using word-frequency weighting of embeddings is to lower
the impact of common English words on the final sentence embedding, thus increas-
ing the weight of in-domain rare words. Common English words may introduce
misleading similarity in the biomedical domain when describing similar processes
in semantically unrelated topics. For example, the sentences "AST and ALT ≤ 2.5 x
ULN with the following exception" and "Serum bilirubin ≤ 1.5 x ULN with the following
exception" involve unrelated medical concepts, despite similar structural formats.

6.5.2 Principal component reduction

The second technique for embedding fine-tuning is removing the first principal com-
ponent of the embedding matrix. It has been observed [117, 118] that static em-
beddings have a large mean vector, and after subtracting this mean, the remaining
mass of the embedding is concentrated in just a few dimensions. All vectors share
the mean and these dominating dimensions, it is hypothesized that the information
content of these dimensions encodes the general grammatical structure of the lan-
guage (e.g., part-of-speech sequence, idiomatic expressions, syntactic rules of phrase
composition). By subtracting the first principal component, the resulting vectors are
enriched with more semantic information and reduced syntactic noise.

6.5.3 Evaluation metrics

For the BIOSSES dataset, STS techniques are evaluated by training a regression
model using three metrics: Pearson’s r (Pearson correlation coefficient), Spearman’s
ρ (Spearman’s rank correlation coefficient), and mean squared error (MSE). These
metrics are commonly used to evaluate the quality of unsupervised STS tasks in the
literature.

The task in the CO dataset is the binary classification, so the continuous seman-
tic similarity score returned by the distance function (either cosine or Jaccard) are
binarized. The threshold is set to mean similarity scores between the first quartile
of distances for similar pairs and the third quartile of cosine distances for unrelated
pairs of sentences from the test set. This threshold is used to classify a given pair
of sentences as either similar or unrelated. The quality of STS for the CO dataset is
evaluated using precision, recall, and the F1-score.

All the models are run with different combinations of sentence embedding and
text preprocessing methods, which results in 74 048 experiments (64 for the Jaccard
distance, 768 for GloVe, 8064 for base transformers, 64 512 for base transformers with
wordfreq, and 640 for sentence transformers). These experiments are repeated across
both BIOSSES and CO datasets, giving 148 096 experiments in total.
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6.5.4 Directional expectation tests

To evaluate the robustness of the models, three directional expectation tests
(DETs) [119] are conducted, related to the medical concepts of hemoglobin level,
neutrophil count, and age, derived from the clinical trial eligibility criteria. The idea
of DETs is straightforward: given a test instance with a known expected outcome,
one perturbs the test instance in such a way that there is an expectation of the direc-
tion and scale of change of the test result. For biomedical STS, one similar (or almost
identical) sentence pair for each DET is chosen, and additional pairs are created by
introducing minor changes in the second sentence. For example, the word hemoglobin
is replaced with its abbreviation Hb or a different word bilirubin. It is expected that
in the first scenario, the similarity score will not change significantly or may remain
the same, while in the second scenario, the semantic similarity score is expected to
decrease.

6.6 Results

6.6.1 Results on the BIOSSES dataset

Table 6.4 shows the evaluation results on the BIOSSES dataset. The baseline is estab-
lished using GloVewiki300 vectors. Interestingly, even a simple Jaccard distance com-
puted on the sets of unique tokens in compared sentences outperforms this baseline.
All transformer models surpass the baseline, with those fine-tuned on the biomedical
domain performing better than the vanilla BERT model. Among the transformers,
the CODER model achieves the highest Pearson’s r of 0.849. Sentence transformers,
despite being trained on general-domain corpora without biomedical domain fine-
tuning, show superior performance, with SRoBERTa achieving the highest Pearson’s
r of 0.878.

The impact of the sentence embedding method on the biomedical STS perfor-
mance is also evaluated. The best performing strategy for GloVe embeddings is max-
pooling of token vectors combined with the removal of the first principal component.
In general, principal component reduction significantly boosts the performance of
GloVe representations. For instance, a 0.220 increase in Pearson’s r is observed for
the GloVewiki300 model. Principal component reduction and embedding weighting
by word frequency (mostly selecting rare words only) improve the results of nearly
all BERT-based models, except for the BioBERT, where only principal component re-
duction is successful. A minimum increase of 0.1 in Pearson’s r is noted for other
models after applying principal component reduction. However, this technique does
not benefit embeddings derived from sentence transformers, which already produce
semantically rich representations with minimal syntactic information.

Different text preprocessing methods and their impact on the model performance
are assessed. It is observed that splitting compound words joined by punctuation
slightly improves the performance of all models. This improvement is likely because
compound words are ubiquitous in the biomedical domain, yet often treated as out-
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of-vocabulary tokens by language models. Other text preprocessing techniques do
not show any deterministic changes in the model performance.

Table 6.4: Evaluation on the BIOSSES dataset.

Model Embedding Freq. weight PCA r ρ MSE
BERT base first layer mean concat ✓ 0.777 0.783 0.153
BioBERT first layer max - ✓ 0.795 0.799 0.166
SciBERT first layer max rare words ✓ 0.813 0.808 0.143
PubMedBERT first layer max rare words ✓ 0.803 0.803 0.139
BlueBERT last layer max rare words ✓ 0.809 0.789 0.129
ClinicalBERT last layer mean rare words ✓ 0.800 0.785 0.098
CODER last layer max rare words ✓ 0.849 0.834 0.096
SMiniLM - - - 0.842 0.813 0.029
SRoBERTa - - - 0.878 0.843 0.023
SBERT - - - 0.820 0.821 0.033
SMPNet - - - 0.845 0.804 0.032
GloVewiki50 maximum - ✓ 0.624 0.639 0.161
GloVewiki300 maximum - ✓ 0.775 0.775 0.154
GloVecrawl300 maximum - ✓ 0.757 0.742 0.138
Jaccard distance - - N/A 0.776 0.807 0.222

6.6.2 Results on the CO dataset

As demonstrated in Table 6.5, CODER, enhanced with principal component reduc-
tion, outperforms other models in the CO dataset binary classification with an F1-
score of 0.798. Again, GloVe embeddings serve as the baseline for the evaluation.
Surprisingly, the second-best result is achieved by a simple Jaccard distance with
a threshold. Fine-tuned transformers do not perform better than the vanilla BERT
trained on the general English corpus. Sentence transformers perform comparably
to traditional transformers. The best representations are created by average-pooling
of embeddings from the first layer of the models. Embedding weighting by word
frequency does not consistently improve results. However, principal component re-
duction enhances the performance of all examined models, with the most significant
improvement noted for the GloVecrawl300 model, showing an increase of 0.129 in the
F1-score.

The results on the CO dataset significantly differ from those observed for the
BIOSSES dataset. However, an additional step in the pipeline after the STS calcula-
tion needs to be stressed here. The similarity score must be converted into a binary
label based on a dynamically selected threshold for the CO dataset. This conversion
may be responsible for the loss of information and different behavior of models. Ad-
ditionally, variations in vocabulary, syntax, and sentence length between the datasets
impact the evaluation results.
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Table 6.5: Evaluation on the Clinical Outcomes dataset.

Model Embedding Freq. weight PCA F1 Precision Recall
BERT base first layer max - ✓ 0.756 0.667 0.872
BioBERT first layer max - ✓ 0.746 0.667 0.846
SciBERT first layer max - ✓ 0.737 0.653 0.846
PubMedBERT first layer max - ✓ 0.725 0.635 0.846
BlueBERT first layer max - ✓ 0.739 0.663 0.833
ClinicalBERT first layer max - ✓ 0.754 0.680 0.846
CODER last layer max - ✓ 0.798 0.710 0.910
SMiniLM - - - 0.719 0.640 0.821
SRoBERTa - - - 0.705 0.598 0.859
SBERT - - - 0.729 0.641 0.846
SMPNet - - - 0.663 0.583 0.769
GloVewiki50 mean - ✓ 0.640 0.525 0.821
GloVewiki300 mean - ✓ 0.674 0.592 0.782
GloVecrawl300 maximum - ✓ 0.696 0.612 0.808
Jaccard distance - - N/A 0.757 0.677 0.859

6.6.3 Directional expectation tests

Directional expectation test are conducted on two best-performing models:
SRoBERTa and CODER. As shown in Table 6.6, the overall performance of both
models is satisfying because, in most cases, STS scores change accordingly to the
expectations. However, there are examples where embeddings fail to preserve se-
mantic differences, leading to incorrect STS scores. For instance, the cosine similarity
score between the embeddings from SRoBERTa is higher for the pair (Age ≥ 18 years
at the time of signing Informed Consent Form, Signed Informed Consent Form) than for the
pair: (Age ≥18 years at the time of signing Informed Consent Form, Age ≥ 18 years). This
suggests that the model may overly focus on the latter part of the sentence signing
Informed Consent Form than the age limit. Similar behavior is observed in the sen-
tence No history of other diseases at the age ≥ 18 years where CODER focuses on the
age limit, resulting in a very similar embedding to the base sentence. Another inter-
esting finding is that CODER creates more similar embedding for Adult than for Age
< 60 years, indicating a potential understanding of the semantic implication of Age
≥ 18. There are also differences in STS scores between Age ≥ 18 years and Age < 60
years. On the one hand, it might suggest that CODER has the basic ability to perform
numerical inference and numerical comparisons. On the other hand, terms age and
18 may be common in training corpora as the age of majority, and this may result
in the false perception of CODER’s inference abilities. Furthermore, CODER effec-
tively handles medical abbreviations, with only slight changes in similarity scores
when substituting Hemoglobin with its abbreviation Hb, or Absolute Neutrophil Count
with ANC. However, the differences between all the STS scores of CODER vectors
are minimal. In contrast, SRoBERTa is better at distinguishing between sentences.
DET scores vary significantly from 0.26 to 0.98 for SRoBERTa, whereas for CODER,
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they range from 0.72 to 1.0. For instance, the scores for SRoBERTA representation
of Bilirubin ≥ 9 g/dL and ECOG Performance Status ≥ 1 drop significantly, which is
the correct behavior as these terms are not related to hemoglobin. The neutrophils
test further confirms that both models can correctly encode the meanings of medical
terms like neutrophil, WBC, and lymphocyte.

6.7 Conclusions

This study experiments with various sentence embeddings to identify the best rep-
resentation for biomedical semantic textual similarity. It assesses biomedical BERT
models and several sentence transformers trained on general-domain corpus, intro-
ducing two preprocessing techniques that improve the expressiveness of embed-
dings. The first technique applies word frequency weights to word embeddings,
hypothesizing that separating rare and frequent words reduces the impact of more
generic language on the final sentence embedding. The second technique involves
removing the first principal component from embeddings, effectively shifting the
informational content of embeddings from encoding grammatical syntax to enhanc-
ing semantics understanding. This principal component reduction improves perfor-
mance across all BERT models and static GloVe embeddings.

The algorithms are evaluated in two use cases: similarity score estimation and
binary label prediction. Sentence transformers outperform other models. CODER
comes in second, surpassing biomedical BERT models and achieving the highest F1-
score in the binary label prediction task. This study points to sentence transformers
as the most versatile and best performing models for biomedical STS. The represen-
tations extracted from SRoBERTa are more polarised and have larger expressiveness
even for potentially similar biomedical sentences. This result is somewhat surprising
because sentence transformers used in the experiments are trained on the general
English corpora, in contrast to domain fine-tuned BERT models.

Additionally, directional expectation tests are utilized to assess the quality of
sentence representations. These tests reveal non-obvious focus aspects of models -
features that attract the models’ attention but do not correspond to meaningful tex-
tual similarity. This behavior is attributed to the unsupervised nature of the training
and the insufficient level of input text annotation.
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Table 6.6: Results of directional expectation tests.

Sentence 1 Sentence 2 CODER SRoBERTa

Hemoglobin ≥ 9 g/dL

Hemoglobin ≥ 10 g/dL 1.00 0.91
Hemoglobin greater than or equal to 9 g/dL 0.95 0.96
Hb ≥ 9 g/dL 0.98 0.75
Hemgolobin ≥ 9 g/dL 0.89 0.69
Bilirubin ≥ 9 g/dL 0.83 0.43
ECOG Performance Status ≥ 1 0.83 0.10

Absolute neutrophil count ≥
1500/µL without granulocyte
colony-stimulating factor

Absolute neutrophil count ≥ 1500/µL 0.94 0.83
ANC ≥ 1.5 x 109/L (1500/µL) without granu-
locyte colony-stimulating factor support

0.92 0.65

Lymphocyte count ≥ 0.5 × 109/L (500/µL) 0.83 0.54
WBC count >= 2.5 x 109/L (2500/µL) 0.79 0.29
Neutrophil count normal 0.82 0.72

Age ≥ 18 years at the time of
signing Informed Consent Form

Age ≥ 18 years 0.89 0.63
Adult 0.76 0.41
Age ≥ 18 0.88 0.62
Signed Informed Consent Form 0.79 0.74
Age >= 18 0.87 0.60
Age < 60 years 0.72 0.48
No history of other diseases at the age >=18
years

0.77 0.28
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Chapter 7

Named Entity Recognition in
Eligibility Criteria

Complex formulations of inclusion and exclusion criteria are a primary reason for
failing to meet recruitment quotas and delaying progress through the subsequent
phases of clinical trials [120]. Named entity recognition (NER) is an essential ap-
proach in eligibility criteria parsing. By identifying and extracting information from
clinical trial protocols, such as patient demographics, medical conditions, and treat-
ments, NER enables researchers to quickly determine whether a patient meets the
criteria for a particular clinical trial. This allows for faster and more efficient patient
recruitment and potentially more accurate data collection.

NER is typically performed as a sequence tagging task (a.k.a. token classifica-
tion). A deep learning model processes each token in the input sequence and assigns
it to one of the predetermined categories. These categories come from a labeling
scheme that may vary between models. Traditionally, NER models recognize cat-
egories (classes) such as persons, organizations, numbers, geographical locations,
time expressions, dates, and organizations. More sophisticated NER models can tag
works of art, events, geopolitical entities, currencies, and more. Before the advent
of deep neural networks, NER models were implemented using conditional random
fields [121] or hidden Markov models [122]. Later, sequence tagging became the
domain of bi-directional LSTM [123] (long short-term memory) networks. Recently,
BERT-based architectures have been the primary tool for implementing NER mod-
els [124].

Over the past decade, significant efforts have led to the development of dedicated
models to extract information from biomedical texts. These models can identify and
classify entities such as diseases, drugs, genes, proteins, and other related concepts.
They are also capable of recognizing complex relationships between different entities
in text and detecting patterns in the data. NER models, such as BioBERT, Clinical-
BERT, or BioMedicalRoBERTa [125], have been successfully applied to various tasks,
including literature-based discovery, clinical information extraction, and drug devel-
opment.

The last four years have witnessed unprecedented development in the domain
of language models. With the release of BERT, transformer-based language models

73



74 Named Entity Recognition in Eligibility Criteria

started to achieve state-of-the-art results in many natural language processing tasks.
Since then, generative language models such as GPT-2 [126], T5 [127], GPT-3 and
GPT-4 have been released, achieving even better results in a variety of tasks. These
language models offer a new mode of interaction - prompt engineering. Prompt
engineering is a technique of deliberately crafting an input to a language model
in order to achieve a desired output. By giving the model a specific prompt or
sentence, one can control and guide the output of the model to generate relevant and
meaningful results. In particular, a prompt can be used to extract instances of named
entity classes from a text.

This chapter examines application of generative language models in the named
entity recognition task. Section 7.1 formulates the study objectives and outlines pre-
vious works. Section 7.2 describes the selected prompt engineering technique - in
context learning. Section 7.3 discusses the dataset used for the experiments and
evaluation metrics. Section 7.4 presents the experimentation results and Section 7.5
provides the conclusions.

7.1 Study objective

The main aim of this paper is to evaluate the effectiveness of prompt engineering in
extracting named entities from the eligibility criteria of clinical trials. While genera-
tive large language models (LLMs) have demonstrated promise in biomedical NER,
our focus is specifically on their application to eligibility criteria.

Previous research hase explored NER in the biomedical domain using various
generative models and techniques. Zhou et al. [128] utilized GPT-3.5-turbo for zero-
shot NER of biomedical terms, comparing it to fine-tuned biomedical BERT mod-
els. While BERT outperformed GPT-3.5, the study only tested a limited number of
prompts, and the BERT models were fine-tuned on a sizable dataset. Sivarajkumar
et al. [129] compared generative models with SciSpaCy [130] for biomedical NER
and found GPT-3.5 to be the most accurate. Li et al. [131] proposed a few-shot NER
method combining generative models with BERT embeddings and a retrieval module
for example selection, achieving superior results with chain-of-thought prompts. Hu
et al. [132] developed advanced prompts for GPT models in biomedical NER, find-
ing that ClinicalBERT, fine-tuned on a substantial dataset, outperformed the GPT
models.

Our study differs from these works as we aim to evaluate the performance of
generative models against current state-of-the-art BERT models fine-tuned on a very
limited dataset, using few examples for in-context learning. Additionally, we provide
a simple prompt without additional guidelines for the GPT model. This setup mimics
a scenario with limited annotated data and minimal support from domain experts.

The research hypothesis is that large language models have sufficient capacity
not only to recognize domain-specific biomedical vocabulary, but also to differenti-
ate between classes that describe various aspects of eligibility criteria. To test this
hypothesis, we compare the effectiveness of the prompt engineering-based model
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with state-of-the-art NER models.

7.2 Few-shot prompt engineering for entity recognition

Prompt engineering involves constructing sequences of tokens to improve the accu-
racy and generalization of large language models. By providing the model with a
specific prompt, the model can focus its attention on particular language patterns or
contexts. This approach aligns well with transfer learning, where a model trained on
one task can be adapted to another. In our case, we aim to adapt a general-purpose
language model trained for next-token prediction to the sequence tagging task (iden-
tifying tokens in the input sequence as either belonging to a given entity class or
not).

Since individual eligibility criteria can be relatively long, and spans of tokens
representing an entity can be quite short, simply generating an instruction such as
"[CRITERION]. List examples of drugs in this text" (where the text of the original crite-
rion is inserted verbatim in lieu of the CRITERION token) yields no usable results. We
leverage the fact that LLMs are known to hook on atypical patterns in the text. By
providing a template with several examples of eligibility criteria and extracted enti-
ties marked with marker tokens, we can guide the model in the desired direction.

After experimentation, we selected a template that allows few-shot learning
within the scope of the prompt. For each entity class, we randomly select five eligi-
bility criteria and explicitly list entities annotated in these criteria. Both positive ex-
amples (criteria where a given entity appears) and negative examples (criteria where
there is no instance of a given entity) are equally important. These criteria serve as
the blueprint for the generated output. An example of the prompt template for the
entity class cancer is presented in Figure 7.1. This prompt is provided as input to the
LLM. While the overall template structure remains consistent, the specific examples
included in the prompt change according to the entity class being analyzed. For
each entity class in the dataset, we build a separate prompt with different few-shot
examples tailored to that class. Using the "cancer" prompt presented in Figure 7.1,
the assumption is that the LLM will "understand" that it should generate the list
of cancers mentioned in "entities". The expected output generated by the model is
[medullary thyroid cancer (MTC), RET-altered solid tumor].

7.3 Dataset and metrics

In our experiments, we used the annotated dataset from the Clinical Trial Parser [133],
which contains eligibility criteria for 3314 randomly selected interventional trials in
the United States. The sample was downloaded from the Aggregate Analysis of
ClinicalTrials.gov (AACT) Database using the daily static DB copy of 2020-04-16. The
criteria were split by a new line character into 49 903 samples, and the annotation was
done by professional annotators. This resulted in 120 906 labeled entities, with the
distribution of labels presented in Table 7.1.
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Find examples of cancer in the following criterion.
Your response should be a list of comma separated values, eg: ‘foo, bar, baz‘
If no examples are found, type ’None’. Return only the entities found in the criterion.

criterion: Participant has received no prior radiotherapy or chemotherapy for rhabdomyosarcoma
(excluding steroids) unless an emergency situation requires local tumor treatment
entities: tumor

criterion: Aspartate aminotransferase (AST) (serum glutamic oxaloacetic transaminase [SGOT])
and alanine aminotransferase (ALT) (serum glutamate pyruvate transaminase [SGPT]) =< 2.5 x ULN
(or =< 5 x ULN if liver metastases [mets])
entities: liver metastases [mets]

criterion: Patients must have histologically confirmed, BRAF-mutant (V600E/K) melanoma (
molecularly confirmed using validated, commercially available assay performed in a Clinical
Laboratory Improvement Act [CLIA]-approved laboratory) that is metastatic or unresectable and
for which standard curative measures do not exist or are no longer effective
entities: melanoma

criterion: loop recorder explanted within the past 12 months
entities: None

criterion: Other medical or psychiatric disorder placing the subject at undue risk for
treatment complications
entities: None

criterion: All patients treated at doses > 120 mg per day must have medullary thyroid cancer (
MTC), or a RET-altered solid tumor per local assessment of tumor tissue and/or blood
entities:

Figure 7.1: Example of a prompt template.

Table 7.2 provides examples of entity spans annotated in the Clinical Trial Parser
dataset. One immediately notices that the annotated text is highly specialized and
contains many abbreviations, domain-specific terms, proper names, etc. In our opin-
ion, it is a very challenging dataset for any NER model.

In our experiments, we focused on five medical entities that are most relevant
for parsing eligibility criteria: treatment, chronic disease, clinical variable, cancer, and
allergy name. To create prompts for the GPT-4-turbo model, we selected 22 samples
from 17 trials. To simulate a scenario with limited availability of annotated data, we
randomly selected two subsets of data, a larger set of 100 trials and a smaller set of
27 trials, which were used for Transformer fine-tuning. We fine-tuned BERT-based
models in two scenarios:

• 80 trials in the training dataset (1243 samples), 20 trials in the validation dataset
(376 samples)

• 17 trials in the training dataset (448 samples), 10 trials in the validation dataset
(213 samples)

The 17 trials used for the few-shot prompt were included only in the training
datasets. All models (BERT-based and GPT) were evaluated on a hold-out test set
containing 663 randomly selected trials, with 1106 samples in total. The distribution
of the labels in the evaluation dataset is presented in Table 7.3.
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Table 7.1: Entity distribution in the CTP dataset

Label Count
treatment 30972
chronic_disease 26212
upper_bound 13967
lower_bound 13633
clinical_variable 13255
cancer 9344
gender 3661
pregnancy 2773
age 2616
allergy_name 1887
contraception_consent 1603
language_fluency 482
bmi 287
technology_access 132
ethnicity 82

Table 7.2: Examples of entity span annotations in the CTP dataset

Entity class Example
allergy_name Dipeptidyl peptidase-4 (DDP-4) inhibitors, Linagliptin,

propofol, glycerol
clinical_variable total bilirubin, CIWA-Ar score, ALT, AST, Cockcroft-

Gault formula
chronic_disease liver dysfunction, glaucoma, kidney dysfunction, psy-

chiatric disorder
treatment flutamide, nilutamide, bicalutamide, Prior androgen

deprivation therapy
cancer melanoma, bone marrow plasmacytosis, Philadelphia

(Ph)+ ALL

Table 7.3: Entity distribution in the evaluation dataset

Label Count
treatment 13541
chronic_disease 11362
clinical_variable 7205
cancer 5166
allergy_name 588
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To evaluate NER models, we used traditional metrics of precision, recall, and F1.
The eligibility criteria are transformed into the BIO format, where each token in the
input stream is labeled as B-entity (beginning token of the entity span), I-entity
(inside token of the entity span), or O (outside any entity span). Evaluation followed
the popular scheme for sequence-to-sequence learning tasks, where metrics represent
the performance of the model for each of the BIO tokens. However, it should be
noted that this evaluation scheme is detrimental to generative LLMs. Consider the
following criterion: "Histologically or cytologically confirmed diagnosis of gastric, lung,
colorectal, or breast cancer on file". For this criterion the GPT-4-turbo model generated
the following list of entities: [gastric cancer, lung cancer, breast cancer], which is a very
good extraction. Unfortunately, neither "lung cancer" nor "gastric cancer" appears in
the input criterion, making it impossible to align the answer of the LLM with the
input sequence. Similarly, for the criterion containing "cancer of the prostate", the LLM
generated the following entity: [prostate cancer]. This is also a very good answer, but
according to the BIO evaluation scheme, the LLM failed to mark the input entity
span correctly.

Typically, the problem of annotating complex, overlapping, and disjoint entity
spans is addressed by Discontinuous Named Entity Recognition (DNER). DNER is
an advanced technique designed to identify and categorize entities in text that are
not contiguous but are semantically linked. Unlike traditional NER systems, which
annotate continuous spans of text, DNER can precisely label entities consisting of
multiple non-adjacent segments. This capability is particularly vital in complex do-
mains such as biomedicine, where entities such as symptoms or drug effects can be
described in a fragmented manner within a sentence.

The research on discontinuous and overlapping entities started 15 years ago with
the investigation of nested entities [134], and since then has gathered significant sci-
entific interest [135]. Various methods address the problem of disjoint entity spans,
such as applying relation extraction techniques to identify spans belonging to a single
entity, and then post-processing these spans to combine them into disjoint, nested, or
overlapping sequences of token spans [136]. Another approach is to extend the basic
set of entity tags (BIO, IOBES) with additional H and D tags to mark words shared
by multiple mentions and parts of discontinuous mentions not shared by other men-
tions, respectively (BIOHD [137]). One can also introduce a degree of uncertainty in
the assignment of entity tags, as seen in the FuzzyBIO entity labeling scheme [138].
Discontinuous entities may be discovered by applying complex post-processing to
initial token tagging, e.g., modeling discontinuous entities as maximal cliques [139].
Recently, end-to-end neural models for discovering discontinuous entities have been
proposed [140].

Unfortunately, these methods only partially address the problem. While they
allow for the annotation of a source span like "lung or breast cancer" as containing two
entities ([lung cancer, breast cancer]), they do not solve the problem of LLM responses
that do not align with the source text at all. In other words, the sequence tagging
paradigm is not well-suited for evaluating LLM responses. One might argue that it
is possible to force the LLM to generate output identical to the input via prompting
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(i.e., preventing the LLM from producing output token sequences not present in the
input sequence), but this is hardly a solution, and there is no guarantee that the LLM
will follow the prompt for every generation. Switching to the BIOHD evaluation
would require re-annotating the entire dataset, which is prohibitively expensive.

In this study, we have decided to follow the traditional BIO labeling scheme and
evaluation procedure, noting that this approach underevaluates the LLM. Given the
size of the dataset used in our experiments, it is difficult to quantify what percentage
of GPT-4-turbo predictions are correct but incompatible with the input stream. How-
ever, it is obvious that we urgently need a new evaluation metric for the generative
NER task, similar to the BERTScore [141] for text similarity.

7.4 Experiments

For prompting, we selected the GPT-4-turbo model [79]. We compared this LLM
with several BERT models: BERT uncased, Biomedical BERT NER [142], BioBERT,
SciBERT, PubMedBERT, BlueBERT, ClinicalBERT, and CODER. All layers of the BERT
models were unfrozen, and an additional linear layer was added on top for token
classification. Early stopping was used in training, with patience set to 5. The number
of epochs was set to 30, but all training processes were completed before the 15th
epoch. The training parameters were as follows: a learning rate was set at η = 1e− 5,
batch size bs = 8 for both training and evaluation, and a weight decay was set at
γ = 0.01. The learning rate scheduler used cosine with restarts, with 50 warm-up
steps. Below, we present the results for CODER, the best performing BERT-based
model. We note that SciBERT was a close second in terms of overall performance.

Table 7.4 presents the comparison of GPT-4-turbo and CODER models. The re-
sults marked as CODER-27 represent the low-resource scenario, assuming only a small
dataset is available for fine-tuning. In this scenario, eligibility criteria from only 27
randomly selected clinical trials were used for fine-tuning. CODER-100 represents re-
sults obtained after fine-tuning the model on a random selection of 100 clinical trials.
As shown, GPT-4-turbo is outperformed on every metric and BIO tag. Surprisingly,
even a relatively small dataset for fine-tuning is highly beneficial. Annotating med-
ical texts is extremely expensive as it cannot be outsourced to crowd-working plat-
forms and must be performed by highly trained domain experts. Our results suggest
that even a small investment in additional annotation for fine-tuning can significantly
improve the quality of NER models.

Table 7.5 presents the comparison of the same two models on a simpler task
of predicting entity span, where the models do not need to distinguish between
the beginning and inside of an entity span. The results are very similar to the BIO
evaluation scheme, with the CODER model significantly outperforming GPT-4-turbo,
and more fine-tuning data leading to better performance.

Figure 7.2 presents the comparison of the confusion matrices for the models. An
important observation is that the nature of errors differs between the two models.
While GPT-4-turbo tends to confuse entities (particularly when using the BIO evalu-
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Table 7.4: Comparison of GPT-4-turbo and CODER models on BIO NER (p-precision,
r-recall, f-F1 score

GPT-4-turbo CODER-27 CODER-100
p r f p r f p r f support

B-CANCER 0,30 0,35 0,32 0,71 0,46 0,56 0,76 0,66 0,71 2093
I-CANCER 0,33 0,39 0,36 0,74 0,51 0,60 0,78 0,73 0,75 3073
B-TREATMENT 0,30 0,26 0,28 0,64 0,76 0,69 0,70 0,77 0,73 6209
I-TREATMENT 0,28 0,35 0,31 0,66 0,73 0,70 0,75 0,69 0,72 7332
B-CLINICAL_VARIABLE 0,32 0,47 0,38 0,73 0,72 0,72 0,84 0,68 0,75 2435
I-CLINICAL_VARIABLE 0,32 0,45 0,37 0,72 0,82 0,77 0,85 0,75 0,80 4770
B-ALLERGY_NAME 0,05 0,74 0,10 0,00 0,00 0,00 1,00 0,08 0,14 323
I-ALLERGY_NAME 0,02 0,35 0,03 0,00 0,00 0,00 0,89 0,06 0,12 265
B-CHRONIC_DISEASE 0,37 0,32 0,34 0,66 0,76 0,71 0,77 0,76 0,76 5115
I-CHRONIC_DISEASE 0,42 0,34 0,37 0,69 0,82 0,75 0,80 0,79 0,80 6247
Micro avg 0,27 0,34 0,30 0,68 0,72 0,70 0,77 0,73 0,75 37862
Macro avg 0,27 0,40 0,29 0,55 0,56 0,55 0,81 0,60 0,63 37862
Weighted avg 0,33 0,34 0,33 0,67 0,72 0,69 0,78 0,73 0,75 37862

Table 7.5: Comparison of GPT-4-turbo and CODER models on IO NER (p-precision,
r-recall, f-F1 score

GPT-4-turbo CODER-27 CODER-100
p r f p r f p r f support

CLINICAL_VARIABLE 0,33 0,48 0,39 0,76 0,82 0,79 0,88 0,75 0,81 7205
CHRONIC_DISEASE 0,42 0,35 0,38 0,74 0,86 0,80 0,84 0,83 0,83 11362
TREATMENT 0,32 0,33 0,33 0,73 0,84 0,78 0,79 0,79 0,79 13541
CANCER 0,34 0,40 0,37 0,87 0,58 0,69 0,84 0,76 0,80 5166
ALLERGY_NAME 0,04 0,64 0,07 0,00 0,00 0,00 0,95 0,07 0,13 588
Micro avg 0,30 0,37 0,33 0,75 0,80 0,77 0,83 0,78 0,80 37862
Macro avg 0,29 0,44 0,31 0,62 0,62 0,61 0,86 0,64 0,67 37862
Weighted avg 0,36 0,37 0,35 0,75 0,80 0,76 0,83 0,78 0,80 37862
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Table 7.6: Comparison of models in low-resource settings (precision, recall, and F1
score computed for BIO and IO labeling schemes).

BIO p BIO r BIO f IO p IO r IO f
BERT 0,5948 0,0003 0,0006 0,6441 0,0003 0,0007
BioBERT 0,6501 0,0004 0,0007 0,7818 0,0004 0,0007
Biomedical NER 0,5418 0,2005 0,2907 0,6092 0,2226 0,3232
BlueBERT 0,6547 0,0006 0,0013 0,7079 0,0007 0,0014
ClinicalBERT 0,6429 0,0003 0,0007 0,6820 0,0004 0,0008
CODER 0,6722 0,7197 0,6896 0,7458 0,7953 0,7635
GPT4 0,3294 0,3408 0,3279 0,3556 0,3676 0,3550
PubMedBERT 0,4565 0,1401 0,2104 0,5310 0,1659 0,2492
SciBERT 0,6764 0,0210 0,0407 0,7427 0,0230 0,0447

Table 7.7: Comparison of models in high-resource settings (precision, recall, and F1
score computed for BIO and IO labeling schemes).

BIO p BIO r BIO f IO p IO r IO f
BERT 0,7852 0,0004 0,0008 0,7828 0,0004 0,0008
BioBERT 0,4426 0,0003 0,0007 0,7732 0,0003 0,0007
Biomedical NER 0,6645 0,0162 0,0317 0,7244 0,0177 0,0345
BlueBERT 0,3882 0,0004 0,0007 0,3933 0,0004 0,0007
ClinicalBERT 0,5777 0,0004 0,0007 0,7732 0,0004 0,0007
CODER 0,7780 0,7278 0,7454 0,8313 0,7798 0,7985
GPT4 0,3294 0,3408 0,3279 0,3556 0,3676 0,3550
PubMedBERT 0,7413 0,7468 0,7414 0,7958 0,8036 0,7983
SciBERT 0,7820 0,7515 0,7648 0,8324 0,8013 0,8153

ation scheme), the CODER model makes most of its mistakes with the O tag, meaning
CODER does not confuse entity spans but primarily omits entities.

Table 7.6 shows the comparison of all models included in the study in a low-
resource setting. Interestingly, CODER is the only BERT-based model that outper-
forms GPT-4-turbo in this setting. Other BERT-based models cannot operate effec-
tively in the low-resource setting, and their pretrained capabilities are insufficient for
meaningful work. Table 7.7 presents the comparison of the same models trained in
a high-resource setting. As can be clearly seen, only when sufficient annotated data
for fine-tuning is available can Transformer-based models correctly mark medical
entities.

7.5 Conclusions

To our knowledge, this is the first attempt to examine the usefulness of a few-shot
prompt engineering in the processing of eligibility criteria for clinical trials. We
demonstrate that a simple few-shot prompting of the LLM can be used to perform
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(a) GPT-4-turbo BIO (b) GPT-4-turbo IO

(c) CODER-27 BIO (d) CODER-27 IO

(e) CODER-100 BIO (f) CODER-100 IO

Figure 7.2: Confusion matrices for GPT-4-turbo and CODER models
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named entity recognition, but this approach is most effective when no fine-tuning
data is available. In general, BERT-based pretrained models, which are much smaller
than GPT-4-turbo, perform better, especially when fine-tuning can be applied.

BERT-based models show superior performance over GPT-4-turbo on the NER
task for eligibility criteria within the medical domain, largely due to the unique na-
ture of these criteria. Eligibility criteria in medical literature represent a form of
medical argot, a semi-language characterized by partial grammar and a vast number
of specialized terms. BERT-based models excel at capturing relationships between
closely placed tokens. This capability aligns well with the Begin-Inside-Outside
(BIO) evaluation scheme commonly utilized in NER tasks, enabling these models
to accurately identify and classify entities within such a dense and specialized lexi-
con. The distinction in CODER’s efficacy stems from its pretraining on the Unified
Medical Language System (UMLS) ontology, a comprehensive repository of medi-
cal terminology. This pretraining allows CODER to possess an exceptional ability
to recognize and understand specialized terms present in medical eligibility criteria.
In contrast, general language understanding and the broad comprehension of gram-
matical structure offered by larger language models like GPT-4-turbo do not directly
contribute to the success of the NER task for medical eligibility criteria.

In conclusion, we propose possible future work directions. Our current prompt-
ing scheme is rudimentary and relies on the large language model’s ability to notice
hard-coded patterns in the prompt. The next step could involve creating an ensem-
ble of prompts and aggregating generated outputs from the ensemble. Even more
promising is transitioning from the domain of hard prompts (textual inputs) to soft
prompts [143, 144] (dense numerical embeddings). The advantage of dense numer-
ical embeddings is that they are trainable and can be fine-tuned to the specific task.
Such trained prompts can, in theory, maximize the precision of information extrac-
tion from clinical trial protocols.

Another interesting research question is the feasibility of retrieval-augmented
models for named entity recognition in biomedical texts. Biomedical ontologies are
structured vocabularies that describe entities, relationships, and properties in a given
knowledge domain. Examples of biomedical ontologies are described in Chapter 4.
Retrieval-augmented models [145, 146] consist of two modules: a parametric lan-
guage model responsible for generating output, and a neural retriever responsible
for matching the input with data stored externally in ontologies or knowledge bases.
Information stored in the non-parametric external storage is used at run-time to fine-
tune the language model and provides additional information and context needed to
process the input. We hypothesize that named entity recognition using a retrieval-
augmented NER model might be a viable alternative to prompting a large language
model directly.
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Transitional Note

Having explored the scientific foundations in the preceding chapters, this thesis now
shifts its focus toward the practical application of these concepts. This work has been
conducted as part of an industrial PhD program designed to foster collaboration
between academia and industry. The program facilitates partnerships between uni-
versities, PhD students, and their employers, with the ultimate goal of implementing
the research outcomes within the companies involved.

The subsequent chapters are dedicated to the industrial implementation at Roche,
the pharmaceutical company where I work. These chapters illustrate how the dis-
cussed theoretical aspects are put into practice, highlighting their real-world rele-
vance and significance for Roche. They delve into the tools, methodologies, and
practical considerations involved in implementing IT products in the pharmaceutical
industry.

The remaining parts of this thesis focus on the work conducted within Roche. A
key component of this work is a Proof of Concept (PoC) developed as part of the
Clinical Trial Distribution Network (CTDN) initiative in which Roche participates.
This PoC is currently under review, with the potential for future implementation in
production.
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Chapter 8

Prompt Engineering Hackathon at
Roche

To further explore the potential of using large language models for eligibility criteria
parsing, we organized a hackathon at Roche. The event brought together diverse
expertise and generated innovative solutions for structuring conditions from criteria
text. Organizing the hackathon was a collaborative effort of Roche employees. My
role involved leading the initiative, coordinating and executing the event, defining
objectives and tasks, selecting test examples and supporting its annotation, commu-
nicating with participants, and assessing submissions.

Section 8.1 outlines the objectives of the hackathon. Section 8.2 details the task
to be solved and participation rules. Section 8.3 focuses on the organizational aspect
of the event, detailing the steps to successfully organize the hackathon at Roche.
Section 8.4 provides information on the participation rate and a general overview of
the submissions. Section 8.5 describes the assessment process, including test dataset
preparation and evaluation of submissions. Section 8.6 presents the main findings of
the hackathon, demonstrating its impact on the parsing tool Proof of Concept (PoC)
development. The parsing tool PoC is the primary deliverable of the implementation
phase and will be described in Chapter 10.

8.1 Objectives

The hackathon was designed to achieve multiple goals focusing on two main aspects:
technical and community-related. On the technical side, the primary objective was
to advance the criteria parsing tool, while on the community side, the goal was to
support professional growth among Roche employees and strengthen their sense of
belonging.

Given the complexity of eligibility criteria parsing, diverse perspectives are in-
valuable. The hackathon aimed to gather innovative ideas and approaches to address
specific challenges related to this task, thereby enhancing the parsing tool’s accuracy.
By leveraging the broad expertise of Roche colleagues from informatics and busi-
ness areas, we sought to discover new methods for structuring eligibility criteria. An
additional objective was to engage domain experts in the annotation process, ulti-
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mately creating a small annotated dataset for testing submissions and aiding in the
development of the eligibility criteria parsing tool. The outcomes and findings of the
hackathon, along with lessons learned from participants, domain experts and out
evaluation of submissions, were intended to directly inform the development of the
PoC.

Equally important were the community-related goals. Roche is committed to
fostering generative AI usage and enhancing employees’ prompt engineering capa-
bilities. The hackathon aligned with this purpose by supporting professional de-
velopment through hands-on experience in crafting prompts and using an internal
ChatGPT tool. The goal was to familiarize participants with the internal tool, pro-
vide an opportunity to learn about prompt engineering techniques, test them in real
applications, and share experiences with others.

Moreover, the hackathon aimed to strengthen collaboration between people from
different departments. It was designed to facilitate knowledge sharing, networking,
and reinforcing the community spirit, which is a key focus of the company. It was
intended to encourage people to take a break from their daily routines, engage in a
stimulating activity, and delve into cutting-edge AI technologies. The event aimed
to be both educational and enjoyable, motivating participants to explore technical
topics while having fun.

Another objective of the hackathon was to spread awareness of the criteria pars-
ing initiative within the organization. This was meant to ensure that the employ-
ees understood the project’s focus, learned about the work of other departments,
and gained insights into clinical trial protocol design, fostering a sense of unity and
shared purpose within Roche. The combination of technical and community-related
goals ensured that the hackathon was designed not only to influence the develop-
ment of the parsing tool but also to promote the spirit of teamwork and innovation
at Roche.

8.2 Task description and rules

The primary task of the hackathon was to develop prompt for the internal ChatGPT
tool to transform clinical trial eligibility criteria text into a structured format. Based
on the analysis of eligibility criteria and discussions with domain experts, two sub-
tasks were identified for the hackathon. The participants had the option to tackle
either one or both subtasks.

8.2.1 Subtask 1: Logical dependencies

The first subtask was related to logical dependencies between conditions. The named
entity recognition approach, explored in Chapter 7, extracts a list of entities from
criteria without preserving any relationships between them. However, for an AI-
supported patient-trial matching system it is crucial to recognize which conditions
are always required and which groups of conditions allow partial fulfillment. This
requirement is also higlighted in the parsing tool requirements in Chapter 9.
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Hackathon participants received a list of seven examples of single criteria state-
ments with the desired structured output. They were instructed to focus on five
condition types: biomarkers, stages, subtypes, metastases, and treatments. The goal
of this subtask was to prompt the LLM chatbot to extract these conditions while
maintaining the logical relations between them. The output needed to be a boolean
statement using AND, OR, and NO operators, and parentheses where necessary, e.g.,

(condition_1 OR condition_2) AND condition_3 OR NO condition_4

To mimic a scenario with limited support from domain experts, no additional guide-
lines or examples were provided. An example of an input-output pair is included in
Table 8.1.

8.2.2 Subtask 2: Temporal attributes

The second subtask addressed temporal attributes extraction, which is another re-
quirement for the tool listed in Chapter 9. Analyzing the criteria content revealed
that merely extracting conditions is insufficient. For determining patient eligibil-
ity, time-specific information provided in the criteria is crucial as it can significantly
impact recruitment results.

Participants were asked to extract conditions along with their temporal specifica-
tions while also maintaining logical dependencies. They needed to prompt the LLM
to use "greater than" (>) or "less than" (<) operators to state the temporal limitations
of conditions, e.g.,

condition_1 > n weeks OR condition_2 > x days OR condition_3 < k days

Participants were provided with seven examples of criteria-output pairs for this sub-
task. An example of the input criterion and the desired output is provided in Ta-
ble 8.1.

8.2.3 Participation rules

The hackathon was open to all Roche employees, regardless of their department. It
was conducted fully virtually, allowing participants to work offline on their solutions
for two weeks. Participants could work individually or in teams, based on their
preferences. To participate, they needed access to the internal ChatGPT tool.

8.3 Event coordination

The successful organization of the hackathon required detailed planning and organi-
zation.
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Table 8.1: Examples of input-output pairs for hackathon subtasks.

Subtask Criterion Desired output
#1 Patients must have metastatic

and/or recurrent (distant or lo-
coregionally recurrent) breast can-
cer and be HER2 non-over ex-
pressing per 2013 American Soci-
ety of Clinical Oncology (ASCO)-
College of American Pathologists
(CAP) HER testing guidelines (0
or 1+ by immunohistochemistry
[IHC]; and/or HER2 ratio < 2.0
and HER2 copy number < 4 sig-
nals/cell by in-situ hybridization
[ISH])

(metastatic cancer OR recurrent
cancer) AND (HER2 non-over ex-
pressing AND (0 IHC OR 1+ IHC
OR (HER2 ratio < 2.0 AND HER2
copy number < 4 signals/cell))

#2 No prior chemotherapy, radiation
therapy, or breast resection within
6 months of study entry

NO chemotherapy if < 6 months
OR NO radiation if < 6 months
OR NO breast resection if < 6
months

8.3.1 Promotion and kick-off

Initially, we needed to spread information about the event within Roche and encour-
age people to participate. Various communication channels were used to promote
the hackathon and invite people to join the showcase and kick-off event.

We organized a virtual meeting to showcase the eligibility criteria parsing initia-
tive and present the hackathon challenge. This included detailing the task, partici-
pation rules, and instructions on how to participate and submit solution. A FAQ
(Frequently Asked Questions) document was created and shared with all registered
participants to address common queries.

8.3.2 Communication and support

To facilitate ongoing communication, a Google Chat space was created for all hacka-
thon participants and moderated by the organizers. This served as the main com-
munication channel where participants could ask questions, share experiences, and
receive updates from the organizing team. Reminders about deadlines, motivational
posts, clarifications, and other useful information were regularly shared in this space.

Additionally, a final reminder email was sent to ensure participants did not miss
the submission deadline. Upon receiving submissions, confirmation emails were sent
to all participants.
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8.3.3 Closing and recognition

Following the evaluation of submissions, a virtual closing meeting was held to an-
nounce the winners, gather feedback from the participants and highlight notable
solutions recognized by the jury. This event provided an opportunity to celebrate the
participants’ efforts and share insights gained from the hackathon. At the end, the
winning teams and individuals received awards.

8.4 Participation and submissions

The hackathon attracted active participation from various areas of Roche, bringing
a wide variety of expertise, perspectives, and ideas. Eight teams took part, each
consisting of one or two members from departments including Informatics (Data
Science, Software Development, Business Analytics), Pharma, and Diagnostics. There
were eight submissions for subtask 1 (logical dependencies) and six submissions for
subtask 2 (temporal attributes).

During the hackathon, participants actively used the Google Chat space to com-
municate with the organizing team, ask questions, and respond to important an-
nouncements and reminders. This communication channel worked well. Moreover,
the prepared guidelines and the FAQ document effectively clarified the task, as evi-
denced by the submission which demonstrated a correct understanding of the re-
quirements. All participants followed the rules.

The solutions were developed using the internal ChatGPT tool with the GPT-
3.5 model. Submissions included a complete conversation with the tool, starting
with a prompt describing the task and providing instructions, followed by tests on
the provided examples. The approaches and complexity of the submissions varied
significantly and showed different methods to tackle the challenges.

Many solutions utilized in-context learning techniques, where a few examples
with expected outputs were explicitly provided in the prompt. Additionally, a clear
definition of the task was often presented at the beginning of the prompt. To en-
hance the solutions, participants employed a range of other strategies. Some used
bullet points with rules to highlight aspects to focus on and the expected output
format, while others included high-level guidelines for understanding components
and dependencies. Additionally, several prompts incorporated the Persona Pattern,
defining the model’s role and the audience. Interestingly, explicitly stating the im-
portance of the task and placing responsibility on the model also seemed to add
value. While some solutions were capable of processing multiple criteria at once,
others handled new examples one by one.

The solutions were highly innovative, demonstrating a wide range of creativity
and ideas. Each team approached the problem from a unique perspective, using vari-
ous methods. This diversity allowed us to evaluate which techniques were successful
in specific applications and which were not. Each submission provided unique in-
sights and potential ideas for further development of the parsing tool.
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8.5 Assessment

The assessment of hackathon submissions followed a multi-step process designed
to ensure fairness and reliability. A crucial aspect was the preparation of the test
dataset, which was not revealed to the participants to allow a fair comparison of
results and unbiased solutions, maintaining objectivity.

To create representative sets of examples for both subtasks, the criteria were care-
fully selected to maximize diversity and to present different challenges. Initially,
examples were reviewed and proposed output boolean expressions were defined for
each criterion. This preliminary versions of the annotated datasets were then shared
with domain experts for verification and refinement. This approach was efficient and
saved valuable time for the experts.

Once the test sets were finalized, the evaluation process started. To ensure im-
partiality, the submissions were de-identified so that the evaluators did not know the
authors of the specific submissions during the assessment process. Each submission
was thoroughly reviewed and assigned points according to predefined criteria.

The jury consisted of three members. Points ranged from 1 to 10 per example.
Points were awarded based on accuracy of the boolean expression, including the
correct usage of AND/OR/NOT operators, correct polarity of biomarkers, and the
extraction of all relevant conditions using key terms only instead of full phrases or
sentences. Additionally, innovative approaches were awarded extra points. Each
evaluator worked individually without knowledge of others’ assessment to avoid
bias. After all evaluations were completed, the average score for each submission
was calculated to determine the final score. The submission with the highest score
was declared the winner. The subtasks were evaluated and awarded separately.

8.6 Key findings

The hackathon provided several significant insights that should be considered in the
development of the eligibility criteria parsing tool. The valuable findings emerged
not only from the winning solution but from all submissions, each offering unique
perspectives. Additionally, the annotation process added further observations.

Firstly, the hackathon demonstrated that pretrained LLMs can interpret the text
of eligibility criteria, extract meaningful information, and structure it into boolean
expressions while maintaining logical dependencies and temporal attributes. The
prompt plays a crucial role in this process, as even subtle differences can significantly
impact the output. Utilizing in-context learning and incorporating input-output ex-
amples into the prompt effectively guides the model and increases accuracy. More-
over, clearly defining the model’s role (Persona Pattern), the audience, and the task
objectives in the prompt positively influences results. Another useful strategy is stat-
ing explicit guidelines for reasoning and inference in the prompt. Notably, a clear
statement of model responsibility improves accuracy as well.

In addition to these findings from the submissions, the preparation of test sets
and assessment process revealed areas for improvement in hackathon setup and task
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definition. A predefined list of terms for boolean expressions could significantly
enhance performance by ensuring the model uses consistent terminology, such as
"ER" instead of synonyms like "estrogen receptor" or "oestrogen receptor". Each rele-
vant condition should be mapped to one specific term from a pre-existing list. This
standardized list would also aid in the annotation process.

Furthermore, domain experts pointed out that some conditions are inferred from
context rather than explicitly stated, such as "metastatic breast cancer" implying "stage
IV breast cancer". Defining these dependencies in guidelines would benefit anno-
tators, participants, and the model. Discussion with experts also highlighted that
eligibility criteria alone do not always provide a complete picture of population char-
acteristic. References to the study title and objectives are necessary for full context,
as criteria can sometimes be unclear without this additional information. During
the test set validation, experts also noted that not all temporal attributes are equally
important. Some attributes related to short periods before the study drug admin-
istration may not be critical, as patients can adjust behaviors or medications if they
wish to participate in the trial. For example, extracting "7 days before the first dose"
may be unnecessary. Therefore, it is important to define a threshold for the time
period from which the tool should start extracting attributes.

In summary, the hackathon not only demonstrated the capabilities and potential
of large language models in eligibility criteria parsing but also identified key areas
to focus on when designing and developing the parsing tool.
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Chapter 9

Requirements for an Eligibility
Criteria Parsing Tool Using LLMs

As presented in previous chapters, the pharmaceutical industry faces significant chal-
lenges in managing and conducting clinical trials, particularly in terms of patient
recruitment and achieving planned enrolment within a short timeframe. As clini-
cal trials increase in complexity, precise structuring and analysis of trial eligibility
criteria become essential for enhancing overall trial effectiveness.

However, the scoping review (Chapter 5) reveals a lack of generalizable and scal-
able tools for parsing eligibility criteria and a lack of comprehensive benchmarks.
A few solutions utilize state-of-the-art NLP techniques, such us generative language
models, but these are limited. This indicates a significant gap in technological ad-
vancements in this area. This gap has also been identified by Roche, the pharmaceu-
tical company I work for. In the past, numerous projects aimed to develop a tool for
eligibility criteria parsing, but the NLP techniques available at that time could not
overcome obstacles such as the lack of annotated datasets, the absence of standard-
ized nomenclature for criteria parsing, and the complexity of criteria semantics and
syntax.

With the current advancements in technology, including the rapid development
of large language models, building such a tool has become feasible. This chapter
presents the functional and operational requirements for an eligibility criteria parsing
tool using LLMs from Roche’s perspective. The tool is designed to transform com-
plex free-text eligibility criteria into a structured, machine-readable format, which
can then be used in algorithms supporting trial design, optimizing trial operational
efficiency, and matching patients to trials. The development of this tool directly re-
sponds to needs identified within Roche. The specifications presented in this chapter
aim to meet technical demands and adhere to the specific requirements of a large
healthcare company operating in a highly regulated environment.

Section 9.1 outlines the technical specifications for the tool’s input and output.
Section 9.2 explains the data extraction and standardization processes, highlighting
the need to align extracted data with medical terminology and preserve condition
attributes and dependencies. Section 9.3 tackles the issue of limited annotated data
and emphasizes the requirement for the tool to operate effectively without a large an-
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notated dataset. Section 9.4 focuses on the technical best practices for managing and
deploying ML systems efficiently and reliably. Section 9.5 emphasizes the importance
of security and compliance, stressing the need to follow regulatory and internal stan-
dards to protect patient safety and maintain data confidentiality. Section 9.6 covers
regular maintenance and user support topics, which ensure tool efficiency and user
satisfaction. Section 9.7 discusses the need for improved workflow efficiency and re-
liable validation, highlighting the need for the tool to enhance business processes to
be launched. Section 9.8 explains the significance of diverse expertise in tool devel-
opment, underscoring the requirement for a multidisciplinary team to build reliable
AI-driven solutions.

9.1 Input and output specification

A crucial aspect of the tool’s design is specifying its input and output, which is
highly dependent on its objective. This tool is designed to process raw eligibility
criteria from a trial protocol and transform them into a machine-readable format.
Therefore, the tool must accept unstructured text of inclusion and exclusion criteria
for a single trial as input.

While reviewing previous works, it was observed that many solutions processed
individual criteria one by one. However, this approach is not ideal, as it fails to
maintain the context between individual criteria, which is essential in real conditions.
Additionally, separating the criteria section into distinct units can be challenging due
to the complex structure of this section. There are two frequently used techniques
for separating the criteria into single units: splitting by the new line character or
splitting by sentences. Both methods have drawbacks, since isolating sentences or
lines can lead to losing the full context and meaning of a criterion. For example,
Figure 9.1 presents a fragment of exclusion criteria, where the first sentence (and
first line as well) states that the subsequent lines describe conditions allowed for
participation. Without this sentence, the algorithm may misinterpret the subsequent
criteria as exclusions rather than exceptions.

Figure 9.1: An example of a multi-line exception in the exclusion criteria (source:
ClinicalTrials.gov).

There are also even more complex criteria that describe different requirements
for various trial cohorts. For instance, an inclusion criteria section may begin with
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general criteria applicable to all sub-populations, followed by subsections with head-
ers specifying the cohort and a few lines defining the requirements. An example
of such criteria is shown in Figure 9.2. In this case, processing each line, sentence,
or paragraph individually is not sufficient. Therefore, a key specification for this
tool is to process the free-text from both sections (inclusion and exclusion criteria) at
once to maintain the context between them as well as between individual lines and
sentences.

Moreover, the tool must output structured data in a format that is easily usable
in further analysis. The output data should retain information about individual re-
quired or excluded conditions. Conditions that are allowed but not required are not
as important in this application unless they specify exceptions for exclusions. The
output should list the condition name and some attributes detailing the inclusions
or exclusions. For example, the output for a condition excluding metastases should
detail the sites of metastases, if defined, or the required laboratory test for creatinine
should be connected with its numerical threshold and unit in the output. This indi-
cates that a simple list of named entities is inadequate for this task. A more complex
structure, such as JSON or XML, is required to appropriately capture and represent
the data.

9.2 Data extraction and standardization

In order to ensure the tool’s output is usable in other systems, relevant data needs
to be extracted and standardized. Standardization involves aligning the structured
format with existing medical terminologies or at least providing a dictionary to map
terms to medical terminologies. This feature enhances the tool’s interoperability
and applicability. Moreover, to maintain accuracy in further processing, the output
should preserve condition attributes and dependencies between conditions.

Clinical concepts in eligibility criteria are expressed in various ways using differ-
ent terms. Extracting them directly from text without standardization would result in
an unnecessary complex structure. This can be simplified by merging synonymous
terms into a single concept used in the final output. Given the input is free-text
written by different people for different trial objectives, the variety of conditions and
related aspects that can be extracted is vast. Therefore, it is important to select spe-
cific conditions and attributes for the tool to focus on. This helps define a limited
scope for extraction and improves the readability of the output. A very detailed
structure would not be much easier to read than the unstructured criteria text. Thus,
a clearly defined list of output fields (e.g., condition, upper limit threshold, unit) and
a list of allowed terms are required to build the tool. Additionally, not all conditions
are equally important for further processing. For example, if the eligibility criteria
state that the patient needs to sign a consent form, extracting this information would
not benefit other systems and can be ignored during parsing. A predefined list of
condition types (e.g., laboratory tests, cancer biomarkers, pregnancy) that need to
be included in the output structure should be created. All these lists may vary for
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Figure 9.2: An example of inclusion criteria with sub-populations (source: Clinical-
Trials.gov).

different therapeutic areas. For instance, breast cancer trials have different inclusions
and exclusions compared to Alzheimer’s disease trials.

Maintaining logical relationships between conditions is another important aspect.
Not all conditions mentioned in the criteria need to be fulfilled to include the patient
in the study. Sometimes, criteria sections list alternative conditions, where only one
or a subset must be fulfilled for eligibility. An example of such criteria is illustrated
in Figure 9.3. A similar situation occurs with exceptions for exclusions (Figure 9.1),
where not all conditions are mandatory for inclusion in the study. As a consequence,
a flat structure of extracted conditions is insufficient for this task. It needs to re-
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flect whether a condition is mandatory or if one of the conditions from a group is
mandatory.

Figure 9.3: An example of alternative conditions in inclusion criteria (source: Clini-
calTrials.gov).

Furthermore, eligibility criteria often specify the temporal attributes of condi-
tions, such as the time period of absence or presence of a condition, usually expressed
in relation to the screening date or first drug dose. Adding this temporal data to the
output is crucial, as it can significantly modify the inclusive or exclusive meaning of
a criterion. For example, a trial excluding patients with a history of cardiovascular
disorders in past five years does not disqualify a patient who had an aorta disease 20
years ago.

Some requirements have a very short time period for excluding or including
certain conditions, like a week or two weeks before the first drug dose. These re-
quirements are relatively easy to meet because patients can often stop taking specific
medications, avoid alcohol, or cease concurrent therapies for a short time before the
trial participation if they wish to enroll in the study. Criteria with such short tempo-
ral requirements are less important from a trial design optimization or patient-trial
matching perspective. Therefore, a time threshold should be defined to skip these
conditions in the final structured output of the tool.

Another important aspect is whether a condition is related to the current state or
the past. Eligibility criteria often describe the current health status of the patient, but
some conditions refer the patient’s health history. For example, the exclusion crite-
rion "History of high blood pressure" excludes patients who have had blood pressure
in the past, even if they no longer suffer from it. Hence, the structured output of the
parser should include a field defining whether a condition relates to the present or
past.

The output should also specify the medical characteristics (e.g. disease stage,
metastases, biomarkers) along with their context. Most criteria describe the main in-
dication of a trial, e.g. breast cancer, specifying the required stage, subtype, biomark-
ers, etc. However, similar condition types may be used to characterize other con-
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comitant disorders. For instance, in the exclusion criteria of a breast cancer trial,
there might be a statement about "other metastatic or locally advanced tumors", while
the trial accepts metastatic breast cancer. It is important that the structured output
distinguishes that these subtypes relate to other tumors, not breast cancer, to avoid
incorrect patient disqualification.

Moreover, the previous works, reviewed in Chapter 5, focus on recognizing nega-
tions in the criteria. This is crucial because not all conditions in the exclusion criteria
are true exclusions, and similarly, some excluded conditions are mentioned in the
inclusion criteria. As highlighted several times in this thesis, there are many excep-
tions mentioned in the eligibility criteria, as well as some conditions are explicitly
expressed with negations, such as "No CNS metastases" in the inclusion criteria. Ex-
tracting only the "CNS metastases" entity is inaccurate, as it does not retain the full
meaning. Therefore, incorporating negation information into the output structure is
necessary. This will also help distinguish between conditions extracted from inclu-
sion and exclusion criteria.

As presented above (Figure 9.2), some eligibility criteria are highly complex,
defining different sets of inclusions and exclusions for different cohorts. It adds an-
other level of complexity to the final output of the tool, since it changes the meaning
of the criteria significantly. This aspect can be maintained using logical relationships,
transforming subpopulations into logical sequences of conditions, such as "Patients
must have either non-small cell lung cancer and brain metastases, or breast cancer and lep-
tomeningeal disease". In this example, the first subpopulation is lung cancer patients,
and the second is breast cancer patients.

In summary, the tool should extract only the conditions that are important for
further processing and express them with standardized predefined terms to make
them maximally useful for other applications. Each condition type should be associa-
ted with its essential attributes, defining patient eligibility. Several aspects must be
included in the output structure, such as numerical attributes, units, logical depen-
dencies, temporal attributes, current/past flag, negations, and subpopulations. This
all indicates that despite reducing the amount of extracted information, the final
structure returned by the tool is still complex.

9.3 Limited annotated data

Traditional NLP methods require training or fine-tuning a language model for a
downstream task to achieve accurate results. This training process, as well as further
model evaluation, demands a substantial annotated dataset. However, the pharma-
ceutical domain lacks adequate biomedical datasets for such purposes. In fact, there
is no reliable dataset available for developing and testing a tool for eligibility criteria
parsing that meets the requirements outlined in previous sections. Creating such a
dataset from scratch is also very challenging and labour intensive. It requires the in-
volvement of subject matter experts and extensive manual effort to generate enough
examples for model training and evaluation.
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In a large pharmaceutical company like Roche, it is practically impossible to pull
employees away from their daily responsibilities to engage in such a burdensome
task without any guarantee of future gains from the tool. Using publicly available
datasets, such as the Chia or Clinical Trial Parser dataset, is not feasible due to the
custom requirements set for this tool. However, recent developments in generative
AI and in-context learning, evaluated in Chapter 7, along with the use of Retrieval-
Augumented Generation, might offer a breakthrough.

Therefore, a key specification for the eligibility criteria parsing tool is to be de-
veloped without the need for a substantial annotated dataset. While it is clear that
a limited dataset is required for tool evaluation, it should be no more than a dozen
examples. The tool can also utilize predefined guidelines for information retrieval
from eligibility criteria, thereby minimizing the annotation effort. Additionally, in-
corporating new trial types or therapeutic areas should not require a large annotated
sample. It is essential that the tool can generalize well with only a few new examples
and instructions.

9.4 MLOps best practices

In industrial IT applications, effectively managing the entire lifecycle of products is
crucial, and machine learning applications are no exception. Robust operational prac-
tices ensure that these solutions are developed, deployed, and maintained efficiently.
MLOps (Machine Learning Operations) addresses this need by integrating practices
from machine learning, data engineering, and DevOps. By adopting MLOps, pro-
cesses related to ML system deployment and maintenance can be standardized, op-
timized, and simplified. Importantly, MLOps not only focuses on deployment but
also covers other phases of the ML application lifecycle: research, development, and
post-deployment.

Recently, a new branch of MLOps has emerged - LLMOps, which focuses on the
operationalization of large language models. LLM-based applications differ from
standard ML applications due to several factors. First, many LLM solutions utilize
pretrained hosted models and API connections (like OpenAI APIs), meaning the
model itself is not deployed. In such cases, there is no model training or fine-tuning;
instead, the experimentation phase focuses on prompt engineering, sometimes in-
volving in-context learning. In this setup, experiment tracking includes prompt tem-
plates used, custom pipeline parameters (such as preprocessing input data and post-
processing model output), the generated content, and metadata of the pretrained
model.

LLM-based applications also present unique challenges compared to standard
ML solutions, even when they involve training, fine-tuning, or deploying self-hosted
models, due to the significant model size. LLMs have billions of parameters and
require vast amounts of data for training, which needs adequate computational re-
sources. Additionally, evaluating LLMs is more complex than other models because
they generate natural text, which is harder to validate accurately. Furthermore, the
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use of LLMs and Retrieval-Augmented Generation introduces another component
to the MLOps architecture: a vector database. Nevertheless, it is important to note
that the LLMOps field is continually evolving, with new tools and frameworks being
introduced to support LLM operationalization. This area remains in the research
phase.

To develop the eligibility criteria parsing tool that uses LLMs, it is essential to
ensure effective development throughout its lifecycle, so that the solution is efficient,
reproducible and scalable. This sections describes the most important strategies and
best practices to achieve these goals.

9.4.1 Reproducibility

A first important aspect of MLOps is ensuring ML reproducibility, which means the
ability to recreate the ML workflow executed previously and produce exactly the
same results. Reproducibility includes version control, proper experiment tracking,
randomness reduction, and reliable environment management. In software develop-
ment, using a robust version control ecosystem (e.g. GitLab, GitHub) is essential.
It tracks code changes, enables rollback to previous versions, allows parallel work
on the code, and supports code reviews. Developers must ensure that all changes
are committed and pushed. They should work on specific branches following a de-
fined branch workflow and naming convention, avoid committing directly to the
main branch, and precede merges with a code review. The project repository should
contain proper documentation, including a README.md file that summarizes the
project and provides instructions on how to install, develop and execute the code.
Moreover, all credentials (passwords, API keys) must not be hard-coded in the project
files and pushed to Git repository but managed as environment variables. According
to Roche guidelines, data files cannot be stored in Git as well. Separate data storage
solutions are required to ensure data security and compliance.

To enforce rigid reproducibility of the environment, the project should specify all
its dependencies in a file listing all required packages along with pinned versions.
Using containerization is a good practice to ensure a consistent environment. Hence,
the project should also include a Dockerfile with specified commands to create the
Docker image. Container registries should be used to manage and distribute the
Docker images.

Reproducible ML involves systematic experiment tracking, which means logging
all executions of ML pipelines. All metadata of the experiment, including configu-
ration parameters, dataset version, model hyperparameters, preprocessing and post-
processing parameters, artifacts, and evaluation results, should be stored in order
to reproduce the selected experiments when needed. In LLM applications, it is also
important to track the prompt templates and samples used for in-context learning.
Templates should be stored along with the generated output and, ideally, with some
evaluation indicators to assess and filter the experiments more effectively. This filter-
ing functionality is supported by many dedicated experiment tracking tools, which
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can be easily integrated with ML pipelines, such us Neptune.ai,1 Comet,2 Weights &
Biases,3 for instance. Using experiment tracking tools instead of tracking in files or
spreadsheets significantly increases development efficiency. They provide interfaces
for experiment browsing, comparing, visualizing, and even creating dashboards that
can be shared with other stakeholders.

9.4.2 Code quality

MLOps also focuses on code quality and proper documentation. Developers should
ensure that the code is well-crafted with modules, classes, and functions, and mini-
mizes repetitions and complexity. Code should be documented with docstrings, and
type hints should be used to make development efficient and error-robust. Basic
unit tests should be implemented and successfully executed before code commits.
Achieving a defined minimum code coverage, which means covering a significant
portion of the code with unit tests, is a good practice.

Using code linter tools is also recommended. These tools perform static analysis
of the code syntax and check for discrepancies with existing code standards. They
help prevent errors, typos, bad formatting, and unused code. Some tools list the
code lines to be changed, while others apply the changes automatically. A very
useful feature is using linters as pre-commit hooks, which inspect the code about to
be commited before executing the commit according to predefined rules. They run
automatically each time the developer attempts to commit the code and do not allow
the commit until all discrepancies are fixed. This ensures the consistent quality of
the code coming from different developers in the team.

9.4.3 CI/CD

Best practices in software development include implementation of CI/CD, which
stand for Continuous Integration and Continuous Delivery (or Deployment). A Con-
tinuous Integration pipeline is triggered by code changes and executed on the source
code in the repository. Depending on the setup, it involves running various tests
(unit tests, integration tests, etc.) and building the application. This process prevents
breaking existing functionalities with new changes in the repository and ensures that
the code is tested in a consistent environment. Continuous Deployment automates
the deployment of solutions to different
stages - development, test, and production - and reduces manual effort. It checks
ML model compatibility with the infrastructure, verifies if the Docker image is cre-
ated without errors, and employs inference service testing in an isolated environment
before deployment. A successful build can be deployed automatically or triggered
by the developer. Implementing CI/CD in a project supports the automatic building,

1https://neptune.ai/
2https://www.comet.com/
3https://wandb.ai/site

https://neptune.ai/
https://www.comet.com/
https://wandb.ai/site
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testing, and deployment of IT products. It enables quicker releases of new features,
ensures high quality, and reduces the risk of failures.

9.4.4 Data management

Effective data management is a critical component of MLOps, as data is the fuel of all
ML systems. This includes robust data storage solutions and rigorous validation pro-
cesses. An ML project needs storage systems that provide seamless access to training
and inference data and can handle large datasets efficiently. The storage solutions
must be selected and configured according to data security and compliance polices.
Separate storage locations are required for raw data, development/test data, and pro-
duction data. Additionally, datasets should be versioned to ensure reproducibility
and traceability.

Furthermore, it is crucial that all data processing steps are automated and well-
documented. Data pipelines must be designed to be scalable and reliable, efficiently
handling data ingestion, processing, and transformation without manual interven-
tion. Relying on manual processes is inefficient, prone to errors, and can lead to
reproducibility issues.

Moreover, defining an input data schema and implementing validation mecha-
nisms to check if the input data aligns with the expected format are crucial. This is
needed because sometimes data inconsistencies, such as incorrect formats or miss-
ing fields, may not trigger any errors in the ML pipeline, resulting in completely
incorrect predictions. Without a validation step, such discrepancies are difficult to
detect. The model execution should occur only after validation functions confirm
data quality and availability.

9.4.5 Model registry

A reliable ML project includes maintaining a model registry where all models are
stored and versioned along with their metadata. This practice ensures effective track-
ing of models, easy access, and efficient deployment. It also plays a crucial role in
addressing any issues in the inference service or drops in prediction quality, allow-
ing easy rollback to a specific version of the model. The registry needs to contain
metadata for each model, including training datasets, preprocessing methods, model
hyperparameters, training configurations, and performance metrics. This informa-
tion can be managed by linking to records in an experiment tracking tool, which
stores all these details as well.

In the case of an LLM application, not only the model but also the utilized prompt
template significantly impacts output quality. Therefore, it is important to maintain
a registry that includes models and prompt templates, along with their metadata
and configurations. This registry should capture parameters such as the tempera-
ture setting, which determines the randomness of the generated output, and other
hyperparameters like maximum token length, top-k sampling, and top-p sampling.

From an operational perspective, the model registry should be integrated with



§9.4 MLOps best practices 105

CI/CD pipelines to streamline the deployment of models. Moreover, access control
cannot be overlooked, as it ensures that unauthorized individuals cannot modify or
remove models.

9.4.6 Scalability

Maintaining tool efficiency as data volume increases and more users interact with it
is a crucial aspect of scalability. Scalability highly influences the choice of infrastruc-
ture, architecture design, and memory utilization. Leveraging cloud platforms can be
beneficial due to their scalable infrastructure services. Implementing caching mecha-
nisms is another effective practice, as it reduces the load on the backend and enhances
response time. Additionally, using a modular code structure and conducting regu-
lar performance profiling helps identify bottlenecks, allowing for optimizations that
keep the system efficient at scale.

An effective approach in machine learning to improve service latency is to avoid
processing all operations in real-time upon user request. Instead, precalculated re-
sults, for instance, embeddings or historical predictions, can be stored in a database.
This way, handling a user request does not trigger complex model execution unless
absolutely necessary. Often, if the user does not input additional data for calculation,
on-demand execution is not needed - and this is precisely the case with the eligibility
criteria parser.

The tool will utilize data from published clinical trial protocols, which are not
expected to change frequently, allowing the model to process this data in advance
and store the structured output in the database. This reduces latency because no
LLM query needs to be executed in real time; rather, the data is simply retrieved from
the database. Consequently, the concern of high execution times for the structuring
algorithm is less critical in terms of scalability. Data from clinical trials will be parsed
once, and the output will be saved and subsequently utilized in the browsing tool
and other applications.

Nevertheless, stress tests should be conducted on the browsing application to
measure the response time under heavy user load and ensure that the solution re-
mains responsive and meets latency requirements.

9.4.7 Monitoring and logging

Implementing logging mechanisms integrated with a monitoring solution is funda-
mental for any IT product. The system needs to log all information that might be
useful for monitoring purposes, such as request and response data, process metadata
(start and end time, user ID, system version), intermediate statuses, execution times,
hardware usage, and error messages. In the ML field, logging the model version is
also helpful. Any information that can support system inspection should be saved
in logs. These logs should then be ingested into a system health monitoring tool,
which displays service availability, latency, and other critical data for developers. In
machine learning, this could include evaluation metrics to assess the accuracy of the
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predictions and the quality of the model. Useful metrics also include the number of
predictions per second (in batch inference) or time per prediction.

Adding alerting mechanisms is also a good practice, ensuring that developers
are notified about any decreases in model accuracy, service unavailability, or high
latency. These alerts enable developers to take appropriate actions to address the
issues. For example, decreases in model performance can be caused by data drift
and may require modifications in training examples or, in generative AI, adjustments
in prompts and guidelines for large language models. Additionally, implementing
automatic actions in case of issues, such as rolling back to a previous working version
of the system, triggering model retraining, retrying API connections (relevant when
using hosted LLMs), or at least displaying a message to users, can further enhance
system reliability.

9.4.8 Flexibility

Flexibility is a very important feature of an AI system in a pharmaceutical company
where the environment and demands are highly dynamic due to the research nature
of the organization. It ensures that the tool not only responds to current needs but is
also adaptable to future requirements, handling upcoming changes and expansions.

An AI tool must be easily modifiable to meet growing business requirements. It
needs to efficiently manage increasing amounts of data, expand beyond its initial
scope, and handle a growing number of tasks. For the eligibility criteria parsing tool,
this means it must be relatively simple to incorporate new therapeutic ares, condition
types, or guidelines. Future advancements should not require a complete redesign.
Instead, minor modifications should be sufficient to accommodate new needs.

Furthermore, the tool must generalize well beyond the scope of its training data
examples. This capability is particularly lacking in the use of regular expressions or
rule-based algorithms - approaches commonly employed for eligibility criteria pars-
ing, as identified in the scoping review (Chapter 5). Highly specific rules, especially
those handling exceptions, may not generalize effectively with an increased volume
of data, new output specifications, or new vocabulary used in the eligibility criteria.
While some challenges, such as data drift, cannot always be overcome even by more
complex models, the models should be designed to generalize as much as possible
during the development phase, ensuring that tuning them for new use cases does
not require a fundamental rebuild.

9.5 Security and compliance

Considering the tool will be used in a highly regulated environment within a phar-
maceutical company, ensuring security and compliance is crucial. The tool must
adhere to stringent regulatory standards and internal guidelines to prevent errors
that could impact patient safety and to protect confidential information. Implement-
ing robust mechanisms for data accuracy, access controls, and secure data handling is
essential to prevent mistakes that could have serious consequences. Additionally, the
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tool must undergo an internal validation process before being approved for produc-
tion. This ensures that the tool meets regulatory requirements and maintains high
standards of accuracy and confidentiality.

With advancements in AI applications in the healthcare industry, researchers have
started focusing on the responsible and ethical implementation of AI in the biomedi-
cal domain and creating relevant guidelines [147, 148, 149, 150]. Moreover, legislative
bodies worldwide have begun publishing AI regulatory acts, such as the European
Union’s Artificial Intelligence Act, to establish formal frameworks ensuring the eth-
ical and safe use of AI technologies. This has become even more important in the
era of generative AI, where LLM applications are spreading rapidly and are prone
to security and noncompliance issues. Recognizing this problem, researchers and or-
ganizations, with the World Health Organization (WHO) at the forefront [151], have
started developing ethical guidelines specifically for the use of LLMs. Consequently,
the eligibility criteria parsing tool using LLMs must adhere to these ethical guide-
lines to be implemented at Roche. There are several aspects that need consideration
even before starting the development of such a tool.

A fundamental principle in the deployment of AI tools at Roche is accountability.
The company has established a comprehensive governance framework for the design
and application of AI. This framework includes assigning technical and validation
leads to each product, conducting system risk assessments, adhering to specific pro-
cedures, maintaining detailed system documentation, ensuring tool transparency,
and implementing system monitoring. Each application undergoes a thorough vali-
dation process to evaluate its business and regulatory impact versus its risk before
production deployment. Additionally, Roche has designated specialized teams re-
sponsible for ensuring that the AI tools align with these established principles. This
rigorous approach not only mitigates potential risks but also enhances the reliability
and effectiveness of AI applications within the company.

Moreover, according to WHO recommendations, humans should control health-
care systems and medical decisions. Therefore, the target solution should be a de-
cision support tool, not an autonomous one, as will be elaborated in one of the
following sections.

An essential ethical consideration in AI use is data privacy, which is highly at risk
with cloud-based models (accessed via API) that require all data (including sensitive
ones) to be transmitted and processed by third-party providers, such as OpenAI GPT,
Google Gemini [152], or Anthropic Claude [153] models. When using these APIs, all
prompts and data entered into the model leave company systems and are exposed
to unauthorized parties. Consequently, such insecure use of models on confidential
data is forbidden at Roche. All employees are obliged to protect sensitive personal
data, company secrets, and Intellectual Property. Patentable information or trade
secrets cannot be revealed outside. One option to ensure this, when building an
LLM-based solution, is to use publicly available data only, but this is not always fea-
sible. Another solution is to use on-premises models that can be downloaded and
hosted on the company infrastructure, such as Meta LLama [154], Mistral [155], or
the Huggingface Transformers [156]. These models are ideal for scenarios demand-
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ing data privacy, offline usage, and complete control over the model environment.
However, according to the latest version of the Holistic Evaluation of Language Mod-
els leaderboard [157, 158], hosted models like Claude 3 Opus, GPT-4o, GPT-4, Gemini
1.5 Pro, and GPT-4-turbo rank highest in language understanding tasks, which in-
dicates their superior performance. Therefore, Roche has established cooperation
with OpenAI and Microsoft Azure to provide secured access to OpenAI models. The
company recommends using the GPT models or self-hosted models in LLM-based
solutions to ensure data privacy.

Another important aspect to consider when implementing an LLM-based solu-
tion is the phenomenon of hallucinations. While generative language models are
very powerful, they may produce incorrect responses that are contextually inappro-
priate, factually incorrect, or unintended. Because large language models generate
text based on probability estimation, it is possible that the generated information
appears reliable, but it is not grounded in reality. Additionally, these models have
a knowledge cut-off, meaning they were trained on data available up to a specific
point in time. For example, the GPT-4-turbo model’s knowledge cut-off is December
2023, so it is not aware of information that became publicly available after that time.
Hence, it is important to acknowledge and address the risk of receiving inaccurate
output. When considering the application of an LLM-driven parser, it is crucial to
select an appropriate use case, where the consequences of incorrect information are
less severe or where a margin of error can be tolerated. If it is not possible to easily
verify the output’s correctness or the application requires high accuracy, then it is
a very risky use case, which is not accepted by Roche. There should always be a
human in the loop to review the tool’s output and assess its quality.

Fairness and minimization of bias are also critical AI ethics principles, especially
for a pharmaceutical company making crucial decisions on drug development and
clinical trials, which impact human subjects. One of best practices to ensure AI fair-
ness is the careful selection of datasets used for model training. The data should be
inclusive and representative to avoid discrimination based on gender, race, ethnicity,
sexuality, political views, or religion. However, with pretrained LLM, the selection of
datasets is already done by third-party developers. If the training data for a model
is biased, there is a high probability that the tool will reproduce or even amplify
these biases. Moreover, when developing a solution using a pretrained LLM, it is
essential to be cautious about the content of the prompt. Discriminatory language in
prompts may result in biased responses. Additionally, the developer of the eligibility
criteria parser can influence the selection of examples for in-context learning or the
documents for a RAG application. These should be created cautiously to ensure the
tool’s fairness, so it will generate text that respects diversity and inclusion. The tool
should be also continuously monitored and adapted to correct any biases.

A very useful feature of AI tools is the explainability of their decisions. This ca-
pability helps avoid treating the machine learning model as an opaque "black box"
by providing insights into why the model produced a specific output. With simpler
models, such as linear regression or decision trees, it was possible to understand
their functioning and even perform their calculations manually. However, as algo-
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rithms have become increasingly complex, they have also become less transparent
and more difficult to interpret. Nevertheless, the mechanism of action of the im-
plemented AI technologies should be understandable to developers to minimize the
risk of improper functioning when deployed in production. Where feasible, the tool
should include a module that explains the reasoning behind the algorithm’s deci-
sions. While not all models can be explained, having this capability is a significant
advantage. It not only aids in system risk assessment but also increases user confi-
dence in the final decisions made with the tool’s assistance.

Furthermore, environmental sustainability is an important consideration in the
design of all IT products, though it is one of several critical factors to be balanced.
Resource and energy consumption should be carefully evaluated to minimize ecolog-
ical impact, yet this must be weighed alongside other technical and business priori-
ties. Developers are encouraged to optimize the use of algorithms and thoughtfully
select those that offer a reduced environmental footprint without compromising per-
formance. In this context, environmental sustainability should also be an important
consideration in the selection of computational infrastructure.

In conclusion, the use of AI, particularly large language models, can significantly
improve productivity and decision-making processes in the pharmaceutical industry.
However, it is essential to use these tools responsibly to maintain ethical standards,
ensure data privacy, and avoid other risks associated with generative AI. The tool for
eligibility criteria parsing is no exception and should adhere to these principles.

9.6 Maintenance and support

Regular maintenance of IT products and user support are fundamental for ensuring
the continued availability of tools for users. Companies must ensure that responsible
personnel promptly address any issues to minimize tool downtime. It is also impor-
tant to continuously monitor and optimize the solutions even after deployment to
maintain the highest possible efficiency.

The field of generative models is highly dynamic, with new phenomena and
challenges being identified regularly. Consequently, regulations must adapt to these
observations. To keep the system compliant with all regulatory laws and industry
standards, adjustments may be required. Rapid and effective responses to these
updates are essential to prevent any serious consequences arising from inappropriate
use of the tool.

In software development, ensuring user satisfaction and effectiveness in using
the product is crucial. To fully leverage the capabilities of the developed tool, users
should attend a comprehensive training session once the product is released. This
session should present the tool’s functionalities, demonstrate the most effective ways
to use its features, share best practices, and openly communicate any limitations.
This is especially important in the pharmaceutical industry, where the processing
of sensitive data and making critical decisions require that users are well-informed
about system deficiencies, so they can use the tool responsibly. This importance
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is amplified when using AI tools that employ generative language models, which
come with several risk considerations, as outlined in Section 9.5. Additionally, users
should have access to complete documentation of the tool, providing detailed usage
instructions for ongoing reference.

Beyond initial training, continuous support must be available to users, with a
dedicated team ready to resolve any issues that arise during system use. Users
should have clear contact points for assistance, and they should be promptly sup-
ported by a team capable of efficiently addressing and resolving their problems.

Another vital component of user support is the collection of feedback after the
tool has been in use for some time. Users are the primary stakeholders of the
tool, and their satisfaction is fundamental. To enhance the user experience, feed-
back should be systematically collected, analysed, and addressed, leading to system
improvements tailored to their needs.

To conclude, ensuring regular maintenance and robust user support significantly
impacts user satisfaction and tool reliability in the long term. This can be achieved
by promptly addressing issues, providing comprehensive training sessions, and con-
sistently gathering and acting on user feedback.

9.7 Efficiency and validation

An essential requirement for implementing an AI-based tool is increased efficiency
in performing target task compared to current methods. The criteria parsing tool
is no exception. As there are no existing solutions to compare with, the baseline
for this tool is the manual effort to transform the criteria into the required struc-
ture. Since the tool is designed to work in the healthcare sector, it will not operate
autonomously but will be used as a support tool to avoid adverse consequences on
peoples’ health and lives. This important consideration determines that the tool does
not need to have extremely high accuracy, as the user will have a chance to correct its
output. However, an algorithm that provides highly incorrect extractions would not
be beneficial either, because domain experts would spend significant time correcting
the parsed conditions. Thus, while high accuracy is not the most critical factor, it is
important to provide a sufficient level of accuracy to add value to the overall work-
flow. If the tool significantly reduces the time spent on criteria parsing, including
correction time, compared to the non-AI-assisted manual effort, it can be considered
for production.

This requirement introduces another: a correction interface. Subject matter ex-
perts need access to an easy-to-use application that allows them to browse the
parser’s outputs and correct them if needed. Before using the parsing results in
other systems, they should be reviewed and corrected to ensure the high accuracy of
the source data for those systems, such as tools for patient-trial matching.

Given the very limited annotated dataset and the lack of reliable methods to
evaluate the output of such a parser (and the output from generative models), it
is infeasible to precisely measure the accuracy of the tool in an automated manner.
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Therefore, the correctness of the structured output should be evaluated manually.
Due to the complex structure of the parsed conditions described in Section 9.2, the
final solution must be equipped with a component that enables manual validation
of the extractions. The user should be presented with the inclusion and exclusion
criteria alongside the parser output and be able to interact with the interface to assess
the extractions.

From the perspective of a patient-trial matching application, a valuable feature of
the tool is to avoid overly limiting the trial population. It is better to overlook some
mandatory conditions than to extract conditions incorrectly, which may disqualify
eligible patients from a trial. Too stringent a formulation of a condition in the output
is a more serious error than too wide a criterion because trials already struggle to
find enough participants. A tool that incorrectly excludes eligible patients would
exacerbate this issue, thereby hindering trial optimization.

Ultimately, the tool must enhance efficiency by reducing the time and effort re-
quired for criteria parsing while maintaining satisfactory accuracy to be valuable. By
providing a robust validation interface and prioritizing precision over recall, the tool
can effectively support patient-trial matching and optimize trial operations without
compromising the inclusion of eligible participants.

9.8 Diverse expertise in tool development

In developing advanced technological tools, particularly those used in specialized
fields like the pharmaceutical industry, integrating diverse expertise is not only
highly beneficial but also a critical requirement for creating reliable solutions. This is
especially important for AI-driven systems that learn from domain-specific datasets
and must provide meaningful insights based on them. Including various stakehold-
ers such as project managers, validation leads, technical developers, domain experts,
UX designers, and end users is essential to ensure the development of an optimal
tool.

In the initial phase of each project, the role of project manager is crucial. Setting
clear project goals and defining key performance indicators (KPIs) at the beginning
ensures that developers understand the requirements and end users are aware of the
expected outcomes. Project managers often lead the coordination of different stake-
holders, collecting their requirements and translating them into specific, measurable
goals. Setting numerical thresholds that need to be met to add value to business
processes and release the tool is a good practice. This allows for continuous assess-
ment of whether the tool has the potential to achieve these thresholds or if the project
should be discontinued early to avoid wasting time and resources on solutions that
will not be deployed in production.

When creating an AI-based system, involving AI experts in an obvious step. They
are responsible for the technical development of the tool. However, AI experts, with
their deep knowledge of algorithm functionality, machine learning techniques, and
data processing methods, often lack insights into the complex biomedical aspects
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necessary to design the system accurately and assess its functionality. They rely
on support from domain experts and their guidance throughout the development
process to shape as effective a tool as possible. Domain experts should be involved
from the start, helping data scientists understand the business processes and guiding
them in selecting the most appropriate datasets for training and testing the solution,
as well as supervising data preprocessing.

However, it is also important to emphasize that while AI experts are involved
in the technical development, they also need to acquire some domain knowledge to
understand business challenges and user perspectives. Not all responsibilities can be
delegated to domain experts. It is crucial that technical team members do not focus
solely on technologies without contact with the business world, which may result
in a lack of practical usability or relevance to users’ needs. Employing advanced
AI technologies, which are very interesting for AI experts, without any practical
impact on end users is not advisable. There should be a balance between applying
cutting-edge technologies and ensuring they provide valuable impacts on business
processes.

In the development of the eligibility criteria parser, domain experts should par-
ticipate in defining the scope of the tool, for instance, selecting relevant therapeutic
areas or types of clinical trials. They are essential in choosing the types of conditions
and attributes that need to be extracted and creating the dictionary of terms used in
the tool’s final output. Furthermore, they should assist in preparing the guidelines
and instructions for the tool, as well as selecting the most informative and represen-
tative examples for in-context learning. They can also review the entire prompt for
the LLM.

As the project progresses, both domain experts and end users (if they are not the
same) should engage in the evaluation of the tool. In scenarios where generative
language models are used and no benchmarks are available, the manual review of
the tool’s output is crucial to asses its effectiveness and verify if it meets business
needs. During the validation stage, feedback from domain experts is invaluable and
can be incorporated to adjust the tool - for example, modifying the prompt. Domain
experts could use the validation interface described in Section 9.7 to review and
correct structured conditions, and the time spent on this task can be measured to
verify the tool’s value.

Regular presentations of progress to stakeholders are vital to maintain trans-
parency and ensure the product aligns with user expectations. AI experts should
provide updates on the development process, intermediate results, and observations,
so that the end users are aware of any obstacles or changes in the design. It is impor-
tant to openly communicate any limitations of the tool as early as possible, allowing
domain experts to react and possibly bring valuable suggestions for technical adjust-
ments.

UX Designers also play a critical role in the development of a decision-support
tool. They recognize user needs and engage in defining the system functionalities
required. This task is challenging - UX Designers strive to bridge the gap between
technical and business worlds, effectively ensuring that the tool is user-friendly and
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meets the practical demands of end users. Engaging users in the design process
through mockups, asking them to select the most suitable version, and requesting
their feedback and suggestions for changes makes them feel involved in the process
and significantly influences the final design of the product. This approach ensures
that the product is effectively modified according to their needs, saving time and re-
sources, and avoiding the risk of rebuilding the solution from scratch at a later stage.
Feedback sessions and prototype testing are excellent examples of user-centric devel-
opment techniques that can be employed to improve the tool’s usability. An iterative
design process results in effective tool refinement and adaptation to changing user
requirements and technical advancements.

In conclusion, developing an AI-driven tool that supports human work requires
much more than just AI experts. It demands a multidisciplinary team and an it-
erative, user-centric approach to enhance the quality and applicability of the tool.
Additionally, this results in a more effective implementation within the pharmaceu-
tical company.
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Chapter 10

Implementation of the Eligibility
Criteria Parsing Tool: A Proof of
Concept

In previous chapters, we discussed the challenges the pharmaceutical industry en-
counters in structuring and analysing clinical trial eligibility criteria, which impact
trial recruitment and overall trial success. We reviewed the limitations of existing
solutions, explored the potential of large language models for information extrac-
tion from eligibility criteria, and outlined the requirements for a parsing tool from
Roche’s perspective.

This chapter focuses on the technical implementation of the proof of concept
(PoC) for the eligibility criteria parsing tool. The development of this tool employed
a multidisciplinary approach, combining domain expert support, advanced AI tech-
nologies, robust software engineering practices, and user-centric design.

Section 10.1 defines the goal of the PoC and its scope. Section 10.2 describes
the data collection and preparation processes, along with the model selection and
prompt engineering. Section 10.3 details the PoC architecture, including data han-
dling, inference pipeline, model monitoring, user interface, and MLOps practices.
Section 10.4 outlines the evaluation experiment design. Section 10.5 discusses the
findings and their implications. Section 10.6 identifies limitations of the solution
and areas for future work. Section 10.7 provides a summary of the proof of concept
findings.

10.1 Objective and scope

The main objective of this tool is to transform complex, free-text eligibility criteria
into a structured, machine-readable format. This structured format includes a set of
conditions along with any information that is relevant for a patient-trial matching
algorithm. It should clearly indicate which conditions are required or excluded to
qualify a patient for a trial. The tool aims to provide standardized data points, in
line with the requirements detailed in Section 9.2, while balancing the inclusion of
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detailed condition specification without over-complicating the structure.
The primary function of the tool is to parse eligibility criteria and create a struc-

tured output that can be utilized by other applications, such as a patient-trial match-
ing algorithm - a use case that we focus on in this PoC. The designated workflow for
matching patients to trials involves comparing survey responses, which assess pa-
tients’ demographics and health status, with a database of structured trial eligibility
criteria. The process filters out trials that do not match the specified characteristics
and provides a list of relevant trials to the user. This reduces the number of trials
to review and significantly improves the current method, which involves browsing a
long list of trials in specific disease areas and manually interpreting complex criteria.
This method is highly ineffective and often unfeasible without medical knowledge.
Moreover, it is impractical to expect doctors to extensively focus on a single patient
and browse numerous trials to find a suitable match. One major benefit of such a
patient-trial matching algorithm is reducing the number of trials to review—either
by a patient or a medical representative—thereby increasing the chance of finding a
relevant trial faster.

When developing the parsing tool for eligibility criteria, it is important to rec-
ognize that the matching algorithm does not need to achieve perfect precision. A
partial narrowing of the trial set is beneficial, as the goal is to reduce the pool of
trials, without being overly restrictive. It is preferable to have broader criteria that
might include some irrelevant trials than to risk excluding relevant ones, which could
prevent a patient from accessing a potentially suitable treatment. However, given the
medical context, full automation is not advisable. The parsing tool should act as an
assistant rather than an autonomous solution, with human supervision remaining
essential to ensure that the output is accurate and does not inadvertently exclude
life-saving treatment options.

As a result, the objective of this PoC is to create a parsing algorithm alongside a
validation interface, allowing humans to review and edit the structured output before
it is used in other applications. To be accepted and integrated into the workflow, the
tool must add significant value by reducing manual effort and time spent on parsing
eligibility criteria. This improvement in efficiency is critical for the tool’s adoption
within the company.

To quickly verify the tool’s capabilities and build a prototype, it is important to
focus on a manageable subset of data. Given the vast number of existing trials pub-
lished on ClinicalTrials.gov and the numerous condition types in eligibility criteria,
narrowing the scope for the proof of concept and testing the approach on a smaller
specified sample is essential before extending it to other areas. For this PoC, the
focus is on breast cancer trials, as they represent the largest disease area for trials
conducted by Roche. However the trials used in the experiments include both Roche
and non-Roche trials to enable some generalization from the beginning. With the
help of domain experts, we selected three types of conditions that are most impor-
tant for a patient-trial matching algorithm: biomarkers, breast cancer stages, and
subtypes. These conditions significantly narrow the pool of relevant trials and are
well-known to patients after diagnosis, enabling them to provide relevant responses
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in the survey. It is also important to note that the survey and the patient-trial match-
ing algorithm are out of scope for this PoC. The focus is strictly on the development
of the parsing tool and the validation interface.

10.2 ML methodology

The successful development of the eligibility criteria parsing tool requires a com-
prehensive and structured approach. The machine learning methodology applied in
this proof of concept includes several key components: input/output definition, data
preparation, model selection and prompt engineering.

10.2.1 Input and output definition

The development of the tool began with clearly defining its expected input and out-
put. As outlined in Chapter 9, the input consists of the full text of eligibility criteria
section along with the trial ID for reference. The tool is designed to operate in
batch inference mode, processing multiple trials at once. Consequently, the input is
structured as a JSON array containing JSON objects for each trial, which include the
criteria and trial ID pairs. The input template is presented in Figure 10.1. The ex-
pected output is also a JSON array, where each element is a JSON object representing
the parsing result for a corresponding input trial. These objects include five fields:

• nct_id: trial ID,

• inclusion_criteria: text of inclusion criteria,

• exclusion_criteria: text of exclusion criteria,

• output: full response generated by the model,

• condition_list: a JSON array containing conditions required by the trial, ex-
tracted from "output" field. This inner array contains JSON objects with two
fields: "condition", which is a boolean expression defining a mandatory con-
dition, and "phrases", which is a list of phrases that were used to create the
expression.

The output template is illustrated in Figure 10.2. The "condition" field is a boolean
expression indicating a mandatory criterion that must be met by a patient to qualify
for the trial. If there are alternative criteria where only a part is needed for eligibility,
they are combined in a single object using boolean "OR" statements. We recognize
that trial requirements are often complex, and the boolean expression may include
many "AND" and "OR" statements within a single element. However, structuring
the conditions this way helps clearly define separate requirements and facilitates
quick assessment of patient eligibility. The "phrases" field contains a list of phrases
that the model used to derive the boolean expression in the "condition" field. This
enhances the explainability of the model’s decisions and assists domain experts in
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[
{

"trial_id": "NCT01234",
"eligibility_criteria": "Inclusion Criteria: ... Exclusion Criteria: ..."

},
{

"trial_id": "NCT56789",
"eligibility_criteria": "Inclusion Criteria: ... Exclusion Criteria: ..."

}
]

Figure 10.1: Input JSON format.

quickly assessing the correctness of the defined conditions. Discrepancies can be
immediately identified based on the provided phrases. For instance, if the model
extracts "NOT metastatic" as a breast cancer subtype but the provided phrases state
"Patients with any other metastatic tumours are excluded", the domain expert can swiftly
recognize that the extraction is incorrect because the subtype relates to other tumors,
not breast cancer. Moreover, these phrases can justify experts’ decisions and be useful
in additional validations. Since the tool is a decision support system, its final output
includes user adjustments.

[
{

"nct_id": "NCT01234",
"inclusion_criteria": "...",
"exclusion_criteria": "...",
"output": "...",
"condition_list": [

{
"condition": "Condition1",
"phrases": ["Phrase1"]

},
{

"condition": "Condition2 OR (Condition3 AND Condition4)",
"phrases": ["Phrase2", "Phrase3, Phrase4"]

}
]

},
{

"nct_id": "NCT56789",
"inclusion_criteria": "...",
"exclusion_criteria": "...",
"output": "...",
"condition_list": [

{
"condition": "Condition5 OR Condition6 OR Condition7 OR Condition8" ,
"phrases": ["Phrase5", "Phrase6"]

}
]

}
]

Figure 10.2: Output JSON format.
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10.2.2 Data preparation

The data preparation process started with defining a list of standardized condition
names that are allowed to be used in the output. For each selected condition type
(biomarkers, subtypes, stages), we created a separate list of terms based on various
breast cancer resources and observations from eligibility criteria content. These lists
were then verified and adjusted by experts, resulting in the final dictionary presented
in Figure 10.3.

Subtypes:
IDC, ILC, LCIS, IBC, Metaplastic, Paget’s Disease of the Breast, Recurrent, Inoperable,
Infiltrating, Multifocal, Multicentric, Unilateral,Bilateral, High grade, Low grade, Locally
recurrent, Microcalcifications, Dense breast tissue, DCIS, Invasive, Early stage, Locally
advanced, Advanced, Metastatic, Progressive, Adenocarcinoma

Stages:
Stage 0, Stage I, Stage Ia, Stage Ib, Stage II, Stage IIa, Stage IIb, Stage III, Stage IIIa,
Stage IIIb, Stage IIIc, Stage IV

Biomarkers:
HER2+, HER2-, ER+, ER-, PR+, PR-, AR+, AR-, BCL-2+, BCL-2-, PD-L1+, PD-L1-, PIK3CA+, PIK3CA-,
BRCA1-, BRCA1+, BRCA2+, BRCA2-, ESR1+, ESR1-, Ki-67+, Ki-67-

Figure 10.3: A dictionary of terms allowed to be used in boolean expressions.

Furthermore, domain experts helped develop a set of instructions to be included
when prompting the large language model. These guidelines, written in concise nat-
ural language, reflect the rules that experts use when interpreting eligibility criteria.
For instance, they use a dependency that "locally advanced breast cancer" translates to
"stage IIIb or stage IIIc". We believe such knowledge can significantly improve the
model’s reasoning. The complete set of guidelines is presented in Figure 10.4.

Instructions for Grouped Biomarker Terms:
"Triple-negative": Should be explicitly shown as ER- AND PR- AND HER2-
"HR+": Should be explicitly shown as ER+ OR PR+
"Triple-Positive": Should be translated to ER+ AND PR+ AND HER2+
"Luminal A": Should be translated to ER+ AND HER2- AND Ki-67- AND PR+
"Luminal B": Should be translated to ER+ AND HER2- AND (Ki-67+ OR PR-)

Instructions for Inferring Stages and Subtypes:
Locally advanced translates to Stage IIIb OR Stage IIIc.
Advanced translates to Stage IIIb OR Stage IIIc OR Stage IV.
Metastatic translates to Stage IV.
Inflammatory translates to IBC.
Non-IBC translates to NOT IBC.

Figure 10.4: Guidelines for inferring conditions from eligibility criteria.

The final step in data preparation involved creating examples for in-context learn-
ing of the LLM. These examples include the input criteria and the desired output to
demonstrate what is expected from the model. We selected four representative stud-
ies from ClinicalTrials.gov, which encompass various dependencies and relationships
between criteria. Some criteria were modified, removed, or inserted artificially based
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on experimentation results. To minimize the manual effort of domain experts, we
annotated the criteria, and these annotations were subsequently validated by the ex-
perts. For the purpose of model prompting, the examples are written in natural
language without maintaining a JSON structure. The input and output transforma-
tions to the desired format are applied using pre- and post-processing pipelines.

The first trial contains use cases for applying the defined guidelines (Figure 10.4),
such as translating grouped biomarker terms ("HR+"), subtype-stage mapping
("metastatic", "locally advanced"), and inferring biomarker polarity ("mutation(s) of
PIK3CA"). It also contains an excluded subtype that should be negated in the output
("Metaplastic breast cancer" in Exclusion Criteria). This trial also includes conditions
with allowed terms that should not be extracted by the model:

• condition related to past medical history (History of stage I-IIIb cancer),

• condition specifying a metastasis site, especially in exclusion criteria, which
does not mean the cancer should not be metastatic (Known and untreated, or
active CNS metastases),

• condition related to other diseases, not breast cancer (inflammatory bowel disease).

The input and output for this trial are shown in Figure 10.5.
The second trial also covers examples for using the instructions for grouped

biomarker terms ("triple-negative", "luminal B") and inferring stages ("metastatic")
and subtypes (inflammatory). Importantly, it contains a complex mandatory condi-
tion with four alternatives, which is not even explicitly stated in the text but inferred
from the knowledge that the cancer cannot be both triple-negative and luminal B.
It also includes two conditions that are allowed but not required (Subjects with pro-
gressive adenocarcinoma are eligible, and Patients in a metastatic situation can be included
regardless of the therapeutic line.), so they should be skipped by the model. The output
for this trial includes only one condition, represented by a highly complex boolean
expression, as visible in Figure 10.6.

The third trial presents an example of multiple subtypes in one phrase (advanced
metastatic adenocarcinoma), which should be transformed into separate conditions or
conditions connected by AND. It also contains criteria types that should not be parsed
by the model due to a different meaning, irrelevant to the task:

• conditions present in medical history (History of DCIS),

• treatments and other conditions that contain allowed terms but do not specify
required or disallowed subtypes, stages, or biomarkers (PIK3CA inhibitors),

• conditions with unspecified biomarker status (Known hormon receptor status),

• conditions specifying metastasis site (Known brain metastases unless treated and
stable).

Figure 10.7 presents the input and expected output for this trial.
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Inclusion criteria:
Confirmed diagnosis of HR+/HER2- breast cancer; Metastatic or locally advanced disease not
amenable to curative therapy; Progression of disease during adjuvant endocrine treatment or
within 12 months of completing adjuvant endocrine therapy with an aromatase inhibitor or
tamoxifen; Receiving LHRH agonist therapy for at least 2 weeks prior to Day 1 of Cycle 1 if
pre/peri-menopausal; Confirmation of biomarker eligibility (detection of specified mutation(s)
of PIK3CA via specified test); Consent to provide fresh or archival tumor tissue specimen;
Measurable disease per Response Evaluation Criteria in Solid Tumors, Version 1.1 (RECIST v1.1)
; evaluable bone-only disease is not eligible; bone-only disease with at least one measurable,
soft-tissue component, even if considered disease that is limited to bone but has lytic or
mixed lytic/blastic lesions and at least one measurable soft-tissue component per RECIST v1.1
may be eligible; Eastern Cooperative Oncology Group Performance Status of 0 or 1; Life
expectancy of > 6 months; Adequate hematologic and organ function within 14 days prior to
initiation of study treatment;

Exclusion criteria:
Metaplastic breast cancer; History of stage I-IIIb cancer; Any history of leptomeningeal
disease or carcinomatous meningitis; Any prior systemic therapy for metastatic breast cancer;
Prior treatment with fulvestrant or any selective estrogen-receptor degrader, with the
exception of participants that have received fulvestrant or any selective estrogen-receptor
degrader as part of neoadjuvant therapy only and with treatment duration of no longer than 6
months; Prior treatment with any PI3K, AKT, or mTOR inhibitor, or any agent whose mechanism of
action is to inhibit the PI3K-AKT-mTOR pathway; Type 2 diabetes requiring ongoing systemic
treatment at the time of study entry; ; Known and untreated, or active CNS metastases.
Patients with a history of treated CNS metastases may be eligible; Active inflammatory or
infectious conditions in either eye, or any eye conditions expected to require surgery during
the study treatment period; Symptomatic active lung disease, or requiring daily supplemental
oxygen; History of inflammatory bowel disease or active bowel inflammation; Anti-cancer
therapy within 2 weeks before study entry; Investigational drug(s) within 4 weeks before
randomization; Prior radiotherapy to >= 25% of bone marrow, or hematopoietic stem cell or bone
marrow transplantation; Chronic corticosteroid therapy or immunosuppressants; Pregnant,
lactating, or breastfeeding, or intending to become pregnant during the study or within 60
days after the final dose of study treatment; Major surgical procedure, or significant
traumatic injury, within 28 days prior to Day 1 of Cycle 1

Output:
- Condition: "ER+ OR PR+" , Phrases: "Confirmed diagnosis of HR+/HER2- breast cancer"
- Condition: "HER2-" , Phrases: "Confirmed diagnosis of HR+/HER2- breast cancer"
- Condition: "Stage IV OR Stage IIIb OR Stage IIIc" , Phrases: "Metastatic or locally advanced
disease not amenable to curative therapy"
- Condition: "PIK3CA+" , Phrases: "Confirmation of biomarker eligibility (detection of
specified mutation(s) of PIK3CA)"
- Condition: "NOT Metaplastic", Phrases: "Metaplastic breast cancer"

Figure 10.5: Input criteria and target output for the first trial example.

The fourth trial contains an example of TNM notation (T2, T3, T4a, T4b, T4c,
T4d which is node negative or node positive (histologically or cytologically confirmed) or;
Any T with lymph node positive disease (histologically or cytologically confirmed)) to hint
to the model that it should resolve and translate these to specific stages. It also
includes a condition with unspecified biomarker status (Oestrogen and progesterone
receptor status known prior to study entry) and a condition related to past medical
history (History of any other malignancy within the past 5 years, with the exception of non-
melanoma skin cancer, in situ carcinoma of the breast (ductal or lobular) or carcinoma-in-situ
of the cervix). Additionally, it presents an interesting example of a not-required but
allowed condition, impacting other requirements: Patients with triple-negative breast
cancer (TNBC) are allowed if they meet all other mandatory criteria. In this case, we
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Inclusion criteria:
ECOG (Eastern Cooperative Oncology Group) performance status <= 2; Signature of the
participation consent to the study,; Affiliation to a social security scheme; Subjects with
progressive adenocarcinoma are eligible; Major woman with:; inflammatory metastatic triple-
negative (TN) breast cancer, histologically proven before treatment and high grade, receiving
neoadjuvant chemotherapy and having, after treatment, a breast residue of at least 15 mm on
the specimen. The mammary residue will measure at least 15 mm on the mammography performed at
the end of neoadjuvant treatment; inflammatory metaplastic triple-negative (TN) breast cancer,
histologically proven before treatment and high grade, treated by primary surgery with a
tumor size of at least 15 mm on the specimen.; IBC TN breast cancer (T4d), histologically
proven prior to treatment, receiving neoadjuvant chemotherapy and having, after treatment, a
breast residue of at least 15 mm on the specimen. The mammary residue will measure at least 15
mm on the mammography performed at the end of the neoadjuvant treatment.; inflammatory
Luminal B breast cancer (LB), histologically proven prior to treatment, receiving neoadjuvant
chemotherapy and having, after treatment, a mammary residue of at least 30 mm on the specimen.
The mammary residue will measure at least 15 mm on the mammography performed at the end of
the neoadjuvant treatment.; Patients in a metastatic situation can be included regardless of
the therapeutic line.;

Exclusion criteria:
Pregnant woman; Patient deprived of liberty by court or administrative decision; In
neoadjuvant situation: no neoadjuvant treatment by radiotherapy or hormone therapy; Refusal to
participate in the study

Output:
- Condition: "((IBC AND Stage IV AND (ER- AND PR- AND HER2-) AND High grade) OR (IBC AND
Metaplastic AND (ER- AND PR- AND HER2-) AND High grade) OR (IBC AND (ER- AND PR- AND HER2-)
AND (Stage IIIb OR Stage IIIc OR Stage IV)) OR (IBC AND ER+ AND HER2- AND (Ki-67+ OR PR-)))" ,
Phrases: "inflammatory metastatic triple-negative (TN) breast cancer, histologically proven
before treatment and high grade", "inflammatory metaplastic triple-negative (TN) breast cancer
, histologically proven before treatment and high grade", "IBC TN breast cancer (T4d),
histologically proven prior to treatment", "inflammatory Luminal B breast cancer (LB),
histologically proven prior to treatment"

Figure 10.6: Input criteria and target output for the second trial example.

cannot state that TNBC is required, but given the study requires HER2+, the final
mandatory condition should be defined as HER2+ OR (HER2- AND ER- AND PR-).
We show this example to the model in order to make it aware of such situations and
handle them correctly. The fourth trial example is included in Figure 10.8.

The presented examples were carefully selected and adjusted to cover a broad
scope of different criteria aspects. They were inspired by the set of criteria of real
trials but were modified explicitly for the purpose of eligibility criteria parsing. It was
a conscious decision to artificially add some more complex patterns and remove some
redundant sentences to make the prompt full of important information only. It was
observed in the experimentation phase that including more examples results in more
accurate model outputs, which is not the case with expanding the task description
or parsing instructions. The model learns more for few-shot examples than from
guidelines. Therefore, it is very important to craft the examples consciously to make
them maximally representative and meaningful.
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Inclusion criteria:
Histologically confirmed advanced metastatic adenocarcinoma with measurable or evaluable
disease: Patients who have progressed on distant metastatic sites after curative surgery or
have stage IV breast cancer at diagnosis; Patients with inflammatory disease are eligible; Age
> 19 years; ECOG performance status 0 - 2; Patient has HER2-negative breast cancer with IHC
and/or FISH (or SISH, CISH); Known hormon receptor status; Patient is premenopausal.
Premenopausal status is defined as either:; A. Patient had last menstrual period within the
last 12 months B. If within three months of tamoxifen (tamoxifen) taking, C. In case of
chemotherapy induced amenorrhea, the serum FSH <=40IU/l; A. Patient who have stage IV breast
cancer at diagnosis, allow disease that progressed after 1st line chemotherapy. B. Patient who
have stage IV breast cancer at diagnosis, allow disease that progressed after tamoxifen or
goserelin. C. In case of recur/metastatic breast cancer, allow disease that progressed after
12 month of completion of neo/adjuvant chemotherapy .; Urine or serum HCG test must be
negative.; Adequate bone marrow function (>= ANC 1,500/ul, >= platelet 100,000/ul, >=
Hemoglobin 9.0 g/dl); Adequate renal function (<= serum creatinine 1.5 mg/dl or CCr >= 50 ml/
min); Adequate liver function (<= serum bilirubin 1.5 mg/dl, <= AST/ALT x 3 upper normal limit
); Patients who were already established on bisphosphonate therapy may continue on
bisphosphonates.; Patients agreed to use effective contraception or not of childbearing
potential; Written informed consent; Consent to biomarker analysis.;

Exclusion criteria:
Postmenopausal women; Serious uncontrolled intercurrent infections; Serious intercurrent
medical or psychiatric illness, including active cardiac disease; Pregnancy or breast feeding;
Second primary malignancy(except in situ carcinoma of the cervix or adequately treated
nonmelanomatous carcinoma of the skin or resected thyroid papillary carcinoma or other
malignancy treated at least 5 years previously with no evidence of recurrence); History of
DCIS; Bilateral mastectomy; Patients has received previous endocrine treatments such as,
aromatase inhibitor, exemestane in the metastatic setting; Patients has received previous
treatment with CDK 4/6 inhibitors, mTOR inhibitors, PIK3CA inhibitors or capecitabine; No
symptomatic visceral metastasis; Known brain metastases unless treated and stable; Clinically
significant uncontrolled conditions including, known active hepatitis B or hepatitis C.; QTc
interval > 480 msec, family or personal history of long or short QT syndrome, or known history
of QTc prolongation or Torsade de Pointes.; Known positive testing for human immunodeficiency
virus or acquired immune deficiency syndrome.; Unable to swallow and retain oral medication.;
Treatment radiotherapy within 4 weeks of the study; Use of any investigational drug within 4
weeks of the study; Treatment with chemotherapy within 3 weeks or hormone therapy within 2
weeks of the study.

Output:
- Condition: "Stage IV", Phrases: "Histologically confirmed advanced metastatic adenocarcinoma
with measurable or evaluable disease", "Patients who have progressed on distant metastatic
sites after curative surgery or have stage IV breast cancer at diagnosis"
- Condition: "Adenocarcinoma", Phrases: "Histologically confirmed advanced metastatic
adenocarcinoma with measurable or evaluable disease"
- Condition: "HER2-", Phrases: "Patient has HER2-negative breast cancer with IHC and/or FISH (
or SISH, CISH)"

Figure 10.7: Input criteria and target output for third trial example.

10.2.3 Model selection

Structuring eligibility criteria is a challenging task that requires a model which can
address this complexity. Recent advancements in generative AI and our successful
experiments with using large language models for named entity recognition have
led us to choose an LLM for this task. This decision aligns with the requirements for
the parsing tool, which include functioning effectively with limited annotated data,
accepting full text of criteria as input, following parsing guidelines, and extracting
meaningful information from complex domain-specific text. The task demands ad-
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Inclusion criteria:
Written informed consent obtained prior to any study-related procedures; Age > 18 years;
Histologically proven breast cancer, for which neo-adjuvant chemotherapy and trastuzumab is
considered a valid therapeutic strategy.; Patients with the following TNM stages (refer to
AJCC 7th Edition - Appendix M) of breast cancer are eligible:; T2, T3, T4a, T4b, T4c, T4d
which is node negative or node positive (histologically or cytologically confirmed) or; Any T
with lymph node positive disease (histologically or cytologically confirmed); Patients with
multifocal tumours are not excluded; T stage assignment must be based on the largest tumour.;
Patients with bilateral breast cancer are not eligible; Tumour HER2/neu positive (3+ by IHC or
fluorescence in situ hybridization (FISH) positive); Oestrogen and progesterone receptor
status known prior to study entry; Patients with triple-negative breast cancer (TNBC) are
allowed if they meet all other mandatory criteria; ECOG performance status score < or equal to
1; Cardiac ejection fraction >= 50% as measured by echocardiogram or MUGA scan within 3
months prior to randomisation. Women of child-bearing potential and men must agree to use
adequate contraception (non-hormonal or barrier method of birth control, abstinence or a
vasectomy partner) prior to study entry and for the duration of study participation.

Exclusion criteria:
Prior therapy with systemic cytotoxic chemotherapy Lapatinib or Trastuzumab.; Prior taxanes;
Radiotherapy (Except for radiotherapy localised to radiotherapy to a primary squamous or basal
cell skin cancer).; Patients with metastatic disease (M1).; Concurrent therapy with any other
non-protocol anti-cancer therapy; History of any other malignancy within the past 5 years,
with the exception of non-melanoma skin cancer, in situ carcinoma of the breast (ductal or
lobular) or carcinoma-in-situ of the cervix.; Current therapy with any hormonal agent such as
raloxifene, tamoxifen, or other selective oestrogen receptor modulators (SERMs), either for
osteoporosis or prevention of breast cancer. Patients must have discontinued these agents 14
days prior to enrolment.; Concurrent treatment with ovarian hormonal replacement therapy.
Prior treatment must be stopped prior to enrolment.; Pre-existing motor or sensory
neurotoxicity of a severity >= Grade 2 by NCI-CTCAE version 4.0.; Poorly controlled
hypertension (e.g. systolic >180mm Hg or diastolic >100mm Hg.); Any history of myocardial
infarction, angina pectoris or congestive heart failure. Patients on current therapy for
arrythmias are excluded.

Output:
- Condition: "Stage II OR Stage IIIa OR Stage IIIb OR Stage IIIc", Phrases: "T2, T3, T4a, T4b,
T4c, T4d which is node negative or node positive (histologically or cytologically confirmed)
or; Any T with lymph node positive disease (histologically or cytologically confirmed)"
- Condition: "NOT Bilateral", Phrases: "Patients with bilateral breast cancer are not eligible
"
- Condition: "(HER2+ OR (HER2- AND ER- AND PR-)", Phrases: "Tumour HER2/neu positive (3+ by
IHC or fluorescence in situ hybridization (FISH) positive)", "Patients with triple-negative
breast cancer (TNBC) are allowed if they meet all other mandatory criteria"
- Condition: "NOT Stage IV", Phrases: "Patients with metastatic disease (M1)"

Figure 10.8: Input criteria and target output for fourth trial example.

vanced reasoning, a large context window, broad knowledge, and the capability to
generate text not present in the input, making traditional NER approaches unsuit-
able.

Given the rapidly evolving area of generative AI, many new models are fre-
quently released. However, selecting the right LLM involves considering factors such
as model size, context window length, maximal output length, and performance on
benchmarks. For Roche, security is also a critical consideration, requiring the use of
either a self-hosted model or a model hosted in the Roche cloud that is allowed to
handle confidential data. Currently, only OpenAI models meet these criteria among
Roche cloud-hosted options. According to the Stanford’s leaderboard on the accu-
racy on the MMLU (Massive Multitask Language Understanding) benchmark [158],
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the GPT-4o model from OpenAI ranks second with other OpenAI models and self-
hosted models ranked lower. As stated in the documentation [85], the GPT-4o model
has a context window of 128,000 tokens, is two times faster and 50% cheaper than its
predecessor, GPT-4-turbo. The maximum token length of response is not revealed.
When using an OpenAI model, there is no need to focus on model size, because it is
hosted by third parties, not on the project side. The important aspects are the low cost
of usage and a balance between model accuracy and processing speed. This balance
is secured by GPT-4o, which is also ranked eighth in the MMLU inference runtime
leaderboard, where the models listed above it are not even in top 10 for accuracy in
the task. Additionally, the cost is reasonable given the model’s performance, making
it acceptable for Roche. Therefore, the GPT-4o model is selected for the PoC.

We use a pretrained model without any additional fine-tuning. To minimize
creativity and ensure accuracy in information retrieval, the model temperature pa-
rameter is set to 0.0 for inference, which forces the model to generate the most likely
next token.

10.2.4 Prompt engineering

When using pretrained large language models, prompt engineering is even more
important than the model selection and setup. The model’s output can vary sig-
nificantly depending on the prompt’s precision. Less precise prompts lead to less
accurate outputs, and specific words and phrases can greatly impact the model’s
performance, as observed in our experiments.

Since the model uses an in-context learning approach, the prompt must include
not only the parsing guidelines but also the four selected examples (detailed in Sec-
tion 10.2.2). The final prompt version resulted from an iterative experimentation
process and prompt tuning using five trial examples specifically chosen for this pur-
pose. This process was supported by a Streamlit application we developed to facili-
tate prompt engineering. The application connects with GPT-4o via the OpenAI API
and allows users to test different prompts and see immediate outputs for a selected
trial. It provides a user-friendly interface and effective visualisation of the input and
output data, enabling quick execution of tuned prompts on specific eligibility criteria.
The interface of this application is presented in Figure 10.9.

The final prompt for the eligibility criteria parser includes the following compo-
nents:

• Task description: Defines the model’s role (using the Persona Pattern), outlines
the task’s goal, and highlights crucial aspects identified through experimental
results. For instance, discrepancies were observed in the model’s output when
handling optional criteria, that are not required for participation. To address
this, we added a sentence to the task description to emphasize the rule for
extracting only the required or disallowed conditions. The full task description
is presented in Figure 10.10.
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Figure 10.9: The application supporting prompt engineering

Task Description:
You are a clinician recruiting patients for clinical trials. Your job is to interpret
eligibility criteria and transform them into boolean expressions, so that they can be further
used in matching patient records to trials. You should focus only on required or disallowed
criteria, ignore optional ones. Consider only the criteria describing breast cancer stages,
subtypes and biomarkers, and use the allowed terms listed below to construct the expressions.
Any other criteria should not be included in the expressions. In the last step, transform the
boolean expressions into a list of mandatory conditions which will work as a checklist in
patient-trial matching application. Follow the rules outlined below.

Figure 10.10: Task description included in the model prompt.

• Input data description: Explains what the model will receive as input - specif-
ically, the inclusion and exclusion criteria from the clinical trial protocol.

• Parsing guidelines: Provides step-by-step instructions for transforming the in-
put data into the desired output, which details the reasoning process the model
should follow. These instructions evolved during experimentation, with some
rules added or modified for clarity. The guidelines are shown in Figure 10.11.

• Allowed terms: Lists terms describing biomarkers, subtypes, and stages al-
lowed for use in creating boolean expression (as defined in Figure 10.3).

• Instructions for inferring conditions: Includes guidelines created with do-
main experts to support the model’s reasoning with medical knowledge for
interpreting specific phrases (as defined in Figure 10.4).

• Responsibility statement: Stresses the importance of adhering to the guide-
lines due to their potential impact on patient lives. During the hackathon, we
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Rules:
Step 1: Identify phrases and conditions: Extract exact phrases from the eligibility criteria
that directly correspond to the allowed terms of breast cancer subtypes, biomarkers, or stages
. List each extracted phrase and clearly identify which allowed term it corresponds to.
Step 2: Refine the list of phrases: Remove phrases and conditions which do not relate to
allowed terms or to current breast cancer. Remove conditions that are not mandatory.
Step 3: Apply additional guidelines: Where possible, apply the inferring guidelines and
replace the subtype terms with stages. Match the grouped terms with their relevant logic
statements, according to the guidelines. Use negations for excluded conditions. Check the
context of the condition - some exclusion criteria contain exceptions that should not be
negated.
Step 4: Translate into boolean expression: Transform list of conditions into boolean
expressions. Remember about using "OR" for alternative criteria, where only a part of
conditions is required for eligibility. Use parentheses for correct precedence and grouping.
Step 5: Transform into condition list: Convert the boolean expression into a structured list
of conditions. Each line should represent a mandatory condition that is required for
eligibility. Alternative conditions should be grouped together in one line, indicating that
fulfilling any one of these alternatives suffices. This means that OR statements cannot be
split into lines, but AND statements should be split where possible. Follow standard operator
precedence rules where AND is evaluated before OR, and use parentheses to enforce the correct
precedence and grouping. Remove redundant conditions.
Step 6: Create pairs: For each condition in the list, pair it with the corresponding phrases
from Step 1, separated by ’||’ where multiple phrases support a single condition. Use exact
phrases from the text.

Figure 10.11: Parsing guidelines included in the prompt.

noticed that emphasizing responsibility improved the model’s accuracy and re-
liability. This statement is: "Please stick to these rules as your response will be used
in a patient trial matching system, so it can even save patients’ lives."

• Examples for in-context learning: Includes input and output text for four trials
(presented in Figures 10.5- 10.8) to provide examples of expected outputs. Dur-
ing experimentation, we discovered that the model’s output improves when
examples include the full thought process, not just input-output pairs. There-
fore, we use a chain-of-thought approach, detailing each example step-by-step
according to the parsing guidelines (Figure 10.11), with additional comments
to clarify specific decisions. It also contains negative examples - incorrect ex-
tractions and refining steps, to explain the model why some of the conditions
should not be included in the final output (e.g., "History of stage I-IIIb cancer:
stage I OR stage II OR stage IIIa OR stage IIIb [Exclusion] - stage related to history,
not current state, should be removed"). We observed that this feature enhances
model reasoning, in the inference model corrects some of the mistaken extrac-
tion in the refining step. Figure 10.12 and 10.13 show example chain of thoughts
for two selected trials.
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Step 1: Identify phrases and conditions.
"Confirmed diagnosis of HR+/HER2- breast cancer": HR+/HER2- [Inclusion]
"Metastatic or locally advanced disease not amenable to curative therapy": Metastatic OR
Locally Advanced [Inclusion]
"Confirmation of biomarker eligibility (detection of specified mutation(s) of PIK3CA via
specified test)": PIK3CA+ [Inclusion]
"Metaplastic breast cancer": Metaplastic [Exclusion]
"History of stage I-IIIb cancer": stage I OR stage II OR stage IIIa OR stage IIIb [Exclusion]
"Known and untreated, or active CNS metastases": CNS metastases [Exlusion]
"History of inflammatory bowel disease or active bowel inflammation": Inflammatory [Exclusion]
Step 2: Refine the list of phrases.
"Confirmed diagnosis of HR+/HER2- breast cancer": HR+/HER2- [Inclusion] - mentioned in
guidelines
"Metastatic or locally advanced disease not amenable to curative therapy": Metastatic OR
Locally Advanced [Inclusion] - mentioned in guidelines
"Confirmation of biomarker eligibility (detection of specified mutation(s) of PIK3CA via
specified test)": PIK3CA+ [Inclusion] - mentioned in guidelines
"Metaplastic breast cancer": Metaplastic [Exclusion] - mentioned in guidelines
"History of stage I-IIIb cancer": stage I OR stage II OR stage IIIa OR stage IIIb [Exclusion]
- stage related to history, not current state, should be removed
"Known and untreated, or active CNS metastases": CNS metastases [Exlusion] - metastases
related to specific site, not breast cancer in general, should be removed
"History of inflammatory bowel disease or active bowel inflammation": Inflammatory [Exclusion]
- subtype related to bowel disease, not breast cancer, should be removed
Step 3: Apply additional guidelines.
HR+/HER2- translates to (ER+ OR PR+) AND HER2-.
Metastatic or locally advanced translates to (Stage IV OR Stage IIIb OR Stage IIIc).
PIK3CA+ directly from text.
NOT Metaplastic for the exclusion.
Step 4: Translate into boolean expression.
(ER+ OR PR+) AND HER2- AND (Stage IV OR Stage IIIb OR Stage IIIc) AND PIK3CA+ AND NOT
Metaplastic
Step 5: Transform into condition list.
ER+ OR PR+
HER2-
Stage IV OR Stage IIIb OR Stage IIIc
PIK3CA+
NOT Metaplastic
Step 6: Create pairs.
Condition: "ER+ OR PR+" , Phrases: "Confirmed diagnosis of HR+/HER2- breast cancer" /
Condition: "HER2-", Phrases: "Confirmed diagnosis of HR+/HER2- breast cancer" / Condition: "
Stage IV OR Stage IIIb OR Stage IIIc" , Phrases: "Metastatic or locally advanced disease not
amenable to curative therapy" / Condition: "PIK3CA+" , Phrases: "Confirmation of biomarker
eligibility (detection of specified mutation(s) of PIK3CA via specified test)" / Condition: "
NOT Metaplastic", Phrases: "Metaplastic breast cancer"

Figure 10.12: Chain of thought for the first trial example included in the prompt.

• Inclusion criteria: Contains the text of the inclusion criteria for a trial to be
parsed in the inference. It starts with the heading "Inclusion criteria:" followed
by a new line.

• Exclusion criteria: Contains the text of the exclusion criteria for a trial to be
parsed in the inference. It starts with heading "Exclusion criteria:" followed by
a new line.

• Triggering phrase: Ends the prompt with a phrase that triggers the model to
follow the chain of though demonstrated in the examples. The phrase used is:
"Step 1: Understand the Text:"
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Step 1: Identify phrases and conditions.
"Histologically confirmed advanced metastatic adenocarcinoma with measurable or evaluable
disease": Advanced AND Metastatic AND Adenocarcinoma [Inclusion]
"Patients who have progressed on distant metastatic sites after curative surgery or have stage
IV breast cancer at diagnosis": Metastatic OR Stage IV [Inclusion]
"Patients with inflammatory disease are eligible": Inflammatory [Inclusion]
"Patient has HER2-negative breast cancer with IHC and/or FISH (or SISH, CISH)": HER2- [
Inclusion]
"Known hormon receptor status": ER+ OR PR+ OR ER- OR PR- [Inclusion]
"Postmenopausal women": Premenopausal [Exclusion]
"History of DCIS": DCIS [Exclusion]
"Bilateral mastectomy": Bilateral [Exclusion]
"Patients has received previous treatment with CDK 4/6 inhibitors, mTOR inhibitors, PIK3CA
inhibitors or capecitabine": PIK3CA inhibitors [Exclusion]
"No symptomatic visceral metastasis": Symptomatic visceral metastasis [Exclusion]
"Known brain metastases unless treated and stable": Brain metastases [Exclusion]
Step 2: Refine the list of phrases.
"Histologically confirmed advanced metastatic adenocarcinoma with measurable or evaluable
disease": Advanced AND Metastatic AND Adenocarcinoma[Inclusion] - mentioned in guidelines
"Patients who have progressed on distant metastatic sites after curative surgery or have stage
IV breast cancer at diagnosis": Metastatic OR Stage IV [Inclusion] - mentioned in guidelines
"Patients with inflammatory disease are eligible": Inflammatory [Inclusion] - patients with
this condition are eligible but it is not strictly required, should be removed
"Patient has HER2-negative breast cancer with IHC and/or FISH (or SISH, CISH)": HER2- [
Inclusion] - mentioned in guidelines
"Known hormon receptor status": ER+ OR PR+ OR ER- OR PR- [Inclusion] - hormon receptor status
not specified, should be removed
"Postmenopausal women": Premenopausal [Exclusion] - not mentioned in guidelines, should be
removed
"History of DCIS": DCIS [Exclusion] - related to history, not current state, should be removed
"Bilateral mastectomy": Bilateral [Exclusion] - related to mastectomy, does not specify
required biomarker, stage or subtype, should be removed
"Patients has received previous treatment with CDK 4/6 inhibitors, mTOR inhibitors, PIK3CA
inhibitors or capecitabine": PIK3CA inhibitors [Exclusion] - related to inhibitors, does not
specify required biomarker, stage or subtype, should be removed
"No symptomatic visceral metastasis": Symptomatic visceral metastasis [Exclusion] - not
mentioned in guidelines, should be removed
"Known brain metastases unless treated and stable": Brain metastases [Exclusion] - not
mentioned in guidelines, should be removed
Step 3: Apply additional guidelines.
Advanced translates to (Stage IIIb OR Stage IIIc OR Stage IV) and Metastatic translates to
Stage IV, so Advanced AND Metastatic AND Adenocarcinoma translates to Stage IV AND
Adenocarcinoma.
Metastatic translates to Stage IV, so Metastatic OR Stage IV translates to Stage IV.
HER2- directly from text.
Step 4: Translate into boolean expression.
Stage IV AND Adenocarcinoma AND HER2-
Step 5: Transform into condition list.
Stage IV
Adenocarcinoma
HER2-
Step 6: Create Pairs.
Condition: "Stage IV", Phrases: "Histologically confirmed advanced metastatic adenocarcinoma
with measurable or evaluable disease" || "Patients who have progressed on distant metastatic
sites after curative surgery or have stage IV breast cancer at diagnosis" / Condition: "
Adenocarcinoma", Phrases: "Histologically confirmed advanced metastatic adenocarcinoma with
measurable or evaluable disease" / Condition: "HER2-", Phrases: "Patient has HER2-negative
breast cancer with IHC and/or FISH (or SISH, CISH)"

Figure 10.13: Chain of thought for the third trial example included in the prompt.



130 Implementation of the Eligibility Criteria Parsing Tool: A Proof of Concept

The full text of the prompt is included in Appendix C.

10.3 Tool implementation

To create a functional system, the implementation of the eligibility criteria parsing
tool integrates various components: data processing and inference pipelines, robust
logging mechanisms, model monitoring, and user interface development. The overall
architecture design ensures seamless work of these elements. Moreover, the DevOps
and MLOps practices are applied to make the development process and the tool itself
efficient and reliable.

10.3.1 Tool architecture

The architecture of the eligibility criteria parsing tool PoC follows MLOps best prac-
tices to ensure effective processing, robust logging, and monitoring. Additionally,
the tool is designed to enable quick delivery, which is crucial for the PoC. The overall
architecture diagram is illustrated in Figure 10.14.

Figure 10.14: Architecture of the eligibility criteria parsing tool.

The architecture includes four main elements: the parsing component, valida-
tion component, data storage, and logging and monitoring system. Each element is
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crucial for the tool’s functionality.
Data storage contains three main objects:

• Raw input data: A JSON file containing an array of JSON objects, each with two
fields: "nct_id" (trial ID) and "eligibility_criteria" (the eligibility criteria section
from the trial protocol or ClinicalTrials.gov entry). Each JSON object relates to
a single trial.

• Parsed data: A JSON file created after criteria parsing, which contains an array
structured as shown in Figure 10.2. This is the output file from the parsing
component.

• Verified data: A JSON file that is the final validated version of the parsed cri-
teria. It has the same structure as the parsed data but includes modifications
made by experts during validation. This is the output of the validation compo-
nent.

For the PoC, on-premises storage is used, and all input data consists of public
records from ClinicalTrials.gov.

The parsing component includes the following elements:

• Data preprocessing: Processes the inclusion criteria texts from the input JSON
array, cleans the text from section headers, and splits it into "inclusion_criteria"
and "exclusion_criteria" fields using regular expressions. The new fields are
added to each JSON object, and the "eligibility_criteria" field is removed.

• Trial selector: Selects a single JSON object from the array for inference.

• Prompt file: Contains the prompt template described in Section 10.2.4, and
included in the Appendix C.

• Inference service: Replaces placeholders in the prompt with inclusion and
exclusion criteria for a single trial, connects with the pretrained GPT-4o model
via the OpenAI API to generate output, and adds the generated text to the
JSON array as an "output" field. The model output includes the full chain of
thought for criteria parsing, similar to the examples provided in the prompt.
The inference service uses LangChain library to facilitate prompt creation and
API interactions.

• Data post-processing: Extracts the condition list from the generated output,
processes the text to create an array "condition_list" with JSON objects including
"condition" and "phrases" fields (Figure 10.2, and saves the main JSON array
as a file (parsed data) to data storage. This processing is done using regular
expressions.

The parsing component operates independently of the validation tool, saving
resulting files for later validation. Domain experts use the validation component to
check parsing results when needed.

The validation component consists of:
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• Data preprocessing: Prepares parsed data for display in the UI by joining lists
of phrases into comma-separated strings for better readability. It also creates
annotated inclusion and exclusion criteria objects for the Streamlit HTML com-
ponent.

• Authentication: Requires users to log in with their first and last names and a
password defined in app secrets. The name fields require at least three char-
acters in each. Successful authentication grants access to the first page of the
UI.

• Validation UI: A Streamlit application deployed on the public Streamlit Cloud,
accessible via a link for authorized users. It displays parsing outputs, includ-
ing eligibility criteria and a table of extracted conditions and relevant phrases.
The phrases are also highlighted in the criteria text to enhance the validation
process. Users can edit the table to make necessary adjustments. To ensure
consistency in validation, the UI contains guidelines for parsing. The UI details
are described in Section 10.3.2. Approved structured conditions are passed to
the post-processing pipeline.

• Post-processing: Converts the comma-separated strings in the phrases column
back into lists, transforms table rows into JSON obects with "condition" and
"phrases" pairs, and saves the updated array as a verified data JSON file. This
file can then be used for other applications, such as patient-matching use case.

The parsing and validation components are integrated with Neptune.ai for log-
ging and monitoring. Both components log common metrics such as start and end
times, standard output and error, pipeline step statuses, CPU and memory usage,
and final processing statuses. Additionally, the parsing component logs raw input
data ID, inference input data, prompt file ID, model name, temperature parameter
value, and parsed data. The validation component logs user details upon successful
authentication, input parsed data ID, intermediate files with user modifications and
the final verified data.

Integration with Neptune.ai allows each execution of the parsing or validation
component to add a new record to the registry. Neptune’s UI enables easy browsing
of runs, filtering by logged parameters, and adding custom tags, which is crucial for
error inspection and verifying the correct operation of the application. Figures 10.15
and 10.16 illustrate the runs table and detailed logs view in Neptune.ai, respectively.

10.3.2 User interface design

The user interface (UI) of the eligibility criteria parser is a fundamental component
that enables domain experts to validate parsing results and make necessary correc-
tions. It is built using Streamlit, which allows for seamless integration with data and
ML pipelines, and quick delivery, which is one of the PoC goals. Using Streamlit
eliminates the need for a dedicated frontend developer to build a simple UI.
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Figure 10.15: Main view of the validation component logs in Neptune.ai

The interface is designed to be intuitive and user-friendly, ensuring it can be eas-
ily operated by non-technical users and providing all necessary information for do-
main experts to perform validation tasks accurately. This section outlines the various
elements and functionalities of the UI.

The first page of the interface is the authorization page. It contains a header:
"Please enter your name and the secret key to access the validation app" and a form with
three fields: "Your first name", "Your surname", and "Secret key" (Figure 10.17). Users
must provide their names, which must be at least three characters long. Any shorter
input results in a yellow warning "First name and surname must be at least 3 characters
long." (Figure 10.17(a)) and prevents proceeding. The "Secret key" is a password-type
field where input characters are obscured. The provided value is compared against a
string defined in a secret TOML file. If there is a mismatch, the user sees a red error:
"Secret key incorrect". (Figure 10.17(b)). The user can log in after providing names
that meet the three-characters condition and a correct password.

The next page is the welcome page with instructions for the user on how to
use the application and validate the parsed data (Figure 10.18). After familiarizing
themselves with the guidelines, the user clicks the green "Start" button to proceed.

The validation page provides the interface for correcting the parsed data for a
single trial (Figure 10.19). It is divided into four parts. The top two are scrollable
text containers for inclusion and exclusion criteria text. The bottom left contains a
table with conditions and phrases, which can be modified. It enables text corrections,
adding, or deleting rows. To increase validation efficiency, each phrase from the table
is highlighted in the inclusion and exclusion criteria text, and the highlighted spans
have tags indicating the relevant conditions (Figure 10.20). Adding a new phrase to
the table causes it to be highlighted it in the text, and removing a phrase removes the
highlighted span. The highlighting feature is case-insensitive but requires matching
syntax, punctuation and spelling.
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(a) Pipeline statuses and execution times.

(b) JSON file with parsed data.

(c) Hardware monitoring.

Figure 10.16: Detailed view of an individual run’s logs in Neptune.ai.
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(a) Authorization with incorrect name value.

(b) Authorization with incorrect password.

Figure 10.17: Authorization page of the validation UI.

The bottom right sections contains parsing guidelines to ensure consistent vali-
dation, providing users with reminders on the rules for boolean expression creation.
This section includes expanders with allowed terms, rules for defining required, dis-
allowed, or alternative conditions, and instructions for separating different phrases
in a single row (Figure 10.21). When the user finishes validation, they click the green
"Next" button to move on to a new example.
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Figure 10.18: Welcome page of the validation UI.

Figure 10.19: Validation page of the validation UI.
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Figure 10.20: Phrase highlighting feature of the validation UI.

Figure 10.21: Guidelines section of the validation UI.
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When all examples are validated, the user is presented with the final page of
the application - the "Thank you" page, which includes a message of gratitude for
completing the task and instruction on whom to contact in case of questions (Fig-
ure 10.22). To exit the app, the user simply closes the tab in the browser.

Figure 10.22: Final page of the validation UI.

10.3.3 Explainability

One of the valuable features of any ML product, especially in the medical domain, is
its capability to explain the model decisions. The eligibility criteria parser provides
such functionality through the use of a chain-of-thought approach. The examples
provided in the prompt contain the complete reasoning behind the decisions made in
parsing. They present a detailed process, include comments with explanations, and
show some intermediate transformations. By utilizing in-context learning, the model
learns to follow the same approach when generating responses for new examples
in inference. This process is triggered by a phrase added at the end of the prompt,
which mimics the start of the chain of thought presented in the examples.

This technique was tested in experimentation, and we observed that the final
parsed outcomes are more accurate when the model is fed with chain-of-thought
examples and follows this reasoning in its output. Additionally, providing more
examples with chains of thought has better impact on the accuracy, than expanding
the guidelines and adding some extra rules, exceptions etc. Moreover, including
examples with incorrect extractions on purpose, and refining them after with some
explanations, improves the accuracy even more. In the inference, we see that the
model folows this process in exactly the same way, some of the mistakes are fixed in
the intermediate steps, resulting in a correct final output. Moreover, this generated
output with full reasoning can function as an explanation feature. To illustrate how
it works, we will focus on a specific example of trial NCT00486668 and its inference
results. The inclusion and exclusion criteria for this trial are shown in Figure 10.23.

The trial criteria were processed by the parsing component, where they were
inserted into the placeholders of the tool prompt (presented in Appendix C) and
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the prompt was passed to the GPT-4o model. The output generated by the model
is shown in Figure 10.24. From the output, it is possible to inspect step-by-step
how the model arrived at the final output. For instance, we see that four conditions
were extracted from exclusion criteria, so they are negated in the boolean expression,
which is visible in Step 4. Moreover, in Step 3, the term "metastatic" is translated
to "(Stage IV)", according to the guidelines. Additionally, we see that in first step it
extracts also a sentence "Prior history of breast cancer, including DCIS (Patients with a
history of LCIS are eligible)", which is related to the past, not current state, but in the
Step 2 it correctly refines it and explains "related to history, not current state, should be
removed" and this condition is not further used by the model.

Additionally, the output from the model includes phrases that were responsible
for creating the condition list, which is also very supportive in interpretation and
validation. For example, we know that "cN2b" and "cN3" were mapped to "Stage
IIIb" and "Stage IIIc", which makes these extractions easy to be verified by the domain
experts with the provided phrases. We also see that the model correctly merged two
phrases related to "NOT Stage IV" into one list, separated by "||", as specified in the
instruction.

Currently, the full explanations are only stored in logs and available from the
Neptune.ai tool, but they can be easily integrated into the validation app if required
by users. In the current version, the users are only presented with the conditions and
relevant phrases.
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Inclusion criteria:
Female; 18 years or older; ECOG performance status of 0 or 1; Primary breast tumor palpable
and measures greater than or equal to 2.0 cm by physical exam; Diagnosis of invasive
adenocarcinoma made by core needle biopsy; Breast cancer determined to be HER2-positive; LVEF
assessment by MUGA scan or ECG within 3 months prior to randomization; Blood counts must meet
the following criteria:; ANC greater than or equal to 1200/mm3; Platelet count greater than or
equal to 100,000/mm3; Hemoglobin greater than or equal to 10 g/dL; Serum creatinine less than
or equal to ULN for the lab; Adequate hepatic function by these criteria:; Total bilirubin
less than or equal to the ULN for the lab unless the patient has a bilirubin elevation greater
than ULN to 1.5 x ULN resulting from Gilbert’s disease or similar syndrome due to slow
conjugation of bilirubin; and; Alkaline phosphatase less than or equal to 2.5 x ULN; and; AST
less than or equal to 1.5 x ULN for the lab.; If skeletal pain present or alkaline phosphatase
greater than ULN (but less than or equal to 2.5 x ULN), bone scan or PET scan must not
demonstrate metastatic disease; If AST or alkaline phosphatase greater than ULN , liver
imaging (CT, MRI or PET scan) must not demonstrate definitive metastatic disease and the
requirements in criterion for hepatic function must be met; Able to swallow oral medications;

Exclusion criteria:
FNA alone to diagnose the primary tumor; Excisional biopsy or lumpectomy was performed prior
to randomization; Surgical axillary staging procedure prior to randomization. Exceptions: 1)
FNA or core biopsy of an axillary node for any patient, and 2) although not recommended, a pre
-neoadjuvant therapy SN biopsy for patients with clinically negative axillary nodes.; Tumors
clinically staged as T4; Ipsilateral cN2b or cN3 disease (Patients with cN1 or cN2a disease
are eligible); Definitive clinical or radiologic evidence of metastatic disease; Synchronous
bilateral invasive breast cancer; Requirement for chronic use of any of the medications or
substances specified in the protocol; Treatment including RT, chemotherapy, and/or targeted
therapy for the currently diagnosed breast cancer prior to randomization; Any sex hormonal
therapy, e.g., birth control pills, ovarian hormone replacement therapy, etc. (These patients
are eligible if therapy is discontinued prior to randomization); Continued therapy with any
hormonal agent such as raloxifene, tamoxifen, or other SERM. (Patients are eligible only if
these medications are discontinued prior to randomization); Prior history of breast cancer,
including DCIS (Patients with a history of LCIS are eligible); Prior therapy with
anthracyclines, taxanes, trastuzumab, or lapatinib for any malignancy; Other malignancies
unless the patient is considered to be disease-free for 5 or more years prior to randomization
and is deemed by her physician to be at low risk for recurrence. Patients with the following
cancers are eligible if diagnosed and treated within the past 5 years: carcinoma in situ of
the cervix, carcinoma in situ of the colon, melanoma in situ, and basal cell and squamous cell
carcinoma of the skin.; Cardiac disease that would preclude the use of the drugs included in
the B-41 treatment regimens. This includes but is not confined to:; Active cardiac disease:;
angina pectoris requiring the use of anti-anginal medication;; ventricular arrhythmias except
for benign premature ventricular contractions controlled by medication;; conduction
abnormality requiring a pacemaker;; supraventricular and nodal arrhythmias requiring a
pacemaker or not controlled with medication; and; clinically significant valvular disease.;
History of cardiac disease:; myocardial infarction;; congestive heart failure; or;
cardiomyopathy.; Uncontrolled hypertension, defined as blood pressure greater than 150/90 mm/
Hg on antihypertensive therapy; History of or current symptomatic interstitial pneumonitis or
pulmonary fibrosis or definitive evidence of interstitial pneumonitis or pulmonary fibrosis
described on CT or chest x-ray in asymptomatic patients; Sensory/motor neuropathy greater than
or equal to grade 2, as defined by the NCI’s CTCAE v3.0; Malabsorption syndrome, ulcerative
colitis, resection of the stomach or small bowel, or other disease significantly affecting
gastrointestinal function; Other non-malignant systemic disease that would preclude treatment
with any of the treatment regimens or would prevent required follow-up; Conditions that would
prohibit administration of corticosteroids; Administration of any investigational agents
within 30 days before randomization; Pregnancy or lactation

Figure 10.23: Inclusion and exclusion criteria for trial NCT00486668.
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### Step 1: Identify phrases and conditions.
"Diagnosis of invasive adenocarcinoma made by core needle biopsy": Invasive AND Adenocarcinoma
[Inclusion]
"Breast cancer determined to be HER2-positive": HER2+ [Inclusion]
"Tumors clinically staged as T4": Stage IV [Exclusion]
"Ipsilateral cN2b or cN3 disease (Patients with cN1 or cN2a disease are eligible)": Stage IIIb
OR Stage IIIc [Exclusion]
"Definitive clinical or radiologic evidence of metastatic disease": Metastatic [Exclusion]
"Synchronous bilateral invasive breast cancer": Bilateral [Exclusion]
"Prior history of breast cancer, including DCIS (Patients with a history of LCIS are eligible)
": DCIS [Exclusion]
### Step 2: Refine the list of phrases.
"Diagnosis of invasive adenocarcinoma made by core needle biopsy": Invasive AND Adenocarcinoma
[Inclusion] - mentioned in guidelines
"Breast cancer determined to be HER2-positive": HER2+ [Inclusion] - mentioned in guidelines
"Tumors clinically staged as T4": Stage IV [Exclusion] - mentioned in guidelines
"Ipsilateral cN2b or cN3 disease (Patients with cN1 or cN2a disease are eligible)": Stage IIIb
OR Stage IIIc [Exclusion] - mentioned in guidelines
"Definitive clinical or radiologic evidence of metastatic disease": Metastatic [Exclusion] -
mentioned in guidelines
"Synchronous bilateral invasive breast cancer": Bilateral [Exclusion] - mentioned in
guidelines
"Prior history of breast cancer, including DCIS (Patients with a history of LCIS are eligible)
": DCIS [Exclusion] - related to history, not current state, should be removed
### Step 3: Apply additional guidelines.
Invasive AND Adenocarcinoma directly from text.
HER2+ directly from text.
Stage IV directly from text.
Stage IIIb OR Stage IIIc directly from text.
Metastatic translates to Stage IV.
Bilateral directly from text.
### Step 4: Translate into boolean expression.
(Invasive AND Adenocarcinoma AND HER2+) AND NOT (Stage IV OR Stage IIIb OR Stage IIIc OR
Bilateral)
### Step 5: Transform into condition list.
Invasive
Adenocarcinoma
HER2+
NOT Stage IV
NOT Stage IIIb
NOT Stage IIIc
NOT Bilateral
### Step 6: Create pairs.
Condition: "Invasive", Phrases: "Diagnosis of invasive adenocarcinoma made by core needle
biopsy"
Condition: "Adenocarcinoma", Phrases: "Diagnosis of invasive adenocarcinoma made by core
needle biopsy"
Condition: "HER2+", Phrases: "Breast cancer determined to be HER2-positive"
Condition: "NOT Stage IV", Phrases: "Tumors clinically staged as T4" || "Definitive clinical
or radiologic evidence of metastatic disease"
Condition: "NOT Stage IIIb", Phrases: "Ipsilateral cN2b or cN3 disease (Patients with cN1 or
cN2a disease are eligible)"
Condition: "NOT Stage IIIc", Phrases: "Ipsilateral cN2b or cN3 disease (Patients with cN1 or
cN2a disease are eligible)"
Condition: "NOT Bilateral", Phrases: "Synchronous bilateral invasive breast cancer"

Figure 10.24: Output from the GPT-4o model for trial NCT00486668.
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10.3.4 Implementation of MLOps practices

The development of the eligibility criteria parsing tool incorporated numerous MLOps
practices to ensure robust performance, reproducibility, reliable results, and effective
monitoring. As this is a Proof of Concept, not all requirements stated in Chapter 9
were implemented. However, the implemented practices made the experimentation
process and tool evaluation more efficient. Furthermore, they ensure that this PoC
design will not need to be rebuilt from scratch if approved for production but can
serve as a solid foundation.

Firstly, Git is used for version control of the code. There are two repositories, one
for the parsing component and another for the validation component. The history of
updates is maintained, and all modifications are tracked. Each change is developed
within a separate branch, and changes are integrated into the main branch through
merge requests. The code is documented, with all functions containing docstrings
and type hints. The repositories include README.md files with project descriptions
and instructions on how to execute the code.

Care is taken to ensure code quality. The code is well-crafted and organized
into modules and functions with a narrow scope. Code duplication is avoided, and
confidential variables are stored as environment variables rather than hard-coded.
The Python logging module is used for logging. Pre-commit hooks such as isort
and Flake8 are implemented to ensure consistent code formatting and adherence to
software development standards. Code that does not meet these standards cannot
be committed. Automated testing is implemented with basic unit tests. The test
coverage for both projects is above 80%.

The project environment is reproducible and maintained with Poetry. Project
dependencies are defined in the pyproject.toml file along with their specific versions.
In the validation component repository, they are also listed in the requirements.txt file,
which is needed for Streamlit application deployment.

All pipelines are automated, covering data loading, preprocessing, inference,
post-processing, and data saving. There are no manual intermediate steps. For
the PoC scope, only the parsing component pipeline needs to be started manually.
The tool design is modular and flexible, allowing new functionalities to be easily
added to the pipelines. For instance, a new therapeutic area can be included by
slightly modifying the prompt, such as updating medical instructions or providing
additional examples for in-context learning.

The data files are stored on-premise. However, in the case of the validation com-
ponent, the input dataset also needs to be added to the Git repository to be loaded
in the deployed application in Streamlit Cloud. This is a temporary solution that can
be easily replaced if another infrastructure is selected over Streamlit Cloud. Notably,
the datasets used contain public data, so this solution does not violate any security
rules.

Moreover, all experiments are tracked in Neptune.ai, which is integrated with
the pipelines of both components. Neptune.ai stores the prompt templates used
and serves as a reliable repository of experimental configurations. This allows for
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easy comparison of experiments and selection of the best configuration, ensuring
reproducible results. Neptune.ai also functions as a monitoring tool, storing logs
from the final solution and tracking all necessary data for assessing tool performance
and error inspection.

Despite working only with public data, the validation application includes au-
thorization, requiring users to enter a password to log in. This ensures that only
authorized users can access and modify the data, which is aligned with security
practices. Additionally, the Streamlit Cloud app is connected to the Git repository,
enabling continuous deployment of changes. Any modification to the main branch
results in an update to the validation application.

If accepted for production at Roche, additional MLOps practices will need to be
implemented, for instance, containerization and CI/CD. Streamlit Cloud should be
replaced with an internal cloud solution, and a recommended data storage option
must be chosen. Furthermore, the logging storage and monitoring tool should be
changed and separated from the experiment tracking.

10.4 Evaluation

Evaluating the output from a generative model in the complex task of information
extraction is challenging due to a lack of robust, standardized methods. Therefore,
the criteria parsing tool is evaluated manually in a specially designed experiment to
ensure a valid assessment of its effectiveness.

The experiment involves four participants: a domain expert with extensive know-
ledge of breast cancer eligibility criteria, a doctor with general medical knowledge,
and two less experienced individuals familiar with basic medical terminology but
not experts. The objective is to compare the time efficiency of manual parsing against
LLM-supported parsing. A dedicated Streamlit application has been developed for
the experiment, accessible only to authorized users with the correct password.

Upon authorization, users are presented with detailed parsing instructions and a
link to open these instructions in a separate tab for reference during the experiment.
The instructions include a list of allowed terms for the extraction tables and a link
to a document with three examples of pre-parsed criteria, to show the participants
what is expected from them. These instructions are available in Appendix D.

The experiment begins with a training phase where users work through four ex-
amples of eligibility criteria: two for manual parsing and two for LLM-supported
parsing. This phase allows participants to familiarize themselves with the tool, but
the results are not included in the final analysis. Examples are presented on separate
screens, one after another. In the manual parsing screen, users manually fill in the
table with conditions and phrases, then click "Finish example" to proceed. The man-
ual parsing page is presented in Figure 10.25. In the AI-supported parsing screen,
tables are pre-filled with the parsed output from the LLM, and relevant phrases are
highlighted in the text, as in the validation app (Figure 10.19). The user’s task is to
verify and correct these conditions.
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Figure 10.25: UI for manual parsing in the evaluation experiment.

The second phase is the core of the experiment, where results are logged and used
for performance analysis. This phase mirrors the structure of the training phase but
includes ten examples—five for manual parsing and five for AI-supported parsing.
The examples from both groups are alternated to reduce the impact of the time re-
duction per example correlated with the increasing experience in the app and total
time spent in the app. The examples include real eligibility criteria text from ten
breast cancer trials sourced from ClinicalTrials.gov. These examples were carefully
selected to ensure similar lengths of criteria texts and a comparable number of ex-
tracted rows in both manual and AI-assisted parsing examples, which enables a fair
comparison between the two approaches.

The examples are separated by intermittent screens to offer users the chance to
take breaks. Before starting this experiment phase, users are informed that the time
spent on each example is measured and are asked to avoid disturbances during an-
notation. The time spent on each trial, along with the final versions of the extraction
tables, is logged to Neptune.ai in the background.

At the end of the experiment, the average time taken for manual parsing ver-
sus LLM-supported parsing is analyzed for each participant. It is anticipated that
AI-supported parsing will significantly reduce the time required compared to the
manual approach.

10.5 Results

The experiment results reveal varied outcomes, likely influenced by differences in
participants’ expertise and their interaction with the parsing tool. Table 10.1 shows
the time taken by each participant—identified as Expert, Doctor, Novice 1, and
Novice 2—to complete both manual and LLM-supported parsing across all ten exam-
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Table 10.1: Time taken by participants for manual and LLM-supported parsing
(in minutes).

Expert Doctor Novice 1 Novice 2
#1 - manual 2.996 3.138 5.975 5.450

#1 - LLM 4.520 0.968 0.920 1.783
#2 - manual 6.815 7.407 8.845 6.678

#2 - LLM 4.417 6.372 5.766 8.884
#3 - manual 6.900 4.452 5.372 3.463

#3 - LLM 2.199 2.574 5.461 4.883
#4 - manual 4.798 7.382 5.658 6.137

#4 - LLM 9.836 4.829 2.697 2.427
#5 - manual 3.881 8.201 6.310 5.806

#5 - LLM 5.463 2.904 4.184 6.692
Manual Avg. 5.078 6.116 6.432 5.507

LLM Avg. 5.287 3.529 3.806 4.934

ples. These examples were paired based on the criteria text length and the expected
number of rows in the extraction table.

The Expert’s results show notable variability between tasks. The average time for
manual parsing was 5.078 minutes, while the LLM-supported took slightly longer,
averaging 5.287 minutes. This indicates that the parsing tool did not consistently re-
duce the overall time for the Expert. However, we there is considerable inconsistency
in the results for this participant. For instance, in pair #3, the LLM-supported parsing
time was significantly shorter than manual parsing, and in pair #2, manual parsing
took almost 2.5 minutes longer than the LLM validation. In contrast, the Expert
achieved better times in manual parsing than in the LLM-supported parsing for the
remaining pairs. This could suggest that the Expert’s experience makes them very
efficient manually, or that the LLM output required more time to verify and correct.
Additionally, while the Expert was expected to achieve the shortest time in all trials,
this was not consistently observed. For example, in #1 - LLM, the Expert was much
slower than the others, which is also noticeable in #3 - manual and #4 - LLM. In the
fourth pair, the Expert took almost 10 minutes, compared to around 5 minutes for the
Doctor and about 2.5 minutes for the Novices. This suggests that other factors, such
as distractions, technical issues, or loss of focus, may have influenced the Expert’s
performance.

For the other participants, the average time results show a significant improve-
ment with LLM-supported parsing. For the Doctor and Novice 1, the time was ap-
proximately 1.7 times shorter with LLM support. The Doctor’s average time dropped
from 6.116 minutes to 3.529 minutes, with the most substantial reduction observed
in pair #1, where LLM parsing took only 0.968 minutes compared to 3.138 minutes
for manual parsing. Similarly, for the Novice 1, LLM support reduced the average
time from 6.432 to 3.806 minutes. The results for these two participants were consis-
tent across examples, with almost every LLM-supported example being faster than
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its manual counterpart. The only exception was in pair #3, where the Novice 1 was
slightly faster manually, but the difference was just 0.089 minutes (approximately 5
seconds).

For the Novice 2, there was greater variability in the results, which is expected
given this participant’s lower experience level. In pairs #1 and #4, LLM-assisted
parsing was significantly faster, with a time reduction of about 4 minutes. However,
in other examples, the Novice 2 was more efficient with manual parsing, although the
differences were smaller (1-2 minutes). Nonetheless, the average time for AI-assisted
parsing was still lower by 0.573 minutes (approximately 34 seconds).

To better understand these time results, it is also necessary to analyze the in-
dividual parsing outputs. While time efficiency provides valuable insights into the
potential benefits of LLM-supported parsing, accuracy of the tool is also important.
In this analysis, we treat the Expert’s responses as the ground truth and use them
to evaluate the LLM extractions as well as the outputs of the other participants. We
focus mostly on the extracted conditions, but the detailed outputs from the LLM-
assisted parsing, including the phrases, are available in Appendix E.

In example #1 - LLM, presented in Table 10.2, no differences were observed be-
tween the outputs of all four participants and the LLM-generated output, which
means that no changes were made to the provided extractions. This is reflected in
the Doctor’s and Novice 1’s times, which were below 1 minute. However, it is sur-
prising that this example took the Expert more time than the manual parsing of a
similar example, even though there were no corrections from the Expert.

Table 10.3 presents the outputs for example #2 - LLM. In this case, the LLM’s out-
put was not fully correct, as two rows were removed by the Expert. Additionally, the
Expert modified the logical expression in the first row by adding the value from the
third row, "IBC", although the Expert did not follow the instruction correctly, using
the synonym "Inflammatory", which in not listed in the allowed terms. Interestingly,
the Doctor’s response was identical to the Expert’s but correctly used the "IBC" term.
The Novice 1 also removed the second row from the model output but did not fully
grasp the logical meaning of the "IBC" condition. The Novice 2’s output contained
even more mistakes, including the addition of two incorrect rows NOT DCIS OR
NOT LCIS and "NOT HER2+", the latter of which contradicts the inclusion condi-
tion "HER2+" in the previous row. Surprisingly, this example took the Expert less
time, despite involving more corrections to the LLM output. This additional burden
is reflected in the longer times for the other participants, particularly the Novice 2,
who took almost 9 minutes—over 2 minutes longer than the corresponding manual
example.

In the third example (Table 10.4), the responses from the Expert, Doctor, and
Novice 1 were identical, with no changes made to the model output. However, the
Novice 2 accepted all the rows from LLM but incorrectly added four additional lines,
two of which were redundant ("HER2-" and "ER- AND PR-") as they duplicated
conditions already mentioned in the second row. Additionally, the Novice 2 misin-
terpreted the phrase "More than one prior line of chemotherapy in the locally advanced
unresectable or metastatic setting." as indicating an excluded breast cancer type ("NOT
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Stage IIIb OR NOT Stage IIIc"), when it actually refers to an excluded treatment type.
A similar situation was observed in the phrase assigned by Novice 2 to the condition
"Stage IV": "Treatment with < 1 prior line of systemic therapy in the metastatic setting
or adjuvant/neoadjuvant setting if metastatic recurrence within 12 months of treatment",
which was incorrectly interpreted as a required metastatic cancer subtype, when in
fact it refers to a required treatment type. In this example we also notice a significant
time reduction in LLM-supported parsing for both the Expert and the Doctor, reflect-
ing the absence of changes changes made to the model output by these participants.
However, the Novice 2, who added several unnecessary rows, took about 1.5 minutes
longer than in the corresponding manual example.

Table 10.5 shows the conditions extracted in example #4 - LLM. In this case, the
model’s output was mostly correct, but it missed three additional conditions that
were identified only by the Expert. These conditions required highly specialized
knowledge to infer, such as determining Stage I OR Stage II OR Stage III from the
phrase Primary breast tumor palpable and measures greater than or equal to 2.0 cm by
physical exam, or "NOT Stage IIIc" from "Ipsilateral cN2b or cN3 disease (Patients with
cN1 or cN2a disease are eligible)". Additionally, the Expert extracted the "NOT Recur-
rent" condition based on the exclusion criterion "Prior history of breast cancer, including
DCIS (Patients with a history of LCIS are eligible)", which has a very indirect meaning.
Furthermore, the model, Expert, and Novice 2 included only "NOT Bilateral" in the
table, inferred from the phrase "Synchronous bilateral invasive breast cancer", but the
term "Invasive" should also have been added, which was correctly done by the Doctor
and Novice 1. Interestingly, despite the Expert spending significantly more time on
this example (almost 10 minutes) than the other participants, their extraction was not
entirely correct. This example highlights the significant difference in time between
the Expert and the rest, as well as between the Expert’s manual and LLM-supported
parsing (4.798 vs. 9.836 minutes).

In the fifth example, the model’s output was entirely correct, with no changes
made by the Expert or the Doctor. The Novice 1 added one incorrect row, "Metastatic",
based on a phrase that referred to treatment characteristics rather than breast cancer
type. The Novice 2, however, introduced four additional rows, including a dupli-
cated "Stage IV" row and an incorrect "NOT Stage IV" row that contradicted the
other conditions. For example, the "Stage IV" was inferred from the phrase "the
biopsy of metastatic disease before starting first-line therapy and assessed by local laboratory"
which is related to the required treatment, not to the cancer subtype. The Novice
2 also misinterpreted the condition "ER+ AND PGR+" based on a phrase "Patients
ER and PgR < 1% eligible to receive atezolizumab in combination with nab-paclitaxel as
standard of care treatment for metastatic triple-negative breast cancer (TNBC), regardless of
study participation", that is related to treatment eligibility rather than required can-
cer biomarkers. Moreover, the level "<1%" means negative polarity, not positive, as
stated in the Novice 2’ extraction. Interestingly, the Novice 2 took almost 7 minutes
for this example, which is longer than the corresponding manual task. The Expert
also took more time on this example than on the manual parsing, which is surprising
given that no changes were made to the model output in the Expert’s response. The
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Doctor and Novice 2, however, had relatively low times, 3.529 and 3.806 minutes,
respectively, which is consistent with the lack of any corrections needed.

In conclusion, the accuracy assessment of the model shows that the LLM-supported
parsing tool performs well, with high accuracy overall. The most significant er-
ror occurred when the model added two incorrect rows in second example, which
could have resulted in limiting the pool of eligible participants—a more serious issue
compared to missing conditions like in the fourth example. However, the analysis
also highlights inconsistencies in the Expert’s time performance, particularly in cases
where the LLM-supported parsing took longer than expected despite no corrections
being made to the model’s output. This anomaly suggests that additional factors,
such as distractions or technical issues, may have influenced the Expert’s perfor-
mance. This is a limitation of conducting experiments in non-laboratory conditions,
where full control over participants’ environments is not possible.

Despite these inconsistencies, when we consider the average and overall time
performance across all participants, there is a clear benefit to using the parsing tool.
The Doctor’s results, for instance, demonstrate a significant time reduction with LLM
support, coupled with a high level of agreement with the model’s output. The Novice
2, on the other hand, introduced many incorrect modifications, which not only in-
creased their time but also reduced the accuracy of the results. This contrasts with
the Doctor’s performance, which underscores the advantage of having a medical
background when using the tool.

Finally, one complex task required highly specialized knowledge in breast cancer
eligibility criteria, which only the Expert could accurately address. This suggests that
integrating more domain-specific rules and knowledge into the prompt, potentially
with the Expert’s involvement in prompt engineering, could further enhance the
model’s performance in such specialized tasks.

Overall, the experiment shows that the LLM-supported parsing tool offers sub-
stantial benefits in both time efficiency and accuracy, particularly when used by in-
dividuals with relevant expertise.
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Table 10.2: Parsing results for example #1 - LLM.

LLM Expert Doctor Novice 1 Novice 2
Stage IIIb OR Stage IIIc
OR Stage IV

Stage IIIb OR Stage IIIc
OR Stage IV

Stage IIIb OR Stage IIIc
OR Stage IV

Stage IIIb OR Stage IIIc
OR Stage IV

Stage IIIb OR Stage IIIc
OR Stage IV

HER2+ HER2+ HER2+ HER2+ HER2+
Progressive Progressive Progressive Progressive Progressive

Table 10.3: Parsing results for example #2 - LLM.

LLM Expert Doctor Novice 1 Novice 2
Stage II OR Stage IIIa
OR Stage IIIb OR Stage
IIIc

Stage II OR Stage IIIa
OR Stage IIIb OR Stage
IIIc OR Inflammatory

Stage II OR Stage IIIa
OR Stage IIIb OR Stage
IIIc OR IBC

Stage II OR Stage IIIa
OR Stage IIIb OR Stage
IIIc

Stage II OR Stage IIa
OR stage IIB OR Stage
IIIa OR Stage IIIb OR
Stage IIIc

Stage IIIb OR Stage IIIc - - - -
IBC - - IBC IBC
HER2+ HER2+ HER2+ HER2+ HER2+
NOT Stage IV NOT Stage IV NOT Stage IV NOT Stage IV NOT Stage IV
NOT Multicentric NOT Multicentric NOT Multicentric NOT Multicentric NOT Multicentric
NOT Bilateral NOT Bilateral NOT Bilateral NOT Bilateral NOT Bilateral
- - - - NOT DCIS OR NOT

LCIS
- - - - NOT HER2+
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Table 10.4: Parsing results for example #3 - LLM.

LLM Expert Doctor Novice 1 Novice 2
Stage IV OR Stage IIIb
OR Stage IIIc

Stage IV OR Stage IIIb
OR Stage IIIc

Stage IV OR Stage IIIb
OR Stage IIIc

Stage IV OR Stage IIIb
OR Stage IIIc

Stage IV OR Stage IIIb
OR Stage IIIc

ER- AND PR- AND
HER2-

ER- AND PR- AND
HER2-

ER- AND PR- AND
HER2-

ER- AND PR- AND
HER2-

ER- AND PR- AND
HER2-

PD-L1+ PD-L1+ PD-L1+ PD-L1+ PD-L1+
- - - - HER2-
- - - - ER - AND PR -
- - - - Stage IV
- - - - NOT Stage IIIb OR

NOT Stage IIIc

Table 10.5: Parsing results for example #4 - LLM.

LLM Expert Doctor Novice 1 Novice 2
Invasive Invasive Invasive Invasive Invasive
Adenocarcinoma Adenocarcinoma Adenocarcinoma Adenocarcinoma Adenocarcinoma
HER2+ HER2+ HER2+ HER2+ HER2+
NOT Stage IV NOT Stage IV NOT Stage IV NOT Stage IV NOT Stage IV
NOT Bilateral NOT Bilateral NOT (Bilateral AND

Invasive)
NOT (Bilateral AND
Invasive)

NOT Bilateral

- Stage I OR Stage II OR
Stage III

- - -

- NOT Stage IIIc - - -
- NOT Recurrent - - -
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Table 10.6: Parsing results for example #5 - LLM.

LLM Expert Doctor Novice 1 Novice 2
Adenocarcinoma Adenocarcinoma Adenocarcinoma Adenocarcinoma Adenocarcinoma
Stage IV Stage IV Stage IV Stage IV Stage IV
ER- AND PR- AND
HER2-

ER- AND PR- AND
HER2-

ER- AND PR- AND
HER2-

ER- AND PR- AND
HER2-

ER- AND PR- AND
HER2-

PD-L1+ PD-L1+ PD-L1+ PD-L1+ PD-L1+
- - - Metastatic Stage IV
- - - - ER+ AND PGR+
- - - - Stage IV
- - - - NOT Stage IV
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10.6 Limitations and future directions

While the development and application of the parsing tool represent significant ad-
vancement in processing the eligibility criteria, we identified several limitations and
areas for improvement during this study.

Firstly, the tool currently extracts only three types of conditions: biomarkers, sub-
types, and stages, while ignoring other crucial criteria related to treatments, metas-
tases, or laboratory tests, among others. It also focuses on the patient’s current health
status, neglecting the medical history, which is frequently mentioned in eligibility cri-
teria and could disqualify many patients. Additionally, the tool is limited to breast
cancer clinical trials, even though there are other therapeutic areas covering numer-
ous trials that have different sets of eligibility criteria and vocabularies. The three
condition types selected for this tool are specific to oncology trials and do not ap-
ply to other therapeutic areas. However, this was a intentional choice to focus on a
small subset of criteria to explore the tool’s potential. Breast cancer trials constitute a
significant portion of Roche’s trials and these three condition types were selected by
domain experts as the most critical for this Proof of Concept. If the tool is accepted,
it is designed to be easily extendable with more condition types or adaptable to other
therapeutic areas.

Moreover, the current version of the tool does not consider "if-then" relationships
in logical expressions, which are common in eligibility criteria. These relationships
often apply criteria to specific groups of patients, significantly changing the meaning.
For example, a criterion like "For patients with TNBC, at least one line of prior systemic
therapy is required" could be expressed as "IF (PR- AND ER- AND HER2-) THEN
(chemotherapy OR immunotherapy)", and it is important to include this logic in future
versions of the tool.

Domain experts also highlighted that there are often indirect duplications in in-
clusion and exclusion criteria, that should be correctly handled by the tool. For in-
stance, requiring early-stage cancer in the inclusion criteria while excluding metastatic
or advanced cancer in the exclusion criteria essentially express the same information.
Hence, it may be sufficient to include only the inclusion criterion in the extraction
table, as the exclusions are redundant and not needed for matching with patient
records.

Additionally, experts identified other redundancies in the model’s output. Some
extracted conditions overlap with others, as they define subgroups of more general
conditions. For instance, "IDC" (Invasive Ductal Carcinoma) and "ILC" (Invasive
Lobular Carcinoma) are both forms of invasive cancer, so adding "Invasive" as a
separate condition is redundant. Similarly, "Adenocarcinoma" is a broader category
that includes IDC and ILC, so it does not need to be listed separately. A post-
extraction step to remove such redundant conditions could be added to the final
parsing pipeline.

There are also some technical concepts that need improvement. For instance,
the current UI accepts any text in the "Condition" column, allowing users to enter
terms that are not listed in the allowed terms or to make typos. This was a conscious
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decision in the PoC phase to avoid restricting users from adding important conditions
that may have been skipped in the model’s guidelines. However, implementing a
verification feature to prevent such issues would be beneficial in future versions of
the tool. Additionally, the current UI highlights phrases in the text and associates
them with only one tag from the table, even though a single phrase might relate to
multiple conditions. This situation is not currently handled by the tool currently but
should be improved so that relevant phrases can be associated with multiple tags. As
this is a PoC, there are also MLOps considerations, such as CI/CD, dockerization,
and integration with Roche;s cloud infrastructure and recommended data storage,
that need to be addressed before deployment to production.

The evaluation experiment also requires adjustments to provide more reliable re-
sults. The current results serve as initial check of the tool’s potential, but future steps
should include refining the tool and conducting a more rigours experiment under
controlled conditions with more resources. Performing the experiment in laboratory
conditions would help eliminate distractions that could affect time measurements.
Additionally, involving more experts and assessing the alignment between them is
crucial, as inconsistencies in expert responses were observed even in this experiment.
To obtain more convincing results, the experiment should include a larger and more
diverse set of trials and examples. The current accuracy evaluation focuses only on
LLM-assisted parsing without considering manual parsing examples. Establishing a
ground truth for manual examples would also be beneficial, as participants in AI-
assisted task might be influenced by the model’s output. Finally, to fully evaluate the
tool, it is essential to assess how the final output affects the population of patients
eligible for the trial, determining whether the model is too restrictive or too lenient
compared to manually parsed criteria. A control group of experts performing man-
ual parsing versus those using AI-assisted parsing on the same set of trials would
provide valuable insights into the tool’s effectiveness.

10.7 Conclusions

In conclusion, the development of the parsing tool is a significant step forward in
automating the extraction of eligibility criteria for clinical trials, particularly within
the domain of breast cancer. It provides a structured form of inclusion and exclu-
sion criteria, with maintaining logical relations between them. The initial version of
the tool focusing on key conditions—biomarkers, subtypes, and stages—has demon-
strated its potential to automate the trial eligibility determination process. Despite
some limitations, the tool has shown promising results in both accuracy and time ef-
ficiency. The evaluation experiment demonstrated the tool’s effectiveness and proved
that it is beneficial in the criteria parsing process. The tool not only reduces the time
required for parsing but also maintains high accuracy, making it a valuable asset for
future clinical trial screening processes. With continued development and broader
application, this tool has the potential to significantly improve patient-trial matching
and trial efficiency across various therapeutic areas.
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Chapter 11

Conclusion

This thesis explores the potential of neural language models, particularly generative
large language models (LLMs), in parsing clinical trial eligibility criteria—a com-
plex task within the biomedical natural language processing (NLP) that is crucial
for the pharmaceutical industry. Given the challenges that clinical trial face in pa-
tient recruitment, the findings from this research offer promising solutions that could
streamline the process and contribute to more effective delivery of therapies to the
market.

The primary objective of this thesis was to investigate the application of language
models in automating the parsing of clinical trial eligibility criteria. The research
successfully demonstrated that this goal is achievable with the use of LLMs, such as
the GPT-4 model evaluated in the named entity recognition task (Chapter 7) and the
GPT-4o model utilized in the parsing tool (Chapter 10). The experiments revealed
that these models are extremely powerful, especially in the context of eligibility cri-
teria, which are challenging to process with simpler models. We also discovered that
plain named entity recognition is insufficient for patient-trial matching applications
and a more complex parsing output is required, which further justifies the use of
generative models over BERT-based models.

Key achievements of this thesis include the development of a prototype tool that
accurately transforms eligibility criteria into a machine-readable format required by
a trial screening algorithm, the evaluation of various NLP models in biomedical ap-
plications, and the practical insights gained from implementing the tool within a
real-world pharmaceutical context. Chapter by chapter, this thesis explores both the
scientific and implementation aspects of the criteria parsing problem. The scientific
section lays the foundation for practical applications, starting with an evaluation of
the impact of eligibility criteria and other trial features on trial performance. Sub-
sequent chapters explore the NLP resources for biomedical domain and provide a
deep review of previous studies on eligibility criteria parsing using ML and NLP.
The thesis also describes two experiments—one evaluating various text embedding
techniques in the biomedical semantic textual similarity task, and the second evalu-
ating different language models, including GPT-4, in named entity recognition from
eligibility criteria. Building on the promising results from these studies, the thesis
further focuses on the implementation at Roche. It describes a prompt engineering
hackathon organized within the company, states the conceptual and technical re-
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quirements for the parsing tool from Roche’s perspective, and culminates in the suc-
cessful design and implementation of a Proof of Concept tool. Chapter 10 provides
the technical details of the tool—both the backend and frontend—and evaluates the
parser’s performance. It demonstrates the feasibility and potential value of utilizing
LLMs in a clinical trial management system.

The research hypothesis stated that neural language models could enhance the
parsing of clinical trial eligibility criteria compared to the traditional manual meth-
ods. The findings support this hypothesis, as the experiments showed that LLMs
can correctly interpret and structure the criteria, even in low-resource settings. We
observed a significant gain in efficiency when using LLM support for criteria parsing
compared to manual work. The tool’s ability to handle the complex semantics of
eligibility criteria and provide correct logical structures emphasizes its potential to
revolutionize the patient recruitment process.

This thesis makes several original contributions to the field of biomedical NLP.
To our knowledge this thesis presents the most extensive and up-to-date scoping re-
view of NLP and ML solutions for parsing eligibility criteria, which could serve as
a valuable resource for future research. The evaluation of sentence embeddings and
the comparison of GPT-4 model with BERT-based models providee additional in-
sights into the performance of these models in biomedical named entity recognition.
Additionally, this thesis presents a combination of advanced prompt engineering
techniques, such as chain-of-though and few-shot prompting, along with negative
examples, which have shown very promising results and significant improvement in
LLM performance with limited annotated data. The proposed parsing tool presents a
practical application of these findings and offers a prototype of a solution that might
improve patient screening for clinical trials.

Despite the promising results, we acknowledge the limitations of this thesis, par-
ticularly concerning the parsing tool developed. First, this thesis focuses only on one
part of the patient-trial matching process—eligibility criteria parsing—and evaluates
it as an isolated task. In the proposal of a patient screening application, patient data
will be provided by the survey filled out by the patient. We did not verify whether
all the conditions we focus on are conditions that patients are knowledgeable about
and can answer accurately in the survey. Another limitation is that the evaluation
of the tool does not consider patient data and the tool’s impact on patient selection.
Furthermore, the tool focuses on breast cancer trials, and we did not assess whether
the findings from the thesis apply to other therapeutic areas. Additionally, while
the hypothesis was supported by the evaluation experiment, the experiment itself re-
quires further refinement to provide more reliable results. The evaluation of the GPT
model in named entity recognition also presented challenges, as it was approached
in a traditional way better suited for encoder models than for generative models.

Future research should focus on developing reliable methods for evaluating gen-
erative models in information retrieval tasks. The examples from the PoC experiment
were evaluated manually, which is not scalable for larger samples. We also encounter
the lack of a proper evaluation method when assessing NER results from the LLM.
Another research direction involves creating a benchmark dataset for parsing eligi-
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bility criteria, since the absence of such datasets was identified as a significant issue
during the scoping review of previous studies. Currently, there are few datasets
available for comparing experiments in this area. We also recognize that there are
limited studies that use the cutting-edge NLP techniques, such as LLMs, in eligi-
bility criteria parsing. Many recent studies still utilize outdated techniques for text
processing. There is a pressing need to explore recent NLP advancements in the
clinical development area. Additionally, as LLMs become increasingly popular and
represent the state-of-the-art in many applications, there is a need to focus on the
industrial and technical aspects of implementing LLM-based solutions. A branch of
MLOps—LLMOps—has begun to develop, but it is still under-studied. Given the
rapid development of LLMs, this should also be a priority research subject. More-
over, the PoC tool developed in this research serves as an initial version of a parsing
system that requires further improvement—specifically extending to other criteria
types and therapeutic areas. More domain experts should be involved in the de-
velopment of this tool to provide more insights, support prompt engineering with
additional guidelines, and conduct deeper evaluations. The tool also requires further
MLOps development.

The findings of this thesis highlight the transformative potential of LLMs in the
clinical development area. By achieving significant performance in eligibility criteria
parsing, the research offers a promising solution to one of the most challenging as-
pects of clinical trials: patient recruitment. While there are limitations to address, the
successful implementation of the Proof of Concept demonstrates that combining AI,
NLP, and domain expertise can lead to substantial advancements in the biomedical
field.
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Appendix

Appendices

A Scoping review search strings

Below are the detailed search strings employed to query the bibliographic databases
included in the scoping review.

EMBASE

(’enrollment’:ti,ab,kw OR ’enrolment’:ti,ab,kw OR ’recruitment’:ti,ab,kw
OR ’screening’:ti,ab,kw OR ’criteria’:ti,ab,kw OR ’eligibility’:ti,ab,kw
OR ’matching’:ti,ab,kw OR ’cohort selection’:ti,ab,kw
OR ’cohort ascertainment’:ti,ab,kw OR ’accrual’:ti,ab,kw
OR ’prescreening’:ti,ab,kw OR ’phenotyping’:ti,ab,kw
OR ’population enrichment’:ti,ab,kw)

AND ’trial*’:ti,ab,kw
AND (’transformer*’:ti,ab,kw OR ’bert’:ti,ab,kw

OR ’named entity recognition’:ti,ab,kw OR ’ner’:ti,ab,kw
OR ’textual entailment’:ti,ab,kw
OR ’natural language inference’:ti,ab,kw
OR ’language model*’:ti,ab,kw OR ’semantic similarity’:ti,ab,kw
OR ’semantic textual similarity’:ti,ab,kw OR ’entity linking’:ti,ab,kw
OR ’information extraction’:ti,ab,kw
OR ’natural language processing’:ti,ab,kw
OR ’nlp’:ti,ab,kw OR ’deep learning’:ti,ab,kw
OR ’machine learning’:ti,ab,kw
OR ’attention mechanism’:ti,ab,kw)
OR ’generative AI’:ti,ab,kw)
OR ’GPT’:ti,ab,kw)

AND [2000-2024]/py
AND [english]/lim
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Scopus

TITLE-ABS-KEY ( (
"enrollment" OR "enrolment" OR "recruitment"
OR "screening" OR "criteria" OR "eligibility"
OR "matching" OR "cohort selection" OR "cohort ascertainment"
OR "accrual" OR "prescreening" OR "phenotyping"
OR "population enrichment" )

AND "trial*"
AND ( "transformer*" OR "bert"

OR "named entity recognition" OR "NER"
OR "textual entailment" OR "natural language inference"
OR "language model*" OR "semantic similarity"
OR "semantic textual similarity" OR "entity linking"
OR "information extraction" OR "natural language processing"
OR "NLP" OR "deep learning" OR "machine learning"
OR "attention mechanism" OR "generative AI" OR "GPT") )

AND PUBYEAR > 1999
AND ( LIMIT-TO ( LANGUAGE , "English" ) )

PubMed

((("enrollment"[Title/Abstract] OR "enrolment"[Title/Abstract]
OR "recruitment"[Title/Abstract] OR "screening"[Title/Abstract]
OR "criteria"[Title/Abstract] OR "eligibility"[Title/Abstract]
OR "matching"[Title/Abstract] OR "cohort selection"[Title/Abstract]
OR "cohort ascertainment"[Title/Abstract] OR "accrual"[Title/Abstract]
OR "prescreening"[Title/Abstract] OR "phenotyping"[Title/Abstract]
OR "population enrichment"[Title/Abstract])

AND "trial*"[Title/Abstract]
AND ("transformer*"[Title/Abstract] OR "bert"[Title/Abstract]

OR "named entity recognition"[Title/Abstract] OR "NER"[Title/Abstract]
OR "textual entailment"[Title/Abstract]
OR "natural language inference"[Title/Abstract]
OR "language model*"[Title/Abstract]
OR "semantic similarity"[Title/Abstract]
OR "semantic textual similarity"[Title/Abstract]
OR "entity linking"[Title/Abstract]
OR "information extraction"[Title/Abstract]
OR "natural language processing"[Title/Abstract]
OR "NLP"[Title/Abstract] OR "deep learning"[Title/Abstract]
OR "machine learning"[Title/Abstract]
OR "attention mechanism"[Title/Abstract]
OR "generative ai"[Title/Abstract]
OR "gpt"[Title/Abstract]))
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AND (("2000/01/01"[Date - Publication] : "3000"[Date - Publication])))
AND (English[Language])

Web of Science

("enrollment" OR “enrolment” OR "recruitment"
OR "screening" OR “criteria” OR “eligibility”
OR “matching” OR “cohort selection” OR “cohort ascertainment”
OR “accrual” OR “prescreening” OR “phenotyping”
OR “population enrichment”)

AND "trial*"
AND ("transformer*" OR "bert" OR "named entity recognition"

OR "NER" OR "textual entailment"
OR "natural language inference" OR "language model*"
OR "semantic similarity" OR "semantic textual similarity"
OR "entity linking" OR “information extraction”
OR "natural language processing" OR “NLP”
OR "deep learning" OR "machine learning"
OR “attention mechanism” OR "generative AI"
OR "GPT") (Topic)

AND English (Language)
AND Timespan: 2000-01-01 to 2024-02-07 (Publication Date)
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B Scoping review data extraction table

The details of data extraction are presented in three separate tables to enhance read-
ability of the study:

• Table 1 presents the title, bibliographic reference, DOI, year of publication, and
a broad description of each paper included in the review.

• Table 2 provides detailed demographic data of each paper, including the title,
DOI, countries from authors’ affiliations, countries where each study was con-
ducted, the therapeutic area covered by the study, and the general character of
the paper.

• Table 3 details the extraction of features from each study, including DOI, main
business objective, NLP methods used, metrics for evaluation, datasets used,
number of protocols and eligibility criteria utilized in experiments, the source
of clinical protocol data, auxiliary datasets, the method of establishing the
ground truth, preprocessing techniques, shallow ML methods described, neural
models used in experimentation, knowledge bases, and the main contribution
of the paper.
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Table 1: Papers included in the scoping review.

Article DOI Year Description
Formulating queries for assessing clinical trial eligibility [159] 10.1007/11765448_8 2006 To extract semantic information from eligibility criteria for better patient-trial matching.

Assessing clinical trial eligibility with logic expression queries [160] 10.1016/j.datak.2007.07.005 2008 To extract semantic information reflecting eligibility criteria from clinical trial descriptions and formu-
late queries that can match criteria against medical data in patient records.

ExaCT: automatic extraction of clinical trial characteristics from journal publications [161] 10.1186/1472-6947-10-56 2010 To develop an information exctraction system for extracting key trial characteristics from full-text jour-
nal articles

A practical method for transforming free-text eligibility criteria into computable criteria [162] 10.1016/j.jbi.2010.09.007 2011 To develop a method of transforming free text eligibility criteria into a form suitable for SPARQL/SQL
querying

ASCOT: A text mining-based web-service for efficient search and assisted creation of clinical trials [163] 10.1186/1472-6947-12-S1-S3 2012 To develop an efficient search tool for filtering clinical trial descriptions.

Identifying the status of genetic lesions in cancer clinical trial documents using machine learning [164] 10.1186/1471-2164-13-S8-S21 2012 To develop a machine learning system for identifying mentions of genes and genetic lesions in cancer
clinical trials.

Inferring appropriate eligibility criteria in clinical trial protocols without labeled data [165] 10.1145/2390068.2390074 2012 To develop an unsupervised method of eligibility criteria identification in clinical trial texts.

Analysis of eligibility criteria representation in industry-standard clinical trial protocols [166] 10.1016/j.jbi.2013.06.001 2013 To develop a method of standarization of eligibility criteria across different clinical trial databases.

ETACTS: A method for dynamically filtering clinical trial search results [167] 10.1016/j.jbi.2013.07.014 2013 To evaluate the eTACTS system for advanced querying of clinical trial descriptions.

Feasibility of Feature-based Indexing, Clustering, and Search of Clinical Trials [168] 10.3414/ME12-01-0092 2013 To explore the feasibility of feature-based indexing, clustering, and search of clinical trials.

Protocol Feasibility Workflow Using an Automated Multi-country Patient Cohort System [169] 10.3233/978-1-61499-432-9-985 2014 To build a system for querying patients eligible for clinical trial participation across many countries’
registries.

Supporting Patient Screening to Identify Suitable Clinical Trials [170] 10.3233/978-1-61499-432-9-823 2014 To develop a solution for flexible formalization of criteria and other trial metadata and for effective
management of those representations

An eligibility criteria query language for heterogeneous data warehouses [171] 10.3414/ME13-02-0027 2015 To develop a clinical-readable query language for heterogenous warehouses of medical information.

Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for
clinical trials in the emergency department [172]

10.1136/amiajnl-2014-002887 2015 To evaluate an automated eligibility screening approach to clinical trials using different machine learn-
ing methods.

Increasing the efficiency of trial-patient matching: automated clinical trial eligibility Pre-screening for
pediatric oncology patients [173]

10.1186/s12911-015-0149-3 2015 To identify patients who meet core eligibility characteristics of an oncology clinical trial.

Textual inference for eligibility criteria resolution in clinical trials [174] 10.1016/j.jbi.2015.09.008 2015 To build a dataset of clinical texts annotated with eligibility criteria entailment.

Automated learning of domain taxonomies from text using background knowledge [175] 10.1016/j.jbi.2016.09.002 2016 To create a framework for unsupervised ontology learning from clinical trial texts.

Patterns for conflict identification in clinical trial eligibility criteria [176] 10.1109/HealthCom.2016.7749519 2016 To develop a method for automated identification of potential treatment conflicts between trials.

Valx: A System for Extracting and Structuring Numeric Lab Test Comparison Statements from
Text [177]

10.3414/ME15-01-0112 2016 To develop and evaluate an automated method for extracting and structuring numeric comparison
statements in trial eligibility criteria text.

An OMOP CDM-Based Relational Database of Clinical Research Eligibility Criteria [178] 10.3233/978-1-61499-830-3-950 2017 To build a database of clinical trials for easy querying and filtering of trials using multiple criteria.

Automated classification of eligibility criteria in clinical trials to facilitate patient-trial matching for
specific patient populations [179]

10.1093/jamia/ocw176 2017 To develop automated classification methods for eligibility criteria to facilitate patient-trial matching
for specific populations such as persons living with HIV or pregnant women.

Conflict discovery and analysis for clinical trials [180] 10.1145/3079452.3079494 2017 To match medical treatments to exclusion criteria in clinical trial text.

EliIE: An open-source information extraction system for clinical trial eligibility criteria [181] 10.1093/jamia/ocx019 2017 To develop a system for parsing free text clinical trial descriptions.

Extending the Query Language of a Data Warehouse for Patient Recruitment [182] 10.3233/978-1-61499-808-2-152 2017 To develop a data warehouse querying language for matching patient electronic health records with
clinical trial eligibility criteria

Numerical Eligibility Criteria in Clinical Protocols: Annotation, Automatic Detection and Interpreta-
tion [183]

10.1007/978-3-319-59758-4_22 2017 To create a model for the detection of complex numerical eligibility criteria in clinical trial texts.

Classifying Eligibility Criteria in Clinical Trials Using Active Deep Learning [184] 10.1109/ICMLA.2018.00052 2018 To automatically identify eligibility criteria that can be evaluated by patients without the help of med-
ical professionals.

Improving Clinical Trial Participant Prescreening With Artificial Intelligence (AI): A Comparison of the
Results of AI-Assisted vs Standard Methods in 3 Oncology Trials [185]

10.1177/2168479018815454 2018 To evaluate the efficacy of Mendel.ai in enrolling eligible patients in clinical trials.

Learning Eligibility in Cancer Clinical Trials Using Deep Neural Networks [186] 10.3390/app8071206 2018 To automatically predict whether short clinical statements were considered inclusion or exclusion cri-
teria.

Automatic trial eligibility surveillance based on unstructured clinical data [187] 10.1016/j.ijmedinf.2019.05.018 2019 To develop an algorithm for automatic identification of patients eligible for clinical trial participation.

Cohort Selection for Clinical Trials From Longitudinal Patient Records: Text Mining Approach [188] 10.2196/15980 2019 To evaluate a system for patient-trial matching.

Cohort selection for clinical trials using deep learning models [189] 10.1093/jamia/ocz139 2019 To evaluate the efficiency of deep neural network architectures in cohort selection tasks.

Criteria2Query: A natural language interface to clinical databases for cohort definition [190] 10.1093/jamia/ocy178 2019 To develop a pipeline for eligibility criteria parsing and converting into CDM-based cohort queries.

DQueST: dynamic questionnaire for search of clinical trials [191] 10.1093/jamia/ocz121 2019 To develop a patient-trial matching system based on dynamic questionaire generation.

Improving Disease Named Entity Recognition for Clinical Trial Matching [192] 10.1109/BIBM47256.2019.8983421 2019 To develop a named entity recognition model for clinical trial texts.
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Improving the efficiency of clinical trial recruitment using electronic health record data, natural lan-
guage processing, and machine learning [193]

10.1002/art.41108 2019 To evaluate if ensemble machine learning algorithm can improve the efficiency of eligibility screening.

Information Extraction from Free Text in Clinical Trials with Knowledge-based Distant Supervi-
sion [194]

10.1109/COMPSAC.2019.00158 2019 To develop a method for extracting medical concepts from free text clinical trial descriptions.

Medical knowledge infused convolutional neural networks for cohort selection in clinical trials [195] 10.1093/jamia/ocz128 2019 To embed electronic health records using convolutional neural networks for better patient-trial match-
ing.

An Ensemble Learning Strategy for Eligibility Criteria Text Classification for Clinical Trial Recruitment:
Algorithm Development and Validation [196]

10.2196/17832 2020 To evaluate the efficacy of model ensembling in the task of eligibility criteria classification.

Artificial Intelligence Tool for Optimizing Eligibility Screening for Clinical Trials in a Large Community
Cancer Center [197]

10.1200/CCI.19.00079 2020 To evaluate the performance of WCTM tool in patient data intake and matching porcesses.

Attention-Based LSTM Network for COVID-19 Clinical Trial Parsing [198] 10.1109/BigData50022.2020.9378451 2020 To investigate different versions of Att-BiLSTM models to extract entities from COVID-19 elgibility
criteria

Chia, a large annotated corpus of clinical trial eligibility criteria [96] 10.1038/s41597-020-00620-0 2020 To create a large annotated corpus of eligibility criteria extracted from clinical trial descriptions.

Cohort selection for clinical trials using multiple instance learning [199] 10.1016/j.jbi.2020.103438 2020 To verify the usefulness of multiple instance learning paradigm in patient-trial matching task.

DeepEnroll: Patient-Trial Matching with Deep Embedding and Entailment Prediction [200] 10.1145/3366423.3380181 2020 To develop a deep neural network for patient-trial matching using cross-modal representation of eligi-
bility criteria and patient electronic health records.

Evaluation of an artificial intelligence clinical trial matching system in Australian lung cancer pa-
tients [201]

10.1093/jamiaopen/ooaa002 2020 To evaluate the performance of IBM Watson for matching patients to clinical trials.

A Scalable Ai Approach For Clinical Trial Cohort Optimization [98] 10.1007/978-3-030-93733-1_36 2021 To inform clinical trial design by automatic extraction of eligibility criteria.

A knowledge base of clinical trial eligibility criteria [98] 10.1016/j.jbi.2021.103771 2021 To build a standardized knowledge base of elgibility criteria.

Accuracy of an Artificial Intelligence System for Cancer Clinical Trial Eligibility Screening: Retrospec-
tive Pilot Study [95]

10.2196/27767 2021 To evaluate Watson CDSS system for matching patients to clinical trials

Building a specialized lexicon for breast cancer clinical trial subject eligibility analysis [202] 10.1177/1460458221989392 2021 To develop the specialized lexicon of medical terms.

Building an OMOP common data model-compliant annotated corpus for COVID-19 clinical trials [203] 10.1016/j.jbi.2021.103790 2021 To build an annotated dataset of eligibility criteria for COVID-19 clinical trials.

COVID-19 trial graph: a linked graph for COVID-19 clinical trials [204] 10.1093/jamia/ocab078 2021 To create a graph database of structured and unstructured medical information fromm COVID-19
clinical trials

Classification And Extraction Of Medical Clinical Trial Screening Standard Texts Based On Bi-Lstm
And Attention Mechanism [204]

10.1088/1755-1315/632/5/052088 2021 To develop a model for eligibility criteria classification.

Clinical Trial Information Extraction with BERT [98] 10.1109/ICHI52183.2021.00092 2021 To evaluate the effectiveness of BERT embeddings in medical information extraction.

EMR2vec: Bridging the gap between patient data and clinical trial [205] 10.1016/j.cie.2021.107236 2021 To develop a system for patient-trial matching.

How the clinical research community responded to the COVID-19 pandemic: an analysis of the
COVID-19 clinical studies in ClinicalTrials.gov [206]

10.1093/jamiaopen/ooab032 2021 To conduct a systematic analysis of clinical trials on COVID-19

Parsing clinical trial eligibility criteria for cohort query by a multi-input multi-output sequence labeling
model [207]

10.1101/2021.11.18.21266533 2021 To evaluate a sequence labeling model in parsing and extracting medical entities in eligibility criteria.

Predictive modeling of clinical trial terminations using feature engineering and embedding learn-
ing [208]

10.1038/s41598-021-82840-x 2021 To predict clinical trial terminations and identify main factors influencing the terminations.

Semantic categorization of Chinese eligibility criteria in clinical trials using machine learning meth-
ods [209]

10.1186/s12911-021-01487-w 2021 To extract semantic categories from eligibility criteria in Chinese clinical trials.

Study of Pre-trained Language Models for Named Entity Recognition in Clinical Trial Eligibility Crite-
ria from Multiple Corpora [210]

10.1109/ICHI52183.2021.00095 2021 To explore transformer-based models for clinical term extraction from eligibility criteria

Transformer-Based Named Entity Recognition for Parsing Clinical Trial Eligibility Criteria [207] 10.1145/3459930.3469560 2021 To extract named entities in eligibility criteria using transformer-based model.

A Comparative Study Of Pre-Trained Language Models For Named Entity Recognition In Clinical Trial
Eligibility Criteria From Multiple Corpora [211]

10.1186/s12911-022-01967-7 2022 To compare multiple pre-trained language models in the task of named entity recognition in clinical
trial descriptions.

A Unified Machine Reading Comprehension Framework for Cohort Selection [212] 10.1109/JBHI.2021.3095478 2022 To develop a machine reading comprehension (MRC) framework for cohort selection and evaluate
different MRC algorithms, in particular, the use of the cross-criteria attention.

An Evaluation of Pretrained BERT Models for Comparing Semantic Similarity Across Unstructured
Clinical Trial Texts [94]

10.3233/SHTI210848 2022 To evaluate the efficacy of BERT models in assessing semantic similarity of clinical trial descriptions

Combining Human And Machine Intelligence For Clinical Trial Eligibility Querying [213] 10.1093/jamia/ocac051 2022 To develop a system (Criteria2Query 2.0) for automatic conversion of eligibility criteria into cohort
queries.

Hint: Hierarchical Interaction Network For Clinical-Trial-Outcome Predictions [214] 10.1016/j.patter.2022.100445 2022 To predict the success of a clinical trial using deep neural networks.

Predicting Publication Of Clinical Trials Using Structured And Unstructured Data: Model Development
And Validation Study [215]

10.2196/38859 2022 To develop a system for clinical trial publication
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Syntactic and Semantic Knowledge-Aware Paraphrase Detection for Clinical Data [216] 10.1007/978-981-16-2937-2_13 2022 To develop a knowledge-aware neural network model for paraphrase detection in eligibility criteria
texts.

The Leaf Clinical Trials Corpus: A New Resource For Query Generation From Clinical Trial Eligibility
Criteria [97]

10.1038/s41597-022-01521-0 2022 To build an annotated corpus of clinical trial eligibility criteria.

A Self-Learning Resource-Efficient Re-Ranking Method For Clinical Trials Search [217] 10.1145/3583780.3615174 2023 To develop a CT ranking method to facilitate trial search.

Automated Matching Of Patients To Clinical Trials: A Patient-Centric Natural Language Processing
Approach For Pediatric Leukemia [218]

10.1200/CCI.23.00009 2023 To create a patient-trial matching tool for pediatric leukemia.

Automatic Assessment Of Patient Eligibility By Utilizing Nlp And Rule-Based Analysis [219] 10.1109/EMBC40787.2023.10340494 2023 To develop a model for fully automatic selection of patients for clinical trials.

Distilling Large Language Models For Matching Patients To Clinical Trials [220] 10.1109/ICHI57859.2023.00100 2023 To develop a pipeline for information extraction from AD clinical trial eligibility criteria.

Effective Matching Of Patients To Clinical Trials Using Entity Extraction And Neural Re-Ranking [221] 10.1016/j.jbi.2023.104444 2023 To develop a method for clinical trial retrieval for the purpose of patient-trial matching

Growth In Eligibility Criteria Content And Failure To Accrue Among National Cancer Institute (Nci)-
Affiliated Clinical Trials [222]

10.1002/cam4.5276 2023 To investigate the impact of eligibility criteria on trial accrual and identify criteria assosiated with
accrual failure

Improving Clinical Trial Design Using Interpretable Machine Learning Based Prediction Of Early Trial
Termination [223]

10.1038/s41598-023-27416-7 2023 To inform clinical trial design using interpretable machine learning models for predicting early trial
terminations.

Piloting An Automated Clinical Trial Eligibility Surveillance And Provider Alert System Based On
Artificial Intelligence And Standard Data Models [224]

10.1186/s12874-023-01916-6 2023 To improve patient-trial matching by electronic health record normalization and to build efficient user
interface for clinical trial selection.

Treement: Interpretable Patient-Trial Matching Via Personalized Dynamic Tree-Based Memory Net-
work [225]

10.1145/3584371.3612998 2023 To develop a model for interpretable patient trial matching.

Understanding Common Key Indicators Of Successful And Unsuccessful Cancer Drug Trials Using A
Contrast Mining Framework On Clinicaltrials.Gov [226]

10.1016/j.jbi.2023.104321 2023 To evaluate the effectiveness of contrastive learning paradigm in the prediction of clinical trial success.

Autocriteria: A Generalizable Clinical Trial Eligibility Criteria Extraction System Powered By Large
Language Models [227]

10.1093/jamia/ocad218 2024 To build an LLM-based tool for information extraction frm eligibility criteria without a need of labeled
training data.

Characterisation Of Digital Therapeutic Clinical Trials: A Systematic Review With Natural Language
Processing [228]

10.1016/S2589-7500(23)00244-3 2024 To explore digital therapeutics clinical trials.

Criteria2Query 3.0: Leveraging Generative Large Language Models For Clinical Trial Eligibility Query
Generation [229]

10.1016/j.jbi.2024.104649 2024 To create a tool leveraging LLMs for information extraction from eligbility criteria.

Distilling Large Language Models For Matching Patients To Clinical Trials [230] 10.1093/jamia/ocae073 2024 To compare the efficacy of proprietary vs. open-source LLMs in patient-trial matching task.

Sociotechnical Feasibility Of Natural Language Processing-Driven Tools In Clinical Trial Eligibility
Prescreening For Alzheimer’S Disease And Related Dementias [231]

10.1093/jamia/ocae032 2024 To assess feasibility of existing NLP tools for eligibility prescreening for AD trials.

Utilizing Large Language Models For Enhanced Clinical Trial Matching: A Study On Automation In
Patient Screening [232]

10.7759/cureus.60044 2024 To apply LLMs for automatic trial aligibility screening.
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Table 2: Study demographics.

Title DOI Country (au-
thor)

Country (re-
search)

Therapeutic area General character

Formulating queries for assessing clinical trial eligibility 10.1007/11765448_8 USA not specified not specified software presenta-
tion

Assessing clinical trial eligibility with logic expression queries 10.1016/j.datak.2007.07.005 USA not specified not specified research paper
ExaCT: automatic extraction of clinical trial characteristics from journal publications 10.1186/1472-6947-10-56 Canada not specified not specified software presenta-

tion
A practical method for transforming free-text eligibility criteria into computable criteria 10.1016/j.jbi.2010.09.007 USA, Israel USA not specified research paper
ASCOT: A text mining-based web-service for efficient search and assisted creation of clinical trials 10.1186/1472-6947-12-S1-S3 UK UK not specified software presenta-

tion
Identifying the status of genetic lesions in cancer clinical trial documents using machine learning 10.1186/1471-2164-13-S8-S21 USA not specified oncology model evaluation
Inferring appropriate eligibility criteria in clinical trial protocols without labeled data 10.1145/2390068.2390074 UK not specified not specified research paper
Analysis of eligibility criteria representation in industry-standard clinical trial protocols 10.1016/j.jbi.2013.06.001 USA not specified pain therapeutics research paper
ETACTS: A method for dynamically filtering clinical trial search results 10.1016/j.jbi.2013.07.014 USA not specified not specified software presenta-

tion
Feasibility of Feature-based Indexing, Clustering, and Search of Clinical Trials 10.3414/ME12-01-0092 USA not specified breast cancer research paper
Protocol Feasibility Workflow Using an Automated Multi-country Patient Cohort System 10.3233/978-1-61499-432-9-985 Germany not specified not specified research paper
Supporting Patient Screening to Identify Suitable Clinical Trials 10.3233/978-1-61499-432-9-823 Netherlands,

Belgium, Spain
not specified breast cancer software presenta-

tion
An eligibility criteria query language for heterogeneous data warehouses 10.3414/ME13-02-0027 UK not specified not specified research paper
Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical
trials in the emergency department

10.1136/amiajnl-2014-002887 USA USA pediatrics research paper

Increasing the efficiency of trial-patient matching: automated clinical trial eligibility Pre-screening for pe-
diatric oncology patients

10.1186/s12911-015-0149-3 USA USA pediatric oncology research paper

Textual inference for eligibility criteria resolution in clinical trials 10.1016/j.jbi.2015.09.008 USA, Chile not specified coronary artery dis-
ease

dataset presentation

Automated learning of domain taxonomies from text using background knowledge 10.1016/j.jbi.2016.09.002 USA not specified cardiovascular dis-
ease, Alzheimer’s
disease, breast cancer

software presenta-
tion

Patterns for conflict identification in clinical trial eligibility criteria 10.1109/HealthCom.2016.7749519 USA not specified pediatric oncology research paper
Valx: A System for Extracting and Structuring Numeric Lab Test Comparison Statements from Text 10.3414/ME15-01-0112 China, USA not specified diabetes software presenta-

tion
An OMOP CDM-Based Relational Database of Clinical Research Eligibility Criteria 10.3233/978-1-61499-830-3-950 USA USA Alzheimer’s disease dataset presentation
Automated classification of eligibility criteria in clinical trials to facilitate patient-trial matching for specific
patient populations

10.1093/jamia/ocw176 USA not specified oncology research paper

Conflict discovery and analysis for clinical trials 10.1145/3079452.3079494 USA not specified pediatric oncology research paper
EliIE: An open-source information extraction system for clinical trial eligibility criteria 10.1093/jamia/ocx019 USA USA Alzheimer’s disease software presenta-

tion
Extending the Query Language of a Data Warehouse for Patient Recruitment 10.3233/978-1-61499-808-2-152 Germany Germany stroke research paper
Numerical Eligibility Criteria in Clinical Protocols: Annotation, Automatic Detection and Interpretation 10.1007/978-3-319-59758-4_22 France, Brazil not specified not specified model evaluation
Classifying Eligibility Criteria in Clinical Trials Using Active Deep Learning 10.1109/ICMLA.2018.00052 USA USA not specified research paper
Improving Clinical Trial Participant Prescreening With Artificial Intelligence (AI): A Comparison of the
Results of AI-Assisted vs Standard Methods in 3 Oncology Trials

10.1177/2168479018815454 USA USA oncology software presenta-
tion

Learning Eligibility in Cancer Clinical Trials Using Deep Neural Networks 10.3390/app8071206 Spain not specified oncology model evaluation
Automatic trial eligibility surveillance based on unstructured clinical data 10.1016/j.ijmedinf.2019.05.018 USA not specified breast cancer research paper
Cohort Selection for Clinical Trials From Longitudinal Patient Records: Text Mining Approach 10.2196/15980 UK not specified not specified software presenta-

tion
Cohort selection for clinical trials using deep learning models 10.1093/jamia/ocz139 Spain not specified not specified model evaluation
Criteria2Query: A natural language interface to clinical databases for cohort definition 10.1093/jamia/ocy178 USA not specified Alzheimer’s disease software presenta-

tion
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DQueST: dynamic questionnaire for search of clinical trials 10.1093/jamia/ocz121 USA USA oncology software presenta-
tion

Improving Disease Named Entity Recognition for Clinical Trial Matching 10.1109/BIBM47256.2019.8983421 USA not specified not specified model evaluation
Improving the efficiency of clinical trial recruitment using electronic health record data, natural language
processing, and machine learning

10.1002/art.41108 USA USA rheumatoid arthritis research paper

Information Extraction from Free Text in Clinical Trials with Knowledge-based Distant Supervision 10.1109/COMPSAC.2019.00158 USA USA not specified research paper
Medical knowledge infused convolutional neural networks for cohort selection in clinical trials 10.1093/jamia/ocz128 Taiwan not specified not specified research paper
An Ensemble Learning Strategy for Eligibility Criteria Text Classification for Clinical Trial Recruitment:
Algorithm Development and Validation

10.2196/17832 China China not specified model evaluation

Artificial Intelligence Tool for Optimizing Eligibility Screening for Clinical Trials in a Large Community
Cancer Center

10.1200/CCI.19.00079 USA USA breast cancer software presenta-
tion

Attention-Based LSTM Network for COVID-19 Clinical Trial Parsing 10.1109/BigData50022.2020.9378451 USA, Switzer-
land

not specified COVID-19 model evaluation

Chia, a large annotated corpus of clinical trial eligibility criteria 10.1038/s41597-020-00620-0 USA not specified not specified dataset presentation
Cohort selection for clinical trials using multiple instance learning 10.1016/j.jbi.2020.103438 Taiwan, Aus-

tralia
not specified not specified research paper

DeepEnroll: Patient-Trial Matching with Deep Embedding and Entailment Prediction 10.1145/3366423.3380181 USA not specified not specified model evaluation
Evaluation of an artificial intelligence clinical trial matching system in Australian lung cancer patients 10.1093/jamiaopen/ooaa002 Australia, USA Australia lung cancer software presenta-

tion
A Scalable Ai Approach For Clinical Trial Cohort Optimization 10.1007/978-3-030-93733-1_36 USA, Switzer-

land
not specified breast cancer research paper

A knowledge base of clinical trial eligibility criteria 10.1016/j.jbi.2021.103771 USA not specified not specified dataset presentation
Accuracy of an Artificial Intelligence System for Cancer Clinical Trial Eligibility Screening: Retrospective
Pilot Study

10.2196/27767 USA USA breast cancer software presenta-
tion

Building a specialized lexicon for breast cancer clinical trial subject eligibility analysis 10.1177/1460458221989392 USA USA breast cancer dataset presentation
Building an OMOP common data model-compliant annotated corpus for COVID-19 clinical trials 10.1016/j.jbi.2021.103790 USA USA COVID-19 research paper
COVID-19 trial graph: a linked graph for COVID-19 clinical trials 10.1093/jamia/ocab078 USA not specified COVID-19 research paper
Classification And Extraction Of Medical Clinical Trial Screening Standard Texts Based On Bi-Lstm And
Attention Mechanism

10.1088/1755-
1315/632/5/052088

China China not specified model evaluation

Clinical Trial Information Extraction with BERT 10.1109/ICHI52183.2021.00092 USA, Switzer-
land

not specified not specified model evaluation

EMR2vec: Bridging the gap between patient data and clinical trial 10.1016/j.cie.2021.107236 Lebanon,
France

not specified stroke, osteoarthri-
tis, thyroid cancer,
prostate cancer,
breast cancer, obesity

software presenta-
tion

How the clinical research community responded to the COVID-19 pandemic: an analysis of the COVID-19
clinical studies in ClinicalTrials.gov

10.1093/jamiaopen/ooab032 USA not specified COVID-19 research paper

Parsing clinical trial eligibility criteria for cohort query by a multi-input multi-output sequence labeling
model

10.1101/2021.11.18.21266533 USA not specified Alzheimer’s disease model evaluation

Predictive modeling of clinical trial terminations using feature engineering and embedding learning 10.1038/s41598-021-82840-x USA not specified not specified research paper
Semantic categorization of Chinese eligibility criteria in clinical trials using machine learning methods 10.1186/s12911-021-01487-w China China hepatocellular carci-

noma
research paper

Study of Pre-trained Language Models for Named Entity Recognition in Clinical Trial Eligibility Criteria
from Multiple Corpora

10.1109/ICHI52183.2021.00095 USA not specified not specified model evaluation

Transformer-Based Named Entity Recognition for Parsing Clinical Trial Eligibility Criteria 10.1145/3459930.3469560 USA USA not specified model evaluation
A Comparative Study Of Pre-Trained Language Models For Named Entity Recognition In Clinical Trial
Eligibility Criteria From Multiple Corpora

10.1186/s12911-022-01967-7 USA not specified not specified model evaluation

A Unified Machine Reading Comprehension Framework for Cohort Selection 10.1109/JBHI.2021.3095478 China not specified not specified research paper
An Evaluation of Pretrained BERT Models for Comparing Semantic Similarity Across Unstructured Clinical
Trial Texts

10.3233/SHTI210848 USA not specified not specified model evaluation

Combining Human And Machine Intelligence For Clinical Trial Eligibility Querying 10.1093/jamia/ocac051 USA not specified COVID-19,
Alzheimer’s dis-
ease

software presenta-
tion
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Hint: Hierarchical Interaction Network For Clinical-Trial-Outcome Predictions 10.1016/j.patter.2022.100445 USA not specified not specified model evaluation
Predicting Publication Of Clinical Trials Using Structured And Unstructured Data: Model Development
And Validation Study

10.2196/38859 Australia not specified not specified research paper

Syntactic and Semantic Knowledge-Aware Paraphrase Detection for Clinical Data 10.1007/978-981-16-2937-2_13 India not specified not specified model evaluation
The Leaf Clinical Trials Corpus: A New Resource For Query Generation From Clinical Trial Eligibility
Criteria

10.1038/s41597-022-01521-0 USA not specified not specified dataset presentation

A Self-Learning Resource-Efficient Re-Ranking Method For Clinical Trials Search 10.1145/3583780.3615174 Australia not specified not specified model evaluation
Automated Matching Of Patients To Clinical Trials: A Patient-Centric Natural Language Processing Ap-
proach For Pediatric Leukemia

10.1200/CCI.23.00009 USA USA pediatric leukemia research paper

Automatic Assessment Of Patient Eligibility By Utilizing Nlp And Rule-Based Analysis 10.1109/EMBC40787.2023.10340494 Singapore not specified cardiovascular dis-
ease

model evaluation

Distilling Large Language Models For Matching Patients To Clinical Trials 10.1109/ICHI57859.2023.00100 USA NaN Alzheimer’s disease model evaluation
Effective Matching Of Patients To Clinical Trials Using Entity Extraction And Neural Re-Ranking 10.1016/j.jbi.2023.104444 Austria, Italy,

UK
not specified not specified research paper

Growth In Eligibility Criteria Content And Failure To Accrue Among National Cancer Institute (Nci)-
Affiliated Clinical Trials

10.1002/cam4.5276 USA, Nether-
lands

USA oncology research paper

Improving Clinical Trial Design Using Interpretable Machine Learning Based Prediction Of Early Trial
Termination

10.1038/s41598-023-27416-7 UK not specified not specified research paper

Piloting An Automated Clinical Trial Eligibility Surveillance And Provider Alert System Based On Artificial
Intelligence And Standard Data Models

10.1186/s12874-023-01916-6 Netherlands,
USA

USA cardiovascular dis-
ease, oncology

software presenta-
tion

Treement: Interpretable Patient-Trial Matching Via Personalized Dynamic Tree-Based Memory Network 10.1145/3584371.3612998 USA not specified not specified model evaluation
Understanding Common Key Indicators Of Successful And Unsuccessful Cancer Drug Trials Using A
Contrast Mining Framework On Clinicaltrials.Gov

10.1016/j.jbi.2023.104321 USA USA oncology research paper

Autocriteria: A Generalizable Clinical Trial Eligibility Criteria Extraction System Powered By Large Lan-
guage Models

10.1093/jamia/ocad218 USA NaN breast cancer, mul-
tiple myeloma,
Alzheimer’s disease,
NASH, IBD, rare
diseases

model evaluation

Characterisation Of Digital Therapeutic Clinical Trials: A Systematic Review With Natural Language Pro-
cessing

10.1016/S2589-7500(23)00244-3 USA USA digital therapeutics research paper

Criteria2Query 3.0: Leveraging Generative Large Language Models For Clinical Trial Eligibility Query
Generation

10.1016/j.jbi.2024.104649 USA not specified not specified model evaluation

Distilling Large Language Models For Matching Patients To Clinical Trials 10.1093/jamia/ocae073 USA, India NaN NaN research paper
Sociotechnical Feasibility Of Natural Language Processing-Driven Tools In Clinical Trial Eligibility Pre-
screening For Alzheimer’S Disease And Related Dementias

10.1093/jamia/ocae032 USA not specified Alzheimer’s disease research paper

Utilizing Large Language Models For Enhanced Clinical Trial Matching: A Study On Automation In Patient
Screening

10.7759/cureus.60044 USA not specified not specified model evaluation
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Table 3: Data charting. A: business objective, B: NLP methods, C: metrics, D: datasets, E: #protocols, F: #criteria, G: protocol
source, H: auxiliary datasets, I: ground truth, J: preprocessing, K: shallow ML methods, L: neural models, M: knowledge bases,

N: main contribution

DOI A B C D E F G H I J K L M N
10.1007/11765448_8 patient CT

matching
IR custom internal 25000 CT.gov EHR manual custom trans-

formations,
regex, sentence
segmentation

custom
rules

SNOMED method

10.1016/j.datak.2007.07.005 patient CT
matching

IR, nor-
malization

PRF not speci-
fied

100 1545 CT.gov manual normalization,
custom trans-
formations

method

10.1186/1472-6947-10-56 CT pars-
ing

IR precision,
recall

not speci-
fied

182 PubMed manual BOW, keyword
filtering, nor-
malization,
regex, sentence
segmentation

SVM evaluation

10.1016/j.jbi.2010.09.007 CT pars-
ing

normalization custom not speci-
fied

CT.gov manual keyword fil-
tering, custom
transformations

dependency
parsing

UMLS method

10.1186/1472-6947-12-S1-S3 CT design NER not speci-
fied

keyword filter-
ing, term nor-
malization

evaluation

10.1186/1471-2164-13-S8-S21 CT pars-
ing

NER, IR,
EL

accuracy internal 250 1143 NCI manual POS, negation
detection, key-
word filtering

SVM method

10.1145/2390068.2390074 CT design STS, clas-
sification,
topic
modeling

similarity not speci-
fied

44203 462459 CT.gov CT.gov
structured
data

BOW, key-
word filtering,
normalization

LDA,
logistic re-
gression,
custom
rules,
cosine
similarity

method

10.1016/j.jbi.2013.06.001 CT pars-
ing

normalization,
RL, STS

custom not speci-
fied

32 internal,
CT.gov

manual keyword fil-
tering, term
normaliza-
tion, custom
transforma-
tions, sentence
segmentation

cosine
similarity,
custom
rules

UMLS method

10.1016/j.jbi.2013.07.014 patient CT
matching

STS custom internal 141291 CT.gov synthetic
EHR

POS, keyword
filtering, term
normalization

jaccard
similarity,
custom
rules

evaluation

10.3414/ME12-01-0092 CT pars-
ing

clustering Cohen
kappa

not speci-
fied

80 CT.gov manual term normal-
ization, custom
transforma-
tions, sentence
segmentation

HAC, cus-
tom rules

UMLS method

10.3233/978-1-61499-432-9-
985

patient CT
matching

not speci-
fied

not speci-
fied

not speci-
fied

method
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10.3233/978-1-61499-432-9-
823

patient CT
matching

NER custom not speci-
fied

internal custom
rules

SNOMED,
LOINC

method

10.3414/ME13-02-0027 patient CT
matching

IR, EL custom internal 17 208 CCR, HL7
RIM

method

10.1136/amiajnl-2014-002887 patient CT
matching

IR F1, MAP,
custom

not speci-
fied

13 not
speci-
fied

manual normalization,
BOW, negation
detection, TF-
IDF, custom
transforma-
tions, sentence
segmentation

custom
rules

UMLS,
SNOMED,
RxNORM

method

10.1186/s12911-015-0149-3 patient CT
matching

IR precision,
recall,
NPV,
specificity

internal 55 CT.gov EHR manual keyword filter-
ing, negation
detection,
regex, sentence
segmentation

custom
rules

UMLS,
SNOMED,
RxNORM

method

10.1016/j.jbi.2015.09.008 patient CT
matching

NLI F1 i2b2/n2c2,
internal

5054 4 CT.gov EHR manual keyword filter-
ing, normaliza-
tion, custom
transforma-
tions, sentence
segmentation

custom
rules

UMLS method

10.1016/j.jbi.2016.09.002 dataset
building

IR, RE PRF, sil-
houette,
purity

455773 CT.gov manual term nor-
malization,
normaliza-
tion, sentence
segmentation

jaccard
similarity,
HAC

UMLS,
SNOMED,
DBPedia,
MEDLINE

method

10.1109/HealthCom.2016.7749519 patient CT
matching

IR custom not speci-
fied

56 1588 CT.gov normalization,
term nor-
malization,
sentence seg-
mentation

custom
rules

UMLS method

10.3414/ME15-01-0112 CT pars-
ing

IR, nor-
malization

PRF not speci-
fied

4383 CT.gov manual normalization,
regex, custom
transformations

UMLS evaluation

10.3233/978-1-61499-830-3-
950

CT pars-
ing

NER,
normal-
ization,
RE

PRF not speci-
fied

1587 CT.gov manual POS, negation
detection, term
normaliza-
tion, sentence
segmentation

SVM SNOMED,
ICD

method

10.1093/jamia/ocw176 patient CT
matching

classification PRF, AUC not speci-
fied

3462 CT.gov manual TF-IDF, term
normaliza-
tion, negation
detection

SVM method

10.1145/3079452.3079494 CT pars-
ing

IR custom not speci-
fied

134 CT.gov normalization custom
rules

UMLS method

10.1093/jamia/ocx019 CT pars-
ing

NER, RE,
normal-
ization

F1, accu-
racy

not speci-
fied

230 CT.gov manual normalization,
negation detec-
tion

SVM, CRF protocol

10.3233/978-1-61499-808-2-
152

patient CT
matching

IR recall internal EHR manual regex, negation
detection

evaluation

10.1007/978-3-319-59758-4_22 patient CT
matching

NER Cohen
kappa

not speci-
fied

211438 2000000 CT.gov manual custom trans-
formations

CRF method
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10.1109/ICMLA.2018.00052 patient CT
matching

classification error rate not speci-
fied

9762 209441 NCI method

10.1177/2168479018815454 patient CT
matching

NLI custom,
precision

not speci-
fied

3 CBCC manual OCR Mendel.ai SNOMED,
ICD

method

10.3390/app8071206 patient CT
matching

classification PRF, Co-
hen kappa

not speci-
fied

49201 6186572 CT.gov protocol
text

BOW, cus-
tom trans-
formations,
normaliza-
tion, sentence
segmentation

SVM,
KNN

word2vec,
CNN

method

10.1016/j.ijmedinf.2019.05.018 patient CT
matching

NER, clas-
sification,
EL

recall,
precision,
AUC,
MAP

internal 3 24 CT.gov EHR manual normalization,
term normal-
ization, custom
transforma-
tions, regex

SVM, co-
sine simi-
larity, cus-
tom rules

method

10.2196/15980 patient CT
matching

STS F1 not speci-
fied

13 n2c2 benchmark
dataset

custom trans-
formations,
normaliza-
tion, BOW,
keyword filter-
ing, sentence
segmentation

SVM,
logistic re-
gression,
NBC, GTB

method

10.1093/jamia/ocz139 n2c2 chal-
lenge

not speci-
fied

F1 i2b2/n2c2 13 word2vec,
CNN,
GRU,
FCFF

method

10.1093/jamia/ocy178 CT design NER PRF, accu-
racy

not speci-
fied

407 CT.gov manual regex, nor-
malization,
custom trans-
formations,
negation detec-
tion, sentence
segmentation

CRF UMLS evaluation

10.1093/jamia/ocz121 patient CT
matching

NER, IR,
EL

custom internal 252330 CT.gov manual BOW, nega-
tion detection,
numerical
normaliza-
tion, custom
transforma-
tions, term
normaliza-
tion, sentence
segmentation

custom
rules,
clustering,
CRF

OHDSI evaluation

10.1109/BIBM47256.2019.8983421 CT pars-
ing

NER PRF not speci-
fied

7500 NCBI,
TREC

BiLSTM-
CRF,
ELMO,
Glove

UMLS,
SNOMED,
MEDICS

method

10.1002/art.41108 patient CT
matching

NER sensitivity,
PPV,
custom

internal 15 manual RF, logis-
tic regres-
sion

UMLS method

10.1109/COMPSAC.2019.00158 CT pars-
ing

normalization accuracy,
recall

not speci-
fied

100 386 CT.gov UMLS,
Wikipedia,
OHDSI

method



194
A

ppendices
10.1093/jamia/ocz128 patient CT

matching
RL PRF not speci-

fied
13 n2c2 benchmark

dataset
term nor-
malization,
normalization,
keyword filter-
ing, sentence
segmentation

CNN,
word2vec

method

10.2196/17832 CT pars-
ing

classification accuracy,
PRF

not speci-
fied

38341 internal manual regex, normal-
ization

GBM BERT,
BERNIE,
XLNet,
RoBERTa

method

10.1200/CCI.19.00079 patient CT
matching

not speci-
fied

accuracy,
sensitivity,
specificity,
PPV, NPV

not speci-
fied

4 218 CT.gov manual POS, nega-
tion detection,
normalization

evaluation

10.1109/BigData50022.2020.9378451CT design NER PRF CTP 2998 27352 CT.gov manual term normal-
ization

custom
rules

BiLSTM,
word2vec

MeSH method

10.1038/s41597-020-00620-0 dataset
building

not speci-
fied

PRF, Co-
hen kappa

Chia 1000 12409 CT.gov manual dataset

10.1016/j.jbi.2020.103438 patient CT
matching

classification F1 i2b2/n2c2 13 benchmark
dataset

term normal-
ization, regex,
negation detec-
tion, TF-IDF

SVM,
KNN,
custom
rules

method

10.1145/3366423.3380181 patient CT
matching

NLI F1, AUC IQVIA 794 12445 CT.gov IQVIA,
Synthea

manual numerical nor-
malization,
BOW

MLP, Clin-
icalBERT

method

10.1093/jamiaopen/ooaa002 patient CT
matching

not speci-
fied

accuracy,
precision,
recall,
PPV, NPV

internal 10 11467 internal,
CT.gov

EHR manual evaluation

10.1007/978-3-030-93733-1_36 CT design NER Optum
database

125 3572 CT.gov EHR keyword filter-
ing

CT-BERT method

10.1016/j.jbi.2021.103771 CT pars-
ing

NER, IR,
RE

custom not speci-
fied

352110 3647567 CT.gov manual OMOP
CDM,
SNOMED,
RxNORM

dataset

10.2196/27767 patient CT
matching

not speci-
fied

accuracy,
sensitivity,
specificity,
PPV, NPV

not speci-
fied

4 internal,
CT.gov

manual evaluation

10.1177/1460458221989392 patient CT
matching

IR, EL custom NCI dic-
tionary,
breast-
cancer.org,
emedicine-
health.org

378 CT.gov NCI dic-
tionary,
ACS
website,
breast-
cancer.org

TF-IDF SNOMED protocol

10.1016/j.jbi.2021.103790 CT pars-
ing

NER, IR Cohen
kappa

not speci-
fied

700 11710 CT.gov manual regex, normal-
ization

OMOP
CDM

dataset

10.1093/jamia/ocab078 CT design IR, nor-
malization

precision,
recall

not speci-
fied

3392 CT.gov manual normalization SVM, RF,
GBM,
logistic
regression

GNN,
t-SNE,
node2vec

OMOP
CDM

dataset
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10.1088/1755-
1315/632/5/052088

patient CT
matching

classification PRF not speci-
fied

not
speci-
fied

word2vec,
BiLSTM

method

10.1109/ICHI52183.2021.00092 CT design NER PRF CTP,
Crite-
ria2Query

10 45483 CT.gov benchmark
dataset

normalization CRF, BiL-
STM,
BERT,
BioBERT,
BlueBERT,
Clinical-
BERT

method

10.1016/j.cie.2021.107236 patient CT
matching

classification,
NER, STS,
EL

PRF, p@k i2b2/n2c2 31500 CT.gov manual term nor-
malization,
negation detec-
tion

SVM,
CRF,
custom
rules

CNN,
LSTM,
BioBERT,
word2vec,
BiLSTM,
BiLSTM-
CRF,
BioBERT-
CRF

method

10.1093/jamiaopen/ooab032 CT pars-
ing

IR precision,
recall

not speci-
fied

3765 CT.gov manual term normal-
ization, TF-IDF,
PCA

k-means,
custom
rules

MeSH method

10.1101/2021.11.18.21266533 patient CT
matching

NER, IR PRF, AUC not speci-
fied

13 CT.gov manual POS, normal-
ization

BERT,
BioRoBERTa

evaluation

10.1038/s41598-021-82840-x CT design RL accuracy,
F1, AUC

not speci-
fied

68999 CT.gov custom trans-
formations

RF, XGB,
logistic
regression

MLP method

10.1186/s12911-021-01487-w patient CT
matching

RL PRF not speci-
fied

272 ChiCTR manual normalization,
custom trans-
formations

logistic re-
gression,
NBC,
KNN,
SVM

CNN,
RNN,
FastText,
BERT,
ERNIE

UMLS method

10.1109/ICHI52183.2021.00095 CT pars-
ing

NER PRF Covance,
ELilE,
Chia

1700 internal,
CT.gov

normalization BERT,
Span-
BERT,
BlueBERT,
BioBERT,
PubMed-
BERT,
SciBERT

evaluation

10.1145/3459930.3469560 CT pars-
ing

NER PRF not speci-
fied

4314 CT.gov MIMIC-III manual BERT,
RoBERTa,
ELEC-
TRA,
ALBERT

method

10.1186/s12911-022-01967-7 CT pars-
ing

NER PRF Covance,
ELilE,
Chia

1700 internal,
CT.gov

benchmark
dataset

normalization BERT,
Span-
BERT,
PubMed-
BERT,
BioBERT,
BlueBERT,
SciBERT

method
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10.1109/JBHI.2021.3095478 CT design QA F1 i2b2/n2c2 26 manual normalization,

keyword filter-
ing

BERT,
RoBERTa,
BioBERT,
word2vec,
Glove,
FastText,
BiLSTM,
BiDAF

method

10.3233/SHTI210848 CT simi-
larity

STS similarity not speci-
fied

689 internal,
CT.gov

manual cosine
similarity

BERT,
BioBERT,
BlueBERT,
Clinical-
BioBERT,
SciBERT,
PubMed-
BERT,
CODER

evaluation

10.1093/jamia/ocac051 CT design NER, EL accuracy,
PRF

internal 1015 CT.gov EHR manual POS, nor-
malization,
numerical nor-
malization,
regex

BERT,
PubMed-
BERT

method

10.1016/j.patter.2022.100445 CT classi-
fication

RL AUC, F1 internal 12500 CT.gov drug-
related
datasets

CT.gov
structured
data

GNN,
CNN,
Clinical-
BERT

DrugBank,
ICD

method

10.2196/38859 CT classi-
fication

RL AUC, F1 75000 CT.gov MEDLINE TF-IDF RF FCFF,
BERT,
SciBERT

MEDLINE method

10.1007/978-981-16-2937-2_13 patient CT
matching

STS, clas-
sification

PRF MSRP,
TREC
2018

3160 CT.gov MSRP manual char-level em-
bedding

ClinicalBERT,
word2vec,
CliNER,
FCFF,
LSTM

UMLS,
Drug-
Bank,
CTD

method

10.1038/s41597-022-01521-0 patient CT
matching

NER, RE F1 Chia, LCT 1006 CT.gov manual BiLSTM-
CRF,
BERT,
PubMed-
BERT,
SciBERT

dataset

10.1145/3583780.3615174 patient CT
matching

classification,
ranking

P@10, RR,
NDCG@10

TREC
2021,
TREC
2022

375580 CT.gov benchmark
dataset

custom
rules,
BM25

SciBERT,
monoBERT

method

10.1200/CCI.23.00009 patient CT
matching

classification accuracy,
precision,
recall,
time

internal 216 5251 CT.gov synthetic
EHR

manual regex, custom
transforma-
tions, sentence
segmentation

SVM, cus-
tom rules

FastText method

10.1109/EMBC40787.2023.10340494patient CT
matching

classification,
STS

precision,
recall

internal 1 direct
protocol

EHR manual keyword fil-
tering, term
normalization,
regex, custom
transformations

custom
rules,
cosine
similarity

BioSentVec ICD method
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10.1109/ICHI57859.2023.00100 CT pars-
ing

NER, nor-
malization

precision,
recall, F1

internal 1508 CT.gov manual custom trans-
formations

custom
rules, CRF

SapBERT UMLS method

10.1016/j.jbi.2023.104444 patient CT
matching

NER, clas-
sification,
ranking

P@10, RR,
NDCG@10,
NDCG@5

TREC
2021,
TREC
2022

375580 CT.gov benchmark
dataset

custom trans-
formations,
negation detec-
tion, keyword
filtering, sen-
tence segmen-
tation

BM25 monoBERT,
tradition-
alRR,
SciSpaCy,
medSpaCy,
BERT,
BioBERT,
Clinical-
BERT

10.1002/cam4.5276 CT design IR, NER,
RL

AUC, R2 not speci-
fied

1197 CT.gov CT.gov
structured
data

normalization,
custom trans-
formations

custom
rules,
XGB,
logistic
regression

SciSpaCy method

10.1038/s41598-023-27416-7 CT design NER accuracy,
F1, AUC

Chia 112647 CT.gov CT.gov
structured
data

custom trans-
formations

logistic re-
gression,
RF, XGB,
SHAP,
custom
rules

dataset

10.1186/s12874-023-01916-6 patient CT
matching

IR, NER PRF MUSC
ware-
house

5 EHR manual regex SVM, cus-
tom rules,
cosine
similarity

method

10.1145/3584371.3612998 patient CT
matching

RL, clas-
sification,
normal-
ization

F1, accu-
racy

internal 590 12445 CT.gov EHR manual normalization beam
search

MLP, Tree-
MemNN,
Clinical-
BERT,
Trans-
former
Encoder

USC method

10.1016/j.jbi.2023.104321 CT design RL support,
growth,
PRF

not speci-
fied

18304 CT.gov CT.gov
structured
data

term normal-
ization

RF, logis-
tic regres-
sion

UMLS,
DrugBank

method

10.1093/jamia/ocad218 CT pars-
ing

IR precision,
recall, F1,
accuracy

internal 432 CT.gov manual regex GPT-4,
Davinci-
003

method

10.1016/S2589-7500(23)00244-
3

CT analy-
sis

topic
modeling

accuracy internal 449 CT.gov manual sentence seg-
mentation

BERTopic,
SciSpaCy

method

10.1016/j.jbi.2024.104649 CT pars-
ing

NER, nor-
malization

precision,
recall, F1

not speci-
fied

20 CT.gov manual GPT-4,
GPT-3.5

OMOP
CDM

method

10.1093/jamia/ocae073 patient CT
matching

classification,
ranking

NDCG@10,
P@10,
AUROC,
precision,
recall, F1,
custom

SIGIR,
TREC
2021,
TREC
2022,
internal

23280 CT.gov GPT-
created

GPT-3.5-
turbo,
GPT-4,
LLAMA-
2-7B,
LLAMA-
2-13B,
LLAMA-
2-70B

dataset,
evaluation

10.1093/jamia/ocae032 patient CT
matching

IR ICC, cus-
tom

internal 2 direct
protocol

EHR manual evaluation
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10.7759/cureus.60044 patient CT

matching
classification,
RAG

accuracy,
recall, pre-
cision, F1,
specificity

i2b2/n2c2 13 n2c2 benchmark
dataset

GPT-3.5-
turbo,
GPT-4,
ada-002

method
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C Prompt used for eligibility criteria parsing

Below is the detailed prompt employed to parse eligibility criteria with a pre-trained
GPT-4o model.

Task Description:
You are a clinician recruiting patients for clinical trials. Your job is to interpret
eligibility criteria and transform them into boolean expressions, so that they can be further
used in matching patient records to trials. You should focus only on required or disallowed
criteria, ignore optional ones. Consider only the criteria describing breast cancer stages,
subtypes and biomarkers, and use the allowed terms listed below to construct the expressions.
Any other criteria should not be included in the expressions. In the last step, transform the
boolean expressions into a list of mandatory conditions which will work as a checklist in
patient-trial matching application. Follow the rules outlined below.

Input Data:
Inclusion and exclusion criteria text from the clinical trial protocol.

Rules:
Step 1: Identify phrases and conditions: Extract exact phrases from the eligibility criteria
that directly correspond to the allowed terms of breast cancer subtypes, biomarkers, or
stages. List each extracted phrase and clearly identify which allowed term it corresponds to.
Step 2: Refine the list of phrases: Remove phrases and conditions which do not relate to
allowed terms or to current breast cancer. Remove conditions that are not mandatory.
Step 3: Apply additional guidelines: Where possible, apply the inferring guidelines and
replace the subtype terms with stages. Match the grouped terms with their relevant logic
statements, according to the guidelines. Use negations for excluded conditions. Check the
context of the condition - some exclusion criteria contain exceptions that should not be
negated.
Step 4: Translate into boolean expression: Transform list of conditions into boolean
expressions. Remember about using "OR" for alternative criteria, where only a part of
conditions is required for eligibility. Use parentheses for correct precedence and grouping.
Step 5: Transform into condition list: Convert the boolean expression into a structured list
of conditions. Each line should represent a mandatory condition that is required for
eligibility. Alternative conditions should be grouped together in one line, indicating that
fulfilling any one of these alternatives suffices. This means that OR statements cannot be
split into lines, but AND statements should be split where possible. Follow standard operator
precedence rules where AND is evaluated before OR, and use parentheses to enforce the correct
precedence and grouping. Remove redundant conditions.
Step 6: Create pairs: For each condition in the list, pair it with the corresponding phrases
from Step 1, separated by ’||’ where multiple phrases support a single condition. Use exact
phrases from the text.

Allowed Terms:
Subtypes:
IDC, ILC, LCIS, IBC, Metaplastic, Paget’s Disease of the Breast, Recurrent, Inoperable,
Infiltrating, Multifocal, Multicentric, Unilateral,Bilateral, High grade, Low grade, Locally
recurrent, Microcalcifications, Dense breast tissue, DCIS, Invasive, Early stage, Locally
advanced, Advanced, Metastatic, Progressive, Adenocarcinoma

Stages:
Stage 0, Stage I, Stage Ia, Stage Ib, Stage II, Stage IIa, Stage IIb, Stage III, Stage IIIa,
Stage IIIb, Stage IIIc, Stage IV

Biomarkers:
HER2+, HER2-, ER+, ER-, PR+, PR-, AR+, AR-, BCL-2+, BCL-2-, PD-L1+, PD-L1-, PIK3CA+, PIK3CA-,
BRCA1-, BRCA1+, BRCA2+, BRCA2-, ESR1+, ESR1-, Ki-67+, Ki-67-

Instructions for Grouped Biomarker Terms:
"Triple-negative": Should be explicitly shown as ER- AND PR- AND HER2-
"HR+": Should be explicitly shown as ER+ OR PR+
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"Triple-Positive": Should be translated to ER+ AND PR+ AND HER2+
"Luminal A": Should be translated to ER+ AND HER2- AND Ki-67- AND PR+
"Luminal B": Should be translated to ER+ AND HER2- AND (Ki-67+ OR PR-)

Instructions for Inferring Stages and Subtypes:
Locally advanced translates to Stage IIIb OR Stage IIIc.
Advanced translates to Stage IIIb OR Stage IIIc OR Stage IV.
Metastatic translates to Stage IV.
Inflammatory translates to IBC.
Non-IBC translates to NOT IBC.

Please stick to these rules as your response will be used in a patient trial matching system,
so it can even save patients lives.

Examples:

### Example 1
Inclusion criteria
Confirmed diagnosis of HR+/HER2- breast cancer; Metastatic or locally advanced disease not
amenable to curative therapy; Progression of disease during adjuvant endocrine treatment or
within 12 months of completing adjuvant endocrine therapy with an aromatase inhibitor or
tamoxifen; Receiving LHRH agonist therapy for at least 2 weeks prior to Day 1 of Cycle 1 if
pre/peri-menopausal; Confirmation of biomarker eligibility (detection of specified
mutation(s) of PIK3CA via specified test); Consent to provide fresh or archival tumor tissue
specimen; Measurable disease per Response Evaluation Criteria in Solid Tumors, Version 1.1
(RECIST v1.1); evaluable bone-only disease is not eligible; bone-only disease with at least
one measurable, soft-tissue component, even if considered disease that is limited to bone but
has lytic or mixed lytic/blastic lesions and at least one measurable soft-tissue component
per RECIST v1.1 may be eligible; Eastern Cooperative Oncology Group Performance Status of 0
or 1; Life expectancy of > 6 months; Adequate hematologic and organ function within 14 days
prior to initiation of study treatment;

Exclusion criteria
Metaplastic breast cancer; History of stage I-IIIb cancer; Any history of leptomeningeal
disease or carcinomatous meningitis; Any prior systemic therapy for metastatic breast cancer;
Prior treatment with fulvestrant or any selective estrogen-receptor degrader, with the
exception of participants that have received fulvestrant or any selective estrogen-receptor
degrader as part of neoadjuvant therapy only and with treatment duration of no longer than 6
months; Prior treatment with any PI3K, AKT, or mTOR inhibitor, or any agent whose mechanism
of action is to inhibit the PI3K-AKT-mTOR pathway; Type 2 diabetes requiring ongoing systemic
treatment at the time of study entry; ; Known and untreated, or active CNS metastases.
Patients with a history of treated CNS metastases may be eligible; Active inflammatory or
infectious conditions in either eye, or any eye conditions expected to require surgery during
the study treatment period; Symptomatic active lung disease, or requiring daily supplemental
oxygen; History of inflammatory bowel disease or active bowel inflammation; Anti-cancer
therapy within 2 weeks before study entry; Investigational drug(s) within 4 weeks before
randomization; Prior radiotherapy to >= 25% of bone marrow, or hematopoietic stem cell or
bone marrow transplantation; Chronic corticosteroid therapy or immunosuppressants; Pregnant,
lactating, or breastfeeding, or intending to become pregnant during the study or within 60
days after the final dose of study treatment; Major surgical procedure, or significant
traumatic injury, within 28 days prior to Day 1 of Cycle 1

Step 1: Identify phrases and conditions.
"Confirmed diagnosis of HR+/HER2- breast cancer": HR+/HER2- [Inclusion]
"Metastatic or locally advanced disease not amenable to curative therapy": Metastatic OR
Locally Advanced [Inclusion]
"Confirmation of biomarker eligibility (detection of specified mutation(s) of PIK3CA via
specified test)": PIK3CA+ [Inclusion]
"Metaplastic breast cancer": Metaplastic [Exclusion]
"History of stage I-IIIb cancer": stage I OR stage II OR stage IIIa OR stage IIIb [Exclusion]
"Known and untreated, or active CNS metastases": CNS metastases [Exlusion]
"History of inflammatory bowel disease or active bowel inflammation": Inflammatory [Exclusion]
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Step 2: Refine the list of phrases.
"Confirmed diagnosis of HR+/HER2- breast cancer": HR+/HER2- [Inclusion] - mentioned in
guidelines
"Metastatic or locally advanced disease not amenable to curative therapy": Metastatic OR
Locally Advanced [Inclusion] - mentioned in guidelines
"Confirmation of biomarker eligibility (detection of specified mutation(s) of PIK3CA via
specified test)": PIK3CA+ [Inclusion] - mentioned in guidelines
"Metaplastic breast cancer": Metaplastic [Exclusion] - mentioned in guidelines
"History of stage I-IIIb cancer": stage I OR stage II OR stage IIIa OR stage IIIb [Exclusion]
- stage related to history, not current state, should be removed
"Known and untreated, or active CNS metastases": CNS metastases [Exlusion] - metastases
related to specific site, not breast cancer in general, should be removed
"History of inflammatory bowel disease or active bowel inflammation": Inflammatory
[Exclusion] - subtype related to bowel disease, not breast cancer, should be removed
Step 3: Apply additional guidelines.
HR+/HER2- translates to (ER+ OR PR+) AND HER2-.
Metastatic or locally advanced translates to (Stage IV OR Stage IIIb OR Stage IIIc).
PIK3CA+ directly from text.
NOT Metaplastic for the exclusion.
Step 4: Translate into boolean expression.
(ER+ OR PR+) AND HER2- AND (Stage IV OR Stage IIIb OR Stage IIIc) AND PIK3CA+ AND NOT
Metaplastic
Step 5: Transform into condition list.
ER+ OR PR+
HER2-
Stage IV OR Stage IIIb OR Stage IIIc
PIK3CA+
NOT Metaplastic
Step 6: Create pairs.
Condition: ER+ OR PR+ , Phrases: "Confirmed diagnosis of HR+/HER2- breast cancer" /
Condition: "HER2-", Phrases: "Confirmed diagnosis of HR+/HER2- breast cancer" / Condition:
Stage IV OR Stage IIIb OR Stage IIIc , Phrases: Metastatic or locally advanced disease not
amenable to curative therapy / Condition: PIK3CA+ , Phrases: Confirmation of biomarker
eligibility (detection of specified mutation(s) of PIK3CA via specified test) / Condition:
NOT Metaplastic, Phrases: Metaplastic breast cancer"

### Example 2
Inclusion criteria:
ECOG (Eastern Cooperative Oncology Group) performance status 2; Signature of the
participation consent to the study,; Affiliation to a social security scheme; Subjects with
progressive adenocarcinoma are eligible; Major woman with:; inflammatory metastatic
triple-negative (TN) breast cancer, histologically proven before treatment and high grade,
receiving neoadjuvant chemotherapy and having, after treatment, a breast residue of at least
15 mm on the specimen. The mammary residue will measure at least 15 mm on the mammography
performed at the end of neoadjuvant treatment; inflammatory metaplastic triple-negative (TN)
breast cancer, histologically proven before treatment and high grade, treated by primary
surgery with a tumor size of at least 15 mm on the specimen.; IBC TN breast cancer (T4d),
histologically proven prior to treatment, receiving neoadjuvant chemotherapy and having,
after treatment, a breast residue of at least 15 mm on the specimen. The mammary residue will
measure at least 15 mm on the mammography performed at the end of the neoadjuvant treatment.;
inflammatory Luminal B breast cancer (LB), histologically proven prior to treatment,
receiving neoadjuvant chemotherapy and having, after treatment, a mammary residue of at least
30 mm on the specimen. The mammary residue will measure at least 15 mm on the mammography
performed at the end of the neoadjuvant treatment.; Patients in a metastatic situation can be
included regardless of the therapeutic line.;

Exclusion criteria:
Pregnant woman; Patient deprived of liberty by court or administrative decision; In
neoadjuvant situation: no neoadjuvant treatment by radiotherapy or hormone therapy; Refusal
to participate in the study

Step 1: Identify phrases and conditions.
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"Subjects with progressive adenocarcinoma are eligible": Progressive AND Adenocarcinoma
[Inclusion]
"inflammatory metastatic triple-negative (TN) breast cancer, histologically proven before
treatment and high grade": Inflammatory AND Metastatic AND Triple-negative AND High grade
[Inclusion]
"inflammatory metaplastic triple-negative (TN) breast cancer, histologically proven before
treatment and high grade": Inflammatory AND Metaplastic AND Triple-negative AND High grade
[Inclusion]
"IBC TN breast cancer (T4d), histologically proven prior to treatment": IBC AND
Triple-negative AND (Stage IIIb OR Stage IIIc OR Stage IV) [Inclusion]
"inflammatory Luminal B breast cancer (LB), histologically proven prior to treatment":
Inflammatory AND Luminal B [Inclusion]
"Patients in a metastatic situation can be included regardless of the therapeutic line":
Metastatic [Inclusion]
Step 2: Refine the list of phrases.
"Subjects with progressive adenocarcinoma are eligible": Progressive AND Adenocarcinoma
[Inclusion] - patients with this condition are eligible but it is not strictly required,
should be removed
"inflammatory metastatic triple-negative (TN) breast cancer, histologically proven before
treatment and high grade": Inflammatory AND Metastatic AND Triple-negative AND High grade
[Inclusion] - mentioned in guidelines
"inflammatory metaplastic triple-negative (TN) breast cancer, histologically proven before
treatment and high grade": Inflammatory AND Metaplastic AND Triple-negative AND High grade
[Inclusion] - mentioned in guidelines
"IBC TN breast cancer (T4d), histologically proven prior to treatment": IBC AND
Triple-negative AND (Stage IIIb OR Stage IIIc OR Stage IV) [Inclusion] - mentioned in
guidelines
"inflammatory Luminal B breast cancer (LB), histologically proven prior to treatment":
Inflammatory AND Luminal B [Inclusion] - mentioned in guidelines
"Patients in a metastatic situation can be included regardless of the therapeutic line":
Metastatic [Inclusion] - patients with this condition are eligible but it is not strictly
required, should be removed
Step 3: Apply additional guidelines.
Inflammatory AND Metastatic AND Triple-negative AND High grade to (IBC AND Stage IV AND (ER-
AND PR- AND HER2-) AND High grade).
Inflammatory AND Metaplastic AND Triple-negative AND High grade to (IBC AND Metaplastic AND
(ER- AND PR- AND HER2-) AND High grade).
IBC AND Triple-negative AND (Stage IIIb OR Stage IIIc OR Stage IV) translates to (IBC AND
(ER- AND PR- AND HER2-) AND (Stage IIIb OR Stage IIIc OR Stage IV)).
Inflammatory AND Luminal B translates to (IBC AND ER+ AND HER2- AND (Ki-67+ OR PR-)).
Step 4: Translate into boolean expression.
((IBC AND Stage IV AND (ER- AND PR- AND HER2-) AND High grade) OR (IBC AND Metaplastic AND
(ER- AND PR- AND HER2-) AND High grade) OR (IBC AND (ER- AND PR- AND HER2-) AND (Stage IIIb
OR Stage IIIc OR Stage IV)) OR (IBC AND ER+ AND HER2- AND (Ki-67+ OR PR-)))
Step 5: Transform into condition list.
((IBC AND Stage IV AND (ER- AND PR- AND HER2-) AND High grade) OR (IBC AND Metaplastic AND
(ER- AND PR- AND HER2-) AND High grade) OR (IBC AND (ER- AND PR- AND HER2-) AND (Stage IIIb
OR Stage IIIc OR Stage IV)) OR (IBC AND ER+ AND HER2- AND (Ki-67+ OR PR-)))
Step 6: Create pairs.
Condition: ((IBC AND Stage IV AND (ER- AND PR- AND HER2-) AND High grade) OR (IBC AND
Metaplastic AND (ER- AND PR- AND HER2-) AND High grade) OR (IBC AND (ER- AND PR- AND HER2-)
AND (Stage IIIb OR Stage IIIc OR Stage IV)) OR (IBC AND ER+ AND HER2- AND (Ki-67+ OR PR-))),
Phrases: "inflammatory metastatic triple-negative (TN) breast cancer, histologically proven
before treatment and high grade" || "inflammatory metaplastic triple-negative (TN) breast
cancer, histologically proven before treatment and high grade" || "IBC TN breast cancer
(T4d), histologically proven prior to treatment" || "inflammatory Luminal B breast cancer
(LB), histologically proven prior to treatment"

### Example 3
Inclusion criteria:
Histologically confirmed advanced metastatic adenocarcinoma with measurable or evaluable
disease: Patients who have progressed on distant metastatic sites after curative surgery or
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have stage IV breast cancer at diagnosis; Patients with inflammatory disease are eligible;
Age > 19 years; ECOG performance status 0 - 2; Patient has HER2-negative breast cancer with
IHC and/or FISH (or SISH, CISH); Known hormon receptor status; Patient is premenopausal.
Premenopausal status is defined as either:; A. Patient had last menstrual period within the
last 12 months B. If within three months of tamoxifen (tamoxifen) taking, C. In case of
chemotherapy induced amenorrhea, the serum FSH 40IU/l; A. Patient who have stage IV breast
cancer at diagnosis, allow disease that progressed after 1st line chemotherapy. B. Patient
who have stage IV breast cancer at diagnosis, allow disease that progressed after tamoxifen
or goserelin. C. In case of recur/metastatic breast cancer, allow disease that progressed
after 12 month of completion of neo/adjuvant chemotherapy .; Urine or serum HCG test must be
negative.; Adequate bone marrow function ( ANC 1,500/ul, platelet 100,000/ul, Hemoglobin
9.0 g/dl); Adequate renal function ( serum creatinine 1.5 mg/dl or CCr 50 ml/min); Adequate
liver function ( serum bilirubin 1.5 mg/dl, AST/ALT x 3 upper normal limit); Patients who
were already established on bisphosphonate therapy may continue on bisphosphonates.; Patients
agreed to use effective contraception or not of childbearing potential; Written informed
consent; Consent to biomarker analysis.;

Exclusion criteria:
Postmenopausal women; Serious uncontrolled intercurrent infections; Serious intercurrent
medical or psychiatric illness, including active cardiac disease; Pregnancy or breast
feeding; Second primary malignancy(except in situ carcinoma of the cervix or adequately
treated nonmelanomatous carcinoma of the skin or resected thyroid papillary carcinoma or
other malignancy treated at least 5 years previously with no evidence of recurrence); History
of DCIS; Bilateral mastectomy; Patients has received previous endocrine treatments such as,
aromatase inhibitor, exemestane in the metastatic setting; Patients has received previous
treatment with CDK 4/6 inhibitors, mTOR inhibitors, PIK3CA inhibitors or capecitabine; No
symptomatic visceral metastasis; Known brain metastases unless treated and stable; Clinically
significant uncontrolled conditions including, known active hepatitis B or hepatitis C.; QTc
interval > 480 msec, family or personal history of long or short QT syndrome, or known
history of QTc prolongation or Torsade de Pointes.; Known positive testing for human
immunodeficiency virus or acquired immune deficiency syndrome.; Unable to swallow and retain
oral medication.; Treatment radiotherapy within 4 weeks of the study; Use of any
investigational drug within 4 weeks of the study; Treatment with chemotherapy within 3 weeks
or hormone therapy within 2 weeks of the study

Step 1: Identify phrases and conditions.
"Histologically confirmed advanced metastatic adenocarcinoma with measurable or evaluable
disease": Advanced AND Metastatic AND Adenocarcinoma [Inclusion]
"Patients who have progressed on distant metastatic sites after curative surgery or have
stage IV breast cancer at diagnosis": Metastatic OR Stage IV [Inclusion]
"Patients with inflammatory disease are eligible": Inflammatory [Inclusion]
"Patient has HER2-negative breast cancer with IHC and/or FISH (or SISH, CISH)": HER2-
[Inclusion]
"Known hormon receptor status": ER+ OR PR+ OR ER- OR PR- [Inclusion]
"Postmenopausal women": Premenopausal [Exclusion]
"History of DCIS": DCIS [Exclusion]
"Bilateral mastectomy": Bilateral [Exclusion]
"Patients has received previous treatment with CDK 4/6 inhibitors, mTOR inhibitors, PIK3CA
inhibitors or capecitabine": PIK3CA inhibitors [Exclusion]
"No symptomatic visceral metastasis": Symptomatic visceral metastasis [Exclusion]
"Known brain metastases unless treated and stable": Brain metastases [Exclusion]
Step 2: Refine the list of phrases.
"Histologically confirmed advanced metastatic adenocarcinoma with measurable or evaluable
disease": Advanced AND Metastatic AND Adenocarcinoma[Inclusion] - mentioned in guidelines
"Patients who have progressed on distant metastatic sites after curative surgery or have
stage IV breast cancer at diagnosis": Metastatic OR Stage IV [Inclusion] - mentioned in
guidelines
"Patients with inflammatory disease are eligible": Inflammatory [Inclusion] - patients with
this condition are eligible but it is not strictly required, should be removed
"Patient has HER2-negative breast cancer with IHC and/or FISH (or SISH, CISH)": HER2-
[Inclusion] - mentioned in guidelines
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"Known hormon receptor status": ER+ OR PR+ OR ER- OR PR- [Inclusion] - hormon receptor status
not specified, should be removed
"Postmenopausal women": Premenopausal [Exclusion] - not mentioned in guidelines, should be
removed
"History of DCIS": DCIS [Exclusion] - related to history, not current state, should be removed
"Bilateral mastectomy": Bilateral [Exclusion] - related to mastectomy, does not specify
required biomarker, stage or subtype, should be removed
"Patients has received previous treatment with CDK 4/6 inhibitors, mTOR inhibitors, PIK3CA
inhibitors or capecitabine": PIK3CA inhibitors [Exclusion] - related to inhibitors, does not
specify required biomarker, stage or subtype, should be removed
"No symptomatic visceral metastasis": Symptomatic visceral metastasis [Exclusion] - not
mentioned in guidelines, should be removed
"Known brain metastases unless treated and stable": Brain metastases [Exclusion] - not
mentioned in guidelines, should be removed
Step 3: Apply additional guidelines.
Advanced translates to (Stage IIIb OR Stage IIIc OR Stage IV) and Metastatic translates to
Stage IV, so Advanced AND Metastatic AND Adenocarcinoma translates to Stage IV AND
Adenocarcinoma.
Metastatic translates to Stage IV, so Metastatic OR Stage IV translates to Stage IV.
HER2- directly from text.
Step 4: Translate into boolean expression.
StageIVAND Adenocarcinoma ANDHER2-
Step 5: Transform into condition list.
Stage IV
Adenocarcinoma
HER2-
Step 6: Create Pairs.
Condition: "Stage IV", Phrases: "Histologically confirmed advanced metastatic adenocarcinoma
with measurable or evaluable disease" || "Patients who have progressed on distant metastatic
sites after curative surgery or have stage IV breast cancer at diagnosis" / Condition:
"Adenocarcinoma", Phrases: "Histologically confirmed advanced metastatic adenocarcinoma with
measurable or evaluable disease" / Condition: "HER2-", Phrases: "Patient has HER2-negative
breast cancer with IHC and/or FISH (or SISH, CISH)"

### Example 4
Inclusion criteria:
Written informed consent obtained prior to any study-related procedures; Age > 18 years;
Histologically proven breast cancer, for which neo-adjuvant chemotherapy and trastuzumab is
considered a valid therapeutic strategy.; Patients with the following TNM stages (refer to
AJCC 7th Edition - Appendix M) of breast cancer are eligible:; T2, T3, T4a, T4b, T4c, T4d
which is node negative or node positive (histologically or cytologically confirmed) or; Any T
with lymph node positive disease (histologically or cytologically confirmed); Patients with
multifocal tumours are not excluded; T stage assignment must be based on the largest tumour.;
Patients with bilateral breast cancer are not eligible; Tumour HER2/neu positive (3+ by IHC
or fluorescence in situ hybridization (FISH) positive); Oestrogen and progesterone receptor
status known prior to study entry; Patients with triple-negative breast cancer (TNBC) are
allowed if they meet all other mandatory criteria; ECOG performance status score < or equal
to 1; Cardiac ejection fraction 50% as measured by echocardiogram or MUGA scan within 3
months prior to randomisation. Women of child-bearing potential and men must agree to use
adequate contraception (non-hormonal or barrier method of birth control, abstinence or a
vasectomy partner) prior to study entry and for the duration of study participation.

Exclusion criteria:
Prior therapy with systemic cytotoxic chemotherapy Lapatinib or Trastuzumab.; Prior taxanes;
Radiotherapy (Except for radiotherapy localised to radiotherapy to a primary squamous or
basal cell skin cancer).; Patients with metastatic disease (M1).; Concurrent therapy with any
other non-protocol anti-cancer therapy; History of any other malignancy within the past 5
years, with the exception of non-melanoma skin cancer, in situ carcinoma of the breast
(ductal or lobular) or carcinoma-in-situ of the cervix.; Current therapy with any hormonal
agent such as raloxifene, tamoxifen, or other selective oestrogen receptor modulators
(SERMs), either for osteoporosis or prevention of breast cancer. Patients must have
discontinued these agents 14 days prior to enrolment.; Concurrent treatment with ovarian
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hormonal replacement therapy. Prior treatment must be stopped prior to enrolment.;
Pre-existing motor or sensory neurotoxicity of a severity Grade 2 by NCI-CTCAE version 4.0.;
Poorly controlled hypertension (e.g. systolic >180mm Hg or diastolic >100mm Hg.); Any history
of myocardial infarction, angina pectoris or congestive heart failure. Patients on current
therapy for arrythmias are excluded.

Step 1: Identify phrases and conditions.
"T2, T3, T4a, T4b, T4c, T4d which is node negative or node positive (histologically or
cytologically confirmed) or; Any T with lymph node positive disease (histologically or
cytologically confirmed)": Stage II OR Stage IIIa OR Stage IIIb OR Stage IIIc [Inclusion]
"Patients with multifocal tumours are not excluded": Multifocal [Inclusion]
"Patients with bilateral breast cancer are not eligible": NOT Bilateral [Inclusion]
"Tumour HER2/neu positive (3+ by IHC or fluorescence in situ hybridization (FISH) positive)":
HER2+ [Inclusion]
"Oestrogen and progesterone receptor status known prior to study entry": ER+ OR PR+ OR ER- OR
PR- [Inclusion]
"Patients with triple-negative breast cancer (TNBC) are allowed if they meet all other
mandatory criteria": Triple-negative [Inclusion]
"Patients with metastatic disease (M1)": Metastatic [Exclusion]
"History of any other malignancy within the past 5 years, with the exception of non-melanoma
skin cancer, in situ carcinoma of the breast (ductal or lobular) or carcinoma-in-situ of the
cervix": DCIS OR LCIS [Exclusion]
Step 2: Refine the list of phrases.
"T2, T3, T4a, T4b, T4c, T4d which is node negative or node positive (histologically or
cytologically confirmed) or; Any T with lymph node positive disease (histologically or
cytologically confirmed)": Stage II OR Stage IIIa OR Stage IIIb OR Stage IIIc [Inclusion] -
mentioned in guidelines
"Patients with multifocal tumours are not excluded": Multifocal [Inclusion] - patients with
this condition are eligible but it is not strictly required, should be removed
"Patients with bilateral breast cancer are not eligible": NOT Bilateral [Inclusion] -
mentioned in guidelines
"Tumour HER2/neu positive (3+ by IHC or fluorescence in situ hybridization (FISH) positive)":
HER2+ [Inclusion] - mentioned in guidelines
"Oestrogen and progesterone receptor status known prior to study entry": ER+ OR PR+ OR ER- OR
PR- [Inclusion] - hormon receptor status not specified, should be removed
"Patients with triple-negative breast cancer (TNBC) are allowed if they meet all other
mandatory criteria": Triple-negative [Inclusion] - mentioned in guidelines
"Patients with metastatic disease (M1)": Metastatic [Exclusion] - mentioned in guidelines
"History of any other malignancy within the past 5 years, with the exception of non-melanoma
skin cancer, in situ carcinoma of the breast (ductal or lobular) or carcinoma-in-situ of the
cervix": DCIS OR LCIS [Exclusion] - related to history, not current state, should be removed
Step 3: Apply additional guidelines.
Stage II OR Stage IIIa OR Stage IIIb OR Stage IIIc directly from text.
NOT Bilateral directly from text.
HER2+ directly from text.
Triple-negative translates to (HER2- AND ER- AND PR-)
Metastatic translates to Stage IV.
Step 4: Translate into boolean expression.
(Stage II OR Stage IIIa OR Stage IIIb OR Stage IIIc) AND NOT Bilateral AND (HER2+ OR (HER2-
AND ER- AND PR-)) AND NOT Stage IV
Step 5: Transform into condition list.
Stage II OR Stage IIIa OR Stage IIIb OR Stage IIIc
NOT Bilateral
(HER2+ OR (HER2- AND ER- AND PR-))
NOT Stage IV
Step 6: Create pairs.
Condition: "Stage II OR Stage IIIa OR Stage IIIb OR Stage IIIc", Phrases: "T2, T3, T4a, T4b,
T4c, T4d which is node negative or node positive (histologically or cytologically confirmed)
or; Any T with lymph node positive disease (histologically or cytologically confirmed)" /
Condition: "NOT Bilateral", Phrases: "Patients with bilateral breast cancer are not eligible"
/ Condition: "(HER2+ OR (HER2- AND ER- AND PR-))", Phrases: "Tumour HER2/neu positive (3+ by
IHC or fluorescence in situ hybridization (FISH) positive)" || "Patients with triple-negative
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breast cancer (TNBC) are allowed if they meet all other mandatory criteria" / Condition: "NOT
Stage IV", Phrases: "Patients with metastatic disease (M1)"

Inclusion criteria:
<inclusion criteria text>

Exclusion criteria:
<exclusion criteria text>

Step 1: Understand the Text:
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D Instructions for the evaluation experiment

Below are the instructions for the evaluation experiment that were shared with the
participants. They were presented on the first screen of the experiment app and were
also available at this link: https://bit.ly/3yGdwDs

Breast Cancer Clinical Trial Annotation and Validation Task

Thank you for participating in our breast cancer clinical trial eligibility criteria
annotation and validation task. Your expertise is crucial in extracting and validat-
ing essential information. This task involves two subtasks: identifying conditions
without AI support and validating conditions listed by the Large Language Model
(LLM). You will alternate between making an annotation example on your own and
validating an example provided by the LLM, for a total of 10 examples.

The focus is on identifying conditions that are required for eligibility or disal-
lowed by the trial. Optional conditions should be ignored. These conditions should
pertain to breast cancer subtypes, stages, and biomarkers, and describe current health
status, not history. Use boolean operators (AND, OR, NOT) and only the allowed
terms (listed below). You can also use parentheses to group conditions correctly
when combining boolean operators. This ensures the correct logical order. Ad-
ditionally, extract the phrases used to determine these conditions. Sometimes the
conditions are not explicitly stated in the text, but can be inferred from the context.
In such cases, use your best judgment to determine the condition based on the text.

Guidelines:

1. Biomarker: Look for mentions of specific breast cancer biomarkers explicitly
stated in the eligibility criteria. Note any name of a cancer biomarker and
whether it is positive or negative (with +/- signs). The allowed terms for
biomarkers are:

HER2+, HER2-, ER+, ER-, PR+, PR-, PD-L1+, PD-L1-, AR+, AR-,
BCL-2+, BCL-2-, BRCA1+, BRCA1-, BRCA2-, Ki67+, Ki67-, ESR1+,
ESR1-, PIK3CA+, PIK3CA-

2. Subtype: Identify references to different breast cancer subtypes. Extract the
specific subtype mentioned. The allowed terms for subtypes are:

Advanced, Metastatic, DCIS, IDC, ILC, LCIS, IBC, Metaplastic,
Paget’s Disease of the Breast, Recurrent, Inoperable,
Infiltrating, Multifocal, Multicentric, Unilateral,
Bilateral, High grade, Low grade, Locally recurrent,
Microcalcifications, Dense breast tissue, Early stage,

https://bit.ly/3yGdwDs
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Locally advanced, Invasive, Progressive, Adenocarcinoma

3. Stage: Extract information about the cancer stage stated in the eligibility crite-
ria. Map subtypes to stages where possible (e.g., Metastatic -> Stage IV). The
allowed terms for stages are:

Stage 0, Stage I, Stage Ia, Stage Ib, Stage II, Stage IIa,
Stage IIb, Stage III, Stage IIIa, Stage IIIb, Stage IIIc,
Stage IV

4. Conditions: The first column of the table should contain the conditions ex-
tracted from the text, where each row of the table presents a single manda-
tory/disallowed condition or a group of alternative conditions, so the patient
needs to fulfill each row of the table to be eligible for a trial. The table should
contain the following types of conditions:

(a) Required Conditions: Conditions that the patient must meet (one table
row per required condition).

(b) Disallowed Conditions: Conditions that disqualify the patient, marked
with "NOT" at the beginning.

(c) Alternative Conditions: Conditions where the patient must meet at least
one of the alternatives listed. Separate these alternatives with "OR" and
insert them into a single row.

5. Phrases: The second column of the table should contain the phrases that were
used to determine the conditions. The phrases should be copied directly from
the text. If there are multiple phrases related to the same row, separate them
with "||".

6. Remember to use separate rows for each requirement, meaning the patient
must fulfill each criterion in each row.

7. The table should contain only the conditions related to current breast cancer.

8. In the validation examples, you will see the conditions extracted by the LLM.
If the conditions are correct, no action is needed. If there are errors or missing
information, please correct them. The phrases used to determine the conditions
are highlighted in the text. The conditions defined based on them are added as
labels. If no corrections are needed, simply proceed to the next example.

9. Table modifications:

(a) Corrections: All cells are editable. You can correct the conditions and
phrases directly in the table.
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(b) Add new rows: You can add a new row by clicking the plus icon below
the last row.

(c) Remove rows: You can remove rows if needed by selecting the row and
clicking the trash icon.

(d) View full text: If a text in the table is truncated due to its length, click on
the cell to see the full text

10. Additional instructions for determining the conditions:

(a) Grouped biomarker terms:

"Triple-negative": Should be explicitly shown as ER- AND PR-
AND HER2-.
"HR+": Should be explicitly shown as ER+ OR PR+.
"Triple-Positive": Should be translated to ER+ AND PR+ AND
HER2+.
"Luminal A": Should be translated to ER+ AND HER2- AND Ki-67-
AND PR+.
"Luminal B”: Should be translated to ER+ AND HER2- AND (Ki-67+
OR PR-).

(b) Instructions for inferring stages and subtypes:

Locally advanced translates to Stage IIIb OR Stage IIIc.
Advanced translates to Stage IIIb OR Stage IIIc OR Stage IV.
Metastatic translates to Stage IV.
Inflammatory translates to IBC.
Non-IBC translates to NOT IBC.

11. After proceeding to the examples you will not be able to open this instruction
page again. A document with annotated examples is available at this link:
https://bit.ly/46XPzUL

Extraction examples:

Example #1:

Condition Phrases (separate multiple phrases
with ’ || ’)

0 (ER+ OR PR+) AND HER2- Confirmed diagnosis of HR+/HER2-
breast cancer

1 Stage IV OR Stage IIIb OR Stage
IIIc

Metastatic or locally advanced disease
not amenable to curative therapy

2 PIK3CA+ Confirmation of biomarker eligibility
(detection of specified mutation(s) of
PIK3CA)

3 NOT Metaplastic Metaplastic breast cancer

https://bit.ly/46XPzUL
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Note: The last condition comes from the exclusion criteria - this is why it has "NOT" at
the beginning. Additionally, "HR+/HER2-" is translated to (ER+ OR PR+) AND HER2- ,
"metastatic" to Stage IV, and "locally advanced" to Stage IIIb OR Stage IIIc.

Example #2:

Condition Phrases (separate multiple phrases
with ’ || ’)

0 (Stage IV AND (ER- AND PR-
AND HER2-) AND High grade)
OR (Metaplastic AND (ER-
AND PR- AND HER2-) AND
High grade) OR (IBC AND (ER-
AND PR- AND HER2-) AND
(Stage IIIb OR IIIc)) OR (ER+
AND HER2- AND (Ki-67+ OR
PR-))

metastatic triple-negative (TN) breast
cancer, histologically proven before
treatment and high grade || meta-
plastic triple-negative (TN) breast can-
cer, histologically proven before treat-
ment and high grade || inflamma-
tory TN breast cancer (T4d), histologi-
cally proven prior to treatment || Lu-
minal B breast cancer, histologically
proven prior to treatment

Note: The row contains multiple conditions because it is written in the inclusion criteria
that "patient must meet one of the following criteria". This is why the conditions are sepa-
rated with "OR" and they all are in one row. Additionally, "metastatic" is mapped to Stage
IV, triple-negative is translated to (ER- AND PR- AND HER2-), "Inflammatory" to IBC,
"T4d" translated to (Stage IIIb or Stage IIIc), and "Luminal B" to (ER+ AND HER2- AND
(Ki-67+ OR PR-).

Managing table:

• Delete row from the table:

Figure 1: Deleting a row from the table in the parsing tool.
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• View full text:

Figure 2: Viewing the full text in the parsing tool.
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E Detailed outputs from the evaluation experiment

Below are the parsing outputs of all four participants for the five examples solved
with LLM support. These five examples involve the eligibility criteria for the follow-
ing breast cancer trials from ClinicalTrials.gov:

• example #1 - LLM: NCT00637325,

• example #2 - LLM: NCT05415215,

• example #3 - LLM: NCT05233696,

• example #4 - LLM: NCT00486668,

• example #5 - LLM: NCT05266937.

The respective parsing results are presented in the following tables: Table 4, Ta-
ble 5, Table 6, Table 7 and Table 8.
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Table 4: Detailed parsing results for example #1 - LLM.

LLM Expert Doctor Novice 1 Novice 2
Stage IIIb OR Stage IIIc OR Stage
IV [’Histologically confirmed
breast cancer with locally ad-
vanced and/or metastatic dis-
ease’]

Stage IIIb OR Stage IIIc OR Stage
IV [’Histologically confirmed
breast cancer with locally ad-
vanced and/or metastatic dis-
ease’]

Stage IIIb OR Stage IIIc OR Stage
IV [’Histologically confirmed
breast cancer with locally ad-
vanced and/or metastatic dis-
ease’]

Stage IIIb OR Stage IIIc OR Stage
IV [’Histologically confirmed
breast cancer with locally ad-
vanced and/or metastatic dis-
ease’]

Stage IIIb OR Stage IIIc OR Stage
IV [’Histologically confirmed
breast cancer with locally ad-
vanced and/or metastatic dis-
ease’]

HER2+ [’Over expression of
HER2 (3+) as determined
by IHC or amplification of
HER2/c-erbB2 by FISH/CISH
of the primary tumour or of a
metastasis’]

HER2+ [’Over expression of
HER2 (3+) as determined
by IHC or amplification of
HER2/c-erbB2 by FISH/CISH
of the primary tumour or of a
metastasis’]

HER2+ [’Over expression of
HER2 (3+) as determined
by IHC or amplification of
HER2/c-erbB2 by FISH/CISH
of the primary tumour or of a
metastasis’]

HER2+ [’Over expression of
HER2 (3+) as determined
by IHC or amplification of
HER2/c-erbB2 by FISH/CISH
of the primary tumour or of a
metastasis’]

HER2+ [’Over expression of
HER2 (3+) as determined
by IHC or amplification of
HER2/c-erbB2 by FISH/CISH
of the primary tumour or of a
metastasis’]

Progressive [’Progressive disease
during or within 6 months
from the completion of a
first line chemotherapy plus
trastuzumab for advanced dis-
ease or within 6 months from
the completion of an adjuvant
treatment for early disease’]

Progressive [’Progressive disease
during or within 6 months
from the completion of a
first line chemotherapy plus
trastuzumab for advanced dis-
ease or within 6 months from
the completion of an adjuvant
treatment for early disease’]

Progressive [’Progressive disease
during or within 6 months
from the completion of a
first line chemotherapy plus
trastuzumab for advanced dis-
ease or within 6 months from
the completion of an adjuvant
treatment for early disease’]

Progressive [’Progressive disease
during or within 6 months
from the completion of a
first line chemotherapy plus
trastuzumab for advanced dis-
ease or within 6 months from
the completion of an adjuvant
treatment for early disease’]

Progressive [’Progressive disease
during or within 6 months
from the completion of a
first line chemotherapy plus
trastuzumab for advanced dis-
ease or within 6 months from
the completion of an adjuvant
treatment for early disease’]

Table 5: Detailed parsing results for example #2 - LLM.

LLM Expert Doctor Novice 1 Novice 2
Stage II OR Stage IIIa OR
Stage IIIb OR Stage IIIc [’Fe-
male and male participants
with stage II-IIIC early or
locally advanced/inflammatory
human epidermal growth fac-
tor receptor 2-positive (HER2+)
breast cancer’]

Stage II OR Stage IIIa OR Stage
IIIb OR Stage IIIc OR Inflamma-
tory [’Female and male partici-
pants with stage II-IIIC early or
locally advanced/inflammatory
human epidermal growth fac-
tor receptor 2-positive (HER2+)
breast cancer’]

Stage II OR Stage IIIa OR
Stage IIIb OR Stage IIIc OR
IBC [’Female and male partici-
pants with stage II-IIIC early or
locally advanced/inflammatory
human epidermal growth fac-
tor receptor 2-positive (HER2+)
breast cancer’]

Stage II OR Stage IIIa OR
Stage IIIb OR Stage IIIc [’Fe-
male and male participants
with stage II-IIIC early or
locally advanced/inflammatory
human epidermal growth fac-
tor receptor 2-positive (HER2+)
breast cancer’]

Stage II OR Stage IIa OR stage
IIB OR Stage IIIa OR Stage
IIIb OR Stage IIIc [’Female
and male participants with
stage II-IIIC early or locally
advanced/inflammatory hu-
man epidermal growth factor
receptor 2-positive (HER2+)
breast cancer’]
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Stage IIIb OR Stage IIIc [’Fe-
male and male participants
with stage II-IIIC early or
locally advanced/inflammatory
human epidermal growth fac-
tor receptor 2-positive (HER2+)
breast cancer’]

- - - -

IBC [’Female and male partici-
pants with stage II-IIIC early or
locally advanced/inflammatory
human epidermal growth fac-
tor receptor 2-positive (HER2+)
breast cancer’]

- - IBC [’Female and male partici-
pants with stage II-IIIC early or
locally advanced/inflammatory
human epidermal growth fac-
tor receptor 2-positive (HER2+)
breast cancer’]

IBC [’Female and male partici-
pants with stage II-IIIC early or
locally advanced/inflammatory
human epidermal growth fac-
tor receptor 2-positive (HER2+)
breast cancer’]

HER2+ [’Female and male
participants with stage II-IIIC
early or locally advanced/in-
flammatory human epider-
mal growth factor receptor
2-positive (HER2+) breast can-
cer’, ’HER2+ breast cancer
confirmed by a local laboratory
prior to study enrollment’]

HER2+ [’Female and male
participants with stage II-IIIC
early or locally advanced/in-
flammatory human epider-
mal growth factor receptor
2-positive (HER2+) breast can-
cer’, ’HER2+ breast cancer
confirmed by a local laboratory
prior to study enrollment’]

HER2+ [’Female and male
participants with stage II-IIIC
early or locally advanced/in-
flammatory human epider-
mal growth factor receptor
2-positive (HER2+) breast can-
cer’, ’HER2+ breast cancer
confirmed by a local laboratory
prior to study enrollment’]

HER2+ [’Female and male
participants with stage II-IIIC
early or locally advanced/in-
flammatory human epider-
mal growth factor receptor
2-positive (HER2+) breast can-
cer’, ’HER2+ breast cancer
confirmed by a local laboratory
prior to study enrollment’]

HER2+ [’Female and male
participants with stage II-IIIC
early or locally advanced/in-
flammatory human epider-
mal growth factor receptor
2-positive (HER2+) breast can-
cer’, ’HER2+ breast cancer
confirmed by a local laboratory
prior to study enrollment’]

NOT Stage IV [’Stage IV
(metastatic) breast cancer’]

NOT Stage IV [’Stage IV
(metastatic) breast cancer’]

NOT Stage IV [’Stage IV
(metastatic) breast cancer’]

NOT Stage IV [’Stage IV
(metastatic) breast cancer’]

NOT Stage IV [’Stage IV
(metastatic) breast cancer’]

NOT Multicentric [’Participants
with multicentric breast cancer,
unless all tumors are HER2+’]

NOT Multicentric [’Participants
with multicentric breast cancer,
unless all tumors are HER2+’]

NOT Multicentric [’Participants
with multicentric breast cancer,
unless all tumors are HER2+’]

NOT Multicentric [’Participants
with multicentric breast cancer,
unless all tumors are HER2+’]

NOT Multicentric [’Participants
with multicentric breast cancer,
unless all tumors are HER2+’]

NOT Bilateral [’Participants with
bilateral breast cancer’]

NOT Bilateral [’Participants with
bilateral breast cancer’]

NOT Bilateral [’Participants with
bilateral breast cancer’]

NOT Bilateral [’Participants with
bilateral breast cancer’]

NOT Bilateral [’Participants with
bilateral breast cancer’]

- - - - NOT DCIS OR NOT LCIS [’Par-
ticipants who have a past his-
tory of ductal carcinoma in situ
(DCIS) or lobular carcinoma in
situ (LCIS) if they have re-
ceived any systemic therapy for
its treatment or radiation ther-
apy to the ipsi- or contralateral
breast cancer’]
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- - - - NOT HER2+ [’Participants with
multicentric breast cancer, un-
less all tumors are HER2+’]

Table 6: Detailed parsing results for example #3 - LLM.

LLM Expert Doctor Novice 1 Novice 2
Stage IV OR Stage IIIb OR Stage
IIIc [’Metastatic or locally ad-
vanced unresectable histologically
documented TNBC as defined by
absence of estrogen receptor (ER)
and progesterone receptor (PR) ex-
pression and no HER2 amplifica-
tion or over-expression by local
pathology report.’]

Stage IV OR Stage IIIb OR Stage
IIIc [’Metastatic or locally ad-
vanced unresectable histologi-
cally documented TNBC as de-
fined by absence of estrogen re-
ceptor (ER) and progesterone
receptor (PR) expression and
no HER2 amplification or over-
expression by local pathology
report.’]

Stage IV OR Stage IIIb OR Stage
IIIc [’Metastatic or locally ad-
vanced unresectable histologi-
cally documented TNBC as de-
fined by absence of estrogen re-
ceptor (ER) and progesterone
receptor (PR) expression and
no HER2 amplification or over-
expression by local pathology
report.’]

Stage IV OR Stage IIIb OR Stage
IIIc [’Metastatic or locally ad-
vanced unresectable histologi-
cally documented TNBC as de-
fined by absence of estrogen re-
ceptor (ER) and progesterone
receptor (PR) expression and
no HER2 amplification or over-
expression by local pathology
report.’]

Stage IV OR Stage IIIb OR Stage
IIIc [’Metastatic or locally ad-
vanced unresectable histologi-
cally documented TNBC as de-
fined by absence of estrogen re-
ceptor (ER) and progesterone
receptor (PR) expression and
no HER2 amplification or over-
expression by local pathology
report.’]

ER- AND PR- AND HER2-
[’Metastatic or locally advanced
unresectable histologically doc-
umented TNBC as defined by
absence of estrogen receptor
(ER) and progesterone receptor
(PR) expression and no HER2
amplification or over-expression
by local pathology report.’]

ER- AND PR- AND HER2-
[’Metastatic or locally advanced
unresectable histologically doc-
umented TNBC as defined by
absence of estrogen receptor
(ER) and progesterone receptor
(PR) expression and no HER2
amplification or over-expression
by local pathology report.’]

ER- AND PR- AND HER2-
[’Metastatic or locally advanced
unresectable histologically doc-
umented TNBC as defined by
absence of estrogen receptor
(ER) and progesterone receptor
(PR) expression and no HER2
amplification or over-expression
by local pathology report.’]

ER- AND PR- AND HER2-
[’Metastatic or locally advanced
unresectable histologically doc-
umented TNBC as defined by
absence of estrogen receptor
(ER) and progesterone receptor
(PR) expression and no HER2
amplification or over-expression
by local pathology report.’]

ER- AND PR- AND HER2-
[’Metastatic or locally advanced
unresectable histologically doc-
umented TNBC as defined by
absence of estrogen receptor
(ER) and progesterone receptor
(PR) expression and no HER2
amplification or over-expression
by local pathology report.’]

PD-L1+ [’Confirmed PD-L1 pos-
itive as defined by Combined
Positive Score (CPS) >10% by a
CLIA-certified lab.’]

PD-L1+ [’Confirmed PD-L1 pos-
itive as defined by Combined
Positive Score (CPS) >10% by a
CLIA-certified lab.’]

PD-L1+ [’Confirmed PD-L1 pos-
itive as defined by Combined
Positive Score (CPS) >10% by a
CLIA-certified lab.’]

PD-L1+ [’Confirmed PD-L1 pos-
itive as defined by Combined
Positive Score (CPS) >10% by a
CLIA-certified lab.’]

PD-L1+ [’Confirmed PD-L1 pos-
itive as defined by Combined
Positive Score (CPS) >10% by a
CLIA-certified lab.’]

- - - - HER2- [’HER2 negativity is de-
fined as either: in situ hy-
bridization non-amplified (ratio
of HER2 to CEP17 <2 or single
probe average HER2 gene copy
number <4 signals/cell OR IHC
0 or 1+).’]
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- - - - ER- AND PR- [’ER and PR nega-

tivity is defined as <1% positive
by IHC.’]

- - - - Stage IV [’Treatment with <1
prior line of systemic therapy
in the metastatic setting or ad-
juvant/neoadjuvant setting if
metastatic recurrence within 12
months of treatment.’]

- - - - NOT Stage IIIb OR NOT Stage
IIIc [’More than one prior line
of chemotherapy in the lo-
cally advanced unresectable or
metastatic setting.’]

Table 7: Detailed parsing results for example #4 - LLM.

LLM Expert Doctor Novice 1 Novice 2
Invasive [’Diagnosis of invasive
adenocarcinoma made by core
needle biopsy’]

Invasive [’Diagnosis of invasive
adenocarcinoma made by core
needle biopsy’]

Invasive [’Diagnosis of invasive
adenocarcinoma made by core
needle biopsy’]

Invasive [’Diagnosis of invasive
adenocarcinoma made by core
needle biopsy’]

Invasive [’Diagnosis of invasive
adenocarcinoma made by core
needle biopsy’]

Adenocarcinoma [’Diagnosis of
invasive adenocarcinoma made
by core needle biopsy’]

Adenocarcinoma [’Diagnosis of
invasive adenocarcinoma made
by core needle biopsy’]

Adenocarcinoma [’Diagnosis of in-
vasive adenocarcinoma made by
core needle biopsy’]

Adenocarcinoma [’Diagnosis of
invasive adenocarcinoma made
by core needle biopsy’]

Adenocarcinoma [’Diagnosis of
invasive adenocarcinoma made
by core needle biopsy’]

HER2+ [’Breast cancer deter-
mined to be HER2-positive’]

HER2+ [’Breast cancer deter-
mined to be HER2-positive’]

HER2+ [’Breast cancer deter-
mined to be HER2-positive’]

HER2+ [’Breast cancer deter-
mined to be HER2-positive’]

HER2+ [’Breast cancer deter-
mined to be HER2-positive’]

NOT Stage IV [’Definitive clin-
ical or radiologic evidence of
metastatic disease’]

NOT Stage IV [’Definitive clin-
ical or radiologic evidence of
metastatic disease’]

NOT Stage IV [’Definitive clin-
ical or radiologic evidence of
metastatic disease’]

NOT Stage IV [’Definitive clin-
ical or radiologic evidence of
metastatic disease’]

NOT Stage IV [’Definitive clin-
ical or radiologic evidence of
metastatic disease’]

NOT Bilateral [’Synchronous bi-
lateral invasive breast cancer’]

NOT Bilateral [’Synchronous bi-
lateral invasive breast cancer’]

NOT (Bilateral AND Invasive)
[’Synchronous bilateral invasive
breast cancer’]

NOT (Bilateral AND Invasive)
[’Synchronous bilateral invasive
breast cancer’]

NOT Bilateral [’Synchronous bi-
lateral invasive breast cancer’]

- Stage I OR Stage II OR Stage III
[’Primary breast tumor palpa-
ble and measures greater than
or equal to 2.0 cm by physical
exam’]

- - -
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- NOT Stage IIIc [’Ipsilateral cN2b
or cN3 disease (Patients with
cN1 or cN2a disease are eligi-
ble)’]

- - -

- NOT Recurrent [’Prior history of
breast cancer, including DCIS
(Patients with a history of LCIS
are eligible)’]

- - -

Table 8: Detailed parsing results for example #5 - LLM.

LLM Expert Doctor Novice 1 Novice 2
Adenocarcinoma [’Histologically
or cytologically confirmed ade-
nocarcinoma of the breast with
metastatic disease’]

Adenocarcinoma [’Histologically
or cytologically confirmed ade-
nocarcinoma of the breast with
metastatic disease’]

Adenocarcinoma [’Histologically
or cytologically confirmed ade-
nocarcinoma of the breast with
metastatic disease’]

Adenocarcinoma [’Histologically
or cytologically confirmed ade-
nocarcinoma of the breast with
metastatic disease’]

Adenocarcinoma [’Histologically
or cytologically confirmed ade-
nocarcinoma of the breast with
metastatic disease’]

Stage IV [’Histologically or cy-
tologically confirmed adeno-
carcinoma of the breast with
metastatic disease’]

Stage IV [’Histologically or cy-
tologically confirmed adeno-
carcinoma of the breast with
metastatic disease’]

Stage IV [’Histologically or cy-
tologically confirmed adeno-
carcinoma of the breast with
metastatic disease’]

Stage IV [’Histologically or cy-
tologically confirmed adeno-
carcinoma of the breast with
metastatic disease’]

Stage IV [’Histologically or cy-
tologically confirmed adeno-
carcinoma of the breast with
metastatic disease’]

ER- AND PR- AND HER2-
[’Hormone receptor-negative
(ER and PgR <10%) and HER2-
negative (IHC 0,1+ or 2+ ISH
not amplified) breast cancer’]

ER- AND PR- AND HER2-
[’Hormone receptor-negative
(ER and PgR <10%) and HER2-
negative (IHC 0,1+ or 2+ ISH
not amplified) breast cancer’]

ER- AND PR- AND HER2-
[’Hormone receptor-negative
(ER and PgR <10%) and HER2-
negative (IHC 0,1+ or 2+ ISH
not amplified) breast cancer’]

ER- AND PR- AND HER2-
[’Hormone receptor-negative
(ER and PgR <10%) and HER2-
negative (IHC 0,1+ or 2+ ISH
not amplified) breast cancer’]

ER- AND PR- AND HER2-
[’Hormone receptor-negative
(ER and PgR <10%) and HER2-
negative (IHC 0,1+ or 2+ ISH
not amplified) breast cancer’]

PD-L1+ [’PD-L1 positive
defined as expression on
tumor-infiltrating immune cells
>=1% (SP142 PD-L1 immuno-
histochemical assay, Ventana
Medical Systems)’]

PD-L1+ [’PD-L1 positive
defined as expression on
tumor-infiltrating immune cells
>=1% (SP142 PD-L1 immuno-
histochemical assay, Ventana
Medical Systems)’]

PD-L1+ [’PD-L1 positive
defined as expression on
tumor-infiltrating immune cells
>=1% (SP142 PD-L1 immuno-
histochemical assay, Ventana
Medical Systems)’]

PD-L1+ [’PD-L1 positive
defined as expression on
tumor-infiltrating immune cells
>=1% (SP142 PD-L1 immuno-
histochemical assay, Ventana
Medical Systems)’]

PD-L1+ [’PD-L1 positive
defined as expression on
tumor-infiltrating immune cells
>=1% (SP142 PD-L1 immuno-
histochemical assay, Ventana
Medical Systems)’]
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- - - Metastatic [’Asymptomatic

metastatic lesions whose fur-
ther growth would likely cause
functional deficits or intractable
pain (e.g., epidural metastasis
that is not presently associated
with spinal cord compression)
should be considered for loco-
regional therapy if appropriate
prior to enrollment.’]

Stage IV [’the biopsy of
metastatic disease before
starting first-line therapy and
assessed by local laboratory’]

- - - - ER+ AND PGR+ [’Patients ER
and PgR <1% eligible to re-
ceive atezolizumab in combi-
nation with nab-paclitaxel as
standard of care treatment for
metastatic triple-negative breast
cancer (TNBC), regardless of
study participation.’]

- - - - Stage IV [’Patients ER and
PgR <1% eligible to receive
atezolizumab in combination
with nab-paclitaxel as stan-
dard of care treatment for
metastatic triple-negative breast
cancer (TNBC), regardless of
study participation.’]

- - - - NOT Stage IV [’Asymptomatic
metastatic lesions whose fur-
ther growth would likely cause
functional deficits or intractable
pain (e.g., epidural metastasis
that is not presently associated
with spinal cord compression)
should be considered for loco-
regional therapy if appropriate
prior to enrollment.’]
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