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Abstract 
This dissertation explores the field of video encoding, where moving images are compressed for to 

be efficiently transmitted in television systems, Video-On-Demand platforms, and similar applications. 
The research presented in this dissertation is focused on designing video encoder control algorithms. 
Special emphasis is put on CTU (Coding Tree Unit) partitioning, the most computationally intensive 
part of the encoding process. The research aims to develop a partitioning algorithm that significantly 
reduces the computational complexity of the encoder while preserving the compression efficiency, 
compared to the existing solution in reference encoder. Thus, the research explores Artificial Neural 
Network (ANN)-based approaches for partitioning algorithms. 

The dissertation begins with a description of CTU partitioning in HEVC, along with the 
contextuality of the decisions. A survey of the existing partitioning algorithm is presented, pinpointing 
the aspects that require improvements. Methods that offer control over the trade-off between coding 
time and coding efficiency are reviewed, pointing out the complexity of controlling this trade-off in 
existing solutions. 

Two approaches to the partitioning problem are explored: one for decision-making at Coding Unit 
(CU) scope and one for joint Coding Unit (CU) scope and Prediction Unit (PU) scope. ANN with non-
trivial decision algorithms is introduced. Proposed ANNs are designed to jointly estimate depth-level 
probabilities for individual CTU subareas. A custom training dataset has been prepared to train the ANN 
models. The ANN architecture development process is described, and a detailed training and evaluation 
results analysis of the final models is presented. 

This dissertation proposes original, non-trivial decision algorithms that utilize probabilities 
determined by the ANN. These decision algorithms are defined in two variants: hard-decisive and soft-
decisive. It is demonstrated that one of the proposed algorithms allows a straightforward control of 
the trade-off between coding time and coding efficiency through a single parameter. 

Comparative analysis with state-of-the-art solutions demonstrates that the proposed partitioning 
algorithms offer the best trade-off between encoding time reduction and coding efficiency.  

Considering control over the trade-off between encoding time and coding efficiency, the proposed 
method provides the best results and the most straightforward control among other state-of-the-art 
solutions. Additionally, a new metric for rapid comparison of such methods is introduced, which 
coincides with well-established evaluation approaches. 

Lastly, this dissertation explores the impact of contextual effects on partitioning decisions. The key 
achievements are: 

 The author's experiment on determining the impact of the encoding context on decisions. 
 Modifications to the proposed ANN model for processing contextual information. 
 The author's method of training an ANN with augmented ground truth data.  
 The author's method for global partitioning patterns optimization which introduces a negligible 

increase in encoding time. 

All experiments were conducted using a modified version of HEVC reference model software 
developed by the author. This modification, which enables the rapid implementation of ANN-based 
partitioning algorithms, has been released under open-access terms. 
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Streszczenie 
Podział na bloki w kodowaniu wizji z wykorzystaniem sztucznych sieci neuronowych 

W niniejszej rozprawie przedstawiono wyniki badań w dziedzinie kodowania wideo, gdzie obrazy 
tworzące sekwencję wizyjną są poddawane kompresji, co wykorzystywane jest w systemach 
telewizyjnych, platformach VoD (Video-on-Demand) udostępniających filmy na żądanie i podobnych 
zastosowaniach. Badania przedstawione w tej rozprawie skupiają się na rozwoju algorytmów sterowania 
koderem. Szczególny nacisk położono na wyznaczanie podziałów bloku CTU (Coding Tree Unit), co 
jest najbardziej złożonym obliczeniowo etapem kodowania. Celem badań jest opracowanie algorytmu 
wyznaczania podziałów bloku CTU, który znacznie zmniejszy złożoność obliczeniową kodera, przy 
jednoczesnym zachowaniu wydajności kompresji w odniesieniu do rozwiązania zastosowanego w 
oprogramowaniu referencyjnym. W związku z tym zbadano możliwość wykorzystania sztucznych 
sieciach neuronowych (ANN) w algorytmie podziału bloku CTU. 

Na początku rozprawy przedstawiono opis procesu podziału bloków CTU w technice HEVC. 
W opisie uwzględniono kontekstowość w podejmowaniu decyzji. Przedstawiony został przegląd 
istniejących algorytmów wyznaczania podziałów bloku CTU, wskazując aspekty, które wymagają 
ulepszeń. Równocześnie dokonano przeglądu metod pozwalających na sterowanie kompromisem 
pomiędzy czasem kodowania i wydajnością kodowania, gdzie wskazano na skomplikowanie sterowania 
tym kompromisem w istniejących rozwiązaniach. 

W ramach badań rozważano dwa podejścia do problemu podziału bloków CTU: jeden rozważający 
decyzję o podziale na poziomie bloków Coding Unit (CU), oraz drugi rozpatrujący decyzje na poziomie 
zarówno bloków Coding Unit (CU) jak i Prediction Unit – PU). Proponowane sieci neuronowe 
zaprojektowano do łącznego estymowania prawdopodobieństw głębokości podziału dla poszczególnych 
obszarów w CTU. Do wytrenowania takiej sztucznej sieci neuronowej przygotowano dedykowany zbiór 
danych uczących. W rozprawie opisano proces tworzenia architektury sztucznych sieci neuronowych, 
wraz ze szczegółową analizą wyników trenowania i wydajności ostatecznych modeli.  

Następnie, w niniejszej rozprawie, przedstawiono autorskie algorytmy decyzyjne, wykorzystujące 
prawdopodobieństwa estymowane przy pomocy sztucznych sieci neuronowych. Algorytmy te 
zdefiniowano w dwóch wariantach: twardo decyzyjnym i miękko decyzyjnym. W rozprawie wykazano, 
że jeden z proponowanych algorytmów pozwala na prostą kontrolę kompromisu między czasem 
kodowania a wydajnością kodowania używając tylko jednego parametru. 

Analiza porównawcza z najnowszymi rozwiązaniami wykazała, że proponowane algorytmy 
partycjonowania oferują najlepszy kompromis między skróceniem czasu kodowania a wydajnością 
kodowania.  

Biorąc pod uwagę kontrolę nad kompromisem między czasem kodowania a wydajnością 
kodowania, spośród metod znanych w literaturze, zaproponowana metoda zapewnia najlepsze wyniki i 
najprostszą kontrolę nad tym kompromisem. Dodatkowo wprowadzono autorską metrykę do szybkiego 
porównywania takich metod, której wyniki pokrywają się z innymi, dobrze znanymi metodami. 

Na końcu rozprawy, zbadano wpływ efektów kontekstowych na decyzje dotyczące podziału bloku 
CTU. Kluczowe osiągnięcia w tym obszarze to: 

 Zaproponowany autorski eksperyment do określania wpływu kontekstu kodowania na decyzje 
dotyczące podziału bloku CTU. 

 Modyfikacje zaproponowanej sztucznej sieci neuronowej do przetwarzania informacji 
kontekstowych. 

 Opracowana przez autora metoda trenowania sieci neuronowej poprzez rozszerzenie etykiet 
uczących (ground truth augmentation).  
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 Autorska metoda globalnej optymalizacji decyzji o podziałach bloków CTU, nieistotnie 
zwiększająca czas kodowania. 

Wszystkie eksperymenty przedstawione w niniejszej rozprawie zostały przeprowadzone przy 
użyciu opracowanej przez autora zmodyfikowanej wersji oprogramowania modelowego dla techniki 
HEVC. Modyfikacja ta, umożliwiająca szybką implementację algorytmów podziału bloków CTU 
opartych na sztucznych sieciach neuronowych, została udostępniona na zasadach otwartego dostępu 
(open-access). 
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List of symbols, notations, abbreviations and terms  
α - Control parameter for AlgIdx decision algorithm in soft-decisive variant 

(Subsection 7.3.2.1) 

β - Control parameter for AlgPrb decision algorithm in soft-decisive variant 
(Subsection 7.3.2.2) 

{ } - a set of elements 

[𝑎; 𝑏] - closed interval of integer numbers, such that { x | a<=x<=b } 

(𝑎; 𝑏) - open interval of real numbers, such that { x | a<x<b } 

〈𝑎; 𝑏〉 - closed interval of real numbers, such that { x | a<=x<=b } 

(𝑖, 𝑗) - vector of indices for the first two dimensions coordinates of the division
matrix/tensor 

← - assignment operation 

𝑑 - the index used for the third dimension coordinate of the tensor, related to 
depth level value (Section 2.3.3) 

Iv() - the Iverson function [Fo99], such that Iv(𝑡𝑟𝑢𝑒) = 1 and Iv(𝑓𝑎𝑙𝑠𝑒) = 0 

ArgMax - arguments of the maxima 

𝑐𝑑𝑙 - current depth level 

p.p. - percentage points 

𝑃𝑆𝑁𝑅 - Peak Signal-to-Noise Ratio 

𝐵𝐷-𝑅𝐴𝑇𝐸 - Bjøntegaard metric [Bj01] used for bitrate comparison (expressed in 
percents), given the same quality 

𝐵𝐷-𝑃𝑆𝑁𝑅 - Bjøntegaard metric [Bj01] used for quality (in dB), given the same bitrate 

𝑇𝑆 - Time Savings, metric used for assessment of encoding time reduction 
(expressed in percents) 

𝑇஺ேே - contribution of network processing time to coding time (expressed in 
percents) 

𝐹𝑜𝑀 - Figure of Merit [Na20, He20] 

 

DM - Division Matrix, used for storage of partitioning decisions in HM [HM], 
indexed: DM[i,j] 

DT - Division Tensor, the output of the proposed ANN, indexed: DT[i,j,d] 

CPU - Central Processing Unit 

GPU - Graphical Processing Unit 

NPU - Neural Processing Unit 

MPEG2 - MPEG2 video encoding standard [MPEG2] 

AVC - Advanced Video Coding, video encoding standard [AVC] 

HEVC - High Efficiency Video Coding, video encoding standard [HEVC] 

VVC - Versatile Video Coding, video encoding standard [VVC] 

AV1 - AOMedia Video 1, video encoding standard [AV1] 

VP9 - VP9 video encoding standard [VP9] 

JPEG - JPEG image encoding standard [JPEG] 

CTU - Coding Tree Unit 

CU - Coding Unit 

PU - Prediction Unit 
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TU - Transform Unit 

SRU - Smallest Representable Unit 

ANN - Artificial Neural Network 

CABAC - Context-Adaptive Binary Arithmetic Coding [HM] 

MPM - Most Probable Mode [HM] 

HM - HEVC reference model software [HM] 

RD Optimization - Rate-Distortion Optimization 

QP - Quantization Parameter [HM] 

CTC - Common Test Conditions 

2D - 2-dimensional 

3D - 3-dimensional 

ML - Machine Learning 

ETvsCE trade-off - Encoding Time vs Coding Efficiency trade-off 

ANN - Artificial Neural Network 

CM - Confusion Matrix 

MPEG - Moving Picture Experts Group 

RD curves - Rate-Distortion Curves 

JCT-VC test 
sequences 

- test sequences, defined in CTC for HEVC  

MAC - Multiply And Accumulate 

DIV2k - uncompressed images dataset [Ag17] used for the creation of the training 
dataset 

Modified HM - author’s modification of the HM software (Section 4.7) 

AlgIdx - Index-based decision algorithm (Section 7.2.1 and Subsection 7.3.2.1) 

AlgPrb - Probability-based decision algorithm (Section 7.2.2 and 
Subsection 7.3.2.2) 

SVM - Support Vector Machines 

HMM - Hidden Markov Model 

Partitioning - division of block into smaller blocks. 

Partitioning pattern - a specific division of block into smaller blocks. 

Basic Approach  - One of the proposed approaches to partitioning process, considering 
division into CU blocks only 

ANN architecture 
for Basic Approach

- the final ANN architecture, used for training models for Basic Architecture 
(Figure 5.1, Section 5.1) 

Basic Architecture - a set ANN models with architecture presented in Figure 5.1, and trained 
for QP values [22, 27, 32, 37], trained using dataset defined in Section 4.2

Extended Approach - One of the proposed approaches to partitioning process, considering 
division into CU and PU blocks 

ANN architecture 
for Extended 

Approach

- the final ANN architecture, used for training models for Extended 
Architecture (Figure 5.1, Section 5.1) 

Extended 
Architecture 

- a set of ANN models with architecture presented in Figure 6.1 and trained 
for QP values [22, 27, 32, 37], trained using dataset defined in Section 4.2

Coding block - a block of samples encoded in an encoder, a general term for such blocks 
used despite the specific encoding technique  
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Bit cost - number of bits required for encoding a set of data in an encoder 

Dataset, 
Training Dataset

- dataset used for training ANN models 

Training Subset - the subset of the training dataset used for ANN model training 

Validation Subset - the subset of the training dataset used for ANN model validation 

Hyperparameter/s - ANN architecture parameters, such as: number of layers, type of layers, 
layer-related parameters, etc. 

Hyperparameter 
tuning 

- Process of hyperparameter adjustment 

Model weights - All trainable and non-trainable parameters of ANN model 

Training sample - a single element of the training dataset, consisting of ANN input data and 
expected output (ground truth) 

Ground truth - the expected output of the ANN, given a specific input 

Batch - set of samples from the training dataset, used for weights update in ANN 
training 

epoch - a single iteration over all training samples 

Batch learning - use of all samples from the training dataset for single weight update 

Minibatch learning - use of multiple sample batches during a single epoch 

Layer - the functional block of the ANN architecture 

Feature map - the output of hidden layers in ANN 

Feature map size - size of the first two dimensions of a 3D feature map 

Feature map 
channels

- size of 3rd dimension of 3D feature map 

Kernel size - a kernel of operation performed in a layer 

Stride - shift of kernel during the layer processing, expressed in the number of 
feature map samples 

Padding - extension of the feature maps by adding samples on the edges 
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1 Introduction 
1.1 Preamble 

Nowadays, video is almost everywhere: from TV, streaming platforms, and video storage to video 
conferences and social media. In global internet traffic, visual content takes up a significant share [For1]. 
This significance would not be possible without video and image compression techniques, especially 
lossy ones. Such techniques significantly reduce the data required for transmitting or storing video and 
make multiple use cases possible [Ri03A, Do10, Su12, Ka19, Br21A]. The transfer capabilities of 
telecommunication networks are still increasing, but these may not be sufficient for the rising demand 
for video content [Er24]. Thus, the research on video coding technologies is a very important topic. 

Currently, there are multiple techniques available for video compression. Most utilize hybrid 
encoder architecture, which divides video sequence frames into specific sections called coding blocks. 
Such coding blocks, composed of pixels, are then predicted using temporal or spatial information. In 
most of the techniques, the prediction is done separately for each color component. Such prediction error 
is then quantized to remove redundant information and entropy encoded to achieve a high compression 
ratio [Ri03A, Do10, Su12, Ka19, Br21A, Br21B].  

 Among the organizations concerned with video compression, the most noteworthy is the Motion 
Picture Experts Group (MPEG) working on behalf of ISO/IEC. The research and standardization process 
of MPEG yielded several techniques, such as MPEG2 [MPEG2], AVC [AVC], HEVC [HEVC], and 
VVC [VVC]. The group focuses on further video coding research, which is currently aggregated in ECM 
software [Co23]. Along with MPEG, there are other initiatives focused on the development of new video 
coding techniques. Among others, the most popular ones are VP9 [VP9], developed by Google, and 
AV1 [AV1], which is the effect of the Alliance for Open Media consortium works.  

The aforementioned video coding techniques employ sets of procedures, tools, semantic and 
syntax, with corresponding parameters defined for several use cases (profiles, levels). Generally, a 
standard for such techniques describes two vital elements: the semantic and syntax of the bitstream and 
the decoding procedure. The syntax defines how to interpret consecutive bits from a bitstream by 
defining a set of flags and fields. The decoder is defined as a set of processes, a set of tools used for 
video decoding, and techniques used to suppress coding artifacts. Standardization of a technology in 
such a way described above ensures that encoded video bitstream is interpreted identically on standard-
compliant devices. The implementation of an encoder is not restricted by any means as long as it 
produces a bitstream compliant with the syntax defined in the standard. 

The description of standardized technique specifies technology, but not the exact way to use it. In 
a video encoder the appropriate choice of coding block sizes is made considering the use of available 
tools and coding modes. This process highly impacts the overall coding performance of the video coding 
technique – wrong decisions may decrease the compression efficiency. Choosing block sizes, modes, 
and tools is a complicated optimization process. Given that newer and newer video coding techniques 
can encode a block in more and more ways, such optimization becomes an increasingly complex and 
challenging problem [Zo04, Su12, Vi12, St16, Br21B]. In numbers, the encoding time increase between 
consecutive generations of the video encoding techniques can be estimated to be around 100 times 
[Ri03B, To19, Si20A, Is21, Me21A]. 

The abovementioned process is the core of an encoder. Depending on the use case, this process 
must be controlled accordingly. One can define two aspects of encoder control:  

1. Definition of parameters and conditions for encoding process. Multiple variables define 
how the encoding process should be performed: starting from organization of a sequence 
(e.g., in Group of Pictures – GoP), through division of the frames into smaller units (e.g., Slices, 
Tiles, CTUs in HEVC/VVC), setting the range of sizes for different types of coding blocks, 
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defining the amount of quantization applied to data, enabling available coding tools, ending 
with target bitrate. Overall, these parameters set conditions for optimization process and are 
used by the user to control an encoder.  

2. Description of the optimization process and definition of the decision-making process. 
Every algorithm that allows estimation of encoding decision subsets may be called an encoder 
control algorithm. Such an algorithm may estimate the prediction mode, coding block sizes, 
types of transformations or decide if a coding tool should be applied. In modern video encoders, 
control algorithms determine their decisions among quintillions of possibilities [Bo12, Sa20].  

Reference models are available for most encoding techniques. The term ‘reference model’ relates 
to software demonstrating the encoder and decoder for a given technique. These implementations of 
encoders focus on showcasing the highest possible compression efficiency for a given quality. Given 
that, the reference models employ extensive encoder control algorithms, which consider a large number 
of combinations and choose the most efficient one. As the enormous number of combinations, counted 
at least to quintillions [Bo12] (Section 2.2, Formula 2.1), is considered, the computing complexity of 
the reference models is too high for the reference model to be directly applied to consumer devices such 
as personal computers, TV studio equipment, or camera-equipped mobile devices (e.g., smartphones). 
Especially for smartphones, the compute complexity of the encoder is crucial due to limited computing 
power and low energy consumption requirements. In practice, simpler control algorithms are used at the 
cost of reduced compression efficiency [Sw10, Mi13, La20, Vi22].  

All the abovementioned facts outline the major scientific problem: a search for low-complexity 
encoding control algorithms with possibly best compression efficiency. Work under this problem 
requires expert knowledge in multiple fields such as signal processing, data encoding, and video 
encoding, and a deep understanding of the target technique is needed, as the task is non-trivial to handle. 
Research on such encoding control algorithms is frequently addressed, especially for modern video 
coding techniques, e.g., HEVC [Ur23, Kh24, Fa24]. Problems related to this research field still need 
better-adapted solutions for practical use, such as accurate and fine-grained control over the Encoding 
Time vs. Compression Efficiency (ETvsCE) trade-off. This problem cannot be solved by adjusting 
encoder parameters, and currently available solutions require complicated handling. 

A way to face the scientific challenge presented earlier is using Artificial Neural Network (ANN). 
Currently, huge advancements in Machine Learning are observed. The rising popularity of ANNs in 
multiple applications is caused by advances in software and hardware dedicated to these applications 
[Go16, Le20, Ga22, Pr23, Sa23]. The ANN-based solutions became practically viable, and the galloping 
development will increase their accessibility [For2, For3, For4]. The newest consumer devices offer 
extended ANN capabilities by including a Neural Processing Unit (NPU). These NPUs employ hardware 
that is dedicated to matrix operation computation. Most current technological companies that offer 
System on Chips (SoC) or Central Processing Units (CPUs), such as Snapdragon, Apple, Intel, or AMD, 
are currently offering NPU-featured devices for mobile devices [Or22, Ri24, In24, Ma23A]. With such 
hardware support, using ANN as part of the encoder control algorithm becomes a viable solution [Rh12, 
Ce21] and may vastly increase the integration of new video encoding techniques.  

1.2 Scope of the dissertation 

The dissertation is focused on the encoder control algorithm, precisely the partitioning process. The 
partitioning is referred to as a process of dividing of samples into smaller blocks. The partitioning is the 
most time-consuming process in encoding, constituting up to 95% of encoding time [Bo12, Du18, 
Me21A]. The set of blocks resulting from the partitioning algorithm will be called the partitioning 
pattern. The goal of the research is developing a partitioning algorithm characterized by two key aspects: 
low complexity along with maintaining the compression ratio. A reference partitioning algorithm is 
required to assess these aspects, which will be indicated later in this section. Other elements of the 
encoder control algorithm, like a selection of angular modes or coding tools, are out of the scope.  
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Major aspects of the dissertation scope are the prediction mode and standardized encoding 
technique used in research. The following paragraphs will present the relevant choices and their 
reasoning. 

The scope of this dissertation is restricted to partitioning algorithms dedicated to Intra mode. The 
reasoning behind such a restriction is strictly connected with the importance of the Intra mode. Firstly, 
the Intra mode utilizes dependencies within the current encoding frame, while the Inter mode utilizes 
temporal and spatial dependencies in video sequence. The first frame of a sequence is always encoded 
in Intra mode, so these decisions will influence the encoding of the subsequent frames. Additionally, the 
Intra mode is used to compress images. Therefore the use case of the proposed method is extended along 
with the availability of the ANN training datasets. 

 The final argument in favor of focusing on Intra mode stemmed from a literature survey conducted 
at the beginning of the research works. The survey concluded that research focused on partitioning 
algorithm using ANN for Intra mode is more promising [Mo15, Ch18, Li18, Li21A, Am21, Li22C, 
Ab22, Ba22, Xu18A, Xu18B, Ki19, Wa21] than for Inter mode [Rh12, Sh12, Lu13, Le15, Pa14, Du15, 
Ki16B, Ta16, Ta17, Li17, Du18, Ta19, Tu19, Lu20, Ku20A, Zh21A, Hu21A, Ci22, Li22A, Ta22, 
Li22B, Ni22]. 

A significant aspect of the dissertation is dedicated to choosing a standardized video encoding 
technique to be used as the base for research. Among multiple standardized techniques for video 
encoding, the High Efficiency Video Coding (HEVC) was chosen. The rationalization of this choice is 
presented further in this section. Nevertheless, other video encoding techniques created by MPEG were 
considered. The AVC [AVC] is relatively common but much less efficient regarding compression 
efficiency. The successor of HEVC [HEVC], namely VVC [VVC] was still under development at the 
beginning of the research. Even though VVC technology now is standardized [VVC], it is still 
marginally popular and lacks hardware encoders and decoders. Video encoding techniques proposed by 
other initiatives like VP9 [VP9] and AV1 [AV1] are not that popular in the scientific field, and their 
performance does not overcome HEVC much. This dissertation is focused on Intra prediction mode, so 
image compression techniques such as JPEG [JPEG] could be used. Despite its popularity, it is being 
replaced by appropriately adapted solutions based on video encoding techniques, e.g., HEVC-based (the 
HEIF format). 

At the beginning of the research, HEVC was the most recent technique for video encoding. The 
complexity of the reference encoder for HEVC is high but low enough to make the research possible 
with available computational power. Using the VVC reference encoder for experiments will extend the 
encoding time 100 times compared to HEVC, which would be impossible to overcome due to reasons 
explained further in the research methodology (Section 3.1). Still, HEVC is a cornerstone for newer 
techniques, and achievements for HEVC may be transposed to newer VVC with minor adjustments. 
HEVC is becoming one of the most significant video encoding techniques as hardware encoders and 
decoders have become broadly available in recent years [Ap24]. 

In summary, the scope of the dissertation includes the Intra mode in HEVC. The partitioning 
algorithms used in the reference encoder of HEVC employ an extensive estimation of partitioning 
patterns, resulting in an arduous search for the best one. Multiple patterns are tried in this process, but 
just one is finally used. Within the scope of this dissertation are partitioning methods that indicate a 
narrow range of partitioning patterns to consider or even point to only one. Such an approach vastly 
reduces the computational overhead of the partitioning algorithm. 

The reference encoder of HEVC will be used in the research to assess the proposed partitioning 
methods. Within the scope of this dissertation are techniques implemented in the reference encoder of 
HEVC. The proposed partitioning algorithm will be tested as a replacement for the reference partitioning 
algorithm within the reference encoder of HEVC. Other decisions made by the modified encoder should 
be made the same way as those made by the reference encoder. Methods that impact other aspects of the 
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reference encoder or implement partitioning algorithms in other HEVC encoder implementations are 
out of this dissertation scope. 

This dissertation is focused on partitioning algorithms that use the ANN. In particular, the use of 
the ANN to estimate whole partitioning patterns or sets of patterns is addressed. The search for the low-
complex architecture of the ANN suitable for the presented task is one of the main topics of this 
dissertation. Thus, the Fully Connected ANNs are considered, which is rationalized in Section 4.3. The 
input data of the ANNs may be a set of samples from CTU. The subject of the contextually of the 
encoding process is within the scope of this dissertation. Thus, additional input data are considered as a 
way to include the encoding context in ANN processing. Furthermore, the ANN training data 
preparation, taking into account the contextually of encoding, is also explored in this dissertation. One 
of the topics in this dissertation is the use of the proposed partitioning algorithm in the global 
optimization of partitioning patterns. The ANNs considered in this dissertation estimate an output, which 
is a set of probability values. 

The scope covers the methods that use the ANN and the non-trivial decision algorithm. Such a 
decision algorithm covers the conformance control of the partitioning pattern and the interpretation of 
the ANN output. The abovementioned partitioning algorithms proposed in this dissertation may indicate 
a single partitioning pattern or a set of partitioning patterns. Within the scope of this dissertation are 
decision algorithms that allow flexible control over the incidence of multiple partitioning patterns 
consideration. The development of decision algorithms directly relates to another major topic of this 
dissertation: the control over Encoding Time vs Compression Efficiency trade-off. 

1.3 Research goals and theses 

The research on video encoding control algorithms is presented in this dissertation. The focus is 
primarily on partitioning coding blocks in HEVC. Developing a partitioning algorithm aims to reduce 
the encoding time compared to the reference solution while maintaining a compression efficiency as 
close to the reference model as possible. The partitioning algorithm uses ANN to derive a decision. Such 
a network would be trained to mimic the partitioning decisions of the HEVC reference model. The 
targeted ANN should be as simple and computably low-complex as possible. 

The ANN used in the partitioning algorithm generates outputs, which can be interpreted as 
probabilities of the depth level values for certain subareas of the coding block. In this dissertation, it is 
proposed to process the such output by a decision algorithm. Another goal of the research presented in 
this dissertation is to design a decision algorithm that yields the best compression efficiency for HEVC 
and ensures that the partitioning pattern conforms with the HEVC syntax. Another aspect of the targeted 
partitioning algorithm is the training of the ANN. An ANN model is trained with some error, which 
means that such a model will not always be sure of a particular partitioning. Considering this, the goal 
is to exploit this phenomenon, called the model uncertainty, by designing a soft-decisive algorithm. 
Soft-decisiveness will be used to improve the effectiveness of the developed partitioning algorithm. 
Additionally, such uncertainty can be used to fluently control the Encoding Time vs. Compression 
Efficiency (ETvsCE) trade-off. Such control is desired to be as simple as possible.  

Considering the abovementioned research goals, the following theses were stated :  

T1: The utilization of the Artificial Neural Network with a decision algorithm can significantly 
decrease the computational complexity of the video encoder as compared to HEVC 
reference model encoder.  

T2:  The employment of Artificial Neural Network with a soft- decision algorithm enables a 
single parameter control over the Encoding Time vs Compression Efficiency trade-off.  
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1.4 Overview of the Dissertation 

The organization of this dissertation is presented in Figure 1.1. Chapter 2 discusses state of the art. 
It presents the main aspects of the HEVC technology, like the encoder control algorithm and partitioning 
rules and restrictions. Further in that chapter, a review of the partitioning methods in the literature is 
presented. The main aspects of such methods are described and broken down into non-neural and neural 
methods. These methods are summarized at the end of the chapter, and potential improvements and 
research directions are highlighted.  

 Chapter 3 presents the methodology used in research presented in this dissertation. The assessment 
of the video encoder modification impact is presented. The test sequences are presented along with the 
rules for experiments with a video encoder. The training methodology is presented with the choice of 
the dataset. Chapter 4 presents the main idea of the proposed partitioning algorithm. There, the overall 
approach is discussed, the definition of a problem for ANN training is set, the inputs and outputs of 
ANN are defined, and the training procedure is shown. Additionally, the details of the implementation 
of the partitioning algorithm into the Modified HM (Section 4.7) are presented. 

Chapters 5 and 6 present two main approaches for partitioning algorithms: Basic and Extended. 
Detailed architectures of ANN are presented, and training and evaluation results are analyzed. 
Additionally, the choice of hyperparameters is discussed. In Chapter 7, a detailed description of the 
decision algorithms is presented. The hard-decisive variants are defined. The viability of 
soft-decisiveness is verified, and soft-decisive variants of the decision algorithms are defined. Proposed 
decision algorithms are evaluated. The control over Encoding Time vs. Compression Efficiency 
(ETvsCE) trade-off is proposed. Chapter 8 presents the comparison of the best-proposed partitioning 
algorithms with state-of-the-art solutions. 

Chapter 9 presents exploration experiments for the proposed partitioning algorithm. It contains 
several approaches that aim to improve the performance of the Basic and Extended approaches or 
present minor achievements of the research. The improvement of the ANN is presented, and the 
utilization of contextuality of the encoding process in HEVC is discussed. Finally, the original method 
for  global optimization of CTU partitioning with the use of Hidden Markov Model (HMM) is proposed. 
The direction of future research is shown. Chapter 10 contains the dissertation summary.  
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Figure 1. 1 Organization of the dissertation with the description of the main subjects of the chapters. 
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2 State of the art 
2.1 High Efficiency Video Coding (HEVC) technology 

Due to the MPEG works, in 2013, the High Efficiency Video Coding (HEVC) standard was 
released. This technique is also known as ITU.T H.265 or MPEG-H Part 2 [HEVC]. The coding 
efficiency of HEVC is about 50% better than its predecessor [Zo04, Su12, St16], the AVC [AVC]. The 
coding efficiency improvement came, for example, from increasing the number of ways a block of 
samples may be encoded. Compared to AVC [AVC], the complexity of the decoder remains similar 
[Zo04, V12], but the encoder, which requires a much more complicated encoder control algorithm, 
requires much more computations [Bo12, Co12, St16]. The simplified diagrams of the HEVC encoder 
and decoder are presented in Figures 2.1 and 2.2. 
 

 

Figure 2. 1. Simplified block diagram for HEVC encoder. Block “*Inverse quantization” refers to 
recovery of the original scale of the signal (quantization is lossy and cannot be inversed). 

 

The HEVC standard comes with multiple improvements compared to its predecessor, AVC [AVC]. 
Here are the most important ones from the standpoint of this dissertation. Firstly, macroblocks [AVC, 
Wi03A] were replaced by Coding Tree Units (CTUs) [HEVC, Su12]. The CTU block can be further 
divided into smaller blocks via partitioning [Su12, HEVC]. The partitioning is the most computationally 
demanding process, as it can constitute 95% of the encoding time [Bo12, Du18, Me21A]. The 
introduction of the CTU allows a better adaptivity of encoding decisions to video content, so better 
encoding effectiveness. A detailed description of the CTU is included in the next section. Secondly, the 
number of available options for encoding a block in Intra mode is significantly increased [HEVC]. 



22 

 

Examples are the number of angular prediction modes or transform options. Thirdly, the more advanced 
CABAC encoder is used [HEVC, Su12, Ka19]. The improvements in CABAC come from better 
organization of binary sub-streams and more effective statistic modeling of the binary symbols. These 
made CABAC more impactful on multiple coding decisions in consecutive CTU blocks [Ka19]. The 
presented components of HEVC significantly affect the complexity of the algorithm controlling the 
encoder and, consequently, the computational complexity of the encoder. Those components will be 
further discussed in the dissertation.  
 

 

Figure 2. 2 Simplified block diagram for the HEVC decoder. Block “*Inverse quantization” refers to 
recovery of the original scale of the signal (quantization is lossy and cannot be inversed). 

Along with the standard, the MPEG group shared the reference model for HEVC. This encoder is 
the HEVC Reference Model Software [HM, Mc14], commonly called HM. This software proves the 
high compression efficiency achievable by the technique but at the cost of the computational complexity. 
The applied encoder control algorithm performs an extensive search over available coding options. Still, 
some fast algorithms were used in less crucial areas. One such algorithm is the Most Probable Mode 
(MPM) mechanism [HM], which reduces the number of candidates for prediction mode. Despite that, a 
large number of available coding options are tried during encoding. A more detailed description of the 
encoding control algorithm used in HM is presented in Section 2.3.  

The MPEG group standardized a more advanced encoding technique – VVC [VVC]. This 
technique may be described as a set of improvements for HEVC [Br21A, Br21B]. It means that multiple 
solutions for HEVC may be transferred with minor adjustments to VVC.  
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2.2 The partitioning of the Coding Tree Units (CTU) in HEVC 

The partitioning is the most time-consuming process in the encoder [Bo12, Du18, Me21A]. As 
mentioned in the previous section, the Coding Tree Unit (CTU) is a block that can be further divided 
into smaller blocks via a partitioning process [Su12, HEVC]. The CTU organizes luma samples with 
corresponding chromas depending on the sampling scheme. CTU is always square, and the maximum 
size of the CTU is 64×64 luma samples with corresponding chromas samples.  
 

 

Figure 2. 3. Exemplary CTU partitioning with corresponding quadtree. Value in quadtree leaves 
indicates the block in CTU. White circles refer to internal nodes, and color circles to the leaves of 

quaternary tree.  
 

The CTU partitioning arranges the samples into Coding Units (CUs). Such arrangement is done by 
consecutive block splits following a quaternary tree scheme. The set of blocks resulting from the division 
of the CTU is called a partitioning pattern. The partitioning pattern may be represented, e.g., by a 
quaternary tree, as shown in Figure 2.3. The depth of the leaf in the quaternary tree, referred to as depth 
level, is strictly connected to the CU size. In HEVC, the maximum depth level is 3 (indexed from 0). 
The exact interpretation of depth level as block size depends on the encoder configuration, the CTU 
size, and the minimum CU size precisely. The CUs in CTU are encoded following the Z-order scan 
[HEVC].  

The calculation of the number of possible partitioning patterns may be done recursively. Here, it 
will be presented using the example. Let us assume that for a particular encoder configuration, the CTU 
size is 4 ⋅ 𝑁, and the minimum CU size is 𝑁. The number of possible partitioning patterns is determined 
using the following reasoning:  

 A block of size 4 ⋅ 𝑁 may remain intact or be divided into four blocks of size 2 ⋅ 𝑁, according 
to the quaternary tree pattern.  

 A block of size 2 ⋅ 𝑁 may remain intact or be divided into four blocks of size 𝑁, according to 
the quaternary tree pattern. Moreover, each block of size 2 ⋅ 𝑁 block can be partitioned 
independently. 

 The block of size 𝑁 cannot be further divided. It means that the block of size 2 ⋅ 𝑁 can be 
partitioned only in 1 +  1 = 2 ways.  

 Therefore, for the division of block of size 4 ⋅ 𝑁: possible partitioning patterns are no division 
(single 4 ⋅ 𝑁 block) or any variations of 4 blocks partitioned independently (2 possible 
partitioning patterns). 
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 The number of partitioning patterns for a block of size 4 ⋅ 𝑁 is 1 +  2ସ = 17: no partitioning 
plus the number of variations with repetition for four blocks with two possible partitioning 
patterns. 

Considering the above example, the formula for the number of possible partitioning patterns for 
HECV can be defined as:  

𝑃𝑎𝑟𝑡𝑁𝑢𝑚𝑁(𝑀) = ൜
1 + (𝑃𝑎𝑟𝑡𝑁𝑢𝑚ே(𝑀/2))ସ,

1,

 𝑖𝑓 𝑁 ≠  𝑀

𝑖𝑓 𝑁 = 𝑀
, (2.1) 

where 𝑁 is the minimum CU block size, and 𝑀 is the CTU size, both defined for a given encoder 
configuration. A single value may represent CU block size, as CU is always square in HEVC. Using 
formula 2.1, for the most common HEVC configuration [HM], where 𝑀 = 64 and 𝑁 = 8, the number 
of possible partitioning patterns is 83 522.  

Each CU block can optionally be divided into Prediction Units (PU). Then, PUs are divided into 
Transform Units (TU) blocks. Figure 2.4 presents the division scheme. The purpose of the PU is to use 
the same prediction mode and tools for the samples within a unit. A PU may have a rectangular shape, 
as shown in Figure 2.5. Restrictions for Intra mode are presented later in this section. Each division 
mode has a unique index. The residual signal derived by prediction is divided into TUs organized in the 
tree structure.  
 

 

Figure 2. 4. Division of CUs into PUs and TUs. 
 

 

Figure 2. 5. Division modes for splitting CU into PUs with the corresponding indices (Idx). Only 
highlighted (green) modes are available in Intra prediction mode. N represents the size of the CU 

block. 
 

Considering further division possibilities for CUs, PUs, TUs, and multiple prediction modes and 
coding tools, the partitioning algorithm may consider at least quintillions of ways to encode a single 
CTU block (formula 2.1). The encoder chooses the same partitioning and divisions both for luma and 
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chromas. The encoding control algorithm decides on the partition using the bit cost (Subsection 2.3.1) 
estimated for all components. 

The HEVC syntax restricts available PU division modes in Intra mode. The only possible division 
mode for CU block sizes bigger than 8×8 is N×N (Idx: 0). This means that PU division is not considered. 
For CU block size 8×8, the available PU division modes are N×N (Idx: 0) and N/2×N/2 (Idx: 3) – 
highlighted in Figure 2.5. One can conclude that in Intra mode, a division into CUs and PUs may be 
considered jointly. In this case, PU division may be interpreted as the additional depth level of the 
quaternary tree. Considering this assumption, the number of possible CTU partitioning patterns, 
calculated using formula (2.1), increases to 48 663 522 406 470 666 257.  

2.3 Rate-Distortion Optimization 
2.3.1 General Description 

The control over the HEVC encoder is not imposed by the standard [HEVC]. The HM [HM] uses 
Rate-Distortion Optimization (RD Optimization) as a base for the algorithm of video encoding control 
[Su98, HM, Do10, Ka19]. The RD Optimization considers available coding options through a trade-off 
between quality loss for the block versus its bit cost. In general, the optimization problem in RD 
Optimization is the minimization of cost function 𝐽 [Do10, Ka19], defined as follows:  

𝑚𝑖𝑛 𝐽 = 𝐷௕௟௢௖௞(𝑚𝑜𝑑𝑒, 𝑄) +  𝜆 𝑅௕௟௢௖௞(𝑚𝑜𝑑𝑒, 𝑄), (2.2) 

where: 𝐷௕௟௢௖௞ is the distortion of the block and 𝑅௕௟௢௖௞ is bit cost – both for given 𝑚𝑜𝑑𝑒 and given 
quality factor 𝑄. The 𝜆 is the weighting coefficient, which value was estimated by thorough work of the 
MPEG group during the standardization procedure [HEVC, Ka19]. The simplified graphical 
interpretation of the search for optimal point is shown in Figure 2.6. 
 

 

Figure 2. 6. Graphical interpretation of RD Optimization. Optimization aims to find a point (red × – 
different way of encoding) closest to the reference curve (dashed) for given optimization conditions.  

 

Due to amount of possible coding options for a single CTU, such an optimization process is a very 
complex problem. Moreover, in video encoders such as [Bo12, Br21A, Br21B], the optimization should 
be performed slice-wise to ensure the best decisions. That is due to the dependencies between 
consecutive blocks within a single context of CABAC [HEVC, HM, Su12]. Moreover, calculating 
binary symbols statistics makes the decision process very sensitive. Furthermore, decisions should be 
fine-tuned with multiple passes of optimization. Therefore, all practically used encoder control 
algorithms apply suboptimal decision sets.  
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2.3.2 RD Optimization in HEVC Test Model 

RD Optimization is the most complex and time-consuming process in the entire HM [Vi12, St16, 
Si20A, Is21, Me21A]. Still, the applied encoding control algorithm is a substantially simplified version 
of RD Optimization presented in the previous subsection. The optimization is done for CTU blocks, one 
by one, following the raster scan scheme. A particular CTU blocks influence decisions in further CTUs, 
e.g., by the CABAC context. Particular decisions for a CTU are made according to hierarchy, presented 
in Figure 2.7. The presented hierarchy corresponds to case when only Intra mode is allowed. In the 
research, the encoder was run in constant QP mode, so the QP adjustment steps made in constant bitrate 
mode are omitted. The CTU partitioning is the most important decision in the hierarchy (up to 95% of 
encoding time [Bo12, Du18, Me21A].), which makes it the most impactful on the complexity of the 
encoder.  
 

 

Figure 2. 7. Hierarchy of decisions for CTU in HM (Intra mode only). Highlighted sections of the 
hierarchy are within the scope of this dissertation. 

 

The partitioning procedure is shown in Figure 2.8. Starting from the biggest possible CU (CTU 
size), the algorithm executes the following steps:  

1. If not estimated earlier, find the cost (Formula 2.2) of encoding the block in its current size. 
a. If allowed, divide into PU blocks. Find prediction mode/modes. 
b. Decide on coding tool usage. 
c. After estimating the prediction error, decide on the TU sizes and transform type. 
d. Run CABAC to estimate bit cost for the current set of decisions. 

2. Estimate the bit cost of encoding using a set of smaller blocks according to the quaternary tree. 
The procedure from step 1 is applied.  

3. Compare the cost of encoding in the current CU size with the total cost using a smaller CU 
size.  

a. If a division is unprofitable – use the current CU size 
b. Otherwise, repeat the procedure for smaller CUs in Z-order.  
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Figure 2. 8. CTU partition algorithm in HM, simplified for Intra mode only coding. “Cost J” is 
calculated with Formula 2.2 
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Two main compromises in the optimization may be highlighted from the described HM partitioning 
algorithm. Firstly, the algorithm greedily makes decisions. If the result for the current depth level is 
locally the best, further divisions are not considered. Termination of partitioning limits computational 
complexity, but better partitioning patterns may be missed. Still, the complexity is high, as each block 
size comes with a repetition of the decision process for lower hierarchy levels. A significant part of 
computations is checking blocks that will not be used in the final encoding. Checking block sizes from 
the biggest possible one increases computational complexity, especially when smaller blocks should be 
used. 

Secondly, the algorithm does not revoke its decisions. The chosen partitioning patterns are not 
further modified. The only exception is adjusting the partitioning pattern to syntax restrictions, discussed 
in the following subsection. Decisions are made locally while the CTU is processed, but, as mentioned 
earlier, the partitioning is influenced by previous decisions. This influence will be called the contextual 
effect or contextuality of encoding. Contextuality comes from, for example, prediction, CABAC 
context, and mechanisms like MPM [HM]. Nevertheless, there is no mechanism to change previous 
decisions.  

2.3.3 Storage of decisions in HM software and partitioning syntax restrictions 

The decisions of the encoding control algorithm are stored in the HM encoder to be further used in 
the final bitstream composition, e.g., to provide relevant signaling. Depending on the decision type, the 
storage of decisions is slightly different. From the standpoint of this dissertation, the partitioning pattern 
(CU blocks) and the PU division mode storage are the most important. 
 

 

Figure 2. 9. Division matrices for CU and PU for exemplary partitioning pattern. 
 

In general, the HM software stores the partitioning patterns as a square division matrix (Fig. 2.9). 
The Entire division matrix corresponds to the area of a given CTU, and each matrix field corresponds 
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to the division smallest representable unit/block. Therefore, the size of such a matrix depends on the 
size of CTU (in pixels) and the size (in pixels) of the smallest representable unit/block. In this 
dissertation, the smallest representable unit/block is denoted as SRU. In a typical configuration, the CTU 
size is 64x64, and the SRU is TU of size 4x4. Therefore, the size of the division matrix is 16x16.  

The matrix for storage of CTU partitioning decisions (CU block sizes) is called the Division Matrix 
for CU (𝐷𝑀஼௎) [HM], defined as follows:  

𝐷𝑀஼௎[𝑖, 𝑗] = 𝑑      where     𝑖, 𝑗 ∈ [0; 15], 𝑑 ∈ [0; 3]. (2.3) 

The 𝑑 is the depth level value of the CU block that contains the area of the SRU. In 𝐷𝑀஼௎, the depth 
level value 0 corresponds to 64×64 CU, and the depth level value 3 corresponds to 8×8 CU. Decisions 
for PU divisions are stored in the Division Matrix for PU (𝐷𝑀௉௎) [HM] defined as follows:  

𝐷𝑀௉௎[𝑖, 𝑗] = 𝑝      where     𝑖, 𝑗 ∈ [0; 15], 𝑝 ∈ [0; 7]. (2.4) 

The 𝑝 is the index of the PU division mode. As the block is encoded in Intra mode, in 𝐷𝑀௉௎  only two 
modes are allowed (indices 0 and 3). Exemplary partitioning patterns with PU division modes and 
corresponding Division Matrices are shown in Figure 2.9.  

The CTU block size is always constant throughout the frame. It applies even when the resolution 
of the frame is not divisible by the size of the CTU. In such cases, the following procedure will be 
applied on CTU during the partitioning process:  

1. If the resolution is divisible by the smallest available CU block (8x8 by default), go directly to 
step 2). Otherwise, the „Conformance window mode” is applied. The encoder extends the frame 
to a resolution divisible by the smallest available CU block. Missing samples are filled with the 
nearest left (for missing samples on the right side of the image) or the nearest top sample (the 
missing samples at the bottom) [HM].  

2. All unavailable samples (their values are undefined) are grouped in isolated CUs. Such CUs are 
not encoded but are signalized in syntax [HM]. 

The abovementioned procedure is visualized in Figures 2.10 and 2.11. 
 

 

Figure 2. 10. Application of the Conformance Window Mode in HM software.  
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Figure 2. 11. Example of estimated partitioning pattern for CTU with unavailable samples (grey). 
The purple envelope marks the image fragment presented in Figure 2.10. Fragments of partitioning 

pattern marked with red crosshatch are not encoded but only signaled in syntax. 
 

2.4 Partitioning methods 

As presented in the previous sections, the encoding control algorithm in HM Software produces 
suboptimal decisions, although in terms of final bitrate is very efficient [Co12]. Despite that, the wide 
range of searches makes this approach very time-consuming (up to 95% of the encoding time [Bo12, 
Du18, Me21A]) and computationally complex. The complexity makes the HM not suitable for practical 
usage. That is why more HEVC encoding control algorithms were developed by multiple researchers 
[Rh12, Ce21]. These methods aim to reduce the complexity while maintaining the bitrate and quality of 
the decoded sequence. This dissertation is focused on CTU partitioning and PU division mode methods, 
which may be considered jointly in Intra mode. In this dissertation, such methods are called partitioning 
methods.  

For most cases, the partitioning methods utilize the RD Optimization from HM Software to make 
the comparison fair. Methods for other levels of hierarchy (defined in Section 2.3.2), e.g. for angular 
prediction mode [Ya12, Ch13, So17, Ry18, Ja19, Xu19, Hu21B, Li24] or TU size [Lu20, Hu21A] were 
proposed in literature. Sometimes, these methods [Ch13, Xu19, Li24] are an internal part of the encoder 
control algorithms that estimate decisions for multiple hierarchy levels (Figure 2.7). The methods that 
focus directly on decisions for PU prediction mode and lower decisions in the hierarchy [Ya12, So17, 
Ry18] achieve ~2% of the time encoding time reduction with ~1% bitrate increase. 

Less complex partitioning algorithms, compared to partitioning algorithms from HM software, 
employ the following methods of partitioning pattern estimation: 

1. Hierarchical estimation of split flags of the quaternary tree (referred to as hierarchical approach) 
[Li16A, Xu18A, He21, Fe21]. 

2. Early termination of block size estimation in quaternary tree search [Ki13, Fe22]. 
3. A reduction of the search range, e.g., by setting depth levels to examine [Qi16, Lu19]. 
4. Estimation of the whole partitioning pattern at once [Kh13, Cr16]. 
5. Fast estimation of the bit cost of the block of a certain size [Ta17, Na24]. 

It is worth noticing that most of the methods proposed in the literature are suited for the compression of 
typical video content, represented in test sequences defined in Common Test Conditions for HEVC 
[CTCHEVC]. As the HEVC technique has multiple profiles for specific use cases, appropriately tailored 
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non-reference partitioning algorithms are proposed. Examples of these tailored profiles are 3D-HEVC 
[Ch19A, Ba22] and Screen Content Coding [Ku20B]. 

In the literature, multiple partitioning algorithm approaches were presented. To clarify the 
presentation, the survey of partitioning algorithms organizes these methods into two groups: Non-ANN 
and ANN. Each category will be discussed in a separate subsection. 

2.4.1 Non-ANN-based approaches 

Among non-ANN-based algorithms, the most straightforward method is the early termination of 
partitioning by data analysis [Ki13, Fe22]. Such a method frequently estimates other encoder decisions 
(Figure 2.7). The most popular solution is the hierarchical estimation of split flags [Zh14, Co15, Ce15, 
Li16A, Ga16, Ki16A, Zh18, Ya20A, Wa20, Li20A, Zh20B, Zh20, Ce21, We22]. The algorithms find 
the partitioning by estimating split flags in a top-bottom fashion. The estimation of the split flag may be 
considered uncertain [Li16A], and then the RD Optimization decides on the split. Two solutions were 
found [Kh13, Cr16], where the decision for partitioning was performed in a bottom-top fashion. Such 
an approach tries to estimate a partitioning pattern by assuming division into the smallest possible blocks 
and then joining them into bigger ones. Some researchers proposed different solutions for the 
partitioning problem. Instead of a hard-decisive algorithm, it is proposed to estimate block size ranges 
for a given CTU [Sh13, Qi16, Lu19, Me21B]. Such an algorithm may control the encoder to consider 
partitioning patterns, compared to a hierarchical estimation of split flags, but is more resilient to 
algorithm mistakes, so the bitrate increase is smaller compared to HM.  

 The type of input data differentiates the non-ANN-based algorithms. Most algorithms analyze the 
texture to decide within the partitioning process. Some methods classify the texture into a complexity 
category [Sh13, Zh18, Li20A, Zh20B, He21]. Other methods analyze the smoothness of the texture 
[Zh14, Li16A]. The smoother the texture is, the more probable that a bigger block should be used. Some 
algorithms determine keypoints, e.g., SIFT [Lo99], in the CU [Co15, Ki16A, Ya20A, We22]. Further, 
texture energy estimation [Zh20C, Me21B], Histograms of Oriented Gradients [Cr16], or Visual 
Saliency [Qi16] were employed to decide on the partitioning process. 

Among the types of input data for the partitioning algorithms, the bit cost of the block was 
considered. A thresholding of such was presented as a viable solution [Ki13, Fe22]. Other methods 
consider the correlation with neighboring blocks [Sh13, Ce15, Lu19, Wa20, Me21B] as a context of the 
encoder influences the decisions. Another approach to leverage contextuality is to analyze the statistics 
of the decisions for previously encoded CTUs and frames [Ga16, Ki16A]. Such statistics may be 
estimated only offline [Ga16] or be updated during encoding [Ki16A]. Lastly, a partitioning algorithm 
may quickly estimate block bit cost and use it for split decisions.  

The non-ANN partitioning algorithm may be categorized whether they employ ML or not. Among 
non-ML techniques, one can list texture analysis [Sh13, Zh14, Cr16, Qi16, Zh20B, Na24], context 
analysis [Ce15, Lu19, Me21B], and statistical analysis [Ga16, Ya20A]. The ML-based solutions worth 
mentioning are classifiers such as Decision Tree/Random Forest [Co15, Zh20B, He21, We22, Ts22], 
Bayesian [We22], or SVN [Li16A, Zh18]. Among ML-based algorithms, the ANN should be enlisted. 
Such approaches are described in the next subsection. 

Determining the performance of the non-ANN partitioning algorithm may be difficult as they often 
combine decisions not only for CTU partitioning and PU division [Cr16, Ya20A, Wa20, Zh20B, Ja19]. 
Considering approaches only for CTU partitioning or CTU partitioning and PU division, the bitrate 
increase is relatively low, mostly in a range of 〈0.8%; 1.2%〉, estimated with Bjøntegaard Delta [Bj01]. 
Regarding decreasing the encoding time, referred to HM, 10% to 53% was reported. In general, the 
higher the reduction in encoding time was, the more significant a bitrate increase was observed.  
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2.4.2 ANN-based approaches 

ANN-based algorithm differs from typical approaches for partitioning algorithms. Instead of using 
expert knowledge to design the algorithm carefully, the ANN is trained to model the problem as 
precisely as possible. Considering the partitioning problem, this is done using a training dataset in most 
cases.  

The definition of the problem is a crucial part of designing ANN-based algorithms. The ANN 
methods for the partitioning algorithm consider only CTU partitioning [Li17B, Fe18A, Xu18A, Ka18, 
Am18, Fe18B, Re19, Am20, Am21, Fe21] or CTU partitioning with PU division jointly [Wa18B, Sh19, 
Li22D, Zh22]. Some algorithms do not estimate PU divisions by the ANN but rather apply additional 
algorithms that use the ANN output. As this additional algorithm, the following were used: Naïve-Bias 
[Hu21B], Laplacian Transparent Composite Model [Am18], or statistical analysis [Zh23A]. An 
approach was proposed to encode the first frame with HM RD Optimization, and for the rest, ANN was 
used along with an analysis of spatial-temporal features [Zh23A].  

The methods may be categorized by method type. Similarly to non-ANN-based approaches, the 
most popular method is the hierarchical estimation of split flags. Such methods may assume two patterns 
of operation. The first one is to run the ANN whenever the decision is needed [Yu15, Li16B, Li16C, 
Li17B, Ka18, Am18, Wa18B, Sh19, Ch20, Am20]. Most of the time, a different model is used for each 
depth level. The second operation pattern is to estimate all split flags a priori to the CTU encoding 
[Xu18A, Ya20B, Pa20, Am21, Li22D, Zh22]. Such flags are then used to encode the CTU, and decisions 
are stored in Division Matrices. The second operation pattern employs only one ANN model but with 
multiple outputs for each division level. The split flag may be considered uncertain [Xu18A, Hu21B], 
and then the RD Optimization decides on the split.  

For other types of partitioning methods, there were proposed ANNs designed to estimate the range 
of the block sizes, which shall be considered during RD Optimization. Lastly, with the use of the ANN, 
it is possible to mimic the decisions of HM RD Optimization to estimate the whole partitioning pattern 
at once [Re19, Fe21, Li22C]. It is important to underline that such methods started appearing in literature 
parallel to the research presented in this dissertation [Lo21].  

The ANNs employed in the partitioning algorithm, in most cases, process the CTU samples, 
specifically the luma component [Yu15, Li16B, Li16C, Fe18A, Xu18A, Fe18B, Sh19, Re19, Ch20, 
Am20, Am21, Li22D, Fe21, Zh22]. Some consider samples from neighboring CTUs as additional data 
[Ka18] or use only the partitioning of neighboring CTUs [Ka18]. Some authors utilized the bit cost of 
the partitioning pattern estimated by RD Optimization in HM [HM] as a variable in the loss function 
used during the training of model. 

Partitioning algorithm with ANN uses multiple types of network architecture. The most popular 
ones are variations of the CoffeeLeNet[Le98] or AlexNet[Kr12]: [Yu15, Li16B, Li16C, Fe18A, Fe18B, 
Am20]. One of the modifications of such a network is an application of two [Hu21B] or three [Li17B, 
Xu18A] parallelly processing convolutional layer tracks whose outputs are concatenated before fully 
connected layers. With multiple convolutional layers tracks, asymmetric convolution kernels were 
proposed [Sh19, Ch20]. In other approaches, additional fully connected layers were added to provide 
multiple outputs from the model to simultaneously estimate split flags for all depth levels [Am21, 
Li22D, Zh22]. The method was found [Am18] that uses the fully connected ANN architecture. 
Simultaneously with the research presented in this dissertation [Lo21], a fully convolutional network 
became used in partitioning algorithms [Re19, Li22D, Fe21, Li22C, Zh23A]. More advanced 
architectures of convolutional networks, such as ResNets [Li21B, Zh22] and DenseNet [Zh21B], were 
employed in the partitioning algorithm. Still, the decrease in encoding time was not significant due to 
the complexity of the models. 
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For most method types, the ANN model decision may be interpreted in a way that always conforms 
with the HEVC syntax. Most of the time, the algorithms that estimate whole partitioning patterns at once 
have to adjust the output to the HEVC syntax. Such adjustments are made by application of the ArgMax 
function on ANN output [Li22C] or thresholding [Re19, Fe21]. 

The training dictates the performance of ANN-based approaches, which significantly depends on 
the training dataset. The most common approach is the use of uncompressed images or sequences. Many 
authors [Yu15, Li16B, Fe18A, Ka18, Wa18B, Fe18B, Re19] employ the JCT-VC dataset [CTCHEVC]. 
However, the results are biased as the same dataset is also used for evaluation. Other datasets used for 
ANN training are: RAISE [Da15] (~2000 images) [Li17B, Xu18A], DIV2k [Ag17] (900 images) 
[Li22D], CDVL[Pi13] or multiple datasets at once [Sh19, Ch20, Hu21B, Am21]. In method [Fe21], a 
part of the training images was downsampled to obtain lower-resolution images.  

ANNs proposed in the mentioned method were trained in a supervised manner in most cases. 
A single method was found [Am18] that employed online training. In most methods, the CTU size was 
set as 64×64. The authors of [Ka18] used a CTU size of 32×32. The ANN architectures in [Zh22] take 
the QP as the additional input. However, in most methods, separate models are trained for each QP. The 
size of the networks differs among proposed methods. Models for the hierarchical estimation of split 
flags or block size range estimation, which use Alex-Net-like architecture, are quite big (~1 M weights) 
[Li17B]. More recent models for the hierarchical estimation of split flags or estimation of whole 
partitioning consist of tens of thousands of weights [Re19, Ch20]. Some methods are designed for direct 
application in hardware encoders [Li16B, Li16C] to highlight the practical aspect of the partitioning 
algorithm. Others, such as [Ch20], emphasize the parallelization of the partitioning process in software 
implementation. 

There are multiple challenges regarding the comparison of ANN-based methods with non-ANN 
ones. One of them is the parallelization of ANN computation, which, with concurrent estimation of 
decisions for other levels of decision hierarchy [Ch20], makes the complexity comparison with single-
treaded HM software [HM] difficult or even unfair. Another challenge is the use of different training 
datasets [Li17B, Sh19, Fe21] (size, content) or the test sequences used for the method evaluation 
[Am20]. Nevertheless, ANN-based methods offer encoding time savings of 40-70%, while the bitrate 
increase range is 1-5%, estimated with Bjøntegaard Delta [Bj01]. As with non-ANN, the higher the 
reduction in encoding time was, the more significant the bitrate increase. Due to the abovementioned 
factors, ANN-based methods are currently superior to non-ANN-based methods when considering the 
Intra mode of HEVC.  

2.5 Methods of Encoding Time vs. Compression Efficiency trade-off control 
in the encoding process 

The non-reference partitioning algorithms presented in the previous section offer a reduction of the 
encoding complexity but at the cost of increased bitrate. Such a relation is considered an Encoding Time 
vs. Compression Efficiency (ETvsCE) trade-off. Most methods offer a constant trade-off. Control over 
it can be useful, e.g., in multiple coding scenarios (in the server that encodes multiple video streams and 
the number of streams is varying) or when an encoder tries to fit the restriction of frame encoding time 
during transmission [Hu23]. In such situations, the change of QP may change the encoding time, but the 
quality changes, and the control is very coarse. Thus, it is beneficial that the partitioning algorithm 
allows control over the ETvsCE trade-off.  

Few partitioning methods in literature allow control over the ETvsCE rate trade-off. Among non-
ANN partitioning methods, authors of [Co16] proposed such a method by controlling the Pareto-based 
decision rule. Another approach, presented in [De16], uses spatial-temporal analysis of decisions to 
adjust the search ranges of the encoding control algorithm.  
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Considering the ANN-based partitioning algorithms, one method [Ch20] predefines sets of 
thresholds for splitting decisions. Such thresholds are estimated using an evolutionary algorithm as 
Pareto optimal points. Another method [Li20B] considers pruning the ANN weights to decrease the 
computational complexity. The last one [Hu21A] provides a heuristic model for control over multiple 
decision hierarchy levels.  

Each of the presented methods has at least one important disadvantage. For some, the ETvsCE 
trade-off control is complicated [De16, Ch20, Li20B]. Others require multi-step, complicated, and 
precise setups of multiple parameters to offer control over such a trade-off [Co16, Ch20, Hu21A].  

2.6 Summary of the state of the art 

HEVC is a cornerstone video coding technique that is gaining importance nowadays. The gigantic 
number of ways to encode a CTU block requires a complex algorithm to control the encoding process. 
Another aspect that complicates the process is the impact of the coding context on the control algorithm. 
Such an algorithm performs a simplified RD Optimization to find suboptimal decisions. The most 
complex part of the optimization process is the CTU block partitioning. The CTU partitioning 
constitutes up to 95% of the encoding time. For Intra mode, the decision on the PU division may be 
considered an additional level of the quaternary tree. Thus, the PU division may be incorporated into 
the partitioning process.  

In HM software, the reference model for the HEVC technique, the encoding control algorithm is 
very complex but achieves the best bitrate considering the state of the art. As this software and the 
encoding control algorithm are unsuitable for practical use, multiple approaches with a much less 
complex encoding control algorithm were proposed. Such approaches offer a particular Encoding Time 
vs. Compression Efficiency (ETvsCE) trade-off. Those approaches were surveyed and split into two 
categories: non-ANN and ANN-based. Considering the Intra mode, it was concluded that the ANN-
based methods have a better potential for complexity reduction of the encoding control algorithm.  

By the start of the research, the following aspects of partitioning algorithms have been spotted:  

1. The ANN models used in literature are relatively big. There is significant potential for 
future studies to develop a smaller, simpler, less complex architecture. 

2. When ANN is employed for the decision, the output of model is processed fairly simply, 
e.g., by thresholding or applying the ArgMax function. In this dissertation, more extensive 
decision algorithms are considered to provide a better partitioning algorithm. 

3. CTU partitioning and PU division are rarely estimated using a single ANN. Modeling these 
decisions using a single ANN may result in a significant reduction in complexity.  

4. Most partitioning algorithms utilize only CTU samples, especially the luma component. 
As the coding context impacts the decisions, the additional data input to the network may 
improve the partitioning algorithm.  

5. Commonly, in the hierarchical estimation of split flags approaches, the output of the ANN 
estimates the probability of the split. When the estimation of whole partitioning is 
considered, the ANN may also be used to estimate values in the meaning of probability. In 
such cases, the output may be interpreted soft-decisively, so instead of one partitioning 
pattern, a precisely defined set of partitioning patterns may be checked to get a better 
bitrate. Another way to use such probabilities is to treat them as weighting coefficients in 
a global (frame/slice scope) partitioning optimization algorithm. 

6. The RD Optimization algorithm used in HM gives a set of suboptimal decisions. Most 
ANN-based partitioning algorithms try to mimic such decisions in the training process. 
Considering that the model is always trained to with some error, and the contextuality of 
decisions in HM, the consecutive decisions from the ANN might be mismatched. The result 
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of this may be an increased bitrate. An ANN may be trained using multiple sets of 
suboptimal decisions to prevent this phenomenon. 

7. The subject of control over the ETvsCE trade-off was discussed. Partitioning methods 
known from the literature that offer such a trade-off are challenging to control or require a 
complicated setup, e.g., an extensive process of operating point estimation. The need for a 
simply controlled method that does not require setup may be satisfied with the proper use 
of ANN, which outputs values in the meaning of probability and a tailored soft-decisive 
algorithm.  

The most complex part of the optimization process is the partitioning of the CTU block, as it 
constitutes up to 95% of the encoding time. Further in this dissertation, research on developing the 
partitioning algorithm is presented. The Intra mode will be considered. A main aspect of the research is 
using the ANN as a part of such an algorithm. 
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3 Research methodology 
3.1 Assessment of video encoder modification 

Research in this dissertation focuses on video coding techniques. In particular, new partitioning 
methods are proposed. In practice, assessment of such methods generally requires modifying the encoder 
to integrate the proposed approach. The modified encoder is then evaluated using a set of test sequences 
to measure its performance. This methodology is employed also in this dissertation (Figure 3.1). This 
whole process is conducted within the Intra mode of the encoder.  

Another challenge in the dissertation is that artificial neural networks (ANNs) are employed as the 
foundation for the developed partitioning methods. These ANNs are trained before use, based on a 
specifically prepared dedicated Training Dataset. 
 

 

Figure 3. 1. Procedure for assessment of video encoder modification impact. 
 

Therefore, the procedure outlined in Figure 3.1 was followed for assessment of the video encoder 
modifications. It consists of the following steps: 

1. Prepare the Training Dataset (Section 4.2) for ANN training. The Training Dataset consists 
of CTU samples as input features and their corresponding partitioning patterns as ground 
truth labels. 

2. Use HM [HM] to encode test sequences (described in Section 3.5). The version 16.23 of 
the HM was selected for this purpose. 

3. Train the ANN model (described in Section 4.6)  
4. Encode test sequences using Modified HM Software with trained ANN model. The 

modification of the HM with the implementation of ANN is described in Section 4.7. 
5. Evaluate the results of encoding using Modified HM with the trained model and compare 

them with the result of encoding using HM. Evaluation and comparison are done for 
encoded sequence quality and encoding time. The ANN processing time is also evaluated 
for Modified HM with trained ANN models. Coding quality assessment requires test 
sequences. Details of coding quality assessment are presented in Section 3.2, and encoding 
time and ANN processing time in Section 3.3. 



38 

 

This assessment approach involves multiple ANN training, encoding, and decoding test sequences. 
Multiple repetitions of this process make experimenting laborious and very time-consuming. Step 1 of 
the presented procedure may be done once for multiple ANN models that share the same input data. 
Thus, the repetition of this step may be limited. Despite that, the requirements for proper encoding time 
assessment are rigorous and require specific hardware configuration, so precise execution of the process 
is demanding and time-intensive. Further discussion over the strategy of the experiment can be found in 
Section 3.7,  

3.2 Coding quality assessment 

A widely used metric for visual quality assessment is the Peak Signal-to-Noise Ratio (PSNR) [Bj01, 
Do12, Ka19, Dz22]. It is commonly applied in video coding research and is also utilized in HM software 
in Rate-Distortion (RD) optimization algorithm [HM, Wi03A, Su12, Br21A, Br21B, Co23]. In this 
dissertation, PSNR is employed as the primary metric for evaluating visual quality. It measures the 
change in image quality relative to a reference image, expressed in decibels (dB). This metric is 
calculated component-wise and is defined by the following formulas:  

𝑃𝑆𝑁𝑅 [𝑑𝐵] = 10logଵ଴

[(2ே್ − 1]ଶ

𝑀𝑆𝐸
, (3.1) 

𝑀𝑆𝐸 =  
1

𝑊 ∙ H
෍ ෍[𝑓௜,௝ − 𝑟௜,௝]ଶ

ௐ

௝

ு

௜

, (3.2) 

where: 𝑁௕ is the bit depth of the component samples, 𝑊 and H are the width and the height of the image, 
𝑓௜,௝  and 𝑟௜,௝ refers to sample values of assessed and reference images for 𝑖 and 𝑗 coordinates. For the 

video sequences, the 𝑃𝑆𝑁𝑅 calculated for each frame is averaged. 
 

 

Figure 3. 2. Comparison of exemplary RD curves obtained using two video encoders with varying 
quantization parameter (QP) settings. Regarding quality-bitrate performance, the encoder 

represented by the green curve outperforms the one represented by the red curve. 
 

As the quality of the decoded sequence is adjustable with the QP, a 𝑃𝑆𝑁𝑅 metric is not sufficient 
to compare different encoding control algorithms. The Rate-Distortions curves (RD curves) [Do12, 
Ka19] are used to do so. The relative position of the corresponding RD curves is assessed to compare 
two encoders. An example of RD curves with a comparison of two encoders is presented in Figure 3.2.  
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The RD curves are a valuable tool in analyzing the impact of the modifications on specific 
sequences, but they are not so suitable for evaluating the broader effect across multiple sequences. The 
numerical comparison is made using the Bjøntegaard metrics [Bj01]. The Bjøntegaard metrics measure 
the difference between reference and tested methods. Two metrics are defined: 

 𝐵𝐷-𝑅𝐴𝑇𝐸 – metric dedicated to bitrate comparison (percentage), given the same quality 
of the decoded sequence. A positive value means the tested method produces a bigger 
bitrate than the reference method. 

 𝐵𝐷-𝑃𝑆𝑁𝑅 – metric dedicated to quality comparison (in dB) given the same bitrate of 
encoded sequence. A negative value means worse quality for the tested method, given the 
same bitrate. 

The visual interpretation of Bjøntegaard metrics is presented in Figure 3.3. Please note that while 
the calculation of both 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 may seem redundant, it intended to identify potential 
evaluation artifacts, such as intersections of the RD curves or significant gaps between them. When such 
artifacts do not occur, the use of a single Bjøntegaard metric, e.g. sole 𝐵𝐷-𝑅𝐴𝑇𝐸, is sufficient for a 
reliable assessment. Such simplification is applied throughout the dissertation. 
 

 

Figure 3. 3. Visual interpretation of Bjøntegaard metrics. 
 

Bjøntegaard metrics are commonly used by researchers and are widely recognized; therefore, their 
description is considered common knowledge. Nevertheless, further in this dissertation (Section 3.4), 
author's novel metrics, derived from Bjøntegaard metrics, are proposed. Thus, the steps for calculating 
𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 are presented hereafter:  

a) For 𝐵𝐷-𝑃𝑆𝑁𝑅: logarithm the input data points, for 𝐵𝐷-𝑅𝐴𝑇𝐸 do not modify input data. 
b) Find the overlapping (shared) intervals of the rate and quality between RD points for 

reference and tested methods. 
c) Find the approximation of the curves in overlapping intervals for reference and tested 

methods based on their RD points. The curve approximation differs among multiple 
variants of the metric. In this dissertation, the piecewise cubic spline interpolation [Ba97] 
is used.  

d) Calculate the area under each of the curves. The sought-average differences are calculated 
through the mean of integrals.  

e) Express the result: [%] for 𝐵𝐷-𝑅𝐴𝑇𝐸 and [dB] for 𝐵𝐷-𝑃𝑆𝑁𝑅. 
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3.3 Encoding time measurement and assessment 

The encoding time assessment is done with the Time Savings (𝑇𝑆) metric. The metric value 
determines the percentage reduction in time relative to the reference solution. The formula for 𝑇𝑆 is 
defined as follows:  

𝑇𝑆 = ቆ1 −
𝑇௧௘௦௧௘ௗ

𝑇௥௘௙௘௥௘௡௖௘
ቇ ∙ 100%, (3.3) 

where 𝑇௧௘௦௧௘ௗ  is a processing time for the tested method and 𝑇௥௘௙௘௥௘௡௖௘  is a processing time for the 

references method. The 𝑇𝑆 can return values in the range (-∞;100%). Negative values indicate an 
increase in complexity, the positive indicates a reduction,  

To estimate the contribution of network processing time to coding time (𝑇஺ேே), expressed as a 
percentage, the following formula was used:  

𝑇஺ேே = ൬
𝑇௠௢ௗ௘௟

𝑇௧௘௦௧௘ௗ
൰ ∙ 100%, (3.4) 

where 𝑇௠௢ௗ௘௟  is an accumulated processing time of each ANN call and 𝑇௧௘௦௧௘ௗ  is a processing time for 
the tested method. 

The computational complexity of the encoding process is commonly assessed by measuring the 
encoding time. Frequently, the assessment compares the encoding methods, and an important aspect is 
the use of comparable implementation of encoders. The measurement of execution time is not a trivial 
task [St06, Si20B]. When considering software executed on modern operating systems, one can list 
factors that impact such measurement:  

 Operating system background task management. 
 Operating system hidden tasks. 
 Hardware platform.  
 Hardware encumbrance. 
 Time measurement method. 

Considering the abovementioned factors, only one machine should be used to get the most accurate 
results, with one encoder instance at once. Simultaneously, the operating system should be monitored 
to prevent the use of hardware by applications other than the encoder. Such an approach would be very 
time-consuming. The specific arrangement for time-measurement experiments was used to accelerate 
the computations:  

 Using the same machine to run the reference and tested method. 
 Running multiple instances of the encoder parallelly as multiple tasks. 
 Tasks for reference and tested methods run in parallel. 
 For the encoding time measurement, the encoder build-in method was used (same in 

reference and tested method). 
 The joint ANN processing time measurement was done by accumulating the processing 

time of each ANN call using the tested method. Time measurement for a single ANN call 
uses C++ standard library tools (std::chrono). 

Time measurements collected using the presented procedure were compared with the single-
machine and single-encoder instance approaches. The number of outlying results was noticeably more 
prominent using the proposed procedure, although the averaged results converge with the single-
machine single encoder instance approach. Still, even with the proposed procedure, the time assessment 
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remains quite time-consuming. A computing cluster was used for experiment computation, containing 
multiple devices in multiple hardware configurations. Due to limited access to cluster (other users), the 
single-machine and single-encoder instance approach was still used in some cases. 

3.4 Comparison of encoder control methods concerning Encoding Time vs. 
Compression Efficiency trade-off 

3.4.1 Existing comparison techniques 

Most encoder control algorithms reduce the complexity in some way but also increase the bitrate 
of the encoded video. As described in Section 2.5, this is referred to as Encoding Time vs. Compression 
Efficiency (ETvsCE) trade-off. The best way to compare encoder control algorithms regarding the 
ETvsCE trade-off is to use a graphical method similar to the RD curve. But in this case, the horizontal 
axis would refer to 𝐵𝐷-𝑅𝐴𝑇𝐸, and the vertical axis refers to 𝑇𝑆.  

A more numerical way to compare multiple methods, in terms of Encoding Time vs Compression 
Efficiency (ETvsCE) trade-off, is the Figure of Merit (𝐹𝑜𝑀) metric [Na20, He20]. The formula for the 
metric is defined as follows:  

𝐹𝑜𝑀 = ฬ
𝐵𝐷-𝑅𝐴𝑇𝐸

𝑇𝑆
ฬ ∙ 100%, (3.5) 

where 𝐵𝐷-𝑅𝐴𝑇𝐸 is the Bjøntegaard metric for bitrate delta, and 𝑇𝑆 is the Time Saving metric. For 
metric calculation, the values of 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝑇𝑆 for test sequences are averaged. A 𝐹𝑜𝑀 is calculated 
separately for each method. 𝐹𝑜𝑀 can have values in the range (0; ∞), and in general, the smaller the 
value, the better.  
 

 

Figure 3. 4. Graphical representation of issues with 𝐹𝑜𝑀 metric. Part a) shows that the outlying red 
point should not be compared with other points. Part b) shows two points with the same value of 𝐹𝑜𝑀, 

each of them may be superior depending on the use case. Part c) shows the 𝐹𝑜𝑀 problem with 
negative values od 𝑇𝑆 and 𝐵𝐷-𝑅𝐴𝑇𝐸. 
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Mathematically, 𝐹𝑜𝑀 represents the slope coefficient of a line, expressed in percentages. The 
absolute value is present due to 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝑇𝑆 value ranges. One can enlist problems corresponding 
to this metric:  

a) A use of 𝐹𝑜𝑀 for comparison is proper only when the compared methods are within 
relatively close ranges of 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝑇𝑆. Otherwise, the comparison result may be 
misleading.  

b) There is a possibility that two separate points may have the same 𝐹𝑜𝑀 value. In such cases, 
this metric may ambiguously point out similar performance of compared methods. These 
methods should be considered separately depending on the specific use case.  

c) 𝐹𝑜𝑀 is misleading when one or both methods have a negative value of 𝐵𝐷-𝑅𝐴𝑇𝐸. 
A similar problem is spotted for negative values of 𝑇𝑆. 

The graphical representation of these problems is shown in Figure 3.4.  

Still, 𝐹𝑜𝑀 may be considered a viable metric when the encoding control algorithm offers a constant 
Encoding Time vs Compression Efficiency (ETvsCE) trade-off. For methods that provide control over 
such trade-off, the previously presented problems make this metric unsuitable for this task. A method 
that offers control over the ETvsCE trade-off will generate multiple points with possibly different 𝐹𝑜𝑀 
values, making the comparison difficult.  

The graphical method may be used to perform a comparison. However, a comparison based only 
on visual clues (Fig. 3.4) may be imprecise and questionable. Also, it does not provide a mathematical 
metric to perform objective comparisons. 

3.4.2 Proposed novel Encoding Time vs. Compression Efficiency trade-off metrics 

 To address the aforementioned challenges and enable an objective comparison of encoding control 
algorithms that offer a variable ETvsCE trade-off, two novel metrics are proposed in this dissertation: 

 𝛥𝐵𝐷-𝑅𝐴𝑇𝐸|்ௌ as average 𝐵𝐷-𝑅𝐴𝑇𝐸 coding performance change between two curves 
while maintaining the same time saving 𝑇𝑆. 

 𝛥𝑇𝑆|஻஽-ோ஺்ா  as average time saving 𝑇𝑆 change between two curves while maintaining the 
same 𝐵𝐷-𝑅𝐴𝑇𝐸 coding performance. 

The calculation of these metrics originates from Bjøntegaard metrics presented in Section 3.2. 
A detailed description of the metric value calculation will be presented here. Let us consider two 
datapoint sets, 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 and 𝑇𝑒𝑠𝑡, which consist of 𝐵𝐷-𝑅𝐴𝑇𝐸 values (𝐵𝑅 for short) and 𝑇𝑆 values, 
representing two curves being compared (Figure 3.5). The 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 datapoint set is defined as 

ቀ𝐵𝑅ோ௘௙௥
, 𝑇𝑆ோ௘௙௥

ቁ, for 𝑟 ∈ [1; 𝑅]. The 𝑇𝑒𝑠𝑡 dataset is defined as ൫𝐵𝑅்௘௦௧௧
, 𝑇𝑆்௘௦௧௜൯, for t ∈ [1; 𝑇] (see 

Figure 3.5). 

First, overlapping (shared) intervals 𝐵𝑅௜௡௧  and 𝑇𝑆௜௡௧ are found for values of the two compared 
datasets: 

𝐵𝑅௠௜௡ = 𝑀𝑎𝑥(𝑀𝑖𝑛௥ ቀ𝐵𝑅ோ௘௙௥
ቁ , 𝑀𝑖𝑛௥൫𝐵𝑅்௘௦௧௥൯, (3.6) 

𝐵𝑅௠௔௫ = 𝑀𝑖𝑛(𝑀𝑎𝑥௥ ቀ𝐵𝑅ோ௘௙௥
ቁ , 𝑀𝑎𝑥௥൫𝐵𝑅்௘௦௧௥൯, (3.7) 

𝐵𝑅௜௡௧௘௥௩௔௟ =  〈𝐵𝑅௠௜௡; 𝐵𝑅୫ୟ୶〉, (3.8) 

𝑇𝑆௠௜௡ = 𝑀𝑎𝑥(𝑀𝑖𝑛௧ ቀ𝑇𝑆ோ௘௙௧
ቁ , 𝑀𝑖𝑛௜൫𝑇𝑆்௘௦௧௧൯, (3.9) 
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𝑇𝑆௠௔௫ = 𝑀𝑖𝑛(𝑀𝑎𝑥௧ ቀ𝑇𝑆ோ௘௙௧
ቁ , 𝑀𝑎𝑥௜൫𝑇𝑆்௘௦௧௧൯, (3.10) 

𝑇𝑆௜௡௧௘௥௩௔௟ = 〈𝑇𝑆௠௜௡; 𝑇𝑆௠௔௫〉. (3.11) 

Then, each curve is represented with the use of piecewise cubic spline interpolations [Ba97] in the 
form of: 

𝐵𝑅௞
෪ (𝑇𝑆) = 𝑎 + 𝑏௞ ∙ 𝑇𝑆 + 𝑐௞ ∙ 𝑇𝑆ଶ + 𝑑௞ ∙ 𝑇𝑆ଷ , (3.12) 

𝑇𝑆௞
෪ (𝐵𝑅) = 𝑒௞ + 𝑓௞ ∙ 𝐵𝑅 + 𝑔௞ ∙ 𝐵𝐷ଶ + ℎ௞ ∙ 𝐵𝑅ଷ, (3.13) 

where 𝑎௞…ℎ௞ are coefficient for each spline interpolation of segment 𝑘. Concatenation of these 
segments, yields piecewise spline representations of the 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 and 𝑇𝑒𝑠𝑡 curves, in the function of 
𝑇𝑆 and in the function of 𝐵𝐷-𝑅𝐴𝑇𝐸 (𝐵𝑅 for short), respectively: 𝐵𝑅ோ௘௙

෫ (𝑇𝑆), 𝐵𝑅்௘௦௧
෫ (𝑇𝑆), 𝑇𝑆ோ௘௙

෫ (𝐵𝑅), 

and 𝑇𝑆்௘௦௧
෫ (𝐵𝑅). 

Finally, the sought average differences are calculated through the mean of integrals (|interval| 
refers to the length of the interval): 

𝛥𝐵𝐷-𝑅𝐴𝑇𝐸|்ௌ =
1

|𝑇𝑆௜௡௧௘௥௩௔௟|
න 𝐵𝑅்௘௦௧

෫ (𝜏) − 𝐵𝑅ோ௘௙
෫ (𝜏) 𝑑𝜏

்ௌ೔೙೟೐ೝೡೌ೗

, (3.14) 

𝛥𝑇𝑆|஻஽-ோ஺்ா =
1

|𝐵𝑅௜௡௧௘௥௩௔௟|
න 𝑇𝑆்௘௦௧

෫ (𝜌) − 𝑇𝑆ோ௘௙
෫ (𝜌) 𝑑𝜌

஻ோ೔೙೟೐ೝೡೌ೗

. (3.15) 

The process does not involve logarithmization of the input data (as in the case of 𝑃𝑆𝑁𝑅 in the 
Bjøntegaard metric). The unit of the proposed metrics is percent points (p.p.) as they express the 
difference between values expressed in percents (%). 
 

 

Figure 3. 5. Visual representation of proposed metrics: 𝛥𝐵𝐷-𝑅𝐴𝑇𝐸|்ௌ and 𝛥𝑇𝑆|஻஽-ோ஺்ா . 
 

3.5 Test sequences 

The Common Test Conditions (CTC) [CTCHEVC] for HEVC defines encoder configurations for 
coding scenarios: All Intra, Random Access, and Low Delay. This dissertation is focused on the All 
Intra scenario. The assessment for All Intra scenario presupposes conditions for standard video content 



44 

 

and encoding only in Intra prediction mode. Four QP values are defined for the coding quality 
assessment: {22, 27, 32, 37}.  

The test sequences set defined in CTC for HEVC is widely known as the JCT-VC dataset 
[CTCHEVC] and was used for the development of multiple techniques by MPEG. In this dissertation, 
JCT-VC test sequences are referred to as the test sequence set or test sequences to differentiate it from 
datasets used for ANN training. The JCT-VC test sequence set for HEVC is composed of 20 sequences. 
The sample format is YCbCr, and the 4:2:0 chroma subsampling scheme is used. Test sequences are 
divided into five resolution classes. Sequences last from 5 to 10 seconds with different framerates. The 
bit depth is 8 bits, but for two sequences of higher resolution, the bit depth is 10. A detailed description 
of test sequences is presented in Table 3.1. Exemplary frames from the test sequences set are presented 
in Figure 3.6.  
 

Figure 3. 6. Exemplary frames from the test sequence set. 
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The methods proposed in this dissertation were tested using two additional content types. The first 
type is 4k (3840×2160) resolution sequences. The CTC [CTCHEVC] for HEVC 4k resolution sequences 
for standard content. Thus, the test sequences for classes A1 and A2, defined in CTC for VVC 
[CTCVVC], were used. The second type of additional content is a set of sequences from the Screen 
Content Coding scenario. Such sequences are defined in class F of CTC for HEVC [CTCHEVC]. 
A detailed description of additional content test sequences is presented in Table 3.2. Use of sequences 
indicated as additional content is presented in Section 9.2. 
 

Table 3. 1. Sequences in JCT-VC test sequence set. 
JCT-VC 

class 
Sequence Name Resolution 

Number of 
frames 

Framerate Bit depth 

A 

NebutaFestival 2560×1600 300 60 10 
PeopleOnStreet 2560×1600 150 30 8 

SteamLocomotiveTrain 2560×1600 300 60 10 
Traffic 2560×1600 150 30 8 

B 

BQTerrace 1920×1080 600 60 8 
BasketballDrive 1920×1080 500 50 8 

Cactus 1920×1080 500 50 8 
Kimono1 1920×1080 240 24 8 
ParkScene 1920×1080 240 24 8 

C 

BasketballDrill 832×480 500 50 8 
BQMall 832×480 600 60 8 

PartyScene 832×480 500 50 8 
RaceHorses 832×480 300 30 8 

D 

BasketballPass 416×240 500 50 8 
BlowingBubbles 416×240 500 50 8 

BQSquare 416×240 600 60 8 
RaceHorsesLow 416×240 300 30 8 

E 
FourPeople 1280×720 600 60 8 

Johnny 1280×720 600 60 8 
KristenAndSara 1280×720 600 60 8 

 

Table 3. 2. Test sequences for evaluation of additional content. 
JCT-VC 

class 
Sequence Name Resolution 

Number of 
frames 

Framerate Bit depth 

A1 
(VVV) 

Tango2 3840×2160 294 60 10 
FoodMarket4 3840×2160 300 60 10 

Campfire 3840×2160 300 30 10 

A2 
(VVC) 

CatRobot 3840×2160 300 60 10 
DaylightRoad2 3840×2160 300 60 10 
ParkRunning3 3840×2160 300 50 10 

HEVC F 

ChinaSpeed 1024×768 500 30 8 
BasketballDrillText 832×480 500 50 8 

SlideEditing 1280×720 300 30 8 
SlideShow 1280×720 500 20 8 

 

3.6 Artificial Neural Network models 
3.6.1 Model training assessment 

 In this section, only metrics and methods for model training assessment are described. The training 
procedure and loss function will be presented in Section 4.6. The ANNs used in proposed partitioning 
algorithms are trained for multiclass classification problems and require Ground Truth data for training. 
These aspects will be rationalized in Chapter 4.  

The assessment of trained models is done with a set of metrics. These metrics are calculated for 
both training and validation datasets. The first presented metric for model training assessment is the 
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model 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [Ha08, Go16]. An exact formula used for assessments of proposed modes will be 
defined in Subsection 4.6.2. The 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metric (4.10) originates from 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 
which is defined as follows:  

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

𝑁
෍ Iv(ArgMax(𝑦௡) = ArgMax(𝑦௡

ᇱ ))

ே

௡

, (3.16) 

where: 𝑁 – number of outputs, 𝑦௜ – i-th ground truth value, 𝑦௜
ᇱ - i-th predicted value, Iv(∙) is the Iverson 

function [Fo99], such that Iv(𝑡𝑟𝑢𝑒) = 1 and Iv(𝑓𝑎𝑙𝑠𝑒) = 0.  
 

 

Figure 3. 7. Exemplary Confusion Matrix. a) Confusion Matrix with counts (Formula 3.17). 
b) Confusion Matrix with values expressed in percents (Formula 3.18)  

 

In the case of classifiers, a commonly used assessment tool is Confusion Matrix (CM) [Ha08, 
Go16]. An exemplary matrix is presented in Figure 3.7. CM is a 2-dimensional square matrix of size 
equal to the number of classes. Values of the CM are determined with the formula:  

𝐶𝑀௖௢௨௡௧[𝑝, 𝑔] =  ෍ Iv( 𝑔 = Iv(𝑝 =  ArgMax(𝑦௡
ᇱ ) ) )

ே

௡

, (3.17) 

where, 𝑦௡
ᇱ  is a prediction of the classifier for the n-th sample, 𝑁 is the number of samples in the dataset, 

𝑝 and 𝑔 are successively the row and column indices of CM. The digit of CM may be referred to as the 
count of predictions of 𝑝-th class when the reference (Ground Truth) class was 𝑔-th. CM of the ideal 
classifier would be a diagonal matrix. When the number of samples in the dataset is huge, values in CM 
are normalized (divided by the number of samples) and expressed in percentage (multiplied by 100) for 
a more straightforward analysis. Thus the following formula is used : 

𝐶𝑀%[𝑝, 𝑔] =
100%

𝑁
⋅  𝐶𝑀௖௢௨௡௧[𝑝, 𝑔]. (3.18) 

For CM analysis, a set of metrics is defined [Ha08, Go16]. Formulas for enlisted metrics are defined 
for multiclass classifiers. In this dissertation, the values of the presented metric are expressed in 
percentage (multiplied by 100%). The 𝐾 refers to the number of classes. Here are presented metrics for 
CM analysis used in this dissertation:  

 True Positive Count for class 𝑑 – 𝑇𝑃ௗ  – counts correct predictions of class 𝑑. 

𝑇𝑃ௗ = 𝐶𝑀%[𝑑, 𝑑] ⋅ 100. (3.19) 
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 False Positive Count for class 𝑑 – 𝐹𝑃ௗ  – count of predictions of class 𝑑 when Ground Truth 
indicates another class. 

𝐹𝑃ௗ =  ෍ 𝐶𝑀%[𝑑, 𝑘].

௄

௞
௞ஷௗ

 (3.20) 

 True Negative Count for class 𝑑 – 𝑇𝑁ௗ  – count of correct predictions of another class when 
another class is indicated in Ground Truth. 

𝑇𝑁ௗ = ෍ ෍ 𝐶𝑀%[𝑙, 𝑘].

௄

௞
௞ஷௗ

௄

௟
௟ஷௗ

 (3.21) 

 False Negative Count for class 𝑑 – 𝐹𝑁ௗ – count of prediction of another class when the 𝑑 
class is indicated in Ground Truth. 

𝐹𝑁ௗ =  ෍ 𝐶𝑀%[𝑘, 𝑑].

௄

௞
௞ஷௗ

 (3.22) 

 Recall for class 𝑑 - 𝑅𝑒𝑐𝑎𝑙𝑙ௗ  – metric for measuring the ability of a model to identify all 
instances of class 𝑑. 

𝑅𝑒𝑐𝑎𝑙𝑙ௗ = 100% ⋅  
𝑇𝑃ௗ

𝑇𝑃ௗ + 𝐹𝑁ௗ
. (3.23) 

 Precision for class 𝑑 - 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ௗ - metric for measures of the ability of a model to identify 
instances of a class 𝑑 correctly 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ௗ = 100% ⋅  
𝑇𝑃ௗ

𝑇𝑃ௗ + 𝐹𝑃ௗ
. (3.24) 

 F-score (balanced) for class 𝑑 - 𝐹-𝑠𝑐𝑜𝑟𝑒ௗ  - harmonic mean of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ௗ and 𝑅𝑒𝑐𝑎𝑙𝑙ௗ  

𝐹-𝑠𝑐𝑜𝑟𝑒ௗ =  2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ௗ ∙ 𝑅𝑒𝑐𝑎𝑙𝑙ௗ

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ௗ  + 𝑅𝑒𝑐𝑎𝑙𝑙ௗ
. (3.25) 

 Micro-averaged metrics – metrics for assessment of a classifier across different datasets of 
different sizes (𝐷 defines the number of datasets) 

𝑅𝑒𝑐𝑎𝑙𝑙ெ௜௖௥௢஺௩௚ = 100% ⋅ 
∑ 𝑇𝑃ௗ  ே

௜

∑ (𝑇𝑃ௗ + FNୢ )ே
௜

. (3.26) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ெ௜௖௥௢஺௩௚ = 100% ⋅ 
∑ 𝑇𝑃ௗ  ே

௜

∑ (𝑇𝑃ௗ + 𝐹𝑃ୢ )ே
௜

. (3.27) 

 Macro-averaged metrics - metrics for assessment of a classifier across different datasets of 
the same size (𝑁 defines the number of datasets) 
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𝑅𝑒𝑐𝑎𝑙𝑙ெ௔௖௥௢஺௩௚ =  
1

𝐷
෍ 𝑅𝑒𝑐𝑎𝑙𝑙ௗ .

஽

ௗ

 (3.28) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ெ௔௖௥௢஺௩௚ =  
1

𝐷
෍ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ௗ .

஽

௜

 (3.29) 

The model complexity is measured by model depth (number of layers), number of weights, and 
Multiply and Accumulate (MAC) operations count. These numbers are estimated by the software used 
for model training [Ab16].  

3.6.2 Fundamentals for training dataset preparation 

As mentioned in Section 3.1, the Training Dataset consists of CTU samples as input features and 
their corresponding partitioning patterns as ground truth labels (estimated by the HM encoder [HM]). 
In general, in ANN training, the bigger and more diversified the content of the training dataset, the better 
ANN can model the problem [Ha08, Go16]. Currently, ANN training is a very popular research task in 
computer vision. The most popular datasets are COCO [Li15] and ILSVRC (ImageNet) [De09]. These 
datasets contain hundreds of thousands to millions of images. Two issues, that apply to these (and many 
other) machine vision datasets, are: relatively small resolution of images and, more importantly, image 
compression using JPEG [JPEG]. 

Decisions of the encoder control algorithms highly differ depending on the resolution. More 
visually dense blocks generally are present in smaller-resolution pictures. Higher-resolution pictures 
tend to have more flat texture areas or complex textures in CTU. In such cases, the partitioning used 
will significantly differ. The second mentioned issue is the pre-encoding of the picture. Every lossy 
video coding technique introduce visual artifacts. The higher the compression – the more artifacts may 
occur. The ANN tends to find certain features in the data to use them in classification [Ha08, Go16]. 
Occurrences of such artifacts may highly impact the decisions of such models. As the information on 
encoding conditions for datasets is mostly unavailable, the negative impact of encoding artifacts on the 
training process would be extremely difficult to prevent.  

The abovementioned issues with the most popular machine vision datasets make them unsuitable 
for the research presented in this dissertation. However, a few publicly available datasets are suitable 
for this task. Such candidates for ANN training are JCT-VC [CTCHEVC], RAISE [Da15], UCID [Sh04, 
Sh10] and DIV2k [Ag17].  

The first one, the JCT-VC, was used in multiple approaches found in the literature [Yu15, Li16B, 
Fe18A, Ka18, Wa18B, Fe18B, Re19], but this dataset is used for encoder modification assessment. 
Using this dataset in training would make the comparison with state-of-the-art solutions unfair. 

The RAISE [Da15] dataset consists of 8156 images, each with a robust description of the image 
source. The resolution of those images is always 4k (3840×2160). All images are available in two raw 
formats – straight from the camera sensor (Bayer matrix) and after simple processing. The bit depth of 
the image samples is 12 or 14 bits.  

A similar dataset to RAISE is UCID, which consists of 1338 [Sh04] or 10 000 images [Sh10]. All 
images are raw output from the camera, without any postprocessing. Two cameras were used to obtain 
all images. Despite the large number of images, the content is not so diverse as multiple images represent 
the same scene. Moreover, the images' resolution is relatively small, ~500×300 samples. 

The DIV2k dataset [Ag17] is divided into two subsets: training (800 images) and validation (100 
images). Images in the dataset have multiple resolutions and vertical or horizontal orientations. The 
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resolution of the pictures is around 2000 in at least one dimension. Images are available in .png format. 
The bit depth of the samples is always 8.  

Due to the abovementioned reasons, for the sake of ANN training, the DIV2k dataset has been 
chosen in this dissertation. Multiple resolutions better fit the task of developing the encoding control 
algorithm. Additionally, the content of the DI2k pictures is more diversified, e.g., landscapes, flora, 
fauna, and people (portraits, execution of activities). Figure 3.8 shows some exemplary pictures from 
the DIV2k dataset. Images are available in .png format and do not require additional preprocessing like 
for RAISE or UCID, which could impact the ANN training. This dataset should be large enough, as the 
training samples are CTUs.  
 

 

Figure 3. 8. Exemplary images from the DIV2k dataset.  
 

Another viable option is using multiple datasets, like in [Sh19, Ch20, Hu21B, Am21, Fe21]. The 
lower-resolution images can be produced using subsampling [Fe21]. Due to hardware limitations, a 
bigger training dataset would be problematic for the research presented in this dissertation. Still, during 
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the development of the partitioning algorithms, the DIV2k was sufficient. A discussion about using a 
larger training dataset can be found in Section 9.7. 

3.7 The strategy of the experiments 

For test sequences (presented in Section 3.5) and training dataset (presented in Section 3.6.2), the 
training and evaluation last from 3 to 8 days using a single machine (all available threads) from a 
computing cluster. This time varies depending on the QP and the computational hardware. The 
acceleration of experiments using multiple machines was possible only in the encoder evaluation phase. 
The training of the ANN was always done using one machine.  

During the development of an ANN model and hyperparameter tuning, the quality assessment may 
be more important than the precise encoding time assessment. Thus, to accelerate the experimenting, 
the same results of HM encoding were used for evaluation, so only steps 3 -5 of the procedure presented 
in Section 3.1 (Figure 3.1, Page 37), had to be performed. In this case, all available resources in the 
computing cluster could be utilized. Then, the whole procedure (Figure 3.1, Page 37), following 
constraints and recommendations for time assessment (Section 3.3), was performed for the most 
promising models. A crucial aspect is that the same hardware of the machines is required to split tasks 
into multiple machines, and the full access to the computing cluster was limited. 

Thus, evaluating all combinations of models with decision algorithms and hyperparameters during 
doctoral research was practically impossible. That is why, in this dissertation, the greedy research 
strategy was applied:  

 Preparation of a batch of experiments, with some ideas, to evaluate. 
 Training of models and evaluation in the encoder without precise time assessment. 
 Analysis of experiments results. 
 Identifying currently best and promising ones and performing precise time assessments. 
 Further development of most promising research directions. 
 Repetition of the process. 

Experimenting with the use of HEVC was a laborious and time-consuming process. At the beginning of 
the research, the VVC was considered to be used in the research. However, early experiments have 
shown that the encoding time is around 100 times longer. Such long encoding means that the research 
will not be performed in a given time, considering available computational resources. 
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4 General idea of the proposed solution 
4.1 Proposed approach and general description of used Artificial Neural 

Networks 

The partitioning algorithm which uses ANN is the core idea of the research presented in this 
dissertation. The partitioning is considered for CTUs of size 64×64 and All Intra mode. The innovative 
aspect of the proposed method is a non-trivial decision algorithm that processes the ANN output. The 
ANN is designed to output a tensor, which is then used to estimate the whole partitioning pattern at 
once. Such an ANN was novel by the time the research started [Lo21] and was developed simultaneously 
with other similar methods [Re19, Fe21, Li22C]. Another novelty in the dissertation is that the decision 
algorithm has the flexibility to indicate either a single partitioning pattern or a set of partitioning patterns 
to examine, depending on the certainty of the ANN model. Furthermore, this flexibility in the decision 
algorithm allows control over the Encoding Time vs Compression Efficiency (ETvsCE) trade-off. The 
control should be as simple as possible in terms of the number of adjustable parameters and the ease of 
setup to surpass the limitations of the current state-of-the-art techniques mentioned in Section 2.5. 
Details on decision algorithms presented in this dissertation are presented in Chapter 7. 

 The proposed partitioning algorithms presented in this dissertation are evaluated with the use of 
the Modified HM. A detailed description of the Modified HM implementation is provided in Section 
4.7. The modification of the HM software ensures a proper assessment of the partitioning algorithm in 
reference to both HM software and other approaches found in the literature. The assessment of the 
proposed partitioning algorithms is presented in Figure 4.1.  
 

 

Figure 4. 1. Assessment of proposed partitioning algorithm in Modified HM encoder (Section 4.7) 
with regard to the Reference HEVC encoder (HM). The ANN model is trained using the methodology 

presented in Section 3.6, the training dataset presented in Section 4.2, and the training procedure 
presented in Section 4.6. 
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In this dissertation two approaches to the partitioning problem are defined, further impacting the 
ANN architecture. The difference between approaches to partitioning algorithms is the range of the 
decisions from the hierarchy shown in Figure 2.7. In the first approach, called the Basic Approach, the 
partitioning algorithm estimates only CTU partitioning: only CU block sizes are estimated, as shown in 
Figure 4.2. In the second approach for the partitioning problem, called the Extended Approach, CTU 
partitioning and PU division are considered jointly. The range of decisions is shown in Figure 4.3. As 
presented in Section 2.2, considering the Intra mode, the PU division can be applied only in CUs of size 
8×8. Moreover, the available PU division modes are single 8×8 PU or four 4×4 PUs in this case. 
Therefore, the PU division can be treated as an additional level of the quaternary tree for CTU 
partitioning.  
 

 

Figure 4. 2. Scope of encoding decisions (green) considered in Basic Approach. 
 

 

Figure 4. 3. Scope of encoding decisions (yellow) considered in Extended Approach. 
 

The core of the proposed algorithms is the ANN. In this dissertation, an ANN is considered, which 
is trained to mimic the partitioning patterns estimated by the RD Optimization algorithm in HM 
(reference model software for HEVC) [HM]. The architecture of the ANNs is adjusted to the particular 
approach (Basic or Extended) used in the partitioning algorithm. Training of such models requires 
extracting partitioning patterns evaluated by HM, provided by the decoder in Modified HM 
(Subsection 4.7.1). 

The ANNs proposed in this dissertation were designed considering arrangement of the architecture 
into two functional subnetworks (Figure 4.4), both combined and trained as one model. The first one, 
referred to as Subnetwork 𝔸, is intended to extract the latent representation [Ha08, Go16] and reduce 
redundant information. Simultaneously, this subnetwork should reduce the shape of the resulting feature 
maps [Ha08, Go16]. The task of the second subnetwork (referred to as Subnetwork 𝔹) is the 
classification of the desired block size for specific subareas of the CTU. This is done by a layer 
arrangement that reflects a quaternary tree. The output of Subnetwork 𝔹 are values of probability 
meaning that is then used by the decision algorithm. Training data analysis and the discussion on the 
ANN learning problem are presented in Section 4.2. The assumptions for the ANN model are outlined 
in Section 4.3. The ANN inputs the same data as the HM algorithm, as described in Section 4.4. The 
output of the ANN is designed to estimate the whole partitioning pattern at once and simultaneously 
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deliver as much information as possible to process for the decision algorithm. The output of the ANN is 
discussed in Section 4.5. Then, in Section 4.6, the training procedure for the ANN models is presented. 
  

 

Figure 4. 4. Conceptual diagram of the proposed ANN architecture. 
 

The motivation behind the proposed partitioning methods is to reduce the number of partitioning 
patterns that will be considered for CTU in the encoding process. The number of partitioning patterns 
to be considered is reduced from quintillions of possibilities (Section 2.2) to just one (when hard-
decisive variants of the proposed algorithms are used – Section 7.2) or just a few (to address uncertainty 
of the ANN, with the use of soft-decisive variants of the algorithms – Section 7.3). Figure 4.5 visualizes 
proposed approaches with the hierarchy of decisions and the number of partitioning patterns to check.  
 

 

Figure 4. 5. Encoder control approaches matched up with decision hierarchy in HEVC encoder: 
a) classical RDO (Subsection 2.3.2), b) proposed Basic Approach, and c) proposed Extended 

Approach. Below the approaches, the number of partitioning patterns to consider in each approach is 
presented. 
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4.2 Training data preparation and analysis 

The DIV2k dataset [Ag17] is used to prepare the training dataset. This dataset is composed of 
images in various resolutions, with both horizontal and vertical orientations. For some images, the 
resolution is either non-divisible by the size of the smallest possible CU (8×8) or is an odd number. 
When the image resolution is not divisible by CTU size, a CTUs spanning beyond the boundary of the 
image would be produced as described in Subsection 2.3.3. Despite the minority of such CTUs, their 
negative impact is expected, as is discussed in Section 9.4. Therefore, the preparation of the training 
image preparation is designed to exclude such CTUs. 

The first step of training dataset preparation is cropping of the images into resolutions divisible by 
CTU size (64×64) to avoid training samples with CTU spanning beyond the boundaries of the picture. 
A cropped section is always in the middle of the image to remove the same amount of samples from 
each image side. The cropped section consists of the regular content of the image. The dataset of cropped 
DIV2k images is then used to prepare the training samples.  

The second step of training data preparation is the image format conversion. The HM encoder [HM] 
is adapted to encode sequences in YCbCr color space. Test sequences [JCTVC] have also applied the 
chroma subsampling 4:2:0 [Do12, Ka19]. The chroma subsampling is very significant, as all 
components impact the decision of the RD Optimization in HM, as mentioned in Section 2.2. Thus, 
cropped DIV2k images were converted to the desired color space and chroma subsampling. The 
conversion followed the standard [BT709] and was done with state-of-the-art methods from the ffmpeg 
software [FFMPEG].  

The third step is encoding the converted DIV2k images using the HM [HM]. The encoding is 
performed using the “All Intra” scenario with each QP enlisted in CTC [CTCHEVC]: {22, 27, 32, 37}. 
A separate training dataset has been prepared for each QP. Then, a decoder form Modified HM 
(described in Subsection 4.7.1) is used to extract the partitioning patterns for each encoded image 
(Division Matrices for CU - 𝐷𝑀஼௎ - and Division Matrices for PU - 𝐷𝑀௉௎).  

The last step is the setup of the training dataset for each QP. A sample in the training dataset 
consists of a pair: CTUs luma component and corresponding partitioning pattern estimated by 
HM [HM]. Partitioning patterns may include only 𝐷𝑀஼௎ for Basic Approach or both 𝐷𝑀஼௎ and 𝐷𝑀௉௎ 
for Extended Approach From the DIV2k dataset is prepared a following training dataset (for single QP):  

 Training Subset of 522 939 samples (extracted from 800 images). 
 Validation Subset of 66 650 samples (extracted from 100 images). 

Before the development of the actual ANN, the training dataset was first analyzed to define the 
learning problem for the model accordingly. As mentioned in the previous section, the ANN should be 
a classifier whose output can be used to estimate the whole partitioning pattern at once. To do so, one 
can consider each partitioning pattern as a separate class or the depth level of a certain CTU 
subarea as a class. These two options are discussed in further subsections. 

4.2.1  Partitioning pattern as a separate class 

As calculated in Section 2.2, the HEVC syntax allows using 83 522 different partitioning patterns 
for CTU size 64×64. This estimation is proper for the Basic Approach (Section 4.1). For the Extended 
Approach (Section 4.1), the number increases to quintillions (Section 2.2). Even for the Basic Approach, 
the sheer number of possible partitioning patterns discourages treating partitioning patterns as classes. 
Even so, the classifier training would be theoretically possible if the number of samples per class is 
sufficient. To check this, histograms of partitioning patterns were plotted for the Training Subset from 
training datasets.  
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Figure 4.6 presents the histogram for the Training Subset for QP=27. Partitioning patterns are 
sorted alphanumerically, with names as values of 𝐷𝑀஼௎. Due to 𝐷𝑀஼௎ redundancy, the label of the 
partitioning pattern is composed of depth level values from every fourth row and column, as shown in 
Figure 4.7. For brevity, only one histogram was presented out of all eight possible (for each QP and 
subset of training dataset). Table 4.1 presents counts for exemplary partitioning patterns with their share 
in the partitioning pattern histogram. Table 4.2 shows some important parameters for subsets.  
 

 

Figure 4. 6. Histogram of partitioning patterns considered a separate class for Training Subset, 
QP=27. 

 

 

Figure 4. 7. Naming of the partitioning patterns. Due to the redundancy of Division Matrix for CTU 
partitioning, the name is composed of depth level values by indexing every fourth row and column.  
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The distribution of partitioning patterns count, presented in Figure 4.6, is strongly uneven. Among 
all possible partitioning patterns, most of them are chosen very rarely. Moreover, in the dataset, there 
are only 53 502 out of 83 522 possible partitioning patterns (Table 4.2). This observation applies to 
histograms of the Training and the Validation Subsets despite the QP. 

The general rule for the ANN classifier to model the problem properly [Ha08, Go16] is 
independence and identical distribution of the classes (IID). The imbalance observed in the presented 
histogram indicates the Long Tail Distribution [Go16, Wa17]. Considering the number of classes for 
such a classifier, the model training would be challenging, even using methods dedicated to such a 
problem, like class-wise upsampling and downsampling or sample weighting [Wa17, Li20C, Zh23]. For 
each QP, the distribution differs, making the partitioning algorithm development even more difficult. 
 

Table 4. 1. Exemplary partitioning pattern counts (considered a separate class), training dataset, for 
QP=27. The percentage refers to the number of partitioning patterns in the subset. 

Exemplary partitioning patterns  
(labeled as values of 𝑫𝑴𝑪𝑼 - raster scan) 

Training Subset Validation Subset 
Count Percentage Count Percentage 

0000000000000000 63713 12.18 8373 12.56 

1111111111111111 60937 11.65 6552 9.83 

2222222222222222 515 0.10 56 0.08 

3333333333333333 29917 5.72 3870 5.81 
 

Table 4. 2. Analysis of the histogram (Figure 4.6) for the training dataset for QP=27. 
Parameter Training Subset Validation Subset 

Count of CTUs in Dataset 522939 66650 

 Minimal class count to cover 95% of CTUs in the dataset 30191 15178 

Minimal class count to cover 99% of CTUs in the dataset 48273 17844 

Count of occurring classes in the dataset 53502 18510 
 

4.2.2 Depth level of a certain CTU subarea as a class 

The second approach is to classify subareas of CTU by the depth levels represented in Division 
Matrices. Assuming the Basic Approach (Section 4.1), the values in 𝐷𝑀஼௎  Correspond to SRU 
(Smallest Representable Unit) and identify the depth level on the quaternary tree. So, the ANN can 
estimate such depth levels for each SRU. When the Extended Approach (Section 4.1) is considered, the 
partitioning pattern is stored in 𝐷𝑀஼௎  and 𝐷𝑀௉௎. The additional depth level value can indicate the depth 
level resulting from PU division (4). For the Basic Approach, the number of classes is 4, and for the 
Extended Approach is 5. Figures 4.8 to 4.11 present histograms of the depth level values for the training 
dataset. The statistics for considered all QP values:{22, 27, 32, 37}, are presented on histograms. The 
percentage of depth level appearance, referenced to all depth level values in the dataset, was used instead 
of counts for readability.  

It can be observed that depth level values are not distributed evenly. However, compared to Figure 
4.6, the distributions for depth levels are much closer to even, especially considering histograms for the 
Extended Approach. A substantial imbalance is observed only in the Basic Approach for QP=22 and 
QP=27. Depending on the QP, the distributions change. As expected, the percentages of depth level 
values for big CU blocks (small values) increase as the QP increases (quality drops). This phenomenon 
is visible, especially for the Extended Approach, where the PU division is considered. It can be noticed 
that the histograms for the Training and Validation Subsets are very similar. This observation applies to 
both Basic and Extended Approaches. Thus, evaluating the Validation Subset should appropriately 
reflect the model classification efficiency. 
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Figure 4. 8. Histograms of depth value distribution in Training Subset for Basic Approach 
 

 

Figure 4. 9. Histograms of depth value distribution in Validation Subset for Basic Approach 
 

It can be concluded that using the CTU subarea depth level as a class is much better, considering 
the IID criterion [Ha08, Go16], compared to the option presented in the previous subsection. As the 
depth level values indicate the classes, the learning problem is a multiclass classification with only 4 
or 5 classes. It is important to underline that class imbalances, noticed during histogram analysis, may 
be an important factor that lowers the effectiveness of the model training. Different distributions for QP 
values imply that training separate models for each is the best idea. Additionally, the separation of the 
problem into different models for different QP values reduces its difficulty, so the smaller and 
effectively faster models are achievable. However, as the distributions change with the QP values, the 
sensibility of the distribution to configuration changes should be taken into account. The models trained 
for one encoder configuration used in different encoding configurations will perform worse.  
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Figure 4. 10. Histograms of depth value distribution in Training Subset for Extended Approach 
 

 

Figure 4. 11. Histograms of depth value distribution in Validation Subset for Extended Approach 
 

4.3 Assumptions for Artificial Neural Network 

As mentioned in previous sections, the idea for the partitioning algorithm is to use ANN that would 
mimic the decisions of the RD Optimization algorithm in HM [HM]. This goal can be achieved by 
training the ANN using three scenarios: supervised, unsupervised, or reinforced [Bi06, Ha08, Go16]. In 
this dissertation, supervised learning was chosen, as access to the Ground Truth data is not problematic. 
The other two scenarios are possible, but the partitioning problem may be too complex for those 
scenarios. Still, they may be a viable option for further research, having pre-trained models.  

According to assumptions in Section 4.1, the partitioning algorithm is designed to reduce the 
encoder complexity. Therefore, the ANN used in the algorithm should be as low complex and 
straightforward as possible. Those aspects of the ANN are expressed by the number of layers, weights, 
and MAC (Multiply and Accumulate) operations count. In the following subsections, major assumptions 
made for the ANN architecture will be discussed, which concern the previously mentioned aspects. 
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4.3.1 Tensor format in the proposed ANNs 

In the dissertation, a CTU is assumed to be a block of 64×64 samples as it is the most common 
setting used in HEVC (Section 2.2). CTU samples can be interpreted as a 3-dimensional (3D) data 
tensor. After analysis of the training dataset in the previous section, the network is a multiclass classifier 
that estimates the depth level for subareas of the CTU. In the HM software, the partitioning pattern is 
stored in the Division Matrix (DM) matrix. DM matrix contains a depth level for each SRU in the CTU. 
As the depth level values are represented by a single digit, the DM may also be interpreted as a 3D data 
tensor (with the size of the third dimension equal to 1). The depth level values can also be represented 
in the one-hot format, and the tensor will remain 3D. The exact format of the ANN output will be 
discussed further in Section 4.5. 

4.3.2 Type of the proposed ANNs 

As the input and output are 3D data tensors, the chosen ANN network architecture is a fully 
convolutional network [Ha08, Go16, Al17], more specifically with 2D convolutions. Such architecture 
is suitable for presented input/output configurations and should have much less weight than Alex-Net-
like architectures [Le98, Kr12]. Fully convolutional networks are very popular in image processing 
[Kh16, Ca20, Va20, Jy24, Mo24] and well-researched [Fu69, F82, Le98, Le10, Pi15, Go16, Al17]. The 
important aspect is the availability of frameworks [Ji14, Ch15, Ab16, Pa19, On21] that offer optimized 
software for the computation and training of such networks. This is very important, especially for 
training, where optimized programming libraries dedicated to GPU computation can vastly decrease 
computation time. The main advantage of a fully convolutional network is the weight sharing [Ha08, 
Go16]. The same filters are used for the whole input or feature map. This means that each output of such 
a network is the product of the same classifier, at least in architectures without multiple processing tracks 
[Ha08, Go16, Al17]. The output of such a network is similar to multiple stacked classifiers [Ja07, Pi15].  

4.3.3 Functional blocks used in the proposed ANNs 

 In the proposed ANN, the feature maps would be 3D tensors. In training, the feature maps in the 
Channel Last format are considered. The first two dimensions are referred to as size (height and width), 
and the last one as channels. Padding with zeros is used in proposed ANNs. Neuron activations are 
considered a separate layer. The number of training samples in a batch is called a batch size. In the 
proposed ANN architectures, the following classically known layers are used:  

 2D Convolution [Le98, Kr12, Al17], referred to as Conv2D. 
 Batch Normalization [Io15], referred to as BatchNorm. 
 Rectified Linear Unit [Fu69, Fu82, Gl10A], referred to as ReLU. 
 Parametric ReLU [He15], referred to as PReLU – This activation layer has a trainable 

parameter, which is the slope coefficient of a line (0 < 𝑎 < 1) for negative arguments. In the 
proposed networks, one slope coefficient is used for each channel of the input feature maps.  

 Pooling Layers [Ya90, Ci12, Le18, Za22]– in particular Max Pooling (referred to as MaxPool) 
and Average Pooling (referred to as AvgPool).  

 Softmax [Br89, Br90, Bi06, Go16, Ga17] – This layer is used always as the output layer in 
proposed ANNs. Softmax outputs values, with the meaning of probability, from multinoulli 
distribution [Bo68, Gi02, Go16].  

4.4 The input of the Artificial Neural Network 

The models proposed in this dissertation are processing the luma samples of the CTU. Chroma 
components are skipped due to two reasons. Firstly, the number of bits in bitstream that corresponds to 
the luma component is more significant than for chromas. Secondly, additional channels for chroma in 
the input tensor will increase the number of operations in the first layers of the ANN. These layers are 
the most complex part of the ANN in the proposed architectures (Section 5.1 and 6.1). In the early phase 
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of research, the use of all components was checked, but the results were no different than those of the 
luma alone. Therefore, the decision was made to use only the luma component further in the research. 

 The assumed size of the CTU block is 64×64 samples, so the shape of the input data tensor is 
64×64×1. The architecture of Subnetwork 𝔸 (Section 4.1) is determined by the input tensor size (first 
two dimensions), where the reduction of the feature map size is performed. Before imputing a tensor of 
samples to ANN, the data are preprocessed. During the research, the best results were obtained when 
the input samples were scaled to range 〈0; 1〉. As the luma samples are always integer numbers in the 
range 〈0; 2ே-1〉, where 𝑁 is a bit depth, the preprocessed value of the sample 𝑢௜,௝  is obtained using the 

formula:  

𝑢௜,௝
ᇱ =

𝑢௜,௝

2ே − 1
. (4.1) 

 

4.5 The output of the Artificial Neural Network and decision algorithm 

The ANN output is a representation of the partitioning pattern. As mentioned in Subsection 4.3.1, 
the ANN can use a format similar to Division Matrix (DM) used by HM [HM]. Such a format would 
benefit the implementation of the ANN in the Modified HM (Section 4.7).  

The general format of the DM was presented in Subsection 2.3.3. For assumed All Intra 
configuration, the CTU size is 64×64, and SRU (Smallest Representable Unit – Section 2.3.3) is 4×4. 
This results in the size of the 𝐷𝑀஼௎  of 16×16. Considering the partitioning process alone, this 
representation of the pattern is redundant. Direct access to depth level value by the SRU is not required, 
and the quaternary tree directly implies how the partitioning must be done. Therefore, depending on the 
size of the smallest block in the given approach the size of DM can be reduced. For the Basic Approach 
(Section 4.1), the smallest CU block has the size of 8×8 samples, so the DM may be reduced fourfold 
in each dimension. For the Extended Approach (Section 4.1), the smallest PU block is 4×4 (same as 
SRU), so the DM may be reduced twofold in each dimension. The visual presentation of blocks for 
each depth level is shown in Figure 4.12. 
 

 

Figure 4. 12. Visual presentation of the CU/PU blocks with corresponding depth levels. 
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Following the above observations, one can define DM formats specific to each approach. In the 
following formulas, indices 𝑖 and 𝑗 are coordinates of the value in the DM, and 𝑑 is the depth level value. 
The Division Matrix for the Basic Approach is defined as:  

𝐷𝑀஻[𝑖, 𝑗] = 𝑑    where    𝑖, 𝑗 ∈ [0; 3], 𝑑 ∈ [0; 3].  (4.2) 

Similarly, the Division Matrix for the Extended Approach is defined as follows:  

𝐷𝑀ா[𝑖, 𝑗] = 𝑑    where    𝑖, 𝑗 ∈ [0; 7], 𝑑 ∈ [0; 4]. (4.3) 
 

 

Figure 4. 13. Visual presentation of DM and DT for Basic Approach. Probabilities in DT are DM 
values converted to the one-hot format. 

 

DM formats defined above are easily convertible to DM format used in HM [HM]. If the ANN 
would estimate directly the DM, the output would be indices of depth levels. Instead of this, the Softmax 
used as output layer of the ANN, returns 𝑑 values that sum up to 1. As the training dataset reflects 
statistics of the population, the output of the ANN after training is expected to have probability meaning. 
Then the ANN is estimating the tensor with probabilities of depth levels for subareas of the CTU instead 
of a matrix with depth levels. Such a tensor would be related to as Division Tensor (DT). The Division 
Tensor for the Basic approach is defined as:  

𝐷𝑇஻[𝑖, 𝑗, 𝑑] = 𝑝𝑟𝑜𝑏௜,௝,ௗ    where    𝑖, 𝑗 ∈ [0; 3], 𝑑 ∈ [0; 3]. (4.4) 

Analogously, the Division Tensor for the Extended Approach is defined as follows: 
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𝐷𝑇ா[𝑖, 𝑗, 𝑑] = 𝑝𝑟𝑜𝑏௜,௝,ௗ    where    𝑖, 𝑗 ∈ [0; 7], 𝑑 ∈ [0; 4]. (4.5) 

The visual presentation of the DM and DT for the Basic Approach is shown in Figure 4.13 and for the 
Extended Approach in Figure 4.14 

 

Figure 4. 14. Visual presentation of DM and DT for Extended Approach. Probabilities in DT are DM 
values converted to the one-hot format. 

 

The use of DT as an output of the ANN requires adapting the training data, which is composed of 
Division Matrices (DMs) used in HM. First, the partitioning pattern is converted to DM, which is 
suitable for the approach taken. Then, the DM is converted to DT by conversion of the depth levels to 
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one-hot format, which is adjusted to the maximum depth level for the taken approach. The one-hot 
format is a representation of the class index in a vector, where all values are equal to 0 except the index 
of the class, for which a value is 1. Such a format means that the target division level has the maximal 
probability of what the ANN is to be trained. 

Partitioning algorithms proposed in this dissertation return partitioning pattern or set of those. 
However, the ANN is trained as a multiclass classifier that estimates depth level values for multiple 
subareas in CTU at once. A raw output of the ANN is converted into a partitioning pattern or set of these 
by a decision algorithm. The subject of the decision algorithm is robustly discussed in Chapter 7. For 
the development of the ANN models in Chapters 5 and 6, a decision algorithm called Index-based 
(AlgIdx) was used (hard-decisive variant), which is presented in Subsection 7.2.1. 

Summing up, the partitioning algorithm calculates the DT with the ANN. Then, DT is processed 
by a decision algorithm, which results in a DM specific to the applied approach. Finally, the DM should 
be converted to a partitioning storage format used by the HM. Described formats of the 𝐷𝑀஻ and 𝐷𝑀ா  
precisely define a single partitioning pattern. However, the values outside the usable depth level 
range [0;4] may be set to define a subset of depths that should be considered. The Modified HM can 
interpret new possible values in DMs and apply appropriate computations. Using such values would be 
crucial for the implementation of soft-decisive variants of decision algorithms. This subject is further 
discussed in Section 7.3.  

4.6 Model training 
4.6.1 Loss function and learning rate optimizer 

The ANN used in the partitioning algorithm is a fully convolutional network designed for the 
multiclass classification problem. For such ANN, as the loss function the 
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐶𝑟𝑜𝑠𝑠-𝑒𝑛𝑡𝑟𝑜𝑝𝑦 [Ma03, Co06, Go16, Ma23B] was chosen. This loss function is a method 
of maximal likelihood estimation by minimizing Kullback-Leiber divergence [Ma03, Co06, Go16]. The 
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐶𝑟𝑜𝑠𝑠-𝑒𝑛𝑡𝑟𝑜𝑝𝑦 is multiclass classification and the most popular loss function [Go16, 
Ma23B], was found as the best performing one among other tested. This 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐶𝑟𝑜𝑠𝑠-𝑒𝑛𝑡𝑟𝑜𝑝𝑦 
function is defined with the following formula:  

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐶𝑟𝑜𝑠𝑠-𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ෍ 𝑦௡
௧௥௨௘ ∙ ln൫𝑦௡

௣௥௘ௗ
൯

ே

௡

, (4.6) 

where 𝑦௡
௧௥௨௘  is a Ground Truth value and 𝑦௡

௣௥௘ௗ is the predicted value, 𝑁 is the number of training 
samples. The formula 4.6 is a general definition of this loss function dedicated to vector output. As in 
proposed ANNs the output is a Division Tensor (DT), the formula has to be appropriately adjusted. So, 
for the assumed output format, the 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐶𝑟𝑜𝑠𝑠-𝑒𝑛𝑡𝑟𝑜𝑝𝑦 is defined as:  

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐶𝑟𝑜𝑠𝑠-𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ෍ ෍ ෍ ෍ 𝐷𝑇௡
௧௥௨௘[𝑖, 𝑗, 𝑑] ∙ ln൫𝐷𝑇௡

௣௥௘ௗ[𝑖, 𝑗, 𝑑]൯
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௝

ு

௜

ே
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, (4.7) 

where: 𝐻, 𝑊, and 𝐷 are dimensions of the 𝐷𝑇 for the given approach (Section 4.5: 𝐷𝑇஻ for the Basic 
Approach, 𝐷𝑇ா  for the Extended Approach), and N is the number of training samples. The subscript n 
is the index of the training sample. Superscript 𝑡𝑟𝑢𝑒 refers to the Ground Truth sample, and superscript 
𝑝𝑟𝑒𝑑 refers to the prediction of the ANN.  

Another important aspect of the ANN training is the choice of the learning rate optimization 
algorithm. For the ANNs training, the Adam [Ki14, Go16] optimizer was chosen. This optimizer 
adaptively adjusts the learning rate during the training process. The Adam algorithm is one of the most 
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popular optimizers [Ch19B, Su19], especially for complex problems like image classification [Su19, 
Sc20, Ha23]. Other optimizers, like SGD [Ro51, Bo98], AdaMax [Ki14], and Nadam [Do16], were 
considered, but the Adam optimizer proved to yield the best results in model training, as shown in 
Section 5.4. Additionally, the optimizer was restarted every 10th epoch of training, as this improved the 
training efficiency.  

4.6.2 Adjustments of training assessment for the proposed model output 

Similar to the loss function, the format of the ANN output influences the formulas used in the ANN 
training assessment. Firstly, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metric is a wrapped version of the 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
(3.16). Additionally, the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is multiplied by 100% to express it in percentage. So, the formula is 
defined as follows:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
100%

𝑁 ∙ 𝐻 ∙ 𝑊
෍ ෍ ෍ Iv ቀArgMaxୢ(𝐷𝑇௡

௧௥௨௘[𝑖, 𝑗]), ArgMaxୢ൫𝐷𝑇௡
௣௥௘ௗ[𝑖, 𝑗]൯ቁ

ௐ

௝

ு

௜

,

ே

௡

 (4.8) 

where: 𝐻 and 𝑊 are dimensions of 𝐷𝑇 for the given approach (Section 4.5: 𝐷𝑇஻ for the Basic Approach, 
𝐷𝑇ா  for the Extended Approach), and N is the number of training samples. The subscript n is the index 
of the training sample. Superscript 𝑡𝑟𝑢𝑒 refers to the Ground Truth sample, and superscript 𝑝𝑟𝑒𝑑 refers 
to the prediction of the ANN. Accordingly, the formula (3.18) for Confusion Matrix values (𝐶𝑀) 
changes to:  

𝐶𝑀%[𝑝, 𝑔] =  
100%

𝑁
෍ ෍ ෍ Iv ൬ 𝑔 = Iv ቀ𝑝 = ArgMaxୢ൫ 𝐷𝑇௡
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where: 𝐻 and 𝑊 are dimensions of 𝐷𝑇 for the given approach (Section 4.5: 𝐷𝑇஻ for the Basic Approach, 
𝐷𝑇ா  for the Extended Approach), N is the number of training samples, 𝑝 and 𝑔 are successively the row 
and column indices of CM. The digit of CM may be referred to as the count of predictions of 𝑝-th class 
when the reference (Ground Truth) class was 𝑔-th. The subscript n is the index of the training sample. 
Superscript 𝑝𝑟𝑒𝑑 refers to the prediction of the ANN. As the problem was defined as multiclass, 
𝑅𝑒𝑐𝑎𝑙𝑙ெ௜௖௥௢஺௩௚ and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛ெ௜௖௥௢஺௩௚ CM analysis metrics will have the same value. 

4.6.3 The strategy for training models 

The ANN training process required many adjustments to achieve stability and convergence. To this 
end, many training strategies and tools were used and tested, except for the aforementioned optimizer 
and loss function. Further in this subsection, the most important methods and strategies that were 
incorporated into the final training procedure will be discussed.  

The Early Stopping [Zh04, Ya07, Go16] regularization method was used in the ANN training 
process. Overfitting of a model is prevented by monitoring the loss function value for the validation 
subset. The training is terminated when the loss function is not improved throughout a certain number 
of training epochs (referred to as the patience coefficient). For the training of the models presented in 
this dissertation, a patience coefficient of 3 was used. 

In most cases, the Early Stopping marks the termination of the training. However, an additional 
constraint, the maximum number of epochs, has been used to avoid redundant calculations. In the 
early stages of the research, when Early Stopping was not yet used, experiments were performed to 
estimate the maximum number of epochs. The conclusion was that surpassing 100 epochs does not 
benefit the model accuracy. This number of epochs was verified multiple times further in the research, 
and the conclusion was always the same. 
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Proposed models were trained with the stochastic gradient descent approach [Li14, Go16]. 
Therefore, instead of one weight update after processing the whole training dataset (batch method [Bi05, 
Ha10, Go16] – single batch per epoch), the weights are updated after a smaller portion of samples (called 
minibatch method [Wi03B, Li14, Go16]). Multiple batches per epoch are processed, so weights are 
updated multiple times. Such an approach provided better convergence of the training experiments and 
the regularization effect [Wi03B]. The batch size of 64 training samples was used for training ANN 
models presented in this dissertation. The reasoning for this batch size is that training results were 
sufficient, and this value allowed the training on each available machine. The batch size is the power of 
2 is justified by GPU construction [Go16] 

A crucial aspect of the model training is the weight initialization method, as it highly impacts the 
further training of the model [Ha08, Sa14, Go16, Mi16]. As the author’s architectures are proposed in 
this dissertation, models were trained from scratch. In the early stage of the research, multiple weight 
initialization methods were tested, e.g., random uniform or normal distribution, the He [He15] method 
with normal or uniform distribution, and the Glorot [Gl10B] method with normal or uniform 
distribution. The best-performing method was the Glorot method with uniform distribution, which was 
further used as a weight initialization method for all models presented in this dissertation. To avoid a 
bias in mini-batch samples used for gradient update [Bi05, Go16], the training samples are shuffled 
at the start of each epoch and before division into mini-batches 

The non-determinism of the training procedure must be discussed here. Multiple aspects of the 
training procedure depend on randomness, e.g., weight initialization or data shuffling. Therefore, 
training the same architecture multiple times will always yield a slightly different model. During the 
research, it was observed that despite the same architecture and very close results in training assessment, 
for trained models, the evaluation in the encoder can vary up to 0.1 p.p. 𝐵𝐷-𝑅𝐴𝑇𝐸 bitrate reduction 

A proper evaluation of single ANN architecture is a laborious process. It requires several repetitions 
of training and evaluation. As discussed in Section 3.7, a greedy experimentation strategy was adopted 
during research works due to the time complexity of the evaluation process. Thus, architecture or 
training procedure modifications were tested only onefold during the development of models for Basic 
or Extended approaches. If the result of the evaluation shows an improvement close to 0.1 p.p. 
𝐵𝐷-𝑅𝐴𝑇𝐸 bitrate reduction, then such a model would be trained multiple times to check its convergence 
to this result. If a modification improved the results, it was adopted as a new best model.  

4.6.4 The framework for training models 

The author’s framework for training the ANNs was prepared to perform training of the models. 
This framework consist of training dataset (described in Section 4.2) and the software. This software 
implements the following steps of ANN training: dataset loading, dataset preparation (preprocessing), 
model preparation for training, model training and assessment, model preparation for the encoder, and 
preparation of the tasks for evaluation of the ANN in the Modified HM. The steps of model preparation 
for training and encoder is further discussed in the next section. The software allowed the serialization 
of subsequent experiments. The setup for an experiment is done by definition of the training conditions 
(for each step) and network architecture in a configuration file. In addition to the trained models, the 
software returns the results of model training assessment. 

Model preparation and training were done using the TensorFlow [Ab16, TENSORFLOW] library 
in Python [Ro09]. Among other frameworks for ANN training, e.g., PyTorch [Pa19], Tensorflow 
delivered the best training accuracy of the evaluated ANN architectures. Furthermore, by the start of the 
research, the library offered the broadest support of training techniques and tools. An additional feature 
was the best support for GPU training acceleration libraries. By the time of starting the research, 
Tensorflow offered an approach for processing tensors in Channel Last format (the last dimension of 
the tensor corresponds to channel) [TENSORFLOW], which is much more efficient in terms of 
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computational complexity in GPU [Nv23] for convolutional layers, thus significantly accelerate the 
training of the model. 

4.7 Implementation of the model in the modified HEVC encoder 

Evaluation of proposed partitioning algorithms requires a dedicated HEVC encoder. Additionally, 
the network training requires partitioning patterns estimated by the HEVC encoder. The HM [HM] is 
software created for the development of the HEVC technique. The HM was the only available encoder 
that offered an extensive search range of partitioning patterns. Other available HEVC encoders, e.g. 
x265 [X265], aggressively limit the number of considered partitioning patterns and potentially decrease 
the performance of proposed algorithms. Thus, the HM was chosen as software to modify and support 
the proposed partitioning algorithms.  

The HM software is a huge project (~93 thousand code lines in 192 files in C++ [CPP]) that contain 
implementation of an encoder, a decoder, and other utility programs, e.g., for a bitstream analyzer. The 
modification of this software requires a deep knowledge of not only the standard but also data structures 
and specific algorithms implemented within the software. Additionally, the software features cmake 
[CMAKE] scripts for building projects and the inclusion of dependencies. The modification of this 
software requires not only the implementation of the method in code but also the appropriate placement 
in the software structure while maintaining the capabilities in code compilation provided by HM.  

During the research works related to this dissertation, multiple modifications to HM software were 
made to test the proposed partitioning algorithms. To distinguish from the original HM, these 
modifications are referred to as Modified HM. The modifications of the HM are: support for the ANN 
processing library, extraction of the partitioning pattern in the decoder, implementation of control over 
the partitioning process, and implementation of partitioning methods. The Modified HM originates from 
the HM [HM] version 16.23. This version of HM was also used in evaluation of the proposed partitioning 
algorithms (Section 3.1). 

The presented Modified HM keeps the signal flow of the HM software. Thus, all modifications 
were implemented in a way that preserve the consecutive CTUs' serial processing using a single thread. 
After the partitioning pattern or patterns are estimated, the actual encoding is performed, as described 
in Subsection 4.7.3. Such implementation ensures a fair comparison of the partitioning methods, 
especially with the HM. 

In the software, the user can set up the Modified HM. Generally, the HM provides an extensive 
configuration of the encoding process. Commonly, it is done using the configuration files. The setup of 
the Modified HM was incorporated into the configuration mechanism of the HM. Such a solution eases 
the use of the software, especially for researchers familiar with HM. This aspect was raised as the 
Modified HM was released along with the paper [Lo24].  

4.7.1 Support for the ANN processing library 

The support for the ANN processing library raised several issues. The Tensorflow [Ab16, 
TENSORFLOW] library was used in the training process. During the development of the modification 
of HM, it was observed that integrating the Tensorflow in the encoder was possible but problematic. 
The integration would require significant interference with the compilation procedure of the encoder, 
which would make the use of Modified HM troublesome. The more suitable option for ANN 
implementation in the HM was the LibTorch library. The LibTorch is a C++ version of the PyTorch 
library [Pa19]. The LibTorch (and PyTorch), similar to TensorFlow, is a popular library for ANN 
processing.  

The LibTorch requires the linkage of static libraries and access to dynamic ones. Those libraries 
are available in precompiled versions both for Windows and Ubuntu. Incorporating the LibTorch in the 
Modified HM does not disturb the organization of the software, as it was added in the cmake code of 
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the HM. This means that the original software use (project preparation, compilation) remains the same, 
and the LibTorch is included and linked automatically during software deployment.  

The LibTorch library offers easy control over the ANN’a compute resource restrictions (such as 
cores and threads). This feature is crucial for a fair assessment of the HM modification as HM Software 
is a single-threaded application. The Python version (PyTorch) of model is not directly compatible with 
LibTorch. Though, the conversion from the Python model to the C++ one is featured by the PyTorch 
JIT format [PYTORCH, LIBTORCH]. Tests proved that the output of the converted model, evaluated 
with the LibTorch JIT module [LIBTORCH], is numerically identical to its source given the same input, 
so the model accuracy is maintained. Modified HM reads the model from the path indicated by the user. 
In this dissertation, an ANN is restricted to using only one processor core and one logical thread in 
experiments. 

In the previous section, Tensorflow was chosen as the library for ANN training. Models are 
prepared to process tensors in Channel Last format. Unfortunately, by the time of the development of 
Modified HM, the LibTorch did not feature stable processing tensors in such a format. Thus, to 
incorporate the trained model into the encoder, it must be first converted into a PyTorch corresponding 
model, which processes data in Channel First (the first dimension of the tensor corresponds to the 
channel). Conversion between the model from Tensorflow format to PyTorch format is tricky. The 
difference in the implementation of particular layers prevents a direct conversion. Sufficient converters 
were not available at the time of the software development.  
 

 

Figure 4. 15. Visualization of the model conversion between Tensorflow and LibTorch formats. 
 

The software for the simultaneous preparation of matching models for TensorFlow and PyTorch 
was developed to solve the conversion problem. The models are built based on configuration, where the 
architecture and hyperparameters of the layers are defined. The TensorFlow model is created during the 
model preparation for the training. Then, after the completion of the training process, the PyTorch model 
is created. The first step of preparing the model for evaluation involves extracting the weights of the 
trained model and converting them to the Channel First format. Then, the converted weights are applied 
to the PyTorch version of the model. Lastly, the model is converted from Python to C++ format and 
saved for future use in Modified HM. The described process is visualized in Figure 4.15. It was observed 
that after loading the model in the encoder, running the model with random data in the encoder 
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initialization phase is beneficial. This step proves to accelerate the network computation later in the 
encoding phase. 

4.7.2 Extraction of the partitioning pattern in the decoder 

The extraction of the partitioning patterns was the first modification applied to the HM software. It 
was crucial for the creation of the training dataset. In the decoder, after extraction of the CTU from the 
bitstream, the 𝐷𝑀஼௎ and 𝐷𝑀௉௎ are available. Then, the Division Matrices (DMs) are saved in the text 
files. This procedure is shown in Figure 4.16. 

 

Figure 4. 16. Modification of the Modified HM (Decoder) for partitioning patterns extractions. After 
the entropy decoding, the partitioning patterns for all CTUs are saved to a text file. Block “*Inverse 

quantization” refers to recovery of the original scale of the signal (quantization is lossy and cannot be 
inversed). 

4.7.1 Implementation of the control over the partitioning process 

The partitioning process and CTU encoding are incorporated in the HM, as presented in Subsection 
2.3.2 (Figure 2.8). The encoder starts from CTU size CU and searches for the best partitioning pattern 
following the hierarchy of the quaternary tree. All encoding decisions (Figure 2.7) for specific block 
sizes are estimated in the partitioning algorithm along with the cost value. After the decision for a block 
to remain at a certain depth level, the block is compressed.  

The control over the partitioning process was implemented by skipping computations for unwanted 
depth levels. Firstly, the partitioning algorithm estimates the partitioning pattern for the current CTU. 
The partitioning pattern is stored in DMs. Then, the decision estimation is run. Before any computation, 
the current depth level is compared with the DM value corresponding to the top left SRU (Smallest 
Representable Unit) in the currently considered block. The partitioning algorithm may indicate one or 
two consecutive depth levels to consider. If the current depth level is indicated in the DM, the encoder 
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makes the rest of the decisions and estimates the bit cost (Formula 2.2) for the block. In the opposite 
case, the calculations are skipped, and the bit cost is set at the highest possible value. The modified 
algorithm for estimating the decision stage is shown in Figure 4.17. 

 

Figure 4. 17. Algorithm for encoding CTU in Modified HM (encoder). White blocks originate from the 
partitioning algorithm from HM, presented in Figure 2.8. 
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Such an approach has several advantages. Firstly, the encoder performs computations only for 
blocks indicated in the partitioning pattern. Secondly, such implementation does not disturb the internal 
mechanism of the encoder (e.g., the context of the CABAC or Most Probable Mode tool [HM]). Thirdly, 
the comparison between the two indicated depth levels can be applied at any depth level without further 
modification of the encoder. Lastly, it does not constrain the moment of estimation of the partitioning. 
By default, the partitioning pattern is estimated right at the start of coding the CTU. If part of the samples 
is unavailable, like in the case of CTUs spanning beyond the boundaries of the frame, the missing ones 
are set to zeros. However, in specific cases, as described in Section 9.8, the encoder can estimate 
partitioning patterns for the whole frame and then apply them in CTUs. 

4.7.2 Implementation of partitioning methods 

The implementation of the partitioning algorithm consists of three steps (Figure 4.18).The first step 
is gathering all the necessary data the core partitioning algorithm requires. It is done by accessing data 
available in the encoder data structures. For ANN-based algorithms, CTU luma samples will be 
accessed. If the algorithm needs access to additional data like in Section 9.6, access to these is granted 
in this step. 
 

 

Figure 4. 18. Implementation of proposed partitioning algorithms in Modified HM (encoder). 
 

The second step is processing the data using the core algorithm. In the initialization of the encoder, 
the core algorithm is chosen according to the configuration. This core algorithm is then used for the 
whole encoding process. The most important one, the ANN-based core algorithm, is described in 
Subsection 4.7.5. Three additional simple core algorithms are implemented in the Modified HM. The 
first one allows the sequence to be encoded using a DM filled with the same value. This partitioning 
algorithm was used to inspect the influence of specific block sizes, or sets of block sizes, on the 
computational complexity of the encoder and bitrate of the encoded sequence. The other two partitioning 
algorithms implement random partitioning methods. One of them estimates the partitioning pattern by 
randomly deciding on splits of the quaternary tree, starting from the root. Another one draws a CTU 
partitioning pattern from a list of all possible ones. When used in the Extended Approach (Section 4.1), 
each time the block size is 8×8, the algorithm randomly decides on PU division. Presented random 
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partitioning algorithms were used to ensure that the proposed approaches with ANNs are working 
correctly. 

The last step of the partitioning algorithm implementation is conditional. In the case of CTUs 
spanning beyond the frame boundaries, the conformance with HEVC syntax is inspected and adjusted 
accordingly. 

4.7.3 ANN-based core partitioning algorithm 

Implementation of the core partitioning ANN-based algorithm consists of four steps. These steps 
are shown in Figure 4.19. The first one is input ANN preparation. The CTU samples are copied to the 
LibTorch-specific data structure, and then preprocessing is applied. The second step is processing the 
data by ANN. The time of this step is measured and accumulated. Then, the DT outputted from ANN is 
processed by the decision algorithm. Further, the algorithm returns the DM that specifies the partitioning 
pattern or their set. Lastly, the DM outputted by the decision algorithm is extended to the same size as 
used in HM. The user of the Modified HM can configure ANN input preprocessing, ANN model, 
compute resources available for ANN, chosen approach (Basic or Extended), and decision algorithm 
with its parameters. 
 

 

Figure 4. 19. Steps of ANN-based core partitioning algorithm in Modified HM (encoder). 
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5 ANN model for the Basic Approach 
5.1 Detailed description of ANN architecture 

As discussed in Section 4.1, the proposed ANN architecture is divided into two subnetworks, 
combined and trained as one model. Subnetwork 𝔸 is dedicated to the reduction of feature map size and 
expansion of feature map channels. The Subnetwork 𝔹 outputs the probability values. This subnetwork 
utilizes a layers arrangement that reflects a quaternary tree structure. The ANN architecture used in the 
Basic Approach (Section 4.1) is presented in Figure 5.1. The ANN architecture and hyperparameter 
values are the result of long-lasting research and a methodical amendment process. Selected directions 
of the model development are discussed in Section 5.4.  
 

 

Figure 5. 1. The ANN architecture used in the Basic Approach. The “Conv Block” refers to block of 
layers, presented in Figure 5.2.  

 

 

Figure 5. 2. Visualization of the Conv Block. 
 

The proposed architecture comprises convolutional blocks, named Conv Blocks, for short. A Conv 
Block (Fig. 5.2) is composed of three layers: Conv2D (filter size 3×3, stride of 1×1, padding to get the 
same output feature maps size as input), BatchNorm, and PReLU. The number of filters in Conv Block 
corresponds to the number of filters applied in the Conv2D layer. 
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The Subnetwork 𝔸 contains four Conv Blocks. The number of filters increases in consecutive Conv 
Blocks and is equal to 12, 24, 36, and 48. The output of each Conv Block is connected to the MaxPool 
layer (Pool size of 2×2, stride of 2×2). The size of feature maps outputted by pooling layers decreases 
twofold in each dimension.  

The arrangement of layers in Subnetwork 𝔹 recalls the quaternary tree and mimics the architecture 
of the partitioning in HEVC. Similarly like in the HM partitioning algorithm, the feature maps are 
processed in subareas according to consecutive block sizes. The Subnetwork 𝔹 is composed as follows:  

 Firstly, feature maps from Subnetwork 𝔸 are processed by Conv Block, whose number of filters 
is 64. This Conv Block corresponds to the consideration under splitting a block of size 64×64.  

 Then, the outputted feature maps are split into four tensors in a quaternary tree manner. Each 
resulting tensor is processed by a separate Conv Block, whose number of filters is 16. Using 
this Conv Blocks set corresponds to the considerations of splitting 4 blocks of size 32×32. Those 
Conv Blocks do not share weights, as the split decision may be taken differently in different 
subareas of the CTU.  

 Following the quaternary tree manner, each the resulting four feature maps should be further 
split and processed is separate four Conv Blocks. However, the tensor size would be then 
1×1×16. During the research, an architecture with a set of 16 separate Conv2D layers was tested. 
However, the training of such models was not converging and demonstrated weak performance 
in the evaluation.  

 Instead of processing in 16 separate Conv Blocks in Subnetwork 𝔹, the feature maps are 
concatenated to recover 4×4×16 feature maps. The setup of the feature maps during 
concatenation aims to reproduce the feature map alignment before the split. The concatenated 
tensor is processed by the Conv2D layer, with a kernel size of 1×1 and stride 1×1. This layer 
corresponds to the consideration of splitting 16 blocks of size 16×16.  

 Lastly, feature maps are processed by the Softmax layer to estimate the output tensor of 
probabilities, which is 𝐷𝑇஻. 

The ANN architecture for the Basic Approach ensures a stable training process that yields a model 
that works very similarly with each new training. Presented Conv Block and layers arrangement with 
corresponding hyperparameters were found by the try and check method. This process is described in 
Section 5.4. Further in this dissertation, a set ANN models with architecture presented in Figure 5.1, and 
trained (according to the description in Section 4.6) for QP values {22, 27, 32, 37}, is referred to as the 
Basic Architecture. The detailed analysis of training results is presented in Section 5.2 and evaluation 
results are discussed in Section 6.3. 

5.2 Training results for the Basic Architecture 
5.2.1 Assessment of training accuracy 

The training of the Basic Architecture (Section 5.1) was performed according to the description in 
Section 4.6. According to Section 4.2, four models were achieved as a result of training, one for each 
QP from CTC [CTCHEVC]: 22, 27, 32, and 37. The 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (Formula 4.8) values for trained Basic 
Architecture are presented in Table 5.1. Please note that the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is presented both for the Training 
and the Validation Subsets of the training dataset.  

Depending on the QP value, the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 value varies in the range 〈69.7; 74.4〉. The differences 
in 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values for Training and Validation Subsets do not exceed 1 p.p. This means that the models 
are not overfitted. The bigger the QP value, the smaller the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 value. In one case, the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
value is larger for a Validation Subset (QP=22). The bigger the QP, the smaller the Accuracy value, 
with around 5 p.p. difference between QP values 22 and 37. Such a big difference is connected to the 
statistics of the training datasets and is further analyzed in this section with Confusion Matrices (CM). 
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Table 5. 1. Training Accuracy values for Basic Architecture for QP values. 

QP 
Value 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 [%] 

Training Subset Validation Subset 

22 74.2 74.4 
27 73.0 72.9 
32 72.5 72.4 
37 70.5 69.7 

 

The mentioned range of the achieved 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values, 〈69.7; 74.4〉, may suggest a relatively 
poorly trained models. However, in the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metric (formula 4.8), each outputted set of 
probabilities is individually compared with a one-hot vector from Ground Truth. There are two reasons 
to consider this range of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 value as sufficient. Firstly, the model may estimate a similar 
probability for at least two depth level values for a certain CTU subarea. The result of ArgMaxୢ in the 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 formula (4.8) may indicate a different depth level than in Ground Truth. Secondly, when the 
partitioning decisions in HM are made by comparing bit costs (Section 2.3.2), the difference in estimated 
bit costs is minimal in some cases. Thus, the CTU samples contain features that may be assigned to 
more than one depth level by the ANN. However, the partitioning pattern estimated by HM lacks 
information on the superiority margin for the indicated depth level. The model may then estimate a 
higher probability value for a depth level different from Ground Truth. The negative impact on 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 value may be more significant in partitioning patterns that comprise bigger CUs. In such 
cases, all ANN outputs corresponding to that CTU subarea should imply the same depth level, which 
may be difficult due to the presented reasoning. 

Figure 5.3 presents an example of a learning curve (QP=27). The models do not overfit during the 
training. The 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 achieves high value relatively quickly, and then the values increase quite 
slowly. The curve for the Training Subset steadily rises. The curve for the Validation Subset fluctuates 
but is close to the curve for the Training Subset. Analysis of training curves for QP values showed a 
faster termination of training for bigger QP values. 
 

 

Figure 5. 3. Learning curves (Accuracy) of Basic Architecture for Q= 27. The blue curve represents 
the results for the Training Subset, and the red curve represents the results for the Validation Subset. 
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5.2.2 Analysis of Confusion Matrices 

The Basic Architecture (Section 5.1) is trained to estimate the depth level of a certain CTU subarea 
as a class (Subsection 4.2.2). The assessment of such multiclass classifiers with Confusion Matrices 
(Subsection 3.6.1) was used to analyze the differences in 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (Formula 3.8) results between QP 
values observed in the previous subsection. Confusion Matrix allows checking the effectiveness of the 
model prediction for depth level values (classes of classifier). Additionally, it shows which depth level 
values are confused and to what extent. Confusion Matrices for each model were calculated for both the 
Training and the Validation Subsets. Tables 5.2 to 5.9 present values of calculated Confusion Matrices 
(Formula 4.9). The number of samples (N) for Formula 4.9 is calculated by multiplying the number of 
samples in the given subset (Section 4.5) by size of the Division Tensor:  

 522939 ⋅ 4 ⋅ 4 = 8367024 for the Training Subset; 
 66650 ⋅ 4 ⋅ 4 = 1066400 for the Validation Subset.  

Values on the diagonal of the Confusion Matrix (True Positive Count – Formula 3.19) are bolded for 
readability. 
 

Table 5. 2. Confusion matrix for Basic 
Architecture (QP=22), Training Subset, 
normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 

A
N

N
 o

ut
pu

t 
(A

rg
M

ax
d)

 

0 2.208 4.172 0.244 0.167 

1 2.094 17.426 1.804 2.211 

2 0.568 5.321 7.897 7.030 

3 0.010 1.481 2.421 44.947 
 

Table 5. 3. Confusion matrix for Basic 
Architecture (QP=27), Training Subset, 
normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 

A
N

N
 o

ut
pu

t 
(A

rg
M

ax
d)

 

0 6.930 4.822 0.262 0.169 

1 3.754 19.206 1.947 2.014 

2 0.231 4.301 9.491 6.668 

3 0.019 1.258 2.607 36.321 
 

 

Table 5. 4. Confusion matrix for Basic 
Architecture (QP=32), Training Subset, 
normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 

A
N

N
 o

ut
pu

t 
(A

rg
M

ax
d)

 

0 12.137 5.055 0.485 0.182 

1 3.177 19.722 2.883 1.544 

2 0.209 4.442 12.000 5.521 

3 0.052 1.549 3.411 27.632 
 

 

Table 5. 5. Confusion matrix for Basic 
Architecture (QP=37), Training Subset, 
normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 

A
N

N
 o

ut
pu

t 
(A

rg
M

ax
d)

 

0 15.514 5.734 0.688 0.243 

1 3.581 21.467 3.802 1.649 

2 0.244 4.646 13.433 5.023 

3 0.060 1.120 3.337 19.458 
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Similar Confusion Matrices are observed for both Training and Validation Subsets. The best 
Confusion Matrices are observed for the depth level value 37. For these matrices, the values on the 
diagonal are always the highest, considering each row (the depth level value indicated by ANN output). 
The worst Confusion Matrices are observed for the depth level value 22, as the smallest values on the 
diagonal are observed. These results are rationalized with the distribution of the depth level values 
presented in Subsection 4.2.2. As the QP increases, the distributions of the depth level values are closer 
to uniform. The observations for Confusion Matrices are counterintuitive to 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 results 
(Subsection 5.2.1), where for the best achieved 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 was for QP=22 and the worst for QP=37.  

The results in Confusion Matrices for QP=22 indicate a poor prediction of the depth value 0 
(interpreted as the biggest block size). Additionally, for smaller QP values 22 and 27, the low relevance 
for depth levels 0 and 2 is observed. Overall, all models predict the most accurate for the depth levels 1 
and 3. All these observations coincide with statistics of depth level values, shown in Figure 4.8 and 4.9 
(Subsection 4.2.2).  
 

Table 5. 6. Confusion matrix for Basic 
Architecture (QP=22), Validation Subset, 

normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 

A
N

N
 o

u
tp

ut
 (

A
rg

M
ax

d)
 

0 3.133 4.022 0.172 0.193 

1 1.714 14.855 1.444 2.189 

2 0.381 4.912 7.218 7.517 

3 0.009 1.658 2.396 48.187 
 

Table 5. 7. Confusion matrix for Basic 
Architecture (QP=27), Validation Subset, 

normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 
A

N
N
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ut
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A
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M
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0 7.897 4.211 0.245 0.209 

1 3.379 16.178 1.864 2.144 

2 0.190 3.980 9.509 7.260 

3 0.019 1.322 2.776 38.818 
 

 

Table 5. 8. Confusion matrix for Basic 
Architecture (QP=32), Validation Subset, 

normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 

A
N
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u
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ut
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A
rg

M
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d)
 

0 12.726 4.338 0.464 0.225 

1 2.496 17.397 2.986 1.810 

2 0.178 4.176 12.344 5.991 

3 0.042 1.473 3.776 29.577 
 

 

Table 5. 9. Confusion matrix for Basic 
Architecture (QP=37), Validation Subset, 

normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 

A
N

N
 o

u
tp

ut
 (

A
rg

M
ax

d)
 

0 15.160 5.183 0.722 0.312 

1 2.944 19.732 4.124 1.893 

2 0.230 4.667 14.145 5.352 

3 0.059 1.180 3.703 20.594 
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To further study the trained Basic Architecture, the Confusion Matrices were assessed using metrics 
described in Subsection 3.6.1. The results are shown in Table 5.10 for the Training Subset and in Table 
5.11 for the Validation Subset. The Basic Architecture performs similarly for Training and Validation 
Subsets. A detailed comparison of the results indicates better performance for the Validation Subset. 
This confirms a proper generalization of the modeled problem in ANNs.  

The best metrics values for each QP are observed for the depth level value 3. The high 𝑅𝑒𝑐𝑎𝑙𝑙 
(Formula 3.23) and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (Formula 3.24) values are observed, which results in 𝐹1-𝑠𝑐𝑜𝑟𝑒 
(Formula 3.25) have a high value, in the range 〈77.29; 87.10〉 for both Training Validation Subsets. The 
classification of depth level 1 is almost identical despite the QP considering the 𝐹1-𝑠𝑐𝑜𝑟𝑒 (~66%). A 
significant difference (0.2) between 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 values is observed only for QP=22. The 
depth level 0 for QP=22 has the worst results among all depth levels: 𝐹1_𝑠𝑐𝑜𝑟𝑒 is as low as 37.83% for 
the Training Subset, and for the Validation Subset, it is slightly better: 0.49. However, for higher QP 
values, the model achieves similar results for depth level value 0 as observed for depth level values 1 
and 3. The worst results were achieved for depth level value 2. The 𝐹1_𝑠𝑐𝑜𝑟𝑒 value never exceeds 0.6. 
Additionally, the difference between 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 surpasses 0.2 for QP values 22 and 27.  

Models for different QP values classify the depth level values 1 and 3 similarly and are significantly 
better in identifying the class instance (𝑅𝑒𝑐𝑎𝑙𝑙) than identifying the class correctly (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛). The 
opposite observations are for depth level values 0 and 2, where the classification is better for models 
trained for bigger QP values. Additionally, the 𝑅𝑒𝑐𝑎𝑙 is always worse than 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. Therefore, the 
Basic Architecture is overfitted toward depth level values 1 and 3, especially the second one. This is 
further confirmed in results of 𝑅𝑒𝑐𝑎𝑙𝑙௠௜௖௥௢/ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௠௜௖௥௢ (Formula 3.26 and 3.27) and 𝑅𝑒𝑐𝑎𝑙𝑙௠௔௖௥௢ 
(Formula 3.28) and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௠௔௖௥௢  (Formula 3.29). The 𝑅𝑒𝑐𝑎𝑙𝑙௠௜௖௥௢/ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௠௜௖௥௢  have similar 
values for all QP values, around 70%. For the 𝑅𝑒𝑐𝑎𝑙𝑙௠௔௖௥௢ and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௠௔௖௥௢, the higher the QP, the 
higher the metric value. The difference between the values of those metrics is ~5 p.p. for QP=22 and 
~1 p.p. for QP values 32 and 37.  
 

Table 5. 10. Analysis of the Confusion Matrix with assessment metrics – Basic Architecture, Training 
Subset. Values expressed in [%]. 

QP 
Depth 

value 𝒅 
𝑹𝒆𝒄𝒂𝒍𝒍 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑭𝟏-𝒔𝒄𝒐𝒓𝒆 𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒂𝒄𝒓𝒐  𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒂𝒄𝒓𝒐  

𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒊𝒄𝒓𝒐 
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒊𝒄𝒓𝒐 

22 

0 32.51 45.24 37.83 

59.12 63.29 72.48 
1 74.04 61.36 67.11 
2 37.94 63.86 47.60 
3 91.99 82.69 87.10 

27 

0 56.88 63.38 59.96 

66.11 68.76 71.95 
1 71.34 64.91 67.98 
2 45.87 66.34 54.24 
3 90.34 80.41 85.08 

32 

0 67.96 77.93 72.60 

69.73 71.29 71.49 
1 72.17 64.10 67.90 
2 54.12 63.90 58.61 
3 84.65 79.22 81.84 

37 

0 69.95 79.97 74.63 

69.76 70.51 69.87 
1 70.38 65.12 67.65 
2 57.54 63.19 60.23 
3 81.16 73.78 77.29 

  

The observations coincide with the histograms of the training dataset presented in Section 4.2 
(Figures 4.7 and 4.8). For each QP, the depth level values 1 and 3 were always the most frequent in both 
Training and Validation Subsets. According to the histograms for QP=22, the depth level 0 appears 
significantly less frequently in the subsets, which is reflected in metrics. Considering the metrics values, 
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the best classifier (model) is trained for QP=37. The reasoning is the distribution of the depth level 
values closest to uniform for the QP=37. 

Table 5. 11. Analysis of the Confusion Matrix with assessment metrics – Basic Architecture, 
Validation Subset. Values expressed in [%]. 

QP 
Depth 

value 𝒅 
𝑹𝒆𝒄𝒂𝒍𝒍 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑭𝟏-𝒔𝒄𝒐𝒓𝒆 𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒂𝒄𝒓𝒐  𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒂𝒄𝒓𝒐  

𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒊𝒄𝒓𝒐 
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒊𝒄𝒓𝒐 

22 

0 41.66 59.83 49.12 

60.86 66.36 73.39 
1 73.53 58.38 65.08 
2 36.04 64.27 46.18 
3 92.22 82.96 87.35 

27 

0 62.86 68.76 65.68 

66.84 69.49 72.40 
1 68.66 62.97 65.69 
2 45.41 66.07 53.83 
3 90.41 80.15 84.97 

32 

0 71.68 82.41 76.67 

70.34 71.92 72.04 
1 70.46 63.53 66.82 
2 54.41 63.08 58.42 
3 84.83 78.66 81.62 

37 

0 70.92 82.42 76.24 

69.58 70.51 69.63 
1 68.77 64.14 66.38 
2 57.98 62.33 60.08 
3 80.65 73.16 76.72 

 

Considering the Basic Architecture has a multidimensional output, the results are promising. 
However, from the standpoint of the partitioning algorithm, the goal is to estimate the whole partitioning 
pattern. The assessment of the model for lower depth levels indicates worse performance than for higher 
depth levels. Multiple ANN outputs influence the decision for bigger blocks in CTU, and then the 
inaccuracy of the model for these depth level values may be compensated. Such compensation is less 
likely for the depth level value 2. When the ANN output suggests a significantly different partitioning 
pattern compared to the HM, the decision algorithm may still estimate the same or similarly efficient 
one.  

5.3 Evaluation of the Basic Architecture in the encoder 

Before the actual evaluation with test sequences, the Basic Architecture (Section 5.1) was evaluated 
with images used for training (cropped DIV2k dataset, Section 4.2). The evaluation of the models was 
performed according to description in Section 3.1. The achieved results are presented in Table 5.12. 
The presented results are relative to HM. Recalling the ~70% 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 results for Basic Architecture, 
the results of the evaluation show that the proposed partitioning algorithm with such a trained network 
performs very well. The difference between Training and Validation Subsets is ~0.3 p.p. in 𝐵𝐷-𝑅𝐴𝑇𝐸 
and 0.006 dB in 𝐵𝐷-𝑃𝑆𝑁𝑅. This proves that the models were trained successfully. The encoding time 
reduction (Time Savings: 𝑇𝑆, Formula 3.3achieved with the proposed model is almost the same, ~53%.  
 

Table 5. 12. Evaluation of Basic Architecture used in Modified HM on training dataset images. 
Presented results are relative to HM. 

 𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑩𝑫-𝑷𝑺𝑵𝑹 [dB] 𝑻𝑺 [%] 
Training Subset images 1.45 -0.069 53.75 

Validation Subset images 1.73 -0.075 52.65 
 

The results of the Basic Architecture evaluation on test sequences (Section 3.5) are presented in 
Table 5.13. The evaluation of the models was performed according to description in Section 3.1. 
The presented results are relative to HM. For most of the test sequences, an increase of ~2% 𝐵𝐷-𝑅𝐴𝑇𝐸 
is observed. Among test sequences, the worst results were achieved for the whole class E (talking heads 
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content), “BasketballDrive” (class B), and “BasketballDrill” (class C). The best metric results were 
achieved for sequences with the smallest resolution (class D). Observations for 𝐵𝐷-𝑃𝑆𝑁𝑅 are the same 
as for 𝐵𝐷-𝑅𝐴𝑇𝐸. The models did perform well with sequences of bigger and smaller resolutions 
compared to those appearing in DIV2k. The overall results are a little worse than for the Validation 
Subset, especially compared to class B, which contains sequences of similar resolution. Sequences with 
the worst results have a similar type of content, the partially visible people. The reason is the insufficient 
number of images with such content in the training dataset. 

The proposed partitioning algorithm with Basic Architecture reduced the encoding time compared 
to HM. In most cases, for higher resolution, better 𝑇𝑆 results are observed. For sequences 
“NebutaFestival”, “SteamLocomotiveTrain” or “Kimono1” the encoding time is reduced by at 
least 70%. For lower resolution sequences, the 𝑇𝑆 is not that impressive. For class D, the 𝑇𝑆 does not 
exceed 50% and may be as low as 38.99%. Sequences with smaller resolutions have smaller number of 
CTUs per frame, and the objects in sequence are smaller (proportionally to the resolution). In such cases, 
smaller blocks will be utilized more frequently. A similar impact of smaller CU blocks is observed for 
sequences in class A. two sequences in class A (“SteamLocomotiveTrain” and “Kimono1”), the 
evaluation showed a much better 𝑇𝑆 than for the rest of the sequences (“PeopleOnStreet” and “Traffic”). 
For “PeopleOnStreet” and “Traffic” sequences, the content presents multiple small moving objects, 
while for “SteamLocomotiveTrain” and “Kimono1” the content is much simpler. In rest resolution 
classes, the 𝑇𝑆 also varies between sequences, but not so significantly. 
 

Table 5. 13. Evaluation of Basic Architecture used in Modified HM on test sequences. Presented 
results are relative to HM. 

JCT-VC 
class 

Sequence Name 𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑩𝑫-𝑷𝑺𝑵𝑹 [dB] 𝑻𝑺 [%] 

A 

NebutaFestival 1.40 -0.101 72.53 
PeopleOnStreet 2.22 -0.127 50.99 

SteamLocomotiveTrain 2.12 -0.061 75.03 
Traffic 2.22 -0.120 53.72 

B 

BQTerrace 1.47 -0.077 52.50 
BasketballDrive 3.04 -0.089 62.76 

Cactus 2.26 -0.082 59.94 
Kimono1 1.93 -0.067 72.21 
ParkScene 1.73 -0.077 62.06 

C 

BasketballDrill 2.60 -0.127 48.53 
BQMall 1.65 -0.092 52.15 

PartyScene 0.49 -0.035 38.30 
RaceHorses 1.56 -0.091 53.28 

D 

BasketballPass 1.47 -0.089 49.30 
BlowingBubbles 0.45 -0.030 44.18 

BQSquare 0.64 -0.051 38.99 
RaceHorsesLow 1.15 -0.072 48.00 

E 
FourPeople 2.59 -0.149 56.34 

Johnny 3.47 -0.145 65.38 
KristenAndSara 2.71 -0.138 65.39 

 
 

The above observations conclude that the 𝑇𝑆 is highly dependent on the content of the sequences. 
In the previous section, the assessment of the Basic Architecture indicated the best classification results 
for depth level 3 and worse for the rest, especially depth level 0. The evaluation results show that the 
more complex and condensed the sequence content, the lower the 𝑇𝑆. Therefore, the best 𝑇𝑆 is achieved 
when smaller CUs are used more excessively in the estimated partitioning patterns.  
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The impact of the small CU blocks was indicated as the cause of the lower results of 𝑇𝑆. Other 
factor affecting the encoding time is the ANN processing. To check this, the 𝑇௠௢ௗ௘௟  (aggregated time of 
ANN processing) was measured for all encoded sequences. The 𝑇௠௢ௗ௘௟  for a given sequence was then 
divided by the total number of CTUs in the considered sequence. The average ANN time processing for 
a single CTU is similar despite the sequence or QP. For a machine used in time assessment of Basic 
Architecture, the statistics of average ANN time processing for a single CTU are:  

 Mean value: 2.48 ms 
 Standard deviation 55.48 μs 

Simultaneously, mean time of CTU processing (over all sequences and QP values) was calculated: 
29.99 ms for HM and 14.00 ms for Modified HM (Basic Approach). The ANN processing time is 
relatively constant. This fact is used to check the impact of the CU block size on the encoder complexity. 
As shown in statistics of the depth level values for the Basic Approach (Section 4.2.2), the smaller QP 
values favor smaller CUs, and bigger QP values favor bigger CUs. Thus, the changes in the contribution 
of network processing time to coding time 𝑇஺ேே (Section 3.3, Formula 3.3) observed QP values is used 
to estimate the impact of the CU blocks in partitioning patterns on encoder complexity. Table 5.14 
presents the statistics of 𝑇஺ேே for sequence resolution classes and QP values. 
 

Table 5. 14. Statistics of TANN of Basic Architecture for a given set of sequences and QP. The All class 
refers to the mean over all results for the given QP value. 

JCT-VC 
class 

QP 𝝁(𝑻𝑨𝑵𝑵) [%] 𝜹(𝑻𝑨𝑵𝑵) [%] 

A 

22 20.48 7.85 
27 24.70 8.83 
32 27.22 8.56 
37 31.85 7.73 

B 

22 15.11 5.77 
27 21.55 5.95 
32 26.65 6.22 
37 32.75 5.83 

C 

22 10.31 1.56 
27 13.27 2.35 
32 16.76 3.02 
37 22.42 4.64 

D 

22 10.23 1.84 
27 12.97 2.46 
32 15.69 3.19 
37 19.70 4.16 

E 

22 20.03 2.84 
27 24.42 3.48 
32 28.42 3.49 
37 33.55 3.25 

All 

22 14.99 6.46 
27 19.24 7.41 
32 22.86 7.73 
37 28.02 7.94 

 

The bigger the QP, the higher the 𝑇஺ேே. This relation is observed for each sequence class. 
Considering statistics for different sequence resolution classes, the smaller the resolution, the smaller 
the 𝑇஺ேே. The highest standard deviation values are observed for sequence resolution class A, where a 
difference in the content complexity was indicated as a potential cause of lower 𝑇𝑆. Therefore, it was 
confirmed, that the bigger the share of big CUs in partitioning patterns, the lower the complexity of the 
encoder. When smaller blocks are used more frequently, worse results of 𝑇𝑆 are expected. This 
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conclusion conforms with observations presented earlier in this section. Further experiments on the 
impact of the CU block size on encoder computation are presented in Section 6.3 and Subsection 7.3.1. 

Further assessment of Basic Architecture is done with RD curves. For the readability of this 
dissertation, only curves for the best and the worst performing sequences are presented. The best value 
of the 𝐵𝐷-𝑅𝐴𝑇𝐸 was achieved for the class C sequence ”PartyScene”, which curves are shown in Figure 
5.4. The worst value of the 𝐵𝐷-𝑅𝐴𝑇𝐸 was observed for the class E sequence “Johnny”, which curves 
are shown in Figure 5.5. 
 

 

Figure 5. 4. RD curves for HM (orange) and Modified HM with Basic Architecture (Blue) for Test 
sequence “PartyScene”(Class C) 

 

For the ”PartyScene” sequence, the curves for HM and Modified HM with the Basic Architecture 
coincide. The differences between curves are negligible. For the “Johnny” sequence, the distance 
between the curves is more noticeable yet still quite small. The distance between curves visually 
increases near points for higher QP values. However, the Euclidian distance between the corresponding 
points is bigger for the smaller QP values. Therefore, the bigger the QP, the closer the curves. This 
observation coincides with the conclusion from Section 5.2, where the model trained for QP=37 was 
indicated as the best. 

RD curves for the rest of the test sequences were analyzed, and the observations were the same as 
those presented. The curves for any test sequence were intersecting. Given that, the assessment of only 
𝐵𝐷-𝑅𝐴𝑇𝐸 would be sufficient for the Basic Architecture. 

Lastly, the presented Basic Architecture is compared with random partitioning algorithms. As 
described in Subsection 4.7.4, two random partitioning methods are implemented in Modified HM. The 
first one estimates the partitioning pattern by thresholding the random value from the uniform 
distribution. The second one draws the partitioning pattern from the list of all possible ones. The results 
of the comparison of random methods with the proposed Basic Architecture are shown in Table 5.15. 
The presented results are relative to HM. Values labeled “All” are calculated by averaging the results 
for all test sequences. 
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Figure 5. 5. RD curves for HM (orange) and Modified HM with Basic Architecture (Blue) for Test 
sequence “Johnny”(Class E) 

 

The proposed algorithm is better, by at least 11 p.p, in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸, than random partitioning 
algorithms. However, in terms of 𝑇𝑆 the random algorithms are better, especially the first one. Such 
difference in 𝐵𝐷-𝑅𝐴𝑇𝐸 proves that the evaluation results of the proposed method are the effect of 
adequately estimated partitioning patterns and not the rest of the optimization done in the Modified HM.  

In the first random partitioning algorithm, the random split flags more frequently indicate 
partitioning patterns composed of bigger CUs. In the second one, the small CUs are more frequent, the 
CTU can be divided into more combinations of small blocks (Section 2.2), and partitioning patterns are 
equally likely. The second random partitioning algorithm is better than the first one by 3 p.p. in terms 
of 𝐵𝐷-𝑅𝐴𝑇𝐸. Therefore, bigger blocks are less computationally complex to encode but not as efficient 
in bitrate. This observations are further explored in Section 7.3.1.  
 

Table 5. 15. Comparison of proposed partitioning algorithm (Basic Architecture) with two random 
partitioning algorithms implemented in Modified HM. Presented results are relative to HM. 

JC
T

-V
C

 
cl

as
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Modified HM with Basic 
Architecture) 

Modified HM with random 
partitioning algorithm (1)  

Modified HM with random 
partitioning algorithm (2)  

𝑩𝑫-𝑹𝑨𝑻𝑬 
[%] 

𝑩𝑫-𝑷𝑺𝑵𝑹 
[dB] 

𝑻𝑺 
[%] 

𝑩𝑫-𝑹𝑨𝑻𝑬 
[%] 

𝑩𝑫-𝑷𝑺𝑵𝑹 
[dB] 

𝑻𝑺  
[%] 

𝑩𝑫-𝑹𝑨𝑻𝑬 
[%] 

𝑩𝑫-𝑷𝑺𝑵𝑹 
[dB] 

𝑻𝑺 
[%] 

A 1.99 -0.102 63.07 11.22 -0.568 80.11 13.25 -0.624 62.54 
B 2.09 -0.079 61.90 12.38 -0.445 79.42 12.39 -0.443 62.26 
C 1.57 -0.086 48.07 16.87 -0.904 79.35 10.32 -0.575 63.17 
D 0.93 -0.061 45.12 14.72 -0.936 78.39 9.71 -0.633 61.91 
E 2.93 -0.144 56.57 24.55 -1.132 79.89 19.85 -0.925 62.79 

All 1.86 -0.091 56.08 15.34 -0.763 79.41 12.73 -0.616 62.51 
 

The proposed partitioning algorithm with the Basic Architecture proved to perform well in the 
Modified encoder despite the training 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of ~70%. The method significantly reduces the 
encoding time while maintaining a very similar bitrate to HM.  
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5.4 Basic Architecture tuning 

The Basic Architecture (Section 5.1) is the result of long-lasting research and a methodical iterative 
process. The architecture development was time-consuming and resource-costly, as it consisted of 
verification of the ideas in a try-and-check procedure. Following the greedy strategy, several hundred 
model variants were tested. This section presents a snippet of the selected most interesting directions of 
architecture development and attempts to overcome problems with training procedure and data 
(presented in Section 4.2). All presented tuning approaches were discarded due to rules defined in 
Subsection 4.6.3 (converge of the training process and increase of evaluation result by 0.1 p.p. in terms 
of 𝐵𝐷-𝑅𝐴𝑇𝐸). All model discussed in this section were trained according to the description in 
Section 4.6.The evaluation of the models was performed according to description in Section 3.1. The 
architecture tuning presented in this section is divided into two categories, depending on the impact on 
the complexity of the model: non-affecting and affecting.  

5.4.1 Complexity-non-affecting tuning 

The modifications considered in this category are: layer type adjustment, training data preparation, 
and the choice learning rate optimization algorithm. The complexity change after removing the 
normalization layer is negligible, so it was considered as complexity non-affecting.  

The results of evaluation on test sequences (Section 3.5) for applied tunings are presented in 
Table 5.16. Presented results are relative to HM. Presented tuning are indexed for clarity of description. 
The term label corresponds to the class label, the depth level value in one-hot format. Section 9.3 
presented another exploration experiment for the ANN architecture for Basic Approach (Figure 5.1, 
Section 5.1), which was considered a viable option for memory-restricted applications. 
 

Table 5. 16. Assessment of selected complexity non-affecting tuning – ANN architecture for Basic 
Approach. “No modification” refers to results for Basic Architecture. Presented results are relative to 

HM. 
Modification 

Type 
Idx 

Description modification for ANN model 
for Basic Approach 

𝑩𝑫-𝑹𝑨𝑻𝑬 
[%] 

𝑩𝑫-𝑷𝑺𝑵𝑹 
[dB] 

Layer Type 
Adjustment 

1 ReLU as activation 1.85 -0.091 
2 LeakyReLU as activation (0.1) 1.83 -0.090 
3 LeakyReLU as activation (0.2) 1.85 -0.091 
4 Removing BatchNorm from the network 1.95 -0.096 

Training data 
preparation 

5 
CTU partitioning category samples 

restriction (max 100) 
2.05 -0.100 

6 Label smoothing – method 1 – coef: 0.01 1.82 -0.090 
7 Label smoothing – method 1 – coef: 0.20 1.82 -0.089 
8 Label smoothing – method 2 – coef: 0.01 1.82 -0.090 
9 Label smoothing – method 2 – coef: 0.20 1.90 -0.094 
10 Label weighting method 1 1.79 -0.087 
11 Label weighting method 2 1.81 -0.089 
12 Label weighting method 3 1.81 -0.089 

Learning rate 
optimization 

algorithm 

13 SGD (LR = 0.001) 2.15 -0.106 
14 NAdam (LR = 0.001) 1.84 -0.090 
15 Adamax (LR = 0.001) 1.86 -0.092 

None  No modification (Basic Architecture) 1.86 -0.091 
 

During the development of the ANN architecture for Basic Approach, multiple setups of layers in 
the Conv Blocks (Figure 5.2, Section 5.1) were tested. As the applied order of layer has been established, 
changes in activation and normalization were tested. The ReLU (Idx 1) and LeakyReLU (Idx 2 and 3) 
were tried. The LeakyReLU is a variation of the PReLU, where the slope coefficient is set up as a 
constant value. Both of these activations showed a slight improvement, but the evaluation results are 
comparable with PReLU. Then, the application of the batch normalization was questioned. This layer 
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accelerates the training but may cause the model to be stuck in the local minimum of the gradient [Go16]. 
The models with removed BatchNorm layers (Idx 4) delivered worse evaluation results. 

As mentioned in Section 5.2, the dataset imbalance negatively impacts the model training. Multiple 
methods were considered to prevent this. Among them, the down-sampling of training dataset [He09, 
Mo12, Ar22, Ab23], label smoothing [Go16, Mu19] and label weighting [Go16, By19, Xu21]. The 
evaluation results of models trained with these methods are presented in Table 5.16.  

The down-sampling of the training dataset was applied as a restriction of training samples with the 
same partitioning pattern. The best-achieved result was for 100 randomly chosen training samples per 
partitioning pattern (Idx 5), but the evaluation results did not improve. Still, such a simple down-
sampling method worked better than more complicated methods of drawing training samples from the 
training dataset.  

Then, the label smoothing was tested. As the Ground truth data are tensors with the one-hot 
interpretation of the 𝐷𝑀஻, this may be difficult for the model to train. Thus, sharing a small part of 
probability with other outputs may improve the training. Two methods of label smoothing were tested: 
sharing the same small amount of probability (Idx 6 and 7) or sharing the decreasing amount of 
probability around the indicated class (Idx 8 and 9). As shown in Table 5.16 the improvements in 
evaluation results are minor. 

Further, label weighting was applied. According to the chosen classification problem presented in 
Section 4.2, the label weight should correspond to each ANN output that refers to a certain depth level 
value. Unfortunately, the chosen training framework [TENSORFLOW] does not directly support this. 
Therefore, the label weight was applied as a training sample weight applied during training 
[TENSORFLOW]. Two statistics were used to estimate the weight of the training sample: depth level 
values statistics and partitioning pattern statistics (Section 4.2.2). Eleven different formulas for sample 
weight were tested. Results for the best-performing three among the proposed sample weighting (𝑆𝑊) 
methods (Idx 10, 11, and 12) are presented in Table 5.16. Their formulas are as follows: 

𝑆𝑊ଵ(𝐷𝑀஻) = 𝑃𝑎𝑟𝑡𝑃𝑟𝑜𝑏(𝐷𝑀஻) ⋅ ෍ ෍ ቆ1 − ln ቆ
𝐷𝑒𝑝𝑡ℎ𝑃𝑟𝑜𝑏(𝐷𝑀஻[𝑖, 𝑗])

𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ𝑃𝑟𝑜𝑏
ቇቇ

ସ

௝ୀ଴

ସ

௜ୀ଴

,  (5.1)

 

𝑆𝑊ଶ(𝐷𝑀஻) = ቆ1 − log10 ቆ
𝑃𝑎𝑟𝑡𝑃𝑟𝑜𝑏(𝐷𝑀஻)

𝑚𝑎𝑥𝑃𝑎𝑟𝑡𝑃𝑟𝑜𝑏
 ቇቇ

⋅ ෍ ෍ ቆ1 − log10 ቆ
𝐷𝑒𝑝𝑡ℎ𝑃𝑟𝑜𝑏(𝐷𝑀஻[𝑖, 𝑗])

𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ𝑃𝑟𝑜𝑏
ቇቇ

ସ

௝ୀ଴

ସ

௜ୀ଴

, 

(5.2)

𝑆𝑊ଷ(𝐷𝑀஻) = ൬
1

4
− 𝑃𝑎𝑟𝑡𝑃𝑟𝑜𝑏(𝐷𝑀஻) +  1൰ ⋅ ෍ ෍ ൬

1

4
− 𝐷𝑒𝑝𝑡ℎ𝑃𝑟𝑜𝑏(𝐷𝑀஻[𝑖, 𝑗]) + 1൰

ସ

௝ୀ଴

ସ

௜ୀ଴

, (5.3)

where 𝑃𝑎𝑟𝑡𝑃𝑟𝑜𝑏() is the probability of the partitioning pattern (Subsection 4.2.1), 𝑚𝑎𝑥𝑃𝑎𝑟𝑡𝑃𝑟𝑜𝑏 is is 
the maximum value of probability among partitioning patterns, 𝐷𝑒𝑝𝑡ℎ𝑃𝑟𝑜𝑏() is the probability of the 
depth level (Subsection 4.2.2), and 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ𝑃𝑟𝑜𝑏 is the maximum value of probability among depth 
levels. All probability values are statistics of the Training Subset.  

The evaluation of presented tunings turns out to be superior to the Basic Architecture but by a 
margin that is too small. Unfortunately, these results were obtained only once, as re-training of the 
models with the same conditions yielded much worse results. The applied label weighting was very 
sensitive to the randomness of the training process, discussed in Subsection 4.6.3.  
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Lastly, the training with different learning rate optimization algorithms was explored. Multiple 
algorithms were tested with several learning rate values. The learning rate value of 0.001 was the best 
for all methods. Among learning rate optimization algorithms, the best were SGD (Idx.13), NAdam 
(Idx 14), and Adamax (Idx 15). The NAdam achieved slightly better results than the Adam used in Basic 
Architecture training. Still, further experimentation did not confirm the superiority, so Adam was chosen 
for use in further training.  

5.4.2 Complexity-affecting tuning 

The development of the ANN architecture was made in two different directions: decreasing the 
model complexity while maintaining the 𝐵𝐷-𝑅𝐴𝑇𝐸, and increasing the model complexity while 
reducing the 𝐵𝐷-𝑅𝐴𝑇𝐸. The results of evaluation on test sequences (Section 3.5) for applied tunings are 
presented in Table 5.17. Presented results are relative to HM. The complexity is assessed with the 
Multiply and Accumulate (MAC) operations count (in millions: M) and the number of weights in the 
model. Presented tuning are indexed for clarity of description. 
 

Table 5. 17. Assessment of selected complexity affecting tuning – ANN architecture for Basic 
Approach. “No modification” refers to results for Basic Architecture. Presented results are relative to 

HM. 
Modification 

Type 
Idx 

Description modification for ANN model 
for Basic Approach 

𝑩𝑫-𝑹𝑨𝑻𝑬 
[%] 

𝑩𝑫-𝑹𝑨𝑻𝑬 
[dB] 

MAC 
count [M] 

Num. of 
weights 

Model 
complexity 
reduction 

1 
Reduction of filter number: Subnetwork 𝔸: 

6,12,28,24 Subnetwork 𝔹: 32,8,4 
1.98 -0.097 1.82 23 194 

2 
Additional Conv Blocks in Subnetwork 𝔸 

(reduced filter number): 4 more blocks 
1.97 -0.097 4.07 39 863 

3 
Additional Conv Blocks in Subnetwork 𝔸 

(reduced filter number): 8 more blocks 
1.98 -0.098 5.78 46 568 

4 Adding bottleneck convolution layer: ½ 1.92 -0.091 4.57 53 248 
5 Adding bottleneck convolution layer: ¼ 2.06 -0100 2.54 25 926 
6 Adding bottleneck convolution layer: ¾ 1.88 -0.090 6.56 75 442 

Model 
complexity 

increase 

7 
Increase of filter number (by 12 in each 

layer except the last) 
1.89 -0.091 15.34 122 140 

8 
Increase of filter number (by 24 in each 

layer except the last) 
1.93 -0.093 27.41 160 456 

9 
Additional Conv Blocks in Subnetwork 𝔸: 

4 more blocks 
2.27 -0.112 15.76 120 442 

10 
Additional Conv Blocks in Subnetwork 𝔸: 

8 more blocks 
1.79 -0.086 24.12 148 552 

None  No modification (Basic Architecture) 1.86 -0.091 6.76 91 600 
 

 

The ANN architecture for Basic Approach (Figure 5.1, Section 5.1) is low complex. Further 
complexity reduction was achieved by reduction of the filter number in layers. Most of the computations 
are done in the Subnetwork 𝔸, as the biggest feature maps are processed. The reduction of filter numbers 
was extensively explored. Multiple configurations were tested, but most of the time, a change in 
Subnetwork 𝔸 filter numbers resulted in a significant increase of 𝐵𝐷-𝑅𝐴𝑇𝐸. In Table 5.17 (Idx 1), it is 
shown that for the filter number halved in all layers (except the last convolution), the reduction of the 
MAC operation count was operations count around 4 times, but the 𝐵𝐷-𝑅𝐴𝑇𝐸 increased by 0.12. 
Unfortunately, further tries at training such a network yielded a much bigger increase in 𝐵𝐷-𝑅𝐴𝑇𝐸.  

The potential of the complexity reduction was proven, but the model was too unstable in training. 
Thus, the number of computations was reduced by using a deeper network with a smaller number of 
filters in layers. Previously presented architecture with the filter number halved in all layers (except the 
last convolution) served as a base. As the primary source of complexity in the Subnetwork 𝔸 was 
identified, the additional Conv Blocks (Figure 5.2, Section 5.1) would be applied before each Conv 
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Blocks already in the architecture. The number of filters in additional Conv Blocks was adjusted to 
gradually increase towards the number of filters of Conv Block already in the architecture. An exemplary 
inclusion of additional Conv Block was presented in Figure 5.6. In Table 5.17 two best experiments 
were presented: with 4 (Idx 2) and 8 (Idx 3) additional Conv Blocks. The training of the modified model 
was stable, maintaining the 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 of the model with a halved number of filters. The 
architecture with additional Conv Blocks is less complex than the Basic Architecture, but the 𝐵𝐷-𝑅𝐴𝑇𝐸 
and 𝐵𝐷-𝑃𝑆𝑁𝑅 are worse.  
 

 

Figure 5. 6. Example of inclusion of additional Conv Blocks. 
 

 

Figure 5. 7. Architecture of the Bottlenecked Conv Block. 
 

The last approach to reduce the model complexity was applying the bottleneck layers in the model 
[Ti15, Sa19]. The bottleneck was applied as an extension of the Conv Block by additional Conv2D and 
PReLU layers, as shown in Figure 5.7. The number of filters in additional Conv2D equals the number 
of filters for a given block multiplied by the bottleneck coefficient. The best results were achieved for 

the bottleneck coefficients: 
ଵ

ଶ
 (Idx 4), 

ଵ

ସ
 (Idx 5), and 

ଷ

ସ
 (Idx 6). All Conv Blocks are replaced by the 
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Bottlenecked Conv Blocks, except the ones after split in Subnetwork 𝔹. The results of the evaluation of 
the model with Bottlenecked Conv Blocks are presented in Table 5.17. The evaluation results proved 
this modification to perform better than the application of the additional layers, considering the similar 
complexity of the model. Still, the results were not good enough to surpass the Basic Architecture. 

The opposite direction of research on the model, increasing the model complexity while reducing 
the 𝐵𝐷-𝑅𝐴𝑇𝐸, was started by increasing the number of filters in Conv Blocks. Firstly, the experiments 
with an increased number of filters in each layer were performed. In Table 5.17, two selected 
experiments are presented that illustrate the observed tendency. The number of filters (except the output 
layer) was increased by 12 in the first experiment (Idx 7) and by 24 in the second experiment (Idx 8). 
Smaller increases in the number of filters did not change the evaluation result of the model. With a 
bigger increase, the evaluation 𝐵𝐷-𝑅𝐴𝑇𝐸 result got worse. The extensive complexity of the model was 
identified as a cause of poor training.  

Lastly, the number of Conv Blocks was increased, but this time the non-modified ANN architecture 
for Basic Approach was used. The application of the additional layer was the same as shown in Figure 
5.6. The evaluation results of selected experiments (Idx 9 and 10) are presented in Table 5.17. Adding 
layers has proven to be successful in one case. However, despite stable training and 𝐵𝐷-𝑅𝐴𝑇𝐸 
improvement, the increase in the complexity was too significant to adopt this approach in further 
experiments.  
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6 ANN model for the Extended Approach 
6.1 ANN architecture changes from the ANN architecture for the Basic 

Approach 

The Extended Approach for the partitioning algorithm is the extension of the Basic Approach, as 
described in Section 4.1. In the Extended Approach, the partitioning algorithm estimates the CU 
partitioning and the PU division. The PU division is considered as an additional level of the quaternary 
tree, indexed as 4. Therefore, the ANN architecture must be appropriately modified. 

Following adjustments were applied to the ANN architecture used in Basic Approach to produce 
𝐷𝑇ா: 

 The output tensor size (first two dimensions) is doubled (from 4×4 to 8×8). To address this, the 
architecture of Subnetwork A was changed by removing the last MaxPool layer. 

 The number of output channels has to increase to 5 (to represent PU division). The was attained 
by increasing the number of filters in the last Conv2D of the Subnetwork B. 

The ANN architecture for the Extended Approach is presented in Figure 6.1. Conv Blocks are the 
same as in the Basic Architecture and described in Section 5.1 (Figure 5.2). Further in this dissertation, 
a set of ANN models with architecture presented in Figure 6.1 and trained (according to the description 
in Section 4.6) for QP values {22, 27, 32, 37} is referred to as the Extended Architecture. The detailed 
analysis of training results is presented in Section 6.2 and evaluation results are discussed in Section 
6.3. 
 

 

Figure 6. 1. The ANN architecture used in the Extended Approach. Changes to the ANN architecture 
for Basic Model (Figure 5.1, Section 5.1) are marked with red envelopes. The “Conv Block” refers to 

block of layers, presented in Figure 5.2 (Section 5.1). 
 

The ANN architecture for the Extended Approach was derived from the ANN architecture for the 
Basic Approach with a minor set of applied changes. Nonetheless, the architecture is the best one found 
after a thoughtful development, similar to the Basic Approach. The results of this evaluation for the most 
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interesting architecture tuning are presented in Section 6.4. The most interesting tested modifications 
are: MaxPool layer removal choice, more complex network, or Subnetwork 𝔹 extension for processing 
of an additional depth level. 

6.2 Training results for the Extended Architecture 
6.2.1 Assessment of training accuracy 

Training of the Extended Architecture (Section 6.1) was performed according to the description in 
Section 4.6. For each QP: 22, 27, 32, and 37, a separate model was trained. The 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (Formula 4.8) 
values for trained Extended Architecture are presented in Table 6.1. For comparison, 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values 
for Basic Architecture (Section 5.1) are also presented, for the sake of comparison.  
 

Table 6. 1. Training Accuracy values for Extended Architecture. For comparison, results for Basic 
Architecture are presented. 

Q
P

 V
al

ue
 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 [%] 

Training Subset Validation Subset 
Extended 

Architecture 
Basic Architecture 

Extended 
Architecture 

Basic Architecture 

22 60.7 74.2 60.5 74.4 
27 62.2 73.0 61.7 72.9 
32 63.9 72.5 63.1 72.4 
37 64.3 70.5 64.3 69.7 

 

The 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values for Extended Architecture are from the range 〈61; 64〉. The results for the 
Training and the Validation subsets are nearly identical, proving no overfitting. The 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 value 
increases as the dataset for higher QP is used for the training. Such a relation indicates that the problem 
with model overfitting for certain depth level values, observed in Section 5.2, does not occur for the 
Extended Architecture. This will be further investigated with the Confusion Matrices in the next 
subsection. However, the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values are significantly smaller than those for Basic Architecture. 
The differences are ~5 p.p. for QP=37 and ~13 p.p. for QP=22.  

 

Figure 6. 2. Learning curves (Accuracy) of Extended Architecture for QP=22. The blue curve 
represents the results for the Training Subset, and the red curve represents the results for the 

Validation Subset. 
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Achieved A𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values are even smaller than observed for the Basic Architecture. It should be 
recalled that in the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metric (Formula 4.8), each outputted vector of probabilities is individually 
compared with a one-hot vector from Ground Truth. The same reasoning is used to consider this range 
of 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 value as sufficient, as discussed in Subsection 5.2.1 for Basic Architecture. Moreover, the 
training problem for the Extended Architecture is far more complex, as the number of outputs from the 
network increased more than fourfold. This is why the observed 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values are smaller as 
compared to Basic Architecture. Therefore, the Extended Architecture is expected to perform worse in 
the evaluation than the Basic Architecture. 

Figure 6.2 presents an exemplary learning curve of the Extended Architecture. The curve for the 
Training Subset rises quickly at first, then steadily rises. The Curve for the Validation Subset follows a 
similar scheme, but significant fluctuations of the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 are observed. Curves are visually offset, 
but not by more than 0.5 p.p.  

6.2.1 Analysis of Confusion Matrices 

The Extended Architecture (Section 6.1) is trained to estimate the depth level of a certain CTU 
subarea as a class (Subsection 4.2.2). Confusion Matrices (Subsection 3.6.1) have been calculated to 
further evaluate whether the trained network model is able to classify depth levels reliably and to 
investigate the nature of inference errors, similarly like in Section 5.2. Confusion Matrices were 
calculated separately for the Training and Validation Subsets. Tables 6.2 to 6.9 present values of 
calculated Confusion Matrices (Formula 4.9). The number of samples (N) for Formula 4.9 is calculated 
by multiplying the number of samples in the given subset (Section 4.5) by size of the Division Tensor:  

 522939 ⋅ 8 ⋅ 8 = 33468096 for the Training Subset. 
 66650 ⋅ 8 ⋅ 8 = 4265600 for the Validation Subset. 

Values on the diagonal of the Confusion Matrix (True Positive Count – 3.19) are bolded for 
readability. 
 
 

Table 6. 2. Confusion matrix for Extended 
Architecture (QP=22), Training Subset, 
normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 4 

A
N

N
 o

ut
pu

t 
(A

rg
M

ax
d
) 

0 1.236 5.217 0.250 0.062 0.026 

1 0.554 19.733 2.021 0.739 0.489 

2 0.082 6.013 9.739 2.920 2.061 

3 0.001 1.215 2.958 10.041 7.548 

4 0.000 0.706 1.426 4.726 20.238 
 

Table 6. 3. Confusion matrix for Extended 
Architecture (QP=27), Training Subset, 
normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 4 

A
N

N
 o

ut
pu

t 
(A

rg
M

ax
d
) 

0 5.666 6.111 0.318 0.061 0.028 

1 2.785 20.811 2.283 0.624 0.417 

2 0.089 4.795 11.663 2.502 1.641 

3 0.003 1.297 3.577 9.525 5.539 

4 0.001 0.671 1.500 3.601 14.491 
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Table 6. 4. Confusion matrix for Extended 
Architecture (QP=32), Training Subset, 
normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 4 

A
N

N
 o

ut
pu

t 
(A

rg
M

ax
d)

 

0 9.479 7.781 0.448 0.102 0.047 

1 1.992 21.767 2.505 0.676 0.386 

2 0.044 5.358 12.735 2.672 1.362 

3 0.008 1.411 3.635 9.493 3.975 

4 0.003 0.514 1.153 2.869 9.584 
 

Table 6. 5. Confusion matrix for Extended 
Architecture (QP=37), Training Subset, 
normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 4 

A
N

N
 o

ut
pu

t 
(A

rg
M

ax
d)

 

0 14.518 6.909 0.615 0.112 0.026 

1 3.657 22.978 3.097 0.638 0.130 

2 0.169 6.217 13.950 2.475 0.535 

3 0.049 1.617 3.994 8.656 1.654 

4 0.019 0.528 1.037 2.299 4.123 
 

 
 

The Confusion Matrices for both Training and Validation subsets are similar. The differences are 
insignificant, indicating that the training led to a good generalization of the learning problem. Extended 
Architecture predicts the depth level value 0 slightly worse than Basic Architecture (Section 5.1), 
especially for QP values 22 and 27. The best prediction is observed for depth level value 1, which is 
even better than for Basic Architecture. The depth level 2 is predicted by Extended Architecture 
significantly better, notably for smaller QP values.  
 
 

Table 6. 6. Confusion matrix for Extended 
Architecture (QP=22), Validation Subset, 

normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 4 

A
N

N
 o

ut
pu

t 
(A

rg
M

ax
d)

 

0 2.267 4.956 0.207 0.054 0.035 

1 0.419 16.692 1.772 0.789 0.530 

2 0.056 5.363 9.170 3.189 2.250 

3 0.001 1.286 3.037 10.945 8.061 

4 0.000 0.792 1.543 5.188 21.396 
 

Table 6. 7. Confusion matrix for Extended 
Architecture (QP=27), Validation Subset, 

normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 4 

A
N

N
 o

ut
pu

t 
(A

rg
M

ax
d)

 

0 6.475 5.680 0.300 0.063 0.045 

1 2.399 17.786 2.244 0.660 0.476 

2 0.067 4.545 11.779 2.793 1.754 

3 0.002 1.371 3.827 10.569 5.769 

4 0.000 0.721 1.598 3.972 15.105 
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Table 6. 8. Confusion matrix for Extended 
Architecture (QP=32), Validation Subset, 

normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 4 

A
N

N
 o

ut
pu

t 
(A

rg
M

ax
d)

 

0 10.226 6.926 0.432 0.111 0.058 

1 1.547 19.311 2.625 0.778 0.429 

2 0.035 5.090 13.177 2.990 1.397 

3 0.007 1.429 4.008 10.691 4.064 

4 0.003 0.522 1.234 3.185 9.725 
 

Table 6. 9. Confusion matrix for Extended 
Architecture (QP=37), Validation Subset, 

normalized. Values expressed in [%]. 

  Ground Truth (HM) 

 
Depth 
value 

0 1 2 3 4 

A
N

N
 o

ut
pu

t 
(A

rg
M

ax
d)

 

0 14.574 6.015 0.625 0.133 0.029 

1 3.057 21.177 3.520 0.783 0.157 

2 0.143 6.100 14.802 2.796 0.552 

3 0.044 1.675 4.389 9.587 1.665 

4 0.014 0.511 1.059 2.476 4.115 
 

 

The results for depth level 3 in presented Confusion Matrices are ambiguous. In half of the cases, 
models predict it correctly, but the second half are mistaken with a smaller or bigger block. For depth 
level 4, the best results are observed for smaller QP values. As the QP increases, the Extended 
Architecture is less accurate for depth level value 4, but still, the results are better than for depth level 
value 0. The better prediction of Extended Architecture, for some depth level values, is associated with 
depth level values statistics. As presented in Subsection 4.2.2, the histograms for the Extended Approach 
(Figure 4.10 and 4.11) are closer to even for each QP than for the Basic Approach (Figure 4.8 and 4.9). 

An important observation is the tendency of mistaken predictions. For smaller QP values, the model 
tends to make mistakes by indicating bigger depth values, and for bigger QP values the opposite. This 
phenomenon was not observed for the Basic Architecture. This means that the Extended Architecture is 
better at mimicking the behavior of the partitioning algorithm from HM. The impact of the observed 
phenomenon will be further discussed in Section 7.3. 

The Confusion Matrices calculated for the Extended Architecture were analyzed with metrics 
described in Subsection 3.6.1. Results are shown in Table 6.10 for the Training Subset and 6.11 for the 
Validation Subset. The results for the Training and Validation subsets are similar but slightly in favor 
of the latter. This similarity confirms a proper learning problem generalization during the model training.  

The 𝐹1-𝑠𝑐𝑜𝑟𝑒 (Formula 3.25) for almost all cases rises as the QP is increased. The exception here 
is the depth level 4, where the opposite tendency is observed. In most cases, the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (Formula 
3.24) is around 60%. Only for the depth level value 0 in QP values 32 and 37 the metric value exceed 
80%. The 𝑅𝑒𝑐𝑎𝑙𝑙 (Formula 3.24)is mostly around 50% and increases as the QP increases. The best 
𝑅𝑒𝑐𝑎𝑙𝑙 values are observed for depth level 1, which is around 80% despite the QP.  

The worst classification results are assessed for depth level value 0 for QP=22. The very low 𝑅𝑒𝑐𝑎𝑙𝑙 
value, 18.20%, indicates that for this QP, the model confuses the prediction. Fortunately, for the rest of 
the QP values, Extended Architecture performs better for this depth level value. The results are 
comparable with other depth levels and better than those observed for corresponding Basic Architecture. 
The model for the QP=37 has the best predictions, considering depth level value 0, despite not being 
the most probable depth level according to the histograms shown in Subsection 4.2.2. Depth levels 1 
and 2 achieved comparable metric values as the Basic Architecture in most cases. Nevertheless, the 
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results for QP values 22 and 32 are noticeably better for Extended Architecture. The metrics for depth 
level 1 are the best for most QP values compared to other depth levels. The above observations show 
that Extended Architecture is better in the classification of bigger CUs.  
 

Table 6. 10. Analysis of the Confusion Matrix with assessment metrics (Subsection 3.6.1) – Extended 
Architecture, Training Subset. Values expressed in [%]. 

QP 
Depth 

value 𝒅 
𝑹𝒆𝒄𝒂𝒍𝒍 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑭𝟏-𝒔𝒄𝒐𝒓𝒆 𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒂𝒄𝒓𝒐  𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒂𝒄𝒓𝒐  

𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒊𝒄𝒓𝒐 
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒊𝒄𝒓𝒐 

22 

0 18.20 65.96 28.52 

53.93 61.27 60.99 
1 83.84 60.01 69.95 
2 46.79 59.40 52.35 
3 46.14 54.31 49.89 
4 74.69 66.66 70.44 

27 

0 46.51 66.32 54.67 

59.89 62.46 62.16 
1 77.31 61.78 68.68 
2 56.37 60.30 58.27 
3 47.77 58.39 52.55 
4 71.51 65.52 68.39 

32 

0 53.08 82.24 64.52 

61.86 65.20 63.06 
1 79.66 59.10 67.86 
2 57.44 62.19 59.72 
3 51.25 60.04 55.30 
4 67.86 62.42 65.03 

37 

0 65.46 78.85 71.53 

61.25 65.04 64.22 
1 75.34 60.08 66.85 
2 59.75 61.48 60.60 
3 54.20 61.05 57.42 
4 51.50 63.74 56.97 

 

Table 6. 11. Analysis of the Confusion Matrix with assessment metrics (Subsection 3.6.1) – Extended 
Architecture, Validation Subset. Values expressed in [%]. 

QP 
Depth 

value 𝒅 
𝑹𝒆𝒄𝒂𝒍𝒍 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑭𝟏-𝒔𝒄𝒐𝒓𝒆 𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒂𝒄𝒓𝒐  𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒂𝒄𝒓𝒐  

𝑹𝒆𝒄𝒂𝒍𝒍𝒎𝒊𝒄𝒓𝒐 
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝒎𝒊𝒄𝒓𝒐 

22 

0 30.15 82.63 44.18 

55.89 63.78 60.47 
1 82.62 57.38 67.73 
2 45.78 58.30 51.29 
3 46.91 54.28 50.33 
4 73.98 66.30 69.93 

27 

0 51.54 72.40 60.21 

60.59 62.98 61.71 
1 75.48 59.08 66.28 
2 56.26 59.65 57.90 
3 49.07 58.53 53.39 
4 70.60 65.25 67.82 

32 

0 57.60 86.53 69.16 

62.62 65.64 63.13 
1 78.21 58.03 66.63 
2 58.08 61.36 59.67 
3 52.93 60.22 56.34 
4 66.30 62.05 64.11 

37 

0 68.18 81.73 74.34 

61.65 65.20 64.26 
1 73.81 59.69 66.00 
2 60.68 60.68 60.68 
3 55.23 60.77 57.87 
4 50.34 63.13 56.02 

 

Metrics values for the depth level 3 are similar to depth level 2. For each QP, the 𝑅𝑒𝑐𝑎𝑙𝑙 value is 
around 10 p.p. worse than the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. This coincides with an earlier observation of the tendency for 
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mistaken predictions. For QP=22, the depth level value 4 is classified very well, as metric values are 
similar to depth level 1. But, as the QP increases, the results worsen. The metric values for depth level 
4 are better than for depth level value 3. 

Results for both depth level values 3 and 4 for Extended Architecture are significantly worse 
compared to depth level 3 for Basic Architecture. It is important to recall that the depth level values 3 
and 4 in the Extended Approach practically cover the same range of decisions as depth level 3 in the 
Basic Approach. However, The results for depth levels 3 and 4 in Extended Architecture are close to 
results for other depth levels. Therefore, the overfitting is not observed for Extended Architecture, as it 
was for Basic Architecture.  

Despite the overall better classification assessment of Extended Architecture, results of micro and 
macro averaged metrics (Formula 3.28 and 3.29) are worse than Basic Architecture. On average, the 
results are around 10 p.p. worse. The difference between 𝑅𝑒𝑐𝑎𝑙𝑙௠௔௖௥௢ (Formula 3.28) and 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛௠௔௖௥௢ (Formula 3.29) is slightly bigger for the Extended Architecture. The low results of 
𝑅𝑒𝑐𝑎𝑙𝑙௠௜௖௥௢ coincides with an earlier observation that the model output may ambiguously point to a 
particular depth level. This phenomenon is explored in Chapter 7.2.  

The Extended Architecture estimates a multidimensional output, which is significantly bigger than 
that of Basic Architecture. CU blocks. From the standpoint of the partitioning algorithm, the goal is to 
estimate the whole partitioning pattern. It was observed that the Extended Architecture is better in the 
classification of bigger. Thus, the decision algorithm can better compensate the inaccurately indicated 
depth levels for bigger CU blocks. Despite worse overall training assessment for the Extended 
Architecture, the results are considered satisfactory. 

6.3 Results of evaluation in encoder 

Firstly, the Extended Architecture (Section 5.1) was assessed (Section 3.1) by encoding images 
used for training (cropped DIV2k dataset, Section 4.2). The achieved results are presented in Table 6.12. 
The results of 𝐵𝐷-𝑅𝐴𝑇𝐸 for both Training and Validation subsets are increased by 1 p.p. compared to 
Basic Architecture (Section 5.1). Similarly, the 𝐵𝐷-𝑃𝑆𝑁𝑅 is worse by 0.4 dB. Considering the 
difference in 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (Formula 4.8) was close to 10 p.p., the difference in evaluation results is 
relatively small. Recalling the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 results of 60% for Extended Architecture, the 𝐵𝐷-𝑅𝐴𝑇𝐸 and 
𝐵𝐷-𝑃𝑆𝑁𝑅 results are satisfactory. Simultaneously, using the Extended Architecture resulted in 17 p.p. 
better encoding time reduction (Time Savings: 𝑇𝑆, Formula 3.3). The reasons for such results are slightly 
better classification results for lower depth level values and the decision over PU division. These aspects 
are further investigated and discussed in Subsection 7.3.1. 
 

Table 6. 12. Evaluation of Extended Architecture used in Modified HM on training dataset images. 
Presented results are relative to HM. 

 𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑩𝑫-𝑷𝑺𝑵𝑹 [dB] 𝑻𝑺 [%] 
Training Subset images 2.31 -0.109 69.30 

Validation Subset images 2.73 -0.115 69.04 
 

Results of the evaluation on test sequences (Section 3.5) are presented in Tables 6.13 and 6.14. The 
first presents the detailed results, and the second one presents the averaged results. In both tables, the 
results for Basic Architecture were presented for comparison. The presented results are relative to HM. 

 The 𝐵𝐷-𝑅𝐴𝑇𝐸 varies in the range 〈1.68; 5.87〉. Within the resolution class, the 𝐵𝐷-𝑅𝐴𝑇𝐸 results 
for sequences may vary up to ~3.5 p.p., as in Class C. The exception is Class E, where results for all 
sequences are above 5% 𝐵𝐷-𝑅𝐴𝑇𝐸. Despite similar resolutions, results for three sequences from Class 
B are ~2 p.p. worse than for DIV2k dataset images. The results for sequences share the same tendency 
in results as observed for Basic Architecture: the same sequences have higher or lower 𝐵𝐷-𝑅𝐴𝑇𝐸 and 
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𝐵𝐷-PSNR values. Thus, all observations connected with sequence resolution and content made for Basic 
Architecture (Section 5.2) are viable for Extended Architecture. The averaged results in classes are 
around two times bigger for both 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅, compared to Basic Architecture. Yet, the 
results are much better than for random partitioning methods presented in Section 5.2. 
 

Table 6. 13. Detailed results of evaluation on test sequences for Extended Architecture in 
Modified HM. Results for the Basic Architecture are presented for comparison. Presented results are 

relative to HM. 

JCT-VC 
class 

Sequence Name 
Extended Architecture Basic Architecture 

𝑩𝑫-𝑹𝑨𝑻𝑬 
[%] 

𝑩𝑫-𝑷𝑺𝑵𝑹 
[dB] 

𝑻𝑺 
 [%] 

𝑩𝑫-𝑹𝑨𝑻𝑬 
[%] 

𝑩𝑫-𝑷𝑺𝑵𝑹 
[dB] 

𝑻𝑺 
[%] 

A 

NebutaFestival 1.77 -0.128 76.25 1.40 -0.101 72.53 
PeopleOnStreet 4.47 -0.254 69.36 2.22 -0.127 50.99 

SteamLocomotiveTrain 2.88 -0.083 80.14 2.12 -0.061 75.03 
Traffic 3.80 -0.203 70.43 2.22 -0.120 53.72 

B 

BQTerrace 3.80 -0.213 71.40 1.47 -0.077 52.50 
BasketballDrive 4.89 -0.143 72.57 3.04 -0.089 62.76 

Cactus 4.13 -0.148 72.27 2.26 -0.082 59.94 
Kimono1 2.53 -0.088 76.47 1.93 -0.067 72.21 
ParkScene 2.92 -0.130 73.59 1.73 -0.077 62.06 

C 

BasketballDrill 5.54 -0.267 68.56 2.60 -0.127 48.53 
BQMall 3.72 -0.207 69.58 1.65 -0.092 52.15 

PartyScene 2.06 -0.149 62.64 0.49 -0.035 38.30 
RaceHorses 3.62 -0.209 72.09 1.56 -0.091 53.28 

D 

BasketballPass 3.58 -0.215 67.41 1.47 -0.089 49.30 
BlowingBubbles 2.39 -0.165 59.74 0.45 -0.030 44.18 

BQSquare 1.68 -0.134 61.07 0.64 -0.051 38.99 
RaceHorsesLow 3.23 -0.199 67.50 1.15 -0.072 48.00 

E 
FourPeople 5.09 -0.290 71.73 2.59 -0.149 56.34 

Johnny 5.87 -0.245 73.98 3.47 -0.145 65.38 
KristenAndSara 5.21 -0.266 73.28 2.71 -0.138 65.39 

 

Table 6. 14. Averaged results of the evaluation of Extended Architecture in Modified HM. Results for 
the Basic Architecture are presented for comparison. The ‘All’ class corresponds to the average 

calculated over all test sequences. Presented results are relative to HM. 

JC
T

-V
C

 
cl

as
s 𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑩𝑫-𝑷𝑺𝑵𝑹 [dB] 𝑻𝑺 [%] 

Extended 
Architecture 

Basic 
Architecture 

Extended 
Architecture 

Basic 
Architecture 

Extended 
Architecture 

Basic 
Architecture 

A 3.23 1.99 -0.167 -0.102 74.05 63.07 
B 3.66 2.09 -0.144 -0.079 73.26 61.90 
C 3.74 1.57 -0.208 -0.086 68.22 48.07 
D 2.72 0.93 -0.178 -0.061 63.93 45.12 
E 5.39 2.93 -0.267 -0.144 73.00 56.57 

All 3.66 1.86 -0.187 -0.091 70.49 56.08 
 

The Extended Architecture is superior to Basic Architecture in terms of encoding time reduction 
(Time Savings: 𝑇𝑆). The results are in the range 〈59.74; 80,14〉, which means that even a sequence with 
the worst 𝑇𝑆 is better than the average result for Basic Architecture. Same as for Basic Architecture, the 
tendency of smaller 𝑇𝑆 results for smaller resolution is observed. The 𝑇𝑆 varies no more than 10 p.p. 
within the resolution classes, so the 𝑇𝑆 for Extended Architecture is much more consistent. The most 
significant improvements in 𝑇𝑆, compared to Basic Architecture, were observed for Class A sequences 
“PeopleOnStreet” and “Traffic”, and whole Classes C and D. Compared to Basic Architecture, the 
Extended Architecture improves the 𝑇𝑆 by 14.14 p.p. on average. The most significant improvements 
(~20 p.p.) are observed for classes D and C.  
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The observed 𝑇𝑆 improvements can be explained by the content of sequences in the mentioned 
classes. The content in class A is complex (see Section 5.3), and the content in classes C and D is more 
condensed due to resolution. Both cases can be characterized by more frequent usage of smaller CU 
blocks, which are especially computationally expensive. This means that the control over PU division 
is a significant part of the encoder complexity. 

One should recall that the Extended Architecture is a modified version of the Basic Architecture. 
One of the applied modifications is the removal of the last MaxPool from Subnetwork 𝔸. This results in 
processing feature maps of twice the dimensions by the Subnetwork 𝔹, increasing the model complexity. 
To assess the change in complexity for all encoded sequences, the 𝑇௠௢ௗ௘௟  (aggregated time of ANN 
processing, expressed in seconds) was measured and divided by the number of CTUs of that sequence. 
Similarly, as for Basic Architecture, the averaged ANN time processing for a single CTU again is very 
similar despite the sequence or QP. For a machine used in time assessment of Extended Architecture, 
the statistics of average ANN time processing for a single CTU are as follows: 

 Mean value: 2.31 ms 
 Standard deviation 126.90 μs 

Simultaneously, mean time of CTU processing (over all sequences and QP values) was calculated: 
29.99 ms for HM and 8.99 ms for Modified HM (Extended Approach). Surprisingly, the average ANN 
time processing for a single CTU is slightly smaller compared to the Basic Architecture (2.48 ms, 
Section 5.3). The rationale for this phenomenon is the ANN framework. Processing a single layer by the 
framework is more time-consuming than processing bigger feature maps in Subnetwork 𝔹. The standard 
deviation is over twice as big, but the ANN time processing for a single CTU is still considered constant.  

Same as in Section 5.3, the 𝑇஺ேே (Formula 3.3) is used to estimate the impact of partitioning 
patterns on encoder complexity. Table 6.15 presents the statistics of 𝑇஺ேே for a given set of sequences 
and QP. 

Table 6. 15. Statistics of TANN for Extended Architecture for a given set of sequences and QP 
JCT-VC 

class 
QP 𝝁(𝑻𝑨𝑵𝑵) [%] 𝜹(𝑻𝑨𝑵𝑵) [%] 

A 

22 26.21 5.39 
27 30.13 5.74 
32 34.41 4.79 
37 37.58 4.02 

B 

22 22.96 4.95 
27 29.12 4.70 
32 34.24 3.89 
37 38.37 2.69 

C 

22 16.47 2.78 
27 21.18 3.68 
32 25.69 4.37 
37 32.01 4.91 

D 

22 15.93 3.09 
27 19.10 3.82 
32 23.34 4.44 
37 29.17 4.65 

E 

22 29.02 2.49 
27 32.93 2.58 
32 36.72 2.10 
37 39.97 1.71 

All 

22 21.82 6.40 
27 26.30 6.77 
32 30.76 6.63 
37 35.34 5.56 
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Similarly, as for Basic Architecture, the bigger the QP, the higher the impact of the ANN processing 
on the encoding time. Other observations for Basic Architecture, described in Section 5.3, apply here, 
e.g., the lower the resolution, the smaller blocks are used more frequently. Apart from it, the 𝑇஺ேே is 
bigger Compared to Basic Architecture, by ~6 p.p. on average. As the averaged ANN processing time 
of a single CTU is almost the same and the average 𝑇𝑆 was 14.5 p.p. better, the reduction of the encoding 
time is caused mainly by the decision of the PU division. Additionally, the improvements in the 
classification of smaller depth level values, observed with Confusion Matrices metrics, may also impact 
the 𝑇𝑆, as bigger CU blocks are predicted more accurately. The effect of block size on encoding time 
will be analyzed in Subsection 7.3.1. 

Lastly, the RD curves for sequences encoded with Extended Architecture were assessed. Again, 
only curves for the best and the worst 𝐵𝐷-𝑅𝐴𝑇𝐸 will be presented. Figure 6.3 presents the curve for 
“BQSquare” sequence (the best 𝐵𝐷-𝑅𝐴𝑇𝐸: 1.68%), and Figure 6.4 presents the curve for “Johnny” 
sequence (the worst 𝐵𝐷-𝑅𝐴𝑇𝐸: 5.87%). 

The curves for sequence “BQSquare” almost coincide. The 𝐵𝐷-𝑅𝐴𝑇𝐸 of 1.68% is similar to the 
average results for Basic Architecture. For the “Johnny” sequence, the curves are visually distanced. 
Despite the visual impression, the smaller the QP, the bigger the distance between the curves is. The 
same effect was observed for the Basic Architecture. It should be mentioned that the 𝐵𝐷-𝑅𝐴𝑇𝐸 of more 
than 5% was observed for only four sequences.  

Compared to Basic Architecture, the Extended Architecture performs worse in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸, 
but much better in terms of encoding time (𝑇𝑆). Therefore, this approach is a viable solution as it offers 
a different ETvsCE tradeoff. Despite the slightly better classification for smaller depth level values 
(bigger blocks), the overall smaller 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 resulted in worse assessment in the encoder. 
The 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 smaller by 10 p.p. resulted in an increase of ~1.8 p.p. in 𝐵𝐷-𝑅𝐴𝑇𝐸 on average. The 
reasoning for this effect is associated with the impact of blocks of a specific size on the encoding 
efficiency. This subject will be discussed widely in section 7.3.1. 
 

 

Figure 6. 3. RD curves for HM (orange) and Modified HM with Extended Architecture (Blue) for Test 
sequence “BQSquare”(Class C). 
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Figure 6. 4. RD curves for HM (orange) and Modified HM with Extended Architecture (Blue) for Test 
sequence “Johnny”(Class E). 

 

6.4 Extended Architecture tuning 

The ANN architecture for the Extended Approach (Section 6.1) was derived from the ANN 
architecture for the Basic Approach (Figure 5.1, Section 5.1) with a minor set of applied changes 
described in Section 6.1. Nevertheless, the ANN architecture development process was performed 
similarly to the Basic Architecture (Section 5.1). Thus, this process was time-consuming, resource-
costly and consisted of verifying ideas in a try-and-check procedure. In this section, only the most 
interesting ones are presented. Multiple ideas presented in Section 5.4 were also tested in Extended 
Architecture. The examples are adjustment of layer types, label smoothing, label weighting, or 
modifications of Subnetwork 𝔸 complexity (number of layers). The results were similar to those for ANN 
architecture for Basic Approach (Section 5.1), so the conclusions for ANN architecture for Extended 
Approach were the same.  

One should recall that a greedy experimenting approach was applied, described in Section 3.7. All 
model were trained according to the description in Section 4.6. All tuning approaches presented in this 
section were discarded due to rules defined in Subsection 4.6.3 (converge of the training process and 
increase of evaluation result by 0.1 p.p. in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸). The results for tunings of ANN 
architecture for Extended Approach were obtained with a single run of model training. The precise time 
assessment was not performed on tunings, so the complexity of the model is assessed using the Multiply 
and Accumulate (MAC) operations count (in millions: M) and the number of weights in the model. The 
evaluation of the models was performed according to description in Section 3.1. 

The tunings of ANN architecture for Extended Approach presented in this section are grouped into 
three types: MaxPool removal location, the extension of the Subnetwork 𝔹 to reflect PU division, and 
an increase in the number of filters in Conv2D layers. The evaluation results for chosen tunings are 
presented in Table 6.16. Presented results are relative to HM. 

The first described tuning is the location of MaxPool layer removal. During the development of the 
architecture, all possible locations were considered. As shown in Table 6.16, the earlier the MaxPool is 
removed, the better the model evaluation results. The improvement of 𝐵𝐷-𝑅𝐴𝑇𝐸 was 0.11 p.p. for the 
removal of the first MaxPool, but the MAC operation count increased almost three times. Removing 
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further MaxPool layers resulted in minor improvements, with a significant complexity increase. This 
proves that removing the last MaxPool layer was the best option.  
 

Table 6. 16. Assessment of selected tunings for architecture in Extended Approach. “No modification” 
refers to results for Extended Architecture (Section 5.3). Presented results are relative to HM. 

Modification 
Type 

Description modification for ANN model 
for Extended Approach 

𝑩𝑫-𝑹𝑨𝑻𝑬 
[%] 

𝑩𝑫-𝑷𝑺𝑵𝑹 
[dB] 

MAC 
count [M] 

Num. of 
weights 

MaxPool 
removal 
(vs Basic 

Architecture) 

After the first Subnetwork 𝔸 Conv Block 3.56 -0.177 25.57 91 617 
After the second Subnetwork 𝔸 Conv 

Block 
3.62 -0.186 17.53 91 617 

After the third Subnetwork 𝔸 Conv Block 3.68 -0.188 11.53 91 617 

Deeper 
Subnetwork B 

The additional level of quaternary tree 
mimic by Subnetwork 𝔹, Number of filters: 

64,32,16,5 
3.61 -0.190 9.43 203 489 

The additional level of quaternary tree 
mimic by Subnetwork 𝔹, Number of filters: 

64,16,8,5 
3.63 -0.189 8.61 110 521 

More filters in 
convolution 

layers 

More filters in Subnetwork 𝔸: 24,48,72,96 3.55 -0.179 27.76 197 613 

More filters in Subnetwork 𝔹: 128,32,4 3.63 -0.183 12.09 230 449 

None No modification (Extended Architecture) 3.66 -0.187 8.54 91 617 
 

As described in Section 4.1, the Subnetwork 𝔹 architecture mimics the quaternary tree. The ANN 
architecture for Extended Approach inherits the Subnetwork 𝔹 from the ANN architecture for Basic 
Approach (Figure 5.1, Section 5.1) with minor modifications. As the Extended Approach (Section 4.1) 
considers one level deeper quaternary tree, the Subnetwork 𝔹 shall be adjusted accordingly. Thus, the 
Subnetwork 𝔹 was extended with additional layers, as shown in Figure 6.5. This tuning was thoroughly 
tested to find the best hyperparameters. Unfortunately, the modified architecture did not perform well in 
most cases, as the evaluation results were much worse than those from Extended Architecture (Section 5.1 
and 5.3). In Table 6.16, results for the two best hyperparameter sets for this modification are presented. 
The presented evaluation results are slightly better than those of the Extended Architecture. The 
improvements in 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-PSNR were too minor to use in further research. The number of 
operations did not increase significantly, but, as observed in Section 6.3, additional layers increase the 
ANN processing time. Because of adding Conv Blocks (Figure 5.2, Section 5.1), the number of weights 
increased up to twofold. All additional weights are in Subnetwork 𝔹, and along with specific architecture, 
the gradient in backpropagation is too spread out. This influences the training of the Subnetwork 𝔸 and 
causes such evaluation results.  

Lastly, results for two tuning experiments are presented where the number of filters is increased. For 
Subnetwork 𝔸 or 𝔹 the number of filters in each Conv Block was doubled. One should observe that the 
tuning for Subnetwork 𝔹 results in a minor decrease of 𝐵𝐷-𝑅𝐴𝑇𝐸, while the number of weights increased 
around 2.5 times and MAC operation count 1.5 times. The improvement of 𝐵𝐷-𝑅𝐴𝑇𝐸 for Subnetwork 
𝔸 tuning is 0.11 p.p. but at the cost of a significant rise in complexity. The MAC operation count is 
increased 3.25 times, and the number of weights is doubled. These examples show the overall tendency: 
the relatively huge increase in model complexity slightly improves evaluation results. As the main 
advantage of the Extended Approach is the reduction in 𝑇𝑆, this research direction was abandoned. 

Concluding the results for hyperparameter tuning for both ANN models for Basic and Extended 
Approaches, any viable one was found despite the extensive search for better architectures. The 
improvement in 𝐵𝐷-𝑅𝐴𝑇𝐸 would require an increase in the complexity of the model, which would 
potentially not change or make worse the ETvsCE trade-off. One should recall that the ANN is just one 
part of the proposed partitioning algorithms. The second one, the decision algorithm, can significantly 
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increase the effectiveness of the partitioning algorithm. Please note that in the evaluation experiments 
up to this point of the dissertation, the hard-decisive variant of AlgIdx (Subsection 7.2.1) was used. 

 

 

Figure 6. 5. Architecture of the Subnetwork 𝔹 with mimicking of additional depth level. 
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7 Decision algorithm for the ANN output 
7.1 General description of the proposed decision algorithms 

This chapter provides a description of the decision algorithms, which are among the most 
distinctive developments of this dissertation. Each of the proposed decision algorithms is processing the 
output of the ANN (the Division Tensor - DT), to produce a partitioning pattern (the Division Matrix - 
DM), conformant with the HEVC syntax. It should be noted that during the research, many experimental 
algorithms were developed and tested; however, only the final algorithms — the best-performing ones 
— are presented in the dissertation. For the sake of clarity, lets recall the requirement for the partitioning 
algorithm, described in Section 4.1: the whole partitioning algorithm must be as low complex as 
possible. Thus, proposed decision algorithms are so simple that their computing time is negligible 
compared to ANN processing time.  

It is important to note that the output of the ANN may happen to be non-conformant with the HEVC 
syntax. To prevent such non-conformance, the proposed decision algorithms are designed to process the 
DT in a quaternary tree manner, and, as a result, to produce only HEVC-syntax-conformant decisions 
(Section 2.2). The overall scheme of all of the proposed decision algorithms is presented below. 
 

 

Figure 7. 1. Visualization of current block area 𝐴௠,௡,ே (Formula 7.1) in Division Tensor/Matrix 
in two consecutive recursion levels. 

 

The processing is done recursively, in a top-bottom fashion. It starts at the top level of the entire 
CTU and proceeds downward through progressively smaller CU blocks until reaching the smallest 
blocks (CU or PU) at the bottom. The recursion (Figure 7.1) is controlled by the following arguments: 

 Current depth level, 𝑐𝑑𝑙, which starts from 𝑐𝑑𝑙 = 0, and increments with each recursion level. 



104 

 

 Current block size, 𝑁 ×  𝑁, expressed in Division Matrix/Tensor (DT/DM) indices and is halved 
with each recursion level. The initial value is equal to DT/DM size, which is 𝑁 = 4 for Basic 
Approach and 𝑁 = 8 for Extended Approach (Section 4.5). 

 Starting indices of the current block, 𝑚, 𝑛, inside of Division Matrix/Tensor. 

The recursive procedure is defined as follows: 

Procedure: DecisionAlgorithm(𝒄𝒅𝒍, 𝑵, 𝒎, 𝒏): 

1. Denote the area A௠,௡,ே of the current block inside of 𝐷𝑇[𝑖, 𝑗,⋅] and 𝐷𝑀[𝑖, 𝑗] as specified by the 
indices 𝑚, 𝑛 and the size 𝑁: 

A௠,௡,ே =  {(𝑖, 𝑗) | 𝑖 ∈ [𝑚; 𝑚 + 𝑁 − 1],   𝑗 ∈ [𝑛; 𝑛 + 𝑁 − 1]}. (7.1) 

2. Analyze the DT values in the denoted area A௠,௡,ே, e.g. 𝐷𝑇[𝑖, 𝑗,⋅], (𝑖, 𝑗) ∈ A௠,௡,ே. 
3. Make decision according to the analysis of the considered DT area A௠,௡,ே: 

o If certain conditions (specified for particular algorithm in Section 7.2 and 7.3) are met, 
fill the values in DM corresponding to the area of the current block with 𝑐𝑑𝑙 : 

𝐷𝑀[𝑖, 𝑗] ← 𝑐𝑑𝑙, 𝑓𝑜𝑟 (𝑖, 𝑗) ∈ A௠,௡,ே , (7.2) 

where ← symbol stands for assignment operation. Terminate the recursion. 
o Otherwise: Recurse the procedure, for next depth level 𝑐𝑑𝑙 + 1. Split the block 

following the quaternary tree (Figure 7.1) and perform recursive call for each 
subdivided block: 

 call DecisionAlgorithm(𝒄𝒅𝒍 + 𝟏, 
𝑵

𝟐
, 𝒎, 𝒏) 

 call DecisionAlgorithm(𝒄𝒅𝒍 + 𝟏, 
𝑵

𝟐
, 𝒎, 𝒏 +

𝑵

𝟐
) 

 call DecisionAlgorithm(𝒄𝒅𝒍 + 𝟏, 
𝑵

𝟐
, 𝒎 +

𝑵

𝟐
, 𝒏) 

 call DecisionAlgorithm(𝒄𝒅𝒍 + 𝟏, 
𝑵

𝟐
, 𝒎 +

𝑵

𝟐
, n+

𝑵

𝟐
) 

(7.3) 

The above procedure serves as a foundation for all decision algorithms presented in this chapter. 
In subsections corresponding to particular algorithms, the description includes the idea behind an 
algorithm, analysis, and processing of the DT, a definition of the factor used for decision, and conditions 
for application depth level or further analysis. 

In this dissertation, two approaches to the decision algorithm are presented. The hard-decisive 
approach (Section 7.2) implies that the decision algorithm always outputs a single partitioning pattern. 
The partitioning pattern is used by the encoder without any changes, and the rest of the decisions are 
estimated by the RD algorithm only for indicated blocks. This applies identically to both Basic and 
Extended approaches (Section 4.1). In the soft-decisive approach (Section 7.3), a single or set of 
partitioning patterns is indicated. Therefore, in the case of a set of partitioning patterns, the RD algorithm 
is comparing them to choose the best-performing one. 

7.2 Hard-decisive approach for ANN output interpretation 
7.2.1 Index-based Algorithm (AlgIdx) 

The name of the first proposed partitioning algorithm, the Index-based algorithm (AlgIdx), 
corresponds to indices of depth levels calculated with the ArgMax function. The algorithm follows the 
recursive procedure of the decision algorithm defined in Section 7.1, starting from current depth level 
𝑐𝑑𝑙 =  0, 𝑁 ×  𝑁 equal the size of Division Tensor/Matrix, 𝑚 =  0, 𝑛 =  0. The following steps of the 
procedure are defined:  
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Procedure: 𝐀𝐥𝐠𝐈𝐝𝐱𝐡𝐚𝐫𝐝-𝐝𝐞𝐜𝐢𝐬𝐢𝐯𝐞(𝒄𝒅𝒍, 𝑵, 𝒎, 𝒏): 

1. Denote the area A௠,௡,ே of the current block inside of 𝐷𝑇[𝑖, 𝑗,⋅] and 𝐷𝑀[𝑖, 𝑗] as specified by the 
indices 𝑚, 𝑛 and the size 𝑁, as in Formula 7.1. 

A௠,௡,ே =  {(𝑖, 𝑗) | 𝑖 ∈ [𝑚; 𝑚 + 𝑁 − 1],   𝑗 ∈ [𝑛; 𝑛 + 𝑁 − 1]}. (7.1) 

2. Analyze the DT values in the denoted area A௠,௡,ே, e.g. 𝐷𝑇[𝑖, 𝑗,⋅], (𝑖, 𝑗) ∈ A௠,௡,ே. 
o If 𝑁 is equal 1, set 𝐷𝑀[𝑚, 𝑛] ← 𝑐𝑑𝑙 and terminate the algorithm. 
o For the denoted area A௠,௡,ே , find the index of the most probable depth level 

𝐷𝑀஺௟௚ூௗ௫  [𝑖, 𝑗] defined as follows: 

𝐷𝑀஺௟௚ூௗ௫[𝑖, 𝑗] = ArgMaxୢ(𝐷𝑇[𝑖, 𝑗,⋅]), 𝑓𝑜𝑟 (𝑖, 𝑗) ∈ A௠,௡,ே. (7.4) 

where ArgMaxୢ(𝐹) is an argument for the maximal value of tensor 𝐹, along the 𝑑 axis 
(channel). 

o Calculate the 𝐶 value defined as follows:  

𝐶 =
1

𝑁ଶ
∙ ෍ Iv൫𝐷𝑀஺௟௚ூௗ௫  [𝑖, 𝑗] = 𝑐𝑑𝑙൧൯

(௜,௝)∈୅೘,೙,ಿ

, (7.5) 

where Iv(∙) is the Iverson function [Fo99], such that Iv(𝑡𝑟𝑢𝑒) = 1 and Iv(𝑓𝑎𝑙𝑠𝑒) = 0. 
3. Make decision according to the analysis of the considered DT area A௠,௡,ே: 

o If C > 0.5, fill the values in DM corresponding to the area of the current block with 𝑐𝑑𝑙 
(Formula 7.2), and terminate the recursion. 

o Otherwise: Recurse the procedure, for next depth level 𝑐𝑑𝑙 + 1. Split the block 
following the quaternary tree (Figure 7.1) and perform recursive call for each 
subdivided block as in Formula 7.3 using 𝐀𝐥𝐠𝐈𝐝𝐱𝐡𝐚𝐫𝐝-𝐝𝐞𝐜𝐢𝐬𝐢𝐯𝐞 procedure. 

A rationale for procedure steps is as follows. A straightforward method to make decisions on 
partitioning pattern, using values in the DT, is to count the number of outputs indicating the current 
depth level 𝑐𝑑𝑙 in the analyzed area A୫,୬,୒ (Formula 7.1) for current block. As the ANN model estimates 
the probabilities of the depth levels for certain subareas in the CTU (𝐷𝑇[𝑖, 𝑗,⋅], Section 4.5), the highest 
value should indicate the best one. Thus, the ArgMax function is used to find indices of the most 
probable depth levels. The result is the 𝐷𝑀஺௟௚ூௗ௫  (Formula 7.4): Division Matrix with partitioning 

pattern for the analyzed area (A୫,୬,୒) which may not be conformant with the HEVC. If the count of 
indices of the 𝑐𝑑𝑙 is bigger than half the number of indices in the analyzed area (𝑁ଶ), then the current 
depth level value is applied. Such a threshold was chosen to ensure that at least half the CTU areas 
(𝐷𝑇[𝑖, 𝑗,⋅]) in the analyzed area (A୫,୬,୒) indicate the 𝑐𝑑𝑙. Otherwise, the procedure is recursed 
considering smaller blocks (𝑐𝑑𝑙 + 1). 

AlgIdx in hard-decisive variant was used as a decision algorithm during the development of Basic 
and Extended Architectures (Section 5.1 and 6.1). One of the reasons is the similarity of AlgIdx to the 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metric (Formula 4.8), which was a main metric used for model training assessment. Secondly, 
the simplicity of AlgIdx makes it the good reference point for further research of decision algorithms. 
Additionally, a similar approach was used by authors of [Fe21], where the ANN estimates indices, and 
a similar algorithm is used for conformance correction. This makes AlgIdx a well representation of the 
solutions found in the literature.  
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AlgIdx does not make full use of information in a DT outputted from the ANN: 

 As mentioned in Section 5.2, the probabilities for a given CTU subarea (𝐷𝑇[𝑖, 𝑗,⋅]) outputted by 
ANN cannot always be explicitly translated to just one depth level value. 

 In some cases, the ANN is outputting a very high probability value for a single depth level, 
which is translated as a very confident decision. 

 In other cases, the result for a certain CTU subarea (𝐷𝑇[𝑖, 𝑗,⋅]) is ambiguous – the model is 
estimating similar, relatively high, probability values for at least two depth levels. 

 The model is trained to estimate probabilities of depth level for each CTU subarea (𝐷𝑇[⋅,⋅,⋅]) 
separately, so within a single DT, both mentioned cases may occur simultaneously.  

Therefore, the use of the ArgMax removes crucial information about the level of model certainty. The 
discarded non-zero probability values can still be used in the decision algorithm, as described in the next 
section.  

7.2.2 Probability-based algorithm (AlgPrb) 

The Probability-based algorithm (AlgPrb) is aiming to make use of all probabilities estimated 
by ANN. The algorithm follows the recursive procedure of the decision algorithm defined in Section 
7.1, starting from current depth level 𝑐𝑑𝑙 =  0, 𝑁 ×  𝑁 equal the size of DT, 𝑚 =  0, 𝑛 = 0. The 
algorithm defines the steps of the procedure as follows: 

Procedure: 𝐀𝐥𝐠𝐏𝐫𝐛𝐡𝐚𝐫𝐝-𝐝𝐞𝐜𝐢𝐬𝐢𝐯𝐞(𝒄𝒅𝒍, 𝑵, 𝒎, 𝒏): 

1. Denote the area A௠,௡,ே of the current block inside of 𝐷𝑇[𝑖, 𝑗,⋅] and 𝐷𝑀[𝑖, 𝑗] as specified by the 
indices 𝑚, 𝑛 and the size 𝑁, as in Formula 7.1. 

A௠,௡,ே =  {(𝑖, 𝑗) | 𝑖 ∈ [𝑚; 𝑚 + 𝑁 − 1],   𝑗 ∈ [𝑛; 𝑛 + 𝑁 − 1]}. (7.1) 

2. Analyze the DT values in the denoted area A௠,௡,ே, e.g. 𝐷𝑇[𝑖, 𝑗,⋅], (𝑖, 𝑗) ∈ A௠,௡,ே. 
o If 𝑁 is equal 1, set 𝐷𝑀[𝑚, 𝑛] ← 𝑐𝑑𝑙 and terminate the algorithm. 
o For each depth level 𝐿 ≥ 𝑐𝑑𝑙, calculate 𝑆௅:  

𝑆௅ = ෍ 𝐷𝑇[𝑖, j, 𝐿].
(௜,௝)∈୅೘,೙,ಿ

 (7.6) 

3. Make decision according to the analysis of the considered DT area A௠,௡,ே: 
o If 𝑆௖ௗ௟ = max (𝑆௅), fill the values in DM corresponding to the area of the current block 

with 𝑐𝑑𝑙 (Formula 7.2), and terminate the recursion. 
o Otherwise: Recurse the procedure, for next depth level 𝑐𝑑𝑙 + 1. Split the block 

following the quaternary tree (Figure 7.1) and perform recursive call for each 
subdivided block as in Formula 7.3 using 𝐀𝐥𝐠𝐏𝐫𝐛𝐡𝐚𝐫𝐝-𝐝𝐞𝐜𝐢𝐬𝐢𝐯𝐞 procedure. 

The rationale for the steps of the above-mentioned algorithm steps is as follows: instead of counting 
indices in the analyzed area A୫,୬,୒ (Formula 7.1) for current block, the probabilities are summed up 
(𝐿 = 𝑐𝑑𝑙, Formula 7.6). Moreover, the probabilities corresponding to all bigger depth level (𝐿 > 𝑐𝑑𝑙) 
values are also added up separately (Formula 7.6). If the sum for the current depth level 𝑐𝑑𝑙 is the highest 
of all sums, then this depth level is applied in DM for the corresponding in the analyzed area A୫,୬,୒. 
Otherwise, the procedure is recursed considering smaller blocks (𝑐𝑑𝑙 + 1). 

7.2.3 Evaluation of the proposed hard-decisive algorithms 

Table 6.1 presents the results of proposed partitioning algorithms evaluation with two presented 
hard-decisive algorithms: AlgIdx (Subsection 7.2.1) and AlgPrb. (Subsection 7.2.2) The evaluation was 
performed following the methodology presented in Chapter 3, with images from DIV2k [Ag17] used 
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for creating training datasets (Section 4.2) and test sequences (Section 3.5). Both Basic and Extended 
Architectures (Section 5.1 and 6.1) were tested, with proposed hard-decisive algorithms. The presented 
results are relative to HM. 
 

Table 7. 1. Evaluation results of proposed partitioning algorithms with hard-decisive algorithms in 
Modified HM. Presented results are relative to HM. 

  Training Subset Images  Validation Subset Images Test sequences  

Arhitecture 
Decision 

Algorithm 
𝑩𝑫-𝑹𝑨𝑻𝑬 

[%] 
𝑩𝑫-𝑷𝑺𝑵𝑹 

[dB] 
𝑩𝑫-𝑹𝑨𝑻𝑬 

[%] 
𝑩𝑫-𝑷𝑺𝑵𝑹 

[dB] 
𝑩𝑫-𝑹𝑨𝑻𝑬 

[%] 
𝑩𝑫-𝑷𝑺𝑵𝑹 

[dB] 

Basic 
AlgIdx 1.43 -0.069 1.74 -0.075 1.86 -0.091 
AlgPrb 1.34 -0.066 1.78 -0.075 1.80 -0.089 

Extended 
AlgIdx 2.31 -0.109 2.73 -0.112 3.66 -0.189 
AlgPrb 2.18 -0.105 2.74 -0.113 3.44 -0.177 

 
 

For the Basic Architecture, in most cases, AlgPrb is marginally better than AlgIdx in terms of 
compression efficiency. The differences do not exceed 0.1 p.p. 𝐵𝐷-𝑅𝐴𝑇𝐸, which was the value defined 
in Section 4.6 as the threshold for model mattering improvement. In this case, the improvement in the 
evaluation result comes solely from decision algorithms, so even slightly better value is a valuable 
improvement., For test sequences (which are the most important result) AlgPrb outperforms AlgIdx by 
0.06 p.p. in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸 and by 0.02 dB in terms of 𝐵𝐷-𝑃𝑆𝑁𝑅.  

In the presented evaluation, the Basic Architecture showed very similar results both for images 
used for creating training datasets and test sequences. This observation applies to both decision 
algorithms. This leads to the conclusion that the Basic Architecture is trained to generalize the problem 
quite well, and the model is quite certain of the outputted partitioning pattern.  

In the case of Extended Architecture, the difference is much more significant. Considering images 
from DIV22k (used for creating training datasets), the results for both decision algorithms are very 
similar. For Validation Subset Images, AlgPrb performed negligibly worse (0.01 p.p. 𝐵𝐷-𝑅𝐴𝑇𝐸) than 
AlgIdx. The opposite is observed for test sequences. The differences are 0.22 p.p. in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸 
and 0.12 dB in terms of 𝐵𝐷-𝑃𝑆𝑁𝑅 in favor of AlgPrb. This is twice the improvement threshold defined 
in Section 4.6 achieved just with the decision algorithm. The difference in decision algorithm 
performance, along with lower training 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of Extended Architecture, suggests that the models 
are less certain about partitioning. Thus, considering probability values estimated for multiple depth 
levels helps in deciding on better-performing partitioning patterns.  

7.3 Soft-decisive approach for ANN output interpretation 

In the previous section, hard-decisive algorithms were presented, where only single partitioning 
patterns is derived. However, as suggested earlier in this dissertation (Section 4.1), indicating a set of 
partitioning patterns to check may be a viable solution. Thus, more than one partitioning pattern is 
implied by the decision algorithm, according to the output of the ANN. Such an approach is referred to 
as the soft-decisive approach. Its core idea is to indicate a pair of block sizes depending on the certainty 
of ANN predictions. While this concept can be extended to consider three or four block sizes, such an 
expansion is beyond the scope of this dissertation, as the primary objective remains the reduction of 
encoding complexity (Section 4.1). 

7.3.1 Viability of the soft-decisive approach 

The experiment presented in this subsection has two main goals. The first one is to check the 
viability of the soft-decisive approach, which is considered in this section. The second one is to analyze 
the effect of CU/PU block size on encoding complexity and verify observations related to this from 
sections 5.3 and 6.3. 
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Table 7. 2. Evaluation of Modified HM with a limited number of possible CU and PU block sizes.. 
Presented results are relative to HM. 

One indicated block size Two considered block sizes 

Block size 
𝑩𝑫-𝑹𝑨𝑻𝑬 

[%] 
𝑩𝑫-𝑷𝑺𝑵𝑹 

[dB] 
𝑻𝑺 
[%] 

Block sizes 
𝑩𝑫-𝑹𝑨𝑻𝑬 

[%] 
𝑩𝑫-𝑷𝑺𝑵𝑹 

[dB] 
𝑻𝑺 

[%] 

CU: 64×64 
PU: 64×64 

15.82 -0.790 85.01 

CU: 64×64 
PU: 64×64 

or 
CU: 32×32 
PU: 32×32 

  

12.97 -0.665 74.29 

CU: 32×32 
PU: 32×32 

14.06 -0.717 86.09 

CU: 32×32 
PU: 32×32 

or 
CU: 16×16 
PU: 16×16 

 

8.25 -0.442 73.75 

CU: 16×16 
PU: 16×16 

11.01 -0.569 86.12 

CU: 16×16 
PU: 16×16 

or 
CU: 8×8 
PU: 8×8 

 

5.20 -0.271 66.49 

CU: 8×8 
PU: 8×8 

13.26 -0.627 78.89 

CU: 8×8 
PU: 8×8 

or 
CU: 8×8 
PU: 4×4 

 

9.38 -0.425 36.20 

CU: 8×8 
PU: 4×4 

36.14 -1.543 55.71     

 

The experiment consists of encoding test sequences (Section 3.5) consistently using the same block 
size or allowing the RD Optimization in HM to choose one block size from a pair of adjacent block sizes 
in a quadtree. The modified HM was used to perform the experiment, employing the partitioning 
algorithm, which allows the sequence to be encoded using a DM filled with the same value (Subsection 
4.7.4). Firstly, values for single block size were used:  

 0 – use only block size: CU: 64×64 PU: 64×64. 
 1 – use only block size: CU: 32×32 PU: 32×32. 
 2 – use only block size: CU: 16×16 PU: 16×16. 
 3 – use only block size: CU: 8×8 PU: 8×8. 
 4 – use only block size: CU: 8×8 PU: 4×4. 

Then, the Modified HM was adapted to restrict the RD Optimization in HM to choose one block size 
from a pair of adjacent block sizes in a quadtree. The best-performing block size is selected according 
to the calculated bit cost. The following values for DM were defined and used to indicate specific pairs 
of blocks:  

 5 – consider only block sizes: CU: 64×64 PU: 64×64 and CU: 32×32 PU: 32×32. 
 6 – consider only block sizes: CU: 32×32 PU: 32×32 and CU: 16×16 PU: 16×16. 
 7 – consider only block sizes: CU: 16×16 PU: 16×16 and CU: 8×8 PU: 8×8. 
 8 – consider only block sizes: CU: 8×8 PU: 8×8 and CU: 8×8 PU: 4×4 (effectively the same as 

depth 3 in Basic Approach). 
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The encoding results were assessed following the methodology presented in Chapter 3. The results of 
this experiment are presented in Table 7.2. Presented results are relative to HM. 

7.3.1.1 Effect of single indicated block size on encoding complexity 

Considering the use of single block size, for CU blocks 64×64 to 16×16, a tendency is observed: 
the bigger the block, the smaller 𝐵𝐷-𝑅𝐴𝑇𝐸 increase. This is not the case for CU block 8×8. When PU 
8×8 is used, the 𝐵𝐷-𝑅𝐴𝑇𝐸 (13.26%) is comparable to CU 32×32 (14.06%), but for PU 4×4 the 
𝐵𝐷-𝑅𝐴𝑇𝐸 increases greatly to 36.14%. This confirms the observation from Sections 5.2 and 6.3, made 
for the impact of block size on encoding efficiency. The hasty use of small block sizes has a much bigger 
negative impact on encoding efficiency than the use of bigger blocks. Such a phenomenon was observed 
on RD curves in Sections 5.2 and 6.2. The distance between corresponding points on point RD curves 
was bigger for smaller QP values. This concedes with the above observation, as statistics of depth 
values, presented in Section 4.2, showed a bigger share of small block sizes for smaller QP values.  

The worse performance of Extended Architecture (Section 6.1) in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸, compared 
to Basic Architecture (Section 5.1), was observed in Section 6.3. In the Extended Approach (Section 
4.1), the model additionally decides on the PU division. As shown in Table 7.2, the over-extensive use 
of CU: 8×8 and PU: 4×4 (depth level value 4) significantly increases the 𝐵𝐷-𝑅𝐴𝑇𝐸. This means that 
mistaken indications of depth level 4 negatively influence the evaluation results. Furthermore, an 
observed tendency of mistaken prediction (in favor of small blocks for smaller QP values and in favor 
of big blocks for bigger QP values) impacts the result. Still, the average 𝐵𝐷-𝑅𝐴𝑇𝐸 for Extended 
Architecture was 3.66% (Section 6.3), which means that despite low 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (Section 6.2), models 
still estimate partition patterns quite well. 

For results of encoding time reduction (Time Savings: 𝑇𝑆, Formula 3.3) it was observed that in 
terms of encoding complexity, choosing any of CU block sizes: 64×64, 32×32, and 16×16 does not 
matter. For all these blocks, the 𝑇𝑆 is ~86%, which can be treated as the theoretical limit of the 𝑇𝑆, 
without significant modifications of the HM. It can be observed that mistakenly choosing one of these 
block sizes would have an impact only on the 𝐵𝐷-𝑅𝐴𝑇𝐸. For the CU block 8×8, when the PU 8×8 is 
used, the 𝑇𝑆 of 78.89% is still close to bigger blocks, but when only the PU 4×4 is used, the 𝑇𝑆 drops 
to 55.71%.  

Recalling observations from Section 6.3, Extended Architecture performed 17 p.p. better than Basic 
Architecture in terms of 𝑇𝑆. A better classification was observed for bigger blocks (64×64, 32×32, and 
16×16), which turned out to be similarly efficient in terms of complexity. Additionally, the tendency for 
mistaken predictions observed for the Extended Architecture (in favor of small blocks for smaller QP 
values and in favor of big blocks for bigger QP values) will impact 𝑇𝑆 negatively for smaller QP values 
and positively for bigger QP values. 

7.3.1.2 Effect of considering two block sizes on encoding complexity 

When the encoder is restricted to consider a pair of block sizes, it is observed that the 𝐵𝐷-𝑅𝐴𝑇𝐸 is 
reduced, as expected. That is compared to both cases of using only a single block size from the available 
block sizes. The smaller the possible block sizes are, the better the 𝐵𝐷-𝑅𝐴𝑇𝐸, except for the last pair. 
The result for the last pair: CU: 8×8; PU: 8×8 and CU: 8×8; PU: 4×4 is ~4 p.p. worse than for pair: 
CU: 16×16; PU: 16×16 and CU: 8×8; PU: 8×8. Still, the result of 9.38 % is much better than that for 
the use of a single block, especially recalling the result for CU: 8×8; PU: 4×4 (36.14).  

The encoding time reduction (Time Savings: 𝑇𝑆, Formula 3.3) measured for cases when the 
encoder considers only two block sizes has decreased, but not drastically in most cases. If only blocks: 
CU: 64×64; PU: 64×64, CU: 32×32; PU: 32×32, CU: 16×16; PU: 16×16 are considered, the decrease 
in 𝑇𝑆 not bigger than ~10 p.p.. The pair CU: 16×16; PU: 16×16 and CU: 8×8; PU: 8×8 results in 66.49% 
of 𝑇𝑆, which is still quite a good result but a little higher value was expected. This means that when 
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smaller blocks are considered, making other decisions in the encoder is more complex. Complexity 
increase is even more noticeable for pair PU: 8×8 and CU: 8×8; PU: 4×4, where the 𝑇𝑆 is just 36.20%. 
As this reflects the smallest possible depth in the Basic Approach (Section 4.5), this explains worse 𝑇𝑆 
results compared to the Extended Approach.  

7.3.1.3 Conclusions 

Concluding the above observations, considering a pair of block sizes instead of a single one can 
significantly improve the 𝐵𝐷-𝑅𝐴𝑇𝐸. The impact on the encoding complexity is not that high for bigger 
blocks. A much bigger increase in encoder complexity is observed for smaller block sizes, but it is still 
viable to consider two block sizes. That is because bad decisions on too small a block may have a huge 
impact on 𝐵𝐷-𝑅𝐴𝑇𝐸. All this means that the indication of a decision algorithm to check a pair of block 
sizes is a viable option. To reduce the complexity of the encoder, this should be done only when the 
ANN is not certain of the block size. Other times only one block size should be indicated. This should 
result in improvements of 𝐵𝐷-𝑅𝐴𝑇𝐸, while the encoding time reduction (Time Savings: 𝑇𝑆, Formula 
3.3) should decrease slightly or even remain the same. Such a mechanism can be applied in both 
proposed hard-decisive algorithms.  

7.3.2 Proposed soft-decisive variants of the algorithms 

7.3.2.1 Index-based decision algorithm 

The previously described hard-decisive variant of AlgIdx algorithm (7.2.1) makes hard binary 
decision (to split or not to split) based on comparison of C value (Formula 7.5) with threshold of 0.5. 
The 𝐶 value in some cases may be close to the threshold: slightly above or below. Such a situation may 
be interpreted as an uncertain decision, which indicates that more than one block size should be checked. 
To address the mentioned uncertainty problem, a soft-decisive variant of the Index-based algorithm 
(AlgIdx) is proposed. It follows the same recursive procedure of decision algorithm (defined in section 
7.1) as hard-decisive variant, but includes additional case of uncertain decision. The range of 𝐶 value, 
when a decision is considered uncertain, is controlled with a single parameter 𝛼 ∈ ⟨0; 0.5). Therefore, 
when 𝐶 ∈ (0.5 − 𝛼 ; 0.5 +  𝛼) the decision is considered uncertain. The higher the 𝛼, the wider range 
of 𝐶, so the decision algorithm will indicate checking a pair of blocks more frequently.  

The algorithm follows the recursive procedure of the decision algorithm defined in Section 7.1, 
starting from current depth level 𝑐𝑑𝑙 =  0, 𝑁 ×  𝑁 equal the size of DT, 𝑚 =  0, 𝑛 = 0. The algorithm 
defines the steps of the procedure as follows: 

Procedure: 𝐀𝐥𝐠𝐈𝐝𝐱𝐬𝐨𝐟𝐭-𝐝𝐞𝐜𝐢𝐬𝐢𝐯𝐞(𝒄𝒅𝒍, 𝑵, 𝒎, 𝒏): 

1. Denote the area A௠,௡,ே of the current block inside of 𝐷𝑇[𝑖, 𝑗,⋅] and 𝐷𝑀[𝑖, 𝑗] as specified by the 
indices 𝑚, 𝑛 and the size 𝑁, as in Formula 7.1. 

A௠,௡,ே =  {(𝑖, 𝑗) | 𝑖 ∈ [𝑚; 𝑚 + 𝑁 − 1],   𝑗 ∈ [𝑛; 𝑛 + 𝑁 − 1]}. (7.1) 

2. Analyze the DT values in the denoted area A௠,௡,ே, e.g. 𝐷𝑇[𝑖, 𝑗,⋅], (𝑖, 𝑗) ∈ A௠,௡,ே. 
o If 𝑁 is equal 1, set 𝐷𝑀[𝑚, 𝑛] ← 𝑐𝑑𝑙 and terminate the algorithm. 
o For the denoted area A௠,௡,ே , find the index of the most probable depth level 

𝐷𝑀஺௟௚ூௗ௫  [𝑖, 𝑗] as in Formula 7.4: 

𝐷𝑀஺௟௚ூௗ௫[𝑖, 𝑗] = ArgMaxୢ(𝐷𝑇[𝑖, 𝑗,⋅]), 𝑓𝑜𝑟 (𝑖, 𝑗) ∈ A௠,௡,ே. (7.4) 

where ArgMaxୢ(𝐹) is an argument for the maximal value of tensor 𝐹, along the 𝑑 axis 
(channel). 

o Calculate the 𝐶 value defined as in Formula 7.5:  
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𝐶 =
1

𝑁ଶ
∙ ෍ Iv൫𝐷𝑀஺௟௚ூௗ௫  [𝑖, 𝑗] = 𝑐𝑑𝑙൧൯

(௜,௝)∈୅೘,೙,ಿ

, (7.5) 

where Iv(∙) is the Iverson function [Fo99], such that Iv(𝑡𝑟𝑢𝑒) = 1 and Iv(𝑓𝑎𝑙𝑠𝑒) = 0. 
3. Make decision according to the analysis of the considered DT area A௠,௡,ே: 

o If C > 0.5, fill the values in DM corresponding to the area of the current block with 𝑐𝑑𝑙 
(Formula 7.2), and terminate the recursion. 

o If 𝑪 ∈ (𝟎. 𝟓 − 𝜶 ; 𝟎. 𝟓 +  𝜶), fillthe values in DM corresponding to the area of the 
current block with 𝒄𝒅𝒍 + 𝟓 (Formula 7.2). This corresponds to checking and 
comparing blocks for depth level values cdl and cdl+1 with RD Optimization 
(Subsection 2.3.2). Terminate the recursion. 

o Otherwise: Recurse the procedure, for next depth level 𝑐𝑑𝑙 + 1. Split the block 
following the quaternary tree (Figure 7.1) and perform recursive call for each 
subdivided block as in Formula 7.3 using 𝐀𝐥𝐠𝐈𝐝𝐱𝐬𝐨𝐟𝐭-𝐝𝐞𝐜𝐢𝐬𝐢𝐯𝐞 procedure. 

7.3.2.2 Probability-based decision algorithm 

In the previously described hard-decisive variant of AlgPrb algorithm (7.2.2) the decision are made 
using sums of probabilities, where the sum for the currently considered level is checked if it is maximal 
among all. Compared to AlgIdx, there is no threshold that could be used. However, if the difference 
between the sums for the current (𝑆௖ௗ௟ – formula 7.6) and the next depth level (𝑆௖ௗ௟ାଵ – formula 7.6) is 
small enough, then both corresponding block sizes should be checked. The condition is that one sum 
𝑆௖ௗ௟  or 𝑆௖ௗ௟ାଵ is maximal among all sums for the current depth level. The absolute value of these sums 
is used to check if the difference is small enough. Additionally, this absolute value is normalized by the 
sum of these sums: 

|𝑆௖ௗ௟ − 𝑆௖ௗ௟ାଵ|

𝑆௖ௗ௟ + 𝑆௖ௗ௟ାଵ

. (7.7) 

Two block sizes should be checked if the resulting value is small enough. This can be controlled with 

the use of parameter 𝛽 ∈ ⟨0; 0.5). Therefore, when (max(𝑆௅) = 𝑆௖ௗ௟  𝑜𝑟 𝑆௖ௗ௟ିଵ) and 
|ௌ೎೏೗ିௌ೎೏೗శ |

ௌ೎೏೗ାௌ೎೏೗శభ
≤ 𝛽 

the decision is considered uncertain. The higher the 𝛽, the higher this range, so the decision algorithm 
will indicate checking a pair of blocks more frequently. 

The soft-decisive variant of the Probability-based algorithm (AlgPrb) follows the recursive 
procedure of the decision algorithm defined in Section 7.1. The algorithm starts from the current depth 
level 𝑐𝑑𝑙 = 0 , so that 𝑁 is equal the size of DT, 𝑚 = 0, 𝑛 = 0. The algorithm defines the steps of the 
procedure as follows: 

Procedure: 𝐀𝐥𝐠𝐏𝐫𝐛𝐬𝐨𝐟𝐭-𝐝𝐞𝐜𝐢𝐬𝐢𝐯𝐞(𝒄𝒅𝒍, 𝑵, 𝒎, 𝒏): 

4. Denote the area A௠,௡,ே of the current block inside of 𝐷𝑇[𝑖, 𝑗,⋅] and 𝐷𝑀[𝑖, 𝑗] as specified by the 
indices 𝑚, 𝑛 and the size 𝑁, as in Formula 7.1. 

A௠,௡,ே =  {(𝑖, 𝑗) | 𝑖 ∈ [𝑚; 𝑚 + 𝑁 − 1],   𝑗 ∈ [𝑛; 𝑛 + 𝑁 − 1]}. (7.1) 

5. Analyze the DT values in the denoted area A௠,௡,ே, e.g. 𝐷𝑇[𝑖, 𝑗,⋅], (𝑖, 𝑗) ∈ A௠,௡,ே. 
o If 𝑁 is equal 1, set 𝐷𝑀[𝑚, 𝑛] ← 𝑐𝑑𝑙 and terminate the algorithm. 
o For each depth level 𝐿 ≥ 𝑐𝑑𝑙, calculate 𝑆௅ , as in Formula 7.5. 

𝑆௅ = ෍ 𝐷𝑇[𝑖, j, 𝐿].
(௜,௝)∈୅೘,೙,ಿ

 (7.5) 
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6. Make decision according to the analysis of the considered DT area A௠,௡,ே: 

o If (𝐦𝐚𝐱(𝑺𝑳) = 𝑺𝒄𝒅𝒍 𝑜𝑟 𝑺௖ௗ௟ିଵ) and 
|𝑺𝒄𝒅𝒍ି𝑺𝒄𝒅𝒍శ𝟏|

𝑺𝒄𝒅𝒍ା𝑺𝒄𝒅𝒍శ𝟏
≤ 𝜷, fill the values in DM 

corresponding to the area of the current block with 𝒄𝒅𝒍 + 𝟓 (Formula 7.2). This 
corresponds to checking and comparing blocks for depth level values cdl and cdl+1 
with RD Optimization (Subsection 2.3.2). Terminate the recursion. 

o If 𝑆௖ௗ = max (𝑆௅), fill the values in DM corresponding to the area of the current block 
with 𝑐𝑑𝑙 (Formula 7.2), and terminate the recursion. 

o Otherwise: Recurse the procedure, for next depth level 𝑐𝑑𝑙 + 1. Split the block 
following the quaternary tree (Figure 7.1) and perform recursive call for each 
subdivided block as in Formula 7.3 using 𝐀𝐥𝐠𝐏𝐫𝐛𝐬𝐨𝐟𝐭-𝐝𝐞𝐜𝐢𝐬𝐢𝐯𝐞 procedure. 

7.3.2.3 Commentary 

One can notice that for 𝛼, 𝛽 = 0 soft-decisive variants become hard-decisive. It should be noted 
that both soft-decisive variants of the algorithm have the same range of parameter value control: 𝛼, 𝛽 ∈
⟨0; 0.5). However, the values of these parameters have different meanings. This refers to different ways 
of impacting the number of soft decisions (check pair of blocks). Thus, the same value of a parameter 
cannot be referred to as equivalent.  

7.3.3 Evaluation of the soft-decisive variants of the algorithms with Basic and 
Extended Architectures 

The proposed soft-decisive algorithms were evaluated on test sequences (Section 3.5). Algorithms 
were tested on both Basic and Extended Architectures (Section 5.1 and 6.1). The evaluation was 
performed according to description in Section 3.1. The soft-decisiveness control parameter (𝛼 or 𝛽) was 
evaluated in the range 〈0.05; 0.45〉, with a 0.05 step. As the evaluation results, the mean over all test 
sequences is presented for each parameter value. Full evaluation results (9 parameter values per model 
per decision algorithm) would decrease the readability of this section. In corresponding tables, the result 
for the hard-decisive variant (𝛼 or 𝛽 = 0) is presented as a reference.  

7.3.3.1 Evaluation of soft-decisive variant of Index-based decision algorithm 

Table 7.3 presents evaluation results for the soft-decisive variant of AlgIdx (Subsection 7.3.2.1). 
When used with Basic Architecture (Section 5.1), the 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 improvement are not 
so big (~0.2 p.p. and ~0.008 dB consecutively). Additionally, further improvements are not observed 
for 𝛼 > 0.3. For bigger 𝛼 values, a pair of block sizes is checked more frequently, which is proven by 
decreasing the value of 𝑇஺ேே (contribution of network processing time to coding time Section 3.3, 
Formula 3.3). That is because the ANN processing time for CTU is constant, as shown in Section 5.3. 
Surprisingly, the encoding time reduction (Time Savings: 𝑇𝑆, Formula 3.3) remains almost the same 
despite the 𝛼 value.  

When soft-decisive AlgIdx is paired with Extended Architecture, the improvements in terms of 
𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-PSNR are almost three times better (~0.6 p.p. and ~0.03 dB consecutively). Still, the 
results of 𝐵𝐷-𝑅𝐴𝑇𝐸 are above 3%. Unfortunately, for 𝛼 > 0.3 both 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 start to 
increase. Again, as 𝛼 increases, 𝑇஺ேே is steadily decreasing. The same was observed for 𝑇𝑆, where the 
difference between 𝛼 = 0.45 and the hard-decisive variant is ~2.5 p.p..  

Concluding the above observations, the soft-decisiveness mechanism is utilized relatively rarely. 
Falling 𝑇஺ேே proves, that pair of blocks are considered more frequently with 𝛼 value increase. The 
𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 improvements are small but observable. However, increasing 𝛼 value 
improves the evaluation results but only to a certain point. Further, 𝛼 value increase gives no 
improvement and results in saddle effect. This means that for a range of soft decisiveness that is too big, 
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the algorithm may misinterpret the DT to use too big blocks. The 𝑇𝑆 has a very similar value for Basic 
Architecture despite the 𝛼 value. This effect is investigated further in this section. 
 

Table 7. 3. Evaluation results for the soft-decisive variant of AlgIdx with Basic Architecture (Basic) 
and Extended Architecture (Extended). Results for 𝐵𝐷-𝑅𝐴𝑇𝐸, 𝐵𝐷-𝑃𝑆𝑁𝑅 and 𝑇𝑆 are relative to HM, 

𝑇஺ேே is relative to encoding time of Modified HM. 
Algorithm 

Variant 
𝜶 

value 
𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑩𝑫-𝑷𝑺𝑵𝑹 [%] 𝑻𝑺 [%] 𝑻𝑨𝑵𝑵 [%] 
Basic  Extended Basic  Extended Basic  Extended Basic  Extended 

Hard-
decisive 

0.00 1.86 3.66 -0.091 -0.187 56.08 70.50 21.27 28.55 

Soft-
decisive 

0.05 1.80 3.50 -0.089 -0.179 54.97 69.29 19.36 27.94 
0.10 1.79 3.40 -0.088 -0.175 55.10 69.22 19.32 27.76 
0.15 1.78 3.32 -0.088 -0.171 54.84 68.99 19.28 27.62 
0.20 1.77 3.26 -0.087 -0.168 55.00 68.89 19.25 27.46 
0.25 1.72 3.15 -0.085 -0.163 54.97 68.63 19.11 27.17 
0.30 1.68 3.05 -0.083 -0.158 54.51 68.02 18.99 26.70 
0.35 1.68 3.04 -0.083 -0.158 54.64 67.98 18.97 26.54 
0.40 1.68 3.08 -0.083 -0.159 54.45 67.72 18.91 26.32 
0.45 1.68 3.10 -0.083 -0.160 54.66 67.46 18.84 26.02 

 

7.3.3.2 Evaluation of soft-decisive variant of Probability-based decision algorithm 

Results for the soft-decisive variant of AlgPrb (Subsection 7.3.2.2) are presented in Table 7.4. 
Compared to AlgIdx, results for Basic Architecture are much better. The 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 are 
improved by ~0.6 p.p. and 0.028 dB for 𝛽 = 0.45. What is more, 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 
improvements are monotonic as the 𝛽 increase. Observations for encoding time reduction (Time 
Savings: 𝑇𝑆, Formula 3.3) and 𝑇஺ேே (contribution of network processing time to coding time Section 
3.3, Formula 3.3) are the same as for the soft-decisive variant of AlgIdx. This means that a significant 
gain in 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 was achieved without increasing the complexity of the encoding 
process.  
 

Table 7. 4. Evaluation results for the soft-decisive variant of AlgPrb with Basic Architecture (Basic) 
and Extended Architecture (Extended) . Results for 𝐵𝐷-𝑅𝐴𝑇𝐸, 𝐵𝐷-𝑃𝑆𝑁𝑅 and 𝑇𝑆 are relative to HM, 

𝑇஺ேே is relative to encoding time of Modified HM. 
Algorithm 

Variant 
𝜷 

value 
𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑩𝑫-𝑷𝑺𝑵𝑹 [%] 𝑻𝑺 [%] 𝑻𝑨𝑵𝑵[%] 
Basic  Extended Basic  Extended Basic  Extended Basic  Extended 

Hard-
decisive 

0.00 1.80 3.44 -0.089 -0.177 54.20 69.22 19.41 28.44 

Soft-
decisive 

0.05 1.69 3.10 -0.084 -0.160 55.72 69.01 19.29 27.38 
0.10 1.59 2.80 -0.079 -0.145 55.51 68.23 19.21 26.53 
0.15 1.51 2.55 -0.075 -0.132 55.45 67.31 19.14 25.81 
0.20 1.43 2.34 -0.071 -0.121 55.44 66.40 19.06 25.14 
0.25 1.37 2.15 -0.068 -0.111 55.30 65.36 19.08 24.60 
0.30 1.32 2.00 -0.066 -0.103 55.36 64.52 19.02 23.99 
0.35 1.27 1.87 -0.063 -0.097 55.52 63.56 18.94 23.40 
0.40 1.24 1.78 -0.062 -0.091 55.51 62.82 18.88 22.87 
0.45 1.23 1.71 -0.061 -0.088 55.5 62.02 18.83 22.33 

 

The use Soft-decisive variant of AlgPrb with Extended Architecture results in great performance 
improvements. For 𝛽 = 0.45 the 𝐵𝐷-𝑅𝐴𝑇𝐸 is 1.71% and 𝐵𝐷-𝑃𝑆𝑁𝑅 is 0.088 dB, so results are twice 
better. This is similar results to the Basic Architecture with soft-decisive AlgPrb for 𝛽 = 0.05. Both 
𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 steadily improve as 𝛽 increases. Unfortunately, this is occupied by ~8 p.p. 
decrease of 𝑇𝑆. Still, the 𝑇𝑆 is better than for Basic Architecture by ~7 p.p.. 𝑇஺ேே and 𝑇𝑆 steadily 
decreases as 𝛽 increases. 
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According to the above observations, the soft decisions are applied more effectively for AlgPrb 
than for AlgIdx. This is proven by the results for Basic Architecture, where 𝑇஺ேே is almost the same for 
both algorithms. It is not the case for the Extended Architecture, where for AlgPrb the 𝑇஺ேே is much 
bigger. Two factors could have caused this: more frequent decisions to check a pair of blocks and 
uncertain decisions for the smallest blocks (CU: 8×8; PU: 8×8 and CU: 8×8; PU: 4×4) where the 
computations are the most complex. Overall, results for AlgPrb are much better for both Basic and 
Extended Architectures. This proves that the appropriate interpretation of the ANN output yields 
increased performance in terms of both encoding efficiency and time. Additionally, the changes in 
observed metrics are always monotonic as the 𝛽 increases.  

7.3.3.3 Conclusions on soft-decisive variants of the decision algorithms 

The soft-decisiveness built into the decision algorithm proved to improve the performance of both 
algorithms. These performance improvements come only from a better interpretation of the ANN output. 
Bigger improvements are observed for Extended Architecture. Training results for Extended 
Architecture (e.g., 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ~61%, Formula 4.8), despite better classification for some depth level, 
were overall worse than for Basic Architecture (e.g., 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ~71%, Formula 4.8). Thus, better 
improvements are observed as the ANN output indicate a partitioning pattern less certainly.  

Another reason of higher improvements observed for Extended Architecture is control over the PU 
division. As shown in Subsection 7.2.1, encoding blocks CU: 8×8; PU: 4×4 is the most complex among 
all other options. What is more, inappropriate use of this block size may result in a significant bitrate 
increase. So, the soft-decisive algorithm can spot an uncertain indication of a smaller block and decide 
to check if a bigger one will perform better. That may compensate for the increase in 𝐵𝐷-𝑅𝐴𝑇𝐸 or 𝑇𝑆.  

It has been demonstrated, that the soft-decisive algorithm compensates the worse training results. 
This means that a smaller and less complex model could be applied. In the case of the Extended 
Architecture, improvements of 𝐵𝐷-𝑅𝐴𝑇𝐸 come with a decrease of the encoding time reduction (Time 
Savings: 𝑇𝑆, Formula 3.3). However, the ~3 p.p. and ~8 p.p. worse 𝑇𝑆 (for AlgIdx and AlgPrb 
consecutive) still makes the Extended Approach a viable solution. For Basic Architecture, the 
improvements in 𝐵𝐷-𝑅𝐴𝑇𝐸 did not affect the 𝑇𝑆 at all, but the 𝑇஺ேே decreases as the 𝛼 or 𝛽 increase. 
This means that in some cases, the decision algorithm, instead of hardly indicating depth level 3 
(checking both CU: 8×8; PU: 8×8 and CU: 8×8; PU: 4×4 – the most computably complex according to 
Table 7.2), indicates check pair of blocks: CU: 16×16; PU: 16×16 and CU: 8×8; PU: 8×8, which is less 
computably complex. The resulting reduction in complexity compensates for the increase resulting from 
considering the pair of blocks in other situations. 

7.3.4 Soft-decisive algorithms as methods for control over Encoding Time vs. 
Compression Efficiency trade-off 

In the previous subsection, it was observed that when the soft-decisive variant of decision 
algorithms (Subsection 7.3.2) is used with Extended Architecture, both 𝐵𝐷-𝑅𝐴𝑇𝐸 and the encoding 
time reduction (Time Savings: 𝑇𝑆, Formula 3.3) are changing. Using a bigger value of the 𝛼 or 𝛽 
parameter, a better 𝐵𝐷-𝑅𝐴𝑇𝐸 can be achieved, but the 𝑇𝑆 decreases. Likewise, when a small 𝛼 or 𝛽 
parameter is used, then a higher 𝑇𝑆 is achieved, but at the cost of increased 𝐵𝐷-𝑅𝐴𝑇𝐸. Figure 7.2 
presents the evaluation results of the soft-decisive algorithm on a plane 𝐵𝐷-𝑅𝐴𝑇𝐸 −  𝑇𝑆. Results for 
both Basic and Extended Architectures (Section 5.1 and 6.1) are presented for comparison. Presented 
results are relative to HM. 

As shown in the figure, results for Basic Architecture (Section 5.1) with AlgPrb align to an almost 
flat line. The Encoding Time vs. Coding Efficiency (ETvsCE) trade-off improves as the 𝛽 parameter 
increases. For the Basic Architecture with AlgIdx., the ETvsCE trade-off changes, but by a very small 
margin. Similar observations can be made for Extended Architecture with AlgIdx. Unfortunately, a 
saddle effect is observed. The most interesting are results for Extended Architecture with AlgPrb. The 
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𝐵𝐷-𝑅𝐴𝑇𝐸 monotonically fell as the value of 𝛽 increased. This means that by using just one parameter 
(𝛽) it is possible to change the ETvsCE trade-off in quite a wide range: 〈1.77; 3.44〉 in terms of 
𝐵𝐷-𝑅𝐴𝑇𝐸 and 〈62.02; 69.22〉 in terms of 𝑇𝑆. 

The soft-decisive variants of the decision algorithm allow for control over the ETvsCE trade-off. 
The use of the proposed mechanism allows for precise fine-tuning of the encoder complexity. 
Additionally, the quality practically does not change: the difference of 𝐵𝐷-𝑃𝑆𝑁𝑅 is no more than 
0.09 dB. What is more, the control is done by only a single parameter and does not require any changes 
to the decision algorithm or ANN model. As mentioned in Section 2.5, such a mechanism has a very 
practical use, e.g., in multiple coding scenarios (in the server that encodes numerous video streams and 
the number of streams is varying) or when an encoder tries to fit the restriction of frame encoding time 
during transmission [Hu23]. Described method together with broadcasting application use-case analysis 
was published in the paper [Lo24]. 
 

 

Figure 7. 2. Evaluation results of the soft-decisive algorithm on a 𝐵𝐷-𝑅𝐴𝑇𝐸 𝑣𝑠 𝑇𝑆 plot. Presented 
results are relative to HM. 
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8 Results comparison with state of the art 
8.1 Methodology of comparison with state of the art 

The general methodology for evaluation of a partitioning algorithm has been presented in 
Chapter 2. As mentioned, this is done with the use of metrics: 𝐵𝐷-𝑅𝐴𝑇𝐸, 𝐵𝐷-𝑃𝑆𝑁𝑅, 𝑇𝑆 and 𝐹𝑜𝑀, 
calculated for test sequences. When considering comparison of multiple state-of the-art methods, 
however, multiple factors have to be taken into account. The most important ones are discussed below. 

The first factor is the version of the encoder that was used for the implementation and testing of 
given partitioning algorithm. The consecutive versions of the HM make different sets of decisions during 
the encoding process. This means that the distribution of the CU/PU blocks differs, so according to 
Subsection 7.3.1, the assessment result of the partitioning algorithm may change, especially the 𝑇𝑆.  

The second factor is the experimentation platform, both software and hardware, which impact the 
encoding time assessment. As discussed in Section 3.3, the time measurement is very sensitive to this 
factor. Along with CPU model, a major determinant is the number of CPU cores available for 
computation. In terms of software factors, a key factor is the implementation of the method, especially 
if it is ANN-based. In some cases, the ANN may be implemented directly, but in others (such as 
proposed in this dissertation) a dedicated framework is used.  

In order to minimize discrepancies related to the above-mentioned factors and ensure proper 
comparison of partitioning algorithms, especially in terms of 𝑇𝑆, the testing conditions should be as 
consistent as possible. As the implementation connected factors would be near impossible to neglect, at 
minimum the partitioning algorithms should be tested using the same hardware and operation systems. 
Unfortunately, the authors of most algorithms do not share their software. So, based solely on results 
found in the literature, the comparison with most partitioning algorithms is relatively inaccurate. 
Additionally, the version of the used HM software may be a significant factor. Although methods found 
in the literature are individually assessed versus respective HM version reference, the usage of different 
HM versions may shift the operating point of the encoder considerably. It can be noted that in this 
dissertation HM version 16.23 has been used, while the methods found in the literature employ HM 
versions between 15.0 and 16.20. Therefore all of these factors must be taken into account during the 
comparison. 

In this dissertation, a comparison of proposed partitioning algorithms is divided into two parts. The 
first part presents a general comparison (Section 8.2) with the best-performing partitioning algorithm 
found in the literature. Around 90 methods were already mentioned (Section 2.4), which were found the 
most relevant among the state-of-the-art. Among all these methods, 7 were chosen for comparison with 
proposed partitioning algorithm as the most representative of the state of the art. For general comparison 
the following methods were chosen:  

1. [Li16A] – the best performing non-ANN method, but evaluated on HM in version 15.0. The 
method uses the SVM classifiers to hierarchically estimate split flags of the quaternary tree. The 
authors of the paper do not clarify the dataset used for SVM training. Firstly is performed the 
complexity analysis of the whole frame, in terms of the number and direction of edges. A similar 
analysis is done for the currently considered CU block. The results of the analysis then are 
imputed to SVM to decide on a split flag. The output of the SVM may be considered uncertain, 
which results in considering multiple block sizes using original RD optimization. The method 
considers only CU blocks. The method is chosen only for general comparison due to the 
undefined training dataset and used older version of the HM (15).  

2. [Zh18] – non-ANN method that uses SVM for hierarchical estimation of split flags. The 
decision is made using only the luma component of the CTU, by its analysis, e.g. the variance. 
The SVM is trained with several frames chosen from the JCT-VC dataset. The decision on PU 
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division is considered as an additional level of the quaternary tree. The method was 
implemented in HM 16.7. This method is chosen only for general comparison due to the use 
of test sequences in SVM training.  

3. [Sh19] – ANN-based method for hierarchical split flag estimation including the PU division. 
The ANN processes luma samples corresponding to the currently considered depth level and 
estimates the probability of split. If the probability of split for depth level 3 is high enough, the 
PU division is made. The authors proposed separately trained models for each depth level and 
set of thresholds for PU division for different QP values. The ANN architecture is similar to 
AlexNet [Kr12], but instead of the first convolution section, three convolution sections are used 
with different kernel shapes. For ANN training three datasets were used: RAISE [Da15], UCID 
[Sh04, Sh10], and DIV2k [Ag17]. During the training process, the bit cost of the block was used 
as part of the loss function. The method was implemented in HM 16.9. This method is chosen 
only for general comparison, as the authors do not specify the hardware platform used for 
evaluation. This will be further discussed in the description of the next method (same authors). 

4. [Ch20] – ANN-based method for hierarchical split flag estimation including the PU division. 
This method is an extension of the method presented in [Sh19] by extending the algorithm for 
the estimation of the PU prediction modes. However, the authors deliver evaluation results when 
only partitioning CTU with PU division is done. The partitioning method is enhanced by using 
two models with different QP values to better decide on split flags. Furthermore, a more 
advanced thresholding of ANN output (4 thresholds for each depth level) is applied. 
Additionally, the ANN models were slightly modified. Furthermore, the authors proposed a 
mechanism of adjusting threshold values to provide control over the ETvsCE tradeoff with the 
use of an evolution algorithm. This method is chosen only for general comparison, as the 
authors present multithread and highly optimized CPU implementation. 

5. [Xu18A] – ANN-based method for hierarchical split flag estimation, only for CTU partitioning. 
The authors use a single ANN, that processes CTU luma samples, to estimate all split flags for 
the currently processed CTU block. The ANN is similar to AlexNet [Kr12] but consists of three 
parallelly processing convolutional parts, whose output is concatenated and processed by a 
single dense layer. The output of the dense layer is then processed parallelly by three fully 
connected parts, that estimate split flags (sigmoid) for different depth levels. The last two dense 
layers include the QP value. The partitioning is then estimated in a top-bottom fashion by 
thresholding the ANN output (similar to in [Li16A], threshold for certain and uncertain 
decisions). The ANN is trained using the RAISE dataset [Da15], with sequences in original 
resolution and down-sampled. The method was implemented in HM version 16.5. This method 
was chosen both for general and detailed comparison, as all decisive conditions were met. 

6. [Hu21B] – a similar method to [Xu18A], single ANN used for estimation of all split flags for 
currently processed CTU at once. The ANN estimates split flags only for CTU partitioning. For 
the PU division, the authors proposed a Naïve-Bayes based method, that uses the CTU samples. 
The ANN is similar to [Xu18A] (AlexNet [Kr12] alike), but the convolution part consists of 
two parallelly processing convolutional parts (square kernels). The first one processes jointly 
samples from the current CTU and neighboring samples (left, top-left, and top). The second one 
processes only samples from the current CTU, but feature maps from the three last layers are 
outputted. The decision over the split flag is then made with thresholds (similar to in [Li16A], 
threshold for certain and uncertain decisions), in a top-bottom fashion. The ANN is trained using 
the same dataset as [Xu18A] (RAISE [Da15]), and cross-entropy loss. Furthermore, the authors 
provide control over the ETvsCE trade-off by estimation of thresholds set for target encoding 
time reduction. The method was implemented in HM version 16.5. This method was chosen 
both for general and detailed comparison, as all decisive conditions were met.  

7. [Fe21] – ANN-based method for estimation of whole partitioning pattern, only for CU 
partitioning. The authors proposed a fully convolutional network that processes the luma 
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samples of the CTU and estimates the Division Matix of size 8×8 (same as DME). The network 
architecture includes the branches of max-pooling operation with different pooling kernel sizes, 
which are then interpolated to the same tensor size and further proceed. Additionally, the authors 
proposed an L1 norm-based loss function which was used during the training process. The 
output of the ANN is corrected using an algorithm similar to hard-decisive variant of AlgIdx 
(Section 7.2.1). The ANN is trained using the DIV2k dataset [Ag17] (only 1920x1280 
resolution) and video sequences dataset CDVL [Pi13] (every 40th frame). The method was 
implemented in HM version 16.20. This method was chosen both for general and detailed 
comparison, as all decisive conditions were met. 

The general comparison is done graphically in Figures 8.1 and 8.2. Additionally, the ANN-based 
methods will be compared in terms of the number of weights and MAC operation count in Tables 8.1 
and 8.2. 

The second part presents a detailed comparison (Section 8.3) of the proposed partitioning 
algorithms with solutions found in the literature. For this comparison were chosen methods which 
implementation and evaluation conditions were the most similar to those of proposed partitioning 
algorithms. Such selection will ensure the least impact of result-affecting factors, discussed earlier in 
this chapter. This comparison can be considered sufficiently accurate. The criterions were as follows: 

 Implementation of the partitioning algorithm in HM, version at least 16 (newest major 
version of the software). 

 Partitioning algorithm and its implementations do not impact other decisions made by the 
encoder. 

 The implementation of the ANN uses only a single CPU core/thread for computation and 
computation is performed as a step of the CTU encoding. 

 Test sequences are not used for training any part of the partitioning algorithm. 

Three methods described earlier in this section: 5, 6 and 7, meet the above conditions and are chosen for 
detailed comparison. The detailed comparison is done by means of 𝐵𝐷-𝑅𝐴𝑇𝐸, 𝐵𝐷-𝑃𝑆𝑁𝑅, 𝑇𝑆 and 𝐹𝑜𝑀 
(Tables 8.3 – 8.6 consecutively). One of the methods [Hu21B] chosen for detailed comparison offers 
control over the ETvsCE trade-off. Thus the comparison of proposed partitioning algorithms and this 
method in terms of the proposed 𝛥𝐵𝐷-𝑅𝐴𝑇𝐸|்ௌ and 𝛥𝑇𝑆|஻஽-ோ஺்ா  will be presented in Table 8.7.  

In graphical comparisons, are presented the evaluation results for AlgIdx and AlgPrb paired with 
Basic and Extended Architecture (Section 5.1 and 6.1), for 𝛼 or 𝛽 parameters in the range 〈0.05; 0.45〉, 
with 0.05 step. For the comparison by the means of 𝐵𝐷-𝑅𝐴𝑇𝐸, 𝐵𝐷-𝑃𝑆𝑁𝑅, 𝑇𝑆 and 𝐹𝑜𝑀, following cases 
are selected:  

 Basic Architecture with AlgIdx (α = 0 ); 
 Basic Architecture with AlgPrb (β = 0.45); 
 Extended Architecture with AlgPrb (β = 0.0); 
 Extended Architecture with AlgPrb (β = 0.45). 

8.2 General comparison to selected state-of-the-art methods 

Sequences chosen for general comparison are the best partitioning algorithms found in the 
literature. As discussed in previous sections, the difference in evaluation and implementation of the 
partitioning algorithms have to be taken into consideration during the comparison. This applies 
especially to methods [Li16A, Zh18, Sh19, Ch20] and interpretation of 𝑇𝑆 results. Figure 8.1 presents 
the graphical comparison of the methods chosen for general comparison, in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝑇𝑆. 
Results from papers have been unified to 𝐵𝐷-𝑅𝐴𝑇𝐸 vs. 𝑇𝑆 format, and are relative to HM. The operating 
points corresponding to the hard-decisive variants of the algorithms (𝛼 = 0, 𝛽 = 0) have been marked 
with black dots. 
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The results for the Basic Architecture (Section 5.1) are competitive with the state-of-the-art 
solutions, where only CU partitioning is considered [Li16A, Zh18, Xu18A, Fe21]. The results for hard-
decisive variants of decision algorithms (AlgIdx α=0, AlgPrb 𝛽=0) are slightly worse compared to 
methods for considered scope of decisions. Still, the difference to the closest method [Fe21], with 
similar 𝐵𝐷-𝑅𝐴𝑇𝐸, is ~5 p.p. in terms of encoding time reduction (Time Savings: 𝑇𝑆, Formula 3.3). This 
changes when the soft-decisive variant of AlgPrb (Subsection 7.3.2.2) is considered as 𝐵𝐷-𝑅𝐴𝑇𝐸 is 
improving. Points for consecutive 𝛽 values form an almost flat line, so improvement in efficiency does 
not change the 𝑇𝑆. The Basic Architecture with the soft-decisive AlgPrb (𝛽 = 0.45) offers similar 
𝐵𝐷-𝑅𝐴𝑇𝐸 as method [Li16A], but ~2 p.p. better 𝑇𝑆. The change in trade-off is be evaluated in the next 
section. Soft-decisiveness in AlgIdx (Subsection 7.3.2.2) does not significantly change the evaluation 
results. 

Considering the methods for both CU and PU [Sh19, Ch20, Hu21B], proposed algorithms with 
Extended Architecture (Section 6.1) are not competitive to methods [Sh19, Ch20]. These methods offer 
the same 𝐵𝐷-𝑅𝐴𝑇𝐸, but with 5-10 p.p. better 𝑇𝑆. One should recall that these methods were not chosen 
for detailed comparison due to the hardware not being specified [Sh19] or multi-threaded 
implementation [Ch20]. As discussed in Section 4.7, the Modified HM used for evaluation is a single-
threaded implementation with the sequential approach for partitioning estimation. This means that the 
partitioning pattern is estimated as the CTU being processed. Such an approach is the most popular one 
[Li16A, Zh18, Xu18A, Hu21B, Fe21] as it allows evaluation of the method in the most comparable way. 
The multi-threaded implementation of the methods [Sh19] and [Ch20] is the reason for the superiority 
in terms of the 𝑇𝑆. This is further discussed later in this section. 

Compared to the method [Hu21B], the proposed partitioning algorithms with Extended 
Architecture perform better, as they offer same 𝐵𝐷-𝑅𝐴𝑇𝐸 with better 𝑇𝑆. The results for both AlgIdx 
and AlgPrb are above the curve for the method [Hu21B]. In the results for AlgxIdx, a pivot point is 
observed. The results for AlgPrb are ~2 p.p. better in terms of 𝑇𝑆 compared to the method [Hu21B]. 
However, a wider range of control over the ETvsCE trade-off is possible in method [Hu21B]. A more 
comprehensive comparison with the method [Hu21B] is presented in the next section. 

Proposed partitioning algorithms can be easily implemented in the way that makes the processing 
time of the partitioning algorithm almost negligible. This implementation assumes all computations of 
the partitioning algorithm in one thread and the rest of the encoder computations in another thread. This 
means that only two threads are needed. As presented in Sections 5.3 and 6.3, the computation time of 
the ANN can be considered constant and is ~2,4 ms for both proposed architectures, on the machine 
used to conduct the evaluation. To estimate the minimal processing time of CTU without a partitioning 
algorithm, one can use the results of experiments with constant CTU partitioning patterns, presented in 
Subsection 7.3.1. The smallest encoding time was observed when only block size CU: 16×16 PU: 16×16 
is considered, for QP=37. For this case, the CTU processing time was estimated as ~2.7 ms. The 
partitioning algorithm marginally impacts the encoding time because the ANN computation time is 
smaller than the fastest CTU block processing in the discussed double-threaded implementation. The 
partitioning algorithm impacts the encoding time only by the time of computations for the first CTU, as 
for the rest of the CTUs, the partitioning patterns are estimated during the CTU processing.  

Simulated results for the discussed double-threaded implementation are shown in Figure 8.2. The 
presented results are relative to HM. The encoding time results were obtained by subtracting the 
accumulated ANN processing time from the encoding time and adding the time of single ANN 
processing. One can observe that the 𝑇𝑆 results have improved by ~5 p.p. for Basic Architecture. This 
makes the Basic Architecture with AlgPb (𝛽 = 0.45) the best among all algorithms that only CU is 
considered. Results for the Extended Architecture are improved by ~10 p.p. in terms of 𝑇𝑆 compared to 
results for single-threaded implementation (Figure 8.1). Results for the Extended Architecture with a 
soft-decisive variant of AlgPrb are very close to the curve for the method [Ch20]. The differences in 𝑇𝑆 
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for the same 𝐵𝐷-𝑅𝐴𝑇𝐸 are ~0.5 p.p., which is a negligible difference considering that methods were 
not evaluated in the same HM software version and on different machines.  

For the ANN-based partitioning algorithms, key factors are the size and complexity of the models. 
The number of weights and MAC operation count are presented in Tables 8.1 and 8.2 consecutively, for 
models used in chosen methods from literature and proposed Basic and Extended Architectures. The 
tables contain the numbers declared by the authors in the papers; unfortunately, not all are available. 
Therefore, all numbers were estimated using PyTorch [Pa19] implementations of models created 
according to the description in the papers. For fairness, models for all chosen methods were 
implemented, as the estimation of size and complexity may differ depending on implementations.  
 

Table 8. 1. Comparison of the ANN model size (number of weights) used in proposed partitioning 
algorithms with models used in literature. Declared numbers were found in corresponding papers. 
Estimated numbers come from analysis of the implementation of models in the PyTorch framework. 

 Estimation of the whole partitioning pattern at once 
Sequential split flag estimation 

 Division Matrix Split flags 

 
Proposed 

Basic 
Proposed 
Extended 

[Fe21] [Xu18A] [Hu21B] 
Depth 
level 

[Sh19] [Ch20] 

Number of 
model weights 

declared by 
authors. 

91 600 91 617 - 1 287 189 - 

0 166 866 43 986 
1 43 602 43 602 
2 43 346 43 346 
3 43 346 43 346 

Estimated 
number of model 

weights 
91 600 91 617 278 705 1 288 210 609 978 

0 166 866 43 986 
1 43 602 43 602 
2 43 346 43 346 
3 43 346 43 346 

 

Table 8. 2. Comparison of the ANN model complexity (MAC operation count) used in proposed 
partitioning algorithms with models used in literature. Declared numbers were found in 

corresponding papers. Estimated numbers come from analysis of the implementation of models in the 
PyTorch framework. 

 
Estimation of the whole partitioning pattern at 

once Sequential split flag estimation 
 Division Matrix Split flags 

 
Proposed 

Basic 
Proposed 
Extended 

[Fe21] [Xu18A] [Hu21B] Depth level [Sh19] [Ch20] 

Number in 
millions of 
operations 
declared by  

authors 

6.76 8.54 - 1.55 - 

0 - 0.64 
1 - - 
2 - - 

3 - 0.01 

Estimated 
number in 
millions of 
operations 

6.76 8.54 337.02 1.56 1.31 

0 2.58 0.61 
1 0.51 0.51 
2 0.44 0.44 
3 0.42 0.42 

The best case 2.58 1.22 
The worst case 18.38 32.82 

*    Best case refers to a single run of the ANN for depth level 0 
**  Worst case refers to all ANN processing from depth level 0 to depth level 3 in quaternary tree 
 

In terms of the model size, the proposed Basic and Extended Architectures are the smallest. The 
only smaller models are the ones used for sequential split flag estimation, but one should underline that 
methods [Sh19] and [Ch20] need four models instead of just one. The proposed models are at least three 
times smaller than other models for the estimation of the whole partitioning pattern at once. The 
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estimated sizes of the models are identical in most cases, and a small difference is spotted for the 
method [Xu18A]. 

Considering the model complexity, the proposed architectures are much less complex than the other 
approaches for the estimation of Division Matrix [Fe21]. Despite a much bigger MAC operation count 
(~50 times), the method [Fe21] achieved ~5 p.p. better results in terms of 𝑇𝑆 (Figure 8.1) compared to 
proposed partitioning algorithms with the Basic Architecture. Both these methods estimate only CU 
partitioning. The authors of the method [Fe21] reported a prediction accuracy of ~68% for all depth 
level values. It was observed that Basic Architecture (Section 5.2) have better prediction results for 
bigger depth level values. Thus, the difference in 𝑇𝑆 may be explained by better prediction of the bigger 
blocks, as using too small blocks leads to an increase in the encoding complexity, as shown in Subsection 
7.3.1. Similar reasoning is applied for the comparison of the proposed Basic Architecture-based 
algorithm with the method [Xu18]. 

The opposite situation is observed for the Extended Architecture and method [Hu21B]. Despite the 
higher complexity of the Extended Architecture, the results of 𝑇𝑆 are better by ~2 p.p. (Figure 8.1). The 
applied approach may explain this. In method [Hu21B] all split flags are estimated at once. Authors 
reported that the applied models achieve ~90% prediction accuracy for depth level values 0-3. Such 
results are much better than 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (Formula 4.8) presented for Extended Architecture (~60%, 
Section 6.2). Then, the PU division is decided with the Naive Bayes based algorithm. In Subsection 
7.3.1, it was discussed that wrong decisions for the smallest blocks (CU 8×8 and PU 4×4) significantly 
impact the 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝑇𝑆 negatively. As the proposed approach with Extended Architecture 
performs better in terms of 𝑇𝑆, despite a ~6.5 times more complex model, thus the proposed approach 
is superior in the estimation of PU division, compared to the method [Ch20].  

Comparison with the chosen methods of sequential split flag estimation ([Sh19, Ch20]) is quite a 
tricky issue. The first problem is that the authors published accuracy and rations of split flags without 
the distribution of decisions. This means that complexity may be estimated only for the best-case 
scenario – the algorithm stops after the first split flag – and the worst-case scenario – all possible split 
flags were considered. Compared to the complexity of the proposed Extended Architecture, the 
complexity of methods [Sh19, Ch20] is 3.3 [Sh19] or 7 [Ch20] times smaller for blocks with simple 
content but 2.2 [Sh19] or 3.8 [Ch20] times bigger for blocks with demanding content. Compared to 
simulated results for the proposed multi-threaded implementation of the partitioning algorithm with 
Extended Architecture and AlgPrb, the ANNs used in methods presented in [Ch20] perform very 
similarly.  

8.3 Detailed comparison to selected state-of-the-art methods 

The detailed comparison is made for averaged results for classes in test sequences classes and 
averaged results for all test sequences. Two of the methods chosen for detailed comparison do not 
provide results for two sequences from class A (“NebutaFestival” and “SteamLocomotiveTrain” – two 
of the most complex sequences in class according to Section 5.3 and 6,3). So, the results for class A and 
the mean over all test sequences are presented in two scenarios: with and without mentioned sequences. 
Results for 𝐵𝐷-𝑅𝐴𝑇𝐸 are presented in Table 8.2, for 𝐵𝐷-𝑃𝑆𝑁𝑅 in Table 8.3, for 𝑇𝑆 in Table 8.4 and 
𝐹𝑜𝑀 in Table 8.5. The presented results are relative to HM. In the description of the method [Hu21B], 
results for multiple operating points are reported. In this comparison, results referred to by authors as 
“Ours3” are used. The α = 0 means hard-decisive variant of the AlgIdx (Subsection 7.2.1). The β = 0 
means hard-decisive variant of the AlgPrb (Subsection 7.2.2). The β = 0.45 means soft-decisive variant 
of the AlgPrb (Subsection 7.3.2.2) with highest value of β parameter (most probable soft-decisive 
decision). 

 In most cases, the same relations between averaged evaluation results in classes are observed 
between proposed and chosen methods from the literature. Considering the 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅, 
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the best results are achieved for the smallest resolutions (Class D), and the worst results are observed 
for class E. Disregarding class E and two sequences from class A (“NebutaFestival” and 
“SteamLocomotiveTrain”), the smaller the resolution, the better the results. Considering 𝑇𝑆, the best 
results are achieved for class E or A, and the worst for class D. Generally, the smaller the resolution, the 
worse 𝑇𝑆. Considering 𝐹𝑜𝑀 values, a better ETvsCE trade-off is observed for smaller resolutions. 
Again, the worst results (the highest values) are observed for class E. Despite differences in the training 
datasets, all tested methods perform the worst for class E sequences, which contain the talking heads 
content. These observations confirm that the proposed Basic and Extended Architectures (Section 5.1 
and 6.1) were trained comparably well.  
 

Table 8. 3. Mean bitrate change (𝐵𝐷-𝑅𝐴𝑇𝐸 [%]) of the proposed methods, compared with the state-
of-the-art methods chosen for the detailed comparison, averaged over the classes of test sequences. 

Presented results are relative to HM. 

Sequence  
class 

𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 
CU partitioning only CU blocks and PU division 

Basic Architecture 
[Fe21] [Xu18A] 

Extended Architecture 
[Hu21B] AlgIdx: 

α = 0 
AlgPrb: 
β = 0.45 

AlgPrb: 
β = 0 

AlgPrb: 
β = 0.45 

A* (2560×1600)  2.22 1.51 2.36 2.46 4.05 1.96 1.82 
A   (2560×1600)  1.99 1.19 2.06    2.95 1.40   
B   (1920×1080) 2.09 1.30 1.90 2.58 3.44 1.64 1.51 
C       (832×480) 1.57 1.15 1.52 1.90 3.67 1.74 2.22 
D       (416×240) 0.93 0.69 0.68 1.17 2.68 1.24 1.82 
E      (1280×720) 2.93 1.95 2.85 3.46 4.81 2.86 2.26 
 A*,B,C,D,E   ** 1.87 1.26 1.75 2.25 3.62 1.81 1.90 
 A  ,B,C,D,E   ** 1.86 1.23 1.76   3.44 1.71   

 

Table 8. 4. Mean PSNR change (𝐵𝐷-𝑃𝑆𝑁𝑅 [dB]) of the proposed methods, compared with the state-
of-the-art methods chosen for the detailed comparison, averaged over the classes of test sequences. 

Presented results are relative to HM. 

Sequence  
class 

𝑩𝑫-𝑷𝑺𝑵𝑹 [dB] 
CU partitioning only CU blocks and PU division 

Basic Architecture 
[Fe21] [Xu18A] 

Extended Architecture 
[Hu21B] AlgIdx: 

α = 0 
AlgPrb: 
β = 0.45 

AlgPrb: 
β = 0 

AlgPrb: 
β = 0.45 

A* (2560×1600)  -0.123 -0.084  -0.126 -0.224 -0.109  
A   (2560×1600)  -0.102 -0.062    -0.155 -0.073  
B   (1920×1080) -0.079 -0.051  -0.090 -0.137 -0.064  
C       (832×480) -0.086 -0.063  -0.099 -0.204 -0.097  
D       (416×240) -0.061 -0.045  -0.072 -0.176 -0.083  
E      (1280×720) -0.144 -0.097  -0.164 -0.238 -0.142  
 A*,B,C,D,E   ** -0.092 -0.064  -0.104 -0.187 -0.094  
 A  ,B,C,D,E   ** -0.091 -0.061   -0.177 -0.088  

    
*   – only part of class A: PeopleOnStreet and Traffic video test 
        sequences          
** – mean over all sequences in enlisted classes   

 –  results not provided by the authors 

  

 

The Basic Architecture with AlgIdx achieve similar 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 compared to the best 
methods with the same approach (CU blocks only) found in the literature [Xu18A, Fe21]. The proposed 
algorithm outperforms [Xu18A] by ~0.4 p.p., considering the average for all test sequences, and 
outperforms this solution in every resolution class. However, the method [Xu18A] is better by ~9 p.p. 
in terms of 𝑇𝑆. The method [Fe21] achieves better results by ~0.1 p.p. for the mean over all test 
sequences. Results are very close for each sequence class, but the proposed partitioning algorithm is 
better only for class A. The difference is small despite the 1.5 times bigger training dataset used in 
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[Fe21]. The authors of the method [Fe21] do not provide results of 𝐵𝐷-𝑃𝑆𝑁𝑅, so this comparison was 
not possible. Still, the difference in 𝑇𝑆 is ~5 p.p. in favor of [Fe21].  

As observed in the previous section, authors of the method [Fe21] use a much more complex model, 
so the difference in encoding time (𝑇𝑆) is caused by decisions made by the algorithm. It was noticed 
that method [Fe21] better predicts bigger blocks, which is confirmed by results for class A. The 𝑇𝑆 is 
almost the same, regardless of whether the two most complex sequences in the class were considered or 
all sequences. The proposed partitioning algorithm achieves better 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 for this 
class and better predicts small block sizes (sections 5.2 and 5.3). Considering the impact of block size 
on encoding time (Subsection 7.3.1), to achieve such results in class A, the method [Fe21] have to 
indicate mostly blocks bigger than 16×16. This explains the superiority of the method [Fe21] over the 
Basic Architecture with hard-decisive AlgIdx.  
 

Table 8. 5. Mean encoding time reduction (𝑇𝑆 [%]) of the proposed methods, compared with the state-
of-the-art methods chosen for the detailed comparison, averaged over the classes of test sequences 

Presented results are relative to HM. 

Sequence  
class 

𝑻𝑺 [%] 
CU partitioning only CU blocks and PU division 

Basic Architecture 
[Fe21] [Xu18A] 

Extended Architecture 
[Hu21B] AlgIdx: 

α = 0 
AlgPrb: 
β = 0.45 

AlgPrb: 
β = 0 

AlgPrb: 
β = 0.45 

A* (2560×1600)  56.69 57.46 74.25 65.9 72.23 63.86 62.20 
A   (2560×1600)  65.94 63.72 74.60   74.92 67.26   
B   (1920×1080) 61.38 59.90 66.79 70.61 72.70 64.08 64.34  
C       (832×480) 47.85 48.85 51.24 53.25 66.93 58.30 61.13 
D       (416×240) 42.99 43.50 39.53 49.63 63.40 55.55 56.13 
E      (1280×720) 62.54 62.05 70.50 72.28 72.92 65.19 65.40 
 A*,B,C,D,E   ** 53.96 53.89 58.72 61.85 69.34 61.06 61.74 
 A  ,B,C,D,E   ** 56.08 55.5 60.35   70.16 62.02   

 

Table 8. 6. Figure of Merit (𝐹𝑜𝑀) metric for the proposed methods, as compared with state-of-the-art 
methods chosen for the detailed comparison. 

Sequence  
class 

𝑭𝒐𝑴 
CU partitionig only CU blocks and PU division 

Basic Architecture 
[Fe21] [Xu18A] 

Extended Architecture 
[Hu21B] AlgIdx: 

α = 0 
AlgPrb: 
β = 0.45 

AlgPrb: 
β = 0 

AlgPrb: 
β = 0.45 

A* (2560×1600)  3.92 2.63 3.18 3.73 5.61 3.07 2.93 
A   (2560×1600)  3.02 1.87 2.76  3.94 2.08  
B   (1920×1080) 3.41 2.17 2.84 3.65 4.73 2.56 2.35 
C       (832×480) 3.28 2.35 2.97 3.57 5.48 2.98 3.63 
D       (416×240) 2.16 1.59 1.72 2.36 4.23 2.23 3.24 
E      (1280×720) 4.69 3.14 4.04 4.79 6.60 4.39 3.46 
 A*,B,C,D,E   ** 3.47 2.34 2.98 3.64 5.22 2.96 3.08 
 A  ,B,C,D,E   ** 3.32 2.22 2.92  4.90 2.76  

    
*   – only part of class A: PeopleOnStreet and Traffic video test 
        sequences          
** – mean over all sequences in enlisted classes   

 –  results not provided by the authors 

  

 

The conclusions will be the same for Basic Architecture with hard-decisive variant AlgPrb (β = 0), 
as the results were very similar to AlgIdx. However, this changes when the soft-decisive variant of 
AlgPrb (β = 0.45) is considered. As observed in Subsection 7.3.3, the soft-decisive variant of the 
decision algorithm in the Basic Approach does not impact the 𝑇𝑆. Therefore, the 𝐵𝐷-𝑅𝐴𝑇𝐸 increases 
with the control parameter. For AlgPrb with 𝛽 = 0.45, the average 𝐵𝐷-𝑅𝐴𝑇𝐸 changes to 1.23%, which 
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is better by 0.5 p.p. than method [Fe21]. The Basic Architecture with AlgPrb (𝛽 = 0.45) is better for 
almost all resolution classes. 

The improvement in 𝐵𝐷-𝑅𝐴𝑇𝐸 changes the ETvsCE trade-off. The Basic Architecture with AlgIdx 
offer a better ETvsCE trade-off than the method [Xu18A] (0.17) but a worse ETvsCE trade-off than 
[Fe21] (by 0.49) in terms of 𝐹𝑜𝑀. The change of the decision algorithm to AlgPrb with 𝛽 = 0.45 offers 
a 0.64 better trade-off than the method [Fe21]. This means that the proposed method outperforms 
solutions found in the literature in terms of the ETvsCE trade-off. 

Considering methods that jointly estimate CU block sizes and PU division, Extended Architecture 
with the hard-decisive variant of AlgPrb offer almost 8 p.p. faster encoding than other methods in this 
comparison [Xu18A, Hu21B], but with almost two times worse 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅. The 𝐹𝑜𝑀 
values are much bigger, but as discussed in Section 3.4, the relatively big difference in both 𝐵𝐷-𝑅𝐴𝑇𝐸 
and 𝑇𝑆 makes comparison using this metric unsuitable in this case.  

For Extended Architecture with the soft-decisive variant of AlgPrb (𝛽 = 0.45), the 𝑇𝑆 averaged 
over all test sequences is nearly the same as results reported for methods from the literature. Compared 
to methods [Xu18A, Hu21B], the proposed partitioning algorithm achieves at least 0.1 p.p. 𝐵𝐷-𝑅𝐴𝑇𝐸 

and 0.01 dB 𝐵𝐷-𝑃𝑆𝑁𝑅 better results. The proposed algorithm is superior for resolution classes D and 
C. As discussed in Section 5.3 and 6.3, smaller CU blocks are used more frequently for smaller 
resolutions. The conclusion is that the proposed method is better in indicating smaller blocks. 
Observations for 𝑇𝑆 and 𝐹𝑜𝑀 for resolution classes are very similar.  
 

 

Figure 8. 3. Results for soft-decisive variants of the proposed decision algorithm and curve for method 
[Hu21B] used as the reference for calculation of proposed metrics ∆𝐵𝐷-𝑅𝐴𝑇𝐸|்ௌ and ∆𝑇𝑆|஻஽-ோ஺்ா . 

Presented results are relative to HM. 
 

The 𝐹𝑜𝑀 value averaged over all sequences is 0.1 better for the proposed method compared 

to [Hu21B]. However, both methods offer control over the ETvsCE trade-off. To properly compare 

these methods, the comparison should be taken with the operating point of the same 𝐵𝐷-𝑅𝐴𝑇𝐸 or 

𝑇𝑆. Still, the 𝐹𝑜𝑀 value will significantly depend on the chosen operating points and may be 
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misleading. Therefore, the author’s metrics ∆𝐵𝐷-𝑅𝐴𝑇𝐸|்ௌ and ∆𝑇𝑆|஻஽-ோ஺்ா , described in Section 

3.4, were used to compare the proposed method with [Hu21B]. To demonstrate the proposed 
metrics, all proposed soft-decisive methods were evaluated. For metrics calculation, points were always 
selected in such a way as to match the ranges of 𝐵𝐷-𝑅𝐴𝑇𝐸. The results are presented in Table 8.7. 
Additionally, results from Tables 8.3. and 8.5 for proposed methods and method [Hu21B] are 
represented graphically in Figure 8.3. Presented results are relative to HM. 

As shown in Figure 8.3, both algorithms that use Basic Architecture are under the curve for method 
[Hu21B]. The results of ∆𝐵𝐷-𝑅𝐴𝑇𝐸|்ௌ and ∆𝑇𝑆|஻஽-ோ஺்ா  reflects well the observations of the chart. For 
the Basic Architecture and AlgIdx, the metrics indicate that the method is worse by ~1 p.p. in terms of 
𝐵𝐷-𝑅𝐴𝑇𝐸 and ~6 p.p. in terms of 𝑇S, which corresponds to the figure. The almost flat line for the Basic 
Architecture with AlgPrb is closer to the [Hu21B] curve, and the ∆𝐵𝐷-𝑅𝐴𝑇𝐸|்ௌ  and ∆𝑇𝑆|஻஽-ோ஺்ா  are 
smaller.  

Both curves for the Extended Architecture are above the curve for [Hu21B], and the proposed 
metrics values are negative. According to proposed metrics, the proposed algorithm with AlgPrb 
provides ~0.5 p.p. better 𝐵𝐷-𝑅𝐴𝑇𝐸 for the same 𝑇𝑆 and ~2 p.p. better 𝑇𝑆 for the same 𝐵𝐷-𝑅𝐴𝑇𝐸. The 
curve for AlgIdx is closer to the [H21B] curve, the results are accordingly worse.  
 

Table 8. 7. Results of the proposed methods reported through application of the proposed metrics of 
the proposed metrics: ∆𝐵𝐷-𝑅𝐴𝑇𝐸|்ௌ and ∆𝑇𝑆|஻஽-ோ஺்ா as compared to the reference method 

[Hu21B] 

ANN Architecture Decisive algorithm variant ∆𝑩𝑫-𝑹𝑨𝑻𝑬|𝑻𝑺 [p.p.] ∆𝑻𝑺|𝑩𝑫-𝑹𝑨𝑻𝑬 [p.p.] 

Basic Architecture 
Alg-Idx 1.02 5.99 
Alg-Prb 0.36 3.65 

Extended 
Architecture 

Alg-Idx -0.30 -1.42 
Alg-Prb -0.53 -1.95 

From this comparison, two conclusions can be drawn: 

 The proposed metrics for assessment methods with control over the ETvsCE trade-
off are viable tools for comparison of methods. As demonstrated above, the values of 
the metrics reliably reflect the relation between compared methods. 

 The analysis above shows the superiority of the proposed methods (Extended 
Architecture with AlgPrb) over the best-performing method found in the literature 
[Hu21B] for the same 𝐵𝐷-𝑅𝐴𝑇𝐸. It should be noted that the proposed metric offers a 
narrower range of control. Therefore, the control is much simpler, with just a single 
parameter, compared to the estimation of multiple thresholds with a heuristic model 
[Hu21B].  
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9 Exploration experiments 
9.1 The goal of the exploration experiments 

In the preceding part of the dissertation, the focus was on the main achievements: the Basic 
(Chapter 5) and Extended (Chapter 6) Architectures, and decision algorithms (Chapter 7): AlgPrb and 
AlgIdx. These achievements are the result of extensive research and experiments. For the sake of clarity, 
only the most successful research paths, which directly led to these main achievements, have been 
presented (Section 5.4 and 6.4). 

In this chapter the remaining body of research is presented, which consist of multiple exploration 
experiments. Some of them were not that successful, e.g. in term of increasing the performance of 
proposed methods, but they still hold scientific value. Among others, in this chapter are explored: the 
impact of contextual data on the encoding, the use of contextuality in the partitioning algorithm.  

The chapter ends by addressing considerations related to global optimization of partitioning 
patterns with the usage of Hidden Markov Model (HMM) [Ba66] (Section 9.8). 

9.2 Broadened performance evaluation of the proposed partitioning 
algorithms 

The Basic and Extended Architectures (Section 5.1 and 6.1) are designed for Intra mode. The 
respective models were evaluated on the default test content (test sequences – Section 3.5) defined by 
the MPEG group for HEVC video encoding in so-called Common Test Conditions (CTC) [CTCHEVC]. 
Notably, there is a growing demand for the transmission of 4k resolution video and content captured 
from computer screens (Screen Content Coding) [For1]. These trends were reflected in the CTC for 
subsequent standards, which were developed in parallel with the doctoral dissertation. Therefore, such 
types of content are considered in this section. 

The selected additional content are sequences in 4k resolution (3840×2160), indicated by CTC for 
VVC [CTCVVC] (classes A1 and A2), and class F from CTC for HEVC [CTCHEVC] (for evaluation 
of Screen Content Coding profile). Details of these sequences are presented in Section 3.5 (Table 3.2).  

The evaluation was performed according to description in Section 3.1, and for algorithm 
configurations: Basic Architecture with AlgPrb (β = 0), Basic Architecture with AlgPrb (β = 0.45), 
Extended Architecture with AlgPrb (β = 0.0) and Extended Architecture with AlgPrb (β = 0.45). The 
β = 0 means hard-decisive variant of the AlgPrb (Subsection 7.2.2). The β = 0.45 means soft-decisive 
variant of the AlgPrb (Subsection 7.3.2.2) with highest value of β parameter (most probable soft-decisive 
decision).  

9.2.1 Evaluation on 4k resolution sequences 

The results of the evaluation are presented in Table 9.1. The presented results are relative to HM. 
For comparison, averaged results for class A [CTCHEVC] (the closest resolutions) and averaged results 
over all test sequences (Section 3.5) are presented. 

For both the Basic and Extended Architecture the results for 𝐵𝐷-𝑅𝐴𝑇𝐸 are similar. For 
hard-decisive variant of the AlgPrb (β = 0), the ~1 p.p. worse results are observed compared to class A. 
The use of soft-decisive variant (β = 0.45) significantly improves the results for classes A1 and A2 (to 
2.05 % of 𝐵𝐷-𝑅𝐴𝑇𝐸). However, the results are 0.5 p.p. worse than for class A. 

Considering the encoding Time reduction (Time Savings: 𝑇𝑆, Formula 3.3), the results for 
Extended are slightly worse (~2.5 p.p. compared to class A). For the soft-decisive variant of AlgPrb, as 
the β parameter increases, the 𝑇𝑆 is decreasing similarly as for class A. This is not the case for the Basic 
Architecture. Firstly, for the hard-decisive variant of AlgPrb the 𝑇𝑆 is significantly better for A1 and A2 
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– up to 5 p.p.. Secondly, for the soft-decisive variant, the 𝑇𝑆 drops by at least 1.5 p.p. This means that 
the phenomenon observed for soft-decisive AlgPrb (Section 7.3.3), where 𝐵𝐷-𝑅𝐴𝑇𝐸 improves as the 
𝑇𝑆 remains the same, does not occur. 
 

Table 9. 1. Evaluation of proposed partitioning algorithms for additional video content 
(classes A1 and A2). The presented results are relative to HM. The All class refers to the mean over 

results for all test sequences. 

Sequence class 

𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑻𝑺 [%] 
Basic 

 Architecture 
Extended 

Architecture 
Basic  

Architecture 
Extended 

Architecture 
AlgPrb 

β = 0 
AlgPrb 
β = 0.45 

AlgPrb 
β = 0 

AlgPrb 
β = 0.45 

AlgPrb 
β = 0 

AlgPrb 
β = 0.45 

AlgPrb 
β = 0 

AlgPrb 
β = 0.45 

A1 (3840×2160) 2.95 1.74 3.77 2.05 68.76 65.31 72.41 65.62 
A2 (3840×2160) 2.71 1.81 3.83 2.05 65.60 64.16 72.09 64.92 
A (2560×1600) 1.94 1.19 2.95 1.40 61.45 63.72 74.92 67.26 

All 1.80 1.23 3.44 1.71 54.20 55.5 69.22 62.02 
 

It should be recalled that according to the training assessment of the models in Sections 5.2 and 
6.2, Basic Architecture was assessed as trained better. The reason for this is the fit of the Basic 
Architecture to default content. As the type of content is different, the model prediction is less certain. 
The amount of computations for soft decisions is too big to be compensated by the reduction of 
computations that comes from the avoidance of the smallest block, described in Subsection 7.2.2. 

9.2.2 Evaluation on Screen Content Coding sequences 

The results of the evaluation are presented in Table 9.2. The presented results are relative to HM. 
For comparison, averaged results for classes C, E [CTCHEVC] (closest resolutions) and averaged results 
over all test sequences (Section 3.5) are presented. 
 

Table 9. 2. Evaluation of proposed partitioning algorithms for additional video content (class 
HEVC F). The presented results are relative to HM. The All class refers to the mean over results for 

all test sequences. 

Sequence class 

𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑻𝑺 [%] 
Basic 

 Architecture 
Extended 

Architecture 
Basic  

Architecture 
Extended 

Architecture 
AlgPrb 

β = 0 
AlgPrb 
β = 0.45 

AlgPrb 
β = 0 

AlgPrb 
β = 0.45 

AlgPrb 
β = 0 

AlgPrb 
β = 0.45 

AlgPrb 
β = 0 

AlgPrb 
β = 0.45 

HEVC F 1.57 1.62 4.08 3.65 47.12 48.68 60.62 56.58 
C 1.55 1.15 3.67 1.74 46.17 48.85 66.93 58.30 
E 2.77 1.95 4.81 2.86 62.06 62.05 72.92 65.19 

All 1.80 1.23 3.44 1.71 54.20 55.5 69.22 62.02 
 

For the hard-decisive variant of AlgPrb, the results for class F are similar to those for class C. Given 
the Basic Architecture, the differences are negligible for both 𝐵𝐷-𝑅𝐴𝑇𝐸 and encoding time reduction 
(Time Savings: 𝑇𝑆, Formula 3.3). Surprisingly, for β = 0.45, both 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝑇𝑆 increase, so the 
saddle effect is observed. For Extended Architecture with AlgPrb (β = 0), a difference in 𝐵𝐷-𝑅𝐴𝑇𝐸 
between classes C and F is 0.4 p.p.. The soft-decisive variant does not improve the 𝐵𝐷-𝑅𝐴𝑇𝐸 by much, 
while the decrease in 𝑇𝑆 is observed. 

The abovementioned observations can be explained by the fact that the content of the HEVC F 
class is significantly different than the default content. The video capture of the computer screens 
often contains plain regions and occasionally sharp edges. Therefore, the partitioning algorithm must be 
much more accurate in indicating block size. This explains the results observed for Extended 
Architecture. The simultaneous increase of 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝑇𝑆 for Basic Architecture with AlgPrb (when 
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increasing β) indicates unfamiliarity of the model with sequence content. Thus, the ANN output would 
be very uncertain (multiple depth levels with almost the same probability). When the small block size 
should be chosen, the soft-decisive algorithm may indicate a bigger, and less computably complex one. 
As shown in Subsection 7.3.1, in such a situation, it is more beneficial, in terms of 𝑇𝑆, to check two 
bigger block sizes instead of just considering the smallest block sizes. This explains the observed 
phenomenon. 

9.2.3 Conclusions for broadened performance evaluation 

Results for additional content are similar to results for classes with corresponding (or similar) 
resolutions in test sequences. A small deterioration of the results is observed. This is because models in 
both Basic and Extended Architectures are highly tailored to the dataset content. The test sequences 
were similar to images in the training dataset, unlike the sequences in additional content. This means 
that the proposed models are highly sensitive to input data. For practical use, the model should be trained 
with a dataset carefully tailored to the problem, or a dataset should be appropriately generalized for 
broad content. Nevertheless, the performance deterioration is no more than 1 p.p. in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸 
and 3 p.p. in terms of 𝑇𝑆. 

9.3 Architecture modification – serialization of the feature map processing 

The ANN architecture for Basic Approach (Figure 5.1, Section 5.1) is low complex. The Basic 
Architecture (Section 5.1) proved to be in pair with state-of-the-art in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸, as shown in 
Chapter 8. As presented in Section 5.4, adjusting the hyperparameters did not result in a model that 
performs better with similar and smaller complexity. In this section is described another approach to 
reduce then computational complexity of the ANN architecture.  
 

 

Figure 9. 1. The ANN architecture for Basic Approach architecture in Serial variant. The “Conv 
Block” refers to block of layers, presented in Figure 5.2 (Section 5.1). 

 

As presented in Section 5.1, the ANN architecture for Basic Approach is composed of two 
subnetworks (Fig 5.1). The second one is referred to as Subnetwork 𝔹. This subnetwork recalls the 
quaternary tree to mimic the quaternary tree structure used in HEVC. The characteristic feature is that 
after the first Conv Block (Figure 5.2, Section 5.1), the feature maps are split into four parts and 
processed by separate Conv Blocks. As described in Section 5.1, those Conv Blocks do not share 
weights, as the split decision may be taken differently in subareas of the CTU. However, such an 
approach reduces gradient flow in the backpropagation phase of training. So, the weights of the 
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convolution filters in these Conv Blocks are updated using only a quarter of the gradient from output 
due to the configuration of further layers.  

The gradient flow in the ANN architecture for Basic Approach may restrict the model training. 
Sharing weight among all convolutions will use the whole gradient information in training, resulting in 
more generalized features extracted by convolution filters. Additionally, a better gradient flow may 
positively impact feature extraction in other layers of the model. Such modification may improve the 
evaluation results of a model or make it possible to train similarly performing but less complex models.  

To train such a network, the Subnetwork 𝔹 is modified by substituting four parallel Conv Block by 
just one, which processes feature maps one by one. The “Time distributed” module from the TensorFlow 
framework [TENSORFLOW] was used for implementation. Thus, the quaternary-tree-inspired feature 
map processing is preserved. Further in this section, the architecture that uses the “Time distributed” 
module is referred to as the Serial variant, while the architecture with four separate Conv Blocks is 
referred to as the Parallel variant. The ANN architecture for Basic Approach in the Serial variant is 
presented in Figure 9.1. 

To check the impact of the proposed modification, Serial and Parallel variants of ANN architecture 
for Basic Approach were trained and evaluated in four configurations of the model hyperparameters:  

S1. No change in the number of filters (Parallel variant is the Basic Architecture). 
S2. The number of filters in the second layer of Subnetwork 𝔹 reduced by half. 
S3. The number of filters in the first and second layers of Subnetwork 𝔹 reduced by half. 
S4. The number of filters in the first and second layers of Subnetwork 𝔹 and the number of filters 

in all layers in Subnetwork 𝔸 reduced by half. 

For each hyperparameter configuration a set of models for QP values {22, 27, 32, 37} was trained, 
according to the description in Section 4.6. Evaluation results for the above model configurations are 
presented in Table 9.3. The evaluation of the models was performed according to description in 
Section 3.1. The presented results are relative to HM. The hard-decisive variant of AlgPrb (Subsection 
7.2.2) was used to evaluate models. It should be mentioned that the training process was repeated several 
times to confirm the convergence of the models.  
 

Table 9. 3. Evaluation results for Serial and Parallel variants of ANN architecture for Basic Approach 
in proposed configurations of hyperparameters. The presented results are relative to HM. 

Index 
Number of filters in 

layers: Subnetwork 𝔸  
Number of filters in 

layers: Subnetwork 𝔹 
Subnetwork 𝔹 

variant 
𝑩𝑫-𝑹𝑨𝑻𝑬 

[%] 
𝑩𝑫-𝑷𝑺𝑵𝑹 

[dB] 

S1 12 ; 24 ; 36 ; 48 64-16-4 
Parallel 1.80 -0.090 
Serial 1.80 -0.089 

S2 12 ; 24 ; 36 ; 48 64-8-4 
Parallel 1.85 -0.091 
Serial 1.83 -0.090 

S3 12 ; 24 ; 36 ; 48 32-8-4 
Parallel 1.83 -0.091 
Serial 1.81 -0.089 

S4 6 ; 12 ; 28 ; 24 32-8-4 
Parallel 2.02 -0.099 
Serial 1.98 -0.098 

 

For all sets of hyperparameters, the Serial variants of the architecture achieved better or the same 
evaluation results. Reduction of filter number in Subnetwork 𝔸 significantly worsens evaluation results 
of the model, up to 0.2 p.p.. However, the change in the number of filters in Subnetwork 𝔹 increases the 
𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 only by a small margin. When the number of filters in the first and second 
layers of the Subnetwork 𝔹 reduced by half (S3), the Serial variant of the architecture achieves almost 
the same evaluation results as the Basic Architecture. Set of ANN models with hyperparameter 
configuration S3 and trained for QP values {22, 27, 32, 37} is referred to as the Modified Basic 
Architecture. Therefore, the proposed serialization allows training a less complex model without 
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significant evaluation results change. The complexity comparison, in terms of Multiply and Accumulate 
(MAC) operation count, for the Modified Basic Architecture and Basic Architecture is presented in 
Table 9.4. 

It can be noticed that the number of weights is almost halved in the Modified Basic Architecture. 
However, the MAC operation count is reduced only by ~340k operations. That is because the 
Subnetwork 𝔸 is not modified, and most computations are performed there due to the biggest dimensions 
of feature maps. One should mention that the Modified Basic Architecture adds a delay in the processing 
of feature maps due to the serialization of processing. Nonetheless, the weights from the Serial variant 
of the architecture can be easily transferred to the matching Parallel variant. In this case, convolutional 
filters in parallel Conv Blocks will have the same weights, but the processing could be parallelized.  
 

Table 9. 4. Complexity comparison of the Modified Basic Architecture and Basic Architecture. 
 Modified Basic Architecture 

(Serial) 
Basic Architecture 

(Parallel) 
Weights number 42 832 91 600 

MAC operation count [M]  6.43 6.76 
 

A detailed comparison in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸 and encoding time reduction (Time Savings: 𝑇𝑆, 
Formula 3.3), of Modified Basic Architecture and Basic Architecture, is presented in Table 9.5. The 
evaluation of the models was performed according to description in Section 3.1. The presented results 
are relative to HM. The table presents the averaged results for resolution classes and the mean over all 
test sequences. Results of 𝑇𝑆 are extended with the Modified Basic Architecture in Parallel variant  (the 
𝐵𝐷-𝑅𝐴𝑇𝐸 results for the Parallel variant are the same as for the Serial variant). 
 

Table 9. 5. Detailed results of the evaluation of Modified Basic Architecture and Basic Architecture in 
Modified HM. The presented results are relative to HM. The All class refers to the mean over results 

for all test sequences. 

JC
T

-V
C

 
cl

as
s 

𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑻𝑺 [%] 

Modified Basic 
Architecture 

(Serial) 

Basic 
Architecture 

(Parallel) 

Modified Basic 
Architecture 

(Serial) 

Modified Basic 
Architecture 

(Parallel) 

Basic 
Architecture 

(Parallel) 
A 1.95 1.94 60.62 61.87 61.45 
B 2.01 2.01 59.27 60.46 60.38 
C 1.56 1.55 45.44 46.04 46.17 
D 0.92 0.93 39.30 39.68 41.34 
E 2.84 2.78 60.80 62.19 62.06 

All 1.81 1.80 53.01 53.96 54.20 
 

In terms of 𝐵𝐷-𝑅𝐴𝑇𝐸, the performance of the Modified Basic Architecture is in pair with the Basic 
Architecture. For most resolution classes, the results are marginally different (up to 0.01 p.p.), with the 
biggest difference for class E - 0.06 p.p.. However, in terms of 𝑇𝑆 the Modified Basic Architecture in 
the Serial variant of the architecture performs ~1.2 p.p. worse than the Basic Architecture. However, 
when weights are transferred to the matching Parallel variant of the architecture, the difference shrinks 
to 0.24 p.p., which is within the margin of error. The significant difference in 𝑇𝑆, compared to Basic 
Architecture, is observed only in class D. 

The smaller MAC operation count did not measurably impact the encoding times. Additionally, it 
was observed that the serialization in the model observably decreased 𝑇𝑆. Therefore, the proposed 
serialization allowed the training of smaller models – in terms of the number of weights and complexity 
– without significant degradation in performance. Transferring the weights from the Serial to the 
matching Parallel variant of the architecture solves the issue with 𝑇𝑆 decrease. Therefore, the proposed 
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Modified Basic Architecture is less complex and much smaller, which is beneficial, e.g., in hardware 
implementation. The results presented in this section were published in the paper [Lo23]. 

9.4 Impact of CTUs spanning beyond the boundaries of the picture 

In section 2.2.3, it was shown that HEVC defines specific partitioning restrictions when the 
resolution of the sequence is not divisible by CTU size. The missing samples are filled in a very defined 
way and for the CTU spanning beyond the boundaries of the image, the partitioning forces putting these 
samples in separate blocks. As discussed in Section 4.2, this was why images in the training dataset were 
purposely cropped to avoid such blocks. Such CTUs may negatively impact the model training. 
However, encoding sequences with resolutions non-divisible by CTU size is quite common – such a 
case is included in test sequences, e.g., in the resolution class B (1920×1080), where image height is not 
divisible by 64. 

To check the impact of CTUs spanning beyond the image boundaries on the model training, the 
following additional training datasets were created using preprocessed data: 

 Images from DIV2k are first cropped to resolutions divisible by 8. 
 Images from DIV2k are first cropped to resolutions divisible by 2. 

The unavailable samples were filled the same way as in HEVC (Subsection 2.2.3). Datasets for ANN 
training were created according to the description in Subsection 3.6.2. Then, ANN architecture for Basic 
Approach (Section 5.1) was trained using these additional training datasets. For each created dataset a 
set of models for QP values {22, 27, 32, 37} was trained, according to the description in Section 4.6. 
The evaluation of the models was performed according to description in Section 3.1. The evaluation 
results in Modified HM for these models are presented in Table 9.6. The results of Basic Architecture 
(Section 5.3) are included for comparison. The presented results are relative to HM and represent the 
mean over the results for all test sequences. 
 

Table 9. 6. Evaluation results for ANN architecture for Basic Approach (Section 5.1) trained using 
datasets created from differently cropped images (DIV2k). The presented results are relative to HM 

and represent the mean over the results for all test sequences. 

Cropping of DIV2k images used for training dataset 𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑩𝑫-𝑷𝑺𝑵𝑹 [dB] 

Cropping to resolutions divisible by 8 1.85 -0.091 
Cropping to resolutions divisible by 2 1.82 -0.089 

Cropping to resolutions divisible by CTU size (Basic Architecture) 1.80 -0.089 
 

The difference between the used datasets is very small, at a maximum of 0.05 in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸 
and 0.02 dB in terms 𝐵𝐷-𝑃𝑆𝑁𝑅. Nonetheless, the best evaluation results are observed for a dataset 
created with images cropped to resolutions divisible by CTU size, which was used to train the Basic 
Architecture. The conclusion is that the impact of CTUs spanning the picture boundaries is negative, 
but the differences in the achieved 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (Formula 4.8) of the trained models are modest, yet 
present.  

9.5 Contextuality in the RD Optimization 

As described in Section 2.3.2, the partitioning decisions in HM [HM] are made locally for currently 
processed samples. Consecutive CTUs are processed sequentially. The partitioning algorithm in HM 
finds suboptimal decisions locally for a given CTU. However, these decisions are influenced by multiple 
context information, e.g.: 

 Samples from neighboring blocks that are used for prediction. 
 Encoder internal tools like Most Portable Mode [HM] (reduces the pool of prediction modes to 

check in the current block based on prediction modes chosen in previous blocks). 



135 

 

 The context of the entropic encoder (CABAC) used in HEVC.  

Multiple sets of decisions are considered for currently processed CTU, where differences in compression 
efficiency between two such sets could be minimal. This means that even a small change in video 
sequence or image may impact the decisions, including the partitioning. The idea is to consider the 
contextuality of the partition process within the partitioning algorithm. 

The goal of the experiment presented in this section is to examine the impact of small changes in 
the image on partitioning decisions. The small change in the image is defined as a minor change in a 
subset of image samples. Such small changes do not impact the visual impression of the image. Such 
small changes are, e.g., different realization of the noise in the image or minor changes in single samples.  

The experiment is set up as follows. Firstly, a small modification is applied to images from the 
DIV2k dataset. Next, images from the modified DIV2k dataset are encoded with HM. Then, the 
partitioning patterns are extracted. Lastly, the partitioning patterns for modified and non-modified 
images are compared in corresponding CTUs. Cases of different partitioning patterns are counted. Then, 
the percentage of non-identical partitioning patterns is calculated for the whole dataset.  

The above experiment procedure was performed for the following image modifications:  

 Adding random noise to the image, with Gaussian distribution quantized to integer sample 
values. The noise for each sample is calculated independently. The intensity of this random 
noise is described by Root Mean Square (RMS), defined with formula 9.1. In the described 
experiment, the following values of noise RMS were tested: 0.01, 0.05, 0.10, 0.50, 1.00. Those 
noise RMS values were chosen to ensure the number of modified samples is relatively small 
(effectively several modified samples). 

 Change the value of one, precisely indicated image sample by adding 1. Three different 
locations of modified samples were (Figure 9.2) :  

o Top-left sample of the image (referred to as Top). 
o Middle-left sample of the image (referred to as Middle).  
o Bottom-right sample of the image (referred to as Bottom). 

 

 

Figure 9. 2. Location of the modified image sample (green): a) Top, b) Middle, c) Bottom. 
 

The results of the experiment are presented in Table 9.7. It should be noted that the applied 
modifications of images did not change noticeably the bitrate or quality of the encoded image. For the 
images with added random noise, it can be observed that even the smallest RMS of the noise 
significantly impacts the partitioning decisions in HM RD Optimization. For the noise RMS of 0.01 
(effectively several modified samples in the image) 63.43% of partitioning patterns are changed. As 
expected, the percentage is rising with the increase of noise RMS, although the relation is not monotonic. 
For example, a higher percentage was observed for noise RMS 0.05 compared to noise RMS 0.10. This 
means that the result highly depends on the exact noise realization applied to the image.  

The dependency of noise realization on changing the partitioning pattern is confirmed by the results 
for changing the value of precisely defined image points. The small change in sample value of the first 
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processed CTU changes almost 11% of all CTUs. Such a small change caused a snowball effect on the 
decisions of RD Optimization. The percentage of changed CTU patterns for the Middle case is over half 
that of the Top case. Thus, sudden, even small change, can significantly impact the context in the 
encoder. The result for the Bottom case is that a sample modification, even in the last encoded CTU 
block, may change the partitioning.  
 

Table 9. 7. Percentage of changed partitioning patterns estimated by HM, for modified images from 
DIV2k. 

Modification type 
Modification 
Description 

Percentage of CTUs with 
changed partitioning patterns 

Random pixels ±1 
with set  

RMS of the noise 

0.01 63.43% 
0.05 71.73% 
0.10 71.11% 
0.50 72.53% 
1.00 73.23% 

Single pixel  
±1 

change 

Top 10.80% 
Middle 6.70% 
Bottom 0.01% 

 

The results of the abovementioned experiment demonstrate that RD Optimization is a very sensitive 
process to even small changes. The partitioning algorithm should consider this effect as noise is present 
in natural content sequences. As the encoding context changed by modifying samples, the same effect 
would have a choice of different partitioning patterns. Thus, only the ideally reproduced sequence 
of consecutive partitioning patterns results in the same bitstream. If the partitioning algorithm does not 
consider this effect, the encoded image bitrate or quality may deteriorate. 

The above observations are significant for partitioning algorithms that use ANN. As the model may 
be overfit to certain noise types, the less efficient partitioning patterns will be chosen if the other type 
of noise is present in the image. Effectively, the encoding performance will decrease. Thus, the context 
of the encoder should be considered within a partitioning algorithm. 

9.6 Architecture modification – the usage of contextual information 

The importance of the encoding context for the partitioning pattern was discussed in Section 9.5. 
The context is not utilized in ANN architecture for either Basic or Extended Approaches (Sections 5.1. 
and 6.1). In this section, modifications of the ANN architecture for Basic Approach (Figure 5.1, 
Section 5.1) are explored to include contextual data in ANN processing. Thus, the impact of contextual 
data on ANN model performance is examined, concerning training accuracy and results of the evaluation 
in the encoder.  

The following contextual information was selected for processing by ANN:  

 Adjacent samples from neighboring blocks. In the HM these samples may be used for prediction 
in currently processed CTU.  

 Adjacent Division Matrices from neighboring blocks. These Division Matrices deliver hints 
about the shape of objects on currently processed CTU. 

 Division Matrices from P previous blocks. This data delivers information on the current context 
of CABAC connected to partitioning patterns. 

Figure 9.3 presents the arrangement of selected contextual data concerning the current CTU block.  

In this section, the ANN architecture for Basic Approach (Section 5.1) was used as the base for 
modifications. Therefore, additional contextual data are adjusted accordingly before being processed. 
The ANN is designed to process data in the 3D tensor (Section 4.4), where the values are normalized to 



137 

 

the range 〈0; 1〉. Further description of data processing takes into account the use of the ANN 
architecture for Basic Approach.  
 

 

Figure 9. 3. The arrangement of selected context data concerning the currently processed CTU block. 
 

 

Figure 9. 4. Procedure for creating tensor with adjacent neighboring luma samples. 1) Luma samples 
are organized in vector of size 193. 2) From the vector of samples, four vectors of size 64 samples are 

extracted. 3) Samples from extracted vectors are converted into 2D matrices of size 8×8. These 
matrices are further concatenated into a single tensor of size 16×16×1. 
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In the case of proposed contextual data, two of these are Division Matrices (DMs). The DMs are 
first converted to DMB format. Then, all the DMs associated with certain types of contextual data are 
concatenated along the channel dimension. This results in a tensor of size 4×4×C, where C corresponds 
to the number of DMs associated with the contextual data type. Lastly, the values in the tensor are 
normalized to the range 〈0; 1〉. 

The last proposed contextual data is the neighboring samples. In HEVC, prediction can use samples 
from a single line, either from a neighboring row or a column [HEVC]. All of these samples, potentially 
used for prediction, can be structured into a vector of 193 samples:  64 (left) + 1 (top-left) + 64 (top) + 
64 (top-right).  The 3D tensor, which can be processed by ANN, is created using the procedure presented 
in Figure 9.4. This resulting tensor has a size of 16×16×1. Lastly, the samples in tensor are normalized 
to the range 〈0; 1〉. 

 

Figure 9. 5. The ANN architecture for Basic Approach (Section 5.1, Figure 5.1) with contextual data 
modification (used in Context-Aware Architecture). The “Conv Block” refers to block of layers, 

presented in Figure 5.2 (Section 5.1). 

To process the additional contextual data, the ANN architecture for Basic Approach was extended 
by three additional subnetworks (Figure 9.5):  
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 Subnetwork ℂ – dedicated to the processing of adjacent luma samples for neighboring blocks. 
The subnetwork is composed of three Conv Blocks (Figure 5.2, Section 5.1), with the number 
of filters: 2, 3, and 4 in consecutive Conv Blocks. Additionally, MaxPool layers are added after 
the first two Conv Blocks.  

 Subnetwork 𝔻 - dedicated to the processing of adjacent Division Matrices from neighboring 
blocks. The subnetwork is composed of three Conv Blocks (Figure 5.2), with the number of 
filters: 4, 4, and 2 in consecutive Conv Blocks. 

 Subnetwork 𝔼 - dedicated to the processing of Division Matrices from P previous blocks. The 
number of previous DMs is 8, as this value performed the best in experiments. The subnetwork 
is composed of three Conv Blocks (Figure 5.2), with the number of filters: 4, 4, and 2 in 
consecutive Conv Blocks. 

The feature maps outputted from subnetworks 𝔸, ℂ, 𝔻, and 𝔼 are then concatenated along the 
channel dimension. The concatenated tensor is then processed by the Subnetwork 𝔹. Subnetworks 𝔸 
and 𝔹 remained unchanged compared to the ANN architecture for Basic Approach. The ANN 
architecture for Basic Approach with contextual data modification is presented in Figure 9.5.  

The dataset, which includes contextual information, is required to train the ANN architecture for 
Basic Approach with contextual data modification. Such a dataset was created with the procedure 
described in Section 4.2 but including context data. Separate datasets were made for each QP from CTC 
[CTCHEVC]. Further in this dissertation, a set of ANN models with architecture presented in Figure 9.5, 
and trained for QP values {22, 27, 32, 37}, is referred to as Context-Aware Architecture. Training of 
the models was performed according to the description in Section 4.6. The training results for the 
Context-Aware Architecture are presented in Table 9.8. Training results for Basic Architecture (Sections 
5.1 and 5.3) are included for comparison. 

The training results prove that the additional data delivered to the model improved the training 
results. The 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values for Context-Aware Architecture are better by at least 0.5 p.p. for each QP 
compared to the Basic Architecture. This applies to both the Training and the Validation Subsets. Still, 
the most important are the results for the evaluation on test sequences. The Modified HM (Section 4.7) 
was updated to support such models. The evaluation results for both Basic Architecture and 
Context-Aware Architecture are presented in Table 9.9. For the evaluation, AlgPrb in hard-decisive 
variant (Subsection 7.2.2) was used as the decision algorithm. The evaluation of the models was 
performed according to description in Section 3.1. The presented results are relative to HM. 
 

Table 9. 8. Training results of Context-Aware Architecture (Basic Architecture with the context data 
modification). Results for Basic Architecture are presented for comparison. 

QP  
Context-Aware Architecture Basic Architecture 

Training Subset Validation Subset Training Subset Validation Subset 

22 74.9 74.9 74.2 74.4 
27 73.9 73.5 73.0 72.9 
32 73.2 73.0 72.5 72.4 
37 71.3 70.3 70.5 69.7 

 
 

Despite better 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values, the evaluation results for the Context-Aware Architecture are 
worse in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅. The exception is the resolution class A, where the results 
are equal. The Basic Architecture performs slightly better for classes B, C, and D. The biggest difference 
in evaluation results is observed for class E, where the Basic Architecture with context data modification 
performs worse by 0.3 p.p. in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸 and 0.012 dB in terms of 𝐵𝐷-𝑃𝑆𝑁𝑅. The reason for 
this may be as follows. The partitioning patterns estimated by the Context-Aware Architecture are more 
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accurate to HM than those of Basic Architecture. However, when the ANN indicates a partitioning 
pattern different from HM, the CABAC context may be disturbed to such a degree that the overall bitrate 
is worse despite more accurate prediction.  
 

Table 9. 9. Evaluation results of Context-Aware Architecture (Basic Architecture with the context data 
modification) in Modified HM. Results for Basic Architecture are presented for comparison. `All` 

refers to mean over all test sequences. The presented results are relative to HM. 
JC

T
-V

C
 

cl
as

s Context-Aware Architecture Basic Architecture 

𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑩𝑫-𝑷𝑺𝑵𝑹 [dB] 𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑩𝑫-𝑷𝑺𝑵𝑹 [dB] 

A 1.94 -0.099 1.94 -0.099 
B 2.03 -0.077 2.02 -0.076 
C 1.60 -0.087 1.55 -0.085 
D 0.98 -0.064 0.93 -0.061 
E 3.07 -0.150 2.78 -0.138 

All 1.87 -0.092 1.80 -0.089 
 

As better training results were observed for the Context-Aware Architecture, additional data surely 
helps to model the partitioning process properly. Therefore, the evaluation results are slightly worse 
than those of the Basic Architecture, which suggests overfitting. The difference in the content of 
sequences between the training dataset and test sequences may be significant enough that the ANN is 
misled. Different sets of contextual modifications were applied to the ANN architecture for Basic 
Approach to check the significance of the contextual data used. Thus, all possible configurations of 
additional subnetworks were trained (set of models for QP values {22, 27, 32, 37} trained according to 
the description in Section 4.6) and evaluated (according to description in Section 3.1). The evaluation 
results for these models are presented in Table 9.10. The evaluation of the models was performed 
according to description in Section 3.1. The presented results are relative to HM. 
 

Table 9. 10. Evaluation of models with different configurations input subnetworks. The presented 
results are relative to HM. 

Configuration of input subnetworks 𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑩𝑫-𝑷𝑺𝑵𝑹 [dB] 
𝔸, ℂ, 𝔻, 𝔼 (Context-Aware Architecture)  1.87 -0.092 

𝔸, ℂ 1.87 -0.092 
 𝔸, ℂ, 𝔻 1.81 -0.089 
𝔸, ℂ, 𝔼 1.83 -0.090 
𝔸, 𝔻 1.83 -0.091 

𝔸, 𝔻, 𝔼 1.88 -0.092 
𝔸, 𝔼 1.84 -0.091 

𝔸 (Basic Architecture)  1.80 -0.089 
    

𝔸 – subnetwork for processing of luma samples of current CTU block. 
ℂ - subnetwork for processing adjacent luma samples for neighboring blocks. 
𝔻 - subnetwork for processing adjacent Division Matrices from neighboring blocks. 
𝔼 - subnetwork for processing Division Matrices from N previous blocks. 

 

For the models with additional inputs, the best evaluation results were achieved when subnetworks 
ℂ and 𝔻 were added to the ANN architecture for Basic Approach. Therefore, none of the configurations 
with additional inputs did not outperformed the Basic Architecture. Unfortunately, the results do not 
directly indicate the impact of specific contextual data. Considering adding only one additional 
subnetwork, the smallest 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 were achieved for adding Subnetwork 𝔻, and the 
biggest for adding Subnetwork ℂ. For pairs of subnetworks, the best results are observed for ℂ and 𝔻 
and the worst for 𝔻, 𝔼. Recalling the conclusions for Context-Aware Architecture, the worse evaluation 
result implies the overfit for the training dataset. Thus, by adding a subnetwork for processing 
neighboring luma samples or both subnetworks for processing Division Matrices, the model overfits the 
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most. For other combinations, this effect seems to be suppressed. However, the differences are too small 
to confirm this relation. 

Unfortunately, adding the contextual data failed to improve the ANN architecture for Basic 
Approach. The following reasons may explain this:  

 The contextual dependencies are too complicated for the ANN to model them correctly. The 
more sophisticated ANN architecture could fix this problem. During the experiments, an 
attempt was made to tune the model hyperparameters, but without success.  

 Additional data delivered to a model do not provide proper contextual information. 
 The training dataset is too small, or the context is not diverse enough to generalize the model.  
 The applied method of delivering the contextual information to the model may not be 

appropriate. This refers to both ANN processing and training.  

The use of context information in partitioning algorithms has the potential to improve performance and 
is a very interesting topic for further research. Different approaches to exploit the contextuality of 
decisions in HEVC are presented in the next section. The results presented in this section were published 
in the paper [Lo21]. 

9.7 Ground truth augmentation by utilization of noise 

In previous sections, several observations were made according to the contextuality of the 
partitioning decisions. Firstly, it was shown in Section 9.5 that small changes in the picture may 
significantly change the decisions made by RD Optimization in HM. The decision may be made between 
options with a very small difference in performance. Therefore, even small disturbances in the encoding 
context may significantly change the sequence of partitioning decisions. Secondly, including the 
contextual data in ANN input, described in Section 9.6, improved the accuracy of the model prediction, 
considering the Training and Validation Subsets. However, these models performed slightly worse in 
the evaluation on test sequences. It may be interpreted as the model decisions are strongly adapted to 
certain decision noise. Thirdly, it was stated in Section 9.6 that the improved accuracy of the model 
makes the partitioning algorithm choose a partitioning pattern different than HM less frequently. This 
paradoxically causes bigger disturbances in the encoder context, resulting in a worse overall 
compression efficiency.  

Concluding the above observations, the goal to ideally mimic the sequence of partitioning decisions 
made by RD Optimization in HM is not achievable as long as the model accuracy is not ideal. This is 
particularly important for ANN-based algorithms, as the negative impact of encoding context 
disturbance will always be observed in their case. Even a significant increase in the training dataset size 
does not solve the problem. In Chapter 8, the proposed ANN models were compared to state-of-the-art 
solutions. Most of them reported that better accuracy of the models was achieved with bigger training 
datasets [Xu18A, Sh19, Ch20, Hu21B, Fe21]. Therefore, the evaluation results were very similar or 
even worse than the proposed models. This also means that classical data augmentation methods, e.g., 
image flipping or color corrections, would have the same effect. Every change in the image would 
require an estimation of the partitioning patterns in the HM. Thus, additional training samples would be 
generated, similar to adding more images to datasets. Further, the unaware application of the image 
modification may introduce artificial dependencies taught by the model that could negatively impact the 
partitioning decisions. Therefore, this impact is out of the scope of this dissertation. 

In the context of the above discussion, the author's method of ground truth augmentation is 
presented. The idea is to train a model by considering several possible partitioning patterns for the CTU 
samples. Then, the ANN may indicate a partitioning pattern that is slightly less efficient but also less 
impactful to the encoding context. The results may be much better than a sudden, unexpected 
partitioning pattern, significantly impacting the encoding context. As mentioned earlier, mapping 
multiple partitioning patterns to the same CTU samples can make the model less sensitive to decision 
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noise. One can use images with small added noise (Section 9.5) as a source of alternative partitioning 
patterns for a CTU. Therefore, the model can be trained with CTU samples from non-modified 
images and partitioning patterns which are estimated by encoding images in multiple noised 
versions. Other combinations (CTU samples from noised images with partitioning patterns from 
original images or CTU samples from noised images with partitioning patterns from noised images) 
were tested, but the results did not improve the evaluation results or make it worse.  
 

 

Figure 9. 6. Training procedure: A) Original, B) Modified. The modified steps of the procedure are 
filled with orange color. 

 

To check the viability of the proposed ground truth augmentation, datasets to train models were 
prepared by adding noise to DIV2k [Ag17] images. The term "noise realization" refers to the application 
of noise defined in Section 9.5 (changes the value of randomly chosen samples) generated for each 
image in the dataset. Noise realizations differ by the initial state of the random value generator used for 
noise generation. Datasets for model training were created following the procedure presented in 
Section 4.2, using noised images generated in the following configurations:  

1) The noise with RMS = 0.05 – in 10 consecutive random realizations. 
2) The noise with RMS = 0.5 – in 10 consecutive random realizations. 
3) The noise with RMS = 1.0 – in 10 consecutive random realizations.  
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4) The noise with RMS: 0.05, 0.10, 0.30, 0.50, 0.70, 1.00, 1.20, 1.50, 1.70, 2.00 in consecutive 
random realizations.  

5) The noise with RMS: 2.00, 1.70, 1.50, 1.20, 1.00, 0.70, 0.50, 0.30, 0.10, 0.05 in consecutive 
random realizations. 

The training procedure (Section 4.6) was slightly modified to include multiple partitioning patterns 
for a given CTU. For every 10th training epoch, the set of partitioning patterns is substituted with the 
one from the next noise realization. It should be mentioned that the Early Stopping (Subsection 4.6.3) 
may terminate the training. In such a case, the set of partitioning patterns is substituted with the one 
from the next noise realization, and the training is resumed. The modification to the training procedure 
is presented in Figure 9.6 

A set of models with ANN architecture for Basic Approach (Section 5.1) is trained for each 
proposed dataset with augmented ground truth data. Such set consists of 4 models, each for one QP: 
{22, 27, 32, 37}. As the models were trained using the modified training procedure described earlier, 
the comparison of the model 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (Formula 4.8) will not be representative. The models were 
evaluated in Modified HM (Section 3.1) with the hard-decisive variant of AlgPrb (Subsection 7.2.2) as 
the decision algorithm. The evaluation results are presented in Table 9.11. The evaluation of the models 
was performed according to description in Section 3.1. The presented results are relative to HM. 

Training the ANN architecture for Basic Approach using datasets with augmented ground truth 
data improved the evaluation results in each case. The worst evaluation results were achieved for the 
noise with RMS of 1.0 in 10 consecutive random realizations (Idx 3). Slightly better results are observed 
for both noise with RMS rising from 0.05 to 2.00 in consecutive random realizations (Idx 4) and noise 
with RMS of 0.5 in 10 consecutive random realizations (Idx 2). The best results were achieved for the 
smallest RMS (0.05) noise in 10 realizations (Idx 1) and the falling RMS from 2.00 to 0.05 in 
consecutive random realizations (Idx 5). Thus, partitioning patterns estimated for small noise with small 
RMS should be used at least in the last training phases to get the best results. 
 

Table 9. 11. Evaluation results for training the ANN architecture for Basic Approach using augmented 
ground truth datasets. Results for the Basic Architecture (Section 5.3) are included for comparison. 

The presented results are relative to HM. 

Idx Dataset 𝑩𝑫-𝑹𝑨𝑻𝑬[%] 𝑩𝑫-𝑷𝑺𝑵𝑹[dB] 

1 Noise with RMS: 0.05 – in 10 consecutive random realizations 1.72 -0.084 
2 Noise with RMS: 0.5 – in 10 consecutive random realizations 1.73 -0.085 
3 Noise with RMS: 1.0 – in 10 consecutive random realizations 1.76 -0.087 

4 
The noise with rising RMS from 0.05 to 2.00 in 10 

consecutive random realizations 
1.73 -0.085 

5 
The noise with falling RMS from 2.00 to 0.05 in consecutive 

random realizations 
1.71 -0.084 

 Basic Architecture (default training dataset)  1.80 -0.089 
 

The proposed approach improved the evaluation results by 0.09 p.p. in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸 and 
0.005 dB in terms of 𝐵𝐷-𝑃𝑆𝑁𝑅. The improvements are significant, especially as the model architecture 
did not change. Models trained with proposed ground truth augmentation outperform any modification 
of the hyperparameters discussed in Section 5.4.  

To further test the proposed solution, the best-performing datasets with augmented ground truth 
data – indices 1 and 5 (noise with RMS 0.05 in 10 consecutive random realizations and noise of falling 
RMS from 2.00 to 0.05 in consecutive random realizations) were used to train ANN architecture for 
Extended Approach (Section 6.1). Training and evaluation are exactly the same as for models with ANN 
architecture for Basic Approach, described earlier in this section. The results are presented in Table 9.14. 
The evaluation of the models was performed according to description in Section 3.1. The presented 
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results are relative to HM. Similarly, as for ANN architecture for Basic Approach, the evaluation results 
have improved. Results for both used datasets with augmented ground truth data are very similar. The 
𝐵𝐷-𝑅𝐴𝑇𝐸 decreased by 0.07 p.p., and 𝐵𝐷-𝑃𝑆𝑁𝑅 is smaller by 0.004 dB. 
 

Table 9. 12. Evaluation results for training ANN architecture for Extended Approach using the best 
performing augmented ground truth datasets. Results of the Extended Architecture trained with the 

default dataset are included for comparison. The presented results are relative to HM. 

Dataset 𝑩𝑫-𝑹𝑨𝑻𝑬 [%] 𝑩𝑫-𝑷𝑺𝑵𝑹 [dB] 

The noise with RMS: 0.05 – in 10 consecutive random realizations 3.37 -0.173 
The noise with falling RMS from 2.00 to 0.05 in consecutive random 

realizations 
3.38 -0.173 

Extended Architecture (Default training dataset) 3.44 -0.177 
 

As shown in this Section, the idea of training a model to fit several possible partitioning 
patterns for the CTU proved to increase the model performance in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸 and 
𝐵𝐷-𝑃𝑆𝑁𝑅. Improvements are observed for both proposed Basic and Extended architectures. However, 
this idea was not incorporated into the proposed partitioning algorithm and was not compared with state-
of-the-art results. The reason is that the improvements are primarily observable for hard-decisive 
variants of the decision algorithm and small values of control parameters for soft-decisive variants. As 
the Basic and Extended Architectures proved to perform similarly or even better than state-of-
the-art solutions, the method proposed in this section will surely increase the superiority. 
Unfortunately, as authors of other methods do not provide the model training framework, the impacts 
of the proposed ground truth augmentation method on other models could not be checked. Thus, this 
method remains a promising topic for further research. 

9.8 Global optimization of CTU partitioning with the Viterbi algorithm 

Previous sections 9.6 and 9.8 present two methods for handling the problem of the encoding 
contextuality. Both of these methods impact the ANN model to achieve this goal. Despite the promising 
results, a series of downsides was observed. The limitation of those methods is that the contextuality is 
dealt in the local optimization process. The proposed methods are able to at most neglect the negative 
impact of disturbed encoding context. Still, a single, very context-disturbing partitioning pattern can be 
indicated, and proposed methods cannot identify such a situation to adjust accordingly. A method for 
refining the previously estimated partitioning patterns can be used to address this issue. Therefore, in 
this section, an algorithm for global optimization of partitioning patterns is proposed. 

The ANN in the Basic and Extended Approaches (Section 5.1 and 6.1) are design to estimate the 
partitioning pattern by processing only samples of currently processed CTU (particularly luma samples). 
Thus, this process is independent for each CTU. In this case, the partitioning patterns for all CTUs can 
be estimated first, and then global optimization may be performed. Further, the independence of ANN 
predictions allows the formulation of the Hidden Markov Model (HMM) [Ba66]. Therefore, the Viterbi 
algorithm [Vi67] can be used to find the recursive optimal solution of the state sequence estimation. 
Such a method may shape the encoding context by adjusting consecutive CTUs and effectively 
achieving better compression efficiency.  

Given a single image consisting of 𝑉 successive CTUs, for each CTU the ANN estimates a Division 
Tensor 𝐷𝑇, as described in Section 4.5. For particular CTU with index 𝑣 ∈ [0; 𝑉 − 1], the Division 
Tensor is denoted as 𝐷𝑇௩. 
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Figure 9. 7. Visual representation of Hidden Markov Model (HMM) defined for exemplary indices. 
The arrow specifies the connection direction in HMM. 

 

For each pair of indices 𝑖 and 𝑗, a separate HMM is constructed as progression of states in CTU 
order, as shown in Figure 9.7. Said HMM consists of hidden states [Ba66], where “hidden” corresponds 
to the fact that the realization of this process is unknown and is sought. For each CTU index 𝑣 there are 
D states, each corresponding to a different depth level 𝑑 ∈ [0; 𝐷 − 1]. The transition between the states 
is possible only along the v direction, with full connection between different depth levels. Such defined 
HMM (for indices 𝑖 and 𝑗) can be represented with 2D lattice, as shown in Figure 9.8. 
 

 

Figure 9. 8. The 2D lattice for Hidden Markov Model (HMM), defined pair of indices 𝑖 and 𝑗. 
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For each pair of indices 𝑖 and 𝑗, the goal is to find a sequence of 𝑑଴, 𝑑ଵ, 𝑑ଶ, … , 𝑑௏ିଵ, where 𝑑௩ is 
state value for 𝑣-th state in HMM, further interpreted as depth level value. A search criterion for the 
sequence is Maximum A Posteriori (𝑀𝐴𝑃), that is maximization of probability 𝑃(𝑑଴, 𝑑ଵ, 𝑑ଶ, … , 𝑑௏ିଵ) 
after making observations:  

𝑃(𝑑଴, 𝑑ଵ, 𝑑ଶ, … , 𝑑௏ିଵ) = ෑ 𝑇𝑟𝑎𝑛𝑠𝑃𝑟𝑜𝑏௩→௩ାଵ(𝑑௩ , 𝑑௩ାଵ)

௏ିଶ

௩ୀ଴

⋅ ෑ 𝑂𝑏𝑠𝑃𝑟𝑜𝑏௩(𝑑𝑣)

௏ିଵ

௩ୀ଴

 (9.1) 

where:  

 𝑇𝑟𝑎𝑛𝑠𝑃𝑟𝑜𝑏௩→௩ାଵ(𝑑௩ , 𝑑௩ାଵ) is a transition probability from state with CTU index 𝑣 
(horizontal axis on Figure 9.8) and depth level 𝑑௩ (vertical axis on Figure 9.8) to a state with 
CTU index 𝑣 + 1 with depth level 𝑑௩ାଵ. 

 𝑇𝑟𝑎𝑛𝑠𝑂𝑏𝑠௩(𝑑௩) is observation probability for 𝑑௩ (vertical axis on Figure 9.8). 

Based on the MAP rule, the most probable sequence 𝑑଴, 𝑑ଵ, 𝑑ଶ, … , 𝑑௏ିଵcan be found: 

𝑑଴, 𝑑ଵ, 𝑑ଶ, … , 𝑑௏ିଵ = 𝐴𝑟𝑔𝑀𝑎𝑥ௗబ ,ௗభ ,ௗమ,…,ௗೇషభ
൫𝑃(𝑑଴, 𝑑ଵ, 𝑑ଶ, … , 𝑑௏ିଵ)൯  (9.2) 

Among multiple algorithm available in literature, the Viterbi algorithm [Vi67] has been used in the 
dissertation. As the probabilities can be expressed in logarithmic scale, the 𝐺𝑜𝑎𝑙 function to be 
maximized is defined as follows:  

𝐺𝑜𝑎𝑙(𝑑଴, 𝑑ଵ, 𝑑ଶ, … , 𝑑௏ିଵ) = log൫𝑀𝐴𝑃(𝑑଴, 𝑑ଵ, 𝑑ଶ, … , 𝑑௏ିଵ)൯ =

= ෍ log ൫𝑇𝑟𝑎𝑛𝑠𝑃𝑟𝑜𝑏௩→௩ାଵ(𝑑௩ , 𝑑௩ାଵ)൯

௏ିଶ

௩ୀ଴

 + ෍ log൫𝑂𝑏𝑠𝑃𝑟𝑜𝑏௩(𝑑௩)൯ .

௏ିଵ

௩ୀ଴

 
(9.3) 

With HMM defined as above, a novel global optimization algorithm for CTU partitioning is 
proposed. Thus, the observation probabilities are the probabilities estimated with ANN (𝐷𝑇௩[𝑖, 𝑗, 𝑑] 𝑑 ∈

[0; 𝐷 − 1]), so: 

log൫𝑂𝑏𝑠𝑃𝑟𝑜𝑏𝑣(𝑑𝑣)൯ = log(𝐷𝑇𝑣[𝑖, 𝑗, 𝑑𝑣]). (9.4) 

The transition probabilities are calculated with the Potts Cost function [Ge84], defined as follows: 

𝑙𝑜𝑔൫𝑇𝑟𝑎𝑛𝑠𝑃𝑟𝑜𝑏௩→௩ାଵ(𝑑௩ , 𝑑௩ାଵ)൯ = ൜
0, 𝑖𝑓 |𝑑௩ − 𝑑௩ାଵ| = 0
𝜆, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (9.5) 

Such an estimated sequence should favor choosing the same depth level value and add additional cost 
when the depth level value is changed. Thus, the method aims to find such a set of depth level values 
that will suppress the context disturbance caused by inaccurate predictions of the ANN in consecutive 
blocks. 

Execution of Viterbi algorithm for particular HMM for indices 𝑖, 𝑗, results in a sequence of depth 
level 𝑑଴, 𝑑ଵ, 𝑑ଶ, … , 𝑑௏ିଵ for each CTU index 𝑣. These depth levels are then packed into Division 
Matrices (DM) such that: 𝐷𝑀௩[𝑖, 𝑗]  =  𝑑௩. The process is repeated independently for each 𝑖, 𝑗, so that 
partitioning patterns for each CTU in the image 𝐷𝑀௩[𝑖, 𝑗] are attained. 

Unfortunately, these DM may be non-conformant with HEVC syntax. Therefore, each DM is 
processed by the correction algorithm, similar to the hard-decisive variant of AlgIdx (Subsection 7.2.1). 
This correction algorithm follows the same procedure as defined in Section 7.1, but the DM is processed 
instead of DT. The input DM is referred to as DM௜௡௣௨௧  and output DM is referred to as DM௢௨௧௣௨௧ , 
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starting from current depth level 𝑐𝑑𝑙 = 0 , 𝑁 ×  𝑁 equal the size of DT, 𝑚 = 0 , 𝑛 = 0. The algorithm 
defines the steps of the procedure as follows: 

Procedure: 𝑨𝒍𝒈𝑮𝒍𝒐𝒃𝒂𝒍(𝒄𝒅𝒍, 𝑵, 𝒎, 𝒏): 

1. Denote the area A௠,௡,ே of the current block inside of DM௜௡௣௨௧[𝑖, 𝑗] and DM௢௨௧௣௨௧[𝑖, 𝑗] as 
specified by the indices 𝑚, 𝑛 and the size 𝑁, as in Formula 9.6 (the same as in Section 7.1, 
Formula 7.1). 

A௠,௡,ே =  {(𝑖, 𝑗) | 𝑖 ∈ [𝑚; 𝑚 + 𝑁 − 1],   𝑗 ∈ [𝑛; 𝑛 + 𝑁 − 1]}. (9.6) 

2. Analyze the DT values in the denoted area A௠,௡,ே, e.g. DM௜௡௣௨௧[𝑖, 𝑗], (𝑖, 𝑗) ∈ A௠,௡,ே. 

o If 𝑁 is equal 1, set DM௢௨௧௣௨௧[𝑚, 𝑛] ← 𝑐𝑑𝑙 and terminate the algorithm. 
o Calculate the 𝐶ீ  value defined as follows:  

𝐶𝐺 =
1

𝑁2
∙ ෍ Iv൫DM௜௡௣௨௧ [𝑖, 𝑗] = 𝑐𝑑𝑙൧൯

(𝑖,𝑗)∈A𝑚,𝑛,𝑁

, (9.7) 

where Iv(∙) is the Iverson function [Fo99], such that Iv(𝑡𝑟𝑢𝑒) = 1 and Iv(𝑓𝑎𝑙𝑠𝑒) = 0. 
3. Make decision according to the analysis of the considered DT area A௠,௡,ே: 

o If 𝐶ீ  >  0.5, fill the values in DM corresponding to the area of the current block 
with 𝑐𝑑𝑙 (Formula 7.2), and terminate the recursion. 

o Otherwise: Recurse the procedure for next depth level 𝑐𝑑𝑙 + 1. Split the block 
following the quaternary tree (Figure 7.1) and perform recursive call for each 
subdivided block as in Formula 7.3 using 𝑨𝒍𝒈𝑮𝒍𝒐𝒃𝒂𝒍 procedure. 

The proposed global optimization algorithm was implemented in Modified HM and tested with the 
Basic Architecture (Section 5.1). The method was evaluated for Potts cost (λ) in the range 〈0; 0.9〉 with 
the step of 0.1. The method was evaluated on images used for training (cropped DIV2k dataset, Section 
4.2) and test sequences (Section 3.5). The evaluation results for the global optimization algorithm are 
presented in Table 9.13. For comparison, Table 9.13 includes the evaluation results for the proposed 
partitioning algorithm with the Basic Architecture and hard-decisive variant of both AlgIdx (Subsection 
7.2.1) and AlgPrb (Subsection 7.2.2). The evaluation of the models was performed according to 
description in Section 3.1. The presented results are relative to HM. 
 

Table 9. 13. Evaluation results (bitrate and quality) for the global optimization algorithm (AlgGlobal) 
with the use of Basic Architecture. The presented results are relative to HM. 

Transition Cost value 
(λ) in AlgGlobal  

DIV2K Training DIV2K Validation JCT-VC 
𝑩𝑫-𝑹𝑨𝑻𝑬 

[%] 
𝑩𝑫-𝑷𝑺𝑵𝑹 

[dB] 
𝑩𝑫-𝑹𝑨𝑻𝑬 

[%] 
𝑩𝑫-𝑷𝑺𝑵𝑹 

[dB] 
𝑩𝑫-𝑹𝑨𝑻𝑬 

[%] 
𝑩𝑫-𝑷𝑺𝑵𝑹 

[dB] 
0 1.48 -0.068 2.07 -0.082 1.79 -0.088 

0.1 1.44 -0.067 1.90 -0.080 1.78 -0.088 
0.2 1.52 -0.070 1.94 -0.083 1.79 -0.088 
0.3 1.52 -0.071 2.13 -0.089 1.83 -0.090 
0.4 1.65 -0.076 2.14 -0.091 1.88 -0.092 
0.5 1.74 -0.083 2.25 -0.090 1.94 -0.095 
0.6 1.81 -0.084 2.28 -0.098 2.00 -0.098 
0.7 1.80 -0.083 2.41 -0.102 2.07 -0.102 
0.8 1.82 -0.085 2.38 -0.099 2.14 -0.105 
0.9 1.94 -0.090 2.24 -0.094 2.21 -0.109 

For comparison: Local optimization solutions proposed in Section 7.2 
AlgIdx 1.45 -0.069 1.73 -0.075 1.86 -0.091 
AlgPrb 1.34 -0.066 1.78 -0.075 1.80 -0.089 
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Due to similarities, the results of the proposed global optimization algorithm are discussed in 
comparison to AlgIdx. A saddle effect is observed regardless of the evaluated dataset, as the best results 
are observed for the Transition Cost λ value of 0.1. Besides that, the evaluation results differ for DIV2k 
and test sequences. Given the DIV2k dataset, the 𝐵𝐷-𝑅𝐴𝑇𝐸 and 𝐵𝐷-𝑃𝑆𝑁𝑅 are worse for the global 
optimization algorithm, regardless of cost value. This observation applies to both Training and 
Validation subsets. The exception is Training Subset and the Transition Cost λ value of 0.1, where the 
results are almost the same. This means that the model is closely fitted to the content of the DIV2k 
images, so any change in the decisions causes a bitrate increase. However, the situation is different for 
test sequences. For the smallest Transition Cost λ values (0, 0.1, 0.2, and 0.3), the proposed global 
optimization algorithm is significantly better (up to 0.08 p.p. in 𝐵𝐷-𝑅𝐴𝑇𝐸 and 0.003 dB in 𝐵𝐷-𝑃𝑆𝑁𝑅) 
compared to Basic Architecture with the hard-decisive AlgIdx. Such improvement is very close to the 
0.1 p.p. evaluation result increase criterion, defined for model hyperparameter search (Subsection 4.6.3)  

Since the information of ANN certainty is lost in the proposed global optimization algorithm, the 
comparison to AlgPrb is not fair. A version of global optimization algorithm that will preserve such 
information of ANN certainty is a topic for future research. Still, the results of the proposed global 
optimization algorithm are marginally better for test sequences (for λ =0.1: 0.02 p.p. in 𝐵𝐷-𝑅𝐴𝑇𝐸 and 
0.001 dB in 𝐵𝐷-𝑃𝑆𝑁𝑅) compared to AlgPrb. 

The results of the proposed method prove that global optimization of partitioning patterns may 
improve the bitrate of encoded sequences. Such global optimization may be applied with any method 
that independently estimates the partitioning patterns for each CTU. It should be noted that the method 
presented in this section is one of the many approaches for global optimization tested during the 
research. However, it is the only one that yields improvement.  

The encoding time reduction (Time Savings: 𝑇𝑆, Formula 3.3) for the best performing Transition 
Cost λ values (0, 0.1, 0.2, and 0.3) is shown in Table 9.14. The evaluation of the models was performed 
according to description in Section 3.1. The presented results are relative to HM and represent the mean 
results over all test sequences (Section 3.5). The presented results are the mean over all sequences and 
QP values. Results for AlgIdx and AlgPrb are included for comparison. 

The proposed global optimization requires the estimation of partitioning patterns for all CTUs 
before any of these may be used. In a single-threaded implementation, the proposed algorithm for global 
optimization in terms of 𝑇𝑆 performs similarly to the Basic Architecture with decision algorithms 
presented in Chapter 7. The difference is no more than 5.1 p.p. Therefore, the ANN allows the global 
optimization of the CTU partitioning at a negligible computational complexity cost. However, the 
multithreaded implementation proposed in Section 8.1 will not improve the 𝑇𝑆, as the estimation of 
partitioning patterns could not be computed parallelly to the rest of the encoder computations. Still, the 
topic of global optimization of the CTU partitioning remains a very promising direction for further 
research.  
 

Table 9. 14. Evaluation results (encoding time reduction) for the global optimization algorithm with 
the use of Basic Architecture. Presented results are relative to HM. 

Transittion Cost value (λ) 
JCT-VC 
𝑻𝑺 [%] 

0 51.56 
0.1 51.00 
0.2 51.52 
0.3 50.98 

For comparison: Local optimization solutions proposed in Section 7.2 
AlgIdx 56.08 
AlgPrb 54.20 
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10 Dissertation summary 
This dissertation presents research on video encoder control algorithms, more precisely, 

partitioning algorithms that are used in decision optimization processes for video encoders. The main 
goal was the development of a partitioning algorithm that significantly reduces encoding time while 
maintaining compression efficiency as close to the reference encoder as possible. Such a partitioning 
algorithm derives the partitioning pattern using the ANN model and decision algorithm. The 
experimental part was performed in the context of HEVC video coding technology in Intra mode. 

In Section 1.3, two research theses were stated, and for both, scientific evidence has been 
provided in this dissertation. The summary of these proofs is presented in Section 10.1. Additionally, 
the dissertation presents additional research achievements, recapped in Section 10.2. Furthermore, the 
work done during the research is overviewed in Section 10.3. Lastly, Section 10.4 presents conclusions 
from the dissertations and topics for future research.  

10.1 Original achievements related to theses 
10.1.1 The first thesis 

The first thesis (T1) stated in this dissertation is “The utilization of the Artificial Neural Network 
with a decision algorithm can significantly decrease the computational complexity of the video 
encoder as compared to HEVC reference model encoder.” 

In this dissertation, two approaches for partitioning algorithms were explored (Chapter 4): Basic 
Approach, which considers only partitioning CTU block into CU blocks, and Extended Approach, which 
additionally indicates the PU division. The proposed partitioning algorithms use ANN to estimate the 
whole partitioning pattern at once. Two novel ideas were devised:  

 ANN estimates probabilities of depth level values. These probabilities are outputted as 3D 
tensor. 

 Non-trivial decision algorithms that process the ANN output. 

As the ANN model, original architecture was developed. The idea for the ANN was to mimic the 
quaternary tree in the alignment of the layers. Thus, it was used to create Basic (Chapter 5) and Extended 
(Chapter 6) architectures, which were used in the corresponding approaches. The output of the ANN is 
a 3D tensor, which consists of depth level probability vectors for specific subareas in the CTU. The 
proposed networks are very small regarding the number of weights (~91k) and low complex regarding 
the MAC operation count (~6M for Basic and ~8M for Extended). This was confirmed in comparison 
with models used in ANN-based state-of-the-art methods (Section 8.2). It was emphasized that the 
partitioning pattern obtained directly from the ANN may be non-conformant with HEVC syntax 
(e.g., it may represent non-rectangular blocks).  

In addition to the mentioned two approaches for partitioning with ANNs, two decision algorithms 
were proposed: AlgIdx (Subsection 7.2.1) and AlgPrb (Subsection 7.2.2). AlgIdx is a straightforward 
approach designed similarly to methods found in the literature. AlgPrb employs the author’s idea 
for leveraging the certainty of the ANN by adequately interpreting the depth level probabilities.  

Initially, algorithms were considered in hard-decisive variants, where the decision algorithm 
always outputs a single partitioning pattern. For AlgPrb, significant encoding time reduction (Time 
Savings: 𝑇𝑆, Formula 3.3) is achieved (~55% for the Basic Approach and ~70% for the Extended 
Approach) with a slight increase in 𝑩𝑫-𝑹𝑨𝑻𝑬 (1.8% for Basic Approach and 3.44% for Extended 
Approach). AlgPrb outperforms AlgIdx in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸: 0.06 p.p. in the Basic Approach and 
0.22 p.p. in the Extended Approach. However, the hard-decisive variants of the algorithms do perform 
worse than state-of-the-art methods.  
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During further research, more sophisticated, soft-decisive variants of decision algorithms were 
developed (Section 7.3), where more than one partitioning pattern can be implied, according to the 
output of the ANN. Algorithms are controlled with a single parameter (α for AlgIdx and β for AlgPrb). 
With this variant of the decision algorithms, the best results are achieved for the author’s AlgPrb 
algorithm:  

 Basic Approach: 𝑇𝑆 of 55.50% and 𝐵𝐷-𝑅𝐴𝑇𝐸 of 1.23% (for 𝛽 = 0.45). 
 Extended Approach: 𝑇𝑆 of 62.02% and 𝐵𝐷-𝑅𝐴𝑇𝐸 of 1.71% (for 𝛽 = 0.45). 

Compared to state-of-the-art methods in Chapter 8, the proposed partitioning algorithms are 
superior with respect to the trade-off between Encoding Time vs Compression Efficiency (𝑇𝑆 vs. 
𝐵𝐷-𝑅𝐴𝑇𝐸). The proposed partitioning algorithms are better in terms of 𝐹𝑜𝑀 by 0.64 for the Basic 
Approach and 0.12 for the Extended Approach. Therefore, the T1 is proven. The described methods 
and results were published in the paper [Lo24]. 

10.1.2 The second thesis 

The second thesis (T2) stated in this dissertation is “The employment of Artificial Neural 
Network with a soft-decision algorithm enables a single parameter control over the Encoding 
Time vs Compression Efficiency trade-off.” 

One of the main achievements of this dissertation is the development of the soft-decisive variants 
of the decision algorithms (Section 7.3). In soft-decisive variants of decision algorithms (Section 7.3), 
more than one partitioning pattern is implied, according to the output of the ANN. The certainty of the 
ANN is regulated according to estimated depth level probabilities. This regulation is controlled with a 
single parameter (α for AlgIdx and β for AlgPrb), which impacts how often a set of partitioning patterns 
is indicated (instead of a single partitioning pattern).  

For the soft-decisive variants of the decision algorithms, the following tendencies are expected:  

 Checking multiple partitioning patterns improves compression efficiency but at the cost of 
encoding time.  

 Considering only one partitioning pattern reduces the encoding time, but the bitrate is increased.  

However, a decision algorithm that is too straightforward is disturbing these tendencies, as the 
certainty of the ANN model is leveraged insufficiently. This was observed for AlgIdx algorithm 
(Subsection 7.3.3), where for the soft-decisive variant, the saddle effect was observed in results, along 
with small changes in encoding time reduction (Time Savings: 𝑇𝑆, Formula 3.3) and 𝐵𝐷-𝑅𝐴𝑇𝐸. 
Furthermore, the computational complexity of partitioning patterns is not identical, as was shown 
in Subsection 7.3.1. As observed for Basic Architecture (Section 5.1) with soft-decisive AlgPrb: in case 
of low ANN certainty, checking two less computationally complex blocks is more efficient than 
using a single, more computationally complex one. In this case, the soft-decisiveness of the algorithm 
improved the 𝐵𝐷-𝑅𝐴𝑇𝐸, maintaining the 𝑇𝑆. 

The abovementioned tendencies were observed for the Extended Architecture with the soft-decisive 
AlgPrb. As the β increases, a monotonic increase of 𝐵𝐷-𝑅𝐴𝑇𝐸 is observed, with a monotonic decrease 
of 𝑇𝑆 (Subsection 7.3.3). Therefore, the proposed partitioning algorithm offers control over the 
Encoding Time vs Compression Efficiency trade-off (𝑇𝑆 vs. 𝐵𝐷-𝑅𝐴𝑇𝐸). 

The proposed soft-decisive variants of the decision algorithms were compared with the state-of-the-art 
solutions in Sections 8.2 and 8.3. Considering the aspect of control, the proposed method is much 
easier to manage than methods found in the literature. The proposed method employs a single 
control parameter, as opposed to a set of thresholds estimated with a heuristic model [Hu21B] or 
evolution algorithm [Ch20]. Considering the effectiveness of the algorithm, the proposed Extended 
algorithm with AlgPrb in the soft-decisive variant proved to be superior compared to the best 
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method found in the literature [Hu21B] by 0.53 p.p. in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸 and 1.95 p.p. in terms of 
𝑇𝑆. Such a gain in the context of video coding is considerable. Therefore, the T2 is proven. The 
described methods and results were published in the paper [Lo24]. 

10.2 Additional original achievements of the dissertation 

1. Supporting results for Thesis T1. Exploratory experiments that examine various aspects of the 
developed methods are presented. These research directions do not introduce new scientific theses 
but support the proof of thesis T1. The attained results also expand the state of knowledge with new 
results. 

a. Performance of the proposed models and decision algorithms in additional content. 
Proposed ANN architectures with AlgPrb were tested for content that was not considered 
during the development of ANN architecture and decision algorithm. It was shown in Section 
9.2 that for the additional context (Section 3.5), the proposed partitioning algorithm 
performed ~1 p.p. worse in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸. However, the decision algorithm in the soft-
decisive variant still offered control over the ETvsCE trade-off in most cases.  

b. Serial variants for proposed ANN architecture. The proposed ANN architectures employ 
a quaternary-tree-like arrangement of layers, as shown in Section 5.1 and 6.1. In Section 9.3, 
the reduced gradient flow in the training phase was identified, which limits the model 
performance in the evaluation. A serial network variant was proposed to fix this issue. It was 
presented in Section 9.3 that using the Serial variant of the architecture allows training a 
model with reduced size (42 832 instead of 91 600) and complexity (0.3M less MAC 
operations) but with almost the same performance as the Basic Architecture (Section 5.1). 
This part of the research was published in the paper [Lo23]. 

2. A novel metric for comparison of the partitioning algorithms that offer the control of the 
Encoding Time vs Compression Efficiency (ETvsCE) trade-off. This metric has been developed 
during works in the dissertation related to the author’s algorithm for partitioning patterns estimation 
with controllable ETvsCE trade-off (thesis T2). Preliminarily, the superiority of the proposed 
algorithm was demonstrated with a graphical comparison (Section 8.3). It was highlighted that in 
the literature, no method was found for numerical comparison of such partitioning algorithms, as 
discussed in Section 3.4. Therefore, the author's metrics were proposed: ΔBD-RATE|୘ୗ and 
ΔTS|୆ୈ-ୖ୅୘୉ (Section 3.4). The values of proposed metrics were calculated along with the graphical 
comparison of the methods with control over the ETvsCE trade-off. As discussed in Section 8.3, 
the results of the proposed metrics accurately reflect the observations from the graphical 
comparison. Therefore, the proposed metrics can be used interchangeably with the graphical 
comparison, as it only expresses what can be readily observable with the proposed metrics. 

3. Research on contextuality and chaos in the decision-making process in video encoders. 
a. An original experiment to determine the impact of contextuality and chaos in decision-

making in a video encoder. As discussed in this dissertation (Section 2.1, Subsection 2.3.2, 
Section 9.5), the decision-making process highly depends on the encoding context. Thus, this 
process can be considered chaotic. No study on this effect or scale of the phenomenon was 
found in the literature. Therefore, in this dissertation, a simple experiment was proposed 
to measure the impact of contextual effects on partitioning decisions (Section 9.5). In the 
proposed experiment, two scenarios are tested, namely adding random noise of small RMS, 
as well as modification of precisely defined sample by 1. It was shown that even for very 
small added noise (effectively several samples modified), as much as 65.43% of partitioning 
patterns were decided differently. Additionally, modifying a single sample can change 10.8% 
of partitioning patterns. Thus, the scale of the contextual effects was determined using the 
proposed experiment. 

b. Use of contextual data in ANN architecture for partitioning prediction. The impact of 
even negligible changes on the decision-making process was determined with the proposed 
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experiment (Section 9.5). Therefore, a modification for ANN was proposed (Section 9.6), 
which processes additional data to consider the current encoding. Such contextual data was 
identified, and the modification was applied to Basic Architecture. An increase in training 
accuracy was observed, but the evaluation results deteriorated. It was noted that for the 
model trained to mimic the decisions of HM, the partitioning pattern that is chosen differently 
has an increasing negative impact as the overall accuracy of prediction increases. This part of 
the research was published in the paper [Lo21]. 

c. The method for ground truth data augmentation by utilization of noise. Considering the 
methods from the literature used for comparison with the proposed method (Chapter 8), in 
most cases, the authors reported better accuracy of models, which was achieved with bigger 
training datasets. Still, the proposed partitioning algorithm was assessed as superior in the 
evaluation on test sequences. This indicates the same effect observed for contextual data use 
in the ANN model (Section 9.6). Thus, dataset size increase and data augmentation 
methods from machine learning were found to be ineffective. It was concluded that instead 
of mimicking the HM partitioning decisions, it is better to train the model with multiple, 
similar performing partitioning patterns. The original ground truth data augmentation 
method was proposed (Section 9.7). The model is trained with multiple partitioning patterns 
for the same CTU samples. Partitioning patterns for a given CTU are determined by encoding 
images with slightly different noise realizations. The training procedure for the model was 
defined (Section 9.7). It was shown that models trained with the proposed method perform 
better in evaluation (~0.9 p.p. in terms of 𝐵𝐷-𝑅𝐴𝑇𝐸). 

4. Proposed global optimization algorithm for partitioning patterns. The proposed partitioning 
algorithms use the ANN, which only processes samples from currently processed CTU (in 
particular, luma samples). It was discussed in Section 9.8 that such a method allows independent 
estimation of partition patterns for each CTU in the encoding scope. Therefore, the 
independence of observations allows the creation of Hidden Markov Model (HMM) [Ba66] for 
specific subareas in consecutive CTUs (Section 9.8). Then, the globally optimized solution can be 
found using the Viterbi algorithm [Vi67]. This global optimization returns the partitioning 
patterns, which are non-conformant with HEVC syntax. Thus, a straightforward correction 
algorithm is used, similar to the proposed AlgIdx in the soft-decisive variant. The global 
optimization achieved better results by 0.08% in 𝑩𝑫-𝑹𝑨𝑻𝑬 and 0.003 dB in 𝑩𝑫-𝑷𝑺𝑵𝑹, 
compared to the proposed AlgIdx in the hard-decisive variant. It should be noted that ordinary 
global optimization of CTU partitioning is practically impossible to perform due to computational 
complexity (Subsection 2.3.1), even for small images consisting of few CTUs. However, the 
proposed global optimization algorithm does not substantially increase the encoding time, 
especially when paired with methods presented for thesis T1. Compared to hard-decisive variant of 
AlgIdx (Section 7.2.1), a ~5 p.p. worse encoding time reduction (Time Savings: 𝑇𝑆, Formula 3.3) 
is observed. 

5. Implementation of the Modified HM. The proposed partitioning algorithm was evaluated using 
the author's HM [HM] modification. The software allows the fast implementation of the 
partitioning algorithm, including ANN-based, without influencing the rest of the decision-
making algorithms in the HM (Subsection 2.3.2). The description of the Modified HM is 
presented in Section 4.7. This software was shared in open-access with paper [Lo24]. The 
availability of this software significantly reduces the time it takes to begin research on partitioning 
algorithms. This is important because implementing ANN in HM is a significant entry work, 
blocking many researchers in this field. The amount of work needed to implement the modifications 
is outlined in the following section. 

10.3 Overview of the work done 

The research work presented in this dissertation required preparation of the following software:  
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 The Modified HM – the modification of the HM encoder and decoder [HM], described in 
Section 4.7. The HM software (~93 thousand code lines in C++ [CPP]) was analyzed, including 
the scripts for building the project. Implementing all necessary modifications and algorithms 
required adding or modifying ~3000 lines of code. The LibTorch [LIBTORCH] library has also 
been added to the software.  

 Preparation of the original software, e.g., image conversion, training dataset preparation, 
training dataset analysis, model training (TenforFlow [TENSORFLOW]), model conversion 
(PyTorch [PyTorch]), and results analysis, which consist of ~25 000 lines of Python code.  

Along with the code, a significant part of the work done is connected to dataset preparation and 
analysis. The DIV2k dataset [Ag17] was encoded and processed multiple times: separate datasets for 
each QP included in CTC [CTCHEVC], experiments with small noise added, and modification of single 
sample in the picture presented in Section 9.5, preparation of datasets for Basic Approach, Extended 
Approach and architecture with contextual data modification. The size of data used for training the 
models was almost 1 TB.  

Another significant part of the work done is the training of the models. Overall, ~500 training 
experiments were performed according to the strategy presented in Section 3.7. This results in ~2000 
trained models (4 models for each experiment). The models from each training experiment were then 
analyzed with metrics described in Subsection 3.6.1. Further, the trained models were evaluated on test 
sequences with proposed decision algorithms. This evaluation was performed for ~50 training 
experiments. It should be mentioned that selected models were evaluated for each decision algorithm in 
both hard and soft-decisive variants (20 evaluations per model). Lastly, the best-performing models 
were evaluated using the complete time assessment procedure presented in Section 3.3. In order to store 
the experiment data (models, model assessment data, encoder configurations, encoded bitstreams, 
encoding logs), ~8 TB of mass storage was required.  

As mentioned in Section 3.7, computations were performed using a computing cluster. However, 
it would be imprecise to determine computation time regarding the use of this cluster (hardware changes 
made during the research, different specifications of the components). Therefore, the computation time 
was estimated referring to continuous single-threaded computations. Depending on the task, 
computations required CPU or both CPU and GPU. Computation time was estimated depending on the 
tasks:  

 Preparing all training datasets required ~1200 days of continuous computations (CPU). 
 Training and assessment of models required ~2000 days of continuous computations (CPU and 

GPU) 
 Evaluation of the models and decision algorithms on test sequences required ~3000 days of 

continuous computing (CPU). 
 Time assessment of selected models required ~600 days of continuous computing (CPU). 

The above estimates sum up to ~4800 days of single-threaded continuous computations using CPU and 
~2000 days of single-threaded continuous computations using CPU with GPU. Thus, performing the 
computations was possible only by employing a cluster of machines with a multi-threaded CPU and a 
GPU. Considering a cluster of six machines, each with 12 CPU threads and a single GPU, the overall 
computation time is estimated as ~70 days for computation that required only CPU and ~334 days for 
computation that required both CPU and GPU. This estimation does not include the availability of 
cluster, supervision of the machines, and experiment preparation. 

10.4 Future research topics 

The observations and conclusions made in this dissertation can be further used in developing a 
partitioning algorithm for more advanced video encoding methods. Most of these topics yielded very 
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interesting observations and promising results. Thus, these subjects will be explored in future works in 
the following research directions:  

 Adaptation of the proposed partitioning algorithm to the Inter mode, by e.g. training models 
with dedicated dataset for Inter mode, adjustments of the model to the PU division in Intra 
model, modification of the model to include data related to temporal dependencies in video 
sequence. Preliminary results for this research direction were published in the paper [Lo24]. 

 Adaptation of the proposed algorithm to more advanced video coding techniques, such as 
VVC [VVC] 

 Further development of the ANN architecture. The most promising directions are:  
o Application of ANN architectures as ResNet [He16], DenseNet [Hu17], Visual 

Transformer [Do20]. 
o Analysis of the training dataset in terms of size and content, further analysis of image 

content on the ANN performance.  
o Development of architectures tailored to specific QP values or single architecture for 

all QP values. 
o Research over approach for training, different than mimicking RD Optimization, 

regarding the contextuality of the partitioning. Promising options are, e.g. further 
development of the proposed ground truth augmentation method, the use of 
Reinforcement learning, etc. 

o Development of an architecture that internally models the contextuality of the 
partitioning, e.g. RNN , LSTM [Go16, Sh20]. 

 Further development on decision algorithms, concerning better use of ANN output and wider 
control over the Encoding Time vs Coding Efficiency trade-off. 

 Research on a global partitioning optimization algorithm, e.g. redefining Hidden Markov Model 
(HMM), applying different cost methods, and training of dedicated ANN for this algorithm. 

 Optimization of the Modified HM implementation, use of efficient ANN frameworks, and 
development of multi-threaded implementation such as proposed double-threaded (Section 8.2).  

10.5 Conclusions 

It can be concluded that the dissertation explored encoding control algorithms, focusing on 
partitioning pattern estimation. The research aimed to design a partitioning algorithm using an ANN 
model and a non-trivial decision algorithm. Two approaches — Basic and Extended — were proposed 
with corresponding ANN architectures. Additionally, two decision algorithms, AlgIdx and AlgPrb, were 
introduced in soft and hard-decisive variants.  

It was shown that proposed partitioning algorithms for both presented approaches are superior, in 
terms of 𝐵𝐷-𝑅𝐴𝑇𝐸 or encoding time reduction, to solutions found in the literature. The proposed AlgPrb 
in the soft-decisive variant allowed easy control over the Encoding Time vs Coding Efficiency trade-
off. Both theses stated in this dissertation were confirmed. Therefore, it was shown that the proposed 
algorithm, which is composed of the ANN and non-trivial decision algorithm, is the most efficient 
among those found in the literature.  

 Along with the main achievements, several additional research directions were explored. The 
subject of contextual effect on encoding decisions was investigated. The ANN models that process 
additional contextual data were proposed and evaluated. The ground truth augmentation method was 
proposed and tested. A decision algorithm for global optimization of partitioning patterns was designed 
and evaluated.  

Finally, topics for future work have been discussed. Some of the above-mentioned ideas are already 
being investigated by the author. The results are expected to be attained in the upcoming months and 
years. 
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