
POZNAN UNIVERSITY OF TECHNOLOGY

FACULTY OF COMPUTING AND TELECOMMUNICATIONS

INSTITUTE OF RADIOCOMMUNICATIONS

Optimization of Energy Efficiency in Fog
Computing with Latency Constraints

DOCTORAL DISSERTATION

AUTHOR: BARTOSZ KOPRAS

SUPERVISOR: HANNA BOGUCKA

AUXILIARY SUPERVISOR: FILIP IDZIKOWSKI

September 30, 2024,
Poznań, Poland

Abstract

Motivated by increased mobile communication traffic, a vast amount of data processing and asso-
ciated energy consumption, as well as strict latency requirements, the author of this thesis presents
his research on energy consumption minimization in fog computing networks that distribute com-
munication and computation services along the cloud-to-end-devices continuum. Task execution
latency constraints are also considered.

The thesis of this dissertation is the following: There exist optimal solutions to computational
task offloading problems in fog networks, minimizing energy consumption while maintaining re-
quired latency levels. The main goal of the thesis is to propose such solutions.

After the state-of-the-art research on energy-aware fog computing networks is analyzed, the
author’s original contributions to solving the problem of communication and computing task allo-
cation in fog networks are presented. First, the author focuses on modeling the delay and energy
consumption within the fog and cloud tiers of the network. Models are parameterized using values
representing real-world equipment for communication and computing resources and diverse user
requests. Results presenting the impact of different core network parameters on energy consump-
tion and delay in fog computing networks are shown for various parameter setups.

Then, the author formulates an optimization problem to find an assignment of offloaded tasks
to nodes in the fog and cloud tiers that minimize energy consumption while keeping their delay
requirements. The objective function includes energy costs related to transmission and comput-
ing, while the optimization space includes choice of Fog Nodes (FNs) and Cloud Nodes (CNs)
executing the tasks as well as their Central Processing Unit (CPU) frequencies. Two solutions,
called Energy-EFFicient Resource Allocation (EEFFRA) and Low Complexity (LC)-EEFFRA,
to this non-convex optimization problem are proposed. The simulation results for various input
parameters are provided and compared against the benchmark algorithms.

Next, the fog-network model is expanded by including the wireless transmission between Mobile
Devices (MDs) and FNs. It has an impact on the objective function and constraints, and adds a
new set of decision variables. Despite this, an analytical solution to the optimization problem is
found. The results are examined for various input parameters and compared against those achieved
by the baseline solutions.

Finally, the author explores the offloading of tasks modeled as sequential graphs. These tasks
consist of smaller subtasks, each of which can be processed at a different node. The optimization
problem is still about minimizing energy consumption and maintaining the required delay while
the proposed solution involves clustering similar nodes to significantly reduce the size of the search
space.

The major conclusion of this dissertation is that the author’s original solutions can significantly
reduce energy consumption in the fog network with latency constraints compared with standard
cloud-delegation practices. Key parameters, such as arithmetic intensity, are identified and their
impact on the efficiency of offloading solutions is shown through the results of multiple simula-
tions.

i

Streszczenie

Motywowany zwiększonym ruchem w komunikacji mobilnej, rosnącą skalą zbierania i analizy
danych oraz związanym z nią zużyciem energii, a także wymaganym gwarantowanym opóźnie-
niem zadań komunikacyjnych i obliczeniowych, autor niniejszej pracy przedstawia swoje badania
nad minimalizacją zużycia energii w architekturach sieciowych typu mgła obliczeniowa, które
dystrybuują komunikację i usługi obliczeniowe w kontinuum pomiędzy chmurą obliczeniową a
urządzeniami końcowymi. Uwzględnia także wymagania związane z zadanymi ograniczeniami
opóźnień w wykonywaniu zadań.

Teza tej rozprawy jest następująca: Istnieją optymalne rozwiązania problemów związanych z
odciążaniem urządzeń końcowych i przekazywaniem zadań obliczeniowych do sieci mgłowych,
minimalizujące zużycie energii przy jednoczesnym zachowaniu wymaganych opóźnień. Głównym
celem pracy jest zaproponowanie takich rozwiązań.

Po omówieniu aktualnego stanu wiedzy na temat energetycznie oszczędnych sieci typu mgła au-
tor przedstawia swój oryginalny wkład w rozwiązanie problemów przydziału zadań obliczeniowych
w tej sieci. W pierwszej kolejności autor koncentruje się na modelowaniu opóźnień i zużycia en-
ergii w warstwach mgły i chmury. Modele są parametryzowane przy użyciu wartości reprezentu-
jących rzeczywisty sprzęt sieciowy i komputerowy oraz przy założeniu wystepowania różnorod-
nych rodzajów zadań obliczeniowych. Przedstawiono wyniki wpływu różnych konfiguracji tych
parametrów na zużycie energii i opóźnienia.

Autor formułuje problem optymalizacyjny w celu znalezienia takiego przypisania zadań do
węzłów w warstwach mgły i chmury, które minimalizuje zużycie energii przy jednoczesnym za-
chowaniu wymagań dotyczących opóźnień. Funkcja celu obejmuje zużycie energii na transmisję
i obliczenia, natomiast przestrzeń optymalizacyjna obejmuje węzły realizujące zadania oraz częs-
totliwości ich jednostek centralnych (CPU). Zaproponowano dwa rozwiązania tego niewypukłego
problemu optymalizacji, zwane Energy-EFFicient Resource Allocation (EEFFRA) i Low Com-
plexity (LC)-EEFFRA. Przedstawiono wyniki symulacji dla różnych parametrów wejściowych i
porównano je z wynikami wzorcowymi.

Następnie model sieci mgłowej jest rozwijany poprzez uwzględnienie w rozważaniach opty-
malizacyjnych transmisji bezprzewodowej pomiędzy urządzeniami końcowymi a węzłami mgły.
Wpływa to na funkcję celu (przez dodanie energii zużytej na transmisje) i ograniczenia (przez
dodanie opóźniej). Ponadto przestrzeń rozwiązań jest powiększona o dodatkowy zbiór zmien-
nych. Zaproponowano analityczne rozwiązanie problemu optymalizacyjnego, a uzyskane wyniki
porównywano z rozwiązaniami bazowymi.

Na koniec autor bada modelowanie przenoszenia zadań obliczeniowych do mgły za pomocą
skierowanych grafów acyklicznych. Zadania te składają się z podzadań, z których każde może być
przetwarzane w innym węźle mgły. Problem optymalizacyjny to nadal minimalizacja zużycia en-
ergii przy utrzymaniu wymaganego opóźnienia. Proponowane rozwiązanie polega na grupowaniu
podobnych węzłów w celu znacznego ograniczenia przestrzeni poszukiwania optimum.

Głównym wnioskiem z przedstawionych badań jest to, że oryginalne rozwiązania autora mogą

iii

Streszczenie

znacznie zmniejszyć zużycie energii w sieci mgłowej przy ograniczeniach opóźnieniowych zadań
w porównaniu ze standardowymi praktykami delegowania zadań do chmury. Parametry, w tym
intensywność arytmetyczna (stosunek liczby operacji do rozmiaru zadania), mające kluczowy
wpływ na wydajność przenoszenia obliczeń są zidentfikowane. Wnioski wynikają z wielu symu-
lacji komputerowych przeprowadzonych dla różnorodnych scenariuszy.

iv

Table of Contents

Abstract i

Streszczenie iii

Table of Contents vii

List of Figures ix

List of Tables xi

List of Acronyms xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Dissertation thesis and main goals . 2
1.3 Dissertation Outline . 3
1.4 Author’s published contributions . 4

2 Energy Consumption and Efficiency in Fog Computing Networks – State-
of-the-art 7
2.1 Modeling the Fog . 7

2.1.1 Network . 7
2.1.2 Application type . 12
2.1.3 Tasks and traffic . 13
2.1.4 Model of energy spent on communication 15
2.1.5 Model of energy spent on computation 18

2.2 Fog Scenarios and Parameterization . 20
2.2.1 What constitutes a scenario? . 21
2.2.2 Scenario parameterization – comparison of surveyed works 21
2.2.3 Parameterization summary . 27

2.3 Energy-saving in the Fog . 28
2.3.1 Optimization problem formulation . 28
2.3.2 Optimization method classification . 29
2.3.3 Comparison of works on fog optimization 31
2.3.4 Optimization summary . 42

v

Table of Contents

3 The Impact of the Fog and Cloud Tiers Parameters on Latency and Energy
Consumption... 45
3.1 Network Model . 45

3.1.1 Network Description . 45
3.1.2 Offloaded Tasks – Computational Requests 45
3.1.3 Power Consumption . 46
3.1.4 Latency . 48

3.2 Simulation Results . 50
3.2.1 Fog Computing Network without the Cloud 50
3.2.2 Fog Computing Network Including the Cloud 52

3.3 Chapter Summary . 53

4 Optimization of Energy Consumption in the Fog and Cloud Tiers 57
4.1 Network model . 57

4.1.1 Computational Requests . 58
4.1.2 Energy Consumption . 60
4.1.3 Delay . 60
4.1.4 Updating Scheduling Variables in the Fog 61

4.2 Optimization Problem . 62
4.3 Proposed solution . 62

4.3.1 Solving the Subproblems . 64
4.3.2 Solving the Master Problem . 65
4.3.3 Low-complexity solution (LC-EEFFRA) 66

4.4 Results . 67
4.4.1 Convergence of Algorithms and Optimality of Solution 68
4.4.2 Impact of Computational Energy Efficiency of the Cloud 69
4.4.3 Impact of Delay Requirements and Size of Requests on the Offloading

Decisions . 72
4.4.4 Impact of CPU Frequency of Fog Nodes 73

4.5 Chapter Summary . 75

5 Optimization of Energy Consumption in Things, Fog and Cloud Tiers 77
5.1 Network Model . 77

5.1.1 Computational Requests . 77
5.1.2 Energy Consumption . 78
5.1.3 Delay . 80
5.1.4 Updating Scheduling Variables in the Fog 82

5.2 Optimization Problem . 82
5.3 Problem Solution . 83

5.3.1 Auxiliary Variables . 83
5.3.2 Finding Optimal Frequencies . 84
5.3.3 Transmission Allocation . 85
5.3.4 Computation Allocation . 86

5.4 Results . 86
5.4.1 Scenario Overview . 86

vi

Table of Contents

5.4.2 Baseline/Suboptimal Solutions . 89
5.4.3 Comparison with Exhaustive Search and All Possible Allocations 90
5.4.4 Impact of Network Parameters . 91
5.4.5 Impact of Traffic Parameters . 92

5.5 Chapter Summary . 95

6 Optimization of Energy Consumption – Allocation of Tasks Modeled as
Directed Graphs 97
6.1 Network Model . 97

6.1.1 Virtual Network Requests with the Chain Topology 97
6.1.2 A Fog-Cloud Substrate Network . 98
6.1.3 Node and Link Embedding . 98
6.1.4 Latency Model . 99
6.1.5 Cost Model . 100

6.2 Proposed Solution . 101
6.3 Results . 104

6.3.1 Performance Evaluation . 104
6.3.2 Evaluation Results . 105

6.4 Chapter Summary . 108

7 Conclusions 109
7.1 Work summary . 109
7.2 Key findings . 109
7.3 Final conclusion . 110

Appendices 111

A Appendix 113
A.1 Summary of optimization methods and results . 113

A.1.1 Energy as a sole objective . 113
A.1.2 Energy as one of a few objectives . 116
A.1.3 Energy only as a constraint . 120

8 Bibliography 123

vii

List of Figures

2.1 Fog network architecture and example tasks performed. 8
2.2 Comparison of different types of computational tasks. 13
2.3 Common elements and parameters of the examined scenarios. 20
2.4 Charts summarizing solutions examined in Section 2.3. 42

3.1 Diagram explaining the flow of data through the considered fog computing net-
work. 46

3.2 Power consumption and delay related to computation in the fog tier (clock fre-
quency: dashed line – 2 GHz, solid line – 3 GHz). 51

3.3 Total power consumption and delay in “fog without cloud” network. f – FN clock
frequency, r – the fronthaul bit rate. 52

3.4 Total power consumption and delay in fog computing network including the cloud
vs. the fraction of requests sent to the cloud for near, medium, far scenarios
(dashed, solid, and dotted lines respectively). 53

3.5 Total power consumption and delay in full fog computing network vs. the fraction
of requests sent to the cloud, cloud power efficiency (GFLOPS/W), and arithmetic
intensity of requests θR. Dashed line – near scenario, solid line – medium, dotted
line – far. 54

3.6 Share of computation (dashed line) and communication (solid line) in power con-
sumption and delay in a full fog computing network, medium scenario. 54

4.1 Simplified fog network with offloaded tasks. Each color represents a different task. 58
4.2 Power consumption and energy efficiency of Intel Core i5-2500K vs. CPU frequency. 68
4.3 Convergence of solutions found by EEFFRA to the optimum with the number of

iterations. 69
4.4 Influence of cloud energy efficiency on the average energy cost for chosen policies. 70
4.5 Histograms of requests at 1.3 GFLOPS/W cloud efficiency. Results of EEFFRA. . 71
4.6 CDFs of request processing energy cost at cloud efficiency of 1.3 GFLOPS/W.

Comparison of different policies. 71
4.7 Cumulative Distribution Functions (CDFs) of request processing energy cost –

influence of delay requirement of requests. 72
4.8 CDFs of request processing energy cost – influence of size of requests. 73
4.9 Influence of fixed CPU frequency of FNs. 74
4.10 CDFs of request processing energy cost – comparison of FNs working at fixed

frequencies and utilizing Dynamic Voltage and Frequency Scaling (DVFS). Pa-
rameters: Tk − Tk−1 = 500 ms, θr ∈ [1, 500] FLOP/bit. 74

5.1 Fog network architecture. 78

ix

List of Figures

5.2 Diagram of the considered network composed of 10 FNs and a cloud with three
examples of request allocations. 88

5.3 Comparison of Full Optim solution with the No Migrate solution and all possible
allocations from exhaustive search (blue bars; average value marked with solid
green line). 90

5.4 Comparison of energy cost per request with varied computational efficiency of
cloud. 91

5.5 Comparison of energy consumption per request vs. the size of the area (area radius)
covered by the network. 92

5.6 Comparison of energy consumption per request with varied delay requirement
of requests. 93

5.7 Comparison of energy consumption per request (CDF). Delay requirement: 700 ms. 93
5.8 Comparison of energy consumption per request with varied arithmetic intensity.

Same legend as in Figures 5.4 and 5.5. 94

6.1 An example of a VNR with chain topology. 98
6.2 A Fog-Cloud substrate network. 98
6.3 An example of LA-VNE. 99
6.4 Key concept of the CNE algorithm. 101
6.5 Estimated components in a clustered network. 102
6.6 Simulation results in small networks with low computation load (Scenario 1). . . . 106
6.7 Simulation results in large networks with low computation load (Scenario 2). . . . 106
6.8 Simulation results in large networks with high computation load (Scenario 3). . . . 107
6.9 Simulation results in large networks with high computation load when computa-

tional power of SNs does not increase with its distance from the end user (Scenario
4). 108

x

List of Tables

2.1 Comparison of surveyed network models – where (E)nergy is spent and (D)elay
incurred. 9

2.2 Comparison of nonlinear models of power (P) and energy (E) consumption 20
2.3 Parameterization of examined scenarios. 23
2.4 Approaches to optimization in the fog with respect to energy consumption. 33

3.1 Power consumption of networking equipment. 51

4.1 The notation used for modeling the network and defining the optimization problem
in Chapter 4. 59

4.2 Simulation parameters used in Chapter 4. 68

5.1 The notation used for modeling the network and defining the optimization problem
in Chapter 5 . 79

5.2 Additional notation used in the problem solution in Chapter 5 84
5.3 Simulation parameters used in Chapter 5 . 87
5.4 Comparison of the examined algorithms. 89

6.1 An example of the Preliminary Embedding (PE) table. 103
6.2 Simulation parameters used in Chapter 6. 105

xi

List of Acronyms
A2C Advantage Actor-Critic
ABC Artificial Bee Colony
ADMM Alternating Direction Method of Multipliers
AI Artificial Intelligence
ALR Adaptive Line Rate
AMO Ant Mating Optimization
AP Access Point
AR Augmented Reality
BB Branch and Bound
BS Base Station
CDF Cumulative Distribution Function
CDN Content Delivery Network
CMOS Complementary Metal-Oxide Semiconductor
CN Cloud Node
CNE Clustered Network Embedding
CS Contract-based under Symmetric information
CPU Central Processing Unit
D2D Device-to-Device
DAG Directed Acyclic Graph
DC Data Center
DDS Deep Dynamic Scheduling
DDPG Deep Deterministic Policy Gradient
DL DownLink
DVFS Dynamic Voltage and Frequency Scaling
EEFFRA Energy-EFFicient Resource Allocation
EH Energy Harvesting
EON Elastic Optical Network
EPON Ethernet Passive Optical Network
FFBD Feasibility Finding Benders Decomposition
FI Fog Instance
FLOP Floating Point Operation
FN Fog Node
GA Genetic Algorithm
GBD Generalized Benders Decomposition
GenAI Generative Artificial Intelligence
GFLOPS Giga Floating Point Operations per Second
GHG Greenhouse Gas
HGSA Hybrid Genetic Simulated Annealing

xiii

List of Acronyms

ICT Information and Communication Technology
IoT Internet of Things
IP Internet Protocol
KKT Karush–Kuhn–Tucker
LAN Local Area Network
LA-VNE Latency-Aware Virtual Network Embedding
LC Low Complexity
LNA Low Noise Amplifier
LO Local Oscillator
LP Linear Programming
LTE Long Term Evolution
MCC Mobile Cloud Computing
MD Mobile Device
MDP Markov Decision Process
MEC Mobile/Multi-Access Edge Computing
MILP Mixed-Integer Linear Programming
MIMO Multiple-Input and Multiple-Output
MINLP Mixed-Integer Non-Linear Programming
ML Machine Learning
MPA Marine Predators Algorithm
N/A Not Applicable
NEP Nash Equilibrium Problem
NIC Network Interface Card
NSGAII Non-dominated Sorting Genetic Algorithm II
OFDMA Orthogonal Frequency-Division Multiple Access
PA Power Amplifier
PC Personal Computer
PDS Post-Decision State
PE Preliminary Embedding
PGN Portable Game Notation
PON Passive Optical Network
PSO Particle Swarm Optimization
QoS Quality of Service
RF Radio Frequency
RL Reinforcement Learning
RRH Remote Radio Head
RTT Round-Trip Time
SCA Successive Convex Approximation
SCS Splitting Conic Solver
SDR SemiDefinite Relaxation
SID Solution IDentifier
SL Substrate Link
SN Substrate Node
SubP Sub-Problem

xiv

TDMA Time Division Multiple Access
UCB Upper Confidence Bound
UL UpLink
VC Virtual Cluster
VL Virtual Link
VM Virtual Machine
VN Virtual Node
VNE Virtual Network Embedding
VNR Virtual Network Request
WAN Wide Area Network
WDM Wavelength Division Multiplexing

xv

1 Introduction

1.1 Motivation

The number of devices connected to the Internet is growing exponentially. Billions of smartphones,
cameras, and sensors generate an unprecedented volume of data waiting to be shared with other
devices in the omnipresent Internet of Things (IoT). However, the small size of the things often
correlates with low computational power and limited battery capacity, which in turn limits the
scope of processing and applications that can be run by them. However, relying solely on distant
abundant resources provided by cloud computing can be inefficient for many latency-sensitive
applications. With an ever-growing number of devices connected to the IoT and increasing quality
of multimedia services, satisfying Quality of Service (QoS) with sparsely located Data Centers
(DCs) becomes unsustainable.

Moreover, as the global Information and Communication Technology (ICT) sector is estimated
to cause 2.1-3.9% of Greenhouse Gas (GHG) emissions worldwide [1], movements towards “green-
ing” ICT are gaining popularity in both industry and academia. One of the challenges is an increase
in energy consumption associated with the growth of data traffic and its processing worldwide. The
energy consumption in the cloud is projected to continue growing [1, 2]. Recent years have brought
an even greater surge in ICT energy consumption caused by unprecedented demand from Artificial
Intelligence (AI) and Generative Artificial Intelligence (GenAI) algorithms [3] with image gener-
ation being particularly energy-intensive [4].

A more decentralized fog computing paradigm has been proposed to augment the cloud and
provide computational, networking, and storage capabilities at the edge of the network – close to
the end users [5]. The fog is essentially a hierarchical network organization where communica-
tion and computing tasks can be performed flexibly using diverse resources available in a network.
Fog is an architecture that distributes communication and computation services along the cloud-
to-things continuum. It includes information processing, storage, control, and networking to serve
many growing applications. The architecture of a fog network (shown in Figure 2.1 and discussed
in Chapter 2 in detail) consists of three tiers: things, fog, and cloud. Smartphones, sensors, and
other linked IoT devices are present in the things tier. Powerful data servers are deployed in the
cloud layer. Connected computing devices (personal computers, servers, computing clusters, etc.)
that can process, communicate, and store data are called Fog Nodes (FNs). Multiple hierarchical
levels of FNs may exist in the fog tier. Cooperation, including both vertical and horizontal com-
munication, is possible between geographically distributed FNs. Utilizing these nodes allows for
more flexible and effective offloading and content distribution schemes. Consequently, this has the
potential to reduce energy consumption as has been shown in numerous published works.

Motivated by the increased mobile communication traffic, required high data rates and associ-
ated energy consumption, as well as the guaranteed latency levels, the author of this thesis presents
his research leading to new approaches to optimizing energy consumption in fog networks with

1

1 Introduction

latency constraints. Multiple solutions with varying levels of complexity are proposed for different
fog-network scenarios.

1.2 Dissertation thesis and main goals

This dissertation presents the following thesis:

There exist optimal solutions to computational task offloading problems in fog networks mini-
mizing energy consumption while maintaining required levels of latency.

The main goal of the thesis is to propose such solutions and in particular:

• To analyze the impact of offloading computational tasks to fog and cloud on energy con-
sumption and latency. This goal is addressed in Chapter 3).

• To formulate and solve the optimization problem of allocating offloaded tasks within the
fog and cloud tiers of the network, and dynamically scaling computing frequency. The
objective function includes the energy spent on wired transmission and task processing and
the corresponding delay is one of the constraints. This goal is addressed in Chapter 4.

• To formulate and solve the optimization problem of allocating offloaded tasks within the
things, fog, and cloud tiers of the network, and dynamically scaling computing frequency.
The objective function includes the energy spent on wireless transmission, wired transmis-
sion, and task processing and the corresponding delay is one of the constraints. This goal is
addressed in Chapter 5.

• To formulate and solve the optimization problem of allocating tasks consisting of subtasks
within the fog and cloud tiers of the network. Each subtask can be sequentially computed
at a different node in a network. The objective function includes the energy spent on wired
transmission and task processing and the corresponding delay is one of the constraints. This
goal is addressed in Chapter 6.

• To develop effective, low-complex versions of the aforementioned algorithms while main-
taining similar results. This goal is addressed in Chapters 4 – 6.

Moreover, this thesis includes a comprehensive survey of energy consumption in contemporary
research works. It includes, in particular:

• Review of models used for describing fog networks including nodes, links, and traffic. The
focus is on energy consumption and delay caused by both communication and computing.
Various aspects of modeling are shown in Section 2.1.

• Review of parameterization of these models. Chosen scenarios and particular parameter
values have a critical impact on examined network operations and achieved results. This
often-neglected area is examined in Section 2.2.

2

1.3 Dissertation Outline

• Review of optimization problems and solutions. Examined problems are grouped, compared,
and contrasted according to chosen objective functions and methods used in solving them.
Much impact is put on the achieved results and chosen baseline solutions. This analysis is
given in Section 2.3.

1.3 Dissertation Outline

The state-of-the-art research on energy-aware fog computing networks is presented in Chapter 2.
The focus is on various aspects of energy consumption especially related to communication and
computing. It shows in Section 2.1 how fog networks are modeled and what types of applications
they are used for. Then, it examines how these models are parameterized, and what differences
and similarities there are between scenarios chosen in different works in Section 2.2. Finally,
various types of optimization problems and methods used to solve these problems are examined in
Section 2.3.

Chapters 3 through 6 describe the author’s original contributions in the field of energy-aware
(energy-consumption minimizing) fog networks. Each of these chapters examines a problem of
computation offloading (or task allocation in the fog nodes) in fog networks and each of them
focuses on different aspects of modeling and optimizing the problem of energy consumption.

In Chapter 3, the author of this thesis focuses on modeling the delay and energy consumption
within the fog and cloud tiers of the network. Models are parameterized using values representing
real-world equipment for communication and computing resources and diverse user requests. Re-
sults presenting the impact of different network parameters on energy consumption and delay are
shown for various scenarios.

Chapter 4 is devoted to the optimization of energy consumption in the fog network. It builds on
the model from Chapter 3. First, energy consumption and delays related to transmission, queuing,
and computing of tasks in the fog and cloud tiers are modeled. Then, the author of this thesis
proposes an optimization problem to find an assignment of offloaded tasks to nodes in the fog and
cloud tiers that minimize energy consumption while keeping their delay requirements. The deci-
sion variables correspond to the allocation of tasks to nodes and adjusting their Central Processing
Unit (CPU) frequencies. Two solutions to this non-convex optimization problem are proposed,
both applying Successive Convex Approximation (SCA). Finally, the simulation results for vari-
ous input parameters are provided and compared against those achieved by the baseline solutions
from the literature.

In Chapter 5, the model from Chapter 4 is expanded by including the wireless transmission
between Mobile Devices (MDs) and FNs in the optimization considerations. When compared to
Chapter 4, it changes the objective function (by adding energy cost for things-fog transmission)
and constraints (by adding the wireless transmission-associated delay), and includes a new set
of decision variables (extending the optimization solution search space). Moreover, an analytical
solution to the optimization problem is proposed. The results are examined for various input
parameters and compared against those achieved by the baseline solutions.

Chapter 6 explores the offloading of tasks modeled as sequential graphs. These tasks consist
of smaller subtasks and each of these subtasks can be processed at a different node. Similarly
to problems in Chapters 4-5, the optimization problem involves minimizing energy consumption
and maintaining the required delay. Unlike them, the search space increases with the number

3

1 Introduction

of subtasks and cannot be transformed into a version of the assignment problem. The proposed
solution involves clustering of similar nodes to significantly reduce this search space.

Finally, this dissertation is concluded in Chapter 7, in which the main findings regarding energy-
efficient communications and computing task allocation in fog networks with latency constraints
are summarized.

1.4 Author’s published contributions
The above-described major contributions of this dissertation have been published in a number of
papers listed below in reverse chronological order.

Papers published in international journals and magazines

• [6] B. Kopras, F. Idzikowski, and H. Bogucka, “A Survey on Reduction of Energy Con-
sumption in Fog Networks – Communications and Computations,” Sensors, vol. 24, no. 18,
2024.

• [7] H. Bogucka, B. Kopras, F. Idzikowski, B. Bossy, and P. Kryszkiewicz, “Green time-
critical fog communication and computing,” IEEE Communications Magazine, , vol. 61, no.
12, pp. 40–45, 2023.

• [8] H. Bogucka and B. Kopras, “Uberization of telecom networks for cost-efficient commu-
nication and computing,” IEEE Communications Magazine, vol. 61, no. 7, pp. 74–80, July
2023.

• [9] B. Kopras, F. Idzikowski, B. Bossy, P. Kryszkiewicz, and H. Bogucka, “Communication
and computing task allocation for energy-efficient fog networks,” Sensors, vol. 23, no. 2,
2023.

• [10] B. Kopras, B. Bossy, F. Idzikowski, P. Kryszkiewicz, and H. Bogucka, “Task allo-
cation for energy optimization in fog computing networks with latency constraints,” IEEE
Transactions on Communications, vol. 70, no. 12, pp. 8229–8243, 2022.

Papers published in the proceedings of international conferences

• [11] B. Kopras, F. Idzikowski, W.-C. Chen, T.-J. Wang, C.-T. Chou, and H. Bogucka,
“Latency-aware virtual network embedding using clusters for green fog computing,” in 2020
IEEE Globecom Workshops, 2020.

• [12] P. Kryszkiewicz, F. Idzikowski, B. Bossy, B. Kopras, and H. Bogucka, “Energy savings
by task offloading to a fog considering radio front-end characteristics,” in 2019 IEEE 30th
Annual International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), 2019.

• [13] B. Kopras, F. Idzikowski, and P. Kryszkiewicz, “Power consumption and delay in wired
parts of fog computing networks,” in 2019 IEEE Sustainability through ICT Summit (StICT),
Montreal, Canada, June 2019.

Papers published in national journals and magazines

4

1.4 Author’s published contributions

• [14] H. Bogucka, F. Idzikowski, P. Kryszkiewicz, B. Bossy, and B. Kopras, “Mgła – nowa
architektura sieci dla zrównowazonego rozwoju Internetu Rzeczy,” Przegląd Telekomunika-
cyjny – Wiadomości Telekomunikacyjne, no. 7, pp. 505–511, 2019.

• [15] B. Kopras and F. Idzikowski, “Porównanie efektywnosći energetycznej mgły i chmury
obliczeniowej - przegląd,” Przegląd Telekomunikacyjny – Wiadomości Telekomunikacyjne,
no. 6, pp. 307–310, 2019.

5

2 Energy Consumption and Efficiency
in Fog Computing Networks –
State-of-the-art

In this chapter, the author of this thesis overviews the state-of-the-art in the area of energy con-
sumption reduction in fog computing networks. First, the author presents the commonly under-
stood notion and architecture of such networks. Moreover, the modeling of this architecture and
related energy consumption, as well as fog use cases and scenarios considered in the literature are
reviewed and discussed. Then, the parameterization of these models is summarized in Section 2.2.
Finally, the various optimization problems and solutions are analyzed in Section 2.3. They are
grouped by the type of utilized optimization methods and by their objective functions.

Analysis of works surveyed in this chapter has been published in [6]. Throughout this chapter,
works written and co-written by the author of this thesis are shown in bold.

2.1 Modeling the Fog

The author surveys approaches related to (i) modeling of the fog network, (ii) type of application
served, and (iii) tasks and incurred traffic in the first three subsections. The last two subsections are
devoted to models of energy consumed for communication and for computation. Tab. 2.1 contains
the main content of this section. Works that do not provide models for energy consumption such
as [16–18] are explicitly neglected.

2.1.1 Network

First, let us compile the general view (in terms of terminology) of networks examined by works
cited throughout our survey. The key aspect of fog is to provide resources (usually computational,
but also networking and storage) close to the end-users – close to the edge of the network. Through-
out this dissertation, the author refers to elements providing these resources as Fog Nodes (FNs)
– the term used in many works on fog including the reference architecture from [19]. Many sur-
veyed works use other terms for nodes performing the same role, such as Mobile/Multi-Access
Edge Computing (MEC) server, edge node, or mobile cloud. Still, throughout this work, they are
described as FNs and call the tier (by some researchers called layer [20] or strata [21]) of the net-
work which consists of these FNs as a fog tier. It is the middle tier of the network out of three tiers
as shown in Fig. 2.1 and explained in Section 2.1.3. The tier of the network that contains end-users
(such as sensors, MDs, smart vehicles, etc.) is called the things tier as in the IoT. Throughout this
work, the term MDs is consistently used to refer to all these things. MDs can benefit from utilizing
resources provided by the FNs. On the other side of the network, there is the cloud tier consisting

7

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

Content distributiton

Data aggreagation

Offloading

Automation

Figure 2.1: Fog network architecture and example tasks performed.

of resources from one or more cloud DCs. The cloud can also provide resources to users in the
things tier.

Tab. 2.1 shows modeled networks through the lenses of costs (energy and delay) occurring in
the network. The listed works (the first column of Tab. 2.1) are described with their authors and
publication year. The Application Type column shows what kind of tasks are served by the network.
The application types are explained in Section 2.1.2.

The next three columns show whether transmission of tasks occurs between nodes in given tiers
and what costs related to this transmission are modeled. Depending on the work “Intra-Fog” can
include transmission between different FNs, between FNs and other nodes such as Remote Radio
Heads (RRHs), and between servers/VMs within a given FN. Similarly, the next three columns
show whether processing (computation) of tasks occurs in these nodes. The term “Not Applica-
ble (N/A)” means that in a modeled network, there is no possibility of (i) transmission between
given nodes or (ii) computation by given nodes. “–”, on the other hand, means that there is trans-
mission/computation, but the related costs are ignored or assumed to be negligible. “E” stands for
energy consumption and “D” stands for delay caused by transmission or computation. An aster-
isk “(*)” is added to the cells where the mathematical description of the model does not correlate
with the description in the text. The Discrete Tasks/Continuous Workload column describes how
the tasks performed by the network are modeled. The term “Discrete Tasks” means that there are
individual tasks characterized with various parameters. The term “Continuous Workload” means
that the tasks are modeled as part of the workload. The differences between these approaches are
explained in Section 2.1.3. Letters in brackets (a, b, ...) in 2.1 show different types of modeled
tasks in terms of divisibility as later shown in Fig. 2.2. The “default” examined network archi-

8

2.1 Modeling the Fog

Table 2.1: Comparison of surveyed network models – where (E)nergy is spent and (D)elay in-
curred.

Application Communication Computation Discrete
Work type Things

– Fog
Intra-
Fog

Fog –
Cloud

Things Fog Cloud tasks/ Cont.
workload

Comments

1. Energy spent only by things – mobile devices
Huang et al. [22]
(2012)

Offloading E & D N/A D E & D N/A D Tasks (e, f) Single MD, no computing
nodes in the fog tier.

Sardellitti et al.
[23] (2015)

Offloading E & D N/A N/A N/A
(*)

D N/A Tasks (a) Inter-FN interference; local
execution is mentioned mul-
tiple times yet no equations
nor costs are provided.

Muñoz et al.
[24] (2015)

Offloading E & D N/A N/A E & D D N/A Tasks (c) Single MD, separate model-
ing of Things-Fog UL and
DL, single FN.

Mao et al. [25]
(2016)

Offloading E & D N/A N/A E & D – N/A Tasks (a) Single FN, single MD, DVFS
for MD.

Dinh et al. [26]
(2017)

Offloading E & D N/A D E & D D D Tasks (a) Single MD; DVFS for MD;
cloud is modeled not in con-
junction with FNs, but in a
separate scenario.

You et al. [27]
(2017)

Offloading E & D N/A N/A E & D D N/A Tasks (c) Single FN.

Liu et al. [28]
(2018)

Offloading E & D – D E & D D D Tasks &
Workload (c)

Social ties between MDs,
single FN with multiple
servers.

Feng et al. [29]
(2018)

Offloading E & D N/A N/A E – N/A Tasks (c) Single FN.

Cui et al. [30]
(2019)

Offloading E & D D N/A E & D D N/A Tasks &
Workload (a)

Single FN, multiple small
cell BSs acting as relay
nodes.

Kryszkiewicz et
al. [12] (2019)

Offloading E N/A N/A E – N/A Workload (a) Single MD, single FN.

He et al. [31]
(2020)

Offloading E & D N/A N/A E & D D N/A Tasks (a)

Shahidinejad
and Ghobaei-
Arani [32]
(2020)

Offloading E & D D D E & D D D Tasks (a) Resource provisioning, edge
gateways acting as relay
nodes.

Nath and Wu
[33] (2020)

Offloading
and task
caching

E & D – – E & D D N/A Tasks (a) One or more FNs, FNs can
cache tasks, FNs can fetch
tasks from other FNs or
cloud, fetching incurs costs
but neither E nor D.

Bai and Qian
[34] (2021)

Offloading E & D N/A D E & D D – Tasks (a)

Vu et al. [35]
(2021)

Offloading E & D N/A E & D E & D D D Tasks (a) Includes direct transmission
things-cloud.

Bian et al. [36,
37] (2022)

Data aggr.
– dis-
tributed
training

E & D
(*)

N/A N/A E & D
(*)

N/A N/A – Delay and energy spent are
random in time, their models
are not given; a single FN co-
ordinating distributed learn-
ing; [37] is the longer version

2. Energy spent only by fog nodes
Ouesis et al. [38]
(2015)

Offloading – E & D N/A N/A D N/A Tasks (a)

Xu et al. [39]
(2017)

Offloading D – E & D N/A E & D D Workload (c) Transmission to cloud and
processing in cloud are mod-
eled jointly; single FN with
multiple servers; resource
provisioning.

Chen et al. [40]
(2018)

Offloading E & D D N/A N/A E & D N/A Tasks (a) Things-Fog transmission
costs spent by the FN.

Murtaza et al.
[41] (2020)

Offloading D N/A D N/A E & D D Tasks (a) Service provisioning.

Gao et al. [42]
(2020)

Offloading N/A E – N/A E & D – Workload (c) 2 tiers of FNs, DVFS for FNs.

9

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

Table 2.1: Comparison of models – where (E)nergy is spent and (D)elay incurred (continued).
Application Communication Computation Discrete

Work type Things
– Fog

Intra-
Fog

Fog –
Cloud

Things Fog Cloud tasks/ Cont.
workload

Comments

2. Energy spent only by fog nodes (continued)
Vakilian et al.
[43] (2020)

Offloading N/A D D N/A E & D D Workload (c)

Vakilian et al.
[44] (2021)

Offloading N/A D D N/A E & D D Workload (c)

Vakilian et al.
[45] (2021)

Offloading N/A D – (*) N/A E & D – Workload (c) Transmission to a cloud is
mentioned throughout the
model, but the mathematical
description is missing.

Abdel-Basset et
al. [46] (2021)

Offloading N/A – N/A N/A E & D N/A Tasks (a) Multiple Virtual Machines
(VMs), each VM can be
thought of as a separate FN.

Sun and Chen
[47] (2023)

Offloading
& Service
caching

D N/A – (*) – (*) E & D N/A Tasks (a) Includes non-energy costs
paid by FNs for transmission
and storage.
Local processing by MDs
and transmission to a cloud
are mentioned in the model,
but their mathematical
descriptions are missing.

3. Energy spent only by the cloud
Do et al. [48]
(2015)

Streaming N/A N/A – N/A N/A E Workload (c) Energy spent for computing
by cloud refers to video pro-
cessing, energy expressed in
terms of carbon footprint.

4. Energy spent by nodes in multiple tiers of the network
Deng et al. [49]
(2016)

Offloading – – D N/A E & D E & D Tasks &
Workload (a,
b)

Multiple clouds, DVFS for
FNs and clouds.

Sarkar
and Misra
[50] (2016)

Offloading E & D – E & D N/A E & D E & D Tasks &
Workload (a)

Zhang et al. [51]
(2017)

Offloading N/A E & D E & D N/A E & D E & D Workload (c) Incomplete/ambiguous
model descriptions due to
magazine style.

Sarkar et al. [52]
(2018)

Offloading
& data
aggr.

E & D – E & D N/A E & D E & D Tasks &
Workload (a)

Additional E cost due to in-
finite processing in cloud.
Multiple VMs per FN, intra-
FN, and inter-FN resource
management.

Wang et al. [53]
(2019)

Offloading E & D N/A N/A E & D E & D N/A Tasks (a) Includes transmission be-
tween MDs.

Sun et al. [54]
(2019)

Content
caching

E & D N/A E N/A N/A E – Energy spent for computing
by cloud refers to signal pro-
cessing.

Kopras et al.
[13] (2019)

Offloading E & D – E & D N/A E & D E & D Tasks &
Workload (a)

Djemai et al.
[55] (2019)

Offloading E & D E & D E & D E & D E & D E & D Tasks (e, f)

Abbasi et al.
[56] (2020)

Offloading – – D N/A E & D E & D Tasks &
Workload (a,
b)

Model taken directly from
[49].

Roy et al. [57]
(2020)

Offloading E & D – – N/A E & D E & D Tasks (b) 2 tiers of FNs: dew and edge;
each FN and cloud has mul-
tiple VMs; no modeling of
intra-fog and fog-cloud trans-
mission despite being shown
as part of the system; in-
cludes failure & repair times
of nodes

10

2.1 Modeling the Fog

Table 2.1: Comparison of models – where (E)nergy is spent and (D)elay incurred (continued).
Application Communication Computation Discrete

Work type Things
– Fog

Intra-
Fog

Fog –
Cloud

Things Fog Cloud tasks/ Cont.
workload

Comments

4. Energy spent by nodes in multiple tiers of the network (continued)
Wang and Chen
[58] (2020)

Offloading E & D N/A N/A E & D E & D N/A Tasks (a) Single FN, DVFS for MDs
and for an FN.

Kopras et al.
[11] (2020)

Offloading N/A E & D E & D N/A E & D E & D Tasks (d)

Khumalo et al.
[59] (2020)

Offloading E & D N/A D N/A E & D D Task (a)

Gazori et al. [60]
(2020)

Offloading D D D N/A E & D E & D Tasks (a) 2 tiers of FNs, multiple VMs
per FN and cloud.

Zhang et al. [61]
(2020)

Offloading E & D N/A N/A E & D E & D N/A Workload (c) Single FN, multiple RRHs.

Ghanavati et al.
[62] (2022)

Offloading E & D – N/A
(*)

N/A E & D N/A
(*)

Tasks (b) Transmission between the
MDs and broker (gate-
way or AP) rather than
MDs and FNs; broker-FNs
transmission has no costs;
transmission to a cloud is
mentioned throughout the
model, but the mathematical
description is missing.

Kopras et al.
[10] (2022)

Offloading D E & D E & D N/A E & D E & D Tasks (a) DVFS for FNs.

Kopras et al.
[9] (2023)

Offloading E & D E & D E & D N/A E & D E & D Tasks (a) DVFS for FNs.

tecture includes multiple MDs, multiple FNs, and a single cloud. Deviations from this setup are
included in the Comments column.

The existence of the things tier and the fog tier is either directly stated or implied in all surveyed
works. N/A in the Computation-Things column does not mean that the things tier does not exist.
It means that a given work does not consider computation of requests by the things. On the other
hand, multiple works do not consider the cloud tier at all (e.g., [61, 62]). All but three of the works
[22, 36, 48] consider one or more FNs with computing capabilities. Do et al. [48] and Bian et al.
[36] examine other applications than computation offloading. Meanwhile, Huang et al. [22] is the
earliest of the works examined in Section 2.1 and it predates the named concept of fog computing
[5]. While it is an example of Mobile Cloud Computing (MCC), the author chooses to leave it in
Tab. 2.1 as it provides a valuable reference for comparison with works on fog computing.

Let us divide the works based on which devices spend energy in their models: 1. only those
in the things tier, 2. only in the fog, 3. only in the cloud, as well as 4. devices in multiple tiers.
All of the works in the group focused on the things tier consider energy spent on Things–Fog
Communication. Only one of them ([12]) does not include the corresponding delay. On the other
hand, only 5 out of 15 works in the same group consider communication delay between the fog
and the cloud tiers. 4 works out of those 5 additionally consider the delay caused by Computation
in the Cloud Tier.

Works in the second group (Energy Spent Only by Fog Nodes) in Tab. 2.1 are not much more
diverse in terms of coverage of energy and delay. Understandably, all but [38] cover energy and
delay induced by Computation in the Fog Tier. Computation in the Cloud Tier is either not con-
sidered (4 works), considered but only influencing delay (4 works), or considered with its costs
ignored (2 works). Less focus is given to Communication with only 1 work each covering energy
consumption and delay incurred by Things–Fog Communication ([40]), Intra-Fog Communication
([38]), and Fog–Cloud Communication ([39]).

11

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

Do et al. [48] is the only work that belongs to the category 3. It considers energy spent on
Computation in the Cloud Tier. Delay is neglected.

The final group encompasses works that model energy consumption within multiple network
tiers. Consequently, it is the most diverse group. All but one work ([54]) considers energy and
delay induced by Computation in the Fog Tier. 4 out of 18 works consider costs (delay and energy)
related to Computation in the Things Tier and 14 out of 18 works consider those in the cloud tier
(delay and energy in 12 cases, only energy in [54], and only delay in [59]). Eventually, it is
significant to point out that only one work ([55]) covers energy consumption and delay incurred
at all tiers and incurred by both communication and computation. Another work ([9]) misses only
energy and delay costs related to Computation in the Things Tier.

2.1.2 Application type

Three broad types of services that a fog network can provide include offloading, content distribu-
tion, and data aggregation as shown in Fig. 2.1. These concepts are detailed in the second column
of Tab. 2.1:

2.1.2.1 Computation offloading

Task offloading means transferring the task to another device (or another processing unit within
the device) for processing. The idea to offload tasks from a device with limited capabilities to a
more powerful one is not new. Experimental results from 1998 show how to increase the battery
life of a laptop by putting some of its computational load to a nearby Base Station (BS) [63] or
another laptop [64]. In the context of fog, offloading typically involves devices from the things tier
sending computational requests to one or more nearby FNs. Upon receiving such a request, FN
can process it itself or, depending on implementation, forward it to another FN or cloud. Finally, a
processed task (result) can be transmitted back to its sender. As can be seen in Tab. 2.1, computa-
tion offloading is by far the most commonly studied use-case for fog computing. Terms resource
provisioning and service provisioning are sometimes used and describe the process of managing
the network to assure the performance of offloading.

2.1.2.2 Data processing and aggregation

In the case of offloading, the MDs offloading tasks can typically be seen as users who are interested
in the results of processing of offloaded tasks. This section is devoted to a group of applications
called data processing and aggregation. The MDs – typically sensors – are only the source of data
in this group. The data can be processed, aggregated, and stored in nodes in higher tiers of the
network.

Works covering the topic of data processing and aggregation tend to focus on delay and do not
take energy consumption into consideration. Such works are not included in Tab. 2.1. Examples
include [65] and [66] which examine the transmission of health data to the cloud after being pro-
cessed in a FN. Both works show that such an approach generates considerably less traffic and is
faster than sending raw data to the cloud. Out of all works from Tab. 2.1 data aggregation is used
only in [36, 37, 52].

12

2.1 Modeling the Fog

cx
lx

(a) Indivisible task.

cx1
lx1

cx2
lx2

cx3
lx3

cx4
lx4

(b) Task divided into subtasks.

cx1
lx1

cx2
lx2

(c) Task whose any portion can be
offloaded.

lx1
cx1 cx2 cx3

lx2 lx3

(d) Sequential Directed Acyclic
Graph (DAG).

cx4
lx1

cx1

cx2

cx3

lx2

lx3

lx4

lx5

(e) General DAG.

lx1
cx1 cx2 cx3

lx2 lx3

lx4
(f) Directed graph with a cycle.

Figure 2.2: Comparison of different types of computational tasks.

2.1.2.3 Content distribution

Another broad group of applications features the users (MDs) accessing content from the network.
For the last two decades Content Delivery Networks (CDNs) have been used to quickly provide
requested content using spatially distributed proxy servers [67]. Fog networks can act in a similar
manner by caching content in FNs close to the end-users. A particularly popular type of content
distribution is streaming, i.e., continuous transmission of multimedia files. Looking at the works
from Tab. 2.1, task caching is performed in [20], service and content caching are performed in
[47], while streaming is performed in [48].

2.1.3 Tasks and traffic
Traffic modeling is crucial for modeling a network. While the topologies of examined networks
and types of applications served can differ significantly between works from Tab. 2.1, there are
many similarities in how the tasks performed by the network are modeled. Below, the parameters
describing the traffic are described. The works based are divided on whether they model individual
computation tasks or traffic as a continuous flow of data.

2.1.3.1 Discrete computational tasks

Vast majority of works are concerned with the offloading of computations (Tab. 2.1). First, let us
examine tasks modeled discretely. Such computational tasks are usually parameterized by their

13

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

size and their computational burden. Let lx be the size of task x, and cx be the total number of
computations required to process x. lx is given in bits or bytes. cx can be given in a number of
Floating Point Operations (FLOPs) or other instructions as well as a number of clock cycles. cx
can either be given directly or calculated by multiplying lx by the arithmetic intensity ix of x:

cx = lxix (2.1)

lx is the main parameter influencing costs related to the transmission of x (discussed in Sec-
tion 2.1.4), while cx influences costs related to computations (Section 2.1.5). Finally, another
parameter referring to the size of the task x is the size rx of the results transmitted back to the
user. Many authors assume that rx << lx and ignore the costs related to the transmission of results
altogether.

Another aspect of a computational task is its divisibility showcased in Fig. 2.2. In many works
(with one-task-one-node constraint as indicated in the in Tab. 2.4), tasks are indivisible. Each
task has to be fully computed by a given node (Fig. 2.2a). On the other hand, there are works
in which each task can be divided into subtasks as in [57], and each of these subtasks can be
transmitted to and computed at a different node (Fig. 2.2b). Also, in some works, the tasks are
infinitely divisible as in [24, 27, 29, 42], and in such cases, any portion of these tasks can be
processed locally or offloaded (Fig. 2.2c). This type of divisibility is often used in works that do
not model individual tasks but rather continuous workload like [43–45]. Finally, there are tasks that
are divisible in a significantly more complex way. In [22], [55], and [11] the tasks are multi-step
computations with computational steps connected by inputs and outputs of varying sizes. These
tasks are modeled as directed graphs with each node representing a computational subtask and each
vertex representing the size of data. Each subtask can be computed by a different node but only in
an order specified by the graph. Directed Acyclic Graphs (DAGs) are shown in Figs. 2.2d (simple,
sequential) and 2.2e (more complex). Interestingly, while [55] describe their tasks as having DAG
structure, the example graphs used in [55] have cycles as in Fig. 2.2f.

Delay tolerance dmax,x is sometimes used to describe the maximum delay tolerated for processing
task x. This threshold can be hard, as in [9, 10, 27, 31, 33, 49, 58], which means that r has to be
processed within this time. Alternatively, dmax,r can be soft, as in [53, 55], which means that
exceeding tolerated delay incurs a penalty.
ox denotes the origin of task x. In works that include MDs in their models, ox describes an MD

which offloads (or processes locally) x. In works that do not model individual MDs, ox describes
either the FN to which the x is originally offloaded or some intermediate node such as RRH.

2.1.3.2 Continuous Computational Workload

Now, let us discuss computational requests modeled not as discrete, individual tasks, but rather
as continuous workload. Computational workload refers to the amount of processing power or
resources required to perform computational tasks. It is typically measured using various metrics,
including: CPU usage (in time, clock cycles or percentage), memory usage, input/output oper-
ations performed by a hard disk, data volume to be processed or benchmarking metrics of the
workload against some defined computing performance capacity. These metrics characterize the
workload requested from a fog network. In general, they may take continuous values. Naturally,
these values translate to the energy consumption of the network. There are some works in Tab. 2.1

14

2.1 Modeling the Fog

labeled as “Tasks & Workload”. In these works, there are parameters that characterize individ-
ual tasks (size, arithmetic intensity), but the delay and energy costs are calculated for the whole
workload, ignoring individual tasks.

In [39] the arriving (requested) workload is considered as a whole (not arriving from discrete
sources or end-devices), although a discrete-time model is considered with a defined intensity and
duration. The total arriving workload is counted in units. Likewise, in [43–45], the workload
arriving at a fog node with a certain rate is abstracted from the particular metrics describing it.
It is treated as some continuous aggregated value. The decision on offloading is made by a cen-
tral controller on the basis of known processing power available at FNs and the arrival workload
information.

In [50] and [52], the workload is considered as data volume generated by the so-called Virtual
Clusters (VCs) consisting of end-devices and transported through the edge gateways towards the
fog computing tier. Fog devices are also grouped to offer higher storage and computing capa-
bilities. A group of fog devices is called a Fog Instance (FI). The workload is defined as two
values: the amount of data in bytes, generated by a VC in a time slot and demanded to be served
(processed) and stored. Additionally, service requests are classified as not requiring the cloud in-
tervention (e.g., real-time services to be processed and served by FI) and requiring the intervention
of the cloud computing layer (e.g., for analysis based on historical data sets and for long-term
storage). Thus, the workload is simply the amount of aggregated data volume to be stored and
processed with fog/cloud preference.

2.1.3.3 Other types of tasks

It is worth noting that there are some examples of task request modeling that do not fit into the
computational offloading models discussed in the previous sections. Bian et al. [36, 37] examine a
distributed learning scheme with a single FN and multiple MDs. There are no tasks to be modeled.
The FN chooses MDs for training at each learning round. The chosen MDs spend some prede-
termined amount of energy on training if they are chosen. Do et al. [48] consider video streams
from a cloud to FNs. This is represented by the amount of video streaming (like lx) and a universal
conversion factor from size to computations (similar to ix).

2.1.4 Model of energy spent on communication

Many models presented in this section and in Section 2.1.5 show power consumption rather than
energy. From these results, energy consumption can be calculated by multiplying power consump-
tion by the time necessary to transmit/compute a given/average task. Some authors may avoid this
step altogether and instead examine/optimize/show average power consumption.

2.1.4.1 Wireless transmission

Estimation of the power consumption in a wireless network is a crucial aspect of designing energy-
efficient wireless communication systems. The power consumption model P presented in [68] con-
sists of the power required for radio emission PT and the power consumed by the radio transceiver
circuits PC which can be divided into power consumed by the baseband signal processing PBB

(both at the transmitter PBB−TX and at the receiver PBB−RX) and by the intermediate-frequency

15

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

and Radio Frequency (RF) signal processing PRF (again both at the transmitter PRF−TX and at the
receiver PRF−RX):

P = PT + PBB−TX + PBB−RX︸ ︷︷ ︸
PBB

+PRF−TX + PRF−RX︸ ︷︷ ︸
PRF︸ ︷︷ ︸

PC

. (2.2)

The power of transmission (radio emission) PT depends on the required coverage and chan-
nel conditions. The power consumed by the transmitter and receiver circuits PC depends on the
transmission and reception techniques, applied technologies and standards, algorithms implemen-
tations, etc. Three approaches to power consumption modeling are distinguished in the literature:

• high-level power consumption model,

• measurement-based estimation,

• transmitter and receiver components power estimation.

The high-level models can estimate the power consumption of many used technologies uni-
versally but at the cost of low estimation accuracy. [69, 70] contain the most basic total power
consumption model. The transmit power (dependent on the channel condition) and the constant
circuit power (independent of the channel quality) comprise these studies’ overall power consump-
tion model. A static term plus a dynamic term are included to model the power dissipation in a chip
[71–73]. The latter is dependent on the supply voltage, clock frequency, and circuit capacitance,
among other factors. The dynamic term, which is dependent on the clock frequency, is thought
to scale with the data rate. As a result, the attained data rate is linearly represented as the circuit
power.

Measurements provide the basis of the second method for estimating wireless device power
usage. High power estimation accuracy is guaranteed by this method, however, implementation,
vendors, and equipment/link/network setup play a major role. This method measures the overall
power utilized, including the transmission power. As a result, the relationship between the transmit
power and the circuit power cannot be ascertained a posteriori (after measurement), which implies
that the transmission power allocation algorithm cannot be used with such models. Detailed power
consumption data of a variety of commercially accessible devices is available in [74–78].

The most precise, but intricate, method is to assess the power usage of every transmitter and
receiver component independently. Considering that the transceiver is integrated into a single
chip, measuring any of its parts is barely possible. As a result, the architecture of each transceiver
component is typically used to estimate its power consumption in the literature. The circuit-by-
circuit power consumption model PC in this method is provided in [68]:

PC = (2.3)
PENC + PMOD + PIFFT + PDAC︸ ︷︷ ︸

PBB−TX

+PLPF + PADC + PFFT + PDEMOD + PDEC︸ ︷︷ ︸
PBB−RX

+PPA + PMIX + PLO︸ ︷︷ ︸
PRF−TX

+PRFF + PLNA + PMIX + PLO︸ ︷︷ ︸
PRF−RX

,

16

2.1 Modeling the Fog

where PPA, PLNA, PLO, PRFF, and PMIX are the power consumption of the Power Amplifier (PA),
Low Noise Amplifier (LNA), Local Oscillators (LOs), RF filter, and a mixer, respectively. The
baseband processing power includes the power consumption of the analog-to-digital converter
PADC, the digital-to-analog converter PDAC, modulation PMOD and demodulation PDEMOD, en-
coding PENC and decoding PDEC, low-pass filter PLPF, and when applicable, inverse fast Fourier
transform PIFFT and fast Fourier transform PFFT.

It is evident that a transceiver’s power consumption model might vary based on its construction.
However, a few components are shared by the majority of digital transmission systems. These
components that have the greatest share in the power consumption are presented and modeled in
[79–82]. [83] contains additional system-level energy models for the RF front-end components of
a wireless transceiver with exemplary power consumption numbers from the majority of frequently
cited works.

Further illustrative power consumption statistics are provided in the context of Long Term Evo-
lution (LTE) technology in [84]. In [85, 86], the power consumption models from the previ-
ously cited studies have been modified for the multi-user massive Multiple-Input and Multiple-
Output (MIMO) situation. The model has been expanded to include components unique to the
scenario being described.

The majority of the aforementioned articles concentrate on the power usage of the RF front-
end and channel coding, ignoring the power used by other baseband signal processing techniques,
which account for a sizable portion of power consumption when it comes to short links. This
aspect is given additional attention in [87–91]. For example, the number of operations required
to encode or decode the information bit for the channel coding techniques is available in [87, 88].
The total power used by channel coding can then be calculated using the energy expenditure per
operation.

Lastly, there is a trade-off between the power consumption models’ accuracy and their defini-
tional difficulties. It is evident that a low representation of the actual system is found when the
power consumption model is simple to construct. However, if the power consumption model’s
accuracy is high, it can be very challenging to establish, for example, if all of the transmitter and
receiver components are integrated into a single chip. As a result, the power consumption deter-
mined by the measurements and enhanced by stochastic modeling or interpolation appears to be a
good solution.

2.1.4.2 Wired transmission

Power consumption spent on wired transmission is more predictable than power consumption spent
on wireless transmission due to the predictable (stable) communication channel. Wired transmis-
sion is realized at several parts of the fog network (Fig. 2.1), i.e., rarely in the things tier, usually
in the edge/fog tier, and essentially always in the cloud tier. Different transmission technolo-
gies are used throughout these tiers, e.g., GigabitEthernet in the things tier, Passive Optical Net-
work (PON) in the edge/fog tier, and Wavelength Division Multiplexing (WDM) or Elastic Optical
Network (EON) in the cloud tier. Power consumption Pwd of a wired device depends on load as
follows

Pwd = Pidle + α · Pload, (2.4)

where Pidle is the power consumption of an idle device, α denotes load in the range < 0; 1 >, and
Pload denotes power dependent on load [92]. Pidle is relatively high with respect to the maximum

17

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

power consumption of devices equal to Pidle + Pload. Power is consumed by devices located at
network nodes and at network links:

1. Network nodes cannot be switched off or completely deactivated for connectivity reasons
unless they are MDs and the end-user decides so. However, parts of them related to links
(wired transmission) can be adapted or even deactivated if the device has a modular structure.
This refers to Adaptive Line Rate (ALR) in Ethernet networks [93] and datarate adaptation
in EONs [94]. The modules need to be related to links (Network Interface Cards (NICs) in
a router) in order to be dynamically switched between active and sleep states. Attempts are
made to make Pidle as small as possible as well as to change the profile of power dependency
on load from a linear profile to a cubic one [95]. Dynamic Voltage and Frequency Scaling
(DVFS) is the technology used behind these attempts.

2. Network links can be completely deactivated if there are alternative paths between the pair of
nodes located at their ends. This provides higher power saving than link adaptation, however,
comes at higher costs in terms of calculation of alternative paths, traffic rerouting, as well
as time needed to activate and deactivate devices installed along the links (including NICs).
Eventually, the reconfiguration process may lead to jitter and packets arriving out of order.
Therefore the reconfiguration has to be planned in advance with rather conservative traffic
predictions and fair margins on link utilization [96].

2.1.5 Model of energy spent on computation
Let us look at the energy consumption of device (node) n processing task x. The common way
to model energy consumption is to take the number of computations cx,n performed by device n
processing task x and multiply it by the unit cost en of an instruction or a cycle.

En(x) = cx,nen (2.5)

Similarly, the inverse 1
en

(usually given in Giga Floating Point Operations per Second per Watt)
can be used instead. What differentiates works is how the en (or 1

en
) cost is parameterized. For

some works, it is simply a value assigned to nodes in a network. Such examples include: MDs in
[29, 32, 35], FNs in [40, 50, 52], cloud in [10, 50, 52]. A full list of works and used parameter
values can be found in Tab. 2.3 in Section 2.2.

Similarly, the energy cost En(x) of node n processing task x can be achieved by multiplying
power consumption Pn of node n by the time of execution of a given task tx,n:

En(x) = tx,nPn (2.6)

as in [22] for MDs and [59] for FNs. [30, 43–45] use the average time, including both execution and
queuing. Meanwhile, the authors of [62] write that their parameter denotes energy consumption
per cycle, however, they multiply it by the time of task execution.

For some works, there is no need to multiply power consumption by time to get energy as they
only examine the levels of power consumption. Eq. (2.7) shows an example of a model which
substitutes the number of computations cx,n from Eq. (2.5) with computational load (number of
computations per second) lx,n:

Pn(x) = lx,nen. (2.7)

18

2.1 Modeling the Fog

It is used for MDs in [12].
For all types of nodes, works often use a variation of Eq. (2.8) to describe power consumption

Pn(un) of node n with relative processing usage/workload un (0 ≤ un ≤ 1):

Pn(un) = (Pn,peak − Pn,idle) · un + Pn,idle, (2.8)

where Pn,peak and Pn,idle denote maximum power and idle power of the node, respectively. It
corresponds to Eq. (2.4) used for wired transmission. Eq. (2.8) or similar is used to describe: Pn
of cloud in DC [48], Pn of FNs in [41], Pn of all nodes in [55, 57]. Results from Eq. (2.8) can be
then multiplied by a certain time (e.g., time of execution of a given task) to get the energy cost.

Power models used in the surveyed works depend on clock frequency and/or number of servers
as outlined below.

2.1.5.1 Function of clock frequency – nonlinear models

Equations such as Eq. (2.5) and Eq. (2.6) are general and rely heavily on parameters en and Pn
respectively. They offer no insight into what influences their values. Below, is a brief summary of
models which consider the clock frequency as the main factor.

The power consumption of processors (Complementary Metal-Oxide Semiconductor (CMOS)
powered) has three major components: switching, short-circuit current, and leakage [97] with
switching being the main one. In a simplified form the switching power follows the formula:

Psw = CV 2f (2.9)

with C representing the total effective capacitance being switched per clock cycle, V represent-
ing voltage, and f representing clock frequency. Higher voltage allows the circuit to operate at a
higher frequency by decreasing the delay [97]. Therefore, many works (all of the surveyed ones)
look at power consumption as a function of frequency. DVFS is the technology that enables adjust-
ing frequency and allows saving energy by operating at lower frequencies [98]. Assuming a linear
relation between voltage and frequency we end up with power being proportional to a cube of
frequency (Psw ∝ f 3). However, higher operating frequency means that a given task can be com-
puted faster and the energy cost (the power multiplied by the time spent computing) is proportional
to the square of frequency (Esw ∝ Psw

f
∝ f 2). One of these relations (Psw ∝ f 3 or equivalent

Esw ∝ f 2) is used in most surveyed works using nonlinear energy models. They can be found in
Tab. 2.2 middle column in a row “Monomial”. “Monomial” means that power/energy is modeled
as a monomial function of frequency and therefore directly proportional to the frequency raised to
a given power. On the other hand, works in the row “Polynomial” use polynomial functions of a
given degree, i.e.,:

Psw(f) =
n∑
k=0

akf
k, (2.10)

where ak are coefficients and n is the degree of the polynomial. As seen in Tab. 2.2, degrees other
than 3 for power and 2 for energy are rarely used. Even then, in [10], while the model supports nth
degree polynomial for modeling power of FNs, the scenarios used in the simulations assume 3rd
degree. The cloud model used in [49] (and then cited in [56]) is not a typical polynomial, but in
practice, it corresponds to a polynomial of 3rd degree with a3, a0 > 0, a2, a1 = 0.

19

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

Table 2.2: Comparison of nonlinear models of power (P) and energy (E) consumption

Type

Order
2nd degree P 3rd degree P/

2nd degree E
Other

Monomial – MDs: [25, 26, 31,
33, 34, 53, 58, 61]
FNs: [42, 47, 54,
58, 61]

Cloud: [54]
(3rd degree E)

Polynomial FNs: [49, 56] FNs: [9, 13, 53],
Cloud: [49, 56]

FNs: [10]
(nth degree P)

In some works, e.g., [34, 38, 47], the terms like processing power or computational capability
are used instead of frequency. Still, these parameters behave just like the clock frequency and are
often symbolized by the letter f .

2.1.5.2 Function of number of servers

In some of the surveyed works [28, 39, 46, 49, 54, 60], a computing node (FN or cloud) is modeled
as a set of multiple servers (or processors/machines/VMs) that can operate independently. In some
of these works, the power consumption depends on the number of active servers/processors: of FN
in [39], of cloud in [49, 54, 56]. In [39], the authors only state that the power consumption of an
FN increases with the number of active servers and with the size of the processed workload, but
the function formula is not given. Later in the work, it is only specified that it is jointly convex in
these variables.

2.2 Fog Scenarios and Parameterization

Network and computing
resources

Communication and
computing requests

2.1 Number of mobile devices

5.1 Type of transmision

6.1 Type of transmision

7.1 Type of transmision

3.1 Number of fog nodes

4.1 Number of clouds

Things tier

Fog tier

Cloud tier

MDs – FNs communication

FNs – cloud communication

demand

offer

offe
r

offer
2.2/3.2/4.2 Computa�onal cost -
how much energy is spent on processing

5.3/6.3/7.3 Transmission cost -
how much energy is spent on transmission

5.4/6.4/7.4 Transmission rate -
how fast can the data be sent

2.3/3.3/4.3 Computa�onal capability -
how fast can the processing be

1.5/1.6 Arrival - how traffic is generated

1.1/1.3 Size/rate - how much data
is transmi�ed

1.4 Intensity - how complex is processing

Intra-Fog
communica�on

Figure 2.3: Common elements and parameters of the examined scenarios.

20

2.2 Fog Scenarios and Parameterization

2.2.1 What constitutes a scenario?

Surveyed works propose models that describe the mathematical foundations of how the fog net-
work operates. There are many similarities between chosen approaches as shown in Section 2.1.
What really differentiates works from one another are the values that authors choose to parameter-
ize these models. The network performance (shown with metrics such as delay, energy costs, and
others) always depends on the parameterization of nodes, connections between nodes, and traffic.
Such a full set of parameter values defines a scenario under which a network is examined. Fig. 2.3
shows certain key parameters defining a scenario and their relations. Meanwhile, Tab. 2.3 provides
a comprehensive view of parameterization used by the surveyed works.

Practically, every paper considered in this chapter has a different set of testing parameters. How-
ever, the fog network scenarios are always parameterized with respect to two major fields: the
communication and computing demand (generated tasks) and offer (network communications and
computing resources). Our aim is to highlight the parameters that impact the performance (energy
consumption or energy efficiency, which are the focus of this paper).

Communication and computing requests (tasks) stem from the things tier and are characterized
by size and rate (how much data is to be transmitted), intensity (how complex it is to process the
request), and the arrival process (Fig. 2.3). The three network tiers (characterized by the number
of nodes in each tier) offer network and computing resources to serve requests. The network-
ing resources depend on the type of transmission, transmission cost, and transmission rate, while
computing resources depend on computational cost and computational capability. Parameters not
shown in Fig. 2.3 include demand for particular content and offering of that content as well as
demands and offers related to storing (rather than processing) data. The author is also aware that
one cannot fully simulate real-world communication using only the transmission rate, especially if
it is assumed to be constant. There are many physical phenomena (interference, noise, shadowing)
and traffic-related issues (jitter, packet loss) impacting it.

2.2.2 Scenario parameterization – comparison of surveyed works

Tab. 2.3 contains a concise comparison of scenarios examined in the surveyed works. It shows key
parameters characterizing the networks and traffic. The majority of them are visualized in Fig. 2.3.
Tab. 2.3 is structured as follows. Its first part (1.) highlights the parameter values characterizing
traffic in modeled networks. As discussed in Sections 2.1.2 and 2.1.3, these are most often the
tasks/workloads that can be offloaded to other nodes for processing. The next three parts refer to
nodes divided into three tiers (part 2 MDs, part 3 FNs, and part 4 cloud). The key parameters here
represent the number of nodes and their computational capabilities and costs. The final three parts
refer to communication between the nodes: part 5 between MDs and FNs, part 6 within the fog
tier, and part 7 fog-to-cloud. They summarize key parameter values that impact this transmission
with a focus on energy costs.

2.2.2.1 Classification rules for works in Tab. 2.3

Different works use different units. They are converted to the ones presented in Tab. 2.3 when
applicable. This process often includes the multiplication/division of multiple parameters, e.g.,
division of FLOP/cycle by Giga Floating Point Operations per Second (GFLOPS)/W to get nJ/cy-

21

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

cle. Sometimes the author makes assumptions as the surveyed work does not clearly state certain
values. For instance, both data size and “computational load” are given in bits in [38], while arith-
metic intensity or total required number of instructions/operations or cycles are never mentioned
in [38]. This “computational load” (in bits) is divided by “computational rate” (in instructions per
second) to get the delay. Therefore, we can deduce that 1 bit corresponds to one instruction which,
in turn, corresponds to one clock cycle. The arithmetic intensity is therefore 8 cycles/B. However,
some works use units which cannot be converted in this way. This includes [39] where most pa-
rameters are defined in terms of abstract “units”, e.g., “units of power” instead of Watts. For this
reason, apart from [39], the works [43–45, 49, 56] should also be omitted from Tab. 2.3. The au-
thor also omits [46, 51] due to a lack of explanation of many of the parameters used as well as [59]
for presenting a model without assigning parameter values to it. Finally, the works [36, 48, 54] do
not fit into Tab. 2.3. Their modeled applications and examined scenarios differ significantly from
the ones used in the rest of the surveyed works. Therefore, to avoid adding multiple works in the
table that “fit” mostly into “N/A” and “unspecified” rows, let us omit them entirely from the table.
The author also makes a conscious choice to not add other sets of rows to Tab. 2.3, each referring
to works [36, 48, 54]. All other works from Tab. 2.1 are present in Tab. 2.3

Works presented in the “None” row when referring to the number of nodes (i.e., MDs, FNs, and
clouds reflected in rows 2.1, 3.1, and 4.1 in Tab. 2.3) are omitted from the rest of the correspond-
ing table sections 2.2–2.3, 3.2–3.3, and 4.2–4.3. Similarly, works present in “N/A” row when
referring to the type of transmission (rows 5.1, 6.1, and 7.1) are also omitted from the rest of the
corresponding table sections 5.2–5.6, 6.2–6.4, and 7.2–7.4. This is done to avoid clogging Tab. 2.3
with multiple additional “N/A” rows.

“Unspecified” is used in Tab. 2.3 when a parameter is missing in the surveyed work. In contrast,
“Directly stated, no values given” is used when the work uses a particular parameter but does
not state what value(s) is (are) assigned to it. Examples can be seen in [32] where the arithmetic
intensity of task i is denoted by µi, but no value is assigned to µi. Similarly, the size of the task Lin,i

has a uniform distribution in the range <a, b>, but no values are assigned to a and b. Meanwhile
“indirectly stated” means that a parameter value depends on values assigned to other parameters.
A common example includes transmission rate being a function of transmission power (and other
parameters like noise, interference, and channel bandwidth).

Parameter values describing the number of nodes used in surveyed works are grouped in cor-
responding rows. For other rows with numerical values, the numbers are written just before the
citation of the work. Multiple values are often written next to a given work. The notation {a, b,
c} means that each of discrete values a, b, and c is used in the corresponding work. Meanwhile,
<a, b> means that the values used belong to the closed interval from a to b, similarly (a, b) and
(a, b> mean open and semi-open intervals albeit their use is significantly less common. There
are many different reasons why certain works use multiple different values for a given parameter.
They include: (i) different models of equipment used in a simulated scenario, e.g., two types of
MDs in [55] having different computational capability {2.8, 4.5} Gcycle/s and cost {1.11, 1.14}
nJ/cycle; (ii) different scenarios having different parameter setups, e.g., most plots in [13] show
results of fog network scenarios with an arithmetic intensity of 80 FLOP/B and some plots show
results for scenarios with “easier” (8 FLOP/B) and “harder” (800 FLOP/B) tasks converted to 20,
2, and 200 cycles/B using 4 FLOP/cycle value characterizing FNs in [13]; (iii) certain parameters
being randomly generated at the beginning of the simulation, e.g., the computational capability of
each FN is drawn from a uniform distribution <10, 15> Mcycles per second in [38]; (iv) certain

22

2.2 Fog Scenarios and Parameterization

Table 2.3: Parameterization of examined scenarios.
Parameters Description Works and values #

1. Tasks/Workload

1.1 Task/sub-task
data size [kB]

Constant 0.125 [25, 31]; 65.5 [50]; {100, 1000} [13]; {100, 200, ..., 1000} [26];
1000 [28]; 5000 [24]; {0, 625, ..., 6250} [53]

7

Random: uniform <min, max> <0.034, 66.5> [52]; <12.5, 62.5>[58]; <10, 100> [60]; <62.5, 125> [30];
<100, 500> [27]; <250, 1250> [38]; <1000, 5000> [9, 34]; <200, 6000>[29];
<1000, 10000> [10, 35]; <1250, 12500> [11]; <70000, 80000> [33]

14

Random: exponential (mean) 25 [40] 1
Directly stated, no values given [23, 32] 2
Unspecified [12, 22, 47, 55, 62] 5

1.2 Sub-tasks Number per task {2, 3, 4, 5, 6} [11]; 3 [55]; 8 [22]; 5 [62] 4
1.3 Workload data
rate [Mbit/s]

Constant {1.5, 2.5} [61] 1
Real-world based (mean) 7 [42] 1

1.4 Arithmetic
intensity [cycles/B]

Constant 0.125 [50]; 8 [38]; 92.2 [61]; {2, 20, 200} [13]; {62.5, 75, 87.5} [28];
297 [42]; 330 [24, 26]; <550, 1100> [23]; 1000 [60]; 5600 [31]; 5900 [25]

12

Random: uniform <min, max> (0, 10> [47]; <0.5, 50>, <0.5, 250> [10]; <62.5, 187.5> [27, 29]; <0.5,
250> [9]; <100, 1000>, <200, 1100>, ..., <1000, 1900> [35]

6

Random: quotient of two uni-
form distributions <min, max>

<5.63, 7.86> [33]; <0.5, 50> [11]; <10, 300> [34]; <160, 2400> [58];
<800, 8000> [30]

5

Random: other (mean) 1600 [40] 1
Directly stated, no values given [32, 62] 2
Unspecified [12, 22, 52, 53, 55] 5

1.5 Arrival of tasks
One at a time [11, 13, 25, 30, 40, 47, 50, 52] 8
In groups [9, 10, 26, 27, 29, 32–35, 38, 55, 58, 62] 13
Unspecified [12, 22–24, 28, 31, 53, 60] 8

1.6 Arrival
distribution

Constant [25, 27, 33] 3
Random: exponential (Poisson
process)

[9–11, 13, 28, 30, 40, 52] 8

Real-world based [32, 42] 2
Unspecified [12, 22–24, 26, 27, 29, 31, 34, 35, 38, 47, 50, 53, 55, 58, 60, 62] 18

parameters being randomly generated during the simulation, e.g., size and arithmetic intensity of
computational tasks in [35]. The sizes of tasks are drawn from a uniform distribution <1, 10> MB
while the arithmetic intensities are drawn from one of ten uniform distributions starting from <100,
1000> cycles/B and ending with <1000, 1900> cycles/B with a step of 100 cycles/B. Results from
simulations of scenarios with different intensity distributions are then compared with each other.
Eventually, all parameter values are rounded to 3 significant digits in Tab. 2.3.

2.2.2.2 Differences and similarities in chosen scenarios

Let us take a closer look at the content of Tab. 2.3. We start with part 1, which describes the demand
parts of the scenarios. The vast majority of surveyed works examine tasks with either constant size
or ones with sizes drawn from a uniform distribution (row 1.1). These sizes vary greatly between
the works, from less than a kB to tens of MB. All 4 of the examined works in which tasks are
divided into predetermined subtasks (row 1.2) choose a single-digit number of subtasks. Only
2 works that model the demand as a continuous flow of workload rather than discrete tasks fit
into Tab. 2.3 (row 1.3). Arithmetic intensity (row 1.4), just like task size, is mostly chosen to be
constant or random following uniform distribution. Still, 5 works draw the sizes of tasks and the
total number of computations per task from uniform distributions. This corresponds to arithmetic
intensity being drawn from a quotient of two uniform distributions. Interestingly, the size and
intensity of tasks is unspecified in 5 works, while the model is provided in 2 works, but failed to be
specified with numerical values within the works. In [12], the arithmetic intensity is a simulation
result rather than an input parameter (how high should it be for offloading to be energy efficient for

23

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

Table 2.3: Parameterization of examined scenarios (continued).
Parameters Description Works and values #

2. Mobile Devices

2.1 Number of
MDs

1 [12, 22, 24–26, 31] 6
Few (2-19) [9, 23, 28–30, 33–35, 38, 47, 55, 58, 60, 61] 14
Many (20-99) [10, 27, 30, 32, 34, 38, 58, 61] 8
Hundreds (100-999) [10, 34, 40, 50] 4
Thousands (1000+) [50, 52] 2
Unspecified [53, 62] 2
None [11, 13, 42] 3

2.2 Computational
cost [nJ/cycle]

Constant 0.1 [34]; 0.2 [12]; 1.0 [33]; {1.11, 1.14} [55]; 1.37 [35]; 2.08 [24]; {4.38,
6.78} [32]; 1e8 [28]; (*) [30]

9

Random: uniform <min, max> (0, 0.2) [27, 29] 2
Depending on frequency [25, 26, 31, 53, 58, 61] 6
Unspecified [22, 23, 47] 3
N/A – no computation by MDs [9, 10, 38, 40, 50, 52, 60, 62] 8

2.3 Computational
capability
[Gcycles/s]

Constant {0.0016, 0.0018, 0.002} [28]; 0.4 [24]; 0.5 [35]; {0.1, 0.2, ..., 1} [27];
{0.2, 0.4, 0.6, 0.8, 1} [30]; 1.0 [33, 34]; {1.7, 2.7} [32]; {2.8, 4.5} [55]

9

Random: uniform <min, max> <0.5, 1.0> [30] 1
Depending on frequency <0.15, 0.6> [58]; <0.2, 0.8> [26]; <0, 1.5> [25]; [31]; [53, 61] 6
Unspecified [12, 22, 23, 29, 47] 5
N/A – no computation by MDs [9, 10, 38, 40, 50, 52, 60, 62] 8

2.4 Mobility Yes [9, 22, 33, 53, 55] 5
No [10, 12, 23–32, 34, 35, 38, 40, 47, 50, 52, 58, 60–62] 23

3. Fog Nodes

3.1 Number of FNs

1 [12, 24–31, 33, 50, 58, 61] 13
Few (2-9) [13, 23, 26, 32, 34, 35, 47, 50, 55, 60] 10
Many (10-99) [9–11, 13, 34, 38, 50, 62] 10
Hundreds (100-999) [40, 42, 52] 3
Unspecified [53] 1
None [22] 1

3.2 Computational
cost [nJ/cycle]

Constant {1.65, 3.7, 5.2} [55]; 8.2 [40]; 80 [50] 3
Random: uniform <min, max> <0.8, 1.0> [11] 1
Depending on frequency [9, 10, 13, 42, 47, 53, 58, 61] 8
Directly stated, no values given [52, 62] 2
Unspecified [60] 1
No cost [12, 23–35, 38] 15

3.3 Computational
capability
[Gcycles/s]

Constant 0.004 per task, 0.04 total [28]; 0.8 [24]; 1.26 [50]; {2, 2.2} [26];
5 [32, 33]; {1, 3, 5, 7, 10, 15, 20} [34]; {4, 8} [42]; 6 [27]; 10 [23, 35];
{6.75, 13.5, 60} [55]; {10, 20, 30, 40, 50} [30]

12

Random: uniform <min, max> <0.01, 0.015> [38]; <10, 50> [11] 2
Depending on frequency {2, 3} [13]; <1.6, 4.2> [9, 10]; <0, 15> [58]; [47, 53, 61] 7
Directly stated, no values given [62] 1
Infinite [25, 27, 29] 3
Unspecified [12, 31, 40, 52, 60] 5

4. Cloud

4.1 Number of
clouds

1 [9–11, 13, 22, 26, 28, 32, 34, 35, 42, 47, 50, 55, 60] 15
Few (2-9) [52] 1
None [12, 23–25, 27, 29–31, 33, 38, 40, 53, 58, 61, 62] 15

4.2 Computational
cost [nJ/cycle]

Constant 0.2 [11]; <0.33, 1.25> [9]; {0.1, 1, 2} [13]; <0.2, 2> [10]; 1.44 [55]; 80 [50] 6
Unspecified [52, 60] 2
No cost [22, 26, 32, 34, 35, 42, 47, 99] 8

4.3 Computational
capability
[Gcycles/s]

Constant 0.01 per task [28]; 1.5 per task [9, 10, 13]; {4, 10} [26]; 10 per task, 40 total
[35]; 50 [32]; 120 [55]; 125 [50]; 200 [11];

10

Infinite [34, 42]; total [9, 10, 13, 28] 6
Unspecified [22, 47, 52, 60] 4

24

2.2 Fog Scenarios and Parameterization

Table 2.3: Parameterization of examined scenarios (continued).
Parameters Description Works and values #

5. MD-FN Communication

5.1 Type of
transmision

Wi-Fi [9, 10, 22, 35, 60] 5
Cellular – TDMA [27] 1
Cellular – OFDMA [12, 27, 29, 30, 61] 5
Cellular – general [22–24, 26, 28, 33, 47, 53, 55, 58] 10
Unspecified [25, 31, 32, 34, 40, 50, 52, 62] 8
N/A [11, 13, 38, 42] 4

5.2 Power
consumption [W]

Directly stated {0.01, 0.03, 0.04, 0.15} [22]; {0.1, 0.2, 0.3, 0.4, 0.5} [30]; 0.9 [58]; 1.22 [62];
{1.18, 1.26} [26]; 2.51 [23]

6

Indirectly stated [9, 12, 24, 25, 27–29, 31, 33, 34, 40] 11
Not included [10, 32, 35, 47, 50, 52, 53, 55, 60, 61] 10

5.3 Transmission
cost [nJ/bit]

Directly stated 2.5 [50]; 142 [32, 35]; 407 [62] 4
Directly stated, no values given [53, 55] 2
Indirectly stated [9, 12, 22–31, 33, 34, 40, 52, 58, 61] 18
No cost [10, 47, 60] 3

5.4 Transmission
rate [Mbit/s]

Directly stated 2 [53]; {0.8, 1, 4, 6} [22]; 3.01 [62]; 30 [58]; {0.25, 1, 1000} [55]; {0, 6.5, 13,
18.5, 26, 39, 52, 58.5, 65} [9]; 72 [32]; 600 [60]; 1000 [52]

9

Indirectly stated [10, 12, 23–31, 33–35, 40, 47, 50, 61] 18

5.5 Interference
consideration

Intra-cell/Intra-FN [10, 12, 28, 33, 47] 5
Inter-cell/Inter-FN [23, 30, 61] 3
No [9, 22, 24–27, 29, 31, 32, 34, 35, 40, 50, 52, 53, 55, 58, 60, 62] 19

5.6 Choice of FN
MD always transmits to the
same/closest FN

[10, 12, 23–25, 27–33, 40, 47, 50, 52, 53, 55, 58, 60–62] 23

MD can choose an FN [9, 22, 26, 34, 35] 5
6. Inter-FN Communication

6.1 Type of
transmission

Wired [9–11, 13, 28, 32, 40, 55, 60] 9
Wireless [30, 38, 42] 3
Unspecified [33, 50, 52, 62] 4
N/A [12, 22–27, 29, 31, 34, 35, 47, 53, 58, 61] 15

6.2 Power
consumption [W]

Directly stated 3.3 [13]; 82 [9] 2
Indirectly stated [38, 42] 2
Not included [10, 11, 28, 30, 32, 33, 40, 50, 52, 55, 60, 62] 12

6.3 Transmission
cost [nJ/bit]

Directly stated 0.2 [11]; 0.3 [10, 13]; {4, 6} [9] 4
Directly stated, no values given [55] 1
Indirectly stated [38, 42] 1
No cost [28, 30, 32, 33, 40, 50, 52, 60, 62] 9

6.4 Transmission
rate [Mbit/s]

Directly stated <5,10> [11]; 72 [32]; 100 [40]; 1000 [9, 10, 13]; 1500 [60]; 10000 [55] 8
Indirectly stated [30, 38] 2
Infinite rate/negligible delay [28, 33, 42, 50, 52, 62] 6

7. FN-Cloud Communication

7.1 Type of
transmission

Wired [9–11, 13, 26, 34, 35, 42, 47, 50, 52, 55, 60] 13
Wireless [22]; MD-Cloud [35] 2
Unspecified [28, 32, 33] 3
N/A [12, 23–25, 27, 29–31, 38, 40, 53, 58, 61, 62] 15

7.2 Power
consumption [W]

Directly stated {5.5, 6570} [13] 1
Not included [9–11, 22, 26, 28, 32–35, 42, 47, 50, 52, 55, 60] 16

7.3 Transmission
cost [nJ/bit]

Directly stated 2.5 [50]; 8 [11]; 10 [10]; {6.38, 12.6, 18.7} [13]; 12.7 [9]; {278, 658} MD-
Cloud [35]

6

Directly stated, no values given [55] 1
Indirectly stated [52] 1
No cost [22, 26, 28, 32–35, 42, 47, 60] 10

7.4 Transmission
rate [Mbit/s]

Directly stated {1, 2, ..., 10} [35]; 72 [32]; 1000 [10, 26]; 10000 [9, 13, 52, 55]; 40000 [60] 9
Indirectly stated [11, 28, 34, 50]; MD-Cloud [35] 5
Infinite rate/negligible delay [22, 33, 42, 47] 4

25

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

given scenarios). About half (14) of the works assume that multiple tasks arrive in the network
simultaneously (row 1.5). This allows them to develop algorithms optimizing the assignment of
multiple tasks to nodes. 8 works assume that each task arrives one at a time and 8 works do not
specify this. Meanwhile, when it comes to parameterizing the arrival distribution of tasks (row
1.6), a majority of the works do not provide the important information. Out of those that do, the
majority choose the exponential distribution, while two works [32, 42] use real distributions.

Part 2 of Tab. 2.3 examines devices that constitute the lowest tier of a fog network – the MDs.
While few (6) works choose to focus on a single MD, the vast majority examine scenarios with
multiple devices from several to over a thousand (row 2.1). Interestingly, 3 works do not model
a single MD. They only look at the distribution of tasks within fog and cloud tiers. When it comes
to computations performed by the MDs (row 2.2), constant value describing the energy cost of
processing is used in 8 works and models where the value depends on the clock frequency of the
device (see Section 2.1.5.1) are used in 7 works. An asterisk (*) is added when describing the
computational cost in [30] as the units used there are inconvertible. 8 works do not consider the
possibility of MDs to process tasks, i.e., they are only the source of the demand and not of the offer.
The computation capability of MDs (row 2.3) shows the same picture as their computational cost
(row 2.2). The spread in values characterizing MDs (ignoring [28]) is between 0.1 and 7 nJ/cycle
and between 0.1 and 5 Gcycles/s – less than 2 degrees of magnitude. It is significantly smaller than
when it comes to task size/intensity that spread over 4 and 5 degrees of magnitude respectively.
Meanwhile, [28] is an exception – it parameterizes MDs as having only 1.6-2.0 Mcycles/s capabil-
ity – significantly less than other works. Their values for fog and cloud computational capabilities
are also by far the lowest of the surveyed works. Moreover, the contrast in chosen computing cost
0.1 J/cycle = 1e8 nJ/cycle is even greater. This 0.1 J/cycle value may be a result of a mistake as an
MD running at 2 Mcycles/s with such cost leads to 200 kW power consumption. 5 out of 28 works
include mobility of the MDs as part of their models and scenarios (row 2.4).

The parameters of FNs (part 3 of Tab. 2.3) also significantly vary between the works. Unlike
when it comes to MDs, more works (13) have a single FN, and only [22] considers no computa-
tional nodes in the fog tier (row 3.1). For the rest of the works, the numbers vary between several
and multiple hundred. As for the processing of tasks (row 3.2), about half of the works (15 out
of 30) do not consider energy costs carried out by the FNs. Of those that do, most (8) assume that
the costs vary depending on clock frequency, while 3 works use constant values. Random values
(from a relatively narrow range) are used in [11] and no values are provided in [52, 62] despite
the parameters being directly stated. For computational capability (row 3.3), many works consider
multiple different values for different scenarios and within scenarios. Few (3) assume that FNs
have infinite capacity which results in negligible (zero) computational delay.

Part 4 of Tab. 2.3 concerns the cloud. Half of the works do not consider a cloud at all (row 4.1).
A single work considers 8 cloud DCs [52] and the other works consider one. The computational
cost per bit (row 4.2) is either ignored or assumed to be constant. Unlike in FNs and MDs, no
works examine the cost as a function of frequency. The computational capability (row 4.3) is
typically higher than in FNs and MDs, and assumed infinite in 5 works. For some works, there is
a distinction between how fast a cloud can process a single task (per task capability) and the total
capability. E.g., for works [9, 10, 13] the cloud can process any number of tasks simultaneously,
but each at the rate of 1.5 Gcycles/s.

Separate sets of parameters are used when describing the things–fog–cloud communication in
Tab. 2.3 parts 5 through 7. Communication between MDs and FNs is considered wireless (Wi-

26

2.2 Fog Scenarios and Parameterization

Fi/cellular, with varying levels of specificity) or not specified at all (row 5.1). Only a few (4) works
do not consider any form of MD-FN transmission. Conversely, the majority of works (15) do not
consider inter-fog transmission, and out of those that do, the majority model the connections as
wired (row 6.1). As for fog-cloud transmission, about half of the works consider the connection as
wired, and half of the works do not consider this transmission at all (row 7.1).

All but 3 works considering MD-FN transmission consider the energy costs related to it (row 5.3).
The transmission power is either not included in the model (10 works), included as a function of
other changing parameters (11), or directly stated (6), with values ranging from 10 mW to 2.51 W
(row 5.2). For most (19) works, transmission cost per bit is indirectly stated – it depends on other
parameter values such as channel gain and transmission rate (row 5.3). For two-thirds of works,
the transmission rate also depends on other parameters. In the remaining one-third, the rate is
directly stated and ranges from 0.25 Mbit/s to 1 Gbit/s (row 5.4). The vast majority of works do
not include interference in their calculations (row 5.5) and assume that a given MD cannot choose
FN to which it transmits data (row 5.6).

For the majority of works that include inter-FN communication, the energy costs are not con-
sidered at all (row 6.2). They are directly stated in [9, 13] and indirectly stated in [38, 42]. Trans-
mission cost (row 6.3) is directly stated in more (4) works than indirectly stated, but it is usually
assumed to have no cost (9 works). Transmission rates are typically higher than the MD-FN ones,
ranging from 5 Mbit/s to 10 Gbit/s, and 6 works assume an infinite rate (row 6.4).

Assumptions on FN-cloud transmission rate (row 7.3) are made in 7 works and range from 2.5
nJ/bit to 658 nJ/bit. No transmission cost is assumed in the majority of works (10). The stated
transmission rates are even higher, reaching 40 Gbit/s (row 7.4). As far as energy is concerned, it
is worth looking at the values that stand out. [13] is the only work where the power consumption
of networking equipment is directly included (row 7.2). The two values used in [13] differ signifi-
cantly because they describe different types of equipment: 5.5 W is the active power consumption
of an Ethernet gateway and 6572 W describes a core network router (row 7.2). Meanwhile, sce-
narios examined in [35] allow for both FN-cloud and direct MD-cloud transmission (see rows 7.3
and 7.4). This direct transmission is wireless and characterized by significantly higher energy-per-
bit cost than in any fog-cloud transmission. It is comparable, albeit still higher, to the costs seen
in wireless things-fog transmission in works [32, 35, 62]. In [33], like in most other works, the
inter-FN and FN-cloud transmission incurs no delay nor energy costs. There are, however, other
undefined costs related to these transmissions that are included in their models and scenarios.

2.2.3 Parameterization summary

Parameterization of a network model plays a crucial role in determining the network operation
and calculated energy-efficiency. Data compiled in this section shows that the chosen values vary
greatly between surveyed works, spanning multiple orders of magnitude: size from 0.125 kB to
80 MB, arithmetic intensity from 0.125 cycle/B to 8000 cycle/B. It does not mean that some of
these values are wrong as different applications utilize offloading of different kinds of tasks, e.g.,
a Portable Game Notation (PGN) file representing a chess game [100] is tiny (< 1 kB) compared
to a high-resolution image. However, analysis of works in this section shows that no standardized
benchmarks are commonly used by the researchers despite the fact that several benchmarks have
been proposed in recent years [101, 102].

Most works assign simple, discretionary values to characterize the traffic, e.g., constant or uni-

27

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

formly distributed sizes of tasks, and the Poisson process for the arrival of tasks. Only a few
works [32, 42] use real-world data for this characterization. Unsurprisingly, clouds are typically
parameterized with higher computational capabilities than FNs, which in turn tend to have higher
capabilities than FNs. This picture becomes less clear when it comes to the computational cost,
particularly due to frequent ignoring of energy consumed by FNs and clouds for performing com-
putations.

2.3 Energy-saving in the Fog

First, let us summarize fundamental terms related to optimization problem formulation (Sec-
tion 2.3.1) and to optimization methods that can be used to reduce energy consumption in fog
networks (Section 2.3.2). A detailed comparison of surveyed works through the lenses of opti-
mization is provided in Tab. 2.4 and Section 2.3.3. Section A.1.1 provides the discussion on the
results achieved with optimization methods and applied technologies. This detailed analysis spans
9 pages of solid text and therefore has been moved to the Appendix A.

2.3.1 Optimization problem formulation

The columns of Tab. 2.4 correspond to the design steps of an optimization problem [103], i.e.,
definition of its objective function, decision variables, constraints, and scenario (parameterization).
The first column states from which work a problem originates, details of the notation used are
discussed in Section 2.3.3. The last column is related to the methods used to solve the optimization
problem.

Scenario broadly shows what kind of application the network runs and what kind of a problem
(usually assignment of tasks to nodes) there is.

The Objective function is shown in the third column of Tab. 2.4. Examples of objectives include
minimizing energy consumption or delay, or maximizing some sort of utility or user experience. In
general, optimization problems can be single-objective or multi-objective. However, in all “multi-
objective” surveyed works except for [30], the authors choose to use a single-objective function
that combines multiple objectives, usually a weighted sum. Throughout Sections 2.3.1 and 2.3.2 it
is assumed that the objective function is to be minimized, e.g., there is a discussion on local/global
minima and whether a function is convex. Maximization problems with objective function f(x)
can easily be turned to minimization problems as follows: max(f(x)) = −min(−f(x)).

Constraints columns lists the constraints that restrict the optimization. Formally, they are in
the form of inequalities or equalities that certain parameters have to meet. While it is possible
to formulate an unconstrained optimization problem, all the surveyed works propose constrained
problems.

Decision variables column lists the variables over which the optimization is performed. The
goal is to find the values of decision variables that optimize the objective function. They can be
discrete or continuous. The set of all possible decision variables is the search space of the problem.

The optimization problem is determined by the following characteristics [103]: smoothness,
linearity, modality, convexity, and stochasticity. The author does not provide an in-depth discuss
the characteristics of optimization problems proposed in surveyed works and do not label their
classes, but sometimes refer to the aforementioned characteristics throughout Section 2.3. Still, the

28

2.3 Energy-saving in the Fog

vast majority of optimization problems from Tab. 2.4 belong to either Mixed-Integer Non-Linear
Programming (MINLP) or, more rarely, Mixed-Integer Linear Programming (MILP). Decision
variables related to task allocation are usually discrete (including binary) and others (e.g., transmit
power, operating frequency) are usually continuous.

2.3.2 Optimization method classification

Methods used to solve optimization problems are shown in column Optim. methods of Tab. 2.4.

2.3.2.1 Optimization method attributes

The following attributes of optimization algorithms are listed in [103]:
Order of information shows how much information is given in the model. Zeroth-order means

that there are only values of the objective function and constraints. First-order algorithms include
information about gradients – first-order derivatives – of these functions with respect to the decision
variables. Similarly, second- and higher-order algorithms include higher-order derivatives. None
of the surveyed works specifically state that they provide gradients in their optimization problems.
Still, multiple algorithms shown in Tab. 2.4 are gradient-based e.g., [10, 29]. Typically, utilizing
higher-order information makes an algorithm converge faster to the minimum. For example, in
[23] the solution utilizing the second-order information is shown to be the fastest.

Search – the ways to search the design space can be broadly classified as either local or global.
A global search spans the entire space to try to find the global minimum. In contrast, a local
search starts at a certain point and from it, through a number of steps, tries to converge to a local
minimum. If and only if a function is unimodal, then finding a local minimum is synonymous with
finding a global one.

Algorithm – Mathematical vs. Heuristic – this division depends on whether the algorithm re-
lies on provable mathematical principles or follows a practical method (heuristic) that is shown
(but not proven) to be sufficient for a given problem. The author finds that this is the key dif-
ference between solutions to optimization problems proposed in the surveyed works. Therefore,
Section 2.3.2.2 provides a summary of various families of mathematical and heuristic methods
used in the optimization of fog networks.

Function evaluation can be direct – obtained by solving the provided models. In contrast, one
can also generate surrogate models and optimize based on their evaluation. Surrogate models can
be a result of interpolation or projection. The goal of using surrogate models is to build a model
that fits the original one and is easier (faster) to optimize.

Stochasticity of the algorithm depends on whether it always (given the same initial conditions)
evaluates functions at the same points and therefore converges to the same results. If that is the
case, then the algorithm is deterministic. On the other hand, stochastic algorithms can evaluate
different sets of points each time it is run according to some sort of random number generation.
Surveyed works use many kinds of stochastic and deterministic algorithms e.g., all used meta-
heuristics are stochastic.

Time dependence – finally, the optimization problems can be divided into static and dynamic
problems. Static problems involve solving the complete model at each optimization iteration. In
contrast, dynamic problems involve solving a sequence of different problems as time progresses
based on information that becomes available during this time. One can integrate over time to solve

29

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

the problem for the entire time history and reduce a series of problems to a single one. Such an
approach is commonly used as can be seen in Tab. 2.4 – many authors use limits of expected values
of objective functions and constraints as the time interval goes to infinity.

2.3.2.2 Optimization method families

Tab. 2.4 shows that there is a multitude of different optimization methods used in the surveyed
works. Similarly to [104], they are grouped into 6 broad families and discussed in the next subsec-
tion.

Convex optimization: As mentioned in Section 2.3.1 convex problems can typically be eas-
ily solved by well-known methods such as interior-point methods or Newton’s method. Most of
the convex optimization algorithms are mathematical (non-heuristic) and deterministic. Method
of Lagrange multipliers and Karush–Kuhn–Tucker (KKT) conditions are used to directly include
constraints in the objective functions. For networks modeled stochastically, Lyapunov optimiza-
tion is used to stabilize the queuing times in the network while optimizing an objective such as
minimizing energy [31, 42] or delay [36, 40]. While Lyapunov optimization is the most com-
monly used one with convex optimization methods, it can also be used with other methods e.g.,
heuristics in [22].

In some works, the proposed optimization problem is originally non-convex but then gets trans-
formed (e.g., in [38]) or approximated into a convex one. A particular example of this approach
is SCA – a technique that iteratively approximates non-convex functions by convex ones around
given values as used in [10].

Heuristics: Heuristics are practical methods that are shown to provide good results (e.g., through
trial and error) but are not mathematically proven to be optimal [103]. Many heuristics involve
lowering the search space of possible solutions on the basis that the optimum is unlikely to be
found in cut-off regions. They can also involve using some “clever” approximations or adjusting
the order in which the problem is solved. An example whose variations come up in multiple works
is the greedy algorithm which relies on separating the problem into multiple stages and sequentially
making the optimal choice at each stage (e.g., allocating a node sequentially for each task as in
[10] or allocating time slots sequentially to each task in [27]).

Metaheuristics: “A metaheuristic is formally defined as an iterative generation process which
guides a subordinate heuristic by combining intelligently different concepts for exploring and ex-
ploiting the search space, learning strategies are used to structure information in order to find
efficiently near-optimal solutions” [105]. All metaheuristic algorithms shown in Tab. 2.4 are based
on concepts of natural science, e.g., evolution – Genetic Algorithm (GA) as in [30] or animal be-
havior – Marine Predators Algorithm (MPA) as in [46]. They are typically model-agnostic and can
be adapted to solve many different optimization problems. They belong to the heuristic category
in a broader sense – their effectiveness is not proven mathematically. They are also predominantly
stochastic, randomly adjusting parameters throughout the optimization.

Machine learning: Machine learning methods form another family of optimization techniques
that can be distinguished. Surveyed articles mostly use variations of Reinforcement Learning (RL)
– agents learn to take actions maximizing the reward and deep learning – using neural networks
with multiple layers. These works also belong to the broader heuristic category.

Game theory: In most studied works there is a common objective for the entire network. For
optimization problems where each user/agent/node has its own goal, a solution based on game

30

2.3 Energy-saving in the Fog

theory can be proposed as in [61, 106]. These methods are not heuristic, they follow well-proven
mathematical principles.

Mixed approach: Many optimization problems shown in Tab. 2.4 are split into subproblems,
each analyzed in a separate row. The solutions to these subproblems often utilize multiple algo-
rithms from different families. These are put together in a separate part of Tab. 2.4.

Non-convex optimization: While it is generally easier to solve convex problems, there are also
algorithms that solve various kinds of non-convex problems that do not fit into any aforementioned
families. No optimization problem shown in Tab. 2.4 exclusively fits to this family. Therefore the
family is not included in Tab. 2.4. The authors of [49] and [61] use such methods for some of their
subproblems.

2.3.3 Comparison of works on fog optimization

In this thesis, the focus is on energy/power. Therefore the author leaves out works on fog opti-
mization that do not have energy/power as part of their objective function or constraints like [60].
Works such as [12, 13, 32, 41, 50, 52] do not state any optimization problems as defined in Sec-
tion 2.3.1. These works show the results related to the operation of fog networks and perform
parameter sweeps but do not perform the optimization. These works show the results related to
the operation of fog networks and perform parameter sweeps but do not perform the optimization.
They are therefore excluded. [51] is also excluded as it is written in a magazine style and it does not
include essential information (mathematical formulas) such as constraints and decision variables
for energy optimization. Similarly, Khumalo et al. [59] present a simplified version of an opti-
mization problem, but do not provide their solution results leaving it for future work. Optimization
results are provided in the next work of Khumalo et al. [107]. However, the authors modify the
model and optimization problem so that they no longer include energy consumption. Also, works
[108–116] are only mentioned in this section as the origins of solutions chosen by the authors of
other works for comparison. They neither model nor optimize energy consumption.

The summary of fog optimization problems and proposed solutions can be found in Tab. 2.4. It
is structured in the following way. First, there is the name of the work from which the optimization
problem originates and the description of the scenario under which the network operates. The
names are marked with Solution IDentifiers (SIDs). The next columns follow with the objective
function, chosen constraints, and decision variables for the optimization problem. Eventually, the
proposed solutions are named.

There are multiple entries in Tab. 2.4 for some works. In some cases, a surveyed work proposes
multiple different optimization problems. Let us then use multiple SIDs for problems within the
same work. This includes works: [27] – C12, C13 and C14, H2 and H3 have three different opti-
mization problems, [26] – C11 adds another decision variable to optimization problem compared
with C9 and C10, [33] – ML4 and ML5 have also different problems. In others, there are multiple
solutions (often with varied levels of complexity) to the same problem. This includes works [9–
11, 26, 35, 40, 46]. Finally, some optimization problems are split into various subproblems, each
solved with a different method. This includes works [9, 10, 24, 25, 35–37, 42, 47, 49, 54, 61].
These subproblems are assigned a SID with a sub-ID in Tab. 2.4. E.g., two distinct solutions
(MA8 and MA9) are proposed in [10]. Each of them is split into subproblems (MA8.1, MA8.2,
and MA8.3, MA9.1, MA9.2, and MA9.3) listed in Tab. 2.4.

In the Constraints the author chooses to not to list “obvious” constraints on the decision variables

31

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

listed next to it. For example, when a work has MD transmission power as a decision variable, there
is no need to put maximum MD transmission power as a constraint nor the fact that it cannot be
lower than zero. Similarly, “obvious” constraints on allocation variables are also omitted, e.g., the
index of a node to which a task is sent must be an integer from a given set, a portion of offloaded
workload must be between 0 and 1. These choices are made to not clog Tab. 2.4 with superfluous
data. The term “over time” is used to describe the expected value of a parameter over a time period
as its length approaches infinity. Such an approach is often used in surveyed optimizations (C16,
C18, C19, H1, ML1, ML4, ML5, G1, MA2, MA5) for their objective functions. The authors do
it to make their optimization problem deterministic and static. Decision variables “allocation of
tasks/workload” take many forms in surveyed works. They can be binary (whether to offload)
or continuous (what fraction to offload). They also decide which nodes tasks are offloaded to in
works with multiple nodes that can process them. The abbreviations max., min., and opt. refer to
maximum/maximal, minimum/minimal, and optimum/optimal, respectively.

Tab. 2.4 does not include baseline solutions used by the authors only for comparison with their
proposed algorithms. Instead, they are mentioned while describing works in Section A.1.1. Exam-
ple baseline solutions include trivial algorithms such as random assignment or sending all tasks to
the same node, or, on the other end of the spectrum, performing an exhaustive search.

32

2.3
E

nergy-saving
in

the
Fog

Table 2.4: Approaches to optimization in the fog with respect to energy consumption.
SID. Work Scenario Objective function Constraints Decision variables Optim. methods

1. Convex optimization
C1. Do et al.
[48] (2015)

One cloud streaming video to mul-
tiple FNs

Maximize the utility (amount
of video streaming) minus cost
(cloud energy – carbon foot-
print)

Computational capacity of
cloud

Amount of streaming to each
FN

Proximal algorithm, ADMM

C2. Ouesis
et al. [38]
(2015)

Multiple FNs receiving tasks from
MDs, FNs processing tasks or
sending to other FNs

Minimize energy spent on the
transmission of tasks by the
FNs

Max. delay, FN comput-
ing rates

FN transmission power, al-
location of computational re-
sources to tasks

Reformulation into a convex prob-
lem, Lagrange method

C3. Sardel-
litti et al.
[23] (2015)

Single MD offloading tasks to a
single FN through a BS

Minimize energy consumption
spent by the MD on transmis-
sion

Max. delay, max. MD
transmission power

MD transmit covariance ma-
trix, FN computing resources
used

Reformulation into a convex prob-
lem, water-filling algorithm

C4. Sardel-
litti et al.
[23] (2015)

Multiple MDs offloading tasks to
a single FN through multiple BSs,
multiple MDs transmitting without
offloading

Weighted sum of MD transmis-
sion energy consumption

Max. delay for offloading
MDs, min. rate for non-
offloading MDs, max. MD
transmission power

MD transmit covariance matri-
ces, allocation of FN comput-
ing resources to tasks

SCA

C5. Sardel-
litti et al.
[23] (2015)

Multiple MDs offloading tasks to
a single FN through multiple BSs,
multiple MDs transmitting without
offloading (decentralized for each
BS)

Weighted sum of MD transmis-
sion energy consumption

Max. delay for offloading
MDs, min. rate for non-
offloading MDs, max. MD
transmission power

MD transmit covariance matri-
ces, allocation of FN comput-
ing resources to tasks

SCA, separation of delay con-
straint in covariance matrices, dual
decomposition

C6. Sardel-
litti et al.
[23] (2015)

As in C5 As in C5 As in C5 As in C5 Decomposition using slack vari-
ables, SCA with or without
second-order information

C7.1. Muñoz
et al. [24]

One MD transmitting (UL) a task
to a single FN

Minimize energy consumption
spent on transmission by the
MD

Min. transmission MD transmission covariance
matrix

Water-filling algorithm

C7.2 One MD receiving (DL) offloaded
task from the FN

Maximize DL transmission
rate

Max. FN transmission
power

FN transmission covariance
matrix

As in C7.1

C7.3 One MD offloading a task to a sin-
gle FN, includes C7.1 and C7.2

Minimize total energy con-
sumption spent by the MD

Max. delay, max. DL
transmission power

Portions of tasks offloaded and
processed locally, UL and DL
transmission times

Problem reformulation in terms
of portion of tasks offloaded and
UL transmission rate, analytically
finding opt. rate, finding opt. of-
floaded portion through gradient
descent

C8. Muñoz
et al. [24]

As in C7.3 Minimize total energy con-
sumption spent by the MD

Max. DL transmission
power

Portions of tasks offloaded and
processed locally, UL and DL
transmission times

Mathematically proving that par-
tial offloading can never be opt.
and finding the threshold above
which local processing is opt.

C9. Dinh
et al. [26]
(2017)

One MD offloading tasks to multi-
ple FNs or processing them locally

Minimize the weighted sum of
latency and MD energy con-
sumption

One-task-one-node Allocation of tasks LP relaxation

C10. Dinh
et al. [26]
(2017)

As in C9 As in C9 As in C9 As in C9 SDR

33

2
E

nergy
C

onsum
ption

and
E

fficiency
in

Fog
C

om
puting

N
etw

orks
–

State-of-the-art
Table 2.4: Approaches to optimization in the fog with respect to energy consumption (continued).

SID. Work Scenario Objective function Constraints Decision variables Optim. methods
1. Convex optimization (continued)

C11. Dinh
et al. [26]
(2017)

As in C10 As in C10 As in C10 Allocation of tasks,
MD operating frequency

As in C10

C12. You
et al. [27]
(2017)

Multiple MDs offloading tasks
(also partially) to a single FN
with infinite computing capacity
(TDMA) or processing them lo-
cally

Minimize the sum of en-
ergy consumption of all MDs
weighted by unspecified fair-
ness

Max. delay, one task per
time slot

Size of offloaded portions of
tasks, time slot allocation

Lagrange method, bisection
search,
this problem is used as a subprob-
lem for other optimizations by
You et al.

C13. You
et al. [27]
(2017)

Multiple MDs offloading tasks
(also partially) to a single FN
(TDMA) or processing them lo-
cally

As in C12 As in C12 As in C12 Lagrange method, utilizing solu-
tion C12, 2D search for Lagrange
multipliers (time slots, offloaded
portions)

C14. You
et al. [27]
(2017)

Multiple MDs offloading tasks
(also partially) to a single FN
(OFDMA) or processing them lo-
cally

As in C13 Max. delay Size of offloaded portions of
tasks, subchannel allocation

Relaxation-and-rounding

C15. Feng
et al. [29]
(2018)

Multiple MDs offloading tasks
(also partially) to a single FN or
processing them locally

Minimize energy consumption
of an MD with the highest con-
sumption

Min. transmit rate, assign-
ment of an IoT device to
one and only one subcar-
rier

Subcarrier allocation, size of
offloaded portions of tasks

Lagrange method, relaxation, sub-
gradient projection

C16. Chen
et al. [40]
(2018)

Multiple MDs offloading load
to FNs, FNs sharing load be-
tween each other – decentralized
decision-making

Minimize delay over time Max. energy cost over
time, max. energy cost per
time slot, max. delay per
time slot

Task allocation to nodes (from
one FN to another)

Lyapunov optimization

C17. Vak-
ilian and
Fanian [43]
(2020)

Multiple FNs receiving offloaded
workloads and processing them or
sending them to other FNs or cloud
for processing

Minimize weighted and nor-
malized sum of energy con-
sumption of FNs and delay

Processing rate of FNs Allocation of workload to
nodes

SCS

C18. He
et al. [31]
(2020)

A single MD offloading tasks to
multiple FNs with potential non-
colluding adversaries sensing its
presence

Minimize energy consumption
of an MD over time

Max. delay, max. task
drop rate, max. likelihood
of detection by adver-
saries, one-task-one-node

Task allocation to nodes, task
dropping, MD transmission
power

Lyapunov optimization

C19. He
et al. [31]
(2020)

A single MD offloading tasks to
multiple FNs with potential col-
luding adversaries sensing its pres-
ence

As in C18 As in C18 As in C18 As in C18

C20.1 Gao
et al. [42]
(2020)

Multiple FNs receiving offloaded
workload and processing it or
sending it (or portion of it) to
higher-tier FNs or cloud for pro-
cessing

Minimize average total power
consumption of all FNs

Stability of queues, max.
size of queues

Allocation of workload to
nodes, FN transmit power, FN
operating frequency

Lyapunov optimization, decom-
position into C20.2, C20.3, and
C20.4, workload prediction

C20.2 FNs processing workload Minimize drift-plus-penalty for
FN frequency decision

– FN operating frequency Polynomial (3rd degree) mini-
mization

34

2.3
E

nergy-saving
in

the
Fog

Table 2.4: Approaches to optimization in the fog with respect to energy consumption (continued).
SID. Work Scenario Objective function Constraints Decision variables Optim. methods

1. Convex optimization (continued)
C20.3 Lower-tier FN wirelessly transmit-

ting workload to higher-tier FN
Minimize drift-plus-penalty for
transmit power decision

– FN transmit power Water-filling algorithm

C20.4 Lower-tier FN processing work-
load or sending it to higher-tier FN,
higher-tier FN processing work-
load or sending it to cloud

Minimize drift-plus-penalty for
offloading decision

– offloading decision Polynomial (1st degree) minimiza-
tion

C21. Vu
et al. [35]
(2021)

Multiple MDs offloading tasks to
multiple FNs or a cloud, or pro-
cessing them locally

Minimize the sum of energy
consumption of all MDs

One-task-one-node, max.
delay

Allocation of tasks to nodes,
uplink, downlink, and comput-
ing rates of FNs, uplink, down-
link, and computing rates of
cloud

Relaxation-and-rounding

C22. Vu
et al. [35]
(2021)

As in C21 As in C21 As in C21 As in C21 Relaxation, improved BB algo-
rithm

C23.1 Vu
et al. [35]
(2021)

As in C21 As in C21 As in C21 As in C21 FFBD into the following problems

C23.2 Multiple MDs offloading tasks to
multiple FNs or a cloud, or pro-
cessing them locally

Minimize the sum of energy
consumption of all MDs

– Allocation of tasks to nodes Integer programming

C23.3 Checking if a solution to C23.2 is
feasible

– One-task-one-node, max.
delay

Uplink, downlink, and comput-
ing rates of FNs, uplink, down-
link, and computing rates of
cloud

None (verification of C23.2)

35

2
E

nergy
C

onsum
ption

and
E

fficiency
in

Fog
C

om
puting

N
etw

orks
–

State-of-the-art

Table 2.4: Approaches to optimization in the fog with respect to energy consumption (continued).
SID. Work Scenario Objective function Constraints Decision variables Optim. methods

2. Heuristics
H1. Huang
et al. [22]
(2012)

Single MDs offloading parts of
tasks (directed graphs) to the cloud
for offloading or processing them
locally

Minimize energy consumption
of the MD over time

Max. percentage of
tasks exceeding delay
constraint, stability of the
system

Sub-task allocation to nodes Lyapunov optimization, 1-opt lo-
cal search algorithm

H2. You
et al. [27]
(2017)

Multiple MDs offloading tasks
(also partially) to a single FN
(TDMA) or processing them lo-
cally

Minimize the sum of en-
ergy consumption of all MDs
weighted by unspecified fair-
ness

Max. delay, one task per
time slot

Size of offloaded portions of
tasks, time slot allocation

Lagrange method, utilizing solu-
tions to C12, greedy time slot al-
location based on priority based
on channel gain and intensity,
1D search for offloading Lagrange
multiplier

H3. You
et al. [27]
(2017)

Multiple MDs offloading tasks
(also partially) to a single FN
(OFDMA) or processing them lo-
cally

Minimize the sum of en-
ergy consumption of all MDs
weighted by unspecified fair-
ness

Max. delay Size of offloaded portions of
tasks, subchannel allocation

Sequentially performing the fol-
lowing: assigning one subchannel
to each MD according to priority,
determining the total subchannel
number and offloaded data size for
each MD, assigning specific sub-
channels to MDs according to pri-
ority, finding the final offloaded
data size for each MD

H4. Kopras
et al. [11]
(2020)

Single MD offloading tasks (di-
rected graphs) to multiple FNs or
cloud

Minimize the sum of energy
consumption of all devices

Scheduling in nodes and
links (one task per time
slot), max. delay

Allocation of tasks to nodes Clustering of nodes, exhaustive
search over clusters

H5. Roy
et al. [57]
(2020)

Multiple MDs offloading tasks
consisting of sub-tasks to two tiers
of FNs or a cloud

Maximize fitness (combina-
tion of availability, delay, and
power consumption)

Constraints included in the
objective function

Allocation of sub-tasks to
nodes

Adaptive PSO, GA

36

2.3
E

nergy-saving
in

the
Fog

Table 2.4: Approaches to optimization in the fog with respect to energy consumption (continued).
SID. Work Scenario Objective function Constraints Decision variables Optim. methods

3. Metaheuristics
MH1. Dje-
mai et al.
[55] (2019)

Multiple MDs offloading tasks (di-
rected graphs) to multiple FNs or
cloud nodes, or processing them
locally

Minimize the sum of energy
consumption of all devices plus
penalties for delay violations

Min. memory, min. com-
puting capability

Allocation of tasks to nodes Discrete PSO

MH2. Cui
et al. [30]
(2019)

Multiple MDs offloading tasks to
an FN through relay nodes or pro-
cessing them locally

Minimize energy consumption
of MDs and delay (multi-
objective)

One-task-one-node, pro-
cessing rate of MDs and
FN

Task allocation (binary – local
or to the FN)

Modified NSGAII with task allo-
cation as chromosomes and MDs
as genes

MH3. Wang
and Chen
[58] (2020)

Multiple MDs offloading tasks to
a single FN or processing them lo-
cally

Minimize total delay One-task-one-node, max.
task delay, max. task en-
ergy consumption

Task allocation to nodes, com-
putation capability (operating
frequency) of MDs and an FN

HGSA

MH4. Ab-
basi et al.
[56] (2020)

Offloaded workload being shared
between multiple FNs and clouds

Minimize fitness (a function of
energy consumption and delay
– not clearly stated)

Max. computing capacity
of FNs

Allocation of workload to
nodes, FN-cloud traffic rates,
cloud on/off state, cloud op-
erating frequency, number of
turned on machines at cloud

NSGAII with assignment of work-
load to nodes as genes

MH5. Vakil-
ian et al. [44]
(2021)

Multiple FNs receiving offloaded
workloads and processing them or
sending them to other FNs or cloud
for processing

Minimize the weighted sum of
normalized energy consump-
tion of FNs and normalized de-
lay

Processing rate of FNs Allocation of workload to
nodes

ABC

MH6. Vakil-
ian et al. [45]
(2021)

Multiple FNs receiving offloaded
workloads and processing them or
sending them to other FNs or cloud
for processing

Minimize the weighted sum
of energy consumption of FNs
and delay adjusted by fairness
(processing rate of a given FN
divided by the total processing
rate of all FNs)

Processing rate of FNs Allocation of workload to
nodes

Cuckoo algorithm

MH7.
Abdel-
Basset et al.
[46] (2021)

Single FN allocating offloaded
tasks to multiple VMs

Minimize the weighted sum of
total energy consumption and
the highest delay over VMs

One-task-one-node Allocation of tasks to VMs MPA

MH8.
Abdel-
Basset et al.
[46] (2021)

As in MH7 As in MH7 As in MH7 As in MH7 Modified MPA

MH9.
Abdel-
Basset et al.
[46] (2021)

As in MH7 As in MH7 As in MH7 As in MH7 Improved modified MPA

MH10.
Ghanavati
et al. [62]
(2022)

Multiple MDs offloading sets of
tasks to multiple FNs or a cloud

Minimize the weighted sum of
energy spent by FNs and total
delays for each set of tasks

One-task-one-node Allocation of tasks to nodes AMO

37

2
E

nergy
C

onsum
ption

and
E

fficiency
in

Fog
C

om
puting

N
etw

orks
–

State-of-the-art

Table 2.4: Approaches to optimization in the fog with respect to energy consumption (continued).
SID. Work Scenario Objective function Constraints Decision variables Optim. methods

4. Machine Learning
ML1. Xu
et al. [39]
(2017)

Single FN with multiple servers
processing offloaded workload or
sending it to a cloud for processing

Expected cost (delay, battery
depreciation, backup power us-
age) over time with discount
factor giving less weight to cost
later in the future

Not clearly defined Number of active servers in an
FN, fraction of workload of-
floaded to the cloud

Utilizing RL to solve PDS-based
Bellman equations

ML2. Wang
et al. [53]
(2019)

Multiple MDs offloading tasks to
other MDs or an FN, or processing
them locally

Minimize the weighted sum of
energy consumption and delay,
and exceeded delay penalties

MD battery level Task allocation (wait, process
locally, offload to an FN, of-
fload to other MDs)

Deep RL scheduling

ML3. Wang
et al. [53]
(2019)

As in ML2 As in ML2 As in ML2 As in ML2 DDS, deep Q-learning

ML4. Nath
and Wu [33]
(2020)

Multiple MDs offloading tasks to
one FN or processing them locally,
FN caching previous tasks, FN
fetching (downloading to cache)
tasks from the cloud

Minimize the weighted sum
of energy consumption, delay,
and fetching cost over time

One-task-one-node, max.
cached data size, max. de-
lay

Allocation of tasks to nodes,
caching decisions, fetching
from cloud decisions, MD
operating frequency, MD
transmission power

Deep RL, DDPG

ML5. Nath
and Wu [33]
(2020)

Multiple MDs offloading tasks to
one of multiple FNs (each MD can
only offload to one FN) or pro-
cessing them locally, FNs caching
previous tasks, FNs fetching tasks
from the cloud or other FNs

As in ML4 As in ML4 Allocation of tasks to nodes,
caching decisions, fetching
from cloud decisions, fetching
from FNs decisions, MD
operating frequency, MD
transmission power

As in ML4

ML6. Bai
and Qian
[34] (2021)

Multiple MDs offloading tasks to
multiple FNs or a cloud

Minimize the weighted sum of
energy spent by MDs and delay

One-task-one-node Allocation of tasks to nodes, al-
location of channel resources
to tasks, allocation of FN com-
puting resources to tasks

A2C algorithm

5. Game Theory
G1. Chen
et al. [40]
(2018)

Multiple MDs offloading loads
to FNs, FNs sharing load be-
tween each other – decentralized
decision-making

Minimize delay over time Max. energy cost over
time, max. energy cost per
time slot, max. delay per
time slot

Task allocation to nodes (from
one FN to another)

Best-response algorithm

38

2.3
E

nergy-saving
in

the
Fog

Table 2.4: Approaches to optimization in the fog with respect to energy consumption (continued).
SID. Work Scenario Objective function Constraints Decision variables Optim. methods

6. Mixed Approach
MA1.1 Deng
et al. [49]
(2016)

Offloaded workload being shared
between multiple FNs and clouds

Minimize the sum of en-
ergy consumption of FNs and
clouds

Max. delay, max. comput-
ing capacity of FNs, max.
FN-cloud traffic rate

Allocation of workload to
nodes, FN-cloud traffic rates,
cloud on/off state, cloud op-
erating frequency, number of
turned on machines at cloud

Approximation – decomposition
into MA1.2, MA1.3, and MA1.4

MA1.2 Workload being shared between
multiple FNs

Minimize the weighted sum of
delay and energy consumption
of FNs

Max. computing capacity
of FNs

Allocation of workload to
nodes

Convex optimization – interior-
point method

MA1.3 Workload being shared between
multiple clouds

Minimize the sum of energy
consumption of clouds

Max. delay, max. comput-
ing capacity of clouds

Allocation of workload to
nodes, FN-cloud traffic rates,
cloud on/off state, cloud op-
erating frequency, number of
turned on machines at cloud

Non-convex optimization - GBD

MA1.4 Workload being transmitted be-
tween multiple FNs and clouds

Minimize total transmission
delay

– FN-cloud traffic rates Hungarian algorithm

MA2.1 Mao
et al. [25]
(2016)

Energy harvesting MD offloading
tasks to a single FN or processing
it locally

Minimize weighted sum of de-
lay and dropped task penalty
over time

One-task-one-node, MD
battery level

Allocation of tasks to nodes,
MD transmission power, MD
operating frequency, MD har-
vested energy

Proving opt. frequency should be
constant for a task, using Lya-
punov optimization to transform
MA2.1 to a per-slot MA2.2 deter-
ministic problem

MA2.2 As in MA2.1 Minimize weighted sum of vir-
tual energy queue length, de-
lay, and dropped task penalty
over time

As in MA2.1 As in MA2.1 Finding opt. harvested energy with
LP leading into MA2.3

MA2.3 As in MA2.2 As in MA2.2 As in MA2.2 Allocation of tasks to nodes,
MD transmission power, MD
operating frequency

Finding opt. values for frequency
and trans. power, separately calcu-
lating costs for local execution, of-
floading, and dropping the task and
choosing the lowest one

MA3. Liu
et al. [28]
(2018)

Energy harvesting MDs offloading
workload (or portions of it) to a
single FN (consisting of multiple
servers) or cloud, or processing it
locally

For each MDs minimize execu-
tion cost (delay + dropped task
penalty) increased by weighted
execution costs of other MDs
in its “social group”

Stability of queues, battery
level of MDs

Allocation of workload to
nodes

Game theory – partial penaliza-
tion, convex optimization – for-
mulation of KKT conditions, con-
vex optimization – semi-smooth
Newton method with Armijo line
search

MA4.1 Sun
et al. [54]
(2019)

Multiple MDs receiving content
from a cloud through RRHs or
D2D transmitters

Minimize the sum of energy
consumption of all devices

– On-off states of cloud proces-
sors, communication modes of
MDs

Machine Learning – Deep RL

MA4.2 Multiple MDs receiving content
from a cloud through RRHs or
Device-to-Devices (D2Ds) trans-
mitters

Minimize the sum of network-
wide precoding vectors

Min. transmission rates,
max. transmission power,
computing resources of
cloud

MDs data rates Convex optimization

39

2
E

nergy
C

onsum
ption

and
E

fficiency
in

Fog
C

om
puting

N
etw

orks
–

State-of-the-art
Table 2.4: Approaches to optimization in the fog with respect to energy consumption (continued).

SID. Work Scenario Objective function Constraints Decision variables Optim. methods
6. Mixed Approach (continued)

MA5.1
Zhang et al.
[61] (2020)

Multiple MDs offloading load to
one FN through RRHs or process-
ing it locally

Minimize energy consumption
divided by the size of pro-
cessed tasks over time

Stability of queues FN and MD operating fre-
quency, a fraction of offload,
FN transmission power, sub-
channel allocation

Lyapunov optimization, decom-
position into MA5.2, MA5.3,
MA5.4, MA5.5

MA5.2 Single MD offloading load to one
FN through RRHs or processing it
locally

Minimize Lyapunov drift-plus-
penalty for the offloading deci-
sion

– A fraction of offloaded load Polynomial minimization

MA5.3 Multiple MDs offloading load to
one FN through RRHs

Minimize Lyapunov drift-plus-
penalty for the subchannel and
transmit power allocation

– FN transmission power, sub-
channel allocation

Game theory – two-side swap
matching game, non-convex op-
timization – geometric program-
ming

MA5.4 One FN processing offloaded load Minimize Lyapunov drift-plus-
penalty for FN computing re-
source allocation

– FN operating frequency for
computation and transmission

Convex optimization – decomposi-
tion

MA5.5 One MD processing tasks locally Minimize Lyapunov drift-plus-
penalty for MD computing re-
source allocation

– MD operating frequency for
computation

As in MA5.4

MA6. Ko-
pras et al.
[11] (2020)

Single edge node offloading tasks
(directed graphs) to multiple FNs
or cloud

Minimize the sum of energy
consumption of all devices

Scheduling in nodes and
links (one task per time
slot), max. delay

Allocation of tasks to nodes Heuristic – clustering of nodes,
metaheuristic – discrete PSO

MA7.1 Bian
et al. [36, 37]
(2022)

Single FN distributing parameters
to and from multiple MDs in dis-
tributed training scheme

Minimize regret (a function of
delay)

Wireless channel capacity,
max. expected energy con-
sumption of MDs, fairness
– min. expected MD selec-
tion rates

Selection of MDs for training Convex optimization – Lyapunov
optimization, transformation into
MA7.2

MA7.2 Single FN distributing parameters
to and from multiple MDs in dis-
tributed training scheme

Minimize weighted sum of vir-
tual queues (for energy con-
sumption and fairness) and
UCB term (estimated mean re-
gret plus exploration cost)

Max. number of MDs the
FN can communicate with
in each round

Selection of MDs for training UCB-based bandit algorithm,
transformation into MA7.3

MA7.3 Single FN distributing parameters
to and from multiple MDs in dis-
tributed training scheme

Minimize weighted sum of vir-
tual queues

Selection of MD with low-
est UCB term, max. num-
ber of MDs the FN can
communicate with during
each round

Selection of MD for training Heuristic – greedy approach

MA8.1 Ko-
pras et al.
[10] (2022)

Multiple FNs receiving tasks of-
floaded from MDs, processing
them or sending them to other FNs
or cloud for processing

Minimize the sum of energy
consumption of all devices

One-task-one-node,
max. delay

Allocation of tasks to nodes,
FN operating frequency

Decomposition into MA8.2 and
MA8.3

MA8.2 An FN processing offloaded task Minimize the energy consump-
tion of the FN

Max. delay FN operating frequency Convex optimization – SCA, La-
grange method

MA8.3 FNs processing offloaded tasks or
sending them to other FNs or cloud

Minimize the sum of energy
consumption of all devices

One-task-one-node Allocation of tasks to nodes Hungarian algorithm

40

2.3
E

nergy-saving
in

the
Fog

Table 2.4: Approaches to optimization in the fog with respect to energy consumption (continued).
SID. Work Scenario Objective function Constraints Decision variables Optim. methods

6. Mixed Approach (continued)
MA9.1. Ko-
pras et al.
[10] (2022)

Multiple FNs processing offloaded
tasks or sending them to other FNs
or cloud for processing

Minimize the sum of energy
consumption of all devices

One-task-one-node,
max. delay

Allocation of tasks to nodes,
FN operating frequency

Decomposition into 2 subproblems
MA9.2 and MA9.3

MA9.2 An FN processing offloaded task Minimize the energy consump-
tion of the FN

Max. delay FN operating frequency Convex optimization – SCA, La-
grange method

MA9.3 Multiple FNs processing offloaded
tasks or sending them to other FNs
or cloud for processing

Minimize the sum of energy
consumption of all devices

One-task-one-node Allocation of tasks to nodes Heuristic – greedy algorithm

MA10.1 Ko-
pras et al.
[9] (2023)

Multiple MDs offloading tasks to
multiple FNs or a cloud

Minimize the sum of energy
consumption of all devices

One-task-one-node,
max. delay

Allocation of MD-FN trans-
mission,
allocation of tasks to nodes,
FN operating frequency

Decomposition into 3 subproblems
MA10.2, MA10.3, and MA10.4

MA10.2 An FN processing offloaded task Minimize the energy consump-
tion of the FN

Max. delay FN operating frequency Rational (3rd degree) function
minimization

MA10.3 An MD offloading a task to one of
multiple FNs

Minimize the sum of energy
consumption of all devices

– Allocation of MD-FN trans-
mission for all possible compu-
tation allocations

Exhaustive search

MA10.4 Multiple FNs processing offloaded
tasks or sending them to other FNs
or cloud for processing

As in MA10.3 One-task-one-node Allocation of tasks to nodes Hungarian algorithm

MA11.1 Ko-
pras et al.
[9] (2023)

Multiple MDs offloading tasks to
multiple FNs or a cloud

As in MA10.4 One-task-one-node,
max. delay

Allocation of MD-FN trans-
mission, allocation of tasks to
nodes,
FN operating frequency

Decomposition into 3 subproblems
MA11.2, MA11.3, and MA11.4

MA11.2 An FN processing offloaded task Minimize the energy consump-
tion of the FN

Max. delay FN operating frequency Rational (3rd degree) function
minimization

MA11.3 An MD offloading a task to one of
multiple FNs

Minimize the sum of energy
consumption of all devices

– Allocation of MD-FN trans-
mission

Heuristic – always transmitting
with the lowest MD-FN cost

MA11.4 Multiple FNs processing offloaded
tasks or sending them to other FNs
or cloud for processing

Minimize the sum of energy
consumption of all devices

One-task-one-node Allocation of tasks to nodes Hungarian algorithm

MA12.1 Sun
and Chen
[47] (2023)

MDs offloading tasks to FNs
or processing them locally, FNs
caching services

Maximize utility (price paid by
MDs minus costs including en-
ergy) for the network provider

One-task-one-node, Max.
FN power consumption,
max. FN storage

MD transmission power, FN
operating frequency, offloading
cost, cache location

Reducing incentive constraints,
decomposition into MA12.2 and
MA12.3

MA12.2 FNs processing offloaded tasks Maximize utility Max. FN power consump-
tion

FN operating frequency Convex optimization

MA12.3 MDs offloading tasks to FNs (MD
connected to a single FN) or pro-
cessing them locally, FNs caching
services

As in MA12.3 Max. FN storage MD transmission power, cache
location

Exhaustive generation of all pos-
sible cache locations, greedy al-
gorithm to find opt. cache loca-
tions, convex optimization to find
MD transmission power41

2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art

E

50.9%

E & D

38.6%
D

7%
O

3.5%

(a) Distribution of objective functions.

C

40.4%H
8.8%

MH

17.5%

ML

10.5%

G

1.8% MA

21.1%

(b) Distribution of optimization methods.

Figure 2.4: Charts summarizing solutions examined in Section 2.3. Objective function com-
ponents: (E)nergy, (D)elay, (O)ther. Optimization methos families: (C)onvex,
(H)euristic, (M)eta(H)euristic, (M)achine (L)earning, (G)ame theory, (M)ixed
(A)pproach.

2.3.4 Optimization summary

Many works have been published on optimization of energy-efficient fog networks which still is a
timely topic. The examined works often provide multiple optimization problems and solutions to
these problems. Tab. 2.4 provides a concise summary of key elements of stated optimization prob-
lems. Moreover, Section A.1.1 (moved to the Appendix) provides an analysis of chosen optimiza-
tion methods and results achieved by them as well as the baseline solutions used for comparison.

In these problems, energy consumption is used as either an optimization objective, a constraint,
or both. Over half (29 out of 57) solutions use energy consumption as the objective function as
shown in Fig. 2.4. The objective function often includes summing the energy costs over multiple
devices, sometimes with unequal weights as described in detail in the Objective function column
of Tab. 2.4.

We find that most proposed solutions (23, 40.4% of total) belong to the family of convex op-
timization as presented in Fig. 2.4b. There is also a significant share of algorithms (10, 17.5/%)
based on metaheuristics, all of which are nature-inspired. Another large portion (12, 21.1%) use
approaches from different optimization families to solve corresponding problems. Still, solutions
from within the same family can vary greatly.

There is no clear trend as to which optimization algorithms are becoming more popular among
the researchers. There is also no easy answer to the question of which algorithms produce the
best results. Still, based on the survey conducted, the author can provide general recommendations
below:

1. Use the well-tested convex optimization methods if the problem you are examining can be
solved with them.

42

2.3 Energy-saving in the Fog

2. Otherwise, test the performance of the existing metaheuristics or Machine Learning (ML)
algorithms on your problem. Adjustment of the method to better suit your particular problem
is advisable.

3. As shown in Tab. 2.4 it can be beneficial to split the problem into smaller subproblems where
each subproblem can be solved with a different method.

Some authors choose algorithms proposed in other research works as baseline solutions. In
a vast majority of cases (except for when [29] compares itself with [24], and to a lesser extent
when [58] compares itself with [111]) the proposed solutions show improvement over the cited
ones. Still, most works use trivial baseline solutions such as no offloading or random assignment.

43

3 The Impact of the Fog and Cloud
Tiers Parameters on Latency and
Energy Consumption in the Network

This chapter provides the model, parameterization, and calculations of energy consumption and
delay in fog computing networks. Here, the author of this thesis considers the wired segment of a
fog network. This is because the aim is to examine scenarios, in which it is more beneficial (from
the energy-efficiency point of view) to execute computational tasks in the fog tier or in the cloud.
Considering the wireless segment of the fog does not change the conclusions of this chapter.

The estimation of the energy consumption and latency discussed below provides the basis for
energy optimization considerations provided in Chapters 4, 5, and 6. The considerations and results
presented below have been published by the author of this thesis in [13].

3.1 Network Model

This section defines models used for estimating delay and power consumption related to the of-
floading of computations in fog computing networks. Computational requests are modeled in
Section 3.1.2. The power consumption of the network is modeled in Section 3.1.3, and delay is
modeled in Section 3.1.4.

3.1.1 Network Description

In the bottom tier of the network, there are end devices (e.g., smartphones, sensors) that may re-
quire offloading computational tasks. These tasks can be processed in either the fog tier (consisting
of a set F of FNs) or the cloud tier (set C of DCs). Data is sent to the FNs through the RRHs as
shown in Fig. 3.1. Then the results are transmitted back to the MD.

The FNs are capable of sharing the computational load between themselves. To simplify the
model and calculations that follow, they do so by inducing neither additional delays nor power
consumption. These costs have also been left out by other researchers [49, 50, 52].

3.1.2 Offloaded Tasks – Computational Requests

Let there be a total of N requests offloaded during analyzed time period T . RF
k and RC

k are the
sets of requests offloaded to the fog tier and cloud tier respectively. Let LRi be the size (in bits) of
the i-th request Ri. Total amount of offloaded data L, amount of data offloaded to the fog tier X

45

3 The Impact of the Fog and Cloud Tiers Parameters on Latency and Energy Consumption...

Fog Node

Fog Node

N Requests
L=X+Y Bits

N Results
L·oR Bits

M Requests
Y Bits

X·θR FLOPs Y·θR FLOPs

RRH

Fronthaul
RRH

M Results
Y·oR Bits

Backhaul + kcore
backbone nodes

Cloud
Data Centers

Figure 3.1: Diagram explaining the flow of data through the considered fog computing network.

and cloud tier Y are therefore:

L = X + Y, X =
∑
Ri∈RF

LRi , Y =
∑
Ri∈RC

LRi (3.1)

Concepts discussed in this section are illustrated in Fig. 3.1. It is important to note that, in this
work, the requests are examined as they enter the fog tier of the network. The cost of transmitting
a single request from MDs to RRH/FN is not considered.

The volume of offloaded data is not the only thing that matters when it comes to processing data.
For certain applications, the number of required computations can be disproportionate to the size
of an input, e.g., a PGN file representing a chess game [100] is minuscule (< 1 kB) compared to
the amount of computation used to analyze the game. Let θRi be the arithmetic intensity of task Ri

defined as a ratio of single precision FLOPs required to process this task to its size in bits.
When the data has been successfully processed, the results are transmitted back to the MD. Let

oR be the average ratio of size of the result to the size of the offloaded task. If oR = 0, then there
is no transmission of the results.

3.1.3 Power Consumption

The power consumption model is divided into two parts: communication (transmission and recep-
tion of the data) and computation (processing of data). In this work, the power consumption of end
devices is not considered.

3.1.3.1 Communication

For the power consumption of networking equipment, the linear model from [117] is used which
includes idle power Pidle and active power that scales with load C (in bits/second) by parameter γb
(in Joules/bit):

P (C) = Pidle + C
Pmax − Pidle

Cmax
= Pidle + Cγb (3.2)

where Pmax is maximum power consumption and Cmax is maximum load. Energy-per-bit cost
of transmitting data through the core, backhaul, and fronthaul networks is equal to the number

46

3.1 Network Model

of devices through which data flows (kcore, kbck, kfr respectively) multiplied by the average γb
parameter, i.e., γb, of devices in this part of network:

γb−core = kcoreγb, γb−bck = kbckγb, γb−fr = kfrγb (3.3)

The number kcore can vary from 1 if the Cloud Node (CN) is directly connected to the Fog tier
of the network to 5-20 in a more realistic scenario of cloud being few hundred/thousand kilometers
away [118]. For backhaul transmission it is assumed that there is only a single hop/node from the
FNs to the core network. kfr is equal to 2 (RRH and FN).

Total energy Ecomm
act used for “active” transmission is equal:

Ecomm
act = γb−frL (1 + oR) + (γb−core + γb−bck)Y (1 + oR) . (3.4)

Eq. (3.4) clearly shows that L bits go through the fronthaul to the fog and, from these L, Y are
transmitted further (via backhaul and core) to the cloud.

Idle power consumption of devices in the fog tier of the network should also be considered. For
fronthaul communication it is assumed that there is one networking device in each of F FNs and
H RRHs. Idle power consumption P front

idle of devices in fronthaul is defined as:

P front
idle = (F +H)P f

idle (3.5)

If there is a fixed number of B networking devices in the backhaul (e.g., one per FN), then the
backhaul idle power consumption P back

idle is given:

P bck
idle = BP b

idle (3.6)

P f
idle and P b

idle denote idle power of a single networking device in fronthaul and backhaul respec-
tively.

Total power P comm
tot spent on transmission:

Pcomm =
Ecomm
act

T
+ P front

idle + P back
idle (3.7)

Respective values γb, Pidle, andCmax are taken from [119] and [120]. For IP routers we calculate
γb = Pmax−Pidle

Cmax
assuming that Pidle is equal to 90% of Pmax [120].

3.1.3.2 Computation

Different power consumption models for cloud DCs and FNs should be used as their scale of oper-
ation is much different. FNs are utilized solely by the tasks from within examined fog computing
network while clouds are full of computational requests from various devices across the Web. For
FNs let us assume that they consume Pact watts of power when performing computations and Pidle
when in idle-state. Values of Pact and Pidle depend on type and model of the device as well as
parameters such as clock frequency.

RFi (subset of RF) is the set of requests processed in the FN i. Assuming the clock frequency
fFi of FNs is fixed while performing calculations, then FN i is actively computing for:

tFi
act =

∑
Ri∈RFi L

RiθRi

fFisFi
(3.8)

47

3 The Impact of the Fog and Cloud Tiers Parameters on Latency and Energy Consumption...

tFi
act and tFi

idle are the time-lengths in which FN i is in active and idle state respectively, T = tFi
act +

tFi
idle. Therefore total power consumption P fog

cp spent on computations in fog equals:

P fog
cp =

∑
Fi∈F

(
tFi
actP

Fi
act + tFi

idleP
Fi
idle

)
T

(3.9)

For CN, it is not feasible to estimate direct impact of offloaded workload on the clock frequency
(and number of running servers). Instead, a simpler measure called GFLOPS per watt is used,
this is a benchmark that is often used in comparing performance of supercomputers [121]. Let
βCj be the GFLOPS per watt value characterizing CN j. RCj (subset of RC) is the set of requests
processed in the cloud DC j. Power PCj

cp consumed in CN j is calculated as follows:

PCj
cp =

∑
Ri∈RCj L

RiθRi

βCj
(3.10)

Power P cld
cp consumed in whole cloud tier is equal to the sum of power consumption of each CN:

P cld
cp =

∑
Cj∈C

PCj
cp (3.11)

Total power P consumed in the network is the sum of power consumption spent on transmission
of data (Pcomm) and on performing computations in fog – P fog

cp and in cloud – P cld
cp .

Ptot = Pcomm + P fog
cp + P cld

cp (3.12)

3.1.4 Latency
The delay model is also divided into two parts: communication and computation. The wireless
communication channel between end devices and FNs/RRHs is not considered. Wireless transmis-
sion from MDs is pivotal to other research works [26, 28].

3.1.4.1 Communication

For delays associated with communication the Round-Trip Time (RTT) [122] metric will be used.
7.5µs/km is chosen as a numerical value assigned to RTT based on [118]. It can be seen that for
data computed in the fog tier the RTT value is negligibly low as FNs are meant to be located close
to the end users. On the other hand, when it comes to offloading computation to the cloud tier, the
RTT value is significant as the cloud can be a few hundred (thousand) kilometers away from the
source of the request.

The average-per-request transmission delay in the fronthaul Dfront
comm is defined as:

Dfront
comm =

L (1 + oR)

Nrb,front
(3.13)

where L/N is the average size (in bits) of a computational request sent to be processed in either
the fog tier or the Cloud tier and rb,front is the bitrate of fronthaul link between an RRH and an
FN. RTT estimated by the length of the fronthaul link is assumed to be negligible.

48

3.1 Network Model

Requests sent to cloud traverse multiple links and hops in the network. Of all of these links
it is assumed that the fronthaul link is the slowest in terms of bitrate. Only the fronthaul delay
caused by packet size will be considered as it is seen as the “bottleneck” in this network scenario.
However, backbone/backhaul network can introduce significant “distance” delay – RTT. Let d be
the average distance between CN and FNs which forward requests to this CN. The average-per-
request transmission delay in the backhaul and the backbone equals

Dbck
comm = d · 7.5µs/km (3.14)

Total (average-per-request) communication delay Dcomm is calculated based on the premise that
allN requests go through the fronthaul whileM requests are transmitted through the backhaul and
backbone network:

Dcomm =
NDfront

comm +MDback
comm

N
(3.15)

3.1.4.2 Computation

For estimating computational delays in fog tier of the network the author let us assume that there
is a queueing system. As an example, in [49] each FN is modeled as an M/M/1 queue. However,
as in this work the FNs can balance the load between themselves, the queueing for each FN should
not be independent – as long as there is an unutilized node the request should not “wait in queue”
of another node. Therefore, the entire fog tier is modeled as an M/M/n queue. λfog = (N−M)

T
is

the average request arrival rate. n = F is equal to the number of FNs. The service rate µfog is
calculated as the ratio of GFLOPS performance of an FN1 and an average number of FLOPs that
are needed to process a request sent to the fog tier:

µfog =
fFisFi∑

Ri∈RF
LRiθRi

N−M

(3.16)

Then, the average delay Dfog
cp of a request caused by computing (and queueing) in the fog tier

equals:

Dfog
cp =

C(n, λfog/µfog)

nµfog − λfog
+

1

µfog
(3.17)

where C(n, λfog/µfog) is the Erlang C formula.
For computations in CN, it is assumed that the computational resources are vast and there is

never a need for queueing tasks. It is modeled as an M/M/∞ queue. So the average latency Dcld
cp

depends only on the computation and is equal to 1
µcld

, where:

µcld =
f cldscld∑

Ri∈RC
LRiθRi

M

(3.18)

is analogous to Eq. (3.16). It is worth noting that by assuming infinite computational resources at
each CN the number of DCs in the network does not impact the performance. Total (average-per-
request) computational delay Dcp is equal:

Dcp =
(N −M)Dfog

cp +MDcld
cp

N
(3.19)

1All FNs are modeled to have the same frequency and FLOP/cycle measure to allow the use of the M/M/n model.

49

3 The Impact of the Fog and Cloud Tiers Parameters on Latency and Energy Consumption...

Total (average-per-request) delay Dtot is calculated as a sum of computational and communicative
delays:

Dtot = Dcp +Dcomm (3.20)

3.2 Simulation Results
This section covers results showing power consumption and delay in various scenarios for “fog
without cloud“ and for full fog computing. Evaluation has been performed using GNU Octave
[123].

3.2.1 Fog Computing Network without the Cloud

First, let us consider a network with H = 20 RRHs, F = 10 FNs and no possibility of offloading
to cloud DCs. Each request has size 1 MB, and values θR = 10 and oR = 0.1. The length of
examined time period T is set to 60 s.

3.2.1.1 Computations

Let us examine the computational delay and power consumption in the FNs. Each FN is equipped
with Intel Core2 Duo E6850 as its CPU. sFi = 4 as that is the maximum number of double
precision FLOPs that can be calculated in a single cycle of this processor [124]. Pact and Pidle are
parametrized using the power consumption model from [98]:

Pcpu = 8.4503νprocV
2
cpufcpu + 36.3851Vcpu − 33.9503 (3.21)

where νproc is the total utilization of the processor and the units of Pcpu, Vcpu, and fcpu are W, V,
and GHz respectively. It is assumed that for the idle state νproc = 0 and for the active state νproc =
1. Let us look at power consumption of an FN at two different frequency-voltage levels measured
in [98]: fcpu = 3.006 GHz, Vcpu = 1.28 V later called as ’3 GHz’ and fcpu = 2.004 GHz, Vcpu =
1.104 V later called as ’2 GHz’. At 3 GHz P Fi

act = 54.241 W and P Fi
idle = 12.6226 W. At 2 GHz

P Fi
act = 26.859 W and P Fi

idle = 6.2189 W. These values are then inserted into Eq. (3.9) to calculate
the computational power consumption of FNs. Delay and power consumption of FNs are plotted
against the number of computational requests in Fig. 3.2a. It shows that decreasing the CPU
frequency lowers power consumption, but increases delay. Results in Fig. 3.2a are calculated for
the number of FNs F = 10. Fig. 3.2b plots power consumption and delay against the number
of FNs for number of requests N = 50000. It can be seen that higher number of FNs decreases
delay. There are diminishing returns as the delay caused by queueing quickly disappears and
processing delay does not change with number of FNs. Moreover, utilizing more FNs increases
power consumption.

3.2.1.2 Communications

The communications delay in the fronthaul depends on the bit rate of fronthaul links and the size
of the requests (and responses) as in Eq. (3.13). The term home gateway is used in [119] to
describe an access interface composed of several components, namely a processor plus memory, a

50

3.2 Simulation Results

0.013

0.012

0.011

0.01

0.009

0.008

0.007

0.006
40000300002000010000

P
ow

er
 [W

]

Number of requests

400

350

300

250

200

150

100

50
40000300002000010000

D
el

ay
 [s

]

(a) Dependency on the number of requests;
number of FNs F = 10.

6 8 10 12 14 16 18 20
0.005

0.01

0.015

0.02

0.025

P
ow

er
 [W

]

Number of FNs

500

450

400

350

300

250

200
20181614121086

D
el

ay
 [s

]

(b) Dependency on the number of FNs;
number of requests N = 50000.

Figure 3.2: Power consumption and delay related to computation in the fog tier (clock frequency:
dashed line – 2 GHz, solid line – 3 GHz).

Table 3.1: Power consumption of networking equipment.
Equipment Capacity Pact Pidle γb
Gateways
[119]
1G EPON 1 Gb/s 3.3 W 3.0

W
0.3
nJ/bit

10/10G EPON 10 Gb/s 5.5 W 3.5
W

0.2
nJ/bit

Core
routers [120]
Juniper T1600 640 Gb/s 6572 W 5915 W 1.03

nJ/bit

Wide Area Network (WAN) interface, and several Local Area Network (LAN) interfaces. In this
work, it is used to model interfaces of RRHs and FNs. Parameters of Ethernet Passive Optical
Network (EPON) home gateways are detailed in Tab. 3.1.

3.2.1.3 Overall performance

The values calculated in Sections 3.2.1.1 and 3.2.1.2 are added and presented in Fig. 3.3. Fig. 3.3
shows total (stemming from computations and transmission) power consumption and delay in a
„fog without cloud” network. The following conclusions can be drawn. The average delay is low
– hovering around 10-20 ms. There is also a visible trade-off between power consumption and
delay – higher clock frequency and interface bandwidth results in shorter delay and greater power
consumption. With that in mind, a combination of FNs running at 2 GHz frequency and 10 Gbit
fronthaul outperforms FNs running at 3 GHz and 1 Gbit fronthaul in both estimated metrics at
given traffic conditions.

51

3 The Impact of the Fog and Cloud Tiers Parameters on Latency and Energy Consumption...

0.02

0.015

0.01

0.005
40000300002000010000

P
o

w
e

r
[W

]

Number of requests

500

450

400

350

300

250

200

150
40000300002000010000

0.025

D
e

la
y
 [

s
]

(a) Dashed line: f=2 GHz, r=1 Gbps;
solid line: f=3 GHz, r=10 Gbps.

0.02

0.015

0.01

0.005
40000300002000010000

P
o

w
e

r
[W

]

Number of requests

500

450

400

350

300

250

200

150
40000300002000010000

0.025

D
e

la
y
 [

s
]

(b) Dashed line: f=3 GHz, r=1 Gbps;
solid line: f=2 GHz, r=10 Gbps.

Figure 3.3: Total power consumption and delay in “fog without cloud” network. f – FN clock
frequency, r – the fronthaul bit rate.

3.2.2 Fog Computing Network Including the Cloud

Let us consider a network with H = 20 RRHs, F = 10 FNs and one CN. RRHs and FNs
are connected through 1G EPON. FNs are connected through the 10G EPON backhaul to the
core network. For estimating delays and power consumption occurring in the core network the
following three distance scenarios are chosen. In near scenario the CN is located 100 km and
6 nodes away from the fog tier of the network. The other scenarios are medium – 2000 km, 12
nodes and far – 8000 km, 18 nodes. There is a Juniper T1600 router (Tab. 3.1) installed at each
node. Cloud computational power efficiency is assumed to be 1 GFLOPS/W (Giga Floating Point
Operations per Second (GFLOPS) per Watt), its processors are running at 1.5 GHz frequency, and
can calculate up to 32 FLOPs in a single cycle (scld = 32). FNs are assumed to work at 2 GHz with
sFi = 4 FLOPs per cycle as in the previous subsection. Each request has size 1 MB, and values
θR = 10 and oR = 0.1. The length of time period remains T = 60 s.

Let us vary the number of requests M that are sent to CN while the total number of offloaded
requests stays the same (N = 50000). Power consumption and average delay are plotted in Fig. 3.4
against the fraction of requests M

N
sent to the cloud. There are a few interesting observations. First,

the distance (physical and logical) to the CN plays a key role in determining whether offloading
data all the way to the CN is beneficial. In the near scenario utilizing cloud reduces both latency
and power consumption. More interesting results can be seen in the medium scenario: performing
computations in the cloud decreases power consumption while performing them in fog results in
lower average latency.

The power efficiency of cloud DCs contributes significantly to total power consumption. As
shown in Fig. 3.5a, if power efficiency is decreased (from 1 to 0.5 GFLOPS/W), then sending
requests to the cloud is more expensive than computing them in fog for all distance scenarios. On
the other hand, at 10 GFLOPS/W (world-class efficiency [121]), sending requests to the cloud
consumes less power (Fig. 3.5b). Delay does not depend on power efficiency.

The impact of arithmetic intensity of requests θR on network performance is also studied. The
results for θR = 1 and θR = 100 are shown in Figs. 3.5c and 3.5d. The corresponding share of

52

3.3 Chapter Summary

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01
0.80.60.40.2

P
ow

er
 [W

]

Fraction of requests sent to Cloud

400

380

360

340

320

300
0.80.60.40.2

D
el

ay
 [s

]

Figure 3.4: Total power consumption and delay in fog computing network including the cloud vs.
the fraction of requests sent to the cloud for near, medium, far scenarios (dashed, solid,
and dotted lines respectively).

total delay and power consumption spent on computation and communication is plotted in Fig. 3.6.
For θR = 1 computing requests in the fog tier is faster and consumes less power than processing
them in the cloud tier. The delay and power consumption caused by data sent through the core
network outweighs the fact that cloud DCs are more efficient at computing. On the contrary, when
the offloaded requests require heavy computations, it is beneficial to send these requests all the
way to the cloud as high θR means lower communication cost compared to computation cost.

3.3 Chapter Summary

In this chapter, the impact of different parameters on power consumption and delay in fog com-
puting has been examined. The computational tasks have been analyzed with respect to their
complexity (how computationally intensive they are to process) and the size of messages repre-
senting the computing requests and the results. The communication and computational resources
have been characterized by the computing machines’ power efficiency (in GFLOPS/W), the clock
frequency, and the distance from the request source. It has been observed that there is usually
a trade-off between task execution delay and power (or energy) consumption. For example, Fog
Nodes (FNs) working at a higher frequency consume more power but provide lower latency. The
high arithmetic intensity of offloaded requests favors (as expected) processing in the cloud. In
such cases, the high processing speed and computational power efficiency can offset the delay and
power consumption caused by transmitting data through the core network. Conversely, requests
that require relatively few operations to process are best served by nearby FNs.

In the scenarios where tasks are characterized by average arithmetic intensity, and the cloud
offers average (cloud-typical) computing power and efficiency, the power consumption and latency
depend on the fraction of tasks delegated to the cloud. Interestingly, in the scenario, when the cloud
server is far from the network edge (here above defined as a fiberline distance of 8000 km) it is

53

3 The Impact of the Fog and Cloud Tiers Parameters on Latency and Energy Consumption...

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01
0.80.60.40.2

P
ow

er
 [W

]

Fraction of requests sent to Cloud

450

400

350

300

250

0.80.60.40.2

D
el

ay
 [s

]
(a) 0.5 GFLOPS/W

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01
0.80.60.40.2

P
ow

er
 [W

]

Fraction of requests sent to Cloud

450

400

350

300

250

0.80.60.40.2

D
el

ay
 [s

]

(b) 10 GFLOPS/W
0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0.80.60.40.2

P
ow

er
 [W

]

Fraction of requests sent to Cloud

350

300

250

200
0.80.60.40.2

D
el

ay
 [s

]

(c) θR = 1

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0.80.60.40.2

P
ow

er
 [W

]

Fraction of requests sent to Cloud

350

300

250

200
0.80.60.40.2

D
el

ay
 [s

]

(d) θR = 100, N = 5000

Figure 3.5: Total power consumption and delay in full fog computing network vs. the fraction
of requests sent to the cloud, cloud power efficiency (GFLOPS/W), and arithmetic
intensity of requests θR. Dashed line – near scenario, solid line – medium, dotted line
– far.

1

0.8

0.6

0.4

0.2

0
0.80.60.40.2

S
ha

re
 in

 p
ow

er
 c

on
s.

Fraction of requests sent to Cloud

1

0.8

0.6

0.4

0.2

0
0.80.60.40.2

S
ha

re
 in

 d
el

ay

(a) θR = 1

1

0.8

0.6

0.4

0.2

0
0.80.60.40.2

S
ha

re
 in

 p
ow

er
 c

on
s.

Fraction of requests sent to Cloud

1

0.8

0.6

0.4

0.2

0
0.80.60.40.2

S
ha

re
 in

 d
el

ay

(b) θR = 100, N = 5000

Figure 3.6: Share of computation (dashed line) and communication (solid line) in power consump-
tion and delay in a full fog computing network, medium scenario.

54

3.3 Chapter Summary

not energy-efficient to delegate the tasks to the cloud server. The average latency is also increased
due to the communication delay over the core network. Consequently, in such a scenario, the fog
tier computing resources are more recommended to be used for the energy- and latency-aware
applications.

55

4 Optimization of Energy Consumption
in the Fog and Cloud Tiers

The work presented in this chapter considers task distribution between many FNs and a single
Cloud Nodes (CNs). The objective is to minimize network energy consumption while meeting
delay constraints specific to each offloaded task. As shown in Figure 4.1, the assumption made is
that an offloaded task can be processed in the node to which it is originally sent (solid blue arrows),
in another FN (solid green arrows), or in the cloud (hollow red arrows).

First, a realistic network model is proposed encompassing the energy consumption as well as the
delay, related to both the necessary computations and communication. The network model includes
network parameters reflecting the characteristics of real-world equipment in the wired segment of
the fog network (as provided in Chapter 3). Based on this model, the author of this thesis formu-
lates an optimization problem to minimize the total (task transmission- and computation-related)
energy consumption while fulfilling individual delay constraints. The optimization considers not
only the assignment of tasks to the nodes but also the Central Processing Unit (CPU) frequency at
each utilized node.

The problem is a non-convex Mixed-Integer Non-Linear Programming (MINLP) problem, so
the Successive Convex Approximation (SCA) method is applied, which transforms it into a se-
ries of convex MINLP problems and provides the optimal solution by using the primal and dual
decomposition techniques as well as the Hungarian algorithm. A sub-optimal, lower-complexity
solution is also proposed.

The work presented in this chapter has been published by the author of this thesis in [10].

4.1 Network model

The network model is introduced in this section. The notation used in this chapter is presented in
Tab. 4.1. Letters in superscript are used throughout this chapter as upper indices, not exponents,
e.g., Lr does not denote L to the power of r.

In the bottom tier of the network, there are end devices (e.g., smartphones, sensors) with some
specific computational tasks. Throughout this work, they are referred to as Mobile Devices (MDs)
Serving these tasks requires offloading them, i.e., they either cannot be processed in the MD or the
MD chooses to offload them rather than process them locally. Then, they can be processed either
in the fog tier, consisting of set F of FNs, or in the cloud tier (set C of CNs). A set of all computing
nodes in the network is denoted as N = F ∪ C. An example of a network with 2 FNs and 1 CNs
is shown in Fig. 4.1.

Unlike works that focus on MD (such as [26–28]), this thesis examines energy consumption
from the point of view of the fog network. Modeling and optimizing wireless transmission is a
key part of these works, e.g., allocating sub-channels to mobile devices in [27] or interference

57

4 Optimization of Energy Consumption in the Fog and Cloud Tiers

Fog Node 1

Fog Node 3

Fog Node 2
Cloud

Figure 4.1: Simplified fog network with offloaded tasks. Each color represents a different task.

affecting transmission rates in [28]. The model presented in this chapter is agnostic to the wireless
technology and model/condition of the channel used for transmission between MDs and FNs. We
examine requests as they appear in the fog tier of the network. Instead, we focus on the efficient
distribution of offloaded tasks between fog and cloud nodes.

4.1.1 Computational Requests

Let T be a numbered set {T1, T2, ..., T|T |} of all time instances at which computational requests
arrive in the network, and have to be allocated computing resources. LetRk be a set of all requests
arriving in the network at time Tk. Each computational request r ∈ Rk is described by the fol-
lowing parameters: (i) size Lr in bits, (ii) arithmetic intensity θr in FLOP/bit (used in FLOP/byte
in [125, 126]), (iii) ratio or of the size of the result to the size of the offloaded task (most related
works do not consider the transmission of the results [50, 52] or assume that its contribution is
negligible [49, 127]; or equal to 1 implies the output has the same size as the input; in case of
electrocardiography signals or ' 0.07 [65]), (iv) FN gr ∈ F to which the request is originally
sent (before allocation) (v) maximum tolerated delay Dr

max. Let us define a binary variable arn that
shows where the request is computed, i.e., arn equals 1 if r ∈ Rk is computed at node n ∈ N , and
0 otherwise.

Let us use the example of offloading shown in Fig. 4.1 to illustrate the meaning of gr and arn.
Assume green arrows represent request 1, blue represent request 2, and red represent request 3.
For nodes, assume FNs are numbered as shown in Fig. 4.1 and a single CN is numbered 0. g1 = 1
as the 1st request is originally sent to FN 1. Meanwhile, g2 = 2 and g3 = 2 as both remaining
requests arrive at FN 2. Values a1

3 = 1, a2
2 = 1, a3

0 = 1 mean that requests 1, 2, and 3 are processed
at nodes 3, 2, and 0 respectively. In this example, arn is equal to zero for all other sets of values
(r,n), r ∈ Rk, n ∈ N .

58

4.1 Network model

Table 4.1: The notation used for modeling the network and defining the optimization problem in
Chapter 4.
Symbol Description

Pa
ra

m
et

er
s

bback link bitrate in the backhaul and backbone network
bnr link bitrate between FNs n ∈ F and gr ∈ F
C set of all Cloud Nodes
χ a parameter characterizing delay depending on distance
dn fiberline distance to CN
Dr

max maximum tolerated delay requirement for request r ∈ Rk
F set of all Fog Nodes
fmax,n maximum clock frequency of node n ∈ N
fmin,n minimum clock frequency of node n ∈ N
gr FN to which the request r ∈ Rk is originally sent
γln energy-per-bit cost of transmitting data of request r ∈ Rk between

nodes gr ∈ F and n ∈ N
Lr size of request r ∈ Rk
N set of all nodes
or output-to-input data size ratio of request r ∈ Rk
pn,q q-th coefficient of polynomial modeling power consumption of CPU

installed in node n ∈ N
Q degree of polynomial Pn
Rk set of all computational requests offloaded at Tk
R′k set of rejected computational requests offloaded at Tk
sn number of FLOPs performed per single clock cycle at node n ∈ N
T set of all considered time instances, when one or more computational

requests arrive
θr arithmetic intensity of request r ∈ Rk

Tk time at which request r ∈ Rk arrives in the network, k ∈ {1, ..., |T |}
tn time at which node n ∈ N finishes computing its last task

V
ar

ia
bl

es
an

d
m

et
ri

cs

arn whether request r ∈ Rk is computed at node n ∈ N , arn ∈ {0, 1}
βn energy efficiency (GFLOPS per Watt) characterizing node n ∈ N
Dr

comm,n delay caused by transmitting request r ∈ Rk between nodes gr ∈ F
and n ∈ N

Dr
dl,n delay caused by transmitting request r ∈ Rk between nodes gr ∈ F

and n ∈ N – downlink
Dr

ul,n delay caused by transmitting request r ∈ Rk between nodes gr ∈ F
and n ∈ N – uplink

Dr
cp computational delay caused by processing request r ∈ Rk in the net-

work
Dr

cp,n computational delay caused by processing request r ∈ Rk at node n ∈
N

Dr
max maximum tolerated delay requirement for request r ∈ Rk

Dr,l
queue,n queuing delay of request r ∈ Rk at node n ∈ N

Dr
tot total delay of request r ∈ Rk

Dr
tot,n total delay of processing request r ∈ Rk at node n ∈ N

Er
comm energy spent on transmission of request r ∈ Rk

Er
comm,n energy cost for transmission of request r ∈ Rk between nodes gr ∈ F

and n ∈ N
Er

cp energy spent in the network on processing request r ∈ Rk

Er
cp,n energy cost of processing request r ∈ Rk at node n ∈ N

Er
tot energy spent on transmission and processing of request r ∈ Rk

Er
tot,n energy cost of offloading request r ∈ Rk when computing it at node

n ∈ N
fn clock frequency of node n ∈ N
Pn power consumption related to computations at node n ∈ N

59

4 Optimization of Energy Consumption in the Fog and Cloud Tiers

4.1.2 Energy Consumption
The energy consumption model consists of two parts: communication (transmission of data) and
computation (processing of data). Energy Er

cp spent on processing request r ∈ Rk equals:

Er
cp =

∑
n∈N

arnE
r
cp,n =

∑
n∈N

arn
Lrθr

βn
, (4.1)

where Er
cp,n is the energy spent on processing of request r ∈ Rk at node n ∈ N . βn characterizes

computational efficiency of node n ∈ N given in Floating Point Operations (FLOPs) per second
per watt [128]. For CNs, let us assume constant CPU clock frequency fn and efficiency βn. For
FNs, βn depends on CPU clock frequency fn of node n ∈ F , its power consumption Pn, and
number sn of FLOPs performed within a single clock cycle of this node [124]:

βn =
fnsn
Pn

=
fnsn∑Q

q=0 pn,qf
q
n

(4.2)

Pn is modeled as a Q-th degree polynomial of fn using parameters pn,q based on [98]. This allows
the model to cover various models of CPUs. Moreover, clock frequency fn must be within the
range of minimum and maximum frequencies of the CPU installed in node n ∈ F , i.e., fmin,n ≤
fn ≤ fmax,n.

The energy spent on the transmission of request r ∈ Rk equals:

Er
comm =

∑
n∈N

arnE
r
comm,n =

∑
n∈N

arnL
r(1 + or)γln, (4.3)

where Er
comm,n is the energy required to transmit (communicate) request r ∈ Rk between FN gr

and node n ∈ N while γln is the energy-per-bit cost of transmitting data request r ∈ Rk between
n and gr. Lror is the size (in bits) of results transmitted back to gr. Thus, the total energy spent on
offloading request r ∈ Rk is given by:

Er
tot =

∑
n∈N

arnE
r
tot,n =

∑
n∈N

arn
(
Er

cp,n + Er
comm,n

)
, (4.4)

where Er
tot,n is the energy cost of offloading request r ∈ Rk when it is computed at node n ∈

N . Energy spent on wireless transmission between MDs and FNs is not included in Er
tot,n as we

examine requests already sent by the MDs (as they appear in the FNs).

4.1.3 Delay
The delay model is divided into three parts: communication, computation, and queuing. The delay
Dr

cp caused by computing request r ∈ Rk equals:

Dr
cp =

∑
n∈N

arnD
r
cp,n =

∑
n∈N

arn
Lrθr

fnsn
, (4.5)

where Dr
cp,n is the time required to compute request r ∈ Rk at node n ∈ N . Moreover, there are

significant differences between models of communication delay for requests processed in the fog

60

4.1 Network model

tier and the cloud tier of the network. It stems from the fact that clouds are assumed to have huge
(practically infinite) computational resources with parallel-computing capabilities, and there is no
need for queuing multiple requests served by the CN n ∈ C. They can be processed simultaneously.
Meanwhile, if multiple requests are sent to the same FN n ∈ F for processing in a short time
span, additional delays may occur due to congestion of computational requests (an arriving request
cannot be processed until processing of all the previous requests has been completed). On the other
hand, it is assumed that CNs are located far away from the rest of the network (hundreds or even
thousands of kilometers away) which introduces additional, transmission-related delay. Delay
caused by transmitting request r ∈ Rk between (to and from) FN gr ∈ F and cloud node n ∈ C is
equal:

Dr
comm,n =

Lr(1 + or)

bback
+ dn · χ, (4.6)

where bback is the link bitrate in the backhaul and backbone network, while dn is the fiberline
distance to CN n ∈ C. The parameter χ indicates the rate at which delay increases with distance
dn [118].

For describing delays related to transmission between FNs let us split it into the uplink (sending
a request to be processed) and downlink (sending calculated results back to the origin of said
request) parts denoted Dr

ul,n and Dr
dl,n respectively. For transmission between FNs, we assume

delay caused by the distance between them (dn · χ in Eq. (4.6)) to be negligible – well below 1 ms
as we use the value of 7.5µs/km for parameter χ [118] – and therefore we ignore it. The total delay
caused by communication between FNs gr ∈ F and n ∈ F for request r ∈ Rk equals:

Dr
comm,n = Dr

ul,n +Dr
dl,n =

Lr

bnr
+
Lror

bnr
, (4.7)

where bnr is the link bitrate between gr and n. As discussed earlier, when a request is sent to FN
n ∈ F and there is another request being processed at this node, the request is put in a queue
and waits to be processed. Let us define a scheduling variable tn ∈ R+ which indicates when the
processing of the last request scheduled at FN n ∈ F is completed. Queuing delay of the request
r ∈ Rk at node n ∈ F is calculated as follows:

Dr,l
queue,n = max(0, tn − Tk −Dr

ul,n). (4.8)

Dr,l
queue,n has positive values when tn > Tk + Dr

ul,n, i.e., when request r arrives at node n at time
Tk + Dr

ul,n and it is queued until processing of other request(s) is completed at time tn. For each
node n ∈ C (CNs), Dr,l

queue,n is always equal to zero, i.e., each request arriving at the cloud can
immediately be processed regardless of the number of requests already being processed due to
parallel processing. Thus, the total delay of processing request r ∈ Rk is the sum of delays related
to transmission, queueing, and computation:

Dr
tot =

∑
n∈N

arnD
r
tot,n =

∑
n∈N

arn
(
Dr

comm,n +Dr,l
queue,n +Dr

cp,n

)
. (4.9)

4.1.4 Updating Scheduling Variables in the Fog
Let us now explain how the values of scheduling variables tn are assigned to become parameters
of an optimization instance. As no requests are processed at the beginning of the simulation, we

61

4 Optimization of Energy Consumption in the Fog and Cloud Tiers

set tn = 0,∀n ∈ F . For each Tk ∈ T , after allocations arn are determined, times tn are updated
according to when computation of requests offloaded to FNs is scheduled to finish:

tn := max(tn, Tk +
∑
r∈Rk

arn(Dr
ul,n +Dr,l

queue,n +Dr
cp,n)),∀n ∈ F . (4.10)

By using (4.10), each new instance of the optimization problem depends on results (allocations)
of previous instances.

4.2 Optimization Problem
The objective of the optimization problem is to minimize total energy spent on offloading all
requests arriving at the network at time Tk, that is to find:

(a?, f?) = arg min
a,f

∑
r∈Rk

Er
tot, (4.11)

subject to: ∑
n∈N

arn = 1 ∀r ∈ Rk, (4.12)∑
r∈Rk

arn ≤ 1, ∀n ∈ F , (4.13)

Dr
tot ≤ Dr

max, ∀r ∈ Rk, (4.14)
fmin,n ≤ fn ≤ fmax,n ∀n ∈ F , (4.15)
arn ∈ {0, 1}, ∀r ∈ Rk, ∀n ∈ N , (4.16)

where a? = {arn?} and f? = {f ?n} are optimal values of the optimization variables: allocation
variables arn and CPU clock frequencies fn, respectively. The constraints (4.12) and (4.13) restrict
that each request must be processed at one and only one FN or CN and that each FN can process
at most a single request at a time, respectively. The constraints (4.14) guarantee that the total
delay Dr

tot must not be greater than the maximum acceptable one Dr
max. Moreover, according to

the constraints (4.15), the CPU frequency is limited by lower and upper bound while the decision
variables arn take only binary values, according to constraints (4.16).

The optimization problem cannot be solved for some sets of requestsRk, where it is impossible
to satisfy all constraints (e.g., no feasible allocation of requests so that each request is processed
(4.12) while fulfilling its delay requirement (4.14)). In this case, rather than terminating the opti-
mization without any solution (which would translate to rejecting all requests Rk), we choose to
reject requests for which (4.14) cannot be fulfilled. The optimization is then performed over the
set of remaining requestsRk \ R′k, whereR′k denotes the set of rejected requests.

4.3 Proposed solution
The optimization problem defined in Section 4.2 is a MINLP problem due to binary values of
the allocation variables and continuous values of the CPU clock frequencies. Nonlinearity in the

62

4.3 Proposed solution

problem results from the power consumption model of the CPU and the set of constraints (4.14).
Note that after substituting (4.2) into (4.1), the energy spent on processing of request r ∈ Rk at
node n ∈ F is the sum of polynomial and rational functions:

Er
cp,n =

Lrθr

sn

[
pn,0
fn

+

Q∑
q=1

pn,qf
q−1

]
. (4.17)

As such, for fn ∈ R+, the convexity of (4.17) in fn depends on the parameters pn,q (except
pn,1 and pn,2 which have no influence on convexity, since their second derivatives are zero). If
{pn,0, pn,3, ..., pn,Q} are positive, the objective function is convex. If all these parameters are
negative the function is concave. In these cases, standard optimization methods can be used to
solve it [129]. However, if some of these parameters are negative, the others being positive, we
deal with the difference of convex functions which is non-convex, requiring special optimization
techniques. Therefore, in this section, the solution of the optimization problem, in the case of any
possible values of CPU power consumption parameters is presented as follows.

Let us rewrite the objective function (4.11) with Er
cp,n being a difference of convex functions:

(a?, f?) = arg min
a,f

∑
r∈Rk

∑
n∈F

arn

Er+
cp,n − Er−

cp,n︸ ︷︷ ︸
Er

cp,n

+Er
comm,n

 , (4.18)

where Er+
cp,n is the sum components of Er

cp,n with positive parameters pn,q and Er−
cp,n is the neg-

ative of the sum components of Er
cp,n with negative parameters pn,q. We apply the SCA method

[130–132] to approximate the possibly non-convex function by the series of convex ones. Since the
objective function (4.18) is composed of differences of convex functions, the subtrahend Er−

cp,n can
be approximated with a linear function using the first-order Taylor series expansion at f̄ =

{
f̄n
}

:

Er−
cp,n (fn) ≤ Er−

cp,n

(
f̄n
)

+
∂Er−

cp,n (fn)

∂fn

∣∣∣∣
fn=f̄n

(
fn − f̄n

)
, Ẽr−

cp,n. (4.19)

After substituting Er−
cp,n with Ẽr−

cp,n in (4.18), the objective function becomes:

(a?, f?) = arg min
a,f

∑
r∈Rk

∑
n∈F

arn

Er+
cp,n − Ẽr−

cp,n︸ ︷︷ ︸
Ẽr

cp,n

+Er
comm,n

 . (4.20)

This transformed optimization problem is convex for fixed allocation variables, thus it can be
solved by employing primal and dual decomposition methods [129, 133]. The primal decomposi-
tion can be applied when the problem has a coupling variable such that, when fixed to some value,
the rest of the optimization problem decouples into several subproblems. Thus, let us decompose
the objective problem to:

(a?, f?) = arg min
a

arg min
f

∑
r∈Rk

∑
n∈F

arn

(
Ẽr

cp,n + Er
comm,n

)
(4.21)

63

4 Optimization of Energy Consumption in the Fog and Cloud Tiers

subject to (4.12) – (4.16). Now, according to (4.21), the solution to the optimization problem
comes down to solving a two-step minimization problem. In the first step, the optimal CPU fre-
quencies f? are determined for fixed allocation variables. First, let us define the auxiliary variables
f rn determining the CPU frequencies of node n where request r is allocated. The relation between
f rn and fn is given by: fn =

∑
r∈Rk

arnf
r
n while satisfying constraints (4.12) and (4.13). The

optimal values of allocation variables a? are obtained in the second step based on the previously
determined f? and constraints (4.12) – (4.13). Thus, we can now define the Lagrangian function of
the subproblem for determining f?:

L (a, f ,µ,Φ,Ψ) =
∑
r∈Rk

∑
n∈F

arn

(
Ẽr

cp,n + Er
comm,n

)
+

−
∑
n∈F

Φn (fmin,n − f rn)−
∑
n∈F

Ψn (f rn − fmax,n)−
∑
r∈Rk

µr (Dr
tot −Dr

max) , (4.22)

and the Lagrange dual problem:

(a?, f?,µ?,Φ?,Ψ?) = arg min
µ,Φ,Ψ≥0

arg min
a

arg min
f
L (a, f ,µ,Φ,Ψ) (4.23)

subject to (4.12), (4.13), where µ = {µr}, ∀r ∈ Rk, µr ∈ R+, Φ = {Φn}, ∀n ∈ F , Φn ∈ R+

and Ψ = {Ψn}, ∀n ∈ F , Ψn ∈ R+ are the Lagrangian multipliers responsible for fulfilling
constraints (4.14) and (4.15), respectively. The dual problem in (4.23) can be decomposed into a
master problem and subproblems, and thus solved in an iterative manner. The allocation variables
a and CPU frequencies f are obtained by solving subproblems and then the Lagrange multipliers
µ,Φ,Ψ are updated by solving the master problem for the obtained frequencies. This process
continues until convergence while satisfying constraints.

4.3.1 Solving the Subproblems

The primal problem is solved in two steps. First, the optimal values of the CPU frequencies f? for
each request r ∈ Rk and node n ∈ F are obtained. Then, in the second step, the optimal values of
the allocation variables a? are determined based on f?. Thus, with Karush–Kuhn–Tucker (KKT)
conditions, for fixed allocation variables a, we can find the optimal CPU frequencies by taking the
partial derivative of (4.22) with respect to f rn setting the gradient to 0:

∂L
∂f rn

= 0 ∀n ∈ F , ∀r ∈ Rk. (4.24)

Due to the polynomial form of the objective function and constraint (4.14), there is no closed-form
solution for the above equation. Therefore, the numerical method, e.g., the Newton method with
the maximum number of iterations Inum has to be applied to solve it.

Vector a? can be obtained based on the optimal values of the CPU clock frequency determined
in the first step by solving the following optimization problem.

64

4.3 Proposed solution

a? = arg max
a

∑
r∈Rk

∑
n∈F

arn

(
Ẽr

cp,n
? + Er

comm,n

)
−
∑
n∈F

Φn

(
fmin,n − f r

?

n

)
−
∑
n∈F

Ψn

(
f r

?

n − fmax,n
)
−
∑
r∈Rk

µr (Dr
tot
? −Dr

max) , (4.25)

subject to (4.12), (4.13), where Ẽr
cp,n

? = Ẽr
cp,n

(
f r

?

n

)
and Dr

tot
? = Dr

tot

(
f r

?

n

)
. The optimization

problem defined in (4.25) is the linear assignment problem, and can be solved by the Hungarian
algorithm [134]. Let us define matrix Θ =

{
Er

tot,n
?
}

, ∀r ∈ Rk and ∀n ∈ C with |Rk| rows and |C|
columns, and matrix Λ =

{
Ẽr

tot,n
?
}

, ∀r ∈ Rk and ∀n ∈ F with the same number of rows and |F|
columns, where Ẽr

tot,n
? = Ẽr

cp,n
? + Er

comm,n. To reflect unlimited computational resources at each
CN, we introduce matrix Ω =

[
Λ Θ⊗ 11×|Rk|

]
, where ⊗ is the Kronecker tensor product while

11×|Rk| is a vector of ones with one row and |Rk| columns. It means that the columns of Θ are
replicated |Rk| times and matrix Ω has |Rk| rows and |Rk| · |C| + |F| columns. E.g.,, in the case
of three tasks |Rk| = 3, two fog nodes F = {1, 2} and one cloud C = {3}, the matrix Ω is defined
as follows:

Ω =

Ẽ1
tot,1

?
Ẽ1

tot,2
?
E1

tot,3
?
E1

tot,3
?
E1

tot,3
?

Ẽ2
tot,1

?
Ẽ2

tot,2
?
E2

tot,3
?
E2

tot,3
?
E2

tot,3
?

︸ ︷︷ ︸
Er

tot,n
? ∀n ∈ F

Ẽ3
tot,1

?
Ẽ3

tot,2
? ︸ ︷︷ ︸

Er
tot,n

? ∀n ∈ C

E3
tot,3

?
E3

tot,3
?
E3

tot,3
?

 (4.26)

Next, applying the Hungarian algorithm for matrix Ω the matrix with binary values is determined,
e.g.,:

H (Ω) =

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

 (4.27)

The example above shows that the first task is computed in the second fog node while the second
and the third task are computed in the CN. Thus, the optimal values of arn

? can be determined by:

ar
?

n =

{
H (Ω (r, n)) for n ≤ |F |∑|F|+|Rk||C|+1

j=|F |+1 H (Ω (r, j)) for n > |F | . (4.28)

4.3.2 Solving the Master Problem
We can fulfill constraints (4.14) and (4.15) by determining the search range of the optimal solution.
Let f rdelay,n denote the minimum value of fn which satisfies the constraint (4.14) for request r ∈ Rk

processed at node n ∈ F . These can be obtained by solving the following equation:

Dr
tot,n −Dr

max = 0, ∀n ∈ F , ∀r ∈ Rk. (4.29)

Inserting Dr
tot,n from Eq. (4.9) (together with Dr

cp,n taken from Eq. (4.5)) into Eq. (4.29) we get:

65

4 Optimization of Energy Consumption in the Fog and Cloud Tiers

f rdelay,n =
Lrθr

sn

(
Dr

max −Dr
comm,n −D

r,l
queue,n

) . (4.30)

If f rdelay,n > fmax,n, the task r cannot be processed in FN n within the delay constraint. If
f rdelay,n ≤ fmin,n, the minimum CPU clock frequency is kept at fmin,n. Thus, if the obtained optimal
clock frequency is in the range fn ∈ 〈max

{
fmin,n, f

r
delay,n

}
, fmax,n〉, the Lagrange multipliers in

(4.22) and (4.25) simplify by setting Φn = 0, Ψn = 0, ∀n ∈ F and µr = 0, ∀r ∈ Rk.
Finally, in this chapter, the algorithm called Energy-EFFicient Resource Allocation (EEFFRA)

(Alg. 1) is proposed. It finds the solution (CPU clock frequencies and request allocation over the
nodes) for total energy minimization with delay constraints, as discussed above. The computational
complexity of the proposed algorithm results from the complexity of the Hungarian algorithm (line
8) and the iterative frequency finding procedure (lines 3-7). The complexity of the Hungarian
algorithm is proportional to a cube of greater number: number of tasks or number of agents. In
the proposed model, the requests (tasks) can be assigned to the fog nodes or the cloud (agents).
Moreover, the cloud can process more than one request simultaneously. Therefore, in the model,
we have |Rk| tasks which can be assigned to the |F|+ |Rk||C| nodes, where |Rk||C| represents the
cloud nodes which can process more than one request.

Thus, in EEFFRA the complexity of the Hungarian algorithm equalsO
(
(|F|+ |Rk||C|)3). The

second part of the computational complexity of the proposed algorithm results from the CPU fre-
quency calculation. Let us observe that the CPU frequency has to be calculated for each node
and each request i.e., |Rk| |N | frequencies have to be determined. The main step of the proposed
algorithm (line 4) determines the optimal CPU frequencies for a given approximation of the ob-
jective function which are then updated in the loop (line 5). This procedure is repeated until the
termination conditions are met (line 7). Thus, the complexity of the CPU frequency calculation
is equal to O (|Rk| |N | inumisca), where inum and isca are the numbers of iterations of the numer-
ical method applied to solve (4.24) and the SCA method, respectively. Complexity of the entire
EEFFRA algorithm is therefore equal to O

(
(|F|+ |Rk||C|)3 + |Rk| |N | inumisca

)
.

4.3.3 Low-complexity solution (LC-EEFFRA)

In the optimization solution called Low-Complexity EEFFRA (LC-EEFFRA), let us remove the
Hungarian algorithm from EEFFRA leading to reduced computational complexity toO (|Rk| |N | inumisca).
The optimal values of frequency f? are determined in the same way as in Alg. 1 while the values
of a? are obtained in a heuristic manner. In this heuristic approach, only a single request r ∈ Rk

is considered at a time. It is allocated to node n? where the energy consumption for processing r
is the lowest, i.e., we find:

n? = arg min
n
Er

tot,n
? ∀r ∈ Rk. (4.31)

Values tn are updated after allocation of each request to prevent multiple collisions of two or more
requests at the same FN. The examination order of requests arriving at the same time is random to
emulate a decentralized approach.

66

4.4 Results

Algorithm 1 The EEFFRA in the fog computing networks.

1: Inputs: Lr, θr, or, Dr
max for r ∈ Rk, {pn,0, pn,3, ..., pn,Q}, fmin,n, fmax,n, sn, dn for n ∈ F ,

γln, bnr for r ∈ Rk and n ∈ F and bback, χ, maximum number of iterations Inum, Isca, iteration

index isca, maximum error ε and initial values of optimization variables f̄

2: Outputs: Er
tot,n for r ∈ Rk and n ∈ F , f?, a?

3: repeat

4: calculate f? by solving (4.24) in the range fn ∈ 〈max
{
fmin,n, f

r
delay,n

}
, fmax,n〉 for Φn = 0,

Ψn = 0, ∀n ∈ F and µr = 0, ∀r ∈ Rk using numerical method with max. Inum iterations

5: f̄ ← f?

6: isca ← isca + 1

7: until
∣∣̄f − f̄

∣∣ ≤ ε or isca = Isca

8: calculate a? using the Hungarian method for the matrix Ω and (4.28)

9: Er
tot,n ← Ẽr

tot,n for r ∈ Rk and n ∈ F

4.4 Results

Results obtained from computer simulations are presented in this section. Let us consider a net-
work with |F| = 10 FNs and |C| = 1 CN. Simulation parameters are summarized in Tab. 4.2. The
process of generating requests for simulations is as follows. At time Tk ∈ T there appear between
5 and 10 (uniform distribution) new computational requests. The value Tk is generated at a ran-
dom delay after previous time instance Tk−1. The difference Tk − Tk−1 is chosen to be a random
variable of exponential distribution with average value 50 ms (intensity = 20 s−1). The requests
have randomly (with uniform distribution) assigned values of their parameters (size, arithmetic
intensity, delay requirement) in ranges shown in Tab. 4.2.

It is assumed that each FN uses a single Intel Core i5-2500K as its CPU. Data relating frequency,
voltage, and power consumption of i5-2500K is taken from [135] and fit into Eq. (4.2) adopted
from [98]. The resulting power consumption and energy efficiency are plotted in Fig. 4.2. These
figures show that power consumption increases faster-than-linearly with operating frequency and
that the frequency with the highest energy efficiency is around 2.6 GHz. The cloud CPUs are
parameterized according to the Intel Xeon Phi family commonly used in computer clusters [128,
136] characterized with s = 32 FLOP/cycle [124], and run at a constant frequency 1.5 GHz.
Transmission parameters are analogous to those used in [13]. If not stated differently, simulations
for each data point are obtained over 550 time instances Tk. Results from the first 50 instances are
discarded. Random number generator seeds are kept the same for each value of swept parameters
for a fair comparison of results.

Our solutions, i.e., EEFFRA and LC-EEFFRA, are compared with three reference methods. The
first method, called Cloud Only, processes all requests in the cloud. The second method, called
Fog Only, processes all requests in the FNs. The FNs’ CPU frequencies and requests-to-nodes
assignments are determined using LC-EEFFRA. Finally, the third method, called Fog Simple,
processes requests in the same FN that these requests arrived at. Still, it uses optimal FNs’ CPU

67

4 Optimization of Energy Consumption in the Fog and Cloud Tiers

1

0.9

0.8

0.7

0.6
43.532.52

P
ow

er
 C

on
su

m
pt

io
n

[W
]

Frequency [GHz]

120

100

80

60

40

20
43.532.52

E
ffi

ci
en

cy
 [G

F
LO

P
/(

s*
W

)]

Figure 4.2: Power consumption and energy efficiency of Intel Core i5-2500K vs. CPU frequency.

Table 4.2: Simulation parameters used in Chapter 4.
Symbol Value/Range Symbol Value/Range Symbol Value/Range

Requests, r ∈ Rk
Lr [1,10] MB θr [1,100]

FLOP/bit
or [0, 0.5]

Dr
max [100, 1000] ms |Rk| [5,10] Tk − Tk−1 50 ms

Number of nodes
|F| 10 |C| 1

Computations in the fog [98, 124, 135], n ∈ F
sn 16 FLOP/cycle pn,3, pn,2 5.222, 34.256 fmin,n 1.6 GHz
Q 3 pn,1, pn,0 88.594, -47.152 fmax,n 4.2 GHz

Computations in the cloud [124, 128], n ∈ C
fn 1.5 GHz sn 32 FLOP/cycle

Transmission [92, 118, 119]
dn, n ∈ C 2000 km χ 7.5 µs/km bback 1 Gbps
bnr , n ∈ F 1 Gbps γln, n ∈ F 0.3 nJ/(bit·hop) γln, n ∈ C 10 nJ/bit

frequencies determined using LC-EEFFRA. Simulations are performed using MATLAB.

4.4.1 Convergence of Algorithms and Optimality of Solution

EEFFRA utilizes SCA for finding optimal operating frequencies and the Hungarian algorithm for
assigning requests to nodes. The Hungarian algorithm is guaranteed to find the optimum in poly-
nomial time [134]. SCA is guaranteed to converge [137]. To show the SCA convergence rate,
we plot normalized energy costs resulting from offloading requests depending on the maximum
number of algorithm iterations in Fig. 4.3. Apart from SCA iterations Isca, we also vary the maxi-
mum number of iterations Inum used to find the optimum CPU frequencies in Alg. 1. For clarity of
convergence analysis, we assume that there is no cloud, i.e., |C| = 0. The operating frequency of
the cloud is not adjusted (not a variable) and therefore does not influence the analysis. Normaliza-
tion is obtained by plotting the relative difference between the cost achieved by EEFFRA and the

68

4.4 Results

0 5 10
10-15

10-10

10-5

100

Figure 4.3: Convergence of solutions found by EEFFRA to the optimum with the number of itera-
tions.

optimal cost found by solving the original problem without SCA. Since the degree of polynomial
modeling CPU power consumption in these simulations equals 3, the optimal frequencies f r?n can
be found analytically for each request r ∈ Rk and node n ∈ F which result in the lowest cost
Er

cp,n while fulfilling (4.14). Since the first derivative of Er
cp,n over fn from (4.17) is continuous

everywhere except at singularity at fn = 0, and has at most 3 real roots, the optimal frequency
fn ∈ 〈max

{
fmin,n, f

r
delay,n

}
, fmax,n〉 is either obtained for the endpoint of this interval or for one

of the roots of d
dfn
Er

cp,n(fn). The lowest value Er
cp,n for these frequencies determines the optimal

frequency f r?n . The solution is continued as described in Section 4.3 from Eq. (4.25). It is visible
in Fig. 4.3 that EEFFRA converges both quickly and to values close to the optimal ones.

4.4.2 Impact of Computational Energy Efficiency of the Cloud

First, we vary the values of the computational efficiency of the CN in the range [0.5, 5.0] GFLOP-
S/W (Giga Floating Point Operations per Second (GFLOPS) per Watt, as of 2020, the median
value for 500 of the most powerful commercially available computer clusters is 2.962 GFLOPS/W
[128]). The average energy costs per successfully processed request are shown in Fig. 4.4. At low
computational efficiency of the cloud, policies utilizing only nodes in the fog tier (Fog Simple, Fog
Only) perform similarly to those utilizing both the fog and the cloud. Cloud only approach has the
highest energy consumption at low efficiency of the cloud (up to around 1.3 GFLOPS/W). Above
that level Cloud only is characterized with lower energy consumption than Fog Simple and Fog
Only solutions and similar to EEFFRA and LC-EEFFRA solutions as under these parameters it is
the most efficient to process most requests in the cloud. EEFFRA is slightly more efficient than
LC-EEFFRA at higher cloud efficiency values. The percentage of requests which were unable to
be processed using each of the offloading policies is the following: The Fog Simple solution where
FNs cannot “share” computational requests between themselves has the highest ratio of rejected

69

4 Optimization of Energy Consumption in the Fog and Cloud Tiers

1 2 3 4 5

Cloud efficiency [GFLOP/(s*W)]

0

1

2

3

4

5

A
vg

. r
eq

ue
st

 e
ne

rg
y

co
st

 [J
]

EEFFRA
LC-EEFFRA
Cloud Only
Fog Simple
Fog Only

Figure 4.4: Influence of cloud energy efficiency on the average energy cost for chosen policies.

requests (8.2%), while only 1.4%-1.7% requests (percentage varies depending on cloud efficiency
– lower for higher efficiency) are rejected by both proposed solutions utilizing both fog and cloud
(EEFFRA and LC-EEFFRA). Fog Only and Cloud Only have rejection rates of 1.9% and 4.3%
respectively. Requests which are rejected tend to have larger sizes and higher arithmetic intensities
(as shown later in Figs. 4.5b and 4.8). It “artificially” decreases the average-per-request cost of
methods with higher rejection rates in Fig. 4.4, e.g., causing Fog Simple to show lower average
cost than Fog Only).

Let us examine more closely where EEFFRA chooses to offload computational requests and
what parameters impact these decisions. Fig. 4.5 shows histograms of parameters characterizing
offloaded requests obtained after running simulations for 2000 Tk instances. Fig. 4.5a and Fig. 4.5b
show the probabilities of requests being processed in the fog tier of the network and those rejected
due to too low delay requirement at cloud efficiency of 1.3 GFLOPS/W. A similar histogram for
requests processed in the cloud would be superfluous as probabilities for results processed in the
fog, in the cloud, and those rejected sum to 1. Unsurprisingly, Fig. 4.5b shows that results with
strict latency requirements are less likely to be successfully processed in time. In Fig. 4.5a up to
40% of high arithmetical intensity tasks with delay requirements of around 200 ms are processed
in the fog tier as a result of the cloud being unable to fulfill these requirements. In Fig. 4.5a one
can see a “threshold” between 40 and 50 FLOP/bit below which requests are chosen by EEFFRA
to be served by the FNs rather than the cloud. Similar histograms plotted for other values of cloud
efficiencies show that this threshold increases with a less efficient cloud and decreases with a more
efficient cloud. In particular, for efficiencies below 1.0 GFLOPS/W, all requests are processed in
Fog. On the other hand, even for infinitely high efficiencies of the cloud around 20% of tasks
remain processed in the fog tier (low-intensity ones for which the cost of transmission to the cloud
outweighs computational costs in the fog and those with strict delay requirements). In Fig. 4.5a up
to 40% of high arithmetical intensity tasks with delay requirements of around 200 ms are processed

70

4.4 Results

200 400 600 800 1000
0

20

40

60

80

100

Delay req. of requests [ms]

A
rit

. i
nt

en
si

ty
 [F

LO
P

/b
it]

(a) Requests processed in FNs

200 400 600 800 1000
0

20

40

60

80

100

Delay req. of requests [ms]

A
rit

. i
nt

en
si

ty
 [F

LO
P

/b
it]

(b) Rejected requests.
0

0.2

0.4

0.6

0.8

1

Figure 4.5: Histograms of requests at 1.3 GFLOPS/W cloud efficiency. Results of EEFFRA.

0 2 4 6 8 10

Request energy cost [J]

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

EEFFRA
LC-EEFFRA
Cloud Only
Fog Simple
Fog Only

4 6 8 10
0.8

0.9

1

Figure 4.6: CDFs of request processing energy cost at cloud efficiency of 1.3 GFLOPS/W. Com-
parison of different policies.

in the fog tier as a result of the cloud being unable to fulfill these requirements.

To better illustrate differences in requests allocation policies, we plot Cumulative Distribution
Function (CDF) of energy cost spent on a single request. Energy spent on rejected requests is
assumed to be infinite for the purpose of CDF plots. Such results can be seen in Fig. 4.6. First,
it is visible that utilization of both fog and cloud tiers of the network yields significantly better
results than utilizing nodes in only one tier. The proposed EEFFRA and LC-EEFFRA provide the
lowest required energy cost for each percentile of the CDFs. All methods do not reach 1 on the
y-axis, i.e., some requests cannot be processed within a given delay budget. Our methods achieve
the lowest rejection rate as shown in the inset of Fig. 4.6.

71

4 Optimization of Energy Consumption in the Fog and Cloud Tiers

0 2 4 6 8 10

Request energy cost [J]

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

EEFFRA
LC-EEFFRA
Cloud Only
Fog Simple
Fog Only

(a) Delay req.: 100 ms

0 2 4 6 8 10

Request energy cost [J]

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

EEFFRA
LC-EEFFRA
Cloud Only
Fog Simple
Fog Only

(b) Delay req.: 200 ms

Figure 4.7: CDFs of request processing energy cost – influence of delay requirement of requests.

4.4.3 Impact of Delay Requirements and Size of Requests on the
Offloading Decisions

Let us see how the energy consumption and the percentage of rejected requests change with the
size and the delay requirement of computation requests. The energy efficiency of the cloud is set to
1.3 GFLOPS/W and parameter sweeps for other parameters are performed. All other parameters
are generated according to Tab. 4.2.

Fig. 4.7 plots CDFs of energy consumption costs of processing single requests with delay re-
quirements: 100 ms (Fig. 4.7a) and 200 ms (Fig. 4.7b). At the required delay of 100 ms, all
methods have high rejection rates, with Cloud Only being clearly the worst-suited for low-latency
applications. The differences between the rest of the methods are minor – the requests with such
low delay requirements either can or cannot be solved in time at the receiving FN and the ability
of nodes to transmit tasks between themselves does not improve performance. With a 200 ms, the
differences between approaches become more profound. Utilizing both fog and cloud (EEFFRA,
LC-EEFFRA) gives the lowest rejection rates and energy costs. Fog Simple meanwhile has the
worst performance.

Fig. 4.8 plots CDFs of energy consumption costs of processing single requests with sizes 5 MB,
(Fig. 4.8a) and 10 MB (Fig. 4.8b). EEFFRA, LC-EEFFRA, and Cloud Only show the highest
energy efficiency for 5 MB requests. However, Cloud Only fails to process a small number of re-
quests within a given delay requirement, while Fog Only, EEFFRA, and LC-EEFFRA process all
requests successfully. Fig. 4.8c shows that EEFFRA and LC-EEFFRA achieve the lowest energy
costs and rejection rates for 10 MB requests. It is worth observing that for both request sizes Cloud
Only has the highest energy costs up to at least 20-th percentile (caused by energy spent for trans-
mission), but for higher percentiles (influenced by requests with higher arithmetical intensities) its
costs are lower than that of either Fog Only or Fog Simple.

72

4.4 Results

0 2 4 6

Request energy cost [J]

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

EEFFRA
LC-EEFFRA
Cloud Only
Fog Simple
Fog Only

(a) Size: 5 MB.

0 2 4 6 8 10

Request energy cost [J]

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

EEFFRA
LC-EEFFRA
Cloud Only
Fog Simple
Fog Only

(b) Size: 10 MB.

Figure 4.8: CDFs of request processing energy cost – influence of size of requests.

4.4.4 Impact of CPU Frequency of Fog Nodes

In previous sections, it was assumed that FNs can dynamically adjust their operating frequency
(and voltage) to minimize energy consumption while satisfying delay requirements. Let us assume
that all FNs utilize the same, fixed CPU frequency. Fig. 4.9 shows the average energy cost and
percentage of rejected requests plotted as a function of this fixed frequency (swept between 1.6 and
4.2 GHz with a 0.1 GHz step). Results for Cloud Only are constant as no requests are processed in
FNs. Fog Simple and Fog Only methods have high rejection rates at low frequencies. Meanwhile
EEFFRA and Low Complexity (LC)-EEFFRA have the lowest rejection rates while also having the
lowest (considering the rejected requests are not taken into account by this metric) energy costs. As
the frequency of FNs increases the rejection rates decline and average energy cost increases for all
methods utilizing FNs. However, this effect is considerably smaller for EEFFRA and LC-EEFFRA
(utilizing resources in both fog and cloud tiers) than for Fog Simple and Fog Only.

Let us compare yhe efficiency of the network employing EEFFRA with and without Dynamic
Voltage and Frequency Scaling (DVFS). As shown in Fig. 4.9 the possibility to send requests to
the cloud diminishes the impact of FNs’ operating frequency on energy costs and rejection rate.
Therefore, to focus on the differences, Fig. 4.10 shows the results of simulations for a network with
10 FNs and no connection to the cloud. We compare CDFs of energy costs per request achieved
utilizing DVFS with the following fixed frequencies of FNs: 1.6 GHz (minimum), 2.6063 GHz (op-
timal frequency for maximizing energy efficiency as seen in Fig. 4.2, later referred to as 2.6 GHz),
and 4.2 GHz (maximum). The range of possible arithmetic intensities of requests is increased to
[1, 500] to make the requests highly variable in terms of required computations speed while the
mean time between sets of requests is increased (Tk − Tk−1 = 500 ms). Rejection rates are increas-
ing with decreasing fixed FN frequency. On the other hand, 4.2 GHz has the highest energy cost.
EEFFRA utilizing DVFS manages to maintain the lowest energy cost for every percentile.

73

4 Optimization of Energy Consumption in the Fog and Cloud Tiers

2 2.5 3 3.5 4

CPU frequency of Fog Nodes [GHz]

1.5

2

2.5

3

3.5

A
vg

. r
eq

ue
st

 e
ne

rg
y

co
st

 [J
]

EEFFRA
LC-EEFFRA
Cloud Only
Fog Simple
Fog Only

(a) Average energy cost.

2 2.5 3 3.5 4

CPU frequency of Fog Nodes [GHz]

0

10

20

30

R
ej

ec
te

d
re

qu
es

ts
 [%

]

EEFFRA
LC-EEFFRA
Cloud Only
Fog Simple
Fog Only

(b) Rejected requests.

Figure 4.9: Influence of fixed CPU frequency of FNs.

10 20 30 40 50 60

Request energy cost [J]

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

EEFFRA DVFS
EEFFRA 1.6 GHz
EEFFRA 2.6 GHz
EEFFRA 4.2 GHz

Figure 4.10: CDFs of request processing energy cost – comparison of FNs working at fixed fre-
quencies and utilizing DVFS. Parameters: Tk − Tk−1 = 500 ms, θr ∈ [1, 500]
FLOP/bit.

74

4.5 Chapter Summary

4.5 Chapter Summary
In this chapter, the thesis author formulated the optimization problem of minimizing the energy
consumption in the fog computing network while maintaining the latency constraints. This energy
consumption is assumed to result from both transportation (wired transmission) and the process-
ing of offloaded computational tasks (computation requests originating from the end-users). The
latency and energy consumption models and their parameters are based on real-life computing and
networking equipment product data sheets and measurements.

The author of this thesis formulated the optimization problem of selecting the place (node) of
task execution along with its CPU frequency to minimize the energy consumption in the network
while satisfying the latency constraint. The proposed EEFFRA algorithm solves the formulated
optimization problem using its successive approximations for adjusting clock frequencies of CPUs
in fog nodes. A sub-optimal, lower complexity solution LC-EEFFRA, which does not require
coordinated decision-making, is also proposed. Results of the computer simulation show that both
EEFFRA and LC-EEFFRA can significantly reduce average energy cost and the number of rejected
computational requests by distributing the workload between fog and cloud nodes.

CDF of the average energy cost per task (request), i.e., the probability that the energy cost is
lower than the argument, is always higher for both EEFFRA and LC-EEFFRA than for the cloud-
only or fog-only task delegation. This is particularly significant in the case of more demanding
requests (latency required below 100 ms, and the size of request of 10 MB) and moderate cloud
efficiency (of 1.3 GFLOPS/W). Thus, the proposed solutions can be seen as promising alternatives
for managing fog computing networks, as they allow for flexible utilization of communication and
computing resources.

75

5 Optimization of Energy Consumption
in Things, Fog and Cloud Tiers

This chapter is an extension of Chapter 4. It expands the fog network model by including the
things-fog transmission. The optimization space includes possible places (FNs and CNs) of the
execution of the tasks, and their CPU frequencies, as well as wireless connections between MDs
and FNs. Thus, there is a higher degree of freedom in selecting FN to execute tasks delegated by
MDs. This is because a single MD can be connected to multiple FNs (while the considerations
presented in Chapter 4 were agnostic to underlying wireless connections of MDs), and FNs are
interconnected and can relay the tasks to each other.

Thus, compared to Chapter 4, the energy-consumption optimization problem formulated below
includes a new set of related parameters and variables, and the optimization solutions space is also
expanded.

The work presented in this chapter has been published by the author of this thesis in [9].

5.1 Network Model
In the bottom tier of the network, there is a set M of MDs (e.g., smartphones) with specific
computational requests. It is assumed that serving these tasks requires offloading them to one of the
FNs or CNs, constituting the second and the third tier, respectively. The MDs cannot process these
tasks on their own because of energy or computational limitations. The MDs send computational
requests using wireless transmission to one of the nearby FNs. As shown in 5.1, FNs are located
at Base Stations (BSs) or Access Points (APs), close to the end users. Then, each task can be
processed either in one of the FNs out of set F or in the cloud tier (set C of CNs). Unlike MDs,
nodes in the fog and cloud tiers of the network are interconnected with wireline communication
technology.

The model shown in this work extends the one used in [10].

5.1.1 Computational Requests

Let T be a numbered set {T1, T2, ..., T|T |} of all time instances at which MDs offload computa-
tional requests. Let Rk be a set of all requests that MDs try to offload at time Tk. The following
parameters characterize each computing request r ∈ Rk:

• MD mr ∈M which offloads the task,

• size Lr in bits,

• arithmetic intensity θr in FLOP/bit,

77

5 Optimization of Energy Consumption in Things, Fog and Cloud Tiers

• ratio or of the size of the result of the processed task r to the size of the offloaded task r,

• maximum tolerated delay Dr
max.

Let us define a binary variable arn that shows where the request is computed, i.e., arn equals 1 if
r ∈ Rk is computed at node n ∈ F ∪ C, and 0 otherwise. Similarly, let us define a binary variable
wrl that indicates if request r is wirelessly transmitted from MD mr to FN n ∈ F .

5.1.2 Energy Consumption
The energy consumption model is divided into two parts: computation (processing of data) and
communication (transmission of data). Energy Er

cp spent on computing request r ∈ Rk equals:

Er
cp =

∑
n∈F∪C

arnE
r
cp,n =

∑
n∈F∪C

arn
Lrθr

βn
, (5.1)

where Er
cp,n is the energy spent on computing request r ∈ Rk at node n ∈ F ∪ C and βn is the

computational efficiency of node n ∈ F ∪ C given in GFLOPS per watt [138]. For CNs, constant
CPU clock frequency fn and efficiency βn are assumed. For FNs, βn depends on CPU frequency
fn of node n ∈ F , number sn of FLOPs performed within a single clock cycle of CPU [124], and
on power consumption Pn of CPU. βn is obtained by modeling Pn as a polynomial function of fn
using four parameters pn,3, pn,2, pn,1, and pn,0 derived from [98]:

βn =
fnsn
Pn

=
fnsn

pn,3f 3
n + pn,2f 2

n + pn,1fn + pn,0
. (5.2)

Core Network

Cloud Data Center

Smartphone CCTVSensor Smartphone

Tablet

F
og

 ti
er

T
hi

ng
s

tie
r

C
lo

ud
 ti

er

BS/APBS/AP

BS/AP

FNFN

FN

Figure 5.1: Fog network architecture.

78

5.1 Network Model

Table 5.1: The notation used for modeling the network and defining the optimization problem in
Chapter 5

Symbol Description
T set {T1, ..., T|T |} of all considered time instances, when one or more computational

requests arrive
M set of all Mobile/End Devices
F set of all Fog Nodes
C set of all Cloud Nodes
Rk set of all computational requests arriving at Tk ∈ T
Lr size of request r ∈ Rk

θr computational complexity of request r ∈ Rk

mr MD which offloads the request r ∈ Rk

or output-to-input data size ratio of request r ∈ Rk

Dr
max maximum tolerated delay requirement for request r ∈ Rk

Tk time at which request r ∈ Rk arrives in the network, k ∈ {1, ..., |T |}
γxy energy-per-bit cost of transmitting data between nodes x and y
sn number of FLOPs performed per single clock cycle at node n ∈ N
bxy link bitrate between nodes x and y
dn fiberline distance to CN n ∈ C
χ a parameter characterizing delay depending on distance
fmin,n minimum clock frequency of node n ∈ N
fmax,n maximum clock frequency of node n ∈ N
pn,0, pn,1,
pn,2, pn,3

parameters of the power model of CPUs installed in node n ∈ N

tn time at which node n ∈ N finishes computing its last task
arn variable showing whether request r ∈ Rk is computed at node n ∈ N , arn ∈ {0, 1}
wrl variable showing whether request r ∈ Rk is transmitted wirelessly to node l ∈ F ,

wrl ∈ {0, 1}
fn clock frequency of node n ∈ N , fmin,n ≤ fn ≤ fmax,n

βn energy efficiency (GFLOPS per Watt) characterizing node n ∈ N
Pn power consumption related to computations at node n ∈ N
Er

tot energy spent on transmission and processing of request r ∈ Rk

Er
cp energy spent in the network on processing request r ∈ Rk

Er
comm energy spent on transmission of request r ∈ Rk

Er
wl, E

r
wd energy spent on wireless/wired transmission of request r ∈ Rk

Er,x
comm,y energy cost for transmission of request r ∈ Rk between nodes x and y

Er
cp,n energy cost of processing request r ∈ Rk at node n ∈ N

This representation provides flexibility to cover various models of CPUs. The clock frequency fn
must lie within the range of possible frequencies of CPU in node n ∈ F , i.e., fmin,n ≤ fn ≤ fmax,n.

The energy spent on the transmission of request r ∈ Rk is a sum of energies resulting from

79

5 Optimization of Energy Consumption in Things, Fog and Cloud Tiers

Table 5.1: The notation used for modeling the network and defining the optimization problem.
Symbol Description
Dr

tot total delay of request r ∈ Rk

Dr
comm delay caused by transmitting request r ∈ Rk

Dr
wl/D

r
wd wireless/wired delay of request r ∈ Rk

Dr,x
comm,y delay of transmission of request r ∈ Rk between nodes x and y

Dr,mr,l
ul,n uplink delay of transmitting request r ∈ Rk to node n ∈ F , provided that wrl = 1

Dr
queue queuing delay of request r ∈ Rk

Dr,l
queue,n queuing delay of request r ∈ Rk at node n ∈ N , provided that wrl = 1

Dr
cp computational delay caused by processing request r ∈ Rk

Dr
cp,n computational delay caused by processing request r ∈ Rk at node n ∈ N

wireless (Er
wl) and wired (Er

wd) communication:

Er
comm = Er

wl + Er
wd. (5.3)

The energy spent on wireless transmission of request r ∈ Rk equals:

Er
wl =

∑
l∈F

wrlE
r,mr

comm,l =
∑
l∈F

wrlL
r(1 + or)γm

r

l , (5.4)

where Er,mr

comm,l is the energy required to transmit request r ∈ Rk from MD mr ∈ M to FN l ∈ F
and return the calculation result in reverse direction while γmr

l is the energy-per-bit cost of this
transmission. Lror is the size (in bits) of results transmitted back to MD mr.

The energy spent on wired transmission of request r ∈ Rk equals:

Er
wd =

∑
l∈F

wrl
∑
n∈F∪C

arnE
r,l
comm,n =

∑
l∈F

wrl
∑
n∈F∪C

arnL
r(1 + or)γln, (5.5)

where Er,l
comm,n is the energy required to transmit request r ∈ Rk between FN l ∈ F and node

n ∈ F ∪ C, while γln is the energy-per-bit cost of this transmission. Energy-per-bit cost can be
derived from [117], where the power consumption of networking equipment increases linearly
with load starting from idle power. This relation can also be seen in measurements of core routers
[92, 120]. There is no wired communication between nodes if the request is processed at the same
node to which it is wirelessly transmitted by the MD, i.e., ∀l ∈ F γll = 0.

The total energy spent on offloading request r ∈ Rk is given by:

Er
tot = Er

cp + Er
wl + Er

wd. (5.6)

5.1.3 Delay
Three components form the delay model: communication, processing, and queuing. The delay
Dr

cp caused by computing request r ∈ Rk equals:

Dr
cp =

∑
n∈F∪C

arnD
r
cp,n =

∑
n∈F∪C

arn
Lrθr

fnsn
, (5.7)

80

5.1 Network Model

where Dr
cp,n is the time required to compute request r ∈ Rk at node n ∈ F ∪ C.

The delay caused by communication can be further subdivided into wireless (Dr
wl) and wired

(Dr
wd) delay:

Dr
comm = Dr

wl +Dr
wd. (5.8)

The delay caused by wireless transmission of request r ∈ Rk equals:

Dr
wl =

∑
l∈F

wrlD
r,mr

comm,l =
∑
l∈F

wrl
Lr(1 + or)

bm
r

l

, (5.9)

where Dr,mr

comm,l is the time required to transmit request r ∈ Rk between MD mr ∈ M and FN
l ∈ F while bmr

l is the bitrate of this transmission between FN l and MD mr.
The delay caused by wired transmission of request r ∈ Rk equals:

Dr
wd =

∑
l∈F

wrl
∑
n∈F∪C

arnD
r,l
comm,n, (5.10)

where Dr,l
comm,n is the time required to transmit request r ∈ Rk between FN l ∈ F and node

n ∈ F ∪ C. The model for calculation of Dr,l
comm,n differs depending on node n being an FN or a

CN. It is assumed that cloud data centers are located away from the rest of the network (hundreds
or even thousands of kilometers away) which requires the distance-related delay to be modeled.
Delay caused by transmitting request r ∈ Rk between (to and from) FN l ∈ F and cloud node
n ∈ C is equal:

Dr,l
comm,n =

Lr(1 + or)

bln
+ dn · χ, (5.11)

where bln is the link bitrate in the backhaul and backbone network between nodes l and n, while dn

is the fiberline distance to CN n ∈ C. The parameter χ indicates the rate at which delay increases
with distance dn [118].

For transmission between FNs, it is assumed that the delay caused by the distance between them
(dn · χ in Eq. (5.11)) is negligible – well below 1 ms as we use a value of 7.5 µs/km for parameter
χ [118] – and therefore we can ignore it. Delay caused by communication between FN l ∈ F and
n ∈ F for request r ∈ Rk equals:

Dr,l
comm,n =

Lr(1 + or)

bln
. (5.12)

The special case is when the request r is received wirelessly at FN n and the same node is used for
processing. In this case, no wired communication delay is expected, i.e., Dr,n

comm,n = 0,∀n ∈ F .
Even more significant differences can be observed while modeling queuing delays for requests

processed in the fog tier and in the cloud tier of the network. It stems from the fact that clouds
are assumed to have huge (practically infinite) computational resources with parallel-computing
capabilities, and there is no need for queuing multiple requests served by the CN n ∈ C. They can
be processed simultaneously. Meanwhile, if multiple requests are sent to the same FN n ∈ F for
processing in a short time span, additional delays may occur due to congestion of computational
requests (an arriving request cannot be processed until processing of all the previous requests has
been completed). Let us define a scheduling variable tn ∈ R+ to represent the point in time when

81

5 Optimization of Energy Consumption in Things, Fog and Cloud Tiers

the last request scheduled at FN n ∈ F is finished processing. The queuing delay of request
r ∈ Rk, transmitted wirelessly to node l ∈ F , for computations being carried at node n ∈ F
equals:

Dr,l
queue,n = max(0, tn − Tk −Dr,mr,l

ul,n), (5.13)

where Dr,mr,l
ul,n = 1

1+or
(Dr,mr

comm,l + Dr,l
comm,n) is the uplink delay of transmitting request r to node n

through FN l. Dr,l
queue,n has nonzero values when tn > Tk + Dr,mr,l

ul,n . In such a case, the request r
which arrives at node n at time Tk +Dr,mr,l

ul,n . It is kept in a queue until time tn, when processing of
another request (or requests) ends. For each node n ∈ C, Dr,l

queue,n always equals zero – due to the
parallel processing powers of the cloud, each request may be computed right away, regardless of
how many requests are already being processed. Queuing delay of request r ∈ Rk is equal:

Dr
queue =

∑
l∈F

wrl
∑
n∈F∪C

arnD
r,l
queue,n. (5.14)

Finally, the total delay of processing request r ∈ Rk equals the sum of delays related to compu-
tation, transmission, and queuing:

Dr
tot = Dr

cp +Dr
comm +Dr

queue. (5.15)

5.1.4 Updating Scheduling Variables in the Fog
Since no requests are processed when the optimization starts, we can set tn = 0,∀n ∈ F . Then,
for each Tk ∈ T , after allocations arn and wrl are determined, the times tn are updated for every
n ∈ F according to when computation of requests offloaded to FNs are scheduled to finish:

tn := max(tn, Tk +
∑
r∈Rk

∑
l∈F

arnw
r
l (D

r,mr,l
ul,n +Dr,l

queue,n +Dr
cp,n)). (5.16)

5.2 Optimization Problem
Once again, the defined problem seeks to minimize the total energy cost of offloading all requests
that enter the network at time Tk, that is to find:

(a?,w?, f?) = arg min
a,f ,w

∑
r∈R

Er
tot, (5.17)

subject to: ∑
n∈F∪C

arn = 1 ∀r ∈ Rk, (5.18)∑
r∈Rk

arn ≤ 1, ∀n ∈ F , (5.19)∑
l∈F

wrl = 1 ∀r ∈ Rk, (5.20)

Dr
tot ≤ Dr

max, ∀r ∈ Rk, (5.21)

82

5.3 Problem Solution

fmin,n ≤ fn ≤ fmax,n, fn ∈ R ∀n ∈ F , (5.22)
arn ∈ {0, 1}, ∀r ∈ Rk, ∀n ∈ F ∪ C, (5.23)
wrl ∈ {0, 1}, ∀r ∈ Rk, ∀l ∈ F , (5.24)

where a? = {arn?}, w? = {wrl ?} and f? = {f ?n} are the optimal values of allocation variables arn
and wrl , and CPU clock frequencies fn, respectively. Constraints (5.18) guarantee that each request
must be processed at exactly one FN or CN. Constraints (5.19) restrict that no more than a single
request can be processed at a given FN at a given time. Constraints (5.20) guarantee that for each
request, a single FN will be used for wireless connectivity. Constraints (5.21) guarantee that the
total delay must not be greater than the maximum acceptable one. Constraints (5.22) show the
lower and upper bounds of CPU frequency at each FN. Finally, according to constraints (5.23) and
(5.24), decision variables arn and wrl take only binary values.

There exist sets of requests Rk for which the optimization cannot be solved (e.g., there is no
feasible allocation of requests so that each request is processed (5.18) while fulfilling its delay
requirement (5.21)). In such a scenario, we can decide to reject requests for which (5.21) cannot
be satisfied rather than ending the optimization without finding a solution (which would translate
into rejecting all requests Rk). The remaining requests (set Rk \ R′k, where R′k denotes the set of
rejected requests) are then subjected to the optimization.

5.3 Problem Solution

In this section, the author of this thesis provides a step-by-step solution to the optimization prob-
lem. In short, first, the minimum operating frequencies at which the delay requirements of of-
floaded requests are met are found. Then, the optimal operating frequencies, which minimize en-
ergy consumption spent on computations for given combinations of nodes and requests, are found.
At this point, combinations that cannot satisfy delay requirements are known. Then, the nodes to
which wireless transmission energy costs are the lowest are found. Finally, we can assign requests
to nodes for computing to minimize the total energy consumption. This linear assignment problem
is solved with the Hungarian algorithm [134, 139]. The notation used in the proposed solution is
summarized in Tab. 5.2. Letters in superscript are used throughout this chapter as upper indices,
not exponents, e.g., mr does not denote m to the power of r.

5.3.1 Auxiliary Variables

Let us define the auxiliary variable f rn,l as the CPU frequency of node n ∈ F ∪ C where request
r ∈ Rk is allocated while node l ∈ F is the node to which r is wirelessly transmitted (wrl = 1). The
relation between f rn,l and fn is given by fn =

∑
r∈Rk

∑
l∈F a

r
nw

r
l,nf

r
n,l. Similarly, wrl,n determines

which node l ∈ F request r ∈ Rk is wirelessly transmitted to provided that it is allocated to
n ∈ F ∪ C (arn = 1) and wrl =

∑
n∈F∪C w

r
l,n. Moreover, let Dr,l

tot,n be the total delay of request
r ∈ Rk provided that it is computed at node n ∈ F ∪ C (arn = 1) and node l ∈ F be the node to
which r is wirelessly transmitted (wrl = 1).

83

5 Optimization of Energy Consumption in Things, Fog and Cloud Tiers

Table 5.2: Additional notation used in the problem solution in Chapter 5

Symbol Description

wrl,n variable showing whether request r ∈ Rk is transmitted wirelessly to
node l ∈ F , provided that arn = 1

f rn,l clock frequency of node n ∈ N , provided that arn = 1 and wrl = 1,
r ∈ Rk

Dr,l
tot,n total delay of r ∈ Rk, provided that arn = 1 and wrl = 1

Dr,l
cp,n computational delay of r ∈ Rk, provided that arn = 1 and wrl = 1

Er
cp,n,l energy spent on processing of request r ∈ Rk, provided that arn = 1 and

wrl = 1

R′k set of requests rejected due to delay requirements

R̂k set of not rejected requests, R̂k = Rk \ R′k
wrl,n variable showing whether request r ∈ Rk is transmitted wirelessly to

node l ∈ F , provided that arn = 1

f rn,l clock frequency of node n ∈ N , provided that arn = 1 and wrl = 1,
r ∈ Rk

Dr,l
tot,n total delay of r ∈ Rk, provided that arn = 1 and wrl = 1

Dr,l
cp,n computational delay of r ∈ Rk, provided that arn = 1 and wrl = 1

Er
cp,n,l energy spent on processing of request r ∈ Rk, provided that arn = 1 and

wrl = 1

R′k set of requests rejected due to delay requirements

R̂k set of not rejected requests, R̂k = Rk \ R′k

5.3.2 Finding Optimal Frequencies
Let us rewrite (5.17) by expanding Er

tot into parts caused by computations (Er
cp,n), wireless trans-

mission (Er,mr

comm,l, between MD mr and node l) and wired transmission (Er,l
comm,n, between nodes l

and n):

(a?,w?, f?) = arg min
a,w,f

∑
r∈Rk

∑
l∈F

∑
n∈F∪C

arnw
r
l

(
Er

cp,n + Er,mr

comm,l + Er,l
comm,n

)
. (5.25)

Out of these three parts, Er
cp,n is the only one that depends on frequencies fn. The goal of this

step is to find f rn,l
?, i.e., values of fn which minimize Er

cp,n for all possible values of arn and wrl .
The only constraints that depend on values of f rn,l are (5.21) and (5.22).

The minimum values of f rn,l which satisfy Constraints (5.21) can be obtained by solving the
inequality Dr,l

tot,n ≤ Dr
max.

Dr,l
cp,n +Dr,mr

comm,l +Dr,l
comm,n +Dr,l

queue,n ≤ Dr
max (5.26)

84

5.3 Problem Solution

Lrθr

snf rn,l
+Dr,mr

comm,l +Dr,l
comm,n +Dr,l

queue,n ≤ Dr
max (5.27)

f rn,l ≥
Lrθr

sn

(
Dr

max −D
r,mr

comm,l −D
r,l
comm,n −Dr,l

queue,n

) , f rmin,n,l (5.28)

Let us rewrite Er
cp,n as a function of fn based on (5.1) and (5.2).

Er
cp,n(fn) =

Lrθr(pn,3f
3
n + pn,2f

2
n + pn,1fn + pn,0)

fnsn
(5.29)

Its derivative with respect to fn equals:

Er
cp,n
′(fn) =

Lrθr

sn

(2pn,3f
3
n + pn,2f

2
n − pn,0)

f 2
n

. (5.30)

The function Er
cp,n(fn) is continuous and differentiable for positive fn (the only discontinuity

is at fn = 0). Therefore, its extrema in a given interval can only be found at the bounds of this
interval or for points at which the derivative equals zero. Er

cp,n
′(fn) has a cubic function in the

numerator, so it has at most three real roots.
Now, we can determine f rn,l

? for r ∈ Rk, n ∈ F , w ∈ F by finding the minimum of Er
cp,n(fn) in

the interval [max(f rmin,n,l, fmin,n), fmax,n]. The corresponding minimum energy costs are as follows:

Er
cp,n,l

? = Er
cp,n(f rn,l

?). (5.31)

For values r ∈ Rk, n ∈ F , w ∈ F for which f rmin,n,l > fmax,n, constraints (5.21) and (5.22)
cannot both be satisfied, so we set Er

cp,n,l
? to infinity. For computations in clouds n ∈ C, we do not

optimize the frequency fn (fn = const., Er
cp,n,l

? = Er
cp,n(fn)). For values r ∈ Rk, n ∈ C, w ∈ F

for which f rmin,n,l > fn, constraint (5.21) cannot be satisfied, i.e., we set Er
cp,n,l

? to infinity.
Each request r ∈ Rk for which the following occurs:

Er
cp,n,l

? =∞,∀n∀l (5.32)

cannot be fully processed within their delay requirements regardless of chosen computation/trans-
mission nodes. All such requests are therefore rejected. The remaining optimization is performed
over R̂k = Rk \ R′k, whereR′k is the set of rejected requests.

5.3.3 Transmission Allocation
The auxiliary matrix wn

? = {wrl,n?} can be obtained. For each task r ∈ Rk and each computing
node n ∈ F ∪ C, the goal is to choose node l ∈ F , which minimizes the sum of energy spent on
computations (calculated and optimized in the previous step) and transmission (depending directly
on wrl,n), i.e., to find:

wn
? = arg min

wn

∑
l∈F

wrl,n

(
Er

cp,n,l
? + Er,mr

comm,l + Er,l
comm,n

)
, (5.33)

while satisfying (5.20) and (5.24). This is equivalent to finding nodes l, which minimize the
expression

(
Er

cp,n,l
? + Er,mr

comm,l + Er,l
comm,n

)
.

85

5 Optimization of Energy Consumption in Things, Fog and Cloud Tiers

5.3.4 Computation Allocation
The vector a? can now be obtained by solving the simplified problem:

a? = arg min
a

∑
r∈Rk

∑
l∈F

∑
n∈F∪C

arnw
r
l,n
?
(
Er

cp,n,l
? + Er,mr

comm,l + Er,l
comm,n

)
, (5.34)

subject to (5.18), (5.19) and (5.23). This corresponds to the linear assignment problem [134]—
each request r ∈ R̂k is assigned to one and only one node n ∈ F ∪ C. The cost matrix has

∣∣∣R̂k

∣∣∣
rows and |F| +

∣∣∣R̂k

∣∣∣ · |C| columns. The columns representing processing at FN are used once as
each of them can serve one request at a time while the columns representing processing at CN are
multiplied to ensure that multiple requests can be assigned to them simultaneously. The Hungarian
algorithm [134, 139] is used to solve this problem.

5.4 Results
Results obtained from computer (MATLAB) simulations and their setup are presented in this sec-
tion. While the main goal is to serve all the incoming requests within allowed latency constraints
with minimum energy, requests that failed to be served are set with virtually infinite consumed
energy. This facilitates a fair comparison of various request allocation strategies using only the
distribution of energy consumption spent per offloaded request. Therefore, medians, percentiles,
and CDF are chosen as evaluation metrics.

For the purpose of computing medians and other percentiles in this section, the energy costs
related to rejected requests are equal to positive infinity—such an approach (as well as using other
fixed values or omitting them entirely) has a considerably larger impact on the averages. Medians
and percentiles avoid bias that unserved requests have with respect to average values.

5.4.1 Scenario Overview
Let us consider a network with |F| = 10 FNs and |C| = 1 CN. Simulation parameters are
summarized in Tab. 5.3. Fig. 5.2 shows a connection diagram between these FNs and the cloud.
The examined environment represents a commercial facility such as an airport, where the end
users (MD) want to have their requests processed. Moreover, Fig. 5.2 presents three examples of
requests being calculated: (i) in the same FN as the utilized AP, (ii) being calculated in another
FN and (iii) being offloaded to the cloud. Appropriate values of binary variables arn and wrl are
presented in Fig. 5.2. The following assumptions have been made for the considered scenario.

Requests—between 5 and 10 new computational requests with uniform distribution at time Tk ∈
T appear. These requests appear at random locations within the area of the examined network
(with uniform distribution in both dimensions). The value Tk is generated as a random delay after
the previous time instance Tk−1. The difference Tk − Tk−1 is chosen to be a random variable of
exponential distribution with an average value of 200 ms. The requests have randomly assigned
values of their parameters (size, arithmetic intensity, delay requirement) in ranges shown in Tab. 5.3
with uniform distribution.

Computations—each FN has computational resources and a frequency–power relationship of
a single Intel Core i5-2500K as its CPU. Data relating frequency, voltage and power consumption

86

5.4 Results

Table 5.3: Simulation parameters used in Chapter 5

Symbol Value/Range Symbol Value/Range

Requests , r ∈ Rk

Lr [1, 5] MB θr [1, 500] FLOP/bit
or [0.01, 0.2] Dr

max [500, 3000] ms
|Rk| [5, 10] Tk − Tk−1 200 ms

Computations in fog [98, 124, 135], n ∈ F

pn,3, pn,2 5.222, 34.256 pn,1, pn,0 88.594, −47.152
fmin,n 1.6 GHz fmax,n 4.2 GHz
sn 16 FLOP/cycle

Computations in cloud [124, 128], n ∈ C

fn 1.5 GHz sn 32 FLOP/cycle

Wired Transmission [92, 118, 140]

dn, n ∈ C 2000 km χ 7500 ns/km
bln, n ∈ C 10 Gbps bln, n ∈ F 1 Gbps
γln, n ∈ F {2, 3} × 2 nJ/(bit) γln, n ∈ C 12 nJ/bit

Wireless Transmission [75, 141, 142]

γm
r

l , l ∈
F ,
mr ∈M

depends on rate and
path loss

bm
r

l , l ∈ F ,
mr ∈M

{0, 6.5, 13, 18.5, 26, 39,
52, 58.5, 65} Mbps

of i5-2500K are taken from [135] and inserted into Eq. (5.2) adapted from [98] to obtain values for
pn,3, pn,2, pn,1 and pn,0. The parameter s equals 16 for this CPU [124]. The resulting computational
efficiency β is the highest (0.9586 GFLOPS/W) at frequency f = 2.6063 GHz.

To simulate a scenario with varying computational efficiencies of nodes, we multiply the result-
ing computational efficiency (5.2) by random values from the range [0.5, 1.5] generated indepen-
dently for each node n ∈ F .

As for the computational capability of the cloud, its CPUs are parameterized according to the In-
tel Xeon Phi family commonly used in computer clusters [128, 136] run at constant frequency
f = 1.5 GHz characterized with s = 32 [124].

Wireless transmission—the power consumption model of the wireless transmission is based on
[75] and depends on the data rate and path loss. We use values derived for ASUS USB-N10 WiFi
card. The path loss values are determined using the model from Section 3.1 of [142] for a commer-
cial area and frequency closest to 2.4 GHz (20 dB for frequency 2.1 GHz). The wireless link uses
a maximum available rate that depends on the minimum sensitivity specified in Section 19.3.19.2
of [141] for a given modulation and coding scheme. It ranges from 6.5 Mbps (BPSK, 1/2) at
−82 dBm to 65 Mbps (64-QAM, 5/6) at −64 dBm. The energy-per-bit cost γmr

l is obtained by
dividing the power by the wireless link data rate.

Wired transmission—in order to derive energy-per-bit cost of transmitting requests from one

87

5 Optimization of Energy Consumption in Things, Fog and Cloud Tiers

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

Cloud

[m]

[m] C={0} F={1,2,...,10}

0

6

1

7

2

8 9 10

3 4 5

FN/AP FN/AP

Switch Switch

Backbone

MD

a2
2 = 1, w2

1 = 1, a1
6 = 1, w1

6 = 1, a3
0 = 1, w3

1 = 1

Figure 5.2: Diagram of the considered network composed of 10 FNs and a cloud with three exam-
ples of request allocations.

node to another (i.e., γln from l ∈ F to n ∈ F ∪ C), we need to add costs induced in all devices
through which it flows. For the power consumption of a single networking device, the linear
model from [117] is used. It includes idle power Pidle and active power that scales with load C (in
bits/second) by parameter γ (in Joules/bit):

P = Pidle + C
Pmax − Pidle

Cmax
= Pidle + Cγ, (5.35)

where Pmax denotes maximum power consumption and Cmax denotes maximum load. Energy-
per-bit cost of transmitting data γln is equal to the sum of γ parameters of all network devices
through which the data flows between nodes l and n. In this work, it is assumed that γln = γnl . It
is assumed for the connections between FN that they are connected with 1 G Ethernet. The power
consumption of Ethernet switches is set according to [93, 140]. Each switch can serve up to 6 FN
on the LAN side with 1 Gbps links (star topology) and can be connected to the 10 G EPON on
the WAN side. Cost-per-bit of transmission through these switches is equal to 2 nJ/bit (82 W at
1 Gbps throughput, 80 W with no traffic). The configuration can be seen in Fig. 5.2 showing 10
FNs connected with 2 switches.

For the connection between the fog tier of the network and the cloud, it is assumed that the data
flow through multiple nodes. Olbrich et al. [118] use geographically locatable nodes (over 250
nodes around the globe) to derive multiple path characteristics. Their results show that the RTT
of a packet is, on average, 1.5 times longer than an estimation based only on fiberline distance
(the speed of light in optic fiber ≈ 2 × 108m/s, in vacuum c ≈ 3 × 108m/s). The measured RTT
has a slope of 7.5 µs/km. Lrt us assign this 7.5 µs/km value to parameter χ. The CN is assumed
to be located 2000 km away from the rest of the network. It is estimated that the energy-per-bit
cost of transmitting data through the backbone network to the Cloud is equal to 12.66 nJ/bit based

88

5.4 Results

on 12 Juniper T1600 routers—each with cost-per-bit equal 1.03 nJ/bit [13, 120] and a 10G EPON
gateway with 0.3 nJ/bit cost [119]. While there is other equipment through which the data flow
within the core network (e.g., optical amplifiers), the value 12.66 nJ/bit is chosen to represent
the whole energy spent on transmission. Therefore, γln = 12.66 + {2, 3} × 2 nJ/bit for n ∈ C (2 or
3 depending on the logical distance between l and the switch with the WAN connection).

5.4.2 Baseline/Suboptimal Solutions

To test the effectiveness of the proposed algorithm (Full Optimization, shortened on plots to Full
Optim), let us compare it with four simpler task allocation methods. A summary of these methods
is shown in Tab. 5.4.

Table 5.4: Comparison of the examined algorithms.

Name Limitation Optimization Variables

Full Optimiza-
tion

None Computing allocation—a,
transmission allocation—w,
computing frequency—f

Exhaustive
Search

None a, w, f

Cloud Only
∑

n∈C a
r
n = 1, ∀r ∈ Rk w, a (if there are multiple

Cloud Nodes)
No Migrate

∑
l=n∈F w

r
l a
r
n =

1, ∀r ∈ Rk

a interdependently on w, f

Closest Wire-
less

wrl =
arg minwr

l
Er

wl, ∀r ∈ Rk

a, f

Exhaustive Search—all possible variations of allocations are verified. While this baseline ap-
proach finds the optimal solution, its running time scales exponentially with the number of re-
quests. The optimal frequencies of CPU are calculated as in Full Optimization.

Cloud Only—all requests are transmitted to and processed in the cloud tier of the network.
The optimal transmission allocation is obtained using a simplified version of the Full Optimization.

No Migrate—the nodes in the fog tier and cloud tier of the network cannot transmit tasks be-
tween themselves, i.e., the FN to which the request r is sent from the MD is the one that computes
it (arnw

r
l = 1 ⇐⇒ l = n).

Closest Wireless—in this approach, requests are always transmitted wirelessly to the closest
node (the one with the lowest path loss). Then, the rest of the optimization is performed as in Full
Optimization. The difference lies mostly in the step described in Eq. (5.33)—in Full Optimization
the set of allocation variables w is found to minimize total transmission + computation costs, while
in Closest Wireless each wrl is found separately, minimizing “only” the wireless transmission costs.

Not all of these solutions are plotted on every graph for clarity in this section. The results of
Closest Wireless in many configurations overlap with the results of Full Optimization. In other
words, the results of Closest Wireless are indistinguishable (within 0.1%) from the optimal results

89

5 Optimization of Energy Consumption in Things, Fog and Cloud Tiers

of Full Optimization for the vast majority of tested parameter setups. Therefore, they are omitted
from all plots except Fig. 5.7, where the difference between these two is visible. Shaded areas
around results for each solution show 95% confidence intervals.

5.4.3 Comparison with Exhaustive Search and All
Possible Allocations

First, let us compare results obtained from Full Optimization with those resulting from Exhaustive
Search to validate the ability of the proposed algorithm to find the total minimum energy cost.
A set of four computational requests is considered. The size of this set is limited due to the
high computational complexity of Exhaustive Search. These requests have to be allocated among
10 FNs (allocation in the cloud is not considered in this example to highlight the importance of
optimization within the fog tier). There are 50,400,000 possible allocations (104 for transmission,

10!
(10−4)!

= 5040 for computation) in total with energy consumption varying from 18.3 J to more
than 29.4 J, as presented in Fig. 5.3.

The results obtained by Full Optimization (red dashed line) and No Migrate (black dotted–
dashed line) are also shown. Full Optimization does indeed find the same solution as Exhaustive
Search. The solution found by No Migrate results in slightly higher energy cost. Still, both solu-
tions provide energy costs significantly lower than the average cost of all possible allocations. It is
clear that an algorithm which assigns requests to nodes randomly would not be efficient in terms
of energy cost.

18 20 22 24 26 28 30
Energy cost of offloading requests [J]

0

0.5

1

1.5

2

2.5

of

 a
llo

ca
tio

ns
 w

ith
 g

iv
en

 c
os

t

106

Count
Avg
No Migrate
Full Optim

Figure 5.3: Comparison of Full Optim solution with the No Migrate solution and all possible al-
locations from exhaustive search (blue bars; average value marked with solid green
line).

90

5.4 Results

5.4.4 Impact of Network Parameters

Now let us examine the impact of the computational efficiency of the cloud on energy costs and
allocations in the full network. Let us sweep this efficiency from 0.8 to 3.0 GFLOPS/W (efficiency
of the 500 most powerful commercially available computer clusters ranges from 0.19 GFLOPS/W
to 39.4 GFLOPS/W with 4.04 GFLOPS/W as the median [143]). Fig. 5.4 shows the median and
the 90th percentile of the total energy costs spent on transmission and computation of offloaded
requests. It can be seen that the energy costs of Cloud Only are significantly higher than those of
Full Optimization for the lowest values of cloud efficiency, while differences between No Migra-
tion and Full Optimization are small. In all cases, the proposed solution requires a smaller amount
of energy for a single request calculation than No Migration. As cloud efficiency increases, the cost
of Cloud Only allocation decreases. In parallel, this allows Full Optimization to offload more tasks
to the cloud, decreasing the energy consumption. The differences between the 90th percentiles are
significantly higher than those between medians, showing the highest gains of Full Optimization
for the most difficult requests. It is obvious that for the extremely high or low efficient cloud,
the requests will be mostly calculated in the cloud or in the fog nodes, respectively. Therefore,
for other results in this section, cloud efficiency is chosen to be 1.3 GFLOPS/W. This is a value
of cloud efficiency that results in offloading decisions being not as straightforward as for values
significantly higher or lower.

Another network parameter that can impact the costs and offloading decisions is the physical
size of the network. The network shown in Fig. 5.2 (10 FN distributed over a 200 m× 50 m hall)
is used by default. Now let us vary the physical size of the network while maintaining the same
number of FNs. This has an effect on the distance between MDs and FNs. The greater the distance,
the higher the path loss and the energy-per-bit cost of wireless transmission. At the same time,
the higher the path loss the lower the wireless transmission rate. In Fig. 5.5 the length of the area
covered by the network is swept up to 1000 m from the initial 200 m. With changing length

1 1.5 2 2.5 3
Cloud efficiency [GFLOPS/W]

0

5

10

15

20

E
ne

rg
y

co
st

 p
er

 r
eq

ue
st

 [J
]

Full Optim median
Full Optim 90th centile
Cloud Only median
Cloud Only 90th centile
No Migrate median
No Migrate 90th centile

Figure 5.4: Comparison of energy cost per request with varied computational efficiency of cloud.

91

5 Optimization of Energy Consumption in Things, Fog and Cloud Tiers

(the longer of the two dimensions) the ratios of distances between all FNs and the area perimeter
remain constant. The results in Fig. 5.5 clearly show that the energy cost per request increases
with the increasing size of the network. The increase is significant for No Migrate as MD is often
“forced” to wirelessly send requests to more distant nodes if the close nodes are busy processing
other requests or are not efficient enough. The rejection rates also increase from 3.3% at 200 m
to 8.6% at 1000 m For Full Optimization, from 3.8% to 21.8% for No migrate and from 6.5%
to 23.7% for Cloud Only. The difference in energy costs between Full Optimization and other
methods becomes more apparent with increasing distances within the network.

5.4.5 Impact of Traffic Parameters

Let us vary parameters characterizing the requests offloaded to the network. For previous results,
the parameters characterizing offloaded requests are random, as shown in Tab. 5.3. First, let us
look at the impact of the delay requirement. It is fixed for all the incoming requests. The other
parameters (e.g., arrival rate, arithmetic intensity) are generated in the same way as described in
Section 5.4.1. Fig. 5.6 plots the median and the 75th percentile of energy costs spent on offloading
requests as a function of the delay requirement (between 500 and 1000 ms) of these requests.
There are a few key observations: (i) the percentage of rejected requests increases with stricter
delay requirements, (ii) the energy cost increases with stricter delay requirements, (iii) Cloud Only
is particularly poorly suited for delay-sensitive applications. Observation (i) is self-explanatory.
The shorter the time-constraint, the harder it is to successfully offload the task, compute it and
transmit the results back within this time. This can be seen on the plot where the respective lines
terminate in the middle of a plot as a result of the virtually infinite energy cost of a request that is
unsuccessfully calculated. For example, the green line representing the 75th percentile of Cloud
Only terminates at 800 ms. This means that for delay requirements lower than 800 ms more than

200 400 600 800 1000
Size of the network [m]

4

6

8

10

12

14

E
ne

rg
y

co
st

 p
er

 r
eq

ue
st

 [J
]

Full Optim median
Full Optim 75th centile
Cloud Only median
Cloud Only 75th centile
No Migrate median
No Migrate 75th centile

Figure 5.5: Comparison of energy consumption per request vs. the size of the area (area radius)
covered by the network.

92

5.4 Results

25% of requests are rejected. Observation (ii) is an effect of the higher CPU frequency required
at FN to fulfill stricter delay requirements. This results in decreased CPU efficiency and increased
energy consumption. Observation (iii) stems from the additional transmission delay caused by
sending requests to the distant cloud.

500 600 700 800 900 1000
Delay requirement [ms]

4

6

8

10

12

14

16
E

ne
rg

y
co

st
 p

er
 r

eq
ue

st
 [J

]
Full Optim median
Full Optim 75th centile
Cloud Only median
Cloud Only 75th centile
No Migrate median
No Migrate 75th centile

Figure 5.6: Comparison of energy consumption per request with varied delay requirement of re-
quests.

0 5 10 15 20 25
Request energy cost [J]

0

0.2

0.4

0.6

0.8

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

10 15 20 25
0.79

0.8

0.81

0.82

Full Optim
No Migrate
Cloud Only
Closest Wireless

Figure 5.7: Comparison of energy consumption per request (CDF). Delay requirement: 700 ms.

To further analyze the difference between allocation strategies CDFs of energy costs are plotted
in Fig. 5.7 for fixed delay requirement of all requests equal to 700 ms. Unlike previous plots,
Fig. 5.7 includes results from the Closest Wireless algorithm. In all previous plots, the resulting

93

5 Optimization of Energy Consumption in Things, Fog and Cloud Tiers

energy costs of Closest Wireless are not shown, since they are either identical to those of Full
Optimization or are within 0.1% of it. Lowering the delay requirement created a scenario where
sending the request wirelessly to the nearest (cheapest) AP/FN and then finding the optimal node
for computation may not result in the optimal solution. This shows that Full Optimization man-
ages to successfully offload nearly 81% of all requests. This is the most out of all the compared
methods, about 0.5 percentage point more than Closest Wireless. It is visible that all the meth-
ods are differentiated mostly for high percentiles of energy costs. The worst solution is Cloud
Only, which rejects nearly 40% of all requests. While the difference between Closest Wireless
and Full Optimization is relatively small, this can be treated as a promising suboptimal solution
which decreases algorithm complexity while maintaining efficiency. This can change if the con-
sidered wireless technology, e.g., 5G NR, provides a higher data rate and higher energy efficiency.
However, this requires energy consumption models of 5G terminals to be available.

Finally, the impact of the arithmetic intensity of offloaded requests is examined. This pa-
rameter determines how many computations are needed to process a given request relative to its
size. The median and 75th percentile of energy costs for arithmetic intensity swept in the range
〈1, 1000〉 FLOP/bit are plotted in Fig. 5.8. As expected, the energy cost increases with rising inten-
sity. Higher values resulting from Cloud Only allocation at low intensity can be attributed to costs
related to transmission (which do not directly depend on arithmetic intensity). Such requests can
be more efficiently calculated in FNs, being commonly the result of the Full Optimization method.
Energy costs (both median and 75th percentile) of No Migrate are within 10% of Full Optimization
except for the values above 300 FLOP/bit where No Migrate steeply inclines. Rejection rates for
Full Optimization are 1.1% for 1 FLOP/bit, 1.8% for 100 FLOP/bit and 11.7% for 1000 FLOP/bit.
For Cloud Only, the values equal 2.9%, 4.4% and 20%, respectively. For No Migrate, they also
start at 1.1% for 1 FLOP/bit and 1.8% for 100 FLOP/bit but reach 46.7% for 1000 FLOP/bit.

100 101 102 103

Arithmetic intensity of requests [FLOP/bit]

100

101

E
ne

rg
y

co
st

 p
er

 r
eq

ue
st

 [J
]

200 400 600 8001000

10

20

30
40

Figure 5.8: Comparison of energy consumption per request with varied arithmetic intensity. Same
legend as in Figures 5.4 and 5.5.

94

5.5 Chapter Summary

5.5 Chapter Summary
Here above, the author investigated the minimization of energy spent on offloading computational
tasks in fog networks. The considered network model includes delay and energy costs resulting
from computation as well as wireless and wired transmission. The optimization problem formu-
lated seeks the selection of the wireless connections, FNs and CNs involved in the task execution as
well as their CPU frequencies to minimize the energy consumption in the network, while satisfying
the latency constraint.

The computational task allocation algorithm, Full Optimization, proposed by the author of this
thesis, successfully minimizes energy consumption while satisfying delay constraints. All the
considered degrees of freedom, i.e., in AP selection, computing node selection, and FN CPU fre-
quency tuning increase system performance (reduce energy-consumption) when compared with
baseline allocation algorithms (Cloud Only and No Migrate). However, precise gain characteri-
zation depends on a specific network configuration and on the parameterization of computational
requests.

When compared with the No Migrate solution, the biggest performance improvements of the
Full Optimization can be seen when offloaded tasks have high arithmetic intensity or when a large
area covered by the network causes higher path loss. In such a case, the observed gain is up to 50%
energy saving. Compared with performing all computations in the cloud (Cloud Only algorithm),
the proposed Full Optimization is much better suited for requests with strict delay requirements
and low arithmetic intensity.

A heuristic approach that independently allocates wireless transmission called Closest Wireless
is also proposed. This simplified algorithm provides optimal solutions for almost all considered
scenarios. Its performance is slightly worse for requests with strict delay requirements—it manages
to satisfy delay constraints of 0.8% fewer requests compared to Full Optimization at 700 ms.

95

6 Optimization of Energy Consumption
– Allocation of Tasks Modeled as
Directed Graphs

In this chapter, let us consider tasks that can be divided into subtasks. Each subtask can be com-
puted at a different network node. The problem of offloading such composite tasks can be seen
through the lenses of Virtual Network Embedding (VNE). The main contribution of this chapter
is the mechanism to map these tasks called Virtual Network Requests (VNRs) to a fog-cloud sub-
strate network. The challenge of such mapping is not only the computation requirement posed by
VNRs, but also transmission limitations of links of the substrate network. Results of the proposed
Clustered Network Embedding (CNE) algorithm are compared with Particle Swarm Optimiza-
tion (PSO) and an exhaustive search over a variety of scenarios. The work presented in this chapter
has been published by the author of this thesis in [11]. The original idea of modeling the offloaded
tasks as directed graphs and the definition of the optimization problem came from Wei-Che Chen
and Chun-Ting Chou, i.e., the co-authors of [11]. The main contribution of the author of this thesis
is in researching the solutions and their verification by means of computer simulations.

6.1 Network Model

6.1.1 Virtual Network Requests with the Chain Topology

General VNE problems consider arbitrary topologies of VNRs and substrate networks. In this
chapter, the focus is on VNRs with chain topologies, where traffic flows through these processes
in a predefined order. This corresponds for example to an Augmented Reality (AR) application
divided into many processes such as compression, decompression, video rendering, etc. Each
VNR is represented as a set of tasks. Each task is represented by a Virtual Node (VN). The
tasks are computed sequentially, but not necessarily at the same physical machine – a Substrate
Node (SN).

A VNR is modeled as a weighted directed graph GV = (NV , EV), where NV is the set of VNs
and EV is the set of Virtual Links (VLs) (compare with Fig. 6.1 illustrating an example of a VNR
with its networking and computing requirements). The first VN in each VNR is called the edge
node. Each VN i ∈ NV except for the edge node is characterized with the required computing
workload weight value W (i), where W (i) is given in millions of FLOPs. Each VL is denoted as
(i, j) ∈ EV , and is characterized with the size of data D (i, j), where the value of D (i, j) ∈ EV
is given in Megabits. Next, let us define the latency demand of a VNR. Let t0 be the time when
a VNR arrives in the network and tf be the completion time of its last VN. The difference tf − t0
must be lower or equal to latency demand L. L is given in number of time-slots.

97

6 Optimization of Energy Consumption – Allocation of Tasks Modeled as Directed Graphs

t0= 0, L = 31 slots

n
Edge node

1 slott0 tf

W(α)=25

α β
D(α,β)=11

W(β)=50

D(n,α)=25

Figure 6.1: An example of a VNR with chain topology.

N
10 A C

CLFB D

E
5 8

7
1210

10

11 12

12

12

12 25

Internet

10

9Edge node

Substrate Link

10 SL capacity

Substrate Node

8
SN Computing
Capability

Figure 6.2: A Fog-Cloud substrate network.

6.1.2 A Fog-Cloud Substrate Network

The substrate network is modeled as a weighted undirected graph GS = (NS, ES), where NS is
the set of SNs and ES is the set of Substrate Links (SLs). Each SN p ∈ NS is characterized with
the computing capability C (p) in GFLOPS. Among these SNs, there exists a specific SN that is
called the edge node. The edge node is where all VNRs originate from and it does not have its
own computing capability. Moreover, one of the SNs represents a Cloud data center – it has the
highest computing capability while also being the furthest away from the edge node. In addition,
each SN except for the edge node has its own scheduling table TN (p) providing information about
occupancy of computing resources. A VN processed at a given SN utilizes all its computational
resources.

An SL between a pair of SNs p and q is denoted as (p, q) ∈ ES . It is characterized by its
link capacity B (p, q) in Gbps. Among these SLs, there exists a specific SL that represents the
connection with the Cloud – the Internet. In addition, each SL except for the Internet has its own
scheduling table TE (p, q) providing information whether bandwidth slots of (p, q) are occupied or
not.

Fig. 6.2 illustrates a substrate network, where the numbers over the SLs represent bandwidth
and the numbers in rectangles represent computing capability of a given node. An example of the
scheduling table is shown in Fig. 6.3. Occupied slots are blue while unoccupied slots are white.

6.1.3 Node and Link Embedding

When a VNR arrives, network operators have to determine a suitable embedding for the VNR,
and allocate resources on SNs and SLs for this embedding. The embedding of a VNR onto the
substrate network is divided into two primary Sub-Problems (SubPs).

1) SubP1 – Virtual Node Embedding: Each VN of a given VNR must be embedded into one

98

6.1 Network Model

Figure 6.3: An example of LA-VNE.

of the SNs. xip denotes whether VN i is mapped on SN p.

xip =

{
1 if VN i ∈ NV is mapped to SN p ∈ NS

0 otherwise
2) SubP2 – Virtual Link Embedding: Each VL is mapped to a substrate path consisting of

one or more SLs between the corresponding SNs that host the end VNs of that VL. f ijpq denotes
whether VL (i, j) is mapped on SL (p, q). gij denotes whether VL (i, j) goes through the Internet.

f ijpq =

{
1 if VL(i, j) ∈ EV is mapped to SL(p, q) ∈ ES
0 otherwise

gij =

{
1 if VL (i, j) ∈ EV goes through the Internet
0 otherwise

Fig. 6.3 shows two exemplary embeddings of a single VNR. The VNR can be served by the
Embedding 1 (red dashed arrow) {α→ A, β → D} or the Embedding 2 (blue dashed arrow)
{α→ A, β → CL}. Embedding 1 makes the following mappings of the VNR to SLs: (n, α) →
(N,A) and (α, β) → {(A,C) , (C,D)}, while the Embedding 2 maps it to (n, α) → (N,A) and
(α, β)→ {(A,C) , (C,D) , (D,F) , (F,CL)}.

6.1.4 Latency Model
Networking latency Lnet (i, j) in VLs and computing latency Lcom (i) in VNs contribute to the
total latency L(GV) of VNR GV :

L(GV) =
∑

(i,j)∈EV

Lnet (i, j) +
∑
i∈NV

Lcom (i) . (6.1)

For successful embedding, the total latency L(GV) must satisfy the latency demand L:

L(GV) ≤ L. (6.2)

Two slots functions are defined to compute L(GV):

Unet
p,q (i, j) =

{
0 if p = q,

dD(i,j)
B(p,q)

e otherwise,
(6.3)

99

6 Optimization of Energy Consumption – Allocation of Tasks Modeled as Directed Graphs

U com
p (i) = dW (i)

C (p)
e. (6.4)

They represent the networking slots function and the computing slots function, respectively as
explained next based on the example from Fig. 6.3.

In the Embedding 1, the VL (n, α) only goes via the SL (N,A). The slots needed to be
used on the SL (N,A) are Unet

N,A (n, α) = d D(n,α)=28
B(N,A)=10

e = 3. Next, we check the scheduling table
TE(N,A) in Fig. 6.3 at t=0. The slots are occupied by other VNRs in the interval [0, 3] and [5, 7].
According to the scheduling table, these 3 slots can be successfully transmitted from N to A at
t = 8. Therefore, the networking latency is Lnet (n, α) = 8.
α is embedded into SN A. The computing slots to be used on A are U com

α (A) = dW (α)=25
C(A)=5

e = 5.
Likewise, we check the scheduling table TN(A) in Fig. 6.3 at t = 8. According to the table, these
5 slots can be successfully processed in A by t=16. Therefore, the computing latency Lcom (α) is
8.

For VL (α, β), the required slots on AC and CD are Unet
A,C (α, β) = 2 and Unet

C,D (α, β) = 1,
respectively. Therefore, the networking latency Lnet (α, β) is 3. In β, the required slots on D are
U com
D (β) = 5 slots. Therefore, the computing latency Lcom (β) is 5. Finally, the completion time

of the Embedding 1 is Lnet (n, α) + Lcom (α) + Lnet (α, β) + Lcom (β) = 24, and it is lower than
the latency demand L = 31.

In the Embedding 2, α is also embedded on A. Therefore, the networking latency isLnet (n, α) =
8 and the computing latencyLcom (α) is 8. Meanwhile, β is embedded on CL, and the path between
A and CL is {(A,C) , (C,D) , (D,F) , (F,CL)}.

Here, let us define the latency in the Internet link connecting the Cloud with the rest of the
network. The latency of VL (i, j) ∈ Nv in the Internet Unet

I (i, j) consists of the propagation
latency and the transmission latency:

Unet
I (i, j) = θ + dD (i, j)

BI

e. (6.5)

θ is the constant that represents the propagation latency caused by fiberline distance from the
Cloud, and BI represents the link capacity. In this example, let us assume that θ = 7 ms
and BI = 10 Gbps. Therefore, Unet

I (α, β) = 7 + d11/10e = 9 slots. Networking latency
Lnet (α, β) = Unet

A,C (α, β) + Unet
C,D (α, β) + Unet

D,F (α, β) + Unet
I (α, β) = 13. The computing la-

tency Lcom (β) = d50/25e = 2. Finally, the completion time of the Embedding 2 is Lnet (n, α) +
Lcom (α) + Lnet (α, β) + Lcom (β) = 31 slots. It is equal the latency demand. Therefore, both
Embedding 1 and 2 satisfy the latency demand.

6.1.5 Cost Model

Since both Embedding 1 and 2 satisfy the latency demand, we should determine which one is better
for the network operator. The goal is to minimize the total energy consumption used for serving
the VNR. Eq. (6.6) defines the energy cost model Y (GV) consisting of computing costs Ycom (i)
(see Eq. (6.7)) and networking costs Ynet (i, j) (Eq. (6.8)).

Y (GV) =
∑

(i,j)∈EV

Ynet (i, j) +
∑
i∈NV

Ycom (i) (6.6)

100

6.2 Proposed Solution

10 A C

CLCLFFBB D

EE
5 8

7 12 25

Internet

10

9

N

N Cluster 1 Cluster 2 Cluster 3

Clustering Network

t0= 0, L = 31 slots

n
W(α)=25

D(α,β)=11D(n,α)=25

10 12

1210

1112
12

α β
W(β)=50

Figure 6.4: Key concept of the CNE algorithm.

Ycom (i) =
∑
p∈NS

xip · U com
i (p) · C(p)

σp
(6.7)

Ynet (i, j) = gij · IC (i, j) +
∑

(p,q)∈ES

f ijpq · Unet
p,q (i, j) · ωp ·B (p, q) (6.8)

IC (i, j) = ωI ·D (i, j) (6.9)
C(p)
σp

represents the computing cost per slot (in mJ/ms, as [GFLOPS
GFLOPS/W = W = mJ

ms]) of SN p and σp
represents energy efficiency of SN p in GFLOPS per Watt. ωp ·B (p, q) represents the networking
cost per slot on a SL. ωp is the energy-per-transmitted-bit parameter characterizing networking
equipment in SN p. The networking cost on the Internet is defined in Eq. (6.9), where ωI denotes
energy-per-transmitted-bit cost of sending data to the Cloud.

The optimization objective is, for each arriving requestGV , to minimize the total cost (Eq. (6.6))
while satisfying the latency constraint (Eq. (6.2)).

6.2 Proposed Solution
In this section, we describe the proposed CNE Algorithm. Instead of directly embedding the VNR
into the substrate network, we first embed it into the clustered network for preliminary evaluation
in terms of latency and cost. The necessary steps are discussed below.

Step 1: Building the Clustered Network: In Step 1, we want to group SNs into multiple
clusters. At first, we transform SNs in the substrate network (except for the Cloud) into two-
dimensional datasets based on number of transmission hops from the edge node and their comput-
ing capability.

After creating these datasets, let us use an unsupervised k-means clustering approach to group
them. In order to dynamically choose the value k representing the number of clusters, the elbow
method [144] is chosen to find appropriate value of k.

101

6 Optimization of Energy Consumption – Allocation of Tasks Modeled as Directed Graphs

N Cluster 1 Cluster 2 Cluster 3

6.67 10.33 25

(11.1|1.67)

Ĉ: estimated computing capability
: estimated bandwidth
Ĥ: estimated number of hops

Ĉ

(B̂|Ĥ) (11.1|1.89)

(11.1|0.67)

(11.1|4)
(11.1|3.33)

(11.1|2.33)

B̂

Figure 6.5: Estimated components in a clustered network.

After generating the clusters we determine their estimated computing capabilities by averag-
ing the computing capabilities of all SNs within a cluster. The clustered network is modeled as
a weighted undirected graph ĜS =

(
N̂S, ÊS

)
, where N̂S is the set of clusters and ÊS is the set of

SLs between clusters. Each cluster n ∈ N̂S is characterized by its estimated computing capability
Ĉ (n) and energy efficiency σ̂n. Each pair of clusters n and m has a SL between them denoted as
(n,m) ∈ ÊS , and is characterized with the estimated bandwidth B̂ (n,m) and average number of
transmission hops Ĥ (n,m). For simplicity, let us set the estimated bandwidth in each SL between
clusters as the average value of bandwidth in all SLs in the substrate network. After building the
clustered network, we can enter the next step – the preliminary evaluation.

Step 2: Preliminary Evaluation By Embedding VNRs onto the clustered network: The
embedding variables are defined as follows:

ain =

{
1 if VN i ∈ NV maps to cluster n ∈ N̂S

0 otherwise

oijnm =

{
1 if VL(i, j) ∈ EV maps to SL(n,m) ∈ ÊS
0 otherwise

rij =

{
1 if VL (i, j) ∈ EV goes through the Internet
0 otherwise

Now we can define total estimated latency L̂ in Eq. (6.10). The estimated networking latency
L̂net (i, j) and the computing latency L̂com (i) are defined in Eqs. (6.11) and (6.12) respectively.
Next, we define the estimated cost Ŷ in Eq. (6.13). The networking estimated cost Ŷnet (i, j) and
the computing estimated cost Ŷcom (i) are defined in Eqs. (6.14) and (6.15) respectively.

L̂ =
∑

(i,j)∈EV

L̂net (i, j) +
∑
i∈NV

L̂com (i) (6.10)

L̂net (i, j) = rij · IL (i, j) +
∑

(n,m)∈ÊS

oijnm ·
D (i, j)

B̂ (n,m)
· Ĥ (n,m) (6.11)

L̂com (i) =
∑
n∈ÊS

ain ·
W (i, j)

Ĉ (n)
(6.12)

Ŷ =
∑

(i,j)∈EV

Ŷnet (i, j) +
∑
i∈NV

Ŷcom (i) (6.13)

Ŷnet (i, j) = rij · IC (i, j) +
∑

(n,m)∈ÊS

oijnm ·D (i, j) · Ĥ (n,m) · ω (6.14)

102

6.2 Proposed Solution

Table 6.1: An example of the PE table.
α β L̂ Ŷ Rank Success Y

PE (1) 1 1 15.44 87.37 2 Yes 91.84
PE (2) 1 2 14.73 91.6 3 Yes 89.18
PE (3) 1 3 18.55 84.53 1 Yes 87.67
PE (4) 2 1 20.17 116.76 7 – –
PE (5) 2 2 15.64 97.49 5 –
PE (6) 2 3 20.15 94.21 4 – –
PE (7) 3 1 34.26 – – – –
PE (8) 3 2 29.96 118.45 8 – –
PE (9) 3 3 24.46 103.13 6 – –

Ŷcom (i) =
∑
n∈ÊS

ain ·
W (i)

σ̂n
(6.15)

After calculating the estimated latency and cost, we start embedding the VNR into the clustered
network to evaluate the actual performance. Since the scale of the network is not large, we use the
exhaustive search to embed the VNR. We denote these node embedding variations as Preliminary
Embeddings (PEs). We calculate the estimated latency and cost of each PE by using Eq. (6.1) and
Eq. (6.6), respectively.

Step 3: Embedding VNRs into the Substrate Network: Tab. 6.1 illustrates an exemplary table
of PEs ranked by their estimated costs Ŷ . We choose the PE with the lowest Ŷ , i.e., PE (3). In
this example, α in PE (3) must be embedded into Cluster 1 (SNs A, B, or C), while β must be
embedded into Cluster 2 (SNs D, E, or F) – we now have to solve the Latency-Aware Virtual
Network Embedding (LA-VNE) problem with these constraints. We divide it into 2 stages as
seen in Section 6.1.3. During both virtual node embedding (SubP1) and virtual link embedding
(SubP2), we consider the scheduling tables of SNs and SLs. By solving this problem, we find the
energy cost Y for the chosen PE.

For SubP1, depending on the size and complexity of the network, we consider one of the two
following algorithms within the proposed CNE algorithm. The first algorithm is the exhaustive
search, and the second algorithm is the discrete PSO algorithm described in [109].

After embedding VNs into the SN in the node embedding stage, we enter the link embedding
stage. We embed VLs of a single VNR starting from the edge node and finishing at the last
VN. When embedding VLs, we use Dijkstra’s algorithm to find the shortest paths according to
networking latency while considering scheduling tables. After embedding all VLs, we calculate
total latency L and cost Y related to processing a single VNR according to Eq. (6.1) and Eq. (6.6).
Node and link embedding combination is a viable solution if the total latency is lower or equal to
the latency demand.

We continue embedding VNR until we find 3 solutions fulfilling latency constraints. For each
next solution, we take the PE from the PE table with the next best rank. Finally, we choose the
solution with the lowest energy cost. The VNE is rejected if no solution can be found.

103

6 Optimization of Energy Consumption – Allocation of Tasks Modeled as Directed Graphs

6.3 Results

6.3.1 Performance Evaluation

Substrate networks: The substrate network is configured to have either 10 FNs and one Cloud
(small network scenario - Section 6.3.2.1) or 50 FNs and one Cloud (large network scenario -
Sections 6.3.2.2 and 6.3.2.3). SLs connecting SNs (FNs) are randomly added following these
rules: (1) each node must be directly connected with at least 2 other nodes for resilience reasons,
(2) there exists at least one path between any node pair, (3) nodes should not be directly connected
to more than 5 other nodes. Then two SNs that are the furthest away from each other (in terms of
hops) are chosen as a fog gateway and a Cloud gateway. VNRs arrive at one node (i.e., the fog
gateway connected to the edge node gathering VNRs from data sources), while the other node (the
Cloud gateway) is connected to the Cloud via the Internet.

It is assumed that FNs further away from the user have higher computational power and that the
CN has significantly higher computational power (and lower energy-per-instruction cost) than any
of the nodes in the fog tier of the network. This corresponds to multi-tier Fog deployment proposed
in [19]. The computational capability of FNs is assumed to be between 10 and 50 GFLOPS, while
the computational capability of the Cloud is 200 GFLOPS. The energy efficiency parameter given
in GFLOPS per Watt is used to determine energy costs related to computing requests. It is used for
measuring the efficiency of supercomputers [128]. The cloud SN has an efficiency of 5 GFLOPS
per Watt (each single operation amounts to 0.2 nJ of energy spent). Fog SNs have an efficiency
between 1 and 1.25 GFLOPS per Watt. Link capacity of SLs between the FNs follows a uniform
distribution between 5 and 10 Gbps. The energy cost of transmitting data through SLs is equal to
0.2 nJ/bit for each link between the FNs. This value is equal to the per-bit energy consumption
of a 10/10G Ethernet Passive Optical Network (EPON) gateway [119]. Requests sent through the
Internet connection between Cloud and SN serving as Cloud gateway are transmitted at 10 Gbps
bitrate. For this connection, it is assumed that the Cloud is located 2000 km away from the rest of
the network and that the data goes through multiple core network routers (with 1 nJ/bit cost each
[120]). The energy cost of transmitting data to the Cloud through the Internet is therefore assumed
to be 8 nJ/bit, and this transmission introduces additional 15 ms of delay (using 7.5 µs/km Round-
Trip Time (RTT) [145]).

The aforementioned scenarios are inspired by a facial recognition access system installed in
the Department of Electrical Engineering in National Taiwan University. A camera, representing
the edge node, captures the raw videos while the tasks including video compression, image pre-
processing, deep learning-based face detection, and identity recognition are carried out in the local
FNs connected by Ethernet Local Area Network (LAN). Finally, the CN is assumed to be virtual
machines of the Amazon Web Services servers located in Japan (roughly 2000 km away from
Taipei).

Virtual Network Requests: The number of VNs in a single VNR is randomly determined by
a uniform distribution between 2 and 3 (low load scenario) or between 2 and 6 (high load scenario).
An example of a VNR with 2 VNs is shown in Fig. 6.1. The arrival rate of VNR follows a Poisson
process with mean 0.1 or 0.5 requests per time slot in low load and high load scenarios respectively.
Each time slot lasts for 1 ms. The computing workload in VNs follows a uniform distribution from
50 to 500 millions of FLOPs. The raw data sent through VLs follows a uniform distribution from
10 to 100 Mb. The latency demand on VNRs follows a uniform distribution from 200 to 500 ms.

104

6.3 Results

Table 6.2: Simulation parameters used in Chapter 6.
Parameter Symbol Value Unit

The # of SNs (small/large network) |NS | 11; 51 –
Computing capability of FNs C(p) 10 - 50 GFLOPS
Computing capability of Cloud C(p) 200 GFLOPS
Computing cost in FNs 1/βp 0.8 - 1 nJ/FLOP
Computing cost in Cloud 1/βp 0.2 nJ/FLOP
Transmission cost through SLs ωp 0.2 nJ/bit
Transmission cost through the Internet ωI 8 nJ/bit
Link capacity of SLs B(p, q) 5 - 10 Gbps
Propagation latency through Internet θ 15 ms
No. of VNs in a VNR (low/high load) |NV | 2 - 3; 2 - 6 –
Data transmitted through VLs D(i, j) 10 - 100 Mbit
Workload of VNs W (i) 50 - 500 MFLOP
Latency demand L 200 - 500 ms
Arrival rate (low/high load) – P(0.1); P(0.5) 1/ms
Simulation time – 5000 ms

The simulation time is set at 5000 time slots (5000 ms). Simulation parameters are summarized in
Tab. 6.2 and taken from [119, 120, 128, 145].

6.3.2 Evaluation Results

The proposed CNE algorithm can be adjusted depending on the size and complexity of a studied
network. For small networks (Section 6.3.2.1), CNE algorithm utilizing exhaustive search for node
embedding (labelled as CNE[EX]) is used. While for larger networks studied in Section 6.3.2.2
and 6.3.2.3 the CNE algorithm utilizing PSO is chosen. Single-threaded simulations are performed
on a Personal Computer (PC) equipped with Intel® Core™ i7-860 processor. The code is written
in C++.

6.3.2.1 Scenario 1: Small Networks and Low Load

Since the scale of the substrate network and VNRs is small, we can compare the proposed CNE
algorithm with exhaustive search to verify the performance in terms of cost and execution time. In
addition, let us contrast it with general discrete PSO algorithm proposed in [109].

As shown in Fig. 6.6a, the proposed algorithm (orange dotted line) has near-optimal perfor-
mance in terms of cost compared to the exhaustive search (blue solid line). The difference is lower
than 1% in this setting. Our proposed solution outperforms both the exhaustive search and the
general PSO in terms of execution time (about 92% and 78% respectively – see Fig. 6.6b).

6.3.2.2 Scenario 2: Large Networks and Low Load

Exhaustive search is computationally infeasible in larger networks. Therefore, let us compare the
proposed solution (CNE algorithm utilizing PSO – red line) with the pure PSO (green line) in terms
of cost and execution time in Fig. 6.7a and Fig. 6.7b respectively. Our proposed solution has better
performance – lower cost by about 15% and shorter execution time by about 55%. It stems from
the fact that grouping similar nodes into clusters greatly reduces the search space which directs
PSO to better solutions.

105

6 Optimization of Energy Consumption – Allocation of Tasks Modeled as Directed Graphs

0.0 1250.0 2500.0 3750.0 5000.0
144.5

271.4

398.4

525.3

652.3
PSOExhaustive

Simulation time [ms]

A
ve

ra
g

e
co

st
 [

m
J]

CNE[EX]

(a) Average cost.

A
ve

ra
g

e
se

ar
ch

in
g

 t
im

e
[m

s]

0.0 1250.0 2500.0 3750.0 5000.0
0.0

24.3

48.7

73.0

97.3
PSOExhaustive

Simulation time [ms]

CNE[EX]

(b) Average execution time.

Figure 6.6: Simulation results in small networks with low computation load (Scenario 1).

PSO

Simulation time [ms]

A
ve

ra
g

e
co

st
 [

m
J]

CNE[PSO]

(a) Average cost.

Simulation time [ms]

PSO

A
ve

ra
g

e
se

ar
ch

in
g

 t
im

e
[m

s]

CNE[PSO]

(b) Average execution time.

Figure 6.7: Simulation results in large networks with low computation load (Scenario 2).

6.3.2.3 Scenarios 3&4: Large Networks and High Load

As the complexity and the number of arriving VNRs increases, it becomes more likely that no
feasible embedding is found. Let us compare the proposed solution (CNE algorithm utilizing
PSO) with PSO in terms of cost, acceptance ratio, and execution time in large networks with
high computation load in Fig. 6.8 (Scenario 3). The acceptance ratio is defined as the number of
successfully embedded VNRs to the total number of VNRs that arrive at the network.

Our solution has 29% lower energy consumption (Fig. 6.8a), and a noticeably higher (7 per-
centage points) acceptance ratio as shown in Fig. 6.8c. According to these results, it can be con-
cluded that CNE algorithm efficiently utilizes computing and networking resources and allows
more VNRs to be successfully served. It is still considerably faster (by 38%) than the general PSO
algorithm. It is worth noting that this execution time is significantly higher than in the low load
scenario (Fig. 6.7b). It is caused by the fact that embedding VNRs with higher number of nodes
requires more computations.

Results shown in Figs. 6.6, 6.7, and 6.8 are acquired simulating network where fog SNs further
away from the end user have higher computational capability. This follows the concept of hier-

106

6.3 Results

0.0 1250.0 2500.0 3750.0 5000.0
669.3

827.2

985.1

1143.1

1301.0
PSO

A
ve

ra
g

e
co

st
 [

m
J]

Simulation time [ms]

CNE[PSO]

(a) Average cost.

0.0 1250.0 2500.0 3750.0 5000.0
0.0

97.3

194.7

292.0

389.3
PSO

Simulation time [ms]

A
ve

ra
g

e
se

a
rc

h
in

g
 t

im
e

[m
s]

CNE[PSO]

(b) Average execution time.

(c) Acceptance ratio.

Figure 6.8: Simulation results in large networks with high computation load (Scenario 3).

archical, tiered fog computing networks as seen in [19]. In contrast, Fig. 6.9 (Scenario 4) shows
results of simulating a network, where computational capabilities of fog SNs are independent of
their distance to the fog gateway. All other parameters are the same as in Scenario 3 shown in
Fig. 6.8. It can be seen that the percentage of accepted cases (as well as the difference between
algorithms) is significantly lower in Fig. 6.9 than in Fig. 6.8. However, CNE algorithm is still
faster and finds more energy-efficient embeddings than pure PSO. It demonstrates that clustering
nodes with similar parameters remains effective even when their distribution does not follow a hi-
erarchical fog network structure. Interestingly, while acceptance ratio is lower in a scenario with
more “randomized” network, average cost and searching time are also lower. It stems from the fact
that these averages are calculated over successfully embedded requests, and requests which fail to
be embedded tend to be longer and more costly to embed.

Values plotted in this chapter show high variance at the beginning of the simulation and then
stabilize at certain levels. It is caused by the fact that the average values over all embedded requests
are plotted. Each new request can significantly change the average value in the transient period
(when only a few requests have been processed). As the total number of requests increases, the
volatility decreases.

107

6 Optimization of Energy Consumption – Allocation of Tasks Modeled as Directed Graphs

Time [ms]

A
v

e
ra

g
e

 C
o

st
 [

m
J]

0.0 1250.0 2500.0 3750.0 5000.0
537.8

666.8

795.9

924.9

1054.0
PSO CN[PSO]

(a) Average cost.

Time [ms]

A
v

e
ra

g
e

 S
e

a
rc

h
in

g
 T

im
e

 [
m

s]

0.0 1250.0 2500.0 3750.0 5000.0
0.0

117.3

234.5

351.8

469.0
PSO CN[PSO]

(b) Average execution delay.

Time [ms]

A
cc

e
p

ta
n

ce
R

a
ti

o

0.0 1250.0 2500.0 3750.0 5000.0
0.00

0.25

0.50

0.75

1.00
PSO CN[PSO]

(c) Acceptance ratio

Figure 6.9: Simulation results in large networks with high computation load when computational
power of SNs does not increase with its distance from the end user (Scenario 4).

6.4 Chapter Summary
In this chapter, the optimization problem of allocating resources to processing offloaded tasks is
formulated. These tasks consist of subtasks and are modeled as directed graphs. Each of these
subtasks can be processed at a different node but the computations have to be performed sequen-
tially. The problem is expressed in the form of VNE. The aim is to minimize energy costs while
satisfying the latency demands. A heuristic algorithm called the CNE algorithm is proposed to
find close-to-optimal solutions in a reasonable time. Our algorithm can efficiently reduce the di-
mension of the search space while retaining better feasible solutions. The simulation results show
that the proposed algorithm has near-optimal performance in small networks, and has a clear 29%
improvement in terms of energy cost, 7 percentage points higher acceptance ratio, and 38% lower
execution time over the PSO algorithm in large networks.

108

7 Conclusions

7.1 Work summary

In this dissertation, the problem of energy consumption minimization in fog computing networks
has been studied. First, the author analyzed published works with regard to modeling, parameter-
izing, and optimizing fog networks in Chapter 2. The author’s original research is then focused on
the most commonly cited application of fog: offloading computational tasks. Chapter 3 considers
modeling of the energy consumption and computational task delay related to task offloading in the
fog and cloud tiers of a network. The models are parameterized to represent real-world equipment.
Moreover, the impact of the network parameters on the task average energy consumption and la-
tency is presented. In the following Chapters 4–6, three optimization problems are formulated and
subsequently solved. Each concerns computational task offloading in fog networks and aims to
minimize energy consumption while fulfilling the tasks’ latency requirements.

In Chapter 4, the optimization problem involves the allocation of tasks to fog and cloud nodes
as well as the adjustment of their clock frequency. The formulated optimization problem is a non-
convex Mixed-Integer Non-Linear Programming (MINLP), which is solved using the problem
decomposition and a series of Successive Convex Approximation (SCA) as well as the Hungar-
ian algorithms. A sub-optimal, low-complexity solution is also proposed and examined in the
computer simulation experiments.

Chapter 5 expands on the problem presented in Chapter 4 by adding wireless things-to-fog
transmission to the network model and the problem formulation. It changes the objective func-
tion (by adding energy cost for things-fog transmission) and constraints (by adding the wireless
transmission-associated delay), and includes a new set of decision variables (extending the opti-
mization solution search space). The exact solution is found without the use of SCA and compared
against baseline solutions.

Finally, Chapter 6 examines the offloading of sequential tasks, which are broken down into
subtasks. Each subtask can be computed at a different node, however, they must be executed
in the proper order. The model and problem are defined in terms of Virtual Network Requests
(VNRs) represented by directed graphs. The solution proposed as the Clustered Network Embed-
ding (CNE) algorithm involves decreasing the search space size by clustering nodes with similar
parameters.

Chapters 3 through 6 provide results for varied networking scenarios and parameter sweeps.

7.2 Key findings

Based on the original research done by the author of this thesis, as well as reviewing other pub-
lished works in the area of energy-efficient fog networks, the following conclusions can be drawn.

109

7 Conclusions

Fog computing can improve the performance of the standard cloud-exclusive task delegation net-
works in terms of energy consumption and task execution latency. Utilization of Fog Nodes (FNs)
located close to end users allows a network to serve these users more efficiently. This is especially
true for tasks with strict latency requirements. On the other hand, using a standard cloud delega-
tion is preferable for computationally intensive tasks without latency requirements and when the
cloud servers are particularly computationally powerful. Therefore, a network with distributed and
heterogeneous nodes can provide the best results in minimizing energy consumption if flexibility
in task allocation is possible. It must be stressed that these results heavily depend on the choice of
particular network models and their parameters.

Proper allocation of resources, transmission, and computing needs to be made to maximize the
effectiveness of a fog network. Many different optimization problems and solutions have been
proposed related to this issue and energy consumption is often used as an objective, constraint, or
both. To solve these problems, varied optimization methods have been harnessed. The most com-
mon solutions include convex optimization methods, nature-inspired metaheuristics, and machine
learning—particularly deep reinforcement learning. Researchers show that these solutions achieve
either the optimal or “good enough” results.

The solutions proposed by the author of this thesis efficiently allocate offloaded computations
between fog and cloud nodes. Simulation results in Chapter 4 show that each degree of freedom
(allowing FNs to cooperate, utilizing both FNs and cloud, dynamically adjusting clock frequency
of FNs servers) improves the efficiency of the network. This corresponds to lowering the overall
energy consumption and maximizing the number of requests that are processed within the given
delay requirements. Results in Chapter 5 lead to the same conclusions. Moreover, in both Chap-
ter 4 and 5, the author proposes a solution with lower complexity by replacing one optimization
step with a simpler heuristic. Results show that they are capable of finding optimal and close-to-
optimal solutions. Similarly, Chapter 6 demonstrates that a clever reduction in the size of the search
space can significantly reduce the time complexity of the offloading algorithm without noticeable
erosion in results.

7.3 Final conclusion
In conclusion, the author believes that the thesis of the dissertation has been proved i.e., there
exist optimal solutions to computational task offloading problems in fog networks, minimizing
energy consumption while maintaining required levels of latency. The author has formulated such
optimization problems, proposed solutions to them, and evaluated these solutions in the extended
computer simulation experiments. In the case of particularly computationally complex solutions,
heuristic optimization methods have been found and proved to be sufficiently effective.

110

Appendices

111

A Appendix

A.1 Summary of optimization methods and results

Below, there is a summary of each work from Tab. 2.4 and a discussion of the results achieved
by the authors. Works are divided by the role that energy consumption plays in their optimization
problems. Within these sections, they are ordered by year of publication – the oldest first.

A.1.1 Energy as a sole objective

Huang et al. [22] examine a network with a single Mobile Device (MD) offloading parts of tasks
(which are modeled as directed graphs) to the cloud (through a Base Station (BS) or Wi-Fi Access
Point (AP)) or processing them locally. The optimization problem is to minimize the average en-
ergy consumption of the MD while satisfying the stability of the queues and keeping the percentage
of tasks that fail to be executed within a given time below a certain threshold. The proposed so-
lution (H1) uses the Lyapunov optimization and 1-opt algorithm which is based on local search
by changing only a single subtask allocation variable at a time. The authors compare their solu-
tion with the one from [108] and with two trivial baseline solutions: sending all to the cloud and
processing all tasks locally. Fig. 4 from [22] compares the solutions and shows that the proposed
one achieves the lowest energy consumption and the local processing has the highest energy costs.
Meanwhile, Fig. 5 compares the proposed solution with local processing depending on the density
of Wi-Fi network deployment. The results show that the denser the network, the more significant
the drop in energy consumption is.

Ouesis et al. [38] examine a network with multiple FNs receiving tasks from MDs. They can
process these tasks themselves or transmit them (or parts of them) to another MD for processing
(the authors call this clustering). The original problem of minimizing energy consumption is non-
convex due to the form of latency constraints. After reformulating the problem to be convex, it is
solved through the Lagrange method. The proposed solution (C2) is compared with the following
baseline solutions: No Clustering – all tasks are processed in the FN they are sent to, Static Clus-
tering – there is a predetermined way in which FNs share the computational load, and Successive
Clustering which is a greedy approach that optimizes each task sequentially. Counter-intuitively,
the proposed solution has the highest energy costs. It stems from the fact the baseline solutions
(especially Static Clustering) have higher percentages of failure to meet the latency constraints of
tasks. This effect intensifies with an increasing number of MDs offloading tasks.

Muñoz et al. [24] examine a network with a single MD offloading a task (also partially) to
a single FN or processing it locally. Unlike other researchers, Muñoz et al. separately consider
UpLink (UL) and DownLink (DL) transmission (C7.1 and C7.2 respectively) and show their opti-
mization prior to proposing the main problem. The objective of the main problem is to minimize
the energy spent by the MD while satisfying task delay constraint. The solution (C7.3) involves re-

113

A Appendix

defining the problem with a smaller number of decision variables (two down from four) and convex
optimization methods. They also propose a simpler scenario with no delay constraints in which a
closed-form solution (C8) is found. The performance of the proposed solution is checked for dif-
ferent channel gains and delay constraint levels. Four transmission methods (e.g., Multiple-Input
and Multiple-Output (MIMO) 4x4) are checked. However, the only baseline solution to compare
to is no offloading. The results show that better channel conditions, longer delay constraints, and
higher MIMO levels decrease the energy consumption related to transmission and, in turn, the total
energy spent by the MD.

Sardatelli et al. [23] examine a network with one or more MDs offloading tasks through one or
more BSs to a single FN. Apart from these MDs, there can also be non-offloading MDs which are
included in the allocation of channel resources and calculation of interference. The authors pro-
pose multiple different solutions to the non-convex problem of minimizing the energy consumption
spent by the MD transmission. For a single MD problem, an equivalent convex problem is pro-
posed and solved with a water-filling algorithm (C3). Solutions to a problem with multiple MDs
and FNs involve SCA. One centralized (C4) and multiple decentralized solutions are proposed.
Decentralized solutions include one based on dual decomposition (C5) and one based on adding
slack variables (C6). The latter one also has two versions, one of which utilizes the second-order
information. The results achieved through the centralized solution are compared against a single
baseline solution, where the FN computing resources are allocated proportionally. Decentralized
solutions are compared against themselves. The centralized solution achieves lower energy costs
than the baseline one. However, for tasks with high arithmetic intensity, the difference is negligi-
ble. All decentralized solutions converge to the same result, with the second-order one converging
the fastest.

Deng et al. [49] examine a network with multiple FNs and clouds that share workload offloaded
by the MDs. The problem is to minimize power consumption while keeping total delay below a
certain level. The proposed solution (MA1) is achieved by approximating the problem (MA1.1)
with 3 subproblems solving allocation in the fog tier (MA1.2), in the cloud tier (MA1.3), and
choosing transmission parameters between the tiers (MA1.4) separately. Its effectiveness is not
compared with any baseline solutions. The results show only the trade-off between delay and
power consumption.

Gao et al. [42] examine a network with multiple FNs divided into 2 tiers and a single cloud.
Lower-tier FNs receive offloaded workload and can process it locally or send it (or part of it) to
higher-tier FNs. Similarly, higher-tier FNs can process workload themselves or offload it to the
cloud. The proposed solution (C20) to an optimization problem predicts future workloads and is
based on Lyapunov optimization. The authors examine the impact of multiple parameters on their
solution: prediction window size, weighting the trade-off between power consumption and backlog
in queues, and number of higher-tier FNs chosen for possible allocation. It is compared against
the following baseline solutions: no offloading, offloading of all workload to higher-tier FNs,
offloading of all workload to the cloud, random. All solutions converge to low power consumption
(indistinguishable from 0 W and one another on the graph) with the all-to-cloud approach having
the lowest power consumption at the beginning of the simulation. The proposed solution does not
seem to optimize the objective function (average power consumption) any better than the simple
baseline solutions. The fact that power consumption for all solutions appears to be converging to
zero may be an artifact of the chosen model (see Tab. 2.1) in which e.g., transmission to the cloud
and processing by the cloud incurs no delay and no power consumption.

114

A.1 Summary of optimization methods and results

You et al. [27] examine a network with multiple MDs and a single FN called edge cloud.
MDs can offload their tasks or process them locally. They propose optimization problems for two
types of access systems: Time Division Multiple Access (TDMA) and Orthogonal Frequency-
Division Multiple Access (OFDMA). First, they solve a simpler problem (C12) with an FN of
infinite capacity. For TDMA system they propose two algorithms: an optimal one requiring two-
dimensional search (C13) and a heuristic suboptimal one (H2) allocating time slots to MDs using
a greedy approach based on priority (function of channel gain and task arithmetic intensity). Equal
allocation of time slots is chosen as the baseline solution. Results are shown for different time
slot duration, FN computing capacity, and number of users. They show that suboptimal allocation
results in energy costs close to that of optimal allocation. They both significantly outperform
equal allocation under all examined scenarios. Their results show that energy costs grow much
faster than linearly with the number of users. For OFDMA they find an optimal solution (C14)
based on relaxation-and-rounding. They also propose a faster suboptimal solution (H3) based on
sequential allocation of subchannels to MDs based on priority. As a baseline solution, they use
greedy allocation which does not consider the characteristics of offloaded tasks (size, arithmetic
intensity). Results are shown for a different number of subchannels and number of users. One can
see that suboptimal allocation causes energy costs close to that of optimal allocation while costs
achieved via greedy allocation are significantly higher. It is also clear that the time needed to find
the optimal allocation is too high for application in real-life scenarios, i.e., close to 6 minutes for
20 users on average.

Feng et al. [29] examine a network with multiple MDs and a single FN. MDs can offload their
tasks or process them locally. Unlike most other works, they do not minimize total or average
energy consumption but rather minimize the highest (worst-case) consumption of an MD. The
baseline solutions include full offloading of all tasks to the FN and the algorithms proposed in [22]
and [24]. Their proposed solution (C15, based on the Lagrange method and the subgradient pro-
jection) achieves lower energy consumption than [22] and significantly lower energy consumption
than full offloading. Their Fig. 3 shows that on average, it has higher energy consumption than
the algorithm proposed in [24], however, its worst-case energy cost is significantly lower. Interest-
ingly, another plot (Fig. 4 displaying results of a scenario with twice the number of subcarriers)
shows that the algorithm from [24] achieves both lower average energy consumption and lower
worst-case energy consumption.

Sun et al. [54] examine a network with multiple MDs getting content from content servers
through multiple different transmission paths including through Remote Radio Heads (RRHs) or
Device-to-Device (D2D) transmission. The optimization problem is to minimize the overall energy
consumption. The proposed solution (M4) is based on deep Reinforcement Learning (RL) and
convex optimization. Various parameter sweeps are performed to show their impact on total energy
consumption. It is also contrasted with baseline solutions: random, Q-learning-based, D2D only,
and cloud only. It achieves lower energy costs than all these baseline solutions.

Kopras et al. [11] examine a network with a single MD offloading tasks to multiple FNs and a
cloud. The tasks are modeled as Directed Acyclic Graphs (DAGs) (see Fig. 2.2) with each graph
node representing a computational subtask possible to be processed by another FN or cloud. The
optimization problem is to minimize energy consumption while satisfying the delay constraints of
tasks. Two solutions are proposed depending on the size of the network. Both utilize clustering
of nodes to decrease the search space. One (H4) then uses exhaustive search to find the optimal
allocations for smaller networks and one (MA6) utilizes Particle Swarm Optimization (PSO) for

115

A Appendix

larger networks. The chosen baseline solutions are exhaustive search and PSO based on [109]. In
a smaller network, the proposed solution has close-to-optimal energy cost when compared with
exhaustive search, while being significantly faster to execute. In a larger network, the proposed
solution (utilizing PSO) has lower energy costs, shorter execution time, and lower percentage of
tasks violating delay constraint than “pure” PSO.

Vu et al. [35] examine a network with multiple MDs and multiple FNs. MDs can offload their
tasks to the FNs or a cloud, or process them locally. Unlike in other works, there is a possibility
of a direct MD-cloud transmission. They propose three main solutions: one based on relaxation-
and-rounding (C21), one based on Branch and Bound (BB) (C22), and one based on Feasibility
Finding Benders Decomposition (FFBD) (C23). They are further subdivided: BB based on optimal
node selection order (Local Fog Cloud or Local Cloud Fog) and FFBD into Slow and Fast vari-
ants. FFBD-Slow/Fast can also include resource allocation results from a relaxation-and-rounding
solution. They also consider the following baseline solutions: all offloading and no offloading.
The authors show results for a vast range of changing parameters. The no offloading as well as
the relaxation-and-rounding fail to find feasible solutions (satisfying latency constraints) in up to
90% cases and up to 30% cases, respectively. FFBD, BB, and all offloading always find feasible
solutions, but all offloading tends to have significantly higher energy consumption. There is no
straightforward answer as to which of the proposed solutions is the best at achieving the lowest
energy consumption while FFBD-Fast (with or without relaxation-and-rounding) tends to be the
fastest.

Kopras et al. [9, 10] examine a network with multiple FNs and a cloud. In [10] the problem
is to allocate tasks offloaded from MDs between FNs and the cloud and choose the operating fre-
quencies for the FNs. [9] adds another decision variable – choosing FNs for MD-FN transmission.
Proposed solutions in both works (MA8, MA10) rely on sequential solving of subproblems and
finishing with a matching problem solved by a Hungarian algorithm. Suboptimal, lower complex-
ity versions of their solutions (MA9, MA11) are also proposed with one part of the problem solved
by a simple heuristic. In [10] the following baseline solutions are used: offloading all-to-cloud,
offloading only between FNs, and no offloading from FN which receives the task. The results
show that, depending on chosen parameters and compared with the baselines, the proposed solu-
tions achieve lower energy cost, lower percentage of tasks unable to meet their delay constraint,
or both. They show that the difference between results achieved by the full solution and the lower
complexity one is small and also highlight the gain from using Dynamic Voltage and Frequency
Scaling (DVFS). In [9] the authors also compare their solutions with no offloading and all-to-cloud
and find that they achieve lower energy costs. The lower complexity solution achieves virtually
identical results to the full one for almost all input parameters. Both works verify that their solution
finds the optimum when compared with an exhaustive search and both works show that tasks with
high arithmetic intensity are best served by the cloud and those with low intensity – by the FNs.

A.1.2 Energy as one of a few objectives

Do et al. [48] examine a network with multiple FNs and a single cloud. The cloud can stream
video content to the FN providing utility to the end-users in the process. The stated problem is to
maximize this utility subtracting costs related to power consumption in the cloud. This is solved
iteratively using a proximal algorithm and Alternating Direction Method of Multipliers (ADMM)
(C1). The authors do not compare their solution to any baseline solutions. All their plots show

116

A.1 Summary of optimization methods and results

performance as a function of algorithm iterations.
Dinh et al. [26] examine a network with a single MD. It can offload its tasks to multiple FNs

or process them locally. The results are shown for various numbers of tasks and nodes, as well as
for varying weights assigned to delay and energy consumption in the objective function. Baseline
solutions include exhaustive search, local processing, random assignment, and offloading all tasks
to the cloud (which is added only in the model for this baseline solution). Linear Programming (LP)
based algorithm (C9) causes higher costs (weighted sum of energy and delay) at larger numbers
of offloaded tasks than the SemiDefinite Relaxation (SDR) based algorithms (C10, C11), which
achieve close to optimal solutions. They all significantly outperform local processing and random
assignment. Comparison with all-to-cloud depends on the number of offloaded tasks - the lower
the number, the bigger the difference in cost in favor of LP and SDR based algorithms.

Xu et al. [39] examine a network with a single FN and a single cloud. The FN is powered by
battery, renewable energy, as well as non-renewable energy, and can turn its servers from active
to inactive. It gets offloaded workload and can process it in one of its servers or send it to the
cloud. The problem of minimizing the total expected cost is formulated as a Markov Decision
Process (MDP) and solved using RL. The proposed solution (ML1) utilizes Post-Decision State
(PDS) and is compared with Q-learning as well as with three simple schemes: one that utilizes all
available battery energy in each time slot and two with fixed power consumption. The results show
that the PDS-based RL achieves the lowest total cost, with Q-learning having the second lowest
cost. Interestingly, both PDS-based RL and Q-learning have higher costs related to delay than the
three other methods. However, they are significantly better at saving battery and minimizing costs
related to usage of non-renewable energy, which offsets longer delays.

Liu et al. [28] examine a network with a single FN and a single cloud. There are multiple Energy
Harvesting (EH)-capable MDs offloading tasks to an FN or a cloud (through FN) or processing
them locally. MDs are connected by social ties which influence the costs related to offloading.
Their proposed solution (MA3) uses partial penalization to transform the original generalized Nash
Equilibrium Problem (NEP) into a “classical” NEP. Then, using Karush–Kuhn–Tucker (KKT)
conditions they transform the problem into a system of non-smooth equations. Finally, they use
the semi-smooth Newton method with Armijo line search to solve the system. The authors focus
on showing the impact of varying task arrival rates on values such as task execution rates and costs
spent on different parts of the network. The baseline solutions (whose results are shown only on
a single plot) are taken from other works namely [23] and [25]. Implementation details are not
provided. Liu et al. show that their solution has a lower average cost (delay and dropped tasks
penalty increased (penalized) by corresponding costs of socially linked MDs) than those proposed
in [23, 25].

Cui et al. [30] examine a network with a single FN located at a BS and multiple small cell BSs
which relay tasks from MDs. MDs can also process tasks locally. The multi-objective problem
(delay and MDs energy consumption) is solved using modified Non-dominated Sorting Genetic
Algorithm II (NSGAII) (MH2). Results are plotted for various values of parameters: number
of small cell BSs, task arrival rate, MD transmission power, FN computing capability, and MD
computing capability. They show the impacts on energy consumption, delay, and the trade-off
between them. The authors do not compare the achieved results with any baseline solutions.

Wang et al. [53] examine a network with a single FN and multiple MDs. MDs can offload tasks
to an FN, to other MD, or process them locally. The authors propose two solutions, one based
on deep RL scheduling (ML2) and one based on Deep Dynamic Scheduling (DDS) with deep Q-

117

A Appendix

learning (ML3). They choose the following baseline solutions: no offloading, offloading all tasks
to other MDs, and offloading all tasks to the FN. The objective function is to minimize a weighted
sum of energy consumption, delay, and penalties for exceeding task deadlines. Meanwhile, the
results show energy and delay separately. The proposed solutions have lower energy costs than
the baseline solutions with “no offloading” one having the highest costs. On the other hand, “no
offloading” and “offloading to MDs” achieve lower delay than the proposed solutions except for
tasks with large size, either in bits or number of instructions. From the two proposed solutions,
DDS achieves slightly lower delay and energy costs than deep RL scheduling.

Djemai et al. [55] examine a network with multiple FNs and cloud nodes. MDs receive (from
sensors and actuators) tasks modeled as directed graphs, and each node of these graphs represents
a computational task that can be processed locally or in the fog or cloud nodes. The authors
propose a solution (MH1) based on discrete PSO and compare it with 6 different baseline solutions
including 4 simple ones like “cloud only” and 2 complex ones: binary PSO and the one from [16].
While the optimization problem is to minimize energy consumption increased by violations of
delay constraints, these values are only plotted separately. The proposed discrete PSO achieves
lower energy costs and delay violations than the “simple” solutions. Comparison with binary PSO
and the solution from [16] is less clear. Depending on the size of tasks, it can achieve both higher
and lower energy consumption and delay violations.

Abbasi et al. [56] examine the same system as proposed by Deng et al. [49]. Unlike [49], they
do not clearly state their objective function. They also miss some of the constraints used in [49]
e.g., those requiring that offloaded tasks are processed. Still, their solution (MH4) to the problem
is drastically different – they use NSGAII. They do not compare their solution against baseline
solutions or those found in other works. Instead, they show results for three scenarios of possible
workload allocation: only to FNs, only to clouds, and both to FNs and cloud. There does not
appear to be a clear gain from utilizing nodes in both tiers, as only FNs have the lowest delay and
only clouds have the lowest energy consumption with both FNs and clouds achieving intermediate
results.

He et al. [31] examine a network with multiple MDs and one or more FNs. MDs can offload
their tasks or process them locally. However, the focus of optimization is on a single MD user
whose offloaded tasks can be detected by adversaries. Scenarios with both colluding (C18) and
non-colluding (C19) adversaries are examined. Similar solutions based on Lyapunov optimization
are used for both scenarios to minimize energy consumption while preventing the detection of
“feature” tasks. Baseline solutions include privacy-ignoring solution and “naive” solution which
prohibits the offloading of “feature” tasks. Results show the performance gain (lower energy cost)
of the proposed solution when compared with the naive one as well as the price of privacy (higher
cost) when compared with the privacy-ignoring one. They also show that a higher number of FNs
to which tasks can be offloaded decreases costs for all solutions.

Nath and Wu [33] examine a network with multiple MDs, one or more FNs, and a cloud. MDs
can offload their tasks or process them locally and FNs can cache tasks that they process or fetch
them from the cloud or other FNs. They propose two solutions based on Deep Deterministic
Policy Gradient (DDPG): one for a network with a single FN (ML4) and a decentralized one for
multiple cooperating FNs (ML5). For a network with a single FN, they compare the average cost
(weighted sum of delay, energy, and fetching) with a total of 8 baseline solutions. For all input
parameters, their proposed solution achieves the lowest cost. They also compared their solution
with a non-cooperative one and a centralized cooperative one for a network with multiple FNs.

118

A.1 Summary of optimization methods and results

Understandably, their solution has higher costs than the centralized one and significantly lower
than the non-cooperative one.

Roy et al. [57] examine a network with multiple MDs, multiple FNs divided into two hierarchi-
cal tiers (dew and edge) and a central cloud. Each task (called subservice) can be offloaded to one
of the FNs or cloud. The proposed solution (H5) based on a Genetic Algorithm (GA) and adaptive
PSO is compared with solutions proposed in other works: one based on self-adaptive PSO [110],
one based on binary PSO [112], one based on GA (NSGAII) [56], and one from [113]. Results of
simulations show that the proposed solution achieves higher fitness (chosen objective to be maxi-
mized) than the baseline solutions. It also achieves both lower energy consumption and delay (i.e.,
parameters used to calculate fitness).

Zhang et al. [61] examine a network with multiple MDs and a single FN consisting of multiple
computational servers of two different types. MDs can offload workload through RRHs or process
it locally. The objective is to minimize the energy consumption divided by the total size of the
processed workload (the authors call it the number of tasks rather than the size but it is given
in bits, and the whole model follows that of computational load rather than discrete tasks – see
Section 2.1.3). The proposed multi-step solution (MA5) utilizes Lyapunov optimization to split the
problem into 4 sequentially-solved subproblems. The results achieved by the proposed solution
are compared with those achieved by the following baseline solutions: no offloading, random,
exhaustive search, and one where all steps follow the one from the proposed solution but the
two types of FN servers cannot share computation resources. The results show that the proposed
solution achieves close-to-optimal energy efficiency (when compared with an exhaustive search)
and significantly better efficiency than no offloading or random offloading. The difference resulting
from different FN servers not being able to cooperate has no impact at lower arriving workloads
and a small impact on energy efficiency as well as a significant impact on average delay at higher
workloads.

Vakilian et al. [43–45] examine a network with multiple FNs and a cloud sharing workload
offloaded from MDs. Differences between the models and optimization problems of these three
works are relatively small. [43] uses a solution based on Splitting Conic Solver (SCS) (C17), and
in the other works metaheuristics are chosen: Artificial Bee Colony (ABC) in [44] (MH5), and
the cuckoo algorithm in [45] (MH6). ABC is shown to converge to optimal values found by SCS.
Meanwhile, the cuckoo algorithm is shown to have lower energy consumption and delay than the
solution proposed in [146]. All three works show that an increased number of cooperating FNs
decreases the costs (weighted sum of energy consumption and delay) for a given workload.

Abdel-Basset et al. [46] examine a network with a single FN that allocates offloaded tasks to
Virtual Machines (VMs). While the authors do not clearly state their optimization problem, it
can be assumed that their objective is to minimize fitness – a weighted sum of energy consump-
tion and makespan (highest delay among VMs). The authors propose a solution based on Marine
Predators Algorithm (MPA) adapted to solve the discrete problem of task allocation. In total, they
propose 3 versions: MPA (MH7), modified MPA (MH8) which changes the process of updating
positions, and improved modified MPA (MH9) which adds ranking-based reinitialization and mu-
tation. Proposed algorithms are compared with other metaheuristics: sine cosine algorithm, whale
optimization algorithm, salp swarm algorithm, equilibrium optimizer algorithm, and GA. The
results show that improved modified MPA achieves the best results (lowest fitness, energy con-
sumption, makespan, and CO2 emissions) for all studied scenarios. The second best is GA, better
than the proposed modified MPA and MPA, which in turn perform better than the rest of the tested

119

A Appendix

metaheuristics.
Bai and Qian [34] examine a network with multiple MDs and multiple FNs. MDs can of-

fload their tasks to the FNs or a cloud, or process them locally. The problem of allocation of
tasks to nodes as well as channel and computing resources to tasks is solved using deep RL-based
Advantage Actor-Critic (A2C) algorithm (ML6). The chosen baseline solution is random assign-
ment. The proposed A2C algorithm at the beginning of the simulation achieves a similar cost
(weighted sum of delay and MD energy) to the random assignment but with more episodes its cost
drops to less than 20% of that of the random assignment. They also show that the cost decreases
with a lower number of MDs and a higher number of FNs, but there are diminishing returns after
20 FNs. The plot that shows these relations is inconsistent with its description in the text – there
are data points that do not correspond to the described values and there is an unexplained dip at 40
MDs.

Ghanavati et al. [62] examine a network with a broker, multiple FNs, and a cloud. The broker
(gateway or AP) receives jobs (sets of tasks) from MDs and offloads them to FNs or a cloud.
They propose an Ant Mating Optimization (AMO) algorithm (MH10) to solve the problem of
minimizing the cost – the weighted sum of energy spent by FNs and total delays for each job.
They choose the following metaheuristics used in other works as a comparison: bees life algorithm
[114], GA [115], and PSO utilizing fuzzy logic [116]. The results show that the proposed solution
achieves lower cost than the ones based on other metaheuristics. Its improvement in reducing
delays is more significant than in reducing energy consumption. The bees life algorithm achieves
the second-best results.

Sun and Chen [47] examine a network with multiple FNs and MDs, each MD connected to a
single FN. An MD can offload a task to an FN by paying it a certain cost decided by the FN. The
optimization problem for each FN is to maximize its utility, i.e., price paid by MDs for offloading
tasks subtracting various costs which include energy. The baseline solutions include one that is
Contract-based under Symmetric information (CS), one that is based on a Stackelberg game, and
one that is based on linear pricing. The CS one achieves the highest utility for an FN. As it has
all the information about offloading MDs, it can extract maximum revenue from them so that their
utilities are zero. It can be seen as an upper bound. The proposed solution (MA12) has, therefore,
lower utility than CS, but higher than the other baseline solutions. It also achieves the highest
utility of MDs.

A.1.3 Energy only as a constraint

Mao et al. [25] examine a network with a single MD capable of EH and an FN. The optimiza-
tion problem is to minimize the average over time delay increased by dropped task penalty while
constrained by battery level of MD. In the proposed solution (MA2), the authors utilize Lyapunov
optimization and find the optimal values for each decision variable step-by-step. They compare
their method with three baseline solutions: no offloading, all offloading, and dynamic offload-
ing which chooses whether to offload based on what decision incurs lower delay. For all studied
scenarios the proposed solution achieves the lowest cost and the dynamic offloading achieves the
second lowest. All offloading achieves the lowest average delay is for most scenarios. However, it
is compensated by higher dropped task percentage – up to 50% for a scenario with large distance
(80 m) between the MD and the FN caused by lower channel gain.

Wang and Chen [58] examine a network with multiple MDs offloading tasks to a single FN or

120

A.1 Summary of optimization methods and results

processing them locally. The goal of minimizing the total delay while satisfying the delay and en-
ergy constraints of each task is solved using Hybrid Genetic Simulated Annealing (HGSA) (MH3)
– a combination of GA and simulated annealing. The baseline solutions include no offloading,
full offloading and a version of HGSA used in [111]. The results show that the proposed solution
achieves lower total delay than simple no offloading and full offloading approaches. However, it
has slightly higher total delay than the solution from [111] and the difference between the two
increases with an increasing number of MDs. On the other hand, the proposed solution has lower
total energy consumption than the one from [111]. Still, it is the delay, not the energy, that is the
optimization objective.

Chen et al. [40] examine a network with multiple FNs which share workload offloaded by the
MDs. The problem is to minimize delay over time with constraints on energy over time as well as
per time slot energy and delay (see the definition of “over time” in Section 2.3.3). The authors pro-
pose a centralized optimization algorithm (C16) using Lyapunov optimization and a decentralized
one (G1) reaching a Nash equilibrium through a best-response algorithm. The chosen baseline
solutions are: one without FN-FN offloading, one ignoring over time energy constraint, and one
transforming over time energy constraint into a stricter per time slot one. Results show that both
centralized and decentralized algorithms can satisfy over time energy constraints. They have a
lower average delay than the baseline solutions except for the energy-ignoring one. The perfor-
mance gain of the centralized solution in relation to the decentralized one is clearly presented. It
grows with higher variation in task arrival rate.

Bian et al. [36, 37] examine a system with multiple MDs and a single FN. The network per-
forms distributed training and the FN dynamically chooses MDs for each round of training. Their
proposed solution (MA7) combines Lyapunov optimization with Upper Confidence Bound (UCB)-
based graphical bandit learning. They compare their solution with baseline solutions: random MD
selection and “classical” UCB-based graphical bandit algorithm. Moreover, they do propose 3
slightly modified versions of their solution: one that does not utilize the graph information, one
that ignores the energy constraint, and one that ignores the fairness constraint (MD minimum se-
lection rate). All variations of the proposed solution achieve lower average latency than baseline
solutions with the fairness-ignoring one having the lowest average latency and energy consump-
tion by a large margin. However, it expectedly fails to reach the required fairness threshold. The
solution without the graph information produces only slightly inferior results to the main one. The
authors also study the effects of multiple network parameters and weights used by the solution on
results such as average latency and testing accuracy.

As shown in this section, some authors chose algorithms proposed in other research works as
baseline solutions. In a vast majority of cases (except for when [29] compares itself with [24], and
to a lesser extent when [58] compares itself with [111]) the proposed solutions show improvement
over the ones cited. Still, most works use trivial baseline solutions such as no offloading or random
assignment,

121

8 Bibliography
[1] C. Freitag, M. Berners-Lee, K. Widdicks, B. Knowles, G. S. Blair, and A. Friday, “The real

climate and transformative impact of ICT: A critique of estimates, trends, and regulations,”
Patterns, vol. 2, no. 9, p. 100340, 2021.

[2] F. Montevecchi, T. Stickler, R. Hintemann, and S. Hinterholzer, “Energy-efficient
cloud computing technologies and policies for an eco-friendly cloud market. final
study report.” EUROPEAN COMMISSION, Directorate-General for Communications
Networks, Content and Technology, Tech. Rep., 2020. [Online]. Available: https:
//data.europa.eu/doi/10.2759/3320

[3] R. Rogers, “AI’s energy demands are out of control. welcome to the internet’s Hyper-
Consumption era,” July 2024, last accessed on 19.09.2024. [Online]. Available: https://
www.wired.com/story/ai-energy-demands-water-impact-internet-hyper-consumption-era/

[4] S. Luccioni, Y. Jernite, and E. Strubell, “Power hungry processing: Watts driving the
cost of ai deployment?” in FAccT ’24: Proceedings of the 2024 ACM Conference
on Fairness, Accountability, and Transparency, ser. FAccT ’24. New York, NY,
USA: Association for Computing Machinery, 2024, p. 85–99. [Online]. Available:
https://doi.org/10.1145/3630106.3658542

[5] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the Internet
of Things,” in Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing, ser. MCC ’12. New York, NY, USA: ACM, 2012, pp. 13–16.

[6] B. Kopras, F. Idzikowski, and H. Bogucka, “A survey on reduction of energy consumption
in fog networks - communications and computations,” Sensors, vol. 24, no. 18, 2024.
[Online]. Available: https://www.mdpi.com/1424-8220/24/18/6064

[7] H. Bogucka, B. Kopras, F. Idzikowski, B. Bossy, and P. Kryszkiewicz, “Green time-critical
fog communication and computing,” IEEE Communications Magazine, vol. 61, no. 12, pp.
40–45, 2023.

[8] H. Bogucka and B. Kopras, “Uberization of telecom networks for cost-efficient communi-
cation and computing,” IEEE Communications Magazine, vol. 61, no. 7, pp. 74–80, July
2023.

[9] B. Kopras, F. Idzikowski, B. Bossy, P. Kryszkiewicz, and H. Bogucka, “Communication and
computing task allocation for energy-efficient fog networks,” Sensors, vol. 23, no. 2, 2023.

[10] B. Kopras, B. Bossy, F. Idzikowski, P. Kryszkiewicz, and H. Bogucka, “Task allocation for
energy optimization in fog computing networks with latency constraints,” IEEE Transac-
tions on Communications, vol. 70, no. 12, pp. 8229–8243, 2022.

123

https://data.europa.eu/doi/10.2759/3320
https://data.europa.eu/doi/10.2759/3320
https://www.wired.com/story/ai-energy-demands-water-impact-internet-hyper-consumption-era/
https://www.wired.com/story/ai-energy-demands-water-impact-internet-hyper-consumption-era/
https://doi.org/10.1145/3630106.3658542
https://www.mdpi.com/1424-8220/24/18/6064

8 Bibliography

[11] B. Kopras, F. Idzikowski, W.-C. Chen, T.-J. Wang, C.-T. Chou, and H. Bogucka, “Latency-
aware virtual network embedding using clusters for green fog computing,” in 2020 IEEE
Globecom Workshops, 2020.

[12] P. Kryszkiewicz, F. Idzikowski, B. Bossy, B. Kopras, and H. Bogucka, “Energy savings
by task offloading to a fog considering radio front-end characteristics,” in 2019 IEEE 30th
Annual International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), 2019.

[13] B. Kopras, F. Idzikowski, and P. Kryszkiewicz, “Power consumption and delay in wired
parts of fog computing networks,” in 2019 IEEE Sustainability through ICT Summit (StICT),
Montreal, Canada, June 2019.

[14] H. Bogucka, F. Idzikowski, P. Kryszkiewicz, B. Bossy, and B. Kopras, “Mgła – nowa ar-
chitektura sieci dla zrównoważonego rozwoju Internetu Rzeczy,” Przegląd Telekomunika-
cyjny - Wiadomości Telekomunikacyjne, no. 7, pp. 505–511, 2019.

[15] B. Kopras and F. Idzikowski, “Porównanie efektywności energetycznej mgły i chmury
obliczeniowej - przegląd,” Przegląd Telekomunikacyjny - Wiadomości Telekomunikacyjne,
no. 6, pp. 307–310, 2019.

[16] M. Taneja and A. Davy, “Resource aware placement of IoT application modules in fog-cloud
computing paradigm,” in 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), 2017, pp. 1222–1228.

[17] P. Hosseinioun, M. Kheirabadi, S. R. Kamel Tabbakh, and R. Ghaemi, “A new energy-aware
tasks scheduling approach in fog computing using hybrid meta-heuristic algorithm,” Journal
of Parallel and Distributed Computing, vol. 143, pp. 88–96, 2020.

[18] A. U. Rehman, Z. Ahmad, A. I. Jehangiri, M. A. Ala’Anzy, M. Othman, A. I. Umar, and
J. Ahmad, “Dynamic energy efficient resource allocation strategy for load balancing in fog
environment,” IEEE Access, vol. 8, pp. 199 829–199 839, 2020.

[19] OpenFog Consortium, “Openfog reference architecture for fog computing,
OPFRA001.020817,” 2017. [Online]. Available: https://www.iiconsortium.org/pdf/
OpenFog_Reference_Architecture_2_09_17.pdf

[20] S. B. Nath, H. Gupta, S. Chakraborty, and S. K. Ghosh, “A survey of fog computing and
communication: Current researches and future directions,” CoRR, vol. abs/1804.04365,
2018. [Online]. Available: http://arxiv.org/abs/1804.04365

[21] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A. Polakos, “A
comprehensive survey on fog computing: State-of-the-art and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 20, no. 1, pp. 416–464, Q1 2018.

[22] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm for mobile computing,”
IEEE Transactions on Wireless Communications, vol. 11, no. 6, pp. 1991–1995, 2012.

124

https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
http://arxiv.org/abs/1804.04365

8 Bibliography

[23] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio and computational
resources for multicell mobile-edge computing,” IEEE Transactions on Signal and Infor-
mation Processing over Networks, vol. 1, no. 2, pp. 89–103, 2015.

[24] O. Muñoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and computational re-
sources for energy efficiency in latency-constrained application offloading,” IEEE Transac-
tions on Vehicular Technology, vol. 64, no. 10, pp. 4738–4755, 2015.

[25] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for mobile-edge
computing with energy harvesting devices,” IEEE Journal on Selected Areas in Communi-
cations, vol. 34, no. 12, pp. 3590–3605, 2016.

[26] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile edge computing:
Task allocation and computational frequency scaling,” IEEE Transactions on Communica-
tions, vol. 65, no. 8, pp. 3571–3584, Aug. 2017.

[27] C. You, K. Huang, H. Chae, and B. H. Kim, “Energy-efficient resource allocation for
mobile-edge computation offloading,” IEEE Transactions on Wireless Communications,
vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[28] L. Liu, Z. Chang, and X. Guo, “Socially aware dynamic computation offloading scheme for
fog computing system with energy harvesting devices,” IEEE Internet of Things Journal,
vol. 5, no. 3, pp. 1869–1879, June 2018.

[29] J. Feng, L. Zhao, J. Du, X. Chu, and F. R. Yu, “Energy-efficient resource allocation in fog
computing supported IoT with min-max fairness guarantees,” in 2018 IEEE International
Conference on Communications (ICC), 2018.

[30] L. Cui, C. Xu, S. Yang, J. Z. Huang, J. Li, X. Wang, Z. Ming, and N. Lu, “Joint optimization
of energy consumption and latency in mobile edge computing for Internet of Things,” IEEE
Internet of Things Journal, vol. 6, no. 3, pp. 4791–4803, 2019.

[31] X. He, R. Jin, and H. Dai, “PEACE: Privacy-preserving and cost-efficient task offloading for
mobile-edge computing,” IEEE Transactions on Wireless Communications, vol. 19, no. 3,
pp. 1814–1824, 2020.

[32] A. Shahidinejad and M. Ghobaei-Arani, “Joint computation offloading and resource pro-
visioning for edge-cloud computing environment: A machine learning-based approach,”
Software: Practice and Experience, vol. 50, no. 12, pp. 2212–2230, 2020.

[33] S. Nath and J. Wu, “Deep reinforcement learning for dynamic computation offloading and
resource allocation in cache-assisted mobile edge computing systems,” Intelligent and Con-
verged Networks, vol. 1, no. 2, pp. 181–198, 2020.

[34] W. Bai and C. Qian, “Deep reinforcement learning for joint offloading and resource alloca-
tion in fog computing,” in 2021 IEEE 12th International Conference on Software Engineer-
ing and Service Science (ICSESS), 2021, pp. 131–134.

125

8 Bibliography

[35] T. T. Vu, D. N. Nguyen, D. T. Hoang, E. Dutkiewicz, and T. V. Nguyen, “Optimal energy
efficiency with delay constraints for multi-layer cooperative fog computing networks,” IEEE
Transactions on Communications, vol. 69, no. 6, pp. 3911–3929, 2021.

[36] S. Bian, S. Wang, Y. Tang, and Z. Shao, “Social-aware edge intelligence: A constrained
graphical bandit approach,” in GLOBECOM 2022 - 2022 IEEE Global Communications
Conference, 2022, pp. 6372–6377.

[37] S. Wang, S. Bian, Y. Tang, and Z. Shao, “Social-aware edge intelligence: A constrained
graphical bandit approach,” ShanghaiTech University, Tech. Rep., 2022. [Online].
Available: http://faculty.sist.shanghaitech.edu.cn/faculty/shaozy/GC22-GRIND.pdf

[38] J. Oueis, E. C. Strinati, S. Sardellitti, and S. Barbarossa, “Small cell clustering for efficient
distributed fog computing: A multi-user case,” in 2015 IEEE 82nd Vehicular Technology
Conference (VTC2015-Fall), Sep. 2015.

[39] J. Xu, L. Chen, and S. Ren, “Online learning for offloading and autoscaling in energy har-
vesting mobile edge computing,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 3, pp. 361–373, Sep. 2017.

[40] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for energy-constrained mobile
edge computing in small-cell networks,” IEEE/ACM Transactions on Networking, vol. 26,
no. 4, pp. 1619–1632, 2018.

[41] F. Murtaza, A. Akhunzada, S. ul Islam, J. Boudjadar, and R. Buyya, “QoS-aware service
provisioning in fog computing,” Journal of Network and Computer Applications, vol. 165,
p. 102674, 2020.

[42] X. Gao, X. Huang, S. Bian, Z. Shao, and Y. Yang, “Pora: Predictive offloading and resource
allocation in dynamic fog computing systems,” IEEE Internet of Things Journal, vol. 7,
no. 1, pp. 72–87, 2020.

[43] S. Vakilian and A. Fanian, “Enhancing users’ quality of experienced with minimum en-
ergy consumption by fog nodes cooperation in Internet of Things,” in 2020 28th Iranian
Conference on Electrical Engineering (ICEE), 2020.

[44] S. Vakilian, S. V. Moravvej, and A. Fanian, “Using the Artificial Bee Colony (ABC) algo-
rithm in collaboration with the fog nodes in the internet of things three-layer architecture,”
in 2021 29th Iranian Conference on Electrical Engineering (ICEE), 2021, pp. 509–513.

[45] ——, “Using the cuckoo algorithm to optimizing the response time and energy consumption
cost of fog nodes by considering collaboration in the fog layer,” in 2021 5th International
Conference on Internet of Things and Applications (IoT), 2021.

[46] M. Abdel-Basset, R. Mohamed, M. Elhoseny, A. K. Bashir, A. Jolfaei, and N. Kumar,
“Energy-aware marine predators algorithm for task scheduling in IoT-based fog computing
applications,” IEEE Transactions on Industrial Informatics, vol. 17, no. 7, pp. 5068–5076,
2021.

126

http://faculty.sist.shanghaitech.edu.cn/faculty/shaozy/GC22-GRIND.pdf

8 Bibliography

[47] Z. Sun and G. Chen, “Contract-Optimization Approach (COA): A new approach for op-
timizing service caching, computation offloading, and resource allocation in mobile edge
computing network,” Sensors, vol. 23, no. 10, 2023.

[48] C. T. Do, N. H. Tran, C. Pham, M. G. R. Alam, J. H. Son, and C. S. Hong, “A proximal
algorithm for joint resource allocation and minimizing carbon footprint in geo-distributed
fog computing,” in 2015 International Conference on Information Networking (ICOIN),
Jan. 2015, pp. 324–329.

[49] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload allocation in fog-
cloud computing toward balanced delay and power consumption,” IEEE Internet of Things
Journal, vol. 3, no. 6, pp. 1171–1181, Dec. 2016.

[50] S. Sarkar and S. Misra, “Theoretical modelling of fog computing: a green computing
paradigm to support IoT applications,” IET Networks, vol. 5, no. 2, pp. 23–29, 2016.

[51] W. Zhang, Z. Zhang, and H.-C. Chao, “Cooperative fog computing for dealing with big
data in the Internet of Vehicles: Architecture and hierarchical resource management,” IEEE
Communications Magazine, vol. 55, no. 12, pp. 60–67, 2017.

[52] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the suitability of fog computing in
the context of Internet of Things,” IEEE Transactions on Cloud Computing, vol. 6, no. 1,
pp. 46–59, Jan. 2018.

[53] Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, “Traffic and computation co-
offloading with reinforcement learning in fog computing for industrial applications,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 2, pp. 976–986, 2019.

[54] Y. Sun, M. Peng, and S. Mao, “Deep reinforcement learning-based mode selection and re-
source management for green fog radio access networks,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 1960–1971, 2019.

[55] T. Djemai, P. Stolf, T. Monteil, and J.-M. Pierson, “A discrete particle swarm optimization
approach for energy-efficient IoT services placement over fog infrastructures,” in 2019 18th
International Symposium on Parallel and Distributed Computing (ISPDC), 2019, pp. 32–40.

[56] M. Abbasi, E. Pasand, and M. Khosravi, “Workload allocation in IoT-fog-cloud architecture
using a multi-objective genetic algorithm,” Journal of Grid Computing, vol. 18, pp. 43–56,
03 2020.

[57] A. Roy, S. Midya, K. Majumder, and S. Phadikar, “Distributed resource management in
dew based edge to cloud computing ecosystem: A hybrid adaptive evolutionary approach,”
Transactions on Emerging Telecommunications Technologies, vol. 31, no. 8, p. e4018, 2020.

[58] Q. Wang and S. Chen, “Latency-minimum offloading decision and resource allocation for
fog-enabled Internet of Things networks,” Transactions on Emerging Telecommunications
Technologies, vol. 31, no. 12, p. e3880, 2020.

127

8 Bibliography

[59] N. Khumalo, O. Oyerinde, and L. Mfupe, “Reinforcement learning-based computation re-
source allocation scheme for 5G fog-radio access network,” in 2020 Fifth International
Conference on Fog and Mobile Edge Computing (FMEC), 2020, pp. 353–355.

[60] P. Gazori, D. Rahbari, and M. Nickray, “Saving time and cost on the scheduling of fog-
based IoT applications using deep reinforcement learning approach,” Future Generation
Computer Systems, vol. 110, pp. 1098–1115, 2020.

[61] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, “Dynamic task offloading and re-
source allocation for mobile-edge computing in dense cloud RAN,” IEEE Internet of Things
Journal, vol. 7, no. 4, pp. 3282–3299, 2020.

[62] S. Ghanavati, J. Abawajy, and D. Izadi, “An energy aware task scheduling model using
ant-mating optimization in fog computing environment,” IEEE Transactions on Services
Computing, vol. 15, no. 4, pp. 2007–2017, 2022.

[63] M. Othman and S. Hailes, “Power conservation strategy for mobile computers using load
sharing,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 2, no. 1, pp. 44–51, Jan. 1998.

[64] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, “Saving portable computer battery
power through remote process execution,” Mobile Computing and Communications Review,
vol. 2, no. 1, p. 19–26, Jan. 1998.

[65] T. N. Gia, M. Jiang, A. Rahmani, T. Westerlund, P. Liljeberg, and H. Tenhunen, “Fog
computing in healthcare Internet of Things: A case study on ECG feature extraction,” in
2015 IEEE International Conference on Computer and Information Technology; Ubiquitous
Computing and Communications; Dependable, Autonomic and Secure Computing; Perva-
sive Intelligence and Computing, Oct. 2015, pp. 356–363.

[66] H. Dubey, J. Yang, N. Constant, A. M. Amiri, Q. Yang, and K. Makodiya, “Fog data: En-
hancing telehealth big data through fog computing,” in Proceedings of the ASE BigData &
SocialInformatics 2015, ser. ASE BD& SI ’15. New York, NY, USA: ACM, 2015, pp.
14:1–14:6.

[67] A. Vakali and G. Pallis, “Content delivery networks: status and trends,” IEEE Internet Com-
puting, vol. 7, no. 6, pp. 68–74, Nov. 2003.

[68] B. Bossy, P. Kryszkiewicz, and H. Bogucka, “Energy-efficient OFDM radio resource al-
location optimization with computational awareness: A survey,” IEEE Access, vol. 10, p.
94100–94132, 2022.

[69] G. Miao, N. Himayat, and G. Y. Li, “Energy-Efficient Transmission in Frequency-Selective
Channels,” in IEEE Global Telecommunications Conference 2008 (IEEE GLOBECOM
2008), Nov. 2008.

[70] ——, “Energy-Efficient Link Adaptation in Frequency-Selective Channels,” IEEE Transac-
tions on Communications, vol. 58, no. 2, pp. 545–554, Feb. 2010.

128

8 Bibliography

[71] C. Isheden and G. P. Fettweis, “Energy-Efficient Multi-Carrier Link Adaptation with Sum
Rate-Dependent Circuit Power,” in IEEE Global Telecommunications Conference 2010
(IEEE GLOBECOM 2010), Dec. 2010.

[72] ——, “Energy-Efficient Link Adaptation with Transmitter CSI,” in IEEE Wireless Com-
munications and Networking Conference 2011 (IEEE WCNC 2011), Mar. 2011, pp. 1381–
1386.

[73] B. Bossy and H. Bogucka, “Optimization of Energy Efficiency in Computationally-Aware
Adaptive OFDM Systems,” in IEEE 27th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications 2016 (IEEE PIMRC 2016), Sep. 2016.

[74] P. Kryszkiewicz and A. Kliks, “Modeling of Power Consumption by Wireless Transceivers
for System Level Simulations,” in European Wireless 2017; 23th European Wireless Con-
ference, May 2017.

[75] P. Kryszkiewicz, A. Kliks, Ł. Kułacz, and B. Bossy, “Stochastic Power Consumption Model
of Wireless Transceivers,” Sensors, vol. 20, no. 17, p. 4704, Aug 2020.

[76] K. Gomez, T. Rasheed, R. Riggio, D. Miorandi, C. Sengul, and N. Bayer, “Achilles and
the Tortoise: Power Consumption in IEEE 802.11n and IEEE 802.11g Networks,” in 2013
IEEE Online Conference on Green Communications (OnlineGreenComm), Oct. 2013, pp.
20–26.

[77] A. Rice and S. Hay, “Measuring mobile phone energy consumption for 802.11 wireless
networking,” Pervasive and Mobile Computing, vol. 6, no. 6, pp. 593–606, 2010, Special
Issue PerCom 2010.

[78] D. Halperin, B. Greenstein, A. Sheth, and D. Wetherall, “Demystifying 802.11n Power
Consumption,” in International Conference on Power Aware Computing and Systems 2010
(HotPower 2010), Oct. 2010.

[79] A. Mezghani, N. Damak, and J. A. Nossek, “Circuit Aware Design of Power-Efficient Short
Range Communication Systems,” in 7th International Symposium on Wireless Communica-
tion Systems 2010 (ISWCS 2010), Sep. 2010, pp. 869–873.

[80] A. Mezghani and J. A. Nossek, “Power Efficiency in Communication Systems from a Cir-
cuit Perspective,” in IEEE International Symposium of Circuits and Systems 2011 (IEEE
ISCAS 2011), May 2011, pp. 1896–1899.

[81] ——, “Modeling and Minimization of Transceiver Power Consumption in Wireless Net-
works,” in International ITG Workshop on Smart Antennas 2011 (WSA 2011), Feb. 2011.

[82] Y. Chen, J. A. Nossek, and A. Mezghani, “Circuit-Aware Cognitive Radios for Energy-
Efficient Communications,” IEEE Wireless Communications Letters, vol. 2, no. 3, pp. 323–
326, June 2013.

129

8 Bibliography

[83] Y. Li, B. Bakkaloglu, and C. Chakrabarti, “A System Level Energy Model and Energy-
Quality Evaluation for Integrated Transceiver Front-Ends,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 15, no. 1, pp. 90–103, Jan. 2007.

[84] R. V. R. Kumar and J. Gurugubelli, “How green the LTE technology can be?” in 2nd
International Conference on Wireless Communication, Vehicular Technology, Information
Theory and Aerospace Electronic Systems Technology 2011 (Wireless VITAE 2011), Feb.
2011.

[85] E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal Design of Energy-
Efficient Multi-User MIMO Systems: Is Massive MIMO the Answer?” IEEE Transactions
on Wireless Communications, vol. 14, no. 6, pp. 3059–3075, June 2015.

[86] E. Björnson, M. Matthaiou, and M. Debbah, “Massive MIMO with non-ideal arbitrary
arrays: Hardware scaling laws and circuit-aware design,” IEEE Transactions on Wireless
Communications, vol. 14, no. 8, pp. 4353–4368, Aug. 2015.

[87] P. H. Y. Wu, “On the Complexity of Turbo Decoding Algorithms,” in IEEE 53rd Vehicular
Technology Conference 2001 (IEEE VTC 2001-Spring), vol. 2, May 2001, pp. 1439–1443
vol.2.

[88] C. Desset and A. Fort, “Selection of Channel Coding for Low-Power Wireless Systems,” in
IEEE 57th Semiannual Vehicular Technology Conference 2003 (IEEE VTC 2003-Spring),
vol. 3, Apr. 2003, pp. 1920–1924 vol.3.

[89] J. Lorandel, J. Prévotet, and M. Hélard, “Dynamic Power Evaluation of LTE Wireless Base-
band Processing on FPGA,” in Conference on Design and Architectures for Signal and Im-
age Processing 2015 (DASIP 2015), Sep. 2015.

[90] ——, “Fast Power and Performance Evaluation of FPGA-Based Wireless Communication
Systems,” IEEE Access, vol. 4, pp. 2005–2018, 2016.

[91] M. Maaz, J. Lorandel, P. Mary, J. Prévotet, and M. Hélard, “Energy efficiency analysis of
hybrid-ARQ relay-assisted schemes in LTE-based systems,” EURASIP Journal on Wireless
Communications and Networking, vol. 2016, pp. 1–13, Dec. 2016.

[92] W. Van Heddeghem, F. Idzikowski, W. Vereecken, D. Colle, M. Pickavet, and P. Demeester,
“Power consumption modeling in optical multilayer networks,” Photonic Network Commu-
nications, vol. 24, no. 2, pp. 86–102, 2012.

[93] C. Gunaratne, K. Christensen, B. Nordman, and S. Suen, “Reducing the energy consumption
of ethernet with Adaptive Link Rate (ALR),” IEEE Transactions on Computers, vol. 57,
no. 4, pp. 448–461, Apr. 2008.

[94] A. Morea, O. Rival, N. Brochier, and E. Le Rouzic, “Datarate adaptation for night-time
energy savings in core networks,” IEEE/OSA Journal of Lightwave Technology, vol. 31,
no. 5, pp. 779–785, Mar. 2013.

130

8 Bibliography

[95] J. C. C. Restrepo, C. G. Gruber, and C. Mas Machuca, “Energy profile aware routing,” in
Proc of the ICC workshop on Green Communications, Dresden, Germany, June 2009.

[96] F. Idzikowski, E. Bonetto, L. Chiaraviglio, A. Cianfrani, A. Coiro, R. Duque, F. Jiménez,
E. Le Rouzic, F. Musumeci, W. Van Heddeghem, J. López Vizcaíno, and Y. Ye, “TREND
in Energy-Aware Adaptive Routing Solutions,” IEEE Communications Magazine, vol. 51,
no. 11, pp. 94–104, Nov. 2013.

[97] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power CMOS digital design,” IEEE
Journal of Solid-State Circuits, vol. 27, no. 4, pp. 473–484, 1992.

[98] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang, “Accurate modeling
of the delay and energy overhead of dynamic voltage and frequency scaling in modern
microprocessors,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 32, no. 5, pp. 695–708, 2013.

[99] H. Lin, Y. Shih, A. Pang, and C. Chou, “Virtual local-hub: A service platform on the edge
of networks for wearable devices,” IEEE Network, vol. 32, no. 4, pp. 114–121, July 2018.

[100] S. J. Edwards, S. D. Forsyth, J. Stanback, and A. Saremba, “Standard: Portable Game
Notation specification and implementation guide,” 1994, last accessed on 17.07.2024.
[Online]. Available: http://www.saremba.de/chessgml/standards/pgn/pgn-complete.htm

[101] B. Varghese, N. Wang, D. Bermbach, C.-H. Hong, E. D. Lara, W. Shi, and C. Stewart, “A
survey on edge performance benchmarking,” ACM Comput. Surv., vol. 54, no. 3, apr 2021.

[102] T. Pfandzelter and D. Bermbach, “Towards a benchmark for fog data processing,” in 2023
IEEE International Conference on Cloud Engineering (IC2E), 2023, pp. 92–98.

[103] J. Martins and A. Ning, Engineering Design Optimization. Cambridge University Press,
10 2021.

[104] A. Avan, A. Azim, and Q. H. Mahmoud, “A state-of-the-art review of task scheduling for
edge computing: A delay-sensitive application perspective,” Electronics, vol. 12, no. 12,
2023.

[105] I. Osman and G. Laporte, “Metaheuristics: A bibliography,” Annals of Operational Re-
search, vol. 63, pp. 513–628, Oct. 1996.

[106] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation offloading in green mo-
bile edge cloud computing,” IEEE Transactions on Services Computing, pp. 1–1, 2018.

[107] N. N. Khumalo, O. O. Oyerinde, and L. Mfupe, “Reinforcement learning-based resource
management model for fog radio access network architectures in 5G,” IEEE Access, vol. 9,
pp. 12 706–12 716, 2021.

[108] S. Ou, K. Yang, and J. Zhang, “An effective offloading middleware for pervasive services
on mobile devices,” Pervasive and Mobile Computing, vol. 3, no. 4, pp. 362–385, 2007,
middleware for Pervasive Computing.

131

http://www.saremba.de/chessgml/standards/pgn/pgn-complete.htm

8 Bibliography

[109] Z. Zhang, X. Cheng, S. Su, Y. Wang, K. Shuang, and Y. Luo, “A unified enhanced particle
swarm optimization-based virtual network embedding algorithm,” International Journal of
Communication Systems, vol. 26, no. 8, pp. 1054–1073, 2013.

[110] X. Zuo, G. Zhang, and W. Tan, “Self-adaptive learning pso-based deadline constrained task
scheduling for hybrid iaas cloud,” IEEE Transactions on Automation Science and Engineer-
ing, vol. 11, no. 2, pp. 564–573, 2014.

[111] H. Wang, R. Li, L. Fan, and H. Zhang, “Joint computation offloading and data caching with
delay optimization in mobile-edge computing systems,” in 2017 9th International Confer-
ence on Wireless Communications and Signal Processing (WCSP), 2017.

[112] I.-H. Chuang, R.-C. Sun, H.-J. Tsai, M.-F. Horng, and Y.-H. Kuo, “A dynamic multi-
resource management for edge computing,” in 2019 European Conference on Networks
and Communications (EuCNC), 2019, pp. 379–383.

[113] M. S. Hossain Khan, P. Roy, F. Khanam, F. H. Hera, and A. K. Das, “An efficient resource
allocation mechanism for time-sensitive data in dew computing,” in 2019 International Con-
ference of Artificial Intelligence and Information Technology (ICAIIT), 2019, pp. 506–510.

[114] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job scheduling optimization based
on bees swarm,” Enterprise Information Systems, vol. 12, no. 4, pp. 373–397, 2018.

[115] Y. Xu, K. Li, J. Hu, and K. Li, “A genetic algorithm for task scheduling on heterogeneous
computing systems using multiple priority queues,” Information Sciences, vol. 270, pp. 255–
287, 2014.

[116] N. Mansouri, B. Mohammad Hasani Zade, and M. M. Javidi, “Hybrid task scheduling strat-
egy for cloud computing by modified particle swarm optimization and fuzzy theory,” Com-
puters & Industrial Engineering, vol. 130, pp. 597–633, 2019.

[117] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, “Fog computing may help to save
energy in cloud computing,” IEEE Journal on Selected Areas in Communications, vol. 34,
no. 5, pp. 1728–1739, May 2016.

[118] M. Olbrich, F. Nadolni, F. Idzikowski, and H. Woesner, “Measurements of path characteris-
tics in PlanetLab,” TU Berlin, Tech. Rep. TKN-09-005, July 2009.

[119] P. Bertoldi, “EU code of conduct on energy consumption of broadband equipment: Version
6,” 2017.

[120] W. Van Heddeghem, F. Idzikowski, E. Le Rouzic, J. Y. Mazeas, H. Poignant, S. Salaun,
B. Lannoo, and D. Colle, “Evaluation of power rating of core network equipment in practical
deployments,” in OnlineGreenComm, Sep. 2012.

[121] W. Feng and T. Scogland, “Green500 list for November 2018,” 2018, last accessed on
21.03.2024. [Online]. Available: https://www.top500.org/green500/lists/2018/11/

132

https://www.top500.org/green500/lists/2018/11/

8 Bibliography

[122] G. Almes, S. Kalidindi, and M. Zekauskas, “A round-trip delay metric for IPPM,” 1999,
RFC 2681.

[123] “GNU octave.” [Online]. Available: www.gnu.org/software/octave/

[124] R. Dolbeau, “Theoretical peak FLOPS per instruction set: a tutorial,” The Journal of Super-
computing, vol. 74, no. 3, pp. 1341–1377, 2018.

[125] Y. Wang, T. Zhao, L. Li, Z. Hou, and J. Gu, “Roofline model based performance-aware en-
ergy management for scientific computing,” in 2018 9th International Symposium on Par-
allel Architectures, Algorithms and Programming (PAAP), 2018.

[126] N. M. Allayla and S. A. Dawwd, “Performance optimization on GPGPU & multicore CPU
using roofline model,” IOP Conference Series: Materials Science and Engineering, vol.
1152, no. 1, May 2021.

[127] P. Cai, F. Yang, J. Wang, X. Wu, Y. Yang, and X. Luo, “Jote: Joint offloading of tasks and
energy in fog-enabled IoT networks,” IEEE Internet of Things Journal, vol. 7, no. 4, pp.
3067–3082, 2020.

[128] E. Strohmaier, J. Dongarra, H. Simon, and M. Martin, “Green500 list for June 2020,” last
accessed on 21.03.2024. [Online]. Available: https://www.top500.org/lists/green500/2020/
06/

[129] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[130] B. Bossy, P. Kryszkiewicz, and H. Bogucka, “Energy efficient wireless relay networks with
computational awareness,” IEEE Transactions on Communications, vol. 68, no. 2, pp. 825–
840, 2020.

[131] ——, “Energy efficient resource allocation in multiuser DF relay interference networks,” in
2018 IEEE Globecom Workshops (GC Wkshps), Dec. 2018.

[132] T. Wang and L. Vandendorpe, “Successive convex approximation based methods for dy-
namic spectrum management,” in Proc. IEEE ICC, Jun. 2012.

[133] D. P. Palomar and Mung Chiang, “A tutorial on decomposition methods for network utility
maximization,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 8, pp.
1439–1451, 2006.

[134] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Research Logis-
tics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[135] H. Wong, “A comparison of Intel’s 32nm and 22nm Core i5 CPUs: Power, voltage,
temperature, and frequency,” Oct. 2012, last accessed on 22.02.2024. [Online]. Available:
http://blog.stuffedcow.net/2012/10/intel32nm-22nm-core-i5-comparison/

[136] Intel, “Intel delivers new architecture for discovery with intel xeon phi coprocessor,”
Nov. 2012, last accessed on 22.02.2024. [Online]. Available: https://www.intc.com/news-
events/press-releases/detail/538/intel-delivers-new-architecture-for-discovery-with-intel

133

www.gnu.org/software/octave/
https://www.top500.org/lists/green500/2020/06/
https://www.top500.org/lists/green500/2020/06/
http://blog.stuffedcow.net/2012/10/intel32nm-22nm-core-i5-comparison/
https://www.intc.com/news-events/press-releases/detail/538/intel-delivers-new-architecture-for-discovery-with-intel
https://www.intc.com/news-events/press-releases/detail/538/intel-delivers-new-architecture-for-discovery-with-intel

8 Bibliography

[137] A. Zappone, E. Björnson, L. Sanguinetti, and E. Jorswieck, “Globally optimal energy-
efficient power control and receiver design in wireless networks,” IEEE Transactions on
Signal Processing, vol. 65, no. 11, pp. 2844–2859, June 2017.

[138] E. Strohmaier, J. Dongarra, H. Simon, and M. Martin, “Green500 list for November 2022,”
last accessed on 21.03.2024. [Online]. Available: https://www.top500.org/lists/green500/
list/2022/11/

[139] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic efficiency for
network flow problems,” J. ACM, vol. 19, no. 2, p. 248–264, apr 1972. [Online]. Available:
https://doi.org/10.1145/321694.321699

[140] C. Gunaratne, K. Christensen, and B. Nordman, “Managing energy consumption costs in
desktop PCs and LAN switches with proxying, split TCP connections, and scaling of link
speed,” International Journal on Network Management, vol. 15, no. 5, pp. 297–310, 2005.

[141] IEEE, “IEEE standard for information technology–telecommunications and information ex-
change between systems - local and metropolitan area networks–specific requirements - part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifica-
tions,” pp. 1–4379, 2021.

[142] ITU, “Propagation data and prediction methods for the planning of indoor radiocommuni-
cation systems and radio local area networks in the frequency range 300 MHz to 450 GHz,”
2019.

[143] E. Strohmaier, J. Dongarra, H. Simon, and M. Martin, “Green500 list for November 2021,”
last accessed on 21.03.2024. [Online]. Available: https://www.top500.org/lists/green500/
list/2021/11/

[144] D. J. Ketchen and C. L. Shook, “The application of cluster analysis in strategic management
research: An analysis and critique,” STL, vol. 17, no. 6, pp. 441–458, June 1996.

[145] M. Olbrich, F. Nadolni, F. Idzikowski, and H. Woesner, “Measurements of path
characteristics in planetlab,” Telecommunication Networks Group, Technical University
Berlin, TKN Technical Report Series TKN-09-005, July 2009. [Online]. Available: http:
//www.tkn.tu-berlin.de/fileadmin/fg112/Papers/TKN_Technical_Report_TKN-09-005.pdf

[146] Y. Dong, S. Guo, J. Liu, and Y. Yang, “Energy-efficient fair cooperation fog computing in
mobile edge networks for smart city,” IEEE Internet of Things Journal, vol. 6, no. 5, pp.
7543–7554, 2019.

134

https://www.top500.org/lists/green500/list/2022/11/
https://www.top500.org/lists/green500/list/2022/11/
https://doi.org/10.1145/321694.321699
https://www.top500.org/lists/green500/list/2021/11/
https://www.top500.org/lists/green500/list/2021/11/
http://www.tkn.tu-berlin.de/fileadmin/fg112/Papers/TKN_Technical_Report_TKN-09-005.pdf
http://www.tkn.tu-berlin.de/fileadmin/fg112/Papers/TKN_Technical_Report_TKN-09-005.pdf

	Abstract
	Streszczenie
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Dissertation thesis and main goals
	1.3 Dissertation Outline
	1.4 Author's published contributions

	2 Energy Consumption and Efficiency in Fog Computing Networks – State-of-the-art
	2.1 Modeling the Fog
	2.1.1 Network
	2.1.2 Application type
	2.1.3 Tasks and traffic
	2.1.4 Model of energy spent on communication
	2.1.5 Model of energy spent on computation

	2.2 Fog Scenarios and Parameterization
	2.2.1 What constitutes a scenario?
	2.2.2 Scenario parameterization – comparison of surveyed works
	2.2.3 Parameterization summary

	2.3 Energy-saving in the Fog
	2.3.1 Optimization problem formulation
	2.3.2 Optimization method classification
	2.3.3 Comparison of works on fog optimization
	2.3.4 Optimization summary

	3 The Impact of the Fog and Cloud Tiers Parameters on Latency and Energy Consumption...
	3.1 Network Model
	3.1.1 Network Description
	3.1.2 Offloaded Tasks – Computational Requests
	3.1.3 Power Consumption
	3.1.4 Latency

	3.2 Simulation Results
	3.2.1 Fog Computing Network without the Cloud
	3.2.2 Fog Computing Network Including the Cloud

	3.3 Chapter Summary

	4 Optimization of Energy Consumption in the Fog and Cloud Tiers
	4.1 Network model
	4.1.1 Computational Requests
	4.1.2 Energy Consumption
	4.1.3 Delay
	4.1.4 Updating Scheduling Variables in the Fog

	4.2 Optimization Problem
	4.3 Proposed solution
	4.3.1 Solving the Subproblems
	4.3.2 Solving the Master Problem
	4.3.3 Low-complexity solution (LC-EEFFRA)

	4.4 Results
	4.4.1 Convergence of Algorithms and Optimality of Solution
	4.4.2 Impact of Computational Energy Efficiency of the Cloud
	4.4.3 Impact of Delay Requirements and Size of Requests on the Offloading Decisions
	4.4.4 Impact of CPU Frequency of Fog Nodes

	4.5 Chapter Summary

	5 Optimization of Energy Consumption in Things, Fog and Cloud Tiers
	5.1 Network Model
	5.1.1 Computational Requests
	5.1.2 Energy Consumption
	5.1.3 Delay
	5.1.4 Updating Scheduling Variables in the Fog

	5.2 Optimization Problem
	5.3 Problem Solution
	5.3.1 Auxiliary Variables
	5.3.2 Finding Optimal Frequencies
	5.3.3 Transmission Allocation
	5.3.4 Computation Allocation

	5.4 Results
	5.4.1 Scenario Overview
	5.4.2 Baseline/Suboptimal Solutions
	5.4.3 Comparison with Exhaustive Search and All Possible Allocations
	5.4.4 Impact of Network Parameters
	5.4.5 Impact of Traffic Parameters

	5.5 Chapter Summary

	6 Optimization of Energy Consumption – Allocation of Tasks Modeled as Directed Graphs
	6.1 Network Model
	6.1.1 Virtual Network Requests with the Chain Topology
	6.1.2 A Fog-Cloud Substrate Network
	6.1.3 Node and Link Embedding
	6.1.4 Latency Model
	6.1.5 Cost Model

	6.2 Proposed Solution
	6.3 Results
	6.3.1 Performance Evaluation
	6.3.2 Evaluation Results

	6.4 Chapter Summary

	7 Conclusions
	7.1 Work summary
	7.2 Key findings
	7.3 Final conclusion

	Appendices
	A Appendix
	A.1 Summary of optimization methods and results
	A.1.1 Energy as a sole objective
	A.1.2 Energy as one of a few objectives
	A.1.3 Energy only as a constraint

	8 Bibliography

