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Abstract 
This thesis presents the results of research concerning vision inspec3on using ar3ficial intelligence to 

improve safety of aerodrome. Inspec3on of airfields, especially runways, taxiways, and aprons, is cri3cal 
from the perspec3ve of avia3on opera3on safety and airport opera3onal readiness. Current standards and 
recommenda3ons from the European Union Avia3on Safety Agency (EASA), such as the Ar#ficial 
Intelligence Roadmap 2.0, indicate that the inspec3on of manoeuvring areas in airports should employ  
AI-based solu3ons, including machine learning, deep neural networks, and logic-knowledge-based 
approaches, thereby suppor3ng personnel responsible for maintaining safety. 

In the doctoral disserta3on, the following scien3fic thesis was formulated: Proposed vision 
preprocessing methods, together with neural network solu#ons within the domain of embedded systems, 
substan#ally improve and facilitate the automated inspec#on process at the airports. 

There are three main research areas addressed in the disserta3on, based on the recommenda3ons 
aforemen3oned. The first area is the detec3on of Foreign Object Debris (FOD) in cri3cal airport areas. Such 
objects can cause an avia3on disaster if they come near an aircraL during the most cri3cal phases of flight, 
such as take-off and landing. The disserta3on presents an analysis of available databases, introduces the 
proprietary PUT dataset, and explores the use of image processing algorithms to detect such objects on 
aerodrome surfaces using neural network architectures, as well as image processing methods, thus aiding 
the airport services in this vital task. The selec3on of GoogLeNet and YOLOv5 significantly improved the 
accuracy of FOD detec3on, which could be inves3gated by using different databases and examining 
the influence of individual input data parameters on the final result. 

The second research area, which comes from avia3on regula3ons, is the detec3on of airport horizontal 
markings. These markings serve as guidelines for both avia3on and ground personnel and have strictly 
defined loca3ons. Due to stringent regula3ons determining the placement of aerodrome horizontal 
markings, it is possible to correct the alignment of the measurement plaUorm for airport ligh3ng inspec3on 
based on the loca3on rela3ve to specific lines. Conduc3ng such inspec3ons is cri3cal and impacts the 
opera3onal capability of the airport under reduced visibility condi3ons. The author prepared dataset of 
video recordings, PLAVS1, from the restricted area of the airport, and the developed line detec3on 
algorithms based on image processing methods, and their analysed their efficiency in implementa3on in 
single-board computers such as the Nvidia Jetson family. 

The third research area is the classifica3on of in-pavement airfield ground ligh3ng. This classifica3on 
involves detec3ng the light fixtures and assessing the wear of their prisms, evalua3ng the chroma3city 
of the light emiXed by each point source, and comparing it to interna3onal standards. The proprietary 
dataset, PLAVS2, was developed for this purpose, and appropriate algorithms based on image processing 
methods to detect the region of interest (ROI) were selected, neural networks such as GoogLeNet, VGG-19 
and ResNet, as well as performing analysis and selec3on of light chroma3city sensors, proposing a system 
to support airport services in daily inspec3on of manoeuvring surfaces. 

The realiza3on of the scien3fic research presented in the doctoral disserta3on was made possible 
through the scien3fic collabora3on of the Division of Signal Processing and Electronic Systems at Poznan 
University of Technology with Poznań–Ławica Airport. 
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Streszczenie 
W pracy przedstawiono wyniki badań dotyczące inspekcji wizyjnej z wykorzystaniem sztucznej inteligencji 

w celu poprawy bezpieczeństwa portów lotniczych. Kontrola płaszczyzn lotniskowych (ang. aerodrome), takich 
jak drogi startowe, drogi kołowania oraz płyty postojowe jest krytyczna z perspektywy bezpieczeństwa 
wykonywanych operacji lotniczych oraz gotowości operacyjnej portu lotniczego. Współczesne standardy 
i zalecenia Agencji Unii Europejskiej ds. Bezpieczeństwa Lotniczego (EASA), takie jak Ar,ficial Intelligence 
Roadmap 2.0, wskazują, aby inspekcja obszarów manewrowych w portach lotniczych wykorzystywała rozwiązana 
bazujące na sztucznej inteligencji, czyli uczeniu maszynowym, głębokich sieciach neuronowych oraz algorytmach 
decyzyjnych, wspierając tym samym osoby odpowiedzialne za utrzymanie bezpieczeństwa.  

W rozprawie doktorskiej sformułowana została następująca teza naukowa: Zmodyfikowane metody 
przetwarzania obrazu wraz z rozwiązaniami bazującymi na sieciach neuronowych w obszarze systemów 
wbudowanych znacząco usprawniają ułatwiają zautomatyzowany proces inspekcji portu lotniczego. 

Bazując na przytoczonych wcześniej zaleceniach instytucji międzynarodowych, wyodrębniono trzy główne 
obszary badawcze poruszane w rozprawie doktorskiej. Pierwszym z nich jest wykrywanie obiektów typu FOD 
(ang. Foreign Object Debris) na newralgicznych obszarach portu lotniczego. Obiekty takie mogą spowodować 
katastrofę lotniczą, jeśli znajdą się w pobliżu statku powietrznego podczas najbardziej krytycznych faz lotu, takich 
jak start i lądowanie. Rozprawa przedstawia analizę dostępnych baz danych, pokazuje autorską bazę danych 
PUT dataset oraz wykorzystanie algorytmów przetwarzania obrazu do wykrywania takich obiektów na 
płaszczyznach lotniskowych, przy zastosowaniu architektur sieci neuronowych i metod przetwarzania obrazu, 
wspierając tym samym służby w tym istotnym zadaniu. Dobór architektur sieci neuronowych w postaci 
GoogLeNet i YOLOv5 znacznie poprawił dokładność wykrywania FOD, co możliwe było do zweryfikowania przy 
wykorzystaniu różnych bazy danych oraz badając wpływ poszczególnych parametrów danych wejściowych 
na wynik końcowy. 

Drugim analizowanym obszarem badawczym wynikającym z przepisów lotniczych jest wykrywanie 
poziomych oznaczeń lotniskowych. Oznaczenia te służą personelowi lotniczemu, ale także naziemnemu, jako 
wskazówki i mają swoje ściśle określone położenie. Dzięki tak rygorystycznym przepisom determinującym 
umiejscawianie oznaczeń poziomych, możliwe jest wykonanie poprawnego najazdu plaYormą pomiarową do 
badania nawigacyjnego oświetlenia lotniskowego nad badaną lampę w oparciu o lokalizację względem 
określonych linii. Przeprowadzenie takich badań jest krytyczne i wpływa na zdolność operacyjną portu lotniczego 
w warunkach obniżonej widzialności. W pracy przedstawiono przygotowaną bazę danych nagrań wideo PLAVS1 
z zastrzeżonego terenu portu lotniczego oraz opracowane algorytmy wykrywania linii, bazujące na metodach 
przetwarzania obrazu i oceniono ich efektywność w implementacji w urządzeniach wbudowanych, takich jak 
rodzina Nvidia Jetson. 

Trzecim badanym obszarem jest klasyfikacja lamp zagłębionych oświetlenia nawigacyjnego w płaszczyzny 
lotniskowe. Klasyfikacja z jednej strony opiera się na wykryciu lampy i ocenie zużycia jej pryzmatu, a z drugiej, na 
ocenie chromatyczności barwy światła emitowanej przez dany punkt świetlny i porównanie jej z obowiązującymi 
normami międzynarodowymi. Opracowano w tym celu autorskie bazy danych PLAVS2, dobrano odpowiednie 
algorytmy w oparciu o metody przetwarzania obrazu w celu wykrycia obszaru zainteresowania (ROI), sieci 
neuronowe, takie jak GoogLeNet, VGG-19 oraz ResNet, a także dokonano analizy i doboru czujników 
chromatyczności światła, a następnie zaproponowano system wspierający służby lotniskowe w codziennej 
kontroli płaszczyzn manewrowych. 

Realizacja badań naukowych przedstawionych w rozprawie doktorskiej była możliwa dzięki współpracy 
naukowej Zakładu Układów Elektronicznych i Przetwarzania Sygnałów Politechniki Poznańskiej z Portem 

Lotniczym Poznań–Ławica.
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List of Abbrevia-ons and Nota-ons 
 

ADAS – Advanced Driver Assistance Systems 
AGL – Airfield Ground Ligh3ng 
AI – Ar3ficial Intelligence 
AUC – Area Under the Curve 
𝐵 – Blue in RGB colour model 
CCD – Charge-Coupled Device 
CHT – Circular Hough Transform 
CIE – Interna3onal Commission on Illumina3on 
CMF – Colour Matching Func3ons 
CNN – Convolu3onal Neural Network 
CPU – Central Processing Unit 
DL – Deep Learning 
DVFS – Dynamic Voltage and Frequency Switching 
EASA – European Union Avia3on Safety Agency 
eMMC – embedded MulC-Media Card 
𝑓 – focal length 
FAA – Federal Avia3on Administra3on 
FN – False Nega3ves 
FNN – Feedforward Neural Network 
FOD – Foreign Object Debris 
FP – False Posi3ves 
FPS – Frames Per Second 
𝐺 – Green in RGB colour model 
GNN – Graph Neural Network 
GPU – Graphics Processing Unit 
GS – Glide Slope in the ILS system 
H – Hue in HSV colour space 
HMI – Human-Machine Interface 
ICAO – Interna3onal Civil Avia3on Organiza3on 
ILS – Instrument Landing System 
IoT – Internet of Things 
IR – Infrared 
ISO – Interna3onal Organiza3on for 

Standardiza3on 
IVA – Intelligent Video Analysis 
𝐾!"  – maximum luminous efficacy 
KPI – Key Performance Indicators 
LED – Light-Emifng Diode 
LKB – Logic - and Knowledge Based approaches 
LOC – Localizer in the ILS system 

𝑀(𝑥, 𝑦) – Pixel's gradient magnitude 
mAP – mean Average Precision 
ML – Machine Learning 
NLP – Natural Language Processing 
NPV – Nega3ve Predic3ve Value 
PPV – Posi3ve Predic3ve Value 
𝑅 – Red in RGB colour model 
RAM – Random Access Memory 
RNN – Recurrent Neural Network 
ROC – Receiver Opera3ng Characteris3c 
ROI – Region Of Interest 
S – Satura3on in HSV colour space 
SBC – Single Board Computer 
SGDM – Stochas3c gradient descent with 

momentum 
SMS – Safety Management System 
SoC – System-on-a-Chip 
SOM – System-On-Module  
SRM – Safety Risk Management 
TN – True Nega3ves 
TP – True Posi3ves 
TPC – Texture Processing Cluster 
UART – Universal Asynchronous Receiver-

TransmiXer 
UAV – Unmanned Aerial Vehicle 
UV – Ultraviolet 
V – Value in HSV colour space 
𝑣(λ) – photopic luminosity function, which 

describes the human eye's sensitivity under 
well-lit conditions 

VP – Vanishing point 
X – Nonnega3ve mix of RGB in CIE 1931 colour 

space 
x, y – coordinates in CIE 1931 colour space 
(𝑥, 𝑦)	– coordinates of a point in 2D space 
Y – Luminance value in the CIE 1931 colour space 
YOLO – You Only Look Once 
Z – Quazi blue value in the CIE 1931 colour space 
𝛷#(λ) – spectral radiometric value  
𝛷$ – photometric quantity  
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Chapter 

1. Introduc1on 
1.1. Research area 

Air operaAons have been growing in recent years, with an increasing number of airplanes and 
flights operaAng in many parts of the world. This trend is parAcularly notable in Europe, where 
air traffic has grown at a steady rate over the past several decades. One of the main drivers of 
this growth has been the liberalizaAon of the European airline industry. Beginning in the 1990s, 
the European Union (EU) gradually removed restricAons on the establishment of new airlines 
and the routes they can operate. This has led to increased compeAAon and lower prices, 
making air travel more accessible to more people. Another important factor has been the 
growth of the European economy, which has led to an increase in both business and leisure 
travel. With more people travelling for work and pleasure, the demand for air travel has 
increased [1], [2]. 

Such an intensive increase in the popularity of air transport and its availability forced 
the regulaAon of issues related to aviaAon safety. Every year, more and more standards and 
authoriAes are created to determine whether a given aircrah or airport is ready to perform air 
operaAons, in parAcular in difficult weather condiAons. Various types of aviaAon agencies, 
global, European, and Polish, require inspecAon of individual devices located at the airport, 
which are part of the criAcal infrastructure [3], [4]. Figure 1-1 shows a view at runway 28 at 
the Poznań–Ławica Airport with visible airfield ground lightning (AGL). 

 

Figure 1-1 View at runway 28 at the Poznań–Ławica Airport with visible airfield ground lightning (AGL) 
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Such a rapid and intense development of the civil transport aviaAon industry forces the 
development of new procedures and safety standards. For this reason, various naAonal and 
mulA-country aviaAon safety agencies are established and establish standards necessary to 
ensure safe aviaAon operaAons. 

As part of improving security in the airport area, there are many types of vision systems 
implementaAon on which this work puts emphasis. This may include, among others, 
the terminal and passenger safety inspecAon in the event of pandemic threats (such as 
detecAng anA-virus masks [5]), but also monitoring the flow of people, for example, using 

density maps [6] to improve the speed and quality of service. Another aspect may be the 
inspecAon of the safety of passengers and their luggage, as well as the detecAon of intrusion 
into the airport premises, into the restricted zone. 

In this work, the operaAonal inspecAon of manoeuvring areas (aerodromes) was 
primary focus. Aerodrome is a specifically designated area on land, which includes all 
associated buildings, installaAons, and equipment, intended for use, enArely or parAally, for 
the arrival, departure, and movement of aircrah [3]. Such expansion was necessary due to the 
scope of work being carried out, but also due to scienAfic cooperaAon with the Poznań–Ławica 
Airport, which defined its goals and expected their implementaAon in a systemic manner. 
For this reason, detecAon, e.g., intrusion of people or vehicles onto the runway, is excluded, 
and is focused only on manoeuvring areas such as the runway, taxiways, and aprons or ramps. 
This division of selected issues is illustrated in Figure 1-2. 

 

Figure 1-2 Division of selected issues of video inspecHon at the airport area 
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While working on improving aerodrome safety, the emphasis was put on the 
operaAonal readiness of the airport. Then, three most important aspects were disAnguished 
that influence the improvement of the safety of air operaAons and are at the same Ame 
necessary for applicaAon at the airport. These aspects are as follows: 

• Airport Runway Foreign Object Debris (FOD) DetecAon System 

• DetecAon of airport horizontal markings 

• Quality classificaAon of airfield ground lighAng.  

Each of these aspects was thoroughly analysed in terms of currently available and used 
methods, and then, aher consultaAons with experts, own innovaAve algorithms and soluAons 
were proposed, which significantly improve the safety of air operaAons. Figure 1-3 shows 
invesAgated aspects of video inspecAon on aerodrome. 

 

Figure 1-3 InvesHgated aspects of video inspecHon on aerodrome 

Figure 1-4 shows the potenAal use of the algorithms developed in this doctoral thesis. 
Thanks to the use of a measuring plaEorm, it is possible to inspect airport navigaAon lighAng 
lamps. Their classificaAon is carried out based on the vision system - classificaAon of wear and 
based on colour and chromaAcity sensors - determining the type of lamp and examining the 
colour of the light emined by them. Thanks to the use of a camera at the front of the vehicle, 
it is possible to correctly maintain the driving track thanks to the detecAon of the centre line, 
as well as to detect dangerous FOD-type objects in the aerodrome while the vehicle is moving. 
In the vehicle, airport staff have a screen (HMI) informing about the proposed correcAon of 

the driving path, it also displays informaAon about current and ongoing tests and displays 
appropriate warnings. 

FOD • Airport Runway Foreign Object 
Debris (FOD) Detec9on 

Markings • Detec9on of airport horizontal 
markings 

Lamps 
• Quality classifica9on of airfield 

ground ligh9ng 
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Figure 1-4 Concept of vision inspecHon system for aerodrome safety inspecHon 

This thesis presents consideraAons and soluAons that significantly improve the safety 
of aviaAon operaAons. For this purpose, innovaAve algorithms, opAcal sensors (such as 
cameras and light chromaAcity sensors) and single board computers were used. It is thanks to 
the combinaAon of these devices that it is possible to improve the detecAon of specific 
anomalies and inform the appropriate services about them. AddiAonally, the algorithms and 
systems created allow for the acquisiAon of addiAonal data necessary for analyAcal research 
related to the consumpAon and inspecAon of lighAng and navigaAon, as well as FOD 
contaminaAon in criAcal areas of the airport. 

All works and recommendaAons in this dissertaAon refer to the documents and 
regulaAons of three aviaAon security agencies. These are the European Union AviaAon Safety 

Agency (EASA), the Federal AviaAon AdministraAon (FAA) and the InternaAonal Civil AviaAon 
OrganizaAon (ICAO). These organizaAons issue recommendaAons and necessary system 
cerAficaAons, ensuring world-class aviaAon safety. Poland, a member of the European Union, 
will be directly subject to the EASA regulaAons, which Polish airlines and airports must meet 
to obtain cerAficaAon and maintain operaAonal readiness.  

When following procedures, the Safety Management System (SMS) for airports should 
be menAoned. It is a systemaAc approach to managing safety that integrates organizaAonal 
structures, policies, procedures, and processes to idenAfy, assess, and miAgate risks associated 
with aviaAon acAviAes. The primary objecAve of an SMS is to improve safety performance by 
promoAng a culture of proacAve and conAnuous improvement within an airport environment.  

 

• FOD detec+on 

• Line detec+on 
HMI 

Single board 
computer 

Measurement plaEorm 

Prism 
classifica+on 

Colour 
classifica+on 

In-pavement airport lamp 

Inspeccon staff  
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The key components of an airport SMS typically include [7], [8], [9], [10], [11], [12]: 

1. Safety Policy and ObjecAves: Establish a clear safety policy that reflects the airport's 
commitment to safety and define measurable safety objecAves to guide safety 
performance. 

2. Safety Risk Management (SRM): IdenAfying and analysing potenAal hazards and 
risks associated with airport operaAons. This involves assessing the severity  
and likelihood of risks and implemenAng measures to miAgate or eliminate them. 

3. Safety Assurance: ImplemenAng processes to monitor and evaluate the 

effecAveness of safety risk controls and ensure compliance with safety regulaAons. 
This involves regular safety audits, inspecAons, and performance monitoring. 

4. Safety PromoAon: Fostering a safety culture within the organizaAon through 
communicaAon, training, and awareness programs. This includes promoAng  
the reporAng of safety concerns and incidents without fear of reprisal. 

5. Safety ReporAng and InvesAgaAon: Establishing a reporAng system for employees 
and stakeholders to report safety concerns, incidents, and hazards. ConducAng 
thorough invesAgaAons to idenAfy root causes and contribuAng factors. 

6. Emergency Response Planning: Developing and maintaining plans and procedures 
to respond to emergencies and incidents promptly and effecAvely. This includes 
training personnel and conducAng drills to ensure readiness. 

7. DocumentaAon and Record-Keeping: Maintaining comprehensive records of 
safety-related acAviAes, incidents, and correcAve acAons taken. DocumentaAon is 
crucial for audiAng, analysis, and conAnuous improvement. 

8. Safety Performance Monitoring and Measurement: Establishing key performance 
indicators (KPIs) to monitor safety performance and measuring progress toward 
safety objecAves. This allows data-driven decision making and conAnuous 
improvement. 

9. Management Review: Periodic reviews by top management to assess the overall 
effecAveness of the SMS, ensure compliance with safety policies, and idenAfy 
opportuniAes for improvement. 

10. ImplemenAng an SMS is ohen a regulatory requirement for airports to improve 
safety and align with internaAonal aviaAon standards. It provides a structured 
framework for managing safety risks, learning from incidents, and conAnuously 
improving safety performance within the airport environment. 

Both the InternaAonal Civil AviaAon OrganizaAon and the European Union AviaAon 
Safety Agency have established guidelines and regulaAons regarding Safety Management 
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Systems for airports to ensure a standardized and effecAve approach to aviaAon  
safety [7], [9], [11]. 

ICAO's Annex 19 to the ConvenAon on InternaAonal Civil AviaAon provides the 
internaAonal standards and recommended pracAces for the implementaAon of an SMS. Here 
are some key elements [7], [9]: 

• ICAO requires ContracAng States to establish a State Safety Program (SSP) that includes 
an SMS for service providers, including airports. The SSP should define the State's 
safety objecAves, safety responsibiliAes, and the overall regulatory framework for 
safety. 

• The "Safety Management Manual (SMM)" provides guidance specifically for the 
implementaAon of SMS in civil aviaAon, including airports. It outlines the key 
components such as safety policy, risk management, safety assurance, and 
safety promoAon. 

• Risk Management: ICAO emphasizes the importance of a systemaAc approach to risk 
management, including the idenAficaAon of hazards, risk assessment, and  
the implementaAon of risk controls. 

• Safety Assurance: This involves establishing processes to monitor and evaluate the 
airport safety performance and ensure that correcAve acAons are taken as necessary. 

• Safety PromoAon: ICAO encourages the promoAon of a posiAve safety culture within 
the organizaAon, emphasizing the importance of communicaAon, training,  
and reporAng systems. 

EASA, as the European regulatory body, has its own regulaAons and guidelines related 
to SMS. The EASA regulaAons are applicable to European Member States and the enAAes 
falling under their jurisdicAon. Key elements include [11]: 

1. This regulaAon establishes the common rules in the field of civil aviaAon and 
creates EASA. It includes requirements for SMS implementaAon at the 
organizaAonal level. 

2. EASA has specific regulaAons for airports under the Aerodromes RegulaAon  
(Part-ADR), which includes requirements related to the implementaAon of SMS at 
airports. 

3. Risk-Based Oversight (RBO): EASA emphasizes a risk-based approach to oversight, 
meaning that regulatory oversight is proporAonate to the level of risk associated 
with the acAviAes of the organizaAon. 
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4. Performance-Based RegulaAon: EASA focuses on performance-based regulaAons, 
allowing organizaAons flexibility in achieving safety objecAves while maintaining 
a high level of safety. 

5. Airports operaAng within the European Union must comply with EASA regulaAons, 
including those related to SMS, to ensure a harmonized and consistent approach 
to safety management. 

Both ICAO and EASA provide comprehensive guidelines and regulaAons to ensure the 
effecAve implementaAon of Safety Management Systems at airports, promoAng a proacAve 

and risk-based approach to aviaAon safety. 

As menAoned earlier, the main scienAfic fields of this doctoral dissertaAon are the 
inspecAon issues of the aerodrome using opAcal sensors, with parAcular emphasis on 
detecAon of foreign object debris, detecAon of airport ground markings (such as taxiway and 
runway centre lines) and quality inspecAon operaAon and quality classificaAon of the airfield 
ground navigaAon lighAng system. 

Moreover, the dissertaAon responds to the needs idenAfied by EASA in relevant 
documents [13], which outline a human-centric approach to integraAng AI in aviaAon. It 
emphasizes AI's potenAal to enhance safety, efficiency, and innovaAon in aviaAon while 
addressing challenges such as public confidence, cerAficaAon, ethical integraAon, and staff 
competency. The roadmap builds on the trustworthiness of AI, guided by EU AI regulaAons, 
and sets high-level objecAves and acAons to ensure safe AI deployment in aviaAon, focusing 
on collaboraAon between stakeholders to achieve these goals. 

 
Figure 1-5 ClassificaHon of AI applicaHons [13] 

The developed algorithms parAcularly support Level 1 and 2 (Figure 1-5) as specified  
in [14]. For Level 1 AI, the end user makes all decisions with the aid of an AI-based system, and 
the end user is responsible for carrying out all acAons. Level 2 AI-based systems can 
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autonomously select and execute acAons, yet the end user retains full oversight and the ability 
to override the system's funcAons at any Ame. At Level 2, decisions can be made either by the 
end user or automaAcally by the AI-based system under the user's supervision 
and guidance [14]. 

The research carried out while working on the doctoral dissertaAon was related to the 
following scienAfic projects:  

1. Smart4All (Horizon 2020 framework under call DT-ICT-01-2019: Smart Anything 
Everywhere – Area 2: Customized low energy compuAng powering CPS and the IoT; 

Grant Agreement No 872614; 0211/PRKE/6428; 1.07.2020 – 31.12.2023) -  
The project aims to revoluAonize urban living by integraAng advanced technology 
into various aspects of daily life. Leveraging the power of IoT (Internet of Things) 
devices and AI (ArAficial Intelligence), Smart4All seeks to create smarter, more 
efficient ciAes that enhance the quality of life for residents while promoAng 
sustainability and resource opAmizaAon. One key aspect of the Smart4All project is 
the development of interconnected smart infrastructure, including smart grids, 
smart transportaAon systems, and smart buildings. These systems will enable real-
Ame monitoring and management of energy consumpAon, traffic flow, and building 
operaAons, leading to reduced costs and environmental impact.  AddiAonally, the 
project focuses on enhancing public services through digitalizaAon and 
automaAon.  

2. Inkubator Innowacyjności 4.0 (0614/MNSW/2948; 1.02.2021 – 31.01.2023) -  
The program enhances iniAaAves promoAng scienAfic achievements, augments 
their impact on innovaAon development, and intensifies collaboraAon between the 
scienAfic community and the business environment. The need for the development 
of these aforemenAoned skills is also underscored by the European Commission 
within recommendaAons for NaAonal Reform Programs, as well as by  
the Comminee of ScienAfic Policy, the Main Council for Science and Higher 
EducaAon, the Conference of Rectors of Academic Schools in Poland, and 
organizaAons represenAng employers in Poland. AcAons aimed at enhancing the 
skills of employees in scienAfic insAtuAons and businesses in the management of 
scienAfic research, collaboraAon with businesses, and the commercializaAon  
of R&D results are therefore strategic from the socio-economic development 
perspecAve of the country. 

3. InvesAgaAon of Algorithms SupporAng PosiAoning of a Mobile Measuring Device 
for the InspecAon of Airport Runway LighAng Surfaces (0211/SBAD/0522; 
1.01.2022 – 31.12.2022) – Project as part of a compeAAon for conducAng scienAfic 
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research by young scienAsts financed in an internal compeAAon mode at the 
Faculty of Control, RoboAcs & Electrical Engineering at Poznań University of 
Technology. The project enabled research such as comparaAve analysis of camera 
parameters for processing vision sequences using embedded devices, analysis  
of the use of single board computers, development of a module enabling fast and 
precise measurement of light intensity within in-pavement lamps of navigaAonal 
lighAng, and preparaAon of a concept for a supporAng system for approaching  
and inspecAng an in-pavement airfield ground lighAng (AGL) lamp chromaAcity, 

based on an embedded system. 
4. DetecAon of Events Using Vision Monitoring and ArAficial Intelligence 

(0211/SBAD/0920; 1.01.2020 – 31.12.2020) – Project also as part of a compeAAon 
for conducAng scienAfic research by young scienAsts financed in an internal 
compeAAon mode at the Faculty of Control, RoboAcs & Electrical Engineering at 
Poznań University of Technology. Aimed to prepare datasets of recorded vision 
sequence and analyse segmentaAon and detecAon algorithms for applicaAon in 
embedded systems. The selecAon and training of neural networks was performed 
on previously prepared data.  

1.1.1. Foreign Object Debris 

The first of the security elements discussed in this work will be Foreign Object Debris (FOD) 
detecAon which is a major safety concern in the aviaAon industry and has the potenAal to 
cause significant damage to aircrahs and endanger the lives of passengers and crew 
members [15]. FOD refers to any object or debris that is present on airport runways, taxiways, 
or aprons, which can cause damage to aircrah components, such as engines, landing gears, or 
fuselages. The presence of FOD poses a significant safety risk to aircrahs and can cause delays 
and cancellaAons, as well as costly repairs and maintenance [4].  

The most famous and tragic accident caused by FOD is the Concorde Air France flight 
4590 plane crash. This plane accident took place on July 25, 2000 near Paris. The Concorde 
aircrah, acceleraAng on the runway of Charles de Gaulle Airport, ran at high speed  
(approx. 300 km/h) with its main landing gear wheel onto a strip of metal (Figure 1-6) - an 
engine structural element that had fallen off from the McDonnell Douglas DC-10 aircrah that 
had previously taken off.  
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Figure 1-6 Example FOD, the metal strip suspected of piercing the Concorde tyre [16] 

The aviaAon industry is projected to suffer a financial loss of $4 billion annually, as 
reported in [17]. Aircrah accidents caused by FOD are a very serious threat. The main threat 
caused by the presence of unwanted objects on the runway is engine damage due to 
absorpAon of FOD elements, destrucAon of tyres or damage to the aircrah structure and 
reduced efficiency. Furthermore, damage to the aircrah may disrupt the proper operaAon of 
the airport, leading to loss of revenue. Airplane engines are a sensiAve structural element  
of the aircrah, so they are suscepAble to any type of objects. If they hit a running engine, they 
can damage rotaAng blades or other parts of the engine. As a consequence, this may lead  
to a reducAon in engine efficiency, leading to a plane crash [18]. One such incident was the 
2009 incident involving an Airbus A320-214 on the Hudson River. The passenger jet lost thrust 
in both engines due to wild geese being engulfed in the engines shortly aher take-off. 

Another danger is tyre damage. In some cases, FOD may result in  tyre tread separaAon, 
which may cause damage to parts of the aircrah or even disrupAon to other aircrah scheduled 
to take off or land on the same route [19]. Since the Concorde disaster, FOD detecAon has 
become a priority security measure at airports. 

Areas such as the fuselage, wings, and windshield can also be damaged by FOD. 
Damage to the aircrah structure causes aerodynamic loss. If the nose of the plane is damaged, 
it can damage the radar system, leading to false readings and complicated problems. Another 
messy effect caused by FOD may be the disrupAon of normal airport operaAons. When an 
aircrah is damaged on the runway, it causes delay or cancellaAon of the flight and financial 
losses. 
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In its reports, the FAA divides the FOD by origin as follows [20]: 

• aircrah parts (fuel caps, landing gear fragments, oil dipsAcks, metal sheets, nuts, bolts, 
washers, steel wires, doors and tyre fragments) 

• airline items and catering supplies (garbage such as bonles, papers, plasAc, drink cans 
leh by passengers or ground handling staff, staff badges, pens, pencils, baggage Ackets, 
pieces of luggage) 

• natural materials (parts of plants and wild animals, stones, sand, and gravel) 

• weather polluAon (includes icing, snow, hail, rain and other atmospheric phenomena 
that may affect airport surfaces and pose a threat to aviaAon operaAons). 

Figure 1-7 shows damage to aircrah caused by FOD objects. Figure 1-7a shows the 
damaged fan blades of the Pran & Whitney JT8D engine aher a bird collision, while Figure 1-7b 
shows the crash of the Concorde plane, in which a metal element on the runway punctured 
the tyre while gaining speed, which caused damage to the fuel tank located in wing and a fuel 
leak, causing the machine to burst into flames. Image Figure 1-7c shows damage to the skin of 
a Singapore Airlines Boeing 747-400F aircrah caused by stones on the runway. 

  

(a)  (b)  

 
(c)  

Figure 1-7 Damage caused by FOD objects [21]: (a) PraY & Whitney JT8D engine,  
(b) Concorde Air France flight 4590, (c) Singapore Airlines Boeing 747-400F 
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In spite of the airport authoriAes and maintenance staff's anempts to reduce the 
chances of Foreign Object Debris, incidents sAll happen too ohen. This emphasizes the urgency 
of new and creaAve methods to detect and prevent FOD, all aimed at protecAng both aircrahs 
and passengers. Worldwide airline agencies established a set of guidelines and rules to reduce 
the risk of FOD around airports and aircrah.  

The types of FOD faciliAes vary greatly. They can be classified in many ways in terms of 
type and origin. The element can be made of any material and have any colour and size. 
In a study conducted at an airport over a year, more than 60% of the known FOD items 

collected were made of metal, and 18% of the items were made of rubber, while dark  
items accounted for almost 50% of the FOD collected [22]. 

Figure 1-8 shows objects found during a FOD walk on the runway of the Ramstein Air 
Base in Germany [23]. 

 

Figure 1-8 FOD found during a FOD walk on the runway of the Ramstein Air Base in Germany [23] 

For this reason, it was so important to build a dataset, design an algorithm, and launch 
a system that can be used by services responsible for maintaining the operaAonal readiness of 
the airport to automaAcally detect FOD objects on airport surfaces. The tests and verificaAon 
of the necessary tools were carried out in close cooperaAon with the Poznań–Ławica Airport. 
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This dissertaAon introduces a novel, cost-efficient strategy for Foreign Object 
Debris (FOD) detecAon, employing a vision system operable by airport personnel. The concept 
of the system integrates an embedded system deployable in airport service vehicles traversing 
manoeuvring areas. Real-Ame analysis of camera-captured images is conducted uAlizing 
sophisAcated image processing algorithms, accurately discerning and pinpoinAng foreign 
objects across runways, taxiways, or aprons. By providing immediate and precise informaAon 
on debris locaAon and type, the system allows airport personnel to promptly miAgate FOD, 
thereby diminishing safety hazards and miAgaAng operaAonal disrupAons. 

The dissertaAon delineates the design and implementaAon of the vision FOD detecAon 
system and evaluates its efficacy within an actual airport seyng. ComparaAve analyses with 
alternaAve FOD detecAon methodologies are conducted to assess the system's effecAveness 
and cost-efficiency. AddiAonally, the potenAal ramificaAons of the system deployment on 
airport safety and operaAons are deliberated. Overall, the proposed vision FOD detecAon 
system presents a promising avenue for FOD detecAon and prevenAon, poised to significantly 
enhance airport safety and operaAonal efficiency. 

1.1.2. Airport horizontal markings 

The next issue related to aviaAon safety is the detecAon of horizontal markings on airport 
manoeuvring areas. The validity of markings and lines detecAon can be divided into two 
aspects. On the one hand, detecAng a line may mean improved readability and visibility. This 
means that the markings, especially on the runway, are in good condiAon and it is not 
necessary to remove the rubber or repaint them. The second aspect is, thanks to the precisely 
defined distance and locaAon of the lines (Figure 1-9), enabling precise inspecAon of systems 
checking important operaAonal elements of the airport.  

Due to the development of a system in the form of a measurement plaEorm for tesAng 
navigaAon lighAng, it was necessary to develop sohware to support the operator/driver while 
moving around ground surfaces. Thanks to this, it is possible to conduct a lighAng study with 
minimal occupaAon of criAcal points of the airport, such as the runway or taxi routes. 
Moreover, a correct and repeatable measurement can provide important informaAon for 
research on the maintenance of lamps and their wear rate as well as reliability. DetecAon and 
inspecAon of the correct operaAon of navigaAon lighAng may be criAcal in the event of an 
accident or unsuccessful landing, which may determine the safety of air operaAons and be  
of interest to services responsible for air transport safety.  Figure 1-9 shows the view from the 
plaEorm for quality tesAng of airport lamps during the lighAng inspecAon. The locaAon  
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of the lamp over such a large area, without reference points in the form of the runway edge  
or other characterisAc objects, is possible only based on the detecAon of centre lines. 

 
Figure 1-9 Example frame from the video sequence (runway centre line—white, runway centre line 

lamp—white)  

The constantly growing requirements of aviaAon agencies regarding flight safety have 
for several years been determining more and more precise inspecAon of lighAng located in 
various airport areas, especially on runways and taxiways [4]. The essence of invesAgaAng the 
operaAonal efficiency of aviaAon navigaAon lighAng, based on the CerAficaAon SpecificaAons 
and Guidance Material for Aerodrome Design (CS-ADR-DSN) of the European Union AviaAon 
Safety Agency (EASA) [4], lies in understanding the intricate interplay of factors influencing the 
degradaAon of lamps and the criAcal importance of their monitoring in aerodrome 
environments.  

A medium-sized airport has about 200 central axis lamps in white and red and about 
180 touchdown zone lamps. However, there are many more light points on taxiways. 
Importantly, each lamp must meet the standards specified in the documents on the basis of 
which permits are issued for the ongoing operaAon of the airport. Typical airport lamps are 
equipped with halogen bulbs, which have a limited lifeAme [24]. Lamps deteriorate over Ame 
due to various mechanisms, including filament evaporaAon, electrode wear, and phosphor 
degradaAon (in the case of fluorescent lamps), leading to diminished luminous output and 
alteraAons in spectral characterisAcs. Environmental factors such as temperature fluctuaAons, 
humidity levels, and electrical irregulariAes can exacerbate this degradaAon process. Also, the 
sAcking of rubber from tyres of landing aircrah to the heated prisms of halogen lamps 
significantly reduces the light efficiency of navigaAon lighAng. Nowadays, airports are forced 
by demanding safety rules to gradually upgrade lighAng systems to ones based on LED light 
sources. The light emined by such bulbs has characterisAcs different from those of halogen 

 

In-pavement 
lamp 

Runway 
centre line 
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bulbs [25], and this causes the need to prepare a measuring system that can be adapted to 
work with different light sources. The degradaAon of lamps can significantly impact  
the performance of navigaAonal lighAng systems, potenAally compromising visibility and 
impeding safe air navigaAon within the system.  

Lamp monitoring is essenAal to maintain the operaAonal efficiency and safety of 
navigaAonal lighAng installaAons. Regular inspecAons and maintenance procedures are 
essenAal to ensure that lamps adhere to the prescribed luminance levels, colour fidelity 
standards, and spaAal distribuAon requirements outlined in regulatory frameworks such as    

CS-ADR-DSN [4]. DeviaAons from these standards can pose serious risks to aviaAon safety,  
as inadequate lighAng condiAons can hinder pilots' ability to accurately perceive runway 
boundaries, approach paths, and other criAcal visual cues during take-off, landing, and taxiing 
procedures. Moreover, inconsistent or degraded lighAng can impede ground personnel's 
ability to conduct aircrah operaAons safely, exacerbaAng the potenAal for accidents 
or incidents within the aerodrome environment. 

Furthermore, comprehensive maintenance and monitoring pracAces are essenAal 
to opAmize the lifespan and cost-effecAveness of navigaAonal lighAng systems. ProacAve 
measures such as rouAne lamp replacements, cleaning, and recalibraAon help miAgate the 
effects of degradaAon and ensure that lighAng installaAons remain reliable and compliant with 
regulatory standards over Ame.  

Various mobile systems have been invesAgated to measure the technical condiAon 
of airport lamps [26], [27]. An exemplary soluAon is presented in Figure 1-10 [28], [29]. Such 
systems require precise driving of the measuring device onto the tested lamp. It is quite 
important because very ohen, incorrect hovering on the lamp or its omission misclassifies 
the obtained results, which increases the Ame and cost of the inspecAon process. 

 
Figure 1-10 First prototype of author’s measurement plahorm for tesHng the quality of the operaHon 

of airport lamps [30] 

Measurement 
plaEorm 
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An essenAal aspect of the tesAng process involves providing feedback to the driver or 
operator, allowing them to understand the adjustments needed to maintain the correct angle 
and trajectory on the lamps. This feedback is parAcularly crucial when conducAng manoeuvres 
on extensive surfaces like runways, where significant reference points are lacking and 
a conAnuous centre line is absent, presenAng a formidable challenge. The airport tesAng 
revealed that this is a highly Ame-consuming task that requires an individual to monitor the 
plaEorm and communicate the necessary manoeuvres to the driver. TesAng lamps at runway 
exits, where the lamps are posiAoned at various angles, posed parAcular difficulAes. 

Therefore, this aspect puts emphasis on the analysis of the driving path by detecAng 
and predicAng the presence of runway centre lines and taxiways. By analysing the centre lines, 
the algorithm aims to predict the probable locaAon of the airport navigaAon lighAng                     
in-pavement lamp, allowing the operator to accurately select the opAmal path for an efficient 
and meaningful study. When designing the plaEorm for tesAng the performance of airport 
lighAng, the author gave priority to its versaAlity and availability. AcAon cameras were used in 
this study due to their ability to stabilize images and capture footage of acceptable quality 
while withstanding various environmental condiAons (such as changing weather or low light). 
The use of a measurement plaEorm introduces parAcular challenges in maintaining the correct 
trajectory, especially on long straight secAons where there are no fixed reference points or 
conAnuous centrelines, as well as on curves where the driver or operator cannot directly 
observe the exact path of the measurement plaEorm behind the vehicle. 

1.1.3. Aeronau=cal ground ligh=ng 

Airfield ground lighAng (AGL) is an essenAal component of aircrah operaAon and play a criAcal 
role in ensuring the safety of all aircrah in the vicinity [31]. These lights are required to be 
operaAonal at all Ames and are used to idenAfy the locaAon and movements of aircrah, both 
during the day and at night [4]. AeronauAcal ground lighAng systems are mandated to be 
operaAonal whenever necessary for the regulaAon and management of air traffic and other 
Ames, depending on meteorological condiAons, their acAvaAon is deemed essenAal for 
ensuring the safety of air traffic operaAons [32]. 

One of the most important uses of navigaAon lights (Figure 1-11) is during take-off and 
landing, when the aircrah are operaAng at low alAtudes and in close proximity to each other. 
During these phases of flight, navigaAon lights are used to help pilots idenAfy other aircrah in 
the vicinity, and to make informed decisions about the movements of their own aircrah [33]. 
For example, when approaching an airport for landing, pilots rely on the navigaAon lights of 
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other aircrah to help them determine their own posiAon and alAtude relaAve to the  
runway [31]. 

   

(a) (b) (c) 

Figure 1-11 In-pavement airport lamps [30], [28]: (a) factory new, (b) worn housing but prism 
in good condiHon, (c) worn housing and prism 

In addiAon to helping pilots navigate the airspace around an airport, navigaAon lights 
also play a criAcal role in ensuring the safe movement of aircrah on the ground. This is 
parAcularly true for in-pavement lighAng, such as runway and taxiway lights [33]. These lights 
are designed to help pilots navigate the airport's surface and to maintain correct alignment 
with the runway during take-off and landing. 

Runway and taxiway lights are typically divided into several categories, including centre 
line lights, edge lights, and threshold lights. Centre line lights are used to help pilots maintain 
the correct alignment with the runway centre line, while edge lights are used to define the 
edges of the runway. Threshold lights, on the other hand, are used to indicate the point at 
which an aircrah should begin its take-off or landing roll [4]. 

In addiAon to these standard runway and taxiway lights, there are also a number of 
other in-pavement lighAng systems that are used at airports to help pilots navigate the surface. 
For example, some airports use visual docking guidance systems (VDGS) to guide aircrah to 
their designated parking stands. These systems use a combinaAon of lights and markers  
to provide pilots with precise guidance during the taxiing and parking phases of the flight [4]. 

Overall, navigaAon lights and in-pavement lighAng systems are an essenAal component 
of aircrah operaAon and play a criAcal role in ensuring the safety of all aircrah at an airport. 
Whether helping pilots navigate the airspace around an airport or guiding them to their 
designated parking stands, these lights are an essenAal tool for ensuring the safe and efficient 
operaAon of aircrah. 
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In-pavement lamps in the navigaAon lighAng system lose their properAes for several 
reasons. The first and most devastaAng is the winter acAon taking place at the airport, i.e. the 
need to maintain the operaAonal readiness of the airport even during heavy snowfall. During 
this period, the runway and taxiways are cleared of snow by specialized plows. Unfortunately, 
due to the use of metal brushes that destroy, dull and permanently damage the prisms, it is 
necessary to constantly check the navigaAon lighAng lamps. Especially those located on the 
runway, such as the touchdown zone or the centre line [34]. 

The dispariAes in luminous intensity values between new and used lamps vary from 

several hundred to several thousand lux, depending upon the emined light's colour and 
distance from the source. Similar variaAons may arise due to improper installaAon or 
inadequate tesAng procedures, potenAally misclassifying a new lamp as worn in the results. 
Technical documentaAon outlining the airport design process specifies precise luminous 
intensity standards denoted in candelas. This unit serves as a benchmark against which 
obtained results should be compared, necessitaAng the conversion of sensor readings each 
Ame. Figure 1-11a depicts a new lamp, serving as a reference point, alongside its  
prism (Figure 1-12a), for assessing the wear of other lamps in use at the airport. 
The degradaAon of the lamp housing (Figure 1-11b) does not necessarily correlate with 
damage to the prisms (Figure 1-12 b, c). Notably, superficial scratches on the housing's upper 
surface do not impair the lamp's funcAonality, as its prisms remain largely unaffected, similar 
to those in new lamps. However, Figure 1-11c illustrates a lamp that, while appearing 
minimally damaged, exhibits a metal edge near the prism's apex, indicaAng damage incurred 
during operaAon. Such deformaAons compromise the prism's glass integrity (Figure 1-12d), 
rendering it scratched, chipped, and dim, warranAng lamp replacement. 

    

(a) (b) (c) (d) 

Figure 1-12 Prisms of in-pavement lamps [30]: (a) new, (b-c) suitable for further use,  
(d) to be replaced  
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Another factor is the use of halogen bulbs or colour filters in some types of lamps, 
which have a limited lifespan, and, due to dynamic condiAons of use, their daily inspecAon is 
necessary. The efficiency of in-pavement airport navigaAon lighAng is also significantly limited 
by tyre rubber deposits leh on the runway, parAcularly on the lamps and prisms during landing. 
The high temperatures of the lamps cause the rubber to adhere to the prisms, reducing their 
effecAveness. This rubber accumulaAon also impacts aviaAon safety and runway surface 
fricAon. The U.S. Federal AviaAon AdministraAon advises weekly inspecAons for rubber 
deposits on runways with 210 or more daily landings, while runways with fewer than 15 daily 

landings require annual inspecAons [35]. Airports must remove rubber deposits using suitable 
chemical or mechanical methods when necessary. 

Airfield ground lighAng is an essenAal component of criAcal infrastructure, playing 
a key role in maintaining the safety and conAnuity of aviaAon operaAons. As part of this criAcal 
infrastructure, any malfuncAon or disrupAon in AGL systems may result in severe operaAonal 
delays and pose risks to naAonal security by undermining air traffic management. TesAng  
in-pavement lamps, such as runway and taxiway lights, is an important aspect of ensuring the 
safe operaAon of aircrahs at an airport. The InternaAonal Civil AviaAon OrganizaAon [36] and 
the European AviaAon Safety Agency [4] have established standards and procedures for tesAng 
these lights, which vary depending on the type of lighAng system and the category of 
instrument landing system (ILS) in use. 

According to ICAO standards, in-pavement lamps must be tested at regular intervals to 
ensure that they are operaAng correctly and providing the necessary level of illuminaAon for 
safe aircrah operaAon. The frequency of these tests is determined by the category of ILS in use 
at the airport [3]. ILS is a ground-based navigaAon aid that provides precise guidance to aircrah 
during the approach and landing phases, parAcularly in low-visibility condiAons.  

The ILS consists of two main components [32]: 

• Localizer (LOC): The localizer provides horizontal guidance, ensuring that the 
aircrah is aligned with the centre line of the runway 

• Glide Slope (GS): The glide slope provides verAcal guidance, assisAng the aircrah in 
maintaining the correct descent path for a safe landing. 

Pilots use the ILS informaAon displayed on cockpit instruments to make precise 

adjustments during their descent and approach to the runway, ensuring a safe and accurate 
landing [32].  
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For example, Category I ILS systems, which are used at airports with the highest 
minimum decision alAtude (MDA) and the highest visibility requirements, require tesAng of  
in-pavement lamps every 90 days. Category II and III ILS systems, which are used in airports 
with lower MDA and visibility requirements, require tesAng every 30 days [36]. During tesAng, 
in-pavement lamps are checked for proper operaAon and alignment, and their output is 
measured to ensure that they are providing the required level of illuminaAon. Any lamps that 
are found to be defecAve or out of alignment are repaired or replaced as necessary. In addiAon 
to regular tesAng, in-pavement lamps must also be checked before the start of each night's 

operaAon, and any defects must be corrected before aircrah can operate on the runway or 
taxiway. 

EASA has similar regulaAons on the maintenance and tesAng of in-pavement lighAng, 
the lighAng system maintenance program must be in place and followed; this includes 
inspecAon, tesAng, and maintenance of all lighAng systems, including in-pavement lighAng [4]. 
The frequency of these inspecAons is determined by the criAcality of the system, with more 
criAcal systems requiring more frequent inspecAons. Consequently, it is crucial to emphasize 
the robustness and redundancy of AGL systems to guarantee consistent performance, 
parAcularly during criAcal situaAons such as emergencies or adverse meteorological events. 

It is important to note that the tesAng and maintenance of in-pavement lighAng 
systems is typically performed by airport maintenance staff, who are trained to safely access 
the runway and taxiway areas, as well as to properly test and maintain the lighAng systems. 

In summary, tesAng of in-pavement lamps is an important aspect of ensuring the safe 
operaAon of aircrah at an airport, and it is carried out according to the standards established 
by ICAO and EASA. The frequency of these tests depends on the category of ILS in use, and the 
test includes checking for proper operaAon, alignment, and output to ensure that they are 
providing the required level of illuminaAon.  
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1.2. Aim of work and scien-fic thesis 

The research entails the design, selecAon, and training of deep neural networks, leveraging 
a highly curated dataset. This is combined with a computer vision framework to enable 
automated, real-Ame inspecAon of aerodrome environments for enhanced safety monitoring 
and assessment. 

The objecAve of this work is an invesAgaAon and development of opAmized 
preprocessing algorithms tailored for integraAon into diverse system architectures, with 
a specific focus on improving the quality and uAlity of input image data for classificaAon-based 
models. The scienAfic task is to elaborate reliable algorithms and soluAons for vision inspecAon 
using image processing and arAficial intelligence to improve the safety of the aerodrome. 

The detailed tasks can be formulated as: 

• Development of vision algorithms for aerodrome inspecAon 

• PreparaAon of video and image datasets according to new FAA standards 

• Training of deep neural networks for fast runway video analysis 

• Proposals of embedded systems implementaAons. 

ParAcularly, the following problems were solved: 

• DetecAon of Foreign Object Debris (FOD): 
o PreparaAon of new image dataset according to FAA regulaAons 
o Precise selecAon of the effecAve neural network architecture for FOD 

detecAon. 

• DetecAon and evaluaAon of airport horizontal markings: 
o PreparaAon of new video dataset recorded in restricted airport area 
o ProposiAon of line detecAon algorithm using colour-based image 

segmentaAon in the HSV colour space 
o Comparison of the power requirements during real-Ame processing of 

video sequences in embedded systems 
o Energy efficiency and DVFS (Dynamic frequency scaling) analysis. 

• Quality classificaAon of airfield ground lighAng: 
o PreparaAon of new image dataset with over 540 lamps and prisms 
o ConcepAon of lamp and prism detecAon process 
o SelecAon of neural network for prism quality classificaAon 
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o ChromaAcity inspecAon of airport navigaAon lighAng lamps according to 
CIE 1931 and EASA standards. 

Scien&fic thesis 

On the basis of the performed research, the following scienAfic thesis can be 
formulated: Proposed vision preprocessing methods, together with neural network solu+ons 
within the domain of embedded systems, substan+ally improve and facilitate the automated 
inspec+on processes at the airports. 

To experimentally check the effecAveness of the algorithms, a dataset of recordings 

and images recorded in restricted areas of the airport was created. This PLAVS1 dataset 
consists of more than 98 GB of video recordings from airport manoeuvring areas (such as the 
runway, taxiways, and apron), PLAVS2 with 1004 photos of airport navigaAonal lighAng                  
in-pavement lamps and PUT dataset with 1480 FOD images. The dataset was consulted with 
experts from the aviaAon industry in order to actually present the most criAcal elements of 
the airport and their inspecAon.  

The presented research was conducted in scienAfic cooperaAon with aviaAon 
specialist, especially from departments responsible for the airport's readiness to perform flight 
operaAons, such as the electrical power team or safety management manager. Thanks to this, 
it was possible to prepare datasets and check the systems in real condiAons, on the runway, 
taxiways, and other ground surfaces. ConsultaAons with airport representaAves made it 
possible to adapt algorithms and soluAons for efficient and reliable inspecAon of aerodrome, 
as well as to meet the requirements of naAonal and internaAonal aviaAon authoriAes in a given 
area. As part of the InnovaAon Incubator 4.0 project, the Poznań University of Technology 
concluded an agreement on joint research with the airport (documents (PP)RU00021806 and 
45/2022/RK), thanks to which it was possible to carry out research and tests of the proposed 
soluAons and systems, as well as prepare datasets and consult with specialists. Figure 1-13 
graphically shows the cooperaAon scheme between the Poznań–Ławica Airport and the 
Division of Signal Processing and Electronic Systems at Poznan University of Technology. 
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Figure 1-13 ScienHfic cooperaHon between the Poznań–Ławica Airport and the Division of Signal 

Processing and Electronic Systems from Poznan University of Technology 

 

1.3. Main scien-fic achievements 

As part of the work, the following scienAfic works were created, such as published papers in 
scienAfic journals, patents and reports in the subject of the dissertaAon: 

Foreign object debris detection 

[37] 
J. Suder and T. Marciniak, “Foreign Object Debris detection system using GoogLeNet,” 
Przegląd Elektrotechniczny, vol. 99, no. 11, pp. 251–254, Nov. 2023, doi: 
10.15199/48.2023.11.47. 

[38] 

J. Suder and T. Marciniak, “Foreign Object Debris detection at aerodromes using 
YOLOv5,” in 2024 Signal Processing: Algorithms, Architectures, Arrangements, and 
Applications (SPA), Poznan, Poland: IEEE, Sep. 2024, pp. 66–71. doi: 
10.23919/SPA61993.2024.10715612. 

Quality classification of airfield ground lighting 

[28] 
J. Suder, P. Maciejewski, K. Podbucki, T. Marciniak, and A. Dąbrowski, “Measuring 
Platform for Quality Testing of Airport Lamps,” Pomiary Autom. Robot., vol. 23, no. 2, 
pp. 5–13, Jun. 2019, doi: 10.14313/PAR_232/5.  

[39] 
J. Suder, K. Podbucki, T. Marciniak, and A. Dąbrowski, “Spectrum sensors for detecting 
type of airport lamps in a light photometry system,” Opto-Electron. Rev., vol. 29, no. 
4, pp. 133–140, 2021, doi: 10.24425/OPELRE.2021.139383. 

Poznan University of Technology
Data processing

Development of image and video
processing software utilizing novel
techniques:
Foreign object debris detection
Detection and evaluation of airport
horizontal markings
Quality classification of airfield
ground lighting

Poznań – Ławica Airport
Solutions verification

Demand for new solutions
Images and video acquisition
Verification of FAA/ICAO/EASA 
regulations
Tests of developed hardware and 
software
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[40] 

J. Suder, K. Podbucki, T. Marciniak, and A. Dąbrowski, “Intelligent vision system for 
quality classification of airport lamp prisms,” in 2022 Signal Processing: Algorithms, 
Architectures, Arrangements, and Applications (SPA), 2022, pp. 151–154. doi: 
10.23919/SPA53010.2022.9927908. 

[41] 

J. Suder and T. Marciniak, “Fast Prototyping of In-Pavement Airport Navigation Lamp 
Prism Classification,” in 2023 Signal Processing: Algorithms, Architectures, 

Arrangements, and Applications (SPA), Poznan, Poland: IEEE, Sep. 2023, pp. 95–99. 
doi: 10.23919/SPA59660.2023.10274434. 

[42] 

J. Suder, K. Podbucki, and T. Marciniak, “Chromaticity measurement of airport 
navigation lighting using integrated colour sensor,” Opto-Electronics Review, vol. 31, 
no. 4. Polish Academy of Sciences (under the auspices of the Committee on 
Electronics and Telecommunication) and Association of Polish Electrical Engineers in 
cooperation with Military University of Technology, p. e147040, 2023. doi: 
10.24425/opelre.2023.147040. 

[43] 
J. Suder, K. Podbucki, and T. Marciniak, “Raport z pomiarów fotometrycznych 
zagłębionych lamp oświetlenia nawigacyjnego drogi startowej Portu Lotniczego 
Poznań – Ławica,” Politechnika Poznańska, Poznan, Poland, r3335_2022, Aug. 2022. 

Detection of airport horizontal markings 

[30] 
J. Suder, K. Podbucki, T. Marciniak, and A. Dąbrowski, “Low Complexity Lane 
Detection Methods for Light Photometry System,” Electronics, vol. 10, no. 14, 2021, 
doi: 10.3390/electronics10141665. 

[44] 
J. Suder, K. Podbucki, and T. Marciniak, “Power Requirements Evaluation of 
Embedded Devices for Real-Time Video Line Detection,” Energies, vol. 16, no. 18, p. 
6677, Sep. 2023, doi: 10.3390/en16186677. 

[45] 
Patent: A. Dąbrowski, T. Marciniak, K. Podbucki, and J. Suder, “Method for measuring 
the quality of operation of airport lamps and a measuring set for testing the quality 

of operation of recessed airport lamps,” P.442569, submitted 19.10.2022 

Embedded systems for vision monitoring tasks 

[46] 
J. Suder, “Parameters evaluation of cameras in embedded systems,” Przegląd 
Elektrotechniczny, vol. 98, no. 9, pp. 218–221, Sep. 2022, 
doi: 10.15199/48.2022.09.50. 

[47] 
J. Suder, “Possibilities of processing video sequences in embedded systems,” Przegląd 
Elektrotechniczny, vol. 98, no. 1, pp. 190–193, Jan. 2022, doi: 
10.15199/48.2022.01.41. 

[48] 
K. Podbucki, J. Suder, T. Marciniak, and A. Dabrowski, “Evaluation of Embedded 
Devices for Real- Time Video Lane Detection,” in 2022 29th International Conference 
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on Mixed Design of Integrated Circuits and System (MIXDES), Wrocław, Poland: IEEE, 
Jun. 2022, pp. 187–191. doi: 10.23919/MIXDES55591.2022.9838167. 

PublicaAons authored or co-authored, where the themaAc focus does not have a direct 
correlaAon with the research addressed in the doctoral dissertaAon: 

Publication details 

[49] 

T. Marciniak, K. Podbucki, J. Suder, and A. Dąbrowski, “Analysis of Digital Filtering 
with the Use of STM32 Family Microcontrollers,” in Advanced, Contemporary 
Control, vol. 1196, A. Bartoszewicz, J. Kabziński, and J. Kacprzyk, Eds., in Advances in 
Intelligent Systems and Computing, vol. 1196., Cham: Springer International 
Publishing, 2020, pp. 287–295. doi: 10.1007/978-3-030-50936-1_25. 

[5] 

K. Podbucki, J. Suder, T. Marciniak, and A. Dabrowski, “CCTV based system for 
detection of anti-virus masks,” in 2020 Signal Processing: Algorithms, Architectures, 
Arrangements, and Applications (SPA), Poznan, Poland: IEEE, Sep. 2020, pp. 87–91. 
doi: 10.23919/SPA50552.2020.9241303. 

[29] 
K. Podbucki, J. Suder, T. Marciniak, and A. Dąbrowski, “Electronic measuring matrix 
for testing airport lamps,” Przegląd Elektrotechniczny, vol. 97, no. 2, pp. 49–53, Feb. 
2021, doi: 10.15199/48.2021.02.12. 

[6] 

J. Suder, T. Marciniak, K. Podbucki, and A. Dabrowski, “Real-time density maps 
generation of moving objects using embedded systems,” in 2022 International 
Symposium ELMAR, Zadar, Croatia: IEEE, Sep. 2022, pp. 179–184.  
doi: 10.1109/ELMAR55880.2022.9899807. 

[50] 

T. Marciniak, K. Podbucki, and J. Suder, “Application of the Nucleo STM32 module in 
teaching microprocessor techniques in automatic control,” Przegląd 
Elektrotechniczny, vol. 98, no. 10, pp. 247–250, Oct. 2022,  
doi: 10.15199/48.2022.10.55. 

[51] 

K. Podbucki, J. Suder, T. Marciniak, W. Mańczak, and A. Dąbrowski, “Microprocessor-
based photometric light intensity sensor for airport lamps quality testing,” Opto-
Electronics Review, vol. 30, no. 4. Polish Academy of Sciences and Association of 
Polish Electrical Engineers in cooperation with Military University of Technology,  
p. e143396, 2022. doi: 10.24425/opelre.2022.143396. 

[52] 

K. Podbucki, J. Suder, T. Marciniak, and A. Dąrowski, “Influence of power supply on 
airport navigation lamps photometric test accuracy,” in 2023 Signal Processing: 
Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland: 
IEEE, Sep. 2023, pp. 183–188. doi: 10.23919/SPA59660.2023.10274440. 
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[53] 
K. Podbucki, T. Marciniak, and J. Suder, “Laboratory Assessment of In-Pavement 
Airport Lamp’s Luminous Intensity Distribution,” Appl. Sci., vol. 13, no. 24, p. 13242, 
Dec. 2023, doi: 10.3390/app132413242. 

In the frame of scienAfic cooperaAon with Poznań–Ławica Airport, it was possible to 
complete an internship in the period from July 1, 2022 to September 30, 2022, during which 
research, calibraAon and implementaAon of a system for tesAng the quality of navigaAon 

lighAng operaAon were carried out. 

It is also worth menAoning the most important disAncAons and awards received during 
scienAfic studies: 

• DisAncAon of the work enAtled: "Foreign Object Debris detecAon system using 
GoogLeNet" by the ScienAfic Comminee of the 22nd NaAonal Electronics Conference 
as part of the "Young ScienAsts" compeAAon in the themaAc group Technical 
informaAcs and signal processing (15.06.2023).  

• DisAncAon of the work enAtled: "Microprocessor light intensity sensor for examining 
airport lamps" by the ScienAfic Comminee of the 21st NaAonal Electronics Conference 
as part of the "Young science workers" compeAAon in the themaAc group Metrology 
(9.06.2022). 

• Main Award of the Program Council of the TeleinformaAcs Forum and the Masovian 
Branch of PTI in the "Best substanAve work" category for the project enAtled: "Vision 
monitoring system for detecAng wearing anA-virus masks based on learning deep 
neural networks" as part of the NaAonal Inter-university Young Masters CompeAAon 
"Economic aspects of computerizaAon countries, digital modernizaAon of Poland” at 
the 27th TeleinformaAcs Forum (9.11.2021).  

• DisAncAon of the work enAtled: " Colour sensors in an applicaAon to detect the type 
of airport lights" by the ScienAfic Comminee of the 20th NaAonal Electronics 
Conference as part of the "Young scienAsts" compeAAon in the themaAc group 
Optoelectronics and photonics (9.06.2021).  

• DisAnguished Graduate of Poznań University of Technology Medal. This presAgious 
award is granted by the Rector of Poznań University of Technology and the Medal 
Comminee to recognize outstanding alumni of the University, 2019. 

• DisAncAon from the TeleinformaAcs Forum Program Council in the category "Best 
SubstanAve Work," awarded by the Program Council of the TeleinformaAcs Forum in 
2019, for the project Atled "PlaEorma pomiarowa do badania jakości działania lamp 
lotniskowych". This award was granted in the "Best SubstanAve Work" category during 
the Young Masters Forum compeAAon on "Economic Aspects of State InformaAzaAon" 
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as part of the "Digital ModernizaAon of Poland" iniAaAve at the XXV TeleinformaAcs 
Forum.  

• The Rector's GraduaAon Medal of Poznań University of Technology for Outstanding 
Commitment to AcAviAes SupporAng the Student Community of Poznan University of 
Technology, 2019. 

• The Dean's Award of the Poznań University of Technology Faculty of Computer Science 
for outstanding academic performance and exemplary conduct, 2019. 

• First Prize in the IEEE 2019 "Diploma Thesis CompeAAon," awarded by the IEEE Polish 
SecAon for the engineering thesis Atled: "PlaEorma pomiarowa do badania jakości 
działania lamp lotniskowych". 

• First Prize in the CompeAAon for Outstanding Diploma Thesis in Full-Ame and Part-Ame 
Undergraduate or Graduate Studies in the Field of ProducAon Technology and 
OrganizaAon of Services, awarded by FSNT NOT in Poznań in 2018. The award was given 
for the engineering thesis Atled "PlaEorma pomiarowa do badania jakości działania 
lamp lotniskowych”. 

As part of experimental work, many operaAng or currently being implemented devices 
were prepared. These are among others: 

• A measurement plaEorm for tesAng the quality of operaAon of in-pavement lamps in 
airport navigaAon lighAng [28], [29], [30], [40], [41], [44], [45], [46], [47], [48]  

• System for the chromaAcity inspecAon of airport navigaAon lighAng lamps [39], [42] 

• Obstacle avoidance module in the autopilot of an autonomous measurement plaEorm 
for conAnuously tesAng the load-bearing capacity of natural airport surfaces (BIZON) 
in cooperaAon with the Air Force InsAtute of Technology [54] 

• System for laboratory inspecAon of in-pavement lamps in airport navigaAon lighAng 
[51], [52], [53] 

• System for checking the quality of operaAon of lamps in the airport navigaAon lighAng 
approach system [42] 

• Vision system for checking correctly worn anA-virus masks [5] 

• Vision system for FOD detecAon [37], [38].  
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1.4. Organiza-on of the thesis 

The research presented in this thesis puts emphasis on vision inspecAon of aerodrome. As 
menAoned earlier, the emphasis was placed on 3 main research areas. For this reason, 
chapter 2. State of the art will present the most important issues in this area, present the 
current state of knowledge and the soluAons used. At the beginning, the main issues, 
applicable standards and regulaAons on which this work was based were discussed. Next, 
image processing methods are presented, both using classical methods and those using neural 
networks and machine learning. Basic issues in the field of photometry and radiometry were 
also presented. The following secAons present the single board computers and cameras used 
with them, along with their specificaAons and an overview of their possibiliAes. AddiAonally, 
the quality of cameras that can support this task is analysed. This chapter also presents 
methods for evaluaAng the proposed algorithms. 

The chapter 3. DetecAon of Foreign Object Debris presents the prepared PUT dataset 
consisAng of 1480 FOD type object images, corresponding to FAA recommendaAons. Then, the 
concept of the proposed system for detecAng such objects for use at the airport is presented 
and discussed. In this research area, the results obtained using classical image processing 
methods (k-means) were compared with the fine-tuned neural networks such as GoogLeNet 
and YOLOv5. The MATLAB and Google Colab tools were used to solve the task. 

Chapter 4. DetecAon of airport horizontal markings presents dataset prepared in the 
airport zone with limited access, such as runways, taxiways or other airport surfaces and 
service roads. The result was the preparaAon of a unique PLAVS1 dataset consisAng of 98 GB 
of video materials (more than 300 minutes) of recordings from areas with limited access. Then, 
the proposed soluAons for detecAng horizontal airport markings and the experimental results 
are discussed. The developed algorithm is presented and the effect of resoluAon on  
the obtained results is examined. Then, the possibility of running the selected algorithms  
on Single Board Computers is verified, and the energy consumpAon and energy efficiency are 
analysed. 

The next, chapter 5. Quality classificaAon of airfield ground lighAng is divided into two 

main subsecAons. The first, vision classificaAon of the airport navigaAon lighAng system, 
presents the concept of assessing the wear of lamps based on the destrucAon and tarnishing 
of prisms installed in the lamps. The author's PLAVS2 dataset, consisAng of over 1000 photos 
of airport lighAng system lamps with different wear, the algorithm for detecAng lamps and 
determining their orientaAon, and then the classificaAon of the prism using arAficial neural 
networks, are discussed. The selecAon of neural networks and the possibiliAes of their use in 
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the proposed system are precisely analysed. The second subsecAon presents the classificaAon 
of lamps based on the colour of the light they emit. Thanks to this soluAon, it is possible to 
determine what standards a given lamp should meet (the colour determines its locaAon and 
funcAon, and thus the reference to the standard). Then, the concept of a system for inspecAng 
the chromaAcity of navigaAon lighAng in accordance with the applicable standards is 
presented. The measurement distance was precisely selected and sohware for airport services 
was prepared. 
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Chapter 

2. State of the art 
2.1. Vision inspec-on of aerodrome 

The research presented in this thesis puts emphasis on vision inspecAon of aerodrome. As 
menAoned earlier, the focus was on 3 main research fields. For this reason, this chapter will 
present the most important issues in this area, present the current state of knowledge and the 
soluAons used. 

2.1.1. Foreign Object Debris detec=on 

The InternaAonal Civil AviaAon OrganizaAon (ICAO) and European Union AviaAon Safety 
Agency (EASA) emphasizes the importance of implemenAng various procedures and pracAces 
to prevent Foreign Object Debris (FOD) at airports [3], [13], [14]. They recommend specific 
measures to ensure that foreign objects do not make their way onto criAcal areas such as 
runways, taxiways, and aprons. This includes establishing appropriate procedures and 
conducAng regular inspecAons of these areas to detect and remove any foreign objects that 
might pose a threat to aircrah safety [3]. 

Similarly, the Federal AviaAon AdministraAon (FAA) in the United States has issued 
mulAple recommendaAons aimed at miAgaAng the risk of FOD [15]. These recommendaAons 
include regular inspecAons of airport surfaces to idenAfy and remove debris, ensuring that 
runways, taxiways, and aprons are clear of obstrucAons, and inspecAng vehicles and 
equipment operaAng in these areas to prevent them from inadvertently introducing FOD. 

In addiAon to these measures, aviaAon agencies underscore the importance of training 
airport personnel and aircrah crews to recognize and report FOD. ImplemenAng 
a comprehensive FOD prevenAon program involves establishing a system for the quick and 
efficient idenAficaAon and removal of FOD. Proper training and educaAon of relevant 
personnel are crucial components of such a program, as they help to significantly reduce the 
occurrence of FOD and minimize potenAal damage to aircrah and ground equipment.  

Addressing the issue of FOD detecAon requires reliable, fast, and effecAve soluAons. 
Currently, many airports rely heavily on manual labour and human resources for FOD 
detecAon. To enhance the efficiency and accuracy of FOD detecAon, various advanced systems 
have been developed and implemented. Examples include the Tarsier Radar system from  
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the UK, the FODetect system from Israel, the FODFinder system from the US, and the iFerret 
system from Singapore [55]. These systems uAlize different technologies such as radar-based 
detecAon, opAcal camera-based detecAon, and mulAsensory fusion detecAon.  
Radar-based systems are parAcularly effecAve for detecAng larger objects but may struggle 
with smaller items like nuts and rubber pieces. Conversely, while opAcal cameras can detect 
FOD, they are not typically used for this purpose. If the specific characterisAcs of FOD in opAcal 
images were leveraged for detecAon, it could greatly reduce FOD-related damage and improve 
runway uAlizaAon rates. Despite the use of opAcal images in the iFerret system, the detecAon 

performance for smaller objects remains subopAmal. Figure 2-1 shows the division of methods 
for detecAng or removing FOD objects in aerodromes, where the focus is on the division 
according to the method of detecAng the object. 

 

Figure 2-1 Division of methods for detecHng or removing FOD objects in aerodromes 
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Recent years have seen growing interest in the development of advanced FOD 
detecAon technologies, including vision systems that use high-resoluAon cameras and 
sophisAcated image-processing algorithms. These systems provide real-Ame informaAon 
about the locaAon and type of debris, allowing airport authoriAes and maintenance personnel 
to take immediate acAon to remove FOD and prevent potenAal safety incidents.  Using vision 
systems, it is also possible to prevent other types of threats to aircrah, such as bird strikes, 
which are parAcularly dangerous during take-off and landing manoeuvres [56]. 
A comprehensive assessment of FOD detecAon methodologies can be arAculated concerning 

their spaAal resoluAon and area coverage, showed in Figure 2-2 [57]. 

AutomaAc FOD detecAon techniques using electronic sensors can be divided into four 
categories, namely ultrasonic sensors, camera detecAon, radar detecAon and hybrid detecAon 
methods, as in Figure 2-2. Laser systems are disAnguished by their high resoluAon and medium 
coverage area. These systems offer precise and detailed detecAon capabiliAes, which makes 
them effecAve for idenAfying small objects. However, their limited coverage area indicates that 
they may not be opAmal for larger airport environments requiring extensive surveillance. 
Radar systems exhibit moderate resoluAon, and a larger coverage area compared to laser 
systems. This characterisAc makes them suitable for detecAng objects over larger distances, 
although their moderate resoluAon may restrict their ability to accurately idenAfy smaller 
debris. Camera systems, which are crucial to this analysis, provide a balanced combinaAon of 
resoluAon and coverage area. They offer a relaAvely high coverage area while maintaining 
moderate resoluAon. This balance makes them advantageous for airport environments that 
require a broad surveillance with sufficient resoluAon to idenAfy various types of FOD. The 
vision informaAon provided by camera systems is a significant benefit, facilitaAng the easy 
idenAficaAon and verificaAon of detected objects. Ultrasonic sensors, located in the low 
resoluAon and low coverage area quadrants, are less suitable for extensive FOD detecAon in 
airports. Their limited range and resoluAon confine their use to smaller areas where detailed 
precision is less criAcal. Hybrid systems, situated in the quadrant of high resoluAon and high 
coverage area, represent the most comprehensive soluAon. These systems integrate the 
strengths of mulAple detecAon technologies, offering extensive coverage with high-resoluAon 
capabiliAes. This makes them ideal for large and complex environments such as airports. 
However, the complexity and potenAal cost associated with hybrid systems may be higher than 
those of single-technology soluAons. 
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Figure 2-2 EvaluaHon of FOD detecHon methodology depending on coverage area and resoluHon [38] 

Among the analysed soluAons, FOD detecAon based on image analysis has been 
explored using datasets such as the Foreign Object Debris in Airports (FOD-A) dataset, which 

contains up to 2000 photos and several classes. For instance, one study [58] presents 
a soluAon that employs video-based image processing techniques to detect FOD on airport 
runways. This system uses a background subtracAon algorithm to detect moving objects, 
followed by image processing techniques to classify them as FOD or non-FOD. Tested with 
a runway video footage dataset, the system achieved a detecAon rate of 96.67% and a false 
alarm rate of 5.26%. 

Another innovaAve approach [59] involves the use of unmanned aerial vehicles (UAVs) 
combined with arAficial intelligence (AI) to detect FOD on runways. This system uAlizes an 
object detecAon algorithm based on the YOLOv3 model and a convoluAonal neural 
network (CNN) for FOD classificaAon. Tested with UAV footage, the system achieved 
a detecAon accuracy of 94.5%. 

Similarly, another study [60] uAlized the YOLOv3 model for FOD detecAon on runways, 
employing transfer learning to fine-tune the model. This approach yielded a detecAon rate of 

95.67% with high accuracy. 

Furthermore, a system [61] using random forest classificaAon was proposed to detect 
FOD in the data from opAcal imaging sensors. This system extracts features from image data 
and trains a random forest classifier to differenAate between FOD and non-FOD. The tesAng 
with a runway image dataset resulted in a detecAon rate of 93.1% and a false alarm rate 
of 5.5%. 
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Furthermore, a study [62] explores the integraAon of computer vision and UAV 
technologies for collecAng images of FOD in airfields. The proposed system, which was tested 
using the FOD-A data set consisAng of more than 19000 FOD images, demonstrated 
a detecAon rate of 95.2%. This approach has the potenAal to improve the efficiency and 
accuracy of FOD detecAon, thereby improving aviaAon safety. 

2.1.2. Video based detec=on of airport horizontal markings 

The task of detecAng lines and lanes has seen significant development, primarily within the 
domain of Advanced Driver Assistance Systems (ADAS). IniAally, ADAS were designed as 
passive systems that provide basic assistance without acAve intervenAon. However, with the 
advent of new technologies and tools, these systems have evolved to offer more advanced 
funcAonaliAes, transiAoning from passive to acAve assistance. This evoluAon allows ADAS to 
perform complex tasks such as lane keeping, adapAve cruise control, and autonomous driving 
features [63]. 

Various types of horizontal markings, including mulA-coloured lines and light navigaAon 
points, are uAlized on ground surfaces to facilitate the proper execuAon of procedures 
required for air operaAons. These markings assist pilots in determining crucial elements such 
as the central axis of runways and taxiways, touchdown points, runway boundaries, and the 
aircrah's posiAon relaAve to the runway's end. Despite advancements in onboard instruments, 
flight personnel conAnue to rely on visual cues and aids. Figure 2-3 presents a segment of 
a satellite image depicAng the runway at Poznań–Ławica Airport. 

 

Figure 2-3 Runway markings visible in the satellite image of the Poznań–Ławica Airport (Google Maps) 
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The primary markings crucial for the operator assist system are the runway centre line 
markings, represented by white stripes. These stripes are 0.9 meters wide, 30 meters long, and 
spaced 20 meters apart. PosiAoned along the runway axis, they serve as reference points for 
the measurement plaEorm used to assess the performance quality of centre line lamps.    
Figure 2-4 provides an illustraAon of horizontal road markings on airport runways  
and taxiways, accompanied by descripAons. 

 

Figure 2-4 Basic horizontal markings on the runway (a) and taxiway (b) [30] 

These markings are extensive and include both dashed and conAnuous lines, ohen 
appearing adjacent to each other. Their placement varies depending on the designaAon, 
indicaAng runway exits, holding points, stops, intersecAons, or hazardous areas. Despite their 
diverse funcAons, all markings adhere to strict descripAons and are uniformly coloured white 
and yellow. In cases where a marking lacks sufficient contrast with the pavement, a black 
outline is added. An important observaAon during tesAng and recording is the wear of airport 
markings caused by rubber deposits from aircrah tyres adhering to the surface. This wear 
significantly affects the visibility of horizontal signs and in-pavement light points. 
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The aspect of line detecAon remains a perAnent and acAvely researched area in 
scienAfic literature [64], [65]. Numerous algorithms and techniques have been developed to 
enhance the accuracy and reliability of line detecAon. Despite advancements, these methods 
can face limitaAons under certain condiAons. For example, detecAng lines on airport runways 
presents unique challenges that differ from typical roadway scenarios. The precision required 
for guiding measurement equipment, such as mobile measurement trailers used for assessing 
the light intensity of airport lamps, is significantly higher. 

Under these specific condiAons, tradiAonal line detecAon algorithms may struggle to 

deliver the necessary accuracy and reliability. Environmental factors such as varying light 
condiAons, weather changes, and the reflecAve properAes of runway surfaces can all impact 
the performance of these algorithms. Therefore, specialized techniques are ohen required  
to ensure the precise detecAon of runway lines to facilitate the accurate measurement of 
airport lamp intensity [28], [29]. 

Recent studies and ongoing research conAnue to address these challenges, seeking to 
improve the robustness and precision of line detecAon algorithms in diverse and demanding 
environments. By refining these techniques, researchers aim to support criAcal applicaAons 
that rely on accurate line detecAon, thereby enhancing the safety and efficiency of both 
automoAve and aeronauAcal operaAons. 

To effecAvely analyse the potenAal applicaAons of vision inspecAon systems within 
a measurement plaEorm designed to test the quality of airport lamp operaAons, it is crucial  
to segment the system into disAnct areas of acAvity. Each area can benefit from different types 
of cameras tailored to specific inspecAon tasks. This makes it possible to opAmize the 
inspecAon process and ensure accurate and efficient measurement of the performance of 
airport lighAng. 

As highlighted in the IntroducAon, the task of detecAng lines and lanes has primarily 
been developed for vehicles navigaAng standard roadways. A variety of methods and 
algorithms have been created for this purpose, each with its unique approach to road 
detecAon. These methodologies predominantly emphasize road models, edge detecAon, 
vanishing point detecAon, colour segmentaAon, and the Hough transform. There are 
numerous variaAons and combinaAons of these methods. According to the paper [66], the 
Hough transform combined with basic image processing remains one of the most robust 
techniques. This algorithm for detecAng road boundaries fundamentally relies on edge 
detecAon. When applied to the relaAvely small markings on typical car roads, addiAonal 
processing to achieve a bird’s eye view is quite beneficial. However, for a vision system used to 
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monitor the trajectory of a measurement plaEorm designed to test airport lamps, such an 
approach is less pracAcal due to the significantly larger size of the runway markings. 
Nevertheless, the concept of detecAng horizontal markings using edge detecAon, possibly 
following a colour filtraAon process, is useful for algorithm development. Figure 2-5 shows 
selected line detecAon methods used in vision systems. 

 

Figure 2-5 Selected line detecHon methods used in vision systems 

The methodology for correcAng the trajectory of the measurement plaEorm for tesAng 

airport lamp quality may parallel that described in the paper [67]. PosiAoning is achieved by 
detecAng lane lines, and then the vehicle's lane change is assessed on the basis of the relaAve 
posiAons of these detected features. For the measurement plaEorm, the central reference 
point is the centre line of the runway. Aher the camera system calibraAon, a line will be 
programmed to guide the operator. Crossing this line on either side of the frame will trigger 
a command for the operator to adjust the direcAon of movement. 

More sophisAcated soluAons can involve assessing environmental objects and training 
Bayesian network models [68]. However, at an airport, this approach is less effecAve due to 
the minimal and relaAvely staAc details of the surrounding environment during a runway 
traversal. The most effecAve method to determine the trajectory of the measuring plaEorm 
for airport lamp tesAng is to use surface markings as references. 

Another intriguing posiAoning method for the measurement plaEorm in airport 
environments involves landmark-based vehicle localizaAon [69]. This method uAlizes runway 
endpoints as landmarks. The paper details two criAcal components: detecAng lane endpoints 

and evaluaAng the accuracy of the esAmaAon. Here, a single camera was used. Enhancing the 
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algorithm could involve incorporaAng a tool that automaAcally addresses incorrect readings of 
road markings with the help of a convoluAonal neural network (CNN) [70]. 

A modern soluAon for car line detecAon, as described in [71], involves predicAng the 
occurrence of lines and esAmaAng distances using vanishing points (VP). This method relies on 
detecAng the VP in the area where the edge direcAonal feature informaAon is concentrated, 
requiring the intersecAon of two straight lines in this zone. This point can determine the 
vehicle's opAmal trajectory, typically the lane's centre. Edge detecAon in this method uses  
the Hough transform. 

An interesAng algorithm for detecAng less visible road markings is elaborated in [72]. 
It is designed to resist interference from lighAng and environmental condiAons and operates 
on the basis of live video processing with charge-coupled device (CCD) cameras using an 
original mask. Demonstrated examples show their significant advantages over the Prewin and 
Canny algorithms, suggesAng that a similar approach could be beneficial for detecAng the 
central axis of a runway. 

Line detecAon can also be implemented using soluAons that require higher 
computaAonal power due to the complexity of deep learning methods. Paper [73] details 
a methodology for detecAng lane lines based on object feature disAllaAon. The authors used 
different decoders for feature detecAon to enhance the effecAveness of a neural  
network-based framework without incurring addiAonal costs, verified with methods such as 
SCNN, DeepLabv1, and ResNet. ModificaAons during the model preparaAon stage were 
sufficient to achieve bener F1 Measure performance on the CuLane dataset. However, the 
manuscript menAons using a workstaAon with specificaAons such as an Intel @ CoreTM  
i7-6800K CPU @ 3.40 GHz and an NVIDIA 2080 Ti graphics card [73], which is impracAcal for 
mobile applicaAons with less powerful computaAonal capabiliAes. 

The airport environments housing the tested lamps can be likened to roadways 
designated for vehicular traffic, thus presenAng a comparable specificity to that encountered 
in the detecAon of road signs, a challenge addressed by algorithms facilitaAng the operaAon 
of lane-keeping assistants in contemporary passenger vehicles. With the ongoing 
advancements in technology and automaAon, the automoAve industry has undergone 
significant transformaAons, leading to the creaAon of numerous datasets aimed at validaAng 
algorithms, such as the well-known KITTI dataset [74]. These resources serve as invaluable 
tools for conducAng laboratory tesAng of methods that hold potenAal for real-world 
implementaAon. ExisAng systems primarily puts emphasis on collision avoidance and alerAng 
drivers to potenAal obstacles on the road through the uAlizaAon of vision systems [45]. 
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Another perAnent aspect pertains to the esAmaAon of distances between vehicles, 
achieved through algorithms designed to detect vehicle lights during nighyme condiAons and 
normalize the angle of their illuminaAon [75]. Subsequent systems have expanded to 
encompass omnidirecAonal monitoring of the vehicle's surroundings [76], a feature of 
paramount importance on roadways but not always applicable to other contexts. 
In environments characterized by significant width and frequently impercepAble central lines, 
navigaAon aids may benefit from the fusion of semanAc segmentaAon and monocular depth 
esAmaAon [77], or through the implementaAon of algorithms capable of accurately 

reproducing and denoising captured images [78]. 

While current monocular camera-based assessment and driving assistance 
systems [79] offer valuable insights into driving behaviour, they may not be enArely effecAve 
in environments like airport runways, where the distances between markings are considerably 
greater. Consequently, future research endeavours may focus on idenAfying addiAonal 
markings on aerodrome, mirroring iniAaAves aimed at enhancing safety on public roads [80]. 

2.1.3. Inspec=on of airport in-pavement naviga=onal lights 

The increasing requirements set by European and global aviaAon safety agencies have been 
driving more stringent oversight of lighAng on airport surfaces, including runways and 
taxiways [4]. Most of currently used airport lamps are equipped with halogen bulbs, which 
have limited lifespans. A decrease in lamp luminous efficiency is determined by the soiling of 
prisms (for example, from adhering, powdered rubber from aircrah tyres). Figure 2-6 provides 
an illustraAon of an in-pavement navigaAon lighAng lamp situated on an airport taxiway. 

 

Figure 2-6 Airport taxiway centreline in-pavement lamp [41] 
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Figure 2-7 depicts a new prism alongside a damaged one aher the winter season, 
illustraAng the importance of proper maintenance and adherence to regulatory standards. The 
fixtures of the lamps and their prisms are suscepAble to damage from runway maintenance 
machinery, parAcularly during winter snow clearance operaAons.  

 
 

 

Figure 2-7 In-pavement navigaHon light prisms – new (top) and damaged (boYom) [28] 

In-pavement lamps, also known as runway and taxiway centre line lights or touchdown 
zone lamps, play a crucial role in providing essenAal visual guidance to pilots during take-off, 
landing, and taxiing, parAcularly in low visibility condiAons [3], [4], [24]. Metal brushes can 
scratch the lamp fixtures and chip their prisms, necessitaAng the replacement of damaged 
lamps [28], [29], [51]. Such machinery can inadvertently cause abrasions and fractures on the 
lamp casings and prisms, necessitaAng their replacement due to compromised structural 
integrity. The degradaAon of luminous efficiency can also occur due to weather condiAons and 
runway operaAons, such as the accumulaAon of sAcky, powdered rubber from aircrah 
tyres [81].  

As menAoned earlier, the average intensity of the main beam and the colour of the 
light emined by aeronauAcal ground lights are criAcal for aviaAon safety. Both the InternaAonal 
Civil AviaAon OrganizaAon [3] and the European Union AviaAon Safety Agency [4] have 
established regulaAons that address the quality of this lighAng [82], including specific 
requirements for chromaAcity and light intensity [28]. These standards are designed to ensure 
that the lights are easily disAnguishable by pilots, even in poor visibility condiAons [83]. 
To maintain compliance with ICAO and EASA regulaAons, also regular inspecAon of 
chromaAcity is essenAal [84]. These inspecAons can be conducted using specialized 
equipment, such as spectrophotometers or colorimeters, which deliver precise measurements 
of colour parameters [33]. By rouAnely performing these assessments, airports can detect any 



2 State of the art  

J. Suder  53 

deviaAons from the required colour standards and implement correcAve measures to ensure 
aviaAon safety [85]. 

For instance, at the Poznań–Ławica Airport, there are approximately 356 in-pavement 
lamps spread over a distance of about 2.5 km. The performance of all these lamps is specified 
in the European AviaAon Safety Agency standard outlined in Chapter U — Colours for 
aeronauAcal ground lights, markings, signs, and panels [4]. This document delineates the 
illuminaAon intensity of individual lights and their dependence on the angle of incidence. 
The prescribed values vary on the basis of the lamp type and light colour.  

Furthermore, the standards define requirements specific to the airport category. One of the 
criAcal parameters is the minimum luminous intensity for the main beam, which varies across 
different angular ranges depending on the lamp type. The intensity is expressed in candelas 
and depends on the beam angle. Figure 2-8a presents an example isocandela diagram  
for taxiway centre line lights. 

 

 
(a) (b)  

Figure 2-8 Selected isocandela diagrams for in-pavement airport lamps [4]: (a) Isocandela diagram for 
taxiway centre line (7.5 m, 15 m, 30 m spacing), no-entry bar, and stop bar lights in curved secHons 

intended for use in runway visual range condiHons of 350 m, (b) Isocandela diagram for runway 
centre line light with 15 m longitudinal spacing (white light) and rapid exit taxiway indicator light 

(yellow light) 

Typically, new fixtures used on taxiways significantly exceed the parameters beyond the 
minimum values specified by the standards. This is primarily due to the requirements for light 
intensity on the taxiway, where the main role of the light points is aircrah navigaAon while on 
the ground [86]. 

The standards for the intensity of the runway centre line lights (Figure 2-8b) vary 
depending on the category required at the airport. These fixtures must meet the highest 
intensity values within the range of 0 to 9 degrees in the verAcal axis and -5 to 5 degrees in the 
horizontal axis for the main beam. 
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Light, funcAoning as an electromagneAc wave, reaches the human eye and is focused 
onto the reAna. Here, specialized cells known as cones are located, which, upon sAmulaAon 
by light, transmit signals to the brain. Each of the three types of cones responds to a disAnct 
range of electromagneAc wavelengths. Cones sensiAve to short wavelengths exhibit the 
strongest response to wavelengths around 420 nm (blue), while those responsive to medium 
wavelengths peak at around 530 nm (green). Cones sensiAve to long wavelengths demonstrate 
the strongest response to wavelengths around 570 nm. This understanding forms the basis for 
construcAng instruments designed to measure colours [87]. 

Radiometry is a fundamental branch of opAcs concerned with the quanAtaAve 
measurement and characterizaAon of light. This discipline encompasses the precise 
assessment of spectral radiaAon, which denotes the radiant power emined, transmined, or 
received per unit wavelength. Spectral radiaAon is typically quanAfied in units such as wans 
per square meter (W/m²) or microwans per square cenAmetre (µW/cm²), depending on the 
specific applicaAon requirements and scale of measurement [88]. 

Photometry is concerned exclusively with visible light and evaluates it based on how 
the human eye experiences brightness. It adjusts the measurement of light intensity according 
to the luminous efficiency curve, which represents the eye's varying sensiAvity to different 
wavelengths [89], [90]. 

The 𝑣(𝜆) curve (Figure 2-9), represenAng the human eye's average sensiAvity to 
different wavelengths of light, has been progressively refined, parAcularly through revisions  
in the CIE (InternaAonal Commission on IlluminaAon) standards. Below is a summary of the 
key developments [89], [90]: 

• CIE 1931 (blue): The iniAal luminous efficiency funcAon, created from early 
experiments with a small sample size and basic equipment, remains in 
widespread use today. 

• CIE 1978 (orange): This update enhanced the accuracy of the sensiAvity 
measurements, taking advantage of improved experimental methods and 
technology. 

• CIE 2005 (green): The most recent revision integrated contemporary research, 
offering more precise data and reflecAng a more comprehensive analysis of the 
human populaAon's visual response. 

The modificaAons implemented over the years have minimal impact on the subject 
maner addressed in the dissertaAon, and the applicable aviaAon safety regulaAons and 
recommendaAons are based on standards established in 1931 [4]. 
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Figure 2-9 The 𝑣(𝜆) curve from 1931 

The nanometre (nm) is the standard unit used to express wavelengths of 
electromagneAc radiaAon, parAcularly within the visible spectrum, which spans approximately 

from 400 nm (violet) to 700 nm (red). RelaAve responsivity refers to the sensiAvity of opAcal 
detectors or sensors across different wavelengths relaAve to a standard response curve, 
providing insight into their spectral sensiAvity characterisAcs [88]. 

Normalized responsivity is a derived metric that standardizes the responsivity  
of a sensor against a reference value, facilitaAng comparaAve analyses across different sensor 
types or measurement systems. The mnemonic VBGYOR represents the sequence of Violet, 
Blue, Green, Yellow, Orange, and Red colours in the visible spectrum, corresponding to specific 
wavelength ranges perceived by the human eye [88]. 

The conversion from radiometric to photometric measurements requires integraAng 
the spectral energy distribuAon with the eye's photopic response curve [88]. This approach 
reflects the fact that human visual sensiAvity changes with wavelength. The fundamental 
equaAon for this conversion is [88]: 

𝛷! = 𝐾"# 	 ) 𝑣(𝜆)𝛷$(𝜆)d𝜆
%

&
 (1) 

where: 

• The integraAon limits are technically standardized from 380 to 780 nm in 5 nm steps 

• 𝛷! – photometric quantity (luminous flux in lumens) 

• 𝐾"#   – maximum luminous efficacy (683 lm/W for photopic vision) 
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Wavelength 𝜆 (nm) 

• 𝑣(λ) – photopic luminosity function, which describes the human eye's sensitivity under 
well-lit conditions 

• 𝛷$(λ) – spectral radiometric value (radiant flux in watts per nanometer). 

Lux, the SI unit of illuminance, quanAfies the amount of luminous flux incident per unit 
area on a surface, directly influencing perceived brightness. Candela (cd), the SI unit of 
luminous intensity, measures the amount of light emined in a specific direcAon by a source, 
crucial for assessing the brightness of light sources and their visual impact [88].  

RGB (Red, Green, Blue) signifies the addiAve colour model wherein various intensiAes 
of red, green, and blue light are combined to produce a wide spectrum of colours, prevalent 
in digital displays and imaging technologies. The CIE 1931 colour space, established by the 
InternaAonal Commission on IlluminaAon, provides a rigorous mathemaAcal framework for 
represenAng u percepAon based on human visual responses, essenAal in colour science and 
related fields [91]. This colour space is a standard for describing how the human eye perceives 
colour. Developed by the CIE in 1931, it is also known as the CIE XYZ colour space [92], defined 
by theoreAcal (non-negaAve) matching funcAons �̅�(𝜆), 𝑦/(𝜆) 	= 	𝑣(𝜆), 𝑧(̅𝜆), which are used to 
calculate the following, always non-negaAve coordinates (X, Y, Z) for any colour perceived by 
humans with spectral energy density 𝑓(𝜆) [93]. Figure 2-10 presents CIE 1931 XYZ Colour 
Matching FuncAon. 

X = ) 𝑓(𝜆)𝑥/(𝜆)d𝜆
%

&
 (2) 

Y = ) 𝑓(𝜆)𝑦/(𝜆)d𝜆
%

&
 (3) 

Z = ) 𝑓(𝜆)�̅�(𝜆)d𝜆
%

&
 (4) 

 

 

Figure 2-10 CIE 1931 XYZ Colour Matching FuncHon [90] 
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This space is widely used as a reference for colour measurement in fields such as colour 
science, colourimetry, and colour management. It has been adopted by numerous 
organizaAons, including the InternaAonal OrganizaAon for StandardizaAon (ISO) and the 
Society of MoAon Picture and Television Engineers (SMPTE), as a standard for colour 
measurement and calibraAon. Figure 2-11 shows the CIE 1931 colour space chromaAcity 
diagram.  

 

Figure 2-11 The CIE 1931 colour space chromaHcity diagram [93] 

The x, y coordinates in the CIE 1931 colour space represent the chromaAcity of the 
colour, which refers to the hue and saturaAon, excluding the brightness. To achieve this 
conversion, the XYZ coordinates from the sensors need to be normalized. This normalizaAon 
process involves dividing each of the XYZ values by the sum of all three values X + Y + Z. This 
step adjusts the coordinates to reflect the relaAve amounts of each primary colour present in 
the light [94]. In the chromaAcity diagram of the CIE 1931 colour space, the wavelength range 
of 700 to 780 nm is represented, as the variaAons within this spectrum are not discernible to 
human vision. 

700 – 780 nm 
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The equaAons used to perform this conversion are straighEorward. By normalizing the 
XYZ values, it is possible to obtain the relaAve proporAons necessary to calculate 
the chromaAcity coordinates. The specific equaAons (5) and (6) used for this conversion 
are [93]: 

x =	
X

X + Y + Z
 (5) 

 

y =	
Y

X + Y + Z
 (6) 

 

where X, Y, and Z are the normalised tristimulus values. 

When the x, y coordinates are calculated, they can be ploned on a chromaAcity chart 
to visualize the colour. The chromaAcity graph is a two-dimensional representaAon that 
displays all possible chromaAcity within the CIE 1931 colour space, providing a comprehensive 
view of colour data. This chart helps in understanding and verifying the colour properAes  
of the tested light sources. 

To ensure accurate results across the broadest possible spectrum of lamps, the decision 
was made to set the gain factor to 1. This seyng allows for tesAng at close range without the 
risk of quickly saturaAng the sensor. By prevenAng sensor saturaAon, the measurements 
remain reliable and precise, parAcularly when dealing with high-intensity light sources. This 
approach maximizes the accuracy of the colour measurements and ensures that the data 
collected is valid for a wide variety of lamp types. 

Changes in airport lighAng colour can result from various factors such as the aging of 
the lighAng system, environmental influences, and even changes in the composiAon of the 
surrounding air. Regular chromaAcity measurements are essenAal for airports to comply with 
ICAO and EASA regulaAons, ensuring that pilots can consistently recognize the colours of the 
navigaAonal lighAng system [95]. The ICAO has also specified chromaAcity requirements for 
the instrument landing system (ILS), which vary depending on the system category, similar to 
luminous intensity standards [4], [24]. 

The EASA chromaAcity standards are defined within the InternaAonal Commission on 
IlluminaAon (CIE) 1931 colour space. Figure 2-12 provides an example chart illustraAng 
the EASA regulaAons regarding the colours of navigaAon lighAng. 
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Figure 2-12 Colours for aeronauHcal ground lights (filament-type lamps) [4]* 

The chromaAcity requirements for airport lighAng vary depending on the type of lamp 

and its locaAon. The equaAons defining the boundaries of individual colours in the CIE 1931 
colour space, illustrated in Figure 2-12, are as follows [4]: 

• Red: 
o Purple boundary: y	 = 	0.980	– 	x  
o Yellow boundary: y	 = 	0.335  

 
* The presented chroma3city diagram comes directly from the EASA documenta3on "Cer3fica3on 
Specifica3ons and Guidance Material for Aerodrome Design (CS-ADR-DSN)" [4], where the axes are marked 
with capital X and Y, although they should be lower case x and y, in accordance with those used in subsequent 
equa3ons. Furthermore, the point associated with 700 nm in the other charts is designated  
as 700 - 780 nm, since the varia3ons within this range are undetectable by the human visual system. 
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• Yellow: 
o Red boundary:   y	 = 	0.382 
o White boundary:  y	 = 	0.790	– 	0.667x 
o Green boundary: y	 = 	x	– 	0.120 
 

• Green: 
o Yellow boundary: x	 = 0.360	– 	0.080y 
o White boundary:  x	 = 	0.650y 
o Blue boundary:   y	 = 	0.390	– 	0.171x 

 

• Blue: 
o Green boundary:  y	 = 0.805x	 + 	0.065 
o White boundary:  y	 = 0.400	– 	x 
o Purple boundary:  x	 = 0.600y	 + 	0.133 
 

• White: 
o Yellow boundary:  x	 = 	0.500 
o Blue boundary:   x	 = 	0.285 
o Green boundary:  y	 = 	0.440       
     y	 = 	0.150	 + 	0.640x  
o Purple boundary: y	 = 	0.050	 + 	0.750x      

    y	 = 	0.382 
 

• Variable white: 
o Yellow boundary: x	 = 	0.255 + 0.750y   y	 = 	0.790 − 0.667x 
o Blue boundary:   x	 = 	0.285 
o Green boundary: y	 = 	0.440     y	 = 	0.150	 + 	0.640x 
o Purple boundary: y	 = 	0.050	 + 	0.750x   y	 = 	0.382 

To verify the parameters of navigaAon lighAng, specialized devices are employed, 
including measurement plaEorms [28] and drones [26], [31]. TradiAonally, the primary focus 
has been on the intensity of the light [51], [96], as a reducAon in intensity can result from 
damage to the lamp prism. However, there is a growing emphasis on examining airport 
areas [40] and the chromaAcity of the light emined by airport navigaAon lighAng. 

To maintain the integrity of in-pavement lamps and ensure their conAnued 
funcAonality, regular inspecAon and maintenance are imperaAve [33]. TradiAonally, the 
inspecAon process for in-pavement lamps has been manual, characterized by its  
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Ame-consuming nature, labour intensiveness, and suscepAbility to human error. 
Consequently, there is a growing demand for automated systems [26], [31] capable of 
accurately and efficiently assessing the condiAon of in-pavement lamps and idenAfying any 
signs of damage or wear [39], [40]. 

In recent years, the convergence of computer vision and arAficial intelligence (AI) has 
emerged as a promising avenue for automaAng the inspecAon and maintenance of criAcal 
infrastructure, including in-pavement lamps. The next stage of an intelligent vision system 
designed for the automated detecAon and classificaAon of prism defects in in-pavement 

lamps [30], [46], [47] has been proposed. The system leverages a sequence of vision images 
captured by a camera installed on the inspecAon vehicle, alongside an AI-based algorithm, to 
analyse the images and idenAfy any defects or anomalies in the prisms. This approach offers 
significant advantages over tradiAonal manual inspecAon methods, including enhanced speed, 
accuracy, and efficiency.  

Periodic assessments of the correctness of airport lighAng can be conducted using 
special devices that are commercially available and designed for specific airports. For example, 
the device offered by FB Technology enables the examinaAon of the light beam intensity level 
emined by both inset and surface fixtures [97]. A noteworthy feature is the creaAon of 
a dataset from previously taken measurements, allowing for the observaAon of the degree  
of wear of individual lamps, consequently facilitaAng the selecAon of the appropriate lighAng 
maintenance method. The measurement kit can be installed on any vehicle, either at the front 
or at the rear, thanks to the use of a special frame. CommunicaAon between the sensors  
and a laptop or tablet is wireless, via the WiFi network, or, when not possible due to airport 
procedures, via an Ethernet cable. AddiAonally, the manufacturer offers the opAonal use of 
the DGPS (DifferenAal Global PosiAoning System) system for the localizaAon of measurement 
points. However, this requires interference with staAonary airport installaAons. The lamp 
inspecAon is carried out while the vehicle is in moAon, with a speed limit of 60 km/h during 
measurement. InspecAon can be carried out independently of atmospheric condiAons and 
Ame of day. Correct approach to the fixtures is assisted by the live camera preview transmined 
to the driver's cabin. 

DeWiTec offers the Dalmas AFL Analysis device, which also examines both in-pavement 
and elevated fixtures [98]. It takes the form of a trailer anached to any vehicle with a tow bar. 
Only one person is needed to perform the inspecAon. Measurements can be taken under any 
lighAng and atmospheric condiAons. In contrast to compeAAve products, the driving speed 
during the inspecAon is lower, ranging from 25 to 35 km/h. The driver is provided with several 
conveniences to precisely carry out the inspecAon. The device guides the driver to the starAng 
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point of the measurement and then to each subsequent lamp. AddiAonal conveniences 
include two cameras and a laser line that indicates the direcAon. All informaAon is available 
online in sohware dedicated to a specific airport. ReporAng occurs immediately aher 
measurements are taken, along with maintenance recommendaAons and necessary data and 
charts. 

However, the aspect of high costs associated with the aforemenAoned commercial 
devices [97], [98] served as moAvaAon to develop a new, low-budget device with high uAlity 
value, tailored to the requirements of the Poznań–Ławica Airport, enabling quick, daily 

inspecAon of runway lighAng [28]. This led to the creaAon of a proprietary device with 
characterisAcs similar to those of commercial devices [30].  

The scienAfic literature has explored the issue of chromaAcity measurement using 
integrated electronic sensors. A crucial aspect is ensuring accurate measurement within 
a specific colour space or achieving correct conversion. Ref. [99] presents a method for 
calculaAng and specifying light source chromaAcity using the CIE2015 10° colour matching 
funcAons (CMFs). This reference offers methodological recommendaAons to enhance the 
evidenAal value of laboratory-based psychophysical experiments that invesAgate how  
the spectral power distribuAon of light sources affects subjecAve evaluaAons of colour 
appearance in scenes. However, it does not discuss the use of specific electronic systems. 

ChromaAc verificaAon of light sources was also addressed in Ref. [25], which focused 
on LED sources. For the CIE 1931 colour space, the values of illuminance and correlated colour 
temperature (CCT) were determined. The measuring apparatus included a spectrophotometer 
and recommended sphere geometries, which necessitate the disassembly of the tested light 
source to obtain measurement results. 

In Ref. [100], the authors introduced a microprocessor system designed for capturing, 
processing, and managing s, allowing for the analysis of any non-self-luminous object's. During 
experimental tests, a TCS3414CS colour sensor was uAlized. This study did not reference 
internaAonal standards and requirements for colour space, and the colour obtained was not 
categorized within the limits set by the CIE 1931 colour space. 

A mobile soluAon for chromaAcity evaluaAon has been proposed using a smartphone-
based system that approximates colour regions on the CIE 1931 x, y chromaAcity 
diagram [101]. These tests were limited to assessing the chromaAcity of the measurement 
scene, followed by lighAng adjustments to the selected seyng. 
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This dissertaAon puts emphasis on two criAcal aspects of assessing the correct 
funcAoning of airport navigaAon lighAng, proposing systems: 

• for detecAng in-pavement lamps and classifying prisms, assessing its mechanical wear 

• for the chromaAcity evaluaAon of the emined light beam. 
 

2.2. Image processing techniques for vision inspec-on 

Modern video monitoring systems have built-in algorithms called IVA (Intelligent Video 
Analysis) [102]. These algorithms are intended for typical tasks related to urban monitoring. 
The deployment of Intelligent Video Analysis within surveillance systems encompasses a range 
of applicaAons, including the detecAon, tracking, and classificaAon of moving objects,  
the creaAon of density maps, people counAng, the idenAficaAon of vehicles traveling in the 
wrong direcAon, and even fire detecAon. These funcAonaliAes have collecAvely driven  
the advancement of sophisAcated intelligent systems [102].  

In order to detect the objects, it is possible to use classic image analysis techniques 
embedded in OpenCV [103]. Open Source Computer Vision Library is an open-source 
computer vision and machine learning sohware library. It was iniAally developed by Intel in 
1999, and later supported by Willow Garage and Itseez (now part of Intel) [104]. OpenCV is 
designed to provide a common infrastructure for computer vision applicaAons and to 
accelerate the use of machine percepAon in commercial products. The library includes more 
than 2500 opAmized algorithms, which can be used for a wide range of applicaAons including 
facial recogniAon, object detecAon, 3D model extracAon, image sAtching, and moAon tracking. 
It is wrinen in C++ and has interfaces for Python, Java, and MATLAB/OCTAVE, supporAng 
mulAple plaEorms such as Windows, Linux, Android, and macOS. OpenCV facilitates real-Ame 

operaAon, and its modular structure enables developers to tailor funcAonaliAes for specific 
projects, ensuring efficient processing and lower computaAonal overhead. With its extensive 
funcAonaliAes and adaptability, OpenCV has become a fundamental tool in the field of 
computer vision and is widely adopted in both academic research and industry 
applicaAons [104]. 

Video and image analysis in MATLAB harnesses the sohware's advanced computaAonal 
and visualizaAon capabiliAes to process, analyse, and interpret visual data [105]. MATLAB 
equips users with an extensive array of tools and funcAons specifically tailored for image and 
video processing tasks. The Image Processing Toolbox offers a diverse set of algorithms for 
image enhancement, filtering, and transformaAon. These capabiliAes allow users to execute 
operaAons such as edge detecAon, image segmentaAon, and morphological transformaAons, 
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facilitaAng the extracAon of meaningful features from images. For video analysis, MATLAB's 
funcAonality encompasses the reading, processing, and analysis of video frames. 
The Computer Vision Toolbox provides essenAal funcAons for object detecAon, moAon 
esAmaAon, and tracking, supporAng the development of sophisAcated video analyAcs 
applicaAons. MATLAB's support for various video formats and its tools for frame-by-frame 
analysis are crucial for tasks such as object tracking and acAvity recogniAon [105].  

A significant feature of MATLAB in video and image analysis is its integraAon with deep 
learning frameworks. It is possible to design and train convoluAonal neural networks and other 

deep learning models directly within MATLAB [106]. The Deep Learning Toolbox enables the 
implementaAon of intricate neural network architectures for tasks including image 
classificaAon, object detecAon, and semanAc segmentaAon. Pre-trained models like AlexNet, 
VGG-16, and ResNet can be fine-tuned for specific applicaAons, thereby expediAng the 
development process [105]. AddiAonally, MATLAB's extensive support for hardware 
integraAon facilitates real-Ame image and video processing. Users can deploy algorithms to 
embedded systems, GPUs, and cloud plaEorms, ensuring scalability and performance. 
MATLAB also provides a versaAle environment for prototyping and tesAng, with capabiliAes 
to simulate various image and video processing scenarios, further enhancing its uAlity in 
research and development [105]. Figure 2-13 shows selected image processing methods for 
object detecAon. 
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Figure 2-13 Selected image processing methods for object detecHon 

Numerous libraries and tools are available for construcAng and training neural 
networks. Among these, TensorFlow and Keras libraries, both operaAng within the Python 
ecosystem, are prominent. AddiAonally, the Deep Network Designer tool in the MATLAB 
environment is parAcularly suitable for tesAng and validaAng pre-trained neural network 

models.  

Developed by Google, TensorFlow [107] is an open-source framework that supports 
the creaAon and training of machine learning models, including deep neural networks. 
TensorFlow is highly versaAle, enabling efficient computaAon and scalability across various 
plaEorms, from desktops to mobile devices, and edge compuAng environments. It provides 
robust support for deep learning research and producAon deployment, featuring 
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a comprehensive ecosystem with tools like TensorBoard for visualizaAon and TensorFlow 
Serving for model deployment.  

IniAally an independent project and now integrated into TensorFlow, Keras [108]  
is a high-level neural networks API wrinen in Python. It is designed to enable fast 
experimentaAon with deep learning models. Keras offers a user-friendly interface, reducing 
the complexity of implemenAng common neural network operaAons and architectures. It acts 
as a convenient wrapper for the lower-level operaAons provided by TensorFlow, simplifying 
the process of model development and training. 

Deep Network Designer, part of MATLAB's Deep Learning Toolbox [109], provides 
a graphical interface for designing, analysing, and tesAng deep neural networks. It facilitates 
the import and customizaAon of pre-trained models, allowing users to fine-tune and validate 
these models against their own datasets. The Deep Network Designer supports interacAve 
network construcAon, making it accessible for users with varying levels of experAse in deep 
learning. AddiAonally, it integrates seamlessly with MATLAB's comprehensive suite of tools for 
data analysis, visualizaAon, and simulaAon, enhancing its uAlity for research and development 
in neural network applicaAons. Figure 2-14 shows selected libraries and toolboxes for image 
processing. 

 

Figure 2-14 Selected libraries/toolboxes for image processing 

2.2.1. Classical methods for vision analysis of aerodrome 

The development of computers and embedded systems has made it possible to use algorithms 
that effecAvely process images recorded in digital form [91], [110], [111], [112], [113], [114], 
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[115]. From the point of view of this dissertaAon, the most important operaAons that may be 
helpful are [91], [103]: 

• Geometric TransformaAons of Images 
 

These transformaAons include scaling, translaAon, rotaAon, affine transformaAon, 
and perspecAve transformaAon. 
 

o Scaling 
 

Scaling alters the size of an image. It is achieved using the `cv2.resize()` funcAon. 
The scaling operaAon is mathemaAcally represented as: 

(𝑥', 𝑦') = (𝑠𝑥, 𝑠𝑦) (7) 

where (𝑥, 𝑦)	are the coordinates of a pixel in the original image, and 𝑠 is the scaling factor. 
In OpenCV, scaling can be done by specifying the desired output size or the scaling factors 
along the x and y axes. 

o TranslaAon 

TranslaAon shihs an image by moving it along the 𝑥 and 𝑦 axes. This operaAon is 
described by the following equaAons: 

(𝑥', 𝑦') = (𝑥 + 𝑡( , 𝑦 + 𝑡)) (8) 

where 𝑡( and 𝑡)	 are the translaAon distances along the 𝑥 and 𝑦 axes, respecAvely. In OpenCV, 

translaAon is performed using an affine transformaAon matrix: 
 

𝑇 = D
1 0 𝑡(
0 1 𝑡)

E (9) 

o RotaAon 

RotaAon turns an image around a specified pivot point. The rotaAon transformaAon 
is represented by: 

(𝑥', 𝑦') = (𝑥 cos𝛩 − 𝑦 sin𝛩, 𝑥 sin𝛩 + 𝑦 cos𝛩) (10) 

where 𝛩 is the angle of rotaAon.  
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• Image Thresholding 

Image thresholding is a fundamental technique in image processing, widely used for 
segmenAng images and extracAng meaningful informaAon. It plays a crucial role in various 
applicaAons, such as object detecAon, image enhancement, and medical imaging [110]. 

Thresholding is the process of converAng grayscale or colour images into binary images, 
where pixels are classified into two categories based on their intensity values: foreground 
(object) and background. The main objecAve of thresholding is to separate objects or regions 
of interest from the background, making subsequent analysis and interpretaAon easier [110]. 

One of the simplest thresholding techniques is the binarizaAon method, where a single 
threshold value is applied to the enAre image. This method assumes that the intensity 
histogram of the image has two disAnct peaks, separaAng the foreground from 
the background. MathemaAcally, the binarizaAon operaAon 𝑇(𝑥, 𝑦) can be expressed as: 

𝑇(𝑥, 𝑦) = L	0						if	𝐼(𝑥, 𝑦) < T
	255						otherwise

	 (11) 

where 𝐼(𝑥, 𝑦)	represents the intensity value of the pixel at coordinates (𝑥, 𝑦), and T is the 
threshold value [110]. 
 

• Morphological TransformaAons 

Morphological transformaAons are one of the most important operaAons in computer 
image analysis, because - properly combined into sets - they allow for the most complex 
operaAons related to the analysis of the shape of image elements, their interconnecAon and 
enable complex simulaAon processes [110], [111]. Basic morphological transformaAons are 
the starAng point for creaAng more complex operaAons related to the analysis of the shape of 
objects and their important arrangement. Unfortunately, their biggest drawback is their high 
computaAonal complexity, as a result of which they became popular in image analysers only 
in the second half of the 1980s [111]. The fundamental concept of morphological 
transformaAons is the so-called structural element of the image. It is a certain secAon of the 
image (in the case of a discrete representaAon of the image - a certain subset of its elements) 
with one point highlighted (the so-called central point). The most frequently used structural 
element is a circle with a unit radius [111]. 
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o Erosion 

To define the erosion frame, it is assumed that there is an irregular area X and a circle 
B with radius r, which will be a structural element [111]. The centre of point B is taken as the 
centre point of the structural element. Therefore, the erosion of figure X by element B can be 
defined in two different ways: 

§ the eroded figure is the set of centres of all angles of radius r, 
which are enArely contained within area X; 

§ Circle B rolls on the inside of the edge of the figure. Next 

posiAons of the centre of circle B determine the edge of the 
eroded figure. 

In computer implementaAons, unit erosion involves the removal of all image points 
with a value of 1 that have at least one neighbour with a value of 0. Erosions can also be 
interpreted mathemaAcally as the so-called A minimal filter is an operator in which each point 
is assigned the minimum of the values of its neighbours [110], [111]. Figure 2-15 shows an 
illustraAve erosion process [110], [113].  
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Image I B Image after erosion 

Figure 2-15 IllustraHon of erosion process 

o DilaAon 

DilaAon is the opposite transformaAon to erosion [111]. To define the dilaAon frame, it 
is assumed that there is an irregular area (figure) in the image X and a circle B with radius r, 
which will be a structural element [110], [111]. Therefore, the expansion joints of figure X with 
element B can be defined in three different ways: 

§ the figure aher dilaAon is the set of the means of all angles B, for 
which at least one point coincides with any point of the starAng 
figure. 
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§ circle B rolls on the outside of the edge of the figure. Next 
posiAons of the centre of circle B define the edge of the figure 
aher the expansion joint. 

§ similarly to erosion, expansion joints can be defined as 
a maximum filter. 
 

o Opening and closing 

The image transformaAons described earlier (dilaAon and erosion) unfortunately have 

a significant drawback [111]. They significantly change the surface area of the transformed 
areas. Erosion reduces it and dilataAon increases it. To eliminate this defect, two 
transformaAons were performed, which were a composite of the previous ones [110], [111]. 
These are opening and closing. The opening consists in rolling circle B on the inside of the edge 
of the figure and discarding all the points that cannot be reached by the circle. Closing consists 
in rolling circle B on the outside of the edge of the figure and adding to it all the points that 
cannot be reached by the circle. Unlike erosion and dilaAon, in the transformaAons discussed 
here it was consider the area around B, not just its centre [111]. 

• Changing colour spaces 

Colour spaces are fundamental in image processing for represenAng and manipulaAng 
colour data. Among these, HSV (Hue, SaturaAon, Value) or HSB (Hue, SaturaAon, Brightness) 
is one of widely used and stands out from RGB (Red, Green, Blue) [116]. HSV categorizes colour 
informaAon into three components: Hue, which signifies the dominant wavelength; 
SaturaAon, indicaAng colour intensity or purity; and Value, represenAng colour brightness. 

ConverAng RGB to HSB involves a sequence of mathemaAcal operaAons to translate 
RGB values into the corresponding HSB (or HSV) values [116]. IniAally, RGB values are 
normalized to a 0 to 1 range for consistent computaAon. Subsequently, the maximum (Value) 
and minimum (SaturaAon) values among the RGB components are idenAfied to calculate the 

corresponding HSB components [116]. 

This conversion process ensures that the HSB/HSV representaAon is parAcularly 
intuiAve for a variety of image processing tasks, including colour segmentaAon and 
adjustment. It facilitates straighEorward manipulaAon of anributes such as brightness and 
intensity, which are criAcal in applicaAons presented in the doctoral thesis, where white is 
a neutral colour, as opposed to the HCL (Hue, Chroma, Luminance) space. 
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Furthermore, HSV’s capability to separate intensity (Value) from colour informaAon 
(Hue and SaturaAon) proves beneficial in situaAons where independent manipulaAon of colour 
percepAon without affecAng brightness is necessary. This feature supports tasks such as 
colour-based object detecAon in computer vision and arAsAc colour correcAon in graphic 
design [116]. 

However, it is important to acknowledge that converAng between colour spaces, such 
as RGB and HSV (HSB), involves computaAonal complexity [117]. Each transformaAon step, 
from normalizaAon to Hue calculaAon, demands meAculous handling to maintain accuracy and 

prevent arAfacts in resultant images [116]. AddiAonally, HSV’s perceptual uniformity makes it 
preferable over RGB in applicaAons where human interpretaAon of colour fidelity is crucial. In 
OpenCV, for HSV, hue range is [0, 179], saturaAon range is [0, 255], and value range  
is [0, 255] [103]. 

o The R,G,B values are divided by 255 to change the range from 0..255 to 0..1 
[116]: 

𝑅' =
𝑅
255	

(12) 

𝐺' =
𝐺
255	

(13) 

𝐵' =
𝐵
255 (14) 

𝐶*+, = max	(𝑅', 𝐺', 𝐵') (15) 

𝐶*-. = 	min	(𝑅', 𝐺', 𝐵') (16) 

∆	= 𝐶*+, −	𝐶*-.	 (17) 
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o Hue calculaAon in OpenCV library: 

𝐻_ = 	

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 60	 ×	

𝐺' − 𝐵′
∆ + 0 if	𝐶*+, = 𝑅′and	𝐺' 	 ≥ 𝐵′	

60	 ×	
𝐺' − 𝐵′
∆

+ 360 if	𝐶*+, = 𝑅′and	𝐺' 	 < 𝐵′

60	 ×	
𝐵' − 𝑅′
∆ + 120 if	𝐶*+, = 𝐺′

60	 ×	
𝑅' − 𝐺′
∆

+ 240 if	C*+, = 𝐵′

 (18) 

𝐻 =	
1
2	× 𝐻

_ 
(19) 

o SaturaAon calculaAon in OpenCV library: 

S = 	h
0 if	𝐶*+, = 0
∆

𝐶*+,
if	𝐶*+, ≠ 0 (20) 

o Value calculaAon in OpenCV library: 

V = 𝐶*+, (21) 

• Edge DetecAon 

One of the important operaAons in vision inspecAon systems is the detecAon of object 
edges. The image gradient is a crucial concept in image processing and computer vision, 

represenAng the direcAon and rate of the most significant intensity change at each pixel in an 
image. MathemaAcally, the gradient is a vector containing the parAal derivaAves of the image 
intensity funcAon with respect to the spaAal coordinates. The gradient magnitude highlights 
edges in the image, as edges correspond to regions with significant intensity changes. 
The preferred method for determining the edge strength and direcAon at any given point 
(𝑥, 𝑦) in an image f is the gradient, represented as ∇f and defined as the vector [110]. 

∇f(𝑥, 𝑦) 	≡ grad[f(𝑥, 𝑦)] 	≡ 	 D
g,(𝑥, 𝑦)
g/(𝑥, 𝑦)

E = 	 p

∂f(𝑥, 𝑦)
∂𝑥

df(𝑥, 𝑦)
d𝑖

s (22) 

To implement the edge detecAon process, masks defined in Table 2-1 are typically used, 
which are the core of the two-dimensional high-pass filtering process [110], [113], [118]. 
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Table 2-1 Typically used masks in edge detecHon process 

Operator Mask template 

Roberts 
-1 0 

0 1 
 

0 -1 

1 0 
 

Prewitt 

-1 -1 -1 

0 0 0 

1 1 1 
 

-1 0 1 

-1 0 1 

-1 0 1 
 

Sobel 

-1 -2 -1 

0 0 0 

1 2 1 
 

-1 0 1 

-2 0 2 

1 0 1 
 

A more advanced edge detecAon algorithm is Canny edge detecAon algorithm [119]. 
The Canny edge detecAon algorithm is composed of several key steps [110]: 

1. Begin by smoothing the input image using a Gaussian filter to reduce noise. 

G	(𝑥, 𝑦) = 	 e0
("1)"
23"  (23) 

𝑓4(𝑥, 𝑦) = G(𝑥, 𝑦) ⋆ f(𝑥, 𝑦) (24) 

with f(x, y) as input image. 

2. Next, calculate the gradient magnitude and direcAon for the image. 

𝑀5(𝑥, 𝑦) = 	 ‖∇𝑓4(𝑥, 𝑦)‖ = yg,2(𝑥, 𝑦) + g/2(𝑥, 𝑦) (25) 

α(𝑥, 𝑦) = 	 tan06 {
g/(𝑥, 𝑦)
g,(𝑥, 𝑦)

| (26) 

With g,(𝑥, 𝑦) = 	
78#((,))
7(

 and g/(𝑥, 𝑦) = 	
78#((,))
7)

. ‖∇f4(𝑥, 𝑦)‖ and α(𝑥, 𝑦) are arrays of the 

same size as the image from which they are computed. 
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3. Then, perform nonmaxima suppression on the gradient magnitude to thin out the 
edges. 

Nonmaxima suppression is employed to thin edges in the gradient magnitude image, 
guaranteeing that the detected edges are only one pixel wide. This enhances the precision of 
edge detecAon. The procedure comprises several criAcal steps: 

i. Gradient ComputaAon: 

• IniAally, compute the gradient magnitude and direcAon at each pixel within 
the smoothed image. The gradient magnitude provides the intensity of the 
edges, while the gradient direcAon denotes the orientaAon of these edges. 

ii. Edge Thinning:   

• For each pixel in the gradient magnitude image, the algorithm evaluates 
the pixel’s gradient direcAon and compares the pixel's gradient magnitude 
with the magnitudes of its neighbouring pixels along the gradient direcAon. 

• Specifically, for a pixel at locaAon (𝑥, 𝑦), if the gradient direcAon 
approximates 0°, 45°, 90°, or 135°, the pixel is compared with its two 
neighbors along that direcAon: 

o 0° (horizontal): Compare with the pixels at (𝑥 − 1, 𝑦) and (𝑥 + 1, 𝑦) 
o 45° (diagonal): Compare with the pixels at (𝑥 + 1, 𝑦 + 1)                                

and (𝑥 − 1, 𝑦 − 1) 
o 90° (verAcal): Compare with the pixels at (𝑥, 𝑦 − 1)	and (𝑥, 𝑦 + 1) 
o 135° (diagonal): Compare with the pixels at (𝑥 − 1, 𝑦 + 1)                            

and (𝑥 + 1, 𝑦 − 1). 
iii. Suppression:   

• If the pixel's gradient magnitude M(𝑥, 𝑦) is greater than those of its 
neighbors, it is retained as a potenAal edge. Otherwise, it is suppressed (set 
to zero).  

• This operaAon effecAvely narrows down the edges to a single-pixel width 
and eliminates pixels that are not local maxima of the gradient magnitude 
in the gradient direcAon. 

 
4. Finally, implement double thresholding along with connecAvity analysis to idenAfy and 

connect the edges. 

g<=(𝑥, 𝑦) = 	 g<=(𝑥, 𝑦) −	g<>(𝑥, 𝑦) (27) 
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Hough Transform 

𝜌 = 𝑥 cos 𝛼 + 𝑦 sin 𝛼 
 

• Hough Transform 

A typical line drawing technique will be to use the Line Hough Transform [120]. Then 
the following parametric equaAon of the line is considered: 

𝜌 = 𝑥 cos α + 𝑦 sin α (28) 

The task of detecAng a straight line comes down to determining a pair of parameters 
(ρ,α), which uniquely describes a straight line in the plane [120]. The process of determining 
the transform is illustraAvely presented in Figure 2-16. 

 
 

 

 

Figure 2-16 Example of input image I and accumulaHon array A, obtained by applying the Hough 
Transform for straight lines 

Figure 2-16 shows an example of the input image I, showing an object consisting of 
several points, and the accumulation table A corresponding to this image, which is the result 
of applying the Hough Transform [120]. In the accumulation table A, one can observe 

characteristic sinusoidal curves ρ = 	 /
?@4 A

sin(α +γ), where tan γ = 	 4
/
, generated by the 

points of the object in the input image I. The equivalent of each curve in parameter space, 
there is a bunch of straight lines in image B, the vertex of which is the point (𝑥, 𝑦)  of object 
b(I) [120]. 

One of the issues discussed will be circle detection, then one of the possible detectors 
is the use of the Circle Hough Transform [120]. The resulting form of the Hough Transform for 
circles will then be: 

H	(𝑥B, 𝑦C, r) = 	) ) I	(𝑥, 𝑦)δ((𝑥 − 𝑥B)2 +	(𝑦 −	𝑦B)2 −	r2) d𝑥 d𝑦
%

0%

%

0%
 (29) 

where x4, y5	are the coordinates of the centre of the circle with radius r [120]. 
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• K-means clustering 

The k-means algorithm, widely regarded as one of the most effecAve clustering techniques, is 
instrumental in Foreign Object Debris (FOD) detecAon by segmenAng an image into various 
regions, thereby aiding in the idenAficaAon of FOD objects. This algorithm funcAons by 
parAAoning a dataset into k unique, non-overlapping clusters. When applied to pixel clustering 
based on, the objecAve is to group pixels such that those within the same cluster exhibit 
similar s, while pixels in different clusters display disAnct variaAons.  

The k-means algorithm iniAates by randomly selecAng k centroids, which act as the 
iniAal cluster centres in a three-dimensional space, typically RGB (red, green, blue). During the 
Assignment Step, each pixel is assigned to the nearest centroid by calculaAng the Euclidean 
distance in the RGB space, thus segmenAng the image into k clusters, with each cluster 
containing pixels closest to the corresponding centroid. In the subsequent Update Step, the 
centroids are recalculated as the mean posiAons of all pixels within each cluster, determined 
by averaging their RGB values. This iteraAve process conAnues unAl convergence, which is 
achieved when the centroids stabilize and show no significant changes between iteraAons, or 
when a predefined number of iteraAons is completed. This method ensures the resulAng 
clusters are as compact and disAnct as possible for the selected number of clusters k [121]. 

Given a collecAon of data points (𝑥6, 𝑥2, … , 𝑥D), where each point is represented as           
a d-dimensional vector in real space, the k-means clustering algorithm seeks to divide these 
n data points into k clusters 𝑆 = 	 (𝑆6, 𝑆2, … , 𝑆E), with 𝑘	 ≤ 	𝑛. The primary goal of this 
parAAoning is to minimize the sum of the squared differences within each cluster, which is also 
known as the within-cluster sum of squares (WCSS) or variance [121]. MathemaAcally, the 
objecAve is to determine the cluster sets that achieve the minimal WCSS [121]:  

argmin
B
� �‖𝑥 − 	𝜇‖2

(	∈	B$

E

HI6

= 	argmin
B
�|𝑆H|	𝑉𝑎𝑟	𝑆H

E

HI6

 (30) 

where µH 	is the average, ohen referred to as the centroid, of the points within the cluster 𝑆H. 
This centroid is calculated as follows [121]: 

µH =	
1
|𝑆H|

� 𝑥H
(	∈	B$

 (31) 

|𝑆H| represents the number of elements in the cluster |𝑆H|, and ‖∙‖	denotes the standard 
L2 norm.  
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This opAmizaAon problem can also be understood as minimizing the sum of squared 
differences between pairs of points within each cluster [121]:  

argmin
B
�

1
|𝑆H|

E

HI6

� ‖𝑥 − 	𝑦‖2
(,)	∈	B$

 (32) 

2.2.2. Machine learning techniques according EASA guidance 

Machine learning, a branch of arAficial intelligence (AI), centres on enabling computers to 
learn from data and enhance their performance through experience. Unlike tradiAonal 
programming, where explicit instrucAons dictate behaviour, machine learning involves training 
algorithms to idenAfy panerns and relaAonships within extensive datasets. These algorithms 
subsequently use the discovered panerns to make informed decisions and predicAons. 
As machine learning systems are exposed to more data, their effecAveness and accuracy 
improve progressively. The abundance and quality of data available to these systems directly 
influence their predicAve precision and overall performance. 

Machine learning, including its components such as deep learning technology and 
neural networks, is intricately nested within the broader field of arAficial intelligence. 
AI uAlizes data to make decisions and predicAons. Machine learning algorithms enable 
AI systems to further learn from data autonomously, enhancing their intelligence without 
requiring explicit programming. ArAficial intelligence serves as the overarching category 
encompassing all subsets of machine learning. Machine learning represents the iniAal subset, 
followed by deep learning, which includes neural networks as its component  
parts (Figure 2-17). 

 
Figure 2-17 AI taxonomy based on EASA [14] 
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Following the detecAon and classificaAon of objects, it may be appropriate to use 
convoluAonal neural networks. ConvoluAonal Neural Networks (CNNs) are a class of deep 
learning models parAcularly effecAve for processing data with grid-like topology, such as 
images. The CNN architecture is designed to automaAcally and adapAvely learn spaAal object 
hierarchies through backpropagaAon using mulAple building blocks such as convoluAonal 
layers, pooling layers, and fully connected layers. It is EASA in its document [14] that 
recommends the use of arAficial intelligence and machine learning to support the safety of air 
operaAons, especially in the field of aerodromes. 

Each network type offers disAnct methodologies for object detecAon and image 
processing. ConvoluAonal Neural Networks (CNN) are predominant in image segmentaAon 
and object detecAon tasks, employing region-based approaches (e.g., R-CNN) and single-shot 
detectors (e.g., SSD, YOLO) to idenAfy and classify objects within images [122], [123]. 

Recurrent Neural Networks (RNN), parAcularly in combinaAon with CNNs, are effecAve 
in video analysis, capturing temporal dynamics in image sequences. They process frames 
sequenAally, maintaining temporal dependencies crucial for tasks like acAon recogniAon and 
event detecAon. 

Graph Neural Networks (GNN), though not tradiAonally used for image processing, 
have been applied in relaAonal reasoning tasks, such as scene graph generaAon, where 
understanding object relaAonships is essenAal. 

Due to the properAes of network features of image processing capabiliAes, this thesis 
puts emphasis on ConvoluAonal Neural Networks (CNN) and Recurrent Neural 
Networks (RNN), with parAcular emphasis on the former, which are parAcularly ohen used for 
image segmentaAon and object detecAon. A summary of the selected network properAes 
depending on their architecture is presented in Table 2-2. 
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Table 2-2 Selected neural network architectures for image processing 

Network Type Architecture 
Image Processing 

Capabilities 

Feedforward Neural 
Networks (FNN) 

Input, hidden, and output layers; data 
flows unidirectionally 

Basic classification and 
regression 

Convolutional Neural 
Networks  (CNN) 

Convolutional layers, pooling layers, fully 
connected layers; exploits spatial 

hierarchies 

Image segmentation, object 
detection, feature extraction 

Recurrent Neural 
Networks (RNN) 

Sequential processing with hidden states; 
captures temporal dependencies 

Video analysis, sequence 
prediction in image frames 

Graph Neural 
Networks (GNN) 

Node feature aggregation from 
neighbours; relational reasoning 

Scene graph generation, 
object relations 
understanding 

• Feedforward Neural Networks 

Feedforward Neural Networks (FNN) represent the simplest form of neural networks, 
where data flows unidirecAonally from input to output through mulAple layers. An FNN 
typically consists of an input layer, several hidden layers, and an output layer. Each neuron in 
a layer is connected to every neuron in the subsequent layer, with no feedback  
connecAons [124]. The acAvaAon funcAon f introduces non-linearity, allowing the network to 
learn complex mappings. Common acAvaAon funcAons include ReLU, Sigmoid, and Tanh. FNNs 
are primarily used for classificaAon and regression tasks. However, they lack the ability to 
capture spaAal and temporal dependencies, making them less suitable for tasks involving 
sequenAal or structured data [124]. 

• ConvoluAonal Neural Networks  

ConvoluAonal neural networks (CNNs) have their origins in the study of the brain's 
visual cortex and have been applied to image recogniAon tasks since the 1980s [125]. In recent 
years, due to advancements in computaAonal power, the availability of extensive training 
datasets, and the opAmizaAon techniques for training deep neural networks [106], CNNs have 
anained superhuman performance on certain complex vision tasks. These networks are 
integral to image search engines, autonomous vehicles, automated video classificaAon 
systems, and more [125]. AddiAonally, CNNs have proven effecAve beyond visual percepAon, 
excelling in tasks such as voice recogniAon and natural language processing (NLP).  
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CompuAng the output of a neuron in a convoluAonal layer [125]: 

z-,J,K =	bK +��� x-',J',K' ⋅ wL,M,K%,K	with	 �
i' = u	 ⋅ 	 sN + fN − 1
		j' = 	v	 ⋅ 	 sO + fO − 1

8&%

K%I6

8'

MI6

8(

LI6

 (33) 

- z-,J,K is the output of the neuron located in row i, column j in feature map k of the 

convoluAonal layer (layer	l) 
- sN	and sOare the verAcal and horizontal strides, fN	and fO	are the height and width of 

the recepAve field, and f.' is the number of feature maps in the previous layer 
(layer	l	– 	1) 

-  x-',J',K' is the output of the neuron located in layer	l	– 	1, row i′, column j′, feature map 

k′ (or channel k′ if the previous layer is the input layer) 
- bK	is the bias term for feature map k	(in layer	l)  
- wL,M,K%,K is the connecAon weight between any neuron in feature map k of the layer	l 

and its input located at row u, column v (relaAve to the neuron’s recepAve field), and 
feature map k′. 
 

• Recurrent Neural Networks 

Recurrent neural networks (RNNs) represent a sophisAcated class of neural 
architectures capable of forecasAng future events to a certain extent [125]. These networks 
are adept at analysing temporal data, such as stock market prices, to provide 
recommendaAons on opAmal buying or selling Ames. In the context of autonomous driving, 
RNNs can predict vehicle trajectories, thereby enhancing safety by prevenAng potenAal 
collisions. Unlike tradiAonal neural networks that operate on fixed-size inputs, RNNs have the 
flexibility to process sequences of varying lengths, making them parAcularly valuable for tasks 
involving sentences, documents, or audio inputs. This capability is instrumental in natural 
language processing (NLP) applicaAons, including automaAc translaAon, speech-to-text 
conversion, and senAment analysis [125]. 

Furthermore, RNNs exhibit a remarkable degree of creaAve potenAal due to their 
predicAve abiliAes. For instance, they can be employed to generate musical composiAons  
by predicAng the most probable subsequent notes in a melody and iteraAvely selecAng from 
these predicAons. This method has been uAlized in projects such as Google's Magenta to 
produce novel melodies. Similarly, RNNs are capable of generaAng coherent sentences, 
crahing image capAons, and performing a variety of other generaAve tasks, demonstraAng 
their versaAlity and creaAve prowess in mulAple domains [125]. 
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Similar to feedforward neural networks, it is possible to determine the output of an 
enAre layer in a single step for an enAre mini-batch by uAlizing a vectorized version of the 
equaAon [125]. 

Y(") = 	ϕ)X(") ∙ 	W$ +	Y("%&) ∙ W' + b/ = 	ϕ	)0X(")				Y("%&)1 ∙ W + b/	with	W =	 6
W$
W'
7 (34) 

Outputs of a layer of recurrent neurons for all instances in a mini- batch [125]: 

- Y(P) is an m	 ×	n.QLR@.4 matrix containing the layer’s outputs at Ame step t for each 

instance in the mini-batch (m is the number of instances in the mini-batch and 
n.QLR@.4is the number of neurons) 

- X(P) is an m	 ×	n-.SLP4 matrix containing the inputs for all instances (ninputs is the 

number of input features) 
- W, is an n-.SLP4 	+ 	n.QLR@.4 matrix containing the connecAon weights for the inputs 

of the current Ame step 
- W/ is an n.QLR@.4 	× 	n.QLR@.4 matrix containing the connecAon weights for the out- 

puts of the previous Ame step 
- The weight matrices W,and W/	are ohen concatenated into a single weight matrix W 

of shape (n-.SLP4 	+ 	n.QLR@.4) 	× 	n.QLR@.4 
- b is a vector of size n.QLR@.4containing each neuron’s bias term. 

 

 

• Graph Neural Networks 

Graph Neural Networks (GNN) extend neural networks to graph-structured data, where 

relaAonships and interacAons among enAAes are crucial [126]. The basic operaAon involves 
aggregaAng features from neighbouring nodes.  

GNNs are pivotal for applicaAons requiring relaAonal reasoning, such as social network 
analysis, molecular biology, and recommendaAon systems. They have also been employed in 
scenarios like scene graph generaAon and object relaAons understanding, although they are 
less common in tradiAonal image processing [126]. 
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2.3. Embedded systems for vision monitoring tasks 

As part of the doctoral dissertaAon, selected Single Board Computers (SBC) and cameras that 
could be implemented in individual soluAons were analysed. The Figure 2-18 shows 
a schemaAc concept of the system, and in the subsequent parts of the chapter the parameters 
and capabiliAes of individual embedded systems and cameras are compared. The result of the 
system is the result of the Intelligent Video Analysis (IVA), as a use of advanced algorithms and 
machine learning techniques to automaAcally process and analyse video footage. 

 

 

Figure 2-18 Conceptual diagram of a video analysis system 

2.3.1. Possibili=es of processing video sequences in embedded systems 

Systems for idenAficaAon based on the recogniAon of individual characters and events in video 
sequences are becoming increasingly common and uAlized in various domains. They rely 
on both classical image processing methods and neural networks, whose usage is growing in 
popularity. Cameras are installed in cars and autonomous vehicles [127], [128], [129], [130], 
for urban surveillance purposes [5], as well as in specialized applicaAons such as airport 
runway light inspecAon [28], [29]. These systems assist operators in observing urban spaces or 
machine surroundings and in monitoring ongoing events, responding to them as necessary. 
In certain cases, they are capable of enArely eliminaAng the human factor by automaAcally 
issuing specific commands to other systems [47], [131]. 

 

 

 

Software

 
 
 
 
 

Vision camera Single Board 
Computer (SBC) IVA results
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For the research and tesAng phases, five specific Single Board Computers were selected 
and evaluated during tests:  

• Raspberry Pi 4B 

• Google Coral 

• NVIDIA Jetson Nano 

• NVIDIA Jetson Xavier AGX 

• NVIDIA Jetson Orin AGX. 
 

  
(a) (b) 

   
(c) (d) (e) 

 
Figure 2-19 Single Board Computers (SBC) used during experimental tests [44], [46]:  

(a) Raspberry Pi 4B, (b) Google Coral, (c) NVIDIA Jetson Nano, (d) NVIDIA Jetson Xavier AGX, and  
(e) NVIDIA Jetson Orin AGX 

First microcomputer, Raspberry Pi 4B (Figure 2-19a), is disAnguished by its powerful 
hardware, featuring a Broadcom BCM2711 64-bit Quad-Core Advanced RISC Machine (ARM) 
Cortex-A72 processor [132], which operates at a clock speed of 1.5 GHz and uAlizes the 
ARMv8-A architecture. This specific model is equipped with 8 GB of Low Power Double Data 
Rate 4 (LPDDR4) RAM, providing substanAal memory capacity for various applicaAons. One 
notable aspect of the Raspberry Pi 4B is its single power mode, simplifying its power 
management. The detailed specificaAons of this device, including its power requirements and 
other relevant technical data, are outlined in Table 2-3. This configuraAon ensures that  
the Raspberry Pi 4B can handle demanding tasks efficiently, making it suitable for a wide range 
of projects and applicaAons, including those requiring significant computaAonal power and 
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memory resources. Its advanced processor and ample RAM contribute to its versaAlity  
and performance, supporAng both basic and complex operaAons effecAvely. 

Table 2-3 Performance characterisHcs of Raspberry Pi 4B 8GB 

Property Mode 
- 

Max power [W] 6 
Online CPU 4 

CPU max frequency [MHz] 1500 
GPU TPC 4 

GPU max frequency [MHz] 500 
 

Figure 2-20 illustrates a performance comparison represented by individual models 
from the Raspberry Pi series [133]. 

 
Figure 2-20 Performance comparison of individual Raspberry Pi models [47] 

The analysis of the chart reveals that modules from Type A to Zero W exhibit similar 
computaAonal power, which significantly differs from the other models equipped with more 
efficient ARM architecture units. Models from 2 to 3 B+ show an increasing performance trend, 
but the 4B model outperforms its predecessors. Due to the necessity of processing vision 
sequences, the choice of this unit, characterized by the highest computaAonal power in the 
enAre Raspberry Pi family, was indispensable. 

Figure 2-21, on the other hand, presents a comparison of power consumpAon among 
the discussed Raspberry Pi family [133]. As the device's performance increases, so does its 
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energy demand. Raspberry Pi 4 B demonstrates the highest performance but also requires the 
highest power for operaAon and necessary computaAons. The latest models exhibit 
a significant increase in performance with limited energy demand at low loads compared to 
their predecessors. A more than threefold improvement in computaAonal power does not 
entail a significant increase in electricity consumpAon. 

 
Figure 2-21 Comparison of power consumpHon of Raspberry Pi models [47] 

The Google Coral plaEorm, depicted in Figure 2-19b, features a System-on-Module 
(SOM) chip that integrates various components essenAal for AI and machine learning 
applicaAons [134]. This SOM chip includes built-in eMMC memory and is powered by 
an integrated circuit based on the NXP i.MX 8M architecture. The NXP i.MX 8M incorporates 
a Quad-Core ARM Cortex-A53 processor along with an ARM Cortex-M4F core,  
offering a balance of high-performance processing and low-power efficiency. This architecture 
is well-suited for handling complex computaAonal tasks, including neural network inference 
and real-Ame data processing. 

One of the standout features of the Google Coral plaEorm is its Edge TPU (Tensor 
Processing Unit) accelerator coprocessor. The Edge TPU is specifically designed to accelerate 

machine learning inference tasks, enabling fast and efficient execuAon of neural network 
models directly on the device. This hardware acceleraAon significantly enhances the 
performance and responsiveness of AI applicaAons, making the Google Coral plaEorm ideal 
for edge compuAng deployments where low latency and real-Ame processing are criAcal [134]. 
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In terms of memory, the Google Coral plaEorm is equipped with 1 GB of RAM, providing 
sufficient memory capacity for running machine learning models and processing data. 
AddiAonally, it includes 8 GB of eMMC memory, which serves as onboard storage for storing 
applicaAons, models, and other data [134]. 

The combinaAon of powerful processing capabiliAes, hardware acceleraAon with the 
Edge TPU, and ample memory and storage capacity make the Google Coral plaEorm 
a compelling choice for developers and researchers working on AI-driven applicaAons. Its 
compact form factor and support for popular machine learning frameworks such as 

TensorFlow Lite further enhance its versaAlity and suitability for a wide range of edge 
compuAng and IoT applicaAons [134]. 

Nvidia Jetson Nano microcomputer was the third tested device (Figure 2-19c). This unit 
boasts a quad-core ARM A57 processor clocked at 1.43 GHz and 2 GB of 64-bit LPDDR4 RAM. 
Notably, Nvidia Jetson Nano is also equipped with a 128-core Maxwell graphics processor 
clocked at 921 MHz [135]. This configuraAon endows the unit with significantly enhanced 
capabiliAes for execuAng machine learning-based operaAons compared to the 
Raspberry Pi 4B. Depending on the neural network model uAlized, the performance of Nvidia 
Jetson Nano in this comparison may even exceed that of Raspberry Pi 4B by up to 
threefold [133], [136]. This microcomputer also offers operaAon in two modes: energy-
efficient (5W) and MAXN (10W). This allows users to balance performance and power 
efficiency based on their specific needs. Table 2-4 provides a summary of these features and 
power modes [137]. 

Table 2-4 Comparison of NVIDIA Jetson Nano operaHng modes 

Property Mode 
MAXN 5W 

Max power [W] 10 5 
Online CPU 4 2 

CPU max frequency [MHz] 1479 918 
GPU TPC 1 1 

GPU max frequency [MHz] 921.6 640 
RAM max frequency [MHz] 1600 1600 

 
The fourth microcomputer uAlized in the experiments was the NVIDIA Jetson Xavier 

AGX (Figure 2-19d). This powerful device features an octa-core, 64-bit ARM®v8.2 processor, 
complemented by an 8MB L2 cache and a 4MB L3 cache. It boasts a 512-core NVIDIA Volta™ 
GPU and 64 Tensor cores, which significantly enhance its parallel processing capabiliAes and 
make it excepAonally suited for AI and deep learning tasks [138]. AddiAonally, it includes two 
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NVIDIA Deep Learning Accelerator (NVDLA) engines, which further boost its ability to handle 
complex neural network computaAons efficiently. The Jetson Xavier AGX is equipped with 
32 GB of 256-bit LPDDR4x memory, providing ample space for handling large datasets and 
high-speed operaAons. It also includes 32 GB of embedded MulA-Media Card (eMMC) 
memory for onboard storage, ensuring that it can store and access data quickly and efficiently. 
From an experimental and pracAcal perspecAve, the NVIDIA Jetson Xavier AGX is parAcularly 
notable for its versaAlity in power management. It supports eight different power modes: 
MAXN, 10W, 15W, 30W, 30W 6CORE, 30W 4CORE, 30W 2CORE, and 15W DESKTOP. These 

modes allow users to tailor the device's performance and power consumpAon to suit specific 
needs, balancing computaAonal demands with energy efficiency. The details of these power 
modes are summarized in Table 2-5. This configurability makes the Jetson Xavier AGX an 
anracAve opAon for a variety of applicaAons, from power-sensiAve environments to scenarios 
requiring maximum computaAonal power. Its robust hardware and flexible power opAons 
enable it to deliver opAmal performance across a wide range of use cases, making it a valuable 
asset for experimental AI and roboAcs projects [137]. 

Table 2-5 Comparison of NVIDIA Jetson Xavier AGX 32GB operaHng modes 

Property 
Mode 

MAXN 10W 15W 30W 30W  
6CORE 

30W 
4CORE 

30W  
2CORE 

15W 
DESKTOP 

Max power [W] n/a 10 15 30 30 30 30 15 
Online CPU 8 2 4 8 6 4 2 4 

CPU max frequency [MHz] 2265.6 1200 1200 1200 1450 1780 2100 2188 
GPU TPC 4 2 4 4 4 4 4 4 

GPU max frequency [MHz] 1377 520 670 900 900 900 900 670 
RAM max frequency [MHz] 2133 1066 1333 1600 1600 1600 1600 1333 

The fihh single board computer, the NVIDIA Jetson Orin AGX (Figure 2-19e), is the latest 
innovaAon in NVIDIA's lineup of embedded AI compuAng devices. This cuyng-edge plaEorm 
marks a substanAal advancement in both performance and energy efficiency, making it 
a pivotal tool for the development and deployment of AI and roboAcs applicaAons. The Jetson 
Orin AGX offers high-performance computaAon capabiliAes within an energy-efficient and 
compact module, ideal for a wide range of AI-driven tasks. At the core of the NVIDIA Jetson 
Orin AGX is the Orin system-on-a-chip (SoC), which integrates next-generaAon GPU 
architecture, advanced ARM CPU cores, and high-speed memory technology. This combinaAon 
ensures that the Jetson Orin AGX delivers excepAonal computaAonal performance, capable of 
handling intensive AI workloads and complex algorithms with ease. The advanced GPU 
architecture enhances parallel processing capabiliAes, while the ARM CPU cores provide 
robust general-purpose processing power. AddiAonally, the high-speed memory technology 
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ensures rapid data access and processing, further boosAng the system's overall performance. 
This sophisAcated AI compuAng plaEorm is designed to support a variety of applicaAons, 
including autonomous machines, medical devices, industrial robots, and more. Its compact 
form factor does not compromise on power, making it a versaAle soluAon for developers 
seeking to implement AI and machine learning funcAonaliAes in their projects. The NVIDIA 
Jetson Orin AGX thus stands out as a significant leap forward in embedded AI compuAng, 
combining powerful performance with energy efficiency to meet the demanding needs of 
modern AI applicaAons. 

One of the key advantages of the Jetson Orin AGX is its support for a wide range  
of high-speed interfaces. It includes PCIe Gen 4 and USB4, which facilitate the connecAon of 
various peripheral devices, such as sensors, cameras, and other input/output devices. This 
versaAlity allows for the integraAon of mulAple components, enhancing the system's overall 
funcAonality and performance. AddiAonally, the unit features Gigabit Ethernet and Wi-Fi 
capabiliAes, ensuring fast and reliable data transmission, which is essenAal for networking 
applicaAons. 

In terms of energy efficiency, the Jetson Orin AGX stands out as the most efficient 
embedded device in this comparison. It supports four disAnct power modes: MAXN, 15W, 
30W, and 50W. These modes provide flexibility in power consumpAon and performance, 
enabling the device to adapt to different operaAonal requirements and conserve energy when 
full computaAonal power is not needed. 

The summarized specificaAons and capabiliAes of the Jetson Orin AGX are presented 
in Table 2-6, highlighAng its superior performance and versaAlity in supporAng high-speed data 
processing and connecAvity needs across various applicaAons [139]. 

Table 2-6 Comparison of NVIDIA Jetson Orin AGX 64GB operaHng modes 

Property 
Mode 

15W 30W 50W MAXN 
Max power [W] 15 30 50 n/a 

Online CPU 4 8 12 12 
CPU max frequency [MHz] 1113.6 1728 1497.6 2201.6 

GPU TPC 3 4 8 8 
GPU max frequency [MHz] 420.75 624.75 828.75 1301 
RAM max frequency [MHz] 2133 3200 3200 3200 

AddiAonally, to compare the performance of embedded systems, a virtual machine was 
presented. The uAlizaAon of a robust virtual machine with advanced hardware specificaAons 
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provided a computaAonal environment conducive to conducAng comprehensive laboratory 
tesAng and analysis. The Intel Core i7-7700HQ CPU, with its high clock speed and mulAple 
cores, offered significant processing power, enabling efficient execuAon of complex algorithms 
and simulaAons. The substanAal RAM capacity of 15.6 GB ensured ample memory resources 
for handling large datasets and running memory-intensive applicaAons without performance 
degradaAon. This was parAcularly advantageous for processing and analysing the vast amount 
of data generated during experimental tesAng. The SVGA3D graphics card, hosted by the 
NVIDIA GeForce GTX 1050Ti, provided enhanced graphical capabiliAes, facilitaAng  

the visualizaAon of experimental results with high fidelity and detail. This was essenAal for 
accurately interpreAng and analysing vision data, such as images and videos, obtained from 
the embedded systems under evaluaAon. The choice of Ubuntu 18.04.5 LTS 64-bit as the 
operaAng system offered stability, security, and compaAbility with a wide range of sohware 
tools and libraries commonly used in scienAfic and engineering applicaAons. AddiAonally,  
the 64-bit architecture allowed for efficient uAlizaAon of system resources and support  
for handling large datasets and complex computaAons. 

The equipment parameters are summarized in Table 2-7 based on [132], [135], [140]. 
This evaluaAon aimed to select a device suitable for developing a measurement plaEorm to 
assess the operaAonal quality of airport lamps. Key criteria included compact size and high 
performance. To compare the performance of three devices under consideraAon, benchmarks 
were conducted using two different benchmarks: TTSIOD 3D Renderer (uAlizing Phong 
Rendering with Soh-Shadow Mapping) and PyBench (evaluaAng Total For Average Test Times). 
In the former benchmark, a higher FPS value indicates superior performance, while in the 
laner, increased compuAng Ame signifies inferior performance. In both benchmarks, a virtual 
machine exhibited the best performance, serving as a benchmark for workstaAon 
performance. Notably, the Nvidia Jetson Nano outperformed the others in the TTSIOD 3D 
Renderer benchmark, owing to its superior graphics processor. Conversely, the Raspberry Pi 4 
Model B showcased a more efficient CPU processor, as evidenced by its performance in the 
PyBench benchmark. 

A criAcal aspect in designing such devices is evaluaAng computaAonal efficiency. This 
efficiency, in the context of video sequence analysis, is directly influenced by factors like image 
resoluAon and the number of frames per second that can be processed. Another key factor is 
power consumpAon; it needs to be minimized to reduce the overall size and weight of the 
device, predominantly the baneries, and to lessen the frequency of recharging. 

The mean frames per second (FPS) was computed using equaAon (35), where the FPS 
variable represents the result, n denotes the total number of video frames staAsAcally 
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measured, and T signifies the total processing Ame for the enAre set of n frames executed by 
the algorithm. 

𝐹𝑃𝑆///// = 	
n
T (35) 

  
Table 2-7 Performance comparison of virtual machine and Single Board Computers 

Property Virtual machine Raspberry Pi 4 
model B 

NVIDIA Jetson 
Nano 

Processor 

Intel Core i7-
7700HQ CPU 

2.80GHz – 3.8 GHz 
× 4 

BCM2711 Cortex 
A72 

Quad Core 
1.5 GHz 

ARM Cortex A57 
1.43GHz 

RAM 15.6 GB 8 GB 4 GB 

Graphics 

SVGA3D (host: 
NVIDIA GeForce 

GTX 1050Ti (4096 
MB memory) 

Broadcom 
VideoCore VI 

GPU NVIDIA 
Maxwell 128-core 

NVIDIA CUDA 

Operating system Ubuntu 18.04.5 
LTS 64-bit 

Raspbian Buster 
10 

Ubuntu 18.04 LTS 
64-bit 

TTSIOD 3D Renderer 
Phong Rendering With Soft-Shadow 

Mapping 
146.04 FPS 32.75 FPS 41.25 FPS 

PyBench 
Total For Average Test Times 1345 milliseconds 5679 milliseconds 7084 milliseconds 

Table 2-8 presents an overall comparison of the devices used at work, showing the most 
important technical data based on [132], [134], [135], [138], [139].   
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Table 2-8 Comparison of parameters of Single Board Computers used in dissertaHon 

Property 
Raspberry Pi 

4B 
Google Coral 

NVIDIA 
Jetson  
Nano 

NVIDIA 
Jetson 

Xavier AGX 

NVIDIA 
Jetson  

Orin AGX 

CPU 
Quad-core 
Cortex-A72 
(ARM v8) 

Quad-core 
Cortex-A53 
(ARM v8) 

Quad-core 
ARM Cortex-

A57 

8-core NVIDIA 
Carmel ARM 
v8.2 64-bit 

12-core ARM 
Cortex-A78AE 

v8.2 

GPU 
Broadcom 

VideoCore VI 

GC7000 Lite 
Graphics 
Processor 

128-core 
Maxwell 

512-core 
Volta with 

Tensor Cores 

2048-core 
Ampere with 
Tensor Cores 

RAM 
2GB, 4GB, or 
8GB LPDDR4 

1GB LPDDR4 4GB LPDDR4 
32GB 

LPDDR4x 
32GB LPDDR5 

Storage microSD 
8GB eMMC, 

microSD 

microSD, 
16GB eMMC 

(optional) 
32GB eMMC 64GB eMMC 

AI 
Performance 

N/A 
4 TOPS (Edge 

TPU) 
0.5 TFLOPS 

(FP16) 
32 TOPS 
(INT8) 

200 TOPS 
(INT8) 

Connectivity 

2 × USB 3.0,  
2 × USB 2.0, 

HDMI, Gigabit 
Ethernet, Wi-
Fi, Bluetooth 

1 × USB 3.0, 
HDMI, Gigabit 

Ethernet 

4 × USB 3.0, 
HDMI, Gigabit 

Ethernet 

4 × USB 3.1,  
2 × HDMI,  
2 × Gigabit 
Ethernet 

4 × USB 3.2,  
2 × HDMI,  
2 × Gigabit 
Ethernet 

Camera 
Interface 

2-lane MIPI 
CSI-2 

4-lane MIPI 
CSI-2 

2-lane MIPI 
CSI-2 

16-lane MIPI 
CSI-2 

16-lane MIPI 
CSI-2 

Power 
Consumption 

3W idle, 7.6W 
max 

5-10W 5-10W 
30W typical, 

50W max 
40W typical, 

60W max 

Dimensions 
85.6 × 56.5 

mm 
88 × 60 × 24 

mm 
100 × 80 × 29 

mm 
105 × 105 × 72 

mm 
100 × 87 × 65 

mm 

Weight 46g 45g 140g 280g 700g 

Special 

Features 

Dual monitor 
support, GPIO 

pins 

Integrated 
Edge TPU for 

ML tasks 

Low-power AI 
computing 

Advanced AI 
capabilities, 

Multiple 
camera 
support 

High-end AI 
and robotics 
applications 

As noted, the advancements in microcontroller technology have paved the way for the 
implementaAon of increasingly sophisAcated image processing algorithms and the handling of 
complex video sequences. These technological strides are parAcularly beneficial as they 
enable the creaAon of portable devices that can be powered by baneries due to their low 
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energy consumpAon. The development and design of prototypes for mobile vision processing 
soluAons are greatly aided by the availability of a wide array of minicomputers from  
well-known families such as Raspberry Pi and NVIDIA Jetson. It's also noteworthy that 
industrial versions of these minicomputers can be uAlized, which offer not only professional-
grade performance but also durability for long-term operaAons [141]. 

Typically, manufacturers of evaluaAon plaEorms provide performance metrics for the 
microprocessors they use. Specialized websites (for example, on the [142] website) offer 
comparisons of various performance metrics such as integer math operaAons, floaAng-point 

math operaAons, finding prime numbers, sorAng random strings, data encrypAon, and data 
compression. These metrics, however, are ohen not directly comparable to image processing 
performance, especially when the algorithms in quesAon include condiAonal instrucAons. 

Moreover, the assessment of computaAonal performance is detailed on websites  
like [143], where the focus is on popular deep neural network soluAons. Performance results 
are usually presented in terms of Samples/sec for various NVIDIA Jetson models, factoring in 
power requirements. It's important to note that these neural networks typically operate at 
relaAvely low resoluAons, and the consumpAon analysis ohen does not consider the different 
power supply modes available. For instance, informaAon is available indicaAng that each 
NVIDIA Jetson module was tested at maximum performance seyngs (MAXN). 

The efficiency of video sequence processing has also been discussed extensively  
in scienAfic literature. For example, the [144] paper reviews various algorithms including  
the Canny edge detecAon algorithm, road line tracking, face and eye recogniAon, moAon 
detecAon, and object detecAon. The Raspberry Pi 4 served as the experimental plaEorm in 
this study, with maximum power and frequency values for the CPU and GPU provided, 
although specific values for individual algorithms were not detailed. AddiAonally, the 
Raspberry Pi 4 module was uAlized in the research documented in manuscript [145], where 
the author invesAgated frame rate, frame transfer delay, and frame processing Ame, though 
energy consumpAon was not explored. 

Performance analyses for the NVIDIA Jetson family modules can also be found in 
various publicaAons. For instance, paper [146] describes a vision system designed to recognize 
fiducial markers including the ARTag type. This system comprises two Logitech HD Pro Webcam 
C920 cameras and a NVIDIA Jetson TX2 module that handles digital image processing. 
Performance and power consumpAon of the NVIDIA Jetson Orin AGX are analysed  
in manuscript [147], focusing on mean Average Precision (mAP) as a funcAon of FPS and 
different image sizes. The task of line detecAon using the NVIDIA Jetson Xavier NX is discussed 
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in [148], where the authors proposed a CNN Encoder-Decoder network architecture, tesAng 
their soluAon at various image resoluAons up to 1280 × 720. In these studies, energy 
consumpAon was not a focus. 

A comprehensive benchmark analysis of NVIDIA Jetson PlaEorms (Nano, TX2, NX, and 
AGX) is presented in paper [149]. This study includes measurements of resource usage  
and power consumpAon without considering the impact of image resoluAon. Furthermore, 
performances of single-board computers such as the NVIDIA Jetson Nano, NVIDIA Jetson TX2, 
and Raspberry PI4, using a ConvoluAonal Neural Network (CNN) algorithm created with 

a fashion product images dataset, are compared in [136]. The authors examined metrics like 
processing power (CPU, GPU), memory (RAM, cache), power consumpAon, and cost. However, 
they did not conduct an analysis of frame rate processing speed (FPS). 

2.3.2. Parameters evalua=on of cameras in embedded systems 

The advancement of embedded systems has facilitated sophisAcated real-Ame analysis of 
video sequences. This progress is largely anributed to TinyML [150], which has enabled the 
integraAon of machine learning into small devices that are constrained by efficiency and power 
consumpAon. To fully exploit the potenAal of this technology, one must possess 
a comprehensive understanding of its applicaAons, algorithms, hardware, and sohware. In 
parAcular, video signal processing necessitates the use of relaAvely high-performance  
modules [46]. 

Vision systems equipped with cameras for acquiring video data are extensively used in 
various fields. They are integral to autonomous vehicles and cars [127], [128], city monitoring 
systems [5], and specialized applicaAons, such as the measurement plaEorm for tesAng the 
quality of airport lamps [28]. This plaEorm is designed to measure the luminous efficiency of 
in-pavement lamps at airports, assessing their wear and tear. The system then classifies each 
lamp, determining whether it is unusable or needs replacement. The decrease in luminous 
efficiency can be anributed to adverse weather condiAons and the rouAne operaAon of 
runways and taxiways, especially during snow removal acAviAes. 

Embedded systems that facilitate the analysis of data from cameras offer the advantage 
of achieving saAsfactory results while maintaining relaAvely low purchase costs compared to 
tradiAonal compuAng units [30], [47]. These systems support connecAvity with vision cameras 
through both the MIPI CSI-2 and USB interfaces. A detailed comparison of the features of these 

interfaces is presented in Table 2-9 [151]. 
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Table 2-9 MIPI Camera vs USB Camera – a feature-by-feature comparison 

Features MIPI CSI-2 USB 3.0 

Availability on SoC Many (Typically 6 lanes available) On high-end SoCs 

Bandwidth 
320 MB/s/lane 1280 MB/s  

(with 4 lanes) 
400 MB/s 

Cable Length < 30 cm < 5 meters 

Space Requirements Low High 

Plug-and-play Not supported Supported 

Development Costs Medium to High Low 

To compare the cameras, a standard ISO 12233 test chart [152] can be uAlized. This 
chart is widely used to determine the resolving power of a camera sensor and/or its lens under 
laboratory condiAons. It is a benchmark tool frequently employed in various tests of 
photographic equipment due to its precision and reliability. The ISO 12233 test chart helps in 
assessing the camera's ability to capture fine details and its overall image quality.  

The ISO 12233 test chart is a comprehensive tool featuring numerous panerns that 
challenge a camera's resolving power, contrast, and clarity. By analysing how well a camera 
can reproduce these panerns, one can evaluate its performance in terms of sharpness and 
detail resoluAon. This makes it an essenAal component in the comparison of different cameras, 
especially when determining their suitability for specific applicaAons such as machine learning 
and image processing within embedded systems. 

In pracAcal terms, using the ISO 12233 test chart involves capturing images of the chart 
under controlled lighAng condiAons. These images are then analysed to measure various 
parameters such as spaAal resoluAon, line pairs per millimetre (lp/mm), and overall image 
fidelity. This standardized approach ensures that the camera's capabiliAes are accurately 
assessed, providing a clear benchmark for comparing different models. 

Figure 2-22 presents a visual representaAon of the ISO 12233 test chart, showcasing 
the various panerns and details used for tesAng. This figure is crucial for understanding the 
specific elements that are evaluated during the camera comparison process. 
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Figure 2-22 ISO 12233 Standard Test Chart [152] 

The smooth variaAon in the thickness of the test field lines on the ISO 12233 chart 
allows for precise idenAficaAon of the point at which the lens (and the sensor) can no longer 
resolve details. ResoluAon is measured in lines per picture height (lph). For instance, if the 
most densely packed but sAll discernible lines on the test field correspond to the number 16, 

it indicates that 1600 lines can be recognized along the enAre height of the horizontal frame. 
It's important to note that verAcal and horizontal resoluAons are typically not the same, and 
the smaller of the two readings is considered the test result. 

To determine the resoluAon score, the results need to be processed by converAng 
the highest achieved resoluAon in the frame centre to a 1-megapixel matrix. This conversion 
involves dividing the result by R, where R represents the number of millions of pixels 
(megapixels) in the camera sensor used for the test. This standardizaAon allows for direct 
comparison of image resoluAon obtained from cameras with sensors of different resoluAons. 
By converAng the resoluAon to a 1-megapixel standard, one can accurately assess the 
performance of the lens and camera combinaAon. This method also facilitates the evaluaAon 
of whether using a camera with a higher resoluAon sensor would yield proporAonally higher 
image resoluAon. EssenAally, this conversion provides a clear understanding of the efficiency 
and effecAveness of the lens and camera together, independent of the sensor’s pixel count.  

This approach is parAcularly useful in embedded system applicaAons where high image 

quality is criAcal, but resources may be limited. By understanding the actual resolving power 
of the camera system, developers can make informed decisions about the best equipment to 
use for specific tasks, such as machine learning and image analysis. The conversion ensures 
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that the performance of different cameras can be objecAvely compared, ensuring that the 
chosen system meets the necessary requirements for high-quality vision data processing. 

During laboratory tests, four cameras were evaluated, each offering disAnct 
specificaAons tailored to various applicaAons. Below are the characterisAcs of each camera. 

  
(a) (b) 

  
(c) (d) 

Figure 2-23 Selected cameras [46]: (a) Raspberry Pi Camera HD v2 with a viewing angle of 62.2°, 
(b) Waveshare 16579 160°, (c) Camera IMX477 with 6mm CS-Mount lens and (d) Camera Logitech 

C922 

The camera modules are equipped with the IMX219 sensor (Figure 2-23a, b), featuring 
a resoluAon of 8 megapixels and a viewing angle of either 62.2 degrees (Figure 2-23a) or 
160 degrees (Figure 2-23b). These cameras offer the capability to record video sequences in 
mulAple modes, including 1080p30, 720p60, and 640 × 480p90. Both cameras are designed 
with a CSI (Camera Serial Interface) connector, facilitaAng easy integraAon with compaAble 
hardware plaEorms. However, despite having idenAcal sensors, camera (Figure 2-23b) is not 
compaAble with the Raspberry Pi 4B and Google Coral microcomputers. While both cameras 
share the same sensor, compaAbility issues may arise due to differences in firmware, driver 
support, or interface configuraAons between the two camera modules. As a result, camera 
(Figure 2-23b) cannot be uAlized with the Raspberry Pi 4B and Google Coral microcomputers. 

To address this compaAbility issue, relevant libraries have been developed and made 
available for servicing these camera modules via devices from the NVIDIA Jetson family [153]. 
The NVIDIA Jetson family of microcomputers provides robust support for a wide range of 
camera modules and peripherals, offering developers a versaAle plaEorm for building AI and 
computer vision applicaAons. By leveraging these libraries and the NVIDIA Jetson plaEorm, 
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users can effecAvely uAlize camera modules with the IMX219 sensor, ensuring seamless 
integraAon and opAmal performance in their projects. 

The camera housed in a protecAve metal casing features an IMX477 sensor 
(Figure 2-23c), boasAng a resoluAon of 12.3 megapixels in the 1/2.3" format, with a maximum 
image resoluAon of 4056 × 3040 pixels. It is equipped with a 6 mm focal length lens. To 
facilitate connecAvity with microcomputers, a CSI to HDMI adapter is employed. This setup 
enables recording in two primary modes: 60 frames per second (FPS) in full 4k2k resoluAon 
and 60 FPS in 1080p [154]. 

On the other hand, the Logitech C922 camera (Figure 2-23d) offers a maximum 
resoluAon of 1080p at 30 FPS and 720p at 60 FPS, with a viewing angle of 78 degrees. This 
camera is operated via the USB interface [155]. 

Both cameras serve disAnct purposes and offer unique capabiliAes. The camera with 
the IMX477 sensor, with its high resoluAon and 60 FPS recording capability in full 4k2k 
resoluAon, is well-suited for applicaAons requiring detailed imaging and high frame rates, such 
as surveillance, scienAfic imaging, and video producAon. 

Conversely, the Logitech C922 camera, with its USB interface and maximum resoluAon 
of 1080p at 30 FPS, is ideal for video conferencing, live streaming, and casual video recording 
applicaAons. Its wide viewing angle of 78 degrees provides a good field of view for capturing 
group seyngs or wider scenes. 

Table 2-10 presents an overall comparison of cameras used in dissertaAon, showing the 
most important technical data based on [153], [154], [155]. 
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Table 2-10 Comparison of parameters of cameras used in Single Board Computers 

Parameter 
Raspberry Pi 

Camera HD v2 
Waveshare 

16579 

Camera IMX477 
with 6mm CS-
Mount Lens 

Logitech C922 

Image Sensor Sony IMX219 
OmniVision 

OV5647 
Sony IMX477 HD CMOS 

Resolution 
8 Megapixels  
(3280 × 2464) 

5 Megapixels  
(2592 × 1944) 

12.3 Megapixels 
(4056 × 3040) 

2 Megapixels  
(1920 × 1080) 

Lens Fixed Focus Fisheye Lens 
6mm CS-Mount 

Lens 
Autofocus 

Field of View (FOV) 62.2° 160° 
~66° (depending on 
lens configuration) 

78° 

Max Frame Rate 30 FPS (at 1080p) 30 FPS (at 1080p) 60 FPS (at 1080p) 
30 FPS (at 1080p) / 

60 FPS (at 720p) 

Video Modes 
1080p30, 720p60, 
640 × 480p60/90 

1080p30, 720p60, 
640 × 480p60/90 

1080p60, 4K15 1080p30, 720p60 

Connectivity CSI-2 CSI-2 CSI-2 USB 2.0 

Dimensions 25 × 23 × 9 mm 25 × 24 × 21 mm 
38 × 38 × 18.4 mm 

(excluding lens) 
95 × 71 × 43 mm 

Weight 3g 10g 
11.5g (excluding 

lens) 
162g 

Special Features - 
Wide-angle view, 
Infrared support 

High resolution, 
Manual focus lens 

Built-in 
microphone, Low-

light correction 

The use of video cameras also requires calibraAon of selected devices, because they 
ohen introduce image distorAons. The two main types of distorAon are radial distorAon and 
tangenAal distorAon. Radial distorAon causes straight lines to appear curved. The radial 
distorAon becomes greater the further the points are from the centre of the image. 

Radial distorAon can be represented by the following equaAon [156]: 

𝑥T-4P@RPQT = 𝑥(1 + 𝑘6𝑟2 + 𝑘2𝑟U + 𝑘V𝑟W) (36) 

𝑦T-4P@RPQT	 = 	𝑦(1 + 𝑘6𝑟2 + 𝑘2𝑟U + 𝑘V𝑟W) (37) 

where: 

• 𝑘 – lens distorAon coefficients associated with radial distorAon. These 
parameters quanAfy the extent to which radial distorAon affects the image. 
Higher values of these coefficients correspond to increased distorAon, 
parAcularly at the edges of the image. 
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• 𝑟 – the distance of an image point from the opAcal centre of the lens (distorAon 
centre), measured in image coordinates (in pixels or normalized units). This 
distance is criAcal, as radial distorAon intensifies with increasing distance from 
the image centre.  

TangenAal distorAon arises due to the misalignment of the camera lens with respect to 
the imaging plane. This misalignment results in certain regions of the captured image 
appearing closer than anAcipated. The extent of tangenAal distorAon can be quanAfied as 
follows [156]: 

𝑥T-4P@RPQT = 𝑥 +	[2𝑝6𝑥𝑦 +	𝑝2(𝑟2 + 2𝑥2)] (38) 

𝑦T-4P@RPQT = 𝑦 +	[	𝑝6(𝑟2 + 2𝑥2) + 	2𝑝2𝑥𝑦] (39) 

In summary, it is essenAal to determine five specific parameters, referred to as 
distorAon coefficients, which are expressed as follows [156]: 

Distortion	coefficients = (	𝑘6		𝑘2		𝑝6		𝑝2		𝑘V) (40) 

where: 

• 𝑝	– coefficients of tangenAal distorAon. TangenAal distorAon arises when the lens 
is not perfectly aligned with the image plane. These parameters characterize this 
non-linear distorAon, which depends on the posiAon of the point within the image. 

2.3.3. Comparison of the quality of micro cameras in single board 
computers 

Due to the need to use a vision system in the proposed soluAon, it was jusAfied to assess the 
quality of micro cameras in single board computers, capable of analysing the image of  
the tested lamps and prisms. As part of laboratory tests, a comprehensive evaluaAon was 
conducted involving a series of photographs and video recordings of video sequences based 

on a standard ISO 12233 test chart [46].  

The cameras were meAculously posiAoned at appropriate distances to enable 
a thorough invesAgaAon of lens distorAon and image detail across various regions, including 
the centre and peripheral areas. Subsequently, a subjecAve assessment of the acquired 
resoluAons was conducted for each camera seyng and selected areas of interest.  

To ensure consistent and uniform illuminaAon, an Aputure Amaran 100x studio lamp 
paired with the Godox QR-P90 parabolic sohbox was uAlized. This setup facilitated  
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the acquisiAon of high-quality images with uniform lighAng condiAons, crucial for accurate 
assessment. 

Figure 2-24 provides a visual comparison of the images obtained from the tested micro 
cameras, showcasing the differences in image quality, clarity, and resoluAon. This comparaAve 
analysis allows for a qualitaAve evaluaAon of each camera's performance under controlled 
condiAons. Table 2-11 shows a comparison of EXIF data from the obtained images of the tested 
cameras. 

  

(a)  (b)  

  

(c)  (d)  
Figure 2-24 Comparison of ISO 12233 standard test chart images obtained with tested cameras [46]: 
(a) Image from Raspberry Pi Camera HD v2, (b) Image from Waveshare 16579 camera, (c) Image from 

Camera IMX477 with 6 mm CS-Mount lens, (d) Image from Logitech C922 camera 
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Table 2-11 Comparison of EXIF data from the obtained images of the tested cameras 

Camera 
model 

Raspberry Pi 
Camera HD v2 

Camera 
Waveshare 

16579 

Camera IMX477 with 
6mm CS-Mount lens 

Camera 
Logitech 

C922 

Colour 
space 

RGB RGB RGB RGB 

Colour 
profile 

sRGB I 
EC61966-2.1 

sRGB 
IEC61966-2.1 

sRGB  
IEC61966-2.1 

sRGB 
IEC61966-2.1 

Focal 
length 

3 mm 6 mm 6 mm 3.7 mm 

Aperture 
value 

f/2.0 f/2.35 f/2.0 f/2.0 

Exposure 
time 

1/64 1/64 1/64 1/64 

ISO 50 50 50 50 

Furthermore, Figure 2-25 presents a detailed comparison of a selected fragment from 
the acquired images, focusing on specific areas of interest. This close-up comparison enables 
a more granular assessment of image detail, allowing for the idenAficaAon of any distorAons 
or arAfacts present in the captured images. 

(a) 

 

(b) 

(c) 

(d) 

Figure 2-25 Comparison of image fragments of test charts obtained with the tested cameras [46] 

 Among the tested cameras, the Waveshare 16579 camera exhibited the most 
pronounced drawbacks, parAcularly when using the wide-angle lens with a viewing angle of 
160° (Figure 2-25b). While it demonstrated good sharpness and quality in the frame centre, 
the image quality significantly degraded outside of this area, characterized by unreadable 
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details and high vigneyng. AddiAonally, the camera tended to produce reddish photos in 
daylight due to the absence of an IR filter in the CCD sensor. However, this lack of an IR filter 
enabled the camera to capture images in low-light condiAons using IR LEDs. Consequently, the 
suitability of this camera for applicaAons requiring high image detail appears limited. 

On the other hand, the Logitech C922 camera yielded saAsfactory results, but its 
configuraAon opAons were restricted due to its design primarily intended for webcam use. 
Although saAsfactory results were achieved during tesAng, inconsistencies were observed, 
making reproducibility challenging (Figure 2-25d). 

In contrast, the Raspberry Pi Camera HD v2 delivered high-quality images with detailed 
resoluAon (Figure 2-25a). Notably, it offers comprehensive manual configuraAon opAons, 
making it a popular choice among users. However, its design limitaAons preclude the use of 
universal lenses. 

The IMX477 camera, equipped with a 6 mm CS-Mount lens, emerged as the top 
performer for the applicaAons discussed in this dissertaAon, as evidenced by the resulAng 
image (Figure 2-25c). Its design allows for the uAlizaAon of professional DSLR lenses, such as 
those from the Canon EOS EF line, enabling customized adaptaAon to the specific 
requirements of systems tesAng mechanical wear of airport lamps. Moreover, the camera 
features a durable housing and supports connecAon via HDMI interface with a converter to 
CSI, simplifying its integraAon into the measuring plaEorm for quality tesAng of airport lamps. 
This comprehensive set of features and capabiliAes makes the IMX477 camera an ideal choice 
for demanding applicaAons where image quality, adaptability, and reliability are paramount. 

2.4. Methods for assessing the effec-veness of algorithms 

The evaluaAon of algorithm performance is crucial in computer science, parAcularly in the field 
of machine learning and data mining [157]. One of the most informaAve tools for this purpose 
is the confusion matrix, which provides a detailed breakdown of the classificaAon outcomes. 
This chapter delves into the various aspects of the confusion matrix and explores different 
metrics derived from it to assess the effecAveness of algorithms [108], [157], [158]. 
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A confusion matrix is a table used to describe the performance of a classificaAon model 
on a set of test data for which the true values are known. It compares the actual target values 
with those predicted by the model [158]. The matrix itself is a 2 × 2 table for binary 
classificaAon, with the following elements: 

• True PosiAves (TP): Instances correctly classified as posiAve 

• True NegaAves (TN): Instances correctly classified as negaAve 

• False PosiAves (FP): Instances incorrectly classified as posiAve (Type I error) 

• False NegaAves (FN): Instances incorrectly classified as negaAve (Type II error). 

This matrix helps in understanding not only the accuracy of a model but also its ability 
to differenAate between classes. 

The confusion matrix allows for the calculaAon of several criAcal performance metrics, 
including [158]: 

• Accuracy: 

Accuracy =	
TP + TN

TP + TN + FP + FN
 (41) 

Accuracy measures the proporAon of total correct predicAons. However, it can be 
misleading in cases of class imbalance. 

• Precision (PosiAve PredicAve Value): 

Precision =	
TP

TP + FP
 (42) 

Precision indicates the percentage of posiAve predicAons that are actually correct. It is 
parAcularly useful when the cost of false posiAves is high. 

• Recall (SensiAvity or True PosiAve Rate): 

Recall =	
TP

TP + FN
 (43) 

Recall measures the ability of the model to idenAfy all relevant instances. It is crucial in 
contexts where missing a posiAve case has significant consequences. 
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• Specificity (True NegaAve Rate): 

Specificity =	
TN

TN + FP
 (44) 

Specificity evaluates the ability of the model to idenAfy negaAve instances correctly. It 
is important in situaAons where the cost of false posiAves is high. 

• F1 Score: 

F1 = 2	 ∗ 	
Precision	 ∗ Recall
Precision + Recall 

(45) 

The F1 score provides a balance between precision and recall, especially useful when 
dealing with imbalanced datasets. 

• Balanced Accuracy: 

Balanced Accuracy =	
Sensitivity + Specificity

2  (46) 

This metric accounts for class imbalance by averaging the sensiAvity and specificity. 

In addiAon to the basic metrics, several other measures can provide deeper insights 
into the model's performance [158]: 

• PosiAve PredicAve Value (PPV) and NegaAve PredicAve Value (NPV): 

PPV =	
TP

TP + FP
 (47) 

  

NPV =	
TN

TN + FN
 (48) 

These values help understand the probability that posiAve and negaAve predicAons are 
correct, respecAvely. 

• ROC Curve and AUC (Area Under the Curve): 

The ROC curve plots the true posiAve rate against the false posiAve rate at various 
threshold seyngs. The AUC represents the likelihood that the model ranks a randomly chosen 
posiAve instance higher than a randomly chosen negaAve one. 
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• Precision-Recall Curve: 

ParAcularly useful in imbalanced datasets, this curve plots precision against recall. It is 
ohen more informaAve than the ROC curve when the posiAve class is rare. 

Despite its usefulness, the confusion matrix has limitaAons. For instance, it does not 
account for the costs associated with different types of errors. Moreover, metrics such as 
accuracy can be misleading in highly imbalanced datasets, where precision, recall, and the F1 
score might provide a clearer picture of the model's performance. 

The confusion matrix and its derived metrics are indispensable tools for evaluaAng the 
performance of classificaAon algorithms. By providing detailed insights into the true posiAves, 
true negaAves, false posiAves, and false negaAves, it allows researchers to fine-tune models 
and achieve bener accuracy, precision, and recall. Understanding and appropriately applying 
these metrics is criAcal in developing effecAve and reliable algorithms across various 
applicaAons in computer science [108], [157], [158].  

• Mean Average Precision (mAP): 

Mean Average Precision (mAP) is a standard metric in machine learning for assessing 
the accuracy of a model's predicAons, parAcularly in object detecAon tasks. This metric 
evaluates the extent to which the predicted bounding boxes for objects align with the actual 
ground truth boxes. It does so by considering both precision, which is the raAo of correctly 
idenAfied objects (true posiAves) to the total number of objects idenAfied (both true posiAves 
and false posiAves), and recall, which is the raAo of correctly idenAfied objects to the total 
number of actual objects present (true posiAves and false negaAves) [159]. 

• Mean Average Precision 50-95 (mAP50-95): 

mAP50-95 denotes the mean Average Precision computed across mulAple IntersecAon 
over Union (IoU) thresholds, usually ranging from 0.50 to 0.95, with increments of 0.05. IoU is 
a metric that measures the degree of overlap between predicted bounding boxes and ground 
truth boxes in object detecAon tasks. The mAP50-95 metric offers a more detailed and rigorous 
evaluaAon of a model's performance by accounAng for different levels of overlap, thereby 
providing a more stringent and nuanced assessment than mAP computed at a single IoU 
threshold, such as mAP50 [159]. 
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Chapter 

3. Detec1on of Foreign Object Debris 
3.1. FOD detec-on system concept 

The system concept revolves around a camera and an embedded device installed within the 
vehicle of airport services, traversing criAcal areas of manoeuvring areas. The primary 
objecAve is to enhance the detecAon of Foreign Object Debris (FOD) by enabling the system's 
deployment across mulAple vehicles, thereby expanding coverage and improving safety 
protocols. 

Figure 3-1 illustrates a block diagram outlining the FOD detecAon system's workflow. 
The process iniAates with video capture facilitated by a camera affixed to the vehicle's hood. 
Subsequently, the captured video signal is transmined to the embedded system, where 
a sequence of operaAons unfolds. IniAally, the video undergoes preprocessing to enhance its 
quality and opAmize for further analysis. Following preprocessing, the system executes FOD 
detecAon algorithms, idenAfying and isolaAng objects of interest within the captured footage. 
Once potenAal FOD items are idenAfied, the system proceeds with classifying these objects to 
determine their nature and associated risks. 

In the final phase of the workflow, upon successful detecAon and classificaAon of FOD, 
the user is promptly noAfied, signalling the need for immediate removal or miAgaAon 
measures. This real-Ame feedback mechanism ensures swih response and intervenAon, 
thereby miAgaAng potenAal hazards and minimizing operaAonal disrupAons at the airport. 

 

Figure 3-1 Block diagram of informaHon processing in the proposed FOD detecHon system 

 By integraAng advanced imaging technology with embedded processing capabiliAes, 
the FOD detecAon system offers a proacAve approach to enhancing safety protocols in airport 
operaAons. Its ability to seamlessly integrate into exisAng vehicle fleets and provide Amely 
alerts underscores its potenAal to bolster operaAonal efficiency and ensure the integrity of 
runway surfaces, ulAmately contribuAng to safer air travel experiences.  

Video capture Image 
preprocessing

Detection of 
FOD

Classification 
of detected 

FOD

Alert for the 
user

Single Board Computer 



3 Detec+on of Foreign Object Debris 

J. Suder  107 

Figure 3-2 illustrates the pracAcal implementaAon of the system concept at the 
Poznań–Ławica Airport, where a camera is strategically mounted on the front of the vehicle. 
This setup allows for real-Ame monitoring of criAcal areas within the airport premises, 
facilitaAng early detecAon of Foreign Object Debris and other potenAal hazards. 

       

Figure 3-2 The concept of the FOD detecHon system (camera mounted on the front of a car moving 
along the runway at the Poznań–Ławica Airport) [37] 

3.2. Datasets of aerodrome FODs 
3.2.1. Standard FOD-A dataset 

The issue of detecAng FOD on aerodromes requires analysing available public datasets of such 
objects. The Foreign Object Debris in Airports (FOD-A) dataset [160] stands as a pivotal 
resource tailored to support the development and assessment of Foreign Object Debris (FOD) 
detecAon systems, as depicted in Figure 3-3. Comprising an extensive collecAon of over 30000 
high-resoluAon (2048 × 1080 to 4272 × 2848 pixels) JPG images sourced from various airports 
worldwide, this dataset offers a diverse array of scenarios to facilitate robust system evaluaAon 
and validaAon. 

The images within the FOD-A dataset are captured using a spectrum of cameras, 
including RGB cameras and thermal cameras, thus encompassing a broad spectrum of imaging 
modaliAes. This diversity ensures comprehensive coverage across different weather 
condiAons, lighAng scenarios, and types of debris encountered in airport environments, 
enhancing the dataset's uAlity for system tesAng and benchmarking. 
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Figure 3-3 Examples of images from dataset of the Foreign Object Debris in Airports (FOD-A) [160] 

Crucially, the FOD-A dataset is enriched with meAculous annotaAons for each image, 
documenAng the precise locaAon and nature of debris present within the scene. These 
annotaAons are curated by trained personnel, guaranteeing a high degree of accuracy and 
consistency across the dataset. Such annotaAons serve as invaluable ground truth data, 
facilitaAng supervised learning approaches and enabling the development of highly accurate 
FOD detecAon algorithms. 

The dataset reveals that the "Bolt" class is the most prominent, containing a notable 
3300 images. This significant number suggests that bolts are either highly prevalent or 
parAcularly emphasized within the dataset. Following the bolts, the "Pliers" and "Wrench" 
classes also stand out, with 2884 and 2568 images respecAvely, highlighAng their considerable 
importance. Classes like "Washer" and "Wire" also feature prominently, each boasAng over 
2000 images—2139 and 2138, respecAvely—indicaAng a similar level of representaAon. The 
"PlasAc part" class is another well-represented category, with 2008 images. Conversely, at  
the lower end of the dataset, categories such as "Tape" and "Screw driver" have the least 
number of images, with just 127 and 157 respecAvely.  

AddiAonal classes with fewer images include "Hose" (294 images), "Adjustable wrench" 
(472 images), and "Wood" (206 images). In the mid-range, classes such as "Nut" (1303 images), 
"Hammer" (760 images), and "Metal part" (970 images) have a moderate number of images, 

ranging between 500 and 1500. Table 3-1 shows the distribuAon of FOD object types  
in the dataset. 
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Table 3-1 Division of class of FOD images in FOD-A dataset 

FOD object type 
Number of 

images 

Battery 1059 

Clamp part 917 

Nut 1303 

Washer 2139 

Cutter 1352 

Nail 1193 

Hose 294 

Bolt nut set 514 

Paint chip 968 

Screw driver 811 

Tape 127 

Bolt washer 1017 

Fuel cap 548 

Plastic part 2008 

Wire 2138 

Label 1310 

Pliers 2884 

Adjustable clamp 544 

Hammer 760 

Pen 483 

Soda can 950 

Bolt 3300 

Metal part 970 

Rock 662 

Wrench 2568 

Luggage tag 1686 

Metal sheet 394 

Adjustable wrench 472 

Luggage part 738 

Screw driver 157 

Wood 206 

Total: 34472 
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Moreover, alongside image and annotaAon data, the FOD-A dataset encompasses 
comprehensive metadata for each image, including criAcal informaAon such as locaAon, date, 
and Ame of capture. This contextual metadata enhances the dataset's richness and enables 
researchers to analyse FOD occurrences in relaAon to environmental factors and operaAonal 
contexts. 

As part of their evaluaAon process, the authors employed a total of 19975 photographs 
to train, validate, and test the system, encompassing a wide range of scenarios across 107 
disAnct classes. This meAculous selecAon process ensured the representaAon of diverse 

objects encountered in airport environments, covering various shapes, sizes, and materials 
commonly associated with Foreign Object Debris (FOD). 

The dataset was thoughEully curated to include photographs captured under different 
lighAng condiAons and against diverse backgrounds, thereby simulaAng the real-world 
variability encountered in airport seyngs. This diversity in lighAng and background condiAons 
is essenAal for training robust FOD detecAon algorithms capable of generalizing well to unseen 
scenarios and environmental contexts. 

It is worth noAng the disadvantages of this defect, which does not meet the FAA 
recommendaAons regarding the raAo of the number of photos/items found on aerodromes. 
This database also has photos of different resoluAons and taken with different cameras. 

3.2.2. New dataset based on FAA requirements 

However, it was decided to prepare its own PUT dataset of FOD objects in order to develop 
this field, but also to provide a dataset of video recordings with FOD objects, as such a dataset 
was not found. PreparaAon of the dataset began with collecAng characterisAc FOD objects 
occurring at aerodrome, based on FAA requirements [15] and cooperaAon with experts from 
the Poznań–Ławica Airport. Four main classes of objects were chosen. 

AddiAonally, according to the reports [15], metal FODs consAtute approximately 60% 
of all unwanted objects found on airport roads, so the focus was mainly on objects made of 
this material. The created dataset consists of 180 FOD objects captured in 1480 photos.       
Table 3-2 shows the division of the collected FOD objects [161]. The dataset was created in the 
frame of a master's degree dissertaAon, conducted in the Division of Electronic Systems and 
Signal Processing at the Poznan University of Technology [162]. 
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Table 3-2 Division of class of collected FOD images for PUT dataset 

FOD object type 
Number of 

images 

Metal 1200 

Plastic 160 

Concrete 80 

Wood 40 

Total: 1480 

Figure 3-4 shows sample images from author’s FOD dataset with selected objects of 
various sizes and structures at airport ground surfaces. 

 

Figure 3-4 Examples of images of FOD from PUT dataset [161] 

The items were arranged at aerodrome (taxiways, runways, apron/ramp). Due to the 
close resemblance of metal and concrete objects to the concrete background, disAnguishing 
these materials presents a significant challenge for algorithms. A total of 300 photographs 
were taken from a distance of 2 meters at a 45° angle. Each image contains a maximum of one 
FOD object, and addiAonal photographs of the concrete slab alone were also captured.  
The images, taken at a resoluAon of 4272 × 2848, ensured high-quality photography.  
Figure 3-5 illustrates the setup for photographing. The constructed dataset was subsequently 
augmented to facilitate a more comprehensive evaluaAon of the algorithms employed. 
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Figure 3-5 VisualizaHon of the photo staHon for PUT dataset 

For the prepared dataset, the annotaAon process was conducted using Roboflow 
tools [163]. Ground truth-augmented training data, as illustrated in Figure 3-6, refers to 
datasets enhanced by augmenAng the annotaAons of manually verified or labelled data points. 
These annotaAons act as precise reference points for machine learning models. AugmentaAon 
techniques encompass adding new samples, refining exisAng annotaAons, or integraAng 
syntheAc data, all while preserving the integrity of the original ground truth labels. This 
approach enhances the diversity, robustness, and generalizaAon capabiliAes of machine 
learning models by providing a more comprehensive and varied training dataset. 

 

Figure 3-6 Ground truth augmented PUT dataset of FOD detecHon [38] 
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3.3. Applica-on of image processing methods for FOD 
detec-on 

The image processing sequence of the algorithm (Figure 3-7) includes calculaAng the average 
of the image, applying a blur, resizing the image to a vector, and clustering pixels based on 
using the k-means algorithm. The process then involves selecAng the contour group that most 
differs from the average background, creaAng a mask for this selected group to segment the 
image, converAng the segment to grayscale, detecAng contours in the grayscale image, and 

selecAng a contour larger than a specified threshold but smaller than a certain percentage of 
the image area. The algorithm then calculates the centre and radius of the selected contour 
and draws a circle around it on the original image [38]. Figure 3-8 illustrates an example  
of accurate FOD detecAon using classical methods using PUT dataset. 

 

Figure 3-7 Block diagram of FOD detecHon using k-means method 

 

Figure 3-8 Example of correct FOD detecHon using k-means method [38] 

Table 3-3 presents the accuracy metrics for the k-means algorithm, demonstraAng that 
its performance is significantly impacted by the resoluAon of the FOD input images from  
PUT dataset. The data indicate that higher resoluAons iniAally enhance accuracy due to the 
greater detail and clearer clustering panerns they provide. However, beyond a specific 
resoluAon threshold (notably, when increasing from 400 × 400 to 600 × 600), the benefits of 
higher resoluAon diminish, and accuracy improvements plateau or even decrease. This 
suggests that while higher resoluAon can facilitate more precise clustering, there is a limit to 
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its effecAveness. Thus, selecAng an opAmal image resoluAon is essenAal for maximizing the 
efficiency of k-means clustering in image analysis applicaAons [38]. 

Table 3-3 Accuracy of the k-means method for FOD detecHon on PUT dataset 

Input image resolution Accuracy 

256 × 256 65.54% 

400 × 400 73.94% 

600 × 600 68.53% 

Due to the low effecAveness of the algorithm for detecAng FOD objects at aerodromes 
based on the k-means method, it was decided to use neural networks in further experiments. 

3.4. Improvement of FOD detec-on using convolu-onal 
neural network 

In this issue, a series of experiments were conducted, tesAng different models of neural 
networks for detecAng FOD objects in the image. It was decided to use the MATLAB, Roboflow 
and Google Colab environments. 

The MATLAB environment has the ability to design its own neural networks, but also to 
use pre-trained models, such as AlexNet, VGG16, VGG19, GoogLeNet, ResNet-50 or  
IncepAon-v3. The Roboflow environment, on the other hand, has pre-trained models from the 
YOLO group (YOLOv5, YOLOv6, YOLOv9, YOLOv10) and an original network model, currently 
Roboflow 3.0 Object DetecAon. 

The author analysed the possibility of using GoogLeNet models implemented in the 
MATLAB and YOLOv5 environments using Google Colab. The experiments were performed on 
the FOD-A dataset, and then the model with the best performance was validated  
on the PUT dataset. 

The architecture employed in this study was grounded on the GoogLeNet convoluAonal 
neural network, featuring 144 values and 170 connecAons. With a FOD-A dataset 
encompassing 19975 images, 30% of which were allocated for validaAon, the robustness of 
the outcomes was assessed. To align with the network's specificaAons, images iniAally sized at 
400 × 400 pixels were resized to 224 × 224 pixels. This adaptaAon was necessary as it 
corresponds to the dimensions compaAble with the neural network's requirements. The 
implementaAon phase leveraged the MATLAB 2022a environment, harnessing the capabiliAes 
of the Deep Network Designer tool. 
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OriginaAng from the efforts of Google researchers in 2014, GoogLeNet represents 
a significant stage in the development of deep convoluAonal neural networks. Its foundaAon 
lies in the "IncepAon" architecture, which intricately employs layers of convoluAons and 
pooling to disAl salient features from images. What sets GoogLeNet apart is not only its depth 
but also its computaAonal efficiency. The incorporaAon of techniques like "1 × 1 convoluAons" 
to streamline intermediate representaAons and the adopAon of global average pooling instead 
of convenAonal fully connected layers underscores its architectural ingenuity.  

Furthermore, the study delved into data augmentaAon techniques, experimenAng with 

random rotaAon, rescaling, and axis-specific reflecAons to enrich the dataset. Rigorous analysis 
ensued during the parameter selecAon phase, culminaAng in an impressive 95.73% 
classificaAon accuracy during final validaAon. The training regimen demanded significant 
computaAonal resources, spanning 1422 minutes on an Intel Core i7-3770 3.40 GHz CPU. With 
a training cycle encompassing 30 epochs and 3270 iteraAons (averaging 109 iteraAons per 
epoch), validaAon intervals were set at every 50 iteraAons. The learning dynamics and loss 
evoluAon are elucidated in Figure 3-9. 

At its core, the network operates by accepAng input images sized at 224 × 224 × 3, 
denoAng height, width, and RGB channels, respecAvely, as its inaugural layer 
(imageInputLayer). Subsequently, a convoluAonal layer housing 64 filters, each spanning 7 × 7 
dimensions with a stride of 2, consAtutes the network's foundaAonal architecture 
(convolu+on2dLayer). 

 

Figure 3-9 GoogLeNet FOD-A training and validaHon accuracy and loss graph [37] 
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 The output from this layer is then fed into a recAfied linear unit (ReLU) acAvaAon 
funcAon (reluLayer), enhancing the network's ability to capture nonlinear relaAonships within 
the data. Subsequently, a max-pooling layer with a size of 3 × 3 and a stride 
of 2 (maxPooling2dLayer) downsamples the feature maps, reducing their spaAal dimensions 
while retaining important features. 

Following the pooling layer, a cross-channel normalizaAon layer  
(crossChannel-Normaliza+onLayer) is employed to normalize the responses across feature 
maps, enhancing the network's generalizaAon capabiliAes. This layer is succeeded by another 

convoluAonal layer featuring 64 filters of size 1 × 1 (convolu+on2dLayer), followed by yet 
another ReLU acAvaAon layer. 

The subsequent layer is another convoluAonal layer with 192 filters of size 3 × 3 
(convolu+on2dLayer), followed again by a ReLU acAvaAon layer and another cross-channel 
normalizaAon layer. This panern of alternaAng convoluAonal and acAvaAon layers is repeated 
in blocks with varying filter sizes and numbers of filters. The outputs of these layers are then 
concatenated using concatenaAon layers (depthConcatena+onLayer), merging them into 
a single tensor. 

Finally, the network concludes with a fully connected layer (fullyConnectedLayer), 
which produces the classificaAon probabiliAes for the input image. During training, the 
network uAlizes backpropagaAon to minimize the classificaAon error between the predicted 
and actual labels. Notably, the model incorporates mulAple branches, allowing it to learn 
different features at different scales, thereby enhancing its accuracy and robustness. 

Due to the best results, it was decided to analyse the network metrics obtained 
depending on the input image. YOLOv5, a cuyng-edge object detecAon network, uAlizes 
a single-stage architecture that processes enAre images in a single forward pass, facilitaAng 
real-Ame detecAon. This network harnesses convoluAonal neural networks (CNNs) to 
simultaneously predict bounding boxes and class probabiliAes from full images, employing 
anchor boxes to enhance localizaAon accuracy. Its efficiency lies in the concurrent execuAon 
of classificaAon and localizaAon, yielding high detecAon speed and precision.  
The architecture of YOLOv5 integrates feature pyramid networks (FPN) to idenAfy objects at 
mulAple scales, thus improving its robustness in detecAng varied object sizes and managing 
complex backgrounds in image processing tasks. 

 Table 3-4 shows the network metrics of FOD detecAon using YOLOv5 and FOD-A 
dataset at a resoluAon of 300 × 300, the YOLOv5 model exhibits the highest levels of precision 
and recall, at 99.0% and 98.8%, respecAvely, alongside an mAP50 of 99.0%. Nonetheless, the 
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mAP50-95 score is comparaAvely lower at 88%, which suggests that the model's object 
detecAon capability, while precise and accurate, may not be as consistent across different 
intersecAon-over-union (IoU) thresholds. Upon increasing the input image resoluAon to 
400 × 400, there is a minor decline in precision to 98.6%, although recall slightly increases to 
99%. Concurrently, the mAP50 decreases marginally to 98.9%, and mAP50-95 drops to 87.4%, 
implying a slight trade-off between precision and recall as well as a modest decrease in overall 
performance stability. At a resoluAon of 600 × 600, the model's precision, recall, and mAP50 
metrics are similar to those at 300 × 300, with precision at 98.9%, recall at 98.8%, and mAP50 

at 99.1%. The mAP50-95 remains stable at 87.6%, indicaAng that increasing the resoluAon 
beyond 300 × 300 does not significantly enhance the model's performance in terms of 
precision and recall, nor does it detract from it. Overall, these findings suggest that while the 
YOLOv5 model consistently delivers high precision and recall across different resoluAons, 
opAmal performance, parAcularly in terms of mAP50 and mAP50-95, is achieved at lower 
resoluAons, with diminishing improvements as resoluAon increases. Figure 3-10 shows the 
results of FOD detecAon using YOLOv5 and FOD-A dataset. 

Table 3-4 Metrics of FOD detecHon using YOLOv5 and FOD-A dataset 

Input image resolution Precision Recall mAP50 mAP50-95 

300 × 300 99.0% 98.8% 99.0% 88.0% 

400 × 400 98.6% 99.0% 98.9% 87.4% 

600 × 600 98.9% 98.8% 99.1% 87.6% 

 

Figure 3-10 Results of FOD detecHon using YOLOv5 and FOD-A dataset  
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The YOLOv5 model represents a architecture for object detecAon, designed to achieve 
high accuracy and speed. Its configuraAon is characterized by several key parameters: the 
number of classes (nc), a depth mulAple of 0.33 to control the model's depth, and a width 
mulAple of 0.50 to scale the layer channels. YOLOv5 uAlizes a series of predefined anchor boxes 
at different feature map scales, specifically P3/8, P4/16, and P5/32, to effecAvely handle 
objects of varying sizes. The anchors are defined as [10,13, 16,30, 33,23] for P3/8,  
[30,61, 62,45, 59,119] for P4/16, and [116,90, 156,198, 373,326] for P5/32. 

The backbone of YOLOv5 is engineered to efficiently extract features from the input 

image. IniAally, the Focus layer (layer 0) reduces the spaAal dimensions by a factor of 2 and 
increases the channel dimensions to 64. This is followed by a series of convoluAonal layers  
and BonleneckCSP modules, designed to capture increasingly abstract representaAons. Conv 
layers reduce the spaAal dimensions and increase the channel dimensions at layers 1, 3, 5, and 
7, corresponding to P2/4, P3/8, P4/16, and P5/32 feature maps, respecAvely.  
The BonleneckCSP modules in layers 2, 4, 6, and 8 uAlize a cross-stage parAal network strategy 
to balance gradient flow, computaAonal efficiency, and model capacity. AddiAonally, a SpaAal 
Pyramid Pooling (SPP) layer at layer 8 aggregates mulA-scale features to enhance the recepAve 
field. 

The head of YOLOv5 constructs the final detecAon outputs by further processing the 
features extracted by the backbone. It begins with convoluAonal and upsampling layers to 
merge higher-resoluAon feature maps, enhancing the detecAon of smaller objects. Aher 
a Conv layer (layer 10), an Upsample operaAon (layer 11) and a Concat operaAon (layer 12) 
combine features from different stages of the backbone. This panern is repeated to 
progressively refine feature maps at different scales: P3/8 (layer 17), P4/16 (layer 20), and 
P5/32 (layer 23). Each stage involves addiAonal BonleneckCSP modules to refine the feature 
representaAons. 

The final detecAon is executed by the Detect layer (layer 24), which integrates the 
mulA-scale feature maps (P3, P4, and P5) and applies the predefined anchors to predict 
bounding boxes and class probabiliAes. This mulA-scale approach ensures that YOLOv5 can 
effecAvely detect objects of various sizes within an image, maintaining a balance between 
detecAon precision and computaAonal efficiency. 

The model training was conducted using the Google Colab environment and the Nvidia 
Tesla T4 GPU architecture. The Nvidia Tesla T4, engineered specifically for machine learning 
applicaAons, leverages the advanced Turing architecture. With 2560 CUDA cores and 320 
Tensor cores, it excels in execuAng both training and inference tasks within deep learning 
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frameworks efficiently. The Tesla T4 is notable for its ability to perform mixed-precision 
computaAons, opAmizing operaAons in FP16 and INT8 formats to greatly enhance throughput 
and minimize latency. Equipped with 16GB of GDDR6 memory, the Tesla T4 provides ample 
bandwidth and capacity, enabling seamless processing of extensive datasets and intricate 
neural networks, thus markedly acceleraAng the machine learning workflow. 

The training and validaAon metrics for the YOLOv5 model, as depicted in Figure 3-11, 
exhibit clear panerns throughout the training epochs. The training losses—encompassing box 
loss, object loss, and classificaAon loss—show a steady decrease, indicaAng effecAve learning 

and convergence by the model. Notably, the box loss decreases to approximately 0.02, and the 
object loss nears 0.01 in the later stages of training, while the classificaAon loss consistently 
remains at zero, potenAally indicaAng either the absence of classificaAon tasks or flawless 
classificaAon from the outset. 

In the validaAon phase, the trends in box and object losses are similar to those 
observed during training, though they display greater variability, especially in the iniAal 
epochs. This variability may be anributed to the smaller size of the validaAon set or differences 
in the validaAon data. Despite this, the validaAon losses also decline to levels comparable to 
the training losses, suggesAng that the model generalizes effecAvely. 

Performance metrics, including precision, recall, mAP50, and mAP50-95, further 
illustrate the model's efficacy. Precision and recall both rise quickly and stabilize near 1.0 early 
in the training process, indicaAng that the model rapidly learns to detect and classify objects 
with high accuracy. The mAP50 metric nearly reaches perfect scores, reflecAng excellent object 
detecAon accuracy at an IoU threshold of 0.5. However, the mAP50-95, which assesses 
performance over a range of IoU thresholds, stabilizes around 0.6 to 0.7. This suggests that 
while the model performs excepAonally well at lower IoU thresholds, its consistency 
diminishes at higher thresholds, possibly due to difficulAes in precise localizaAon and 
classificaAon in more challenging scenarios. 
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Figure 3-11 YOLOv5 performance metrics for FOD-A dataset 

It was also decided to train the YOLOv5 model based on the PUT dataset of FOD  
objects [38]. Figure 3-12 demonstrates the result of FOD detecAon in an image from 

PUT dataset using YOLOv5. 

 

Figure 3-12 Results of FOD detecHon using YOLOv5 and PUT dataset [38] 

Table 3-5 presents the metrics of the proposed neural network model. Precision, 
a crucial classificaAon metric, measures the proporAon of correctly idenAfied posiAve 
instances among all instances classified as posiAve, calculated as the raAo of true posiAves to 
the sum of true posiAves and false posiAves [38]. 
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Table 3-5 Metrics of FOD detecHon using YOLOv5 and PUT dataset 

Input image resolution Precision Recall mAP50 mAP50-95 

256 × 256 99.3% 99.3% 99.5% 65.2% 

400 × 400 99.3% 99.6% 99.5% 67.9% 

600 × 600 99.3% 100% 99.5% 69.5% 

The results suggest that increasing the input image resoluAon generally results in slight 
improvements in recall and mAP values, while precision remains consistent across different 
resoluAons. Notably, higher resoluAons, such as 600 × 600, demonstrate a trend towards 
enhanced recall and mAP50-95 scores, indicaAng a bener capability to accurately detect 
objects of various sizes and posiAons within the image. However, performance gains diminish 
beyond a resoluAon of 400 × 400, highlighAng potenAal diminishing returns in accuracy 
improvement relaAve to computaAonal cost. Consequently, selecAng an opAmal resoluAon 
requires balancing computaAonal efficiency with the desired detecAon accuracy in pracAcal 
applicaAons of YOLOv5 for object detecAon tasks.  

The training and validaAon metrics for the YOLOv5 model, as illustrated in Figure 3-13, 
reveal disAnct panerns over the course of the training epochs. The training losses, including 
box loss, object loss, and classificaAon loss, demonstrate a consistent decline, suggesAng that 
the model is effecAvely learning and converging. Specifically, the box loss decreases to around 
0.02 and the object loss approaches 0.01 in the later stages of training, while the classificaAon 
loss remains at zero, which could imply either the absence of classificaAon tasks or perfect 
classificaAon from the beginning. 

 

Figure 3-13 YOLOv5 performance metrics for FOD PUT dataset 
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During the validaAon phase, the trends in box and object losses mirror those seen in 
training, though they exhibit greater variability, parAcularly in the iniAal epochs. This variability 
could be due to the smaller size of the validaAon set or differences in the validaAon data. 
Nonetheless, the validaAon losses also reduce to values similar to the training losses, indicaAng 
that the model generalizes well. 

Performance metrics such as precision, recall, mAP50, and mAP50-95 provide further 
evidence of the model's performance. Both precision and recall increase rapidly and plateau 
near 1.0 early in the training process, suggesAng that the model swihly learns to accurately 

detect and classify objects. The mAP50 metric achieves nearly perfect scores, indicaAng a high 
level of accuracy in object detecAon at an IoU threshold of 0.5. In contrast, the mAP50-95, 
which measures performance across a range of IoU thresholds, stabilizes around 0.6 to 0.7. 
This suggests that while the model excels at lower IoU thresholds, its consistency decreases at 
higher thresholds, possibly reflecAng challenges in achieving precise localizaAon and 
classificaAon in more complex scenarios. 

Table 3-6 Comparison of FOD detecHon algorithms 

Paper Method Dataset Accuracy 

[58] Background subtracAon 
Own dataset 

(no informaAon) 
96.67% 

[59] YOLOv3 
Own dataset 

(1700 images) 
94.50% 

[60] YOLOv3 
Own dataset 

(2000 images) 
95.67% 

[61] Random forest 
Own dataset 

(1800 images) 
93.10% 

[62] YOLOv3 
FOD-A Dataset 

(over 14 000 images) 
95.20% 

Selected GoogLeNet 
FOD-A Dataset 

(over 19 000 images) 
95.73% 

Selected YOLOv5 
FOD-A Dataset 

(over 19 000 images) 
99.00% 

Selected YOLOv5 
PUT dataset 

(1480 images) 
99.30% 

 Table 3-6 provides a comparison of the performance uAlized by various authors, 
revealing a common trend of authors relying on proprietary datasets, ohen comprising fewer 
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images and not being publicly accessible. Notably, only the authors referenced in [62] 
conducted tesAng on the YOLOv3 neural network architecture, achieving a commendable 
efficiency of 95.2% through the uAlizaAon of 14260 images sourced from the FOD-A Dataset. 
In the present study, a dataset comprising over 19000 images from the same dataset was 
employed. Impressively, the achieved result surpasses those of other neural network models 
under comparison, hinAng at the judiciousness of model selecAon and its training 
methodology. Consequently, the neural network model based on GoogLeNet outperformed 
its YOLOv3-based counterparts in terms of performance. However, the best results were 

obtained by the model based on YOLOv5, achieving 99.0% efficiency on the given dataset. 
Moreover, on the PUT dataset with 1480 real photos, the YOLOv5 network model achieved 
99.3% accuracy. 
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Chapter 

4. Detec1on of airport horizontal markings 
Lamps in airport ground surfaces are crucial for air navigaAon, as their visibility is essenAal for 
conducAng various air operaAons. Regular checks are needed to maintain their light efficiency, 
which can degrade due to the use of halogen bulbs or LEDs, as well as the effects of the winter 
season. During winter, airport areas are cleared of snow using plows with metal brushes, 
leading to tarnishing, scratching, and even cracking of the prisms of in-pavement lamps, 
rendering them non-operaAonal. Figure 4-1 illustrates the concept of a measurement plaEorm 
in a real-world seyng (on the runway) with camera mounted on an airport maintenance 
vehicle.  

  

Figure 4-1 Measuring platform for quality testing of airport lamps and camera mounted on the 
airport maintenance vehicle [37] 

To ensure that the platform accurately traverses over the lamps embedded in the 
runway, a vision system is essential. This system must effectively identify the markings on  
the runway and other airport areas, subsequently making the necessary trajectory 
adjustments to enhance measurement precision. The unique characteristics of a runway, 
which is significantly wider than typical public roads, present additional challenges. One major 
difficulty is locating appropriate reference points since the edges of the runway often lie 
outside the camera's frame. 

The vision system's primary function on the measuring platform is to facilitate  
the quality testing of airport lamps. This involves recognizing various runway markings and 

Measurement plaEorm 

Camera 

Runway centre lines 
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using these visual cues to navigate and adjust the platform’s path accurately. By doing so, the 
system ensures that the platform aligns correctly with the lamps and other relevant features 
on the runway, allowing for precise measurements and assessments. 

Figure 4-2 illustrates the operational principle of the vision system on the measuring 
platform. It depicts how the system captures vision data from the runway, processes this 
information to identify key markings, and uses these markers to guide the platform’s 
movement. This setup is crucial for maintaining the correct trajectory, especially given the 
expansive width of the runway which complicates the identification of consistent reference 

points. By effectively managing these visual inputs, the vision system plays a critical role in 
the accurate and efficient testing of airport lighting systems. 

 

Figure 4-2 Block scheme of airport line tracking system 

Modern embedded systems offer the capability to process video sequences efficiently 
in real-Ame. Video sequence analysis algorithms can be rooted in tradiAonal image processing 
techniques as well as in neural networks, which are gaining widespread popularity. Cameras 
find applicaAons in various fields such as automoAve and autonomous vehicles [127], [128], 
urban surveillance [5], and tracking [164], as well as in specialized contexts like inspecAon 
vehicles [28], [29]. These systems assist operators in monitoring urban areas or machinery 
environments, enabling them to oversee and react to ongoing events. In certain scenarios, 
these systems can fully eliminate human intervenAon by automaAcally issuing specific 
commands to other systems. 

In the context of autonomous vehicles operaAng within airport premises [28], both the 
precision of the algorithms and the hardware performance are criAcally important for ensuring 
safety. AddiAonally, these vehicles need to be highly energy-efficient due to the extensive 
areas they cover within airports and must have sufficient energy reserves for emergency 
situaAons. Therefore, managing the lighAng and navigaAon equipment in airport areas is 
crucial, parAcularly focusing on the runway centre line, touchdown zone, and taxiway centre 
line. To ensure accurate movement over the lights being tested, a system is needed to guide 
the operator or driver in conducAng precise measurements despite the width of the runway 
and the absence of staAc reference points [28]. These systems are increasingly leveraging 
vision-based soluAons, making the task of detecAng runway lines and markings vital for the 
safe ground movement of aircrah [30]. Moreover, such systems aid in determining the posiAon 
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of measurement plaEorms during inspecAons, as the posiAon of lamps is closely linked to 
the locaAon of horizontal markings on airport surfaces [4]. The method of approaching and 
detecAng lines and supporAng the operator was also described in the patent applicaAon [45]. 

Processing video sequences necessitates compuAng units with varying power  
levels [165], [166], depending on the chosen algorithm and the image processing operaAons 
performed [30], [46]. In mobile applicaAons, finding a balance between system compactness, 
power consumpAon, and computaAonal performance is essenAal. A comparaAve analysis of 
available embedded systems is necessary to select the best equipment for specific 

applicaAons. Due to their small size and relaAvely low energy requirements, embedded 
systems can be installed in mobile autonomous vehicles, such as plaEorms used for quality 
tesAng of airport lamps. The need to develop such a plaEorm and test airport lamps systems 
from increasingly stringent regulaAons imposed by aviaAon safety agencies concerning airport 
lighAng inspecAon [4].  

4.1. Dataset of airport horizontal markings 

An evident disAncAon between public roads and airport areas lies in their scale, with airport 
spaces being significantly larger. To conduct experimental tests, a dataset of video sequences 
captured at Poznań–Ławica Airport was compiled and named PLAVS1 (Poznań Lawica Airport 
Video Set 1). Data collecAon involved using two different types of cameras: the GoPro Hero+ 
and the GoPro Hero 8. The resulAng dataset is quite extensive, amounAng to over 98 GB of 
video recordings. These recordings include detailed images from restricted areas within the 
airport, providing a comprehensive basis for this analysis. 

The GoPro Hero+ camera is notably resilient to varying weather condiAons, which 
makes it parAcularly suitable for outdoor use in diverse environments. This camera can be 
securely mounted on a measurement plaEorm system, ensuring stable and safe data 
collecAon. It supports video recording at a maximum resoluAon of 1920 × 1080 pixels, with 
a frame rate of 60 frames per second. This high resoluAon and frame rate are essenAal for 
capturing detailed and high-quality video footage necessary for precise analysis. The GoPro 
Hero+ is equipped with an 8-megapixel CMOS sensor and an aperture value of f/2.8, allowing 

it to capture clear images even under challenging lighAng condiAons. AddiAonally, this camera 
employs L4.1 (H.264 / MPEG-4 AVC) level coding, which ensures efficient video compression 
while maintaining quality. The built-in WiFi module is another significant feature, enabling 
real-Ame video streaming, which allows for live monitoring and immediate analysis during 
data collecAon. The camera's advanced image processing algorithms further ensure opAmal 
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image quality, adapAng to various lighAng scenarios to deliver consistent and clear  
footage [167]. 

On the other hand, the GoPro Hero 8 is designed for high-performance and can capture 
stable, high-quality video in extreme condiAons [168]. This camera supports 4K video 
recording at up to 60 frames per second, 2.7K at up to 120 frames per second, and Full HD 
(1080p) at up to 240 frames per second. Such versaAlity in resoluAon and frame rate opAons 
allows for capturing ultra-high-definiAon footage that is highly suitable for detailed analyAcal 
purposes. One of the standout features of the GoPro Hero 8 is its advanced image stabilizaAon 

technology, which significantly reduces camera shake and ensures smooth footage even during 
high-moAon acAviAes. The camera also excels in sAll image capture, offering 12-megapixel 
resoluAon with HDR capabiliAes, which enhance details in both highlights and shadows, 
providing clearer and more detailed photographs. The robust design and technical 
specificaAons of the GoPro Hero 8 make it an ideal tool for researchers and scienAsts working 
in various challenging environments, ensuring professional-quality video  
documentaAon [169]. 

The video dataset captured at Poznań–Ławica Airport is extensive and rich in detail, 
providing a substanAal foundaAon for experimental tests. With over 98 GB of video recordings, 
a comprehensive collecAon of footage that covers the restricted areas of the airport, capturing 
essenAal details needed for thorough analysis. Table 4-1 presents staAsAcs of the locaAons in 
recordings in the PLAVS1 dataset. 

Table 4-1 StaHsHcs of PLAVS1 dataset 

Recording location Time [minutes] Time [seconds] Size [GB] 

Runway 28-10 89 18 29.21 

Runway 10-28 84 25 28.08 

Taxiways 102 21 33.02 

Other locations 27 15 8.40 

Total: 303 minutes 19 seconds 98.70 GB 

The PLAVS1 dataset comprises video recordings collected from various aerodrome 
locaAons, each with disAnct duraAons and file sizes. Recordings from Runway 28-10 have 
a total length of 89 minutes and 18 seconds, with a storage size of approximately 29.21 GB. In 
comparison, the recordings from Runway 10-28 last for 84 minutes and 25 seconds and occupy 

28.08 GB. The Taxiways category contains the longest recordings, amounAng to 102 minutes 
and 21 seconds, and has the largest data size of 33.02 GB. The “Other locaAons” category 
features the shortest recordings, with a duraAon of 27 minutes and 15 seconds and a file size 



4 Detec+on of airport horizontal markings  

128  J. Suder 

of 8.40 GB. This variaAon in the length and size of the recordings likely indicates differences in 
the acAvity levels or significance of each locaAon captured within the dataset. Figure 4-3 
provides a visual representaAon of the video recordings in GB from aerodrome locaAons in the 
PLAVS1 dataset. 

 

Figure 4-3 Visual representaHon of the video recordings in GB from aerodrome locaHons in the 
PLAVS1 dataset   

The recorded video data plays a crucial role in analysing the performance and quality 
of airport lamp operaAons. For instance, Figure 4-4 illustrates sample frames showing various 
road markings used in airport areas. These include the central axis of the runway, represented 
by white dashed lines, and the exit tracks and central axes of taxiways, denoted by solid yellow 
lines. Accurate detecAon of these markings is essenAal because the airport lamps are not 
installed directly on the centre lines but are slightly offset. Therefore, precise detecAon of the 
edges of these markings is vital for determining the relaAve posiAons of the lamps and for 
adjusAng the approach trajectory accordingly. 
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Figure 4-4 Sample frames from recordings made at Poznań–Ławica Airport [44] 

The advanced capabiliAes of all used cameras ensure that the recorded footage is of 
high quality, which is crucial for detailed analysis. The high resoluAon, frame rates, and image 
stabilizaAon features enable the capture of clear, detailed, and stable footage, which is 
necessary for accurately assessing and improving the alignment and funcAonality of airport 
lamps. AddiAonally, the real-Ame streaming capability provides immediate feedback, allowing 
for dynamic adjustments and more efficient data collecAon. 

In summary, the combined use of the GoPro Hero+ and Hero 8 cameras, along with the 
extensive PLAVS1 dataset recorded at Poznań–Ławica Airport, provides a robust foundaAon for 
experimental tests. These tools enable precise, high-quality data collecAon and analysis, which 
are essenAal for evaluaAng and enhancing the operaAonal quality of airport lighAng systems. 

4.2. Proposed solu-on for detec-on of airport horizontal 
markings 

4.2.1. Standard algorithms for line detec=on 

The algorithm development encompassed fundamental image processing operaAons aimed at 
enhancing line detecAon accuracy and quality. Figure 4-5 illustrates the schemaAc 
representaAon of the program's architecture and workflow. 
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Figure 4-5 SchemaHc diagram of the program based on line detecHon using Scharr mask edge 

detecHon and Hough Transform 

A pivotal objecAve was to manipulate the frames to disAnctly isolate horizontal marks 
from surrounding objects and the background. Emphasis was also placed on noise reducAon 

  

Input image

Resolution 
changing

Median filtering

Sharpening

Grayscale 
conversion

Histogram 
equilizing

Canny algorithm 
for edge detecting

Scharr mask for 
angle 0 degree

Hough algorithm 
for line detecting

Output frame

 
 

 

 

 
 

 

 



4 Detec+on of airport horizontal markings  

J. Suder  131 

and recAfying erroneous detecAons, alongside detecAng verAcal edges and miAgaAng their 
interference with other elements within the frame. Furthermore, meAculous parameter 
tuning for the Hough Transform contributed to opAmizing performance. Python 3.7.6 served 
as the programming environment for this endeavour, with the implementaAon facilitated 
through the OpenCV library, version 4.2.0. 

To expedite the processing of individual stages within the program without sacrificing 
detail, a strategic approach was adopted. IniAally, upon loading each frame, a resoluAon 
adjustment was implemented to strike a balance between computaAonal efficiency and 

retaining essenAal details. Subsequently, noise reducAon was addressed uAlizing the 
cv2.medianBlur(input, 3) funcAon, which effecAvely suppressed noise arAfacts without 
compromising the integrity of visible edges criAcal for line detecAon. To further enhance edge 
visibility, a sharpening operaAon was executed in the subsequent step. This involved  
the uAlizaAon of a kernel, configured in the form of an array, to accentuate edge contrast  
and clarity, thereby augmenAng the efficacy of subsequent detecAon processes. 

kernel = 	 ¤
0 −1 0
−1 5 −1
0 −1 0

¥ (49) 

Employing the cv2.filter2D(input, −1, kernel) funcAon yielded saAsfactory outcomes, 
effecAvely sharpening the image to accentuate crucial details. Subsequently, a transiAon from 
the RGB colour space to grayscale was executed using the standard OpenCV funcAon 
cv2.cvt(input, cv2._BGR2GRAY). Recognizing the significance of detecAng worn lines in airport 
areas, parAcularly in high-wear zones like the touchdown area, where accumulated rubber 
residue from landing aircrah tyres poses visibility challenges, the histogram equalizaAon 
funcAon cv2.equalizeHist(input) was applied. This funcAon served to enhance details that were 
previously obscured due to low original contrast levels. Following this preprocessing, the 
image was deemed ready for edge detecAon using the Canny algorithm, implemented via 
cv2.Canny(input, minVal, maxVal) with specified parameters (minVal = 400 and maxVal = 500). 
Of parAcular relevance to the centre line detecAon task was the idenAficaAon of verAcal edges. 
By leveraging the Scharr mask configured at a 0-degree angle, with the kernel array 
meAculously tailored to the task, extraneous edges detected by the Canny algorithm were 
effecAvely filtered out, leaving behind only the perAnent verAcal edge informaAon. 

kernel = 	 ¤
−3 0 3
−10 0 10
−3 0 3

¥ (50) 
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Furthermore, the applicaAon of cv2.filter2D(input, –1, kernel) further refined the 
image, enhancing edge clarity and definiAon. The penulAmate step preceding the conclusion 
of the algorithm involved line detecAon, accomplished through the uAlizaAon of the Hough 
Transform, specifically the ProbabilisAc Hough Line Transform available in the OpenCV library. 
In the culminaAon of the algorithm's execuAon, the final frame produced encapsulated  
the central axis lines superimposed on the original image. These lines serve as pivotal 
reference points, facilitaAng the potenAal expansion of the measurement plaEorm to evaluate 
airport lighAng efficacy with heightened precision. By leveraging this framework, more precise 

measurements can be obtained, furnishing detailed insights into the spaAal relaAonship 
between the tesAng matrix and the examined lamp. Figure 4-6 showcases the resultant output 
generated by the program's execuAon, providing a visual representaAon of the algorithm's 
effecAveness in acAon. 

 

Figure 4-6 Result of program based on line detecHon using Scharr mask edge detecHon and Hough 
Transform [30] 

One pivotal technique employed in the algorithm's implementaAon involved the 
autonomous recogniAon of road markings, a criAcal aspect in the realm of intelligent vehicle 
research, perAnent to both navigaAon and advanced driver assistance systems [170]. While 
previous studies predominantly focused on uAlizing lane markings for vehicle guidance and 
operaAon, the reality demands anenAon to other vital signage such as arrows and warnings 
for comprehensive car navigaAon. The methodology hinged on leveraging support vector 
machine (SVM) algorithms to miAgate the influence of external factors like varying points of 
view, ambient brightness, and diverse backgrounds. Experimental validaAon of the proposed 
method was conducted using a diverse array of images. The findings underscored impressive 
recogniAon accuracy surpassing 97%, with a commendable Ame consumpAon per frame 
standing at 0.26 seconds [170]. 
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Another driving force behind the refinement of the algorithm under discussion 
stemmed from the imperaAve to address runway posiAoning recogniAon challenges [171]. It 
was evident that idenAfying signage and individual markings played a pivotal role in enhancing 
safety and averAng runway incursions. This aspect serves as a crucial adjunct to pilot training 
and airport ground radar systems, parAcularly in the context of intricate, expansive airport 
layouts. Within this project framework, convenAonal airport signage and markings served as 
the focal points for detecAon and recogniAon purposes. Leveraging the Canny transform 
facilitated precise line detecAon, while the Hough Transform was instrumental in idenAfying 

prominent lines within images and discerning shorter lines interspersed between them. The 
culminaAon of these efforts resulted in remarkable achievements, with authors anaining 
a commendable accuracy rate of 95.1% for runway sign detecAon, alongside correct 
idenAficaAon of wait posiAons in 89.2% of instances [171]. 

This alternaAve approach to implemenAng the line detecAon algorithm minimizes 
interference with the input form of the image and instead prioriAzes computaAonal 
calculaAons, offering a disAnct technique in construcAng image analysis-based 
algorithms [172]. Employing the same programming environment, bolstered by the support of 
the OpenCV library (version 4.2.0), alongside addiAonal computaAonal tools such as NumPy 
and math libraries, facilitated the execuAon of complex operaAons. Within this framework, 
operaAons such as maximizing values, rounding, calculaAng means, and generaAng zero 
matrices were pivotal in deriving the final result from the input image array. 

The algorithm workflow commences with the standard conversion of the frame from 
RGB to grayscale, followed by the iniAalizaAon of essenAal global variables required for 
subsequent calculaAons. Subsequently, an array containing leh and right threshold intensity 
values is created, enabling the determinaAon of specific threshold values for both lanes. This 
is then followed by the iniAalizaAon of global variables essenAal for lane extracAon. Leveraging 
the pre-calculated threshold values, the algorithm idenAfies points corresponding to the leh 
and right lanes, culminaAng in the generaAon of an image with marked idenAfied points 
represenAng the trajectory of lines painted on airport surfaces upon program compleAon. 
Figure 4-7 delineates a block diagram illustraAng the program's structure. 



4 Detec+on of airport horizontal markings  

134  J. Suder 

 
Figure 4-7 Diagram of program for line detecHon based on hyperbola fiung 

The Hough Transform consAtutes a pivotal component for line detecAon within 
a designated area (Figure 4-8a), as defined by expression (51), wherein ρ denotes the distance 
from the origin to the nearest point on the detected line, and 𝜃 represents the angle between 
the X-axis and the line connecAng the origin to said point. The range of ρ is established by the 
relaAon −R < ρ < +R, where R denotes the diagonal of the image (52), and 𝜃 values are 

constrained within the range of −90° to 90°. The variables necessary for calculaAng the 
diagonal R are rows and cols, corresponding to the number of rows and columns of  
the processed image. 

𝜌(𝜃) = 	𝑥cos(𝜃) + 𝑦sin(𝜃) (51) 

−§rows2 +	cols2 < 𝜌 < §rows2 +	cols2 (52) 
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Figure 4-8 Course Hough Transform (a) and image coordinates (b) [30] 

When iniAaAng the search process, it's crucial to consider whether it commences from 
the leh or right boundary, thereby seyng the maximum range to the respecAve boundary 

(Figure 4-8b). By incorporaAng an addiAonal search zone, tracking the outer lane 
boundary curves becomes more manageable. The lane points are segregated into two disAnct 
lists, denoted as L(l) for the leh line and L(r) for the right line, expressed mathemaAcally as 
depicted in equaAons (55) and (56), where u and v represent the 𝑥- and 𝑦-coordinates in the 
image reference frame [173]. 

L(X) =	 L©u6
(X), v6

(X)ª , ©u2
(X), v2

(X)ª , … , ©u*
(X), v*

(X)ª« (53) 

L(R) =	 L©u6
(R), v6

(R)ª, ©u2
(R), v2

(R)ª, … , ©u*
(R), v*

(R)ª« (54) 

The proposed soluAon exhibits versaAlity in its applicaAon, extending beyond airport 
lane detecAon to encompass a broader scope of obstacle and lane detecAon systems, 
leveraging a stereo vision architecture to enhance road safety [174]. Employing fully 
customized devices, this system adeptly idenAfies general obstacles, unbound by symmetry or 

shape constraints, alongside lane posiAoning. A specific hardware module facilitates geometric 
transformaAon, effecAvely miAgaAng the perspecAve effect evident in both leh and right 
stereo images. While lane markings are discerned through the applicaAon of morphological 
filters on the leh image, the mapped stereo images collecAvely aid in detecAng clearance 
ahead of the vehicle. Output from this processing pipeline is conveniently relayed to the 
Control Display and Control Panel, furnishing the driver with indispensable visual 
feedback [174]. 
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The detecAon of road lanes and borders represents a formidable challenge within the 
realm of autonomous driving systems [175]. Contemporary soluAons predominantly rely on 
lane detecAon techniques, pivotal for ascertaining road posiAon, determining vehicle-road 
relaAve posiAoning, and analysing vehicle trajectory. Although in-vehicle vision systems serve 
as the primary approach for road and lane boundary detecAon, lane detecAon remains 
a challenging endeavour owing to the diverse array of road condiAons encountered during 
operaAon [175]. 

The devised method for aerodrome line detecAon, predicated on edge detecAon 

principles, exemplifies a vision-based strategy for runway idenAficaAon, capable of real-Ame 
operaAon with resilience to lighAng variaAons and shadows. Harnessing a front-facing camera 
mounted on the vehicle, the system employs a sequence of processes to discern lane 
markings. Leveraging a pair of hyperbolas aligned with lane edges, these trajectories are 
extracted via the Hough Transform. Notably, this lane detecAon system demonstrates efficacy 
across painted and unpainted surfaces, accommodaAng curved and straight roads amidst 
diverse weather condiAons. Extensive experimentaAon validates the robustness and real-Ame 
operability of the proposed scheme. A criAcal appraisal of these methodologies, alongside 
their prospects for future integraAon, rounds off the discussion, with Figure 4-9 showcasing 
the outcomes yielded by the implemented program. 

 

Figure 4-9 Result of running a program for line detecHon based on an edge detecHon algorithm [30] 

4.2.2. Improved method for line detec=on 

The third algorithm devised for detecAng lines in airport areas diverged from  
the methodologies of the preceding algorithms, yet it adhered to the same programming 
environment, uAlizing Python 3.7.6 and the OpenCV library, version 4.2.0. The fundamental 
concept revolved around isolaAng the colour shades corresponding to the lines within the 
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image. Specifically, airport markings typically manifest as white or yellow hues, presenAng 
a stark contrast against the gray or dark gray backdrop of the pavement. To achieve this, the 
iniAal step involved transforming the image's resoluAon and colour space from RGB to HSV. 
This conversion was pivotal in miAgaAng distorAons arising from uneven lighAng condiAons, 
which could otherwise lead to variaAons in colour intensity [176]. Subsequently, specific 
thresholds were delineated for the saturaAon levels and the luminance component associated 
with white light. 

The resultant mask encapsulated regions corresponding to the detected yellow and 

white colours, wherein pixels anributed to these colours were assigned a value of 255 
(indicaAve of white), while the remaining areas of the frame were assigned a value 
of 0 (represenAng black). This binary mask served as input to the Canny algorithm for edge 
detecAon, facilitaAng the idenAficaAon of line boundaries. Within this algorithm, dedicated 
funcAons were allocated to disAnct tasks, encompassing colour separaAon, determinaAon of 
Regions of Interest (ROI), line detecAon, and supervisory funcAons. Figure 4-10 illustrates 
a comprehensive block diagram elucidaAng the operaAonal workflow of the program. 

The wide-angle lens of the camera provides several benefits, but it also has some 
drawbacks. One of the primary advantages is that it allows almost the enAre width of the 
runway to be captured in a single frame, which is incredibly useful for monitoring purposes. 
However, this broad field of view also means that the camera captures many extraneous 
elements that can introduce noise and interfere with the algorithm's performance. To miAgate 
this issue, it was decided to manually define a Region of Interest. This ROI encompasses  
the central part of the image where the criAcal lines of interest should be located, plus 
a margin to account for any potenAal errors. The boundary of this ROI is set just below the 
horizon line to exclude any horizontal lines that might be mistakenly detected by the algorithm. 

Once the ROI is established, the image is processed using the Hough Transform to 
detect lines. Specifically, the ProbabilisAc Hough Line Transform was employed, implemented 
with the funcAon call cv2.HoughLinesP(input, 1, np.pi/180, 10, 50, 10). This funcAon idenAfies 
lines within the specified parameters and outputs an image with detected lines superimposed 
on the original image. These lines correspond to the edges of the stripes painted on the airport 
runway. 
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Figure 4-10 Scheme of program based on line detecHon algorithm using image segmentaHon based 

on colours in HSV colour space. 

It is parAcularly noteworthy that this algorithm is highly effecAve at detecAng both 
white and yellow lines simultaneously. This dual detecAon capability is achieved by leveraging 
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a different colour space, allowing for more accurate segmentaAon. For white lines, the colour 
range from [0, 0, 150] to [60, 40, 255] was used, and for yellow lines, the range from  
[10, 60, 140] to [30, 255, 255]. The mask for each colour was calculated separately using the 
cv2.inRange(input, minVal, maxVal) funcAon, and then combined using a standard addiAon 
operaAon. The result of this processing is illustrated in Figure 4-11, which shows the detected 
lines clearly marked on the runway, demonstraAng the effecAveness of the algorithm. 

 

Figure 4-11 Result of program based on a line detecHon algorithm using image segmentaHon based 
on colours in HSV space [30] 

A comparable approach to line detecAon has found applicaAon in determining  
the trajectory of moAon for mobile robots [177]. This endeavour underscored the significance 
of image segmentaAon, parAcularly the conversion of colours into an alternaAve colour space, 
in enhancing object classificaAon within the image. Notably, in the context of mobile roboAcs, 
this task was facilitated by the controlled environment in which the robot operated. Here, the 
lines exhibited a disAnct colour contrast against the background, while the lighAng condiAons 
remained uniform, thereby streamlining the selecAon of an appropriate colour scale 
range [177]. 

Conversely, outdoor environments like airports pose a disAnct set of challenges owing 
to the variability in lighAng and weather condiAons. Moreover, the colour of the lines is subject 
to constant fluctuaAon, owing partly to pavement wear and tear. In this regard, leveraging the 
HSV colour space proves instrumental in circumvenAng these challenges, primarily due to its 
hue parameter, which governs the perceived colour tone. Consequently, by amalgamaAng all 
colours present in airport markings, it becomes feasible to delineate a mask that effecAvely 
segments areas necessitaAng line edge detecAon. 
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4.3. Experimental results of vision algorithms for line 
detec-on 

During the experimental tesAng phase of each of the developed algorithms, individual frames 
containing the results were captured. The experiment encompassed the analysis of 100 frames 
sourced from diverse recordings obtained during the inspecAon of airport lighAng. 
Furthermore, the efficiency of line detecAon and the processing speed of the following 
algorithms were juxtaposed: 

i. Algorithm 1: This entailed preprocessing, histogram equalizaAon, Canny edge 
detecAon, Scharr filtering, and Hough Transform 

ii. Algorithm 2: This involved preprocessing, thresholding, Canny edge detecAon, 
Hough Transform, and hyperbolas fiyng 

iii. Algorithm 3: This encompassed preprocessing, conversion to HSV colour space, 
Canny edge detecAon, and Hough Transform. 

The tests were conducted across six different resoluAons: 

• Full HD (1920 × 1080) 

• HD+ (1600 × 900) 

• HD (1366 × 768) 

• WXGA (1280 × 720) 

• nHD (640 × 360) 

• 320 × 180. 

Consequently, each algorithm yielded an output consisAng of 600 frames, each 

containing marked lines. However, dispariAes in preprocessing stages and employed 
methodologies ensured that no two images were idenAcal at the conclusion of detecAon. 
Every frame underwent assessment across two categories. The first category pertained to the 
detecAon of any line within the airport areas.  

r% = 	
∑ r-.
-I6

n × 100 (55) 

The percentage values represenAng the performance of the algorithms were 
determined using equaAon (55), where the variable r signifies the manually classified result 
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within a specific category, and n denotes the total number of samples or video frames 
analysed. 

The effecAveness, expressed as a percentage, for each algorithm is depicted in 
Figure 4-12. Notably, Algorithm 2 exhibits substanAal deviaAon from the results obtained by 
the other two algorithms. This disparity can be anributed primarily to the algorithm's 
operaAonal mechanism, which relies on mathemaAcal computaAons rather than image 
processing operaAons. InteresAngly, Algorithm 2 achieved its highest efficiency at the lowest 
tested resoluAon. This phenomenon could be anributed to the reduced level of detail in the 

frames, simplifying calculaAons and consequently enhancing line detecAon efficiency. 

Conversely, Algorithms 1 and 3 demonstrate an inverse trend, wherein higher 
resoluAons correspond to improved efficiency. In the case of Algorithm 1, efficiency remains 
consistently high, exceeding 90%, while for Algorithm 3, it even reaches a perfect score 
of 100%. 

 
Figure 4-12 Overall detecHon efficiency depending on resoluHon and algorithm used [30] 

The second step in evaluaAng the effecAveness of the algorithms involved assessing 
whether all lines and markings within the criAcal area of the frame—specifically, the region 
directly in front of the lens and roughly at the centre of the image—were accurately detected. 
Figure 4-13 presents a comprehensive list of parameters that measure the degree of line 
detecAon efficiency relaAve to different frame resoluAons.  
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When examining the performance of Algorithms 1 and 3, it was observed that their 
effecAveness remained relaAvely consistent in detecAng all lines within the criAcal area for 
resoluAons at or above WXGA. Both algorithms managed to maintain a high level of accuracy 
in idenAfying the necessary lines and markings in these higher resoluAon images. However, 
a noAceable decrease in detecAon efficiency occurred for Algorithm 1 when the resoluAon was 
reduced. Despite this drop in accuracy at lower resoluAons, Algorithm 1 exhibited a significant 
increase in processing speed, which may be advantageous in certain applicaAons. 

In contrast, Algorithm 2, which relies predominantly on computaAonal methods rather 

than direct image processing, demonstrated considerably poorer performance. Its 
effecAveness was measured at only 40–45%, indicaAng that it struggled significantly with 
accurately detecAng the lines and markings within the criAcal area of the frame. This suggests 
that Algorithm 2's approach is less suited for tasks requiring precise vision detecAon, especially 
when compared to the more image-focused methodologies of Algorithms 1 and 3.  

Overall, while Algorithms 1 and 3 provide robust detecAon capabiliAes at higher 
resoluAons, the choice of algorithm might depend on the specific requirements of speed 
versus accuracy, parAcularly in lower resoluAon scenarios. 

Algorithm 1 exhibits notable shortcomings in accurately idenAfying both edges of 
painted lines. This led to classificaAon errors, misinterpreAng the failure to detect all lines 
during processing. AddiAonally, at higher resoluAons, parAcularly from WXGA upwards, 
significant background noise was observed, parAcularly in the form of erroneous edge 
detecAons on the black asphalt, a phenomenon absents in the other two algorithms. 
Furthermore, Algorithm 1 encountered difficulAes with lines posiAoned farther from the 
camera lens, approximately half the height of the frame, where edges were either not 
detected at all or incorrectly idenAfied. 

Conversely, Algorithm 2 demonstrated robust performance, parAcularly in scenarios 
featuring a single white line (central line) within the frame. SaAsfactory line detecAon 
efficiency extended to scenarios with up to two lines within the camera's field of view, 
anributed to the algorithm's adaptaAon for lane determinaAon between two lines. However, 
Algorithm 2 exhibited limitaAons in detecAng yellow-coloured lines, which were largely 
unrecognized. In such instances, fragmentary line detecAon was evident primarily in turns and 
at greater distances from the camera, disqualifying its suitability for supporAng the 
measurement plaEorm approach to test airport lighAng quality. 
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Figure 4-13 Summary of detecHon performance details for different resoluHons [30] 

Algorithm 3 emerged as the clear frontrunner, excelling in detecAng airport plane 
markings across various tesAng scenarios. It consistently idenAfied nearly all edges of visible 
lines within the frame, regardless of colour (white or yellow). Although noise was present at 
higher resoluAons, starAng from nHD and upwards, the use of colour segmentaAon effecAvely 
contained it within the outlines of the lines, preserving result interpretaAon integrity. These 
noises primarily comprised small edges detected due to surface texture variaAons, where the 
line itself did not consAtute a uniform colour area or areas lacking paint. AdjusAng length 
parameters of detected lines could potenAally miAgate this issue, but the imperaAve to 
idenAfy lines affected by tyre rubber in the touchdown zone rendered such adjustments 
impracAcal. Algorithm 3 outperformed its counterparts by seamlessly detecAng all lines within 
this criAcal area without encountering any obstacles. 
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4.4. Performance evalua-on using single board computer 

In order to perform a comprehensive analysis of the proposed algorithm and develop the 
system, it was necessary to perform an analysis of the performance of individual single board 
computers. This is also a reference to the tasks set in this dissertaAon, namely: Proposals of 
embedded systems implementa+ons. 

The evaluaAon of algorithmic performance was conducted using a range of hardware 
plaEorms including the Raspberry Pi 4B, NVIDIA Jetson Nano, NVIDIA Jetson Xavier AGX, and 
NVIDIA Jetson Orin AGX modules. The tesAng procedure involved the selecAon of random   
10-second segments from the enArety of the video sequences. Moreover, each segment 
underwent scaling to six different resoluAons: 1920 × 1080 (Full HD), 1600 × 900 (HD+), 
1366 × 768 (HD), 1280 × 720 (WXGA), 640 × 360 (nHD), and 320 × 180. Figure 4-14 and  
Figure 4-15 in the analysis depict a comparaAve evaluaAon of the mean frames analysed per 
second across these segments, varying by resoluAon and the specific embedded system 
uAlized for each algorithm. Notably, power consumpAon consideraAons were factored into the 
experimental design, given the algorithm's computaAonal intensity. Hence, the randomizaAon 
of sequences was performed once, followed by offline tesAng. 

 
Figure 4-14 FPS of image segmentaHon in the HSV colour space algorithm for various power modes of 

tested plahorms [44] 
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Throughout all experimentaAon phases, consistent sohware configuraAons were 
maintained, devoid of any tailored adjustments for individual hardware plaEorms. These tests 
encompassed a diverse array of power consumpAon modes to comprehensively assess 
algorithmic performance under varying operaAonal condiAons and system configuraAons. 

 
Figure 4-15 FPS of line detecHon using the Hough algorithm with Scharr mask filtering for various 

power modes of tested plahorms [44] 

The algorithm based on image segmentaAon in the HSV colour space, owing to its lower 
computaAonal complexity [30], exhibits shorter processing Ames compared to line detecAon 
using the Hough algorithm with Scharr mask filtering. Notably, the processing Ame of the 
program increases with higher input resoluAons, a relaAonship observed across all tested 
embedded devices and selected power consumpAon modes. For instance, the Raspberry Pi 4B 
microcomputer yielded nearly idenAcal results to the NVIDIA Jetson Nano module in MAXN 
power mode. However, with the NVIDIA Jetson Xavier AGX, an increase in the number of 
processed frames per second was observed at maximum CPU processor clock speed.  
Table 2-5 illustrates that higher processor Amings are obtained for higher power consumpAon 
modes. In the 30W mode, the maximum clock frequency changes depending on the number 
of processor cores used, with fewer acAve cores corresponding to higher frequencies. A similar 
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panern is evident for the NVIDIA Jetson Orin AGX, as indicated in in Table 2-6, where the 
processor's clock frequency also varies. Remarkably, for the most efficient units and this 
algorithm, such as the NVIDIA Jetson Orin AGX and NVIDIA Jetson Xavier AGX, real-Ame 
processing of video sequences at maximum resoluAon is achievable, with values 
exceeding 24 FPS. 

Due to the architecture of airport line detecAon programs, which are typically  
single-threaded [30], reducing the number of acAve processor cores does not adversely affect 
the achieved results. However, it's essenAal to consider the computaAonal complexity of line 

detecAon using the Hough algorithm with Scharr mask filtering, as this can impact processing 
Ame, parAcularly in embedded systems. Consequently, achieving performance levels 
of 24 frames per second (FPS) in video sequence processing was only feasible aher reducing 
the resoluAon to 1366×768. Notably, with the most efficient NVIDIA Jetson Xavier MAXN 
modules, 24 FPS were anained, while NVIDIA Jetson Orin MAXN achieved 26 FPS. 

It's crucial to acknowledge that the efficiency of line detecAon using the Hough 
algorithm with Scharr mask filtering, owing to its greater computaAonal complexity, may result 
in the tested embedded devices exhibiAng inferior maximum performance compared to 
algorithms based on image segmentaAon in the HSV colour space. Consequently, such 
approaches may not be equally suitable for real-Ame applicaAons. 

4.4.1. Power consump=on analysis 

Energy consumpAon was measured using the Jetson-Stats sohware [178], an advanced system 
monitoring and control package specifically designed for the NVIDIA Jetson series, including 
models such as the Orin, Xavier, Nano, and TX. This tool, illustrated in Figure 4-16, is essenAal 
for researchers and developers who need in-depth analysis and performance tracking of their 
NVIDIA Jetson boards. Key features of Jetson-Stats include: 

• Hardware, Architecture, L4T, and NVIDIA Jetpack Decoding: The tool provides detailed 
informaAon about the system's hardware and sohware configuraAons. This includes 
insights into the Linux for Tegra (L4T) operaAng system and NVIDIA Jetpack SDK, which 
are crucial for understanding the system's operaAonal parameters and idenAfying 
opportuniAes for performance opAmizaAon. 

• Comprehensive Monitoring: Jetson-Stats can monitor a wide array of system metrics, 
including CPU and GPU usage, memory consumpAon, engine acAvity, and fan speeds. 
This comprehensive monitoring capability ensures that users have conAnuous 
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awareness of the system's health and performance, enabling them to detect and 
address potenAal issues promptly. 

• System Control: The package allows users to manage various system parameters, 
including the NVP model (which relates to power modes), fan speed, and jetson_clocks 
(a uAlity to maximize system performance). This control over performance and power 
management is parAcularly valuable for opAmizing the balance between 
computaAonal demands and energy efficiency. 

Jetson-Stats serves as a vital resource, offering detailed monitoring and control 
features that enhance the ability to manage and opAmize NVIDIA Jetson boards. By providing 
real-Ame data and control capabiliAes, it supports the efficient use of hardware resources, 
ensuring that the Jetson plaEorms can be used to their full potenAal in research and 
development seyngs. 

 
Figure 4-16 Jetson-Stats soxware interface running on NVIDIA Jetson Orin AGX [44] 

The average power consumpAon measurements are presented with a precision level 
of 0.1 W, mirroring the accuracy of results obtained through the Jetson-stats sohware. In line 
with this precision, results obtained via hardware measurements using mulAmeters are also 
showcased with equivalent accuracy. Table 4-2 displays the outcomes of average power 
consumpAon measurements during algorithm operaAon across various power modes and 
resoluAons, employing the algorithm grounded in image segmentaAon within the HSV colour 
space. Conversely, Table 4-3 delineates the results for line detecAon uAlizing the Hough 
algorithm with Scharr mask filtering. Both tables encapsulate the average results derived from 
offline trials conducted over 10-second sequences, varying in resoluAon and randomly 
selected from the dataset. Notably, these measurements were conducted without imposing 
any FPS limits during the trials. 
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Table 4-2 Average power consumpHon (in WaYs) for algorithm based on image segmentaHon in the 
HSV colour space using Jetson-Stats soxware 

 320×180 640×360 1280×720 1366×768 1600×900 1920×1080 

Jetson Nano 5W 2.8 3.2 3.1 3.2 3 3.2 

Jetson Nano MAXN 4.8 4.9 4.8 5 5 4.8 

Jetson Xavier Mode 10W 4.3 4.3 4.3 4.1 4.1 4.1 

Jetson Xavier Mode 15W 4.6 4.9 4.9 4.9 5 4.9 

Jetson Xavier Mode 30W ALL 5 5.5 5.4 5.4 5.4 5.4 

Jetson Xavier Mode 30W 6CORE 5.4 5.5 5.6 5.7 5.8 6.1 

Jetson Xavier Mode 30W 4CORE 5.5 5.9 6.2 6.2 6.5 6.5 

Jetson Xavier Mode 30W 2CORE 6.8 7.1 7.3 7.3 7.3 7.4 

Jetson Xavier Mode 15W DESKTOP 7.5 8.7 8.9 9.1 9.2 9.4 

Jetson Xavier MAXN 10.7 13.2 13.1 13.2 13.4 13.5 

Jetson Orin Mode 15W 11.3 11.4 11.5 11.5 11.5 11.7 

Jetson Orin Mode 30W 12.5 13.4 13.3 13.3 13.3 13.9 

Jetson Orin Mode 50W 12.1 13.1 12.5 12.5 13 13.9 

Jetson Orin MAXN 15.4 17.7 16.7 16.8 16.8 16.9 

 
Table 4-3 Average power consumpHon (in WaYs) for line detecHon using Hough algorithm with Scharr 

mask filtering using Jetson-Stats soxware 

 320×180 640×360 1280×720 1366×768 1600×900 1920×1080 

Jetson Nano 5W 3.1 3 3 3 3 3.1 

Jetson Nano MAXN 4.1 3.9 4.4 4.7 4.6 4.8 

Jetson Xavier Mode 10W 4.1 4.1 4.1 4.1 4.1 4.1 

Jetson Xavier Mode 15W 4.6 5.1 4.7 4.6 4.6 4.6 

Jetson Xavier Mode 30W ALL 4.9 5.2 4.9 4.9 4.9 4.7 

Jetson Xavier Mode 30W 6CORE 5 5.4 5.2 5.2 5.2 5.1 

Jetson Xavier Mode 30W 4CORE 5.3 5.9 5.7 5.7 5.9 5.5 

Jetson Xavier Mode 30W 2CORE 6.7 6.9 6.9 7.1 7.1 7.1 

Jetson Xavier Mode 15W DESKTOP 7.4 8.1 8 7.9 8.2 7.9 

Jetson Xavier MAXN 10.3 11.5 11.2 11.1 10.9 10.9 

Jetson Orin Mode 15W 11.2 11.3 11.4 11.4 11.4 11.3 

Jetson Orin Mode 30W 12.7 12.9 12.7 12.7 12.7 12.7 

Jetson Orin Mode 50W 12.1 12.5 11.9 11.9 11.9 11.9 

Jetson Orin MAXN 15.4 16.7 15.6 15.3 15.3 14.9 
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It's evident from previous secAons that more advanced modules such as the NVIDIA 
Jetson Orin AGX operaAng in MAXN mode and the NVIDIA Jetson Xavier AGX in MAXN mode 
exhibit higher power demands, which aligns with expectaAons given their enhanced 
performance capabiliAes. Specifically, the FPS values obtained for these devices notably 
surpass those of their counterparts. 

Noteworthy is the subtle variaAon in power consumpAon observed across different 
resoluAons for individual power modes, with measured values remaining relaAvely consistent. 
This phenomenon stems from the absence of FPS limits during experimentaAon, where FPS 

values were maximized independently for each experiment. 

To provide a more comprehensive assessment of power requirements, accounAng for 
the interplay between algorithm type, resoluAon, and FPS values obtained, these 
dependencies have been meAculously considered and summarized in the subsequent  
sub-chapter. 

As an embedded system from the Raspberry Pi family was uAlized in this study, the 
aforemenAoned sohware soluAon could not be employed. Consequently, it was opted to 
employ standard laboratory mulAmeters to obtain the average energy consumpAon of each 
embedded system. It's noteworthy that the earlier Jetson-Stats sohware solely measures  
the power consumed by the microcomputer's components, disregarding the power 
consumpAon of connected accessories. To address this, measurements in the following 
instances include typical accessories such as a keyboard, mouse, and fan connected to the 
microcomputers. 

Figure 4-17 presents the results of average power consumpAon measurements during 
algorithm operaAon across various power modes and resoluAons, employing the algorithm 
based on image segmentaAon in the HSV colour space, with power meter measurements. 
Conversely, Figure 4-18 showcases the results for line detecAon using the Hough algorithm 
with Scharr mask filtering. 
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Figure 4-17 Average power consumpHon (in WaYs) for algorithm based on image segmentaHon in the 

HSV colour space using electronic mulHmeter [44] 

For the algorithm analysed, which relies on image segmentaAon in the HSV colour 
space, achieving the highest resoluAons of 1920 × 1080 imposes a limitaAon on the Frames 

Per Second value, typically below 24 FPS. However, this FPS value is considered acceptable for 
airport line detecAon techniques, given the nature of the task and the processing 
requirements involved. 

Two microcomputers meet these requirements with the following configuraAons:  
the NVIDIA Jetson Xavier AGX operaAng in MAXN mode and the NVIDIA Jetson Orin AGX also 
in MAXN mode. In these configuraAons, the average power consumpAon and corresponding 
FPS values are as follows: 

• For NVIDIA Jetson Xavier AGX in MAXN mode: The average power 
consumpAon is 18.5 W, achieving a frame rate of approximately 27 FPS. 

• For NVIDIA Jetson Orin AGX in MAXN mode: The average power 
consumpAon is 20.8 W, with a frame rate of approximately 25 FPS. 
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These results indicate that both the NVIDIA Jetson Xavier AGX and the NVIDIA Jetson 
Orin AGX are capable of meeAng the processing requirements for airport line detecAon 
techniques at the specified resoluAon, while maintaining acceptable power consumpAon 
levels. The FPS values achieved by these microcomputers are within the acceptable range for 
effecAve line detecAon, ensuring reliable performance in real-world applicaAons. 

 
Figure 4-18 Average power consumpHon (in WaYs) for line detecHon using Hough algorithm with 

Scharr mask filtering using electronic mulHmeter [44] 

In the case of the second soluAon, which involves line detecAon using the Hough 

algorithm with Scharr mask filtering, and with the processing speed limit set at a minimum of 
24 FPS, it was found that none of the microcomputers could achieve the minimum FPS value 
at a video resoluAon of 1920 × 1080. However, reducing the resoluAon to 1366 × 768 allowed 
for video sequence processing at a sufficient speed. 
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Two microcomputers capable of meeAng these requirements are the NVIDIA Jetson 
Xavier AGX operaAng in MAXN mode and the NVIDIA Jetson Orin AGX also in MAXN mode. 
In these configuraAons, the average power consumpAon and corresponding FPS values are as 
follows: 

• For NVIDIA Jetson Xavier AGX in MAXN mode: The average power 
consumpAon is 16 W, achieving a frame rate of approximately 24 FPS at 
a resoluAon of 1366 × 768. 

• For NVIDIA Jetson Orin AGX in MAXN mode: The average power 
consumpAon is 20 W, with a frame rate of approximately 26 FPS at the same 
resoluAon of 1366 × 768. 

These findings indicate that both the NVIDIA Jetson Xavier AGX and the NVIDIA Jetson 
Orin AGX can effecAvely process video sequences for line detecAon at the specified resoluAon 
while meeAng the minimum FPS requirement. Despite the higher power consumpAon of the 
Jetson Orin AGX, it offers a slightly higher FPS, ensuring smooth and efficient processing of 
video data. 

4.4.2. Single board computers energy efficiency analysis 

In order to obtain a meaningful comparaAve value, it was necessary to find a common value 
for all analysed soluAons. For this reason, it was decided to compare the power consumpAon 
in terms of FPS. For the FPS and power consumpAon values delineated in previous secAons, 
comparaAve charts have been formulated to illustrate the dependency of power consumpAon 
requirements on both resoluAon and FPS values. Figure 4-19 illustrates the dependency of the 
algorithm based on image segmentaAon in the HSV colour space, while Figure 4-20 depicts 
the dependency graph for line detecAon uAlizing the Hough algorithm with Scharr mask 
filtering. Lower values denote lower power requirements, with MAX modes proving opAmal 
for faster processing speeds, expressed in FPS. 

A comparaAve analysis of the two algorithms reveals that in the case of the algorithm 
based on image segmentaAon in the HSV colour space, it's feasible to achieve equivalent or 

superior FPS values with lower energy consumpAon. For instance, on the NVIDIA Jetson Xavier 
in MAXN mode, this algorithm requires 679 mJ/frame for 1920 × 1080 resoluAon, whereas line 
detecAon uAlizing the Hough algorithm with Scharr mask filtering necessitates 680 mJ/frame 
for 1366 × 768 resoluAon. 
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Figure 4-19 Energy efficiency analysis of algorithm based on image segmentaHon in the HSV colour 

space [44] 
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Figure 4-20 Energy efficiency analysis of line detecHon using Hough algorithm with Scharr mask 

filtering [44] 

4.4.3. Energy efficiency analysis of dynamic voltage frequency switching 

Another method for controlling hardware performance, similar to the power modes 
implemented by NVIDIA Jetson, is Dynamic Voltage and Frequency Switching (DVFS), as 
discussed in several studies) [179], [180], [181].  In the course of the experimentaAon,  
an addiAonal experiment was conducted to execute image segmentaAon algorithms in the HSV 
colour space and line detecAon using the Hough algorithm with Scharr mask filtering, 
mirroring previous research methodologies. Energy consumpAon was monitored using 
mulAmeters and jetson-stats sohware. However, this Ame, alteraAons were made not only to 
the microcomputer's power mode but also to the DVFS policy, which includes modes such  
as scheduAl, performance, powersave, userspace, on-demand, interacAve, and conservaAve. 
The tests were conducted on the NVIDIA Jetson AGX Xavier microcomputer, given its superior 
performance in previous evaluaAons. 
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In terms of processing speed, the NVIDIA Jetson AGX Xavier microcomputer only met 
the assumpAons in the MAXN mode within the DVFS policies: scheduAl (27 FPS), performance 
(25 FPS), ondemand (27 FPS), interacAve (26 FPS), conservaAve (27 FPS) for image 
segmentaAon in the HSV colour space at a resoluAon of 1920 × 1080. However, the 
assumpAons were not fulfilled for the line detecAon algorithm using the Hough algorithm with 
Scharr mask filtering. Figure 4-21 and Figure 4-22 provide detailed results of the experiment. 
Notably, the MAXN and DVFS policy powersave operaAng modes resulted in pracAcal 
incapacity to run the program, significantly extending the program's execuAon Ame and 

consequently increasing the energy consumpAon per image frame. 

The experiments conducted, based on the defined assumpAons and uAlized 
algorithms, revealed that the opAmal operaAng modes meeAng the assumpAons are the 
power mode MAXN and DVFS policy scheduAl (680 mJ/frame). However, in most cases,  
the differences hover around 7%: 

• scheduAl: 27 FPS ➔ 680 mJ/frame 

• performance: 25 FPS ➔ 732 mJ/frame 

• ondemand: 27 FPS ➔ 697 mJ/frame 

• interacAve: 26 FPS ➔ 698 mJ/frame 

• conservaAve: 27 FPS ➔ 685 mJ/frame 

These findings underscore the importance of selecAng appropriate power modes and 
DVFS policies to achieve opAmal energy efficiency and processing performance for embedded 
systems. 
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Figure 4-21 Energy efficiency analysis of algorithm based on image segmentaHon in the HSV colour 

space using different DVFS policies [44] 

 
Figure 4-22 Energy efficiency analysis of line detecHon using Hough algorithm with Scharr mask 

filtering using different DVFS policies [44] 
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Indeed, it is noteworthy that the results obtained previously, uAlizing the default DVFS 
policy scheduAl, validate the opAmizaAon of this mode, which outperformed all other tested 
modes by yielding the lowest energy consumpAon per image frame. This underscores the 
significance of selecAng the most efficient DVFS policy to ensure opAmal energy efficiency 
without compromising processing performance. 
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Chapter 

5. Quality classifica1on of airfield ground 
ligh1ng 

The quality assessment of airport lamps can be carried out using staAonary methods, e.g. using 
a goniometer, or mobile methods, such as a measurement plaEorm for tesAng airport  
lighAng [26], [27], [28], [29], [53]. For this reason, several scopes of aviaAon navigaAon 
lighAng inspecAons can be disAnguished. This thesis puts emphasis on the vision assessment 
of in-pavement airport lamps, which is based on the detecAon and assessment of wear 
(chipping) of the prism of the lamp being examined. The second type of inspecAon is examining 
the colour of a given lamp. First, to assess its type, and then to adapt the appropriate 
internaAonal standards, but also to assess the chromaAcity of the light emined by these lamps. 
Figure 5-1 shows a schemaAc division of the scope of research. 

 

Figure 5-1 Types of airport navigaHonal lightning lamps quality classificaHon 

5.1. Vision classifica-on of airport naviga-on ligh-ng lamps 
system 

The quality assessment of airport lamps can be conducted through staAonary methods, such 
as using a light goniometer, or mobile methods, which involve luminous intensity measuring 
plaEorms [28] or drones [26], [31]. The staAonary approach is notably Ame-consuming as it 
necessitates the disassembly of lamps. Conversely, the uAlizaAon of measurement plaEorms 
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or drones is preferred due to the need for short periods of occupaAon in runway areas, 
typically ranging from 5 to 10 minutes, to minimize disrupAons to air operaAons. 

An alternaAve mobile method involves the uAlizaAon of a vision system capable of 
analysing the mechanical wear of lamps, parAcularly focusing on their prisms [40]. A notable 
advantage of this soluAon, compared to luminous intensity measurement, is its ability to 
precisely assess the degree of degradaAon of the prisms' frontal plane. AddiAonally, 
the presented soluAon can serve as a complement to sensory luminous intensity 
measurement systems. Image acquisiAon and processing can be facilitated using embedded 

systems [5], [128], employing dedicated vision sensors [30], [47], [48]. As depicted  
in Figure 5-2, the concept of the system entails a measurement plaEorm, towed by the airport 
service vehicle, housing a camera that captures images from above, facilitaAng vision 
inspecAon of the mechanical wear of the in-pavement navigaAon lamps. 

 

Figure 5-2 Concept of intelligent vision system for the analysis of mechanical wear of the prisms of  
in-pavement airport lamps 

The chapter outlines the different stages involved in image processing of the integrated 
airport lamps. For the conclusive classificaAon evaluaAon, a two-layer neural network with 
forward feed was employed. This neural network architecture relied on the sigmoidal funcAon 
in the hidden layer and the sohmax funcAon, also known as the normalized exponenAal 
funcAon, in the output layer. Experimental research was conducted uAlizing a proprietary 
dataset within the MATLAB 2022a environment [105]. 

Figure 5-3 presents the overarching scheme of the image processing workflow. This 
process can be effecAvely segmented into two disAnct stages: 

• DetecAon of the Region of Interest (ROI): This iniAal stage puts emphasis on idenAfying 
the specific area within the image that requires further analysis and scruAny. Various 
techniques may be employed for this purpose, including but not limited to edge 
detecAon, thresholding, or region-based segmentaAon methods. 

• Decision-Making Process Based on a Neural Network: Following the successful 
detecAon of the ROI, the subsequent stage involves employing a neural network-based 
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approach for decision-making. This phase typically entails feeding the extracted 
features from the ROI into a trained neural network model, which then generates 
predicAons or decisions based on the learned panerns and relaAonships within the 
data. The neural network architecture may vary depending on the specific task 
and objecAves, ranging from convoluAonal neural networks (CNNs) for image 
classificaAon to recurrent neural networks (RNNs) for sequenAal data analysis. 

 

Figure 5-3 Proposed vision data processing workflow for prisms mechanical wear classificaHon 

5.1.1. Dataset of airfield ground ligh=ng lamps 

The experimental research involved the preparaAon of an in-pavement lamps first dataset 
comprising a total of 316 images [40]. In subsequent research, the dataset was expanded to 
540 photos [41]. These images were carefully curated to encompass a variety of scenarios, 
including different weather condiAons and Ames of the day, to ensure comprehensive tesAng 
of the algorithms under various condiAons. Furthermore, efforts were made to capture images 
with diverse lamp posiAons and backgrounds, including asphalt, concrete, and a white 
background for lamps situated within road markings on the airfield. This diversity in image 
characterisAcs enables thorough evaluaAon of algorithm performance across a range of  
real-world situaAons. 

The images in the dataset have a resoluAon of 4928 × 3264 pixels and a 24-bit 
colourdepth, ensuring high-quality representaAon of the in-pavement lamps. They are stored 
in JPG format, uAlizing the RGB colour space to accurately capture colour informaAon. 

Figure 5-4, Figure 5-5 and Figure 5-6 provide examples of different types  
of in-pavement airport lamps included in the dataset. These images showcase the variability 
in lamp designs, orientaAons, and environmental contexts captured during the data collecAon 
process. Such diversity in the dataset is crucial for assessing the robustness and effecAveness 
of the algorithms in real-world applicaAons, where condiAons can vary significantly. 

The lamps depicted in the photos exhibit variaAons in posiAon and brightness, with 
some lamps being switched on while others are not. This diversity in the dataset is invaluable 
as it enables the fine-tuning of algorithms, thereby enhancing their accuracy and robustness 
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across different condiAons. For instance, runway centre line lamps funcAon in both direcAons, 
whereas taxiway lamps typically operate in only one direcAon as per regulaAons. 

   

Figure 5-4 Examples of Taxiway centre line Lamp IDM5582 [40] 

  

Figure 5-5 Examples of Runway centre line lamp IDM4582 [40] 

  

Figure 5-6 Examples of Touchdown zone lamp IDM4671 [40] 

AddiAonally, during the internship in Poznań–Ławica Airport, over 1000 photometric 
measurements of in-pavement airfield ground lighAng lamps and photos were taken [43]. 
Photos and measurements of the lamps were taken aher dismantling them from the ground 
surfaces and aher replacing the prism and bulbs. Thanks to this, it was possible  
to comprehensively test the lamps and learn the consumpAon characterisAcs of navigaAon 
lighAng at the airport, as well as prepare a dataset of measurements and photos. Thanks to 
this work it was possible to crate PLAVS2 (Poznań Lawica Airport Video Set 2) dataset with 
1004 photos of in-pavement airfield ground lighAng. Table 5-1 shows number of images in 

dataset of each lamp type. 
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Table 5-1 Lamp types in the PLAVS2 dataset 

Lamp type Before maintenance After maintenance 

RCL CC 170 170 

RCL CR Crystal 77 78 

RCL CR Red 77 78 

TDZ 177 177 

Total: 
500 504 

1004 

5.1.2. Airport naviga=onal ligh=ng lamps and prisms detec=on 
algorithm 

Figure 5-7 illustrates the process of localizing and detecAng the prism. IniAally, lamp 
localizaAon is executed employing the circular Hough Transform, facilitaAng the detecAon of 
the lamp along with its precise posiAon and orientaAon. Subsequently, the prism area is 
idenAfied through a combinaAon of morphological operaAons and high-pass filtering, 
employing the Sobel mask for enhanced accuracy. 

The process of lamp detecAon and prism localizaAon begins by loading an image from 
the dataset, which is then scaled to 15% of its original size. This scaling down of the image  
is crucial for opAmizing the amount of data used during neural network training [48]. 
Subsequently, the image is converted to grayscale to simplify processing. 

Lamp detecAon is carried out using the circular Hough Transform, which searches for 
circular shapes within the image. Specifically, the algorithm looks for circles within predefined 
ranges of radius values, effecAvely idenAfying potenAal lamp locaAons. The Circular Hough 
Transform (CHT) algorithm is chosen for its robustness against noise, occlusion, and varying 
illuminaAon condiAons. 

Following lamp detecAon, the algorithm searches for smaller circles represenAng 
airport lighAng mounAng bolts. The pixel span for this search has been determined 
experimentally to opAmize detecAon accuracy. Aher these operaAons, the input image 
undergoes rotaAon to ensure consistency in orientaAon across all photos. UAlizing the original 
image for rotaAon helps maintain data quality for subsequent processing steps. 
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Figure 5-7 Diagram of the lamp and prism detecHon algorithm 

Figure 5-8 illustrates the result of the lamp detecAon operaAon, with the detected lamp 
indicated by a blue circle. The orientaAon of the lamp, determined based on the posiAons of 
the mounAng bolts, is depicted by green circles. This process ensures accurate localizaAon  
of lamps and prisms in the images, laying the foundaAon for further analysis and inspecAon 
steps. 
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Figure 5-8 The illustraHon of the operaHon of detecHng the lamp (blue circle) and its orientaHon 
(green circles) [40] 

The subsequent operaAon involves limiAng the working area by cropping to a porAon 
of the image where the prism is located. This cropped image is then converted to grayscale, 
and edge detecAon is performed. Morphological operaAons and filtering using the Sobel 
operator are applied to determine the posiAon of the searched prism, which also aids in 
reducing the Region of Interest (ROI). 

The Sobel operator mask used in this process is configured to focus on finding 
horizontal edges, which was found to be the opAmal soluAon for the applicaAon based on 
conducted experiments. This choice helps to miAgate distorAons and eliminate small edges 
that could lead to errors in subsequent processing steps. 

The Sobel mask used has the following form: 

kernel = 	 ¤
0 0 0
1 1 1
0 0 0

¥ (56) 

The mask emphasizes horizontal edges, enhancing the visibility of features relevant to 
prism detecAon. Through experimentaAon, it was determined that this configuraAon 

effecAvely reduces noise and facilitates accurate prism localizaAon. 

In contrast, using a Sobel mask in diamond form resulted in an output devoid of 
reference points, rendering it impossible for the algorithm to determine the posiAon of the 
prism accurately. 

Figure 5-9 illustrates the final result of detecAng the prism locaAon on the tested  
in-pavement lamp. This process ensures precise localizaAon of the prism, laying the 
groundwork for subsequent analysis and inspecAon tasks. 
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Figure 5-9 The illustraHon of the prism detecHon operaHon [40] 

Table 5-2 summarizes the effecAveness of the various stages of the algorithm's operaAon. 

Table 5-2 Lamp detecHon and orientaHon idenHficaHon effecHveness 

Type of operation 
Efficiency of identification 

Correct identification Incorrect identification 

Lamp detection 90.81% 9.09% 

Lamp orientation 90.21% 9.79% 

5.1.3. Datasets of airfield ground ligh=ng prisms 

IniAally, the dataset was limited to 284 images due to incorrect performance in earlier stages, 
parAcularly in the detecAon of lamps, divided into 3 class:  

• Class I - undamaged prisms (Figure 5-10) 

• Class II - no longer suitable for operaAon (Figure 5-11) 

• Class III - images when it is impossible to judge the wear of the prism (Figure 5-12). 

The "Undamaged Prisms" class includes images of prisms that are in good condiAon, 
while the "Damaged Prisms" class consists of images depicAng prisms that are no longer 
suitable for operaAon. The "Uncertain Prisms" class comprises images where it is difficult to 
assess the condiAon of the prism. These images ohen result from incorrect earlier stages of 
finding the locaAon of the lamp and prism. 

          

Figure 5-10 Examples of tarnished prisms but with no mechanical damage (Class I) [40] 

          

Figure 5-11 Examples of damaged prisms (Class II) [40] 
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Figure 5-12 Examples of improper prism segmentation (Class III) [40] 

Figure 5-13 provides insight into the distribuAon of classes in the dataset, illustraAng 
the raAo of each class. This distribuAon serves as a basis for training and evaluaAng the 
performance of the neural network in classifying prism condiAons based on image data. 

 
Figure 5-13 The raHo of the class distribuHon in the iniHal prisms dataset 

During the training process, the samples entering the network input are randomly 
divided while maintaining the following proporAons: 

• Training: 70% of the samples, are allocated for training purposes. These images are 
uAlized to adjust the network parameters based on its error, opAmizing its 
performance over successive iteraAons. 

• ValidaAon: 15% of the samples, are designated for validaAon purposes. These samples 
are used to measure the network's generalizaAon ability and to halt the training 
process when the improvement in generalizaAon ceases. Specifically,  
the training process is stopped when the cross-entropy error of the validaAon samples 
begins to increase, indicaAng a decline in generalizaAon performance. 

• TesAng: The remaining 15% of the samples, are reserved for tesAng purposes. Unlike 
the training and validaAon phases, this part of the process does not impact the training 
of the neural network. Instead, it serves as an independent indicator of the network's 
performance during and aher training, providing valuable insights into its effecAveness 
in classifying prism condiAons based on image data. 
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Following the successful experimental results, it was decided to enlarge the dataset 
originally built to 540 navigaAonal lighAng lamps prisms. The expanded database was also 
divided into 3 classes, according to the iniAal database. Figure 5-14 shows the raAo of the class 
distribuAon in the expanded prisms dataset. 

 

Figure 5-14 The raHo of the class distribuHon in the expanded prisms dataset 

5.1.4. Proposed system for prism quality classifica=on using neural 
networks 

This experiment was conducted to test the possibility of classifying prisms based on their wear. 
At the beginning, the two-layer feed-forward neural network was implemented using the Open 
Neural Network Start app (nnstart in the MATLAB environment) demonstrates the ability to 
correctly classify vectors when a sufficient number of neurons are present in the hidden layer. 
This network architecture uAlizes the sigmoidal funcAon in the hidden layer and the sohmax 
funcAon (normalized exponenAal funcAon) in the output layer for classificaAon purposes. 
Training of the network is achieved using scaled backpropagaAon of the conjugate gradient. 

The input to the network consists of the I matrix with dimensions of 1440000 × 284, 
where each sample contains 1440000 elements represenAng image vectors. The target matrix, 
denoted as T, has dimensions of 3 × 284, represenAng 284 samples, each with 3 elements 
corresponding to prism classificaAon categories. 

320

133

67

Class I Class II Class III



5 Quality classifica+on of airfield ground ligh+ng 

168  J. Suder 

 

Figure 5-15 Confusion matrices of prism quality classificaHon [40] 

The results of the trained neural network have proven to be highly saAsfactory, with an 
impressive accuracy rate of 81.4% achieved during the tesAng phase, as depicted in  
Figure 5-15. This level of accuracy indicates the effecAveness of the network in correctly 
classifying prism condiAons based on the provided image data. 

Such accuracy underscores the success of the network in learning and generalizing 
panerns from the training data to accurately classify unseen samples during tesAng. It 
demonstrates the robustness and reliability of the neural network model in effecAvely 
disAnguishing between undamaged, damaged, and uncertain prisms, despite variaAons  
in image characterisAcs and condiAons. 

Due to the possibility of classifying prisms using neural networks, it was decided to 
conduct a second experiment using pre-trained neural network models. It was conducted 
using the Deep Network Designer tool within the MATLAB 2022b [109] environment and larger 
dataset, consisAng of 540 images. This powerful tool enables the selecAon of pre-trained 
neural networks, customizaAon of the dataset, and adjustment of network parameters  
to opAmize results. For this research, three prominent neural network models were chosen 
for evaluaAon: GoogLeNet, VGG-19, and Resnet [182]. 

The workstaAon uAlized for the experiment boasted the following specificaAons: an 
Intel Core i7-6800K CPU running at 3.40 GHz and a NVIDIA 2080 Ti graphics card. These  
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high-performance components ensured efficient processing and computaAon, essenAal for 
training and evaluaAng neural networks with large datasets and complex architectures. 

The training of the GoogLeNet network employs the stochasAc gradient descent with 
momentum (SGDM) opAmizaAon algorithm. Seyng specific parameters for the training 
process is facilitated by the trainingOp+ons funcAon, encompassing various arguments 
governing different facets of the training regimen. These parameters encompass the 
opAmizaAon algorithm, learning rate, number of epochs, mini-batch size, and more. 

Subsequently, the layerGraph serves as the foundaAon for construcAng an empty 

neural network graph, which can later be furnished with layers and interconnecAons. Defining 
the iniAal layers of the GoogLeNet architecture is accomplished through MATLAB code, with 
these layers then added to the network graph via the addLayers funcAon. 

The foremost layer within the network, an imageInputLayer, sApulates the dimensions 
of the input images desAned for processing by the network. In this context, the input images 
are anAcipated to possess dimensions of 224 × 224 pixels and feature three colour channels 
(red, green, and blue). 

Following this, a convoluAon2dLayer starts its operaAon, tasked with applying a series 
of learned filters to the input image to extract perAnent features. This layer employs a 7 × 7 
filter size and generates 64 output feature maps, employing a stride of 2 pixels and padding of 
3 pixels on each side to ensure congruence in size between the output feature maps and the 
input image. Subsequently, a reluLayer is applied to the convoluAon layer's output to introduce 
nonlinearity. 

To downsample the preceding layer's output, reducing its spaAal resoluAon by a factor 
of 2, a maxPooling2dLayer is employed. This layer adopts a 3 × 3 pooling size and a stride of 
2 pixels, accompanied by padding of 1 pixel on each side to maintain parity in size between 
the output feature maps and the input. 

The subsequent inclusion, the crossChannelNormaliza+onLayer, funcAons to normalize 
the previous layer's output across feature maps, thereby enhancing the overall generalizaAon 
of the network. UAlizing a normalizaAon window size of 5 and a scale factor of 1, this layer aids 
in refining the network's performance. 

Moving forward, the incepAon module assumes prominence, serving as a fundamental 
building block recurrently employed throughout the GoogLeNet architecture. Comprising four 
parallel convoluAonal pathways, each characterized by disAnct filter sizes, the incepAon 
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module culminates in a concatenaAon layer merging the output of all four pathways. This 
framework enables the network to glean insights across mulAple scales and resoluAons, crucial 
for precise object recogniAon within images. 

Within the inaugural incepAon module (incepAon_3a), the pathways encompass 
a maxPooling2dLayer followed by convoluAon2dLayer instances uAlizing varying filter sizes: 
1 × 1, 3 × 3, and 5 × 5. Each pathway yields a suite of output feature maps, subsequently 
amalgamated via the depthConcatena+onLayer to yield the final output of the incepAon 
module, which then feeds into the subsequent layer of the network. Table 5-3 presents the 

values of Mini-branch Accuracy, ValidaAon Accuracy, Mini-batch Loss, and ValidaAon Loss 
across different epochs and iteraAons.  

Table 5-3 Summary of parameters during GoogLeNet network training 

Epoch Iteration Mini-branch  
Accuracy 

Validation 
Accuracy 

Mini-batch 
Loss 

Validation 
Loss 

1 1 31.25% 67.44% 1.638 1.8217 
4 10 78.12% 74.42% 0.5817 0.6523 
7 20 93.75% 81.40% 0.2075 0.4574 

10 30 92.19 % 83.72% 0.1676 0.3619 
14 40 98.44% 88.37% 0.0806 0.2772 
17 50 98.44% 88.37% 0.0412 0.2961 
17 51 100% - 0.0430 - 

The GoogLeNet model exhibited the highest accuracy in classifying the wear of the 
prism of the in-pavement navigaAon lamp, achieving an accuracy of 88.37%. The learning 
process and loss are visually depicted in Figure 5-16. This outcome surpassed the performance 
of other tested neural networks, with VGG-19 achieving an accuracy of 67.07% and ResNet 
reaching 75.29%. A detailed comparison of the accuracy of the neural network models used in 
the experiment is presented in Table 5-4. 
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Figure 5-16 GoogLeNet expanded prisms dataset training and validaHon accuracy and loss graph [41] 

Table 5-4 Accuracy comparison neural network models used in the experiment 

Neural network model Accuracy 

GoogLeNet 88.37% 
VGG-19 67.07% 
Resnet 75.29% 

In comparison to the previously showed system [40], which achieved an accuracy of 
81.4%, it is evident that proper training and an increase in the number of images in the dataset 
yield significantly improved results. This observaAon leads to the conclusion that employing 
a neural network based on GoogLeNet is jusAfied for further development and 
implementaAon in devices navigaAng around the airport. 

 

 



5 Quality classifica+on of airfield ground ligh+ng 

172  J. Suder 

5.2. Automa-c classifica-on of naviga-on ligh-ng 
chroma-city 

5.2.1. Airfield ground ligh=ng chroma=city measurement system 

concept 

The proposed system, in the form of a proposed measurement plaEorm, requires recogniAon 
of the type of lamp based on the colour of the emined light in order to select the luminosity 
standards of individual light points and to examine its chromaAcity in order to compare it with 
the EASA CS-ADR-DSN standards [4]. A general block diagram outlining the individual stages of 
lamp measurement is depicted in Figure 5-17. During the iniAal stage, colour detecAon occurs, 
facilitaAng the idenAficaAon of the tested lamp type. Subsequently, the matrix of light intensity 
sensors provides a result, which, based on the specific lamp type idenAfied, is then converted 
according to coefficients determined in the laboratory. This process enables the accurate 
reading of lamp luminous intensity. The obtained results are then compared with relevant 
standards corresponding to the appropriate type of lighAng, determining whether the lamp 
needs replacement or can conAnue to be used. 

 

Figure 5-17 Block diagram of the light chromaHcity quality assessment 

5.2.2. Airport naviga=onal ligh=ng lamps characteris=cs  

The tesAng procedure using measurement plaEorm involves the measurement of photometric 
illuminaAon intensity, radiometric irradiaAon intensity, and spectral radiaAon intensity, all 
quanAfied in absolute light units. A primary focus of the invesAgaAon was to analyse the 
distribuAon of spectral radiaAon intensity. Tests were conducted on five different colours of 
lamps installed in airport areas: 

• TDZ – touchdown zone lamp (white) 

• RCL_White – runway centre line lamp (white) 

• RCL_Red – runway centre line lamp (red) 

Light colour sensor Spectrum bandpass 
analysis

Lamp type classification

Comparision with the 
requirements of          

CS-ADR-DSN standards
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• TAXI_GREEN – taxiway centre line lamp (green) 

• TAXI_YELLOW – taxiway centre line lamp (yellow). 

As anAcipated, the spectral composiAon of taxiway lamps exhibits a notable prevalence 

of green and blue light, which are hues most easily discernible by the human eye and, 
consequently, by sensors commonly available on the market. Conversely, other components 
contribute minimally to the overall spectrum, with wavelengths corresponding to warmer 
hues exhibiAng negligible emission from these lamps (refer to Figure 5-18). 

 
Figure 5-18 Spectral radiaHon intensity of the taxiway centre line lamp IDM5582 (TAXI_GREEN) [39] 

The lamps illuminaAng the touchdown zone emit light in a warm, white colour. As 
a result, their spectral composiAon comprises a range of wavelengths across the visible light 
spectrum. In Figure 5-19, it is observed that the highest intensity of light is emined by colours 
with longer wavelengths. This phenomenon can be anributed to the characterisAcs of the light 
source and the properAes of the emined light. 

Specifically, the intensity of light emined by a light source is influenced by both the 

power of the light source and the wavelength of the emined light. In this context, the intensity 
can be conceptualized as the product of the power of the light source per unit area and 
the wavelength of the light. Since warm white light encompasses a broad spectrum of 
wavelengths, including those with longer wavelengths, it results in a higher overall intensity 
compared to light sources with narrower spectral ranges. 

Therefore, the observed trend of higher intensity corresponding to longer wavelengths 
in the spectrum of the touchdown zone lamps can be explained by the characterisAcs of warm 
white light and its distribuAon across the visible spectrum. 
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Figure 5-19 Spectral radiaHon intensity of the touchdown zone lamp IDM4671 (TDZ) [39] 

The spectral characterisAcs of the red lamps marking the runway centre line primarily 
consist of longer wavelengths within the visible light spectrum. Notably, the wavelength 
of 680 nm, associated with the orange-red colour, exhibits the highest intensity. This 
wavelength represents a warm hue, characterisAc of the red lamps used for runway centre line 
markings. InteresAngly, these lamps emit minimal amounts of light at wavelengths 
corresponding to colder colours, aligning with empirical observaAons. 

Figure 5-20 visually represents these spectral characterisAcs, illustraAng  
the dominance of longer wavelengths and the absence of colder colours in the emined light. 
This observaAon corroborates the spectral composiAon expected from lamps designed to emit 
red light. 

In contrast, the spectral profile of the white-coloured lamps installed along the centre 
line of the runway (depicted in Figure 5-21) closely resembles that of the lamps illuminaAng 
the touchdown zone. However, there are discernible differences in the intensity values, 
reflecAng variaAons in the radiaAon output of the respecAve luminaires. Despite these 
differences, both types of lamps exhibit a broad spectrum of wavelengths, with the white 
lamps emiyng higher intensiAes due to their posiAoning along the central axis of the runway. 
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Figure 5-20 Spectral radiaHon intensity of the runway centre line lamp red IDM4582 (RCL_Red) [39] 

 
Figure 5-21 Spectral radiaHon intensity of the runway centre line lamp white IDM4582 (RCL_White) 

[39] 

To assess the colour spectrum of light emined by airport lamps, including the taxiway 
centre line lamp, touchdown zone lamp, and runway centre line lamps (both red and 
white) [28], a Gigahertz-OpAk X4 Light Analyzer spectrometer was uAlized [183]. The research 
was possible thanks to cooperaAon with the Department of Metrology, Electronics  
and LighAng Technology, InsAtute of Electrical Engineering and Industrial Electronics, Faculty 
of AutomaAon, RoboAcs and Electrical Engineering, Poznań University of Technology [184].  
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During the examinaAon of elevated edge lamps, parAcular anenAon was given to the 
approach system luminaires, exemplified by ADB Safegate UEL 1-150 – CLEAR (APP_White, 
Figure 5-22a) and ADB Safegate UEL 1-150 – RED (APP_Red, Figure 5-22b), are strategically 
posiAoned off the aircrah movement areas. These luminaires are categorized as unidirecAonal 
high-intensity over-ground lamps, emiyng white or red light respecAvely, powered by a 150 W 
halogen bulb. According to documentaAon, the esAmated lifespan of the light source is 
1000 hours, and they are also powered by a 6.6 A current source [185]. The luminaires selected 
for tesAng were new and had not been previously uAlized. 

DisAnct from the examinaAon of the elevated edge lamps, the elevated luminaire 
idenAfied as ADB Safegate 1-045-RED-STOPBAR – TEFT (STOP_BAR), as illustrated in  
Figure 5-22c. According to documentaAon, this luminaire is classified as a high intensity 
unidirecAonal fixture designed for use in approach, threshold, or runway end systems. It emits 
red light uAlizing a 45 W halogen bulb and operates on a 6.6 A current source [96]. 

   
(a) (b) (c) 

Figure 5-22 Elevated approach system lamps [42]: (a) White, (b) Red, and (c) Stop Bar Lamp 

5.2.3. Light colour and chroma=city sensors comparison 

The market offers a variety of sensors designed for colour detecAon, catering to different needs 
and applicaAons. Some sensors are designed to detect environmental colours independently, 
while others uAlize opAonal LED backlighAng for enhanced performance. Among the most 
basic modules are the TCS34725, APDS9960, or ISL29125, which enable measurement of only 
the three basic RGB components. Technical documentaAon for these sensors indicates 
relaAvely low sensiAvity for each channel. 

For instance, the TCS34725 sensor module tends to lower individual RGB components 
when normalizing the readings for a wavelength of 755 nm (Figure 5-23). While these sensors 
may not offer high precision in colour measurement, they can sAll facilitate correct colour 
recogniAon, especially in scenarios where measurement precision is not criAcal. An added 
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advantage of the TCS34725 sensor is its built-in IR filter, which helps eliminate unwanted 
components of infrared light [186].  

The colour sensor featuring the APDS9960 is capable of measuring RGB component 
values and detecAng gestures such as up/down and leh/right. Similar to the TCS34725, the 
individual RGB components tend to have underesAmated values compared to the standard 
[187]. Notably, the blue component exhibits a parAcularly significant difference, while  
the mapping of the green and red components remains relaAvely consistent (Figure 5-24). 

On the other hand, the module equipped with the ISL29125 sensor provides the most 

accurate representaAon of the green component. However, it struggles to accurately render 
values in the blue light wavelength range, where the readings are notably underesAmated. 
A similar discrepancy is observed for the third component, with the module yielding lower 
values for red-light wavelengths compared to the reference value (Figure 5-25). 

 

 

Figure 5-23 TCS34725 spectral response [186] Figure 5-24 APDS9960 spectral response [187] 

 

 
Figure 5-25 ISL29125 spectral response [188] Figure 5-26 AS7265x spectral response [189] 
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Figure 5-27 AS7341 spectral response [190] Figure 5-28 AS7262 spectral response [191] 

 

Figure 5-29 TCS3430 spectral response [192] 

Despite the anracAve pricing of the described modules, uAlizing such sensors may not 
be viable for the precise task of determining airport lamp types based on the colour of emined 
light. This operaAon demands colour measurement with greater accuracy, as each type of 
airport lamp adheres to specific standards governing its use. Accurate idenAficaAon  
of a parAcular model is essenAal for selecAng appropriate conversion factors for the matrix of 

light intensity sensors, which measure the luminous intensity of the primary beam. 

An alternaAve group of modules falls under the category of colour sensors, specifically 
designed for analysing light spectra. Notably, some of these devices enable the analysis of not 
only visible light but also extend to cover the infrared to the beginning of the UV range. One 
such example is the AS7265x module, offering comprehensive funcAonality that spans the UV 
to IR spectrum. However, from the perspecAve of airport lamp tesAng, this extensive range 
may not be necessary and could significantly inflate device costs. The AS7265x module 
comprises three interconnected sensors: AS72651, AS72652, and AS72653, facilitaAng the 
examinaAon of light wavelengths from 410 nm (UV) to 940 nm (IR) across 18 channels with 
a precision of ±12% [189].  

The technical data provided by the manufacturer is effecAvely represented in  
the mapping charts of wavelength readings for each channel (Figure 5-26). These charts 
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demonstrate the sensor's advanced capabiliAes and excellent precision. However, despite its 
high performance, the potenAal uAlity of the sensor in an airport lamp recogniAon device  
is limited. This limitaAon primarily stems from the module's high price, which may not jusAfy  
its full uAlizaAon. 

In pracAcal terms, simpler modules that offer examinaAon of the visible light range may 
suffice for the purposes of airport lamp recogniAon. While the advanced features of the 
AS7262 sensor are commendable, their added complexity and cost may outweigh their 
benefits in certain applicaAons, such as airport lighAng systems. 

Sensors such as the AS7341 and AS7262 can be disAnguished based on their specific 
modules. The primary difference between them lies in the number of visible channels they 
possess. The AS7341 boasts 11 channels, whereas the AS7262 is equipped with only  
6 channels [190], [191]. Both sensors demonstrate excellent performance in represenAng 
reading values for individual wavelengths. 

The module uAlized in the device features the AS7341 sensor. In addiAon to detecAng 
visible light components, this sensor also facilitates the idenAficaAon of the NIR (near-infrared) 
range [190]. Figure 5-27 illustrates the sensiAvity and precision of all channels relaAve to the 
reference waveform, indicaAng exemplary performance across the board. Upon comparing 
technical documentaAon with results obtained from research uAlizing a professional 
spectrometer, it was determined that employing a module with a smaller number of channels, 
such as the AS7262, would suffice for the intended task. 

Consequently, the device module responsible for detecAng specific lamp types was 
constructed using the AS7262 visible light spectrum sensor [191]. Tests conducted on both 
staAonary and moving sensors revealed variaAons in the values of individual colour 
components. Based on these findings, the lamps slated for inspecAon were accurately 
classified, and sohware was developed to select coefficients for the results obtained from the 
light intensity sensors. 

The module tailored for examining the visible light spectrum (Figure 5-28) is capable of 
detecAng wavelengths at key intervals, namely 450, 500, 550, 570, 600, and 650 nm, with 
a corridor width of 40 nm and a half-maximum detecAon width. This approach facilitates the 
easy differenAaAon of colours emined by the tested lamps, aligning with the design 
assumpAons. CommunicaAon between the sensor and the microprocessor occurs via either 
the I2C or UART interface. In this instance, the I2C interface is uAlized, which is the default 
choice made by the device manufacturer. Data transmission is carried out digitally, employing 
a 16-bit format. It's worth noAng that all module signals require a voltage supply of 3.3 V [191]. 
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The TCS3430 sensor is a highly sophisAcated device employed in various colour sensing 
and ambient light sensing applicaAons. It operates within the visible light spectrum, covering 
wavelengths from 380 nm to 780 nm, and boasts excepAonal sensiAvity to light, enabling it to 
detect even minute variaAons in the spectral output of different light sources. This sensor 
uAlizes a combinaAon of photodiodes and an on-chip filter to accurately measure light 
intensity across different wavelengths. Thanks to its dynamic range, the TCS3430 is well-suited 
for a wide array of lighAng condiAons. The integrated filter ensures precise light intensity 
measurements while also providing significant noise reducAon, enhancing the accuracy of the 

readings [192]. 

Designed to be compact and energy-efficient, the TCS3430 consumes just 0.45 mW 
during full operaAon and is housed in a small surface-mount package, facilitaAng easy 
integraAon into various sensing and control systems. It is capable of operaAng within a broad 
temperature range, from −40 °C to 105 °C, making it suitable for demanding environments. 
One of the standout features of the TCS3430 is its ability to compensate for the effects of 
temperature and aging on the photodiodes. This capability ensures that the sensor maintains 
accuracy and reliability across a wide range of environmental condiAons, which is crucial for 
use in harsh industrial or outdoor seyngs [192]. 

AddiAonally, the TCS3430 sensor can adjust the intensity of lighAng based on ambient 
light levels, making it an invaluable tool for reducing energy consumpAon and light polluAon 
in indoor lighAng applicaAons. By measuring ambient light levels and adjusAng the lighAng 
accordingly, the sensor contributes to more efficient and environmentally friendly lighAng 
systems. Table 5-5 provides a detailed overview of the electrical and opAcal parameters of the 
TCS3430 sensor [192]. 

In the context of airport navigaAon lighAng, the TCS3430 plays a criAcal role in ensuring 
opAmal performance and adherence to safety and visibility standards. It achieves this by 
measuring the spectral output of various light sources used in the navigaAon lighAng system. 
Figure 5-29 depicts its spectral response, which includes five channels: X, Y, Z, IR1 (Far Red 
LED), and IR2 (IR LED). By combining readings from these channels, the TCS3430 can accurately 
determine the colour of the light. The spectral response of each photodiode in the TCS3430 is 
meAculously designed to align with the human eye's response to different colours, ensuring 
precise colour detecAon [87]. 

 



5 Quality classifica+on of airfield ground ligh+ng  

J. Suder  181 

Table 5-5 Electrical and opHcal parameters of the TCS3430 sensor [192] 

Parameter Min. Max. Units 

Supply voltage −0.3 2.2 V 

Digital I/O terminal voltage −0.3 3.6 V 

Output terminal current −1 20 mA 

Channel X (Warm White LED) 58 90 counts/(μW/cm2) 

Channel Y (Warm White LED) 56 70 counts/(μW/cm2) 

Channel Z (Warm White LED) 6.5 14 counts/(μW/cm2) 

Far Red LED 90 180 counts/(μW/cm2) 

IR LED 90 230 counts/(μW/cm2) 

The sensor provides colour informaAon in the form of XYZ coordinates, which represent 
the trisAmulus values of the light. These coordinates describe the relaAve contribuAons of 
three primary colours: red, green, and blue, based on trisAmulus theory. According to this 
theory, any colour can be represented as a mixture of these three primary colours. However, 
to plot these colours on a chromaAcity chart, it is necessary to convert the XYZ coordinates 
into x, y coordinates within the CIE 1931 colour space. 

Table 5-6 shows a comparison of selected light spectrum and chromaAcity sensors, 
highlighAng the result representaAon and measurement range of each of the analysed sensors. 
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Table 5-6 Comparison of selected spectrum and chromaHcity sensors 

Sensor Measurement range 
Measurement 

speed 

Result 
representation 
(Colour space) 

TCS34725 380 - 780 nm 
Integration time 
from 2.4 ms to 

614 ms 
RGB 

APDS9960 400 - 700 nm 
Integration time 

from 2.78 ms 
RGB 

ISL29125 410 - 700 nm 
Integration time 

from 1 ms to 360 ms 
RGB 

AS7265x 410 - 940 nm 
Measurement time 
starting from 5 ms 

18-channel 
multispectral 

AS7341 350 - 1000 nm 
Integration time 
from 2.78 ms to 

7.14 s 

11-channel 
multispectral 

AS7262 450 - 670 nm 
Integration time 

from 5 ms to 255 ms 
6-channel 

multispectral 

TCS3430 300 - 1000 nm 
Integration time 
from 2.78 ms to 

700 ms 

XYZ  
(CIE 1931 colour 

space) 

5.2.4. Analysis of spectrum sensors for detec=ng type of airport lamps 

As menAoned previously, in order to properly classify the type of lamp based on the colour of 
the emined light, it was necessary to develop a method to disAnguish each type. In the 
research conducted on the selected visible light spectrum sensor AS7262, numerous 
experiments and measurements were performed uAlizing original airport lamps. These 
luminaires, integrated into the surface of the runway and taxiways, underwent not only direct 
measurements but also tesAng with a built-in measuring matrix enclosed in acrylic glass cover. 

This cover is essenAal for the measurement method employed. The matrix is affixed to 
a specialized frame beneath the chassis, posiAoned in proximity to the surface. Given the 
heightened risk of damage to the matrix, including the sensors, addiAonal protecAon 
measures were implemented. 

The lamps of interest were subjected to laboratory tesAng under controlled condiAons, 
with a consistent distance of approximately 1 meter between the light source and the sensor. 
Three disAnct types of brand-new lamps were uAlized for lighAng tesAng: runway centre line 
white (RCW), runway centre line red (RCR), and taxiway centre line (TC). Each lamp type 
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underwent mulAple series of measurements, and the average results are summarized  
in Table 5-7. 

Table 5-7 Spectrum results of the embedded airport lamps examinaHon [in counts/(μW/cm2)] 
 Channel RCW RCR TC 

W
ith

ou
t c

ov
er

 

V 61259.47 16596.37 42350.37 

B 65474.53 11769.84 63098.99 

G 57115.52 5666.82 52538.19 

Y 48994.17 28503.14 34594.12 

O 51246.94 51246.94 4319.873 

R 45703.38 45703.38 2086.367 

W
ith

 c
ov

er
 

V 61259.47 15113.16 38246.94 

B 65474.53 11228.07 60962.59 

G 57115.52 5701.4 49748.65 

Y 48994.17 27103.2 31231.9 

O 51246.94 51246.94 3978.233 

R 45703.38 45703.38 1896.83 

Based on the collected data (Figure 5-30), the individual VBGYOR components             
(Table 5-7) exhibit graphs that closely resemble those of spectral radiaAon intensity. The 
characterisAc shape of the graphs for each lamp type has been preserved, facilitaAng  
the idenAficaAon of specific luminaires based on the spectrum of emined light beams.  

The white-coloured lamp of the runway centre line predominantly emits blue and 
purple hues, while the red lamp is characterized by dominant orange, red, and yellow 
components. Notably, the second type of runway centre line luminaire demonstrates 
significantly lower readings in the violet, blue, and green channels. Conversely, the light 
emined by the taxiway centre line lamp is primarily composed of blue and green components, 
with moderate readings in the violet and yellow channels, and minimal values for orange  
and red. 

Furthermore, the influence of using an acrylic glass cover on the AS7262 module on 
the visible light spectrum graphs for each lamp type was invesAgated (Figure 5-31). It was 
observed that, for white-coloured runway centre line lamps, there was no discernible impact 
of the acrylic glass cover on the readings for individual channels.  
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Figure 5-30 Average visible light spectrum of in-pavement airport lamps without the acrylic glass 

cover on the AS7262 module [39] 

 
Figure 5-31 Average visible light spectrum of in-pavement airport lamps with the acrylic glass cover 

on the AS7262 module [39] 

However, for the second type of runway centre line lamps emiyng red light, slight 
differences in luminous intensity values were observed, parAcularly for the channels 
responsible for violet and yellow components. The obtained results were lower than in the 
test without cover. With the luminaire of the taxiway centre line, the effect of the acrylic glass 
cover is noAceable for each channel, causing a slight decrease in the reading value for each 
channel. 
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To quanAtaAvely visualize the disAncAons among various types of the tested airport 
lamps, Euclidean distances were computed using two disAnct equaAons. For 6-channel 
sensors, the Euclidean distance d was calculated according to equaAon (57), while for RGB 
sensors, the calculaAon followed EquaAon (58), where LT represents the lamp type. The 
resulAng Euclidean distances are presented in Table 5-8. These calculaAons enabled 
a quanAtaAve assessment of the dissimilariAes between the spectral characterisAcs of  
the different airport lamp types, facilitaAng a comprehensive understanding of their disAncAve 
features. 

Table 5-8 Results of calculated Euclidean distance of different types of the embedded airport lamps 
[in count/(μW/cm2)] 

Euclidean distance between airport lamps spectrum 

6-channels (VBGYOR) 
 RCW RCR TC 

RCW 0 89139.43 68528.13 

RCR 89139.43 0 98166.03 

TC 68528.13 98166.03 0 

3-channels (RGB) 
 RCW RCR TC 

RCW 0 74371.79 43920.83 

RCR 74371.79 0 82061.26 

TC 43920.83 82061.26 0 

The examinaAon of the compiled results reveals the feasibility of programmaAcally 
disAnguishing between individual types of airport lamps, leveraging the analysis of data 
retrieved from the AS7262 spectrum sensor. Notably, Euclidean distance values obtained for 
a greater number of channels are elevated, indicaAng that employing more sophisAcated 
sensors, such as those capable of capturing mulAple channels, enhances the confidence in 
decision-making processes.  

The posiAonal representaAon of each lamp type within the RGB colour space for the   
3-channel sensor is depicted in Figure 5-32. This visualizaAon offers a clear insight into  
the distribuAon of lamp types based on their RGB colour readings, facilitaAng a deeper 
understanding of their spectral characterisAcs and aiding in the development of robust 
classificaAon algorithms. 
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Figure 5-32 RCW, RCR, and TC airport lamps in RGB colour space [39] 

The comparison of the visible light spectrum emined by individual luminaires reveals 
both similariAes and differences across various planes. However, it's notable that while such 
a characterisAc can be effecAvely visualized for RGB sensors due to their three-dimensional 
colour space representaAon, the same cannot be easily achieved for 6-channel sensors. This 
limitaAon arises from the higher dimensionality of the data, making it challenging to visualize 
the similariAes and differences in a comprehensible manner. Despite this challenge, the 
analysis of the data from 6-channel sensors sAll provides valuable insights into the spectral 
characterisAcs of the luminaires, albeit through alternaAve means such as staAsAcal analysis 
or machine learning techniques. 

The methodology employed for tesAng the efficiency of the second type of lamps in 
elevated luminaires differs significantly from the approach used for the edge lamps. In this 
scenario, the test device is an independent tool in the form of a tube terminated with 
a measuring module, not mounted on a vehicle. During inspecAon, the operator manually 
anaches it to the original lamp holders, uAlizing a structure that impedes direct access to the 
sensors without prior disassembly. Consequently, addiAonal protecAon of the measurement 
modules is unnecessary. As a result, the spectrum study for these lamps was restricted to 
readings obtained when the beam directly illuminated the sensor. 

The emined light beam spectrum of a brand-new lamp from the white-coloured 
approach system was subjected to tesAng, involving mulAple series of measurements. The 
averaged measurement results derived from these tests are meAculously compiled and 
presented in Table 5-9. 
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Table 5-9 Spectrum results of the approach system lamp (white) examinaHon [in counts/(μW/cm2)] 

Approach system lamp (white) 

Channel 
Distance from lamp [m] 

0.5 0.75 1 1.25 1.5 

V 30285.84 30285.72 30285.88 30285.91 20518.76 

B 34167.91 34166.84 34165.87 34169.84 25872.91 

G 27988.54 26220.12 24041.31 22989.64 6324.16 

Y 24041.03 24039.81 24041.18 20357.57 15134.46 

O 24898.79 24898.74 24899.81 22988.64 24853.31 

R 23949.38 23948.46 23950.31 23947.47 23948.16 

The findings gathered from the experimentaAon indicate a notable trend wherein the 
reading value decreases as the distance between the sensor and the light source increases, 
parAcularly evident for distances exceeding 1.25 meters. Notably, measurements conducted 
within the range of 0 to 100 cenAmetres exhibit repeatability, whereas measurements taken 
at distances of 125 cenAmetres and 150 cenAmetres manifest a decline in recorded data, 
suggesAng a potenAal limitaAon in measurement accuracy at greater distances. 

An analysis of the visible light spectrum emined by the approach system lamps, 

characterized by a white beam, reveals predominant colours in the blue and purple regions. 
As depicted in Figure 5-33, these hues dominate the spectral composiAon of the emined light. 
Given that white light is a composite of all spectral components, all channels register 
a discernible signal, underscoring the comprehensive nature of the recorded data. 

 
Figure 5-33 Visible light spectrum of the approach system lamps (white) [39] 
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As in the previous case, the invesAgaAon encompassed also an examinaAon of the 
spectral characterisAcs of a newly installed red approach lamp. MulAple rounds of 
measurements were conducted to ensure thorough data collecAon, resulAng in averaged 
measurement outcomes that have been methodically compiled and are presented in 
Table 5-10. 

Table 5-10 Spectrum results of the approach system lamp (red) examinaHon [in counts/(μW/cm2)] 

Approach system lamp (red) 

Channel 
Distance from lamp [m] 

0.5 0.75 1 1.25 1.5 

V 30285.84 30285.72 14668.18 8113.64 6547.41 

B 33532.45 10767.21 13588.13 9492.25 7122.26 

G 27996.43 26221.31 15389.41 8597.91 6322.05 

Y 24038.98 24038.98 24039.11 20359.15 15134.99 

O 24899.78 24899.77 24898.94 22984.92 24851.86 

R 23951.41 23951.43 23950.94 23950.94 23950.41 

In a similar fashion to previous observaAons, an evident decrease in readings for certain 
individual channels was noted as the distance between the spectrum sensor and the light 

source increased. This trend was parAcularly pronounced beyond a distance of approximately 
75 cm, indicaAng a diminishing intensity of light as the distance between the sensor and the 
source widened. Such findings underscore the importance of considering distance as a criAcal 
factor influencing the accuracy and reliability of light intensity measurements. 

Upon closer examinaAon of the visible light spectrum emined by the approach system 
lamp, it was observed that the red component predominated, with blue comprising the 
smallest porAon of the overall spectral composiAon. This spectral profile, illustrated in 
Figure 5-34, highlights the dominance of red wavelengths in the emined light beam, 
underscoring the lamp's specific emission characterisAcs. 
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Figure 5-34 Visible light spectrum of the approach system lamps (red) [39] 

The emined light beam spectrum of a brand-new runway end lamp was subjected to 
rigorous tesAng, with mulAple series of measurements conducted to ensure robust and 
comprehensive data collecAon. The averaged measurement results derived from these 
meAculous measurements are meAculously compiled and presented in Table 5-11.  

Table 5-11 Spectrum results of the runway end lamp examinaHon [in counts/(μW/cm2)] 

Runway end lamp 

Channel 
Distance from lamp [m] 

0.5 0.75 1 1.25 1.5 

V 2262.99 1907.87 1347.51 774.71 606.81 

B 392.13 1024.31 325.84 673.14 387.62 

G 4827.02 1682.15 1062.01 699.79 498.02 

Y 5395.98 3504.98 1949.52 1636.88 1101.84 

O 24203.85 10956.67 7504.14 4126.21 3292.67 

R 26148.37 13943.97 5178.99 5932.31 5080.03 

The study invesAgaAng the distance effect between the spectrum sensor and the light 
source, specifically focusing on a parAcular lamp, revealed a notable trend: as the distance 
between the sensor and the light source increased, the recorded readings exhibited 
a corresponding decrease. Unlike other luminaires where a disAnct limit distance can ohen be 
discerned, beyond which measurements stabilize, the data from this lamp displayed 
a conAnuous decrease in readings with increasing distance. This characterisAc behaviour is 
represented by a curve reminiscent of a hyperbola, indicaAng a non-linear relaAonship 
between distance and recorded values. 
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Further analysis delved into the spectral composiAon of the light emined by the runway 
end lamp and stop bar, revealing predominant wavelengths in the orange and red regions of 
the spectrum. These wavelengths consAtuted the majority of the emined light beam, while 
other spectral components made up only a minimal fracAon of the total output. This spectral 
profile underscores the lamp's specific emission characterisAcs, which may have implicaAons 
for its visibility and effecAveness in various operaAonal condiAons. 

Figure 5-35 visually depicts the spectral composiAon of the emined light beam, 
highlighAng the dominance of orange and red wavelengths. The graphical representaAon 

provides a clear illustraAon of the relaAve intensiAes of different spectral components, offering 
valuable insights into the spectral characterisAcs of the lamp's emined light. 

 
Figure 5-35 Visible light spectrum of the runway end lamp [39] 
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with the guidelines set by internaAonal regulatory bodies such as the European Union AviaAon 
Safety Agency (EASA) and the InternaAonal Civil AviaAon OrganizaAon (ICAO). The tests were 
conducted at the maximum power output of the respecAve light points, uAlizing halogen bulbs 
rated at either 48 W or 40 W with a current of 6.6 A [193], [194]. 

To ensure the reliability and accuracy of the data, staAsAcal parameters such as the 
standard deviaAon and median were computed for the measurements. The electrical and 
opAcal parameters of the in-pavement aeronauAcal ground lights are detailed in Table 5-12. 
The analysis of the results shows a minimal dispersion in the data across different distances 

from the light source. This minimal scaner indicates that the measurements were executed 
correctly, taking into account the geometric relaAonships as defined by the relevant standards, 
including the angular alignment with respect to the main beam of the emined light. The sensor 
used in this study ensures high repeatability of the measurements [25].  

Table 5-12 Electrical and opHcal parameters of in-pavement aeronauHcal ground lights [193], [194] 
 

Lamp type 
Power of the 
light source 

[W] 
Colour 

Average 
intensity [cd] 

Horizontal 
distribution 

[degrees] 

Vertical 
distribution 

[degrees] 
TDZ 48 White 5800 −12 to +12 0 to 16 

RCL_White 48 White 5800 −12 to +12 0 to 16 

RCL_Red 48 Red 870 −12 to +12 0 to 16 

TAXI_GREEN 40 Green 442 −18 to +18 0 to 12 

TAXI_YELLOW 40 Yellow 663 −18 to +18 0 to 12 

Furthermore, the mean values derived from these measurements are summarized in 
Table 5-13. It is evident from the data that the measured values exhibit a strong dependence 
on the distance between the light source and the sensor. Despite this dependency, the 
TCS3430 sensor's measurement range effecAvely encompasses all the distances that were 
invesAgated. AddiAonally, it is noteworthy that the standard deviaAon values for these 
measurements are consistently low, underscoring the precision and reliability of the tesAng 
process across all examined distances. 
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Table 5-13 Data from the TCS3430 sensor of the tested in-pavement aeronauHcal ground lights 
(XYZ coordinates) 
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XI
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X 3473 1 3473 850 0 850 380 0 380 222 0 222 140 0 140 98 0 98 

Y 2787 1 2787 690 0 690 296 0 296 173 0 173 110 1 110 75 0 75 

Z 145 0 145 35 0 35 15 0 15 9 0 9 6 0 6 4 0 4 

TA
XI

_G
RE

EN
 X 525 1 525 182 1 182 75 0 75 45 0 45 28 0 28 22 0 22 

Y 1127 2 1127 375 1 375 161 0 161 98 0 98 60 0 60 46 0 46 

Z 396 1 396 131 1 131 62 0 62 38 0 38 23 0 23 17 0 17 

TD
Z 

X 27826 7 27824 10687 2 10687 4173 1 4173 2346 0 2346 1261 1 1261 772 0 772 

Y 25063 6 25062 9590 2 9590 3808 1 3808 2139 0 2139 1150 0 1150 693 0 693 

Z 5323 1 5323 217 1 2127 831 0 831 472 0 472 195 0 195 82 0 82 

RC
L_

W
hi

te
 X 36100 20 36099 10261 3 10261 4445 1 4445 2534 2 2535 1439 2 1439 982 2 982 

Y 31755 17 31753 8997 3 8997 4021 1 4021 2225 2 2225 1292 1 1292 882 1 882 

Z 6923 3 6922 1966 1 1966 871 0 871 481 0 481 283 0 283 192 0 192 

RC
L_

Re
d 

X 15358 3 15359 4705 1 4705 2244 1 2244 1466 0 1466 857 0 857 427 0 427 

Y 8130 2 8130 2465 1 2466 1167 0 1167 803 0 803 453 0 453 227 0 227 

Z 447 0 447 136 0 136 65 0 65 43 0 43 24 0 24 12 0 12 

The data collected from the TCS3430 sensor, originally in the form of XYZ values, were 
normalized and transformed to coordinates compaAble with the CIE 1931 colour space, 
represented as x, y coordinates. This conversion, shown in Table 5-14, standardizes the values, 
making them independent of the measurement distance. As a result, the values in the 
respecAve rows are now consistent and comparable, regardless of the distance from which  
the measurements were taken. 
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Table 5-14 Normalised TCS3430 sensor data from in-pavement navigaHon lighHng converted to 
CIE 1931 x, y coordinates 

Lamp type 0.5 [m] 1.0 [m] 1.5 [m] 2.0 [m] 2.5 [m] 3.0 [m] 
TA

XI
 

YE
LL

O
W

 

x 0.54 0.54 0.55 0.55 0.55 0.55 

y 0.44 0.44 0.43 0.43 0.43 0.42 

TA
XI

 
GR

EE
N

 

x 0.26 0.26 0.25 0.25 0.25 0.26 
y 0.55 0.54 0.54 0.54 0.54 0.54 

TD
Z  x 0.48 0.48 0.47 0.47 0.48 0.50 

y 0.43 0.43 0.43 0.43 0.44 0.45 

RC
L  

W
hi

te
 

x 0.48 0.48 0.48 0.48 0.48 0.48 
y 0.42 0.42 0.43 0.42 0.44 0.43 

RC
L 

Re
d x 0.64 0.64 0.65 0.63 0.64 0.64 

y 0.34 0.34 0.34 0.35 0.34 0.34 

Figure 5-36 presents a point with specific measurements marked, demonstraAng the 
data in an illustraAve manner. The graph features five disAnct lamps, which enables a clear 
differenAaAon between the lamp types and an easy verificaAon of the accuracy of  
the reproduced colours. This graphical representaAon facilitates a straighEorward assessment 
of whether the colours produced by the lamps conform to expected standards. Notably, all the 
in-pavement lamps tested adhere to the standards specified in internaAonal regulaAons. 

 

Figure 5-36 ChromaHcity chart of in-pavement airport navigaHon lighHng system [42] 
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In Figure 5-37, the relaAonship between the x, y coordinates values within the CIE 1931 
colour space and the distance from the light source is depicted. For the in-pavement lamps, 
the maximum sensor values were not exceeded, which implies that measurements can be 
accurately taken from a distance of 0.5 meters. The observed waveforms are linear, suggesAng 
that the measurement system is robust against environmental variaAons. This linearity 
confirms that the measurements can be reliably performed regardless of the distance from 
the lamp under test. 

 
Figure 5-37 Graph of the CIE 1931 x, y coordinates of the tested in-pavement lamps as a funcHon of 

the distance from the light source [42] 

As part of the study, tests were conducted on elevated airport navigaAon lighAng using 
the TCS3430 colour sensor. Ten series of measurements were taken, with each series 
comprising 1000 measurements at distances of 0.5 meters, 1.0 meters, 1.5 meters, 2.0 meters, 
2.5 meters, and 3.0 meters from the tested light source. These measurements were performed 
with the light sources operaAng at their maximum power (current 6.6 A). It is important to 
note that the stop bar lamp uses a lower power bulb (45 W) compared to the approach lamps, 
which use higher power bulbs (150 W) [195]. The type of light source significantly influences 
the intensity of the emined main beam. 
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Table 5-15 provides the electrical and opAcal parameters of elevated aeronauAcal 
ground lights. Similar to the in-pavement lamps, the standard deviaAon and median values 
indicated high repeatability and accuracy of the sensor used. The data dispersion was minimal, 
represenAng only a fracAon of the values obtained across the enAre measurement series.  
The average values from these measurements are presented in Table 5-16. Accurate 
measurements are feasible from a distance of 0.5 meters for the STOP_BAR lamp, 1 meter for 
the APP_Red lamp, and 1.5 meters for the APP_White lamp. Although the standard deviaAon 
is slightly higher than that observed in in-pavement aeronauAcal ground lights, it remains 

within 2% of the mean value, ensuring reliable measurement results. 

Table 5-15 Electrical and opHcal parameters of elevated aeronauHcal ground lights [195] 

Lamp type 
The power of 

the light source 
[W] 

Colour Average 
intensity [cd] 

Horizontal 
distribution 

[degrees] 

Vertical 
distribution 

[degrees] 
APP_White 150 White 22 108 -10 to +10 2 to 13 
APP_ Red 150 Red 6 921 -5 to +9 3 to 13 
STOP_BAR 45 Red 309 -10 to +10 1 to 8 

In a similar manner to previous experiments, the data obtained from the TCS3430 
sensor, presented in the form of XYZ coordinates, underwent normalizaAon and subsequent 
transformaAon to the CIE 1931 colour space, resulAng in x, y coordinates. Table 5-17 provides 
the coordinates post-conversion. 

Consistent with earlier observaAons (refer to Table 5-16), it was noted that sensor 
saturaAon occurred at a distance of 0.5 m for APP_Red and at distances of 0.5 m and 1 m for 
APP_White. Consequently, these parAcular results are deemed unsuitable for further analysis 
and consideraAon due to their overrange nature. 
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Table 5-16 Data from the TCS3430 sensor of tested elevated aeronauHcal ground lights 
(XYZ coordinates) 
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AP
P_

W
hi

te
 X 36805 284 36863 36863 0 36863 18551 81 18528 9415 116 9405 5220 68 5221 3701 31 3698 

Y 35058 2055 35628 36697 609 36863 15789 63 15776 7998 81 7998 4456 57 4449 3166 22 3159 

Z 10167 1698 9787 10271 266 10320 4241 16 4236 2130 29 2128 1180 14 1181 835 7 834 

AP
P_

Re
d 

X 36863 0 36863 15695 139 15681 6849 61 6837 3381 43 3357 2044 31 2059 1486 18 1491 

Y 36863 0 36863 8660 82 8630 3767 25 3770 1799 30 1785 1088 22 1098 798 16 806 

Z 36863 0 36863 1338 12 1334 560 5 559 280 3 280 165 1 166 120 2 121 

ST
O

P_
BA

R X 2688 34 2679 822 4 822 408 5 405 240 1 240 154 1 154 111 0 111 

Y 1381 20 1377 429 2 429 208 4 206 120 1 120 79 0 79 58 0 58 

Z 251 3 251 77 0 77 38 0 38 22 0 22 14 0 14 10 0 10 

Table 5-17 Normalised TCS3430 sensor data from elevated navigaHon lighHng converted to CIE 1931  
x, y coordinates 

 
Lamp type 

Distance from lamp [m] 

0.5 1.0 1.5 2.0 2.5 3.0 

APP_ Red 
x 0.33 0.61 0.61 0.62 0.62 0.62 

y 0.33 0.34 0.34 0.33 0.33 0.33 

APP_White 
x 0.45 0.44 0.48 0.48 0.48 0.48 

y 0.43 0.44 0.41 0.41 0.41 0.41 

TDZ 
x 0.62 0.62 0.62 0.63 0.62 0.62 

y 0.32 0.32 0.32 0.31 0.32 0.32 

Figure 5-38 provides a visual representaAon of the measured data, with a specific point 
marked for illustraAve purposes, showcasing measurements from three different lamps in 
a single graph. This graphical visualizaAon facilitates the easy disAncAon between lamp types 
and enables the verificaAon of colour reproducAon accuracy. 
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Figure 5-38 ChromaHcity chart of the elevated airport navigaHon lighHng system [42] 

Upon closer inspecAon, it becomes evident that the Stop Bar and APP_Red lamps 
(previously uAlized lamps) no longer conform to the standards regarding the chromaAcity of 
the emined light beam. Several factors could contribute to this deviaAon, including the wear 
and tear of the halogen bulb light source and the lampshade, which also acts as a colour filter. 

Exposure to various weather condiAons can lead to the degradaAon of the lampshade's 
structure and physical properAes, resulAng in issues such as discolouraAon, cracks, mayng, 
and fading. 

Consequently, regular and dependable verificaAon of the chromaAcity of the lamps 
becomes imperaAve to facilitate Amely maintenance and replacement processes. By ensuring 
the adherence to established standards, potenAal safety hazards and operaAonal disrupAons 
can be miAgated effecAvely within airport environments. 

As previously menAoned, approach lamps are equipped with significantly more 
powerful light sources. Figure 5-39 illustrates the relaAonship between the x, y coordinates in 
the CIE 1931 space and the distance to the tested lamp. Notably, during the measurements for 
APP_Red at a distance of 0.5 m and APP_White at distances of 0.5 m and 1.0 m, the values of 
individual components exceeded the sensor's saturaAon threshold. Consequently, the results 
obtained at these points are deemed unreliable aher conversion. 
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Figure 5-39 Graph of the CIE 1931 x, y coordinates of the tested elevated lamps as a funcHon of the 

distance from the light source [42] 

It has been conclusively determined that the minimum measurement distance for the 
approach lamps should be set at 1.5 m to ensure accurate and reliable data collecAon. This 
adjustment ensures that the measurements remain within the sensor's operaAonal range, 
thereby enhancing the credibility and validity of the obtained results. 

As part of this research [42], a sohware applicaAon was developed to automate data 

conversion, plot measured points, and compare these results against the relevant aviaAon 
standards. The sohware allows users to input data obtained from the sensor in the form of 
XYZ coordinates. Aher entering the data, the user selects the colour standard that the tested 
lamp should conform to. The system then determines whether the standard has been met and 
generates a chromaAcity graph to visualize the data. This graph includes a point provided by 
the user and visualizes whether the lamp meets the specified colour standards. The 
chromaAcity chart incorporates the standards for individual colours as defined by  
the equaAons in the EASA document [4]. 

It was chosen to create the chromaAcity plot using the 2-degree x, y chromaAcity 
coordinates from the CIE 1931 colour space, based on data provided by the Colour & Vision 
Research InsAtute of Ophthalmology at University College London [196]. This approach 
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ensures the highest accuracy in generaAng the chromaAcity diagram, capturing every 
nanometre of the visible light spectrum within the range of 360 to 830 nm. Figure 5-40 
showcases the user interface, displaying the visual representaAon of the measurements 
obtained through the system. 

 

Figure 5-40 Proposed graphical user interface of the prepared soxware for colour classificaHon [42] 

The system not only enhances the efficiency of the measurement process but also 
ensures precision by automaAng the comparison against stringent aviaAon standards. This tool 
is parAcularly valuable for professionals in the field, enabling them to quickly and accurately 
verify whether the tested lamps meet the required specificaAons, thereby ensuring 
compliance with internaAonal aviaAon safety regulaAons. 
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Chapter 

6. Conclusions 
The doctoral dissertaAon addresses European Union AviaAon Safety Agency (EASA) 
recommendaAons, concerning the implementaAon of AI to support safety inspecAons in 
aerodromes. It is rooted in internaAonal standards for aviaAon regulaAons, reliability levels, 
and recommendaAons from EASA, the InternaAonal Civil AviaAon OrganizaAon (ICAO), and the 
Federal AviaAon AdministraAon (FAA). The developed systems contribute significantly to the 
conAnuous improvement of airport safety. The research benefited from effecAve scienAfic 
collaboraAon between specialists from the Department of Electronic Systems and Signal 
Processing at Poznań University of Technology and Poznań–Ławica Airport. 

In examining the detecAon of Foreign Object Debris, the author jusAfied  
the importance of this issue by analysing available databases, such as the FOD-A dataset, and 
construcAng a proprietary PUT dataset comprising 1480 images of FOD objects based on real 
images from Poznań–Ławica Airport, built in accordance with the FAA recommendaAons. The 
study compared tradiAonal image processing methods (e.g., k-means) with advanced neural 
network models such as GoogLeNet and YOLOv5. A co-evoluAonary neural network model 
based on GoogLeNet achieved 95.73% accuracy in object detecAon and classificaAon, while 
a significantly expanded dataset of over 19000 images from FOD-A, used to train the YOLOv5 
network, reached an accuracy of up to 99%, which is the highest result among the analysed 
literature and FOD-A database, which achieved an efficiency of maximum 95.73% on this 
dataset. AddiAonally, the YOLOv5 model trained on the PUT dataset achieved an accuracy  
of 99.3%. 

For the detecAon of aerodrome horizontal markings, the dissertaAon introduced  
the PLAVS1 (Poznań Lawica Airport Video Set 1) dataset, comprising over 303 minutes of 
recordings (over 98 GB) showing runways, taxiways, and aprons under various meteorological 
condiAons and Ames of day. The proposed algorithm for detecAng lines developed a line 
detecAon algorithm based on colour space conversion to HSV and colour filtering, achieving 
nearly 99.9% accuracy. AddiAonal advantage of this algorithm is independence from the 
analysed input resoluAons. The second algorithm achieved values close to 98%, but there was 
also a visible dependence on the input image size and also in certain cases its efficiency  
was lower by 34% than the proposed soluAon. 
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The evaluaAon and selecAon of Single Board Computers (SBCs) is a complex task, 
involving mulAple consideraAons detailed in this dissertaAon. The energy aspects, parAcularly 
relevant for mobile devices, are addressed by manufacturers who offer various power modes 
in their experimental modules. However, there is a scarcity of comprehensive publicaAons 
assessing the use of these features. The algorithms examined exhibit typical challenges in 
video sequence processing. Therefore, the esAmates provided in this dissertaAon serve as 
valuable guidelines for designers of intelligent embedded systems for video processing. It is 
important to note that to accurately determine energy requirements, individual algorithm 

tests are necessary. 

The performance of the proposed algorithms was evaluated on selected SBCs for 
experimental tests. The Raspberry Pi 4B modules are adequate for applicaAons where high 
resoluAon is not criAcal. Experimental results demonstrated that these modules could handle 
standard 30 FPS video processing at a maximum resoluAon of 640 × 360. The primary benefits 
of using Raspberry Pi 4B modules include their low cost and relaAvely low energy consumpAon 
per processed video frame. These devices can operate with passive cooling, eliminaAng the 
need for an addiAonal fan, which would otherwise consume an extra 0.5 W. 

Processing efficiency is also related to energy aspects, and modules can work in 
different modes. NVIDIA Jetson family soluAons have been tested. The most efficient units, 
such as the NVIDIA Jetson Xavier AGX and NVIDIA Jetson Orin AGX, are the only ones that meet 
the FPS requirements for video sequence processing. Despite being the latest model, the 
NVIDIA Jetson Orin AGX did not outperform the NVIDIA Jetson Xavier AGX in most tests 
conducted. The Xavier AGX achieved superior results in FPS values and power efficiency per 
processed frame, especially under the default scheduAl Dynamic Voltage and Frequency 
Scaling (DVFS) policy. 

The author introduced an intelligent vision system and conducted experiments for the 
quality classificaAon of prisms in in-pavement airport lamps. This assessment uAlized 
a proprietary PLAVS2 (Poznań Lawica Airport Video Set 2) dataset, developed in collaboraAon 
with Poznań–Ławica Airport, comprising 1004 images of lamps. The experiments were 
conducted using the standard Open Neural Network Start applicaAon within the MATLAB 
environment and Google Colab. Due to the unique characterisAcs of airport lamps, it was 
crucial to appropriately select parameters for image processing algorithms and the neural 
network's funcAonality. Enhancing the efficiency of Region of Interest (ROI) detecAon could be 
achieved through opAmized lighAng systems during image capture, a focus of ongoing 
research. The implemented GoogLeNet neural network model achieved an accuracy of 88.37% 
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in the classificaAon process. This accuracy can be improved by expanding the dataset and 
ensuring a balanced number of images in each class.  

To select appropriate cameras for SBCs, extensive tesAng of various video cameras was 
conducted, with the results analysed according to the ISO 12233 standard test chart. The tests 
indicated that the Raspberry Pi Camera HD v2 and the IMX477 camera with a 6mm CS-Mount 
lens produced the best image detail. AddiAonally, the IMX477 camera offers significant 
advantages due to its construcAon and compaAbility with standard mount lenses. This feature 
greatly enhances its adaptability for use in measurement plaEorms for quality tesAng at 

airports and for assessing mechanical damage to airport lamps. 

The author invesAgated the feasibility of uAlizing a light spectrum sensor for detecAng 
the colour of airport lamps, focusing specifically on the AS7262 sensor. The detailed 
examinaAon revealed that, for in-pavement airport lamps, measurement repeatability is 
maintained even with the use of an acrylic glass cover. However, for elevated lamps, the 
measurement variability is noAceable due to the changes in the distance between the sensor 
and the light source. The research indicated a dependency on this distance, with red and 
orange components primarily requiring adjustments as the distance increases. These 
correcAons can be addressed programmaAcally, but proper calibraAon is essenAal to ensure 
accuracy. 

The invesAgaAon into the uAlizaAon of the TCS3430 sensor for the chromaAcity 
assessment of airport navigaAon lighAng, along with the development of sohware for 
automaAc conversion and visualizaAon of the obtained measurements, facilitated the creaAon 
of a system for evaluaAng the chromaAcity of navigaAon lighAng. This system enables users to 
verify compliance with chromaAcity standards for specific types of tested navigaAon lamps. 
Experiments were conducted on seven types of lamps installed at Poznań–Ławica Airport, 
examining the impact of measurement distance from the light source. It was determined that 
measurements for in-pavement airport navigaAon lamps can be performed from a minimum 
distance of 1 meter, while for elevated lamps, a minimum distance of 1.5 meters is required. 
A key advantage of the TCS3430 sensor is its capability to provide CIE 1931 colour coordinates 
in accordance with EASA standards. However, a limitaAon of the TCS3430 sensor is its 
insufficient range of results for each type of lamp at the same distance, leading to the 
recommendaAon that in-pavement aeronauAcal ground lighAng be tested at a distance of 
1 meter and elevated aeronauAcal ground lighAng at a distance of 1.5 meters. 

Experiments related to the inspecAon of chromaAcity of airport navigaAon lighAng can 
also be combined and performed simultaneously, during a single measurement. On the one 
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hand, the lamp is categorized according to the colour of the emined light, which determines 
the light intensity levels that a given lamp must meet, according to EASA standards, and on the 
other hand, it is possible to perform a light chromaAcity test and check whether it is within  
the EASA standard for light colour in CIE 1931 colour space. 

An important advantage of the proposed soluAons is also the universality of the 
systems and the possibility of performing many inspecAons using one vehicle and one camera. 
For example, it is possible to detect horizontal markings in airports while simultaneously 
detecAng FOD objects. Such a soluAon significantly shortens the Ame of occupaAon of the 

runway and taxiways, which in turn is economically beneficial for the airport. Moreover,  
the proposed soluAons are not designed for a specific type of vehicle, thanks to which it is 
possible to easily dismantle the camera and the data processing system, and then install  
it in another vehicle, for example for the Ame of repair or other unforeseen events. 

In conclusion, the author has advanced soluAons for vision inspecAon leveraging 
arAficial intelligence to enhance aerodrome safety. Consequently, the scienAfic objecAves  
of this Ph.D. dissertaAon have been successfully achieved. The scienAfic thesis — Proposed 
vision preprocessing methods, together with neural network solu+ons within the domain of 
embedded systems, substan+ally improve and facilitate the automated inspec+on process  
at the airports — has been validated. The developed systems demonstrate applicability across 
various airport service vehicles and measuring plaEorms, thereby supporAng the inspecAon 
and safety management of airport operaAons. 
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