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Abstract

This thesis presents the results of research concerning vision inspection using artificial intelligence to
improve safety of aerodrome. Inspection of airfields, especially runways, taxiways, and aprons, is critical
from the perspective of aviation operation safety and airport operational readiness. Current standards and
recommendations from the European Union Aviation Safety Agency (EASA), such as the Artificial
Intelligence Roadmap 2.0, indicate that the inspection of manoeuvring areas in airports should employ
Al-based solutions, including machine learning, deep neural networks, and logic-knowledge-based
approaches, thereby supporting personnel responsible for maintaining safety.

In the doctoral dissertation, the following scientific thesis was formulated: Proposed vision
preprocessing methods, together with neural network solutions within the domain of embedded systems,
substantially improve and facilitate the automated inspection process at the airports.

There are three main research areas addressed in the dissertation, based on the recommendations
aforementioned. The first area is the detection of Foreign Object Debris (FOD) in critical airport areas. Such
objects can cause an aviation disaster if they come near an aircraft during the most critical phases of flight,
such as take-off and landing. The dissertation presents an analysis of available databases, introduces the
proprietary PUT dataset, and explores the use of image processing algorithms to detect such objects on
aerodrome surfaces using neural network architectures, as well as image processing methods, thus aiding
the airport services in this vital task. The selection of GooglLeNet and YOLOVS significantly improved the
accuracy of FOD detection, which could be investigated by using different databases and examining
the influence of individual input data parameters on the final result.

The second research area, which comes from aviation regulations, is the detection of airport horizontal
markings. These markings serve as guidelines for both aviation and ground personnel and have strictly
defined locations. Due to stringent regulations determining the placement of aerodrome horizontal
markings, it is possible to correct the alignment of the measurement platform for airport lighting inspection
based on the location relative to specific lines. Conducting such inspections is critical and impacts the
operational capability of the airport under reduced visibility conditions. The author prepared dataset of
video recordings, PLAVS1, from the restricted area of the airport, and the developed line detection
algorithms based on image processing methods, and their analysed their efficiency in implementation in
single-board computers such as the Nvidia Jetson family.

The third research area is the classification of in-pavement airfield ground lighting. This classification
involves detecting the light fixtures and assessing the wear of their prisms, evaluating the chromaticity
of the light emitted by each point source, and comparing it to international standards. The proprietary
dataset, PLAVS2, was developed for this purpose, and appropriate algorithms based on image processing
methods to detect the region of interest (ROI) were selected, neural networks such as GooglLeNet, VGG-19
and ResNet, as well as performing analysis and selection of light chromaticity sensors, proposing a system
to support airport services in daily inspection of manoeuvring surfaces.

The realization of the scientific research presented in the doctoral dissertation was made possible
through the scientific collaboration of the Division of Signal Processing and Electronic Systems at Poznan

University of Technology with Pozna—tawica Airport.
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Streszczenie

W pracy przedstawiono wyniki badan dotyczace inspekcji wizyjnej z wykorzystaniem sztucznej inteligencji
w celu poprawy bezpieczenstwa portéw lotniczych. Kontrola ptaszczyzn lotniskowych (ang. aerodrome), takich
jak drogi startowe, drogi kotowania oraz ptyty postojowe jest krytyczna z perspektywy bezpieczenstwa
wykonywanych operacji lotniczych oraz gotowosci operacyjnej portu lotniczego. Wspétczesne standardy
i zalecenia Agencji Unii Europejskiej ds. Bezpieczenstwa Lotniczego (EASA), takie jak Artificial Intelligence
Roadmap 2.0, wskazuja, aby inspekcja obszaréw manewrowych w portach lotniczych wykorzystywata rozwigzana
bazujace na sztucznej inteligencji, czyli uczeniu maszynowym, gtebokich sieciach neuronowych oraz algorytmach
decyzyjnych, wspierajgc tym samym osoby odpowiedzialne za utrzymanie bezpieczerstwa.

W rozprawie doktorskiej sformutowana zostata nastepujaca teza naukowa: Zmodyfikowane metody
przetwarzania obrazu wraz z rozwigzaniami bazujgcymi na sieciach neuronowych w obszarze systemow
wbudowanych znaczgco usprawniajq utatwiajq zautomatyzowany proces inspekcji portu lotniczego.

Bazujac na przytoczonych wczesniej zaleceniach instytucji miedzynarodowych, wyodrebniono trzy gtéwne
obszary badawcze poruszane w rozprawie doktorskiej. Pierwszym z nich jest wykrywanie obiektéw typu FOD
(ang. Foreign Object Debris) na newralgicznych obszarach portu lotniczego. Obiekty takie mogg spowodowac
katastrofe lotniczg, jesli znajdg sie w poblizu statku powietrznego podczas najbardziej krytycznych faz lotu, takich
jak start i lgdowanie. Rozprawa przedstawia analize dostepnych baz danych, pokazuje autorska baze danych
PUT dataset oraz wykorzystanie algorytmdéw przetwarzania obrazu do wykrywania takich obiektéow na
ptaszczyznach lotniskowych, przy zastosowaniu architektur sieci neuronowych i metod przetwarzania obrazu,
wspierajgc tym samym stuzby w tym istotnym zadaniu. Dobér architektur sieci neuronowych w postaci
GoogleNet i YOLOVS znacznie poprawit doktadnos¢ wykrywania FOD, co mozliwe byto do zweryfikowania przy
wykorzystaniu réznych bazy danych oraz badajgc wptyw poszczegdlnych parametréw danych wejsciowych
na wynik koficowy.

Drugim analizowanym obszarem badawczym wynikajgcym z przepisOw lotniczych jest wykrywanie
poziomych oznaczen lotniskowych. Oznaczenia te stuzg personelowi lotniczemu, ale takze naziemnemu, jako
wskazowki i majg swoje Scisle okreslone potozenie. Dzieki tak rygorystycznym przepisom determinujgcym
umiejscawianie oznaczen poziomych, mozliwe jest wykonanie poprawnego najazdu platformg pomiarowa do
badania nawigacyjnego oswietlenia lotniskowego nad badang lampe w oparciu o lokalizacje wzgledem
okreslonych linii. Przeprowadzenie takich badan jest krytyczne i wptywa na zdolno$¢ operacyjng portu lotniczego
w warunkach obnizonej widzialnosci. W pracy przedstawiono przygotowang baze danych nagran wideo PLAVS1
z zastrzezonego terenu portu lotniczego oraz opracowane algorytmy wykrywania linii, bazujgce na metodach
przetwarzania obrazu i oceniono ich efektywnos¢ w implementacji w urzadzeniach wbudowanych, takich jak
rodzina Nvidia Jetson.

Trzecim badanym obszarem jest klasyfikacja lamp zagtebionych oswietlenia nawigacyjnego w ptaszczyzny
lotniskowe. Klasyfikacja z jednej strony opiera sie na wykryciu lampy i ocenie zuzycia jej pryzmatu, a z drugiej, na
ocenie chromatycznosci barwy swiatta emitowanej przez dany punkt swietlny i poréwnanie jej z obowigzujacymi
normami miedzynarodowymi. Opracowano w tym celu autorskie bazy danych PLAVS2, dobrano odpowiednie
algorytmy w oparciu o metody przetwarzania obrazu w celu wykrycia obszaru zainteresowania (ROI), sieci
neuronowe, takie jak GoogleNet, VGG-19 oraz ResNet, a takze dokonano analizy i doboru czujnikéw
chromatycznosci $wiatta, a nastepnie zaproponowano system wspierajacy stuzby lotniskowe w codziennej
kontroli ptaszczyzn manewrowych.

Realizacja badan naukowych przedstawionych w rozprawie doktorskiej byta mozliwa dzieki wspotpracy
naukowe] Zaktadu Uktadéw Elektronicznych i Przetwarzania Sygnatéw Politechniki Poznanskiej z Portem

Lotniczym Poznan—tawica.
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Chapter

1. Introduction

1.1. Research area

Air operations have been growing in recent years, with an increasing number of airplanes and
flights operating in many parts of the world. This trend is particularly notable in Europe, where
air traffic has grown at a steady rate over the past several decades. One of the main drivers of
this growth has been the liberalization of the European airline industry. Beginning in the 1990s,
the European Union (EU) gradually removed restrictions on the establishment of new airlines
and the routes they can operate. This has led to increased competition and lower prices,
making air travel more accessible to more people. Another important factor has been the
growth of the European economy, which has led to an increase in both business and leisure
travel. With more people travelling for work and pleasure, the demand for air travel has
increased [1], [2].

Such an intensive increase in the popularity of air transport and its availability forced
the regulation of issues related to aviation safety. Every year, more and more standards and
authorities are created to determine whether a given aircraft or airport is ready to perform air
operations, in particular in difficult weather conditions. Various types of aviation agencies,
global, European, and Polish, require inspection of individual devices located at the airport,
which are part of the critical infrastructure [3], [4]. Figure 1-1 shows a view at runway 28 at

the Poznan—tawica Airport with visible airfield ground lightning (AGL).

Figure 1-1 View at runway 28 at the Poznan—tawica Airport with visible airfield ground lightning (AGL)
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1 Introduction

Such a rapid and intense development of the civil transport aviation industry forces the
development of new procedures and safety standards. For this reason, various national and
multi-country aviation safety agencies are established and establish standards necessary to

ensure safe aviation operations.

As part of improving security in the airport area, there are many types of vision systems
implementation on which this work puts emphasis. This may include, among others,
the terminal and passenger safety inspection in the event of pandemic threats (such as
detecting anti-virus masks [5]), but also monitoring the flow of people, for example, using
density maps [6] to improve the speed and quality of service. Another aspect may be the
inspection of the safety of passengers and their luggage, as well as the detection of intrusion

into the airport premises, into the restricted zone.

In this work, the operational inspection of manoeuvring areas (aerodromes) was
primary focus. Aerodrome is a specifically designated area on land, which includes all
associated buildings, installations, and equipment, intended for use, entirely or partially, for
the arrival, departure, and movement of aircraft [3]. Such expansion was necessary due to the
scope of work being carried out, but also due to scientific cooperation with the Poznan—tawica
Airport, which defined its goals and expected their implementation in a systemic manner.
For this reason, detection, e.g., intrusion of people or vehicles onto the runway, is excluded,
and is focused only on manoeuvring areas such as the runway, taxiways, and aprons or ramps.

This division of selected issues is illustrated in Figure 1-2.

Airport
area

Safety of
aircraft
operations

Figure 1-2 Division of selected issues of video inspection at the airport area
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1 Introduction

While working on improving aerodrome safety, the emphasis was put on the
operational readiness of the airport. Then, three most important aspects were distinguished
that influence the improvement of the safety of air operations and are at the same time

necessary for application at the airport. These aspects are as follows:

e Airport Runway Foreign Object Debris (FOD) Detection System
e Detection of airport horizontal markings

e Quality classification of airfield ground lighting.

Each of these aspects was thoroughly analysed in terms of currently available and used
methods, and then, after consultations with experts, own innovative algorithms and solutions
were proposed, which significantly improve the safety of air operations. Figure 1-3 shows

investigated aspects of video inspection on aerodrome.

e Airport Runway Foreign Object
Debris (FOD) Detection

e Detection of airport horizontal
markings

e Quality classification of airfield

ground lighting

Figure 1-3 Investigated aspects of video inspection on aerodrome

Figure 1-4 shows the potential use of the algorithms developed in this doctoral thesis.
Thanks to the use of a measuring platform, it is possible to inspect airport navigation lighting
lamps. Their classification is carried out based on the vision system - classification of wear and
based on colour and chromaticity sensors - determining the type of lamp and examining the
colour of the light emitted by them. Thanks to the use of a camera at the front of the vehicle,
it is possible to correctly maintain the driving track thanks to the detection of the centre line,
as well as to detect dangerous FOD-type objects in the aerodrome while the vehicle is moving.
In the vehicle, airport staff have a screen (HMI) informing about the proposed correction of
the driving path, it also displays information about current and ongoing tests and displays

appropriate warnings.
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e FOD detection )
Single board Measurement platform
e Line detection

HMI computer

N
Prism Colour

classification classification
Y,

® 0

In-pavement airport lamp

Figure 1-4 Concept of vision inspection system for aerodrome safety inspection

This thesis presents considerations and solutions that significantly improve the safety
of aviation operations. For this purpose, innovative algorithms, optical sensors (such as
cameras and light chromaticity sensors) and single board computers were used. It is thanks to
the combination of these devices that it is possible to improve the detection of specific
anomalies and inform the appropriate services about them. Additionally, the algorithms and
systems created allow for the acquisition of additional data necessary for analytical research
related to the consumption and inspection of lighting and navigation, as well as FOD

contamination in critical areas of the airport.

All works and recommendations in this dissertation refer to the documents and
regulations of three aviation security agencies. These are the European Union Aviation Safety
Agency (EASA), the Federal Aviation Administration (FAA) and the International Civil Aviation
Organization (ICAO). These organizations issue recommendations and necessary system
certifications, ensuring world-class aviation safety. Poland, a member of the European Union,
will be directly subject to the EASA regulations, which Polish airlines and airports must meet

to obtain certification and maintain operational readiness.

When following procedures, the Safety Management System (SMS) for airports should
be mentioned. It is a systematic approach to managing safety that integrates organizational
structures, policies, procedures, and processes to identify, assess, and mitigate risks associated
with aviation activities. The primary objective of an SMS is to improve safety performance by

promoting a culture of proactive and continuous improvement within an airport environment.
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1 Introduction

The key components of an airport SMS typically include [7], [8], [9], [10], [11], [12]:

1. Safety Policy and Objectives: Establish a clear safety policy that reflects the airport's
commitment to safety and define measurable safety objectives to guide safety
performance.

2. Safety Risk Management (SRM): Identifying and analysing potential hazards and
risks associated with airport operations. This involves assessing the severity
and likelihood of risks and implementing measures to mitigate or eliminate them.

3. Safety Assurance: Implementing processes to monitor and evaluate the
effectiveness of safety risk controls and ensure compliance with safety regulations.
This involves regular safety audits, inspections, and performance monitoring.

4. Safety Promotion: Fostering a safety culture within the organization through
communication, training, and awareness programs. This includes promoting
the reporting of safety concerns and incidents without fear of reprisal.

5. Safety Reporting and Investigation: Establishing a reporting system for employees
and stakeholders to report safety concerns, incidents, and hazards. Conducting
thorough investigations to identify root causes and contributing factors.

6. Emergency Response Planning: Developing and maintaining plans and procedures
to respond to emergencies and incidents promptly and effectively. This includes
training personnel and conducting drills to ensure readiness.

7. Documentation and Record-Keeping: Maintaining comprehensive records of
safety-related activities, incidents, and corrective actions taken. Documentation is
crucial for auditing, analysis, and continuous improvement.

8. Safety Performance Monitoring and Measurement: Establishing key performance
indicators (KPIs) to monitor safety performance and measuring progress toward
safety objectives. This allows data-driven decision making and continuous
improvement.

9. Management Review: Periodic reviews by top management to assess the overall
effectiveness of the SMS, ensure compliance with safety policies, and identify
opportunities for improvement.

10. Implementing an SMS is often a regulatory requirement for airports to improve
safety and align with international aviation standards. It provides a structured
framework for managing safety risks, learning from incidents, and continuously

improving safety performance within the airport environment.

Both the International Civil Aviation Organization and the European Union Aviation

Safety Agency have established guidelines and regulations regarding Safety Management

J. Suder 17



1 Introduction

Systems for airports to ensure a standardized and effective approach to aviation
safety [7], [9], [11].

ICAO's Annex 19 to the Convention on International Civil Aviation provides the

international standards and recommended practices for the implementation of an SMS. Here

are some key elements [7], [9]:

ICAO requires Contracting States to establish a State Safety Program (SSP) that includes
an SMS for service providers, including airports. The SSP should define the State's
safety objectives, safety responsibilities, and the overall regulatory framework for
safety.

The "Safety Management Manual (SMM)" provides guidance specifically for the
implementation of SMS in civil aviation, including airports. It outlines the key
components such as safety policy, risk management, safety assurance, and
safety promotion.

Risk Management: ICAO emphasizes the importance of a systematic approach to risk
management, including the identification of hazards, risk assessment, and
the implementation of risk controls.

Safety Assurance: This involves establishing processes to monitor and evaluate the
airport safety performance and ensure that corrective actions are taken as necessary.
Safety Promotion: ICAO encourages the promotion of a positive safety culture within
the organization, emphasizing the importance of communication, training,

and reporting systems.

EASA, as the European regulatory body, has its own regulations and guidelines related

to SMS. The EASA regulations are applicable to European Member States and the entities

falling under their jurisdiction. Key elements include [11]:

1. This regulation establishes the common rules in the field of civil aviation and
creates EASA. It includes requirements for SMS implementation at the
organizational level.

2. EASA has specific regulations for airports under the Aerodromes Regulation
(Part-ADR), which includes requirements related to the implementation of SMS at
airports.

3. Risk-Based Oversight (RBO): EASA emphasizes a risk-based approach to oversight,
meaning that regulatory oversight is proportionate to the level of risk associated

with the activities of the organization.

18
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1 Introduction

4. Performance-Based Regulation: EASA focuses on performance-based regulations,
allowing organizations flexibility in achieving safety objectives while maintaining
a high level of safety.

5. Airports operating within the European Union must comply with EASA regulations,
including those related to SMS, to ensure a harmonized and consistent approach

to safety management.

Both ICAO and EASA provide comprehensive guidelines and regulations to ensure the
effective implementation of Safety Management Systems at airports, promoting a proactive

and risk-based approach to aviation safety.

As mentioned earlier, the main scientific fields of this doctoral dissertation are the
inspection issues of the aerodrome using optical sensors, with particular emphasis on
detection of foreign object debris, detection of airport ground markings (such as taxiway and
runway centre lines) and quality inspection operation and quality classification of the airfield

ground navigation lighting system.

Moreover, the dissertation responds to the needs identified by EASA in relevant
documents [13], which outline a human-centric approach to integrating Al in aviation. It
emphasizes Al's potential to enhance safety, efficiency, and innovation in aviation while
addressing challenges such as public confidence, certification, ethical integration, and staff
competency. The roadmap builds on the trustworthiness of Al, guided by EU Al regulations,
and sets high-level objectives and actions to ensure safe Al deployment in aviation, focusing

on collaboration between stakeholders to achieve these goals.

Level 1 Al/ML: Level 2 AY/ M!‘ ; Level 3 Al/ML : more
. human/machine .
assistance to human ; autonomous machine
collaboration
e Level 1A — Routine e Level 2A —Human ¢ Machine performs
assistance performs a function functions with no
/ Machine monitors human intervention
e Level 1B — Reinforced in operations.
assistance * Level 2B — Machine o
performs a function Human is in the loop
/ Human monitors at design and

oversight time
Figure 1-5 Classification of Al applications [13]

The developed algorithms particularly support Level 1 and 2 (Figure 1-5) as specified
in [14]. For Level 1 Al, the end user makes all decisions with the aid of an Al-based system, and

the end user is responsible for carrying out all actions. Level 2 Al-based systems can
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1 Introduction

autonomously select and execute actions, yet the end user retains full oversight and the ability

to override the system's functions at any time. At Level 2, decisions can be made either by the

end user or automatically by the Al-based system under the user's supervision

and guidance [14].

The research carried out while working on the doctoral dissertation was related to the

following scientific projects:

1. Smart4All (Horizon 2020 framework under call DT-ICT-01-2019: Smart Anything

Everywhere — Area 2: Customized low energy computing powering CPS and the loT;
Grant Agreement No 872614; 0211/PRKE/6428; 1.07.2020 - 31.12.2023) -
The project aims to revolutionize urban living by integrating advanced technology
into various aspects of daily life. Leveraging the power of 10T (Internet of Things)
devices and Al (Artificial Intelligence), Smart4All seeks to create smarter, more
efficient cities that enhance the quality of life for residents while promoting
sustainability and resource optimization. One key aspect of the Smart4All project is
the development of interconnected smart infrastructure, including smart grids,
smart transportation systems, and smart buildings. These systems will enable real-
time monitoring and management of energy consumption, traffic flow, and building
operations, leading to reduced costs and environmental impact. Additionally, the
project focuses on enhancing public services through digitalization and
automation.

Inkubator Innowacyjnosci 4.0 (0614/MNSW/2948; 1.02.2021 - 31.01.2023) -
The program enhances initiatives promoting scientific achievements, augments
their impact on innovation development, and intensifies collaboration between the
scientific community and the business environment. The need for the development
of these aforementioned skills is also underscored by the European Commission
within recommendations for National Reform Programs, as well as by
the Committee of Scientific Policy, the Main Council for Science and Higher
Education, the Conference of Rectors of Academic Schools in Poland, and
organizations representing employers in Poland. Actions aimed at enhancing the
skills of employees in scientific institutions and businesses in the management of
scientific research, collaboration with businesses, and the commercialization
of R&D results are therefore strategic from the socio-economic development
perspective of the country.

Investigation of Algorithms Supporting Positioning of a Mobile Measuring Device
for the Inspection of Airport Runway Lighting Surfaces (0211/SBAD/0522;
1.01.2022 -31.12.2022) — Project as part of a competition for conducting scientific
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research by young scientists financed in an internal competition mode at the
Faculty of Control, Robotics & Electrical Engineering at Poznan University of
Technology. The project enabled research such as comparative analysis of camera
parameters for processing vision sequences using embedded devices, analysis
of the use of single board computers, development of a module enabling fast and
precise measurement of light intensity within in-pavement lamps of navigational
lighting, and preparation of a concept for a supporting system for approaching
and inspecting an in-pavement airfield ground lighting (AGL) lamp chromaticity,
based on an embedded system.

4. Detection of Events Using Vision Monitoring and Artificial Intelligence
(0211/SBAD/0920; 1.01.2020 — 31.12.2020) — Project also as part of a competition
for conducting scientific research by young scientists financed in an internal
competition mode at the Faculty of Control, Robotics & Electrical Engineering at
Poznan University of Technology. Aimed to prepare datasets of recorded vision
sequence and analyse segmentation and detection algorithms for application in
embedded systems. The selection and training of neural networks was performed

on previously prepared data.
1.1.1. Foreign Object Debris

The first of the security elements discussed in this work will be Foreign Object Debris (FOD)
detection which is a major safety concern in the aviation industry and has the potential to
cause significant damage to aircrafts and endanger the lives of passengers and crew
members [15]. FOD refers to any object or debris that is present on airport runways, taxiways,
or aprons, which can cause damage to aircraft components, such as engines, landing gears, or
fuselages. The presence of FOD poses a significant safety risk to aircrafts and can cause delays

and cancellations, as well as costly repairs and maintenance [4].

The most famous and tragic accident caused by FOD is the Concorde Air France flight
4590 plane crash. This plane accident took place on July 25, 2000 near Paris. The Concorde
aircraft, accelerating on the runway of Charles de Gaulle Airport, ran at high speed
(approx. 300 km/h) with its main landing gear wheel onto a strip of metal (Figure 1-6) - an
engine structural element that had fallen off from the McDonnell Douglas DC-10 aircraft that

had previously taken off.
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Figure 1-6 Example FOD, the metal strip suspected of piercing the Concorde tyre [16]

The aviation industry is projected to suffer a financial loss of $4 billion annually, as
reported in [17]. Aircraft accidents caused by FOD are a very serious threat. The main threat
caused by the presence of unwanted objects on the runway is engine damage due to
absorption of FOD elements, destruction of tyres or damage to the aircraft structure and
reduced efficiency. Furthermore, damage to the aircraft may disrupt the proper operation of
the airport, leading to loss of revenue. Airplane engines are a sensitive structural element
of the aircraft, so they are susceptible to any type of objects. If they hit a running engine, they
can damage rotating blades or other parts of the engine. As a consequence, this may lead
to a reduction in engine efficiency, leading to a plane crash [18]. One such incident was the
2009 incident involving an Airbus A320-214 on the Hudson River. The passenger jet lost thrust

in both engines due to wild geese being engulfed in the engines shortly after take-off.

Another danger is tyre damage. In some cases, FOD may result in tyre tread separation,
which may cause damage to parts of the aircraft or even disruption to other aircraft scheduled
to take off or land on the same route [19]. Since the Concorde disaster, FOD detection has

become a priority security measure at airports.

Areas such as the fuselage, wings, and windshield can also be damaged by FOD.
Damage to the aircraft structure causes aerodynamic loss. If the nose of the plane is damaged,
it can damage the radar system, leading to false readings and complicated problems. Another
messy effect caused by FOD may be the disruption of normal airport operations. When an
aircraft is damaged on the runway, it causes delay or cancellation of the flight and financial

losses.
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In its reports, the FAA divides the FOD by origin as follows [20]:

e aircraft parts (fuel caps, landing gear fragments, oil dipsticks, metal sheets, nuts, bolts,
washers, steel wires, doors and tyre fragments)

e airline items and catering supplies (garbage such as bottles, papers, plastic, drink cans
left by passengers or ground handling staff, staff badges, pens, pencils, baggage tickets,
pieces of luggage)

e natural materials (parts of plants and wild animals, stones, sand, and gravel)

e weather pollution (includes icing, snow, hail, rain and other atmospheric phenomena

that may affect airport surfaces and pose a threat to aviation operations).

Figure 1-7 shows damage to aircraft caused by FOD objects. Figure 1-7a shows the
damaged fan blades of the Pratt & Whitney JT8D engine after a bird collision, while Figure 1-7b
shows the crash of the Concorde plane, in which a metal element on the runway punctured
the tyre while gaining speed, which caused damage to the fuel tank located in wing and a fuel
leak, causing the machine to burst into flames. Image Figure 1-7c shows damage to the skin of

a Singapore Airlines Boeing 747-400F aircraft caused by stones on the runway.

(a) (b)

Figure 1-7 Damage caused by FOD objects [21]: (a) Pratt & Whitney JT8D engine,
(b) Concorde Air France flight 4590, (c) Singapore Airlines Boeing 747-400F
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In spite of the airport authorities and maintenance staff's attempts to reduce the
chances of Foreign Object Debris, incidents still happen too often. This emphasizes the urgency
of new and creative methods to detect and prevent FOD, all aimed at protecting both aircrafts
and passengers. Worldwide airline agencies established a set of guidelines and rules to reduce
the risk of FOD around airports and aircraft.

The types of FOD facilities vary greatly. They can be classified in many ways in terms of
type and origin. The element can be made of any material and have any colour and size.
In a study conducted at an airport over a year, more than 60% of the known FOD items
collected were made of metal, and 18% of the items were made of rubber, while dark
items accounted for almost 50% of the FOD collected [22].

Figure 1-8 shows objects found during a FOD walk on the runway of the Ramstein Air
Base in Germany [23].

EXAMPLES OF FOD
@ ©Rocks @Wood @Metal @Waste @Plastic
1

All of the debris on this page was found on the flightline of Ramstein Air Base, Germany, during FOD walks.

Figure 1-8 FOD found during a FOD walk on the runway of the Ramstein Air Base in Germany [23]

For this reason, it was so important to build a dataset, design an algorithm, and launch
a system that can be used by services responsible for maintaining the operational readiness of
the airport to automatically detect FOD objects on airport surfaces. The tests and verification

of the necessary tools were carried out in close cooperation with the Poznan—tawica Airport.
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This dissertation introduces a novel, cost-efficient strategy for Foreign Object
Debris (FOD) detection, employing a vision system operable by airport personnel. The concept
of the system integrates an embedded system deployable in airport service vehicles traversing
manoeuvring areas. Real-time analysis of camera-captured images is conducted utilizing
sophisticated image processing algorithms, accurately discerning and pinpointing foreign
objects across runways, taxiways, or aprons. By providing immediate and precise information
on debris location and type, the system allows airport personnel to promptly mitigate FOD,

thereby diminishing safety hazards and mitigating operational disruptions.

The dissertation delineates the design and implementation of the vision FOD detection
system and evaluates its efficacy within an actual airport setting. Comparative analyses with
alternative FOD detection methodologies are conducted to assess the system's effectiveness
and cost-efficiency. Additionally, the potential ramifications of the system deployment on
airport safety and operations are deliberated. Overall, the proposed vision FOD detection
system presents a promising avenue for FOD detection and prevention, poised to significantly

enhance airport safety and operational efficiency.
1.1.2. Airport horizontal markings

The next issue related to aviation safety is the detection of horizontal markings on airport
manoeuvring areas. The validity of markings and lines detection can be divided into two
aspects. On the one hand, detecting a line may mean improved readability and visibility. This
means that the markings, especially on the runway, are in good condition and it is not
necessary to remove the rubber or repaint them. The second aspect is, thanks to the precisely
defined distance and location of the lines (Figure 1-9), enabling precise inspection of systems

checking important operational elements of the airport.

Due to the development of a system in the form of a measurement platform for testing
navigation lighting, it was necessary to develop software to support the operator/driver while
moving around ground surfaces. Thanks to this, it is possible to conduct a lighting study with
minimal occupation of critical points of the airport, such as the runway or taxi routes.
Moreover, a correct and repeatable measurement can provide important information for
research on the maintenance of lamps and their wear rate as well as reliability. Detection and
inspection of the correct operation of navigation lighting may be critical in the event of an
accident or unsuccessful landing, which may determine the safety of air operations and be
of interest to services responsible for air transport safety. Figure 1-9 shows the view from the

platform for quality testing of airport lamps during the lighting inspection. The location
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of the lamp over such a large area, without reference points in the form of the runway edge

or other characteristic objects, is possible only based on the detection of centre lines.

Runway In-pavement

centre line

lamp

Figure 1-9 Example frame from the video sequence (runway centre line—white, runway centre line

lamp—white)

The constantly growing requirements of aviation agencies regarding flight safety have
for several years been determining more and more precise inspection of lighting located in
various airport areas, especially on runways and taxiways [4]. The essence of investigating the
operational efficiency of aviation navigation lighting, based on the Certification Specifications
and Guidance Material for Aerodrome Design (CS-ADR-DSN) of the European Union Aviation
Safety Agency (EASA) [4], lies in understanding the intricate interplay of factors influencing the
degradation of lamps and the critical importance of their monitoring in aerodrome

environments.

A medium-sized airport has about 200 central axis lamps in white and red and about
180 touchdown zone lamps. However, there are many more light points on taxiways.
Importantly, each lamp must meet the standards specified in the documents on the basis of
which permits are issued for the ongoing operation of the airport. Typical airport lamps are
equipped with halogen bulbs, which have a limited lifetime [24]. Lamps deteriorate over time
due to various mechanisms, including filament evaporation, electrode wear, and phosphor
degradation (in the case of fluorescent lamps), leading to diminished luminous output and
alterations in spectral characteristics. Environmental factors such as temperature fluctuations,
humidity levels, and electrical irregularities can exacerbate this degradation process. Also, the
sticking of rubber from tyres of landing aircraft to the heated prisms of halogen lamps
significantly reduces the light efficiency of navigation lighting. Nowadays, airports are forced
by demanding safety rules to gradually upgrade lighting systems to ones based on LED light

sources. The light emitted by such bulbs has characteristics different from those of halogen
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bulbs [25], and this causes the need to prepare a measuring system that can be adapted to
work with different light sources. The degradation of lamps can significantly impact
the performance of navigational lighting systems, potentially compromising visibility and

impeding safe air navigation within the system.

Lamp monitoring is essential to maintain the operational efficiency and safety of
navigational lighting installations. Regular inspections and maintenance procedures are
essential to ensure that lamps adhere to the prescribed luminance levels, colour fidelity
standards, and spatial distribution requirements outlined in regulatory frameworks such as
CS-ADR-DSN [4]. Deviations from these standards can pose serious risks to aviation safety,
as inadequate lighting conditions can hinder pilots' ability to accurately perceive runway
boundaries, approach paths, and other critical visual cues during take-off, landing, and taxiing
procedures. Moreover, inconsistent or degraded lighting can impede ground personnel's
ability to conduct aircraft operations safely, exacerbating the potential for accidents

or incidents within the aerodrome environment.

Furthermore, comprehensive maintenance and monitoring practices are essential
to optimize the lifespan and cost-effectiveness of navigational lighting systems. Proactive
measures such as routine lamp replacements, cleaning, and recalibration help mitigate the
effects of degradation and ensure that lighting installations remain reliable and compliant with

regulatory standards over time.

Various mobile systems have been investigated to measure the technical condition
of airport lamps [26], [27]. An exemplary solution is presented in Figure 1-10 [28], [29]. Such
systems require precise driving of the measuring device onto the tested lamp. It is quite
important because very often, incorrect hovering on the lamp or its omission misclassifies

the obtained results, which increases the time and cost of the inspection process.

Measurement

Figure 1-10 First prototype of author’s measurement platform for testing the quality of the operation
of airport lamps [30]
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An essential aspect of the testing process involves providing feedback to the driver or
operator, allowing them to understand the adjustments needed to maintain the correct angle
and trajectory on the lamps. This feedback is particularly crucial when conducting manoeuvres
on extensive surfaces like runways, where significant reference points are lacking and
a continuous centre line is absent, presenting a formidable challenge. The airport testing
revealed that this is a highly time-consuming task that requires an individual to monitor the
platform and communicate the necessary manoeuvres to the driver. Testing lamps at runway

exits, where the lamps are positioned at various angles, posed particular difficulties.

Therefore, this aspect puts emphasis on the analysis of the driving path by detecting
and predicting the presence of runway centre lines and taxiways. By analysing the centre lines,
the algorithm aims to predict the probable location of the airport navigation lighting
in-pavement lamp, allowing the operator to accurately select the optimal path for an efficient
and meaningful study. When designing the platform for testing the performance of airport
lighting, the author gave priority to its versatility and availability. Action cameras were used in
this study due to their ability to stabilize images and capture footage of acceptable quality
while withstanding various environmental conditions (such as changing weather or low light).
The use of a measurement platform introduces particular challenges in maintaining the correct
trajectory, especially on long straight sections where there are no fixed reference points or
continuous centrelines, as well as on curves where the driver or operator cannot directly

observe the exact path of the measurement platform behind the vehicle.
1.1.3. Aeronautical ground lighting

Airfield ground lighting (AGL) is an essential component of aircraft operation and play a critical
role in ensuring the safety of all aircraft in the vicinity [31]. These lights are required to be
operational at all times and are used to identify the location and movements of aircraft, both
during the day and at night [4]. Aeronautical ground lighting systems are mandated to be
operational whenever necessary for the regulation and management of air traffic and other
times, depending on meteorological conditions, their activation is deemed essential for

ensuring the safety of air traffic operations [32].

One of the most important uses of navigation lights (Figure 1-11) is during take-off and
landing, when the aircraft are operating at low altitudes and in close proximity to each other.
During these phases of flight, navigation lights are used to help pilots identify other aircraft in
the vicinity, and to make informed decisions about the movements of their own aircraft [33].

For example, when approaching an airport for landing, pilots rely on the navigation lights of
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other aircraft to help them determine their own position and altitude relative to the

runway [31].

(a) (b) (c)

Figure 1-11 In-pavement airport lamps [30], [28]: (a) factory new, (b) worn housing but prism

in good condition, (c) worn housing and prism

In addition to helping pilots navigate the airspace around an airport, navigation lights
also play a critical role in ensuring the safe movement of aircraft on the ground. This is
particularly true for in-pavement lighting, such as runway and taxiway lights [33]. These lights
are designed to help pilots navigate the airport's surface and to maintain correct alignment

with the runway during take-off and landing.

Runway and taxiway lights are typically divided into several categories, including centre
line lights, edge lights, and threshold lights. Centre line lights are used to help pilots maintain
the correct alignment with the runway centre line, while edge lights are used to define the
edges of the runway. Threshold lights, on the other hand, are used to indicate the point at

which an aircraft should begin its take-off or landing roll [4].

In addition to these standard runway and taxiway lights, there are also a number of
other in-pavement lighting systems that are used at airports to help pilots navigate the surface.
For example, some airports use visual docking guidance systems (VDGS) to guide aircraft to
their designated parking stands. These systems use a combination of lights and markers

to provide pilots with precise guidance during the taxiing and parking phases of the flight [4].

Overall, navigation lights and in-pavement lighting systems are an essential component
of aircraft operation and play a critical role in ensuring the safety of all aircraft at an airport.
Whether helping pilots navigate the airspace around an airport or guiding them to their
designated parking stands, these lights are an essential tool for ensuring the safe and efficient

operation of aircraft.
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In-pavement lamps in the navigation lighting system lose their properties for several
reasons. The first and most devastating is the winter action taking place at the airport, i.e. the
need to maintain the operational readiness of the airport even during heavy snowfall. During
this period, the runway and taxiways are cleared of snow by specialized plows. Unfortunately,
due to the use of metal brushes that destroy, dull and permanently damage the prisms, it is
necessary to constantly check the navigation lighting lamps. Especially those located on the

runway, such as the touchdown zone or the centre line [34].

The disparities in luminous intensity values between new and used lamps vary from
several hundred to several thousand lux, depending upon the emitted light's colour and
distance from the source. Similar variations may arise due to improper installation or
inadequate testing procedures, potentially misclassifying a new lamp as worn in the results.
Technical documentation outlining the airport design process specifies precise luminous
intensity standards denoted in candelas. This unit serves as a benchmark against which
obtained results should be compared, necessitating the conversion of sensor readings each
time. Figure 1-11a depicts a new lamp, serving as a reference point, alongside its
prism (Figure 1-12a), for assessing the wear of other lamps in use at the airport.
The degradation of the lamp housing (Figure 1-11b) does not necessarily correlate with
damage to the prisms (Figure 1-12 b, c). Notably, superficial scratches on the housing's upper
surface do not impair the lamp's functionality, as its prisms remain largely unaffected, similar
to those in new lamps. However, Figure 1-11c illustrates a lamp that, while appearing
minimally damaged, exhibits a metal edge near the prism's apex, indicating damage incurred
during operation. Such deformations compromise the prism's glass integrity (Figure 1-12d),

rendering it scratched, chipped, and dim, warranting lamp replacement.

(a) (b) (c) (d)

Figure 1-12 Prisms of in-pavement lamps [30]: (a) new, (b-c) suitable for further use,

(d) to be replaced
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Another factor is the use of halogen bulbs or colour filters in some types of lamps,
which have a limited lifespan, and, due to dynamic conditions of use, their daily inspection is
necessary. The efficiency of in-pavement airport navigation lighting is also significantly limited
by tyre rubber deposits left on the runway, particularly on the lamps and prisms during landing.
The high temperatures of the lamps cause the rubber to adhere to the prisms, reducing their
effectiveness. This rubber accumulation also impacts aviation safety and runway surface
friction. The U.S. Federal Aviation Administration advises weekly inspections for rubber
deposits on runways with 210 or more daily landings, while runways with fewer than 15 daily
landings require annual inspections [35]. Airports must remove rubber deposits using suitable

chemical or mechanical methods when necessary.

Airfield ground lighting is an essential component of critical infrastructure, playing
a key role in maintaining the safety and continuity of aviation operations. As part of this critical
infrastructure, any malfunction or disruption in AGL systems may result in severe operational
delays and pose risks to national security by undermining air traffic management. Testing
in-pavement lamps, such as runway and taxiway lights, is an important aspect of ensuring the
safe operation of aircrafts at an airport. The International Civil Aviation Organization [36] and
the European Aviation Safety Agency [4] have established standards and procedures for testing
these lights, which vary depending on the type of lighting system and the category of

instrument landing system (ILS) in use.

According to ICAO standards, in-pavement lamps must be tested at regular intervals to
ensure that they are operating correctly and providing the necessary level of illumination for
safe aircraft operation. The frequency of these tests is determined by the category of ILS in use
at the airport [3]. ILS is a ground-based navigation aid that provides precise guidance to aircraft

during the approach and landing phases, particularly in low-visibility conditions.
The ILS consists of two main components [32]:

e Localizer (LOC): The localizer provides horizontal guidance, ensuring that the
aircraft is aligned with the centre line of the runway

e Glide Slope (GS): The glide slope provides vertical guidance, assisting the aircraft in
maintaining the correct descent path for a safe landing.

Pilots use the ILS information displayed on cockpit instruments to make precise
adjustments during their descent and approach to the runway, ensuring a safe and accurate
landing [32].
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For example, Category | ILS systems, which are used at airports with the highest
minimum decision altitude (MDA) and the highest visibility requirements, require testing of
in-pavement lamps every 90 days. Category Il and Il ILS systems, which are used in airports
with lower MDA and visibility requirements, require testing every 30 days [36]. During testing,
in-pavement lamps are checked for proper operation and alignment, and their output is
measured to ensure that they are providing the required level of illumination. Any lamps that
are found to be defective or out of alignment are repaired or replaced as necessary. In addition
to regular testing, in-pavement lamps must also be checked before the start of each night's
operation, and any defects must be corrected before aircraft can operate on the runway or

taxiway.

EASA has similar regulations on the maintenance and testing of in-pavement lighting,
the lighting system maintenance program must be in place and followed; this includes
inspection, testing, and maintenance of all lighting systems, including in-pavement lighting [4].
The frequency of these inspections is determined by the criticality of the system, with more
critical systems requiring more frequent inspections. Consequently, it is crucial to emphasize
the robustness and redundancy of AGL systems to guarantee consistent performance,

particularly during critical situations such as emergencies or adverse meteorological events.

It is important to note that the testing and maintenance of in-pavement lighting
systems is typically performed by airport maintenance staff, who are trained to safely access

the runway and taxiway areas, as well as to properly test and maintain the lighting systems.

In summary, testing of in-pavement lamps is an important aspect of ensuring the safe
operation of aircraft at an airport, and it is carried out according to the standards established
by ICAO and EASA. The frequency of these tests depends on the category of ILS in use, and the
test includes checking for proper operation, alignment, and output to ensure that they are

providing the required level of illumination.
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1.2. Aim of work and scientific thesis

The research entails the design, selection, and training of deep neural networks, leveraging
a highly curated dataset. This is combined with a computer vision framework to enable
automated, real-time inspection of aerodrome environments for enhanced safety monitoring

and assessment.

The objective of this work is an investigation and development of optimized
preprocessing algorithms tailored for integration into diverse system architectures, with
a specific focus on improving the quality and utility of input image data for classification-based
models. The scientific task is to elaborate reliable algorithms and solutions for vision inspection

using image processing and artificial intelligence to improve the safety of the aerodrome.
The detailed tasks can be formulated as:

e Development of vision algorithms for aerodrome inspection
e Preparation of video and image datasets according to new FAA standards
e Training of deep neural networks for fast runway video analysis

e Proposals of embedded systems implementations.
Particularly, the following problems were solved:

e Detection of Foreign Object Debris (FOD):
o Preparation of new image dataset according to FAA regulations
o Precise selection of the effective neural network architecture for FOD
detection.
e Detection and evaluation of airport horizontal markings:
o Preparation of new video dataset recorded in restricted airport area
o Proposition of line detection algorithm using colour-based image
segmentation in the HSV colour space
o Comparison of the power requirements during real-time processing of
video sequences in embedded systems
o Energy efficiency and DVFS (Dynamic frequency scaling) analysis.
e Quality classification of airfield ground lighting:
o Preparation of new image dataset with over 540 lamps and prisms
o Conception of lamp and prism detection process

o Selection of neural network for prism quality classification
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o Chromaticity inspection of airport navigation lighting lamps according to
CIE 1931 and EASA standards.

Scientific thesis

On the basis of the performed research, the following scientific thesis can be
formulated: Proposed vision preprocessing methods, together with neural network solutions
within the domain of embedded systems, substantially improve and facilitate the automated

inspection processes at the airports.

To experimentally check the effectiveness of the algorithms, a dataset of recordings
and images recorded in restricted areas of the airport was created. This PLAVS1 dataset
consists of more than 98 GB of video recordings from airport manoeuvring areas (such as the
runway, taxiways, and apron), PLAVS2 with 1004 photos of airport navigational lighting
in-pavement lamps and PUT dataset with 1480 FOD images. The dataset was consulted with
experts from the aviation industry in order to actually present the most critical elements of

the airport and their inspection.

The presented research was conducted in scientific cooperation with aviation
specialist, especially from departments responsible for the airport's readiness to perform flight
operations, such as the electrical power team or safety management manager. Thanks to this,
it was possible to prepare datasets and check the systems in real conditions, on the runway,
taxiways, and other ground surfaces. Consultations with airport representatives made it
possible to adapt algorithms and solutions for efficient and reliable inspection of aerodrome,
as well as to meet the requirements of national and international aviation authorities in a given
area. As part of the Innovation Incubator 4.0 project, the Poznan University of Technology
concluded an agreement on joint research with the airport (documents (PP)RU00021806 and
45/2022/RK), thanks to which it was possible to carry out research and tests of the proposed
solutions and systems, as well as prepare datasets and consult with specialists. Figure 1-13
graphically shows the cooperation scheme between the Poznan—tawica Airport and the

Division of Signal Processing and Electronic Systems at Poznan University of Technology.
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Figure 1-13 Scientific cooperation between the Poznarn—tawica Airport and the Division of Signal

Processing and Electronic Systems from Poznan University of Technology

1.3. Main scientific achievements

As part of the work, the following scientific works were created, such as published papers in

scientific journals, patents and reports in the subject of the dissertation:

Foreign object debris detection

J. Suder and T. Marciniak, “Foreign Object Debris detection system using GooglLeNet,”
[37] | Przeglad Elektrotechniczny, vol. 99, no. 11, pp. 251-254, Nov. 2023, doi:

10.15199/48.2023.11.47.

J. Suder and T. Marciniak, “Foreign Object Debris detection at aerodromes using

YOLOVS5,” in 2024 Signal Processing: Algorithms, Architectures, Arrangements, and
138] Applications (SPA), Poznan, Poland: IEEE, Sep. 2024, pp. 66-71. doi:

10.23919/SPA61993.2024.10715612.

Quality classification of airfield ground lighting

J. Suder, P. Maciejewski, K. Podbucki, T. Marciniak, and A. Dgbrowski, “Measuring
[28] | Platform for Quality Testing of Airport Lamps,” Pomiary Autom. Robot., vol. 23, no. 2,

pp. 5-13, Jun. 2019, doi: 10.14313/PAR_232/5.

J. Suder, K. Podbucki, T. Marciniak, and A. Dgbrowski, “Spectrum sensors for detecting
[39] | type of airport lamps in a light photometry system,” Opto-Electron. Rev., vol. 29, no.

4, pp. 133-140, 2021, doi: 10.24425/0OPELRE.2021.139383.
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[40]

J. Suder, K. Podbucki, T. Marciniak, and A. Dgbrowski, “Intelligent vision system for
quality classification of airport lamp prisms,” in 2022 Signal Processing: Algorithms,
Architectures, Arrangements, and Applications (SPA), 2022, pp. 151-154. doi:
10.23919/SPA53010.2022.9927908.

[41]

J. Suder and T. Marciniak, “Fast Prototyping of In-Pavement Airport Navigation Lamp
Prism Classification,” in 2023 Signal Processing: Algorithms, Architectures,
Arrangements, and Applications (SPA), Poznan, Poland: IEEE, Sep. 2023, pp. 95-99.
doi: 10.23919/SPA59660.2023.10274434.

[42]

J. Suder, K. Podbucki, and T. Marciniak, “Chromaticity measurement of airport
navigation lighting using integrated colour sensor,” Opto-Electronics Review, vol. 31,
no. 4. Polish Academy of Sciences (under the auspices of the Committee on
Electronics and Telecommunication) and Association of Polish Electrical Engineers in
cooperation with Military University of Technology, p. e€147040, 2023. doi:
10.24425/opelre.2023.147040.

[43]
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In the frame of scientific cooperation with Poznan—tawica Airport, it was possible to

complete an internship in the period from July 1, 2022 to September 30, 2022, during which

research, calibration and implementation of a system for testing the quality of navigation

lighting operation were carried out.

It is also worth mentioning the most important distinctions and awards received during

scientific studies:

Distinction of the work entitled: "Foreign Object Debris detection system using
GoogleNet" by the Scientific Committee of the 22nd National Electronics Conference
as part of the "Young Scientists" competition in the thematic group Technical
informatics and signal processing (15.06.2023).

Distinction of the work entitled: "Microprocessor light intensity sensor for examining
airport lamps" by the Scientific Committee of the 21st National Electronics Conference
as part of the "Young science workers" competition in the thematic group Metrology
(9.06.2022).

Main Award of the Program Council of the Teleinformatics Forum and the Masovian
Branch of PTI in the "Best substantive work" category for the project entitled: "Vision
monitoring system for detecting wearing anti-virus masks based on learning deep
neural networks" as part of the National Inter-university Young Masters Competition
"Economic aspects of computerization countries, digital modernization of Poland” at
the 27th Teleinformatics Forum (9.11.2021).

Distinction of the work entitled: " Colour sensors in an application to detect the type
of airport lights" by the Scientific Committee of the 20th National Electronics
Conference as part of the "Young scientists" competition in the thematic group
Optoelectronics and photonics (9.06.2021).

Distinguished Graduate of Poznan University of Technology Medal. This prestigious
award is granted by the Rector of Poznan University of Technology and the Medal
Committee to recognize outstanding alumni of the University, 2019.

Distinction from the Teleinformatics Forum Program Council in the category "Best
Substantive Work," awarded by the Program Council of the Teleinformatics Forum in
2019, for the project titled "Platforma pomiarowa do badania jakosci dziatania lamp
lotniskowych". This award was granted in the "Best Substantive Work" category during

the Young Masters Forum competition on "Economic Aspects of State Informatization"
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as part of the "Digital Modernization of Poland" initiative at the XXV Teleinformatics
Forum.

e The Rector's Graduation Medal of Poznan University of Technology for Outstanding
Commitment to Activities Supporting the Student Community of Poznan University of
Technology, 2019.

e The Dean's Award of the Poznan University of Technology Faculty of Computer Science
for outstanding academic performance and exemplary conduct, 2019.

e First Prize in the IEEE 2019 "Diploma Thesis Competition," awarded by the IEEE Polish
Section for the engineering thesis titled: "Platforma pomiarowa do badania jakosci
dziatania lamp lotniskowych".

e First Prize in the Competition for Outstanding Diploma Thesis in Full-time and Part-time
Undergraduate or Graduate Studies in the Field of Production Technology and
Organization of Services, awarded by FSNT NOT in Poznan in 2018. The award was given
for the engineering thesis titled "Platforma pomiarowa do badania jakosci dziatania
lamp lotniskowych”.

As part of experimental work, many operating or currently being implemented devices

were prepared. These are among others:

e A measurement platform for testing the quality of operation of in-pavement lamps in
airport navigation lighting [28], [29], [30], [40], [41], [44], [45], [46], [47], [48]

e System for the chromaticity inspection of airport navigation lighting lamps [39], [42]

e Obstacle avoidance module in the autopilot of an autonomous measurement platform
for continuously testing the load-bearing capacity of natural airport surfaces (BIZON)
in cooperation with the Air Force Institute of Technology [54]

e System for laboratory inspection of in-pavement lamps in airport navigation lighting
[51], [52], [53]

e System for checking the quality of operation of lamps in the airport navigation lighting
approach system [42]

e Vision system for checking correctly worn anti-virus masks [5]

e Vision system for FOD detection [37], [38].
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1.4.  Organization of the thesis

The research presented in this thesis puts emphasis on vision inspection of aerodrome. As
mentioned earlier, the emphasis was placed on 3 main research areas. For this reason,
chapter 2. State of the art will present the most important issues in this area, present the
current state of knowledge and the solutions used. At the beginning, the main issues,
applicable standards and regulations on which this work was based were discussed. Next,
image processing methods are presented, both using classical methods and those using neural
networks and machine learning. Basic issues in the field of photometry and radiometry were
also presented. The following sections present the single board computers and cameras used
with them, along with their specifications and an overview of their possibilities. Additionally,
the quality of cameras that can support this task is analysed. This chapter also presents

methods for evaluating the proposed algorithms.

The chapter 3. Detection of Foreign Object Debris presents the prepared PUT dataset
consisting of 1480 FOD type object images, corresponding to FAA recommendations. Then, the
concept of the proposed system for detecting such objects for use at the airport is presented
and discussed. In this research area, the results obtained using classical image processing
methods (k-means) were compared with the fine-tuned neural networks such as GooglLeNet
and YOLOv5. The MATLAB and Google Colab tools were used to solve the task.

Chapter 4. Detection of airport horizontal markings presents dataset prepared in the
airport zone with limited access, such as runways, taxiways or other airport surfaces and
service roads. The result was the preparation of a unique PLAVS1 dataset consisting of 98 GB
of video materials (more than 300 minutes) of recordings from areas with limited access. Then,
the proposed solutions for detecting horizontal airport markings and the experimental results
are discussed. The developed algorithm is presented and the effect of resolution on
the obtained results is examined. Then, the possibility of running the selected algorithms
on Single Board Computers is verified, and the energy consumption and energy efficiency are

analysed.

The next, chapter 5. Quality classification of airfield ground lighting is divided into two
main subsections. The first, vision classification of the airport navigation lighting system,
presents the concept of assessing the wear of lamps based on the destruction and tarnishing
of prisms installed in the lamps. The author's PLAVS2 dataset, consisting of over 1000 photos
of airport lighting system lamps with different wear, the algorithm for detecting lamps and
determining their orientation, and then the classification of the prism using artificial neural

networks, are discussed. The selection of neural networks and the possibilities of their use in
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the proposed system are precisely analysed. The second subsection presents the classification
of lamps based on the colour of the light they emit. Thanks to this solution, it is possible to
determine what standards a given lamp should meet (the colour determines its location and
function, and thus the reference to the standard). Then, the concept of a system for inspecting
the chromaticity of navigation lighting in accordance with the applicable standards is
presented. The measurement distance was precisely selected and software for airport services

was prepared.
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Chapter

2. State of the art

2.1.  Vision inspection of aerodrome

The research presented in this thesis puts emphasis on vision inspection of aerodrome. As
mentioned earlier, the focus was on 3 main research fields. For this reason, this chapter will
present the most important issues in this area, present the current state of knowledge and the

solutions used.
2.1.1.Foreign Object Debris detection

The International Civil Aviation Organization (ICAO) and European Union Aviation Safety
Agency (EASA) emphasizes the importance of implementing various procedures and practices
to prevent Foreign Object Debris (FOD) at airports [3], [13], [14]. They recommend specific
measures to ensure that foreign objects do not make their way onto critical areas such as
runways, taxiways, and aprons. This includes establishing appropriate procedures and
conducting regular inspections of these areas to detect and remove any foreign objects that

might pose a threat to aircraft safety [3].

Similarly, the Federal Aviation Administration (FAA) in the United States has issued
multiple recommendations aimed at mitigating the risk of FOD [15]. These recommendations
include regular inspections of airport surfaces to identify and remove debris, ensuring that
runways, taxiways, and aprons are clear of obstructions, and inspecting vehicles and

equipment operating in these areas to prevent them from inadvertently introducing FOD.

In addition to these measures, aviation agencies underscore the importance of training
airport personnel and aircraft crews to recognize and report FOD. Implementing
a comprehensive FOD prevention program involves establishing a system for the quick and
efficient identification and removal of FOD. Proper training and education of relevant
personnel are crucial components of such a program, as they help to significantly reduce the

occurrence of FOD and minimize potential damage to aircraft and ground equipment.

Addressing the issue of FOD detection requires reliable, fast, and effective solutions.
Currently, many airports rely heavily on manual labour and human resources for FOD
detection. To enhance the efficiency and accuracy of FOD detection, various advanced systems

have been developed and implemented. Examples include the Tarsier Radar system from
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the UK, the FODetect system from Israel, the FODFinder system from the US, and the iFerret
system from Singapore [55]. These systems utilize different technologies such as radar-based
detection, optical camera-based detection, and multisensory fusion detection.
Radar-based systems are particularly effective for detecting larger objects but may struggle
with smaller items like nuts and rubber pieces. Conversely, while optical cameras can detect
FOD, they are not typically used for this purpose. If the specific characteristics of FOD in optical
images were leveraged for detection, it could greatly reduce FOD-related damage and improve
runway utilization rates. Despite the use of optical images in the iFerret system, the detection
performance for smaller objects remains suboptimal. Figure 2-1 shows the division of methods
for detecting or removing FOD objects in aerodromes, where the focus is on the division

according to the method of detecting the object.
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Recent years have seen growing interest in the development of advanced FOD
detection technologies, including vision systems that use high-resolution cameras and
sophisticated image-processing algorithms. These systems provide real-time information
about the location and type of debris, allowing airport authorities and maintenance personnel
to take immediate action to remove FOD and prevent potential safety incidents. Using vision
systems, it is also possible to prevent other types of threats to aircraft, such as bird strikes,
which are particularly dangerous during take-off and landing manoeuvres [56].
A comprehensive assessment of FOD detection methodologies can be articulated concerning

their spatial resolution and area coverage, showed in Figure 2-2 [57].

Automatic FOD detection techniques using electronic sensors can be divided into four
categories, namely ultrasonic sensors, camera detection, radar detection and hybrid detection
methods, as in Figure 2-2. Laser systems are distinguished by their high resolution and medium
coverage area. These systems offer precise and detailed detection capabilities, which makes
them effective for identifying small objects. However, their limited coverage area indicates that
they may not be optimal for larger airport environments requiring extensive surveillance.
Radar systems exhibit moderate resolution, and a larger coverage area compared to laser
systems. This characteristic makes them suitable for detecting objects over larger distances,
although their moderate resolution may restrict their ability to accurately identify smaller
debris. Camera systems, which are crucial to this analysis, provide a balanced combination of
resolution and coverage area. They offer a relatively high coverage area while maintaining
moderate resolution. This balance makes them advantageous for airport environments that
require a broad surveillance with sufficient resolution to identify various types of FOD. The
vision information provided by camera systems is a significant benefit, facilitating the easy
identification and verification of detected objects. Ultrasonic sensors, located in the low
resolution and low coverage area quadrants, are less suitable for extensive FOD detection in
airports. Their limited range and resolution confine their use to smaller areas where detailed
precision is less critical. Hybrid systems, situated in the quadrant of high resolution and high
coverage area, represent the most comprehensive solution. These systems integrate the
strengths of multiple detection technologies, offering extensive coverage with high-resolution
capabilities. This makes them ideal for large and complex environments such as airports.
However, the complexity and potential cost associated with hybrid systems may be higher than
those of single-technology solutions.
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Among the analysed solutions, FOD detection based on image analysis has been
explored using datasets such as the Foreign Object Debris in Airports (FOD-A) dataset, which
contains up to 2000 photos and several classes. For instance, one study [58] presents
a solution that employs video-based image processing techniques to detect FOD on airport
runways. This system uses a background subtraction algorithm to detect moving objects,
followed by image processing techniques to classify them as FOD or non-FOD. Tested with
a runway video footage dataset, the system achieved a detection rate of 96.67% and a false
alarm rate of 5.26%.

Another innovative approach [59] involves the use of unmanned aerial vehicles (UAVs)
combined with artificial intelligence (Al) to detect FOD on runways. This system utilizes an
object detection algorithm based on the YOLOv3 model and a convolutional neural
network (CNN) for FOD classification. Tested with UAV footage, the system achieved
a detection accuracy of 94.5%.

Similarly, another study [60] utilized the YOLOv3 model for FOD detection on runways,
employing transfer learning to fine-tune the model. This approach yielded a detection rate of
95.67% with high accuracy.

Furthermore, a system [61] using random forest classification was proposed to detect
FOD in the data from optical imaging sensors. This system extracts features from image data
and trains a random forest classifier to differentiate between FOD and non-FOD. The testing
with a runway image dataset resulted in a detection rate of 93.1% and a false alarm rate
of 5.5%.
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Furthermore, a study [62] explores the integration of computer vision and UAV
technologies for collecting images of FOD in airfields. The proposed system, which was tested
using the FOD-A data set consisting of more than 19000 FOD images, demonstrated
a detection rate of 95.2%. This approach has the potential to improve the efficiency and

accuracy of FOD detection, thereby improving aviation safety.
2.1.2.Video based detection of airport horizontal markings

The task of detecting lines and lanes has seen significant development, primarily within the
domain of Advanced Driver Assistance Systems (ADAS). Initially, ADAS were designed as
passive systems that provide basic assistance without active intervention. However, with the
advent of new technologies and tools, these systems have evolved to offer more advanced
functionalities, transitioning from passive to active assistance. This evolution allows ADAS to
perform complex tasks such as lane keeping, adaptive cruise control, and autonomous driving
features [63].

Various types of horizontal markings, including multi-coloured lines and light navigation
points, are utilized on ground surfaces to facilitate the proper execution of procedures
required for air operations. These markings assist pilots in determining crucial elements such
as the central axis of runways and taxiways, touchdown points, runway boundaries, and the
aircraft's position relative to the runway's end. Despite advancements in onboard instruments,
flight personnel continue to rely on visual cues and aids. Figure 2-3 presents a segment of

a satellite image depicting the runway at Poznan—tawica Airport.

Figure 2-3 Runway markings visible in the satellite image of the Poznan—tawica Airport (Google Maps)
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The primary markings crucial for the operator assist system are the runway centre line
markings, represented by white stripes. These stripes are 0.9 meters wide, 30 meters long, and
spaced 20 meters apart. Positioned along the runway axis, they serve as reference points for
the measurement platform used to assess the performance quality of centre line lamps.
Figure 2-4 provides an illustration of horizontal road markings on airport runways

and taxiways, accompanied by descriptions.

S
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b) Taxiway

Figure 2-4 Basic horizontal markings on the runway (a) and taxiway (b) [30]

These markings are extensive and include both dashed and continuous lines, often
appearing adjacent to each other. Their placement varies depending on the designation,
indicating runway exits, holding points, stops, intersections, or hazardous areas. Despite their
diverse functions, all markings adhere to strict descriptions and are uniformly coloured white
and yellow. In cases where a marking lacks sufficient contrast with the pavement, a black
outline is added. An important observation during testing and recording is the wear of airport
markings caused by rubber deposits from aircraft tyres adhering to the surface. This wear

significantly affects the visibility of horizontal signs and in-pavement light points.
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The aspect of line detection remains a pertinent and actively researched area in
scientific literature [64], [65]. Numerous algorithms and techniques have been developed to
enhance the accuracy and reliability of line detection. Despite advancements, these methods
can face limitations under certain conditions. For example, detecting lines on airport runways
presents unique challenges that differ from typical roadway scenarios. The precision required
for guiding measurement equipment, such as mobile measurement trailers used for assessing

the light intensity of airport lamps, is significantly higher.

Under these specific conditions, traditional line detection algorithms may struggle to
deliver the necessary accuracy and reliability. Environmental factors such as varying light
conditions, weather changes, and the reflective properties of runway surfaces can all impact
the performance of these algorithms. Therefore, specialized techniques are often required
to ensure the precise detection of runway lines to facilitate the accurate measurement of

airport lamp intensity [28], [29].

Recent studies and ongoing research continue to address these challenges, seeking to
improve the robustness and precision of line detection algorithms in diverse and demanding
environments. By refining these techniques, researchers aim to support critical applications
that rely on accurate line detection, thereby enhancing the safety and efficiency of both

automotive and aeronautical operations.

To effectively analyse the potential applications of vision inspection systems within
a measurement platform designed to test the quality of airport lamp operations, it is crucial
to segment the system into distinct areas of activity. Each area can benefit from different types
of cameras tailored to specific inspection tasks. This makes it possible to optimize the
inspection process and ensure accurate and efficient measurement of the performance of

airport lighting.

As highlighted in the Introduction, the task of detecting lines and lanes has primarily
been developed for vehicles navigating standard roadways. A variety of methods and
algorithms have been created for this purpose, each with its unique approach to road
detection. These methodologies predominantly emphasize road models, edge detection,
vanishing point detection, colour segmentation, and the Hough transform. There are
numerous variations and combinations of these methods. According to the paper [66], the
Hough transform combined with basic image processing remains one of the most robust
techniques. This algorithm for detecting road boundaries fundamentally relies on edge
detection. When applied to the relatively small markings on typical car roads, additional

processing to achieve a bird’s eye view is quite beneficial. However, for a vision system used to
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monitor the trajectory of a measurement platform designed to test airport lamps, such an
approach is less practical due to the significantly larger size of the runway markings.
Nevertheless, the concept of detecting horizontal markings using edge detection, possibly
following a colour filtration process, is useful for algorithm development. Figure 2-5 shows

selected line detection methods used in vision systems.
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Figure 2-5 Selected line detection methods used in vision systems

The methodology for correcting the trajectory of the measurement platform for testing
airport lamp quality may parallel that described in the paper [67]. Positioning is achieved by
detecting lane lines, and then the vehicle's lane change is assessed on the basis of the relative
positions of these detected features. For the measurement platform, the central reference
point is the centre line of the runway. After the camera system calibration, a line will be
programmed to guide the operator. Crossing this line on either side of the frame will trigger

a command for the operator to adjust the direction of movement.

More sophisticated solutions can involve assessing environmental objects and training
Bayesian network models [68]. However, at an airport, this approach is less effective due to
the minimal and relatively static details of the surrounding environment during a runway
traversal. The most effective method to determine the trajectory of the measuring platform

for airport lamp testing is to use surface markings as references.

Another intriguing positioning method for the measurement platform in airport
environments involves landmark-based vehicle localization [69]. This method utilizes runway
endpoints as landmarks. The paper details two critical components: detecting lane endpoints

and evaluating the accuracy of the estimation. Here, a single camera was used. Enhancing the
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algorithm could involve incorporating a tool that automatically addresses incorrect readings of

road markings with the help of a convolutional neural network (CNN) [70].

A modern solution for car line detection, as described in [71], involves predicting the
occurrence of lines and estimating distances using vanishing points (VP). This method relies on
detecting the VP in the area where the edge directional feature information is concentrated,
requiring the intersection of two straight lines in this zone. This point can determine the
vehicle's optimal trajectory, typically the lane's centre. Edge detection in this method uses
the Hough transform.

An interesting algorithm for detecting less visible road markings is elaborated in [72].
It is designed to resist interference from lighting and environmental conditions and operates
on the basis of live video processing with charge-coupled device (CCD) cameras using an
original mask. Demonstrated examples show their significant advantages over the Prewitt and
Canny algorithms, suggesting that a similar approach could be beneficial for detecting the

central axis of a runway.

Line detection can also be implemented using solutions that require higher
computational power due to the complexity of deep learning methods. Paper [73] details
a methodology for detecting lane lines based on object feature distillation. The authors used
different decoders for feature detection to enhance the effectiveness of a neural
network-based framework without incurring additional costs, verified with methods such as
SCNN, Deeplabvl, and ResNet. Modifications during the model preparation stage were
sufficient to achieve better F1 Measure performance on the CulLane dataset. However, the
manuscript mentions using a workstation with specifications such as an Intel @ CoreTM
i7-6800K CPU @ 3.40 GHz and an NVIDIA 2080 Ti graphics card [73], which is impractical for

mobile applications with less powerful computational capabilities.

The airport environments housing the tested lamps can be likened to roadways
designated for vehicular traffic, thus presenting a comparable specificity to that encountered
in the detection of road signs, a challenge addressed by algorithms facilitating the operation
of lane-keeping assistants in contemporary passenger vehicles. With the ongoing
advancements in technology and automation, the automotive industry has undergone
significant transformations, leading to the creation of numerous datasets aimed at validating
algorithms, such as the well-known KITTI dataset [74]. These resources serve as invaluable
tools for conducting laboratory testing of methods that hold potential for real-world
implementation. Existing systems primarily puts emphasis on collision avoidance and alerting

drivers to potential obstacles on the road through the utilization of vision systems [45].
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Another pertinent aspect pertains to the estimation of distances between vehicles,
achieved through algorithms designed to detect vehicle lights during nighttime conditions and
normalize the angle of their illumination [75]. Subsequent systems have expanded to
encompass omnidirectional monitoring of the vehicle's surroundings [76], a feature of
paramount importance on roadways but not always applicable to other contexts.
In environments characterized by significant width and frequently imperceptible central lines,
navigation aids may benefit from the fusion of semantic segmentation and monocular depth
estimation [77], or through the implementation of algorithms capable of accurately

reproducing and denoising captured images [78].

While current monocular camera-based assessment and driving assistance
systems [79] offer valuable insights into driving behaviour, they may not be entirely effective
in environments like airport runways, where the distances between markings are considerably
greater. Consequently, future research endeavours may focus on identifying additional

markings on aerodrome, mirroring initiatives aimed at enhancing safety on public roads [80].
2.1.3.Inspection of airport in-pavement navigational lights

The increasing requirements set by European and global aviation safety agencies have been
driving more stringent oversight of lighting on airport surfaces, including runways and
taxiways [4]. Most of currently used airport lamps are equipped with halogen bulbs, which
have limited lifespans. A decrease in lamp luminous efficiency is determined by the soiling of
prisms (for example, from adhering, powdered rubber from aircraft tyres). Figure 2-6 provides

an illustration of an in-pavement navigation lighting lamp situated on an airport taxiway.

Figure 2-6 Airport taxiway centreline in-pavement lamp [41]
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Figure 2-7 depicts a new prism alongside a damaged one after the winter season,
illustrating the importance of proper maintenance and adherence to regulatory standards. The
fixtures of the lamps and their prisms are susceptible to damage from runway maintenance

machinery, particularly during winter snow clearance operations.

Figure 2-7 In-pavement navigation light prisms — new (top) and damaged (bottom) [28]

In-pavement lamps, also known as runway and taxiway centre line lights or touchdown
zone lamps, play a crucial role in providing essential visual guidance to pilots during take-off,
landing, and taxiing, particularly in low visibility conditions [3], [4], [24]. Metal brushes can
scratch the lamp fixtures and chip their prisms, necessitating the replacement of damaged
lamps [28], [29], [51]. Such machinery can inadvertently cause abrasions and fractures on the
lamp casings and prisms, necessitating their replacement due to compromised structural
integrity. The degradation of luminous efficiency can also occur due to weather conditions and
runway operations, such as the accumulation of sticky, powdered rubber from aircraft
tyres [81].

As mentioned earlier, the average intensity of the main beam and the colour of the
light emitted by aeronautical ground lights are critical for aviation safety. Both the International
Civil Aviation Organization [3] and the European Union Aviation Safety Agency [4] have
established regulations that address the quality of this lighting [82], including specific
requirements for chromaticity and light intensity [28]. These standards are designed to ensure
that the lights are easily distinguishable by pilots, even in poor visibility conditions [83].
To maintain compliance with ICAO and EASA regulations, also regular inspection of
chromaticity is essential [84]. These inspections can be conducted using specialized
equipment, such as spectrophotometers or colorimeters, which deliver precise measurements

of colour parameters [33]. By routinely performing these assessments, airports can detect any
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deviations from the required colour standards and implement corrective measures to ensure

aviation safety [85].

For instance, at the Poznan—tawica Airport, there are approximately 356 in-pavement
lamps spread over a distance of about 2.5 km. The performance of all these lamps is specified
in the European Aviation Safety Agency standard outlined in Chapter U — Colours for
aeronautical ground lights, markings, signs, and panels [4]. This document delineates the
illumination intensity of individual lights and their dependence on the angle of incidence.
The prescribed values vary on the basis of the lamp type and light colour.
Furthermore, the standards define requirements specific to the airport category. One of the
critical parameters is the minimum luminous intensity for the main beam, which varies across
different angular ranges depending on the lamp type. The intensity is expressed in candelas
and depends on the beam angle. Figure 2-8a presents an example isocandela diagram
for taxiway centre line lights.

Degrees yA

vertical
Main beam
Minimum minimum
2cd 10 cd
15 10
9
10 /

Minimum average 20 cd I

“=» Degrees
X horizontal

(a)

Figure 2-8 Selected isocandela diagrams for in-pavement airport lamps [4]: (a) Isocandela diagram for
taxiway centre line (7.5 m, 15 m, 30 m spacing), no-entry bar, and stop bar lights in curved sections
intended for use in runway visual range conditions of 350 m, (b) Isocandela diagram for runway
centre line light with 15 m longitudinal spacing (white light) and rapid exit taxiway indicator light

(yellow light)

Typically, new fixtures used on taxiways significantly exceed the parameters beyond the
minimum values specified by the standards. This is primarily due to the requirements for light
intensity on the taxiway, where the main role of the light points is aircraft navigation while on
the ground [86].

The standards for the intensity of the runway centre line lights (Figure 2-8b) vary
depending on the category required at the airport. These fixtures must meet the highest
intensity values within the range of 0 to 9 degrees in the vertical axis and -5 to 5 degrees in the

horizontal axis for the main beam.
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Light, functioning as an electromagnetic wave, reaches the human eye and is focused
onto the retina. Here, specialized cells known as cones are located, which, upon stimulation
by light, transmit signals to the brain. Each of the three types of cones responds to a distinct
range of electromagnetic wavelengths. Cones sensitive to short wavelengths exhibit the
strongest response to wavelengths around 420 nm (blue), while those responsive to medium
wavelengths peak at around 530 nm (green). Cones sensitive to long wavelengths demonstrate
the strongest response to wavelengths around 570 nm. This understanding forms the basis for

constructing instruments designed to measure colours [87].

Radiometry is a fundamental branch of optics concerned with the quantitative
measurement and characterization of light. This discipline encompasses the precise
assessment of spectral radiation, which denotes the radiant power emitted, transmitted, or
received per unit wavelength. Spectral radiation is typically quantified in units such as watts
per square meter (W/m?) or microwatts per square centimetre (UW/cm?), depending on the

specific application requirements and scale of measurement [88].

Photometry is concerned exclusively with visible light and evaluates it based on how
the human eye experiences brightness. It adjusts the measurement of light intensity according
to the luminous efficiency curve, which represents the eye's varying sensitivity to different
wavelengths [89], [90].

The v(4) curve (Figure 2-9), representing the human eye's average sensitivity to
different wavelengths of light, has been progressively refined, particularly through revisions
in the CIE (International Commission on Illumination) standards. Below is a summary of the

key developments [89], [90]:

e CIE 1931 (blue): The initial luminous efficiency function, created from early
experiments with a small sample size and basic equipment, remains in
widespread use today.

e CIE 1978 (orange): This update enhanced the accuracy of the sensitivity
measurements, taking advantage of improved experimental methods and
technology.

e CIE 2005 (green): The most recent revision integrated contemporary research,
offering more precise data and reflecting a more comprehensive analysis of the

human population's visual response.

The modifications implemented over the years have minimal impact on the subject
matter addressed in the dissertation, and the applicable aviation safety regulations and

recommendations are based on standards established in 1931 [4].
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Figure 2-9 The v(A) curve from 1931

The nanometre (nm) is the standard unit used to express wavelengths of
electromagnetic radiation, particularly within the visible spectrum, which spans approximately
from 400 nm (violet) to 700 nm (red). Relative responsivity refers to the sensitivity of optical
detectors or sensors across different wavelengths relative to a standard response curve,

providing insight into their spectral sensitivity characteristics [88].

Normalized responsivity is a derived metric that standardizes the responsivity
of a sensor against a reference value, facilitating comparative analyses across different sensor
types or measurement systems. The mnemonic VBGYOR represents the sequence of Violet,
Blue, Green, Yellow, Orange, and Red colours in the visible spectrum, corresponding to specific
wavelength ranges perceived by the human eye [88].

The conversion from radiometric to photometric measurements requires integrating
the spectral energy distribution with the eye's photopic response curve [88]. This approach
reflects the fact that human visual sensitivity changes with wavelength. The fundamental
equation for this conversion is [88]:

oo

By =Kea | v (1
0
where:
e The integration limits are technically standardized from 380 to 780 nm in 5 nm steps

e @, —photometric quantity (luminous flux in lumens)

e K_.; —maximum luminous efficacy (683 Im/W for photopic vision)
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e v(A)—photopic luminosity function, which describes the human eye's sensitivity under

well-lit conditions

e &,(A) —spectral radiometric value (radiant flux in watts per nanometer).

Lux, the Sl unit of illuminance, quantifies the amount of luminous flux incident per unit
area on a surface, directly influencing perceived brightness. Candela (cd), the Sl unit of
luminous intensity, measures the amount of light emitted in a specific direction by a source,

crucial for assessing the brightness of light sources and their visual impact [88].

RGB (Red, Green, Blue) signifies the additive colour model wherein various intensities
of red, green, and blue light are combined to produce a wide spectrum of colours, prevalent
in digital displays and imaging technologies. The CIE 1931 colour space, established by the
International Commission on Illumination, provides a rigorous mathematical framework for
representing u perception based on human visual responses, essential in colour science and
related fields [91]. This colour space is a standard for describing how the human eye perceives
colour. Developed by the CIE in 1931, it is also known as the CIE XYZ colour space [92], defined
by theoretical (non-negative) matching functions x(1), y(4) = v(4), Z(4), which are used to
calculate the following, always non-negative coordinates (X, Y, Z) for any colour perceived by
humans with spectral energy density f(4) [93]. Figure 2-10 presents CIE 1931 XYZ Colour
Matching Function.

X = f FOOEA)dA 2)
0
Y= f FFA)AA 3)
0
Z= f F(Dz()da (4)
0
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§ 1.5
é 1.0
&€
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£ 05
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Wavelength A (nm)

Figure 2-10 CIE 1931 XYZ Colour Matching Function [90]
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This space is widely used as a reference for colour measurement in fields such as colour
science, colourimetry, and colour management. It has been adopted by numerous
organizations, including the International Organization for Standardization (ISO) and the
Society of Motion Picture and Television Engineers (SMPTE), as a standard for colour
measurement and calibration. Figure 2-11 shows the CIE 1931 colour space chromaticity
diagram.

v - chromaticity coordinate

0.0 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M x - chromaticity coordinate

Figure 2-11 The CIE 1931 colour space chromaticity diagram [93]

The x, y coordinates in the CIE 1931 colour space represent the chromaticity of the
colour, which refers to the hue and saturation, excluding the brightness. To achieve this
conversion, the XYZ coordinates from the sensors need to be normalized. This normalization
process involves dividing each of the XYZ values by the sum of all three values X + Y + Z. This
step adjusts the coordinates to reflect the relative amounts of each primary colour present in
the light [94]. In the chromaticity diagram of the CIE 1931 colour space, the wavelength range
of 700 to 780 nm is represented, as the variations within this spectrum are not discernible to

human vision.
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The equations used to perform this conversion are straightforward. By normalizing the
XYZ values, it is possible to obtain the relative proportions necessary to calculate
the chromaticity coordinates. The specific equations (5) and (6) used for this conversion
are [93]:

X
X= ———— (5)
X+Y+2
Y
N 6
Y e XFv+z (6)

where X, Y, and Z are the normalised tristimulus values.

When the x, y coordinates are calculated, they can be plotted on a chromaticity chart
to visualize the colour. The chromaticity graph is a two-dimensional representation that
displays all possible chromaticity within the CIE 1931 colour space, providing a comprehensive
view of colour data. This chart helps in understanding and verifying the colour properties
of the tested light sources.

To ensure accurate results across the broadest possible spectrum of lamps, the decision
was made to set the gain factor to 1. This setting allows for testing at close range without the
risk of quickly saturating the sensor. By preventing sensor saturation, the measurements
remain reliable and precise, particularly when dealing with high-intensity light sources. This
approach maximizes the accuracy of the colour measurements and ensures that the data

collected is valid for a wide variety of lamp types.

Changes in airport lighting colour can result from various factors such as the aging of
the lighting system, environmental influences, and even changes in the composition of the
surrounding air. Regular chromaticity measurements are essential for airports to comply with
ICAO and EASA regulations, ensuring that pilots can consistently recognize the colours of the
navigational lighting system [95]. The ICAO has also specified chromaticity requirements for
the instrument landing system (ILS), which vary depending on the system category, similar to
luminous intensity standards [4], [24].

The EASA chromaticity standards are defined within the International Commission on
[llumination (CIE) 1931 colour space. Figure 2-12 provides an example chart illustrating
the EASA regulations regarding the colours of navigation lighting.
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Figure 2-12 Colours for aeronautical ground lights (filament-type lamps) [4]

The chromaticity requirements for airport lighting vary depending on the type of lamp
and its location. The equations defining the boundaries of individual colours in the CIE 1931

colour space, illustrated in Figure 2-12, are as follows [4]:

e Red:
o Purple boundary: y = 0.980 - x
o Yellow boundary: y = 0.335

* The presented chromaticity diagram comes directly from the EASA documentation "Certification
Specifications and Guidance Material for Aerodrome Design (CS-ADR-DSN)" [4], where the axes are marked
with capital Xand Y, although they should be lower case x and y, in accordance with those used in subsequent
equations. Furthermore, the point associated with 700 nm in the other charts is designated
as 700 - 780 nm, since the variations within this range are undetectable by the human visual system.
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e Yellow:
o Red boundary: y = 0.382
o White boundary: y = 0.790 - 0.667x
o Green boundary: y = x-0.120
e Green:
o Yellow boundary: x = 0.360 - 0.080y
o White boundary: x = 0.650y
o Blue boundary: y = 0.390- 0.171x
e Blue:
o Green boundary: y = 0.805x + 0.065
o White boundary: y = 0.400 - x
o Purple boundary: x =0.600y + 0.133
e White:
o Yellow boundary: x = 0.500
o Blue boundary: x = 0.285
o Green boundary: y = 0.440
y = 0.150 + 0.640x
o Purple boundary: y = 0.050 + 0.750x
y = 0.382
e Variable white:
o Yellow boundary: x = 0.255 + 0.750y y = 0.790 — 0.667x
o Blue boundary: x = 0.285
o Green boundary: y = 0.440 y = 0.150 + 0.640x
o Purple boundary: y = 0.050 + 0.750x y = 0.382

To verify the parameters of navigation lighting, specialized devices are employed,
including measurement platforms [28] and drones [26], [31]. Traditionally, the primary focus
has been on the intensity of the light [51], [96], as a reduction in intensity can result from
damage to the lamp prism. However, there is a growing emphasis on examining airport

areas [40] and the chromaticity of the light emitted by airport navigation lighting.

To maintain the integrity of in-pavement lamps and ensure their continued
functionality, regular inspection and maintenance are imperative [33]. Traditionally, the

inspection process for in-pavement lamps has been manual, characterized by its
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time-consuming nature, labour intensiveness, and susceptibility to human error.
Consequently, there is a growing demand for automated systems [26], [31] capable of
accurately and efficiently assessing the condition of in-pavement lamps and identifying any

signs of damage or wear [39], [40].

In recent years, the convergence of computer vision and artificial intelligence (Al) has
emerged as a promising avenue for automating the inspection and maintenance of critical
infrastructure, including in-pavement lamps. The next stage of an intelligent vision system
designed for the automated detection and classification of prism defects in in-pavement
lamps [30], [46], [47] has been proposed. The system leverages a sequence of vision images
captured by a camera installed on the inspection vehicle, alongside an Al-based algorithm, to
analyse the images and identify any defects or anomalies in the prisms. This approach offers
significant advantages over traditional manual inspection methods, including enhanced speed,

accuracy, and efficiency.

Periodic assessments of the correctness of airport lighting can be conducted using
special devices that are commercially available and designed for specific airports. For example,
the device offered by FB Technology enables the examination of the light beam intensity level
emitted by both inset and surface fixtures [97]. A noteworthy feature is the creation of
a dataset from previously taken measurements, allowing for the observation of the degree
of wear of individual lamps, consequently facilitating the selection of the appropriate lighting
maintenance method. The measurement kit can be installed on any vehicle, either at the front
or at the rear, thanks to the use of a special frame. Communication between the sensors
and a laptop or tablet is wireless, via the WiFi network, or, when not possible due to airport
procedures, via an Ethernet cable. Additionally, the manufacturer offers the optional use of
the DGPS (Differential Global Positioning System) system for the localization of measurement
points. However, this requires interference with stationary airport installations. The lamp
inspection is carried out while the vehicle is in motion, with a speed limit of 60 km/h during
measurement. Inspection can be carried out independently of atmospheric conditions and
time of day. Correct approach to the fixtures is assisted by the live camera preview transmitted

to the driver's cabin.

DeWiTec offers the Dalmas AFL Analysis device, which also examines both in-pavement
and elevated fixtures [98]. It takes the form of a trailer attached to any vehicle with a tow bar.
Only one person is needed to perform the inspection. Measurements can be taken under any
lighting and atmospheric conditions. In contrast to competitive products, the driving speed
during the inspection is lower, ranging from 25 to 35 km/h. The driver is provided with several

conveniences to precisely carry out the inspection. The device guides the driver to the starting
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point of the measurement and then to each subsequent lamp. Additional conveniences
include two cameras and a laser line that indicates the direction. All information is available
online in software dedicated to a specific airport. Reporting occurs immediately after
measurements are taken, along with maintenance recommendations and necessary data and

charts.

However, the aspect of high costs associated with the aforementioned commercial
devices [97], [98] served as motivation to develop a new, low-budget device with high utility
value, tailored to the requirements of the Poznan—tawica Airport, enabling quick, daily
inspection of runway lighting [28]. This led to the creation of a proprietary device with

characteristics similar to those of commercial devices [30].

The scientific literature has explored the issue of chromaticity measurement using
integrated electronic sensors. A crucial aspect is ensuring accurate measurement within
a specific colour space or achieving correct conversion. Ref. [99] presents a method for
calculating and specifying light source chromaticity using the CIE2015 10° colour matching
functions (CMFs). This reference offers methodological recommendations to enhance the
evidential value of laboratory-based psychophysical experiments that investigate how
the spectral power distribution of light sources affects subjective evaluations of colour

appearance in scenes. However, it does not discuss the use of specific electronic systems.

Chromatic verification of light sources was also addressed in Ref. [25], which focused
on LED sources. For the CIE 1931 colour space, the values of illuminance and correlated colour
temperature (CCT) were determined. The measuring apparatus included a spectrophotometer
and recommended sphere geometries, which necessitate the disassembly of the tested light

source to obtain measurement results.

In Ref. [100], the authors introduced a microprocessor system designed for capturing,
processing, and managing s, allowing for the analysis of any non-self-luminous object's. During
experimental tests, a TCS3414CS colour sensor was utilized. This study did not reference
international standards and requirements for colour space, and the colour obtained was not

categorized within the limits set by the CIE 1931 colour space.

A mobile solution for chromaticity evaluation has been proposed using a smartphone-
based system that approximates colour regions on the CIE 1931 x, y chromaticity
diagram [101]. These tests were limited to assessing the chromaticity of the measurement

scene, followed by lighting adjustments to the selected setting.
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This dissertation puts emphasis on two critical aspects of assessing the correct

functioning of airport navigation lighting, proposing systems:

e for detecting in-pavement lamps and classifying prisms, assessing its mechanical wear

e for the chromaticity evaluation of the emitted light beam.

2.2. Image processing techniques for vision inspection

Modern video monitoring systems have built-in algorithms called IVA (Intelligent Video
Analysis) [102]. These algorithms are intended for typical tasks related to urban monitoring.
The deployment of Intelligent Video Analysis within surveillance systems encompasses a range
of applications, including the detection, tracking, and classification of moving objects,
the creation of density maps, people counting, the identification of vehicles traveling in the
wrong direction, and even fire detection. These functionalities have collectively driven

the advancement of sophisticated intelligent systems [102].

In order to detect the objects, it is possible to use classic image analysis techniques
embedded in OpenCV [103]. Open Source Computer Vision Library is an open-source
computer vision and machine learning software library. It was initially developed by Intel in
1999, and later supported by Willow Garage and Itseez (now part of Intel) [104]. OpenCV is
designed to provide a common infrastructure for computer vision applications and to
accelerate the use of machine perception in commercial products. The library includes more
than 2500 optimized algorithms, which can be used for a wide range of applications including
facial recognition, object detection, 3D model extraction, image stitching, and motion tracking.
It is written in C++ and has interfaces for Python, Java, and MATLAB/OCTAVE, supporting
multiple platforms such as Windows, Linux, Android, and macOS. OpenCV facilitates real-time
operation, and its modular structure enables developers to tailor functionalities for specific
projects, ensuring efficient processing and lower computational overhead. With its extensive
functionalities and adaptability, OpenCV has become a fundamental tool in the field of
computer vision and is widely adopted in both academic research and industry
applications [104].

Video and image analysis in MATLAB harnesses the software's advanced computational
and visualization capabilities to process, analyse, and interpret visual data [105]. MATLAB
equips users with an extensive array of tools and functions specifically tailored for image and
video processing tasks. The Image Processing Toolbox offers a diverse set of algorithms for
image enhancement, filtering, and transformation. These capabilities allow users to execute

operations such as edge detection, image segmentation, and morphological transformations,

J. Suder 63



2 State of the art

facilitating the extraction of meaningful features from images. For video analysis, MATLAB's
functionality encompasses the reading, processing, and analysis of video frames.
The Computer Vision Toolbox provides essential functions for object detection, motion
estimation, and tracking, supporting the development of sophisticated video analytics
applications. MATLAB's support for various video formats and its tools for frame-by-frame

analysis are crucial for tasks such as object tracking and activity recognition [105].

A significant feature of MATLAB in video and image analysis is its integration with deep
learning frameworks. It is possible to design and train convolutional neural networks and other
deep learning models directly within MATLAB [106]. The Deep Learning Toolbox enables the
implementation of intricate neural network architectures for tasks including image
classification, object detection, and semantic segmentation. Pre-trained models like AlexNet,
VGG-16, and ResNet can be fine-tuned for specific applications, thereby expediting the
development process [105]. Additionally, MATLAB's extensive support for hardware
integration facilitates real-time image and video processing. Users can deploy algorithms to
embedded systems, GPUs, and cloud platforms, ensuring scalability and performance.
MATLAB also provides a versatile environment for prototyping and testing, with capabilities
to simulate various image and video processing scenarios, further enhancing its utility in
research and development [105]. Figure 2-13 shows selected image processing methods for
object detection.
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Figure 2-13 Selected image processing methods for object detection

Numerous libraries and tools are available for constructing and training neural
networks. Among these, TensorFlow and Keras libraries, both operating within the Python
ecosystem, are prominent. Additionally, the Deep Network Designer tool in the MATLAB
environment is particularly suitable for testing and validating pre-trained neural network

models.

Developed by Google, TensorFlow [107] is an open-source framework that supports
the creation and training of machine learning models, including deep neural networks.
TensorFlow is highly versatile, enabling efficient computation and scalability across various
platforms, from desktops to mobile devices, and edge computing environments. It provides

robust support for deep learning research and production deployment, featuring
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a comprehensive ecosystem with tools like TensorBoard for visualization and TensorFlow
Serving for model deployment.

Initially an independent project and now integrated into TensorFlow, Keras [108]
is a high-level neural networks APl written in Python. It is designed to enable fast
experimentation with deep learning models. Keras offers a user-friendly interface, reducing
the complexity of implementing common neural network operations and architectures. It acts
as a convenient wrapper for the lower-level operations provided by TensorFlow, simplifying
the process of model development and training.

Deep Network Designer, part of MATLAB's Deep Learning Toolbox [109], provides
a graphical interface for designing, analysing, and testing deep neural networks. It facilitates
the import and customization of pre-trained models, allowing users to fine-tune and validate
these models against their own datasets. The Deep Network Designer supports interactive
network construction, making it accessible for users with varying levels of expertise in deep
learning. Additionally, it integrates seamlessly with MATLAB's comprehensive suite of tools for
data analysis, visualization, and simulation, enhancing its utility for research and development
in neural network applications. Figure 2-14 shows selected libraries and toolboxes for image

processing.
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Figure 2-14 Selected libraries/toolboxes for image processing
2.2.1.Classical methods for vision analysis of aerodrome

The development of computers and embedded systems has made it possible to use algorithms
that effectively process images recorded in digital form [91], [110], [111], [112], [113], [114],
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[115]. From the point of view of this dissertation, the most important operations that may be
helpful are [91], [103]:

e Geometric Transformations of Images

These transformations include scaling, translation, rotation, affine transformation,

and perspective transformation.
o Scaling

Scaling alters the size of an image. It is achieved using the ‘cv2.resize()" function.

The scaling operation is mathematically represented as:

(x",y") = (sx,5Y) (7)

where (x,y) are the coordinates of a pixel in the original image, and s is the scaling factor.
In OpenCV, scaling can be done by specifying the desired output size or the scaling factors
along the x and y axes.

o Translation

Translation shifts an image by moving it along the x and y axes. This operation is

described by the following equations:

xhy)=x+t,y+ ty) (8)

where t, and t, are the translation distances along the x and y axes, respectively. In OpenCV,

translation is performed using an affine transformation matrix:

(9)
o Rotation

Rotation turns an image around a specified pivot point. The rotation transformation

is represented by:
(x',y") = (xcos® —ysin 0, xsin® + ycos 0) (10)

where 0 is the angle of rotation.
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e Image Thresholding

Image thresholding is a fundamental technique in image processing, widely used for
segmenting images and extracting meaningful information. It plays a crucial role in various

applications, such as object detection, image enhancement, and medical imaging [110].

Thresholding is the process of converting grayscale or colour images into binary images,
where pixels are classified into two categories based on their intensity values: foreground
(object) and background. The main objective of thresholding is to separate objects or regions

of interest from the background, making subsequent analysis and interpretation easier [110].

One of the simplest thresholding techniques is the binarization method, where a single
threshold value is applied to the entire image. This method assumes that the intensity
histogram of the image has two distinct peaks, separating the foreground from

the background. Mathematically, the binarization operation T'(x, y) can be expressed as:

0 iflI(x,y)<T

) (11)
255 otherwise

T(x,y) = {
where I(x,y) represents the intensity value of the pixel at coordinates (x,y), and T is the
threshold value [110].

e Morphological Transformations

Morphological transformations are one of the most important operations in computer
image analysis, because - properly combined into sets - they allow for the most complex
operations related to the analysis of the shape of image elements, their interconnection and
enable complex simulation processes [110], [111]. Basic morphological transformations are
the starting point for creating more complex operations related to the analysis of the shape of
objects and their important arrangement. Unfortunately, their biggest drawback is their high
computational complexity, as a result of which they became popular in image analysers only
in the second half of the 1980s [111]. The fundamental concept of morphological
transformations is the so-called structural element of the image. It is a certain section of the
image (in the case of a discrete representation of the image - a certain subset of its elements)
with one point highlighted (the so-called central point). The most frequently used structural

element is a circle with a unit radius [111].
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o Erosion

To define the erosion frame, it is assumed that there is an irregular area X and a circle
B with radius r, which will be a structural element [111]. The centre of point B is taken as the
centre point of the structural element. Therefore, the erosion of figure X by element B can be
defined in two different ways:

= the eroded figure is the set of centres of all angles of radius r,
which are entirely contained within area X;

= Circle B rolls on the inside of the edge of the figure. Next
positions of the centre of circle B determine the edge of the
eroded figure.

In computer implementations, unit erosion involves the removal of all image points
with a value of 1 that have at least one neighbour with a value of 0. Erosions can also be
interpreted mathematically as the so-called A minimal filter is an operator in which each point
is assigned the minimum of the values of its neighbours [110], [111]. Figure 2-15 shows an
illustrative erosion process [110], [113].

A

Image | B Image after erosion

Figure 2-15 lllustration of erosion process
o Dilation

Dilation is the opposite transformation to erosion [111]. To define the dilation frame, it
is assumed that there is an irregular area (figure) in the image X and a circle B with radius r,
which will be a structural element [110], [111]. Therefore, the expansion joints of figure X with
element B can be defined in three different ways:

= the figure after dilation is the set of the means of all angles B, for
which at least one point coincides with any point of the starting

figure.
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= circle B rolls on the outside of the edge of the figure. Next
positions of the centre of circle B define the edge of the figure
after the expansion joint.

= similarly to erosion, expansion joints can be defined as

a maximum filter.
o Opening and closing

The image transformations described earlier (dilation and erosion) unfortunately have
a significant drawback [111]. They significantly change the surface area of the transformed
areas. Erosion reduces it and dilatation increases it. To eliminate this defect, two
transformations were performed, which were a composite of the previous ones [110], [111].
These are opening and closing. The opening consists in rolling circle B on the inside of the edge
of the figure and discarding all the points that cannot be reached by the circle. Closing consists
in rolling circle B on the outside of the edge of the figure and adding to it all the points that
cannot be reached by the circle. Unlike erosion and dilation, in the transformations discussed
here it was consider the area around B, not just its centre [111].

e Changing colour spaces

Colour spaces are fundamental in image processing for representing and manipulating
colour data. Among these, HSV (Hue, Saturation, Value) or HSB (Hue, Saturation, Brightness)
is one of widely used and stands out from RGB (Red, Green, Blue) [116]. HSV categorizes colour
information into three components: Hue, which signifies the dominant wavelength;

Saturation, indicating colour intensity or purity; and Value, representing colour brightness.

Converting RGB to HSB involves a sequence of mathematical operations to translate
RGB values into the corresponding HSB (or HSV) values [116]. Initially, RGB values are
normalized to a 0 to 1 range for consistent computation. Subsequently, the maximum (Value)
and minimum (Saturation) values among the RGB components are identified to calculate the

corresponding HSB components [116].

This conversion process ensures that the HSB/HSV representation is particularly
intuitive for avariety of image processing tasks, including colour segmentation and
adjustment. It facilitates straightforward manipulation of attributes such as brightness and
intensity, which are critical in applications presented in the doctoral thesis, where white is

a neutral colour, as opposed to the HCL (Hue, Chroma, Luminance) space.
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Furthermore, HSV’s capability to separate intensity (Value) from colour information
(Hue and Saturation) proves beneficial in situations where independent manipulation of colour
perception without affecting brightness is necessary. This feature supports tasks such as
colour-based object detection in computer vision and artistic colour correction in graphic
design [116].

However, it is important to acknowledge that converting between colour spaces, such
as RGB and HSV (HSB), involves computational complexity [117]. Each transformation step,
from normalization to Hue calculation, demands meticulous handling to maintain accuracy and
prevent artifacts in resultant images [116]. Additionally, HSV’s perceptual uniformity makes it
preferable over RGB in applications where human interpretation of colour fidelity is crucial. In
OpencCV, for HSV, hue range is [0, 179], saturation range is [0, 255], and value range
is [0, 255] [103].

o TheR,G,B values are divided by 255 to change the range from 0..255t0 0..1

[116]:
R
P 12
R' == (12)
,_ G (13)
¢ =255
,_ B (14)
T
Cmax = max (R',G',B") (15)
Cmin = min (R',G',B") (16)
A = Ciax — Cmin (17)
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o Hue calculation in OpenCV library:

( G'—B _ , , ,
60 X A +0 ifChax =RandG" =B
|60 x ;' +360 ifC,,, =RandG' <B'
H =« ' ot
60 x +120 ifCpay = G’
60 X ——— + 240 ifCypp = B’

H= - XxXH

N =

o Saturation calculation in OpenCV library:

0 ifCphax =0
S = A

ifCray £ O

Cm ax

o Value calculation in OpenCV library:

V= Cmax

e Edge Detection

(18)

(19)

(20)

(21)

One of the important operations in vision inspection systems is the detection of object

edges. The image gradient is a crucial concept in image processing and computer vision,

representing the direction and rate of the most significant intensity change at each pixel in an

image. Mathematically, the gradient is a vector containing the partial derivatives of the image

intensity function with respect to the spatial coordinates. The gradient magnitude highlights

edges in the image, as edges correspond to regions with significant intensity changes.

The preferred method for determining the edge strength and direction at any given point

(x,y) inan image fis the gradient, represented as Vf and defined as the vector [110].

of(x, y)
Vi(x,y) = grad[f(x,y)] = [g;gﬁg] — df(ax)fy)
di

(22)

To implement the edge detection process, masks defined in Table 2-1 are typically used,

which are the core of the two-dimensional high-pass filtering process [110], [113], [118].

72

J. Suder



2 State of the art

Table 2-1 Typically used masks in edge detection process

Operator Mask template
Roberts 10 01
0 0
11111 -11011
Prewitt 0|{0]|O0 -110]1
-11041
-11-21-1 -11011
Sobel 0|00 21012
1121 1(0|1

A more advanced edge detection algorithm is Canny edge detection algorithm [119].

The Canny edge detection algorithm is composed of several key steps [110]:

1. Begin by smoothing the input image using a Gaussian filter to reduce noise.

2+ 2
G(x,y) = e—x—ZG%] (23)

fs(x,y) = Gx,y) > f(x, y) (24)
with f(x,y) as input image.

2. Next, calculate the gradient magnitude and direction for the image.

Ms(x,y) = IVl = \/gi(x, ) +g2(x,y) (25)

a(x,y) = tan?! l% (26)

s( \Y) 6f5(xy)

With g.(x,y) = ||VEs(x, v)|| and a(x,y) are arrays of the
8x(X,y y y

same size as the image from which they are computed.

and gy(x y) =
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3. Then, perform nonmaxima suppression on the gradient magnitude to thin out the

edges.

Nonmaxima suppression is employed to thin edges in the gradient magnitude image,
guaranteeing that the detected edges are only one pixel wide. This enhances the precision of

edge detection. The procedure comprises several critical steps:

i.  Gradient Computation:

e |Initially, compute the gradient magnitude and direction at each pixel within
the smoothed image. The gradient magnitude provides the intensity of the
edges, while the gradient direction denotes the orientation of these edges.

ii. Edge Thinning:

e For each pixel in the gradient magnitude image, the algorithm evaluates
the pixel’s gradient direction and compares the pixel's gradient magnitude
with the magnitudes of its neighbouring pixels along the gradient direction.

e Specifically, for a pixel at location (x,y), if the gradient direction
approximates 0°, 45°, 90°, or 135°, the pixel is compared with its two
neighbors along that direction:

o 0°(horizontal): Compare with the pixelsat (x —1,y)and (x + 1,y)
o 45° (diagonal): Compare with the pixels at (x+1,y+1)
and (x —1, y—1)
o 90° (vertical): Compare with the pixels at (x,y — 1) and (x,y + 1)
o 135° (diagonal): Compare with the pixels at (x —1,y+ 1)
and (x + 1,y —1).
iii.  Suppression:

o |If the pixel's gradient magnitude M(x,y) is greater than those of its
neighbors, it is retained as a potential edge. Otherwise, it is suppressed (set
to zero).

e This operation effectively narrows down the edges to a single-pixel width
and eliminates pixels that are not local maxima of the gradient magnitude

in the gradient direction.

4. Finally, implement double thresholding along with connectivity analysis to identify and

connect the edges.

gnn(x,y) = gnn(xy) — gnu(x,y) (27)
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e Hough Transform

A typical line drawing technique will be to use the Line Hough Transform [120]. Then

the following parametric equation of the line is considered:
p=xcosa+ysina (28)

The task of detecting a straight line comes down to determining a pair of parameters
(p,a), which uniquely describes a straight line in the plane [120]. The process of determining

the transform is illustratively presented in Figure 2-16.

Input image

Accumulation array

-500

w ) =l s
=]
° Hough Transform
o . - 0
- p=xcosa+ysina

-
®

500

6

Figure 2-16 Example of input image | and accumulation array A, obtained by applying the Hough

Transform for straight lines

Figure 2-16 shows an example of the input image |, showing an object consisting of
several points, and the accumulation table A corresponding to this image, which is the result

of applying the Hough Transform [120]. In the accumulation table A, one can observe
y

characteristic sinusoidal curves p = sy

sin(a +Yy), where tany = 5, generated by the

points of the object in the input image I. The equivalent of each curve in parameter space,
there is a bunch of straight lines in image B, the vertex of which is the point (x, y) of object
b(I) [120].

One of the issues discussed will be circle detection, then one of the possible detectors
is the use of the Circle Hough Transform [120]. The resulting form of the Hough Transform for

circles will then be:

H (x5, s, 1) = f f LG6y)8((x — )2 + (7 — y5)? — r?) dxdy (29)

where Xg, yg are the coordinates of the centre of the circle with radius r [120].
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e K-means clustering

The k-means algorithm, widely regarded as one of the most effective clustering techniques, is
instrumental in Foreign Object Debris (FOD) detection by segmenting an image into various
regions, thereby aiding in the identification of FOD objects. This algorithm functions by
partitioning a dataset into k unique, non-overlapping clusters. When applied to pixel clustering
based on, the objective is to group pixels such that those within the same cluster exhibit

similar s, while pixels in different clusters display distinct variations.

The k-means algorithm initiates by randomly selecting k centroids, which act as the
initial cluster centres in a three-dimensional space, typically RGB (red, green, blue). During the
Assignment Step, each pixel is assigned to the nearest centroid by calculating the Euclidean
distance in the RGB space, thus segmenting the image into k clusters, with each cluster
containing pixels closest to the corresponding centroid. In the subsequent Update Step, the
centroids are recalculated as the mean positions of all pixels within each cluster, determined
by averaging their RGB values. This iterative process continues until convergence, which is
achieved when the centroids stabilize and show no significant changes between iterations, or
when a predefined number of iterations is completed. This method ensures the resulting

clusters are as compact and distinct as possible for the selected number of clusters k [121].

Given a collection of data points (x4, x5, ..., X, ), Where each point is represented as
a d-dimensional vector in real space, the k-means clustering algorithm seeks to divide these
ndata points into k clusters S = (53,55, ..., Sk), with k < n. The primary goal of this
partitioning is to minimize the sum of the squared differences within each cluster, which is also
known as the within-cluster sum of squares (WCSS) or variance [121]. Mathematically, the

objective is to determine the cluster sets that achieve the minimal WCSS [121]:

k

k
argmsinz z llx — ull?> = argmsinZISiI Var S; (30)
1

i=1x€S; i=

where |; is the average, often referred to as the centroid, of the points within the cluster S;.
This centroid is calculated as follows [121]:

Hi = m Xi (31)

|S;| represents the number of elements in the cluster |S;|, and ||-|| denotes the standard

L2 norm.
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This optimization problem can also be understood as minimizing the sum of squared

differences between pairs of points within each cluster [121]:

S
arg min ) — x — yl|? 32
g ;m > =yl (32)

X,y €S;

2.2.2.Machine learning techniques according EASA guidance

Machine learning, a branch of artificial intelligence (Al), centres on enabling computers to
learn from data and enhance their performance through experience. Unlike traditional
programming, where explicit instructions dictate behaviour, machine learning involves training
algorithms to identify patterns and relationships within extensive datasets. These algorithms
subsequently use the discovered patterns to make informed decisions and predictions.
As machine learning systems are exposed to more data, their effectiveness and accuracy
improve progressively. The abundance and quality of data available to these systems directly

influence their predictive precision and overall performance.

Machine learning, including its components such as deep learning technology and
neural networks, is intricately nested within the broader field of artificial intelligence.
Al utilizes data to make decisions and predictions. Machine learning algorithms enable
Al systems to further learn from data autonomously, enhancing their intelligence without
requiring explicit programming. Artificial intelligence serves as the overarching category
encompassing all subsets of machine learning. Machine learning represents the initial subset,
followed by deep learning, which includes neural networks as its component
parts (Figure 2-17).

Artificial intelligence (Al)

Technology that can, for a given set of human-defined objectives, generate
outputs such as content, predictions, recommendations or decisions influencing
the environments they interact with

Machine learning (ML) Logic- and knowledge-

Algorithms whose performance based (LKB) approaches E.g. Expert systems
improves as they are exposed to
data. This includes supervised,
unsupervised and reinforcement
learning techniques

E.g. Regression analysis

or clustering
Approaches for solving problems by
drawing inferences from a logic or
knowledge base. This includes knowledge
L. representation, inductive (logic)

E-g~ Compumr vision ” programming, knowledge bases, inference
(CNNs) or natural Deep learning (DL) and deductive engines, (symbolic)

language processing Subset of machine learning in reasoning and expert systems
which multilayered neural
(RNNS) networks learn from vast Hybrld Al

amounts of data Techniqgetipixing E.g. Neuro-symbolic
any of the three

approaches (ML, LKB reasoning
or statistical)

Statistical approaches

Traditional statistical approaches where a series of predetermined equations are used in
order to find out how to fit the data. This includes Bayesian estimation, search and
optimisation methods.

E.g. Bayesian estimation

Figure 2-17 Al taxonomy based on EASA [14]
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Following the detection and classification of objects, it may be appropriate to use
convolutional neural networks. Convolutional Neural Networks (CNNs) are a class of deep
learning models particularly effective for processing data with grid-like topology, such as
images. The CNN architecture is designed to automatically and adaptively learn spatial object
hierarchies through backpropagation using multiple building blocks such as convolutional
layers, pooling layers, and fully connected layers. It is EASA in its document [14] that
recommends the use of artificial intelligence and machine learning to support the safety of air

operations, especially in the field of aerodromes.

Each network type offers distinct methodologies for object detection and image
processing. Convolutional Neural Networks (CNN) are predominant in image segmentation
and object detection tasks, employing region-based approaches (e.g., R-CNN) and single-shot
detectors (e.g., SSD, YOLO) to identify and classify objects within images [122], [123].

Recurrent Neural Networks (RNN), particularly in combination with CNNs, are effective
in video analysis, capturing temporal dynamics in image sequences. They process frames
sequentially, maintaining temporal dependencies crucial for tasks like action recognition and

event detection.

Graph Neural Networks (GNN), though not traditionally used for image processing,
have been applied in relational reasoning tasks, such as scene graph generation, where

understanding object relationships is essential.

Due to the properties of network features of image processing capabilities, this thesis
puts emphasis on Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN), with particular emphasis on the former, which are particularly often used for
image segmentation and object detection. A summary of the selected network properties
depending on their architecture is presented in Table 2-2.
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Table 2-2 Selected neural network architectures for image processing

Image Processing

Network Type Architecture .
Capabilities
Feedforward Neural Input, hidden, and output layers; data Basic classification and
Networks (FNN) flows unidirectionally regression
. Convolutional layers, pooling layers, fully ) )
Convolutional Neural . ) Image segmentation, object
connected layers; exploits spatial . )
Networks (CNN) ) ] detection, feature extraction
hierarchies
Recurrent Neural Sequential processing with hidden states; Video analysis, sequence
Networks (RNN) captures temporal dependencies prediction in image frames
. Scene graph generation,
Graph Neural Node feature aggregation from ] ]
) ] . object relations
Networks (GNN) neighbours; relational reasoning

understanding

e Feedforward Neural Networks

Feedforward Neural Networks (FNN) represent the simplest form of neural networks,
where data flows unidirectionally from input to output through multiple layers. An FNN
typically consists of an input layer, several hidden layers, and an output layer. Each neuron in
a layer is connected to every neuron in the subsequent layer, with no feedback
connections [124]. The activation function f introduces non-linearity, allowing the network to
learn complex mappings. Common activation functions include ReLU, Sigmoid, and Tanh. FNNs
are primarily used for classification and regression tasks. However, they lack the ability to
capture spatial and temporal dependencies, making them less suitable for tasks involving

sequential or structured data [124].
e Convolutional Neural Networks

Convolutional neural networks (CNNs) have their origins in the study of the brain's
visual cortex and have been applied to image recognition tasks since the 1980s [125]. In recent
years, due to advancements in computational power, the availability of extensive training
datasets, and the optimization techniques for training deep neural networks [106], CNNs have
attained superhuman performance on certain complex vision tasks. These networks are
integral to image search engines, autonomous vehicles, automated video classification
systems, and more [125]. Additionally, CNNs have proven effective beyond visual perception,

excelling in tasks such as voice recognition and natural language processing (NLP).
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Computing the output of a neuron in a convolutional layer [125]:

fh fw fnr

. . i’ZU'Sh+fh—1
Zijk = bk + Z Z Z Xirjrkr * Wyvk' k With { = v sy, —1 (33)

u=1v=1k'=1

- Zjjk is the output of the neuron located in row i, column j in feature map k of the
convolutional layer (layer 1)

- sp and sy,are the vertical and horizontal strides, f, and f, are the height and width of
the receptive field, and f,, is the number of feature maps in the previous layer
(layerl- 1)

- Xjjk is the output of the neuron located in layer1- 1, rowi’, columnj’, feature map
k' (or channel k' if the previous layer is the input layer)

- by is the bias term for feature map k (in layer 1)

- Wy yx'k IS the connection weight between any neuron in feature map k of the layer |
and its input located at row u, column v (relative to the neuron’s receptive field), and

feature map Kk'.

e Recurrent Neural Networks

Recurrent neural networks (RNNs) represent a sophisticated class of neural
architectures capable of forecasting future events to a certain extent [125]. These networks
are adept at analysing temporal data, such as stock market prices, to provide
recommendations on optimal buying or selling times. In the context of autonomous driving,
RNNs can predict vehicle trajectories, thereby enhancing safety by preventing potential
collisions. Unlike traditional neural networks that operate on fixed-size inputs, RNNs have the
flexibility to process sequences of varying lengths, making them particularly valuable for tasks
involving sentences, documents, or audio inputs. This capability is instrumental in natural
language processing (NLP) applications, including automatic translation, speech-to-text

conversion, and sentiment analysis [125].

Furthermore, RNNs exhibit a remarkable degree of creative potential due to their
predictive abilities. For instance, they can be employed to generate musical compositions
by predicting the most probable subsequent notes in a melody and iteratively selecting from
these predictions. This method has been utilized in projects such as Google's Magenta to
produce novel melodies. Similarly, RNNs are capable of generating coherent sentences,
crafting image captions, and performing a variety of other generative tasks, demonstrating

their versatility and creative prowess in multiple domains [125].
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Similar to feedforward neural networks, it is possible to determine the output of an
entire layer in a single step for an entire mini-batch by utilizing a vectorized version of the
equation [125].

W,
Yo = ¢(Xg - We + Yoy Wy +b) = ¢ ([Xy Y-1)] - W +Db) withw = [wﬂ (34)

Outputs of a layer of recurrent neurons for all instances in a mini- batch [125]:

- Y isan m X Npeyrons Matrix containing the layer’s outputs at time step t for each
instance in the mini-batch (m is the number of instances in the mini-batch and
Ny euronsiS the number of neurons)

- X is an m X nj,p,s Matrix containing the inputs for all instances (ninputs is the
number of input features)

- Wyis an njyputs + Npeurons Matrix containing the connection weights for the inputs
of the current time step

- Wy is an Npeyrons X Npeurons Matrix containing the connection weights for the out-
puts of the previous time step

- The weight matrices Wyand Wy, are often concatenated into a single weight matrix W
of shape (ninputs + nneurons) X MNpeurons

- bis avector of size njeyronsCONtaining each neuron’s bias term.
e Graph Neural Networks

Graph Neural Networks (GNN) extend neural networks to graph-structured data, where
relationships and interactions among entities are crucial [126]. The basic operation involves

aggregating features from neighbouring nodes.

GNNs are pivotal for applications requiring relational reasoning, such as social network
analysis, molecular biology, and recommendation systems. They have also been employed in
scenarios like scene graph generation and object relations understanding, although they are

less common in traditional image processing [126].
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2.3.  Embedded systems for vision monitoring tasks

As part of the doctoral dissertation, selected Single Board Computers (SBC) and cameras that
could be implemented in individual solutions were analysed. The Figure 2-18 shows
a schematic concept of the system, and in the subsequent parts of the chapter the parameters
and capabilities of individual embedded systems and cameras are compared. The result of the
system is the result of the Intelligent Video Analysis (IVA), as a use of advanced algorithms and

machine learning techniques to automatically process and analyse video footage.

Single Board

Vision camera Computer (SBC)

IVA results

Software

Figure 2-18 Conceptual diagram of a video analysis system
2.3.1. Possibilities of processing video sequences in embedded systems

Systems for identification based on the recognition of individual characters and events in video
sequences are becoming increasingly common and utilized in various domains. They rely
on both classical image processing methods and neural networks, whose usage is growing in
popularity. Cameras are installed in cars and autonomous vehicles [127], [128], [129], [130],
for urban surveillance purposes [5], as well as in specialized applications such as airport
runway light inspection [28], [29]. These systems assist operators in observing urban spaces or
machine surroundings and in monitoring ongoing events, responding to them as necessary.
In certain cases, they are capable of entirely eliminating the human factor by automatically
issuing specific commands to other systems [47], [131].
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For the research and testing phases, five specific Single Board Computers were selected
and evaluated during tests:
e Raspberry Pi 4B
e Google Coral
e NVIDIA Jetson Nano
e NVIDIA Jetson Xavier AGX
e NVIDIA Jetson Orin AGX.

(d)

Figure 2-19 Single Board Computers (SBC) used during experimental tests [44], [46]:
(a) Raspberry Pi 4B, (b) Google Coral, (c) NVIDIA Jetson Nano, (d) NVIDIA Jetson Xavier AGX, and
(e) NVIDIA Jetson Orin AGX

First microcomputer, Raspberry Pi 4B (Figure 2-19a), is distinguished by its powerful
hardware, featuring a Broadcom BCM2711 64-bit Quad-Core Advanced RISC Machine (ARM)
Cortex-A72 processor [132], which operates at a clock speed of 1.5 GHz and utilizes the
ARMVS8-A architecture. This specific model is equipped with 8 GB of Low Power Double Data
Rate 4 (LPDDR4) RAM, providing substantial memory capacity for various applications. One
notable aspect of the Raspberry Pi 4B is its single power mode, simplifying its power
management. The detailed specifications of this device, including its power requirements and
other relevant technical data, are outlined in Table 2-3. This configuration ensures that
the Raspberry Pi 4B can handle demanding tasks efficiently, making it suitable for a wide range

of projects and applications, including those requiring significant computational power and
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memory resources. Its advanced processor and ample RAM contribute to its versatility

and performance, supporting both basic and complex operations effectively.

Table 2-3 Performance characteristics of Raspberry Pi 4B 8GB

Mode
Property
Max power [W] 6
Online CPU 4
CPU max frequency [MHz] 1500
GPU TPC 4
GPU max frequency [MHz] 500

Figure 2-20 illustrates a performance comparison represented by individual models

from the Raspberry Pi series [133].

Performance of individual Raspberry Pi models

60
50
40
30
20

10

Benchmark GPIO Zero [points]

Raspberry Pi 2 -

Raspberry Pi 3 -

Raspberry Pi A I
Raspberry Pi B I
Raspberry Pi A+ I
Raspberry Pi B+ I
Raspberry Pi Zero I
Raspberry Pi Zero W I
Raspberry Pi 3 A+
Raspberry Pi 3 B+
Raspberry Pi 4 B

Figure 2-20 Performance comparison of individual Raspberry Pi models [47]

The analysis of the chart reveals that modules from Type A to Zero W exhibit similar
computational power, which significantly differs from the other models equipped with more
efficient ARM architecture units. Models from 2 to 3 B+ show an increasing performance trend,
but the 4B model outperforms its predecessors. Due to the necessity of processing vision
sequences, the choice of this unit, characterized by the highest computational power in the

entire Raspberry Pi family, was indispensable.

Figure 2-21, on the other hand, presents a comparison of power consumption among

the discussed Raspberry Pi family [133]. As the device's performance increases, so does its
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energy demand. Raspberry Pi 4 B demonstrates the highest performance but also requires the
highest power for operation and necessary computations. The latest models exhibit
a significant increase in performance with limited energy demand at low loads compared to
their predecessors. A more than threefold improvement in computational power does not

entail a significant increase in electricity consumption.

Comparison of power consumption of Raspberry Pi models

Raspberry Pid B
Raspberry Pi 3 B+
Raspberry Pi 3 A+

Raspberry Pi 3
Raspberry Pi 2
Raspberry Pi Zero W
Raspberry Pi Zero
Raspberry Pi B+
Raspberry Pi A+
Raspberry Pi B

Raspberry Pi A

o
[y
N
w

4 5 6 7 8
Power [Watts]

Maximum power consumption m Minimal power consumption

Figure 2-21 Comparison of power consumption of Raspberry Pi models [47]

The Google Coral platform, depicted in Figure 2-19b, features a System-on-Module
(SOM) chip that integrates various components essential for Al and machine learning
applications [134]. This SOM chip includes built-in eMMC memory and is powered by
an integrated circuit based on the NXP i.MX 8M architecture. The NXP i.MX 8M incorporates
a Quad-Core ARM Cortex-A53 processor along with an ARM Cortex-M4F core,
offering a balance of high-performance processing and low-power efficiency. This architecture
is well-suited for handling complex computational tasks, including neural network inference

and real-time data processing.

One of the standout features of the Google Coral platform is its Edge TPU (Tensor
Processing Unit) accelerator coprocessor. The Edge TPU is specifically designed to accelerate
machine learning inference tasks, enabling fast and efficient execution of neural network
models directly on the device. This hardware acceleration significantly enhances the
performance and responsiveness of Al applications, making the Google Coral platform ideal

for edge computing deployments where low latency and real-time processing are critical [134].
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In terms of memory, the Google Coral platform is equipped with 1 GB of RAM, providing
sufficient memory capacity for running machine learning models and processing data.
Additionally, it includes 8 GB of eMMC memory, which serves as onboard storage for storing

applications, models, and other data [134].

The combination of powerful processing capabilities, hardware acceleration with the
Edge TPU, and ample memory and storage capacity make the Google Coral platform
a compelling choice for developers and researchers working on Al-driven applications. Its
compact form factor and support for popular machine learning frameworks such as
TensorFlow Lite further enhance its versatility and suitability for a wide range of edge

computing and loT applications [134].

Nvidia Jetson Nano microcomputer was the third tested device (Figure 2-19c). This unit
boasts a quad-core ARM A57 processor clocked at 1.43 GHz and 2 GB of 64-bit LPDDR4 RAM.
Notably, Nvidia Jetson Nano is also equipped with a 128-core Maxwell graphics processor
clocked at 921 MHz [135]. This configuration endows the unit with significantly enhanced
capabilities for executing machine learning-based operations compared to the
Raspberry Pi 4B. Depending on the neural network model utilized, the performance of Nvidia
Jetson Nano in this comparison may even exceed that of Raspberry Pi 4B by up to
threefold [133], [136]. This microcomputer also offers operation in two modes: energy-
efficient (5W) and MAXN (10W). This allows users to balance performance and power
efficiency based on their specific needs. Table 2-4 provides a summary of these features and

power modes [137].

Table 2-4 Comparison of NVIDIA Jetson Nano operating modes

Property Mode
MAXN 5w
Max power [W] 10 5
Online CPU 4 2
CPU max frequency [MHz] 1479 918
GPU TPC 1 1
GPU max frequency [MHz] 921.6 640
RAM max frequency [MHz] 1600 1600

The fourth microcomputer utilized in the experiments was the NVIDIA Jetson Xavier
AGX (Figure 2-19d). This powerful device features an octa-core, 64-bit ARM®v8.2 processor,
complemented by an 8MB L2 cache and a 4MB L3 cache. It boasts a 512-core NVIDIA Volta™
GPU and 64 Tensor cores, which significantly enhance its parallel processing capabilities and

make it exceptionally suited for Al and deep learning tasks [138]. Additionally, it includes two
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NVIDIA Deep Learning Accelerator (NVDLA) engines, which further boost its ability to handle
complex neural network computations efficiently. The Jetson Xavier AGX is equipped with
32 GB of 256-bit LPDDR4x memory, providing ample space for handling large datasets and
high-speed operations. It also includes 32 GB of embedded Multi-Media Card (eMMC)
memory for onboard storage, ensuring that it can store and access data quickly and efficiently.
From an experimental and practical perspective, the NVIDIA Jetson Xavier AGX is particularly
notable for its versatility in power management. It supports eight different power modes:
MAXN, 10W, 15W, 30W, 30W 6CORE, 30W 4CORE, 30W 2CORE, and 15W DESKTOP. These
modes allow users to tailor the device's performance and power consumption to suit specific
needs, balancing computational demands with energy efficiency. The details of these power
modes are summarized in Table 2-5. This configurability makes the Jetson Xavier AGX an
attractive option for a variety of applications, from power-sensitive environments to scenarios
requiring maximum computational power. Its robust hardware and flexible power options
enable it to deliver optimal performance across a wide range of use cases, making it a valuable

asset for experimental Al and robotics projects [137].

Table 2-5 Comparison of NVIDIA Jetson Xavier AGX 32GB operating modes

Mode
Property 30w 30w 30W 15w
MAXN 10W 15W 30W 6CORE 4CORE 2CORE DESKTOP
Max power [W] n/a 10 15 30 30 30 30 15
Online CPU 8 2 4 8 6 4 2 4
CPU max frequency [MHz] 2265.6 1200 1200 1200 1450 1780 2100 2188
GPU TPC 4 2 4 4 4 4 4 4
GPU max frequency [MHz] 1377 520 670 900 900 900 900 670

RAM max frequency [MHz] 2133 1066 1333 1600 1600 1600 1600 1333

The fifth single board computer, the NVIDIA Jetson Orin AGX (Figure 2-19e), is the latest
innovation in NVIDIA's lineup of embedded Al computing devices. This cutting-edge platform
marks a substantial advancement in both performance and energy efficiency, making it
a pivotal tool for the development and deployment of Al and robotics applications. The Jetson
Orin AGX offers high-performance computation capabilities within an energy-efficient and
compact module, ideal for a wide range of Al-driven tasks. At the core of the NVIDIA Jetson
Orin AGX is the Orin system-on-a-chip (SoC), which integrates next-generation GPU
architecture, advanced ARM CPU cores, and high-speed memory technology. This combination
ensures that the Jetson Orin AGX delivers exceptional computational performance, capable of
handling intensive Al workloads and complex algorithms with ease. The advanced GPU
architecture enhances parallel processing capabilities, while the ARM CPU cores provide

robust general-purpose processing power. Additionally, the high-speed memory technology
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ensures rapid data access and processing, further boosting the system's overall performance.
This sophisticated Al computing platform is designed to support a variety of applications,
including autonomous machines, medical devices, industrial robots, and more. Its compact
form factor does not compromise on power, making it a versatile solution for developers
seeking to implement Al and machine learning functionalities in their projects. The NVIDIA
Jetson Orin AGX thus stands out as a significant leap forward in embedded Al computing,
combining powerful performance with energy efficiency to meet the demanding needs of

modern Al applications.

One of the key advantages of the Jetson Orin AGX is its support for a wide range
of high-speed interfaces. It includes PCle Gen 4 and USB4, which facilitate the connection of
various peripheral devices, such as sensors, cameras, and other input/output devices. This
versatility allows for the integration of multiple components, enhancing the system's overall
functionality and performance. Additionally, the unit features Gigabit Ethernet and Wi-Fi
capabilities, ensuring fast and reliable data transmission, which is essential for networking

applications.

In terms of energy efficiency, the Jetson Orin AGX stands out as the most efficient
embedded device in this comparison. It supports four distinct power modes: MAXN, 15W,
30W, and 50W. These modes provide flexibility in power consumption and performance,
enabling the device to adapt to different operational requirements and conserve energy when

full computational power is not needed.

The summarized specifications and capabilities of the Jetson Orin AGX are presented
in Table 2-6, highlighting its superior performance and versatility in supporting high-speed data

processing and connectivity needs across various applications [139].

Table 2-6 Comparison of NVIDIA Jetson Orin AGX 64GB operating modes

Property Mode
15w 30W 50w MAXN
Max power [W] 15 30 50 n/a
Online CPU 4 8 12 12
CPU max frequency [MHz] 1113.6 1728 1497.6 2201.6
GPU TPC 3 4 8 8
GPU max frequency [MHz] 420.75 624.75 828.75 1301
RAM max frequency [MHz] 2133 3200 3200 3200

Additionally, to compare the performance of embedded systems, a virtual machine was

presented. The utilization of a robust virtual machine with advanced hardware specifications
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provided a computational environment conducive to conducting comprehensive laboratory
testing and analysis. The Intel Core i7-7700HQ CPU, with its high clock speed and multiple
cores, offered significant processing power, enabling efficient execution of complex algorithms
and simulations. The substantial RAM capacity of 15.6 GB ensured ample memory resources
for handling large datasets and running memory-intensive applications without performance
degradation. This was particularly advantageous for processing and analysing the vast amount
of data generated during experimental testing. The SVGA3D graphics card, hosted by the
NVIDIA GeForce GTX 1050Ti, provided enhanced graphical capabilities, facilitating
the visualization of experimental results with high fidelity and detail. This was essential for
accurately interpreting and analysing vision data, such as images and videos, obtained from
the embedded systems under evaluation. The choice of Ubuntu 18.04.5 LTS 64-bit as the
operating system offered stability, security, and compatibility with a wide range of software
tools and libraries commonly used in scientific and engineering applications. Additionally,
the 64-bit architecture allowed for efficient utilization of system resources and support

for handling large datasets and complex computations.

The equipment parameters are summarized in Table 2-7 based on [132], [135], [140].
This evaluation aimed to select a device suitable for developing a measurement platform to
assess the operational quality of airport lamps. Key criteria included compact size and high
performance. To compare the performance of three devices under consideration, benchmarks
were conducted using two different benchmarks: TTSIOD 3D Renderer (utilizing Phong
Rendering with Soft-Shadow Mapping) and PyBench (evaluating Total For Average Test Times).
In the former benchmark, a higher FPS value indicates superior performance, while in the
latter, increased computing time signifies inferior performance. In both benchmarks, a virtual
machine exhibited the best performance, serving as a benchmark for workstation
performance. Notably, the Nvidia Jetson Nano outperformed the others in the TTSIOD 3D
Renderer benchmark, owing to its superior graphics processor. Conversely, the Raspberry Pi 4
Model B showcased a more efficient CPU processor, as evidenced by its performance in the

PyBench benchmark.

A critical aspect in designing such devices is evaluating computational efficiency. This
efficiency, in the context of video sequence analysis, is directly influenced by factors like image
resolution and the number of frames per second that can be processed. Another key factor is
power consumption; it needs to be minimized to reduce the overall size and weight of the

device, predominantly the batteries, and to lessen the frequency of recharging.

The mean frames per second (FPS) was computed using equation (35), where the FPS

variable represents the result, n denotes the total number of video frames statistically
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measured, and T signifies the total processing time for the entire set of n frames executed by

the algorithm.

FPS = (35)

n
T

Table 2-7 Performance comparison of virtual machine and Single Board Computers

Raspberry Pi 4 NVIDIA Jetson

Property Virtual machine model B Nano
Intel Core i7- BCM2711 Cortex
Processor 7700HQ CPU A72 ARM Cortex A57
2.80GHz — 3.8 GHz Quad Core 1.43GHz
x 4 1.5 GHz
RAM 15.6 GB 8 GB 4GB
SVGA3D (host: GPU NVIDIA
Graphics Gl\_lr\)/(ltl)lA Ge_Force !Sroadcom Maxwell 128-core
050Ti (4096 VideoCore VI NVIDIA CUDA
MB memory)
Operating system Ubuntu 18.04.5  Raspbian Buster Ubuntu 18.04 LTS
LTS 64-bit 10 64-bit
TTSIOD 3D Renderer
Phong Rendering With Soft-Shadow 146.04 FPS 32.75 FPS 41.25 FPS
Mapping
PyBench

. 1345 milliseconds 5679 milliseconds 7084 milliseconds
Total For Average Test Times

Table 2-8 presents an overall comparison of the devices used at work, showing the most
important technical data based on [132], [134], [135], [138], [139].
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Table 2-8 Comparison of parameters of Single Board Computers used in dissertation

. NVIDIA NVIDIA NVIDIA
Raspberry Pi
Property 4B Google Coral Jetson Jetson Jetson
Nano Xavier AGX Orin AGX
Quad-core Quad-core Quad-core 8-core NVIDIA  12-core ARM
CPU Cortex-A72 Cortex-A53 ARM Cortex- Carmel ARM  Cortex-A78AE
(ARM v8) (ARM v8) A57 v8.2 64-bit v8.2
GC7000 Lite 512-core 2048-core
Broadcom 128-core
GPU Graphics Volta with Ampere with
VideoCore VI Maxwell
Processor Tensor Cores  Tensor Cores
2GB, 4GB, or 32GB
RAM 1GB LPDDR4 4GB LPDDR4 32GB LPDDR5
8GB LPDDR4 LPDDR4x
microSD,
8GB eMMC,
Storage microSD 16GB eMMC 32GB eMMC 64GB eMMC
microSD
(optional)
Al N/A 4 TOPS (Edge 0.5 TFLOPS 32 TOPS 200 TOPS
Performance TPU) (FP16) (INT8) (INT8)
2 x USB 3.0,
4xUSB3.1, 4xUSB3.2,
2 x USB 2.0, 1xUSB3.0,  4xUSB 3.0,
o 2 x HDMI, 2 x HDMI,
Connectivity HDMI, Gigabit HDMI, Gigabit HDMI, Gigabit o o
2 x Gigabit 2 x Gigabit
Ethernet, Wi- Ethernet Ethernet
Ethernet Ethernet
Fi, Bluetooth
Camera 2-lane MIPI 4-lane MIPI 2-lane MIPI 16-lane MIPI 16-lane MIPI
Interface CSI-2 CSI-2 CSl-2 CSI-2 CSI-2
Power 3W idle, 7.6W 30W typical, 40W typical,
5-10W 5-10W
Consumption max 50W max 60W max
A . 85.6 x 56.5 88 x 60 x 24 100x80x29 105x105x72 100 x 87 x 65
Dimensions
mm mm mm mm mm
Weight 46g 45g 140g 280g 700g
Advanced Al
] Dual monitor Integrated capabilities, High-end Al
Special Low-power Al ' ]
support, GPIO  Edge TPU for ) Multiple and robotics
Features ) computing I
pins ML tasks camera applications
support

As noted, the advancements in microcontroller technology have paved the way for the
implementation of increasingly sophisticated image processing algorithms and the handling of
complex video sequences. These technological strides are particularly beneficial as they

enable the creation of portable devices that can be powered by batteries due to their low
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energy consumption. The development and design of prototypes for mobile vision processing
solutions are greatly aided by the availability of a wide array of minicomputers from
well-known families such as Raspberry Pi and NVIDIA Jetson. It's also noteworthy that
industrial versions of these minicomputers can be utilized, which offer not only professional-

grade performance but also durability for long-term operations [141].

Typically, manufacturers of evaluation platforms provide performance metrics for the
microprocessors they use. Specialized websites (for example, on the [142] website) offer
comparisons of various performance metrics such as integer math operations, floating-point
math operations, finding prime numbers, sorting random strings, data encryption, and data
compression. These metrics, however, are often not directly comparable to image processing

performance, especially when the algorithms in question include conditional instructions.

Moreover, the assessment of computational performance is detailed on websites
like [143], where the focus is on popular deep neural network solutions. Performance results
are usually presented in terms of Samples/sec for various NVIDIA Jetson models, factoring in
power requirements. It's important to note that these neural networks typically operate at
relatively low resolutions, and the consumption analysis often does not consider the different
power supply modes available. For instance, information is available indicating that each

NVIDIA Jetson module was tested at maximum performance settings (MAXN).

The efficiency of video sequence processing has also been discussed extensively
in scientific literature. For example, the [144] paper reviews various algorithms including
the Canny edge detection algorithm, road line tracking, face and eye recognition, motion
detection, and object detection. The Raspberry Pi 4 served as the experimental platform in
this study, with maximum power and frequency values for the CPU and GPU provided,
although specific values for individual algorithms were not detailed. Additionally, the
Raspberry Pi 4 module was utilized in the research documented in manuscript [145], where
the author investigated frame rate, frame transfer delay, and frame processing time, though

energy consumption was not explored.

Performance analyses for the NVIDIA Jetson family modules can also be found in
various publications. For instance, paper [146] describes a vision system designed to recognize
fiducial markers including the ARTag type. This system comprises two Logitech HD Pro Webcam
C920 cameras and a NVIDIA Jetson TX2 module that handles digital image processing.
Performance and power consumption of the NVIDIA Jetson Orin AGX are analysed
in manuscript [147], focusing on mean Average Precision (mAP) as a function of FPS and

different image sizes. The task of line detection using the NVIDIA Jetson Xavier NX is discussed
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in [148], where the authors proposed a CNN Encoder-Decoder network architecture, testing
their solution at various image resolutions up to 1280 x 720. In these studies, energy

consumption was not a focus.

A comprehensive benchmark analysis of NVIDIA Jetson Platforms (Nano, TX2, NX, and
AGX) is presented in paper [149]. This study includes measurements of resource usage
and power consumption without considering the impact of image resolution. Furthermore,
performances of single-board computers such as the NVIDIA Jetson Nano, NVIDIA Jetson TX2,
and Raspberry Pl4, using a Convolutional Neural Network (CNN) algorithm created with
a fashion product images dataset, are compared in [136]. The authors examined metrics like
processing power (CPU, GPU), memory (RAM, cache), power consumption, and cost. However,

they did not conduct an analysis of frame rate processing speed (FPS).
2.3.2. Parameters evaluation of cameras in embedded systems

The advancement of embedded systems has facilitated sophisticated real-time analysis of
video sequences. This progress is largely attributed to TinyML [150], which has enabled the
integration of machine learning into small devices that are constrained by efficiency and power
consumption. To fully exploit the potential of this technology, one must possess
a comprehensive understanding of its applications, algorithms, hardware, and software. In
particular, video signal processing necessitates the use of relatively high-performance
modules [46].

Vision systems equipped with cameras for acquiring video data are extensively used in
various fields. They are integral to autonomous vehicles and cars [127], [128], city monitoring
systems [5], and specialized applications, such as the measurement platform for testing the
quality of airport lamps [28]. This platform is designed to measure the luminous efficiency of
in-pavement lamps at airports, assessing their wear and tear. The system then classifies each
lamp, determining whether it is unusable or needs replacement. The decrease in luminous
efficiency can be attributed to adverse weather conditions and the routine operation of

runways and taxiways, especially during snow removal activities.

Embedded systems that facilitate the analysis of data from cameras offer the advantage
of achieving satisfactory results while maintaining relatively low purchase costs compared to
traditional computing units [30], [47]. These systems support connectivity with vision cameras
through both the MIPI CSI-2 and USB interfaces. A detailed comparison of the features of these
interfaces is presented in Table 2-9 [151].
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Table 2-9 MIPI Camera vs USB Camera — a feature-by-feature comparison

Features MIPI CSI-2 USB 3.0
Availability on SoC Many (Typically 6 lanes available) On high-end SoCs
Bandwidth 320 MB/s/lane 1280 MB/s 400 MB/s

(with 4 lanes)
Cable Length <30cm < 5 meters
Space Requirements Low High
Plug-and-play Not supported Supported
Development Costs Medium to High Low

To compare the cameras, a standard ISO 12233 test chart [152] can be utilized. This
chart is widely used to determine the resolving power of a camera sensor and/or its lens under
laboratory conditions. It is a benchmark tool frequently employed in various tests of
photographic equipment due to its precision and reliability. The ISO 12233 test chart helps in

assessing the camera's ability to capture fine details and its overall image quality.

The ISO 12233 test chart is a comprehensive tool featuring numerous patterns that
challenge a camera's resolving power, contrast, and clarity. By analysing how well a camera
can reproduce these patterns, one can evaluate its performance in terms of sharpness and
detail resolution. This makes it an essential component in the comparison of different cameras,
especially when determining their suitability for specific applications such as machine learning

and image processing within embedded systems.

In practical terms, using the ISO 12233 test chart involves capturing images of the chart
under controlled lighting conditions. These images are then analysed to measure various
parameters such as spatial resolution, line pairs per millimetre (Ip/mm), and overall image
fidelity. This standardized approach ensures that the camera's capabilities are accurately

assessed, providing a clear benchmark for comparing different models.

Figure 2-22 presents a visual representation of the ISO 12233 test chart, showcasing
the various patterns and details used for testing. This figure is crucial for understanding the

specific elements that are evaluated during the camera comparison process.
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Figure 2-22 ISO 12233 Standard Test Chart [152]

The smooth variation in the thickness of the test field lines on the ISO 12233 chart
allows for precise identification of the point at which the lens (and the sensor) can no longer
resolve details. Resolution is measured in lines per picture height (Iph). For instance, if the
most densely packed but still discernible lines on the test field correspond to the number 16,
it indicates that 1600 lines can be recognized along the entire height of the horizontal frame.
It's important to note that vertical and horizontal resolutions are typically not the same, and

the smaller of the two readings is considered the test result.

To determine the resolution score, the results need to be processed by converting
the highest achieved resolution in the frame centre to a 1-megapixel matrix. This conversion
involves dividing the result by R, where R represents the number of millions of pixels
(megapixels) in the camera sensor used for the test. This standardization allows for direct
comparison of image resolution obtained from cameras with sensors of different resolutions.
By converting the resolution to a 1-megapixel standard, one can accurately assess the
performance of the lens and camera combination. This method also facilitates the evaluation
of whether using a camera with a higher resolution sensor would yield proportionally higher
image resolution. Essentially, this conversion provides a clear understanding of the efficiency

and effectiveness of the lens and camera together, independent of the sensor’s pixel count.

This approach is particularly useful in embedded system applications where high image
quality is critical, but resources may be limited. By understanding the actual resolving power
of the camera system, developers can make informed decisions about the best equipment to

use for specific tasks, such as machine learning and image analysis. The conversion ensures
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that the performance of different cameras can be objectively compared, ensuring that the

chosen system meets the necessary requirements for high-quality vision data processing.

During laboratory tests, four cameras were evaluated, each offering distinct

specifications tailored to various applications. Below are the characteristics of each camera.
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Figure 2-23 Selected cameras [46]: (a) Raspberry Pi Camera HD v2 with a viewing angle of 62.2°,
(b) Waveshare 16579 160°, (c) Camera IMX477 with 6mm CS-Mount lens and (d) Camera Logitech
€922

The camera modules are equipped with the IMX219 sensor (Figure 2-23a, b), featuring
a resolution of 8 megapixels and a viewing angle of either 62.2 degrees (Figure 2-23a) or
160 degrees (Figure 2-23b). These cameras offer the capability to record video sequences in
multiple modes, including 1080p30, 720p60, and 640 x 480p90. Both cameras are designed
with a CSI (Camera Serial Interface) connector, facilitating easy integration with compatible
hardware platforms. However, despite having identical sensors, camera (Figure 2-23b) is not
compatible with the Raspberry Pi 4B and Google Coral microcomputers. While both cameras
share the same sensor, compatibility issues may arise due to differences in firmware, driver
support, or interface configurations between the two camera modules. As a result, camera

(Figure 2-23b) cannot be utilized with the Raspberry Pi 4B and Google Coral microcomputers.

To address this compatibility issue, relevant libraries have been developed and made
available for servicing these camera modules via devices from the NVIDIA Jetson family [153].
The NVIDIA Jetson family of microcomputers provides robust support for a wide range of
camera modules and peripherals, offering developers a versatile platform for building Al and

computer vision applications. By leveraging these libraries and the NVIDIA Jetson platform,
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users can effectively utilize camera modules with the IMX219 sensor, ensuring seamless

integration and optimal performance in their projects.

The camera housed in a protective metal casing features an IMX477 sensor
(Figure 2-23c), boasting a resolution of 12.3 megapixels in the 1/2.3" format, with a maximum
image resolution of 4056 x 3040 pixels. It is equipped with a 6 mm focal length lens. To
facilitate connectivity with microcomputers, a CSI to HDMI adapter is employed. This setup
enables recording in two primary modes: 60 frames per second (FPS) in full 4k2k resolution
and 60 FPS in 1080p [154].

On the other hand, the Logitech C922 camera (Figure 2-23d) offers a maximum
resolution of 1080p at 30 FPS and 720p at 60 FPS, with a viewing angle of 78 degrees. This

camera is operated via the USB interface [155].

Both cameras serve distinct purposes and offer unique capabilities. The camera with
the IMX477 sensor, with its high resolution and 60 FPS recording capability in full 4k2k
resolution, is well-suited for applications requiring detailed imaging and high frame rates, such

as surveillance, scientific imaging, and video production.

Conversely, the Logitech C922 camera, with its USB interface and maximum resolution
of 1080p at 30 FPS, is ideal for video conferencing, live streaming, and casual video recording
applications. Its wide viewing angle of 78 degrees provides a good field of view for capturing

group settings or wider scenes.

Table 2-10 presents an overall comparison of cameras used in dissertation, showing the
most important technical data based on [153], [154], [155].
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Table 2-10 Comparison of parameters of cameras used in Single Board Computers

Camera IMX477

Raspberry Pi Waveshare . .
Parameter with 6mm CS- Logitech C922
Camera HD v2 16579
Mount Lens
OmniVision
Image Sensor Sony IMX219 Sony IMX477 HD CMOS
ov5647
. 8 Megapixels 5 Megapixels 12.3 Megapixels 2 Megapixels
Resolution
(3280 x 2464) (2592 x 1944) (4056 x 3040) (1920 x 1080)
6mm CS-Mount
Lens Fixed Focus Fisheye Lens Autofocus
Lens
~66° (depending on
Field of View (FOV) 62.2° 160° 78°

lens configuration)

Max Frame Rate

30 FPS (at 1080p)

30 FPS (at 1080p)

60 FPS (at 1080p)

30 FPS (at 1080p) /
60 FPS (at 720p)

1080p30, 720p60,

1080p30, 720p60,

Video Modes 1080p60, 4K15 1080p30, 720p60
640 x 480p60/90 640 x 480p60/90
Connectivity CSI-2 CSI-2 CSI-2 USB 2.0
38 x38x18.4 mm
Dimensions 25x23x9 mm 25x24 x21 mm 95x71x43 mm
(excluding lens)
11.5g (excluding
Weight 3g 10g 162g
lens)
Built-in

Special Features

Wide-angle view,

Infrared support

High resolution,

Manual focus lens

microphone, Low-

light correction

The use of video cameras also requires calibration of selected devices, because they
often introduce image distortions. The two main types of distortion are radial distortion and
tangential distortion. Radial distortion causes straight lines to appear curved. The radial

distortion becomes greater the further the points are from the centre of the image.

Radial distortion can be represented by the following equation [156]:

Xdistorted = X(l + kl"ﬂ2 + k2r4 + k3r6) (36)
Ydistorted = y(l + k11"2 + k2r4 + k3r6) (37)
where:
e [k — lens distortion coefficients associated with radial distortion. These

parameters quantify the extent to which radial distortion affects the image.
Higher values of these coefficients correspond to increased distortion,

particularly at the edges of the image.
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e r—the distance of an image point from the optical centre of the lens (distortion
centre), measured in image coordinates (in pixels or normalized units). This
distance is critical, as radial distortion intensifies with increasing distance from

the image centre.

Tangential distortion arises due to the misalignment of the camera lens with respect to
the imaging plane. This misalignment results in certain regions of the captured image
appearing closer than anticipated. The extent of tangential distortion can be quantified as
follows [156]:

Xdistorted = X+ [2p1xy + po(r? + 2x7)] (38)

YVdistorted = Y + [pl(rz + sz) + ZPzXY] (39)

In summary, it is essential to determine five specific parameters, referred to as

distortion coefficients, which are expressed as follows [156]:
Distortion coefficients = (k; k, p; P2 k3) (40)
where:

e p — coefficients of tangential distortion. Tangential distortion arises when the lens
is not perfectly aligned with the image plane. These parameters characterize this

non-linear distortion, which depends on the position of the point within the image.

2.3.3.Comparison of the quality of micro cameras in single board

computers

Due to the need to use a vision system in the proposed solution, it was justified to assess the
quality of micro cameras in single board computers, capable of analysing the image of
the tested lamps and prisms. As part of laboratory tests, a comprehensive evaluation was
conducted involving a series of photographs and video recordings of video sequences based
on a standard ISO 12233 test chart [46].

The cameras were meticulously positioned at appropriate distances to enable
a thorough investigation of lens distortion and image detail across various regions, including
the centre and peripheral areas. Subsequently, a subjective assessment of the acquired

resolutions was conducted for each camera setting and selected areas of interest.

To ensure consistent and uniform illumination, an Aputure Amaran 100x studio lamp

paired with the Godox QR-P90 parabolic softbox was utilized. This setup facilitated
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the acquisition of high-quality images with uniform lighting conditions, crucial for accurate

assessment.

Figure 2-24 provides a visual comparison of the images obtained from the tested micro
cameras, showcasing the differences in image quality, clarity, and resolution. This comparative
analysis allows for a qualitative evaluation of each camera's performance under controlled
conditions. Table 2-11 shows a comparison of EXIF data from the obtained images of the tested

cameras.

(c) (d)
Figure 2-24 Comparison of ISO 12233 standard test chart images obtained with tested cameras [46]:

(a) Image from Raspberry Pi Camera HD v2, (b) Image from Waveshare 16579 camera, (c) Image from

Camera IMX477 with 6 mm CS-Mount lens, (d) Image from Logitech C922 camera

100 J. Suder



2 State of the art

Table 2-11 Comparison of EXIF data from the obtained images of the tested cameras

Camera Camera
Camera Raspberry Pi Camera IMX477 with .
Waveshare Logitech
model Camera HD v2 6mm CS-Mount lens
16579 €922
Colour
RGB RGB RGB RGB
space
Colour sRGB | sRGB sRGB sRGB
profile EC61966-2.1 IEC61966-2.1 IEC61966-2.1 IEC61966-2.1
Focal
3 mm 6 mm 6 mm 3.7 mm
length
Aperture
/2.0 f/2.35 /2.0 /2.0
value
Exposure
. 1/64 1/64 1/64 1/64
time
ISO 50 50 50 50

Furthermore, Figure 2-25 presents a detailed comparison of a selected fragment from
the acquired images, focusing on specific areas of interest. This close-up comparison enables
a more granular assessment of image detail, allowing for the identification of any distortions
or artifacts present in the captured images.

Figure 2-25 Comparison of image fragments of test charts obtained with the tested cameras [46]

Among the tested cameras, the Waveshare 16579 camera exhibited the most
pronounced drawbacks, particularly when using the wide-angle lens with a viewing angle of
160° (Figure 2-25b). While it demonstrated good sharpness and quality in the frame centre,

the image quality significantly degraded outside of this area, characterized by unreadable
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details and high vignetting. Additionally, the camera tended to produce reddish photos in
daylight due to the absence of an IR filter in the CCD sensor. However, this lack of an IR filter
enabled the camera to capture images in low-light conditions using IR LEDs. Consequently, the

suitability of this camera for applications requiring high image detail appears limited.

On the other hand, the Logitech C922 camera yielded satisfactory results, but its
configuration options were restricted due to its design primarily intended for webcam use.
Although satisfactory results were achieved during testing, inconsistencies were observed,

making reproducibility challenging (Figure 2-25d).

In contrast, the Raspberry Pi Camera HD v2 delivered high-quality images with detailed
resolution (Figure 2-25a). Notably, it offers comprehensive manual configuration options,
making it a popular choice among users. However, its design limitations preclude the use of

universal lenses.

The IMX477 camera, equipped with a 6 mm CS-Mount lens, emerged as the top
performer for the applications discussed in this dissertation, as evidenced by the resulting
image (Figure 2-25c). Its design allows for the utilization of professional DSLR lenses, such as
those from the Canon EOS EF line, enabling customized adaptation to the specific
requirements of systems testing mechanical wear of airport lamps. Moreover, the camera
features a durable housing and supports connection via HDMI interface with a converter to
CSl, simplifying its integration into the measuring platform for quality testing of airport lamps.
This comprehensive set of features and capabilities makes the IMX477 camera an ideal choice

for demanding applications where image quality, adaptability, and reliability are paramount.

2.4.  Methods for assessing the effectiveness of algorithms

The evaluation of algorithm performance is crucial in computer science, particularly in the field
of machine learning and data mining [157]. One of the most informative tools for this purpose
is the confusion matrix, which provides a detailed breakdown of the classification outcomes.
This chapter delves into the various aspects of the confusion matrix and explores different

metrics derived from it to assess the effectiveness of algorithms [108], [157], [158].
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A confusion matrix is a table used to describe the performance of a classification model
on a set of test data for which the true values are known. It compares the actual target values
with those predicted by the model [158]. The matrix itself is a 2 x 2 table for binary

classification, with the following elements:

e True Positives (TP): Instances correctly classified as positive
e True Negatives (TN): Instances correctly classified as negative
e False Positives (FP): Instances incorrectly classified as positive (Type | error)

e False Negatives (FN): Instances incorrectly classified as negative (Type Il error).

This matrix helps in understanding not only the accuracy of a model but also its ability
to differentiate between classes.

The confusion matrix allows for the calculation of several critical performance metrics,
including [158]:

e Accuracy:

R TP + TN 1)
CCcuracy =
WY = TP TIN+ FP + FN

Accuracy measures the proportion of total correct predictions. However, it can be

misleading in cases of class imbalance.

e Precision (Positive Predictive Value):

Precisi —TP (42)
recision =

! TP + FP
Precision indicates the percentage of positive predictions that are actually correct. It is

particularly useful when the cost of false positives is high.

e Recall (Sensitivity or True Positive Rate):

Recall P (43)
ecall =

TP + FN
Recall measures the ability of the model to identify all relevant instances. It is crucial in

contexts where missing a positive case has significant consequences.
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e Specificity (True Negative Rate):

Specificity = ™ (44)
pecificity = INTEP
Specificity evaluates the ability of the model to identify negative instances correctly. It

is important in situations where the cost of false positives is high.

e F1 Score:

Precision * Recall
F1 =2 * — (45)
Precision + Recall

The F1 score provides a balance between precision and recall, especially useful when
dealing with imbalanced datasets.

e Balanced Accuracy:

Sensitivity + Specificity
2

Balanced Accuracy = (46)

This metric accounts for class imbalance by averaging the sensitivity and specificity.

In addition to the basic metrics, several other measures can provide deeper insights

into the model's performance [158]:

e Positive Predictive Value (PPV) and Negative Predictive Value (NPV):

PPV = (47)
TP + FP
TN
NPV = ——— (48)
TN + FN

These values help understand the probability that positive and negative predictions are
correct, respectively.

e ROC Curve and AUC (Area Under the Curve):

The ROC curve plots the true positive rate against the false positive rate at various
threshold settings. The AUC represents the likelihood that the model ranks a randomly chosen
positive instance higher than a randomly chosen negative one.
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e Precision-Recall Curve:

Particularly useful in imbalanced datasets, this curve plots precision against recall. It is

often more informative than the ROC curve when the positive class is rare.

Despite its usefulness, the confusion matrix has limitations. For instance, it does not
account for the costs associated with different types of errors. Moreover, metrics such as
accuracy can be misleading in highly imbalanced datasets, where precision, recall, and the F1

score might provide a clearer picture of the model's performance.

The confusion matrix and its derived metrics are indispensable tools for evaluating the
performance of classification algorithms. By providing detailed insights into the true positives,
true negatives, false positives, and false negatives, it allows researchers to fine-tune models
and achieve better accuracy, precision, and recall. Understanding and appropriately applying
these metrics is critical in developing effective and reliable algorithms across various

applications in computer science [108], [157], [158].
e Mean Average Precision (mAP):

Mean Average Precision (mAP) is a standard metric in machine learning for assessing
the accuracy of a model's predictions, particularly in object detection tasks. This metric
evaluates the extent to which the predicted bounding boxes for objects align with the actual
ground truth boxes. It does so by considering both precision, which is the ratio of correctly
identified objects (true positives) to the total number of objects identified (both true positives
and false positives), and recall, which is the ratio of correctly identified objects to the total

number of actual objects present (true positives and false negatives) [159].
e Mean Average Precision 50-95 (mAP50-95):

mAP50-95 denotes the mean Average Precision computed across multiple Intersection
over Union (loU) thresholds, usually ranging from 0.50 to 0.95, with increments of 0.05. loU is
a metric that measures the degree of overlap between predicted bounding boxes and ground
truth boxes in object detection tasks. The mAP50-95 metric offers a more detailed and rigorous
evaluation of a model's performance by accounting for different levels of overlap, thereby
providing a more stringent and nuanced assessment than mAP computed at a single loU
threshold, such as mAP50 [159].
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Chapter

3. Detection of Foreign Object Debris

3.1. FOD detection system concept

The system concept revolves around a camera and an embedded device installed within the
vehicle of airport services, traversing critical areas of manoeuvring areas. The primary
objective is to enhance the detection of Foreign Object Debris (FOD) by enabling the system's
deployment across multiple vehicles, thereby expanding coverage and improving safety

protocols.

Figure 3-1 illustrates a block diagram outlining the FOD detection system's workflow.
The process initiates with video capture facilitated by a camera affixed to the vehicle's hood.
Subsequently, the captured video signal is transmitted to the embedded system, where
a sequence of operations unfolds. Initially, the video undergoes preprocessing to enhance its
quality and optimize for further analysis. Following preprocessing, the system executes FOD
detection algorithms, identifying and isolating objects of interest within the captured footage.
Once potential FOD items are identified, the system proceeds with classifying these objects to

determine their nature and associated risks.

In the final phase of the workflow, upon successful detection and classification of FOD,
the user is promptly notified, signalling the need for immediate removal or mitigation
measures. This real-time feedback mechanism ensures swift response and intervention,
thereby mitigating potential hazards and minimizing operational disruptions at the airport.

Single Board Computer

Classification

' of detected Alert for the
preprocessing FOD FOD user

Image Detection of

Video capture

Figure 3-1 Block diagram of information processing in the proposed FOD detection system

By integrating advanced imaging technology with embedded processing capabilities,
the FOD detection system offers a proactive approach to enhancing safety protocols in airport
operations. Its ability to seamlessly integrate into existing vehicle fleets and provide timely
alerts underscores its potential to bolster operational efficiency and ensure the integrity of

runway surfaces, ultimately contributing to safer air travel experiences.
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Figure 3-2 illustrates the practical implementation of the system concept at the
Poznan—tawica Airport, where a camera is strategically mounted on the front of the vehicle.
This setup allows for real-time monitoring of critical areas within the airport premises,

facilitating early detection of Foreign Object Debris and other potential hazards.

Figure 3-2 The concept of the FOD detection system (camera mounted on the front of a car moving

along the runway at the Poznan—tawica Airport) [37]

3.2. Datasets of aerodrome FODs
3.2.1.Standard FOD-A dataset

The issue of detecting FOD on aerodromes requires analysing available public datasets of such
objects. The Foreign Object Debris in Airports (FOD-A) dataset [160] stands as a pivotal
resource tailored to support the development and assessment of Foreign Object Debris (FOD)
detection systems, as depicted in Figure 3-3. Comprising an extensive collection of over 30000
high-resolution (2048 x 1080 to 4272 x 2848 pixels) JPG images sourced from various airports
worldwide, this dataset offers a diverse array of scenarios to facilitate robust system evaluation
and validation.

The images within the FOD-A dataset are captured using a spectrum of cameras,
including RGB cameras and thermal cameras, thus encompassing a broad spectrum of imaging
modalities. This diversity ensures comprehensive coverage across different weather
conditions, lighting scenarios, and types of debris encountered in airport environments,
enhancing the dataset's utility for system testing and benchmarking.
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Figure 3-3 Examples of images from dataset of the Foreign Object Debris in Airports (FOD-A) [160]

Crucially, the FOD-A dataset is enriched with meticulous annotations for each image,
documenting the precise location and nature of debris present within the scene. These
annotations are curated by trained personnel, guaranteeing a high degree of accuracy and
consistency across the dataset. Such annotations serve as invaluable ground truth data,
facilitating supervised learning approaches and enabling the development of highly accurate

FOD detection algorithms.

The dataset reveals that the "Bolt" class is the most prominent, containing a notable
3300 images. This significant number suggests that bolts are either highly prevalent or
particularly emphasized within the dataset. Following the bolts, the "Pliers" and "Wrench"
classes also stand out, with 2884 and 2568 images respectively, highlighting their considerable
importance. Classes like "Washer" and "Wire" also feature prominently, each boasting over
2000 images—2139 and 2138, respectively—indicating a similar level of representation. The
"Plastic part" class is another well-represented category, with 2008 images. Conversely, at
the lower end of the dataset, categories such as "Tape" and "Screw driver" have the least

number of images, with just 127 and 157 respectively.

Additional classes with fewer images include "Hose" (294 images), "Adjustable wrench"
(472 images), and "Wood" (206 images). In the mid-range, classes such as "Nut" (1303 images),
"Hammer" (760 images), and "Metal part" (970 images) have a moderate number of images,
ranging between 500 and 1500. Table 3-1 shows the distribution of FOD object types
in the dataset.
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Table 3-1 Division of class of FOD images in FOD-A dataset

Number of
FOD object type images
Battery 1059
Clamp part 917
Nut 1303
Washer 2139
Cutter 1352
Nail 1193
Hose 294
Bolt nut set 514
Paint chip 968
Screw driver 811
Tape 127
Bolt washer 1017
Fuel cap 548
Plastic part 2008
Wire 2138
Label 1310
Pliers 2884
Adjustable clamp 544
Hammer 760
Pen 483
Soda can 950
Bolt 3300
Metal part 970
Rock 662
Wrench 2568
Luggage tag 1686
Metal sheet 394
Adjustable wrench 472
Luggage part 738
Screw driver 157
Wood 206
Total: 34472

J. Suder
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Moreover, alongside image and annotation data, the FOD-A dataset encompasses
comprehensive metadata for each image, including critical information such as location, date,
and time of capture. This contextual metadata enhances the dataset's richness and enables
researchers to analyse FOD occurrences in relation to environmental factors and operational

contexts.

As part of their evaluation process, the authors employed a total of 19975 photographs
to train, validate, and test the system, encompassing a wide range of scenarios across 107
distinct classes. This meticulous selection process ensured the representation of diverse
objects encountered in airport environments, covering various shapes, sizes, and materials

commonly associated with Foreign Object Debris (FOD).

The dataset was thoughtfully curated to include photographs captured under different
lighting conditions and against diverse backgrounds, thereby simulating the real-world
variability encountered in airport settings. This diversity in lighting and background conditions
is essential for training robust FOD detection algorithms capable of generalizing well to unseen

scenarios and environmental contexts.

It is worth noting the disadvantages of this defect, which does not meet the FAA
recommendations regarding the ratio of the number of photos/items found on aerodromes.
This database also has photos of different resolutions and taken with different cameras.

3.2.2.New dataset based on FAA requirements

However, it was decided to prepare its own PUT dataset of FOD objects in order to develop
this field, but also to provide a dataset of video recordings with FOD objects, as such a dataset
was not found. Preparation of the dataset began with collecting characteristic FOD objects
occurring at aerodrome, based on FAA requirements [15] and cooperation with experts from

the Poznan—tawica Airport. Four main classes of objects were chosen.

Additionally, according to the reports [15], metal FODs constitute approximately 60%
of all unwanted objects found on airport roads, so the focus was mainly on objects made of
this material. The created dataset consists of 180 FOD objects captured in 1480 photos.
Table 3-2 shows the division of the collected FOD objects [161]. The dataset was created in the
frame of a master's degree dissertation, conducted in the Division of Electronic Systems and

Signal Processing at the Poznan University of Technology [162].
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Table 3-2 Division of class of collected FOD images for PUT dataset

Number of
FOD object type images
Metal 1200
Plastic 160
Concrete 80
Wood 40
Total: 1480

Figure 3-4 shows sample images from author’s FOD dataset with selected objects of

various sizes and structures at airport ground surfaces.

Figure 3-4 Examples of images of FOD from PUT dataset [161]

The items were arranged at aerodrome (taxiways, runways, apron/ramp). Due to the
close resemblance of metal and concrete objects to the concrete background, distinguishing
these materials presents a significant challenge for algorithms. A total of 300 photographs
were taken from a distance of 2 meters at a 45° angle. Each image contains a maximum of one
FOD object, and additional photographs of the concrete slab alone were also captured.
The images, taken at a resolution of 4272 x 2848, ensured high-quality photography.
Figure 3-5 illustrates the setup for photographing. The constructed dataset was subsequently

augmented to facilitate a more comprehensive evaluation of the algorithms employed.
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Figure 3-5 Visualization of the photo station for PUT dataset

For the prepared dataset, the annotation process was conducted using Roboflow
tools [163]. Ground truth-augmented training data, as illustrated in Figure 3-6, refers to
datasets enhanced by augmenting the annotations of manually verified or labelled data points.
These annotations act as precise reference points for machine learning models. Augmentation
techniques encompass adding new samples, refining existing annotations, or integrating
synthetic data, all while preserving the integrity of the original ground truth labels. This
approach enhances the diversity, robustness, and generalization capabilities of machine

learning models by providing a more comprehensive and varied training dataset.

Figure 3-6 Ground truth augmented PUT dataset of FOD detection [38]
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3.3.  Application of image processing methods for FOD

detection

The image processing sequence of the algorithm (Figure 3-7) includes calculating the average
of the image, applying a blur, resizing the image to a vector, and clustering pixels based on
using the k-means algorithm. The process then involves selecting the contour group that most
differs from the average background, creating a mask for this selected group to segment the
image, converting the segment to grayscale, detecting contours in the grayscale image, and
selecting a contour larger than a specified threshold but smaller than a certain percentage of
the image area. The algorithm then calculates the centre and radius of the selected contour
and draws a circle around it on the original image [38]. Figure 3-8 illustrates an example

of accurate FOD detection using classical methods using PUT dataset.

Create mask

Appl for group
Input Image Vectorize k-rr?(leoa%s with Find Detection
image preprocessing image . maximum contours of FOD
clustering
colour
difference

Figure 3-7 Block diagram of FOD detection using k-means method

Figure 3-8 Example of correct FOD detection using k-means method [38]

Table 3-3 presents the accuracy metrics for the k-means algorithm, demonstrating that
its performance is significantly impacted by the resolution of the FOD input images from
PUT dataset. The data indicate that higher resolutions initially enhance accuracy due to the
greater detail and clearer clustering patterns they provide. However, beyond a specific
resolution threshold (notably, when increasing from 400 x 400 to 600 x 600), the benefits of
higher resolution diminish, and accuracy improvements plateau or even decrease. This

suggests that while higher resolution can facilitate more precise clustering, there is a limit to

J. Suder 113



3 Detection of Foreign Object Debris

its effectiveness. Thus, selecting an optimal image resolution is essential for maximizing the

efficiency of k-means clustering in image analysis applications [38].

Table 3-3 Accuracy of the k-means method for FOD detection on PUT dataset

Input image resolution Accuracy

256 x 256 65.54%
400 x 400 73.94%
600 x 600 68.53%

Due to the low effectiveness of the algorithm for detecting FOD objects at aerodromes

based on the k-means method, it was decided to use neural networks in further experiments.

3.4. Improvement of FOD detection using convolutional

neural network

In this issue, a series of experiments were conducted, testing different models of neural
networks for detecting FOD objects in the image. It was decided to use the MATLAB, Roboflow

and Google Colab environments.

The MATLAB environment has the ability to design its own neural networks, but also to
use pre-trained models, such as AlexNet, VGG16, VGG19, GooglLeNet, ResNet-50 or
Inception-v3. The Roboflow environment, on the other hand, has pre-trained models from the
YOLO group (YOLOV5, YOLOv6, YOLOVY, YOLOv10) and an original network model, currently
Roboflow 3.0 Object Detection.

The author analysed the possibility of using GooglLeNet models implemented in the
MATLAB and YOLOV5 environments using Google Colab. The experiments were performed on
the FOD-A dataset, and then the model with the best performance was validated
on the PUT dataset.

The architecture employed in this study was grounded on the GooglLeNet convolutional
neural network, featuring 144 values and 170 connections. With a FOD-A dataset
encompassing 19975 images, 30% of which were allocated for validation, the robustness of
the outcomes was assessed. To align with the network's specifications, images initially sized at
400 x 400 pixels were resized to 224 x 224 pixels. This adaptation was necessary as it
corresponds to the dimensions compatible with the neural network's requirements. The
implementation phase leveraged the MATLAB 2022a environment, harnessing the capabilities

of the Deep Network Designer tool.
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Originating from the efforts of Google researchers in 2014, GooglLeNet represents
a significant stage in the development of deep convolutional neural networks. Its foundation
lies in the "Inception" architecture, which intricately employs layers of convolutions and
pooling to distil salient features from images. What sets GooglLeNet apart is not only its depth
but also its computational efficiency. The incorporation of techniques like "1 x 1 convolutions"
to streamline intermediate representations and the adoption of global average pooling instead

of conventional fully connected layers underscores its architectural ingenuity.

Furthermore, the study delved into data augmentation techniques, experimenting with
random rotation, rescaling, and axis-specific reflections to enrich the dataset. Rigorous analysis
ensued during the parameter selection phase, culminating in an impressive 95.73%
classification accuracy during final validation. The training regimen demanded significant
computational resources, spanning 1422 minutes on an Intel Core i7-3770 3.40 GHz CPU. With
a training cycle encompassing 30 epochs and 3270 iterations (averaging 109 iterations per
epoch), validation intervals were set at every 50 iterations. The learning dynamics and loss

evolution are elucidated in Figure 3-9.

At its core, the network operates by accepting input images sized at 224 x 224 x 3,
denoting height, width, and RGB channels, respectively, as its inaugural layer
(imagelnputLayer). Subsequently, a convolutional layer housing 64 filters, each spanning 7 x 7
dimensions with a stride of 2, constitutes the network's foundational architecture

(convolution2dLayer).
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Figure 3-9 GooglLeNet FOD-A training and validation accuracy and loss graph [37]
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The output from this layer is then fed into a rectified linear unit (RelLU) activation
function (reluLayer), enhancing the network's ability to capture nonlinear relationships within
the data. Subsequently, a max-pooling layer with a size of 3 x 3 and a stride
of 2 (maxPooling2dLayer) downsamples the feature maps, reducing their spatial dimensions

while retaining important features.

Following the pooling layer, a  cross-channel  normalization layer
(crossChannel-NormalizationLayer) is employed to normalize the responses across feature
maps, enhancing the network's generalization capabilities. This layer is succeeded by another
convolutional layer featuring 64 filters of size 1 x 1 (convolution2dLayer), followed by yet
another RelU activation layer.

The subsequent layer is another convolutional layer with 192 filters of size 3 x 3
(convolution2dLayer), followed again by a RelLU activation layer and another cross-channel
normalization layer. This pattern of alternating convolutional and activation layers is repeated
in blocks with varying filter sizes and numbers of filters. The outputs of these layers are then
concatenated using concatenation layers (depthConcatenationLayer), merging them into

a single tensor.

Finally, the network concludes with a fully connected layer (fullyConnectedLayer),
which produces the classification probabilities for the input image. During training, the
network utilizes backpropagation to minimize the classification error between the predicted
and actual labels. Notably, the model incorporates multiple branches, allowing it to learn

different features at different scales, thereby enhancing its accuracy and robustness.

Due to the best results, it was decided to analyse the network metrics obtained
depending on the input image. YOLOV5, a cutting-edge object detection network, utilizes
a single-stage architecture that processes entire images in a single forward pass, facilitating
real-time detection. This network harnesses convolutional neural networks (CNNs) to
simultaneously predict bounding boxes and class probabilities from full images, employing
anchor boxes to enhance localization accuracy. Its efficiency lies in the concurrent execution
of classification and localization, vyielding high detection speed and precision.
The architecture of YOLOVS integrates feature pyramid networks (FPN) to identify objects at
multiple scales, thus improving its robustness in detecting varied object sizes and managing

complex backgrounds in image processing tasks.

Table 3-4 shows the network metrics of FOD detection using YOLOvV5 and FOD-A
dataset at a resolution of 300 x 300, the YOLOv5 model exhibits the highest levels of precision
and recall, at 99.0% and 98.8%, respectively, alongside an mAP50 of 99.0%. Nonetheless, the
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mAP50-95 score is comparatively lower at 88%, which suggests that the model's object
detection capability, while precise and accurate, may not be as consistent across different
intersection-over-union (loU) thresholds. Upon increasing the input image resolution to
400 x 400, there is a minor decline in precision to 98.6%, although recall slightly increases to
99%. Concurrently, the mAP50 decreases marginally to 98.9%, and mAP50-95 drops to 87.4%,
implying a slight trade-off between precision and recall as well as a modest decrease in overall
performance stability. At a resolution of 600 x 600, the model's precision, recall, and mAP50
metrics are similar to those at 300 x 300, with precision at 98.9%, recall at 98.8%, and mAP50
at 99.1%. The mAP50-95 remains stable at 87.6%, indicating that increasing the resolution
beyond 300 x 300 does not significantly enhance the model's performance in terms of
precision and recall, nor does it detract from it. Overall, these findings suggest that while the
YOLOvV5 model consistently delivers high precision and recall across different resolutions,
optimal performance, particularly in terms of mAP50 and mAP50-95, is achieved at lower
resolutions, with diminishing improvements as resolution increases. Figure 3-10 shows the
results of FOD detection using YOLOV5 and FOD-A dataset.

Table 3-4 Metrics of FOD detection using YOLOvV5 and FOD-A dataset

Input image resolution Precision Recall mAP50 mAP50-95

300 x 300 99.0% 98.8% 99.0%  88.0%
400 x 400 98.6% 99.0% 98.9%  87.4%
600 x 600 98.9% 98.8% 99.1%  87.6%
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Figure 3-10 Results of FOD detection using YOLOv5 and FOD-A dataset
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The YOLOV5 model represents a architecture for object detection, designed to achieve
high accuracy and speed. Its configuration is characterized by several key parameters: the
number of classes (nc), a depth multiple of 0.33 to control the model's depth, and a width
multiple of 0.50 to scale the layer channels. YOLOV5 utilizes a series of predefined anchor boxes
at different feature map scales, specifically P3/8, P4/16, and P5/32, to effectively handle
objects of varying sizes. The anchors are defined as [10,13, 16,30, 33,23] for P3/8,
[30,61, 62,45, 59,119] for P4/16, and [116,90, 156,198, 373,326] for P5/32.

The backbone of YOLOVS is engineered to efficiently extract features from the input
image. Initially, the Focus layer (layer 0) reduces the spatial dimensions by a factor of 2 and
increases the channel dimensions to 64. This is followed by a series of convolutional layers
and BottleneckCSP modules, designed to capture increasingly abstract representations. Conv
layers reduce the spatial dimensions and increase the channel dimensions at layers 1, 3, 5, and
7, corresponding to P2/4, P3/8, P4/16, and P5/32 feature maps, respectively.
The BottleneckCSP modules in layers 2, 4, 6, and 8 utilize a cross-stage partial network strategy
to balance gradient flow, computational efficiency, and model capacity. Additionally, a Spatial
Pyramid Pooling (SPP) layer at layer 8 aggregates multi-scale features to enhance the receptive
field.

The head of YOLOV5 constructs the final detection outputs by further processing the
features extracted by the backbone. It begins with convolutional and upsampling layers to
merge higher-resolution feature maps, enhancing the detection of smaller objects. After
a Conv layer (layer 10), an Upsample operation (layer 11) and a Concat operation (layer 12)
combine features from different stages of the backbone. This pattern is repeated to
progressively refine feature maps at different scales: P3/8 (layer 17), P4/16 (layer 20), and
P5/32 (layer 23). Each stage involves additional BottleneckCSP modules to refine the feature

representations.

The final detection is executed by the Detect layer (layer 24), which integrates the
multi-scale feature maps (P3, P4, and P5) and applies the predefined anchors to predict
bounding boxes and class probabilities. This multi-scale approach ensures that YOLOv5 can
effectively detect objects of various sizes within an image, maintaining a balance between

detection precision and computational efficiency.

The model training was conducted using the Google Colab environment and the Nvidia
Tesla T4 GPU architecture. The Nvidia Tesla T4, engineered specifically for machine learning
applications, leverages the advanced Turing architecture. With 2560 CUDA cores and 320

Tensor cores, it excels in executing both training and inference tasks within deep learning
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frameworks efficiently. The Tesla T4 is notable for its ability to perform mixed-precision
computations, optimizing operations in FP16 and INT8 formats to greatly enhance throughput
and minimize latency. Equipped with 16GB of GDDR6 memory, the Tesla T4 provides ample
bandwidth and capacity, enabling seamless processing of extensive datasets and intricate

neural networks, thus markedly accelerating the machine learning workflow.

The training and validation metrics for the YOLOv5 model, as depicted in Figure 3-11,
exhibit clear patterns throughout the training epochs. The training losses—encompassing box
loss, object loss, and classification loss—show a steady decrease, indicating effective learning
and convergence by the model. Notably, the box loss decreases to approximately 0.02, and the
object loss nears 0.01 in the later stages of training, while the classification loss consistently
remains at zero, potentially indicating either the absence of classification tasks or flawless

classification from the outset.

In the validation phase, the trends in box and object losses are similar to those
observed during training, though they display greater variability, especially in the initial
epochs. This variability may be attributed to the smaller size of the validation set or differences
in the validation data. Despite this, the validation losses also decline to levels comparable to

the training losses, suggesting that the model generalizes effectively.

Performance metrics, including precision, recall, mAP50, and mAP50-95, further
illustrate the model's efficacy. Precision and recall both rise quickly and stabilize near 1.0 early
in the training process, indicating that the model rapidly learns to detect and classify objects
with high accuracy. The mAP50 metric nearly reaches perfect scores, reflecting excellent object
detection accuracy at an loU threshold of 0.5. However, the mAP50-95, which assesses
performance over a range of loU thresholds, stabilizes around 0.6 to 0.7. This suggests that
while the model performs exceptionally well at lower loU thresholds, its consistency
diminishes at higher thresholds, possibly due to difficulties in precise localization and

classification in more challenging scenarios.
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Figure 3-11 YOLOV5 performance metrics for FOD-A dataset

It was also decided to train the YOLOv5 model based on the PUT dataset of FOD
objects [38]. Figure 3-12 demonstrates the result of FOD detection in an image from
PUT dataset using YOLOVS.

Figure 3-12 Results of FOD detection using YOLOV5 and PUT dataset [38]

Table 3-5 presents the metrics of the proposed neural network model. Precision,
a crucial classification metric, measures the proportion of correctly identified positive
instances among all instances classified as positive, calculated as the ratio of true positives to

the sum of true positives and false positives [38].
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Table 3-5 Metrics of FOD detection using YOLOVS and PUT dataset

Input image resolution Precision Recall mAP50 mAP50-95

256 x 256 99.3% 99.3% 99.5% 65.2%
400 x 400 99.3% 99.6% 99.5% 67.9%
600 x 600 99.3% 100% 99.5% 69.5%

The results suggest that increasing the input image resolution generally results in slight
improvements in recall and mAP values, while precision remains consistent across different
resolutions. Notably, higher resolutions, such as 600 x 600, demonstrate a trend towards
enhanced recall and mAP50-95 scores, indicating a better capability to accurately detect
objects of various sizes and positions within the image. However, performance gains diminish
beyond a resolution of 400 x 400, highlighting potential diminishing returns in accuracy
improvement relative to computational cost. Consequently, selecting an optimal resolution
requires balancing computational efficiency with the desired detection accuracy in practical

applications of YOLOVS for object detection tasks.

The training and validation metrics for the YOLOvV5 model, as illustrated in Figure 3-13,
reveal distinct patterns over the course of the training epochs. The training losses, including
box loss, object loss, and classification loss, demonstrate a consistent decline, suggesting that
the model is effectively learning and converging. Specifically, the box loss decreases to around
0.02 and the object loss approaches 0.01 in the later stages of training, while the classification
loss remains at zero, which could imply either the absence of classification tasks or perfect

classification from the beginning.
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Figure 3-13 YOLOV5 performance metrics for FOD PUT dataset
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During the validation phase, the trends in box and object losses mirror those seen in
training, though they exhibit greater variability, particularly in the initial epochs. This variability
could be due to the smaller size of the validation set or differences in the validation data.
Nonetheless, the validation losses also reduce to values similar to the training losses, indicating

that the model generalizes well.

Performance metrics such as precision, recall, mAP50, and mAP50-95 provide further
evidence of the model's performance. Both precision and recall increase rapidly and plateau
near 1.0 early in the training process, suggesting that the model swiftly learns to accurately
detect and classify objects. The mAP50 metric achieves nearly perfect scores, indicating a high
level of accuracy in object detection at an loU threshold of 0.5. In contrast, the mAP50-95,
which measures performance across a range of loU thresholds, stabilizes around 0.6 to 0.7.
This suggests that while the model excels at lower loU thresholds, its consistency decreases at
higher thresholds, possibly reflecting challenges in achieving precise localization and

classification in more complex scenarios.

Table 3-6 Comparison of FOD detection algorithms

Paper Method Dataset Accuracy

Own dataset
[58]  Background subtraction ) ) 96.67%
(no information)

Own dataset
[59] YOLOv3 ] 94.50%
(1700 images)

Own dataset
[60] YOLOv3 ] 95.67%
(2000 images)

Own dataset
[61] Random forest ) 93.10%
(1800 images)

FOD-A Dataset
[62] YOLOV3 _ 95.20%
(over 14 000 images)

FOD-A Dataset
Selected GoogleNet ) 95.73%
(over 19 000 images)

FOD-A Dataset
Selected YOLOvV5 ) 99.00%
(over 19 000 images)

PUT dataset
Selected YOLOV5 ) 99.30%
(1480 images)

Table 3-6 provides a comparison of the performance utilized by various authors,

revealing a common trend of authors relying on proprietary datasets, often comprising fewer
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images and not being publicly accessible. Notably, only the authors referenced in [62]
conducted testing on the YOLOv3 neural network architecture, achieving a commendable
efficiency of 95.2% through the utilization of 14260 images sourced from the FOD-A Dataset.
In the present study, a dataset comprising over 19000 images from the same dataset was
employed. Impressively, the achieved result surpasses those of other neural network models
under comparison, hinting at the judiciousness of model selection and its training
methodology. Consequently, the neural network model based on GooglLeNet outperformed
its YOLOv3-based counterparts in terms of performance. However, the best results were
obtained by the model based on YOLOV5, achieving 99.0% efficiency on the given dataset.
Moreover, on the PUT dataset with 1480 real photos, the YOLOv5 network model achieved
99.3% accuracy.
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Chapter

4. Detection of airport horizontal markings

Lamps in airport ground surfaces are crucial for air navigation, as their visibility is essential for
conducting various air operations. Regular checks are needed to maintain their light efficiency,
which can degrade due to the use of halogen bulbs or LEDs, as well as the effects of the winter
season. During winter, airport areas are cleared of snow using plows with metal brushes,
leading to tarnishing, scratching, and even cracking of the prisms of in-pavement lamps,
rendering them non-operational. Figure 4-1 illustrates the concept of a measurement platform
in a real-world setting (on the runway) with camera mounted on an airport maintenance

vehicle.

Camera

Runway centre lines

Figure 4-1 Measuring platform for quality testing of airport lamps and camera mounted on the

airport maintenance vehicle [37]

To ensure that the platform accurately traverses over the lamps embedded in the
runway, a vision system is essential. This system must effectively identify the markings on
the runway and other airport areas, subsequently making the necessary trajectory
adjustments to enhance measurement precision. The unique characteristics of a runway,
which is significantly wider than typical public roads, present additional challenges. One major
difficulty is locating appropriate reference points since the edges of the runway often lie

outside the camera's frame.

The vision system's primary function on the measuring platform is to facilitate

the quality testing of airport lamps. This involves recognizing various runway markings and
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using these visual cues to navigate and adjust the platform’s path accurately. By doing so, the
system ensures that the platform aligns correctly with the lamps and other relevant features

on the runway, allowing for precise measurements and assessments.

Figure 4-2 illustrates the operational principle of the vision system on the measuring
platform. It depicts how the system captures vision data from the runway, processes this
information to identify key markings, and uses these markers to guide the platform’s
movement. This setup is crucial for maintaining the correct trajectory, especially given the
expansive width of the runway which complicates the identification of consistent reference
points. By effectively managing these visual inputs, the vision system plays a critical role in

the accurate and efficient testing of airport lighting systems.

High resolution Single Board HMI signals for
camera Computer (SBC) car driver

Figure 4-2 Block scheme of airport line tracking system

Modern embedded systems offer the capability to process video sequences efficiently
in real-time. Video sequence analysis algorithms can be rooted in traditional image processing
techniques as well as in neural networks, which are gaining widespread popularity. Cameras
find applications in various fields such as automotive and autonomous vehicles [127], [128],
urban surveillance [5], and tracking [164], as well as in specialized contexts like inspection
vehicles [28], [29]. These systems assist operators in monitoring urban areas or machinery
environments, enabling them to oversee and react to ongoing events. In certain scenarios,
these systems can fully eliminate human intervention by automatically issuing specific

commands to other systems.

In the context of autonomous vehicles operating within airport premises [28], both the
precision of the algorithms and the hardware performance are critically important for ensuring
safety. Additionally, these vehicles need to be highly energy-efficient due to the extensive
areas they cover within airports and must have sufficient energy reserves for emergency
situations. Therefore, managing the lighting and navigation equipment in airport areas is
crucial, particularly focusing on the runway centre line, touchdown zone, and taxiway centre
line. To ensure accurate movement over the lights being tested, a system is needed to guide
the operator or driver in conducting precise measurements despite the width of the runway
and the absence of static reference points [28]. These systems are increasingly leveraging
vision-based solutions, making the task of detecting runway lines and markings vital for the

safe ground movement of aircraft [30]. Moreover, such systems aid in determining the position
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of measurement platforms during inspections, as the position of lamps is closely linked to
the location of horizontal markings on airport surfaces [4]. The method of approaching and

detecting lines and supporting the operator was also described in the patent application [45].

Processing video sequences necessitates computing units with varying power
levels [165], [166], depending on the chosen algorithm and the image processing operations
performed [30], [46]. In mobile applications, finding a balance between system compactness,
power consumption, and computational performance is essential. A comparative analysis of
available embedded systems is necessary to select the best equipment for specific
applications. Due to their small size and relatively low energy requirements, embedded
systems can be installed in mobile autonomous vehicles, such as platforms used for quality
testing of airport lamps. The need to develop such a platform and test airport lamps systems
from increasingly stringent regulations imposed by aviation safety agencies concerning airport

lighting inspection [4].
4.1. Dataset of airport horizontal markings

An evident distinction between public roads and airport areas lies in their scale, with airport
spaces being significantly larger. To conduct experimental tests, a dataset of video sequences
captured at Poznan—tawica Airport was compiled and named PLAVS1 (Poznan Lawica Airport
Video Set 1). Data collection involved using two different types of cameras: the GoPro Hero+
and the GoPro Hero 8. The resulting dataset is quite extensive, amounting to over 98 GB of
video recordings. These recordings include detailed images from restricted areas within the

airport, providing a comprehensive basis for this analysis.

The GoPro Hero+ camera is notably resilient to varying weather conditions, which
makes it particularly suitable for outdoor use in diverse environments. This camera can be
securely mounted on a measurement platform system, ensuring stable and safe data
collection. It supports video recording at a maximum resolution of 1920 x 1080 pixels, with
a frame rate of 60 frames per second. This high resolution and frame rate are essential for
capturing detailed and high-quality video footage necessary for precise analysis. The GoPro
Hero+ is equipped with an 8-megapixel CMOS sensor and an aperture value of f/2.8, allowing
it to capture clear images even under challenging lighting conditions. Additionally, this camera
employs L4.1 (H.264 / MPEG-4 AVC) level coding, which ensures efficient video compression
while maintaining quality. The built-in WiFi module is another significant feature, enabling
real-time video streaming, which allows for live monitoring and immediate analysis during

data collection. The camera's advanced image processing algorithms further ensure optimal
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image quality, adapting to various lighting scenarios to deliver consistent and clear
footage [167].

On the other hand, the GoPro Hero 8 is designed for high-performance and can capture
stable, high-quality video in extreme conditions [168]. This camera supports 4K video
recording at up to 60 frames per second, 2.7K at up to 120 frames per second, and Full HD
(1080p) at up to 240 frames per second. Such versatility in resolution and frame rate options
allows for capturing ultra-high-definition footage that is highly suitable for detailed analytical
purposes. One of the standout features of the GoPro Hero 8 is its advanced image stabilization
technology, which significantly reduces camera shake and ensures smooth footage even during
high-motion activities. The camera also excels in still image capture, offering 12-megapixel
resolution with HDR capabilities, which enhance details in both highlights and shadows,
providing clearer and more detailed photographs. The robust design and technical
specifications of the GoPro Hero 8 make it an ideal tool for researchers and scientists working
in various  challenging  environments, ensuring professional-quality  video

documentation [169].

The video dataset captured at Poznan—tawica Airport is extensive and rich in detail,
providing a substantial foundation for experimental tests. With over 98 GB of video recordings,
a comprehensive collection of footage that covers the restricted areas of the airport, capturing
essential details needed for thorough analysis. Table 4-1 presents statistics of the locations in
recordings in the PLAVS1 dataset.

Table 4-1 Statistics of PLAVS1 dataset

Recording location Time [minutes] Time [seconds] Size [GB]

Runway 28-10 89 18 29.21
Runway 10-28 84 25 28.08
Taxiways 102 21 33.02
Other locations 27 15 8.40
Total: 303 minutes 19 seconds 98.70 GB

The PLAVS1 dataset comprises video recordings collected from various aerodrome
locations, each with distinct durations and file sizes. Recordings from Runway 28-10 have
a total length of 89 minutes and 18 seconds, with a storage size of approximately 29.21 GB. In
comparison, the recordings from Runway 10-28 last for 84 minutes and 25 seconds and occupy
28.08 GB. The Taxiways category contains the longest recordings, amounting to 102 minutes
and 21 seconds, and has the largest data size of 33.02 GB. The “Other locations” category

features the shortest recordings, with a duration of 27 minutes and 15 seconds and a file size
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of 8.40 GB. This variation in the length and size of the recordings likely indicates differences in
the activity levels or significance of each location captured within the dataset. Figure 4-3
provides a visual representation of the video recordings in GB from aerodrome locations in the
PLAVS1 dataset.

® Runway 10-28 = Runway 28-10 = Taxiways = Other locations

Figure 4-3 Visual representation of the video recordings in GB from aerodrome locations in the
PLAVS1 dataset

The recorded video data plays a crucial role in analysing the performance and quality
of airport lamp operations. For instance, Figure 4-4 illustrates sample frames showing various
road markings used in airport areas. These include the central axis of the runway, represented
by white dashed lines, and the exit tracks and central axes of taxiways, denoted by solid yellow
lines. Accurate detection of these markings is essential because the airport lamps are not
installed directly on the centre lines but are slightly offset. Therefore, precise detection of the
edges of these markings is vital for determining the relative positions of the lamps and for

adjusting the approach trajectory accordingly.
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Figure 4-4 Sample frames from recordings made at Poznan—tawica Airport [44]

The advanced capabilities of all used cameras ensure that the recorded footage is of
high quality, which is crucial for detailed analysis. The high resolution, frame rates, and image
stabilization features enable the capture of clear, detailed, and stable footage, which is
necessary for accurately assessing and improving the alignment and functionality of airport
lamps. Additionally, the real-time streaming capability provides immediate feedback, allowing

for dynamic adjustments and more efficient data collection.

In summary, the combined use of the GoPro Hero+ and Hero 8 cameras, along with the
extensive PLAVS1 dataset recorded at Poznan—tawica Airport, provides a robust foundation for
experimental tests. These tools enable precise, high-quality data collection and analysis, which

are essential for evaluating and enhancing the operational quality of airport lighting systems.
4.2.  Proposed solution for detection of airport horizontal
markings

4.2.1.Standard algorithms for line detection

The algorithm development encompassed fundamental image processing operations aimed at
enhancing line detection accuracy and quality. Figure 4-5 illustrates the schematic

representation of the program's architecture and workflow.
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Figure 4-5 Schematic diagram of the program based on line detection using Scharr mask edge
detection and Hough Transform

A pivotal objective was to manipulate the frames to distinctly isolate horizontal marks

from surrounding objects and the background. Emphasis was also placed on noise reduction
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and rectifying erroneous detections, alongside detecting vertical edges and mitigating their
interference with other elements within the frame. Furthermore, meticulous parameter
tuning for the Hough Transform contributed to optimizing performance. Python 3.7.6 served
as the programming environment for this endeavour, with the implementation facilitated

through the OpenCV library, version 4.2.0.

To expedite the processing of individual stages within the program without sacrificing
detail, a strategic approach was adopted. Initially, upon loading each frame, a resolution
adjustment was implemented to strike a balance between computational efficiency and
retaining essential details. Subsequently, noise reduction was addressed utilizing the
cv2.medianBlur(input, 3) function, which effectively suppressed noise artifacts without
compromising the integrity of visible edges critical for line detection. To further enhance edge
visibility, a sharpening operation was executed in the subsequent step. This involved
the utilization of a kernel, configured in the form of an array, to accentuate edge contrast

and clarity, thereby augmenting the efficacy of subsequent detection processes.

0O -1 0
kernel = [—1 5 —1] (49)
0O -1 0

Employing the cv2.filter2D(input, -1, kernel) function yielded satisfactory outcomes,
effectively sharpening the image to accentuate crucial details. Subsequently, a transition from
the RGB colour space to grayscale was executed using the standard OpenCV function
cv2.cvt(input, cv2._ BGR2GRAY). Recognizing the significance of detecting worn lines in airport
areas, particularly in high-wear zones like the touchdown area, where accumulated rubber
residue from landing aircraft tyres poses visibility challenges, the histogram equalization
function cv2.equalizeHist(input) was applied. This function served to enhance details that were
previously obscured due to low original contrast levels. Following this preprocessing, the
image was deemed ready for edge detection using the Canny algorithm, implemented via
cv2.Canny(input, minVal, maxVal) with specified parameters (minVal = 400 and maxVal = 500).
Of particular relevance to the centre line detection task was the identification of vertical edges.
By leveraging the Scharr mask configured at a O-degree angle, with the kernel array
meticulously tailored to the task, extraneous edges detected by the Canny algorithm were

effectively filtered out, leaving behind only the pertinent vertical edge information.

-3 0 3
kernel = |—-10 0 10 (50)
-3 0 3
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Furthermore, the application of cv2.filter2D(input, —1, kernel) further refined the
image, enhancing edge clarity and definition. The penultimate step preceding the conclusion
of the algorithm involved line detection, accomplished through the utilization of the Hough
Transform, specifically the Probabilistic Hough Line Transform available in the OpenCV library.
In the culmination of the algorithm's execution, the final frame produced encapsulated
the central axis lines superimposed on the original image. These lines serve as pivotal
reference points, facilitating the potential expansion of the measurement platform to evaluate
airport lighting efficacy with heightened precision. By leveraging this framework, more precise
measurements can be obtained, furnishing detailed insights into the spatial relationship
between the testing matrix and the examined lamp. Figure 4-6 showcases the resultant output
generated by the program's execution, providing a visual representation of the algorithm's
effectiveness in action.

Figure 4-6 Result of program based on line detection using Scharr mask edge detection and Hough
Transform [30]

One pivotal technique employed in the algorithm's implementation involved the
autonomous recognition of road markings, a critical aspect in the realm of intelligent vehicle
research, pertinent to both navigation and advanced driver assistance systems [170]. While
previous studies predominantly focused on utilizing lane markings for vehicle guidance and
operation, the reality demands attention to other vital signage such as arrows and warnings
for comprehensive car navigation. The methodology hinged on leveraging support vector
machine (SVM) algorithms to mitigate the influence of external factors like varying points of
view, ambient brightness, and diverse backgrounds. Experimental validation of the proposed
method was conducted using a diverse array of images. The findings underscored impressive
recognition accuracy surpassing 97%, with a commendable time consumption per frame
standing at 0.26 seconds [170].
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Another driving force behind the refinement of the algorithm under discussion
stemmed from the imperative to address runway positioning recognition challenges [171]. It
was evident that identifying signage and individual markings played a pivotal role in enhancing
safety and averting runway incursions. This aspect serves as a crucial adjunct to pilot training
and airport ground radar systems, particularly in the context of intricate, expansive airport
layouts. Within this project framework, conventional airport signage and markings served as
the focal points for detection and recognition purposes. Leveraging the Canny transform
facilitated precise line detection, while the Hough Transform was instrumental in identifying
prominent lines within images and discerning shorter lines interspersed between them. The
culmination of these efforts resulted in remarkable achievements, with authors attaining
a commendable accuracy rate of 95.1% for runway sign detection, alongside correct
identification of wait positions in 89.2% of instances [171].

This alternative approach to implementing the line detection algorithm minimizes
interference with the input form of the image and instead prioritizes computational
calculations, offering a distinct technique in constructing image analysis-based
algorithms [172]. Employing the same programming environment, bolstered by the support of
the OpenCV library (version 4.2.0), alongside additional computational tools such as NumPy
and math libraries, facilitated the execution of complex operations. Within this framework,
operations such as maximizing values, rounding, calculating means, and generating zero

matrices were pivotal in deriving the final result from the input image array.

The algorithm workflow commences with the standard conversion of the frame from
RGB to grayscale, followed by the initialization of essential global variables required for
subsequent calculations. Subsequently, an array containing left and right threshold intensity
values is created, enabling the determination of specific threshold values for both lanes. This
is then followed by the initialization of global variables essential for lane extraction. Leveraging
the pre-calculated threshold values, the algorithm identifies points corresponding to the left
and right lanes, culminating in the generation of an image with marked identified points
representing the trajectory of lines painted on airport surfaces upon program completion.

Figure 4-7 delineates a block diagram illustrating the program's structure.
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Figure 4-7 Diagram of program for line detection based on hyperbola fitting

The Hough Transform constitutes a pivotal component for line detection within
a designated area (Figure 4-8a), as defined by expression (51), wherein p denotes the distance
from the origin to the nearest point on the detected line, and 6 represents the angle between
the X-axis and the line connecting the origin to said point. The range of p is established by the
relation -R < p < +R, where R denotes the diagonal of the image (52), and 6 values are
constrained within the range of -90° to 90°. The variables necessary for calculating the
diagonal R are rows and cols, corresponding to the number of rows and columns of

the processed image.

p(0) = xcos(6) + ysin(0) (51)

—\/rows2 + cols? < p < \/rows2 + cols? (52)
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Figure 4-8 Course Hough Transform (a) and image coordinates (b) [30]

When initiating the search process, it's crucial to consider whether it commences from
the left or right boundary, thereby setting the maximum range to the respective boundary
(Figure 4-8b). By incorporating an additional search zone, tracking the outer lane
boundary curves becomes more manageable. The lane points are segregated into two distinct
lists, denoted as L(I) for the left line and L(r) for the right line, expressed mathematically as
depicted in equations (55) and (56), where u and v represent the x- and y-coordinates in the

image reference frame [173].

LO = {(ugl),vg)), (ug),vg)), ) (ugl),vr(rll))} (53)
L) = {(u&r),vir)), (ugr),vgr)), e (ufrrl),vr(;))} (54)

The proposed solution exhibits versatility in its application, extending beyond airport
lane detection to encompass a broader scope of obstacle and lane detection systems,
leveraging a stereo vision architecture to enhance road safety [174]. Employing fully
customized devices, this system adeptly identifies general obstacles, unbound by symmetry or
shape constraints, alongside lane positioning. A specific hardware module facilitates geometric
transformation, effectively mitigating the perspective effect evident in both left and right
stereo images. While lane markings are discerned through the application of morphological
filters on the left image, the mapped stereo images collectively aid in detecting clearance
ahead of the vehicle. Output from this processing pipeline is conveniently relayed to the
Control Display and Control Panel, furnishing the driver with indispensable visual
feedback [174].
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The detection of road lanes and borders represents a formidable challenge within the
realm of autonomous driving systems [175]. Contemporary solutions predominantly rely on
lane detection techniques, pivotal for ascertaining road position, determining vehicle-road
relative positioning, and analysing vehicle trajectory. Although in-vehicle vision systems serve
as the primary approach for road and lane boundary detection, lane detection remains
a challenging endeavour owing to the diverse array of road conditions encountered during

operation [175].

The devised method for aerodrome line detection, predicated on edge detection
principles, exemplifies a vision-based strategy for runway identification, capable of real-time
operation with resilience to lighting variations and shadows. Harnessing a front-facing camera
mounted on the vehicle, the system employs a sequence of processes to discern lane
markings. Leveraging a pair of hyperbolas aligned with lane edges, these trajectories are
extracted via the Hough Transform. Notably, this lane detection system demonstrates efficacy
across painted and unpainted surfaces, accommodating curved and straight roads amidst
diverse weather conditions. Extensive experimentation validates the robustness and real-time
operability of the proposed scheme. A critical appraisal of these methodologies, alongside
their prospects for future integration, rounds off the discussion, with Figure 4-9 showcasing

the outcomes yielded by the implemented program.

Figure 4-9 Result of running a program for line detection based on an edge detection algorithm [30]
4.2.2. Improved method for line detection

The third algorithm devised for detecting lines in airport areas diverged from
the methodologies of the preceding algorithms, yet it adhered to the same programming
environment, utilizing Python 3.7.6 and the OpenCV library, version 4.2.0. The fundamental

concept revolved around isolating the colour shades corresponding to the lines within the
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image. Specifically, airport markings typically manifest as white or yellow hues, presenting
a stark contrast against the gray or dark gray backdrop of the pavement. To achieve this, the
initial step involved transforming the image's resolution and colour space from RGB to HSV.
This conversion was pivotal in mitigating distortions arising from uneven lighting conditions,
which could otherwise lead to variations in colour intensity [176]. Subsequently, specific
thresholds were delineated for the saturation levels and the luminance component associated
with white light.

The resultant mask encapsulated regions corresponding to the detected yellow and
white colours, wherein pixels attributed to these colours were assigned a value of 255
(indicative of white), while the remaining areas of the frame were assigned a value
of 0 (representing black). This binary mask served as input to the Canny algorithm for edge
detection, facilitating the identification of line boundaries. Within this algorithm, dedicated
functions were allocated to distinct tasks, encompassing colour separation, determination of
Regions of Interest (ROI), line detection, and supervisory functions. Figure 4-10 illustrates

a comprehensive block diagram elucidating the operational workflow of the program.

The wide-angle lens of the camera provides several benefits, but it also has some
drawbacks. One of the primary advantages is that it allows almost the entire width of the
runway to be captured in a single frame, which is incredibly useful for monitoring purposes.
However, this broad field of view also means that the camera captures many extraneous
elements that can introduce noise and interfere with the algorithm's performance. To mitigate
this issue, it was decided to manually define a Region of Interest. This ROl encompasses
the central part of the image where the critical lines of interest should be located, plus
a margin to account for any potential errors. The boundary of this ROl is set just below the

horizon line to exclude any horizontal lines that might be mistakenly detected by the algorithm.

Once the ROI is established, the image is processed using the Hough Transform to
detect lines. Specifically, the Probabilistic Hough Line Transform was employed, implemented
with the function call cv2.HoughlLinesP(input, 1, np.pi/180, 10, 50, 10). This function identifies
lines within the specified parameters and outputs an image with detected lines superimposed
on the original image. These lines correspond to the edges of the stripes painted on the airport

runway.
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Figure 4-10 Scheme of program based on line detection algorithm using image segmentation based

on colours in HSV colour space.

It is particularly noteworthy that this algorithm is highly effective at detecting both

white and yellow lines simultaneously. This dual detection capability is achieved by leveraging
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a different colour space, allowing for more accurate segmentation. For white lines, the colour
range from [0, 0, 150] to [60, 40, 255] was used, and for yellow lines, the range from
[10, 60, 140] to [30, 255, 255]. The mask for each colour was calculated separately using the
cv2.inRange(input, minVal, maxVal) function, and then combined using a standard addition
operation. The result of this processing is illustrated in Figure 4-11, which shows the detected

lines clearly marked on the runway, demonstrating the effectiveness of the algorithm.

Figure 4-11 Result of program based on a line detection algorithm using image segmentation based
on colours in HSV space [30]

A comparable approach to line detection has found application in determining
the trajectory of motion for mobile robots [177]. This endeavour underscored the significance
of image segmentation, particularly the conversion of colours into an alternative colour space,
in enhancing object classification within the image. Notably, in the context of mobile robotics,
this task was facilitated by the controlled environment in which the robot operated. Here, the
lines exhibited a distinct colour contrast against the background, while the lighting conditions
remained uniform, thereby streamlining the selection of an appropriate colour scale
range [177].

Conversely, outdoor environments like airports pose a distinct set of challenges owing
to the variability in lighting and weather conditions. Moreover, the colour of the lines is subject
to constant fluctuation, owing partly to pavement wear and tear. In this regard, leveraging the
HSV colour space proves instrumental in circumventing these challenges, primarily due to its
hue parameter, which governs the perceived colour tone. Consequently, by amalgamating all
colours present in airport markings, it becomes feasible to delineate a mask that effectively

segments areas necessitating line edge detection.
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4.3.  Experimental results of vision algorithms for line

detection

During the experimental testing phase of each of the developed algorithms, individual frames
containing the results were captured. The experiment encompassed the analysis of 100 frames
sourced from diverse recordings obtained during the inspection of airport lighting.
Furthermore, the efficiency of line detection and the processing speed of the following

algorithms were juxtaposed:

i.  Algorithm 1: This entailed preprocessing, histogram equalization, Canny edge
detection, Scharr filtering, and Hough Transform
ii.  Algorithm 2: This involved preprocessing, thresholding, Canny edge detection,
Hough Transform, and hyperbolas fitting
iii.  Algorithm 3: This encompassed preprocessing, conversion to HSV colour space,
Canny edge detection, and Hough Transform.

The tests were conducted across six different resolutions:

e Full HD (1920 x 1080)
e HD+ (1600 x 900)

e HD (1366 x 768)

e WXGA (1280 x 720)

e nHD (640 x 360)

e 320x180.

Consequently, each algorithm yielded an output consisting of 600 frames, each
containing marked lines. However, disparities in preprocessing stages and employed
methodologies ensured that no two images were identical at the conclusion of detection.
Every frame underwent assessment across two categories. The first category pertained to the

detection of any line within the airport areas.

n

P r
r% = % x 100 (55)

The percentage values representing the performance of the algorithms were

determined using equation (55), where the variable r signifies the manually classified result
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within a specific category, and n denotes the total number of samples or video frames

analysed.

The effectiveness, expressed as a percentage, for each algorithm is depicted in
Figure 4-12. Notably, Algorithm 2 exhibits substantial deviation from the results obtained by
the other two algorithms. This disparity can be attributed primarily to the algorithm's
operational mechanism, which relies on mathematical computations rather than image
processing operations. Interestingly, Algorithm 2 achieved its highest efficiency at the lowest
tested resolution. This phenomenon could be attributed to the reduced level of detail in the

frames, simplifying calculations and consequently enhancing line detection efficiency.

Conversely, Algorithms 1 and 3 demonstrate an inverse trend, wherein higher
resolutions correspond to improved efficiency. In the case of Algorithm 1, efficiency remains
consistently high, exceeding 90%, while for Algorithm 3, it even reaches a perfect score
of 100%.

Line detection efficiency
100%
90%
80%

70% /
60%
50%
40%
30%
20%
10%
0%

General detection efficiency [%]

320x180 640x360 1280x720 1366x768 1600x900 1920x1080

Resolution [pixelxpixel]
=@=Algorithm 1 Algorithm 2 Algorithm 3

Figure 4-12 Overall detection efficiency depending on resolution and algorithm used [30]

The second step in evaluating the effectiveness of the algorithms involved assessing
whether all lines and markings within the critical area of the frame—specifically, the region
directly in front of the lens and roughly at the centre of the image—were accurately detected.
Figure 4-13 presents a comprehensive list of parameters that measure the degree of line
detection efficiency relative to different frame resolutions.

J. Suder 141



4 Detection of airport horizontal markings

When examining the performance of Algorithms 1 and 3, it was observed that their
effectiveness remained relatively consistent in detecting all lines within the critical area for
resolutions at or above WXGA. Both algorithms managed to maintain a high level of accuracy
in identifying the necessary lines and markings in these higher resolution images. However,
a noticeable decrease in detection efficiency occurred for Algorithm 1 when the resolution was
reduced. Despite this drop in accuracy at lower resolutions, Algorithm 1 exhibited a significant

increase in processing speed, which may be advantageous in certain applications.

In contrast, Algorithm 2, which relies predominantly on computational methods rather
than direct image processing, demonstrated considerably poorer performance. Its
effectiveness was measured at only 40-45%, indicating that it struggled significantly with
accurately detecting the lines and markings within the critical area of the frame. This suggests
that Algorithm 2's approach is less suited for tasks requiring precise vision detection, especially

when compared to the more image-focused methodologies of Algorithms 1 and 3.

Overall, while Algorithms 1 and 3 provide robust detection capabilities at higher
resolutions, the choice of algorithm might depend on the specific requirements of speed

versus accuracy, particularly in lower resolution scenarios.

Algorithm 1 exhibits notable shortcomings in accurately identifying both edges of
painted lines. This led to classification errors, misinterpreting the failure to detect all lines
during processing. Additionally, at higher resolutions, particularly from WXGA upwards,
significant background noise was observed, particularly in the form of erroneous edge
detections on the black asphalt, a phenomenon absents in the other two algorithms.
Furthermore, Algorithm 1 encountered difficulties with lines positioned farther from the
camera lens, approximately half the height of the frame, where edges were either not

detected at all or incorrectly identified.

Conversely, Algorithm 2 demonstrated robust performance, particularly in scenarios
featuring a single white line (central line) within the frame. Satisfactory line detection
efficiency extended to scenarios with up to two lines within the camera's field of view,
attributed to the algorithm's adaptation for lane determination between two lines. However,
Algorithm 2 exhibited limitations in detecting yellow-coloured lines, which were largely
unrecognized. In such instances, fragmentary line detection was evident primarily in turns and
at greater distances from the camera, disqualifying its suitability for supporting the

measurement platform approach to test airport lighting quality.
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Figure 4-13 Summary of detection performance details for different resolutions [30]

Algorithm 3 emerged as the clear frontrunner, excelling in detecting airport plane
markings across various testing scenarios. It consistently identified nearly all edges of visible
lines within the frame, regardless of colour (white or yellow). Although noise was present at
higher resolutions, starting from nHD and upwards, the use of colour segmentation effectively
contained it within the outlines of the lines, preserving result interpretation integrity. These
noises primarily comprised small edges detected due to surface texture variations, where the
line itself did not constitute a uniform colour area or areas lacking paint. Adjusting length
parameters of detected lines could potentially mitigate this issue, but the imperative to
identify lines affected by tyre rubber in the touchdown zone rendered such adjustments
impractical. Algorithm 3 outperformed its counterparts by seamlessly detecting all lines within

this critical area without encountering any obstacles.
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4.4, Performance evaluation using single board computer

In order to perform a comprehensive analysis of the proposed algorithm and develop the
system, it was necessary to perform an analysis of the performance of individual single board
computers. This is also a reference to the tasks set in this dissertation, namely: Proposals of

embedded systems implementations.

The evaluation of algorithmic performance was conducted using a range of hardware
platforms including the Raspberry Pi 4B, NVIDIA Jetson Nano, NVIDIA Jetson Xavier AGX, and
NVIDIA Jetson Orin AGX modules. The testing procedure involved the selection of random
10-second segments from the entirety of the video sequences. Moreover, each segment
underwent scaling to six different resolutions: 1920 x 1080 (Full HD), 1600 x 900 (HD+),
1366 x 768 (HD), 1280 x 720 (WXGA), 640 x 360 (nHD), and 320 x 180. Figure 4-14 and
Figure 4-15 in the analysis depict a comparative evaluation of the mean frames analysed per
second across these segments, varying by resolution and the specific embedded system
utilized for each algorithm. Notably, power consumption considerations were factored into the
experimental design, given the algorithm's computational intensity. Hence, the randomization

of sequences was performed once, followed by offline testing.
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Figure 4-14 FPS of image segmentation in the HSV colour space algorithm for various power modes of
tested platforms [44]
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Throughout all experimentation phases, consistent software configurations were
maintained, devoid of any tailored adjustments for individual hardware platforms. These tests
encompassed a diverse array of power consumption modes to comprehensively assess

algorithmic performance under varying operational conditions and system configurations.
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Figure 4-15 FPS of line detection using the Hough algorithm with Scharr mask filtering for various

power modes of tested platforms [44]

The algorithm based on image segmentation in the HSV colour space, owing to its lower
computational complexity [30], exhibits shorter processing times compared to line detection
using the Hough algorithm with Scharr mask filtering. Notably, the processing time of the
program increases with higher input resolutions, a relationship observed across all tested
embedded devices and selected power consumption modes. For instance, the Raspberry Pi 4B
microcomputer yielded nearly identical results to the NVIDIA Jetson Nano module in MAXN
power mode. However, with the NVIDIA Jetson Xavier AGX, an increase in the number of
processed frames per second was observed at maximum CPU processor clock speed.
Table 2-5 illustrates that higher processor timings are obtained for higher power consumption
modes. In the 30W mode, the maximum clock frequency changes depending on the number

of processor cores used, with fewer active cores corresponding to higher frequencies. A similar
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pattern is evident for the NVIDIA Jetson Orin AGX, as indicated in in Table 2-6, where the
processor's clock frequency also varies. Remarkably, for the most efficient units and this
algorithm, such as the NVIDIA Jetson Orin AGX and NVIDIA Jetson Xavier AGX, real-time
processing of video sequences at maximum resolution is achievable, with values
exceeding 24 FPS.

Due to the architecture of airport line detection programs, which are typically
single-threaded [30], reducing the number of active processor cores does not adversely affect
the achieved results. However, it's essential to consider the computational complexity of line
detection using the Hough algorithm with Scharr mask filtering, as this can impact processing
time, particularly in embedded systems. Consequently, achieving performance levels
of 24 frames per second (FPS) in video sequence processing was only feasible after reducing
the resolution to 1366x768. Notably, with the most efficient NVIDIA Jetson Xavier MAXN
modules, 24 FPS were attained, while NVIDIA Jetson Orin MAXN achieved 26 FPS.

It's crucial to acknowledge that the efficiency of line detection using the Hough
algorithm with Scharr mask filtering, owing to its greater computational complexity, may result
in the tested embedded devices exhibiting inferior maximum performance compared to
algorithms based on image segmentation in the HSV colour space. Consequently, such

approaches may not be equally suitable for real-time applications.
4.4.1.Power consumption analysis

Energy consumption was measured using the Jetson-Stats software [178], an advanced system
monitoring and control package specifically designed for the NVIDIA Jetson series, including
models such as the Orin, Xavier, Nano, and TX. This tool, illustrated in Figure 4-16, is essential
for researchers and developers who need in-depth analysis and performance tracking of their
NVIDIA Jetson boards. Key features of Jetson-Stats include:

e Hardware, Architecture, LAT, and NVIDIA Jetpack Decoding: The tool provides detailed
information about the system's hardware and software configurations. This includes
insights into the Linux for Tegra (L4T) operating system and NVIDIA Jetpack SDK, which
are crucial for understanding the system's operational parameters and identifying
opportunities for performance optimization.

e Comprehensive Monitoring: Jetson-Stats can monitor a wide array of system metrics,
including CPU and GPU usage, memory consumption, engine activity, and fan speeds.

This comprehensive monitoring capability ensures that users have continuous
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awareness of the system's health and performance, enabling them to detect and
address potential issues promptly.

e System Control: The package allows users to manage various system parameters,
including the NVP model (which relates to power modes), fan speed, and jetson_clocks
(a utility to maximize system performance). This control over performance and power
management is particularly valuable for optimizing the balance between
computational demands and energy efficiency.

Jetson-Stats serves as a vital resource, offering detailed monitoring and control
features that enhance the ability to manage and optimize NVIDIA Jetson boards. By providing
real-time data and control capabilities, it supports the efficient use of hardware resources,
ensuring that the Jetson platforms can be used to their full potential in research and
development settings.

Model: NVIDIA Orin Jetson-Small Developer Kit - Jetpack 5.0.1 DP [L4T 34.1.1]
[ 1 2.2GHz [ ] 2.2GHz [ ] 1.1GHz 2.0GHz

[
1 2.2GHz [ 1 1.1GHz [ 1 1.1GHz [ 1.9GHz
[

[
[ ] 2.2GHz [ ] 1.1GHz [ ] 2.0GHz 1.9GHz
[ ] [ ORPM
[ ] Jetson Clocks: inactive
[ ] 2.1GHz 0% NV Power[0]: MAXN
Uptime: 0 days 0:2:37
] 318MHz
]
TYPE PRI S CPU% MEM [GPU MEM] Command
G 20 S 10.4 71.8M 126M gnome-shell
[HW engines] [Sensor] —— [Temp] [Power] — [Inst] [Avg]
: [OFF] PVAGa: [OFF] CPU 48.88C VDD2 1V8AO 1.5W 1.5W
: [OFF] DLA1c: [OFF] cve 1 CPU CV 4.40 4.3W
: [OFF] NVDEC: [OFF] cvi ff GPU SOC 5.6W 5.6W
: [OFF] NVJPG1: [OFF ff VIN SYS 5V0 5.0W 5.0W
VIC: [OFF] . ALL 16.5W 16.4W

The average power consumption measurements are presented with a precision level
of 0.1 W, mirroring the accuracy of results obtained through the Jetson-stats software. In line
with this precision, results obtained via hardware measurements using multimeters are also
showcased with equivalent accuracy. Table 4-2 displays the outcomes of average power
consumption measurements during algorithm operation across various power modes and
resolutions, employing the algorithm grounded in image segmentation within the HSV colour
space. Conversely, Table 4-3 delineates the results for line detection utilizing the Hough
algorithm with Scharr mask filtering. Both tables encapsulate the average results derived from
offline trials conducted over 10-second sequences, varying in resolution and randomly
selected from the dataset. Notably, these measurements were conducted without imposing
any FPS limits during the trials.
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Table 4-2 Average power consumption (in Watts) for algorithm based on image segmentation in the

HSV colour space using Jetson-Stats software

320x180 640%x360 1280x720 1366x768 1600900 1920x1080

Jetson Nano 5W 2.8 3.2 3.1 3.2 3 3.2
Jetson Nano MAXN 4.8 4.9 4.8 5 5 4.8
Jetson Xavier Mode 10W 4.3 4.3 4.3 4.1 4.1 4.1
Jetson Xavier Mode 15W 4.6 4.9 4.9 4.9 5 4.9
Jetson Xavier Mode 30W ALL 5 5.5 54 54 54 5.4
Jetson Xavier Mode 30W 6CORE 5.4 5.5 5.6 5.7 5.8 6.1
Jetson Xavier Mode 30W 4CORE 5.5 5.9 6.2 6.2 6.5 6.5
Jetson Xavier Mode 30W 2CORE 6.8 7.1 7.3 7.3 7.3 7.4
Jetson Xavier Mode 15W DESKTOP 7.5 8.7 8.9 9.1 9.2 9.4
Jetson Xavier MAXN 10.7 13.2 13.1 13.2 13.4 13.5
Jetson Orin Mode 15W 11.3 11.4 11.5 11.5 11.5 11.7
Jetson Orin Mode 30W 12.5 13.4 133 133 133 13.9
Jetson Orin Mode 50W 12.1 13.1 12.5 12.5 13 13.9
Jetson Orin MAXN 154  17.7 16.7 16.8 16.8 16.9

Table 4-3 Average power consumption (in Watts) for line detection using Hough algorithm with Scharr

mask filtering using Jetson-Stats software

320x180 640%x360 1280x720 1366x768 1600900 1920x1080

Jetson Nano 5W 3.1 3 3 3 3 3.1
Jetson Nano MAXN 4.1 3.9 4.4 4.7 4.6 4.8
Jetson Xavier Mode 10W 4.1 4.1 4.1 4.1 4.1 4.1
Jetson Xavier Mode 15W 4.6 51 4.7 4.6 4.6 4.6
Jetson Xavier Mode 30W ALL 4.9 5.2 4.9 4.9 4.9 4.7
Jetson Xavier Mode 30W 6CORE 5 5.4 5.2 5.2 5.2 51
Jetson Xavier Mode 30W 4CORE 5.3 5.9 5.7 5.7 59 5.5
Jetson Xavier Mode 30W 2CORE 6.7 6.9 6.9 7.1 7.1 7.1
Jetson Xavier Mode 15W DESKTOP 7.4 8.1 8 7.9 8.2 7.9
Jetson Xavier MAXN 10.3 115 11.2 111 10.9 10.9
Jetson Orin Mode 15W 11.2 11.3 11.4 11.4 11.4 11.3
Jetson Orin Mode 30W 12.7 12.9 12.7 12.7 12.7 12.7
Jetson Orin Mode 50W 12.1 12.5 11.9 11.9 11.9 11.9
Jetson Orin MAXN 15.4 16.7 15.6 15.3 15.3 14.9
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It's evident from previous sections that more advanced modules such as the NVIDIA
Jetson Orin AGX operating in MAXN mode and the NVIDIA Jetson Xavier AGX in MAXN mode
exhibit higher power demands, which aligns with expectations given their enhanced
performance capabilities. Specifically, the FPS values obtained for these devices notably

surpass those of their counterparts.

Noteworthy is the subtle variation in power consumption observed across different
resolutions for individual power modes, with measured values remaining relatively consistent.
This phenomenon stems from the absence of FPS limits during experimentation, where FPS

values were maximized independently for each experiment.

To provide a more comprehensive assessment of power requirements, accounting for
the interplay between algorithm type, resolution, and FPS values obtained, these
dependencies have been meticulously considered and summarized in the subsequent

sub-chapter.

As an embedded system from the Raspberry Pi family was utilized in this study, the
aforementioned software solution could not be employed. Consequently, it was opted to
employ standard laboratory multimeters to obtain the average energy consumption of each
embedded system. It's noteworthy that the earlier Jetson-Stats software solely measures
the power consumed by the microcomputer's components, disregarding the power
consumption of connected accessories. To address this, measurements in the following
instances include typical accessories such as a keyboard, mouse, and fan connected to the

microcomputers.

Figure 4-17 presents the results of average power consumption measurements during
algorithm operation across various power modes and resolutions, employing the algorithm
based on image segmentation in the HSV colour space, with power meter measurements.
Conversely, Figure 4-18 showcases the results for line detection using the Hough algorithm

with Scharr mask filtering.
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Figure 4-17 Average power consumption (in Watts) for algorithm based on image segmentation in the

HSV colour space using electronic multimeter [44]

For the algorithm analysed, which relies on image segmentation in the HSV colour
space, achieving the highest resolutions of 1920 x 1080 imposes a limitation on the Frames
Per Second value, typically below 24 FPS. However, this FPS value is considered acceptable for
airport line detection techniques, given the nature of the task and the processing

requirements involved.

Two microcomputers meet these requirements with the following configurations:
the NVIDIA Jetson Xavier AGX operating in MAXN mode and the NVIDIA Jetson Orin AGX also
in MAXN mode. In these configurations, the average power consumption and corresponding

FPS values are as follows:

e For NVIDIA Jetson Xavier AGX in MAXN mode: The average power
consumption is 18.5 W, achieving a frame rate of approximately 27 FPS.
e For NVIDIA Jetson Orin AGX in MAXN mode: The average power

consumption is 20.8 W, with a frame rate of approximately 25 FPS.
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These results indicate that both the NVIDIA Jetson Xavier AGX and the NVIDIA Jetson

Orin AGX are capable of meeting the processing requirements for airport line detection

techniques at the specified resolution, while maintaining acceptable power consumption

levels. The FPS values achieved by these microcomputers are within the acceptable range for

effective line detection, ensuring reliable performance in real-world applications.
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Figure 4-18 Average power consumption (in Watts) for line detection using Hough algorithm with

Scharr mask filtering using electronic multimeter [44]

In the case of the second solution, which involves line detection using the Hough

algorithm with Scharr mask filtering, and with the processing speed limit set at a minimum of

24 FPS, it was found that none of the microcomputers could achieve the minimum FPS value

at a video resolution of 1920 x 1080. However, reducing the resolution to 1366 x 768 allowed

for video sequence processing at a sufficient speed.
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Two microcomputers capable of meeting these requirements are the NVIDIA Jetson
Xavier AGX operating in MAXN mode and the NVIDIA Jetson Orin AGX also in MAXN mode.
In these configurations, the average power consumption and corresponding FPS values are as

follows:

e For NVIDIA Jetson Xavier AGX in MAXN mode: The average power
consumption is 16 W, achieving a frame rate of approximately 24 FPS at
a resolution of 1366 x 768.

e For NVIDIA Jetson Orin AGX in MAXN mode: The average power
consumption is 20 W, with a frame rate of approximately 26 FPS at the same
resolution of 1366 x 768.

These findings indicate that both the NVIDIA Jetson Xavier AGX and the NVIDIA Jetson
Orin AGX can effectively process video sequences for line detection at the specified resolution
while meeting the minimum FPS requirement. Despite the higher power consumption of the
Jetson Orin AGX, it offers a slightly higher FPS, ensuring smooth and efficient processing of
video data.

4.4.2.Single board computers energy efficiency analysis

In order to obtain a meaningful comparative value, it was necessary to find a common value
for all analysed solutions. For this reason, it was decided to compare the power consumption
in terms of FPS. For the FPS and power consumption values delineated in previous sections,
comparative charts have been formulated to illustrate the dependency of power consumption
requirements on both resolution and FPS values. Figure 4-19 illustrates the dependency of the
algorithm based on image segmentation in the HSV colour space, while Figure 4-20 depicts
the dependency graph for line detection utilizing the Hough algorithm with Scharr mask
filtering. Lower values denote lower power requirements, with MAX modes proving optimal

for faster processing speeds, expressed in FPS.

A comparative analysis of the two algorithms reveals that in the case of the algorithm
based on image segmentation in the HSV colour space, it's feasible to achieve equivalent or
superior FPS values with lower energy consumption. For instance, on the NVIDIA Jetson Xavier
in MAXN mode, this algorithm requires 679 mJ/frame for 1920 x 1080 resolution, whereas line
detection utilizing the Hough algorithm with Scharr mask filtering necessitates 680 mJ/frame
for 1366 x 768 resolution.
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Figure 4-19 Energy efficiency analysis of algorithm based on image segmentation in the HSV colour

space [44]
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Figure 4-20 Energy efficiency analysis of line detection using Hough algorithm with Scharr mask
filtering [44]

4.4.3.Energy efficiency analysis of dynamic voltage frequency switching

Another method for controlling hardware performance, similar to the power modes
implemented by NVIDIA Jetson, is Dynamic Voltage and Frequency Switching (DVFS), as
discussed in several studies) [179], [180], [181]. In the course of the experimentation,
an additional experiment was conducted to execute image segmentation algorithms in the HSV
colour space and line detection using the Hough algorithm with Scharr mask filtering,
mirroring previous research methodologies. Energy consumption was monitored using
multimeters and jetson-stats software. However, this time, alterations were made not only to
the microcomputer's power mode but also to the DVFS policy, which includes modes such
as schedutil, performance, powersave, userspace, on-demand, interactive, and conservative.
The tests were conducted on the NVIDIA Jetson AGX Xavier microcomputer, given its superior

performance in previous evaluations.
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In terms of processing speed, the NVIDIA Jetson AGX Xavier microcomputer only met
the assumptions in the MAXN mode within the DVFS policies: schedutil (27 FPS), performance
(25 FPS), ondemand (27 FPS), interactive (26 FPS), conservative (27 FPS) for image
segmentation in the HSV colour space at a resolution of 1920 x 1080. However, the
assumptions were not fulfilled for the line detection algorithm using the Hough algorithm with
Scharr mask filtering. Figure 4-21 and Figure 4-22 provide detailed results of the experiment.
Notably, the MAXN and DVFS policy powersave operating modes resulted in practical
incapacity to run the program, significantly extending the program's execution time and

consequently increasing the energy consumption per image frame.

The experiments conducted, based on the defined assumptions and utilized
algorithms, revealed that the optimal operating modes meeting the assumptions are the
power mode MAXN and DVFS policy schedutil (680 mJ/frame). However, in most cases,
the differences hover around 7%:

e schedutil: 27 FPS = 680 mJ/frame

e performance: 25 FPS = 732 mJ/frame
e ondemand: 27 FPS = 697 mJ/frame

e interactive: 26 FPS = 698 mJ/frame

e conservative: 27 FPS = 685 mJ/frame

These findings underscore the importance of selecting appropriate power modes and
DVFS policies to achieve optimal energy efficiency and processing performance for embedded
systems.
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Figure 4-21 Energy efficiency analysis of algorithm based on image segmentation in the HSV colour
space using different DVFS policies [44]
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Figure 4-22 Energy efficiency analysis of line detection using Hough algorithm with Scharr mask
filtering using different DVFS policies [44]
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Indeed, it is noteworthy that the results obtained previously, utilizing the default DVFS
policy schedutil, validate the optimization of this mode, which outperformed all other tested
modes by yielding the lowest energy consumption per image frame. This underscores the
significance of selecting the most efficient DVFS policy to ensure optimal energy efficiency

without compromising processing performance.
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Chapter

5. Quality classification of airfield ground
lighting

The quality assessment of airport lamps can be carried out using stationary methods, e.g. using
a goniometer, or mobile methods, such as a measurement platform for testing airport
lighting [26], [27], [28], [29], [53]. For this reason, several scopes of aviation navigation
lighting inspections can be distinguished. This thesis puts emphasis on the vision assessment
of in-pavement airport lamps, which is based on the detection and assessment of wear
(chipping) of the prism of the lamp being examined. The second type of inspection is examining
the colour of a given lamp. First, to assess its type, and then to adapt the appropriate
international standards, but also to assess the chromaticity of the light emitted by these lamps.

Figure 5-1 shows a schematic division of the scope of research.

Inspection type Tested feature
. ( Prism wear |
e ™ Vision quality
Airport classification | assesment |
navigational .
| Ilghtnlngl.t Lamp type
amps quality detection
classification Lighting colour L )
_________J classification ( )
Chromaticity
measurement

Figure 5-1 Types of airport navigational lightning lamps quality classification

5.1.  Vision classification of airport navigation lighting lamps

system

The quality assessment of airport lamps can be conducted through stationary methods, such
as using a light goniometer, or mobile methods, which involve luminous intensity measuring
platforms [28] or drones [26], [31]. The stationary approach is notably time-consuming as it

necessitates the disassembly of lamps. Conversely, the utilization of measurement platforms
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or drones is preferred due to the need for short periods of occupation in runway areas,

typically ranging from 5 to 10 minutes, to minimize disruptions to air operations.

An alternative mobile method involves the utilization of a vision system capable of
analysing the mechanical wear of lamps, particularly focusing on their prisms [40]. A notable
advantage of this solution, compared to luminous intensity measurement, is its ability to
precisely assess the degree of degradation of the prisms' frontal plane. Additionally,
the presented solution can serve as a complement to sensory luminous intensity
measurement systems. Image acquisition and processing can be facilitated using embedded
systems [5], [128], employing dedicated vision sensors [30], [47], [48]. As depicted
in Figure 5-2, the concept of the system entails a measurement platform, towed by the airport
service vehicle, housing a camera that captures images from above, facilitating vision

inspection of the mechanical wear of the in-pavement navigation lamps.

(o)

Figure 5-2 Concept of intelligent vision system for the analysis of mechanical wear of the prisms of

O o"'"%

j— o/

in-pavement airport lamps

The chapter outlines the different stages involved in image processing of the integrated
airport lamps. For the conclusive classification evaluation, a two-layer neural network with
forward feed was employed. This neural network architecture relied on the sigmoidal function
in the hidden layer and the softmax function, also known as the normalized exponential
function, in the output layer. Experimental research was conducted utilizing a proprietary
dataset within the MATLAB 2022a environment [105].

Figure 5-3 presents the overarching scheme of the image processing workflow. This

process can be effectively segmented into two distinct stages:

e Detection of the Region of Interest (ROI): This initial stage puts emphasis on identifying
the specific area within the image that requires further analysis and scrutiny. Various
techniques may be employed for this purpose, including but not limited to edge
detection, thresholding, or region-based segmentation methods.

e Decision-Making Process Based on a Neural Network: Following the successful

detection of the ROI, the subsequent stage involves employing a neural network-based
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approach for decision-making. This phase typically entails feeding the extracted
features from the ROI into a trained neural network model, which then generates
predictions or decisions based on the learned patterns and relationships within the
data. The neural network architecture may vary depending on the specific task
and objectives, ranging from convolutional neural networks (CNNs) for image

classification to recurrent neural networks (RNNs) for sequential data analysis.

ROI

Prism quality
classification
using neural
network

Detection of Detection of

Input image

lamp area prism area

Figure 5-3 Proposed vision data processing workflow for prisms mechanical wear classification
5.1.1. Dataset of airfield ground lighting lamps

The experimental research involved the preparation of an in-pavement lamps first dataset
comprising a total of 316 images [40]. In subsequent research, the dataset was expanded to
540 photos [41]. These images were carefully curated to encompass a variety of scenarios,
including different weather conditions and times of the day, to ensure comprehensive testing
of the algorithms under various conditions. Furthermore, efforts were made to capture images
with diverse lamp positions and backgrounds, including asphalt, concrete, and a white
background for lamps situated within road markings on the airfield. This diversity in image
characteristics enables thorough evaluation of algorithm performance across a range of

real-world situations.

The images in the dataset have a resolution of 4928 x 3264 pixels and a 24-bit
colourdepth, ensuring high-quality representation of the in-pavement lamps. They are stored

in JPG format, utilizing the RGB colour space to accurately capture colour information.

Figure 5-4, Figure 5-5 and Figure 5-6 provide examples of different types
of in-pavement airport lamps included in the dataset. These images showcase the variability
in lamp designs, orientations, and environmental contexts captured during the data collection
process. Such diversity in the dataset is crucial for assessing the robustness and effectiveness

of the algorithms in real-world applications, where conditions can vary significantly.

The lamps depicted in the photos exhibit variations in position and brightness, with
some lamps being switched on while others are not. This diversity in the dataset is invaluable

as it enables the fine-tuning of algorithms, thereby enhancing their accuracy and robustness
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across different conditions. For instance, runway centre line lamps function in both directions,

whereas taxiway lamps typically operate in only one direction as per regulations.

Figure 5-6 Examples of Touchdown zone lamp IDM4671 [40]

Additionally, during the internship in Poznan—tawica Airport, over 1000 photometric
measurements of in-pavement airfield ground lighting lamps and photos were taken [43].
Photos and measurements of the lamps were taken after dismantling them from the ground
surfaces and after replacing the prism and bulbs. Thanks to this, it was possible
to comprehensively test the lamps and learn the consumption characteristics of navigation
lighting at the airport, as well as prepare a dataset of measurements and photos. Thanks to
this work it was possible to crate PLAVS2 (Poznan Lawica Airport Video Set 2) dataset with
1004 photos of in-pavement airfield ground lighting. Table 5-1 shows number of images in

dataset of each lamp type.
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Table 5-1 Lamp types in the PLAVS2 dataset

Lamp type  Before maintenance After maintenance

RCL CC 170 170
RCL CR Crystal 77 78
RCL CR Red 77 78
TDZ 177 177
500 504
Total:
1004

5.1.2. Airport navigational lighting lamps and prisms detection

algorithm

Figure 5-7 illustrates the process of localizing and detecting the prism. Initially, lamp
localization is executed employing the circular Hough Transform, facilitating the detection of
the lamp along with its precise position and orientation. Subsequently, the prism area is
identified through a combination of morphological operations and high-pass filtering,

employing the Sobel mask for enhanced accuracy.

The process of lamp detection and prism localization begins by loading an image from
the dataset, which is then scaled to 15% of its original size. This scaling down of the image
is crucial for optimizing the amount of data used during neural network training [48].

Subsequently, the image is converted to grayscale to simplify processing.

Lamp detection is carried out using the circular Hough Transform, which searches for
circular shapes within the image. Specifically, the algorithm looks for circles within predefined
ranges of radius values, effectively identifying potential lamp locations. The Circular Hough
Transform (CHT) algorithm is chosen for its robustness against noise, occlusion, and varying

illumination conditions.

Following lamp detection, the algorithm searches for smaller circles representing
airport lighting mounting bolts. The pixel span for this search has been determined
experimentally to optimize detection accuracy. After these operations, the input image
undergoes rotation to ensure consistency in orientation across all photos. Utilizing the original

image for rotation helps maintain data quality for subsequent processing steps.
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Figure 5-7 Diagram of the lamp and prism detection algorithm

Figure 5-8 illustrates the result of the lamp detection operation, with the detected lamp

indicated by a blue circle. The orientation of the lamp, determined based on the positions of

the mounting bolts, is depicted by green circles. This process ensures accurate localization

of lamps and prisms in the images, laying the foundation for further analysis and inspection

steps.

J. Suder
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Figure 5-8 The illustration of the operation of detecting the lamp (blue circle) and its orientation

(green circles) [40]

The subsequent operation involves limiting the working area by cropping to a portion
of the image where the prism is located. This cropped image is then converted to grayscale,
and edge detection is performed. Morphological operations and filtering using the Sobel
operator are applied to determine the position of the searched prism, which also aids in
reducing the Region of Interest (ROI).

The Sobel operator mask used in this process is configured to focus on finding
horizontal edges, which was found to be the optimal solution for the application based on
conducted experiments. This choice helps to mitigate distortions and eliminate small edges

that could lead to errors in subsequent processing steps.

The Sobel mask used has the following form:

0 0 O
kernel = \1 1 1] (56)
0 0 O

The mask emphasizes horizontal edges, enhancing the visibility of features relevant to
prism detection. Through experimentation, it was determined that this configuration

effectively reduces noise and facilitates accurate prism localization.

In contrast, using a Sobel mask in diamond form resulted in an output devoid of
reference points, rendering it impossible for the algorithm to determine the position of the

prism accurately.

Figure 5-9 illustrates the final result of detecting the prism location on the tested
in-pavement lamp. This process ensures precise localization of the prism, laying the

groundwork for subsequent analysis and inspection tasks.
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Figure 5-9 The illustration of the prism detection operation [40]
Table 5-2 summarizes the effectiveness of the various stages of the algorithm's operation.

Table 5-2 Lamp detection and orientation identification effectiveness

. Efficiency of identification
Type of operation

Correct identification Incorrect identification
Lamp detection 90.81% 9.09%
Lamp orientation 90.21% 9.79%

5.1.3. Datasets of airfield ground lighting prisms

Initially, the dataset was limited to 284 images due to incorrect performance in earlier stages,
particularly in the detection of lamps, divided into 3 class:

e Class | - undamaged prisms (Figure 5-10)
e Class Il - no longer suitable for operation (Figure 5-11)

e C(Class lll - images when it is impossible to judge the wear of the prism (Figure 5-12).

The "Undamaged Prisms" class includes images of prisms that are in good condition,
while the "Damaged Prisms" class consists of images depicting prisms that are no longer
suitable for operation. The "Uncertain Prisms" class comprises images where it is difficult to
assess the condition of the prism. These images often result from incorrect earlier stages of
finding the location of the lamp and prism.

Figure 5-10 Examples of tarnished prisms but with no mechanical damage (Class 1) [40]

D\ omhe e 1 Y
-

Figure 5-11 Examples of damaged prisms (Class II) [40]
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Figure 5-12 Examples of improper prism segmentation (Class Ill) [40]

Figure 5-13 provides insight into the distribution of classes in the dataset, illustrating

the ratio of each class. This distribution serves as a basis for training and evaluating the

performance of the neural network in classifying prism conditions based on image data.

m Class| mClass Il = Class Il

Figure 5-13 The ratio of the class distribution in the initial prisms dataset

During the training process, the samples entering the network input are randomly

divided while maintaining the following proportions:

Training: 70% of the samples, are allocated for training purposes. These images are
utilized to adjust the network parameters based on its error, optimizing its
performance over successive iterations.

Validation: 15% of the samples, are designated for validation purposes. These samples
are used to measure the network's generalization ability and to halt the training
process when the improvement in generalization ceases. Specifically,
the training process is stopped when the cross-entropy error of the validation samples
begins to increase, indicating a decline in generalization performance.

Testing: The remaining 15% of the samples, are reserved for testing purposes. Unlike
the training and validation phases, this part of the process does not impact the training
of the neural network. Instead, it serves as an independent indicator of the network's
performance during and after training, providing valuable insights into its effectiveness

in classifying prism conditions based on image data.
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Following the successful experimental results, it was decided to enlarge the dataset
originally built to 540 navigational lighting lamps prisms. The expanded database was also
divided into 3 classes, according to the initial database. Figure 5-14 shows the ratio of the class
distribution in the expanded prisms dataset.

m Class| m Class Il Class Ill

Figure 5-14 The ratio of the class distribution in the expanded prisms dataset

5.1.4.Proposed system for prism quality classification using neural

networks

This experiment was conducted to test the possibility of classifying prisms based on their wear.
At the beginning, the two-layer feed-forward neural network was implemented using the Open
Neural Network Start app (nnstart in the MATLAB environment) demonstrates the ability to
correctly classify vectors when a sufficient number of neurons are present in the hidden layer.
This network architecture utilizes the sigmoidal function in the hidden layer and the softmax
function (normalized exponential function) in the output layer for classification purposes.

Training of the network is achieved using scaled backpropagation of the conjugate gradient.

The input to the network consists of the | matrix with dimensions of 1440000 x 284,
where each sample contains 1440000 elements representing image vectors. The target matrix,
denoted as T, has dimensions of 3 x 284, representing 284 samples, each with 3 elements

corresponding to prism classification categories.

J. Suder 167



5 Quality classification of airfield ground lighting

Output Class

| 1] 1] | 1] 1]
Target Class Target Class

Test Confusion Matrix All Confusion Matrix

Output Class
Output Class

| 1] 1] | 1] 1]
Target Class Target Class

Figure 5-15 Confusion matrices of prism quality classification [40]

The results of the trained neural network have proven to be highly satisfactory, with an
impressive accuracy rate of 81.4% achieved during the testing phase, as depicted in
Figure 5-15. This level of accuracy indicates the effectiveness of the network in correctly

classifying prism conditions based on the provided image data.

Such accuracy underscores the success of the network in learning and generalizing
patterns from the training data to accurately classify unseen samples during testing. It
demonstrates the robustness and reliability of the neural network model in effectively
distinguishing between undamaged, damaged, and uncertain prisms, despite variations

in image characteristics and conditions.

Due to the possibility of classifying prisms using neural networks, it was decided to
conduct a second experiment using pre-trained neural network models. It was conducted
using the Deep Network Designer tool within the MATLAB 2022b [109] environment and larger
dataset, consisting of 540 images. This powerful tool enables the selection of pre-trained
neural networks, customization of the dataset, and adjustment of network parameters
to optimize results. For this research, three prominent neural network models were chosen
for evaluation: GooglLeNet, VGG-19, and Resnet [182].

The workstation utilized for the experiment boasted the following specifications: an
Intel Core i7-6800K CPU running at 3.40 GHz and a NVIDIA 2080 Ti graphics card. These

168 J. Suder



5 Quality classification of airfield ground lighting

high-performance components ensured efficient processing and computation, essential for

training and evaluating neural networks with large datasets and complex architectures.

The training of the GooglLeNet network employs the stochastic gradient descent with
momentum (SGDM) optimization algorithm. Setting specific parameters for the training
process is facilitated by the trainingOptions function, encompassing various arguments
governing different facets of the training regimen. These parameters encompass the

optimization algorithm, learning rate, number of epochs, mini-batch size, and more.

Subsequently, the layerGraph serves as the foundation for constructing an empty
neural network graph, which can later be furnished with layers and interconnections. Defining
the initial layers of the GooglLeNet architecture is accomplished through MATLAB code, with

these layers then added to the network graph via the addLayers function.

The foremost layer within the network, an imagelnputLayer, stipulates the dimensions
of the input images destined for processing by the network. In this context, the input images
are anticipated to possess dimensions of 224 x 224 pixels and feature three colour channels

(red, green, and blue).

Following this, a convolution2dLayer starts its operation, tasked with applying a series
of learned filters to the input image to extract pertinent features. This layer employs a 7 x 7
filter size and generates 64 output feature maps, employing a stride of 2 pixels and padding of
3 pixels on each side to ensure congruence in size between the output feature maps and the
input image. Subsequently, a reluLayer is applied to the convolution layer's output to introduce

nonlinearity.

To downsample the preceding layer's output, reducing its spatial resolution by a factor
of 2, a maxPooling2dLayer is employed. This layer adopts a 3 x 3 pooling size and a stride of
2 pixels, accompanied by padding of 1 pixel on each side to maintain parity in size between

the output feature maps and the input.

The subsequent inclusion, the crossChannelNormalizationLayer, functions to normalize
the previous layer's output across feature maps, thereby enhancing the overall generalization
of the network. Utilizing a normalization window size of 5 and a scale factor of 1, this layer aids

in refining the network's performance.

Moving forward, the inception module assumes prominence, serving as a fundamental
building block recurrently employed throughout the GooglLeNet architecture. Comprising four

parallel convolutional pathways, each characterized by distinct filter sizes, the inception
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module culminates in a concatenation layer merging the output of all four pathways. This
framework enables the network to glean insights across multiple scales and resolutions, crucial

for precise object recognition within images.

Within the inaugural inception module (inception_3a), the pathways encompass
a maxPooling2dLayer followed by convolution2dLayer instances utilizing varying filter sizes:
1x 1,3 x 3,and 5 x 5. Each pathway yields a suite of output feature maps, subsequently
amalgamated via the depthConcatenationLayer to yield the final output of the inception
module, which then feeds into the subsequent layer of the network. Table 5-3 presents the
values of Mini-branch Accuracy, Validation Accuracy, Mini-batch Loss, and Validation Loss

across different epochs and iterations.

Table 5-3 Summary of parameters during GoogleNet network training

. Mini-branch Validation Mini-batch Validation
Epoch Iteration
Accuracy Accuracy Loss Loss

1 1 31.25% 67.44% 1.638 1.8217

10 78.12% 74.42% 0.5817 0.6523
7 20 93.75% 81.40% 0.2075 0.4574
10 30 92.19% 83.72% 0.1676 0.3619
14 40 98.44% 88.37% 0.0806 0.2772
17 50 98.44% 88.37% 0.0412 0.2961
17 51 100% - 0.0430 -

The GooglLeNet model exhibited the highest accuracy in classifying the wear of the
prism of the in-pavement navigation lamp, achieving an accuracy of 88.37%. The learning
process and loss are visually depicted in Figure 5-16. This outcome surpassed the performance
of other tested neural networks, with VGG-19 achieving an accuracy of 67.07% and ResNet
reaching 75.29%. A detailed comparison of the accuracy of the neural network models used in

the experiment is presented in Table 5-4.
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Figure 5-16 GooglLeNet expanded prisms dataset training and validation accuracy and loss graph [41]

Table 5-4 Accuracy comparison neural network models used in the experiment

Neural network model Accuracy

GoogleNet 88.37%
VGG-19 67.07%
Resnet 75.29%

In comparison to the previously showed system [40], which achieved an accuracy of
81.4%, it is evident that proper training and an increase in the number of images in the dataset
yield significantly improved results. This observation leads to the conclusion that employing
aneural network based on GoogleNet is justified for further development and

implementation in devices navigating around the airport.
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5.2.  Automatic classification of navigation lighting

chromaticity

5.2.1.Airfield ground lighting chromaticity measurement system

concept

The proposed system, in the form of a proposed measurement platform, requires recognition
of the type of lamp based on the colour of the emitted light in order to select the luminosity
standards of individual light points and to examine its chromaticity in order to compare it with
the EASA CS-ADR-DSN standards [4]. A general block diagram outlining the individual stages of
lamp measurement is depicted in Figure 5-17. During the initial stage, colour detection occurs,
facilitating the identification of the tested lamp type. Subsequently, the matrix of light intensity
sensors provides a result, which, based on the specific lamp type identified, is then converted
according to coefficients determined in the laboratory. This process enables the accurate
reading of lamp luminous intensity. The obtained results are then compared with relevant
standards corresponding to the appropriate type of lighting, determining whether the lamp

needs replacement or can continue to be used.

( )

Lamp type classification
J
Light colour sensor Spectrum bqndpass
analysis s N
Comparision with the

requirements of
CS-ADR-DSN standards
& J

-

Figure 5-17 Block diagram of the light chromaticity quality assessment
5.2.2. Airport navigational lighting lamps characteristics

The testing procedure using measurement platform involves the measurement of photometric
illumination intensity, radiometric irradiation intensity, and spectral radiation intensity, all
quantified in absolute light units. A primary focus of the investigation was to analyse the
distribution of spectral radiation intensity. Tests were conducted on five different colours of

lamps installed in airport areas:

e TDZ-touchdown zone lamp (white)
e RCL_White — runway centre line lamp (white)

e RCL_Red —runway centre line lamp (red)
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e TAXI_GREEN - taxiway centre line lamp (green)
e TAXI_YELLOW - taxiway centre line lamp (yellow).

As anticipated, the spectral composition of taxiway lamps exhibits a notable prevalence
of green and blue light, which are hues most easily discernible by the human eye and,
consequently, by sensors commonly available on the market. Conversely, other components
contribute minimally to the overall spectrum, with wavelengths corresponding to warmer

hues exhibiting negligible emission from these lamps (refer to Figure 5-18).
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Figure 5-18 Spectral radiation intensity of the taxiway centre line lamp IDM5582 (TAXI_GREEN) [39]

The lamps illuminating the touchdown zone emit light in a warm, white colour. As
a result, their spectral composition comprises a range of wavelengths across the visible light
spectrum. In Figure 5-19, it is observed that the highest intensity of light is emitted by colours
with longer wavelengths. This phenomenon can be attributed to the characteristics of the light
source and the properties of the emitted light.

Specifically, the intensity of light emitted by a light source is influenced by both the
power of the light source and the wavelength of the emitted light. In this context, the intensity
can be conceptualized as the product of the power of the light source per unit area and
the wavelength of the light. Since warm white light encompasses a broad spectrum of
wavelengths, including those with longer wavelengths, it results in a higher overall intensity

compared to light sources with narrower spectral ranges.

Therefore, the observed trend of higher intensity corresponding to longer wavelengths
in the spectrum of the touchdown zone lamps can be explained by the characteristics of warm

white light and its distribution across the visible spectrum.
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Figure 5-19 Spectral radiation intensity of the touchdown zone lamp IDM4671 (TDZ) [39]

The spectral characteristics of the red lamps marking the runway centre line primarily
consist of longer wavelengths within the visible light spectrum. Notably, the wavelength
of 680 nm, associated with the orange-red colour, exhibits the highest intensity. This
wavelength represents a warm hue, characteristic of the red lamps used for runway centre line
markings. Interestingly, these lamps emit minimal amounts of light at wavelengths

corresponding to colder colours, aligning with empirical observations.

Figure 5-20 visually represents these spectral characteristics, illustrating
the dominance of longer wavelengths and the absence of colder colours in the emitted light.
This observation corroborates the spectral composition expected from lamps designed to emit
red light.

In contrast, the spectral profile of the white-coloured lamps installed along the centre
line of the runway (depicted in Figure 5-21) closely resembles that of the lamps illuminating
the touchdown zone. However, there are discernible differences in the intensity values,
reflecting variations in the radiation output of the respective luminaires. Despite these
differences, both types of lamps exhibit a broad spectrum of wavelengths, with the white

lamps emitting higher intensities due to their positioning along the central axis of the runway.
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Figure 5-20 Spectral radiation intensity of the runway centre line lamp red IDM4582 (RCL_Red) [39]
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Figure 5-21 Spectral radiation intensity of the runway centre line lamp white IDM4582 (RCL_White)

[39]

To assess the colour spectrum of light emitted by airport lamps, including the taxiway

centre line lamp, touchdown zone lamp, and runway centre line lamps (both red and
white) [28], a Gigahertz-Optik X4 Light Analyzer spectrometer was utilized [183]. The research
was possible thanks to cooperation with the Department of Metrology, Electronics

and Lighting Technology, Institute of Electrical Engineering and Industrial Electronics, Faculty

of Automation, Robotics and Electrical Engineering, Poznan University of Technology [184].
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During the examination of elevated edge lamps, particular attention was given to the
approach system luminaires, exemplified by ADB Safegate UEL 1-150 — CLEAR (APP_White,
Figure 5-22a) and ADB Safegate UEL 1-150 — RED (APP_Red, Figure 5-22b), are strategically
positioned off the aircraft movement areas. These luminaires are categorized as unidirectional
high-intensity over-ground lamps, emitting white or red light respectively, powered by a 150 W
halogen bulb. According to documentation, the estimated lifespan of the light source is
1000 hours, and they are also powered by a 6.6 A current source [185]. The luminaires selected

for testing were new and had not been previously utilized.

Distinct from the examination of the elevated edge lamps, the elevated luminaire
identified as ADB Safegate 1-045-RED-STOPBAR — TEFT (STOP_BAR), as illustrated in
Figure 5-22c. According to documentation, this luminaire is classified as a high intensity
unidirectional fixture designed for use in approach, threshold, or runway end systems. It emits
red light utilizing a 45 W halogen bulb and operates on a 6.6 A current source [96].

(a) (b) (c)
Figure 5-22 Elevated approach system lamps [42]: (a) White, (b) Red, and (c) Stop Bar Lamp

5.2.3.Light colour and chromaticity sensors comparison

The market offers a variety of sensors designed for colour detection, catering to different needs
and applications. Some sensors are designed to detect environmental colours independently,
while others utilize optional LED backlighting for enhanced performance. Among the most
basic modules are the TCS34725, APDS9960, or ISL29125, which enable measurement of only
the three basic RGB components. Technical documentation for these sensors indicates

relatively low sensitivity for each channel.

For instance, the TCS34725 sensor module tends to lower individual RGB components
when normalizing the readings for a wavelength of 755 nm (Figure 5-23). While these sensors
may not offer high precision in colour measurement, they can still facilitate correct colour

recognition, especially in scenarios where measurement precision is not critical. An added

176 J. Suder



5 Quality classification of airfield ground lighting

advantage of the TCS34725 sensor is its built-in IR filter, which helps eliminate unwanted

components of infrared light [186].

The colour sensor featuring the APDS9960 is capable of measuring RGB component
values and detecting gestures such as up/down and left/right. Similar to the TCS34725, the
individual RGB components tend to have underestimated values compared to the standard
[187]. Notably, the blue component exhibits a particularly significant difference, while

the mapping of the green and red components remains relatively consistent (Figure 5-24).

On the other hand, the module equipped with the ISL29125 sensor provides the most
accurate representation of the green component. However, it struggles to accurately render
values in the blue light wavelength range, where the readings are notably underestimated.
A similar discrepancy is observed for the third component, with the module yielding lower

values for red-light wavelengths compared to the reference value (Figure 5-25).
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Figure 5-29 TCS3430 spectral response [192]

Despite the attractive pricing of the described modules, utilizing such sensors may not
be viable for the precise task of determining airport lamp types based on the colour of emitted
light. This operation demands colour measurement with greater accuracy, as each type of
airport lamp adheres to specific standards governing its use. Accurate identification
of a particular model is essential for selecting appropriate conversion factors for the matrix of

light intensity sensors, which measure the luminous intensity of the primary beam.

An alternative group of modules falls under the category of colour sensors, specifically
designed for analysing light spectra. Notably, some of these devices enable the analysis of not
only visible light but also extend to cover the infrared to the beginning of the UV range. One
such example is the AS7265x module, offering comprehensive functionality that spans the UV
to IR spectrum. However, from the perspective of airport lamp testing, this extensive range
may not be necessary and could significantly inflate device costs. The AS7265x module
comprises three interconnected sensors: AS72651, AS72652, and AS72653, facilitating the
examination of light wavelengths from 410 nm (UV) to 940 nm (IR) across 18 channels with
a precision of £12% [189].

The technical data provided by the manufacturer is effectively represented in

the mapping charts of wavelength readings for each channel (Figure 5-26). These charts
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demonstrate the sensor's advanced capabilities and excellent precision. However, despite its
high performance, the potential utility of the sensor in an airport lamp recognition device
is limited. This limitation primarily stems from the module's high price, which may not justify

its full utilization.

In practical terms, simpler modules that offer examination of the visible light range may
suffice for the purposes of airport lamp recognition. While the advanced features of the
AS7262 sensor are commendable, their added complexity and cost may outweigh their

benefits in certain applications, such as airport lighting systems.

Sensors such as the AS7341 and AS7262 can be distinguished based on their specific
modules. The primary difference between them lies in the number of visible channels they
possess. The AS7341 boasts 11 channels, whereas the AS7262 is equipped with only
6 channels [190], [191]. Both sensors demonstrate excellent performance in representing

reading values for individual wavelengths.

The module utilized in the device features the AS7341 sensor. In addition to detecting
visible light components, this sensor also facilitates the identification of the NIR (near-infrared)
range [190]. Figure 5-27 illustrates the sensitivity and precision of all channels relative to the
reference waveform, indicating exemplary performance across the board. Upon comparing
technical documentation with results obtained from research utilizing a professional
spectrometer, it was determined that employing a module with a smaller number of channels,
such as the AS7262, would suffice for the intended task.

Consequently, the device module responsible for detecting specific lamp types was
constructed using the AS7262 visible light spectrum sensor [191]. Tests conducted on both
stationary and moving sensors revealed variations in the values of individual colour
components. Based on these findings, the lamps slated for inspection were accurately
classified, and software was developed to select coefficients for the results obtained from the

light intensity sensors.

The module tailored for examining the visible light spectrum (Figure 5-28) is capable of
detecting wavelengths at key intervals, namely 450, 500, 550, 570, 600, and 650 nm, with
a corridor width of 40 nm and a half-maximum detection width. This approach facilitates the
easy differentiation of colours emitted by the tested lamps, aligning with the design
assumptions. Communication between the sensor and the microprocessor occurs via either
the 12C or UART interface. In this instance, the 12C interface is utilized, which is the default
choice made by the device manufacturer. Data transmission is carried out digitally, employing

a 16-bit format. It's worth noting that all module signals require a voltage supply of 3.3 V [191].

J. Suder 179



5 Quality classification of airfield ground lighting

The TCS3430 sensor is a highly sophisticated device employed in various colour sensing
and ambient light sensing applications. It operates within the visible light spectrum, covering
wavelengths from 380 nm to 780 nm, and boasts exceptional sensitivity to light, enabling it to
detect even minute variations in the spectral output of different light sources. This sensor
utilizes a combination of photodiodes and an on-chip filter to accurately measure light
intensity across different wavelengths. Thanks to its dynamic range, the TCS3430 is well-suited
for a wide array of lighting conditions. The integrated filter ensures precise light intensity
measurements while also providing significant noise reduction, enhancing the accuracy of the
readings [192].

Designed to be compact and energy-efficient, the TCS3430 consumes just 0.45 mW
during full operation and is housed in a small surface-mount package, facilitating easy
integration into various sensing and control systems. It is capable of operating within a broad
temperature range, from -40 °C to 105 °C, making it suitable for demanding environments.
One of the standout features of the TCS3430 is its ability to compensate for the effects of
temperature and aging on the photodiodes. This capability ensures that the sensor maintains
accuracy and reliability across a wide range of environmental conditions, which is crucial for

use in harsh industrial or outdoor settings [192].

Additionally, the TCS3430 sensor can adjust the intensity of lighting based on ambient
light levels, making it an invaluable tool for reducing energy consumption and light pollution
in indoor lighting applications. By measuring ambient light levels and adjusting the lighting
accordingly, the sensor contributes to more efficient and environmentally friendly lighting
systems. Table 5-5 provides a detailed overview of the electrical and optical parameters of the
TCS3430 sensor [192].

In the context of airport navigation lighting, the TCS3430 plays a critical role in ensuring
optimal performance and adherence to safety and visibility standards. It achieves this by
measuring the spectral output of various light sources used in the navigation lighting system.
Figure 5-29 depicts its spectral response, which includes five channels: X, Y, Z, IR1 (Far Red
LED), and IR2 (IR LED). By combining readings from these channels, the TCS3430 can accurately
determine the colour of the light. The spectral response of each photodiode in the TCS3430 is
meticulously designed to align with the human eye's response to different colours, ensuring
precise colour detection [87].
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Table 5-5 Electrical and optical parameters of the TCS3430 sensor [192]

Parameter Min. Max. Units
Supply voltage -0.3 2.2 Vv
Digital I/O terminal voltage -0.3 3.6 V
Output terminal current -1 20 mA

Channel X (Warm White LED) 58 90 counts/(LW/cm?)
Channel Y (Warm White LED) 56 70 counts/(uW/cm?)
Channel Z (Warm White LED) 6.5 14 counts/(uW/cm?)
Far Red LED 90 180 counts/(uW/cm?)
IRLED 90 230 counts/(uW/cm?)

The sensor provides colour information in the form of XYZ coordinates, which represent

the tristimulus values of the light. These coordinates describe the relative contributions of

three primary colours: red, green, and blue, based on tristimulus theory. According to this

theory, any colour can be represented as a mixture of these three primary colours. However,

to plot these colours on a chromaticity chart, it is necessary to convert the XYZ coordinates

into x, y coordinates within the CIE 1931 colour space.

Table 5-6 shows a comparison of selected light spectrum and chromaticity sensors,

highlighting the result representation and measurement range of each of the analysed sensors.
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Table 5-6 Comparison of selected spectrum and chromaticity sensors

Result
Measurement ]
Sensor Measurement range representation
speed
(Colour space)

Integration time

TCS34725 380-780 nm from 2.4 ms to RGB
614 ms
Integration time
APDS9960 400 -700 nm RGB

from 2.78 ms

Integration time
ISL29125 410-700 nm RGB
from 1 ms to 360 ms

Measurement time 18-channel
AS7265x 410 - 940 nm . )
starting from 5 ms multispectral
Integration time
11-channel
AS7341 350-1000 nm from 2.78 ms to .
multispectral
7.14 s
Integration time 6-channel
AS7262 450 - 670 nm .
from 5 ms to 255 ms multispectral
Integration time XYz
TCS3430 300 - 1000 nm from 2.78 ms to (CIE 1931 colour
700 ms space)

5.2.4. Analysis of spectrum sensors for detecting type of airport lamps

As mentioned previously, in order to properly classify the type of lamp based on the colour of
the emitted light, it was necessary to develop a method to distinguish each type. In the
research conducted on the selected visible light spectrum sensor AS7262, numerous
experiments and measurements were performed utilizing original airport lamps. These
luminaires, integrated into the surface of the runway and taxiways, underwent not only direct
measurements but also testing with a built-in measuring matrix enclosed in acrylic glass cover.
This cover is essential for the measurement method employed. The matrix is affixed to
a specialized frame beneath the chassis, positioned in proximity to the surface. Given the
heightened risk of damage to the matrix, including the sensors, additional protection

measures were implemented.

The lamps of interest were subjected to laboratory testing under controlled conditions,
with a consistent distance of approximately 1 meter between the light source and the sensor.
Three distinct types of brand-new lamps were utilized for lighting testing: runway centre line

white (RCW), runway centre line red (RCR), and taxiway centre line (TC). Each lamp type
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underwent multiple series of measurements, and the average results are summarized
in Table 5-7.

Table 5-7 Spectrum results of the embedded airport lamps examination [in counts/(uW/cm?)]

Channel RCW RCR TC

61259.47 16596.37 42350.37

§ 65474.53 11769.84 63098.99
§ 57115.52 5666.82 52538.19
_§ 48994.17 28503.14 34594.12
S 51246.94 51246.94 4319.873
45703.38 45703.38 2086.367

61259.47 15113.16 38246.94

o 65474.53 11228.07 60962.59
% 57115.52 5701.4 49748.65
é 48994.17 27103.2 31231.9
= 51246.94 51246.94 3978.233
l 45703.38 45703.38 1896.83

Based on the collected data (Figure 5-30), the individual VBGYOR components
(Table 5-7) exhibit graphs that closely resemble those of spectral radiation intensity. The
characteristic shape of the graphs for each lamp type has been preserved, facilitating

the identification of specific luminaires based on the spectrum of emitted light beams.

The white-coloured lamp of the runway centre line predominantly emits blue and
purple hues, while the red lamp is characterized by dominant orange, red, and yellow
components. Notably, the second type of runway centre line luminaire demonstrates
significantly lower readings in the violet, blue, and green channels. Conversely, the light
emitted by the taxiway centre line lamp is primarily composed of blue and green components,
with moderate readings in the violet and yellow channels, and minimal values for orange

and red.

Furthermore, the influence of using an acrylic glass cover on the AS7262 module on
the visible light spectrum graphs for each lamp type was investigated (Figure 5-31). It was
observed that, for white-coloured runway centre line lamps, there was no discernible impact

of the acrylic glass cover on the readings for individual channels.
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Figure 5-30 Average visible light spectrum of in-pavement airport lamps without the acrylic glass
cover on the AS7262 module [39]
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Figure 5-31 Average visible light spectrum of in-pavement airport lamps with the acrylic glass cover
on the AS7262 module [39]

counts/(uUW/cm?)

However, for the second type of runway centre line lamps emitting red light, slight
differences in luminous intensity values were observed, particularly for the channels
responsible for violet and yellow components. The obtained results were lower than in the
test without cover. With the luminaire of the taxiway centre line, the effect of the acrylic glass
cover is noticeable for each channel, causing a slight decrease in the reading value for each

channel.

channel=R

2
d(LTl: LTZ) = Z (LTlchannel - LTzchannel) (57)

channel=V

channel=B

2
d(LTl: LTZ) = Z (LTlchannel - LTzchannel) (58)

channel=R
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To quantitatively visualize the distinctions among various types of the tested airport
lamps, Euclidean distances were computed using two distinct equations. For 6-channel
sensors, the Euclidean distance d was calculated according to equation (57), while for RGB
sensors, the calculation followed Equation (58), where LT represents the lamp type. The
resulting Euclidean distances are presented in Table 5-8. These calculations enabled
a quantitative assessment of the dissimilarities between the spectral characteristics of
the different airport lamp types, facilitating a comprehensive understanding of their distinctive

features.

Table 5-8 Results of calculated Euclidean distance of different types of the embedded airport lamps
[in count/(uW/cm?)]

Euclidean distance between airport lamps spectrum
6-channels (VBGYOR)

RCW RCR TC
RCW 0 89139.43 68528.13
RCR 89139.43 0 98166.03
TC 68528.13 98166.03 0
3-channels (RGB)
RCW RCR TC
RCW 0 74371.79 43920.83
RCR 74371.79 0 82061.26
TC 43920.83 82061.26 0

The examination of the compiled results reveals the feasibility of programmatically
distinguishing between individual types of airport lamps, leveraging the analysis of data
retrieved from the AS7262 spectrum sensor. Notably, Euclidean distance values obtained for
a greater number of channels are elevated, indicating that employing more sophisticated
sensors, such as those capable of capturing multiple channels, enhances the confidence in

decision-making processes.

The positional representation of each lamp type within the RGB colour space for the
3-channel sensor is depicted in Figure 5-32. This visualization offers a clear insight into
the distribution of lamp types based on their RGB colour readings, facilitating a deeper
understanding of their spectral characteristics and aiding in the development of robust

classification algorithms.
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Figure 5-32 RCW, RCR, and TC airport lamps in RGB colour space [39]

The comparison of the visible light spectrum emitted by individual luminaires reveals
both similarities and differences across various planes. However, it's notable that while such
a characteristic can be effectively visualized for RGB sensors due to their three-dimensional
colour space representation, the same cannot be easily achieved for 6-channel sensors. This
limitation arises from the higher dimensionality of the data, making it challenging to visualize
the similarities and differences in a comprehensible manner. Despite this challenge, the
analysis of the data from 6-channel sensors still provides valuable insights into the spectral
characteristics of the luminaires, albeit through alternative means such as statistical analysis

or machine learning techniques.

The methodology employed for testing the efficiency of the second type of lamps in
elevated luminaires differs significantly from the approach used for the edge lamps. In this
scenario, the test device is an independent tool in the form of a tube terminated with
a measuring module, not mounted on a vehicle. During inspection, the operator manually
attaches it to the original lamp holders, utilizing a structure that impedes direct access to the
sensors without prior disassembly. Consequently, additional protection of the measurement
modules is unnecessary. As a result, the spectrum study for these lamps was restricted to

readings obtained when the beam directly illuminated the sensor.

The emitted light beam spectrum of a brand-new lamp from the white-coloured
approach system was subjected to testing, involving multiple series of measurements. The
averaged measurement results derived from these tests are meticulously compiled and

presented in Table 5-9.
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Table 5-9 Spectrum results of the approach system lamp (white) examination [in counts/(uW/cm?)]

Approach system lamp (white)

Distance from lamp [m]

Channel
0.5 0.75 1 1.25 1.5

30285.84 30285.72 30285.88 30285.91 20518.76

34167.91 34166.84 34165.87 34169.84 25872.91

27988.54 26220.12 24041.31 22989.64 6324.16

Y 24041.03 24039.81 24041.18 20357.57 15134.46

0 24898.79 24898.74 24899.81 22988.64 24853.31
H 23949.38 23948.46 23950.31 23947.47 23948.16

The findings gathered from the experimentation indicate a notable trend wherein the
reading value decreases as the distance between the sensor and the light source increases,
particularly evident for distances exceeding 1.25 meters. Notably, measurements conducted
within the range of 0 to 100 centimetres exhibit repeatability, whereas measurements taken
at distances of 125 centimetres and 150 centimetres manifest a decline in recorded data,

suggesting a potential limitation in measurement accuracy at greater distances.

An analysis of the visible light spectrum emitted by the approach system lamps,
characterized by a white beam, reveals predominant colours in the blue and purple regions.
As depicted in Figure 5-33, these hues dominate the spectral composition of the emitted light.
Given that white light is a composite of all spectral components, all channels register

a discernible signal, underscoring the comprehensive nature of the recorded data.
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Figure 5-33 Visible light spectrum of the approach system lamps (white) [39]
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As in the previous case, the investigation encompassed also an examination of the
spectral characteristics of a newly installed red approach lamp. Multiple rounds of
measurements were conducted to ensure thorough data collection, resulting in averaged
measurement outcomes that have been methodically compiled and are presented in
Table 5-10.

Table 5-10 Spectrum results of the approach system lamp (red) examination [in counts/(uW/cm?)]

Approach system lamp (red)
channel Distance from lamp [m]
0.5 0.75 1 1.25 1.5

30285.84 30285.72 14668.18 8113.64 6547.41

33532.45 10767.21 13588.13 9492.25 7122.26

27996.43 26221.31 15389.41 8597.91 6322.05

Y 24038.98 24038.98 24039.11 20359.15 15134.99

(0] 24899.78 24899.77 24898.94 22984.92 24851.86
H 23951.41 23951.43 23950.94 23950.94 23950.41

In a similar fashion to previous observations, an evident decrease in readings for certain
individual channels was noted as the distance between the spectrum sensor and the light
source increased. This trend was particularly pronounced beyond a distance of approximately
75 cm, indicating a diminishing intensity of light as the distance between the sensor and the
source widened. Such findings underscore the importance of considering distance as a critical

factor influencing the accuracy and reliability of light intensity measurements.

Upon closer examination of the visible light spectrum emitted by the approach system
lamp, it was observed that the red component predominated, with blue comprising the
smallest portion of the overall spectral composition. This spectral profile, illustrated in
Figure 5-34, highlights the dominance of red wavelengths in the emitted light beam,

underscoring the lamp's specific emission characteristics.
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Figure 5-34 Visible light spectrum of the approach system lamps (red) [39]

The emitted light beam spectrum of a brand-new runway end lamp was subjected to
rigorous testing, with multiple series of measurements conducted to ensure robust and
comprehensive data collection. The averaged measurement results derived from these

meticulous measurements are meticulously compiled and presented in Table 5-11.

Table 5-11 Spectrum results of the runway end lamp examination [in counts/(uW/cm?)]

Runway end lamp
channel Distance from lamp [m]
0.5 0.75 1 1.25 1.5

2262.99 1907.87 1347.51 774.71 606.81

392.13 1024.31 325.84 673.14 387.62

4827.02 1682.15 1062.01 699.79 498.02

Y 5395.98 3504.98 1949.52 1636.88 1101.84

0 24203.85 10956.67 7504.14 4126.21 3292.67
H 26148.37 13943.97 5178.99 5932.31 5080.03

The study investigating the distance effect between the spectrum sensor and the light
source, specifically focusing on a particular lamp, revealed a notable trend: as the distance
between the sensor and the light source increased, the recorded readings exhibited
a corresponding decrease. Unlike other luminaires where a distinct limit distance can often be
discerned, beyond which measurements stabilize, the data from this lamp displayed
a continuous decrease in readings with increasing distance. This characteristic behaviour is
represented by a curve reminiscent of a hyperbola, indicating a non-linear relationship
between distance and recorded values.
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Further analysis delved into the spectral composition of the light emitted by the runway
end lamp and stop bar, revealing predominant wavelengths in the orange and red regions of
the spectrum. These wavelengths constituted the majority of the emitted light beam, while
other spectral components made up only a minimal fraction of the total output. This spectral
profile underscores the lamp's specific emission characteristics, which may have implications

for its visibility and effectiveness in various operational conditions.

Figure 5-35 visually depicts the spectral composition of the emitted light beam,
highlighting the dominance of orange and red wavelengths. The graphical representation
provides a clear illustration of the relative intensities of different spectral components, offering

valuable insights into the spectral characteristics of the lamp's emitted light.
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Figure 5-35 Visible light spectrum of the runway end lamp [39]

Sensors integrated into the rear matrix of the measurement platform primarily include
BH1750 modules, which are responsible for measuring light intensity. Furthermore, to enable
the automatic identification of lamp types, the AS7262 visible light spectrum sensor has been
incorporated into the system. This sensor operates by recognizing the colour of the light beam,

utilizing the values of its individual spectral components [28].

5.2.5.Proposed system for automatic chromaticity measurement of

airport navigation lighting

As part of this research, extensive testing was conducted using the TCS3430 sensor alongside
in-pavement airport navigation lamps. Specifically, ten series of measurements were
performed, with each series comprising 1000 individual measurements taken at varying

distances from the light source. These measurements were carried out in strict accordance
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with the guidelines set by international regulatory bodies such as the European Union Aviation
Safety Agency (EASA) and the International Civil Aviation Organization (ICAO). The tests were
conducted at the maximum power output of the respective light points, utilizing halogen bulbs
rated at either 48 W or 40 W with a current of 6.6 A [193], [194].

To ensure the reliability and accuracy of the data, statistical parameters such as the
standard deviation and median were computed for the measurements. The electrical and
optical parameters of the in-pavement aeronautical ground lights are detailed in Table 5-12.
The analysis of the results shows a minimal dispersion in the data across different distances
from the light source. This minimal scatter indicates that the measurements were executed
correctly, taking into account the geometric relationships as defined by the relevant standards,
including the angular alignment with respect to the main beam of the emitted light. The sensor

used in this study ensures high repeatability of the measurements [25].

Table 5-12 Electrical and optical parameters of in-pavement aeronautical ground lights [193], [194]

Power of the Average Horizontal Vertical

Lamptype [ightsource Colour . distribution distribution

intensity [cd]
W] [degrees] [degrees]

TDZ 48 White 5800 -12to +12 Oto 16
RCL_White 48 White 5800 -12to +12 Oto 16
RCL_Red 48 Red 870 -12to +12 Oto 16
TAXI_GREEN 40 Green 442 -18to +18 Oto 12
TAXI_YELLOW 40 Yellow 663 -18to +18 Oto 12

Furthermore, the mean values derived from these measurements are summarized in
Table 5-13. It is evident from the data that the measured values exhibit a strong dependence
on the distance between the light source and the sensor. Despite this dependency, the
TCS3430 sensor's measurement range effectively encompasses all the distances that were
investigated. Additionally, it is noteworthy that the standard deviation values for these
measurements are consistently low, underscoring the precision and reliability of the testing

process across all examined distances.
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Table 5-13 Data from the TCS3430 sensor of the tested in-pavement aeronautical ground lights

(XYZ coordinates)

Distance from lamp [m]

g 0.5 1.0 15 2.0 25 3.0
2
=188/ == |83 =|=|58=|=|58/=|*=|58:=|°= |33+
Z|x|[3473] 1 |3473| 850 | 0 | 850|380 | 0 |380(222| 0 |222| 140 | 0 |140| 98 | O |98
il v|2787| 1 |2787| 690 | 0 | 690|296 | 0 |296|173| o0 |[173| 120 | 1 |110| 75 | O |75
§ z|14s| 0 |145| 35 | 0 |35 | 15| 0|15 9| o | 9| 6 |0o|6]| 4 |o0]|a
z|x|525| 1 525|182 | 1 |18 75| 0 |75(45| 0 |45| 28 | 0|28]| 22 |0 |22
i
?, v|1127| 2 |1127| 375 | 1 |375|161| 0 |161| 98| O | 98| 60 | O | 60| 46 | O |46
>
Slz|306| 1 |396| 131 ] 1 |131| 62| 0 |62]|38| 0 |38] 23 | 0|23| 17| 0 |17
x |27826] 7 |27824|10687| 2 [10687|4173| 1 |4173|2346| O |2346| 1261 | 1 |1261| 772 | 0 |772
B|v[25063 6 [25062| 9500 | 2 [9590|3808| 1 [3808|2139] 0 [2139] 1150 | 0 [1150| 693 | O |693
z|5323| 1 |5323| 217 | 1 |2127| 831 | o0 |831|472| o |472| 195 | 0 |195]| 82 | 0 |82
| X[36100 20 [36099(10261| 3 |10261|4445| 1 |44452534| 2 |2535| 1439 | 2 |1439| 982 | 2 |982
% vy |31755| 17 |31753| 8997 | 3 |8997|4021| 1 |4021|2225| 2 |2225| 1292 | 1 |1292| 882 | 1 |882
& 7|6923| 3 |6922| 1966 | 1 |1966| 871 | 0 |871|481| o |481| 283 | 0 |283] 192 | 0 |192
o|X[15358 3 |15359| 4705 | 1 |4705|2244| 1 [2244|1466| O |1466| 857 | 0 |857| 427 | O |427
il v|8130| 2 [8130| 2465 | 1 |2466|1167| 0 |1167/803| O |803| 453 | 0 |453| 227 | 0 |227
“17\aa7| 0 |aa7| 136 | 0 |136| 65 | 0 | 65| 43| 0 | 43| 24 | 0| 24| 12 | 0 |12

The data collected from the TCS3430 sensor, originally in the form of XYZ values, were

normalized and transformed to coordinates compatible with the CIE 1931 colour space,

represented as x, y coordinates. This conversion, shown in Table 5-14, standardizes the values,

making them independent of the measurement distance. As a result, the values in the

respective rows are now consistent and comparable, regardless of the distance from which

the measurements were taken.
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Table 5-14 Normalised TCS3430 sensor data from in-pavement navigation lighting converted to

CIE 1931 x, y coordinates

Lamp type 0.5 [m] 1.0 [m] 1.5 [m] 2.0 [m] 2.5 [m] 3.0 [m]
= X 0.54 0.54 0.55 0.55 0.55 0.55
%9
i y 0.44 0.44 0.43 0.43 0.43 0.42
< & X 0.26 0.26 0.25 0.25 0.25 0.26
ay: y 0.55 0.54 0.54 0.54 0.54 0.54
N X 0.48 0.48 0.47 0.47 0.48 0.50
. y 0.43 0.43 0.43 0.43 0.44 0.45
g 2 X 0.48 0.48 0.48 0.48 0.48 0.48
=z y 0.42 0.42 0.43 0.42 0.44 0.43
373 X 0.64 0.64 0.65 0.63 0.64 0.64
i y 0.34 0.34 0.34 0.35 0.34 0.34

Figure 5-36 presents a point with specific measurements marked, demonstrating the

data in an illustrative manner. The graph features five distinct lamps, which enables a clear

differentiation between the lamp types and an easy verification of the accuracy of

the reproduced colours. This graphical representation facilitates a straightforward assessment

of whether the colours produced by the lamps conform to expected standards. Notably, all the

in-pavement lamps tested adhere to the standards specified in international regulations.

#UReL RED

0.8

Figure 5-36 Chromaticity chart of in-pavement airport navigation lighting system [42]

J. Suder
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In Figure 5-37, the relationship between the x, y coordinates values within the CIE 1931
colour space and the distance from the light source is depicted. For the in-pavement lamps,
the maximum sensor values were not exceeded, which implies that measurements can be
accurately taken from a distance of 0.5 meters. The observed waveforms are linear, suggesting
that the measurement system is robust against environmental variations. This linearity
confirms that the measurements can be reliably performed regardless of the distance from

the lamp under test.
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Figure 5-37 Graph of the CIE 1931 x, y coordinates of the tested in-pavement lamps as a function of
the distance from the light source [42]

As part of the study, tests were conducted on elevated airport navigation lighting using
the TCS3430 colour sensor. Ten series of measurements were taken, with each series
comprising 1000 measurements at distances of 0.5 meters, 1.0 meters, 1.5 meters, 2.0 meters,
2.5 meters, and 3.0 meters from the tested light source. These measurements were performed
with the light sources operating at their maximum power (current 6.6 A). It is important to
note that the stop bar lamp uses a lower power bulb (45 W) compared to the approach lamps,
which use higher power bulbs (150 W) [195]. The type of light source significantly influences

the intensity of the emitted main beam.
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Table 5-15 provides the electrical and optical parameters of elevated aeronautical
ground lights. Similar to the in-pavement lamps, the standard deviation and median values
indicated high repeatability and accuracy of the sensor used. The data dispersion was minimal,
representing only a fraction of the values obtained across the entire measurement series.
The average values from these measurements are presented in Table 5-16. Accurate
measurements are feasible from a distance of 0.5 meters for the STOP_BAR lamp, 1 meter for
the APP_Red lamp, and 1.5 meters for the APP_White lamp. Although the standard deviation
is slightly higher than that observed in in-pavement aeronautical ground lights, it remains

within 2% of the mean value, ensuring reliable measurement results.

Table 5-15 Electrical and optical parameters of elevated aeronautical ground lights [195]

The power of Average Horizontal Vertical
Lamp type the light source Colour intensit g[c d] distribution distribution
[W y [degrees] [degrees]
APP_White 150 White 22 108 -10to +10 2to 13
APP_Red 150 Red 6921 -5to+9 3to 13
STOP_BAR 45 Red 309 -10to +10 1to 8

In a similar manner to previous experiments, the data obtained from the TCS3430
sensor, presented in the form of XYZ coordinates, underwent normalization and subsequent
transformation to the CIE 1931 colour space, resulting in x, y coordinates. Table 5-17 provides

the coordinates post-conversion.

Consistent with earlier observations (refer to Table 5-16), it was noted that sensor
saturation occurred at a distance of 0.5 m for APP_Red and at distances of 0.5 m and 1 m for
APP_White. Consequently, these particular results are deemed unsuitable for further analysis

and consideration due to their overrange nature.
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Table 5-16 Data from the TCS3430 sensor of tested elevated aeronautical ground lights

(XYZ coordinates)

9 0.5 [m] 1.0 [m] 1.5 [m] 2.0 [m] 2.5[m] 3.0[m]
28| 2 3y 2 28| =2 a8 2 a8 =2 58 2
I X]|36805| 284 (36863]36863| 0 ([36863]18551| 81 [18528]9415| 116 |9405|5220| 68 |(5221]3701| 31 |3698
%I Y]35058| 2055 [3562836697| 609 [36863]15789| 63 |[15776]7998| 81 |7998|4456| 57 (4449|3166 22 |3159
% Z]10167| 1698 | 9787 |10271| 266 (10320] 4241 | 16 |4236]2130| 29 (2128)1180| 14 |1181}835| 7 |834
- X]|36863| 0O |[36863]15695| 139 [15681) 6849 | 61 |6837 3381 43 |3357|2044| 31 (20591486 18 [1491
fl Y|36863| O |(36863] 8660 | 82 | 86303767 | 25 |3770]1799| 30 |1785|1088| 22 (1098] 798 | 16 | 806
2
= Z]36863| 0 |36863] 1338 | 12 |1334] 560 5 559 | 280 3 280|165| 1 1661120 2 |121
o X] 2688 | 34 |2679] 822 4 822 | 408 5 405 | 240 1 2401154 | 1 1541111 0 |111
<
g' Y| 1381 | 20 |1377] 429 2 429 | 208 4 206 | 120 1 120 79 0 79 | 58 0 58
& Z] 251 3 251 77 0 77 38 0 38 22 0 22 | 14 0 14 | 10 0 10

Table 5-17 Normalised TCS3430 sensor data from elevated navigation lighting converted to CIE 1931

X, y coordinates

Distance from lamp [m]

Lamp type 0.5 1.0 1.5 2.0 2.5 3.0
X 0.33 0.61 0.61 0.62 0.62 0.62
APP_Red
y 0.33 0.34 0.34 0.33 0.33 0.33
X 0.45 0.44 0.48 0.48 0.48 0.48
APP_White
y 0.43 0.44 0.41 0.41 0.41 0.41
X 0.62 0.62 0.62 0.63 0.62 0.62
TDZ
y 0.32 0.32 0.32 0.31 0.32 0.32

Figure 5-38 provides a visual representation of the measured data, with a specific point

marked for illustrative purposes, showcasing measurements from three different lamps in

a single graph. This graphical visualization facilitates the easy distinction between lamp types

and enables the verification of colour reproduction accuracy.
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0.8

Figure 5-38 Chromaticity chart of the elevated airport navigation lighting system [42]

Upon closer inspection, it becomes evident that the Stop Bar and APP_Red lamps
(previously utilized lamps) no longer conform to the standards regarding the chromaticity of
the emitted light beam. Several factors could contribute to this deviation, including the wear
and tear of the halogen bulb light source and the lampshade, which also acts as a colour filter.
Exposure to various weather conditions can lead to the degradation of the lampshade's
structure and physical properties, resulting in issues such as discolouration, cracks, matting,

and fading.

Consequently, regular and dependable verification of the chromaticity of the lamps
becomes imperative to facilitate timely maintenance and replacement processes. By ensuring
the adherence to established standards, potential safety hazards and operational disruptions

can be mitigated effectively within airport environments.

As previously mentioned, approach lamps are equipped with significantly more
powerful light sources. Figure 5-39 illustrates the relationship between the x, y coordinates in
the CIE 1931 space and the distance to the tested lamp. Notably, during the measurements for
APP_Red at a distance of 0.5 m and APP_White at distances of 0.5 m and 1.0 m, the values of
individual components exceeded the sensor's saturation threshold. Consequently, the results

obtained at these points are deemed unreliable after conversion.
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Figure 5-39 Graph of the CIE 1931 x, y coordinates of the tested elevated lamps as a function of the

distance from the light source [42]

It has been conclusively determined that the minimum measurement distance for the
approach lamps should be set at 1.5 m to ensure accurate and reliable data collection. This
adjustment ensures that the measurements remain within the sensor's operational range,

thereby enhancing the credibility and validity of the obtained results.

As part of this research [42], a software application was developed to automate data
conversion, plot measured points, and compare these results against the relevant aviation
standards. The software allows users to input data obtained from the sensor in the form of
XYZ coordinates. After entering the data, the user selects the colour standard that the tested
lamp should conform to. The system then determines whether the standard has been met and
generates a chromaticity graph to visualize the data. This graph includes a point provided by
the user and visualizes whether the lamp meets the specified colour standards. The
chromaticity chart incorporates the standards for individual colours as defined by
the equations in the EASA document [4].

It was chosen to create the chromaticity plot using the 2-degree x, y chromaticity
coordinates from the CIE 1931 colour space, based on data provided by the Colour & Vision

Research Institute of Ophthalmology at University College London [196]. This approach
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ensures the highest accuracy in generating the chromaticity diagram, capturing every
nanometre of the visible light spectrum within the range of 360 to 830 nm. Figure 5-40
showcases the user interface, displaying the visual representation of the measurements
obtained through the system.
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Figure 5-40 Proposed graphical user interface of the prepared software for colour classification [42]

The system not only enhances the efficiency of the measurement process but also
ensures precision by automating the comparison against stringent aviation standards. This tool
is particularly valuable for professionals in the field, enabling them to quickly and accurately
verify whether the tested lamps meet the required specifications, thereby ensuring

compliance with international aviation safety regulations.
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Chapter

6. Conclusions

The doctoral dissertation addresses European Union Aviation Safety Agency (EASA)
recommendations, concerning the implementation of Al to support safety inspections in
aerodromes. It is rooted in international standards for aviation regulations, reliability levels,
and recommendations from EASA, the International Civil Aviation Organization (ICAO), and the
Federal Aviation Administration (FAA). The developed systems contribute significantly to the
continuous improvement of airport safety. The research benefited from effective scientific
collaboration between specialists from the Department of Electronic Systems and Signal

Processing at Poznan University of Technology and Poznan—tawica Airport.

In examining the detection of Foreign Object Debris, the author justified
the importance of this issue by analysing available databases, such as the FOD-A dataset, and
constructing a proprietary PUT dataset comprising 1480 images of FOD objects based on real
images from Poznan—tawica Airport, built in accordance with the FAA recommendations. The
study compared traditional image processing methods (e.g., k-means) with advanced neural
network models such as GooglLeNet and YOLOvVS5. A co-evolutionary neural network model
based on GooglLeNet achieved 95.73% accuracy in object detection and classification, while
a significantly expanded dataset of over 19000 images from FOD-A, used to train the YOLOvV5
network, reached an accuracy of up to 99%, which is the highest result among the analysed
literature and FOD-A database, which achieved an efficiency of maximum 95.73% on this
dataset. Additionally, the YOLOvV5 model trained on the PUT dataset achieved an accuracy
of 99.3%.

For the detection of aerodrome horizontal markings, the dissertation introduced
the PLAVS1 (Poznan Lawica Airport Video Set 1) dataset, comprising over 303 minutes of
recordings (over 98 GB) showing runways, taxiways, and aprons under various meteorological
conditions and times of day. The proposed algorithm for detecting lines developed a line
detection algorithm based on colour space conversion to HSV and colour filtering, achieving
nearly 99.9% accuracy. Additional advantage of this algorithm is independence from the
analysed input resolutions. The second algorithm achieved values close to 98%, but there was
also a visible dependence on the input image size and also in certain cases its efficiency

was lower by 34% than the proposed solution.
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The evaluation and selection of Single Board Computers (SBCs) is a complex task,
involving multiple considerations detailed in this dissertation. The energy aspects, particularly
relevant for mobile devices, are addressed by manufacturers who offer various power modes
in their experimental modules. However, there is a scarcity of comprehensive publications
assessing the use of these features. The algorithms examined exhibit typical challenges in
video sequence processing. Therefore, the estimates provided in this dissertation serve as
valuable guidelines for designers of intelligent embedded systems for video processing. It is
important to note that to accurately determine energy requirements, individual algorithm

tests are necessary.

The performance of the proposed algorithms was evaluated on selected SBCs for
experimental tests. The Raspberry Pi 4B modules are adequate for applications where high
resolution is not critical. Experimental results demonstrated that these modules could handle
standard 30 FPS video processing at a maximum resolution of 640 x 360. The primary benefits
of using Raspberry Pi 4B modules include their low cost and relatively low energy consumption
per processed video frame. These devices can operate with passive cooling, eliminating the

need for an additional fan, which would otherwise consume an extra 0.5 W.

Processing efficiency is also related to energy aspects, and modules can work in
different modes. NVIDIA Jetson family solutions have been tested. The most efficient units,
such as the NVIDIA Jetson Xavier AGX and NVIDIA Jetson Orin AGX, are the only ones that meet
the FPS requirements for video sequence processing. Despite being the latest model, the
NVIDIA Jetson Orin AGX did not outperform the NVIDIA Jetson Xavier AGX in most tests
conducted. The Xavier AGX achieved superior results in FPS values and power efficiency per
processed frame, especially under the default schedutil Dynamic Voltage and Frequency

Scaling (DVFS) policy.

The author introduced an intelligent vision system and conducted experiments for the
quality classification of prisms in in-pavement airport lamps. This assessment utilized
a proprietary PLAVS2 (Poznan Lawica Airport Video Set 2) dataset, developed in collaboration
with Poznan—tawica Airport, comprising 1004 images of lamps. The experiments were
conducted using the standard Open Neural Network Start application within the MATLAB
environment and Google Colab. Due to the unique characteristics of airport lamps, it was
crucial to appropriately select parameters for image processing algorithms and the neural
network's functionality. Enhancing the efficiency of Region of Interest (ROI) detection could be
achieved through optimized lighting systems during image capture, a focus of ongoing

research. The implemented GooglLeNet neural network model achieved an accuracy of 88.37%
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in the classification process. This accuracy can be improved by expanding the dataset and

ensuring a balanced number of images in each class.

To select appropriate cameras for SBCs, extensive testing of various video cameras was
conducted, with the results analysed according to the ISO 12233 standard test chart. The tests
indicated that the Raspberry Pi Camera HD v2 and the IMX477 camera with a 6mm CS-Mount
lens produced the best image detail. Additionally, the IMX477 camera offers significant
advantages due to its construction and compatibility with standard mount lenses. This feature
greatly enhances its adaptability for use in measurement platforms for quality testing at

airports and for assessing mechanical damage to airport lamps.

The author investigated the feasibility of utilizing a light spectrum sensor for detecting
the colour of airport lamps, focusing specifically on the AS7262 sensor. The detailed
examination revealed that, for in-pavement airport lamps, measurement repeatability is
maintained even with the use of an acrylic glass cover. However, for elevated lamps, the
measurement variability is noticeable due to the changes in the distance between the sensor
and the light source. The research indicated a dependency on this distance, with red and
orange components primarily requiring adjustments as the distance increases. These
corrections can be addressed programmatically, but proper calibration is essential to ensure

accuracy.

The investigation into the utilization of the TCS3430 sensor for the chromaticity
assessment of airport navigation lighting, along with the development of software for
automatic conversion and visualization of the obtained measurements, facilitated the creation
of a system for evaluating the chromaticity of navigation lighting. This system enables users to
verify compliance with chromaticity standards for specific types of tested navigation lamps.
Experiments were conducted on seven types of lamps installed at Poznan—tawica Airport,
examining the impact of measurement distance from the light source. It was determined that
measurements for in-pavement airport navigation lamps can be performed from a minimum
distance of 1 meter, while for elevated lamps, a minimum distance of 1.5 meters is required.
A key advantage of the TCS3430 sensor is its capability to provide CIE 1931 colour coordinates
in accordance with EASA standards. However, a limitation of the TCS3430 sensor is its
insufficient range of results for each type of lamp at the same distance, leading to the
recommendation that in-pavement aeronautical ground lighting be tested at a distance of

1 meter and elevated aeronautical ground lighting at a distance of 1.5 meters.

Experiments related to the inspection of chromaticity of airport navigation lighting can

also be combined and performed simultaneously, during a single measurement. On the one
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hand, the lamp is categorized according to the colour of the emitted light, which determines
the light intensity levels that a given lamp must meet, according to EASA standards, and on the
other hand, it is possible to perform a light chromaticity test and check whether it is within

the EASA standard for light colour in CIE 1931 colour space.

An important advantage of the proposed solutions is also the universality of the
systems and the possibility of performing many inspections using one vehicle and one camera.
For example, it is possible to detect horizontal markings in airports while simultaneously
detecting FOD objects. Such a solution significantly shortens the time of occupation of the
runway and taxiways, which in turn is economically beneficial for the airport. Moreover,
the proposed solutions are not designed for a specific type of vehicle, thanks to which it is
possible to easily dismantle the camera and the data processing system, and then install

it in another vehicle, for example for the time of repair or other unforeseen events.

In conclusion, the author has advanced solutions for vision inspection leveraging
artificial intelligence to enhance aerodrome safety. Consequently, the scientific objectives
of this Ph.D. dissertation have been successfully achieved. The scientific thesis — Proposed
vision preprocessing methods, together with neural network solutions within the domain of
embedded systems, substantially improve and facilitate the automated inspection process
at the airports — has been validated. The developed systems demonstrate applicability across
various airport service vehicles and measuring platforms, thereby supporting the inspection

and safety management of airport operations.
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