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Abstract 

Due to the intermittent nature of renewable energy sources, the development of energy 

storage devices is paramount for the successful transition towards sustainable future. 

Electrochemical capacitors (ECs) offer several advantages over standard lithium-ion 

batteries (LiBs), including exponential longevity and power density, but they suffer from 

moderate energy density. This PhD dissertation addresses the main issue of ECs, 

 i.e., low energy density, by utilizing novel two-dimensional (2D) electrode materials 

characterized by high capacitance. 

The first part of the dissertation (Chapter I) focuses on a theoretical introduction  

to the current state-of-the-art in ECs. It will provide an in-depth explanation of their 

fundamental charge storage mechanisms, including the formation of electrical double-

layer (EDL) at the electrode/electrolyte interface and the emergence  

of pseudocapacitance. The standard components of ECs cells, such as electrolytes  

and electrode materials are thoroughly discussed. Special attention is given  

to introducing 2D materials, such as transition metal dichalcogenides (TMDs),  

as electrodes in ECs. Novel trends in the use of 2D materials and how to understand 

their electrochemical performance are also described.  

In Chapter II, the objective and structure of this PhD dissertation are explained.  

The Motivation for pursing this research is provided before each subsequent chapter.  

Chapter III, consisting of three research papers (P1, P2, P3), introduces the concept  

of using 2D materials as electrode materials in aqueous-based ECs. Synthesis protocols 

for obtaining different TMDs materials (ReS2, MoS2, NiS2, FeS2) and their integration with 

carbon into composite materials have been developed. The relationship between the 

materials’ morphology and electrochemical behavior is thoroughly discussed. The 

advantages and disadvantages of using TMDs as electrode material are also explained.  

Chapter IV consists of one research paper (P4) and aims to address the issues identified  

in Chapter III. Based on the synthesis methodology developed in Chapter III, MoS2  

has been obtained for further functionalization with redox-active compound,  

i.e., anthraquinone (AQ). These grafted AQ species have been found to improve  

the capacitance and longevity of the electrode material. Power-law relationship  

and electrochemical impedance spectroscopy (EIS) studies reveal the ion movement 

kinetics and dominant charge storage mechanism. Given the disadvantages observed 
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for symmetrical cells in Chapter III, an asymmetrical setup was utilized to prevent  

the oxidation of MoS2, thus capacitance decay. Preliminary electrochemical studies  

in an organic medium have also been performed.  

Based on the interesting electrochemical behavior of MoS2 in organic media, different 

sulfur precursors, i.e., thiourea (TU), thioacetamide (TAA), L-cysteine (LC), were used 

for their hydrothermal synthesis in Chapter V, which includes additional data (5). Chapter 

V reveals that depending on the sulfur precursor used for the hydrothermal synthesis of 

MoS2, different physicochemical, structural, morphological, and porous properties are 

obtained. Induced by the nanostructured particle size, MoS2 shows slightly different 

pseudocapacitive electrochemical behavior. Additional operando measurements, such 

as X-ray diffraction and dilatometry, were used to study crystal structure and electrode 

height changes during electrochemical operations. Dependent on the particle size, 

different results were found.  

The thesis is concluded with general conclusions, followed by a presentation  

of the scientific track record and a list of references. 
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Streszczenie 

Ze względu na niestabilny sposób dostawy energii ze źródeł odnawialnych, rozwój 

urządzeń do magazynowania energii ma kluczowe znaczenie dla zrównoważonej 

przyszłości. Kondensatory elektrochemiczne (KE) mają kilka zalet w porównaniu ze 

standardowymi akumulatorami litowo-jonowymi (Li-ion), w tym wysoką trwałość i gęstość 

mocy. Niestety charakteryzują się one umiarkowaną gęstością energii. Niniejsza 

rozprawa doktorska porusza główny problem niskiej gęstości energii, poprzez 

wykorzystanie nowatorskich dwuwymiarowych (2D) materiałów elektrodowych 

charakteryzujących się dużą pojemnością. 

Pierwsza część rozprawy (rozdział I) skupia się na teoretycznym wprowadzeniu do 

aktualnego stanu wiedzy o KE i zawiera szczegółowe wyjaśnienie ich podstawowych 

mechanizmów magazynowania ładunku, w tym tworzenie podwójnej warstwy 

elektrycznej na granicy faz elektroda/elektrolit oraz zjawisko pseudopojemności. 

Omówiono szczegółowo standardowe składniki KE: elektrolity oraz materiały 

elektrodowe. Szczególną uwagę poświęcono wprowadzeniu materiałów 2D, takich jak 

dichalkogenki metali przejściowych (ang. transition metal dichalcogenides – TMD), jako 

elektrody w KE. Zostały opisane również nowe trendy w stosowaniu materiałów 2D oraz 

sposoby wykorzystania ich właściwości elektrochemicznych. 

W Rozdziale II wyjaśniono cel i strukturę rozprawy doktorskiej. Przed każdym kolejnym 

rozdziałem przedstawiono motywację do podjęcia badań. 

Rozdział III, składający się z trzech artykułów naukowych (P1, P2, P3), wprowadza 

koncepcję wykorzystania materiałów 2D jako materiałów elektrodowych w wodnych KE. 

Opracowano metodologie syntez hydrotermalnych umożliwiających otrzymywanie 

różnych materiałów TMDs (ReS2, MoS2, NiS2, FeS2) i ich integrację z węglem w celu 

tworzenia kompozytów. Szczegółowo omówiono związek pomiędzy morfologią 

materiałów a zachowaniem elektrochemicznym. Wyjaśniono także zalety i wady 

stosowania TMDs jako materiałów elektrodowych. 

Rozdział IV składa się z jednego artykułu naukowego (P4) i ma na celu wyjaśnienie 

problemów zidentyfikowanych w Rozdziale III. W oparciu o metodologię syntezy 

opracowanej w Rozdziale III, otrzymano MoS2 do dalszej funkcjonalizacji związkiem o 

aktywności redoks, tj. antrachinonem (AQ). Wykazano, że funkcjonalizacja MoS2 

antrachinonen zwiększa pojemność oraz stabilność materiału elektrodowego. Badania 
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wykorzystujące techniki woltamperometryczne oraz spektroskopii impedancyjnej 

pozwoliły na oszacowanie wpływu obecności grup funkcyjnych na kinetykę oraz 

dominującego mechanizmu magazynowania ładunku. Biorąc pod uwagę wady 

zaobserwowane dla ogniw symetrycznych w rozdziale III, zastosowany został układ 

asymetryczny w celu uniknięcia utleniania MoS2, a tym samym szybkiej utraty trwałości 

ogniwa. Przeprowadzono również wstępne badania elektrochemiczne w elektrolicie 

organicznym. 

Bazując na interesujących właściwościach elektrochemicznych MoS2 w elektrolitach 

organicznych, w rozdziale V (5), wykorzystano do syntezy hydrotermalnej różne 

prekursory siarki, tj. tiomocznik (TU), tioacetamid (TAA) i L-cysteinę (LC). Wykazano, że 

w zależności od wykorzystanego prekursora, uzyskuje się różne właściwości 

fizykochemiczne, w tym strukturalne, morfologiczne oraz porowatości otrzymywanego 

materiału. Różnice w wyżej wymienionych właściwościach, powodują, że zachowanie 

elektrochemiczne MoS2 jest nieco różne. Zostały również wykonane dodatkowe badania 

typu operando, badające zmiany struktury krystalicznej, ekspansji oraz kurczenia się 

elektrody podczas pracy elektrochemicznej. W zależności od wielkości cząstek materiału 

uzyskano różne wyniki. 

Ostatnią część dysertacji są wnioski ogólne, po których następuje prezentacja dorobku 

naukowego oraz wykaz literatury. 
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Motivation and context of the research  

The climate is a set of expected weather conditions at a specific time of year.  

While it naturally varies over the years due to factors such as volcanic eruptions,  

solar radiation fluctuation or tectonic movements, since 1950s a gradual increase  

in surface average temperatures has been observed. This phenomenon was termed 

‘global warming’ by NASA (National Aeronautics and Space Administration) in the 1980s  

and further expanded to ‘climate change’ in the 2000s, defined as changes in climate 

patterns [1, 2]. The last decade (2011-2020) was identified as the warmest on record, 

with average global temperatures being 1.1 °C higher than those in the pre-industrial 

era. If this trend continues, with temperatures rising by about 0.2 °C per decade,  

reaching 2 °C could lead to severe consequences for the natural environment and human 

health [3]. In response, nearly 195 countries, including Poland, signed the Paris 

Agreement in 2015, aiming to keep the global temperatures increase well below 1.5 °C 

above pre-industrial levels.  

CO2 is the largest contributor to global warming, with its concentration having increased 

by nearly 48% compared to the pre-industrial era [4]. It is primarily produced by burning 

fossil fuels for energy production. As the energy consumption rises exponentially with 

human population growth, there is a significant need for development of efficient 

methods to harvest sustainable energy sources. Sustainable energy can be produced 

from renewable sources such as wind, water, and geothermal energy.  

Various technologies convert these renewable sources into electrical energy,  

for instance, solar cells use the photovoltaic effect to convert solar to electrical energy, 

wind turbines convert kinetic energy from the wind to electrical energy. However, these 

renewable sources often depend on weather conditions and regional climate, meaning 

they do not consistently deliver a steady current load, even though continuous energy  

is needed [5].  

To maintain continuous and reliable access to electrical energy, energy storage devices 

have been developed such as rotating flywheels, hydraulic lift systems, etc.  

Among these, electrochemical energy storage devices have emerged as a promising 

solution. These devices bridge the gap between energy generation and consumption  

by storing surplus energy for later use, thus improving grid stability and reliability.  
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There are various types of devices capable of efficient storing and releasing electrical 

energy, including batteries, fuel cells and capacitors (Fig. 1). Despite their differences, 

they are ‘electrochemically’ comparable, i.e., the electrochemical process of charge 

storage/generation occurs at the electrode/electrolyte interface [6].  

 

Figure 1 Ragone plot presenting different electrochemical energy storage systems.  

Fuel cells, for example, convert energy by breaking down hydrogen molecules into water 

during electrochemical processes. They are scalable devices used in transportation  

and some stationary applications.  

Batteries store chemical energy and release it as electrical energy on demand.  

They are categorized into primary cells, such as Leclanché, where electrochemical 

processes are non-reversible meaning they can be only used once, and secondary cells, 

such as lead-acid (Pb), nickel-metal hydride (Ni/MH), lithium-ion (LiBs), nickel-cadmium 

(Ni/Cd), and redox-flow batteries (RFBs), where the redox processes are reversible,  

and they can be used many times. Batteries can supply stable power output during long 

discharges. Two contrary devices among the batteries are LiBs and RFBs. LiBs are used 

in portable electronics and electric cars due to their high energy density, light weight,  
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and relatively high power, allowing for quick charging. RFBs store energy via charge 

transfer processes in electrolyte ions, achieving high energy levels depending  

on the tank size storing the electrolytes. In general, batteries show high energy density, 

but their electrochemical performance is often kinetically limited by sluggish ion transport 

within the electrode material, giving usually low power density.  

Contrary, there are devices which can deliver the energy much quicker, in form of burst 

of energy. Initially, dielectric capacitors were used for small devices where the charge  

is stored on metal plates. By adding electrolyte solution and high-area electrodes,  

ECs were developed. Their energy storage mechanism is based on the reversible 

adsorption of ions at the electrode/electrolyte interface. Due to the physical nature  

of this mechanism, the energy values reached by these systems are usually 

intermediate, but the specific power values are typically extremely high. This mechanism 

allows for quick charging and discharging, making ECs ideal for applications where quick 

burst of energy is needed, such as regenerative braking in electric vehicles.  

Hybrid devices, combining the charge storage mechanism of ECs and batteries, are also 

possible. There are different levels of hybridization, e.g. on electrode, electrolyte, device, 

or connection level, each allowing for reaching higher energy density than standard 

systems.  

This dissertation will focus on the development of the ECs components, especially 

electrode materials showing battery-like behavior will be tailored to the ECs needs.   
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Chapter I 

Literature review  
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Electrochemical capacitors (ECs)  

Electrochemical capacitors (ECs) belong to a class of electrochemical energy storage 

devices capable of quickly storing and releasing energy, much faster than conventional 

batteries. However, in contrast to batteries, ECs exhibit significantly lower energy 

density. In this context, many researchers are focusing on enhancing the ECs energy 

values, while maintaining their high-power characteristics. Consequently,  

the development of ECs components, such as, electrode materials, electrolyte solutions, 

or membranes is paramount when designing a novel EC device. Currently, there are 

numerous ways for enhancing the operational parameters of ECs. To address these 

effectively, the following paragraphs will introduce the operational principles of ECs and 

provide insights into the current state-of-the-art related to the ECs components,  

with a special attention on electrode materials technology.  

1 Principle of ECs operation 

Generally, ECs are composed of two current collectors coated with highly porous 

electrodes, submerged in an electrolyte solution, and separated by a non-conducting 

membrane to prevent short-circuiting. (Fig. 2 a) [5]. Capacitors operate through 

electrostatic adsorption of ions at the electrode/electrolyte interface, induced  

by the polarization of the current collectors [7]. The nature of the ion adsorption process 

is purely physical, meaning that there is no chemical or phase changes during charging 

and discharging [8]. Consequently, it allows the capacitors to reversible store energy  

for thousands of cycles without any loss of the initial capacitance [9]. The term, 

capacitance (Cele), refers to the ability of a capacitor to store charge and is expressed  

by the amount of charge (Q in A s) accumulated within operational voltage window  

(U in V) (eq. 1) . 

Cele =
Q

U
= [

A s

V
]  [F] (eq. 1) 

Consequently, capacitance linearly increases when applying a higher potential range 

(Fig. 2 b). When referring to a device, it should be noted that a full capacitor (Ccell) 

consists of two electrodes which are considered as separate capacitors connected  

via series circuit as shown by the equation below (eq. 2). 
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Ccell = (
1

Cele−
+

1

Cele+
)

−1

 (eq. 2) 

With Cele- and Cele+ being the capacitance of the negative and positive electrode, 

respectively. In this way, the electrode with smaller capacitance determines the total 

capacitance of a system. Consequently, the capacitance expressed per electrode (Cele) 

is 4 times bigger than the capacitance expressed per device (Ccell), assuming the same 

electrodes were used in terms of mass and capacitance [10].  

 

Figure 2 (a) Schematic drawing of a capacitor. (b) linear relationship between accumulated charge  

and capacitor voltage range. 

However, the capacitance of a device does not directly reflect the practical application  

of capacitor as an energy storage system. Therefore, other parameters, such as energy 

(ECell in Wh) and power (PCell in W), allow for the comparison of energy storage systems 

in terms of how much energy they can store and how quickly they can release it [11]. 

Based on the relationship between energy and power, different energy storage devices 

can be compared on a chart called Ragone plot (Fig. 1) [12]. The energy of a cell can 

be expressed by the equation (eq. 3) [13].  

ECell =
CU2

2
  [Wh] (eq. 3) 

Consequently, the energy of a capacitor is dependent on the capacitance (C in F)  

and operational voltage range (U in V) of a device. The energy improvement can  

be realized through increasing the system capacitance (e.g., by introducing 

pseudocapacitive electrode materials or using redox-active electrolyte solutions) 

and/or increasing the voltage range (e.g., by using different electrolyte media) [14].  
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The power of a device expresses how quickly energy can be extracted from it.  

It can be determined at the maximum voltage range and divided by the resistance of the 

capacitor cell (eq. 4). 

PCell =
U2

4R
  [W] (eq. 4) 

It can also be expressed in relationship to energy, where the energy is divided  

by the discharge time (t) (eq. 5).  

PCell =
E

t
  [W] (eq. 5) 

Nevertheless, there is a general practice in academia to demonstrate the values  

of energy and power of a device while referring to the active mass of electrode materials, 

rather than the total mass of a device, i.e., including mass of the separator, electrolyte 

solution, coatings, or casings. For example, in the energy storage devices industry, 

crucial improvements are made by reducing the ‘dead mass’ of a cell (i.e., mass which 

does not actively participate in energy storage processes), where the weight of the cell 

components is reduced, such as limiting the mass of a current collectors [15, 16]. Another 

important parameter of an energy storage device is time constant (τ), which indicates  

the time required to release half of the energy stored in the device and is expressed  

by the capacitance of the system multiplied by resistance of a cell. The following sections 

focus on the introduction to the charge storage phenomena. 
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2 Electrical double-layer models  

The primary energy storage mechanism of ECs involves the reversible electrostatic 

accumulation of ions at the electrode/electrolyte interface upon polarization  

of the electrodes. However, the concept explaining this phenomenon has evolved over 

the years. The first model was proposed by Helmholtz in 1853 [17]. It describes that after 

polarization of current collectors, the separation of charges occurs at the surface  

of electrodes, forcing ions of opposite sign in the vicinity of the electrolyte to diffuse 

toward the electrodes. Ions at the electrode/electrolyte interface form a stiff layer,  

a few nanometers in thickness, in a plane parallel to the electrode surface. Such charge 

storage phenomenon is called the electrical double-layer (EDL) [18]. As observed  

in Figure 3 a, the electrical potential of the electrode (φe) linearly decreases  

as the distance between the positively charged surface and negatively charged ions  

(two, or double layers) increases. The ability to store charge by the electrode  

is expressed as capacitance (C in F). In this case, the capacitance of such simplified 

EDL model (CH) is expressed in the same way as that of a capacitance of a conventional 

electrical capacitor (operating through separation of charges without the electrolyte 

solution) given by the equation below (eq. 6) [19]. 

𝐶𝐻 =
𝜀0 ∙ 𝜀𝑟 ∙ 𝐴

𝑑
  [F] (eq. 6) 

where, ε0 is the vacuum permittivity (ε0=8.854∙10-12 F m-1), εr is the dielectric constant 

given for the specific electrolyte, A is the available specific surface area of the electrode 

material [m2], and d is the effective thickness of the double-layer [m]. The Helmholtz 

model encompasses the electronic structure of the electrode material, its polarization, 

and the electrolyte effect, giving a relationship between the capacitance and the type  

of electrode (i.e., accessible surface area) and the type of the electrolyte  

(i.e., dielectric constant).  

However, the equation introduced by Helmholtz was a simplified model that does  

not consider several factors such as the diffusion of ions in the electrolyte vicinity  

and the interaction between the dipole moment of the solvent and the electrode material. 

Consequently, the Gouy model was introduced in 1910 and later improved by Chapman 

in 1913 [20]. They used the Boltzmann and Poisson equations to describe diffusion 

phenomena. However, their model was valid only for diluted electrolytes. At higher 

concentrations, other phenomena such as layering effects, ion pairing formation,  
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or ion crowding occur which do not allow for correct approximation of a model. The Gouy-

Chapman model (CGC) assumed ions as a point-like charged non-interacting with each 

other particles, where the solvent is a continuous dielectric medium with uniform 

electrical permittivity. Consequently, the electrical potential of the electrode exponentially 

decreases from the electrode surface to the electrolyte bulk vicinity (Fig. 3 b). 

 

Figure 3 (a) Helmholtz, (b) Gouy-Chapman, and (c) Stern models of the electrical double-layer 

formed at a positively charged electrode in an electrolyte. The electrical potential (φ) decreases 

when going away from electrode (φe) to the bulk electrolyte (φs). (Adapted from Ref. [18]). 

The Gouy-Chapman theory was improved by Stern in 1924, which introduced  

the concept accounting for the dimensions of ions and solvent molecules existence  

in the bulk electrolyte [21]. Finally, the Stern model consider the EDL phenomenon  

as a combination of Helmholtz (CH) and Gouy-Chapman (CGC) models (Fig. 3 c).  

The Stern model derives the capacitance (CEDL) as equivalent to two capacitors in series 

combining CH and CGC to a total capacitance of the EDL model as given below (eq. 7) 

1

𝐶𝐸𝐷𝐿
=

1

𝐶𝐻
+

1

𝐶𝐺𝐶
  [F] (eq. 7) 
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Further theory was introduced by Grahame in 1947, which presented the concept  

of specifically adsorbed ions at the surface of the electrode material [22]. Basically,  

the ions in the electrolyte bulk are surrounded by the solvation shell. However,  

when solvated ions are approaching the electrode surface, the solvation sheath can  

be dropped upon specific adsorption. Graham introduced the division of the Stern layer 

into the inner Helmholtz plane (IHP) and outer Helmholtz plane (OHP), where IHP forms 

by the centres of the specifically adsorbed ions, whereas OHP represents the rigid plane 

formed at the centres of the solvated ions. The final component of the Graham model 

was introduced by Bockris, Devanthan and Müller (BDM) in 1963, which included  

the action of the solvent molecules at the electrode/electrolyte interface [23]. The dipoles 

of the solvent molecules are specifically oriented in accordance with the nature  

of the ions charge. The IHP passes through the centres of the specifically adsorbed ions 

at the surface of the electrode and the solvent molecules, which are oriented accordingly 

to the nature of the surrounding ions. It means that the surface of the electrode 

submerged in the electrolyte solution is being surrounded by the solvent molecules.  

The OHP passes through the centres of the solvated ions near the electrode surface. 

Outside of the OHP there is a diffuse layer with solvated ions. The BDM model  

is presented in the Figure 4.  

 

Figure 4 Schematic representation of the Bockris, Devanthan and Müller (BDM) double-layer 

model on a negatively polarized electrode.  
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3 Emergence of pseudocapacitance in electrode materials 

The process of charge storage in ECs is not exclusively limited to the EDL phenomenon 

but can also involve charge transfer between the electrode and electrolyte components. 

Capacitance, which originates from processes other than EDL, was called ‘pseudo-

capacity’ in 1941 by Graham [24]. Conway introduced the concept that the electrode 

capacitance can arise from two phenomena, i.e., involving non-specifically adsorbed 

ions (charge is induced, not transferred) and adsorption pseudocapacitance (charge  

is transferred) [8]. It was later identified that mainly three processes could be occurring 

at the electrode/electrolyte interface which involve charge transfer phenomena  

(other than EDL), i.e., surface redox reactions, electrochemical intercalation 

reaction, and conversion/alloying reactions [25]. These reactions are faradaic  

in nature, meaning that they adhere to Faraday’s laws and are accompanied by the clear 

and distinct signs of a charge transfer processes during electrochemical operation [26]. 

However, some of these processes show electrochemical features typical for capacitive, 

potential-dependent relationship while being faradaic in origin [27]. This phenomenon  

is described as ‘pseudocapacitance’, where the electrochemical behavior seems  

to be capacitive in nature, while kinetically and thermodynamically adhere  

to the Faraday’s laws [28]. Charge transfer processes can generally be explained  

by an equation corresponding to an electron transfer process between the oxidized (Ox) 

and reduced (Red) forms of the reagents (eq. 8). 

Ox + ze− ↔ Red (eq. 8) 

According to Conway, pseudocapacitance can be classified into three different types 

(Fig. 5): adsorption pseudocapacitance, redox pseudocapacitance,  

and intercalation pseudocapacitance. Each of these pseudocapacitance phenomena 

occur via different physical processes and arise from various types of materials. 

However, they show comparable electrochemical signatures due to relationship between 

the potential and charge that develops as a result of adsorption/desorption process  

at the electrode/electrolyte interface (eq. 9) [29]. 

E ~ E0 +
RT

zF
ln (

X

1 − X
)  [V] (eq. 9) 
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Where, E is the electrochemical potential [V], E0 is the standard electrochemical potential 

[V], R is the gas constant, 8.314 [J mol-1 K-1], T is the temperature [K], n is the number 

of electrons transferred during redox reaction, F is the Faraday constant,  

96 485 [C mol-1], and X is the extent of the fractional coverage of the surface/inner 

structure [29, 30]. This relationship highlights that such adsorption/desorption 

phenomena are hindered by the thermodynamic kinetics of the processes [29-31].  

The relationship between voltage and charge is not totally linear, as in the EDL capacitor, 

thus the capacitance does not remain constant with increasing potential, which is why  

it is referred as pseudocapacitance. The total amount of charge stored  

via pseudocapacitive electrodes can be expressed as capacitance (C in F)  

by the equation below (eq. 10), when the relationship of U vs. Q (Fig. 2 b) becomes 

linear.  

C = (
nF

m
) (eq. 10) 

Where, m is the molar mass of active material in the electrode. From a theoretical point 

of view, the capacitance realized in pseudocapacitive systems is substantially higher  

(10 to 100 times) than those observed for purely EDL-based systems for the same weight 

or volume [8]. For that reason, it is often observed to overuse the term 

pseudocapacitance and refer the battery-like materials showing plateaus  

of electrochemical reaction as a pseudocapacitor and refer to capacitance,  

not capacity [32, 33]. A comparison of potentially reachable capacitance by materials 

showing different natures is presented in Table 1. 

Table 1. Comparison of the number of stored charges through double-layer, pseudocapacitance, 

and in battery-like electrode materials. (Based on [8]). 

Type of material  

in mechanism context 
Stored charge 

Electrical double-layer 
i.e., 0.17-0.20 electrons per 1 atom  

of electrochemically active surface area 

Pseudocapacitive 

Based on 500 µF cm-2, ≈ ca. 500 µC V-1  

i.e., 2.5 electrons per 1 atom.  

For hydrogen chemisorption,  

1 electron per 1 atom. 

Battery-like 
i.e., 1-3 electrons per 1 atom  

or molecule of bulk phase 
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Figure 5 Three different types of pseudocapacitance with their corresponding cyclic 

voltammogram response, a), d) adsorption of H+ ions on Au surface, b), e) surface redox reaction 

of hydrous RuO2 with protons, c), f) intercalation pseudocapacitance of Li+ into layered structure 

of Nb2O5. (Adapted from Ref. [34]).  

The adsorption pseudocapacitance occurs through the electrosorption of cation  

A+ onto the surface of the electrochemically conductive surface M (eq. 11) [34].  

M + 𝐴+ + 𝑒− → 𝑀𝐴𝑎𝑑𝑠 (eq. 11) 

This electrosorption process is assumed to follow a Langmuir-type (monolayer) isotherm 

of adsorption [35]. A classic example is the electrochemical adsorption of Pb2+ ions  

on the surface of a gold electrode [36]. It is also known to occur at the surface of noble 

metals such as Pt, Rh, Ru, and Pd with the adsorption of hydrogen ions [37].  

The reversible electrosorption of hydrogen ions is observed just before the cathodic 

recombination of adsorbed H+ into H2, hence, it is called ‘underpotential 

pseudocapacitance’ (Fig. 5 a).  
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In the energy storage context, hydrogen electrosorption appears to be the most relevant 

in aqueous ECs utilizing microporous carbon-based electrode materials [38]. Hydrogen 

storage occurs through electrochemical electrolyte decomposition and subsequent 

electrosorption of nascent hydrogen in the porous texture of the negative electrode [39]. 

The reactions can be summarized in equations below (eq. 12-14) [40, 41]. 

H2O + e− → H + OH− (eq. 12) 

𝐻3𝑂+ + 𝑒− → H + H2𝑂  (eq. 13) 

< C > +𝐻2𝑂 + 𝑒− → < 𝐶 > 𝐻𝑎𝑑𝑠 + 𝑂𝐻− (eq. 14) 

When polarization is reversed, adsorbed hydrogen is released, forming water together 

with the OH- anion present in the electrolyte.  

Thanks to the hydrogen storage in the microporous texture of the carbon electrode, 

aqueous ECs can operate above the thermodynamic potential limitation of water 

decomposition (i.e., 1.23 V). It is caused by the locally alkalized pH  

of the electrode/electrolyte interface due to the formation of OH- ions during hydrogen 

storage (eq.14) [40]. It causes the shift of the Nernst potential for the H2 evolution  

and subsequently the shift of the H2 evolution overpotential [42].  

The amount of stored hydrogen is dependent on the physicochemical properties  

of carbon material (i.e., porous texture, specific surface area, elemental composition, 

and surface functionality), but also on the electrolytic medium as well as  

the electrochemical experiment conditions [43] [44]. The additional capacitance 

originating from the hydrogen storage is dependent on the amount of stored hydrogen. 

Calculated from Faraday’s law, ca. 1 % of stored hydrogen corresponds to 274 mAh g-1 

[45]. For that reason, carbon electrodes utilizing pseudocapacitive hydrogen storage  

can be utilized as an anode in a full secondary cell [46].  

Surface redox pseudocapacitance arises from redox reactions between the electrode 

material and electrolyte ions (Fig. 5b). The first materials exposed as pseudocapacitive 

in nature were ruthenium oxide (RuO2) in acidic and manganese oxide (α-MnO2)  

in neutral electrolytes, both displaying higher values of capacitance than typically 

available for carbon materials [47-49]. The charge storage mechanism in these materials 

is limited to the electrode surface, as demonstrated by X-ray photoelectron spectroscopy 

(XPS) analysis of the electrode’s oxidation state during charge/discharge.  
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In thin electrodes, changes of the oxidation state of MnO2 from Mn4+ to Mn3+ during 

charging was observed [50]. In turn, no changes for bulk electrode were detected 

indicating that only thin layer electrodes are electrochemically active.  

It was found that the electrochemical properties of RuO2 are strongly dependent  

on the crystalline structure. Especially, structural water in RuO2, in form of RuO2 0.5 H2O, 

was also proved to be important. It allows for the redox behavior of the Ru4+ cations,  

the metallic-like conductivity of RuO2, rapid proton transfer during charge storage,  

and a larger specific surface area which shortens the diffusion path length of ions [51-

53].  

In the context of electrodes showing surface redox pseudocapacitance,  

the high reversibility of an electrochemical process at all applied potential ranges was 

noticed. The anodic and cathodic voltammograms are almost mirror images (RuO2), 

whereas battery-like materials, such as Pb/PbCl2, show irreversible electrochemical 

process at certain potentials. This is common for any battery materials as they involve 

phase changes that are subject to kinetic limitations of ion movement in the host material 

[54].  

However, pseudocapacitance does not have to be limited to the surface. Intercalation 

pseudocapacitance occurs when the ions are inserted into the bulk structure  

of a host material (Fig. 5c). This type of pseudocapacitance is associated with at surface 

or near-surface reversible redox reactions which are not burdened by solid-state  

ion diffusion. The shortened ions diffusion pathway allows for rapid charge/discharge, 

usually within minutes, thanks to the surface-controlled mechanism. Consequently,  

it excludes the existence of phase transformation, since the ions can instantly occupy 

the reaction sites upon entering the host material [55, 56] .  

Orthorhombic T-Nb2O5 shows pseudocapacitive intercalation of lithium ions  

in non-aqueous electrolytes at potentials below 2 V vs. Li/Li+ [55]. The galvanostatic 

charge/discharge profiles are almost linear, which allows T-Nb2O5 to be classified  

as a pseudocapacitive material. The electrochemical behavior is strongly dependent  

on its crystalline structure [57, 58]. In T-Nb2O5, the charge is stored via redox couple  

of the Nb5+/Nb4+ [57]. The reaction is facilitated by the low energy barrier of (001) plane 

in the T-Nb2O5 crystal lattice [59].  
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There is a significant increase in the number of scientific works that are referring  

the electrochemical behavior of electrode material as pseudocapacitive in nature,  

while in fact, they are exhibiting battery-like behavior. For this reason, novel 

nomenclature has been introduced by P. Simon and B. Dunn to describe the materials 

that show pseudocapacitive properties because of their intrinsic properties as intrinsic 

pseudocapacitive materials. Otherwise, if the pseudocapacitance occurs due  

to extrinsic properties of electrode material and is caused as a result of its structure,  

such material is referred to as an extrinsic pseudocapacitive material [60]. 

Performance of both materials is demonstrated in Fig. 6.  

Intrinsic pseudocapacitive materials show the capacitive electrochemical response 

regardless of a crystallite size, disorder, or morphology. These materials include RuO2 

0.5 H2O, MnO2, Nb2O5 [61-63].  

Extrinsic pseudocapacitive materials exhibit a strong dependency  

on the aforementioned properties in regard to their electrochemical behavior.  

This is primarily due to reduction of ion diffusion length path, or suppression of phase 

transformations. In these materials, the bulk electrodes show slow solid-state diffusion 

of ions, controlled by the diffusion mechanism, which hinders the redox reaction kinetics 

and influences the very slow charge/discharge rates [32]. The movement  

of Li+ concentration within the host crystal lattice induces stress, often leading to phase 

transformation, e.g., disorder transitions, two-phase reactions, or crystal lattice 

rearrangement, which can affect the electrode’s longevity [54, 64].  

The pseudocapacitive effect can be achieved upon nanosizing the crystallites [65].  

As a result, charge is stored and released much quicker with comparable capacity values 

to the bulk electrode materials. Electrochemically, the material exhibits nearly linear 

galvanostatic charge/discharge profiles and lacks of redox reaction plateaus [54]. 

Additionally, square-shaped cyclic voltammograms can be also distinguished, 

resembling capacitive behavior [27].  

The nanosizing effect is already well reported in the literature to allow for  

the transformation of the electrochemical response of a battery-like material  

to pseudolinear performance which resembles a capacitor.  
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Figure 6 Electrochemical behavior of intrinsic and extrinsic pseudocapacitive materials.  

(Adapted from Ref. [60]). 

Exemplary material is LixCoO2 (a cathode material used in LiBs) (Fig. 7), where for  

the bulk material, plateaus of electrochemical reaction is noticed [66]. Upon nanosizing 

the particle sizes, the transition from a plateau to isosceles galvanostatic 

charge/discharge profiles can be observed [67].  

Recently, two-dimensional (2D) materials such as transition metal carbides (MXenes)  

or transition metal dichalcogenides (TMDs) were reported to exhibit capacitive features 

in both aqueous and organic media. Molybdenum disulfide (MoS2), a typical 

representative of the TMDs family, shows linear galvanostatic charge/discharge profiles 

and square-shaped cyclic voltammograms resembling a capacitive response in aqueous 

media. In organic media, it presents features of battery-like behavior such  

as electrochemical plateaus during galvanostatic charge/discharge and distinct peaks 

during cyclic voltammetry measurements. 
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Figure 7 Cyclic Discharge curves for crystalline LixCoO2 as a function of a particle size where  

a transition from a battery-like behavior to nearly linear, a pseudocapacitive-like behavior  

is observed with decreasing of a particle size. (Adapted from Ref. [68]). 

Upon nanostructuring, MoS2 exhibits improved lithium intercalation kinetics due  

to shortened diffusion path length of ions and suppression of a first-order phase 

transition. Consequently, the material gives electrochemical features resembling  

a capacitive response. However, it will be in-detail explained in the next paragraph. 

Figure 8 presents a brief comparison of different electrochemical responses based  

on phenomena including, EDL, pseudocapacitance and battery-like.  

 

Figure 8 Comparison of different electrochemical behavior. a) Electrochemical capacitor,  

b) Surface redox pseudocapacitance, c) Intercalation pseudocapacitance, d) Battery.  

(Adapted from Ref. [69]).  
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Due to the attractive capacity/capacitance values presented by pseudocapacitive 

materials, a vast number of scientific works focus on the utilization of such materials  

in full cell applications. For this reason, different composites with capacitive, 

pseudocapacitive, or battery-like components are prepared, and their electrochemical 

behavior is evaluated. Thus, the necessary characterization methods needed  

to be developed to correctly evaluate the dominant charge storage of a material.  

To this day, electrochemical characterization remains the most important tool to describe 

the phenomena occurring in a pseudocapacitive material. The first-line tool is based  

on the cyclic voltammetry studies. The power-law relationship (known as b-value 

analysis) between the applied scan rate and electrochemical peak current can be applied 

to assess whether the process has a dominant surface-controlled (capacitive)  

or diffusion-controlled (battery-like) kinetics (eq. 15).  

𝑖(𝑉) = 𝑎𝑣𝑏   (eq. 15) 

Where i(V) is the peak current density, a and b are diffusion parameters, and v  

is the scan rate. By plotting a log(i) vs. log(v) function, dependent on the b values 

determined from the slope of the function, it is possible to probe if the process has  

a dominant diffusion-controlled (b=0.5), mixed, finite diffusion-controlled (b=0.6-0.8),  

or surface-controlled (b=1) kinetics (Fig. 9).  

 

Figure 9 a) Cyclic voltammetry obtained at different scan rates, b) resulted logarithmic peak 

current variations obtained at different scan rates from CV analysis. (Adapted from Ref. [55]).  
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Figure 10 Matrix of CVs demonstrating a continuous transition from (I) electrostatic double-layer, 

through a (II) transition region, to (III) Faradaic intercalation in nanoconfined environment. 

(Adapted from Ref. [70]) 

Finally, there is a vigorous discussion in scientific community of the cross-sectional 

understanding of the pseudocapacitance in terms of theory and utility. Some researchers 

link these two processes (EDL and redox) as phenomenon, where one could not exist 

without another. Recently, the concept of confined electrolytes has been developed 

where the faradaic phenomena can be observed related to the dropping of the solvation 

sheath upon adsorption in microporous carbons with tuned porosity. This viewpoint has 

been extended to layered materials with intercalation charge storage mechanism. From 

the practical point of view, the electrochemically active surface area of layered electrode 

materials in non-uniform. The existence of the porous texture and tortuosity of pores  

in electrode cannot be excluded. Consequently, it evolved into a new concept  

of a continuous transition from double layer to faradaic charge storage in confined 

electrolytes (Fig. 10) where different phenomena could be occurring in the layered 

system dependent on the ion desolvation and ion-host interaction. Thus, the need 

towards fundamental works focusing on the explanations of the phenomena occurring  

in such systems is especially important [70].  
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4 Electrolytic solutions for ECs  

Regardless of the phenomena occurring in the ECs, the cell construction requires using 

the electrolyte solution, which serves as the source of ions capable of transporting 

charges from the electrolyte bulk to the electrode/electrolyte interface. Various types  

of electrolytes have been proposed, including liquid, solid-state, and quasi-solid 

electrolytes [71, 72]. In the context of this thesis, mainly liquid electrolytes will  

be considered. We can differentiate three different groups of liquid electrolytes: 

aqueous, organic, and ionic liquids [73, 74]. The choice of electrolyte significantly 

impacts the electrochemical performance of ECs, particularly in terms of their energy 

and power density values. Depending on the application, the ideal electrolyte should  

be characterized by a wide operational voltage window (to achieve high energy, eq. 3) 

and high ionic conductivity (to achieve high power, eq. 4). However, specific utilization 

of ECs requires consideration of other aspects such as flammability, environmental 

issue, or price [74]. Characteristics of different electrolytes are presented in Table 2.  

Table 2. Characteristics of electrolytes for EC applications (Based on Ref. [74]). 

Electrolyte Aqueous Organic Ionic liquids 

Ionic conductivity 

at 25 °C 
~1000 mS cm-1 ~60 mS cm-1 ~10 mS cm-1 

Voltage range 1-1.6 V 2.5-3.7 V > 3 V 

Assembly Air Inert Inert 

Safety High Low High 

Price Low Moderate High 
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Aqueous electrolytes are environmentally friendly and inexpensive compared to other 

types. However, they are limited by the thermodynamic potential of water decomposition, 

i.e., 1.23 V. Exceeding this voltage may lead to hydrogen evolution on the negative 

electrode and oxygen evolution on the positive electrode [75]. Certainly, the electrode 

materials affect the realization of a voltage extension. Hydrogen storage on the negative 

electrode in microporous carbons can locally change the pH of the electrode/electrolyte 

interface, altering the hydrogen evolution overpotential [76]. On the positive electrode, 

oxidation of the electrode is considered prior to oxygen evolution [77]. The surface 

chemistry of carbon electrode affects the porous texture of an electrode material, 

capacitance, and thus longevity [78, 79].  

First reported electrolytes used for ECs construction were acid-(H2SO4) and alkali-(KOH) 

based solutions, demonstrating high conductivity (~1 S cm-1 at 25 °C), significantly higher 

than the common organic electrolytes (e.g., ~ 60 mS cm-1 for 1 M TEA BF4 in ACN  

at 25 °C) [80-82]. In a consequence, the capacitance of carbon-based materials is also 

relatively high (~150-200 F g-1) in comparison to other type of aqueous electrolytes [83]. 

The operational voltage window of H2SO4 and KOH electrolytes is ca. 0.8-1.2 V, 

depending on the electrode material, current collector, and electrolyte concentration. 

Due to the low operational voltage window and corrosion problem of current collectors 

and cell components, H2SO4 and KOH were disregarded for the practical application [84, 

85].  

Acid and alkali-based electrolytes were replaced with neutral salts such as sulfates [86, 

87], nitrates [78, 88, 89], or perchlorates [90, 91] to mitigate the issues of low operational 

voltage window and corrosion. The voltage window can be increased due to hydrogen 

sorption within the porous texture of electrode material, shifting the overpotential  

of hydrogen evolution towards more negative values [92]. On the positive electrode, 

oxidation of the surface can be observed upon cycling, depending on the anion used  

and voltage applied [78]. ECs based on sulfates (e.g., 1 M Li2SO4) can reach  

up to 2.2 V due to the strong solvation shell of Li+ cations and SO4
2- anions, providing 

long-term stability of over 15 000 galvanostatic cycles. Generally, the electrode 

capacitance values in sulfate salts are slightly lower than those observed in H2SO4  

or KOH (~100-150 F g-1) [87].  
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To increase capacitance, hybrid devices employing Faradaic components can  

be considered. In the context of electrolytes, an increase in cell capacitance is realized 

through the implementation of redox active species in the electrolyte [93, 94].  

A representative of halides, i.e., iodides have been shown to participate in reversible 

redox reactions at the electrode/electrolyte interface, contributing to the total charge 

stored through the following redox reaction occurring on the positive electrode (eq. 13) 

[95, 96].  

2𝐼− ↔ 𝐼2 + 2𝑒−   (eq. 13) 

The theoretical capacity calculated from Faraday’s law is 211 mAh g-1, which shows  

a competitive value compared to other pseudocapacitive materials [97]. When I2  

is present at the electrode/electrolyte interface, it can also form polyiodides (I3
- and I5-) 

during long-term cycling (eq. 14-15) [98, 99].  

𝐼− + 𝐼2 ↔ 𝐼3
−   (eq. 14) 

𝐼3
−  + 𝐼2 ↔ 𝐼5

−   (eq. 15) 

Redox active electrolytes have usually limited longevity due to the formation of insoluble 

deposits (e.g., IO3
-). They also suffer from a low operational voltage window  

(ca. 1.2 V for 1 M KI in carbon//carbon systems) due to the near thermodynamic  

H2 evolution potential window of the negative electrode [100]. Low concentration redox-

active electrolytes (e.g., 0.2 M KI) or binary solutions of neutral and redox-active 

electrolytes (e.g., 0.2 M KI with 1 M Li2SO4 have been found to improve capacitance 

without affecting longevity (over 10 000 cycles) and voltage window (~1.5 V) [99-101].  

Organic electrolytes offer a significantly higher operational voltage window of about 

2.5-3.0 V compared to aqueous solutions. Most organic electrolytes consist  

of ammonium salts (e.g., tetraethylammonium tetrafluoroborate – TEA BF4) dissolved  

in organic solvents such as acetonitrile (ACN) or propylene carbonate (PC) [102-104]. 

They exhibit a wide range of applicable temperatures (-30 to 80 °C) and good ionic 

conductivity (~60 mS cm-1) [82]. Therefore, organic electrolytes are commonly used  

in commercial cells [105]. However, ACN or PC solvents are flammable and toxic, 

prompting research into developing safer and more environmentally friendly organic 

electrolytes. 



Study of two-dimensional nanostructured materials for electrochemical  
energy storage applications 

 

Maciej Tobis, PhD Dissertation   |   35 

 

Ionic liquids (ILs), which consist solely of ions without any solvent, offer a ‘green’ 

alternative to toxic organic electrolytes [106]. For EC applications, ILs must be liquids  

at room temperature, hence the term room temperature ILs (RTILs). ILs offer high heat 

conductivity, low vapor pressure, chemical and thermal stability (between -60 to 100 °C) 

[107, 108]. Their physicochemical properties can be tuned, to some extent, by matching 

the cations and anions or combining ILs into binary or ternary solutions [109-111].  

As solvent-free solutions, ILs’ ions are not solvated by solvent molecules. Instead, ions 

are surrounded by layers of opposite charge shells in a phenomenon called Coulombic 

ordering [112]. In bulk solutions and on flat polarized surfaces, the concept is simple. 

However, in confined spaces such as micropore or layered environment, Coulombic 

ordering partially breaks upon electrode polarization, leading to increased concentrations 

of oppositely charged ions at the electrode/electrolyte interface [113]. Consequently,  

IL-based ECs show improved performance when the micropores match the ion sizes  

of the ILs [114]. Commonly used cations include 1-ethyl-3-methylimidazolium [EMI],  

1-butyl-3-methyl-imidazolium [BMI], N-butyl-N-methyl-pyrrolidinium [BMP].  

Anions consist of bis(trifluoromethylsulfonyl)imide [TFSI], bis(trifluorosulfonyl)imide 

[FSI], and tetrafluoroborate [BF4] [115, 116]. However, ILs are complex and require 

advanced purification techniques, resulting in high costs. They must also be stored under 

inert conditions to prevent electrolyte decomposition, which can limit their operational 

voltage window [117]. ILs’ drawbacks include high viscosity and often low ionic 

conductivity due to large ion sizes. Consequently, even with high operational voltage 

windows (sometimes up to 4.0 V), the capacitance of microporous carbon electrodes  

in IL-based ECs typically does not exceed 100 F g-1 [118-120].  
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5 Electrode materials for ECs  

The selection of an appropriate electrolytic solution is only halfway towards designing  

a stable, high-energy, and high-power device. Equally important is the selection  

of an adequate electrode material. Not all electrolytes suit every electrode material,  

and vice versa. In recent studies, carbonaceous materials have been predominantly 

used in two-electrode cell assemblies due to their wide abundance, different 

dimensionalities, and high electrical conductivity. However, the dominant charge storage 

mechanism of carbon-based electrode materials is physisorption of ions  

at the electrode/electrolyte interface. Therefore, materials with faradaic properties have 

emerged as attractive alternatives. The following sections introduce different energy 

storage materials.  

5.1 Carbonaceous materials  

Carbonaceous materials are highly appealing for EC applications due to their ability  

to form various allotropes with different architectures. They exhibit various 

dimensionalities, ranging from zero-dimensional (0D) to three-dimensional (3D) 

structures, each with unique properties (Table 3). Depending on their dimensionality, 

they possess diverse thermal and electrical conductivities, specific surface areas (SSA), 

and crystallinities.  

Table 3. Different carbon-based materials used as electrodes in ECs. (Based on Ref. [121]). 

Material 
Carbon onion 

[122] 

Carbon 

nanotubes 

[123] 

Graphene 

[124] 

Activated 

carbon 

[125] 

Dimensionality 0D 1D 2D 3D 

Electrical 

conductivity High High High Moderate 

Relative 

capacitance Low Low Moderate High 

Structure    

 



Study of two-dimensional nanostructured materials for electrochemical  
energy storage applications 

 

Maciej Tobis, PhD Dissertation   |   37 

 

Among different carbon materials, carbon nanotubes (CNTs), activated carbons 

(ACs), and graphene have emerged as particularly significant electrode materials, 

offering an attractive balance between electrical conductivity, capacitance, [126-130]. 

CNTs exhibit a tubular structure composed of sheets of sp2 carbon atoms rolled into 

seamless cylinders with nanometric dimensions [131]. Depending on the preparation 

method, they can be produced as single layer carbon nanotubes (SWCNTs)  

or multiwalled carbon nanotubes (MWCNTs) [132]. However, achieving a strict control 

over the number layers is challenging and often accompanied by the formation  

of amorphous carbon or metal catalyst residues. For energy storage application,  

CNTs present ballistic electrical conductivity values, allowing for quick charging  

of the electrode/electrolyte interface [133]. However, the most critical parameter for their 

application as an electrode material in ECs is the SSA [134]. CNTs typically exhibit 

relatively low SSA, dependent on the number of walls and nanotube diameter,  

with theoretical values ranging from 50 to 1315 m2 g-1 [135]. Despite their high electrical 

conductivity, only CNTs are not optimal material for ECs. Instead, they serve as a high 

conductive support for the deposition of materials with faradaic response, facilitating 

rapid charge/discharge processes. Consequently, oxides such as MnO2 [136-138],  

RuO2 [139, 140], Nb2O5 [141], and many others have been integrated with nanotubes  

in a composite electrode material for ECs application [142-147]. 

ACs offer high SSA (ranging from 1 000 to 2 000 m2 g-1) due to their porous texture, 

generated by the disoriented structure of graphitic-like sheets randomly linked with each 

other [148]. The linkage between such fragments generates slits and tunnels throughout 

the AC matrix [149, 150]. ACs can be produced at moderate costs from various naturally 

abundant resources such as coke, coal, wood, or coconut shells. Subsequent activation, 

typically by carbon dioxide, steam, or air, generates their porosity [151-153]. Additionally, 

ACs can be obtained in different shapes, including powders, fibers, or granulates.  

Their porous texture can be controlled to some extent by using various templating 

methods, making ACs suitable for numerous commercial applications [154-157].  

Despite their popularity, ACs-based electrode materials primarily exhibit purely 

capacitive charge storage behavior. Modifying the surface chemistry of ACs  

can introduce pseudocapacitance, thereby enhancing their electrochemical performance 

[87]. ACs enriched with heteroatoms such as nitrogen, oxygen, sulfur and phosphorous 

show altered local electronic density of the carbon matrix, influencing the polarity  

of the surface [158]. Mainly nitrogen and oxygen are introduced to ACs  

for electrochemical applications. Nitrogen can be introduced by thermal treatment of AC 



Study of two-dimensional nanostructured materials for electrochemical  
energy storage applications 

 

Maciej Tobis, PhD Dissertation   |   38 

 

in the presence of nitrogen-rich compounds such as urea, ammonia,  

or melamine, improving the capacitance, stability and voltage window of ACs electrode 

materials [159-162]. Oxygen functionalities enhance the wettability of the carbon surface 

and act as redox-active species, improving total specific capacitance. Li et al. found that 

carboxyl and carbonyl groups increase the wettability and charge propagation of AC-

based electrodes at certain concentrations [163, 164]. Later, it was found that the redox 

activity of oxygen functionalities is also pH dependent. For example, quinones  

and carbonyl groups show redox activity in acidic media, while carboxylic, lactone,  

or phenol groups react in alkaline media [165]. However, the main drawback of such 

systems is the relatively low operational voltage window due to the necessity of using 

sulfuric acid or potassium hydroxide solutions [166]. Pamete et al. introduced low pH 

electrolytes (i.e., 1 M BeSO4) for use with anthraquinone-functionalized carbon material. 

The constructed ECs operated at 1.6 V for 10 000 cycles [167]. Although ACs  

are relatively well-studied as electrode materials for EC applications, other materials  

are extensively investigated to find those with beyond-capacitive behavior. 

Graphene is a 2D material that was isolated from graphite in 2004 by Novoselov using 

the scotch tape method [168]. This discovery was awarded the Nobel Prize in 2010. 

Graphene was considered a material of the future due to its outstanding mechanical 

strength, excellent thermal and electrical conductivity, and lightness. However,  

its production costs are high, since graphene consists of a single sheet of carbon atoms 

connected by strong sp2 bonding in a honeycomb lattice [169]. Producing high-quality 

graphene is often difficult and neither cost- nor time-efficient. During production, defects 

can be introduced, altering the local electronic structure, and affecting its extraordinary 

physicochemical properties and electrochemical behavior [170, 171]. Theoretical SSA  

of graphene is approximately 2600 m²/g, making it attractive for EC applications  

as an electrode material [172]. Due to its high electrical conductivity, graphene has also 

been integrated with materials that exhibit faradaic properties to create composite 

electrode materials [173-176]. 
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5.2 Two dimensional transition metal dichalcogenides (TMDs) 

Since the development of methods for isolating graphene layers from graphite, 

researchers, motivated by the promising properties of graphene, have broadened their 

exploration to include other 2D materials. Transition metal dichalcogenides (TMDs)  

are a rapidly emerging family of 2D materials that consist fundamentally two layers  

of chalcogen atoms (e.g., S, Se, or Te) sandwiching one layer of metal atoms  

(e.g., Mo, Re, V, etc.) and can be represented by a general formula of MX2  

(where M is a metal atom and X is a chalcogen atom) (Fig. 11 a) [177, 178]. They can 

exist in different crystallographic forms depending on the atomic arrangement  

in the crystal lattice and the number of successive layers in the crystal unit (i.e., 1T, 2H 

and 3R). As there are various materials, e.g., molybdenum disulfide (MoS2), vanadium 

disulfide (VS2), rhenium disulfide (ReS2), etc., each can exhibit slightly different 

physicochemical properties [179]. One of the most studied materials in the literature  

is molybdenum (IV) disulfide (MoS2) due to its wide natural abundance  

and extraordinary optoelectronic, catalytic and energy storage properties [180-183]. 

MoS2 naturally crystallizes in a hexagonal order (2H) with a monolayer bandgap of  

ca. 1.9 eV, which renders its semi-conductive properties [183] (Fig. 11 b). In the context 

of energy harvesting, the metallic trigonal (1T) form of MoS2 is particularly attractive  

due to its high electrical conductivity (approximately 107 times more conductive than  

a semiconductive form) [184]. Single sheets of MoS2 can be prepared by various 

bottom-up (chemical vapor deposition – CVD, or wet-chemical synthesis),  

and top-down (exfoliation) methods. CVD involved the formation of MoS2  

on a substrate from gaseous precursors (such as molybdenum oxides/chlorides and 

sulfur) at high temperatures (above 600 °C) in a flow of inert gas [185, 186]. This method 

requires separate heating zones to control the reaction kinetics [187]. Even if this method 

allows for preparation of high quality continuous films of single sheeted MoS2, it is more 

expensive than other. Wet chemical methods allow for preparation of large quantities  

of MoS2 via hydrothermal or solvothermal syntheses. Those methods employ different 

soluble (in organic solvents – solvothermal, in water – hydrothermal) molybdates  

and sulfur precursors to prepare MoS2 at high temperatures in a sealed container called 

an autoclave [188-190]. Depending on the temperature, pressure, types of precursors, 

and reaction time, the resultant material can exhibit different morphologies,  

and physicochemical and crystallographic properties. Thus, resultant functional 

properties such as catalytic, charge storage properties in aqueous medium, or even 
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Figure 11 a) Known layered TMDs in the periodic table with a general formula of MX2, b) stick-

balls model of 2H and 1T phases of MoS2 in side and top view. Yellow and blue balls represent  

S and Mo atoms, respectively. (Adapted from Ref. [180]) 

lithium storage can be altered [191-195]. The top-down approach involves exfoliating 

bulk materials down to single layers and include mechanical, liquid phase, chemical  

and electrochemical methods [196]. Mechanical methods are based on delaminating 

single layers of MoS2 bulk crystallites down to single layers and are comparable  

to scotch-tape method used for obtaining graphene [197]. Liquid phase exfoliation allows 

for a high yield of single-sheeted MoS2 with the assistance of sonication in an adequate 

solvent. It is necessary to match the solvent’s surface tension with the surface energy  

of MoS2 to achieve high exfoliation yields [198, 199]. Solvent such as N-methyl-2-

pyrrolidone (NMP), or dimethylformamide (DMF) were mostly reported due to matched 

surface tension energies to the surface energy of MoS2 [200-202].  
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MoS2 can be also exfoliated using chemical approaches, including organolithium 

treatment. This method involves the chemical intercalation of lithium ions derived from 

organolithium compounds (e.g., n-buthyllithium – n-BuLi) and subsequent exfoliation  

of lithiated MoS2 (LixMoS2) in water with sonication assistance [203, 204]. Organolithium 

treatment yields high quantities of MoS2 with flake thickness of about 1 to 5 layers [205]. 

The charge transfer during Li+ intercalation causes the transformation from 2H to the 1T 

phase, leading to the emergence of metallic properties in the exfoliated MoS2 [206].  

After exfoliation and purification, MoS2 layers are found to bear a negative charge, 

stabilizing the aqueous suspension [207]. Interestingly, negatively charged layers  

of MoS2 (or TMDs in general) can react with various organic and inorganic molecules 

[208]. Consequently, it is possible to functionalize MoS2 with diazonium salts, amines, 

thiols, and other compounds with a formation of different bonding such as covalent, 

coordination or ‘ligand conjugation’ (Fig. 12) [209-211]. Such modified materials  

with different molecules were found to show altered physicochemistry which broadens 

the range of TMDs application and improve their functional properties [212].  

 

Figure 12 Ways to functionalize TMDs with small molecules. (Adapted from Ref. [209]  

with permission from John Wiley and Sons).  
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In the context of energy storage, layered MoS2, along with other TMDs (such as TiS2,  

or VS2), has been extensively studied as a host material for electrochemical metal ion 

storage. The intercalation chemistry of TMDs has been well known since 1970s when 

Whittingham investigated TiS2 as a potential cathode material for future lithium-ion 

batteries [213]. In fact, TiS2 is the lightest of all dichalcogenides, why it was initially 

introduced as positive electrode material in a battery pilot plant [213, 214]. The charge 

storage mechanism of TiS2 is based on the reversible intercalation of lithium ions.  

TiS2 naturally occurs in the metallic 1T phase, which excludes the phase transformation 

upon de/lithiation [215]. Based on the electrochemical behavior of TiS2, it was initially 

assumed that TiS2 exhibits a pseudocapacitive charge storage mechanism,  

but it was unclear if bulk structures could show comparable electrochemical properties. 

It was later confirmed by Müller et al. that few-layered nanocrystalline TiS2 shows 

improved lithiation kinetics when the bulk structure is reduced to few-nanolayers [216]. 

Later, it occurred that TiS2 shows pseudocapacitive behavior with two different lithiation 

kinetic regions (non-limited and limited by the diffusion) [217].  

In the case of the MoS2, the situation is more complex. Naturally occurring bulk MoS2 

crystallizes in the 2H phase, which transforms to the 1T phase upon electrochemical 

intercalation of lithium ions at 1.1 V vs. Li/Li+ via a first order phase transition [218]. 

Subsequent lithiation/delithiation cycles proceed within the potential range of 1 – 3 V  

vs. Li/Li+ (eq. 16) [219, 220]: 

𝑀𝑜𝑆2 + 𝑥𝐿𝑖+ + 𝑥𝑒− → 𝐿𝑖𝑥𝑀𝑜𝑆2, 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑥 ≤ 1  (eq. 16) 

Bulk MoS2 shows distinct plateaus during galvanostatic cycling and high current humps 

on cyclic voltammograms, indicating phase transformations occurring in the crystal 

lattice (Fig. 13) [218]. Consequently, the movement of such ion concentration gradient, 

is responsible for the sluggish kinetics of lithium intercalation, leading to low charge 

propagation at elevated current densities. However, when MoS2 crystallites  

are nanostructured, first order phase transition is suppressed, giving rise to solid-solution 

intercalation behavior, which shows pseudocapacitive characteristics. Due to the lack  

of phase transformations, nanostructured MoS2 demonstrates fast lithium intercalation 

kinetics allowing for quick charge/discharge [221].  
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Figure 13 Electrochemical behavior of Nano and Bulk MoS2. a) Galvanostatic profiles  

of Nano MoS2, b) cyclic voltammograms of Nano MoS2, c) galvanostatic profiles of Bulk MoS2,  

d) cyclic voltammograms of Nano MoS2. Cyclic voltammograms present values obtained  

for b-value analysis. (Adapted from Ref. [218] with permission from American Chemical Society). 

TMDs have also gained significant attention for ECs applications in aqueous media. 

Commercially available bulk (2H) MoS2 exhibits rather poor electrochemical 

performance, with an electrode capacitance of ca. 15 F g-1 at a 0.6 V window  

in symmetrical cell in 1 M Na2SO4 [222]. Due to its layered structure, MoS2 is assumed 

to store charge via electrochemical intercalation of ions. However, the relatively weak 

van der Waals forces cannot be broken to convert this structure into 1T phase upon 

electrochemical intercalation reaction within a reasonable potential window.  

As described previously, the conversion reaction occurs at 1.1 V vs. Li/Li+ (ca. -2 V  

vs. SHE), which is above the thermodynamic potential for hydrogen evolution (especially 

in sulfuric acid when referring to hydrogen storage). In addition, TMDs are also known 

for their exceptional hydrogen evolution catalytic properties due to unsaturated sulfur 

atoms present at the edges of their structure, which is also unfavorable for energy 

storage in aqueous media [223]. Therefore, it is assumed that the charge storage 

mechanism in 2H MoS2 is mostly based on adsorption of ions at the basal planes,  

not on intercalation within the interlayer spacing.  
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Instead, researchers have shifted towards the metallic form, which shows much more 

attractive charge storage properties than the bulk counterpart. Bulk MoS2 can  

be converted to metallic form via n-BuLi treatment, as presented by Acerce et al. [184]. 

They prepared self-standing electrodes via filtration of an aqueous suspension  

of exfoliated MoS2 (Fig. 14 a). X-ray diffraction patterns revealed a broader (002) peak 

after exfoliation, indicating that the layers of MoS2 are randomly arranged in the crystal 

lattice (Fig. 14 b) with a high content of the 1T MoS2 phase (Fig. 14 c).  

After conversion of bulk MoS2 to the metallic form, it showed capacitive square-shape 

behavior with significantly increased capacitance, from ca. 70 F cm-3 to 650 F cm-3 (Fig. 

14 d-e). The authors studied the electrochemical behavior of restacked MoS2  

in different electrolytes, which showed comparable capacitive features. In comparison  

to carbon-based electrode materials, TMDs show improved values of capacitance 

showing higher values of energy and power (Fig. 14 f). 

 

Figure 14 Physicochemical and electrochemical characterization of bulk and chemically exfoliated 

MoS2, a) scanning electron microscopy image, b) X-ray crystallographic diffraction (XRD) patterns 

of bulk and exfoliated MoS2, c) X-ray photoelectron spectroscopy (XPS) results, d) three-electrode 

cell electrochemical results of bulk and exfoliated MoS2, e) volumetric capacitance vs. scan rate,  

f) Ragone plot expressed per volumetric energy density. (Adapted from Ref. [184]). 
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Chhowalla group conducted ex situ XRD analysis of the cycled electrodes in different 

electrolytes (Fig. 15). Interestingly, they showed that upon cycling, the position  

of the (002) peak, indicating interlayer spacing (d002), shifts according to the dimensions 

of the cation used. Electrodes cycled in sulfuric acid revealed a lack of (002) peak 

position changes, indicating that small, mobile protons can easily diffuse between  

the interlayer spacing. After cycling in neutral aqueous salts, i.e., Li2SO4, Na2SO4,  

and K2SO4, the position of the (002) peak shifts accordingly to the solvated cation size. 

In organic electrolyte, (002) peak position shifts according to the presence of the sole 

cation. These results indicate that the MoS2 electrode can dynamically expand  

to accommodate cations during the intercalation process, suggesting the capacitive 

nature of the charge originated in the 1T MoS2.  

 

Figure 15 Ex-situ XRD results from different exfoliated MoS2 films and cycled electrodes.  

a) XRD patterns from: (i) exfoliated MoS2, (ii)-(v) electrodes of exfoliated MoS2 cycled in aqueous 

electrolytes, Li2SO4, Na2SO4, K2SO4 and H2SO4, respectively, (vi) electrode cycled in organic 

electrolyte, TEA BF4 in MeCN. b) Modelling of the MoS2 structure with solvated and desolvated 

cations within the interlayer spacing. (Adapted from Ref. [184]). 
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However, the detailed mechanism of charge storage in aqueous media is still unclear. 

The potential-dependent pseudolinear character of electrochemical behavior  

and changes in interlayer spacing suggest a pseudocapacitive sign with a solid-solution 

mechanism, but it remains unclear whether the originated charge is faradaic.  

Some works suggest that the electrochemical performance of MoS2 is purely capacitive 

and occurs only based on adsorption of ions within the interlayer spacing of MoS2 [224]. 

Other works consider the redox behavior of 1T MoS2, involving two different possible 

mechanisms: proton insertion/desertion into the MoS2 interlayers (eq. 17), and the redox 

deposition of protons on the interlayer surface of the MoS2 nanosheets (eq. 18) [225].  

𝑀𝑜𝑆2 + 𝐻+ + 𝑒− → 𝑀𝑜𝑆 − 𝑆𝐻  (eq. 17) 

𝑀𝑜𝑆2 + 𝐻+ + 𝑒− → 𝑀𝑜𝑆2 − 𝐻 (eq. 18) 

Overall, the detail mechanism of charge storage in aqueous media is still under 

consideration, as not all TMDs are the same in terms of defects, structure, morphology, 

porous texture, and defect sites. As reviewed above, there are different methods  

to obtain TMDs in various structures, and depending on the intended application,  

it is possible to control their physicochemical properties. These properties can be further 

adjusted by altering their surface chemistry, which can expand their tunability.  

In the context of energy storage, TMDs exhibit improved capacitance values compared 

to commercially available carbons. They can display pseudocapacitive properties,  

which can be enhanced when paired with different conductive carbon substrates.  

The development of novel TMDs composites is crucial for advancing electrochemical 

energy storage technologies, especially in ECs and batteries. Future research should 

continue to explore new synthesis methods, functionalization techniques, and hybrid 

composites to utilize the full potential of TMDs in energy storage applications. 
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Chapter II 

Dissertation outline 
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Aim of the dissertation 

ECs are promising energy storage devices which offer significant advantages over 

conventional LIBs in reachable power-density and longevity. Nevertheless, there  

is a significant gap between the energy-density of ECs and LIBs. Consequently, the main 

direction of ECs research is the development of ways to improve their energy density.  

The energy density of a EC can be improved by enhancing the capacitance of the system 

and by widening its operational voltage window. Within the electrode materials, research 

focuses on the development of novel electrode materials able to show attractive values 

of capacitance and wide potential window.  

Recently, 2D materials such as transition metal dichalcogenides (TMDs) have been 

demonstrated to give high values of the capacitance (above than carbons) which could 

improve the overall energy density of a device.  

Considering the above, the research hypothesis arises – can 2D materials such as 

TMDs be used for ECs application to effectively increase their device capacitance?  

Chapter III presenting three published articles (P1, P2, P3) focuses on the 

development of hydrothermal synthesis protocol for the synthesis of novel 2D TMDs. 

Due to their low electrical conductivity, they were paired with highly conductive carbon 

supports which effectively improved their electrochemical performance in symmetrical 

cell. However, due to the hydrogen evolution reaction (HER) catalytic activity of TMDs, 

the voltage window of such device was limited to below 1 V.  

Chapter IV presenting one published article (P4) addresses the HER catalytic activity 

issue and highlights the possibility of covalent functionalization of 2D TMDs with redox 

active species. Such modified TMD is utilized as the EC negative electrode material 

which significantly improves the electrochemical cell performance. As TMDs are layered 

materials, they were also exploited as a host for lithium-ion storage in organic electrolyte.  

Chapter V presenting additional results (5) highlights the importance of a sulfur 

precursor choice during hydrothermal synthesis of TMDs. Dependent on the utilized 

precursor, different structure, morphology, and porous texture properties were found 

which affected the electrochemical lithium intercalation behavior. Operando 

measurements, i.e., XRD and dilatometry were utilized to study the charge storage 

properties.   
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Dissertation structure  

Results obtained in this PhD dissertation are divided into three parts. Chapter III 

consists of three published articles attached and focus on the implementation of the 

2D materials as electrode materials in ECs application.  

Chapter III Evaluation of the electrochemical properties of 2D materials  

P1. Electrochemical Capacitor Performance of Nanotextured 

Carbon/Transition Metal Dichalcogenides Composites  

P2. Supercapacitor with Carbon/MoS2 Composites 

P3. Electrochemical Capacitor Based on Reduced Graphene Oxide/NiS2 

Composite 

Chapter IV consists of one published article attached, which focus on the 

functionalization of layered nanostructured MoS2 with redox active molecules. This 

chapter describes the electrochemical performance of such modified MoS2  

in different aqueous and organic media.  

Chapter IV Covalent modification of 2D material by redox-active species  

P4. Nanostructured MoS2 grafted by anthraquinone for energy storage 

Chapter V consists of additional publicly open data, but not peer reviewed yet  

(sent for review). The results presented in this chapter was obtained during scientific 

internship in Helmholtz Institute of Ulm, Germany. They are consistent to the PhD 

dissertation topic and are complementary data. This chapter focuses on the utilization of 

different sulfur precursors during hydrothermal synthesis of MoS2. Dependent on the 

properties of the resultant MoS2, the pseudocapacitive behavior of MoS2 will vary in 

organic media.  

Chapter V Emergence of pseudocapacitive properties of 2D materials 

5. Controlling structure and morphology of MoS2 via sulfur precursor for 

optimized pseudocapacitive lithium intercalation hosts  
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Chapter III 

Evaluation of the electrochemical 

properties of 2D materials 
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Context of research & summary  

Generally, electrode material research predominantly focuses on carbon-based 

materials such as ACs, CNTs, and graphene. These materials offer significant 

advantages such as low cost, developed SSA, and excellent electrical conductivity. 

However, their charge storage mechanism is limited to the physisorption of ions at the 

electrode/electrolyte interface, resulting in moderate capacitance values. Consequently, 

many studies aim to integrate carbon-based materials with redox active components to 

enhance their capacitance, and thereby, the energy density of a device. A prime example 

is Skeleton Technologies, a company known for the commercial production of ECs based 

on carbon materials operating in organic electrolytes. However, to broaden their range  

of application, they introduced a device called SuperBattery, which integrates carbon-

based materials with metal oxides, enabling fast reversible redox reactions and achieving 

high energy and power densities [226].  

In this context, TMDs are emerging as promising layered materials capable of exhibiting 

faradaic behavior, potentially reaching higher capacitance values than those observed 

for carbon-based materials. However, TMDs generally suffer from moderate electrical 

conductivity, and for that reason they are paired with conductive supports such  

as carbonaceous materials to enhance capacitance and charge propagation.  

This study presents the integration of TMDs, specifically rhenium disulfide (ReS2)  

and iron disulfide (FeS2), with a carbonaceous matrix to obtain composite materials with 

improved electrochemical performance.  

Among the TMD family, ReS2 has been poorly studied. It was recently synthesized 

through hydrothermal route, allowing to obtain nanostructured few-layered flakes of ReS2 

[227]. ReS2 naturally crystallizes in the 1T phase, avoiding the formation of 1T/2H phases 

mixture, where the 2H phase offers limited charge storage properties as explained before 

in the case of MoS2 [228]. Both composites (ReS2 and FeS2) were fabricated  

using a hydrothermal synthesis method, with multiwalled carbon nanotubes (NTs)  

and a three-dimensional graphene-like network (3DG) serving as the substrates  

for the deposition of ReS2 and FeS2, respectively.  

Scanning electron microscopy (SEM) imaging revealed that the ReS2/7wt% NTs 

composite resembles morphology of the NT support, with surface well covered  

by the perpendicularly positioned ReS2 nanolayers. For the FeS2/3DG composite,  
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FeS2 was deposited on the hierarchical porous structure of 3DG. The morphology was 

found to significantly influence the electrochemical properties of the composite material.  

A symmetrical cell containing the ReS2/NTs-based composite electrode material 

displayed square-shaped cyclic voltammograms (CVs) at low voltage (0.5 V), 

characteristic for capacitive phenomena. Hybridization of ReS2 and NTs also led  

to increased capacitance and conductivity confirmed by CV, constant current charging, 

and electrochemical impedance spectroscopy (EIS) measurements. During voltage 

extension, the cell exhibited a high current density peak at 0.8 V, indicating hydrogen 

evolution at the negative electrode and oxygen evolution at the positive electrode.  

This suggests that the perpendicularly positioned ReS2 nanolayers may induce catalytic 

effects related to electrolyte decomposition. At 0.8V, the symmetrical cell exhibited  

a high capacitance of 110 F g-1 at 0.2 A g-1 current density.  

Conversely, the FeS2-based composite exhibited a higher voltage limit of 1.5 V, 

highlighting the importance of material selection in optimizing electrochemical 

performance, with a high capacitance of 240 F g-1 at current density of 0.2 A g-1. 

Furthermore, the study examined the cyclic stability and rate performance  

of the composites. The ReS2/CNTs composite retained about 85% of its initial 

capacitance after 13 000 charge-discharge cycles at 0.8 V and 1 A g-1 current load.  

The 3DG/FeS2 composite showed minimal capacitance loss over 8 000 cycles at 1.5 V 

and 10 A g-1. Rate performance tests revealed that both composites maintained  

a significant fraction of their capacitance at higher current densities. 

In conclusion, integrating nanotextured carbon with TMDs such as ReS2 and FeS2 offers 

a promising pathway for developing high-performance electrodes for ECs. The results  

of this study suggests that the catalytic nature of certain TMDs could limit their practical 

application and need to be appropriately addressed in further studies.  
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Context of research & summary  

Previous study showed that ReS2/CNTs revealed catalytic properties towards HER  

and potentially OER which limited its practical application in the ECs. However,  

there are other TMDs, such as MoS2, which shows attractive electrochemical properties 

for ECs application.  

https://doi.org/10.3389/fenrg.2021.647878
https://creativecommons.org/licenses/by/4.0/
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MoS2 is relatively well documented in the literature, however, most of the reports highlight 

the electrochemical behavior of a single electrode (very often the active mass loading is 

below 1 mg) operating in the sulfuric acid. Therefore, it is difficult to evaluate if the MoS2 

material could be practically used as an EC electrode. Having in mind the moderate 

conductivity of the TMDs, the results of this study present the integration of MoS2 with 

different carbonaceous materials with open porosity such as carbon nanotubes (NTs) 

and carbon black (CB) to omit the blockage of microporous texture and allows for 

homogenous distribution of layered MoS2. By combining MoS2 with different carbon 

materials, it could be expected to observe enhanced electrochemical performance, 

improved conductivity, and optimized voltage window of the ECs.  

MoS2-based composites were prepared by using hydrothermal method assisted  

by L-cysteine, which acts as a sulfur source. This process led to the formation of MoS2 

nanolayers on the carbon substrates which morphology, structure and porous texture 

were investigated by nitrogen sorption at 77 K, X-ray diffraction (XRD),  

Raman spectroscopy, scanning electron microscopy (SEM) imaging coupled with energy 

dispersive spectroscopy (EDS) and transmission Electron Microscopy (TEM).  

Electrochemical studies were conducted by using symmetric ECs assembled with  

the prepared composites. The MoS2/CNTs exhibited the highest capacitance  

of 150 F g-1, while the MoS2/BP2000 reached 110 F g-1 at current load of 0.2 A g-1  

at 0.8 V. The performance was compared to pure carbon supports, demonstrating  

the superiority of the composites. 

Additional tests in two-electrode cells equipped with a reference electrode allowed  

for monitoring the electrochemical behavior of both electrodes during voltage extension. 

These tests revealed that the MoS2 show some signs of the hydrogen evolution reaction 

(HER) on the negative electrode and high redox peak on the positive electrode during 

potential extension. Because of this, the electrochemical voltage window of the cells with 

MoS2-based materials was limited to below 1 V.  

The study suggests that further optimization of the composite materials and their 

synthesis process is necessary to fully exploit the potential of MoS2-based electrodes  

in energy storage applications. 
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Context of research & summary  

The utilization of 2D materials, specifically TMDs, as electrode materials presents an 

intriguing approach to enhance the electrochemical performance of energy storage 

devices.  

Graphene, due to its extraordinary physicochemical characteristics (Chapter I), is a 

promising 2D material for electrodes in energy storage application. However, current 

methods of graphene production are not cost-effective. Instead, reduced graphene oxide 

(rGO), prepared through the oxidation and subsequent reduction of graphite flakes, 

constitutes an attractive alternative to graphene. However, such synthesis protocol can 

often lead into formation of structural defects potentially affecting its electrical 

conductivity. Nevertheless, rGO offers a good cost-effective ratio with satisfactory 

electrical conductivity comparable to graphene.  

TMDs, in addition to their 2D form, can also exist in non-layered forms. A well-known 

example is nickel sulfide (NiS2), which exhibits a pyrite-like structure. NiS2 is known for 

its ability to participate in reversible redox reactions, significantly improving the energy 

storage properties of the system. However, due to its highly crystalline structure, most of 

the bulk electrode material remains electrochemically inactive. Therefore, these 

materials are often paired with conductive substrates during synthesis of composite to 

increase their electrochemically active SSA.  

In this published article, contrary to previous papers, a pyrite-like TMD (NiS2) material is 

deposited onto 2D (rGO) material. In the first step, the preparation protocol for obtaining 

rGO suitable for electrochemical application were developed. It was found that 

hydrothermally prepared rGO at pH 12 exhibited fewer oxygen functionalities and optimal 

structural properties for subsequent binding with NiS2. Various weight percentages of 

NiS2 were deposited onto the rGO, with 5wt% of NiS2 identified as the most effective in 

enhancing the electrochemical performance of a device. In the context of previous 

research where the catalytic activity of TMDs were recognized, hybrid systems consisting 

of rGO negative electrode and rGO/NiS2 positive electrode were assembled. Such 

system showed improved capacitance from 147 F g-1 to 165 F g-1 at 0.2 A g-1. 

Consequently, TMDs offer various possibilities of improving the overall performance of 

the ECs system.  
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Context of research & summary  

Considering previous findings that TMD electrode materials exhibit catalytic activity 

towards HER, further research focused on the development of methods to inhibit these 

catalytic properties while enhancing the electrochemical performance of MoS2. 

The hydrothermal preparation method, due to largely uncontrolled reaction kinetics,  

often produces MoS2 with a high content of structural defects. These defects are primarily 

responsible for the material's catalytic properties. Therefore, finding ways to limit these 

defects or limiting their activity, could be crucial for increasing the operational voltage 

window of MoS2-based devices. 

https://doi.org/10.1016/j.jpowsour.2024.234862
https://creativecommons.org/licenses/by/4.0/
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Recent discoveries show that the surface of TMDs can be functionalized with various 

organic and inorganic molecules such as diazonium salts, amines, or thiols.  

While some of the molecules affect the electronic properties of TMDs, others influence 

on their physicochemical properties such as interlayer spacing or lattice disorder.  

Some of these properties were found beneficial for improving the catalytic activity 

towards HER due to expanded interlayer spacing that facilitates ionic transport [229], 

other show to suppress the catalytic activity towards HER due to protected S-active sites 

[230]. Although there is only few reports about using diazonium salts for MoS2 

modification. It was found that S-vacancies on the MoS2 surface enhance reactivity with 

diazonium salts (Fig. 16) [231]. Thus, hydrothermally prepared MoS2 with a defect-rich 

surface is an ideal candidate for modification with redox-active species through 

diazonium salt chemistry. 

Figure 16 Covalent functionalization of MoS2 with aryl diazonium salt. a) Schematic reaction  

of 4-nitrobenzene tetrafluoroborate, b) nitrophenyl is attached to the surface of MoS2 with  

a C-S covalent bond, c) reaction starts from an S-vacancy defect on the surface of the MoS2  

due to increased reactivity region around the defect and covalently attached groups.  

(Adapted from Ref. [231] with permission from American Chemical Society) 

Quinones are known for their reversible redox reactions which can significantly enhance 

the reachable capacitance of an electrode material. Specifically, anthraquinone (AQ)  

has been studied for grafting onto carbon black (CB) surface.  

This article layered nanostructured MoS2 synthesized via hydrothermal reaction  

and subsequently grafted with anthraquinone molecules during in-situ generation of aryl 

diazonium cations, formation of radicals, and reduction on the MoS2 surface. X-ray 

photoelectron spectroscopy (XPS) confirmed covalent bonding between AQ molecules 

and the MoS2 surface. X-ray diffraction (XRD) patterns and transmission electron 

microscopy (TEM) revealed that AQ molecules were grafted onto both the surface  
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and within the interlayer spacing of MoS2. Elemental analysis showed that ca. 20 wt%  

of AQ was grafted onto the MoS2.  

Electrochemical studies demonstrated that AQ-MoS2 exhibited enhanced capacitance, 

from 191 F g-1 (461 F cm-3) to 263 F g-1 (631 F cm-3) at a current density of 0.2 A g-1  

in a 1 M H2SO4 solution which is attributed to the additional AQ redox reactions.  

Two-electrode cells were also assembled utilizing carbon electrode (BP2000)  

as a positive electrode to limit the oxidation of the MoS2 during positive polarization 

reaching 1.2 V. Such hybrid cell, (-)AQ-MoS2||BP2000(+) revealed increased 

capacitance in comparison to cell with pristine material (-)MoS2||BP2000(+).  

Further analysis using electrochemical impedance spectroscopy (EIS) and b-value cyclic 

voltammogram (CV) analysis revealed that ion intercalation within the interlayer spacing 

of MoS2 was not hindered by the presence of AQ. It also showed that the electrochemical 

behavior has a capacitive response, meaning that the charge storage mechanism could 

be based on physisorption of ions upon entering the interlayer spacing of MoS2.  

The modification primarily occurred at defect sites, reducing the catalytic activity of MoS2 

towards HER and thereby improving the stability of the electrode material.  

It is also assumed that the redox reaction of anthraquinone decreases the concentration 

of hydrogen ions near the electrode/electrolyte interface, thereby shifting  

the thermodynamic potential of H2 evolution towards more negative values,  

artificially suppressing the catalytic activity of MoS2.  

In organic electrolytes, AQ-MoS2 also demonstrated enhanced pseudocapacitive 

behavior, indicating its potential for lithium-ion storage applications. This study detailed 

the synthesis, grafting process, physicochemical and electrochemical characterization  

of both pristine and modified MoS2. The results present a novel concept of 2D materials 

functionalization for improving their energy storage properties. These findings could 

open new possibilities for further exploitation of TMDs electrochemical behavior.   
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Publication 

P4. Nanostructured MoS2 grafted  

by anthraquinone for energy storage 
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Chapter V 

Emergence of pseudocapacitive 

properties of 2D materials  
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via sulfur precursor for optimized pseudocapacitive 

lithium intercalation hosts 
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Graphical abstract 

 

Context of research & summary  

Traditional battery materials often face kinetic limitations of charge storage,  

which impede the realization of the fast charging/discharging devices. MoS2 with  

its layered structure shows emergence of the pseudocapacitive intercalation of ions  

https://doi.org/10.26434/chemrxiv-2024-7hz4h
https://creativecommons.org/licenses/by/4.0/
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in organic media upon nanosizing the particle size. Nanosized particles enable faster ion 

transport in the crystal lattice of the host material due to shortened diffusion ion path.  

Hydrothermal synthesis is an effective method for producing nanostructured MoS2, 

offering significant control over the material’s properties. This study presents 

unpublished data on how different sulfur precursors – thiourea (TU), thioacetamide – 

(TAA), and L-cysteine (LC) – used during hydrothermal synthesis affect the resultant 

MoS2 structure, morphology, and lithium intercalation properties. By systematic 

evaluation of these effects, this study focuses on clear understanding of the relationship 

between synthesis conditions and the electrochemical behavior of MoS2. This knowledge 

is essential for designing MoS2-based electrodes that can deliver superior performance 

in terms of energy density, power density, and cycling stability, thereby contributing  

to the development of next-generation energy storage devices. 

The resulting MoS2 materials were characterized using scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman 

spectroscopy. These techniques revealed significant differences in the morphology  

and crystallite size of MoS2 depending on the sulfur precursor used. MoS2 synthesized 

with TU showed larger, micron-sized architectures, while TAA and LC precursors 

produced nanosized flakes with higher specific surface area and increased porosity. 

The electrochemical properties of the synthesized MoS2 were evaluated through lithium 

intercalation experiments and compared to the commercial, bulk MoS2 (Comm).  

These experiments, conducted in the 1 to 3 V vs. Li/Li+ potential range,  

allowed for studying the electrochemical intercalation reaction. MoS2 synthesized with 

TAA and LC exhibited improved capacity and superior capacity retention up to ca.  

100 mAh g-1 at 10 A g-1 compared to those synthesized with TU (60 mAh g-1)  

and commercial MoS2 (20 mAh g-1). The nanosized flakes from TAA and LC precursors 

provided a larger electrode/electrolyte interface area, which facilitated faster lithium ion 

transport and improved intercalation kinetics. Techniques such as operando X-ray 

diffraction, operando dilatometric height change and 3D Bode plot analyses allowed 

detailed studies of the charge storage mechanism.  

In conclusion, selecting appropriate precursors it is possible to produce nanostructured 

MoS2 with optimized pseudocapacitive performance. These findings offer valuable 

insights for designing and development of advanced MoS2-based electrode materials  

for high-performance energy storage devices.   



Study of two-dimensional nanostructured materials for electrochemical  
energy storage applications 

 

Maciej Tobis, PhD Dissertation   |   115 

 

Additional results  

5. Controlling structure and morphology  

of MoS2 via sulfur precursor for optimized 

pseudocapacitive lithium intercalation hosts 
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Chapter VI 

Concluding remarks 
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General summary 

ECs are attractive energy storage devices due to their exceptional power density  

and longevity. However, they suffer from moderate energy density which can be 

increased by enhancing the capacitance or voltage window of the device. This can  

be achieved by utilizing different EC components, such as in the context of this PhD 

dissertation, using different electrode materials.  

Recently, 2D materials have become highly appealing for use as electrode materials  

in energy storage applications due to their faradaic behavior, which is promising  

for achieving high capacitance. This PhD dissertation explores the concept of utilizing 

2D TMDs as electrode materials in electrochemical energy storage applications such as 

ECs. The study presents an overview on TMDs with respect to their synthesis,  

material characterization, electrochemical behavior, potential limitations in aqueous 

media, strategies to address these limitations, and utilization of layered TMDs as lithium-

ion hosts in organic electrolytes.  

In Chapter III, the focus is on developing hydrothermal routes for preparing TMDs, such 

as MoS2, ReS2, NiS2 and FeS2 and integrating them with various carbonaceous materials 

(e.g., NTs, CB, rGO and 3DG) to form composites. It was found that the morphology  

of the carbon support morphology significantly affects the final properties  

of the composite materials and their electrochemical behavior. Carbons with open 

porosity, such as NTs and CB, allow for the perpendicular positioning of MoS2 and ReS2 

nanoflakes, enhancing their catalytic activity in symmetrical ECs in aqueous media. 

Despite showing higher capacitance and conductivity than the parent materials  

(TMDs and carbons), the voltage window of the symmetrical cell was limited to below  

1 V. Contrary, 3DG/FeS2 composite, demonstrated high capacitance and conductivity 

while operating at 1.5 V. It strongly points toward the importance of the carbon-support 

choice and its effect on the electrochemical behavior of the carbon/TMDs composites.  

Chapter IV addresses the catalytic activity of 2D TMDs. The hydrothermal synthesis 

route is convenient for preparing nanostructured and layered TMDs, although it often 

results in materials with structural defects such as sulfur vacancies, which induce TMDs 

catalytic properties. These vacancies can locally increase reactivity, enabling 

functionalization which diazonium salts to form covalent bonds between foreign redox 

molecules and TMDs. This chapter presents a novel approach of using hydrothermally 

prepared nanostructured MoS2 for covalent functionalization with AQ molecules during 
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the in-situ generation of diazonium salts. XPS measurements confirmed the covalent  

AQ linkage to MoS2, while XRD and TEM studies showed that MoS2 was grafted both  

on the surface and within its interlayer spacing. The AQ-MoS2 material exhibited 

improved capacitance due to the redox activity of AQ molecules. Further studies 

featuring b-value analysis and EIS, revealed that the presence of AQ molecules within 

the interlayer spacing did not disrupt ion movement inside the layered structure. A hybrid 

cell utilizing pristine and grafted MoS2 as a negative electrode and CB as a positive 

electrode showed higher energy than symmetric CB cells. Electrochemical studies using 

an aqueous electrolyte, i.e., 1 M BeSO4, revealed the redox activity of AQ, indicating  

a promising approach for safe and stable high-performance ECs. Initial studies featuring 

organic electrolyte revealed redox activity of AQ in organic media as well.  

Chapter V explores the electrochemical behavior of MoS2 materials in organic 

electrolytes. It was found that the choice of sulfur precursor strongly affects  

the resultant material’s morphology, structure, microporous texture, and electrochemical 

behavior. Different MoS2 was hydrothermally synthetized from three various precursors, 

namely thioacetamide, thiourea, and L-cysteine. As reported in the literature,  

higher decomposition temperatures of thiourea resulted in materials with different 

morphology and microporous texture compared to MoS2 obtained from thioacetamide 

and L-cysteine. In terms of electrochemical behavior, each hydrothermally prepared 

material shows pseudocapacitive features during lithium intercalation studies which  

was in-depth analyzed by operando XRD, dilatometry and EIS studies.  

The main findings of this PhD dissertation include: 

i) the hydrothermal route is an attractive synthesis method that allows  

for the preparation of nanostructured TMDs with controllable properties 

depending on the precursors used,  

ii) the morphology of carbon supports significantly influences the electrochemical 

behavior of carbon/TMD composites,  

iii) sulfur vacancies in TMDs can be exploited for functionalization with diazonium 

salts,  

iv) catalytic properties of TMDs can be suppressed by the redox reaction  

of AQ at the electrode/electrolyte interface,  

v) the sulfur precursor used for hydrothermal synthesis allows for controlling  

the structure, morphology, and microporous texture of MoS2 material,  

affecting its electrochemical properties.  
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