
Agnieszka Mensfelt

The Application of Dissimilarity Measures for 3D
Structures to Improve the Effectiveness of

Evolutionary Design

Doctoral dissertation submitted in partial fulfilment

of the requirements for the degree of Doctor of Philosophy

Supervisor: Maciej Komosinski, Ph.D., Dr. Habil., Assoc. Prof.

Poznań, Poland
2023

Acknowledgments

I want to express my deep appreciation to my supervisor, Assoc. Prof. Maciej Komosinski,
for his guidance during this research and all the work we have done together, which signifi-
cantly contributed to my professional growth. Additionally, I am thankful to Prof. Roman
Słowiński, the former head of the Intelligent Decision Support System Laboratory, and
Prof. Jerzy Stefanowski, the current head of the Machine Learning Laboratory, for creat-
ing an excellent research environment and their support during my work there. I would
also like to extend my thanks to my fellow Complex Systems Laboratory member, Konrad
Miazga, for providing invaluable critical comments that helped me improve this thesis.
Furthermore, I am grateful to my colleague, Dr. Habil. Robert Susmaga, who has been a
constant source of professional and moral encouragement throughout this work. Last but
not least, I want to express my gratitude to my family and friends. In particular, I am
thankful to my ex-husband, Janusz, for his support and relentless motivation to pursue
my goals.

Abstract

Evolutionary algorithms are a powerful tool for solving hard optimization problems, such
as designing three-dimensional structures for various applications. Unlike human design-
ers, these algorithms have the potential to explore an infinite solution space more exten-
sively without requiring expert knowledge. However, the problem of evolutionary design,
often characterized by a multimodal and rugged fitness landscape, still poses a challenge,
and there is still room for improvement in optimization methods applied to it. This work
explores the possibility of enhancing the effectiveness of evolutionary search by utilizing
phenetic dissimilarity measures for 3D structures.

Developing a dissimilarity measure for 3D structures is a challenging problem in itself
since there is no ground truth for the dissimilarity values. In this work, various dissim-
ilarity measures are implemented and compared, including genotype-based, morphology
graph-based, shape descriptor-based, and spatial distribution-based measures. Addition-
ally, human perception of similarity is investigated as a potential reference point. The
implemented measures are used to test the global convexity of the fitness landscape us-
ing the fitness-distance correlation (FDC) analysis in four optimization tasks, using three
different genetic representations. In some of the cases examined, the fitness-distance cor-
relation is negative, which may imply a global convexity of the fitness landscape.

With the aim to facilitate the effective search of the solution space, enhanced genetic
operators are introduced, including Targeted Sequential Mutation (TSM), Distance Mini-
mizing Crossover (DSX), Equidistance Minimizing Crossover (EMX), Distance Preserving
Crossover (DPX), and Similarity-Based Crossover (SBX). The goal of these operators is
to adjust the distance between parent and offspring solutions according to the selected dis-
similarity measure. The performance of these operators is evaluated against the standard
ones in a series of computational experiments. The TSM operator outperforms the stan-
dard mutation operator in most cases, whereas the proposed crossover operators achieve
results comparable to the standard ones.

In the next strand of work, dissimilarity measures are applied in diversity mainte-
nance techniques, which are methods for encouraging broader exploration of the solution
space. The study compares the standard evolutionary algorithm with niching (local and
global variants), novelty search (local and global variants), and the Non-dominated Sorting
Genetic Algorithm II (NSGA-II), utilizing different dissimilarity measures. The analysis
of the results reveals how different algorithms and dissimilarity measures influence the
outcome of the evolution in terms of fitness and heterogeneity of the solutions.

Zastosowanie miar niepodobieństwa
struktur 3D do zwiększenia
efektywności projektowania

ewolucyjnego
Streszczenie rozprawy w języku polskim

Algorytmy ewolucyjne są skutecznym narzędziem do rozwiązywania trudnych prob-
lemów optymalizacyjnych, takich jak projektowanie trójwymiarowych struktur dla różno-
rakich zastosowań. W przeciwieństwie do ludzkich projektantów, algorytmy te są w stanie
szerzej eksplorować nieskończoną przestrzeń rozwiązań, nie wymagając przy tym wiedzy
eksperckiej. Jednak problem projektowania ewolucyjnego, często charakteryzujący się
multimodalnym i nieregularnym krajobrazem przystosowania, nadal stanowi wyzwanie i
wciąż istnieje pole do poprawy stosowanych do niego metod optymalizacji. W niniejszej
pracy zbadano możliwość zwiększenia skuteczności przeszukiwania ewolucyjnego poprzez
wykorzystanie miar niepodobieństwa fenetycznego dla struktur 3D.

Opracowanie miary niepodobieństwa dla struktur 3D jest samo w sobie trudnym
problemem, ponieważ nie jest znana obiektywna wartość niepodobieństwa. W niniejszej
pracy zaimplementowano i porównano różne miary niepodobieństwa, w tym oparte
na genotypie, grafie reprezentującym morfologię, deskryptorach kształtu i rozkładzie
przestrzennym. Dodatkowo zbadano ludzkie postrzeganie podobieństwa jako potencjalny
punkt odniesienia. Zaimplementowane miary są wykorzystywane do testowania globalnej
wypukłości krajobrazu przystosowania przy użyciu analizy korelacji pomiędzy przys-
tosowaniem a odległością do optimum (fitness-distance correlaction, FDC) w czterech
zadaniach optymalizacyjnych, przy użyciu trzech różnych reprezentacji genetycznych. W
niektórych z badanych przypadków korelacja wartości funkcji przystosowania i odległości
jest ujemna, co może sugerować globalną wypukłość krajobrazu przystosowania.

W celu usprawnienia efektywności przeszukiwania przestrzeni rozwiązań, zapro-
ponowano ulepszone operatory genetyczne, w tym Celowaną Mutację Sekwencyjną
(Targeted Sequential Mutation, TSM), Krzyżowanie Minimalizujące Odległość (Distance
Minimizing Crossover, DSX), Krzyżowanie Minimalizujące Równoodległość (Equidistance
Minimizing Crossover, EMX), Krzyżowanie Zachowujące Odległość (Distance Preserving
Crossover, DPX) i Krzyżowanie Bazujące na Podobieństwie (Similarity-Based Crossover,

6

SBX). Operatory te mają na celu dostosowanie odległości między rozwiązaniami rodzi-
cielskimi a potomnymi zgodnie z wybraną miarą niepodobieństwa. Skuteczność tych
operatorów jest oceniana w odniesieniu do standardowych operatorów w serii ekspery-
mentów obliczeniowych. Operator TSM osiąga w większości przypadków lepsze wyniki
niż standardowy operator mutacji, podczas gdy proponowane operatory krzyżowania
osiągają wyniki porównywalne do standardowych.

W kolejnym wątku badawczym miary niepodobieństwa zastosowano w algorytmach
sterowania różnorodnością, które są metodami mającymi na celu zwiększenie szerszego ek-
splorowania przestrzeni rozwiązań. Badanie porównuje standardowy algorytm ewolucyjny
z niszowaniem (w wersji lokalnej i globalnej), poszukiwaniem nowości (novelty search, w
wersji lokalnej i globalnej) i Algorytmem Genetycznym Sortowania Niezdominowanego
II (Non-dominated Sorting Genetic Algorithm II, NSGA-II) wykorzystującymi różne mi-
ary niepodobieństwa. Analiza wyników pokazuje, w jaki sposób różne algorytmy i miary
niepodobieństwa wpływają na wynik ewolucji pod względem jakości i heterogeniczności
rozwiązań.

List of abbreviations used in the work

3D Three-dimensional
DMX Distance minimizing crossover
DPX Distance preserving crossover
EA Evolutionary algorithm
ED Evolutionary design
EMD Earth mover’s distance
EMX Equidistance minimizing crossover
FFT Fast Fourier transform
GA Genetic algorithm
GP Genetic programming
SBX Similarity-based crossover
TSM Targeted sequential mutation

Contents

Acknowledgments 1

Abstract 3

Streszczenie rozprawy w języku polskim 5

Abbreviations 7

1 Evolutionary Design 13
1.1 Introduction . 13
1.2 Evolutionary algorithms. 14
1.3 Representations for evolutionary algorithms 17

1.3.1 Genotype-to-phenotype and phenotype-to-fitness mapping 17
1.3.2 Properties of genetic representations 18

1.4 Review of evolutionary design problems and representations 19
1.4.1 Scope of the review. 19
1.4.2 Approaches to evolutionary design of novel structures 19

2 Data set of active and passive 3D structures 33
2.1 Introduction . 33
2.2 3D structure model . 33
2.3 Genetic representations in Framsticks 35

2.3.1 Direct encoding (f0) 36
2.3.2 Recursive encoding (f1) 39
2.3.3 Developmental encoding (f4) 40

2.4 3D structures data set . 42
2.4.1 Data set creation . 42
2.4.2 1000_data_set characteristics. 44

2.5 Summary . 47

3 Dissimilarity Measures for 3D Structures 49
3.1 Introduction . 49
3.2 The Levenshtein distance (gene) 51

10 Contents

3.3 The heuristic graph-based measure (greedy). 52
3.3.1 Assumptions . 52
3.3.2 Alignment procedure 53
3.3.3 The matching procedure. 54
3.3.4 Dissimilarity calculation 55
3.3.5 Summary. 55

3.4 The optimal-matching graph-based measure (opt) 56
3.4.1 Differences compared to the greedy measure 56
3.4.2 Distance calculation 56

3.5 The descriptors-based measure (shape) 58
3.5.1 Introduction . 58
3.5.2 The algorithm. 58
3.5.3 Parameter tuning . 60

3.6 The distribution-based measures (dens and freq). 62
3.6.1 Introduction . 62
3.6.2 The algorithm. 62
3.6.3 Parameter tuning . 65

3.7 Implementation . 66
3.8 Dissimilarity measures comparison 67

3.8.1 Computational efficiency 68
3.8.2 Correlations between the dissimilarity measures 68
3.8.3 Qualitative comparison 71

3.9 Human perception of similarity 76
3.9.1 Motivations . 76
3.9.2 Procedure . 76
3.9.3 Pilot studies . 78
3.9.4 Final study . 80
3.9.5 Discussion and conclusions 88
3.9.6 Limitations of this study and future work 89

3.10 Summary . 90

4 Fitness-Distance Correlation Analysis 91
4.1 Introduction . 91
4.2 Experiments . 92

4.2.1 Methods . 92
4.2.2 The gene measure . 95
4.2.3 The opt measure. 96
4.2.4 The shape measure . 96
4.2.5 The dens and freq measures 98

4.3 Summary . 101

5 Enhanced Genetic Operators 103
5.1 Introduction . 103
5.2 The locality of native operators 103

5.2.1 Mutation operator . 103
5.2.2 Crossover operator . 105

Contents 11

5.3 Enhanced genetic operators 107
5.3.1 Targeted sequential mutation operator 107
5.3.2 Enhanced crossover operators. 115

5.4 Summary . 122

6 Dissimilarity Measures in Diversity Maintenance Techniques 123
6.1 Introduction . 123
6.2 Methods . 124

6.2.1 Solutions archive. 124
6.2.2 Niching . 126
6.2.3 Novelty search. 126

6.3 Experiments and results. 126
6.3.1 Experimental parameters 126
6.3.2 Results . 128

6.4 Summary . 134

7 Summary 135
7.1 Goals . 135
7.2 Contributions . 135
7.3 Future work . 137

A Applications of evolutionary design 138

B Structures from 1000_data_set 142

C Parameter tuning of the shape measure 147

D Structures used for dissimilarity measures comparison 151

E Correlations between the dissimilarity measures 153

F Human study participants’ characteristics 158

G Enhanced crossover operators 161

Bibliography 164

1

Evolutionary Design

“Evolution, to me, is the best designer of all time.”
– Frances Arnold, Nobel laureate in chemistry

1.1 Introduction
Evolutionary design is a method of using evolutionary optimization techniques to design
structures, in particular three-dimensional ones, for various purposes. This approach has
several advantages over human designers. It doesn’t require specialized knowledge, it can
reduce the cost and time of the design process, and it avoids the Einstellung effect [19],
which is a cognitive bias that causes experts to overlook better solutions due to their prior
knowledge and assumptions. Evolutionary optimization methods can explore the solution
space more extensively and discover optimal solutions that are beyond human imagination.

However, the full potential of these algorithms has not yet been realized. Evolution-
ary design is one of the most challenging optimization problems as the search space is
usually infinite and combines both continuous and discrete aspects. The evaluation of so-
lutions is costly, non-deterministic, and multi-objective. Furthermore, defining a genetic
representation and operators for designs is not straightforward, and there are no clear
guidelines on how to create representations with desirable properties. The complex and
non-obvious representations that are often used in evolutionary design problems, along
with their complex genotype-to-phenotype mapping, contribute to highly rugged fitness
landscapes [16, 89], which hinder the search process.

This work aims to address these challenges by utilizing dissimilarity measures for 3D
structures to enhance genetic operators and to explore the solution space more effectively.
The thesis is organized as follows. In Chapter 1, the basic principles of evolutionary design
are explained, and relevant literature is reviewed. Chapter 2 briefly describes the Fram-
sticks simulation environment [124, 126] used in this study, and presents the dataset of
active and passive 3D structures created for further analyses and experiments. Chapter 3
introduces the developed dissimilarity measures for 3D structures and provides their com-
parison. In Chapter 4, the dissimilarity measures are employed in the fitness-distance cor-
relation (FDC)[103] analysis of selected evolutionary design problems. Chapter 5 presents
genetic operators that utilize the developed dissimilarity measures for 3D structures. Fi-
nally, Chapter 6 analyzes the impact of different diversity maintenance algorithms and

14 1 Evolutionary Design

dissimilarity measures on the fitness and diversity of the solutions. Chapter 7 concludes
the work by summarizing the main contributions and providing directions for future re-
search.

The rest of this chapter is structured as follows: Sect. 1.2 describes the definition
and principles of evolutionary algorithms. Sect. 1.3 introduces the properties of genetic
representations for these algorithms. Sect. 1.4 provides an overview of the work in the
area of evolutionary design of novel structures.

1.2 Evolutionary algorithms
Evolutionary algorithms are optimization methods that draw inspiration from the process
of biological evolution [8, 45, 191]. They operate by exploring the solution space of a
problem using a population of solutions and mechanisms such as reproduction, mutation,
recombination, and selection. While they are not guaranteed to find the global optimum,
evolutionary algorithms can often provide high-quality solutions within a reasonable time.
Therefore, they can be applied to optimization problems that can not be solved by other
methods. Moreover, among the metaheuristics that were used for automated design,
evolutionary algorithms turned out to be the most successful ones [16].

Genotypes and phenotypes

In evolutionary algorithms, solutions (phenotypes) cannot be directly manipulated, there-
fore a genetic representation is needed to encode them. The encoded version of the solution
(phenotype) is called a genotype. During the course of the evolution, each phenotype is
evaluated and assigned a numerical value that expresses its quality – the fitness value.
This value is assigned to a phenotype, however, genetic operators such as mutation and
crossover are applied to a genotype. Thus, the way in which a genotype is translated
into a phenotype, the genotype-to-phenotype mapping, can affect the search process. For
some simple problems, e.g. a knapsack problem [171], a genotype corresponds directly to a
phenotype. However, evolutionary design problems usually employ genetic representations
with a complex genotype-to-phenotype mapping that can increase the problem’s difficulty.
Fig. 1.1 illustrates the relationship between genotype, phenotype, and fitness spaces. The
genetic representation and its operators introduce a certain topology of the phenotype
space that in turn can strongly affect the fitness landscape.

Mutation, crossover, and selection operators

There exist various genetic operators that can be applied in evolutionary algorithms to
manipulate the solutions in the population. Among them, mutation and crossover are the
most common ones [200]. The aim of the mutation operator is to introduce diversity in
the population and avoid premature convergence to a suboptimal solution. This operator
usually randomly modifies, adds, or deletes a small part of a genotype to create a mutant
solution. The crossover operator works by recombining the genetic information of two or
more parent solutions to generate new offspring solutions that will inherit and combine
some features of their parent solutions.

To choose the solutions that will survive and reproduce, resulting in the next gener-

Figure 1.1: The relationship between genotype, phenotype, and fitness spaces in the
problems of evolutionary design [117]. The upper row shows a sample genetic encoding
of the solutions and its three genotype-to-phenotype mappings, mapping1, mapping2,
and mapping3. The lower row shows another genetic encoding and its genotype-to-
phenotype mapping, mapping4. Each of the mappings results in different topology of
the phenotype space, which leads to a different fitness landscape. Note that the search
process and genetic operators are applied in the genotype space.

16 1 Evolutionary Design

ation, a selection operator is needed. It usually operates based on the solutions’ fitness
function value. This operator applies the selective pressure, which drives the algorithm
towards better solutions [7]. There are various selection schemes that can be used, such
as fitness proportionate selection, tournament selection, truncation selection, rank-based
selection, and elitist selection [57]. The selection scheme affects the diversity of the pop-
ulation and the convergence rate of the algorithm.

The general flow of an evolutionary algorithm

There are many types of evolutionary algorithms, including:

• genetic algorithms [81, 82, 69],

• evolutionary programming [60, 59],

• evolution strategies [181, 8],

• and genetic programming [128].

The architecture of an EA can vary depending on the type and the specific implementation.
The general scheme of a basic EA is shown in Fig. 1.2. It consists of the following steps:

1. Start by initializing a population of solutions randomly.

2. Evaluate each solution’s fitness according to the fitness function.

3. Check if a stop condition is met, such as achieving a target fitness value or reaching
a maximum number of iterations. If so, terminate the algorithm and return the best

Figure 1.2: The general schema of an evolutionary algorithm.

1.3 Representations for evolutionary algorithms 17

solution. If not, proceed to the next step.

4. Select solutions from the current population based on their fitness values or other
criteria.

5. Apply genetic operators, such as crossover and mutation, to the selected solutions
to generate new solutions.

6. Create a new population.

7. Go back to step 2.

This process is repeated until the stopping condition is satisfied.

1.3 Representations for evolutionary algorithms
The genetic representation, its associated genetic operators, and the genotype-to-phenotype
mapping are major factors that can influence the fitness landscape and the difficulty of the
problem, as discussed in the previous section. This section presents the formal definition of
genotype-to-phenotype and phenotype-to-fitness mapping proposed by F. Rothlauf [187]
and introduces some concepts and properties that are useful for analyzing representations
for evolutionary algorithms. The next section reviews the evolutionary design applications
and the genetic representations and operators they use.

1.3.1 Genotype-to-phenotype and phenotype-to-fitness
mapping

Rothlauf introduced a general framework for analyzing problems solved by evolutionary
and genetic algorithms, based on the decomposition of the fitness function into two map-
pings: a genotype-to-phenotype mapping fg and a phenotype-to-fitness mapping fp [187].
He uses the following notation:

• Φg – the genotype space, which contains all possible genotypes xg that can be en-
coded by the genetic representation,

• Φp – the phenotype space, which contains all possible phenotypes xp that can be
decoded from the genotypes by applying fg,

• fg(xg) : Φg → Φp – the genotype-to-phenotype mapping, which transforms a geno-
type xg ∈ Φg into a phenotype xp ∈ Φp,

• fp(xp) : Φp → R – the phenotype-to-fitness mapping, which evaluates a phenotype
xp ∈ Φp and assigns it a fitness value from R.

The optimization problem can be generally defined as:

x̂ = max
x∈Φg

f(x),

where:

• x is a vector of decision variables (or another form of a genotype),

18 1 Evolutionary Design

• f(x) is a fitness function that combines the two mappings as follows:

f = fp ◦ fg = fp(fg(xg))

The function fp assigns a fitness value to a phenotype xp ∈ Φp, while the genetic oper-
ators, such as mutation and crossover operate on its genotype, xg ∈ Φg. The translation
between the genotype and the phenotype is determined by the genotype-to-phenotype
mapping of the representation.

1.3.2 Properties of genetic representations
Rothlauf’s theory of genetic representations focuses on three properties: redundancy,
scaling of alleles, and locality [187]. A representation is redundant when there are
more genotypes than phenotypes, meaning that the same phenotype can be encoded by
more than one genotype. The redundancy of the representation can be either synony-
mous or non-synonymous. Synonymous redundancy means that the genotypes that map
to the same phenotype are similar and can be easily changed into each other by genetic
operators such as mutation and crossover. Synonymous redundancy can be either uniform
or non-uniform. Uniform redundancy means that each phenotype has the same number
of genotypes. Non-uniform redundancy means that some phenotypes have more or less
genotypes than others. Synonymous and uniform redundancy does not affect the behavior
of evolutionary algorithms. The performance of the algorithm in the case of synonymous
non-uniform representation depends on whether the optimal solution is over- or under-
represented. Non-synonymous redundancy hinders the evolutionary search by creating a
misleading fitness landscape [187].

Scaling refers to the way in which alleles within a genotype are mapped into a phe-
notype. In uniform scaling, all alleles (building blocks) affect fitness equally. Conversely,
in non-uniform scaling, some alleles have more or less influence than others. Non-uniform
scaling can slow down the convergence and make the algorithm prone to genetic drift.
Locality refers to the correspondence between genotype and phenotype spaces. In high-
locality representations, similar genotypes produce similar phenotypes. High-locality rep-
resentations preserve problem difficulty. In low-locality representations, a small change
in a genotype can cause a large change in a phenotype. Therefore, low-locality repre-
sentations can hinder the performance of the algorithm, making the search process more
random [187].

Other properties useful for analyzing genetic representations are epistasis [34], evolv-
ability [182], and scalability [86]. Epistasis is a concept denoting the interdependence of
genes within a genotype. It can be quantified by different methods, depending on the type
of genetic representation. High epistasis implies that there are strong interactions between
genes and that a minor change in a genotype can cause a major change in a phenotype,
resulting in a rugged fitness landscape. Evolvability, in the context of genetic represen-
tations, is in general understood as the ability to produce offspring that is advantageous
for the evolutionary search. Scalability refers to the capacity of a representation to scale
up to create more sophisticated designs.

Another framework for investigating genetic representations for ED problems in terms

1.4 Review of evolutionary design problems and representations 19

of modularity, regularity, and hierarchy was introduced by Hornby [85]. Modularity
of genetic representation enables a group of genes or alleles to be handled as a unit.
Regularity allows for the reuse of the elements of the genotype. Hierarchy refers to the
number of nested modules. These properties enhance the evolvability and scalability of
representations by enabling reuse, recombination, and information compression.

1.4 Review of evolutionary design problems and
representations

1.4.1 Scope of the review
Evolutionary design covers a wide range of applications that are useful for various stages of
design, from optimizing existing designs to generating novel structures from scratch. These
different tasks usually require different types of genetic encodings. In general, the genetic
representations for evolutionary design problems can be classified into parameterizations
and open-ended representations [84]. Parameterizations consist of fixed-length sets of
values that allow for optimizing certain aspects of existing structures, such as element
length or shape. They are suitable for tasks that involve modifying the predefined structure
topology.

Open-ended genetic encodings, on the other hand, allow the generation of novel struc-
tures from scratch, without relying on a predefined structure topology. This work focuses
on the latter application, therefore this review, putting an emphasis on the design repre-
sentations and their genetic operators, only includes the works that employ open-ended
genetic encodings. However, to showcase the various applications of ED, Table A.1 in
Appendix A lists some works that were excluded from the review.

The analysis of applications of the included works allowed to determine the main
domains: artificial life, generic design, robotics, engineering, and architecture. In the
following section, the works are grouped by domains, and within each domain they are
presented in chronological order.

1.4.2 Approaches to evolutionary design of novel structures

Artificial life

In his pioneering work, Karl Sims [196] introduced a system for evolving virtual creatures
in simulated 3D environments. The genetic representation was based on directed graphs,
used to describe both the morphology and the neural network of the creatures. The
nodes of the graphs represented components such as body parts (segments), effectors,
sensors, and neurons. The edges of the graphs represented either joints between body
parts or synaptic connections between neural components. The mutation was performed
by randomly adding, deleting, or modifying nodes or edges. The sexual reproduction
was performed using one-point or multi-point crossover or using grafting. The creatures
were evolved for the following tasks: swimming, walking, jumping, and following. The
emergence of effective locomotion strategies, in some cases non-obvious from the point

20 1 Evolutionary Design

of view of a human designer, showed the ability of the evolutionary algorithms to design
virtual creatures.

Lohn and Reggia [152] investigated the potential of applying a genetic algorithm to
generate self-replicating cellular automata. The genetic representation for automata con-
sisted of an automata rule table. The single-point crossover was performed by swapping
the partial rule tables from two parents. The mutation operator created a random action
for a randomly chosen rule. The fitness function was based on a growth measure and
a self-replication measure. The resulting self-replicating structures were better in terms
of simplicity compared to those created manually. Furthermore, the structures displayed
some surprising features, such as moving while replicating.

In [56] Eggenberger et al. introduced the concept of differential gene expression, in-
spired by the process of interaction between biological cells, regulating the organism’s
growth. This indirect developmental encoding was motivated by its ability to reduce the
amount of information that has to be encoded in the genome compared to direct encodings,
its ability to produce emergent properties, and the potential for parallel computation. The
model included developmental processes such as cell division, death, and differentiation.
The genotype consisted of a list of integers, divided into structural and regulatory genes.
The mutation operator altered digits in the genotype. The crossover operator performed
a single-point crossover. The optimization goal of the evolutionary experiment was to
evolve bilateral structures with the fitness function measuring the number of cells, their
x-axis position, and their symmetry. The paper demonstrated how biologically-inspired
developmental encoding can be applied to the evolutionary design of 3D shapes.

Bonabeau et al. [22] proposed a model of growing 3D architectures using a multi-agent
system inspired by social insects. The genetic representation used a set of micro-rules
that guided the behavior of simple agents that could move and deposit blocks. The
fitness function consisted of several criteria, such as the proportion of micro-rules used,
the compactness of the architecture, and the patterns detected in the construction graph.
Mutation exchanged an unused micro-rule with a randomly generated new one. In addition
to a standard two-point crossover, a specialized crossover operator was devised. The
micro-rules were divided into two sets minimizing the co-dependency between the sets.
The crossover operator kept together mico-rules from the same sets. Among the resulting
structures the amount of interesting shapes was higher than in random populations, but
high epistasis between genes, resulting in a rugged fitness landscape hampered the ability
of the model to discover more complex structures.

Komosinski and Rotaru-Varga [123] investigated how the use of different genetic en-
codings influences the evolution of virtual 3D creatures. They employed the Framsticks
environment [124, 126] that allows for simulation of the active and passive 3D structures,
modeled as undirected graphs. In the study, three genetic representations were compared:
a low-level direct one, a recurrent one, and a developmental one. Each representation
had its dedicated mutation and crossover operators. In the direct low-level encoding, the
mutation operator altered exactly one element of an agent, by addition, deletion, or modi-
fication of its parameters. The crossover operator for this representation was performed by
cutting and grafting the phenotypes. In recursive encoding, the mutation operator added
or deleted a body part, a neuron, or a modifier or changed the parameters of a neuron.
The crossover operator swapped the substrings of the parent genotypes. In developmental

1.4 Review of evolutionary design problems and representations 21

encoding, the mutation operator affected a single node of the genotype tree, similar to re-
current encoding. The crossover operator swapped subtrees of the parent genotype trees.
The agents were evaluated on three optimization tasks: the height of passive structures,
the height of active structures, and the speed of locomotion. The low-level encoding pro-
duced solutions of lower fitness than the two higher-level encodings. The advantages of
the recurrent and developmental encodings over the low-level one included a bias towards
structured phenotypes and less disruptive genetic operators.

Generic design

Another early attempt at the evolutionary design of novel structures belongs to Bentley
and Wakefield [17]. They proposed a genetic representation that used spatial partitions
in the shape of cuboids with varying dimensions and locations. This representation was
employed in a standard GA with real coding to evolve tables. The objectives included size,
mass, stability, flat surface, and supportiveness and stability. Later [18] the same authors
used a spatial-partitioning representation with optional planes intersecting the cuboids.
Genotypes were encoded as binary strings that specified the number, size, position, orien-
tation and type of each primitive. The mutation operator added or deleted blocks of genes
corresponding to the primitives. A hierarchical crossover was employed. This approach
allowed to evolve a variety of solid objects including tables, heat sinks, optical prisms, and
streamlined designs like train fronts.

Husbands et al. [92] applied genetic algorithms to an interactive design of 3D ob-
jects. Their approach was based on a shape description language, utilizing superquadric
primitives and their deformations. The genotype representation was a directed network,
traversed recursively in order to produce an expression of a shape descriptor language.
The genetic operators operated on the bitstrings encoding the networks. The mutation,
performed bitwise, could modify the structure of the expression or alter its parameters.
As a crossover operator, the two-point crossover was used. The selection was performed
by users. As a result, varied and sometimes unexpected shapes were generated.

Broughton et al. [27] employed 3D shape grammar and genetic programming to inter-
actively evolve 3D structures. The genotypes were represented using program trees. The
terminal set consisted of a box, cone, cylinder, sphere, torus, and wedge. The function
set included transformations such as growth, rotation, or displacement. Crossover was
performed by swapping the subtrees between two parents. Mutation replaced a randomly
selected subtree with a newly generated one. The selection was performed by users, ac-
cording to aesthetic criteria. The system’s goal was to explore the solution space rather
than optimize shapes.

In [88] Hornby and Pollack compared the generative representation based on paramet-
ric, context-free L-systems to a non-generative encoding in the task of evolving tables. The
objects were built from voxels. The mutation operator modified a command or its parame-
ters, while the crossover operator inserted a small segment of one parent into a copy of the
other parent. The fitness function comprised a table’s height, surface structure, stability
and the number of excess voxels used. The generative representation proved to provide
better results than a non-generative one both in terms of the fitness of the solutions and
execution time.

22 1 Evolutionary Design

Ebner [55] proposed a method of evolving three-dimensional shapes using scene graphs,
which are hierarchical data structures that describe the objects and their transformations
in a scene. He compared two different scene graph representations: the one used by
OpenInventor [224], a 3D graphics toolkit, and the one used by virtual reality modeling
language (VRML) [1]. The scene graphs consist of nodes that can be either shape nodes,
which specify the shape type, property nodes, which specify the shape look, transformation
nodes, which specify translation, rotation, or scaling operations, or group nodes. Mutation
defined in the study for a scene graph representation replaced a random node with a
newly generated subtree. The crossover operator swapped the selected subtrees from two
parents. The representation was evaluated on the optimization of the blades of a wind
turbine. The fitness of the solutions was calculated as the average rotational energy of the
rotor. The VRML representation turned out to produce better results. The OpenInventor
representation using group nodes was disadvantageous as the genetic operators could lead
to significant differences in the resulting phenotype.

Hamza and Saitou [77] proposed a method for evolving three-dimensional solid shapes
using constructive solid geometry (CSG). They encoded the shapes as binary CSG trees,
where the internal nodes were boolean operations (union or subtraction) and the leaf nodes
were solid primitives (cube, cylinder, or sphere). The crossover operator swapped subtrees
of two parents. Mutation changed a boolean operation or a primitive solid or altered the
parameters of the solid. The representation was evaluated on the problem of the design of
indoor modular space truss joints, which are structures that connect beams and columns
in buildings. The fitness function was based on two objectives: maximizing stiffness and
minimizing weight. The selected resulting structures were later fabricated.

O’Neill et al. [165] employed a grammatical evolution approach to evolve 2D shapes
comprised of pixels. A shape grammar was used to generatively construct the phenotypes.
The operators of the grammar included such actions as moving the pixels, changing their
sizes, and drawing shapes (e.g. a circle). A genotype was represented using integer codon
values. Random resetting mutation operator and single-point crossover were used. Fitness
was calculated as a distance to the target structure. Three targets, differing in level of
difficulty, were considered. In all three cases, a correct solution was obtained.

Kiptiah et al. [112] used interactive genetic algorithms to design 3D models, rendered in
Blender. The models were encoded using L-systems. The terminal symbols set included
such operations as creating a branch segment, creating a quad, or rotating around a
given axis. Standard GA mutation and crossover operators were used. The fitness of the
models was determined by the users’ preferences, who interacted with the system through
a graphical user interface. However, the system faced a major challenge in providing
specific feedback to guide the evolution towards models with desired properties.

Robotics

In [62] Funes and Pollack evolved 2D and 3D Lego brick structures in the context of evolu-
tionary robotics. The structures were represented using trees, where a node corresponded
to a brick and had a parameter denoting the size and a list of descendants. Crossover
swapped subtrees between two parents. Mutation either modified a brick parameter or
added a node. In the experiment concerning 3D structures, the goal was to evolve a table

1.4 Review of evolutionary design problems and representations 23

and the objectives included the desired height, coverage of the target area, support of
the desired weight, and minimization of the number of bricks used. The objects evolved
in the simulation were later physically built, which demonstrated the possibility to use
evolutionary computation to design physical objects.

In [147] Lipson and Pollack co-evolved from scratch morphologies and control systems
of the simple robots, consisting of bars, actuators, and artificial neurons, with the goal
of locomotion. The evolved robots were later built in a physical world. The robots were
represented using a string of integers and floating point numbers describing the body parts,
neurons, and their connections. The mutation operator changed the properties of bars or
neurons, removed or added bars or neurons, or changed their connectivity. The crossover
operator was not used. Fitness was defined as the distance traveled by center-of-mass
in a fixed time interval. The experiment resulted in robots varying in morphologies and
locomotion strategies, and the emergence of unexpected properties like symmetry.

Hornby, Lipson, and Pollack [87] co-evolved morphologies and control systems of robots
built of bars and fixed and actuated joints. The evolved robots were later built in a physical
world. Fitness was again the distance traveled by the center-of-mass. Parametric, context-
free L-systems were used as a genetic encoding. Mutations included such operations as
replacing, adding, or removing commands and altering their parameters. The crossover
operator worked by inserting a small segment of one parent into a copy of another parent.
In the experiments, several emerging locomotion strategies were observed. The generative
encoding showed the advantage of allowing to re-use of parts of a genotype, enabling
modularity.

In [24] Bongard and Pfeifer introduced an artificial ontogeny inspired by the process
of biological development. The agents, equipped with sensors and actuators, were evolved
in a virtual environment for a block-pushing task. The morphology and control system
of the agents was co-evolved. The genotypes, directing the growth of the agents, were
encoded using gene regulatory networks. The mutation operator altered, on average, a
single value in a genotype. The crossover operator was an unequal crossover. The fitness
function comprised the distance and speed of pushing the block. The experiments showed
a dissociation between genotype and phenotype complexity. The evolved agents exhibited
hierarchical repeated structure, indicating high evolvability of the developmental encoding.

Krĉah [130] introduced a method for the evolutionary design of autonomous robots,
inspired by NeuroEvolution of Augmenting Topologies (NEAT) [204]. The algorithm was
applied to co-evolve the morphology and control systems of simulated robots. The genetic
representation – a directed graph – and its operators were based on those introduced
by Sims [196]. Mutation randomly changed a node in the graph, either by modifying
its parameters or by adding or deleting a child node. In the hierarchical recombination
process, phenotypes were mated based on historical markings, where morphology graphs
of parents were examined for nodes and connections with matching markings. Fitness
sharing (utilizing compatibility distance based on the historical markings) was used as a
mechanism of speciation. Fitness functions included light following, swimming, walking
and, jumping. For all four fitness functions, the proposed hNEAT algorithm outperformed
the standard GA. The speciation mechanism allowed to avoid premature convergence to
local optima. The recombination based on historical markings enhanced the preservation
of advantageous features, protecting against disruptive changes.

24 1 Evolutionary Design

Faíña et al. [58] applied a generative evolutionary approach to co-evolve the morphology
and the control systems of simulated robots that were composed of heterogeneous parts.
The robots were represented using tree-like structures, where each node corresponded to
a module that had a specific type, control parameters, and connections to other modules.
The mutation operator performed various operations on the nodes, such as adding, delet-
ing, changing the parameter values, changing the connectivity, and replicating a branch to
create a symmetrical structure. The crossover operator was not used in the evolutionary
process, because the preliminary experiments showed that it had highly disruptive effects
on the tree representation. The authors considered two different objectives in their exper-
iments. In the first experiment, the objectives were to maximize the distance traveled by
the robot while carrying a payload and to minimize the energy consumption of the robot.
In the second experiment, the objective was to maximize the area painted by the robot.
The robots constructed in the latter experiment were later fabricated.

Chee and Teo [35] used genetic programming and a self-adaptive differential evolution
algorithm to co-evolve the morphology and control system of simulated snake-like modu-
lar robots. The robots were modeled using a tree-based representation, where each node
corresponded to a segment of the robot and specified its properties, such as its length and
connections to other segments. The GP crossover operator exchanged subtrees between
two parent solutions. For the mutation, the self-adaptive Differential Evolution algorithm
was used. Two mutation operators were compared: a standard differential evolution mu-
tation and its customized version, differing in the mutation differential operation. The
objective of the evolutionary experiment was to achieve the forward locomotion of the
robots along a straight line. The results showed that the customized DE mutation opera-
tor provides better results than the standard operator.

Brodbeck et al. [26] introduced an approach to the artificial evolution of physical
robots, employing a “mother robot” that designed and assembled the agents. The fabri-
cated robots were evaluated in the testing environment and their performance was used in
the development of the new generation. The genetic representation of the agents consisted
of a variable-length sequence of genes, each encoding information about a module type,
construction parameters, and motor control. The genetic operators included mutation –
which modified, added, or removed a single gene – and a single-point crossover. The fitness
value was calculated based on the distance traveled from the robot’s initial position in a
specified time interval. The experiments showed the emergence of the agents diversified
both in terms of morphologies and locomotion strategies. The analysis of the physical
construction constraints on the resulting morphologies revealed the strong influence of
those constraints on the phenotypic diversity.

Cheney et al. [148] analyzed the reasons hampering the co-evolution of morphologies
and control systems of virtual creatures. The experimental analysis employed 3D soft
robots. The robots were modeled as a grid of voxels, represented using a directed graph,
following the Compositional Pattern Producing Network Neuro-Evolution Through Aug-
menting Topologies (CPPN-NEAT) algorithm [203]. Two separate networks for morphol-
ogy and control system were employed. Each non-empty voxel could be either passive or
active. The mutation operator could add or remove a node or an edge, modify the weight
of an edge, or modify a node’s activation function. The crossover operator was not used.
The fitness was calculated as a displacement of the agent’s center of mass along the x-axis.

1.4 Review of evolutionary design problems and representations 25

The results showed that the morphologies converge faster than the control systems, which
limits the exploration of novel behaviors. The possible explanation for this phenomenon
may be the more rugged fitness landscape of morphologies in comparison to that of control
systems.

Talamini et al. [207] explored the problem of designing adaptable morphologies of
soft robots. The robots were represented using a grid of voxels. Gaussian mutation
operator and uniform crossover were used. The proposed task-agnostic approach employed
criticality as a fitness function. A dynamical system possesses the property of criticality
when it is close to a phase transition between the ordered and chaotic states. The measure
of criticality that was used is based on the avalanche analysis. Three different tasks were
used to evaluate the evolved robots. The robots optimized using criticality were more
adaptable than handcrafted robots, and they performed well across different tasks, unlike
the handcrafted robots that performed poorly in the tasks they were not designed for.

Engineering

Schoenauer [192] proposed a genetic representation for shape optimization based on Voronoï
diagrams, which are a mathematical construct that partitions space into regions according
to the distance to a set of points, known as Voronoï sites. Each region, called a Voronoï
cell, contains all the points that are closer to its corresponding site than to any other site.
The collection of cells forms a Voronoï diagram that covers the whole space. The genetic
representation consisted of a list of Voronoï cells with labels 0 or 1. A random line that
crossed a Voronoï diagram was used for performing crossover, and the sites on either side
of the line were swapped between two parents. Mutation randomly changed the location
or label of a site, or added or removed a site. This representation was compared to H-
representation, in which the topology of the structure is defined by the list of rectangular
“holes” with given locations and sizes. Crossover for H-representation worked similarly, by
geometrical exchange of holes. Mutation modified the location or size of the holes or added
or deleted them. For both representations, the fitness function was computed by compar-
ing the evolved shape with the target shape. Both Voronoï diagrams and H-representation
outperformed bitarray representation. However, in the case of the topological optimum
design problem, H-representation had an advantage over Voronoï diagrams due to its lower
epistasis.

Baron and Fisher [14] applied voxel representation in shape optimization: The geno-
type was a binary string that encoded the presence or absence of voxels in a two-dimensional
design space. The test problems were designing a beam and an annulus. The fitness
function measured weight and stress. Initially, the bitwise mutation and the two-point
crossover operators were used, but they proved to be inefficient in terms of the time re-
quired for significant improvement. Then, the smoothing mutation operator was tested,
which replaced the values of neighboring voxels with their most common value. This op-
erator was more effective, as it eliminated isolated holes and ragged edges in the designs.
The UNBLOX [29] crossover operator was also employed, which swapped sub-grids instead
of 1D sub-strings that did not fully represent the adjacency of cells in the 2D grid. The
UNBLOX crossover outperformed standard crossover operators in terms of both speed of
convergence and best fitness obtained. Two new mutation operators that exploited the

26 1 Evolutionary Design

properties of the task were also devised. Both operators outperformed bitwise mutation.
The specialized operators for the beam design problem were ineffective for the annulus
design problem and had to be modified to incorporate domain knowledge. The paper
showed that the voxel representation with specialized representation can be successfully
applied to shape optimization.

Peysakhov and Regli [169] applied messy genetic algorithms to design structures com-
posed of Lego elements. The genetic representation was based on assembly graphs, where
nodes represented Lego elements and edges represented connections between elements.
The labels assigned to nodes defined the type and the parameters of an element. A
genotype consisted of an array containing nodes and a hash table containing edges. The
mutation operator replaced a Lego element with an element of the same type and different
size. As a crossover operator, a single-point crossover was employed. The goal of the
experiments was to evolve structures of a certain type (e.g. pillar-like structure) exhibit-
ing desired properties (e.g. a minimum number of holes). The experiments showed that
the performance of the genetic algorithm was worse for structures represented by highly
connected graphs, which could be explained by the highly disruptive effect of the crossover
operator for this type of structures.

Kicinger et al. [109] proposed a method for the evolutionary design of steel structures in
tall buildings using cellular automata (CA) as a generative representation. The genotype
consisted of separate design embryos for different building subsystems and one-dimensional
CA rules for each subsystem. The design rules were applied to corresponding design
embryos. After the development, the subsystems were assembled into a complete design.
The bit flip mutation operator, adapted to handle non-homogenous genotypes, and the
uniform crossover operator were used. The fitness of solutions was calculated as the weight
of the steel structure. This initial study showed that CAs are a feasible representation for
the optimization of complex structures that exhibits the property of scalability.

Hornby et al. [83] used an evolutionary algorithm to design an antenna for NASA’s
Space Technology 5 (ST5) mission. They employed a generative tree-structured repre-
sentation, where the nodes contained antenna-construction operators. The fitness value
of the solutions was calculated as a function of the voltage standing wave ratio (VSWR)
and gain values. The evolved antenna was later fabricated and deployed in the mission,
proving the feasibility of the proposed approach.

Architecture

Rosenman [186] used an evolutionary approach to architectural form generation. A hier-
archical growth model was employed: first, a population of rooms was created, next, zones
were generated from the rooms. The architectural forms were represented by a sequence of
rules of design grammar. The mutation operator was not used. Instead, the experiments
were rerun with different initial randomly generated populations. A crossover operator
was a single-point crossover that swapped the subsets of rules between parents. The fitness
function involved both a quantitative component (including such factors as minimizing ad-
jacency requirements between rooms) and a qualitative component, assessed by users. The
bottom-up hierarchical approach showed the advantage of allowing for shorter genotypes
and reducing combinatorial problems.

1.4 Review of evolutionary design problems and representations 27

Similarly to [27], using aesthetic aspect as a selection criterion, O’Reilly and Ra-
machandran [167] employed an evolutionary approach to create 3D structures in the con-
text of architecture. The genotype consisted of an initial form drawn by an architect and a
series of transformations. Only the transformations were subject to the genetic operators:
mutation and single-point crossover. The selection was performed by users.

O’Neill et al. [164] further developed the approach introduced in [165] and applied it
to shelter design. A simple representation consisting of a list of beams and their coor-
dinates turned out to not be able to capture the compositional character of a building.
An improved representation was introduced that operated on curves and a list of beams
associated with the points on the curves. The same mutation and crossover operators as
in [167] were used. Fitness was assigned by users according to perceived aesthetic values.
The authors noted that recursion in grammar is a desirable feature as it enabled to evolve
complex objects, however excessive complexity resulted in incoherent structures composed
of too many components.

Byrne [28] employed grammatical evolution to design bridges. The bridges were mod-
eled as undirected graphs. The nodes were described by Cartesian coordinates and a
description attribute denoting the part of the bridge the node belongs to. The fitness
function was a multi-objective function that aimed to minimize two conflicting objectives:
the stress experienced by the bridge under a given load, and the amount of material re-
quired to construct the bridge. The experiment showed that the proposed approach was
able to produce solutions satisfying the specified constraints. However, the analysis of
the users’ preferences revealed that the Pareto-optimal solutions were less aesthetically
pleasing for users than solutions that were not on the front.

Other

Lohn and Colombano [150] used evolutionary search to design analog circuits. A language
comprised of component-placing instructions was used to encode the genotypes. The
crossover operator was a single-point crossover. The phenotypes created from evolved
genotypes were later simulated to assess the value of the fitness function. The objec-
tives, optimized in separate experiments, included filter response and amplifier gain. The
evolved circuits did not outperform their hand-designed counterparts, but the experiments
showed that it is possible to automatically design feasible circuits characterized by desir-
able properties.

To improve the scalability of evolutionary circuit design, Gordon [71] applied an indi-
rect developmental encoding, inspired by the process of biological development. Genotypes
were modeled as sets of rules governing the gene expression. The rules consisted of pre-
conditions and actions. Preconditions were boolean expressions that checked the presence
of proteins needed for a gene to activate and the absence of its inhibitors. The devel-
opmental rules were applied to a two-dimensional arrays of cells that were later mapped
to circuits. A point mutation and a single-point crossover operator were used. The op-
timization task was to evolve a two-bit adder, where the fitness functions was calculated
based on a distance to a target pattern. As a result, functional circuits were evolved. The
developmental representation showed the advantage of encoding design abstractions, such
as iterative patterns, enhancing scalability.

28 1 Evolutionary Design

Lameijer et al. [136] developed an interactive evolutionary approach for the design of
drug-like molecules, which allows the user to explore the chemical space of all possible
molecules. The molecules were represented as graphs, where nodes corresponded to atoms
and edges corresponded to bonds. The nodes representing atoms of different valence were
encoded using different symbols. The crossover operator swapped subtrees of two parents.
The mutation operator altered the molecular structure by adding, deleting, or modifying
atoms or bonds while ensuring that the valence rules were satisfied. The selection was
performed interactively by users. The authors concluded that the employed atom-based
mutation is more advantageous than the alternative fragment-based mutation, as in the
latter approach the mutations result in phenotypes vastly different from their parents.

Baldominos et al. [11] used evolutionary algorithms to automatically design the topolo-
gies of convolutional neural networks (CNN) for handwritten digit recognition. Two dif-
ferent genetic encodings were used to represent the networks: the Gray encoding and a
formal grammar. The genetic operators included random resetting mutation and multi-
point crossover. Since the solutions tended to converge to a single solution, a niching
strategy was implemented to promote diversity. The authors evaluated the performance
of the evolved CNNs on the MNIST dataset, a benchmark for handwriting recognition.
The results showed that the evolutionary approach is capable of designing networks that
are competitive with state-of-the-art solutions. The formal grammar representation al-
lowed for obtaining better results than Gray encoding and standard GA, which can be
attributed to the greater flexibility and lesser redundancy of this encoding.

1.4 Review of evolutionary design problems and representations 29

Year Domain Problem Representation Ref.
1994 Artificial life Evolving virtual creatures Directed graph [196]
1995 Generic design Table evolution Spatial-partitioning

representation
[17]

1995 Artificial life Evolving self-replicating
structures

Cellular automata [152]

1996 Generic design 3D shape design Directed network [92]
1996 Engineering Cantilever plate design Voronoi diagrams [192]
1997 Generic design 3D shape design Spatial-partitioning

representation
[18]

1997 Architecture 2D floor plan design Design grammar [186]
1997 Artificial life 3D shape design Cell grid [56]
1997 Generic design 3D shape design Tree [27]
1998 Architecture Evolving architectonical

forms
Profile set and a
sequence of transfor-
mations

[167]

1998 Robotics Evolving robots Tree [62]
1999 Circuit design Evolving circuit designs Set of rules [150]
1999 Engineering Beam design Voxels [14]
2000 Artificial life 3D shape design List of instructions [22]
2000 Robotics Evolving robots String of numbers [147]
2001 Robotics Evolving robots L-system [87]
2001 Generic design Evolving tables L-system [88]
2001 Robotics Evolving robots Gene regulatory

network
[24]

2001 Artificial life Evolving virtual creatures String [123]
2003 Generic design Evolving wind turbine Scene graph [55]
2003 Circuit design Evolving circuit designs Set of developmen-

tal rules
[71]

2003 Engineering Evolving engineering designs Assembly graph [169]
2004 Generic design Truss optimization Tree [77]
2004 Engineering Design of steel structures in

buildings
Cellular automata [109]

2006 Engineering Evolving antennas L-system [83]
2006 Chemistry Design of drug-like molecules Graph [135]
2008 Robotics Evolving robots Directed graph [130]
2009 Generic design 2D shape design Shape grammar [165]
2010 Architecture Shelter design Shape grammar [164]
2012 Architecture Bridge design Shape grammar [28]
2013 Robotics Evolving robots Tree [58]
2014 Robotics Evolving robots Tree [35]

30 1 Evolutionary Design

Year Domain Problem Representation Ref.
2015 Robotics Evolving robots List of instructions [26]
2016 Robotics Evolving robots Directed graph [148]
2017 Generic design 3D shape design L-system [112]
2018 Neuroevolution Evolving network topology Grammar, Gray en-

coding
[11]

2021 Robotics Evolving robots Voxels [207]
Table 1.1: Works in the evolutionary design reviewed in this chapter.

1.4 Review of evolutionary design problems and representations 31

The papers reviewed in this section are summarized in Table 1.1. Fig. 1.3 presents the
distribution of domains of the papers in the following years. It should be noted that this
review is not representative of the entire body of work in the area of evolutionary design,
as works employing parametric representations were excluded and the focus was put on
creating novel designs from scratch. In this respect, there is an observed prevalence of work
on artificial life and generic design in earlier years and on robotics in later years. This
trend may reflect a difficulty in advancing effective search methods for generic evolutionary
design problems.

Still, the reviewed works demonstrated the emergence of surprising behaviors or mor-
phologies that would be difficult for a human designer to invent [196, 152, 92]. Some of
the evolved structures were later physically built [62, 147, 87, 77, 58], proving the applica-
bility of evolutionary design to industrial applications. For instance, the antenna evolved
by Hornby [83] was successfully employed in the NASA mission.

Fig. 1.4 shows the distribution of the genetic encodings used in the reviewed works.
The most frequent representations were L-systems and tree-based representations. In
general, indirect, recurrent, and generative encodings, allowing for modularity and re-use
of parts of the genotype, were more prevalent. Such encodings bias the search towards
more structured phenotypes, allowing to discover morphologies of greater complexity. On
the other hand, higher epistasis of this type of representations may lead to a lower locality
of genetic operators and in turn a more rugged fitness landscape. The disruptive effect

1995 2000 2005 2010 2015 2020
Year

Artificial life

Generic design

Engineering

Architecture

Robotics

Circuit design

Chemistry

Neuroevolution

Domains of the reviewed papers

Figure 1.3: Domains of the papers featured in the review.

32 1 Evolutionary Design

0 1 2 3 4 5

Tree
L-system

Directed graph
Shape grammar

Spatial-partitioning representation
Voxels

List of instructions
Cellular automata

Cell grid
Profile set and a sequence of transformations

Set of rules
Design grammar

Voronoi diagrams
String of numbers
Directed network

Gene regulatory network
String

Scene graph
Set of developmental rules

Assembly graph
Graph

Grammar, Gray encoding

Representation count

Figure 1.4: Representations used in the papers featured in the review.

of some genetic operators was reported in the reviewed works [192, 55, 169, 136] and in
some works the crossover operator was not employed at all [147, 148, 58]. Conversely, the
specialized operators taking into account properties of the representation turned out to
increase the search efficiency [14, 130, 35].

Overall, the works reviewed in this section show that indirect encodings can provide
the features of modularity, regularity, and scalability, which are desired in ED problems.
However, these representations also pose challenges for the design of effective genetic
operators, which should avoid disrupting the structural and functional properties of the
parent solutions. Therefore, a promising approach is to use phenetic dissimilarity measures
to control the amount of variation introduced by the genetic operators. The development of
phenetic dissimilarity measures and their integration into the evolutionary search process
is the main topic of the subsequent chapters.

2

Data set of active and passive 3D
structures

2.1 Introduction
The experiments in this work were conducted using the Framsticks simulation environ-
ment [124, 126] and its Python interface [127], which enables the implementation of cus-
tomized genetic algorithms. This chapter provides an overview of the Framsticks sim-
ulation environment and the 3D structure model that it uses to represent the artificial
creatures (Sect. 2.2). Then, it describes the genetic representations available in Fram-
sticks, with an emphasis on the ones that were employed in this work (Sect. 2.3).

For the analyses performed in the following chapters, a data set of active and passive
3D structures was constructed. The data set consists of structures encoded using three
different genetic representations and evolved for four separate optimization objectives. The
method of generation and selection of the structures for this data set and its properties
are described in Sect. 2.4.

2.2 3D structure model
Framsticks software simulates and evolves three-dimensional designs controlled by re-
current neural networks. Two physics engines are available: a native MechaStick and
ODE [197], which simulates rigid bodies composed of cuboids, ellipsoids, and cylinders.
In the experiments reported here, a simple and fast MechaStick physics engine was used.
The engine uses the finite element method: bodies are composed of points with mass that
are connected with joints, and only the points are simulated. The points are referred to
as parts. At each part, the simulator computes every force that acts on it: the pull of
gravity, the springiness when connected to other points, the bounce and drag when hitting
the ground, etc. (Fig. 2.1). Control systems consist of artificial neurons of various types,
including sensors and effectors (Fig. 2.2), that can be connected arbitrarily – with recur-
rent and parallel connections permitted (for a detailed description of the neuron types,
see [126]).

Figure 2.1: Sample forces calculated in the MechaStick simulator [216].

Figure 2.2: A visualization of a sample body simulated by the MechaStick engine
with parts (points) as balls, joints as sticks between parts, and selected sensors and
effectors. This particular structure has 7 parts and 6 joints [126].

2.3 Genetic representations in Framsticks 35

2.3 Genetic representations in Framsticks
A genotype describes both a body and a control system, and it can undergo mutation,
crossover, and repair. Framsticks offers various genetic representations with its dedicated
operators for encoding active and passive 3D structures. Fig. 2.3 illustrates the hierarchy
of these representations in Framsticks. The higher-level representations, such as f1 , f4 ,
and fH, need to be converted to one of the lower-level representations, either f0 (using
the ball-and-stick model) or f0s (using the solid shapes model), to generate a model that
can be simulated. Fig. 2.4 shows examples of such models both inside and outside the
simulation. The genotypes are encoded using strings of characters, as demonstrated in
Fig. 2.5. The following list provides a brief overview of the genetic representations in
Framsticks and their features:

• f0/f0s: a low-level encoding that enables the representation of any creatures,

• f1 : a recursive encoding,

• f4 : a developmental encoding sharing some symbols and concepts with f1,

• fH : a similarity encoding,

• fB: a biological encoding built on top of fH,

• f7 : a messy encoding that accepts any string of symbols,

• fL: a parametric Lindenmayer system (L-system [174]),

• f9 : a 3D turtle encoding,

• fF : a foraminifera parametric encoding,

• fS : a solid shape encoding inspired by f1,

• fG: a gene regulatory network encoding,

• fn: an encoding for numerical optimization that consists of a vector of real numbers.

This work uses three different types of encodings: a direct one (f0), a direct recurrent

Figure 2.3: The genetic encodings in Framsticks and their hierarchy. The encodings
are shown in ellipses. Higher level encodings require conversion to lower level encodings,
as indicated by arrows. The gray ellipses denote two direct encodings: f0 (using ball-
and-stick model) and f0s (using solid shapes model). The dashed line corresponds
to fn, which is an encoding for representing real numbers that are used in separate
numerical optimization experiments [126].

36 2 Data set of active and passive 3D structures

Figure 2.4: The descriptive names of the encodings (upper row), the two model
types: ball-and-stick and solid shapes (middle row), and simulated structures (bottom
row) [126].

one (f1), and a developmental one (f4). The following sections describe them in more
detail.

2.3.1 Direct encoding (f0)

Syntax

The f0 is a low-level direct encoding in which each line describes one object from the
model and its parameters. The general syntax is as follows [126]:

CLASSID:PROPERTY1=VAL1, PROPERTY2=VAL2, ...

where CLASSID is an alphanumeric identifier of one of the four classes of objects. Each
class has its own properties, specified after the colon. The PROPERTY= can be omitted if the
given property is next in sequence. The attributes of an object do not have to be specified
if their values are equal to the default. The properties of the classes are as follows:

• Part (p:)

– position (x, y, z) and orientation (rx, ry, rz) in 3D space,
– physical properties: size (s), density (dn), and friction (f).

2.3 Genetic representations in Framsticks 37

Figure 2.5: Genetic encodings in Framsticks and their example genotypes [126]. The
encoding name appears in the first line of each genotype.

• Joint (j:)

– part indices (p1, p2): indices of parts connected by the joint,
– physical properties: stiffness (stif) and rotation stiffness (rotstif).

• Neuron (n:)

– index of part (p) or joint (j) to which the neuron is attached,
– neuron description (d) including neuron class name and optionally neu-

ron properties.

• Connection (c:)

– indices of the parent neuron (n) and source neuron (i),
– weight of the connection (w).

The indices of parts, joints, and neurons correspond to line numbers, starting from 0.
Fig. 2.6 illustrates an example of a genotype in the f0 encoding and the resulting pheno-
type. This representation can accommodate any valid genotype and thus it encompasses
the entire phenotype space. However, the f0 is closer to a description of a model than
a proper genetic encoding; it lacks modularity and information compression. Neverthe-
less, to enable its use as a genetic representation in evolutionary optimization, the genetic
operators of mutation and crossover were defined.

38 2 Data set of active and passive 3D structures

//0
p:−1.582,−0.373,1.051
p:
p:1.0
j:0,1
j:1,2
n:j=0,d=|

Figure 2.6: Example genotype in the f0 encoding (left), a corresponding phenotype
(middle), and its neural network (right).

Genetic operators

Mutation

The point mutation operator applies one of the following changes to a genotype:

• adding an object (a part, a joint, a neuron, or a neural connection),

• removing an object,

• modifying object’s properties,

• swapping structure’s parts.

Crossover

(a) (b) (c)

Figure 2.7: Crossover operator for the f0 genetic encoding. 2.7a A randomly posi-
tioned plane divides the parent models into two parts. 2.7b The separated parts of the
parents. 2.7c The child model formed by joining parts of the parent models. Dotted
lines indicate newly created joints [123].

2.3 Genetic representations in Framsticks 39

The development of the crossover operator posed more challenges to the authors as
changing the line numbers in the genotype would change the reference numbers of the
objects. Therefore, the crossover operator is based on the phenotypes. A randomly posi-
tioned plane is used to cut the parent phenotypes into two parts. Then the cut parts of
the first and second parent are grafted together. Fig. 2.7 demonstrates the application of
the crossover operation.

2.3.2 Recursive encoding (f1)

Syntax

The f1 representation is a direct higher-level encoding. The connections between parts
are implicit and do not require specifying parts indices. The resulting model is a tree-like
structure with new sticks being connected to previous sticks. The basic symbols are:

• X – representing a stick (joint),

• () – representing a branch.

Within the parentheses, the commas are used to determine the angles between the
branches. Xs and the opening parenthesis (‘(’) can be preceded by modifiers that alter,
depending on the modifier, either the following X or all the following Xs. The modifications
may affect stick position and its properties. Table 2.1 presents the list of modifiers available
for the f1 encoding.

In the f1 encoding neurons are placed after the Xs in square brackets, using the following
syntax:

[NeuronType, PropertyAndInputList]

PropertyAndInputList is a list of pairs in the following format: PropertyName:Value

and NeuronInput:Weight, delimited by comma. NeuronInput is a relative position of an
input neuron in the genotype. A value of zero indicates the current neuron, whereas
positive and negative values indicate the subsequent and antecedent neurons, respectively.

Fig. 2.8 illustrates an example of a genotype in the f1 encoding and the corresponding
phenotype.

R rotation
Q twist
C curvedness
L length
F friction
M muscle strength

Table 2.1: The modifiers employed in the f1 encoding considered in this work. Upper and lower case
letters respectively increase and decrease the value of the property [126].

40 2 Data set of active and passive 3D structures

Figure 2.8: A phenotype (left) and its neural network (right) for a sample f1 genotype:
X(X,RRMMX[@G:.5](X[@G:.5],X)).

Genetic operators

Mutation

The mutation operator alters a genotype by performing one of the following operations:

• adding a modifier, stick, or neuron,

• deleting a modifier, stick, or neuron,

• modifying the parameter of a neuron.

Crossover

The crossover operator chooses a cutting points for each parent and swaps the resulting
substrings. The cutting points are selected in a way that preserves the encoding syntax.

2.3.3 Developmental encoding (f4)

Syntax

The f4 is an indirect developmental encoding that was inspired by the biological process
of growth [123]. It employs similar symbols as the f1 encoding, however with different
interpretation. In the f1 encoding, the symbols represent structural elements and their
properties, while in the f4 encoding, the symbols represent cellular actions. The develop-
ment of a structure begins with a single undifferentiated cell. New cells are generated by
executing instructions in parallel. The cells can either divide or differentiate into a stick (X)
or a neuron (N). The development process terminates when there are no undifferentiated
cells left.

The f4 genotype is expressed as a string of characters, with most of the instructions
consisting of a single character. Since each division creates two branches from the instruc-
tion sequence, the genotype can be represented as a binary tree. The additional codes
that are included in the f4 representation include <, >, and #. < denotes a division of a cell
and the end of the current cell development is denoted by >. # allows for repetition of an

2.3 Genetic representations in Framsticks 41

instruction, thus enabling the modularity of the f4 representation. The full list of codes
is presented in Table 2.2. Fig. 2.9 illustrates an example of a genotype in the f4 encoding
and the corresponding phenotype.

Genetic operators

Mutation

The mutation operator alters a genotype in its tree representation by performing one of
the following operations:

1. adding a code,

2. deleting a code,

3. modifying a code,

4. modifying a parameter of a code.

Crossover

The crossover operator uses the genotype in its tree representation as well and works
similarly to GP crossover operators, by swapping the subtrees of parent solutions.

< division
X turn into a stick
N turn into a neuron, a receptor or a muscle
> stop development of a cell
, add a branch
[... : ...] add a neural connection
repetition marker

Table 2.2: The codes employed in the f4 encoding [126]. This representation also uses modifiers,
which are the same as for the f1 representation (see Table 2.1).

Figure 2.9: A phenotype (left) and its neural network (right) for a sam-
ple f4 genotype: /*4*/<X><r,<X#2>><<XFl>c<N:@[−1:6.473]>N:S>N:Gpart>
qmcN:|[1:2.298]#2>>.

42 2 Data set of active and passive 3D structures

2.4 3D structures data set

2.4.1 Data set creation

Population size 50
Generations 5000
Selection method Tournament
Tournament size 5
Mutation probability 0.65
Crossover probability 0.25
Maximum number of body parts 30
Maximum number of body joints 30
Maximum number of neurons 20
Maximum number of neuronal connections 30

Table 2.3: Parameters and constraints of the evolutionary algorithm used to create a data set of
genotypes of active and passive 3D structures.

The data set used for the analyses in the following chapters consists of 3 × 4 × 1000 =
12000 genotypes: 1000 for each combination of 3 investigated genetic encodings (f0, f1,
f4) and 4 considered optimization tasks. The genotypes comprising the set were obtained
using a generational EA implemented in the Framsticks Python module evolalg [127].
The employed EA creates a new population by mutating, crossing over, and cloning a
specified number of individuals in each iteration until a given number of generations is
reached. The following optimization goals were considered:

• velocity on land,

Figure 2.10: Two sample structures encoded using the f1 encoding and their vertical
position of the center of mass. The red ellipses correspond to the position of body
parts, based on which the vertical position of the center of mass is calculated.

2.4 3D structures data set 43

• velocity in water,

• height (a vertical position of the center of mass, see Fig. 2.10) of active structures
(i.e. structures equipped with neural network),

• height (a vertical position of the center of mass) of passive structures (i.e. structures
not equipped with neural network).

Each of the tasks involved maximizing the fitness function. The parameters of the
evolutionary algorithm used to create the data set are presented in Table 2.3. These
parameter values were determined based on the preliminary experiments to optimize the
fitness of the solutions and ensure the convergence of the algorithm. To prevent unlimited
growth of the complexity of the evolved structures, the following limits were applied:

• number of body parts: 30

• number of neurons: 20

• number of body joints: 30

• number of neural connections: 30

Any individual that exceeded any limit was deemed invalid and excluded from the pop-
ulation. A new individual was generated instead. When creating a new population, a
tournament selection was used. First, selected 65% of individuals underwent mutation,
then during crossing-over selected 25% pairs of individuals were replaced by their offspring,
and finally selected 10% individuals were cloned.

In order to obtain a data set of diversified structures, the experiment was run 100
times for each combination of genetic encoding and optimization goal. In each run, the
genotype of each new structure that had a higher fitness than the previous best was stored.
The stored genotypes for each combination of genetic encoding and optimization goal were
then sampled to obtain solutions that spanned the fitness range uniformly. The sampling
procedure was as follows:

1. The maximum (fitmax) and minimum (fitmin) fitness values among the stored
genotypes were computed.

2. The fitness value range was divided into 999 equal intervals. The lower bound of the
i-th interval was given by:

xi = fitmin + i
fitmax − fitmin

n − 1 , i = 0, 1, ..., n − 1

where n = 1000

3. The stored genotypes were sorted in ascending order of their fitness values. Then, the
following selection algorithm was applied, using the interval bounds as thresholds:

1 i = 0

2 for genotype in sorted_genotypes:

3 if fitness(genotype) >= intervals_bounds[i]:

4 selected.append(genotype)

5 i += 1

44 2 Data set of active and passive 3D structures

This procedure resulted in a set of 1000 structures for each combination of genetic
encoding and optimization objective, with their fitness values approximating an even dis-
tribution along the fitness range. Moreover, a smaller version of this set, containing 100
genotypes for each combination, was created using the same procedure. The larger set
will be referred to as the 1000_data_set and the smaller set as the 100_data_set.

2.4.2 1000_data_set characteristics
Figs. B.1–B.4 in Appendix B show representative structures for each combination of ge-
netic encoding and optimization goal. The shown structures were selected by applying the
k-medoids algorithm [108] using the opt dissimilarity measure (described in Sect. 4.2.3)
to evaluate the phenotypic distance. It can be seen that the solutions share the most phe-
notypic similarities between the representations for the velocity on land (Fig. B.1) task
(albeit they can differ regarding the movement strategy). In this task, the morphologies for
all representations tend to be smaller and less branched. The inter-representation differ-
ences are more pronounced for the velocity in water task, where the higher-level encodings
f1 and f4 (especially f1) tended to produce more streamlined, elongated structures than
the f0 encoding (Fig. B.2). In the height active and height passive tasks (Figs. B.3–B.4)
the evolved structures are, in general, greater in size than in two first tasks, as expected
from the optimization objective. An interesting observation is that in the active version
of the task, the structures tend to be more complex and branched than in the passive one.
This suggests that in the presence of the neural network and effectors, the more complex
morphology is more advantageous to maximize the vertical position.

Fig. 2.11 shows the fitness value distribution for each genetic encoding and each opti-
mization task. The plots indicate that the sampling procedure generally achieved uniform
fitness distribution, except for the velocity in water objective using the f4 encoding, which
suggests a more non-uniform fitness distribution for the developmental encoding in this
task. The performance of each representation, measured by the maximum fitness value,
varied across the optimization tasks. The only objective where the performance was com-
parable across the representations was the height active objective. Interestingly, in the
velocity in water and height passive tasks, the low-level f0 representation performed better
than the recursive f1 representation. This may imply that the more complex genotype-
to-phenotype mapping of the f1 representation creates a more rugged fitness landscape,
which hinders the search in those tasks. The analysis of the fitness landscape for the
considered representations and tasks will be the subject of Chapter 4.

Fig. 2.12 illustrates the body part distribution and Fig. 2.13 illustrates the bounding
box size distribution of the structures. The number of parts and the bounding box size
were lowest for the velocity on land objective (medians ranged from 4 to 5) and for the f1
representation within this objective. In the velocity in water task, the medians (7-9) and
the bounding boxes were higher. The higher-level encodings f1 and f4 produced larger
structures in terms of both body parts and bounding boxes. The same was true for the
height active objective. In the case of the height passive objective, f1 and f4 representations
also produced larger structures in terms of bounding box size, but structures created using
f1 had generally fewer body parts than those created using f4 and f0 . This could be
possible due to modifiers that enabled the elongation of body parts. It is noteworthy

2.4 3D structures data set 45

f0 f1 f4

encoding

0.000

0.025

0.050

0.075

0.100

0.125

ve
lo

ci
ty

Velocity on land

f0 f1 f4

encoding

0.000

0.025

0.050

0.075

0.100

0.125

ve
lo

ci
ty

Velocity in water

f0 f1 f4

encoding

0

1

2

3

ve
rt

p
os

Height active

f0 f1 f4

encoding

0

1

2

3

4

ve
rt

p
os

Height passive

Figure 2.11: The distribution of fitness value for each of the four optimization tasks
and each genetic encoding.

that in this objective, despite having the smallest bounding boxes, the structures created
using the direct representation f0 tended to achieve higher fitness. The visualization of
the representative structures (Fig. B.4) shows that the f0 allowed to create a “base” for
supporting tall parts of a structure. The constraints of the other encodings resulted in
more branched phenotypes.

Fig. 2.14 illustrates the neuron distribution in the optimization tasks involving active
structures. In general, the structures created using the developmental encoding f4 had
fewer neurons. Except for the velocity on land objective, the direct encoding f0 tended to
produce structures with the most neurons. However, it should be noted that not all neurons
present in a genotype necessarily have connections to other neurons or are effective.

f0 f1 f4

encoding

2

4

6

8

10

p
ar

ts
n

u
m

b
er

Velocity on land

f0 f1 f4

encoding

0

10

20

30

p
ar

ts
n

u
m

b
er

Velocity in water

f0 f1 f4

encoding

0

10

20

30

p
ar

ts
n

u
m

b
er

Height active

f0 f1 f4

encoding

0

10

20

30

p
ar

ts
n

u
m

b
er

Height passive

Figure 2.12: The distribution of body parts for each of the four optimization tasks
and each genetic encoding.

f0 f1 f4

encoding

0

10

20

30

40

50

b
ou

n
d

in
g

b
ox

si
ze

Velocity on land

f0 f1 f4

encoding

0

100

200

300

b
ou

n
d

in
g

b
ox

si
ze

Velocity in water

f0 f1 f4

encoding

0

250

500

750

1000

1250

b
ou

n
d

in
g

b
ox

si
ze

Height active

f0 f1 f4

encoding

0

500

1000

1500

2000

b
ou

n
d

in
g

b
ox

si
ze

Height passive

Figure 2.13: The distribution of bounding box size for each of the four optimization
tasks and each genetic encoding (logarithmic scale). The bounding box size is the
product of the x, y, and z dimensions of the smallest box that contains the structure.

2.5 Summary 47

f0 f1 f4

encoding

0

5

10

15

20
n

eu
ro

n
s

n
u

m
b

er

Velocity on land

f0 f1 f4

encoding

0

5

10

15

20

n
eu

ro
n

s
n

u
m

b
er

Velocity in water

f0 f1 f4

encoding

−5

0

5

10

15

20

25

n
eu

ro
n

s
n

u
m

b
er

Height active

Figure 2.14: The distribution of neurons for each of the four optimization tasks and
each genetic encodings.

2.5 Summary
This chapter introduced Framsticks, a versatile simulation software that will be employed
in further analyses and computational experiments. Three different Framsticks genetic
representations were selected for these experiments: a low-level encoding f0 , a recursive
encoding f1 , and a developmental encoding f4 . A data set of diverse 3D structures was gen-
erated using these representations and four distinct optimization objectives. The analysis
of the data set showed that the structures evolved using different genetic representations
had different fitness value distributions for the considered optimization objectives. They
also differed in their size, complexity of morphology, and their neural network size. This
diversified data set, the 1000_data_set, and its smaller variant, the 100_data_set, will be
used in subsequent chapters for the analysis of the performance of dissimilarity measures,
fitness landscape analysis, and the investigation of the properties of genetic operators
for ED.

3

Dissimilarity Measures for 3D
Structures

3.1 Introduction
Dissimilarity measures have multiple applications in evolutionary algorithms, including
finding clusters of similar solutions [116], maintaining diversity [190], and designing genetic
operators [61]. A set of established dissimilarity measures exists for the class of problems
where the genotype is identical to the phenotype and a standard genetic representation
(e.g. a bit string or a string of characters) is employed.

5 3

3

9

9

1 2 8

8

0 6

6

7

7

4

41 2 5 0

Figure 3.1: Two examples of solutions for the traveling salesman problem (TSP). The
edges that differ between the solutions are indicated by red crosses. The dissimilarity
measure is the number of distinct edges between the solutions, which is 6 for this
pair [61].

Let us consider the traveling salesman problem (TSP) [105]. It is a combinatorial
optimization problem that can be formulated as follows: given n cities that the salesman
must visit and a cost of traveling between any two cities, determine a minimum cost route
that visits each city exactly once and begins and ends in specified cities. A common
representation for this problem is a permutation representation, where a solution is a
sequence of integers that determines the order of visiting the cities. For this representation
Freisleben and Merz proposed a distance preserving crossover (DPX) [61]. This genetic
operator aims to produce an offspring solution distance of which to both parent solutions
is equal to the distance between parents. The distance measure used in [61] is the number
of edges (pairs of consecutive cities on the route) that they do not share. Fig. 3.1 shows
two sample solutions for TSP represented as permutations and their distance value based
on common edges.

Now let us consider two sample solutions evolved to maximize velocity on land, using

50 3 Dissimilarity Measures for 3D Structures

(a) X(QmX,QmfX[Gpart][@,−1:2.362,p:1]cX) (b) L(X[Gpart],fX[@,−1:1,p:1]X[S])

Figure 3.2: Two active structures and their genetic representation in the f0 genetic
encoding.

the f1 genetic encoding (Fig 3.2). In this case, there are many more possibilities to
quantify the dissimilarity of the solutions, as it can be assessed on a genotypic, phenotypic,
or behavioral level. The genotype of the f1 encoding consists of a string of characters,
for which various distance metrics exist, such as Hamming distance [75], Levenshtein
distance [142], and Jaccard distance [95], among others. However, relying on the genotype
distance may not be the most suitable approach, because, as discussed in Sect. 1.3, low-
locality representations may not preserve the correspondence between the genotype and
the phenotype distances, and the phenotype is the subject of evaluation during the course
of evolution.

On the other hand, assessing the dissimilarity between the phenotypes is a non-trivial,
if not ill-posed, problem; there exists no ground truth and, in most cases, it is not possible
to determine maximum dissimilarity. Of course, the problem of comparing 3D structures
is present in various domains such as computer vision [94], chemical informatics [154],
and bioinformatics [52]. Nevertheless, the measures used in those fields are often either
too domain-specific or too computationally expensive to handle generic 3D structures
of arbitrary complexity [118] (for instance, in chemical and bioinformatics models the
chemical properties of the molecules may be also considered while computing dissimilarity).
Hence, as a part of this work, a set of dissimilarity measures for 3D structures was devised.
In order to be applied to a broad range of ED problems, such measures should exhibit
properties that can be formulated as follows:

• generality: the measure should be applicable to any ED problem that can use a
general representation, such as an undirected graph, regardless of the domain or the
objective function,

• discriminability: the measure should be able to distinguish between morphologi-
cally different structures (possibly considering dissimilarity in neural networks),

• extendability: the measure should be able to incorporate additional information
relevant to a specific domain into the dissimilarity assessment,

• computational efficiency: the measure should be able to handle 3D structures of
arbitrary complexity without excessive computational cost.

This chapter introduces the set of measures developed or adapted with the aim of
satisfying the aforementioned properties. The motivation for extending the set of measures

3.2 The Levenshtein distance (gene) 51

was to test how different aspects of phenetic dissimilarity, captured by different measures,
would correspond to the difference in fitness value in evolutionary design problems.

The rest of this chapter is structured as follows. Sects. 3.2-3.6 present the proposed
measures. Sect. 3.8 compares the measures with regard to the computational efficiency,
in terms of the correlation between dissimilarity values for a set of structures, and using
a qualitative comparison. Sect. 3.9 presents the results of the investigation of human
perception of similarity. Sect. 3.10 summarizes the main findings.

3.2 The Levenshtein distance (gene)
Levenshtein distance [142] is used here to compute the dissimilarity between genotypes.
It is a dissimilarity metric for strings defined as a minimum number of single-character
edits required to transform one string into another. The single-character edits include:

• inserting a character into the string,

• deleting a character from the string,

• substituting a character.

Formally, the Levenshtein distance lev(a, b) between strings a and b of lengths |a| and |b|,
respectively, is defined as:

lev(a, b) =

|a| if |b| = 0,

|b| if |a| = 0,

lev
(

tail(a), tail(b)
)

if a[0] = b[0],

1 + min

lev

(
tail(a), b

)
lev

(
a, tail(b)

)
lev

(
tail(a), tail(b)

) otherwise

Let us consider two genotypes in the f1 encoding:

1. L(X,fXX)

2. XQmX

The sequence needed to transform the first string into another is as follows:

1. Delete “L” from the beginning of the first string.

2. Delete “(” from the second position of the first string.

3. Substitute “,” at the third position of the first string with “Q”.

4. Substitute “f” at the third position of the first string with “m”.

5. Delete “X” from the seventh position of the first string.

6. Delete “)” from the eights position of the first string.

Hence the Levenshtein distance between these two genotypes is equal to 6.

52 3 Dissimilarity Measures for 3D Structures

It is important to note that any digits in a genotype, such as neural connection weights
or references to part numbers in the f0 encoding, are treated the same as any other
character. This means that the information about numerical components is not utilized
as effectively as it could be if the dissimilarity between numbers was handled separately.

This measure will be referred to as gene. The goal of including a simple genotype-based
measure is to provide a reference for the phenetic measures.

3.3 The heuristic graph-based measure (greedy)

3.3.1 Assumptions
The first of the analyzed phenetic measures was introduced by Komosinski and Ku-
biak [118] and implemented natively in Framsticks. The measure models 3D structures as
undirected graphs where body parts correspond to vertices and body joints correspond to
edges. Each vertex in a structure can be described with the following properties:

• its degree (i.e. the number of edges incident to the vertex),

• the number of neurons attached to the vertex,

• its position in a three-dimensional coordinate system.

Fig. 3.3 illustrates an example of a structure and its corresponding graph-based model
used by the measure.

1;1;(0,0,0)

2;0;(1.5,0,0)

1;1;(0,1,0)

Figure 3.3: A simple three-part structure with two neurons, each attached to a dif-
ferent body part: body and brain (left column), conceptual model employed in greedy

and opt measures (right column). Numbers in the rectangles denote vertex param-
eters: vertex degree, number of neurons attached to the vertex, and coordinates in
a three-dimensional coordinate system. The structure was created from the following
genotype: (,LFX[N],X[N,−1:1])

3.3 The heuristic graph-based measure (greedy) 53

The measure employs a heuristic algorithm that aims to find the most similar pairs of
vertices from the two structures and compute the structures’ dissimilarity based on the
matching. The value of the dissimilarity consists of four components:

• dV – the absolute difference in the number of vertices in both structures,

• dD – the sum of absolute difference in the degree of matched vertices,

• dN – the sum of absolute difference in the number of neurons attached to the matched
vertices,

• dG – the sum of Euclidean distance between matched vertices.

The values of those components are aggregated using the weighted sum:

dissim = wV · dV + wD · dD + wN · dN + wG · dG

The user can adjust the importance of each component by setting the weight (wV, wD,
wN and wG) of this component to a value greater than or equal to zero.

The algorithm of the greedy measure consists of three main steps:

1. Aligning the structures,

2. Matching the vertices,

3. Calculating the dissimilarity,

which are described in more detail in the following sections.

3.3.2 Alignment procedure
The first step, the alignment of the structures, is performed only when the wG weight is
greater than zero. The aim of this procedure is to find the best spatial alignment of the
two structures. For this purpose, in the original implementation of the measure, a multidi-
mensional scaling [44] procedure (MDS) has been used for each structure separately. The
MDS algorithm takes the distance matrix between vertices as input. The new coordinates
are set based on the three dimensions with the highest variance. After the application of
this procedure, the centers of both structures are located at the origin of the coordinate
system. The axis with the highest variance of coordinates is chosen as the first axis of the
structure, and the axis with the second highest variance of coordinates is chosen as the
second axis of the structure.

However, this procedure only considered the vertices of the structures, without taking
into account the edges. As a result, vertices with a similar vertex degree in both structures
might not have been aligned correctly. Fig. 3.4 illustrates an example of two structures
that were indistinguishable for the alignment procedure: a “cube” (Fig. 3.4a) and a “table”
(Fig. 3.4b). Moreover, the vertices of the “table” structure and its rotated versions could
have been misaligned by the original alignment procedure. To overcome this problem, the
information about the vertex degree had to be incorporated into the alignment process. To
achieve this goal, as a part of this work, the MDS algorithm was replaced with weighted
classical MDS [119], using vertex degrees as weights for double centering the distance
matrix.

54 3 Dissimilarity Measures for 3D Structures

(a) “Cube” (b) “Table”

Figure 3.4: Two structures sharing the coordinates of all the vertices and differing in
the number of edges connecting the vertices.

3.3.3 The matching procedure
The main part of the algorithm is the construction of the matching function. In order
to build the matching, the vertices of each structure are sorted according to the vertex
degree, and then according to the number of neurons within the groups of the same vertex
degree. The matching procedure starts with vertices with the highest vertex degree in both
structures and tries to find the pairs of matching vertices. The within-group matching ends
when there are no unmatched vertices with a given degree in one or both of the structures.
Then the algorithm moves to the next group of vertices with the second highest degree,
and continues until all groups are processed. Within each group, the algorithm matches
vertices based on the minimum distance calculated for each pair of vertices as:

distij = wD · dD(vi1, vj2) + wN · dN(vi1, vj2) + wG · dG(vi1, vj2) (3.1)

where vi1 denotes the i-th vertex of the first structure, and vj2 denotes the j-th vertex of
the second structure. Listing 3.1 details the matching procedure.

1 sort(S1, descending by vertex degree then neuron count)

2 sort(S2, descending by vertex degree then neuron count)

3 while !(all vertices in smaller(S1, S2) are matched):

4 FIND U, V - groups of vertices in S1, S2 with the

5 highest possible degree and with unmatched parts

6 while !(all u ∈ U or v ∈ V are matched):

7 FIND the first vertex u ∈ U which is yet unmatched

8 FIND the first vertex v ∈ V which is yet unmatched

9 min_for_u = min_dist(u,V)

10 min_for_v = min_dist(v,U)

11 match(u, min_for_u)

12 match(v, min_for_v)

Listing 3.1: The matching procedure of the greedy measure. S1 and S2 denote part sets of the two
structures being matched.

3.3 The heuristic graph-based measure (greedy) 55

3.3.4 Dissimilarity calculation
After matching the vertices, the dissimilarity is calculated as the sum of distances between
the matched vertices using the formula 3.1. When the structures have different numbers
of vertices, some vertices of the larger structure will not have a match in the smaller struc-
ture. These unmatched vertices contribute to the penalty term added to the dissimilarity
measure formula. The penalty for each unmatched vertex vi is calculated as follows:

• penaltyD(vi) = wD · vertex_degree(vi),

• penaltyN (vi) = wN · number_of_neurons(vi),

• penaltyG(vi) = wG · distance_to_the_origin(vi),

where distance_to_the_origin(vi) is the Euclidean distance of the vertex vi to the origin
of the coordinate system. The penalties for all unmatched vertices are summed up and
added to the distance between the matched vertices. The dissimilarity value also includes
the difference in the number of unattached neurons (neurons that are not attached to
any body part) and in the number of vertices of the structures, weighted by wN and wV,
respectively. Listing 3.2 shows the pseudocode of the final dissimilarity value calculation.

1 distance = 0

2 # add the weighted distance between matched vertices

3 for (u, v) in matched_vertices_pairs:

4 distance += wD · dD(u, v) + wN · dN(u, v) + wG · dG(u, v)
5 # add the penalty for the unmatched vertices

6 for u in unmatched_vertices:

7 distance += penaltyD(u) + penaltyN (u) + penaltyG(u)
8 # add the weighted difference in unattached neurons

9 distance += wN · difference_in_unattached_neurons(S1, S2)
10 # add the weighted difference in the number of vertices

11 distance += wV · dV(S1, S2)
Listing 3.2: The distance calcuation in the greedy measure. S1 and S2 denote part sets of the two
structures being matched.

3.3.5 Summary
The greedy measure is a fast heuristic algorithm that computes dissimilarity based on
the graph model of the structures, incorporating information about vertex degree, neuron
count, and geometric distance. However, this measure has some limitations. One of them is
the fixed order of vertex matching, which starts from the vertices with the highest degree
and follows a predefined logic, regardless of the weight of the dD component. Another
drawback is the greedy nature of the matching algorithm. It always chooses the matching
which provides the minimal distance between currently considered vertices, however, this
choice does not have to result in the minimal total distance between the structures. To
address these challenges, as a part of this work, the opt measure was developed.

56 3 Dissimilarity Measures for 3D Structures

3.4 The optimal-matching graph-based measure
(opt)

3.4.1 Differences compared to the greedy measure

VS1 VS2 VS3 VS4 VS5 P1

VG1 2.27 1.45 2.01 2.76 7.67 2.32
VG2 1.68 3.53 1.85 2.18 8.98 3.50
VG3 1.47 1.24 2.84 3.00 7.49 2.32
VG4 3.60 5.53 2.85 2.30 7.01 4.50
VG5 4.26 4.15 3.49 2.97 4.97 3.32
VG6 3.26 3.15 2.49 1.97 5.53 2.32

Table 3.1: A distance matrix for two structures with different numbers of parts. The rows correspond
to the parts of the larger structure, which has 6 parts, and the columns correspond to the parts of the
smaller structure, which has 5 parts. The column P1 shows the penalty for each part of the larger
structure assigned in the case it is not matched with a vertex from the smaller structure. The penalty
is calculated in the same way as in the greedy measure (Sect. 3.3.4).

The opt measure is the first measure developed as a part of this work. It is an im-
proved version of the greedy measure. It has the same parameters and the same three
main steps: aligning the compared structures, constructing the matching function, and
calculating the dissimilarity. The key difference is the algorithm used for constructing the
matching function. Instead of using a greedy procedure, the opt measure employs the
Kuhn-Munkres algorithm [133, 158] (also known as the Hungarian algorithm), which finds
the optimal matching of vertices that minimizes the total distance between two structures.
The distance function is the same as in the greedy measure (3.1). This approach obviates
the need for sorting the vertices by their degree. Furthermore, in the opt measure all
components are treated uniformly, which facilitates the customization of the measure by
incorporating additional vertex properties as subsequent components.

Comparison of matching of sample structures

Fig. 3.5 shows the vertex matching for two structures using the greedy and opt measures.
The greedy matching procedure, starting from the vertices with the highest vertex degree
in both structures, results in a suboptimal matching and a higher dissimilarity value
(Fig. 3.5a). The application of the Kuhn-Munkres algorithm in the opt measure for the
matching procedure allows for minimizing the dissimilarity value (Fig. 3.5b).

3.4.2 Distance calculation

1 # "greater" structure

2 GS = structure with more vertices

3 # "smaller" structure

4 SS = structure with less vertices

3.4 The optimal-matching graph-based measure (opt) 57

(a) greedy= 51.55 (b) opt= 42.58

Figure 3.5: A comparison of two structures and their vertex matching using the greedy
and opt measures. The red lines indicate the matched vertices between the structures.
The dissimilarity values for both measures are shown below the structures [119].

5 nGreat, nSmall = vertices_number(GS), vertices_number(SS)

6 dist_matrix = matrix(size=(nGreat, nGreat))

7 # fill the distance matrix

8 for i in range(0, nGreat-1):

9 for j in range(0, nGreat-1):

10 if j >= nSmall:

11 dist_matrix[i][j] = penalty(vGSi)

12 else:

13 dist_matrix[i][j] = dist(vSSi,vGSj)

14 # match the vertices using the Kuhn-Munkres algorithm

15 matched = HungarianAlgorithm(dist_matrix)

16 # calculate the distance between matched vertices

17 distance = sum(dist(matched))

18 # add the weighted difference in unattached neurons

19 distance += difference_in_unattached_neurons(GS, SS)

20 # add the weighted difference in the number of vertices

21 distance += wV · dV(GS, SS)

Listing 3.3: The algorithm for vertex matching procedure and distance calculation of the opt measure.

The dissimilarity value is calculated similarly as in the greedy measure and consists of
the following components: the sum of the distances between matched vertices, the penalty
for the unmatched vertices (only present when the structures have different numbers of
vertices), the difference in unattached neurons, and the difference in the number of ver-
tices. Unlike in the greedy algorithm, the penalty for the unmatched vertices is taken
into account during the matching procedure. To do this, the vertices distance matrix is
extended with additional rows or columns. For each vertex of the larger structure, these
extra rows or columns are filled with the penalty value for that vertex for not having a
match in the smaller structure (calculated as described in Sect. 3.3.4). Hence, matching a
vertex from the larger structure to a vertex from the surrogate row or column corresponds
to adding the penalty for being unmatched to the overall distance. Table 3.1 illustrates

58 3 Dissimilarity Measures for 3D Structures

an example of a distance matrix for two structures with different numbers of vertices.
Listing 3.3 shows the pseudocode of the matching procedure and distance calculation for
the opt measure.

3.5 The descriptors-based measure (shape)

3.5.1 Introduction
The shape measure developed in this work is based on the method proposed by Osada
et al. [166] for matching 3D models. The algorithm involves creating histograms of sim-
ple shape descriptors, separately for each structure, and computing the distance between
the shape descriptor distributions. This approach to evaluating dissimilarity of 3D struc-
tures offers several advantages. First, it eliminates the need for aligning the structures,
which is a challenging task in itself and can significantly affect the resulting dissimilarity
value. Second, this approach enables parallelization, as shape descriptor distributions are
calculated separately for each structure.

3.5.2 The algorithm
The algorithm can be divided into four main steps. The first three are applied to each
structure separately. First, the surface of the structure is sampled uniformly with a given
density. Second, a specified number of point pairs, triplets or quadruplets (depending on
the chosen descriptor function) are randomly selected from the sampled points. Third,
the descriptor values are calculated and histograms with fixed bin sizes are constructed
and normalized by dividing by the histogram total. Finally, the distance between the
histograms is measured using the Earth Mover’s Distance (EMD) [188].

The shape measure has five parameters which are listed below:

• descriptor – name of a descriptor function,

• sampling density – a parameter that controls the resolution of the surface sampling
process: for each unit square of the bounding box of the 3D model, at least (sampling
density)2 points are sampled from the surface,

• samples number – the number of points that are randomly selected from the sampled
surface and passed to the descriptor function,

• bins number – the number of bins that are used to construct a histogram from the
values obtained by applying the descriptor function to the selected points.

Five descriptor functions were implemented, following Osada et al. [166]:

• a3 – an angle of a triangle whose vertices are three randomly sampled points from
the surface of the structure

• d1 – the distance from the centroid of the structure to a randomly sampled point on
its surface

• d2 – the distance between two randomly sampled points on the surface of the struc-
ture

3.5 The descriptors-based measure (shape) 59

• d3 – the square root of the area of a triangle whose vertices are three randomly
sampled points from the surface of the structure

• d4 – the cube root of the volume of a tetrahedron whose vertices are four randomly
sampled points from the surface of the structure

Listing 3.4 outlines the algorithm for the shape measure.

1 # Input: two 3D structures S1 and S2, a descriptor function name, a number of

samples N, a sampling density D, and a number of histogram bins B

2 # Output: a dissimilarity value between S1 and S2

3

4 # Step 1: Sample the surface of each structure with density D

5 # returns a set of points on the surface of S1

6 S1_samples = sample_surface(S1, D)

7 # returns a set of points on the surface of S2

8 S2_samples = sample_surface(S2, D)

9

10 # Step 2: Randomly select N point pairs, triplets or quadruplets from each

sampled surface

11 # returns a list of tuples of points from S1_samples

12 S1_points = select_points(S1_samples, N)

13 # returns a list of tuples of points from S2_samples

14 S2_points = select_points(S2_samples, N)

15

16 # Step 3: Compute the descriptor value for each tuple of points using the

descriptor function and construct normalized histograms with B bins for

each structure

17 # returns a list of scalar values for each tuple in S1_points

18 S1_descriptor_vector = calculate_descriptor(S1_points, descriptor)

19 # returns a list of scalar values for each tuple in S2_points

20 S2_descriptor_vector = calculate_descriptor(S2_points, descriptor)

21

22 # returns a list of frequencies for each bin

23 S1_histogram = construct_histogram(S1_descriptor_vector, B)

24 # returns a list of frequencies for each bin

25 S2_histogram = construct_histogram(S2_descriptor_vector, B)

26

27 # returns a list of probabilities for each bin

28 S1_histogram_normalized = normalize_histogram(S1_histogram)

29 # returns a list of probabilities for each bin

30 S2_histogram_normalized = normalize_histogram(S2_histogram)

31

32 # Step 4: Calculate the Earth Mover’s Distance (EMD) between the normalized

histograms as the dissimilarity value

33 # returns a scalar value

34 dissimilarity = calculate_EMD(S1_histogram_normalized, S2_histogram_normalized)

60 3 Dissimilarity Measures for 3D Structures

35

36 return dissimilarity

Listing 3.4: The algorithm for the shape measure computation.

3.5.3 Parameter tuning

5 10 15 20 25 30

density

0.025

0.050

0.075

0.100

0.125

d
is

si
m

ila
ri

ty

a3

f0

f1

f4

5 10 15 20 25 30

density

0.1

0.2

0.3

0.4

d
is

si
m

ila
ri

ty

d1

f0

f1

f4

5 10 15 20 25 30

density

0.1

0.2

0.3

0.4

0.5

d
is

si
m

ila
ri

ty

d2

f0

f1

f4

5 10 15 20 25 30

density

0.1

0.2

0.3

d
is

si
m

ila
ri

ty

d3

f0

f1

f4

5 10 15 20 25 30

density

0.04

0.06

0.08

0.10

d
is

si
m

ila
ri

ty

d4

f0

f1

f4

Figure 3.6: Dissimilarity value for three sample pairs of structures encoded using f0,
f1, and f4 and increasing value of the density parameter. The bin number was set to
1024 and the samples number to 100 000.

The parameter values of the shape measure, used in the analyses presented in the
subsequent chapters, were determined experimentally. Since there is no ground truth for
comparing the dissimilarity value, the parameter tuning was based on the observation that

3.5 The descriptors-based measure (shape) 61

the dissimilarity value tends to stabilize as the parameter values increase, indicating that
further increasing of the parameter values will not improve the precision of the result.
Therefore, the aim of the following experiments was to identify the threshold values of
the parameters beyond which the dissimilarity value remains constant or nearly constant.
The first step in the parameter tuning was to set the value of density, which controls
the resolution of sampling of the 3D model surface, as this is the most computationally
intensive step in the algorithm. The other parameter values were fixed as follows:

• bins number=1024,

• samples number=100 000,

to achieve high precision of dissimilarity values. Fig. 3.6 show the dissimilarity values
computed for sample pairs of structures with different density values. The figure indicates
that, in most cases, the dissimilarity values remain constant or vary only slightly for
density values of 10 or higher. Therefore, in the subsequent experiments, the value of
density was set to 10.

Fig. 3.7 shows the effect of varying samples number and bins number on the dissimilar-
ity value calculated using descriptor d1, with a fixed density of 10. The other descriptors
yielded similar results, which are reported in Appendix C. The results indicate that, in
most cases, the dissimilarity value was stable or changed minimally for increasing bins

number. Therefore, bins number was set to a low value of 128. On the other hand, as

samples number

103
102102

105
104

105105
104

103
102

103

105
104

102

103

104

bin
s num

ber

2929

262626

28

2727

26

27

28

2929

28

27

28

di
ss

im
ila

ri
ty

0.0

0.1

0.2

0.3

d1+f0

0.29

0.270.27

0.310.310.310.310.31

0.30

0.27

0.30

0.310.31

0.27

0.30

0.31

samples number

104104

105105

102

105
104

103

105

102

103

104

102102

103103

bin
s num

ber

29

26

28

2727

26

2727

2929

26

2828

26

28

29
di

ss
im

ila
ri

ty

0.00

0.05

0.10

0.15

0.20

d1+f1

0.100.100.100.10

0.21

0.100.10

0.13

0.10

0.21

0.13

0.10

0.210.21

0.130.13

samples number

104

102102

105
104

103
102

103
102

103

104
103

105105
104

105 bin
s num

ber

28

26

27

28

29

28

2929

28

2727

2626

27

26

29

di
ss

im
ila

ri
ty

0.0

0.1

0.2

0.3

0.4

0.5

d1+f4

0.39

0.530.53

0.390.39

0.47

0.52

0.47

0.52

0.47

0.39

0.47

0.390.390.390.39

Figure 3.7: Dissimilarity value for various combinations of samples number and bins

number using descriptor d1. The color of each bar indicates the dissimilarity value. The
density parameter value was fixed at 10.

62 3 Dissimilarity Measures for 3D Structures

samples number increased, the dissimilarity tended to converge to a certain value. In most
cases, this value was reached for samples number equal to 10 000, which was the value of
the parameter that was selected.

3.6 The distribution-based measures (dens and freq)

3.6.1 Introduction
The last two of the measures developed in this work assess the dissimilarity of 3D structures
based on their spatial distribution, using two approaches:

1. comparing the sampled surfaces of structures (dens measure),

2. comparing the frequency domain representations of sampled structures’ surfaces
(freq measure).

Both measures utilize a common algorithm to calculate the dissimilarity, except for
the steps that involve the computation of the signature. Hence, they are described jointly
in the subsequent section.

3.6.2 The algorithm
The algorithm consists of four main steps. First, the compared structures are spatially
aligned using the weighted MDS procedure, which is described in Sect. 3.3. Second, the
surface of each structure is uniformly sampled with a given density. Third, the bounding
box of the aligned structures is partitioned with a specified resolution into cuboids. A
signature, which serves as the basis for dissimilarity calculation, is computed based on
the number of samples falling into each cuboid. For the dens measure, the signature is a
vector of tuples, where each tuple corresponds to a subsequent cuboid and contains the
centroid of the samples within the cuboid and the number of the samples. For the freq

measure, the signature is obtained by applying Fast Fourier Transform (FFT) [25] to the
vector of sample counts for each cuboid, and taking the absolute value of the resulting
Fourier coefficients.

Since only the structure’s surface is sampled, the number of empty cuboids may be
significant, hence the algorithm provides the option to reduce the signature, i.e. remove
the vector elements that have the count of samples equal to zero in both structures. For
the freq measure, this reduction occurs prior to applying the FFT. Furthermore, for the
freq measure, the indices of the samples count vector are scaled to the interval [0,1] to
avoid the dependence of the dissimilarity value on the vector size.

Finally, the dissimilarity between the structures is computed by calculating the distance
between their signatures according to the chosen distance metric.

The measure has four parameters which are listed below:

• sampling density – a parameter that controls the resolution of sampling the surface
of the 3D solid shape, such that at least (sampling density)2 points are sampled
from each unit square of the model’s bounding box,

3.6 The distribution-based measures (dens and freq) 63

• resolution – determines the number of intervals used in each dimension to partition
surface samples of structures in the 3D space (a higher value implies a more detailed
comparison and a longer computation time),

• reduce empty – a parameter that indicates whether to remove or retain the elements
in the signature vectors that correspond to cuboids that are empty for both structures
(its default value is True),

• metric – a parameter that selects the distance metric to be used for calculating the
dissimilarity (EMD, L1, or L2, with EMD as the default metric).

Listing 3.5 outlines the algorithm for the distribution based measures, dens and freq.

1 # Input: structures S1 and S2, sampling density D, resolution R, reduce empty

flag reduce_empty, distance metric distance_metric

2 # Output: dissimilarity

3

4 # Step 1: Align structures using weighted MDS

5 # returns aligned structure S1

6 S1_aligned = weighted_MDS(S1)

7 # returns aligned structure S1

8 S2_aligned = weighted_MDS(S2)

9

10 # Step 2: Sample surface of structures with density D

11 # returns a set of points on the surface of S1

12 S1_samples = sample_surface(S1_aligned, D)

13 # returns a set of points on the surface of S2

14 S2_samples = sample_surface(S2_aligned, D)

15

16 # Step 3: Partition bounding box into cuboids with resolution R

17 # returns a list of cuboids that cover the bounding box

18 cuboids = partition_bounding_box(S1_aligned, S2_aligned, R)

19

20 # Step 4: Compute signature based on the number of samples in each cuboid

21 if measure == DENS:

22 # Signature is a vector of tuples (centroid, count)

23 S1_signature = []

24 S2_signature = []

25 for c in cuboids:

26 # returns the number of samples from S1 in cuboid c

27 S1_count = count_samples(S1_samples, c)

28 # returns the number of samples from S2 in cuboid c

29 S2_count = count_samples(S2_samples, c)

30 if reduce_empty and S1_count == 0 and S2_count == 0:

31 # Skip empty cuboid if reduce flag is set

32 continue

33

64 3 Dissimilarity Measures for 3D Structures

34 # returns the centroid of the samples from S1 in cuboid c

35 S1_centroid = compute_centroid(S1_samples, c)

36 # returns the centroid of the samples from S2 in cuboid c

37 S2_centroid = compute_centroid(S2_samples, c)

38

39 S1_signature.append((S1_centroid, S1_count))

40 S2_signature.append((S2_centroid, S2_count))

41

42 elif measure == FREQ:

43 # Signature is a vector of tuples (index, abs(Fourier coefficient))

44 S1_signature = []

45 S2_signature = []

46 S1_counts = []

47 S2_counts = []

48 for c in cuboids:

49 # returns the number of samples from S1 in cuboid c

50 S1_count = count_samples(S1_samples, c)

51 # returns the number of samples from S2 in cuboid c

52 S2_count = count_samples(S2_samples, c)

53 if reduce_empty and S1_count == 0 and S2_count == 0:

54 # Skip empty cuboid if reduce flag is set

55 continue

56 S1_counts.append(S1_count)

57 S2_counts.append(S2_count)

58

59 # Apply FFT and take absolute value

60 # returns a vector of absolute values of Fourier coefficients for S1

61 S1_coefficients = abs(FFT(S1_counts))

62 # returns a vector of absolute values of Fourier coefficients for S2

63 S2_coefficients = abs(FFT(S2_counts))

64

65 # Generate and normalize indices

66 n = length(cuboids)

67 # returns a vector of n indices normalized to the range [0,1]

68 indices = get_normalized_indices(n)

69

70 # Create signature

71 for i in range(n):

72 S1_signature.append((indices[i], S1_coefficients[i]))

73 S2_signature.append((indices[i], S2_coefficients[i]))

74

75 # Step 5: Compute dissimilarity by calculating the distance between signatures

using the selected distance metric

76 dissimilarity = distance(S1_signature, S2_signature, metric=distance_metric)

77

3.6 The distribution-based measures (dens and freq) 65

78 return dissimilarity

Listing 3.5: The outline of the algorithm for dens and freq measures.

3.6.3 Parameter tuning
The values of the numerical parameters for the dens and freq measures were determined
experimentally. Analogously to the shape measure, the aim of the parameter tuning was to
find the threshold values of the parameters beyond which the dissimilarity value remains
constant or nearly constant.

Fig. 3.8 illustrates the variation of the dissimilarity value for sample pairs of structures,
calculated using the dens measure and various combinations of density and resolution

parameters. The dissimilarity value tends to stabilize as the value of these two parame-
ters increases. For most sample pairs, the stable value is reached when density=10 and
resolution=8, therefore those parameter values were selected.

Fig. 3.9 shows how the dissimilarity value for sample pairs of structures varies with
different combinations of density and resolution using the freq measure. This measure
is more sensitive to the changes of the parameter values, resulting in larger dissimilarity
variations than the dens measure. However, the overall pattern is that dissimilarity de-
creases as density and resolution increase. For consistency, the same parameter values
as for the dens measure were selected: density=10 and resolution=8.

density 25
20

10

20
15

25

15

25

15
10

20

5

15

25

5

20
25

5
1010

55

15
20

10

re
so

lu
tio

n

5

8

2

141414

11

8

55

1111

8

11

222

14

11

14

8

5

2

5

8

di
ss

im
ila

ri
ty

0.0

0.2

0.4

0.6

dens+f0

0.1766

0.6288
0.6074

density
20

5

20

10

25
20

15

5

25

15
10

2525

10
5

1515
20

10
15

5
10

25

5

20 re
so

lu
tio

n

5

14

1111

5

88

2

8

2

8

2

11

14

11

5

14

22

11

8

5

14

5

14

di
ss

im
ila

ri
ty

0.0

0.1

0.2

0.3

0.4

0.5

dens+f1

0.2323

0.5656

0.4640

density
20

2525
2020

5

25

15

5
10

15
10

5

25

5
10

25
20

15
1010

1515

5

20 re
so

lu
tio

n

2

5

8

5

14

5

14

5

88

14

5

14

22

14

11

8

11

2

11

8

2

1111

di
ss

im
ila

ri
ty

0.00

0.25

0.50

0.75

1.00

dens+f4

0.5348

1.2082

1.1337

Figure 3.8: The effect of varying the density and resolution parameters on the
value of the dens measure. The color of each bar represents the dissimilarity value.

66 3 Dissimilarity Measures for 3D Structures

density
25

555

25
20

10

30

15
20

30303030

20
15

10

30

10
5

10

20
15

20

10
15

25

10

25

5

1515
20

2525

5

re
so

lu
tio

n

17

2

8

14
11

55
2

8
1111

5

14
17

8

2

88
11

5

1414

5
2

1717

22
5

17
14

11

17

8

14
11

di
ss

im
ila

ri
ty

0.00

0.02

0.04

0.06

0.08

0.10

freq+f0

0.00622

0.10592

0.01632

density

10

25

5

20

5

15

25
30

20

5

15
1010

3030

5

20

30

5

25

10

25
30

15
20

25
30

15

25
20

15
20

10
15

5
10

re
so

lu
tio

n

88
5

17

11

5

14

2

11

17

2

11

2

8
11

88

17

2
5

17

2

1414

5

17

5
8

11

2

17
1414

11
14

5

di
ss

im
ila

ri
ty

0.00

0.02

0.04

0.06

0.08

0.10

freq+f1

0.0110

0.1155

0.0253

density

10

30

15
20

10
15

5

15
10

20

10

30

5

25

5

20
15

5

30

20
25

15

30

20

5
10

15

3030

10
5

25252525
20 re

so
lu

tio
n

14
1111

14

5

17

5

14

22

8
5

17

5

11
8

5
2

8
5

14

8

2

17
14

11

2

14
1717

8

17

8

2

1111

di
ss

im
ila

ri
ty

0.00

0.02

0.04

0.06

0.08

freq+f4

0.00288

0.08026

0.01772

Figure 3.9: The effect of varying the density and resolution parameters on the
value of the freq measure. The color of each bar represents the dissimilarity value.

3.7 Implementation
The opt and shape measures were implemented in C++, extending Framsticks SDK. A
class named SimilMeasureBase was created to facilitate the implementation of subse-
quent dissimilarity measures. Classes that implement specific measures inherit from this
class. Moreover, a parent class named SimilMeasureMDSBased was created for measures
that need spatial alignment, such as greedy and opt. This class also inherits from the
SimilMeasureBase class. The complete class hierarchy is shown in Fig. 3.10.

The dens and freq measures were implemented in Python as part of the framspy

library. A single class named DensityDistribution is used for both measures. A boolean
parameter frequency allows to select between the measures.

The source code of all implemented measures is publicly available at https://www.
framsticks.com/svn/framsticks/.

https://www.framsticks.com/svn/framsticks/
https://www.framsticks.com/svn/framsticks/

3.8 Dissimilarity measures comparison 67

SimilMeasureBase

SimilMeasureMDSBased
SimilMeasureDistribution

(shape)

SimilMeasureGreedy

(greedy)

SimilMeasureHungarian

(opt)

Figure 3.10: Class hierarchy for dissimilarity measures implemented in Framsticks
SDK.

3.8 Dissimilarity measures comparison

Property
Measure

gene greedy opt shape dens freq

Phenotypic ✗ ✓ ✓ ✓ ✓ ✓

Generality ✓ ✓ ✓ ✓ ✓ ✓

Extendability ✗ ✗ ✓ ✗ ✗ ✗

Table 3.2: Comparison of the developed measures in terms of their domain (a genotype or a phenotype
space), generality, and extendability.

Table 3.2 presents a summary of the characteristics of the proposed measures in terms
of the domain they operate on (genotype or phenotype space) and the properties of gener-
ality and extendability. The gene measure is the only one that operates on genotypes and
is used in this work, as stated earlier, to provide a reference for the phenetic measures. All
considered measures exhibit the property of generality, as they can be applied to compare
structures in any ED problem where solutions can be represented as undirected graphs.
The opt measure is the only one that has the property of extendability, as it enables the
incorporation of domain-specific information by including additional vertex properties into
the distance calculation (the other measures would require modification of their algorithm
to include additional properties). Another benefit of this measure is the ability to consider
the distance between neural networks of active structures (although in a simplistic way).
The measure also naturally provides high discriminability for structures represented as
undirected graphs. However, it may perform poorly for solid-shapes models (Fig. 2.4),
where each body part (shape) is treated by opt as a graph vertex and only its coordinates
and vertex degree are considered and not its shape. For such models (not included in this
work) shape, dens, and freq, which sample the structure’s surface, might provide better
discriminability.

68 3 Dissimilarity Measures for 3D Structures

3.8.1 Computational efficiency
To compare the computational efficiency of the measures, the three 400-element subsets of
the 100_data_set were used, each containing the structures evolved using different genetic
encoding. For each such subset, a 400 × 400 dissimilarity matrix was computed for every
dissimilarity measure. The experiments were conducted on a computer with an Intel Xeon
Gold 5320 2.20GHz CPU and 256 GB of RAM.

gene opt a3 d2 d3 dens freq

Measure

101

102

103

104

T
im

e
(s

ec
on

d
s)

Dissimilarity matrix calculation time

f0

f1

f4

Figure 3.11: Calculation time of a 400 × 400 dissimilarity matrix for each genetic
encoding and each dissimilarity measure.

Fig. 3.11 presents the results. The gene measure has the shortest computation times.
For this measure, the f0 and f4 representations are the most computationally costly, due
to their longer genotypes. The next fastest measure is opt. In this case, the f4 and f1
representations have the longest computation times, as the computation time depends
heavily on the number of body parts (because of the Hungarian algorithm used in the
matching procedure), which is on average higher for these representations. The measures
shape (a3, d2, d3), dens, and freq are the most computationally intensive, as they involve
creating a solid model of a structure, sampling it uniformly with points, and calculating
Earth Mover’s Distance (EMD). Additionally, unlike the opt and the shape measures which
are implemented in C++, the two measures with the highest computation time, dens and
freq, are implemented in Python.

3.8.2 Correlations between the dissimilarity measures
For the purpose of the measures comparison, the 100_data_set (described in Sect. 2.4.1)
was used. The subsets of the data set sharing the same genetic encoding were merged
together, resulting in 3 sets of 400 genotypes each. These 3 data sets were used to compute
Spearman’s rank correlation coefficient between the dissimilarity values obtained from the
considered measures, as well as to analyze their computational efficiency. Figs. D.1-D.3

3.8 Dissimilarity measures comparison 69

in Appendix D show representative structures from each set. The shown structures were
selected using the k-medoids algorithm [108] and the opt measure.

Initially, 10 dissimilarity measures were compared:

1. gene,

2. greedy,

3. opt,

4. shape with descriptor a3,

5. shape with descriptor d1,

6. shape with descriptor d2,

7. shape with descriptor d3,

8. shape with descriptor d3,

9. dens,

10. freq.

The parameter values of the measures were set as follows:

• greedy and opt measures:

wV = 0
wD = 1
wN = 0.1
wG = 1

• shape measure:

density=10
bins number=128
samples number=10 000

• dens and freq measures:

density=10
resolution=8

The first step of the analysis of the relationships between the measures involved exclud-
ing some of them because of their high correlation with other measures in the set. Fig. 3.12
presents the scatter plots and correlation coefficients for the shape measure and the fol-
lowing pairs of descriptors: d1, d2 and d3, d4. The Spearman’s rank correlation coefficient
for these pairs for all the encodings was in the range [0.99,1.0], showing strong correlation,
therefore only one descriptor from each pair will be considered in further analyses: d2 and
d3. The d2 descriptor was selected because the preliminary experiments on fitness-distance
correlation analysis (FDC, see Chapter 4 for a detailed description of the FDC analysis)
indicated that generally it provides better FDC values than d1 (although the differences
are minor). The d3 descriptor was chosen because of its lower computational complexity in
comparison to d4. Fig. 3.13 shows the scatter plots and correlation coefficients for greedy

and opt measures. As expected, since the opt is an improved version of the greedy, the

70 3 Dissimilarity Measures for 3D Structures

0.0 0.5 1.0 1.5 2.0
d1

0

1

2

d
2

f0: r=0.99

0 2 4 6
d1

0

2

4

6

8

d
2

f1: r=0.99

0 2 4 6
d1

0

2

4

6

8

d
2

f4: r=1.0

0.0 0.5 1.0 1.5 2.0
d3

0.0

0.2

0.4

0.6

d
4

f0: r=1.0

0 2 4 6
d3

0

1

2

d
4

f1: r=1.0

0 2 4 6 8 10
d3

0

1

2

3

d
4

f4: r=1.0

Figure 3.12: Strongly correlated descriptors of the shape measure: d1 and d2 (top
row), d3 and d4 (bottom row). Each point on the plot represents the dissimilarity value
for a pair of structures encoded using a given genetic encoding. The color indicates
the density of points, with lighter colors corresponding to higher densities.

0 20 40 60 80 100
greedy

0

25

50

75

100

o
p
t

f0: r=0.99

0 50 100 150 200
greedy

0

50

100

150

200

o
p
t

f1: r=0.99

0 50 100 150 200
greedy

0

50

100

150

200

o
p
t

f4: r=1.0

Figure 3.13: Strongly correlated measures: greedy and opt. Each point on the plot
represents the dissimilarity value for a pair of structures encoded using a given genetic
encoding. The color indicates the density of points, with lighter colors corresponding
to higher densities.

dissimilarity values calculated using these two measures are strongly correlated. Therefore,
in the following experiments, only the opt measure will be considered.

Figs. 3.14–3.16 show the Spearman’s rank correlation coefficients for the dissimilarity
values calculated using the considered measures, separately for each of the three subsets of
structures. Figs. E.1–E.5 in the Appendix E show the scatter plots of dissimilarity values
for each pair of measures. For the gene measure, the only genotype-based measure in the
set, the correlations with other measures are in general weak. One notable exception is the
correlation between gene and opt for the structures encoded using the f0 encoding (r =
0.73). This may be attributed to the fact that opt is the only phenetic measure that also
considers the neural network of structures, which is encoded in the genotype. Moreover, f0
is a direct genetic encoding, which means that there is a higher correspondence between
the genotype and the phenotype than in the other two representations.

The opt measure has generally moderate to strong correlations with other measures,
except for the freq measure and the shape measure with a3 descriptor, which correlates
with opt weakly. Interestingly, the correlations are stronger for f1 and f4 genetic en-

3.8 Dissimilarity measures comparison 71

1

0.14

0.61

0.66

0.63

0.32

0.73

0.14

1

0.29

0.17

0.41

−0.01

0.08

0.61

0.29

1

0.9

0.83

0.39

0.36

0.66

0.17

0.9

1

0.79

0.42

0.38

0.63

0.41

0.83

0.79

1

0.19

0.44

0.32

−0.01

0.39

0.42

0.19

1

0.13

0.73

0.08

0.36

0.38

0.44

0.13

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1op
t

a3 d2 d3 de
ns

fre
q

ge
ne

opt

a3

d2

d3

dens

freq

gene

Figure 3.14: Spearman’s rank correlation coefficients for dissimilarity values calculated
for structures encoded using f0.

codings than for f0 (the strongest correlation is between the opt and dens for f1 genetic
representation: r = 0.86). These differences between encodings may indicate that the
measures vary in how well they reflect the phenetic properties of the structures expressed
by different genetic representations. It is also noteworthy that the correlation between
dissimilarity values computed using different measures is not necessarily transitive: for f0 ,
the correlation between opt and gene (r = 0.73) and between opt and dens d3 (r = 0.66)
is moderate to strong, but the correlation between gene and dens d3 is weak (r = 0.38).

The measures that showed the strongest correlation across the representations were
the measures based on the spatial distribution of structures, especially shape with d2

descriptor and dens (r ∈ [0.82, 0.9]). This may imply that they are less fine-grained than
the opt and gene measures.

3.8.3 Qualitative comparison
To further deepen the insights on the differences between measures, a qualitative compar-
ison was performed. For this purpose, four structures from the walking.gen genotypes
set (a part of the Framsticks distribution [126]) were used. The structures are depicted in
Fig. 3.17. The dissimilarity matrices computed for the structures using gene, opt, shape,
dens, and freq measures, are presented in Tables 3.3-3.7, respectively. According to all
measures except for the freq, One-stick and Crawler are the most dissimilar structures.
This congruence between the measures may be attributed to the fact that these structures

72 3 Dissimilarity Measures for 3D Structures

1

0.43

0.76

0.6

0.86

0.36

0.52

0.43

1

0.37

0.1

0.47

0.23

0.23

0.76

0.37

1

0.49

0.86

0.47

0.22

0.6

0.1

0.49

1

0.59

0.25

0.22

0.86

0.47

0.86

0.59

1

0.35

0.3

0.36

0.23

0.47

0.25

0.35

1

0.16

0.52

0.23

0.22

0.22

0.3

0.16

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1op
t

a3 d2 d3 de
ns

fre
q

ge
ne

opt

a3

d2

d3

dens

freq

gene

Figure 3.15: Spearman’s rank correlation coefficients for dissimilarity values calculated
for structures encoded using f1.

have the greatest difference in size (both in terms of a genotype and a phenotype). The
only outlier, the freq measure, assigned the highest dissimilarity to One-stick and Spider.
This, in turn, may reflect the lack of symmetry, the property present in the other three
structures, in Spider.

The measures showed different results regarding the most similar structures, reflecting
the different aspects of similarity that they capture. According to the genotype-based gene

measure, One-stick and Quadruped are the most similar structures, since their genotypes
require the fewest edits to transform one into another. The opt measure indicated that
Spider and Quadruped are the most similar structures, since they have the smallest dif-
ference in terms of vertex degree, neurons, and geometric distance. Based on the overall
shape, the shape measure indicated that Crawler and Quadruped are the most similar
structures. Finally, the dens and freq measures identified Spider and Quadruped as the
most similar structures, owing to their similarity in spatial distribution.

quadruped spider one-stick crawler
quadruped 0.00 116.00 101.00 107.00

spider 116.00 0.00 132.00 131.00
one-stick 101.00 132.00 0.00 133.00
crawler 107.00 131.00 133.00 0.00

Table 3.3: The dissimilarity matrix for sample structures computed using the gene measure. The
minimum and maximum dissimilarity values are highlighted in green and red, respectively.

quadruped spider one-stick crawler
quadruped 0.00 15.66 32.65 22.64

spider 15.66 0.00 33.54 27.40
one-stick 32.65 33.54 0.00 48.92
crawler 22.64 27.40 48.92 0.00

Table 3.4: The dissimilarity matrix for sample structures computed using the opt measure. The
minimum and maximum dissimilarity values are highlighted in green and red, respectively.

quadruped spider one-stick crawler
quadruped 0.00 0.41 1.07 0.30

spider 0.41 0.00 0.66 0.71
one-stick 1.07 0.66 0.00 1.37
crawler 0.30 0.71 1.37 0.00

Table 3.5: The dissimilarity matrix for sample structures computed using the shape measure using
d2 descriptor. The minimum and maximum dissimilarity values are highlighted in green and red,
respectively.

quadruped spider one-stick crawler
quadruped 0.00 0.49 0.82 0.64

spider 0.49 0.00 0.51 0.68
one-stick 0.82 0.51 0.00 1.06
crawler 0.64 0.68 1.06 0.00

Table 3.6: The dissimilarity matrix for sample structures computed using the dens measure. The
minimum and maximum dissimilarity values are highlighted in green and red, respectively.

quadruped spider one-stick crawler
quadruped 0.00 0.01 0.04 0.02

spider 0.01 0.00 0.05 0.02
one-stick 0.04 0.05 0.00 0.04
crawler 0.02 0.02 0.04 0.00

Table 3.7: The dissimilarity matrix for sample structures computed using the freq measure. The
minimum and maximum dissimilarity values are highlighted in green and red, respectively.

1

0.23

0.69

0.7

0.71

0.39

0.48

0.23

1

0.24

0.13

0.31

0.1

0.04

0.69

0.24

1

0.84

0.9

0.55

0.24

0.7

0.13

0.84

1

0.86

0.46

0.2

0.71

0.31

0.9

0.86

1

0.42

0.21

0.39

0.1

0.55

0.46

0.42

1

0.18

0.48

0.04

0.24

0.2

0.21

0.18

1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1op
t

a3 d2 d3 de
ns

fre
q

ge
ne

opt

a3

d2

d3

dens

freq

gene

Figure 3.16: Spearman’s rank correlation coefficients for dissimilarity values calculated
for structures encoded using f4.

(a) Quadruped: MX[@*:−.4,2:−2.890,
1:−1.808](RX(FX,),MX[@−1:1.849,0:3.09
4,0:−1.387][|−1:1.287,0:.5](rX(,X),,
RX(X,)),rX(,FX))

(b) Spider: lllX[S:4](,RcccccXMMMX[|1:.5,
T:−0.616],cccccRRXMMMX[|1:.1,T:5],,,
RRcccccXMMMX[|1:.1,T:5],llccccX[S:4],Rc-
ccccXMMMX,RRcccccXMMMX[|0:.1,T:5])

(c) One-stick: X[|1:−0.782][@G:−741.994]
[G:294.200]

(d) Crawler: (X[Sin](rrX(rrrX(lX„)„)„rrX(
RRRX(lX„)„))„X[N][−1:0.5,−2:0.265,si:
0.5][|,−1:1,p:0.999][@,−4:0.366,p:1,p:1]
(rrX(rrrX(lX„)„)„rrX(RRRX(lX„)„)))

Figure 3.17: Structures used for the qualitative comparison of the dissimilarity mea-
sures.

76 3 Dissimilarity Measures for 3D Structures

3.9 Human perception of similarity
The study described in this section was previously published as a technical report [120].

3.9.1 Motivations
As discussed earlier in this chapter, one of the challenges posed by the development of
dissimilarity measures for 3D structures is the lack of an objective ground truth to compare
the dissimilarity assessments to. One of the solutions to this problem could be to minimize
the Root Mean Square Distance (RMSD) [30] or a similar metric between two structures,
but in most cases the computational complexity of this solution, arising from the infinite
number of possible alignments of two structures, is prohibitive. Another approach is to
use similarity assessments made by humans as ground truth. Employing humans in the
evaluation of similarity has one key advantage: they can grasp features of 3D structures
that make the structures similar due to human background knowledge and experience –
i.e. humans can identify functional similarities just by looking at pairs of 3D objects.

The concept of similarity – as one of the fundamental elements of human perception
and reasoning – has been widely studied, especially in the field of psychology [215, 4, 3].
However, the objects considered in these studies were vastly different from 3D structures
modeled as graphs, considered in this work. In order to investigate the human perception
of such structures and the factors that can potentially affect it, a study involving 14 partic-
ipants was conducted, preceded by two pilot studies with a total of over 100 participants.
To simplify the task for the participants, they were asked to evaluate the similarity rather
than the dissimilarity between the structures.

3.9.2 Procedure
The investigation was performed using an online javascript application, which was in-
ternally using parts of Framsticks SDK [125] translated from C++ to javascript using
emscripten [5]. Fig. 3.18 shows the main part of the user interface. The other part of
the interface, located below the shown part, contained the personal questionnaire with
drop-down lists for selecting answers.

In the first step, the instructor informed participants about the purpose of the inves-
tigation and the general experimental procedure. Next, the functionality of the interface
was explained to them. Finally, the subjects were instructed to fill out the personal ques-
tionnaire, and then perform the following three steps, for each pair of the structures that
would be displayed:

• slowly and carefully translate and rotate the two structures, until they are super-
imposed over each other in the best possible way (according to you); then, for each
vertex of the smaller (in terms of the number of vertices) structure determine the
most similar vertex from the larger structure,

• assess the similarity of the two structures on a scale from 0 to 100 percent,

• justify the way you matched the vertices in a concise manner.

3.9 Human perception of similarity 77

Figure 3.18: The main part of the user interface. The upper panel contains instruc-
tions. The left panel allows to translate and rotate each of the structures individually
as well as the whole scene. Additional functionalities include zooming in and out, au-
tomatic centering of the scene and autorotation. The panel on the right is used for
matching the vertices using the tiles, for similarity assessment using the slider and for
inputting the text justifying the matching [120].

The following information (the factors that can possibly influence spatial cognition such
as music education and learining foreign languages) was anonymously collected during the
investigation:

1. Characteristics of the participants (for each participant):

• gender [female, male],
• age,
• handedness [ambidexterity, left-handedness, right-handedness],
• average sleep duration (in hours),
• sleep duration on the night preceding the investigation (in hours),
• number of years of playing video games,
• average number of hours of playing video games per day,
• level of musical education [amateur, none, professional],
• number of years of music education,
• number of foreign languages known,
• number of years of sports training,
• average number of hours devoted to sports training per week,
• percentage of strength component in practiced sport,
• percentage of endurance component in practiced sport,
• percentage of an intellectual component in practiced sport,
• conscientiousness (self-assessed on a Likert scale [104]),
• proficiency in mental calculation (self-assessed on a Likert scale),

78 3 Dissimilarity Measures for 3D Structures

• proficiency in using maps and navigation (self-assessed on a Likert scale).

2. similarity assessment (for each pair of evaluated structures):

• time of evaluation (in seconds),
• position and rotation of each of the structures,
• matching of vertices,
• assessed similarity (percentage).

3.9.3 Pilot studies
The investigation was preceded by two pilot studies. The pilot studies differed from the
final investigation in the following:

• number of participants,

• evaluated structures and their number,

• contents of the personal questionnaire,

• lack of verbal justification of vertices matching.

In both of the pilot studies the agreement between the subjects was measured using the
following metrics:

1. Agreement in regard to the matching of vertices: the percentage of the vertices
matched together in the same way for a given pair of structures by both subjects.

2. Disagreement in regard to similarity: the absolute difference in similarity ratings.

Pilot study I

In the first pilot study, 15 subjects assessed pairs of structures randomly selected from
a genotype set consisting of 30 genotypes coming from the genotype set walking.gen

distributed together with the Framsticks simulation environment [126]. The number of
pairs that each participant had evaluated was not fixed, and the subjects were instructed
to carefully assess as many structures as they could within a period of 10 minutes. The
choice of the elapsed time as a condition for terminating the task rather than the number
of evaluated structures was motivated by the expectation that in the opposite case, some of
the subjects could perform the task quickly and inaccurately. In addition to matching and
similarity assessment, the participants filled a short version of the personal questionnaire
which concerned only their gender and the year of birth.

The subjects evaluated 59 pairs of structures in total. The mean number of assessed
pairs per participant was 3.93, and its standard deviation was 3.28. The mean number of
minutes devoted by a single subject to the assessment of a single pair of structures was
2 and its standard deviation was 1.93. From 59 evaluated pairs, only 9 were assessed by
more than one participant, which allowed for only a limited analysis of the agreement
between the subjects.

The participants differed significantly in regard to the matching of vertices. In 5 cases,
the agreement was in the range 0 − 20%, in 1 case in the range 20 − 40%, and in 3 cases in
the range 80 − 100%. Similarity assessments were significantly more consistent; 2/3 of the

3.9 Human perception of similarity 79

absolute differences in similarity ratings were in the range 0 − 30%, and 1/3 in the range
50 − 60%. In general, the subjects described the task itself as difficult.

Pilot study II

In order to get a better insight into the agreement between participants’ assessments, in
the second pilot study the number of subjects was increased to 73 and the size of the set of
3D structures was decreased to 8. As before, the structures came from walking.gen. Since
in the previous pilot study the structures with a high number of vertices were especially
hard for the participants to match, this time the structures were selected with the following
distribution of the number of vertices: 2, 3, 4, 4, 5, 5, 6, 7. Again, there was no fixed number
of pairs to evaluate and the minimum duration of the task was set to 10 minutes, while
the participants were encouraged to take as much time as they wanted to finish the task.
The pairs of structures to evaluate were selected randomly. The personal questionnaire
included all of the characteristics listed in Sect. 3.9.2, except for the percentages of different
components in practiced sport, which were preceded by a simpler question regarding the
type of practiced sport.

The subjects evaluated 318 pairs of structures in total. The mean number of assessed
pairs per participant was 4.36 and its standard deviation was 2.5. The mean number of
minutes devoted by a single subject to the assessment of a single pair of structures was 2.33
and its standard deviation was 2.28. In 288 cases a given pair of structures was assessed
by more than one participant.

The results regarding the agreement in vertices matching and similarity assessment
were similar to the previous pilot study. Fig. 3.19 shows the histograms of the percentage
of identical matchings of vertices between subjects and the absolute differences in similarity
ratings. Again, the participants were more consistent in evaluating the similarity of the

Agreement in the vertices matching.

Percentage of identical vertices matchings

Fr
eq

ue
nc

y

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0

Agreement in similarity assesment

Absolute difference in similarity rating[%]

Fr
eq

ue
nc

y

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0

Figure 3.19: The percentage of the identical matchings of vertices between each pair
of participants that assessed the same pair of structures (left column) and the absolute
differences in similarity ratings between each pair of participants that assessed the same
pair of structures (right column) in the pilot study [120].

80 3 Dissimilarity Measures for 3D Structures

structures than in matching their vertices. In order to assess the quality of the alignment
of structures, for each of 318 evaluated pairs the Root-Mean-Square-Distance (RMSD)
was computed using the following formula:

RMSD(v, w) =

√√√√ 1
n

n∑
i=1

((vix − wix)2 + (viy − wiy)2 + (viz − wiz)2)

where v and w denote the sets of the vertices from both structures that were matched
together (unmatched vertices are not considered). Next, the normalized RMSD was cal-
culated using the following formula:

RMSDnorm(s, t)j = RMSD(s, t)j
RMSDmin(s, t) · 100

where RMSD(s, t)j denotes RMSD calculated for the alignment of the structures s, t made
by j-th participant and RMSDmin(s, t) denotes the minimal value of RMSD that was
obtained for the structures s, t across all participants; the minimal value of RMSDnorm
is equal to 100%. In order to compare the RMSDnorm values across the participants,
mean(RMSDnorm) was computed for all participants as the average of all RMSDnorm
values obtained by a single participant. The average mean(RMSDnorm) was equal to
4853.2% and its standard deviation to 11757.63%, showing significant differences between
the subjects. Further analysis of the alignments made by the participants revealed that
some subjects made little or no alignment at all.

3.9.4 Final study
The final study followed the procedure described in Sect. 3.9.2 and benefited from the
experiences gathered in the two preceding pilot studies. In contrast to the pilot studies,
each of the 14 participants assessed the same 5 pairs of structures to ensure a fully balanced
data set. To prevent the subjects from omitting the alignment step, it was emphasized
during the instructional part. Additionally, at the beginning of the investigation, the
participants had to align two copies of the same structure; it allowed them to acquaint
with the graphical user interface and get proficient in using its mechanics.

Again, the structures were selected or based on the genotypes from walking.gen in
order to find out whether the matching of the vertices will be based on functional similarity,
total distance minimization, or other strategies. To better understand the reasons behind
the matchings made by the participants, their free-form textual justifications were collected
as well.

In addition to the raw values of the time of evaluation of a single pair of structures
and the RMSD, their normalized versions were considered just as in the pilot studies
(see Sect. 3.9.3). Also, six simple features describing structures were created based on
the two characteristics of the structures: the number of parts and dimensionality. The
dimensionality was calculated as:

dim = bbx

maxdim
+ bby

maxdim
+ bbz

maxdim
(3.2)

where bbx, bby, bbz refer to the size of the structure’s minimum bounding box in x, y

3.9 Human perception of similarity 81

and z dimensions, and maxdim refers to the maximum of these values. The dimensionality
dim takes values from nearly 1 (for structures that are significantly larger in one dimension
than in the other two) to 3 (for structures that have equal sizes in all the three dimensions).

Evaluated structures

Fig. 3.20 shows the set of six structures from which five pairs were created; the pairs are
enumerated in Table 3.8. The structures are in varying degrees creature-like – this was
supposed to influence the matching of vertices so that in some cases the participants would
base their choices on functional similarity, e.g. matching the “leg” of one structure to the
“leg” of the other structure.

Participants

Figs. F.1-F.8 in the Appendix F show the distribution of the characteristics of subjects.
13 men and 1 woman aged from 23 to 28 years, all of them right-handed, participated
in the investigation. The average sleep duration of the subjects was in the range from 7
to 9 hours and the duration of sleep on the night preceding the investigation was in the
range from 0 to 9.5 hours, with most participants sleeping between 6 and 9.5 hours. The
number of years of playing video games differed vastly – it ranged from 0 to 23 years, and
the average number of hours devoted to playing video games per day ranged from 0 to 3
hours, except for one participant, who declared 6 hours.

The subjects were equally divided in terms of musical experience: 7 participants had
no musical education at all and 7 participants were amateur musicians; their duration of
musical education ranged from 1 to 10 years.

3 out of 14 participants did not practice any sports. For the rest of them, the number
of years of practicing sports ranged from 1 to 10, except for one participant who declared
18 years; the average number of hours devoted to practicing sport per week ranged from 1
to 6, except for one participant who declared 10 hours. The type of sport declared by the
subjects was usually a combination of endurance, strength and intellectual components,
with the intellectual component being in most cases the smallest component.

Most of the participants were undecided about whether they could describe themselves
as a conscientious person. As to mental calculations and navigation skills, most of the
subjects assessed themselves as rather proficient or proficient.

Time of evaluation

Fig 3.21 shows the distribution of the time of evaluation of a single structure. The most
frequent evaluation duration was between 1 and 2 minutes, the cases in which it lasted more
than 7 minutes were rare. From 5 evaluated pairs, the pair af had the lowest evaluation
time, despite a relatively high number of vertices in both structures. This result can be

Pair number 1 2 3 4 5
Structure 1 a c a b a
Structure 2 b d e f f

Table 3.8: Pairs of the structures from Fig. 3.20 that were evaluated in the investigation.

(a) (b)

(c) (d)

(e) (f)

Figure 3.20: Six structures whose similarity was assessed in the investigation [120].
Each pair of structures was shown to participants with different labels for the vertices,
numbers for one structure and letters for the other, to facilitate the matching task.

3.9 Human perception of similarity 83

Evaluation time

Time [min]

Fr
eq

ue
nc

y

0 2 4 6 8 10

0
5

10
15

20

●
●

●

●

●

ab ae af bf cd

2
4

6
8

10

Evaluation time by pair

Pair

T
im

e
[m

in
]

Figure 3.21: Distribution of the evaluation time of a single pair of structures, for all
pairs of structures (left column) and the distribution of the evaluation time of a single
pair of structures, depending on the evaluated pair (right column). The symbolic names
of the structures constituting pairs are presented in Fig. 3.20 [120].

explained by the strong perceptual similarity between the structures and the relative ease
with which they can be aligned. The evaluation lasted the longest for the pair cd, which
could be caused by the atypical shape of the structure c, having its back and forward
“limbs” in different planes and the lack of a way to closely align the two structures.

The time of evaluation was normalized using the same method as in the case of
RMSDnorm (see Sect. 3.9.3). No significant correlation between personal characteristics
and the time of evaluation (raw or normalized) at the significance level of 0.05 was found.
A significant negative correlation, at the significance level of 0.05, between raw evaluation
time and minimum, maximum and average number of evaluated structures vertices was
found, which can be explained by the ease of alignment of the structures pair af, which
possessed the highest number of vertices.

Matching

Fig. 3.22 shows the distribution of the agreement between the participants in terms of the
vertices matching. It can be seen that in general, as in the pilot studies, the subjects were
not consistent between themselves; the median of the percentage of identical matchings was
50%. The agreement depended heavily on the specific pair that was evaluated: for the pair
af it was equal to 100% for all the subjects, while for the pair cd, the median percentage
of identical matchings of vertices was 0%. The reasons why those two pairs of structures
were the easiest and the hardest to match are discussed in Sect. 3.9.4. A significant
positive correlation between the agreement in the matching of vertices and the minimum,
maximum and average number of vertex count was found, for the same reasons as for the
time of evaluation, described above.

Table 3.9 compares matchings constructed by the opt measure with those constructed
by humans. Since humans were not consistent between themselves in the matching of

ab ae af bf cd

0
20

40
60

80
10

0

Agreement in the vertices matching by pair

Pair
P

er
ce

nt
ag

e
of

 id
en

tic
al

 v
er

tic
es

 m
at

ch
in

gs

Figure 3.22: Percentage of the identical vertices matchings between each pair of
participants that were assessing the same pair of structures (left column) and the same
metric depending on the pair that was assessed (right column) [120].

pair opt measure humans agreement [%]
ab 1:3 2:6 3:7 4:2 5:1 6:4 7:5 1:3 2:4 3:5 4:2 5:1 6:6 7:7 (57%) 43
cd 1:2 2:3 3:4 5:1 1:1 2:2 3:4 4:6 (29%) 25
ae 1:5 2:2 3:3 6:4 7:1 1:1 2:4 3:5 4:6 5:7 0

1:1 2:2 3:3 4:4 5:5 (21%) 40
af 1:3 2:1 3:4 4:5 5:6 6:7 7:2 1:2 2:3 3:4 4:5 5:6 6:7 7:8 (100%) 57
bf 1:7 2:3 3:2 4:1 5:4 6:5 7:6 1:6 2:5 3:2 4:3 5:4 6:7 7:8 29

1:6 2:5 3:2 4:7 5:8 6:3 7:4 (43%) 14
Table 3.9: Vertex matchings constructed by the opt measure and by humans. For humans, the most
frequent matching for each pair was chosen; the percentage of subjects that made such a matching
is shown in parentheses. In the case of ties, every matching that was made by a given number of
participants is shown.

(a) opt measure (b) human

Figure 3.23: A sample matching of structures a and e constructed by the opt measure
and by a human [120].

3.9 Human perception of similarity 85

vertices, the most frequent matching made for each pair was chosen. It can be seen that
human matchings differed significantly from the matchings made by the opt measure; the
highest percentage of agreement (57%) was obtained for the af pair.

Fig. 3.23a shows the matching of vertices of the pair ae, and Fig. 3.23b shows a
sample matching constructed for that pair by one of the participants. The first difference
between the two matchings arises from the method of alignment used by the opt measure,
which is based on the weighted Multidimensional Scaling (MDS) technique and which is
applied to both structures separately, as described in Sect. 3.3.2. After applying MDS
to the coordinates of the vertices, the center of a structure is located in the center of
the coordinate system, the axis with the greatest variance becomes its first axis and the
axis with the second highest variance becomes its second axis. In the case of human-
constructed matching, the alignment is based rather on the similarity of the specific parts
of the structures. The second difference is that the purpose of the opt measure is to
minimize the total distance between the structures, including the penalty for the vertices
that remained unmatched, hence the resulting matching may seem unintuitive for humans,
who try first to match the most similar subgraphs.

Similarity

Fig. 3.24 shows the distribution of the similarity rating for each evaluated pair. The pair
af turned out to be the most similar according to the participants, while the pair ae
was assessed as the least similar. Fig. 3.25 shows the distribution of agreement between
participants with regard to the similarity of structures. It can be seen that the participants
were again more consistent between themselves than they were in the case of the matching
of vertices; the third quartile of absolute difference in similarity rating was 33.5%. The
agreement in similarity was not strongly dependent on the pair that was evaluated, as
was the case with the matching of vertices. No significant correlation between personal
characteristics listed in Sect. 3.9.2 (such as gender and age) and the agreement in similarity

●●

ab ae af bf cd

20
40

60
80

Similarity rating by pair

Pair

S
im

ila
rit

y
[%

]

Figure 3.24: Distribution of the similarity rating for each of the evaluated pairs [120].

86 3 Dissimilarity Measures for 3D Structures

Agreement in similarity assesment

Absolute difference in similarity rating [%]

Fr
eq

ue
nc

y

0 20 40 60 80

0
50

10
0

15
0

●●

●

●

ab ae af bf cd

0
20

40
60

80

Agreement in similarity assessment by pair

Pair
A

bs
ol

ut
e

di
ffe

re
nc

e
in

 s
im

ila
rit

y
ra

tin
g

[%
]

Figure 3.25: The absolute differences in similarity ratings between each pair of par-
ticipants that were assessing the same pair of structures (left column) and the same
metric depending on the pair that was assessed (right column) [120].

assessment at the significance level of 0.05 was found.

Table 3.10 shows the comparison of the similarity assessments made by humans and
by the opt measure. The weights of the measure were set for the number of parts, vertices
degree and geometrical distance to 1, and the weight for neurons to 0, since the neural
networks were not presented to the human subjects. For a better comparison, the similarity
ratings obtained from the opt measure were normalized to the range 0-100% and reversed
by subtracting them from 100% (since the algorithm computes dissimilarity). Both the
algorithm and the subjects indicated that the pair ae was the most dissimilar. The pair ab
was the most similar according to the opt measure, followed by the pair af, while according
to the human subjects that order was reversed. The pair ab obtained the highest similarity
score from the algorithm, because the total distance between the matched vertices was the
smallest, and there were no unmatched vertices.

pair opt measure [%] human [%] human normalized [%]
ab 100.00 52.71 57.97
cd 60.95 46.07 38.15
ae 0.00 33.29 0.00
af 90.33 66.79 100.00
bf 38.32 48.93 46.69

Table 3.10: Similarity of each pair of structures evaluated by the opt measure and by humans. In
the case of the opt measure, the similarities were normalized to the range [0%, 100%] and reversed, in
the case of raw human assessments, the average from all the participants is shown. In the last column
human assessments normalized to the range [0%, 100%] are shown.

RMSD

RMSD

Fr
eq

ue
nc

y

0 1 2 3 4

0
5

10
15

20
25

30
35

Normalized RMSD

RMSD
Fr

eq
ue

nc
y

200 400 600 800

0
10

20
30

40
50

Figure 3.26: The distribution of raw RMSD (left column) and normalized RMSD
(RMSDnorm) obtained for each pair of evaluated structures [120].

●

●

●

●

●

●
●

●

●

●

●

●

●

ab ae af bf cd

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

RMSD by pair

Pair

R
M

S
D

Figure 3.27: The distribution of RMSD depending on the pair that was evalu-
ated [120].

88 3 Dissimilarity Measures for 3D Structures

RMSD

Fig. 3.26 shows the distribution of raw RMSD and RMSDnorm between the matched struc-
tures. The differences in the RMSD values between participants were not as significant
as in the pilot studies: 77% of the RMSDnorm were below 200%, which means that most
of the subjects did not obtain raw RMSD value which was more than twice as high as
the minimum RMSD obtained for a given pair. No significant correlation between per-
sonal characteristics and mean(RMSDnorm) at the significance level of 0.05 was found.
Another relationship that was investigated was the relationship between RMSD and di-
mensionality ((3.2)). A significant weak negative correlation between raw RMSD and the
minimum, maximum and average dimensionality of structures was found, which again can
be explained by the fact that the largest structures were the easiest to align.

Qualitative results

Table 3.11 presents the summary of the free-from descriptions that participants used to
justify their matchings and similarity assessments. Most often the subjects tried to align
the most similar parts of the structures together, and some of them were using expressions
like “arms” and “tail” to refer to structural parts.

3.9.5 Discussion and conclusions
In this study, human subjects aligned five pairs of 3D structures, matching their vertices
and assessing the similarity between the structures. Additionally, the personal charac-
teristics of the subjects were collected. Responses of the participants of this study were
compared to matching and similarity assessments performed by an algorithm.

Consistently throughout the two pilot studies and the main study, the participants
were significantly more congruent between themselves in their similarity assessment than
in the matching of vertices. Also, the agreement in the similarity rating did not depend
so heavily on the specific pair that was evaluated as did the agreement in the matching

Vertex pair Justifications
ab The subjects indicated that the graphs representing the two structures

have the same topology; they were trying to align the three “limbs” of the
structures together.

cd The subjects pointed out that there is no way to perfectly align the two
structures; some of them were trying to perfectly align 3 out of 4 vertices
of structure d at the expense of the fourth vertex.

ae The structures were assessed as dissimilar, and the subjects were trying
to align the most similar parts together.

af The structures were assessed as similar, and the subjects declared that
they aligned together corresponding “limbs”.

bf The structures were assessed as partially similar, and again, the subjects
were trying to align together corresponding “limbs”.

Table 3.11: Summary of the justifications of subjects for their matching of vertices and their similarity
assessment.

3.9 Human perception of similarity 89

of vertices. This result indicates that, to a large extent, the disagreement in the corre-
spondence between certain structural elements does not influence the evaluation of their
overall similarity. In general, the percentage of the same matchings was higher for the
structures that were assessed as more similar with one notable exception: the pair cd,
which was not rated as the most dissimilar, yet its matching of vertices caused the highest
disagreement between participants. A possible reason could be the unconventional shape
of the structure c that posed a challenge to the subjects during the alignment step.

In terms of the differences in RMSD values between the participants, there was a
notable improvement compared to the pilot studies – most of the RMSD values obtained
for a given pair of structures were lower than double of the minimum RMSD obtained for
that pair. This improvement could be caused by emphasizing the alignment step during
the experimental instruction stage, and by beginning the experimental procedure with the
alignment of a pair of specifically prepared training structures.

Personal characteristics of the participants turned out to have no influence on the time
of evaluation, the similarity rating, and the RMSD. However, it is worth noticing that the
test group was quite homogeneous and consisted of only 14 people. No meaningful rela-
tionships between any aspect of the similarity assessment by humans (time of evaluation,
RMSD calculated for aligned structures, the agreement in matching of vertices, and the
agreement in the similarity assessment) and the features of the structures (the number
of vertices and dimensionality) were found. It was likely caused by the limited set of the
structures that were assessed, which was in turn forced by a significant cognitive cost of
assessing the similarity of 3D structures and matching all their vertices.

The vertex matching constructed by the participants showed a significant discrepancy
with the algorithmic matching, with an agreement ranging from 0% to 57% across different
pairs of structures. However, the similarity assessments by humans and by the algorithm
were much more consistent. Interestingly, while the algorithm rated the pair ab as the
most similar, the human participants preferred the pair af that had a more functionally
similar morphology.

3.9.6 Limitations of this study and future work
The study had some limitations that could be addressed in future work. One of them
was the relatively small number of participants, which resulted from the high cognitive
demand of the task of aligning 3D structures using a two-dimensional interface and in-
teraction methods. Moreover, the participants were rather homogeneous, limiting the
generalizability of the findings regarding the influence of personal factors. A potential im-
provement would be to use Virtual Reality technologies to facilitate the task and to recruit
a more diverse sample of participants. Another limitation related to the high cognitive
demand of the task was the small size of the set of 3D structures. To extract structural
features that correlate with human similarity perception, a larger and more varied set of
structures is needed.

Then, a similarity measure based on such features can be developed and applied in
tasks such as designing genetic operators and measuring distance in diversity maintenance
techniques. The results of the current study indicate that humans quantify similarity based
on the perceived functional similarity. The structures that have high functional similarity

90 3 Dissimilarity Measures for 3D Structures

could potentially also have similar fitness in an optimization context. Therefore, using a
similarity measure based on human judgments to define the neighborhood structure could
enhance the search of the solution space. Further research and computational experiments
are needed to verify this hypothesis.

3.10 Summary
In this chapter, six dissimilarity measures for 3D structures were introduced – one genetic
and five phenetic ones. The genetic measure, gene, computes the Levenshtein distance
between the genotypes. The first phenetic measure, greedy, is a graph-based heuristic
measure that was natively implemented in Framsticks. The second phenetic measure, opt,
is a measure developed as a part of this work that improves on greedy by finding the
optimal vertex matching that minimizes the total distance and allows for incorporation of
arbitrary vertex properties into the dissimilarity calculation. The third phenetic measure,
shape, is another newly developed measure that adapts the shape descriptors and algo-
rithm from Osada et al [166]. The last two phenetic measures, dens and freq, are also
new measures, implemented as a part of this work, that compare the spatial distribution
of the structures, either in the raw form or in the frequency domain.

The parameters of the measures, used in the experiments described in the following
chapter, were determined by computational experiments. Then, the correlations between
the dissimilarities obtained by different measures for the same structures were examined.
This analysis led to the exclusion of the greedy measure, as it was strongly correlated
with the opt measure. The results also suggested that different measures capture different
aspects of dissimilarity between the structures. The qualitative comparison highlighted
the features of the structures that each measure exploits, such as the overall shape for the
shape measure and the presence of symmetry for the freq measure. The computational
efficiency analysis demonstrated that the gene and opt measures are the most compu-
tationally efficient while the dens measure is the most computationally intensive. The
investigation of human perception of similarity showed that humans tend to assess simi-
larity of structures based on the perceived functional similarity, which is an encouraging
result for the development of a dissimilarity measure based on human judgments, however
further research is required.

The five selected measures: gene, opt, shape, dens, and freq will be used in the
following parts of the work to the fitness landscape analysis, the development of the
genetic operators, and in the diversity maintenance techniques for the evolutionary design
of 3D structures.

4

Fitness-Distance Correlation Analysis

4.1 Introduction
The shape of a fitness landscape is one of the major factors determining the difficulty of an
optimization problem. In general, smooth landscapes correspond to substantially easier
optimization problems than rugged landscapes [198, 80]. Various measures have been
proposed to quantify the ruggedness of the fitness landscape, such as correlation length,
which is based on random walks in the solution space [201]. It is worth noting, however,
that this measure is not invariant to the choice of genetic representation and operators, as
they may affect the topology of the solution space and, consequently, the fitness landscape.
Another useful concept for fitness landscape analysis is global convexity. In the landscapes
exhibiting this property, better solutions are closer to each other and to the global optimum
than worse solutions. This has been demonstrated for some combinatorial optimization
problems [20]. Again, however, the fitness landscape may or may not possess the property
of global convexity, depending on how the solution space is organized, for instance on the
genetic operators used to traverse it [172] (see Fig. 4.1).

One way to assess global convexity is to analyze the correlation between the similar-
ity of solutions and the similarity of their fitness values. A high correlation may indi-

a b c d e f g h i j k l mn o p q r s t
dissim1

0

5

10

15

20

25

Co
st

a b c d e f g h n j k s m i o p q r l t
dissim2

0

5

10

15

20

25

Co
st

i g a c e s d t hmk j o n p b l r f q
dissim3

0

5

10

15

20

25

Co
st

Figure 4.1: Three fitness landscapes for the same set of 20 solutions, represented by
the letters ’a’ to ’t’ [119]. Each of these fitness landscapes is a result of arranging
the solutions according to one of the three dissimilarity measures: dissim1, dissim2,
or dissim3. The landscapes are ordered from the most globally convex (for dissim1)
to the most random (for dissim3). The neighborhood and recombination operators
should preserve the topology obtained for dissim1 to improve the performance of the
optimization algorithm and utilize the global convexity property during the search.

92 4 Fitness-Distance Correlation Analysis

cate that the dissimilarity measure reflects fitness-related features of solutions. In that
case, it should be feasible to design genetic operators that preserve these features and
leverage the property of global convexity. This approach has been successful for combi-
natorial optimization problems, where distance-preserving crossover operators have been
designed [98, 99, 132]. However, this approach has not received much attention in the
context of optimizing active and passive 3D structures, due to, among other factors, the
major challenge of developing dissimilarity measures for 3D structures. The objective of
this chapter is to thoroughly analyze the global convexity of fitness landscapes for various
ED tasks using five measures introduced in Chapter 3. It is a follow-up to the preliminary
results on global convexity in ED tasks published in [119].

4.2 Experiments

4.2.1 Methods
To assess global convexity, the fitness-distance correlation (FDC) analysis can be used.
FDC measures the correlation between the fitness of solutions and their distance from the
global optimum (if it is known). It was introduced by Jones and Forrest as a method of
investigating the optimization problems’ difficulty [103]. Later it was also used to devise
genetic operators in combinatorial optimization problems [98, 99, 132]. In this work, to
investigate global convexity in the evolutionary design of 3D structures, the FDC analysis
is conducted on the 1000_data_set (detailed in Chapter 2). The set comprises 1000
structures for each of the following genetic encodings:

• f0 ,

• f1 ,

• f4 ,

and for each of the following optimization tasks (where the objective was subject to max-
imization):

• velocity on land,

• velocity in water,

• height of active structures,

• height of passive structures.

Five dissimilarity measures are used to calculate the distance:

• gene,

• opt,

• shape (descriptor d2),

• dens,

• freq.

4.2 Experiments 93

The FDC is calculated as Spearman’s rank correlation coefficient:

FDC =
∑n

i=1(rfi − r̄f)(rdi − r̄d)√∑n
i=1(rfi − r̄f)2 ∑n

i=1(rdi − r̄d)2
,

where:

• n is the sample size,

• rfi and rdi are the ranks of the fitness and distance values of the i-th solution,

• r̄f and r̄d are the mean ranks of fitness and distance.

The global optimum is unknown for all the optimization tasks considered in this chap-
ter. Therefore, the distance to the global optimum cannot be used as a reference point
for the fitness-distance correlation analysis. Instead, an alternative measure of distance is
employed, which is the mean distance to solutions with equal or better fitness value [132].
This measure captures the proximity of each solution to the better solutions in the sample,
and it can be computed for the i-th solution as follows:

di = 1
n

n∑
j=1

dissim(xi, xj), xj ∈ Si

where:

• xi is the i-th solution,

• Si is the set of solutions that have equal or better fitness value than xi,

• n is the size of Si,

• dissim(xi, xj) is the dissimilarity between solutions xi and xj .

A highly negative value of FDC in a maximization problem indicates that structures
similar to the structures with equal or better fitness also exhibit high fitness, suggesting
global convexity. Therefore, such a value is desirable.

The FDC was calculated for each combination of the genetic encoding and optimization
goal, using each of the five measures. The following sections discuss the results for each
of the employed measures.

94 4 Fitness-Distance Correlation Analysis

2× 102 3× 1024× 102 6× 102

distance

0.00

0.02

0.04

0.06

0.08

fi
tn

es
s

Velocity on land, f0, gene

0.52

102

distance

0.000

0.025

0.050

0.075

0.100

fi
tn

es
s

Velocity on land, f1, gene

0.68

101 102 103

distance

0.00

0.02

0.04

0.06

0.08

fi
tn

es
s

Velocity on land, f4, gene

0.88

1033× 1024× 102 6× 102

distance

0.000

0.025

0.050

0.075

fi
tn

es
s

Velocity in water, f0, gene

0.36

102

distance

0.00

0.02

0.04

0.06

fi
tn

es
s

Velocity in water, f1, gene

0.32

102 103

distance

0.000

0.025

0.050

0.075

0.100

fi
tn

es
s

Velocity in water, f4, gene

-0.02

102 103

distance

0

1

2

3

fi
tn

es
s

Height active, f0, gene

0.38

102 103 104 105

distance

0

1

2

fi
tn

es
s

Height active, f1, gene

-0.26

1033× 102 4× 102 6× 102

distance

0

1

2

fi
tn

es
s

Height active, f4, gene

0.86

2× 102 3× 102 4× 102 6× 102

distance

0

1

2

3

fi
tn

es
s

Height passive, f0, gene

0.2

1023× 1014× 101 6× 101

distance

0

1

2

fi
tn

es
s

Height passive, f1, gene

0.78

103

distance

0

1

2

fi
tn

es
s

Height passive, f4, gene

0.81

Figure 4.2: The relationship between fitness value of the structure and a mean distance
(dissimilarity) to structures with the same or better (i.e. higher) fitness value obtained
using the gene measure. Spearman’s rs rank correlation coefficient value is shown in
the legend. Rows: optimization objectives, columns: genetic encodings.

4.2 Experiments 95

4.2.2 The gene measure

/*4*/<QF<<X>qQN:G#3,>#2:−=::−/:>:−/:>ff<ff<fff<<LX#
2,#1>>M><rF<RmfQFLL<rmN:G>rlqFC,RCLqQf,MFqqN:Gpart
>,N:T>RmQLqQLL<<qX#2>>N:Gpart#3#1>>>LMXQ
><qXq,#3r,mCq,q,mLCMM#2>>QQ,#2FQcL,CF>qM
L><c<RMQQ<,cQcqmlLc<N:S>LFClq,fcQ„F,CmqcN:G:+=::−
=:#2,#3>>>RLffFLLMMq<RQLFCLCCqfN:|:−!::+!:[1:−2.30
8]:−!:#1:+/:#1:−=::−/::+/:>>>MFLN:G:+!:>rq,qLflM,<
qmN:S:−=::−/::−/:>N:Gpart>ffmfLL<rcLQcqqMLCFf,cN:G
:+!::+=:>RRCQMQLN:G>mCqqmN:N[0:−0.533][10:−2.436][
10:−1.991][9:2.598][2:9.5][10:2.611][1:−0.169][7:0.026]#3#1>

#1>>>MccN:N[5:−0.827][4:−0.896],[0:−0.761][4:−1.757][1:−4.91
5],:+/:#1>,>CCL<N:|[2:−0.138]><<qXm>,N:N[3:0.631][−1:−0.366]
[8:−0.606][3:−0.25]:+/:[3:6.772][0:−2.209][4:−1.351],#2#2>>>qC-
CQC<QfCX#2,mQ#2>C#2>>>RQlFQcqlN:S,#2>#2>>

/*4*/<QF<<<<X#2>>ffLcN:G#4,>#3:+!:>#1#3>>>f<fff<fff
<<LX#2,>><MmfFQLL<<N:G>N:G>qqFqCqN:Gpart
#2>>RQLqQLLM<<qX>N:Gpart#2#3#5>>>>L#4#2>

>MX,#3M#2#2m>m>>,><X#3rmMqqLc,>Q#2MFQcLC
QF#1„#4,>>#2>>qMQ,L><R<Mc<Ccq<LC,RFCLFM
N:G>N:S>rLLMMq<LCFF,rFfN:|:−!:[1:−2.308]:−!:#5:+/:
:−=::+/:#3>>,#1,#2#3:−/::+/:>,,>>>N:G>rlfQCqN:S>qq
q<CQLN:G>lN:G,#3,>>CN:N[2:−0.496][4:1.048],[0:6.689]#2[9:−1.
962][10:0.143][10:0.197]>>CN:N[4:0.906][−4:4.357][0:0.123][−2:−3.936][
3:0.817][5:−1.605]:−!:[7:1.728][3:5.88]>MN:Gpart#1:−!::+=::+
!:,#2,#2>>„#5>>#2,:+!:>>MN:Gpart:+/::−=:#3„#4>,#
4>#2,>:+!:>>CCL<N:|[2:−1.5]:−=:><<qX>N:N[15:−1.551][3:3.449]
[9:−0.244][11:−2.538],[13:5.798]:−!:[7:−3.997][7:2.718]:−=:#2[−1:−6.94
3]>>QCQM<QfMmXm>MFQN:S>

Figure 4.3: Two structures encoded using the f4 encoding, evolved in the velocity on
land task. The structures have the same morphology (right column) and very similar
fitness (approximately 0.073), but different genotypes (left column). As a result, the
dissimilarity between these structures, computed using the gene measure, is high (495).

Fig. 4.2 illustrates the correlation between fitness values and mean distance to struc-
tures with the same or better fitness, measured by the gene measure. In most cases, except
for the f1 encoding in the height passive task and the f4 encoding in the velocity in water
task, the correlation coefficients between fitness and distance are positive, ranging from
weak to strong. The scatter plot shown in Fig. 4.2 indicates that for each task and each
genetic encoding, a small proportion of solutions exhibits low distance and high fitness,
but the majority of the solutions follow the opposite trend (i.e. the higher the fitness
the higher the distance). This means that the high-fitness structures tend to be highly
dissimilar from the structures with the same or better fitness in terms of the gene mea-
sure. Several factors contribute to this result. First, all considered genetic encodings are
redundant, so different genotypes can encode the same phenotype, thus structures with
the same morphology and fitness may vary in their genotypes. Second, the gene measure
treats digits present in genotypes as characters, so it may not capture the similarities
between morphologies expressed using f0 and between neural networks in all three encod-

96 4 Fitness-Distance Correlation Analysis

ings because the information about numerical distance is disregarded. Third, the more
fit solutions generally tend to have more body parts and neurons, which results in longer
genotypes. For the solutions with similar morphologies and long genotypes, the number
of edits to transform one genotype into another may be high and hence the resulting dis-
tance may also be high. Fig. 4.3 shows an example of such structures. On the other hand,
small, low-fitness solutions will be on average more similar to the solutions with the same
or better fitness, as the number of edits required to transform one genotype into another
is smaller.

4.2.3 The opt measure
Fig. 4.4 illustrates the correlation between fitness values and mean distance to structures
with the same or better fitness, measured by the opt measure, broken down by dD, dN,
and dG components (see Sect. 3.3). This measure generally outperforms the gene measure
in terms of FDC. However, the results vary significantly depending on the genetic repre-
sentation and optimization goal. For example, using the f0 representation in the height
passive task, there is a strong monotonic relationship between fitness and distance for
the dD component, resulting in rs = −0.86. A similar negative correlation is observed for
the dD component using the f0 encoding in the height active task. In contrast, the FDC
is positive for these tasks using the other two genetic encodings and near-zero for the
f0 encoding in other optimization tasks. For tasks in which the velocity of structures is
maximized, the strongest negative correlations are observed for the velocity in water using
the f1 representation, again for the dD and dG components. In other cases, the distance
in terms of the difference in vertex degree and geometry does not correlate with fitness.
However, there is a moderate negative correlation between the difference in neuron number
and fitness for the velocity in water task using all three representations and the velocity
on land task using the f1 representation.

For the height passive task using f1 and f4 representations, FDC values computed for
dD are weakly positive. As shown in Fig. 4.4, there exist clusters of highly-fit solutions that
differ in distance to the same or better solutions. Fig. 4.5 shows two sample structures
from different clusters that are similar in terms of fitness but highly dissimilar in terms of
distance calculated using dD component. Therefore, unlike in the case of the f0 represen-
tation, the correlation between distance and fitness does not indicate global convexity for
the f1 and f4 encodings, as there are multiple regions of high fitness that are not close to
each other in terms of the opt measure.

4.2.4 The shape measure
Fig. 4.6 illustrates the correlation between fitness values and mean distance to structures
with the same or better fitness, measured by the shape measure using a3, d2, and d3

descriptors. Overall, the d2 descriptor yields the best results, with the most negative FDC
values. This means that structures with higher fitness are closer to each other according
to this descriptor.

The highest negative values were achieved in tasks in which the vertical position of
structures is maximized. For the d2 descriptor the fitness generally decreases with the

4.2 Experiments 97

0 5 10 15
distance

0.00

0.02

0.04

0.06

0.08
fi

tn
es

s

Velocity on land, f0, opt

deg -0.08

neu -0.3

geo 0.08

0 5 10 15
distance

0.000

0.025

0.050

0.075

0.100

fi
tn

es
s

Velocity on land, f1, opt

deg -0.37

neu -0.51

geo 0.06

0 5 10 15 20
distance

0.00

0.02

0.04

0.06

0.08

fi
tn

es
s

Velocity on land, f4, opt

deg -0.39

neu 0.1

geo 0.36

0 10 20 30
distance

0.000

0.025

0.050

0.075

fi
tn

es
s

Velocity in water, f0, opt

deg 0.02

neu -0.57

geo 0.55

0 50 100 150
distance

0.00

0.02

0.04

0.06

fi
tn

es
s

Velocity in water, f1, opt

deg -0.7

neu -0.56

geo -0.74

0 50 100
distance

0.000

0.025

0.050

0.075

0.100

fi
tn

es
s

Velocity in water, f4, opt

deg -0.32

neu -0.48

geo -0.44

0 5 10 15 20 25
distance

0

1

2

3

fi
tn

es
s

Height active, f0, opt

deg -0.81

neu -0.57

geo -0.55

0 20 40 60
distance

0

1

2

fi
tn

es
s

Height active, f1, opt

deg 0.29

neu -0.08

geo 0.65

0 25 50 75 100
distance

0

1

2

fi
tn

es
s

Height active, f4, opt

deg 0.15

neu 0.4

geo 0.41

0 5 10 15 20
distance

0

1

2

3

fi
tn

es
s

Height passive, f0, opt

deg -0.86

geo -0.82

0 10 20 30
distance

0

1

2

fi
tn

es
s

Height passive, f1, opt

deg 0.09

geo -0.05

0 20 40 60 80 100
distance

0

1

2

fi
tn

es
s

Height passive, f4, opt

deg 0.28

geo 0.66

Figure 4.4: The relationship between fitness value of the structure and a mean distance
(dissimilarity) to structures with the same or better (i.e. higher) fitness value obtained
using the opt measure. Results for each component of the dissimilarity measure are
presented separately on each plot, except for the dV component, which is not taken into
account. Spearman’s rs rank correlation coefficient values are shown in the legend for
each of the components. Rows: optimization objectives, columns: genetic encodings.

increase of the distance. The FDC values range from −0.66 to −0.9. This may reflect the
fact that in those tasks fitness is strongly related to the shape of the structure. The highly
negative FDC values were also observed for the d2 descriptor in the velocity in water task
using the f1 encoding, where longer structures tend to have higher fitness. In other tasks
that involve velocity, the correlations are weaker, which can be attributed to the fact that
fitness can depend equally or more on the neural network and the strategy of locomotion.

98 4 Fitness-Distance Correlation Analysis

(a) Vertical position: 2.09 (b) Vertical position: 2.08

Figure 4.5: Two passive structures with similar fitness, yet high distance in terms of
difference in the vertex degrees (dD = 16).

4.2.5 The dens and freq measures
Fig. 4.7 illustrates the correlation between fitness values and mean distance to structures
with the same or better fitness, measured by distribution-based measures dens and freq.
The freq measure, which uses the frequency domain representation of the structures’
spatial distribution, yields better FDC values than the dens measure, which uses the raw
distribution, in all tasks except the velocity in water task using the f1 encoding. The
FDC values for the freq measure are better (more negative) in tasks that involve velocity,
ranging from −0.43 to −0.75, than in tasks that involve vertical position, ranging from
−0.45 to −0.78. The dens measure only yields a highly negative FDC value for the velocity
in water task using the f1 encoding, similarly to the shape measure using d2 descriptor.

These results may imply that the freq measure captures the properties of structure
that correlate with fitness better than the dens measure. It is noteworthy that the freq

measure performs better than the shape measure, discussed in the previous section, in
tasks that involve velocity, except for the velocity in water task using the f1 encoding.
However, for the task in which vertical position was maximized, the freq measure provided
worse FDC values than the shape measure.

0.00 0.25 0.50 0.75 1.00 1.25
distance

0.00

0.02

0.04

0.06

0.08

fi
tn

es
s

Velocity on land, f0, shape

a3 -0.34

d2 -0.43

d3 -0.47

0.00 0.25 0.50 0.75 1.00
distance

0.000

0.025

0.050

0.075

0.100

fi
tn

es
s

Velocity on land, f1, shape

a3 -0.33

d2 -0.53

d3 -0.34

0.00 0.25 0.50 0.75 1.00 1.25
distance

0.00

0.02

0.04

0.06

0.08

fi
tn

es
s

Velocity on land, f4, shape

a3 -0.26

d2 -0.51

d3 -0.2

0.0 0.2 0.4 0.6 0.8 1.0
distance

0.000

0.025

0.050

0.075

fi
tn

es
s

Velocity in water, f0, shape

a3 0.14

d2 -0.03

d3 -0.08

0 2 4 6 8
distance

0.00

0.02

0.04

0.06

fi
tn

es
s

Velocity in water, f1, shape

a3 -0.64

d2 -0.7

d3 -0.72

0 2 4 6 8 10
distance

0.000

0.025

0.050

0.075

0.100

fi
tn

es
s

Velocity in water, f4, shape

a3 -0.53

d2 -0.47

d3 -0.47

0.00 0.25 0.50 0.75 1.00 1.25
distance

0

1

2

3

fi
tn

es
s

Height active, f0, shape

a3 -0.23

d2 -0.9

d3 -0.78

0 1 2 3
distance

0

1

2

fi
tn

es
s

Height active, f1, shape

a3 -0.08

d2 -0.67

d3 -0.31

0 2 4 6 8
distance

0

1

2

fi
tn

es
s

Height active, f4, shape

a3 -0.08

d2 -0.84

d3 -0.45

0.0 0.5 1.0 1.5
distance

0

1

2

3

fi
tn

es
s

Height passive, f0, shape

a3 -0.5

d2 -0.89

d3 -0.81

0 1 2 3
distance

0

1

2

fi
tn

es
s

Height passive, f1, shape

a3 0.07

d2 -0.68

d3 -0.27

0 2 4 6 8
distance

0

1

2

fi
tn

es
s

Height passive, f4, shape

a3 0.17

d2 -0.66

d3 0.26

Figure 4.6: The relationship between fitness value of the structure and a mean distance
(dissimilarity) to structures with the same or better (i.e. higher) fitness value obtained
using the shape measure. Results for each descriptor taken into account are presented
separately on each plot. Spearman’s rs rank correlation coefficient values are shown in
the legend for each of the descriptors. Rows: optimization objectives, columns: genetic
encodings.

10−3 10−2 10−1 100

distance

0.00

0.02

0.04

0.06

0.08

fi
tn

es
s

Velocity on land, f0, distr

dens -0.26

freq -0.53

10−2 10−1 100

distance

0.000

0.025

0.050

0.075

0.100

fi
tn

es
s

Velocity on land, f1, distr

dens 0.1

freq -0.75

10−2 10−1 100

distance

0.00

0.02

0.04

0.06

0.08

fi
tn

es
s

Velocity on land, f4, distr

dens 0.22

freq -0.7

10−2 10−1 100

distance

0.000

0.025

0.050

0.075

fi
tn

es
s

Velocity in water, f0, distr

dens 0.2

freq -0.43

10−1 100

distance

0.00

0.02

0.04

0.06

fi
tn

es
s

Velocity in water, f1, distr

dens -0.72

freq 0.08

10−2 10−1 100

distance

0.000

0.025

0.050

0.075

0.100

fi
tn

es
s

Velocity in water, f4, distr

dens -0.42

freq -0.55

10−2 10−1 100

distance

0

1

2

3

fi
tn

es
s

Height active, f0, distr

dens -0.53

freq -0.78

10−2 10−1 100

distance

0

1

2

fi
tn

es
s

Height active, f1, distr

dens -0.24

freq -0.5

10−2 10−1 100

distance

0

1

2

fi
tn

es
s

Height active, f4, distr

dens -0.35

freq -0.69

10−2 10−1 100

distance

0

1

2

3

fi
tn

es
s

Height passive, f0, distr

dens -0.62

freq -0.67

10−2 10−1 100

distance

0

1

2

fi
tn

es
s

Height passive, f1, distr

dens -0.28

freq -0.45

10−3 10−2 10−1 100

distance

0

1

2

fi
tn

es
s

Height passive, f4, distr

dens 0.45

freq -0.65

Figure 4.7: The relationship between fitness value of the structure and a mean distance
(dissimilarity) to structures with the same or better (i.e. higher) fitness value obtained
using dens and freq measures. Spearman’s rs rank correlation coefficient values are
shown in the legend for each of the measures. Rows: optimization objectives, columns:
genetic encodings.

4.3 Summary 101

4.3 Summary
This chapter examined the global convexity of fitness landscapes in four optimization
tasks using three genetic representations. The global convexity was assessed by the fitness-
distance correlation (FDC) analysis using five dissimilarity measures: one genetic and four
phenetic. The results revealed that FDC values varied depending on the genetic representa-
tion, the optimization task, and the employed dissimilarity measure. The genotype-based
measure gene yielded mostly positive values that do not indicate global convexity of the
fitness landscape. For the phenetic measures, in general, better (i.e. highly negative) FDC
values were observed in the task involving maximizing the height of the structures, in
which the influence of the morphology on the fitness value is stronger than in the velocity-
related task. However, even within the same task and genetic representation, the results
differed depending on the employed dissimilarity measure. For instance, for the height ac-
tive task using the f4 representation, the values yielded by the opt measure were positive
while those yielded by the shape measure using d2 descriptor were highly negative.

The overall pattern was that better (highly negative) values of FDC were observed for
the shape- and distribution-based measures, shape and freq, especially for the height active
and height passive tasks. The FDC computed using the morphology graph-based measure
opt was in some of those tasks positive and indicated a multi-modal fitness landscape.
These results may suggest that shape and freq measures capture the properties of the
structures that correlate with fitness and thus are better suited to be used in genetic
operators that aim at preserving the traits of parents in offspring solutions. On the other
hand, it may also imply that shape and freq are less fine-grained than the opt measure
and fail to distinguish between some classes of phenetically different structures. The
effectiveness of different dissimilarity measures when used by genetic operators will be
examined in the subsequent chapter.

5

Enhanced Genetic Operators

5.1 Introduction
This chapter investigates the possibility of enhancing the native Framsticks’ genetic oper-
ators by utilizing dissimilarity measures to introduce the desired neighborhood structure
and preserve the features of parents in offspring solutions. The chapter is structured
as follows. First, Sect. 5.2 assesses the locality of the native Framsticks’ mutation and
crossover operators using the 100_data_set. Then, Sect. 5.3 presents the enhanced mu-
tation and crossover operators that employ a dissimilarity measure to ensure a certain
distance between a parent and an offspring solution. Next, a series of experiments ex-
amine the impact of the proposed genetic operators on the efficiency of the evolutionary
search. Finally, Sect. 5.4 summarizes and discusses the main findings.

Due to the strong correlation between the shape and dens dissimilarity measures
(shown in Chapter 3) and the high computational cost of the latter one, the dens measure
is omitted from the subsequent analyses. Hence, the following four dissimilarity measures
are employed in this chapter:

• gene,

• opt,

• shape,

• freq.

5.2 The locality of native operators

5.2.1 Mutation operator
The native mutation operators for f0 , f1 , and f4 , which were introduced in Sect. 2.3,
operate on a genotype by inserting, deleting, or altering a small part of it. Their aim is to
produce a small change in the corresponding phenotype. The locality of these operators
was examined using the structures from the 100_data_set. For each representation and
optimization objective (velocity on land, velocity in water, height of active structures,
height of passive structures), 100 mutants were generated for every solution in the data

0 50 100 150 200
Dissimilarity

100

101

102

103

104

F
re

qu
en

cy

f0, opt

0 50 100 150 200
Dissimilarity

100

101

102

103

104

F
re

qu
en

cy

f1, opt

0 50 100 150 200
Dissimilarity

10−1

100

101

102

103

F
re

qu
en

cy

f4, opt

0 5 10
Dissimilarity

102

103

104

105

F
re

qu
en

cy

f0, shape

0 5 10
Dissimilarity

101

102

103

104

105

F
re

qu
en

cy

f1, shape

0 5 10
Dissimilarity

101

102

103

104

105

F
re

qu
en

cy

f4, shape

0.0 0.2 0.4
Dissimilarity

102

103

104

105

106

F
re

qu
en

cy

f0, freq

0.0 0.2 0.4
Dissimilarity

103

104

105

106

F
re

qu
en

cy

f1, freq

0.0 0.2 0.4
Dissimilarity

102

103

104

105

106

F
re

qu
en

cy

f4, freq

0 200 400 600 800
Dissimilarity

10−1

100

101

102

103

F
re

qu
en

cy

f0, gene

0 200 400 600 800
Dissimilarity

10−1

100

101

102

103

F
re

qu
en

cy

f1, gene

0 200 400 600 800
Dissimilarity

10−1

100

101

102

103

F
re

qu
en

cy

f4, gene

Figure 5.1: The distribution of the distance between the parent and mutant solutions,
using different genetic encodings and dissimilarity measures. Each histogram is based on
400 solutions, 100 for each of the four considered optimization goals. The frequency
is shown using a logarithmic scale. Rows: dissimilarity measures, columns: genetic
encodings.

5.2 The locality of native operators 105

set. To evaluate the locality, the distance between a parent and each mutant solution was
calculated, using each of the four dissimilarity metrics.

The results are presented in Fig. 5.1. In all cases, the distribution was right-skewed
with the maximum in the first bin. This indicates that the mutations were most often
small, neutral, or phenotypically neutral (when measured using the phenetic dissimilarity
measures). The dissimilarity spread varied significantly across the genetic representations.
The mutation operator of the low-level direct representation f0 was the most local, result-
ing in the mutants that were the most similar to their parents. Conversely, the mutation
operator for the developmental representation f4 was the least local, and some of the
mutants it produced were highly dissimilar from their parents. This result was consistent
for all phenetic dissimilarity measures, and it could be attributed to the fact that the
higher-level representations have more complex genotype-to-phenotype mappings. Thus
for these representations applying a mutation operator to a genotype can potentially re-
sult in a larger change in a phenotype. The genotype-based gene was the only measure
for which the f1 mutation operator was more local than the f0 operator because, in gen-
eral, the genotypes for the f0 are shorter and the employed Levenshtein distance was not
normalized for length.

5.2.2 Crossover operator
The locality of the native crossover operators was evaluated by computing the distance
between each parent pair and their offspring, using four dissimilarity measures. The
structures from the 100_data_set were used, which comprises 100 structures for each
combination of the genetic encoding and the optimization goal. Each set of 100 structures
was randomly partitioned into two subsets of 50 structures each, and crossover was applied
to every possible pair of parents from the two subsets. This yielded 2500 offspring solutions
for each setting.

The results are shown in Fig. 5.2. Similarly to the mutation operator, the crossover
operator for the f0 measure was the most local. The locality of the f1 and f4 represen-
tations was lower, resulting in a greater number of children that were highly dissimilar
to one or both parents. Again, for the genetic gene measure, the locality was the high-
est for the f1 representation that is characterized by shortest genotypes. Interestingly,
for the freq measure, there were many more outliers for the f1 encoding than for the f4
encoding. A possible explanation for this could be that the developmental f4 encoding
supports modularity and regularity, and by swapping subtrees of parents, some regularity
of parents is preserved in children, making them more similar to parents in terms of the
frequency domain representation.

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f0, opt

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f1, opt

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f4, opt

0 2 4 6 8 10
Dissimilarity to parent 1

0

2

4

6

8

10

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f0, shape

0 2 4 6 8 10
Dissimilarity to parent 1

0

2

4

6

8

10

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f1, shape

0 2 4 6 8 10
Dissimilarity to parent 1

0

2

4

6

8

10

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f4, shape

0.0 0.1 0.2 0.3 0.4
Dissimilarity to parent 1

0.0

0.1

0.2

0.3

0.4

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f0, freq

0.0 0.1 0.2 0.3 0.4
Dissimilarity to parent 1

0.0

0.1

0.2

0.3

0.4

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f1, freq

0.0 0.1 0.2 0.3 0.4
Dissimilarity to parent 1

0.0

0.1

0.2

0.3

0.4

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f4, freq

0 500 1000 1500 2000
Dissimilarity to parent 1

0

500

1000

1500

2000

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f0, gene

0 500 1000 1500 2000
Dissimilarity to parent 1

0

500

1000

1500

2000

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f1, gene

0 500 1000 1500 2000
Dissimilarity to parent 1

0

500

1000

1500

2000

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f4, gene

Figure 5.2: The distribution of the distance between two parents and a child solution,
using different genetic encodings and dissimilarity measures. Each histogram is based
on 400 parent solutions, 100 for each of the four considered optimization goals. The
darker color indicates a higher frequency of observations. Rows: dissimilarity measures,
columns: genetic encodings.

5.3 Enhanced genetic operators 107

5.3 Enhanced genetic operators

5.3.1 Targeted sequential mutation operator

Definition

The Targeted Sequential Mutation (TSM) operator employs the native mutation operator
and a specified dissimilarity measure to generate an offspring solution whose distance to
the parent solution approximates a predefined value. The operator first creates a pool of
k mutants in a sequential manner, using the native mutation operator. The initial mutant
in the sequence is derived from the parent solution, and each subsequent mutant is derived
from the preceding one. The operator then computes the dissimilarity between the parent
solution and each of the k mutants in the pool, using the specified dissimilarity measure.
The final offspring solution is selected as follows:

m∗ = arg min
m∈m1,m2,...,mk

|dissim(m, p) − target|,

where:

• m∗ denotes the selected mutant solution,

• mi denotes the i-th solution in the sequence generated by the native mutation op-
erator,

• dissim(m, p) denotes dissimilarity between a mutant and a parent solution,

• target is the value of the TSM operator’s target parameter.

This formula selects the mutant whose dissimilarity to the parent deviates the least from
the target value. The parameter k, defining the number of mutants in the sequence, was
set to 15, based on a trade-off between minimizing the deviation from the target value
and assuring the computational efficiency.

The TSM operator aims to create a neighborhood structure according to the dissim-
ilarity between the neighboring solutions. To this end, it uses the target parameter to
maintain a specific distance from the parent solution, preventing the offspring solution
from being either too dissimilar or too similar to the parent. The subsequent section
explains in more detail how the target parameter value was experimentally determined
for each dissimilarity measure. The operator generates mutants in a sequence rather than
independently to enable the occurrence of neutral mutations (e.g. mutations of neurons,
which are neutral according to purely phenotypic dissimilarity measures). The preliminary
experiments showed that a version of this mutation operator that used an independently
generated pool of mutants did not enhance the performance of the evolutionary in terms
of best fitness.

Setting the target parameter value

The effectiveness of the TSM for different target values was investigated by conducting
evolutionary experiments, which maximized the following objectives (in separate experi-
ments):

108 5 Enhanced Genetic Operators

Population size 50
Generations 4000
Selection method Tournament
Tournament size 5
Mutation probability 0.65
Crossover probability 0
Maximum number of body parts 30
Maximum number of body joints 30
Maximum number of neurons 20
Maximum number of neuronal connections 30

Table 5.1: Parameters and constraints of the evolutionary algorithm used to investigate the effective-
ness of the TSM operator and the influence of the target parameter value.

• velocity on land,

• height of passive structures.

The experimental parameters are shown in Table 5.1. In all experiments involving the
enhanced mutation operator, the crossover was disabled. All three genetic representations
were considered and the opt dissimilarity measure was employed in the TSM operator.
The opt measure was chosen for this experiment as the most computationally efficient
among the phenetic dissimilarity measures. Based on the analysis of the locality of the
native mutation operator (Sect. 5.2), the following target values were selected: 4, 5, 6 ,7,
8, 10.

Fig. 5.3 shows the distribution of the most selected mutant index for each target

value for both optimization objectives. For the height passive task, the first mutant in
the sequence was, in general, the most frequently selected, which means that the first
mutant’s dissimilarity to the parent was closest to the desired value. This result may
be explained by the passive character of this task. The neural network was not involved
and only the morphology was affected by the mutations, therefore a lesser number of
mutations was needed to reach the desired phenotypic outcome. For the velocity on land
task, the most selected mutant index varied with the target value. For higher values
of the parameter, more mutations were needed to obtain a mutant with a dissimilarity
close to the target. The only exception was the f4 encoding, which consistently showed
the highest frequency of selection for the first mutant index, followed by a decreasing
trend for subsequent indices. This result could be attributed to the low locality of the f4
native mutation operator, which tends to generate more phenetically dissimilar mutants
compared to the other two representations.

Fig. 5.4 displays the distribution of the best fitness value obtained in the evolution-
ary experiments for different optimization objectives, genetic representations, and target

values using the native mutation operator and the TSM operator employing the opt mea-
sure. For the height passive objective, where the phenotype is most directly related to the
fitness value, there is a trend for the median of the best fitness values to increase with the
target value and then decrease after reaching a certain point. This result may suggest the
existence of an optimal phenetic distance for solutions created by the mutation operator.
For the velocity on land objective, where both the morphology and the neural network

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
ou

nt

×105 Velocity on land, f0, opt

target

4

5

6

7

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Index

0

2

4

6

8

C
ou

nt

×105 Height passive, f0, opt

target

4

5

6

7

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Index

0.5

1.0

1.5

2.0

2.5

C
ou

nt

×105 Velocity on land, f1, opt

target

4

5

6

7

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Index

0

1

2

3

4

5

6

7

C
ou

nt

×105 Height passive, f1, opt

target

4

5

6

7

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Index

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
ou

nt

×105 Velocity on land, f4, opt

target

4

5

6

7

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Index

0

1

2

3

4

5

6

C
ou

nt

×105 Height passive, f4, opt

target

4

5

6

7

8

10

Figure 5.3: The number of the mutant selected by the TSM operator using the opt

measure for different optimization goals and genetic representations. Rows: genetic
encodings, columns: optimization objectives.

None 4.0 5.0 6.0 7.0 8.0 10.0
target

0.04

0.05

0.06

0.07

0.08

0.09

0.10

fi
tn

es
s

Velocity on land, f0, opt

None 4.0 5.0 6.0 7.0 8.0 10.0
target

1.5

2.0

2.5

3.0

fi
tn

es
s

Height passive, f0, opt

None 4.0 5.0 6.0 7.0 8.0 10.0
target

0.02

0.04

0.06

0.08

0.10

fi
tn

es
s

Velocity on land, f1, opt

None 4.0 5.0 6.0 7.0 8.0 10.0
target

1.0

1.5

2.0

2.5

fi
tn

es
s

Height passive, f1, opt

None 4.0 5.0 6.0 7.0 8.0 10.0
target

0.02

0.04

0.06

0.08

fi
tn

es
s

Velocity on land, f4, opt

None 4.0 5.0 6.0 7.0 8.0 10.0
target

1.5

2.0

2.5

fi
tn

es
s

Height passive, f4, opt

Figure 5.4: Fitness of the best individual for the TSM operator using the opt measure
for different optimization goals, genetic representations, and target parameter values.
The boxplots show the distribution of the best fitness values from 20 runs for each
combination of the parameters.

5.3 Enhanced genetic operators 111

contribute to the fitness value, this tendency is less evident. However, the TSM operator
achieved a higher median of the best fitness values in comparison to the native operator
for most target values. For both optimization goals, the greatest improvement of the best
fitness median was observed, in general, for the target values 6 and 7.

The Kruskal-Wallis test [155] was conducted to test the statistical difference between
the medians of the best fitness obtained using the native mutation operator and the TSM
operator with different targets. For each combination of optimization goal and genetic
representation the following hypotheses were tested:

H0: The medians of the best fitness obtained using the native mutation operator
and the TSM operator are equal.

H1 : The medians of the best fitness obtained using the native mutation operator
and the TSM operator differ significantly for at least one target value.

The significance level was set at 0.05. Dunn’s post-hoc test was conducted for the cases
where the null hypotheses were rejected. Table 5.2 presents the results. In all cases except
the velocity on land task using the f0 representation, there were target values for which
the median of best fitness differed significantly from the median for the native operator.
In most of those cases, the target values that yielded significantly different medians were
6.0, 7.0 (5 out of 5 each), and 8.0 (3 out of 5).

Search characteristics comparison

Fig. 5.5 compares the fitness of the best individual across ten sample runs for the native
mutation operator and the TSM mutation operator using the target value that yielded
the highest median of the best fitness. In the velocity on land task, the native mutation
operator achieves a rapid improvement in fitness, within the first few hundred generations.
After that, there is little or no improvement in most cases, indicating that the algorithm
has fallen into a local optimum. On the other hand, the TSM operator shows a gradual
increase in fitness, ultimately attaining higher fitness values and exhibiting potential for
further improvement. This result suggests that the TSM operator defines a neighborhood
structure that facilitates a more effective exploration of the solution space. For the height
passive task, the fitness of the best individual for the native mutation operator converges
in most cases before the 1000-th generation. The TSM operator, again, exhibits a more

Goal Representation H p-value Significant targets∗

Velocity on land f1 29.932 0.000 4.0, 6.0, 7.0, 10.0
f4 27.452 0.000 4.0, 5.0, 6.0, 7.0, 8.0, 10.0

Height passive
f0 20.878 0.002 6.0, 7.0, 8.0
f1 29.514 0.000 5.0, 6.0, 7.0, 8.0
f4 22.306 0.001 5.0, 6.0, 7.0

Table 5.2: Results of the Kruskal-Wallis test and Dunn’s test with Bonferroni’s correction for comparing
the best fitness values obtained using the native mutation operator and the TSM operator with different
targets. For each considered optimization goal and genetic representation the H-statistic, the p-value,
and the values of targets for which best fitness differed significantly from that obtained using the native
mutation operator are shown. ∗The significance level was set at 0.05.

112 5 Enhanced Genetic Operators

0 1000 2000 3000 4000
Generation

0.00

0.02

0.04

0.06

0.08

B
es

t
fi

tn
es

s

Velocity on land, f1

0 1000 2000 3000 4000
Generation

0.00

0.02

0.04

0.06

0.08

B
es

t
fi

tn
es

s

Velocity on land, f1, opt, target=6

0 1000 2000 3000 4000
Generation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
es

t
fi

tn
es

s

Height passive, f0

0 1000 2000 3000 4000
Generation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
es

t
fi

tn
es

s

Height passive, f0, opt, target=7

Figure 5.5: Fitness of the best individual in each generation for velocity on land and
height passive, using genetic encodings f0 and f1 , respectively. The left column shows
the results for the native mutation operator and the right column shows the results for
the TSM operator using the opt measure and the best target value. Colors correspond
to different runs of the algorithm.

gradual increase in the fitness of the best individual, achieving higher final fitness values
than the native operator.

Dissimilarity measures comparison

The performance of the TSM operator using different dissimilarity measures was compared
across all genetic representations and optimization goals in evolutionary experiments. The
experimental parameters were the same as in the target setting experiment (see Table 5.1).
However, due to the higher computational cost of measures other than the opt measure,
the value of the k parameter was reduced to 10 for them. Also, the parameter values of
the measures were decreased as follows:

• shape:

– density: 5.0,
– bins number: 128,
– samples number: 1000.

None opt shape freq gene

Dissimilarity measure

0.04

0.06

0.08

0.10

F
it

ne
ss

Velocity on land, f0

None opt shape freq gene

Dissimilarity measure

0.02

0.04

0.06

0.08

0.10

F
it

ne
ss

Velocity on land, f1

None opt shape freq gene

Dissimilarity measure

0.02

0.04

0.06

0.08

F
it

ne
ss

Velocity on land, f4

None opt shape freq gene

Dissimilarity measure

0.02

0.04

0.06

0.08

F
it

ne
ss

Velocity in water, f0

None opt shape freq gene

Dissimilarity measure

0.02

0.04

0.06

F
it

ne
ss

Velocity in water, f1

None opt shape freq gene

Dissimilarity measure

0.01

0.02

0.03

0.04

0.05

0.06

F
it

ne
ss

Velocity in water, f4

None opt shape freq gene

Dissimilarity measure

1.5

2.0

2.5

3.0

F
it

ne
ss

Height active, f0

None opt shape freq gene

Dissimilarity measure

0.5

1.0

1.5

2.0

2.5

F
it

ne
ss

Height active, f1

None opt shape freq gene

Dissimilarity measure

1.5

2.0

2.5

F
it

ne
ss

Height active, f4

None opt shape freq gene

Dissimilarity measure

1.5

2.0

2.5

3.0

F
it

ne
ss

Height passive, f0

None opt shape freq gene

Dissimilarity measure

1.0

1.5

2.0

2.5

F
it

ne
ss

Height passive, f1

None opt shape freq gene

Dissimilarity measure

1.5

2.0

2.5

F
it

ne
ss

Height passive, f4

Figure 5.6: Fitness of the best individual for all optimization goals and genetic repre-
sentation for the native mutation operator and the TSM operator employing different
dissimilarity measures. The boxplots show the distribution of the best fitness values
from 20 runs for each combination of parameters. Rows: optimization objectives,
columns: genetic encodings.

114 5 Enhanced Genetic Operators

• freq:

– sampling density: 5.0,
– resolution 5.0.

The measures used the following target values, which were determined experimentally to
maximize best fitness:

• opt: 6.0,

• shape: 0.15,

• freq: 0.07,

• gene: 32.5.

The Kruskal-Wallis test was conducted to test the statistical difference between medi-
ans of the best fitness obtained using the native mutation operator and the TSM operator
employing different dissimilarity measures. For each combination of optimization objective
and genetic representation, the test evaluated the following hypotheses:

H0: The medians of the best fitness obtained using the native mutation operator
and the TSM operator are equal.

H1 : The medians of the best fitness obtained using the native mutation operator
and the TSM operator differ significantly for at least one dissimilarity measure.

The significance level was set at 0.05. Dunn’s post-hoc test with Bonferroni’s correction
was performed for the cases where the null hypotheses were rejected.

Goal Representation H p-value Significant measures*

Velocity on land f1 30.375 0.000 opt, shape, freq, gene
f4 27.466 0.000 opt, shape, freq, gene

Velocity in water f1 9.731 0.045 gene

f4 13.165 0.010 freq, gene

Height active
f0 45.772 0.000 opt, shape, freq
f1 24.957 0.000 opt, shape, freq, gene
f4 15.816 0.003 shape, freq, gene

Height passive
f0 24.861 0.000 opt, shape
f1 21.158 0.000 opt, shape, freq
f4 14.154 0.007 opt

Table 5.3: Results of the Kruskal-Wallis test and Dunn’s post-hoc test with Bonferroni’s correction
for the TSM operator using different dissimilarity measures compared to the native operator. For
each considered optimization goal and genetic representation the H-statistic, the p-value, and the
dissimilarity measures for which best fitness median differed significantly from that obtained using the
native mutation operator are shown. ∗The significance level was set at 0.05.

Table 5.3 reports the results of the Kruskal-Wallis test and Dunn’s post-hoc test.
Fig. 5.6 shows the distribution of fitness of the best individual for each genetic representa-
tion and optimization goal, for the native mutation operator and the TSM operator using
different dissimilarity measures. The application of the TSM operator improved the best
fitness for all optimization goals and genetic encodings, except for the velocity-related

5.3 Enhanced genetic operators 115

tasks using the f0 genetic representation. The effectiveness of the different dissimilarity
measures varied depending on the genetic encoding and task. Among the four optimiza-
tion goals, the velocity in water task showed the least number of cases where the TSM
operator significantly improved the best fitness. A possible reason for this outcome is that
the fitness landscape for this problem has different characteristics, and the target value
established based on the velocity on land and height passive tasks is not optimal in this
case. Interestingly, the measure that improved the best fitness in this task for both f1 and
f4 was the genotype-based gene measure.

None of the measures employed in the TSM operator clearly outperformed the other
measures. For all optimization objectives and genetic encodings, the significant improve-
ments were achieved equally often using the opt, shape and freq measures (7 out of 9
cases each). However, it is noteworthy that the gene measure was also effective in 6 cases,
all involving active structures, and for velocity in water objective and the f1 encoding
it was the only measure which yielded improvement. The results for gene measure –
which also considers the neural network encoded in the genotype – may imply that for
active structures it would be beneficial to incorporate the neural distance into dissimilarity
assessment.

Computational cost

The most computationally intensive step of the TSM operator was calculating the dis-
similarity between the solutions. Thus, the execution time of a single evolutionary run
mainly depended on the value of the k parameter (the size of the mutants pool) and the
chosen dissimilarity measure, as they had different computational costs (see Sect. 3.8.1).
The time of a single run on a single core of an Intel Xeon Gold 5320 2.20GHz CPU for the
considered phenetic measures spanned from on average 8 hours (for the opt measure with
k = 15) to on average 122 hours (for the freq measure with k = 10). For the standard
mutation operator time of a single run was on average 2 hours.

5.3.2 Enhanced crossover operators
Four variants of the enhanced crossover operator were implemented and tested. Each of
those operators utilizes a dissimilarity measure to preserve the phenetic traits of parents
in a child solution. Their performance was compared to the performance of the native
crossover operator in the selected optimization problems. Then, the locality of the intro-
duced crossover operators was analyzed and compared to that of the native operator.

Distance Preserving Crossover (DPX)

The Distance Preserving Crossover (DPX) developed in this work is based on the DPX
operator introduced by Merz and Freisleben [61]. Its aim is to produce offspring that
are not more dissimilar to either of the parents than the parents are to each other. To
achieve this goal, a pool of k offspring is created using the native crossover operator and
the dissimilarity between both parents and each of k offspring is computed using a selected
dissimilarity measure. The final offspring solution is selected as follows:

116 5 Enhanced Genetic Operators

c∗ =

random(C ′) if C ′ ̸= ∅

random(C) if C ′ = ∅

where:

• c∗ denotes the selected child solution,

• C = c1, c2, ..., ck is the pool of k mutants created using the native crossover operator,

• C ′ = c ∈ C : dissim(c, p1) ≤ dissim(p1, p2) ∧ dissim(c, p2) ≤ dissim(p1, p2) is the
subset of C that satisfies the DPX condition.

The parameter k was set to 5. The preliminary experiments (for this and the following
operators which also use the pool of k mutants) showed that increasing the pool size to
10 does not significantly increase the best fitness.

Distance Minimizing Crossover (DMX)

The Distance Minimizing Crossover (DMX) follows a similar idea as the approximate
geometric crossover proposed by Krawiec and Lichocki for genetic programming [129].
It aims to produce offspring that are phenotypically (or genotypically when using the
genotype-based dissimilarity measure) intermediate between the parents by minimizing
the distance between the child solution and parent solutions. To achieve this, a pool of
k offspring is generated using the native crossover operator and the dissimilarity between
each of k offspring and both parents is computed using a selected dissimilarity measure.
The final child solution is chosen from the k candidates as follows:

c∗ = arg min
c∈c1,c2,...,ck

(dissim(c, p1) + dissim(c, p2)),

where:

• c∗ denotes the selected child solution,

• c1 denotes the i-th solution generated by the crossover operator from parent p1 and
p2,

• dissim(c, pi) denotes the dissimilarity between the child and the i-th parent.

This formula selects the child solution that has the smallest average dissimilarity to both
parents, based on the selected dissimilarity measure. The parameter k was set to 5.

Equidistance Minimizing Crossover (EMX)

The DMX crossover operator presented in the previous section may produce child solutions
that are identical to one of the parents. To prevent this effect, the formula of the DMX
operator was modified by adding a term that penalizes the unequal distance to the parents,
following the idea from [129]:

c∗ = arg min
c∈c1,c2,...,ck

(dissim(c, p1) + dissim(c, p2) + |dissim(c, p1) − dissim(c, p2)|).

5.3 Enhanced genetic operators 117

The added term promotes solutions that are equally or nearly equally distant from
both parents, since its value is zero or close to zero for those solutions.

Similarity-Based Crossover (SBX)

Unlike the three new crossover operators that were based on computing the dissimilar-
ity between a pool of k mutants generated by the native mutation operator and both
parents, the Similarity-Based Crossover (SBX) adopts a different approach to control the
phenotypic similarity between parent and offspring solutions. The SBX selects the second
parent for the crossover according to its similarity to the first parent, measured by a chosen
dissimilarity measure. The selection of the second parent is performed as follows:

p2 = arg min
p∈P \{p1}

(dissim(p, p1)),

where:

• p1 denotes the first parent selected for the crossover,

• p2 denotes the second parent selected for the crossover,

• P denotes the current population,

• dissim(p, p1) denotes dissimilarity between the first parent solution and a solution
p.

Therefore, the SBX aims to create offspring solutions that share phenotypic traits with
both parents by crossing over the solutions that are most similar to each other.

The crossover operators performance comparison

Population size 50
Generations 4000
Selection method Tournament
Tournament size 5
Mutation probability 0.65
Crossover probability 0.25
Maximum number of body parts 30
Maximum number of body joints 30
Maximum number of neurons 20
Maximum number of neuronal connections 30

Table 5.4: Parameters and constraints of the evolutionary algorithm used to compare the performance
of the proposed crossover operators.

Similar to the enhanced mutation operator, the effectiveness of the four proposed
crossover operators was evaluated by conducting evolutionary experiments, which opti-
mized the following objectives (in separate experiments):

• velocity on land,

• height of passive structures.

native DMX EMX DPX SBX
operator

0.04

0.05

0.06

0.07

0.08

0.09

fi
tn

es
s

Velocity on land, f0, opt

native DMX EMX DPX SBX
operator

1.5

2.0

2.5

3.0

fi
tn

es
s

Height passive, f0, opt

native DMX EMX DPX SBX
operator

0.02

0.04

0.06

0.08

fi
tn

es
s

Velocity on land, f1, opt

native DMX EMX DPX SBX
operator

1.0

1.5

2.0

fi
tn

es
s

Height passive, f1, opt

native DMX EMX DPX SBX
operator

0.03

0.04

0.05

0.06

0.07

fi
tn

es
s

Velocity on land, f4, opt

native DMX EMX DPX SBX
operator

1.5

2.0

2.5

3.0

fi
tn

es
s

Height passive, f4, opt

Figure 5.7: Fitness of the best found solutions for the native crossover operator and
DMX, EMX, DPX, and SBX operators using the opt measure for different optimization
goals, and genetic representations. The boxplots show the distribution of the best fit-
ness values from 20 runs for each combination of parameters. Rows: genetic encodings,
columns: optimization objectives.

5.3 Enhanced genetic operators 119

0 1000 2000 3000 4000
Generation

0.00

0.02

0.04

0.06

0.08

0.10
B

es
t

fi
tn

es
s

Velocity on land, f1

0 1000 2000 3000 4000
Generation

0.00

0.02

0.04

0.06

0.08

0.10

B
es

t
fi

tn
es

s

Velocity on land, f1, opt, EMX

0 1000 2000 3000 4000
Generation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B
es

t
fi

tn
es

s

Height passive, f0

0 1000 2000 3000 4000
Generation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

B
es

t
fi

tn
es

s

Height passive, f0, opt, EMX

Figure 5.8: Fitness of the best individual in each generation for the velocity on land
and height passive task, using the genetic encodings f0 and f1 . The left column show
the results for the native crossover operator and the right column shows the results for
the EMX operator. The colors represent different independent runs of the algorithm.

Table 5.4 presents the experimental parameters used for the comparison of the crossover
operators. The native mutation operator was used. The freq measure, which was the most
computationally intensive, was excluded from the analysis, as the preliminary experiments
showed that it did not yield better results. Therefore only the measures gene, opt, and
shape were considered. Fig. 5.7 shows the distribution of the best fitness for the crossover
operators using the opt measure, and Figs. G.1–G.2 in Appendix G show the same for the
crossover operators using shape and gene measures, respectively. The results indicate that
DMX, EMX, DPX, and SBX perform similarly to the native crossover operator. None of
the enhanced crossover operators achieved a significant improvement in terms of the best
fitness. The comparison of the best fitness in subsequent generations between the native
operator and the enhanced operators revealed that the search process characteristics were
similar for all five operators, especially for the velocity on land task. Fig. 5.8 illustrates a
sample of evolutionary runs for the native and the EMX operators. For the height passive
task, the enhanced crossover operator exhibited a more gradual increase in fitness of the
best solution, but the final results were not significantly better than those of the native
operator.

120 5 Enhanced Genetic Operators

Locality

The locality of the enhanced crossover operators was evaluated and compared to that of
the native operator. The same method as for the native operator (see Sect. 5.2.2) was
used to assess the locality, using the 100_data_set. The SBX operator was omitted from
the analysis as it is based on selecting the most similar second parent from the current
population. Fig. 5.9 shows the results for the opt measure. As expected, the DMX operator
produces more offspring solutions that are highly similar to one of the parents, especially
for the f0 and f4 encodings. The EMX and DPX operators, which is also expected,
produce a higher number of children with similar distance to both parents. The results
also indicate that the DMX and EMX operators produce fewer offspring solutions that are
highly dissimilar to both parents than the native operator. However, these differences are
not substantial, and the overall distribution of dissimilarities for the offspring solutions is
similar across all operators. This indicates that the enhanced crossover operators did not
perform significantly better than the native crossover operator in terms of the locality.
All the enhanced operators, however, depended on the native one, which may limit their
potential for improvement.

Computational cost

As in the case of the TSM operator, the most computationally intensive step of the
crossover operator was calculating the dissimilarity between the solutions. Therefore,
the execution time of a single evolutionary run depended on the number of solutions for
which the distance was calculated and on the selected measure. DPX, DMX, and EMX
computed the distance between each parent and five candidate children solutions. SBX
operator required computation of the dissimilarity matrix for the entire population to se-
lect the second parent that was the most similar to the first parent, and thus was much
more computationally intensive. The time of a single run on a single core of an Intel Xeon
Gold 5320 2.20GHz CPU for the considered phenetic measures ranged from on average
three hours (for the DPX, DMX, and EMX operators using the opt measure) to on aver-
age 45 hours (for the SBX operator using the shape measure). For the standard mutation
operator time of a single run was on average 2 hours.

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f0, opt

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f1, opt

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f4, opt

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f0, opt, DMX

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f1, opt, DMX

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f4, opt, DMX

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f0, opt, EMX

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f1, opt, EMX

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f4, opt, EMX

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f0, opt, DPX

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f1, opt, DPX

0 50 100 150 200
Dissimilarity to parent 1

0

50

100

150

200

D
is

si
m

ila
ri

ty
to

pa
re

nt
2

f4, opt, DPX

Figure 5.9: The distribution of the distance between two parents and a child solution,
using different genetic encodings and the opt measure. Each histogram is based on
400 solutions, 100 for each of the four considered optimization goals. The darker color
indicates a higher frequency of observations. Rows: crossover operators (native, DMX,
EMX, DPX). Columns: genetic encodings (f0 , f1 , f4).

122 5 Enhanced Genetic Operators

5.4 Summary
This chapter analyzed the locality of the native Framsticks genetic operators and proposed
genetic operators that utilize dissimilarity measures for 3D structures. The locality of the
native mutation and crossover operators varied significantly across the considered genetic
representations, with the low-level f0 representation being the most local and the high-
level developmental representation f4 being the least local. The proposed TSM mutation
operator, which aims to ensure a certain distance of a mutant to its parent, improved the
performance of the evolutionary search in terms of the best fitness compared to the native
mutation operator for most representations, in all of the considered optimization tasks,
especially those involving maximizing the height of the structures. The influence of its
target parameter value on the performance of the algorithm in terms of the best fitness
indicated the existence of a potential optimal target value for defining a neighborhood
structure using a given dissimilarity measure. The lower performance of the TSM operator
in velocity in water task may suggest that the optimal target is different for different
optimization objectives, because of different fitness landscapes, and that it should be
adjusted independently for each of those objectives. The good performance of the gene

measure for this objective may also imply that for active designs, a more sophisticated
measure of neural dissimilarity than the one currently used in the opt measure is needed,
such as [122].

Unlike the mutation operator, none of the newly developed crossover operators out-
performed the native crossover operator. The new operators achieved similar performance
to the native operator in terms of the best fitness. Furthermore, the locality analysis and
the comparison of the best fitness in subsequent generations for the native and new op-
erators revealed that they had similar characteristics. Thus, the hypothesis that using a
dissimilarity measure with high FDC to preserve the parent features in offspring solutions
would improve the search efficiency was not supported for the crossover operator. How-
ever, it should be noted that all the proposed operators depended on the native crossover
operator to generate offspring solutions, which could constrain their potential to surpass
it. A possible direction for further improvement of the crossover operator is to develop a
distance-based operator that does not rely on the native operator.

6

Dissimilarity Measures in Diversity
Maintenance Techniques

6.1 Introduction
The previous chapters examined the global convexity of fitness landscapes in evolutionary
design (ED) problems and investigated the potential of using dissimilarity measures to
design enhanced genetic operators. Another way to utilize dissimilarity measures to im-
prove the performance of evolutionary search in ED problems is to apply them in diversity
maintenance techniques, which are methods that aim to prevent premature convergence
and preserve population diversity in the presence of rugged, multimodal fitness landscapes.

There exist various explicit methods to maintain diversity and increase the exploration
of the solution space, however, the most common techniques are based on niching [190].
Another, more radical, approach to encourage the exploration is to disregard the fitness
function and assess solutions solely by their novelty. This work compares both of these
approaches using the developed dissimilarity measures. The approaches are discussed in
more detail below.

Niching techniques derive from the biological concept of niches. Living organisms
inhabiting a niche compete for resources among themselves, but not with organisms from
the other niches. Analogously, in optimization algorithms, a niche is a subregion of the
solution space. The main goal of diversity maintenance techniques is to find and preserve
solutions in various niches. Fitness sharing [82, 70, 143] is one of the most prevalent niching
methods in evolutionary computation. It reduces the fitness value of an individual solution
according to its similarity to other solutions in the population, to promote solutions that
occupy underexplored regions of the solution space. The similarity between solutions can
be assessed by genetic or phenetic characteristics, using various distance measures. This
technique has been effective in many practical problems such as antenna design [134]
and battery charging/swap station design [230]. Other common niching techniques are
clearing, crowding and clustering [67].

Lehman and Stanley [139, 140] proposed novelty search as a method of addressing the
challenge of convergence to local optima and dealing with deceptive fitness landscapes.
The main idea of novelty search is to discard the fitness function as an evaluation criterion
and use the novelty metric instead, usually measuring the novelty of the phenotype or

124 6 Dissimilarity Measures in Diversity Maintenance Techniques

the behavior. Thus, the algorithm performs an open-ended search without an explicit
optimization goal. Novelty search has been effective in challenging optimization tasks
such as artificial neural network evolution [184], body-brain co-evolution [131], and genetic
programming [54].

Novelty search with local competition (NSLC) is a variant of novelty search that in-
troduces competition among solutions within niches. It was first proposed by Lehman
and Stanley [141] to evolve morphologies of artificial creatures. They found that NSLC,
compared to a simple novelty search where every solution competed with every other solu-
tion, produced morphologies that were both functional and diverse. NSLC belongs to the
class of quality-diversity algorithms [175], which balance the optimization of the fitness
function with the diversity of solutions. These algorithms are not considered in this work,
as its goal is to first analyze the influence of the chosen dissimilarity measure using the
more basic diversity maintenance methods. However, they will be investigated in future
work.

This chapter performs an extensive comparison of diversity maintenance techniques,
focusing on the impact of the selected distance measures on the outcomes of the evolu-
tionary optimization process. It is a follow-up to the research published in [114]. The
chapter is organized into sections detailing the diversity maintenance algorithms used,
experimental parameters and results, and a summary of the main findings.

6.2 Methods
The experiments compared six types of evolutionary algorithms:

• a standard evolutionary algorithm without diversity maintenance,

• niching (with local and global variants),

• novelty search (with local and global variants),

• the Non-dominated Sorting Genetic Algorithm II (NSGA-II) [48].

The niching and novelty search algorithms measured the distance to either k nearest
neighbors or all solutions in the current population and the archive, depending on the
variant. NSGA-II maximized fitness and distance as its two objectives.

6.2.1 Solutions archive
The solutions archive was used in niching and novelty search to keep track of the regions of
the solution space visited so far. It had a fixed size of 50 solutions and was updated in every
generation of the algorithm. When a new individual was added to the archive, one solution
from the archive was removed if the archive size was exceeded. The removal criterion was
the lowest dissimilarity score, which indicated the most similar pair of solutions in the
archive. To maintain archive stability, the last added solution was removed if it belonged
to the most similar pair; otherwise, a random solution from the pair was removed. This
policy aimed to prevent the archive from being dominated by a single solution or a cluster
of similar solutions. Listing 6.1 outlines the algorithm for managing the solutions archive.

6.2 Methods 125

1 # A method to remove an individual from the archive based on the dissimilarity

2 def remove_individual(dissim):

3 # Find the pair of individuals that are most similar in the archive

4 most_similar_pair = find_most_similar_pair(dissim)

5

6 # If the last individual in the archive is one of them, remove it

7 if last_individual in most_similar_pair:

8 return last_individual

9

10 # Otherwise, remove a random individual from the pair

11 else:

12 return random_choice(most_similar_pair)

13

14 # A method to update the archive with the current population

15 def update_archive(dissim_matrix, population_archive):

16 #If the archive size is zero, do nothing

17 if archive_size < 1:

18 return

19

20 # Get the indices of solutions in current archive

21 current_archive_ind = get_current_archive_ind(dissim_matrix)

22

23 # Loop over each individual in the population

24 for i in range(population_size):

25 # Add the individual’s index to the current archive indices

26 current_archive_ind.append(i)

27

28 # Get a submatrix of the dissimilarity matrix with the current archive

indices

29 temp_dissim_matrix = get_submatrix(dissim_matrix, current_archive_ind)

30

31 # If the current archive size exceeds the limit, remove an individual

32 if len(current_archive_ind) > archive_size:

33 to_remove = remove_individual(temp_dissim_matrix)

34 current_archive_ind.pop(to_remove)

35

36 # Update the archive with the individuals from the population archive

37 archive = get_individuals(population_archive, current_archive_ind)

Listing 6.1: The algorithm for managing the solutions archive.

126 6 Dissimilarity Measures in Diversity Maintenance Techniques

6.2.2 Niching
The main difference between niching and the standard evolutionary algorithm was that
niching used an archive to store and retrieve diverse solutions, and that it modified the
fitness value of each solution (hereinafter referred to as raw fitness) by multiplying it by
a diversity score. This way, niching encouraged the exploration of different regions of the
solution space, rather than converging to a single optimum.

The global version of niching calculated the fitness of the i-th solution as follows:

fitnessi = raw_fitnessi · distance_globali (6.1)

with diversity score distance_globali calculated as:

distance_globali = 1
n

n∑
j=1
j ̸=i

dist(xi, xj) (6.2)

where n denotes the combined size of the population and the archive, and dist is the
distance (dissimilarity) measure.

In the local version of niching, the fitness of the i-th solution was calculated as:

fitnessi = raw_fitnessi · distance_locali (6.3)

with diversity score distance_locali calculated as:

distance_locali = 1
k

k∑
j=1
j ̸=i

dist(xi, xj) (6.4)

where k is the parameter determining the number of solutions closest to the i-th solution
according to the distance (dissimilarity) measure.

6.2.3 Novelty search
Novelty search differed from the standard evolutionary algorithm in that it used the archive
to store and retrieve diverse solutions, and that it replaced the raw fitness of each solution
with its diversity score. Thus, the only objective that the novelty search was guided by
was the phenotypic (or genetic if the gene measure was used) diversity of the solutions.
In the global version, the diversity score was calculated as the distance to the current
population and solutions archive using (6.2). In the local version it was calculated as the
distance to k-nearest neighbors using (6.4).

6.3 Experiments and results

6.3.1 Experimental parameters
The preliminary experiments [114] revealed that the choice of genetic encoding did not
affect the relative performance of different diversity maintenance techniques. Hence, this

6.3 Experiments and results 127

work focuses on comparing diversity maintenance techniques combined with different dis-
similarity measures employing only the f1 genetic representation. Two optimization tasks
were selected, involving active and passive structures, respectively:

• velocity on land,

• height of passive structures.

Five diversity maintenance techniques for evolutionary algorithms were compared with
a standard EA without any diversity maintenance, which served as the baseline. The
compared algorithms are listed below together with their abbreviations used hereinafter.

• Standard EA without any diversity maintenance, the baseline (none).

• Niching using the distance to k-nearest neighbors (niching local).

• Niching using the distance to the entire population and archive (niching global).

• Novelty search using the distance to k-nearest neighbors (novelty local).

• Novelty using the distance to the entire population and archive (novelty global).

• Non-dominated Sorting Genetic Algorithm II separately maximizing the fitness and
novelty objectives (NSGA-II).

For each diversity maintenance technique, three different dissimilarity measures were used
separately to evaluate the distance between solutions. The dissimilarity measures and
their parameter values were:

• gene

• opt:

wV = 0
wD = 1
wN = 0.1
wG = 1

• shape

descriptor: d2

density: 5.0
bins number: 128
samples number: 1000

For the opt measure the weights of the components that correspond to the similarity
in terms of matched vertices, wD and wG were set to 1. To account for the neural distance
but also to prevent this component from dominating the aggregated dissimilarity value, its
weight was set to0.1. The parameter values for the shape measure were set based on the
results of the tuning procedure (Sect. 3.5). The value of samples number was decreased
to 1000 to increase the computational efficiency.

The evolutionary algorithm used in this study was tuned based on several preliminary
experiments to ensure convergence. The parameters of the algorithm are shown in Ta-
ble 6.1. To value of the parameter k, determining the number of nearest neighbors used

128 6 Dissimilarity Measures in Diversity Maintenance Techniques

Population size 100
Generations 3000
Selection method Tournament
Tournament size 5
Mutation probability 0.7
Crossover probability 0.2
Archive size 50
Maximum number of body parts 15
Maximum number of body joints 30
Maximum number of neurons 15
Maximum number of neuronal connections 30

Table 6.1: Parameters and constraints of the evolutionary algorithm used to compare the performance
of the diversity maintenance techniques.

for local novelty search and niching, was set to value 5. Preliminary experiments with
values of 2 and 30 showed no significant difference in the results. The native mutation
and crossover operators were used.

The following settings were examined: two optimization objectives, one baseline and
five diversity maintenance algorithms, and three distance metrics. Each evolutionary run
yielded one (best) solution, and runs for each combination of experimental settings were
independently repeated 10 times. Therefore, the total number of solutions obtained for
further analyses was 2 · (1 + 5 · 3) · 10 = 320.

6.3.2 Results

Diversity

Fig. 6.1 illustrates the distance between the best evolved solutions calculated using the opt

measure and projected to 2D with multidimensional scaling (MDS) [44]. The structures
evolved for the height passive goal exhibited more diversity than those evolved for the
velocity on land goal. After the 2D projection, the solutions for the latter goal were more
dispersed in both dimensions. Moreover, the percentage of preserved variance was much
higher for the velocity on land goal (82%) than for the height passive goal (57%). For the
former goal, the solutions obtained without any diversity maintenance technique formed a
small cluster, while for the latter goal, they were more scattered. This result was expected,
as the height passive goal involved larger structures and, as shown in Chapter 4, yielded
multiple local optima that were morphologically distant according to the opt measure.
For the velocity on land goal, the structures were smaller and less diverse in terms of
morphology. However, they could differ with regard to their neural networks. Possibly,
for tasks that involve behaviors (such as maximizing velocity), a distance measure that
considers the lifetime performance, such as the movement properties [121], might be more
beneficial than a measure that estimates the similarity of static body structures and shapes.

For the velocity on land task, where the solutions obtained using the standard EA were
less diversified, the differences between diversity maintenance techniques and dissimilarity
measures were more pronounced. Global niching resulted in the least diversification. Local

6.3 Experiments and results 129

20 0 20 40 60 80 100
Dimension 1

20

15

10

5

0

5

10

15

20
Di

m
en

sio
n

2
Velocity on land (82%)

40 20 0 20 40
Dimension 1

20

10

0

10

20

30

Di
m

en
sio

n
2

Height passive (57%)

Figure 6.1: Distance between the best evolved solutions according to the opt measure,
projected to 2D (fraction of variance preserved is shown in parentheses). Each plot
shows (1+5 ·3) ·10 solutions for one fitness criterion: velocity on land (left column) or
height passive (right column). Diversity control: none (black •), niching global (red),
niching local (purple), novelty global (blue), novelty local (green), NSGA-II (gray).
Distance measures: gene (letter L), opt (▲), shape (■). In order to make overlapping
symbols more readable, a random jitter was added to the location of each symbol
(uniformly distributed, 3% of the range of each axis).

niching, which explored simultaneously more niches, produced more diversified structures,
however, only when using the phenetic opt and shape measures. Novelty search, which
had a strong exploration pressure, led to high diversity for both global and local versions
and all three measures. Interestingly, for the height passive task, both niching and novelty
yielded similarly diverse structures. This result may be attributed to the fact that the
solutions in this task are in general more phenetically diverse. It is also worth noticing
that for this task, the Levenshtein genetic distance measure produced similar levels of
diversity as the phenetic distance measures.

Figs. 6.2 and 6.3 show individuals with the highest position of the center of mass
evolved using the f1 genetic encoding. The former figure presents the results of global
niching with the opt distance measure, and the latter figure displays the results of global
novelty search with the same measure. The figures indicate that while niching achieved
higher fitness, both approaches facilitated the evolution of highly diverse structures.

Best fitness

Fig. 6.4 illustrates the fitness of the best individual in each generation for the height passive
goal, obtained by the standard EA and five dissimilarity maintenance algorithms using the
opt measure. The standard EA achieved the fastest convergence, mostly around the 500-
th generation. NSGA-II and global niching exhibited a more gradual fitness improvement,
resulting in higher fitness values, although NSGA-II also attained fast convergence in some
runs. Local niching, which rewarded solutions for being locally diverse, had a lower overall
fitness and lacked convergence. This trend was even more pronounced for novelty search,

Figure 6.2: Best individuals evolved with the f1 genetic encoding and global niching
using the opt measure. Fitness of these structures is shown in the bottom plot in
Fig. 6.5, “Niching Global opt” boxplot.

Figure 6.3: Best individuals evolved with the f1 genetic encoding and global novelty
search using the opt measure. Fitness of these structures is shown in the bottom plot
in Fig. 6.5, “Novelty Global opt” boxplot.

0 500 1000 1500 2000 2500 3000
Generation

0.0

0.5

1.0

1.5

2.0

2.5

Fit
ne

ss

Height passive, f1, None

0 500 1000 1500 2000 2500 3000
Generation

0.0

0.5

1.0

1.5

2.0

2.5

Fit
ne

ss

Height passive, f1, NSGA-II

0 500 1000 1500 2000 2500 3000
Generation

0.0

0.5

1.0

1.5

2.0

2.5

Fit
ne

ss

Height passive, f1, niching local

0 500 1000 1500 2000 2500 3000
Generation

0.0

0.5

1.0

1.5

2.0

2.5

Fit
ne

ss
Height passive, f1, niching global

0 500 1000 1500 2000 2500 3000
Generation

0.0

0.5

1.0

1.5

2.0

2.5

Fit
ne

ss

Height passive, f1, novelty local

0 500 1000 1500 2000 2500 3000
Generation

0.0

0.5

1.0

1.5

2.0

2.5

Fit
ne

ss

Height passive, f1, novelty global

Figure 6.4: Best individual’s raw fitness in each generation in the height passive task
for standard EA (None), NSGA-II, local niching, global niching, local novelty, and global
novelty, each using the opt distance measure. Colors correspond to different runs of
the algorithm.

132 6 Dissimilarity Measures in Diversity Maintenance Techniques

with global novelty having the lowest fitness values. It is worth noting that in this task,
characterized by multiple phenetically distant local optima according to the opt measure,
the local version of niching using this measure found more fit solutions than its global
version.

The raw fitness distribution of the best evolved individuals across all runs is depicted
in Fig. 6.5. As expected, novelty search yielded the lowest fitness values, since fitness
was not considered during selection. The highest fitness values were achieved by NSGA-II
with the gene measure. The effectiveness of the NSGA-II may be attributed to the fact
that it optimizes both the objectives: fitness and novelty without aggregating them. A
possible explanation for the good performance of the gene measure may be that it has the
highest possible resolution because any difference in structures must be somehow reflected
in their genotypes. However, the gene measure did not outperform the other measures
when applied in other maintenance techniques.

The niching algorithms outperformed novelty search, but were inferior to NSGA-II,
in terms of the best fitness. For the velocity on land task, local niching with the shape

measure achieved the highest median. For the height passive task, global niching with the
opt measure produced the highest median. These results suggest that the effectiveness of
the diversity maintenance techniques in terms of fitness depended not only on the degree
of the diversity pressure, appropriate to the search space characteristics, but also on the
proper dissimilarity measure that reflect the relevant properties of the solutions. This
is further supported by the fact that NSGA-II, the best-performing algorithm overall,
achieved lower results in terms of the best fitness median than the niching when using the
shape measure in the height passive task.

Computational cost

A single evolutionary run took from on average 7.5 to 211 hours on a single core of an Intel
Xeon Gold 5320 2.20GHz CPU. The experiments using the shape measure were the most
computationally intensive – they lasted from on average 88 to 211 hours. For this measure,
the number of samples affects the complexity the most and it can be traded off for accuracy
or computation time. The experiments using the opt measure were less computationally
expensive, ranging from on average 30.5 to 77 hours per run. The standard EA run took
on average 7.5 hours.

None ┌──

 gene

Niching
Global
opt

 ──┐

shape

┌──

 gene

Niching
Local
opt

 ──┐

shape

┌──

 gene

Novelty
Global
opt

 ──┐

shape

┌──

 gene

Novelty
Local
opt

 ──┐

shape

┌──

 gene

NSGA-II

opt

 ──┐

shape

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fit
ne

ss

Velocity on land , f1

None ┌──

 gene

Niching
Global
opt

 ──┐

shape

┌──

 gene

Niching
Local
opt

 ──┐

shape

┌──

 gene

Novelty
Global
opt

 ──┐

shape

┌──

 gene

Novelty
Local
opt

 ──┐

shape

┌──

 gene

NSGA-II

opt

 ──┐

shape

0.5

1.0

1.5

2.0

2.5

Fit
ne

ss

Height passive , f1

Figure 6.5: Fitness of the best evolved solutions. Upper plot: velocity on land, bottom
plot: height passive. Each plot shows 16·10 solutions. Diversity control: None, Niching
Global, Niching Local, Novelty Global, Novelty Local, NSGA-II. Distance measures:
gene, opt, shape.

134 6 Dissimilarity Measures in Diversity Maintenance Techniques

6.4 Summary
This chapter investigated how the selection of the diversity maintenance algorithm and the
distance measure affects the evolution of 3D structures in terms of the best final fitness
and the diversity of obtained solutions. Two optimization tasks were considered, one
active and one passive. All three distance measures (gene, opt, and shape) used by the
diversity promotion techniques increased the diversity of solutions, but their performance
varied depending on the optimization task and the diversity maintenance algorithm. In the
more challenging velocity on land task, some combinations of the algorithms and measures
resulted in less diverse solutions than others.

Both of the analyzed methods of encouraging diversity – novelty search and niching
– were generally equally effective in terms of the diversity of solutions, especially in the
height passive task. However, the solutions found by novelty search had lower fitness
values. On the other hand, niching produced solutions that were both diverse and had
higher fitness values than those obtained using standard EA. Moreover, niching using the
opt measure achieved fitness comparable to the NSGA-II algorithm in the height passive
task. These results indicate that niching facilitated broader exploration of the solution
space, which led to the discovery of better local optima.

Interestingly, the use of a simple genetic-based distance measure for novelty assessment
in NSGA-II produced the highest-fit individuals. The Levenshtein distance metric is sim-
ple, fast, and mostly problem-independent, unlike phenetic distance measures that require
a lot of time to develop and test. This implies that genetic distance measures or low-
level representation-based measures can be advantageous for any optimization problem
and should be considered as a part of the metrics set for promoting diversification.

The results indicated that evolving 3D structures for height and velocity without using
the fitness function do not produce highly-fit solutions. When the fitness function is used
to guide the evolutionary search and a diversity maintenance technique is applied, it is
advantageous to employ a dissimilarity measure that reflects the relevant properties of the
solutions.

7

Summary

7.1 Goals
The aim of this thesis was to explore the use of dissimilarity measures to enhance the effec-
tiveness of the evolutionary algorithms in the challenging problem of evolutionary design
(ED) of 3D structures. For this purpose a data set of active and passive 3D structures and
a set of diversified dissimilarity measures was required. After the development of the data
set and the dissimilarity measures, the first objective was to investigate global convexity
of fitness landscapes – a property that has been in the past exploited in combinatorial op-
timization problems – using the fitness-distance correlation analysis. The next objective
was to develop mutation and crossover operators that aimed to control the distance be-
tween parent and child solutions. Finally, the last goal was to compare the performance of
different maintenance algorithms and dissimilarity measures in the diversity maintenance
techniques.

7.2 Contributions
The author’s key contributions are summarized below:

• The development of a data set of passive and active 3D structures (Chapter 2). The
data set consists of structures obtained in a series of evolutionary experiments opti-
mizing four objectives: velocity on land, velocity in water, height of active structures,
and height of passive structures. The data set covers a wide range of structures that
vary in their morphology, neural complexity, and fitness. Therefore, it is well-suited
for exploring the characteristics of the four aforementioned ED problems.

• The development/adaptation of dissimilarity measures for active and passive 3D
structures (Chapter 3). In the experiments two existing dissimilarity measures were
used: gene – the Levenshtein distance for genotypic dissimilarity and greedy – a
heuristic measure based on comparing graphs representing the structures. Addi-
tionally, three measures were developed as a part of this work: shape – a measure
based on shape descriptors, and two measures based on the spatial distribution of
structures: dens and freq. Each of the measures can be used in any application
where a 3D structure can be represented as an undirected graph (or a solid shape

136 7 Summary

model in the case of shape, dens, and freq measures). The opt measure also allows
incorporating additional vertex properties into the dissimilarity calculation.

• The investigation of human perception of the similarity between 3D structures
(Chapter 3). The study introduced and fine-tuned the methodology of investigating
human perception of similarity of 3D structures represented as undirected graphs
and provided the preliminary results.

• The analysis of the global convexity of the selected ED problems (Chapter 4). In
the study, the fitness-distance correlation (FDC) was calculated in four optimization
tasks using three genetic representations and five dissimilarity measures, one genetic
and four phenetic.

• The development and analysis of the enhanced mutation and crossover genetic op-
erators employing dissimilarity measures for 3D structures to improve the efficiency
of the evolutionary search (Chapter 5).

• The analysis of the effect of diversity maintenance mechanism and distance measure
on the evolution of 3D structures in the selected ED problems (Chapter 6).

The investigation of the human perception of similarity of 3D structures showed that
humans tend to assess similarity according to the perceived functional correspondence
between the structures. This result may suggest that a dissimilarity measure based on
human judgments of similarity could potentially be beneficial in ED tasks. On the other
hand, the functional similarity perceived by humans may not reflect the true functional
similarity (e.g. a part of a structure perceived as a “tail” may actually serve as a “leg”).
Therefore, further research is needed to verify this hypothesis.

The fitness-distance correlation analysis showed that FDC values vary depending on
the genetic representation, the optimization task, and the employed dissimilarity measure,
indicating, in some of the cases, the global convexity of fitness landscape. This result
suggests that for the genetic encodings, optimization goals, and dissimilarity measures for
which highly negative FDC values were obtained it may be beneficial to apply distance-
preserving genetic operators employing those measures.

The proposed TSM operator, aiming to control the dissimilarity between the parent
and offspring solution, was shown to outperform the native mutation operator for most
of the cases. The newly developed dissimilarity-based crossover operators yielded results
comparable to the native operators in terms of the best fitness. The results suggests that
to increase the performance of crossover it may be necessary to develop distance-preserving
operators not relying on the native ones.

The analysis of the performance of diversity maintenance algorithms combined with
different dissimilarity measures indicated that both the degree of diversity pressure and
the selected distance measure influence the results in terms of fitness for a given problem.
It was also demonstrated for considered optimization objectives that niching and novelty
search produced, in general, similarly diversified structures. The simple genotype-based
measure was found to be effective in producing diverse and high-fitness solutions, especially
when used in the NSGA-II algorithm.

7.3 Future work 137

7.3 Future work
The work presented in this thesis suggests directions for future research, the main of which
are summarized below:

• Developing a dissimilarity measure that combines morphological and performance
aspects (such as the movement properties) to be applied in the genetic operators
and diversity maintenance techniques.

• Conducting a more comprehensive investigation of the human perception of similar-
ity and developing a dissimilarity measure based on the features of 3D models that
correlate with human assessment of similarity.

• Developing a dissimilarity crossover operator that will not rely on the native opera-
tors.

• Combining the diversity maintenance techniques with the enhanced genetic operators
using different dissimilarity measures to further increase the effectiveness of the
search.

• Investigation of more quality-diversity algorithms, such as NSLC, combined with
different dissimilarity measures.

The present results and future directions show promise for enhancing the effectiveness
of evolutionary design and for taking a step forward to tap its full potential.

Appendix A

Applications of evolutionary design

A Applications of evolutionary design 139

Year Problem Reference
1995 Control System Optimization [211]
1995 Design of truss structures [177]
1995 Composite laminate design [137]
1995 Molecules design [218]
1996 Wind turbine design [193]
1996 Design of stiffened composite panels [159]
1997 Desgin of electronic circuits [156]
1997 Antenna design [102]
1997 Design optimization of trusses [178]
1997 Design of reinforced concrete beams [40]
1997 Design of 3D modular manipulators [38]
1998 Design of induction motors [225]
1998 Design of IIR filter [209]
1998 Design optimization of reinforced concrete frames [179]
1998 Design optimization of aircraft wing planform [161]
1999 Design of electronic devices and circuits [205]
1999 Molecules design [68]
2000 Design of combinatorial logic circuits [39]
2000 Wing-shape optimization [162]
2000 Fashion design [111]
2001 Composite laminate design optimization [199]
2001 Design of truss structures [46]
2001 Design of robot’s morphology and control system [168]
2002 Robot design [195]
2002 Antenna design [151]
2002 Mechanical design components [66]
2002 Circuit design [36]
2003 Design of VLSI circuits [41]
2003 Multi-speed gearbox design [47]
2003 Neural network design [32]
2004 Design of composite channels [97]
2004 Evolving robot behaviour [233]
2005 Underground excavation shape optimization [183]
2005 Design of steel structures in tall buildings [110]
2005 Evolving robot behavior [208]
2006 Antenna design [83]
2006 Antenna design [64]
2006 Jewelry design [223]
2006 Truss optimization [212]

140 A Applications of evolutionary design

Year Problem Reference
2007 Analog circuit design [160]
2007 Design of IIR filter [227]
2007 Design of rolling element bearings [180]
2007 Antenna design [79]
2008 Design of periodic structures [90]
2008 Design of modular robotic arms [37]
2009 Design of Broadband Hybrid Coupler [229]
2009 Architectural layout design [226]
2009 Optimization of robot grippers [189]
2009 Design of shell-and-tube heat exchangers [173]
2009 Shape design of industrial electromagnetic devices [51]
2009 Design of water tanks [12]
2009 Desgin of medical parallel robots [202]
2009 Robot design [185]
2010 Design of digital IIR filter [222]
2010 Turbo pump, compressor, and micro-air vehicles [145]
2010 Building design optimization [214]
2010 Shape design of Y-noise barriers [73]
2010 Robot design [23]
2011 Design of plate-fin heat exchangers [10]
2011 Topology optimization of composite structures [206]
2011 Airfoil shape optimization [96]
2011 Optimization of manipulator arm morphology [50]
2011 Aerodynamic design [2]
2012 Radial basis function neural network design [176]
2012 Truss optimization [170]
2012 Nozzle design optimization [163]
2012 Platformer design [42]
2012 Antenna array design [33]
2012 Antenna design [31]
2012 Pole shape optimization [10]
2012 Design of multilayered composite structure [138]
2013 Design of condenser [221]
2013 Antenna design optimization [149]
2013 Aerodynamic design [93]
2014 Shape optimization [213]
2014 Design of counterrotating compressors [101]
2014 Design of lattice opto-materials [91]
2014 Airfoil shape optimization [49]

A Applications of evolutionary design 141

Year Problem Reference
2014 Analog circuit design optimization [13]
2014 Fixture design, fixture analysis, fixture synthesis, fixture layout design,

optimization of fixture layout design
[217]

2015 Design of lattice structure [210]
2015 Preform design for forging of 3D blade [194]
2015 Shape optimization of free-form steel space-frame roof structures [115]
2015 PCB design [21]
2015 Robot design [43]
2016 Topological design for phononic band gap crystals [144]
2016 Design of foam filled sandwich panels [106]
2016 Structural design of stamping die components using bi-directional evo-

lutionary structural optimization method
[6]

2016 Spatial architecture layout design [53]
2016 Design of an exoskeleton for finger rehabilitation [15]
2017 Design of straight bevel gears [232]
2017 Spatial architecture layout design [74]
2017 Antenna design [72]
2017 Optimization of retaining wall design [65]
2018 Airfoil shape optimization [219]
2018 Design of cam-roller follower mechanism [76]
2019 Design of shallow foundation [107]
2019 Topology optimization of thin-walled square tubes [9]
2019 Design of water distribution network [157]
2019 Airfoil shape optimization [146]
2019 Building design optimization [63]
2019 Airfoil shape optimization [146]
2020 Evolving neural networks [153]
2020 Topology optimization [220]
2020 Design of sewer networks [78]
2021 Wind farm layout optimization [113]
2022 Design of frame structures [228]
2022 Topology optimization [231]
2023 Design of PID controller [100]

Table A.1: Works in the evolutionary design that did not meet the selection criteria of the literature
review (Chapter 1).

Appendix B

Structures from 1000_data_set

(a) f0

(b) f1

(c) f4

Figure B.1: A subset of 25 representative structures from the 1000_data_set evolved
for maximizing velocity on land.

(a) f0

(b) f1

(c) f4

Figure B.2: A subset of 25 representative structures from the 1000_data_set evolved
for maximizing velocity in water.

(a) f0

(b) f1

(c) f4

Figure B.3: A subset of 25 representative structures from the 1000_data_set evolved
for maximizing vertical position (active structures).

(a) f0

(b) f1

(c) f4

Figure B.4: A subset of 25 representative structures from the 1000_data_set evolved
for maximizing vertical position (passive structures).

Appendix C

Parameter tuning of the shape
measure

samples number

103103
102

105

102102

104104

102

103103

105105
104104

105 bin
s num

ber

26

272727

29

28

27

2626

29

28

29

2828

29

26

di
ss

im
ila

ri
ty

0.00

0.02

0.04

0.06

0.08

a3+f0

0.040.04

0.09

0.03

0.090.09

0.060.06

0.09

0.040.04

0.030.03

0.060.06

0.03
samples number

104

102

105

103
102

104
103

105

103
102

105

102

104

105

103

104

bin
s num

ber

28

2929

2727

29

26

27

29

2626

28

26

2828

27

di
ss

im
ila

ri
ty

0.000

0.025

0.050

0.075

0.100

0.125

a3+f1

0.130.130.13

0.12

0.130.13

0.12

0.13

0.12

0.130.130.130.130.13

0.12

0.13

samples number

104
103

102

103

104
103

105

102

105105

102102

103

105
104104

bin
s num

ber

27

2929

27

262626

28

29

28

27

26

28

27

29

28

di
ss

im
ila

ri
ty

0.00

0.02

0.04

0.06

0.08

a3+f4

0.06

0.07

0.08

0.07

0.06

0.07

0.06

0.08

0.060.06

0.080.08

0.07

0.060.060.06

Figure C.1: Dissimilarity value for various combinations of samples number and bins

number using descriptor a3. The color of each bar indicates the dissimilarity value.

samples number

102

104
103

104
103

104

102

103

105105105
104

103

105

102102

bin
s num

ber

27

2626

2929

28

26

27

28

27

26

27

28

29

28

29

di
ss

im
ila

ri
ty

0.0

0.1

0.2

0.3

0.4

d2+f0

0.40

0.36

0.30

0.36

0.30

0.36

0.40

0.30

0.370.370.37

0.36

0.30

0.37

0.400.40

samples number

103103103

104

102102

105105105

102

103

105

102

104104104

bin
s num

ber

27

26

2929

27

26

28

26

27

29

28

29

2828

26

27

di
ss

im
ila

ri
ty

0.00

0.02

0.04

0.06

0.08

0.10

d2+f1

0.080.080.08

0.09

0.110.11

0.09

0.10

0.09

0.11

0.08

0.09

0.11

0.090.090.09

samples number

102

105
104

102

104
103

102

103

105

102

104
103

105

103

105
104

bin
s num

ber

26

28

29

2727

26

2828

27

29

26

29

26

27

29

28

di
ss

im
ila

ri
ty

0.0

0.1

0.2

0.3

0.4

0.5

d2+f4

0.58

0.47

0.49

0.57

0.490.49

0.57

0.49

0.47

0.57

0.490.49

0.48

0.49

0.47

0.49

Figure C.2: Dissimilarity value for various combinations of samples number and bins

number using descriptor d2. The color of each bar indicates the dissimilarity value.

samples number

102

105
104

103

104

102

104
103103103

104

105105105

102102

bin
s num

ber

262626

29

2828

29

27

26

28

27

29

27

28

27

29

di
ss

im
ila

ri
ty

0.0

0.1

0.2

0.3

d3+f0

0.310.31

0.30

0.29

0.30

0.31

0.30

0.290.290.29

0.30

0.310.310.310.310.31

samples number

103

105105

102

105

103103

104

102

103

104

102102

105
104104

bin
s num

ber

28

27

28

2626

29

27

28

27

2626

29

28

29

27

29

di
ss

im
ila

ri
ty

0.000

0.025

0.050

0.075

0.100

0.125

d3+f1

0.120.120.12

0.14

0.120.120.12

0.13

0.14

0.12

0.13

0.140.14

0.12

0.130.13

samples number
105105

102

104
103

104
103

104
103

102

105

102

104

102

103

105 bin
s num

ber

26

28

27

29

26

27

29

26

28

2929

2828

26

2727

di
ss

im
ila

ri
ty

0.0

0.2

0.4

0.6

d3+f4

0.100.10

0.71

0.06

0.18

0.06

0.17

0.06

0.17

0.71

0.10

0.71

0.06

0.71

0.18

0.10

Figure C.3: Dissimilarity value for various combinations of samples number and bins

number using descriptor d3. The color of each bar indicates the dissimilarity value.

samples number

103

104

105
104

103

105

102

103
102

104
103

105
104

102102

105 bin
s num

ber

2626

29

27

28

27

29

2727

2929

26

2828

26

28

di
ss

im
ila

ri
ty

0.00

0.02

0.04

0.06

0.08

0.10

d4+f0

0.09

0.100.100.10

0.09

0.10

0.11

0.09

0.11

0.10

0.09

0.100.10

0.110.11

0.10

samples number

103

104104
103

104

105

102102

105105

102102

103103

105
104

bin
s num

ber

2828

29

2727

28

29

26

29

26

28

27

26

29

27

26

di
ss

im
ila

ri
ty

0.00

0.01

0.02

0.03

0.04

d4+f1

0.040.040.040.040.040.04

0.020.02

0.040.04

0.020.02

0.040.040.040.04

samples number
105105

103103
102102

104104104

105105
104

103103
102102

bin
s num

ber

26

28

27

28

26

27

28

29

27

29

27

2626

29

28

29

di
ss

im
ila

ri
ty

0.00

0.05

0.10

0.15

0.20

0.25

0.30

d4+f4

0.040.04
0.050.05

0.30
0.29

0.030.030.03
0.040.04
0.03
0.050.05

0.290.29

Figure C.4: Dissimilarity value for various combinations of samples number and bins

number using descriptor d4. The color of each bar indicates the dissimilarity value.

Appendix D

Structures used for dissimilarity
measures comparison

Figure D.1: A subset of 49 representative structures from the test set for the f0
representation.

Figure D.2: A subset of 49 representative structures from the test set for the f1
representation

Figure D.3: A subset of 49 representative structures from the test set for the f4
representation.

Appendix E

Correlations between the dissimilarity
measures

0 20 40 60 80 100
opt

0

500

1000

1500

g
e
n
e

f0: r=0.73

0 50 100 150 200
opt

0

200

400

g
e
n
e

f1: r=0.52

0 50 100 150 200
opt

0

500

1000

1500

2000

g
e
n
e

f4: r=0.48

0.0 0.5 1.0 1.5 2.0 2.5
d2

0

500

1000

1500

g
e
n
e

f0: r=0.36

0 2 4 6 8
d2

0

200

400

g
e
n
e

f1: r=0.22

0 2 4 6 8
d2

0

500

1000

1500

2000

g
e
n
e

f4: r=0.24

0.0 0.5 1.0 1.5 2.0
d3

0

500

1000

1500

g
e
n
e

f0: r=0.38

0 2 4 6
d3

0

200

400

g
e
n
e

f1: r=0.22

0 2 4 6 8 10
d3

0

500

1000

1500

2000

g
e
n
e

f4: r=0.2

0.0 0.1 0.2 0.3
a3

0

500

1000

1500

g
e
n
e

f0: r=0.08

0.0 0.2 0.4 0.6 0.8
a3

0

200

400

g
e
n
e

f1: r=0.23

0.0 0.2 0.4 0.6 0.8
a3

0

500

1000

1500

2000

g
e
n
e

f4: r=0.04

0.0 0.5 1.0 1.5 2.0
dens

0

500

1000

1500

g
e
n
e

f0: r=0.44

0 2 4 6
dens

0

200

400

g
e
n
e

f1: r=0.3

0 2 4 6
dens

0

500

1000

1500

2000

g
e
n
e

f4: r=0.21

0.00 0.02 0.04 0.06 0.08
freq

0

500

1000

1500

g
e
n
e

f0: r=0.13

0.0 0.1 0.2 0.3 0.4
freq

0

200

400

g
e
n
e

f1: r=0.16

0.0 0.1 0.2 0.3 0.4
freq

0

500

1000

1500

2000

g
e
n
e

f4: r=0.18

Figure E.1: Correlations between the gene measure and the other measures. Each
point on the plot represents the dissimilarity value for a pair of structures encoded using
a given genetic encoding. The color indicates the density of points, with lighter colors
corresponding to higher densities.

0 20 40 60 80 100
opt

0

1

2

d
2

f0: r=0.61

0 50 100 150 200
opt

0

2

4

6

8

d
2

f1: r=0.76

0 50 100 150 200
opt

0

2

4

6

8

d
2

f4: r=0.69

0 20 40 60 80 100
opt

0.0

0.5

1.0

1.5

2.0

d
3

f0: r=0.66

0 50 100 150 200
opt

0

2

4

6

d
3

f1: r=0.6

0 50 100 150 200
opt

0.0

2.5

5.0

7.5

10.0

d
3

f4: r=0.7

0 20 40 60 80 100
opt

0.0

0.1

0.2

0.3

a
3

f0: r=0.14

0 50 100 150 200
opt

0.0

0.2

0.4

0.6

0.8

a
3

f1: r=0.43

0 50 100 150 200
opt

0.0

0.2

0.4

0.6

0.8

a
3

f4: r=0.23

0 20 40 60 80 100
opt

0.0

0.5

1.0

1.5

2.0

d
e
n
s

f0: r=0.63

0 50 100 150 200
opt

0

2

4

6

d
e
n
s

f1: r=0.86

0 50 100 150 200
opt

0

2

4

6

d
e
n
s

f4: r=0.71

0 20 40 60 80 100
opt

0.00

0.02

0.04

0.06

0.08

f
r
e
q

f0: r=0.32

0 50 100 150 200
opt

0.0

0.1

0.2

0.3

0.4

f
r
e
q

f1: r=0.36

0 50 100 150 200
opt

0.0

0.1

0.2

0.3

0.4

f
r
e
q

f4: r=0.39

Figure E.2: Correlations between the opt measure and the other measures. Each point
on the plot represents the dissimilarity value for a pair of structures encoded using a
given genetic encoding. The color indicates the density of points, with lighter colors
corresponding to higher densities.

0.0 0.1 0.2 0.3
a3

0.0

0.5

1.0

1.5

2.0

d
e
n
s

f0: r=0.41

0.0 0.2 0.4 0.6 0.8
a3

0

2

4

6

d
e
n
s

f1: r=0.47

0.0 0.2 0.4 0.6 0.8
a3

0

2

4

6

d
e
n
s

f4: r=0.31

0.0 0.5 1.0 1.5 2.0 2.5
d2

0.0

0.5

1.0

1.5

2.0

d
e
n
s

f0: r=0.83

0 2 4 6 8
d2

0

2

4

6
d
e
n
s

f1: r=0.86

0 2 4 6 8
d2

0

2

4

6

d
e
n
s

f4: r=0.9

0.0 0.5 1.0 1.5 2.0
d3

0.0

0.5

1.0

1.5

2.0

d
e
n
s

f0: r=0.79

0 2 4 6
d3

0

2

4

6

d
e
n
s

f1: r=0.59

0 2 4 6 8 10
d3

0

2

4

6

d
e
n
s

f4: r=0.86

0.0 0.1 0.2 0.3
a3

0.00

0.02

0.04

0.06

0.08

f
r
e
q

f0: r=-0.01

0.0 0.2 0.4 0.6 0.8
a3

0.0

0.1

0.2

0.3

0.4

f
r
e
q

f1: r=0.23

0.0 0.2 0.4 0.6 0.8
a3

0.0

0.1

0.2

0.3

0.4

f
r
e
q

f4: r=0.1

0.0 0.5 1.0 1.5 2.0 2.5
d2

0.00

0.02

0.04

0.06

0.08

f
r
e
q

f0: r=0.39

0 2 4 6 8
d2

0.0

0.1

0.2

0.3

0.4

f
r
e
q

f1: r=0.47

0 2 4 6 8
d2

0.0

0.1

0.2

0.3

0.4

f
r
e
q

f4: r=0.55

0.0 0.5 1.0 1.5 2.0
d3

0.00

0.02

0.04

0.06

0.08

f
r
e
q

f0: r=0.42

0 2 4 6
d3

0.0

0.1

0.2

0.3

0.4

f
r
e
q

f1: r=0.25

0 2 4 6 8 10
d3

0.0

0.1

0.2

0.3

0.4

f
r
e
q

f4: r=0.46

Figure E.3: Correlations between the shape measure and the other measures. Each
point on the plot represents the dissimilarity value for a pair of structures encoded using
a given genetic encoding. The color indicates the density of points, with lighter colors
corresponding to higher densities.

0.0 0.1 0.2 0.3
a3

0

1

2

d
2

f0: r=0.29

0.0 0.2 0.4 0.6 0.8
a3

0

2

4

6

8

d
2

f1: r=0.37

0.0 0.2 0.4 0.6 0.8
a3

0

2

4

6

8

d
2

f4: r=0.24

0.0 0.1 0.2 0.3
a3

0.0

0.5

1.0

1.5

2.0

d
3

f0: r=0.17

0.0 0.2 0.4 0.6 0.8
a3

0

2

4

6
d
3

f1: r=0.1

0.0 0.2 0.4 0.6 0.8
a3

0.0

2.5

5.0

7.5

10.0

d
3

f4: r=0.13

0.0 0.5 1.0 1.5 2.0 2.5
d2

0.0

0.5

1.0

1.5

2.0

d
3

f0: r=0.9

0 2 4 6 8
d2

0

2

4

6

d
3

f1: r=0.49

0 2 4 6 8
d2

0.0

2.5

5.0

7.5

10.0

d
3

f4: r=0.84

Figure E.4: Correlations between the shape measure calculated using descriptors a3,
d2, d3. Each point on the plot represents the dissimilarity value for a pair of structures
encoded using a given genetic encoding. The color indicates the density of points, with
lighter colors corresponding to higher densities.

0.0 0.5 1.0 1.5 2.0
dens

0.00

0.02

0.04

0.06

0.08

f
r
e
q

f0: r=0.19

0 2 4 6
dens

0.0

0.1

0.2

0.3

0.4

f
r
e
q

f1: r=0.35

0 2 4 6
dens

0.0

0.1

0.2

0.3

0.4

f
r
e
q

f4: r=0.42

Figure E.5: Correlations between shape and freq measures. Each point on the plot
represents the dissimilarity value for a pair of structures encoded using a given genetic
encoding. The color indicates the density of points, with lighter colors corresponding
to higher densities.

Appendix F

Human study participants’
characteristics

man woman

Gender

0
2

4
6

8
10

12

23 24 25 28

Age

0
1

2
3

4
5

6
7

Figure F.1: The distribution of gender and age of the participants [120].

Average sleep duration

sleep [hours]

Fr
eq

ue
nc

y

7.0 7.5 8.0 8.5 9.0

0
1

2
3

4
5

6

Sleep duration today

sleep [hours]

Fr
eq

ue
nc

y

0 2 4 6 8 10

0
1

2
3

4
5

6

Figure F.2: Average sleep duration and sleep duration on the night preceding the
investigation [120].

Gaming experience duration

gaming [years]

Fr
eq

ue
nc

y

0 5 10 15 20 25

0
1

2
3

4
5

6
7

Average gaming hours per day

gaming [hours]

Fr
eq

ue
nc

y

0 1 2 3 4 5 6

0
1

2
3

4
5

6
7

Figure F.3: Number of years of playing video games and the average number of playing
video games per day [120].

amateur none

Musical experience type

0
1

2
3

4
5

6
7

Musical experience duration

experience [years]

Fr
eq

ue
nc

y

0 2 4 6 8 10

0
2

4
6

8

Figure F.4: Level of musical education of participants and their number of years
devoted to musical education [120].

1 2 3 6

Number of languages learned

0
2

4
6

8

Strength component in practiced sport

Fr
eq

ue
nc

y

0 20 40 60 80

0
1

2
3

4

Figure F.5: Number of foreign languages known by participants and the percentage
of strength component in their practiced sport [120].

Cardio component in practiced sport
Fr

eq
ue

nc
y

0 20 40 60 80 100

0
1

2
3

4
5

Intellectual component in practiced sport

Fr
eq

ue
nc

y

0 10 20 30 40 50 60

0
2

4
6

8
10

Figure F.6: The percentage of endurance and intellectual components in sports prac-
ticed by participants [120].

Sport trainig duration

sport training [years]

Fr
eq

ue
nc

y

0 5 10 15 20

0
2

4
6

8
10

Sport trainig hours per week

sport training [hours]

Fr
eq

ue
nc

y

0 2 4 6 8 10

0
1

2
3

4
5

6

Figure F.7: Number of years of sport training and the average number of hours per
week devoted by participants for sports training [120].

definitely not undecided definitely yes

Conscientiousness

0
1

2
3

4
5

6
7

rather not rather yes definitely yes

Proficiency in mental calculations

0
2

4
6

8

rather not undecided rather yes

Proficiency in navigation

0
1

2
3

4
5

Figure F.8: The distribution of self-assessed conscientiousnesses, proficiency in cal-
culations and navigation. The possible answers were: “definitely not”, “rater not”,
“undecided”, “rather yes”, “definitely yes” [120].

Appendix G

Enhanced crossover operators

native DMX EMX DPX SBX
operator

0.02

0.04

0.06

0.08

fi
tn

es
s

Velocity on land, f0, shape

native DMX EMX DPX SBX
operator

1.5

2.0

2.5

3.0

fi
tn

es
s

Height passive, f0, shape

native DMX EMX DPX SBX
operator

0.02

0.04

0.06

0.08

fi
tn

es
s

Velocity on land, f1, shape

native DMX EMX DPX SBX
operator

1.0

1.5

2.0

2.5

fi
tn

es
s

Height passive, f1, shape

native DMX EMX DPX SBX
operator

0.03

0.04

0.05

0.06

0.07

0.08

0.09

fi
tn

es
s

Velocity on land, f4, shape

native DMX EMX DPX SBX
operator

1.0

1.5

2.0

2.5

3.0

fi
tn

es
s

Height passive, f4, shape

Figure G.1: Fitness of the best found solutions for the native crossover operator and
DMX, EMX, DPX, and SBX operators using the opt measure for different optimization
goals, and genetic representations. The boxplots show the distribution of the best fit-
ness values from 20 runs for each combination of parameters. Rows: genetic encodings,
columns: optimization objectives.

native DMX EMX DPX SBX
operator

0.04

0.05

0.06

0.07

0.08

0.09

0.10

fi
tn

es
s

Velocity on land, f0, gene

native DMX EMX DPX SBX
operator

1.5

2.0

2.5

3.0

fi
tn

es
s

Height passive, f0, gene

native DMX EMX DPX SBX
operator

0.02

0.04

0.06

0.08

0.10

fi
tn

es
s

Velocity on land, f1, gene

native DMX EMX DPX SBX
operator

1.00

1.25

1.50

1.75

2.00

2.25

2.50
fi

tn
es

s
Height passive, f1, gene

native DMX EMX DPX SBX
operator

0.03

0.04

0.05

0.06

0.07

0.08

fi
tn

es
s

Velocity on land, f4, gene

native DMX EMX DPX SBX
operator

1.5

2.0

2.5

3.0

fi
tn

es
s

Height passive, f4, gene

Figure G.2: Fitness of the best found solutions for the native crossover operator and
DMX, EMX, DPX, and SBX operators using the opt measure for different optimization
goals, and genetic representations. The boxplots show the distribution of the best fit-
ness values from 20 runs for each combination of parameters. Rows: genetic encodings,
columns: optimization objectives.

Bibliography

[1] A. L. Ames, D. R. Nadeau, and J. L. Moreland. The VRML 2.0 sourcebook. John
Wiley & Sons, Inc., 1997.

[2] A. Arias-Montano, C. A. Coello Coello, and E. Mezura-Montes. Evolutionary
algorithms applied to multi-objective aerodynamic shape optimization.
Computational optimization, methods and algorithms, pages 211–240, 2011.

[3] F. G. Ashby. Multidimensional models of perception and cognition. Psychology
Press, 2014.

[4] F. G. Ashby and N. A. Perrin. Toward a unified theory of similarity and
recognition. Psychological review, 95(1):124, 1988.

[5] M. authors. Emscripten: a complete open source compiler toolchain to
WebAssembly, 2020. URL: https://emscripten.org.

[6] G. Azamirad and B. Arezoo. Structural design of stamping die components using
bi-directional evolutionary structural optimization method. The International
Journal of Advanced Manufacturing Technology, 87:969–979, 2016.

[7] T. Back. Selective pressure in evolutionary algorithms: A characterization of
selection mechanisms. In Evolutionary Computation, 1994. IEEE World Congress
on Computational Intelligence., Proceedings of the First IEEE Conference on,
pages 57–62. IEEE, 1994. doi:10.1109/ICEC.1994.350042.

[8] T. Back. Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms. Oxford university press, 1996.

[9] N. Bahramian and A. Khalkhali. Crashworthiness topology optimization of
thin-walled square tubes, using modified bidirectional evolutionary structural
optimization approach. Thin-Walled Structures, 147:106524, 2020.

[10] M. Balaji and V. Kamaraj. Evolutionary computation based multi-objective pole
shape optimization of switched reluctance machine. International Journal of
Electrical Power & Energy Systems, 43(1):63–69, 2012.

https://emscripten.org
https://doi.org/10.1109/ICEC.1994.350042

Bibliography 165

[11] A. Baldominos, Y. Saez, and P. Isasi. Evolutionary design of convolutional neural
networks for human activity recognition in sensor-rich environments. Sensors,
18(4):1288, 2018.

[12] S. A. Barakat and S. Altoubat. Application of evolutionary global optimization
techniques in the design of rc water tanks. Engineering Structures, 31(2):332–344,
2009.

[13] M. Barari, H. R. Karimi, and F. Razaghian. Analog circuit design optimization
based on evolutionary algorithms. Mathematical Problems in Engineering, 2014,
2014.

[14] P. Baron, R. Fisher, A. Tuson, F. Mill, and A. Sherlock. A voxel-based
representation for evolutionary shape optimization. Ai Edam, 13(3):145–156, 1999.

[15] A. Bataller, J. Cabrera, M. Clavijo, and J. Castillo. Evolutionary synthesis of
mechanisms applied to the design of an exoskeleton for finger rehabilitation.
Mechanism and Machine Theory, 105:31–43, 2016.

[16] P. J. Bentley. Evolutionary Design by Computers. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition, 1999.

[17] P. J. Bentley and J. P. Wakefield. The evolution of solid object designs using
genetic algorithms. Modern Heuristic Search Methods, pages 199–215, 1996.

[18] P. J. Bentley and J. P. Wakefield. Generic evolutionary design. In Soft computing
in engineering design and manufacturing, pages 289–298. Springer, 1998.

[19] M. Bilalić, P. McLeod, and F. Gobet. Why good thoughts block better ones: The
mechanism of the pernicious einstellung (set) effect. Cognition, 108(3):652–661,
2008.

[20] K. D. Boese. Cost versus distance in the traveling salesman problem. UCLA
Computer Science Department, 1995.

[21] N. Y. Bogula, S. Chermoshencev, and I. Suzdaltsev. Evolutionary algorithms for
digital electronic printed circuit board design. In 2015 XVIII International
Conference on Soft Computing and Measurements (SCM), pages 153–156. IEEE,
2015. doi:10.1109/SCM.2015.7190440.

[22] E. Bonabeau, S. Guérin, D. Snyers, P. Kuntz, and G. Theraulaz.
Three-dimensional architectures grown by simple ‘stigmergic’ agents. BioSystems,
56(1):13–32, 2000.

[23] J. C. Bongard. The utility of evolving simulated robot morphology increases with
task complexity for object manipulation. Artificial life, 16(3):201–223, 2010.

[24] J. C. Bongard, R. Pfeifer, et al. Repeated structure and dissociation of genotypic
and phenotypic complexity in artificial ontogeny. In Proceedings of the genetic and
evolutionary computation conference, volume 829836, 2001.

https://doi.org/10.1109/SCM.2015.7190440

166 Bibliography

[25] E. O. Brigham and R. E. Morrow. The fast fourier transform. IEEE Spectrum,
4(12):63–70, 1967. doi:10.1109/MSPEC.1967.5217220.

[26] L. Brodbeck, S. Hauser, and F. Iida. Morphological evolution of physical robots
through model-free phenotype development. PloS one, 10(6):e0128444, 2015.

[27] T. Broughton, A. Tan, and P. Coates. The use of genetic programming in
exploring 3D design worlds: A report of two projects by Msc students at CECA
UEL. In CAAD Futures 1997: Proceedings of the 7th International Conference on
Computer Aided Architectural Design Futures Held in Munich, Germany, 4–6
August 1997, pages 885–915. Springer, 1997.

[28] J. Byrne. Approaches to evolutionary architectural design exploration using
grammatical evolution. PhD thesis, University College Dublin, 2012.

[29] H. M. Cartwright and S. P. Harris. Analysis of the distribution of airborne
pollution using genetic algorithms. Atmospheric Environment. Part A. General
Topics, 27(12):1783–1791, 1993.

[30] O. Carugo. Statistical validation of the root-mean-square-distance, a measure of
protein structural proximity. Protein Engineering, Design & Selection,
20(1):33–37, 2007. doi:10.1093/protein/gzl051.

[31] R. d. Carvalho, R. R. Saldanha, B. Gomes, A. C. Lisboa, and A. Martins. A
multi-objective evolutionary algorithm based on decomposition for optimal design
of Yagi-Uda antennas. IEEE Transactions on Magnetics, 48(2):803–806, 2012.

[32] P. Castillo, M. Arenas, J. Castillo-Valdivieso, J. Merelo, A. Prieto, and G. Romero.
Artificial neural networks design using evolutionary algorithms. In Advances in Soft
Computing: Engineering Design and Manufacturing, pages 43–52. Springer, 2003.

[33] T. Chabuk, J. Reggia, J. Lohn, and D. Linden. Causally-guided evolutionary
optimization and its application to antenna array design. Integrated
Computer-Aided Engineering, 19(2):111–124, 2012.

[34] K. Y. Chan, M. E. Aydin, and T. C. Fogarty. An epistasis measure based on the
analysis of variance for the real-coded representation in genetic algorithms. In The
2003 Congress on Evolutionary Computation, 2003. CEC’03., volume 1, pages
297–304. IEEE, 2003.

[35] W. S. Chee and J. Teo. Simultaneous evolutionary-based optimization of controller
and morphology of snake-like modular robots. In 2014 4th International
Conference on Artificial Intelligence with Applications in Engineering and
Technology, pages 37–42. IEEE, 2014.

[36] D. Chen, T. Aoki, N. Homma, T. Terasaki, and T. Higuchi. Graph-based
evolutionary design of arithmetic circuits. IEEE Transactions on Evolutionary
Computation, 6(1):86–100, 2002.

[37] O. Chocron. Evolutionary design of modular robotic arms. Robotica,
26(3):323–330, 2008.

https://doi.org/10.1109/MSPEC.1967.5217220
https://doi.org/10.1093/protein/gzl051

Bibliography 167

[38] O. Chocron and P. Bidaud. Genetic design of 3D modular manipulators. In
Proceedings of International Conference on Robotics and Automation, volume 1,
pages 223–228. IEEE, 1997.

[39] C. A. C. Coello, A. D. Christiansen, and A. H. Aguirre. Towards automated
evolutionary design of combinational circuits. Computers & Electrical Engineering,
27(1):1–28, 2000.

[40] C. C. Coello, F. S. Hernández, and F. A. Farrera. Optimal design of reinforced
concrete beams using genetic algorithms. Expert systems with Applications,
12(1):101–108, 1997.

[41] J. Cohoon, J. Kairo, and J. Lienig. Evolutionary algorithms for the physical design
of vlsi circuits. Advances in evolutionary computing: theory and applications, pages
683–711, 2003.

[42] M. Cook, S. Colton, and J. Gow. Initial results from co-operative co-evolution for
automated platformer design. In Applications of Evolutionary Computation:
EvoApplications 2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES,
EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC,
Málaga, Spain, April 11-13, 2012, Proceedings, pages 194–203. Springer, 2012.

[43] F. Corucci, M. Calisti, H. Hauser, and C. Laschi. Novelty-based evolutionary
design of morphing underwater robots. In Proceedings of the 2015 annual
conference on Genetic and Evolutionary Computation, pages 145–152, 2015.

[44] T. F. Cox and M. A. A. Cox. Multidimensional scaling. Chapman and Hall/CRC,
2000.

[45] D. Dasgupta and Z. Michalewicz. Evolutionary algorithms in engineering
applications. Springer Science & Business Media, 2013.
doi:10.1007/978-3-662-03423-1.

[46] K. Deb and S. Gulati. Design of truss-structures for minimum weight using genetic
algorithms. Finite elements in analysis and design, 37(5):447–465, 2001.

[47] K. Deb and S. Jain. Multi-speed gearbox design using multi-objective evolutionary
algorithms. J. Mech. Des., 125(3):609–619, 2003.

[48] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation,
6(2):182–197, 2002. doi:10.1109/4235.996017.

[49] P. Della Vecchia, E. Daniele, and E. D’Amato. An airfoil shape optimization
technique coupling parsec parameterization and evolutionary algorithm. Aerospace
Science and Technology, 32(1):103–110, 2014.

[50] A. Dettmann, M. Roemmermann, and F. Cordes. Evolutionary development of an
optimized manipulator arm morphology for manipulation and rover locomotion. In
2011 IEEE International Conference on Robotics and Biomimetics, pages
2567–2573. IEEE, 2011.

https://doi.org/10.1007/978-3-662-03423-1
https://doi.org/10.1109/4235.996017

168 Bibliography

[51] P. Di Barba. Evolutionary multiobjective optimization methods for the shape
design of industrial electromagnetic devices. IEEE Transactions on Magnetics,
45(3):1436–1441, 2009. doi:10.1109/TMAG.2009.2012665.

[52] K. Diederichs. Structural superposition of proteins with unknown alignment and
detection of topological similarity using a six-dimensional search algorithm.
Proteins: Structure, Function, and Bioinformatics, 23(2):187–195, 1995.

[53] I. G. Dino. An evolutionary approach for 3D architectural space layout design
exploration. Automation in Construction, 69:131–150, 2016.

[54] J. Doucette and M. I. Heywood. Novelty-based fitness: An evaluation under the
Santa Fe Trail. In European Conference on Genetic Programming, pages 50–61.
Springer, 2010.

[55] M. Ebner. Evolutionary design of objects using scene graphs. In Genetic
Programming: 6th European Conference, EuroGP 2003 Essex, UK, April 14–16,
2003 Proceedings 6, pages 47–58. Springer, 2003.

[56] P. Eggenberger et al. Evolving morphologies of simulated 3D organisms based on
differential gene expression. In Proceedings of the fourth european conference on
Artificial Life, pages 205–213, 1997.

[57] S. C. Esquivel, H. A. Leiva, and R. H. Gallardt. Selection mechanisms in
evolutionary algorithms. Fundamenta Informaticae, 35(1-4):17–33, 1998.

[58] A. Faíña, F. Bellas, F. López-Peña, and R. J. Duro. Edhmor: Evolutionary
designer of heterogeneous modular robots. Engineering Applications of Artificial
Intelligence, 26(10):2408–2423, 2013.

[59] D. B. Fogel. An overview of evolutionary programming. In Evolutionary
Algorithms, pages 89–109. Springer, 1999.

[60] L. J. Fogel. Biotechnology: Concepts and Applications. Prentice-Hall, 1963.

[61] B. Freisleben and P. Merz. New genetic local search operators for the traveling
salesman problem. Parallel Problem Solving from Nature—PPSN IV, pages
890–899, 1996. doi:10.1007/3-540-61723-X_1052.

[62] P. Funes and J. Pollack. Evolutionary body building: Adaptive physical designs for
robots. Artificial Life, 4(4):337–357, 1998.

[63] V. J. Gan, H. Wong, K. T. Tse, J. C. Cheng, I. M. Lo, and C. M. Chan.
Simulation-based evolutionary optimization for energy-efficient layout plan design
of high-rise residential buildings. Journal of cleaner production, 231:1375–1388,
2019.

[64] A. Gandelli, F. Grimaccia, M. Mussetta, P. Pirinoli, and R. E. Zich. Genetical
swarm optimization: an evolutionary algorithm for antenna design. Automatika:
časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije,
47(3-4):105–112, 2006.

https://doi.org/10.1109/TMAG.2009.2012665
https://doi.org/10.1007/3-540-61723-X_1052

Bibliography 169

[65] A. H. Gandomi, A. R. Kashani, D. A. Roke, and M. Mousavi. Optimization of
retaining wall design using evolutionary algorithms. Structural and
multidisciplinary optimization, 55:809–825, 2017.

[66] L. Giraud-Moreau and P. Lafon. A comparison of evolutionary algorithms for
mechanical design components. Engineering Optimization, 34(3):307–322, 2002.

[67] M. N. Glibovets and N. M. Gulayeva. A review of niching genetic algorithms for
multimodal function optimization. Cybernetics and Sys. Anal., 49(6):815–820,
November 2013. doi:10.1007/s10559-013-9570-8.

[68] A. Globus, J. Lawton, and T. Wipke. Automatic molecular design using
evolutionary techniques. Nanotechnology, 10(3):290, 1999.

[69] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

[70] D. E. Goldberg, J. Richardson, et al. Genetic algorithms with sharing for
multimodal function optimization. In Genetic algorithms and their applications:
Proceedings of the Second International Conference on Genetic Algorithms, pages
41–49. Hillsdale, NJ: Lawrence Erlbaum, 1987.

[71] T. G. Gordon. Exploring models of development for evolutionary circuit design. In
The 2003 Congress on Evolutionary Computation, 2003. CEC’03., volume 3, pages
2050–2057. IEEE, 2003.

[72] S. K. Goudos, A. Tsiflikiotis, D. Babas, K. Siakavara, C. Kalialakis, and G. K.
Karagiannidis. Evolutionary design of a dual band e-shaped patch antenna for 5G
mobile communications. In 2017 6th international conference on modern circuits
and systems technologies (MOCAST), pages 1–4. IEEE, 2017.

[73] D. Greiner, J. J. Aznárez, O. Maeso, and G. Winter. Single-and multi-objective
shape design of Y-noise barriers using evolutionary computation and boundary
elements. Advances in Engineering Software, 41(2):368–378, 2010.

[74] Z. Guo and B. Li. Evolutionary approach for spatial architecture layout design
enhanced by an agent-based topology finding system. Frontiers of Architectural
Research, 6(1):53–62, 2017.

[75] R. W. Hamming. Error detecting and error correcting codes. The Bell system
technical journal, 29(2):147–160, 1950.

[76] F. Hamza, H. Abderazek, S. Lakhdar, D. Ferhat, and A. R. Yıldız. Optimum
design of cam-roller follower mechanism using a new evolutionary algorithm. The
International Journal of Advanced Manufacturing Technology, 99:1267–1282, 2018.

[77] K. Hamza and K. Saitou. Optimization of constructive solid geometry via a
tree-based multi-objective genetic algorithm. In Genetic and Evolutionary
Computation–GECCO 2004: Genetic and Evolutionary Computation Conference,
Seattle, WA, USA, June 26-30, 2004. Proceedings, Part II, pages 981–992.
Springer, 2004.

https://doi.org/10.1007/s10559-013-9570-8

170 Bibliography

[78] W. H. Hassan, Z. H. Attea, and S. S. Mohammed. Optimum layout design of sewer
networks by hybrid genetic algorithm. Journal of Applied Water Engineering and
Research, 8(2):108–124, 2020.

[79] R. L. Haupt. Antenna design with a mixed integer genetic algorithm. IEEE
Transactions on Antennas and Propagation, 55(3):577–582, 2007.

[80] J. He, C. Reeves, C. Witt, and X. Yao. A note on problem difficulty measures in
black-box optimization: Classification, realizations and predictability. Evolutionary
Computation, 15(4):435–443, 2007.

[81] J. H. Holland. Genetic algorithms and the optimal allocation of trials. SIAM
Journal on Computing, 2(2):88–105, 1973. doi:10.1137/0202009.

[82] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge, MA, USA, 1992.

[83] G. Hornby, A. Globus, D. Linden, and J. Lohn. Automated antenna design with
evolutionary algorithms. In Space 2006, page 7242. 2006.

[84] G. S. Hornby. Creating complex building blocks through generative
representations. In Proceedings of the 2003 AAAI Spring Symposioum:
Computational Synthesis: From Basic Building Blocks to High Level Functionality,
pages 98–105, 2003.

[85] G. S. Hornby. Measuring, enabling and comparing modularity, regularity and
hierarchy in evolutionary design. In Proceedings of the 7th annual conference on
Genetic and evolutionary computation, pages 1729–1736. ACM, 2005.

[86] G. S. Hornby. Improving the scalability of generative representations for openended
design. Genetic Programming Theory and Practice V, pages 125–142, 2008.

[87] G. S. Hornby, H. Lipson, and J. B. Pollack. Evolution of generative design systems
for modular physical robots. In Robotics and Automation, 2001. Proceedings 2001
ICRA. IEEE International Conference on, volume 4, pages 4146–4151. IEEE, 2001.

[88] G. S. Hornby and J. B. Pollack. The advantages of generative grammatical
encodings for physical design. In Proceedings of the 2001 congress on evolutionary
computation (ieee cat. no. 01th8546), volume 1, pages 600–607. IEEE, 2001.

[89] G. S. Hornby and J. B. Pollack. Generative representations for evolutionary design
automation. Brandeis University, 2003.

[90] X. Huang and Y. Xie. Optimal design of periodic structures using evolutionary
topology optimization. Structural and Multidisciplinary Optimization, 36:597–606,
2008.

[91] M. D. Huntington, L. J. Lauhon, and T. W. Odom. Subwavelength lattice optics
by evolutionary design. Nano letters, 14(12):7195–7200, 2014.

https://doi.org/10.1137/0202009

Bibliography 171

[92] P. Husbands, G. Jermy, M. McIlhagga, and R. Ives. Two applications of genetic
algorithms to component design. In Evolutionary Computing: AISB Workshop
Brighton, UK, April 1–2, 1996 Selected Papers, pages 50–61. Springer, 1996.
doi:doi.org/10.1007/BFb0032772.

[93] E. Iuliano and D. Quagliarella. Proper orthogonal decomposition, surrogate
modelling and evolutionary optimization in aerodynamic design. Computers &
Fluids, 84:327–350, 2013.

[94] N. Iyer, S. Jayanti, K. Lou, Y. Kalyanaraman, and K. Ramani. Three-dimensional
shape searching: state-of-the-art review and future trends. Computer-Aided
Design, 37(5):509–530, 2005.

[95] P. Jaccard. The distribution of the flora in the alpine zone. 1. New phytologist,
11(2):37–50, 1912.

[96] A. Jahangirian and A. Shahrokhi. Aerodynamic shape optimization using efficient
evolutionary algorithms and unstructured CFD solver. Computers & Fluids,
46(1):270–276, 2011.

[97] A. Jain, R. K. Bhattacharjya, and S. Sanaga. Optimal design of composite
channels using genetic algorithm. Journal of Irrigation and Drainage Engineering,
130(4):286–295, 2004.

[98] A. Jaszkiewicz and P. Kominek. Genetic local search with distance preserving
recombination operator for a vehicle routing problem. European Journal of
Operational Research, 151(2):352–364, 2003.

[99] A. Jaszkiewicz, P. Kominek, and M. Kubiak. Adaptation of the genetic local search
algorithm to a car sequencing problem. In 7th National Conference on Evolutionary
Algorithms and Global Optimization, Kazimierz Dolny, Poland, pages 67–74, 2004.

[100] A. Javadian, N. Nariman-zadeh, and A. Jamali. Evolutionary design of marginally
robust multivariable PID controller. Engineering Applications of Artificial
Intelligence, 121:105938, 2023.

[101] M. M. Joly, T. Verstraete, and G. Paniagua. Integrated multifidelity,
multidisciplinary evolutionary design optimization of counterrotating compressors.
Integrated Computer-Aided Engineering, 21(3):249–261, 2014.

[102] E. A. Jones and W. T. Joines. Design of Yagi-Uda antennas using genetic
algorithms. IEEE Transactions on Antennas and Propagation, 45(9):1386–1392,
1997.

[103] T. Jones and S. Forrest. Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. In Proceedings of the 6th International Conference
on Genetic Algorithms, pages 184–192, San Francisco, CA, USA, 1995. Morgan
Kaufmann Publishers Inc.

[104] A. Joshi, S. Kale, S. Chandel, and D. K. Pal. Likert scale: Explored and explained.
Current Journal of Applied Science and Technology, pages 396–403, 2015.

https://doi.org/doi.org/10.1007/BFb0032772

172 Bibliography

[105] M. Jünger, G. Reinelt, and G. Rinaldi. The traveling salesman problem.
Handbooks in operations research and management science, 7:225–330, 1995.

[106] I. Karen, M. Yazici, and A. Shukla. Designing foam filled sandwich panels for blast
mitigation using a hybrid evolutionary optimization algorithm. Composite
Structures, 158:72–82, 2016.

[107] A. R. Kashani, M. Gandomi, C. V. Camp, and A. H. Gandomi. Optimum design
of shallow foundation using evolutionary algorithms. Soft Computing,
24:6809–6833, 2020.

[108] L. Kaufman. Partitioning around medoids (program pam). Finding groups in data,
344:68–125, 1990.

[109] R. Kicinger, T. Arciszewski, and K. De Jong. Morphogenesis and structural
design: cellular automata representations of steel structures in tall buildings. In
Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.
04TH8753), volume 1, pages 411–418. IEEE, 2004.

[110] R. Kicinger, T. Arciszewski, and K. DeJong. Evolutionary design of steel structures
in tall buildings. Journal of Computing in Civil Engineering, 19(3):223–238, 2005.

[111] H.-S. Kim and S.-B. Cho. Application of interactive genetic algorithm to fashion
design. Engineering applications of artificial intelligence, 13(6):635–644, 2000.

[112] M. Kiptiah binti Ariffin, S. Hadi, and S. Phon-Amnuaisuk. Evolving 3D models
using interactive genetic algorithms and l-systems. In Multi-disciplinary Trends in
Artificial Intelligence: 11th International Workshop, MIWAI 2017, Gadong,
Brunei, November 20-22, 2017, Proceedings 11, pages 485–493. Springer, 2017.

[113] N. Kirchner-Bossi and F. Porté-Agel. Wind farm area shape optimization using
newly developed multi-objective evolutionary algorithms. Energies, 14(14):4185,
2021.

[114] A. Klejda, M. Komosinski, and A. Mensfelt. Diversification techniques and
distance measures in evolutionary design of 3D structures. In Genetic and
Evolutionary Computation Conference Companion (GECCO ’22), Boston, USA,
2022. ACM, ACM. doi:10.1145/3520304.3528948.

[115] M. Kociecki and H. Adeli. Shape optimization of free-form steel space-frame roof
structures with complex geometries using evolutionary computing. Engineering
Applications of Artificial Intelligence, 38:168–182, 2015.

[116] M. Komosinski. Applications of a similarity measure in the analysis of populations
of 3D agents. Journal of Computational Science, 2017.
doi:10.1016/j.jocs.2016.10.004.

[117] M. Komosinski. Artificial life and nature-inspired algorithms, 2023. Lecture script.
URL: http://www.cs.put.poznan.pl/mkomosinski/lectures/MK_ArtLife.pdf.

https://doi.org/10.1145/3520304.3528948
https://doi.org/10.1016/j.jocs.2016.10.004
http://www.cs.put.poznan.pl/mkomosinski/lectures/MK_ArtLife.pdf

Bibliography 173

[118] M. Komosinski and M. Kubiak. Quantitative measure of structural and geometric
similarity of 3D morphologies. Complexity, 16(6):40–52, 2011. URL:
http://www.framsticks.com/files/common/Komosinski_Kubiak_
MeasureSimilarity3DMorphologies.pdf, doi:10.1002/cplx.20367.

[119] M. Komosinski and A. Mensfelt. A flexible dissimilarity measure for active and
passive 3D structures and its application in the fitness–distance analysis. In
P. Kaufmann and P. A. Castillo, editors, Applications of Evolutionary
Computation. Springer, Springer, 2019. URL: http://www.framsticks.com/files/
common/DissimilarityMeasure3DStructuresFitnessDistance.pdf,
doi:10.1007/978-3-030-16692-2_8.

[120] M. Komosinski and A. Mensfelt. Human perception of similarity of 3D graph
structures. Technical Report RA-07/2020, Poznan University of Technology, 2020.

[121] M. Komosinski and K. Miazga. Measuring properties of movement in populations
of evolved 3D agents. In H. Fellermann, J. Bacardit, A. Goñi-Moreno, and R. M.
Füchslin, editors, Artificial Life Conference Proceedings, pages 485–492. MIT
Press, 2019. doi:10.1162/isal_a_00208.

[122] M. Komosinski and K. Rosinski. Estimating similarity of neural network dynamics.
Technical Report RA-10/10, Poznan University of Technology, Institute of
Computing Science, 2010. URL:
http://www.framsticks.com/files/common/SimilarityNeuralNetworkDynamics.pdf.

[123] M. Komosiński and A. Rotaru-Varga. Comparison of different genotype encodings
for simulated three-dimensional agents. Artificial Life, 7(4):395–418, 2001.

[124] M. Komosinski and S. Ulatowski. Framsticks: Creating and understanding
complexity of life. In M. Komosinski and A. Adamatzky, editors, Artificial Life
Models in Software, chapter 5, pages 107–148. Springer, London, 2nd edition, 2009.

[125] M. Komosinski and S. Ulatowski. Framsticks SDK (Software Development Kit),
2023. URL: http://www.framsticks.com/sdk.

[126] M. Komosinski and S. Ulatowski. Framsticks web site, 2023. URL:
http://www.framsticks.com.

[127] M. Komosinski and S. Ulatowski. Python interface for Framsticks, 2023. URL:
http://www.framsticks.com/trac/framsticks/browser/framspy.

[128] J. R. Koza et al. Genetic programming II, volume 17. MIT press Cambridge, 1994.

[129] K. Krawiec and P. Lichocki. Approximating geometric crossover in semantic space.
In Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, pages 987–994, 2009.

[130] P. Krčah. Towards efficient evolutionary design of autonomous robots. In Evolvable
Systems: From Biology to Hardware: 8th International Conference, ICES 2008,
Prague, Czech Republic, September 21-24, 2008. Proceedings 8, pages 153–164.
Springer, 2008.

http://www.framsticks.com/files/common/Komosinski_Kubiak_MeasureSimilarity3DMorphologies.pdf
http://www.framsticks.com/files/common/Komosinski_Kubiak_MeasureSimilarity3DMorphologies.pdf
https://doi.org/10.1002/cplx.20367
http://www.framsticks.com/files/common/DissimilarityMeasure3DStructuresFitnessDistance.pdf
http://www.framsticks.com/files/common/DissimilarityMeasure3DStructuresFitnessDistance.pdf
https://doi.org/10.1007/978-3-030-16692-2_8
https://doi.org/10.1162/isal_a_00208
http://www.framsticks.com/files/common/SimilarityNeuralNetworkDynamics.pdf
http://www.framsticks.com/sdk
http://www.framsticks.com
http://www.framsticks.com/trac/framsticks/browser/framspy

174 Bibliography

[131] P. Krčah. Solving deceptive tasks in robot body-brain co-evolution by searching for
behavioral novelty. In Advances in robotics and virtual reality, pages 167–186.
Springer, 2012.

[132] M. Kubiak. Systematic construction of recombination operators for the vehicle
routing problem. Foundations of Computing and Decision Sciences, 29(3), 2004.

[133] H. W. Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[134] Y. Kuwahara. Multiobjective optimization design of Yagi-Uda antenna. Antennas
and Propagation, IEEE Transactions on, 53:1984 – 1992, 07 2005.
doi:10.1109/TAP.2005.848501.

[135] E. M. W. Lameijer. Interactive evolutionary algorithms and data mining for drug
design. PhD thesis, Leiden University, 2010.

[136] E.-W. Lameijer, J. N. Kok, T. Bäck, and A. P. IJzerman. The molecule evoluator.
an interactive evolutionary algorithm for the design of drug-like molecules. Journal
of chemical information and modeling, 46(2):545–552, 2006.

[137] R. Le Riche and R. Haftka. Improved genetic algorithm for minimum thickness
composite laminate design. Composites Engineering, 5(2):143–161, 1995.

[138] D. Lee, C. Morillo, G. Bugeda, S. Oller, and E. Oñate. Multilayered composite
structure design optimisation using distributed/parallel multi-objective
evolutionary algorithms. Composite structures, 94(3):1087–1096, 2012.

[139] J. Lehman and K. O. Stanley. Exploiting open-endedness to solve problems
through the search for novelty. In Proceedings of the Eleventh International
Conference on Artificial Life (Alife XI). MIT Press, 2008.

[140] J. Lehman and K. O. Stanley. Abandoning objectives: Evolution through the
search for novelty alone. Evolutionary computation, 19(2):189–223, 2011.

[141] J. Lehman and K. O. Stanley. Evolving a diversity of virtual creatures through
novelty search and local competition. In Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computation, pages 211–218, 2011.

[142] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710. Soviet Union, 1966.

[143] X. Li, M. G. Epitropakis, K. Deb, and A. Engelbrecht. Seeking multiple solutions:
An updated survey on niching methods and their applications. IEEE Transactions
on Evolutionary Computation, 21(4):518–538, 2016.

[144] Y. F. Li, X. Huang, F. Meng, and S. Zhou. Evolutionary topological design for
phononic band gap crystals. Structural and Multidisciplinary Optimization,
54:595–617, 2016.

https://doi.org/10.1109/TAP.2005.848501

Bibliography 175

[145] Y. Lian, A. Oyama, and M.-S. Liou. Progress in design optimization using
evolutionary algorithms for aerodynamic problems. Progress in Aerospace Sciences,
46(5-6):199–223, 2010.

[146] H. Lim and H. Kim. Multi-objective airfoil shape optimization using an adaptive
hybrid evolutionary algorithm. Aerospace Science and Technology, 87:141–153,
2019.

[147] H. Lipson and J. B. Pollack. Automatic design and manufacture of robotic
lifeforms. Nature, 406(6799):974–978, 2000.

[148] H. Lipson, V. Sunspiral, J. C. Bongard, and N. Cheney. On the difficulty of
co-optimizing morphology and control in evolved virtual creatures. volume ALIFE
2016, the Fifteenth International Conference on the Synthesis and Simulation of
Living Systems of ALIFE 2023: Ghost in the Machine: Proceedings of the 2023
Artificial Life Conference, pages 226–233, 07 2022.
doi:10.1162/978-0-262-33936-0-ch042.

[149] B. Liu, H. Aliakbarian, Z. Ma, G. A. Vandenbosch, G. Gielen, and P. Excell. An
efficient method for antenna design optimization based on evolutionary
computation and machine learning techniques. IEEE transactions on antennas and
propagation, 62(1):7–18, 2013.

[150] J. D. Lohn and S. P. Colombano. A circuit representation technique for automated
circuit design. IEEE Transactions on Evolutionary Computation, 3(3):205–219,
1999.

[151] J. D. Lohn, W. F. Kraus, D. S. Linden, and A. Stoica. Evolutionary optimization
of a quadrifilar helical antenna. 2:814–817, 2002.

[152] J. D. Lohn and J. A. Reggia. Discovery of self-replicating structures using a
genetic algorithm. In Proceedings of 1995 IEEE International Conference on
Evolutionary Computation, volume 2, pages 678–683. IEEE, 1995.

[153] Z. Lu, I. Whalen, Y. Dhebar, K. Deb, E. D. Goodman, W. Banzhaf, and V. N.
Boddeti. Multiobjective evolutionary design of deep convolutional neural networks
for image classification. IEEE Transactions on Evolutionary Computation,
25(2):277–291, 2020.

[154] A. G. Maldonado, J. Doucet, M. Petitjean, and B.-T. Fan. Molecular similarity
and diversity in chemoinformatics: from theory to applications. Molecular
diversity, 10:39–79, 2006.

[155] P. E. McKight and J. Najab. Kruskal-wallis test. The corsini encyclopedia of
psychology, pages 1–1, 2010.

[156] J. F. Miller, P. Thomson, and T. Fogarty. Designing electronic circuits using
evolutionary algorithms. Arithmetic circuits: A case study. Genetic algorithms and
evolution strategies in engineering and computer science, pages 105–131, 1997.

https://doi.org/10.1162/978-0-262-33936-0-ch042

176 Bibliography

[157] H. Monsef, M. Naghashzadegan, A. Jamali, and R. Farmani. Comparison of
evolutionary multi objective optimization algorithms in optimum design of water
distribution network. Ain Shams Engineering Journal, 10(1):103–111, 2019.

[158] J. Munkres. Algorithms for the assignment and transportation problems. Journal
of the society for industrial and applied mathematics, 5(1):32–38, 1957.

[159] S. Nagendra, D. Jestin, Z. Gürdal, R. T. Haftka, and L. T. Watson. Improved
genetic algorithm for the design of stiffened composite panels. Computers &
Structures, 58(3):543–555, 1996.

[160] G. Nicosia, S. Rinaudo, and E. Sciacca. An evolutionary algorithm-based approach
to robust analog circuit design using constrained multi-objective optimization. In
Research and Development in Intelligent Systems XXIV: Proceedings of AI-2007,
the Twenty-seventh SGAI International Conference on Innovative Techniques and
Applications of Artificial Intelligence, pages 7–20. Springer, 2008.

[161] S. Obayashi. Multidisciplinary design optimization of aircraft wing planform based
on evolutionary algorithms. In SMC’98 Conference Proceedings. 1998 IEEE
International Conference on Systems, Man, and Cybernetics (Cat. No.
98CH36218), volume 4, pages 3148–3153. IEEE, 1998.

[162] S. Obayashi, D. Sasaki, Y. Takeguchi, and N. Hirose. Multiobjective evolutionary
computation for supersonic wing-shape optimization. IEEE transactions on
evolutionary computation, 4(2):182–187, 2000.

[163] H. Ogawa and R. R. Boyce. Nozzle design optimization for axisymmetric scramjets
by using surrogate-assisted evolutionary algorithms. Journal of Propulsion and
Power, 28(6):1324–1338, 2012.

[164] M. O’Neill, J. McDermott, J. M. Swafford, J. Byrne, E. Hemberg, A. Brabazon,
E. Shotton, C. McNally, and M. Hemberg. Evolutionary design using grammatical
evolution and shape grammars: Designing a shelter. International Journal of
Design Engineering, 3(1):4–24, 2010.

[165] M. O’Neill, J. M. Swafford, J. McDermott, J. Byrne, A. Brabazon, E. Shotton,
C. McNally, and M. Hemberg. Shape grammars and grammatical evolution for
evolutionary design. In Proceedings of the 11th Annual conference on Genetic and
evolutionary computation, pages 1035–1042, 2009.

[166] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Matching 3D models with
shape distributions. In Proceedings of the International Conference on Shape
Modeling and Applications, SMI ’01, page 154, USA, 2001. IEEE Computer
Society. doi:10.1109/SMA.2001.923386.

[167] U.-M. O’Reilly and G. Ramachandran. A preliminary investigation of evolution as
a form design strategy. In Artificial Life VI, pages 443–447. Los Angeles, CA,
UAS, 1998.

https://doi.org/10.1109/SMA.2001.923386

Bibliography 177

[168] C. Paul and J. C. Bongard. The road less travelled: Morphology in the
optimization of biped robot locomotion. In Proceedings 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Expanding the
Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180),
volume 1, pages 226–232. IEEE, 2001.

[169] M. Peysakhov and W. C. Regli. Using assembly representations to enable
evolutionary design of Lego structures. Ai Edam, 17(2):155–168, 2003.

[170] N. Pholdee and S. Bureerat. Performance enhancement of multiobjective
evolutionary optimisers for truss design using an approximate gradient. Computers
& structures, 106:115–124, 2012.

[171] D. Pisinger and P. Toth. Knapsack problems. Handbook of Combinatorial
Optimization: Volume1–3, pages 299–428, 1998.
doi:10.1007/978-1-4613-0303-9_5.

[172] E. Pitzer and M. Affenzeller. A comprehensive survey on fitness landscape
analysis. In Recent Advances in Intelligent Engineering Systems, pages 161–191.
Springer, 2012.

[173] J. M. Ponce-Ortega, M. Serna-González, and A. Jiménez-Gutiérrez. Use of genetic
algorithms for the optimal design of shell-and-tube heat exchangers. Applied
Thermal Engineering, 29(2-3):203–209, 2009.

[174] P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Mech. L-systems: from the theory
to visual models of plants. In Proceedings of the 2nd CSIRO Symposium on
Computational Challenges in Life Sciences, volume 3, pages 1–32, 1996.

[175] J. K. Pugh, L. B. Soros, and K. O. Stanley. Quality diversity: A new frontier for
evolutionary computation. Frontiers in Robotics and AI, 3:40, 2016.

[176] S. N. Qasem, S. M. Shamsuddin, and A. M. Zain. Multi-objective hybrid
evolutionary algorithms for radial basis function neural network design.
Knowledge-Based Systems, 27:475–497, 2012.

[177] S. Rajan. Sizing, shape, and topology design optimization of trusses using genetic
algorithm. Journal of structural engineering, 121(10):1480–1487, 1995.

[178] S. Rajeev and C. Krishnamoorthy. Genetic algorithms-based methodologies for
design optimization of trusses. Journal of structural engineering, 123(3):350–358,
1997.

[179] S. Rajeev and C. Krishnamoorthy. Genetic algorithm–based methodology for
design optimization of reinforced concrete frames. Computer-Aided Civil and
Infrastructure Engineering, 13(1):63–74, 1998.

[180] B. R. Rao and R. Tiwari. Optimum design of rolling element bearings using
genetic algorithms. Mechanism and machine theory, 42(2):233–250, 2007.

https://doi.org/10.1007/978-1-4613-0303-9_5

178 Bibliography

[181] I. Rechenberg. Evolutionstrategie (evolution strategy). Frommann-Holzboog,
Stuttgart, 1973.

[182] J. Reisinger, K. O. Stanley, and R. Miikkulainen. Towards an empirical measure of
evolvability. In Proceedings of the 7th Annual Workshop on Genetic and
Evolutionary Computation, GECCO ’05, page 257–264, New York, NY, USA, 2005.
Association for Computing Machinery. doi:10.1145/1102256.1102315.

[183] G. Ren, J. Smith, J. Tang, and Y.-M. Xie. Underground excavation shape
optimization using an evolutionary procedure. Computers and Geotechnics,
32(2):122–132, 2005.

[184] S. Risi, C. E. Hughes, and K. O. Stanley. Evolving plastic neural networks with
novelty search. Adapt Behav, 18(6):470–491, December 2010.
doi:10.1177/1059712310379923.

[185] M. Rommerman, D. Kuhn, and F. Kirchner. Robot design for space missions using
evolutionary computation. In 2009 IEEE Congress on Evolutionary Computation,
pages 2098–2105. IEEE, 2009.

[186] M. A. Rosenman. The Generation of Form Using an Evolutionary Approach, pages
69–85. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.
doi:10.1007/978-3-662-03423-1_4.

[187] F. Rothlauf. Representations for genetic and evolutionary algorithms. Springer,
2006. doi:10.1007/3-540-32444-5.

[188] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric
for image retrieval. International journal of computer vision, 40(2):99–121, 2000.

[189] R. Saravanan, S. Ramabalan, N. G. R. Ebenezer, and C. Dharmaraja.
Evolutionary multi criteria design optimization of robot grippers. Applied Soft
Computing, 9(1):159–172, 2009.

[190] B. Sareni and L. Krahenbuhl. Fitness sharing and niching methods revisited.
IEEE transactions on Evolutionary Computation, 2(3):97–106, 1998.

[191] K. Sastry, D. E. Goldberg, and G. Kendall. Genetic algorithms. In Search
methodologies, pages 93–117. Springer, 2014.

[192] M. Schoenauer. Shape representations and evolution schemes. In Fifth Annual
Conference on Evolutionary Programming, 1996.

[193] M. S. Selig and V. L. Coverstone-Carroll. Application of a genetic algorithm to
wind turbine design. Journal of Energy Resources Technology, 118(1):22–28, 1996.

[194] Y. Shao, B. Lu, H. Ou, and J. Chen. A new approach of preform design for forging
of 3D blade based on evolutionary structural optimization. Structural and
Multidisciplinary Optimization, 51:199–211, 2015.

https://doi.org/10.1145/1102256.1102315
https://doi.org/10.1177/1059712310379923
https://doi.org/10.1007/978-3-662-03423-1_4
https://doi.org/10.1007/3-540-32444-5

Bibliography 179

[195] P. Shiakolas, D. Koladiya, and J. Kebrle. Optimum robot design based on task
specifications using evolutionary techniques and kinematic, dynamic, and
structural constraints. Inverse Problems in Engineering, 10(4):359–375, 2002.

[196] K. Sims. Evolving virtual creatures. In Proceedings of the 21st annual conference
on Computer graphics and interactive techniques, pages 15–22, 1994.

[197] R. Smith. Open Dynamics Engine (ODE), 2017. URL: http://www.ode.org/.

[198] T. Smith, P. Husbands, and M. O’Shea. Fitness landscapes and evolvability.
Evolutionary computation, 10(1):1–34, 2002.

[199] G. Soremekun, Z. Gürdal, R. Haftka, and L. Watson. Composite laminate design
optimization by genetic algorithm with generalized elitist selection. Computers &
structures, 79(2):131–143, 2001.

[200] W. M. Spears et al. Crossover or mutation. Foundations of genetic algorithms,
2:221–237, 1993.

[201] P. F. Stadler. Landscapes and their correlation functions. Journal of Mathematical
chemistry, 20(1):1–45, 1996.

[202] S.-D. Stan, M. Manic, V. Maties, and R. Balan. Evolutionary approach to optimal
design of 3 dof translation exoskeleton and medical parallel robots. In 2008
Conference on Human System Interactions, pages 720–725. IEEE, 2008.

[203] K. O. Stanley. Compositional pattern producing networks: A novel abstraction of
development. Genetic programming and evolvable machines, 8(2):131–162, 2007.

[204] K. O. Stanley and R. Miikkulainen. Efficient reinforcement learning through
evolving neural network topologies. In Proceedings of the 4th Annual Conference
on Genetic and Evolutionary Computation, pages 569–577. Morgan Kaufmann
Publishers Inc., 2002.

[205] A. Stoica, G. Klimeck, C. Salazar-Lazaro, D. Keymeulen, and A. Thakoor.
Evolutionary design of electronic devices and circuits. In Proceedings of the 1999
Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), volume 2,
pages 1271–1278. IEEE, 1999. doi:10.1109/CEC.1999.782588.

[206] X. Sun, J. Yang, Y. Xie, X. Huang, and Z. Zuo. Topology optimization of
composite structure using bi-directional evolutionary structural optimization
method. Procedia Engineering, 14:2980–2985, 2011.

[207] J. Talamini, E. Medvet, and S. Nichele. Criticality-driven evolution of adaptable
morphologies of voxel-based soft-robots. Frontiers in Robotics and AI, 8:673156,
2021.

[208] I. Tanev, T. Ray, and A. Buller. Automated evolutionary design, robustness, and
adaptation of sidewinding locomotion of a simulated snake-like robot. IEEE
Transactions on Robotics, 21(4):632–645, 2005.

http://www.ode.org/
https://doi.org/10.1109/CEC.1999.782588

180 Bibliography

[209] K.-S. Tang, K.-F. Man, S. Kwong, and Z.-F. Liu. Design and optimization of IIR
filter structure using hierarchical genetic algorithms. IEEE Transactions on
Industrial Electronics, 45(3):481–487, 1998.

[210] Y. Tang, A. Kurtz, and Y. F. Zhao. Bidirectional evolutionary structural
optimization (BESO) based design method for lattice structure to be fabricated by
additive manufacturing. Computer-Aided Design, 69:91–101, 2015.

[211] A. Thompson. Evolving fault tolerant systems. In 1st International Conference on
Genetic Algorithms in Engineering Systems: Innovations and Applications
(GALESIA), pages 524–529. IET, 1995.

[212] V. Toğan and A. T. Daloğlu. Optimization of 3D trusses with adaptive approach
in genetic algorithms. Engineering Structures, 28(7):1019–1027, 2006.

[213] R. Toledo, J. Aznárez, O. Maeso, and D. Greiner. Optimization of thin noise
barrier designs using evolutionary algorithms and a dual BEM formulation.
Journal of Sound and Vibration, 334:219–238, 2015.

[214] D. Tuhus-Dubrow and M. Krarti. Genetic-algorithm based approach to optimize
building envelope design for residential buildings. Building and environment,
45(7):1574–1581, 2010.

[215] A. Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1977.
doi:10.1037/0033-295X.84.4.327.

[216] S. Ulatowski. Framsticks simulation, 2023. URL:
https://www.framsticks.com/files/presentations/sz_simulation.pdf.

[217] M. Vasundara and K. Padmanaban. Recent developments on machining fixture
layout design, analysis, and optimization using finite element method and
evolutionary techniques. The International Journal of Advanced Manufacturing
Technology, 70:79–96, 2014.

[218] V. Venkatasubramanian, K. Chan, and J. M. Caruthers. Evolutionary design of
molecules with desired properties using the genetic algorithm. Journal of Chemical
Information and Computer Sciences, 35(2):188–195, 1995.

[219] H. Wang, J. Doherty, and Y. Jin. Hierarchical surrogate-assisted evolutionary
multi-scenario airfoil shape optimization. In 2018 IEEE congress on evolutionary
computation (CEC), pages 1–8. IEEE, 2018.

[220] H. Wang, J. Liu, and G. Wen. An efficient evolutionary structural optimization
method for multi-resolution designs. Structural and Multidisciplinary
Optimization, 62:787–803, 2020.

[221] J. Wang, M. Wang, M. Li, J. Xia, and Y. Dai. Multi-objective optimization design
of condenser in an organic rankine cycle for low grade waste heat recovery using
evolutionary algorithm. International communications in heat and mass transfer,
45:47–54, 2013.

https://doi.org/10.1037/0033-295X.84.4.327
https://www.framsticks.com/files/presentations/sz_simulation.pdf

Bibliography 181

[222] Y. Wang, B. Li, and Y. Chen. Digital IIR filter design using multi-objective
optimization evolutionary algorithm. Applied Soft Computing, 11(2):1851–1857,
2011.

[223] S. Wannarumon and E. L. Bohez. A new aesthetic evolutionary approach for
jewelry design. Computer-Aided Design and Applications, 3(1-4):385–394, 2006.

[224] J. Wernecke. The Inventor Mentor: Programming Object-Oriented 3d Graphics
with Open Inventor, Release 2. Addison-Wesley Longman Publishing Co., Inc.,
USA, 1st edition, 1993.

[225] J. P. Wieczorek, O. Gol, and Z. Michalewicz. An evolutionary algorithm for the
optimal design of induction motors. IEEE Transactions on Magnetics,
34(6):3882–3887, 1998.

[226] S. S. Wong and K. C. Chan. Evoarch: An evolutionary algorithm for architectural
layout design. Computer-Aided Design, 41(9):649–667, 2009.

[227] Y. Yu and Y. Xinjie. Cooperative coevolutionary genetic algorithm for digital IIR
filter design. IEEE Transactions on Industrial Electronics, 54(3):1311–1318, 2007.

[228] X. Zhang, Y. M. Xie, and S. Zhou. A nodal-based evolutionary optimization
algorithm for frame structures. Computer-Aided Civil and Infrastructure
Engineering, 38(3):288–306, 2023.

[229] S. Y. Zheng, S. H. Yeung, W. S. Chan, K. F. Man, and K. S. Tang. Design of
broadband hybrid coupler with tight coupling using jumping gene evolutionary
algorithm. IEEE Transactions on Industrial Electronics, 56(8):2987–2991, 2009.

[230] Y. Zheng, Z. Y. Dong, Y. Xu, K. Meng, J. H. Zhao, and J. Qiu. Electric vehicle
battery charging/swap stations in distribution systems: Comparison study and
optimal planning. IEEE Transactions on Power Systems, 29(1):221–229, 2014.
doi:10.1109/TPWRS.2013.2278852.

[231] Z. Zhuang, Y. M. Xie, Q. Li, and S. Zhou. Body-fitted bi-directional evolutionary
structural optimization using nonlinear diffusion regularization. Computer Methods
in Applied Mechanics and Engineering, 396:115114, 2022.

[232] A. Zolfaghari, M. Goharimanesh, and A. A. Akbari. Optimum design of straight
bevel gears pair using evolutionary algorithms. Journal of the Brazilian Society of
Mechanical Sciences and Engineering, 39:2121–2129, 2017.

[233] V. Zykov, J. C. Bongard, and H. Lipson. Evolving dynamic gaits on a physical
robot. In Proceedings of Genetic and Evolutionary Computation Conference, Late
Breaking Paper, GECCO, volume 4, page 2004, 2004.

https://doi.org/10.1109/TPWRS.2013.2278852

	Acknowledgments
	Abstract
	Streszczenie rozprawy w języku polskim
	Abbreviations
	Evolutionary Design
	Introduction
	Evolutionary algorithms
	Representations for evolutionary algorithms
	Genotype-to-phenotype and phenotype-to-fitness mapping
	Properties of genetic representations

	Review of evolutionary design problems and representations
	Scope of the review
	Approaches to evolutionary design of novel structures

	Data set of active and passive 3D structures
	Introduction
	3D structure model
	Genetic representations in Framsticks
	Direct encoding (f0)
	Recursive encoding (f1)
	Developmental encoding (f4)

	3D structures data set
	Data set creation
	1000_data_set characteristics

	Summary

	Dissimilarity Measures for 3D Structures
	Introduction
	The Levenshtein distance (gene)
	The heuristic graph-based measure (greedy)
	Assumptions
	Alignment procedure
	The matching procedure
	Dissimilarity calculation
	Summary

	The optimal-matching graph-based measure (opt)
	Differences compared to the greedy measure
	Distance calculation

	The descriptors-based measure (shape)
	Introduction
	The algorithm
	Parameter tuning

	The distribution-based measures (dens and freq)
	Introduction
	The algorithm
	Parameter tuning

	Implementation
	Dissimilarity measures comparison
	Computational efficiency
	Correlations between the dissimilarity measures
	Qualitative comparison

	Human perception of similarity
	Motivations
	Procedure
	Pilot studies
	Final study
	Discussion and conclusions
	Limitations of this study and future work

	Summary

	Fitness-Distance Correlation Analysis
	Introduction
	Experiments
	Methods
	The gene measure
	The opt measure
	The shape measure
	The dens and freq measures

	Summary

	Enhanced Genetic Operators
	Introduction
	The locality of native operators
	Mutation operator
	Crossover operator

	Enhanced genetic operators
	Targeted sequential mutation operator
	Enhanced crossover operators

	Summary

	Dissimilarity Measures in Diversity Maintenance Techniques
	Introduction
	Methods
	Solutions archive
	Niching
	Novelty search

	Experiments and results
	Experimental parameters
	Results

	Summary

	Summary
	Goals
	Contributions
	Future work

	Applications of evolutionary design
	Structures from 1000_data_set
	Parameter tuning of the shape measure
	Structures used for dissimilarity measures comparison
	Correlations between the dissimilarity measures
	Human study participants' characteristics
	Enhanced crossover operators
	Bibliography

