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ABSTRACT 

In the ever-evolving world of integrated circuits (ICs), manufacturing processes have made 

it possible to deliver designs of staggering complexity with billions of transistors placed on 

a single silicon die. However, with the very small feature sizes, these technologies are ex-

tremely fragile and vulnerable to new types of failure mechanisms and defects. In the auto-

motive domain, hyperscale data centers, healthcare ICs, and many other applications elec-

tronic designs must be continuously tested during a product lifecycle to avoid malfunctions 

caused by, for example, silicon degradation. A deterministic in-system test is one of the most 

prominent solutions, capable of detecting defects throughout the lifecycle of state-of-the-art 

ICs. Although it can significantly improve the in-field test quality, the very same test infra-

structure and other DFT schemes may expose a design to many security threats. Clearly, 

securing the electronic devices that underpin the global economy, businesses and personal 

lives has become essential in the face of growing cybersecurity threats. In particular, on-chip 

test instruments have to be protected against unauthorized access and other malicious activi-

ties. To satisfy current and anticipated VLSI test requirements, the thesis introduces a number 

of solutions that target two important aspects of the deterministic in-system test paradigm: 

advanced test response compaction and in-system test security. 

In the first part of the thesis, new X-masking methods devoted to the in-system test 

response compaction are examined. The first compactor is designed for a logic built-in self-

test environment. Furthermore, it is capable of handling test data produced by observation 

scan chains that may capture errors at every single scan shift cycle. The second solution is 

strictly integrated with a deterministic in-system test. As a result, this X-masking scheme 

receives controls from an on-chip test data decompressor. In addition to design principles of 

selection logic, the rules that govern the encoding of masking data are also discussed.  

The subsequent part of the thesis introduces new lightweight cryptographic schemes 

which when working synergistically, may form a hardware root of trust destined to protect 

the design’s IP and defend test infrastructure against intrusions. This part begins with a hybrid 

ring generator (HRG), a modified version of a conventional ring generator. Among several 

HRG applications, the work proposes three new lightweight cryptographic primitives: a 

crypto hash function, a stream cipher of test data, and a true random number generator. Fi-

nally, a hardware root of trust is presented that builds on just described primitives to facilitate 

development of challenge-response authentication protocols. The solution has a low area 

footprint, operates at very high frequencies, and is fully compatible with a design and DFT 

flow. Although it primarily targets SSN-based designs, i.e., System-on-Chip solutions with 

packetized streaming of test data, the proposed root of trust can improve the security of other 

test interfaces, as well. 

Both test response compactors have been thoroughly examined through experiments 

conducted on large and complex industrial designs representing the latest technology nodes 

while varying with respect to design styles and scan methodologies. The new security prim-

itives, on the other hand, have been verified using batteries of statistical tests, including those 

provided by National Institute of Standards and Technology (NIST) and BSI - the German 

IT security certification authority. 
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STRESZCZENIE 

W dynamicznie rozwijającej się domenie scalonych układów cyfrowych, procesy ich wytwa-

rzania umożliwiły dostarczanie układów o bezprecedensowej złożoności z miliardami tran-

zystorów umieszczonymi na pojedynczej matrycy krzemowej. Niestety, w związku z bardzo 

małymi rozmiarami elementów półprzewodnikowych, nowe technologie są niezwykle wraż-

liwe i podatne na nowe rodzaje uszkodzeń. Układy scalone używane w przemyśle motoryza-

cyjnym, medycynie, w centrach danych oraz w wielu innych zastosowaniach muszą być te-

stowane przez cały okres ich eksploatacji, aby uniknąć nieprawidłowego działania spowodo-

wanego m.in. starzeniem się układu. Deterministyczne testowanie systemowe to jedno z naj-

bardziej obiecujących rozwiązań, pozwalających na wykrywanie uszkodzeń w trakcie eks-

ploatacji najnowszych układów scalonych. Takie podejście umożliwia znaczne podniesienie 

jakości testowania, jednak może jednocześnie zostać wykorzystane do nielegalnego zidenty-

fikowania wewnętrznej struktury lub funkcjonalności układu. Zabezpieczenie urządzeń elek-

tronicznych staje się niezbędne, szczególnie w obliczu rosnącej liczby zagrożeń związanej z 

cyberbezpieczeństwem. Narzędzia testujące w układach scalonych muszą być w szczególno-

ści chronione przed nieautoryzowanym dostępem i innymi działaniami o wrogim charakte-

rze. W związku z przedstawionymi wymaganiami w pracy przedstawiono rozwiązania, które 

koncentrują się na dwóch istotnych aspektach deterministycznego testowania wbudowanego: 

zaawansowanej kompakcji (redukcji) odpowiedzi testowych oraz bezpieczeństwie narzędzi 

testujących. 

W pierwszej części rozprawy podano metody eliminacji stanów nieznanych dla kom-

pakcji odpowiedzi testowych. Pierwsze rozwiązanie zostało zaprojektowane dla wbudowa-

nego testu, opartego o pseudolosowe wektory testowe. Zaproponowane podejście umożliwia 

również kompakcję odpowiedzi testowych wygenerowanych przez ścieżki testujące, które 

pobierają dane o uszkodzeniach w każdym cyklu zegara. Drugie rozwiązanie jest ściśle zin-

tegrowane z wbudowanym w system deterministycznym testowaniem. W rezultacie stero-

wanie dla nowego kompaktora pochodzi z umieszczonego na chipie dekompresora danych. 

Poza szczegółami dotyczącymi projektowania układów maskujących stany nieznane, w 

pracy przedstawione zostały również zasady kodowania danych sterujących kompaktorami. 

W drugiej części rozprawy przedstawione zostały nowe techniki kryptograficzne, 

które mogą stanowić bazę dla sprzętowego rozwiązania zapewniającego obronę infrastruk-

tury testującej przed niepożądanym dostępem. Ta część rozpoczyna się wprowadzeniem hy-

brydowego generatora pierścieniowego. Wśród kilku zastosowań tego układu, w pracy za-

proponowano trzy nowe moduły kryptograficzne: kryptograficzną funkcję skrótu,  generator 

dla potrzeb szyfrowania strumieniowego oraz sprzętowy generator liczb prawdziwie loso-

wych. Następnie zostały one wykorzystane w ostatnim rozdziale pracy, gdzie zapropono-

wano sprzętowe rozwiązanie, które zapewnia protokół uwierzytelniania oparty o koncepcję 

wyzwania/odpowiedzi. Przedstawiona metoda wymaga niewielkiej ilości miejsca na ukła-

dzie scalonym, działa przy bardzo wysokich częstotliwościach oraz jest w pełni kompaty-

bilna z narzędziami projektowania układów scalonych. Chociaż jest on głównie skierowany 

do układów scalonych wykorzystujących pakietowe przesyłanie danych testowych, propo-

nowana metoda może również poprawić bezpieczeństwo innych złączy testujących. 
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Metody kompakcji odpowiedzi testowych przedstawione w pracy zweryfikowano 

eksperymentalnie za pomocą opracowanego przez autora oryginalnego oprogramowania, bę-

dącego rozszerzeniem istniejących narzędzi komercyjnych. W eksperymentach wykorzy-

stano produkowane współcześnie cyfrowe układy scalone. Nowe rozwiązania kryptogra-

ficzne zostały zweryfikowane za pomocą testów statystycznych, w tym opracowanych przez 

amerykański National Institute of Standards and Technology (NIST) oraz BSI - niemiecką 

instytucję certyfikującą bezpieczeństwo informatyczne. 
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1. Introduction 

As can be easily shown, beyond any doubt, the semiconductor industry is ever evolving, with 

new integrated circuits (ICs) and their updates coming out all the time. For more than half a 

century, Gordon Moore’s eponymous law [119] has well described (and helped drive) steady 

and staggeringly fast progress in computing technology. This unprecedented pace of micro-

electronic miniaturization has led to billions of tiny transistors put on single silicon dies. As 

ICs are becoming increasingly complex and densely structured, so are physical imperfections 

whose likelihood of occurrence within ICs is raising alarmingly. They cause defects of vari-

ous types that may compromise circuits, have a detrimental impact on design performance, 

and inevitably result in system malfunctions. In order to deliver reliable products, vendors 

need to test ICs during their manufacturing. In the vast majority of cases, however, it will not 

suffice to ensure that microchips will function properly throughout their expected lifespan. 

Indeed, in a wide range of industries, including automotive, healthcare, telecommunications, 

space, defense, and consumer electronics, it is mandatory to thoroughly test designs during 

system operations to avoid errors attributed to, for example, post-deployment silicon aging. 

In another application area, cloud service providers have reported so-called silent data cor-

ruption errors caused by subtle IC defects escaping manufacturing tests and producing faulty 

results only occasionally which makes them extremely difficult to find. It appears that the 

roots of these sporadic software failures have been traced to timing-related faults in hardware 

where the performance of transistors may change with varying environmental conditions 

while running application software. It has raised a call for not only high quality manufactur-

ing tests but also in-system and in-field tests of comparable quality.  

Traditionally, deterministic structural tests are used to achieve high quality in chip 

manufacturing, whereas in-system tests rely on built-in self-test (BIST). Unfortunately, the 

test quality BIST attains may not be sufficient, primarily due to the pseudorandom test pat-

terns it deploys. Although test points and reseeding of test generators may be helpful in cer-

tain cases, logic BIST is usually unable to reach fault coverage visibly higher than 90%. 

Moreover, an acceptable fault coverage by virtue of pseudorandom patterns can only be ob-

tained for certain types of failures. On the other hand, conventional automatic test pattern 

generation (ATPG) is capable of working with much more comprehensive fault models (see, 

for example, cell-aware tests), and it typically achieves a near complete fault coverage. Nev-

ertheless, while automatic test equipment (ATE) employed during the IC production phase 

can easily handle deterministic test data, the cost of storing the same data directly on a chip 

is often unacceptable. This dichotomy eventually gave rise to a new technology – determin-

istic in-system test (DIST) – that combines the quality of ATPG-produced stimuli with a 

BIST-like paradigm of on-chip test application and test response evaluation. It satisfies both 

in-field and high-quality test requirements, necessary to ensure reliable operations of ICs 

throughout their lifespan.   
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DIST begins to play an essential role in safety-critical applications, in large data cen-

ters, or in monitoring silicon aging, to name just a few. These ecosystems require periodic, 

high-quality tests to assure desired test coverage and short test application, especially in de-

signs that must test themselves when operating. For deterministic tests to be in-system appli-

cable, multi-million-bit test responses with often unavoidable unknown (X) values have to 

be reduced to small signatures. Typically, X states degrade test results, and thus test response 

compaction schemes must be duly protected against their negative impact. This is especially 

true for time compactors, such as multiple-input signature registers (MISRs), whose feedback 

allows X’s to quickly proliferate. Since contaminated signatures render test useless, test re-

sponse compactors require some form of shielding. As a response to these challenges, this 

thesis presents two X-masking solutions. The first one is designed to work with a novel logic 

BIST scheme that features a per-cycle capture mode [118]. The second technique has been 

customized  to handle test responses in DIST-like environments.  

Thanks to deterministic stimuli and optimized X-masking circuitry, DIST can ensure 

very high test quality, also for complex SoC designs. Unfortunately, the very same test solu-

tions may enable malicious activities. Scan-based attacks are considered a serious threat [46] 

[181], even though test compression and the Streaming Scan Network (SSN) technology [40] 

can partially combat security concerns by, for example, scrambling test data. Other counter-

measures aimed at protecting test interfaces raise concerns regarding their complexity, both 

in terms of silicon area and the impact on a design flow. To address these concerns, the sec-

ond part of the thesis presents new security primitives that can be used to create a hardware 

root of trust (RoT) capable of defending test infrastructures, specifically those based on SSN.  

The remainder of the thesis is organized as follows. Chapter 2 provides a brief overview 

of the state-of-the-art X-masking solutions. Having defined requirements for a reliable test 

response compaction scheme, Chapter 3 presents maXpress, a new modular X-tolerant com-

pactor that is applicable to LBIST with the observation scan technology [118]. In particular, 

it employs dedicated selectors and scan gaters to mask unknown states within redefinable 

groups of scan chains and during designated scan shift cycles. To limit additional test data 

volume, the scheme allows a predefined number of patterns to share the same control settings. 

X-masking discussed in Chapter 4, built on certain modules of maXpress, is tailored to a 

DIST environment. Here, the masking controls are reloaded once per pattern and decoded 

using an Embedded Deterministic Test (EDT) [146] decompressor. Additionally, the scheme 

involves the next level of masking that requires a very small amount of variables to observe 

most of the easy-to-detect faults. Chapters 3 and 4 are complemented by experimental results 

obtained for both schemes and several large and complex industrial designs.  

Chapter 5 opens the second part of the thesis. It brings back common security issues 

implied by IC testing and recalls techniques developed to secure test infrastructure. It also 

briefly reviews state-of-the-art cryptographic hash functions and stream ciphers. Chapter 6 is 

devoted to hybrid ring generators (HRG) – structurally enhanced ring generators [121]. 
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Although HGRs can be used as efficient test response compactors and programable pseu-

dorandom pattern generators, they have been primarily designed as key components of a new 

lightweight cryptographic hash function introduced in Chapter 7 and a test data stream cipher 

presented in Chapter 8. Chapter 9 describes a new lightweight true random number generator 

that leverages the benefits of both the timing jitter of a single multiple-output ring oscillator 

and a high-speed ring generator (or a hybrid ring generator). New cryptographic primitives 

of Chapters 7, 8, and 9 are comprehensively evaluated using a variety of statistical tests, 

including the NIST and AIS-31 test suites. Finally, a hardware root of trust destined for the 

SSN-based designs is presented in Chapter 10. It takes advantage of security primitives pro-

posed in the previous chapters and provides scalable and secure solutions for the authentica-

tion protocol between a chip and a secure server. The thesis concludes with Chapter 11. 
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2. Unknown states and design for testability 

The semiconductor industry demand for test data compression has not slowed down since its 

first introduction to the market in 2001. In fact, test response compaction, in conjunction with 

stimuli compression, continues to play a crucial role in handling test data volume growth. 

Although development of compaction schemes reflects ever-changing needs of many appli-

cation domains, reliable test response compactors are expected to (1) maintain very high 

compaction ratios, (2) provide ability to detect a variety of failures found in real silicon, and 

(3) assure design simplicity. This can only be achieved provided a compactor is capable of 

preserving observability of the vast majority of scan cells for a variety of unknown (X) states, 

which are increasingly often identified as having potential for rendering test useless. The 

presence of X states is attributed to uninitialized memories, non-scan flip-flops, bus conten-

tions, floating buses, internal three-state logic, unwrapped analog circuitry, false paths, cross-

domain paths, or paths with timing closure problems. X states may also show up due to last-

minute timing violations associated with missing constraints, design issues, or engineering 

change orders. In many scan-based designs, X states, once captured in scan cells, are subse-

quently injected into a test response compactor where they can severely affect test results. 

For example, Xs can result in a loss of test coverage (TC) if not handled properly and tend to 

increase pattern counts required to test a device thoroughly. As it is vital to control compactor 

operations with a minimal amount of additional data having no negative impact on the effec-

tive test compression, this chapter will briefly revisit certain test schemes and methods to 

 

Figure 2.1 X-value circulation in a four-bit MISR. 
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identify potential areas of improvement for existing schemes that face the future requirements 

of deep submicron IC testing.  

2.1  Impact on test response compaction 

As already mentioned, unknown states, once injected into test response compactors, may 

render the outcomes of a test unusable, especially if one deploys a time compactor where X 

states quickly multiply (due to a feedback fan-out), contaminate a signature, and stay there 

until a read out operation. Usually, the time compactors are based on linear feedback shift 

registers (LFSRs) that receive test responses through parallel inputs to finally form a structure 

known as a multiple-input signature register (MISR). Fig. 2.1 is an example of how a single 

X-value can damage a test response produced by a 4-bit MISR. 

 First, the faulty effect (D-value1) is injected during the second clock cycle. Once an X 

state enters the MISR in the fourth cycle, it overwrites the faulty effect only after the next 

seven cycles. Clearly, in this case, the test will not expose any faults. In another outcome, a 

MISR may contain both X-values and errors. However, every X-state occurring in a final 

signature doubles the required number of golden signatures (signatures corresponding to a 

fault-free design to be compared with the signature generated by the compactor). As shown 

 

1 The use of term D-value (or D, for brevity) follows the convention originally introduced in a seminal 

paper of P. Roth on D algorithm [157]. 

 

Figure 2.2 Golden signatures for a MISR with 0, 1, 2, and 3 X-states. 
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in Fig. 2.2, three X states placed in three different MISR locations would increase the number 

of potential golden signatures from one to eight. It is therefore essential to ensure that data 

injected into the MISR or any other time compactor are X free. While in certain cases designs 

can be X-clean, it is usually necessary to eliminate all X values by deploying an additional 

X-masking logic. 

In contrast to time compaction, its combinational counterparts do not employ memory 

elements to collect test responses but process them by means of, for example, XOR trees 

[28]. An example of an eight-input and three-output combinational compactor is shown in 

Fig. 2.3a. Three XOR gates are used there to compact responses from eight scan chains to 

obtain a 2.67x compaction ratio, i.e., the ratio of the number of scan chains and the number 

of compactor's outputs. Even though responses are not accumulated timewise, Xs can still 

dominate errors when observed in the same cycle. Therefore, to preserve D-values, each scan 

chain must be connected to at least two outputs of a compactor.  

Such a solution has been used in the X-compact [114], where results from each scan 

chain reach three outputs in parallel. As shown in Fig. 2.3b, even though a compactor receives 

both a single X and a single D, the error can still be observed on two out of five compactor 

outputs. The X-compact tolerance of unknown values highly depends on the compaction ratio 

[114]. To maintain its acceptable degree, this scheme can typically handle just a single X 

within a single cycle. Such tolerance is usually insufficient; hence, there have been many 

 

Figure 2.3 (a) Space compaction using linear compactor with eight inputs and three outputs [28]; 

(b) X-compact [114] with eight inputs and five outputs. 
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solutions proposed over the years aimed at reducing the negative impact of unknown values 

on test outcomes. 

2.2  X-tolerant compactors 

As documented by the scholarly literature, several works have been tackling design of so-

called X-tolerant compactors. In principle, these devices do not eliminate Xs in their entirety. 

Instead, they are capable of preserving erroneous results provided the amount of Xs reaching 

a compactor does not exceed a prespecified upper limit. For example, a convolutional com-

pactor [143], [151] employs a finite memory to buffer data from the scan chains for a few 

shift cycles. The corresponding design principles, based on the Steiner systems [38], signifi-

cantly reduce the probability of error cancellation. As shown in Fig 2.4, every scan chain is 

connected to three different memory elements. Consequently, an error cannot be masked by 

a single X, and any pair or odd number of errors cannot mask each other. Depending on the 

convolutional compactor's configuration (and its hardware footprint), more than one X can 

be tolerated at a time, while the compaction ratios remain relatively high. 

 Another solution [115] combines a weighted pseudorandom pattern generator (PRPG) 

with an X-tolerant MISR. Here, the signature analyzers are designed with the help of sto-

chastic coding. This method results in high probability of X-masking and is the X-tolerance 

basis. Yet another MISR-based scheme uses a programmable XOR network [178]. The con-

trols provided to this circuitry are obtained by solving linear equations for a set of MISR bits 

that, when XORed together, produce an X-cancelling combination. An extra phase shifter 

placed between scan chains and the MISR reduces a shift correlation of test response values 

and decreases the possibility of blocking faulty effects as a side effect of X-cancelling. An-

other group of solutions [130], [166] is based on error-correcting codes, such as Hamming 

 

Figure 2.4 Convolutional compactor [151] with sixteen inputs and two outputs. 
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and BCH codes, where probability of error detection in the presence of several Xs could be 

increased by adjusting a check word width. 

 While X-tolerant compactors can handle up to several unknown values in a single cy-

cle, they are not designed to withstand a sudden burst of Xs. To resolve this problem and 

reduce the number of Xs getting into scan chains, one can identify potential X-sources and 

block them by utilizing X-bounding logic (Fig 2.5). With an additional AND gate, non-scan 

flip-flops, floating ports, or analog block outputs can be isolated during a test mode. How-

ever, not all X-sources can be treated this way. Furthermore, additional gating logic can neg-

atively impact both timing closure and silicon area. Consequently, the presence of X-states 

in test responses is inevitable.  

2.3  Selective masking of scan chains  

As demonstrated in Chapter 2.1, time compactors require a protective mechanism to com-

pletely block (mask) X states before they reach the compactors’ memory elements. Typically, 

this is accomplished by virtue of schemes monitoring scan chains selectively. Usually, they 

employ a dedicated circuitry to mask selected unload values so that Xs do not reach a com-

pactor. As a result, the X-masking schemes capable of observing scan chains in a per pattern 

or/and per cycle manner have been extensively researched for years. The proposed solutions 

offer tradeoffs between a silicon area overhead, a potential fault coverage drop caused by 

inadvertent masking of faulty effects, and the amount of additional test data used to control 

X-masking circuitry. In OPMISR [10], [11], selected unload values can be masked, prevent-

ing X states from reaching a MISR. As shown in Fig. 2.6a, external signals are used to control 

mask logic, a MISR state, and the direction of SI/O pins. The EDT technology [146] uses a 

selective compactor [172] to mask a given number of scan chains by deploying a register file 

encoding targeted scan chains. In addition to the masking logic, it uses an enhanced ATPG 

algorithm capable of handling Xs. In [128], scan chains are gated in a per-cycle fashion 

thanks to the LFSR reseeding. To minimize the linear dependencies between the masking 

signals, and to reduce the probability of blocking X-free responses, mask data can be pro-

cessed through phase shifters and AND gates, as presented in [184]. Fig. 2.6b shows that the 

 

Figure 2.5 X-bounding logic. 
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mask bits must be set to 1 to replace Xs with known values. Furthermore, the X-compact is 

used to mask X’s that could not be blocked during the previous stage. 

The X-Block of [189] uses an LFSR to generate controls for the masking logic. Simi-

larly to the solution of [128], this approach also employs LFSR reseeding to compress mask-

ing data. Furthermore, it targets single-detected faults, thus reducing the amount of control 

data. A hybrid selector presented in [194] combines a PRPG-based method to block Xs every 

shift cycle with a so-called "Xchains Register" to mask scan chains affected by Xs for several 

test patterns. It also works with a masking-aware test generation algorithm to target faults 

that can be observed outside of blocked groups of scan chains. An X-masking logic of [173] 

is aimed at preserving the coverage of unmodeled defects, and its controls can be provided 

by any LBIST or test compression scheme. Another test-dependent masking circuitry is pro-

posed in [137], where unknown values are replaced with a known constant by dedicated 

comparison blocks. A channel masking scheme shown in [35] offers three different channel 

masking states that either disable all scan chains or select those belonging to one of two 

groups at the price of possible over-masking. The X-Press scheme (used by EDT) [149], 

 

Figure 2.7 X-Press [149] test response compactor. 

 

Figure 2.6 (a) OPMISR test architecture with bidirectional scan pins [11]; 

(b) LFSR-based test compactor with mask bits generated through phase shifter and AND gates [184]. 
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[150] combines two levels of masking. As shown in Fig 2.7, an X can be blocked in a twofold 

manner: either by a per-chain masking circuitry or with the overdrive register. Such an ap-

proach leads to a high probability of linear independence between mask bits – if X cannot be 

blocked by the first stage, it might be canceled within the second stage. The controls for both 

modules are obtained with a scan chain ranking algorithm based on the locations of observa-

tion points and X values.  

A work presented in [42] can block all X states with a per-cycle resolution and is ca-

pable of reusing control data for various test responses. In general, it is based on a finding 

that many test responses in scan-based designs feature identical or similar X profiles, with 

Xs grouped in adjacent areas of scan chains. A comprehensive scheme working with PRPG, 

MISR, and X-masking logic that can be deployed in both scan-based test compression and 

LBIST (including hybrid solutions) has been presented in a sequence of works [192]–[197]. 

Recently, a hybrid space compactor has been introduced in [105] that combines a pseudoran-

dom control of a stochastic test response compaction of [115] with a deterministic compac-

tion phase to cope with high X fill rates varying with frequencies of faster-than-at-speed tests 

[77] used to detect small delay faults. Other techniques to block X states are disclosed in 

patents; examples may include [25], [126], and [148]. 

Finally, X-masking schemes for hybrid applications of test compression and LBIST 

must respond to yet another number of challenges and needs of in-field and in-system test. A 

major source of complexity in this scenario comes from the requirement to control scan se-

lection with a low amount of data while handling a wide range of static and dynamic X-state 

profiles. Many unknown states, even if clustered, are typically restrained from capturing by, 

for example, DFT logic inserted during design implementation. However, the last-minute 

timing violations can show up anywhere in a design, and the resultant Xs are difficult to block 

at this very late stage of a development cycle. 

2.4  Deterministic in-system test and X-masking 

Another challenge for X-masking schemes is related to the foreseen importance of the DIST, 

where deterministic test patterns are combined with in-system test compaction. With LBIST's 

working only with basic fault models and reaching only around 90% fault coverage, DIST is 

expected to gain adoption over the coming years. For example, safety-critical devices, com-

pliant with regulations such as the functional safety standard ISO 26262 must thoroughly test 

themselves during system operations, and should a defect occur, they must put the entire 

system in a safe state to avoid a system failure. Depending on the safety goal, desired fault 

coverage may reach over 99%, which may not be achievable by a regular LBIST.  

It appears that deterministic-quality test patterns are also needed to handle SDC failures 

that have recently attracted a lot of interest [47], [54], [80], [165]. Their main symptoms are 

typically subtle, erroneous computations. When such a failure is not detected, it can quickly 
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spread across several services, leaving no trace or information in system logs about the de-

fect's origin. SDC failures are usually caused by small-delay faults that can be only targeted 

by timing-aware patterns. Those test patterns must be applied periodically at various stages 

of a device's life span. That creates new test problems, especially when considering defects 

manifesting in corner cases or after post-deployment aging. Clearly, a deterministic test is 

the only known method to guarantee the detection of these types of defects. To be used in-

system, the deterministic test should also enable schemes based on the input-streaming-only 

approach that reduces the volume of test data by employing advanced test compression tech-

niques [83], [96], and replacing all explicit test responses with a MISR-produced signature.  

The reduction of test data attributed to a MISR-based compaction is meaningful even 

within a single circuit. The benefits are even more appreciable when a state-of-the-art X-

masking scheme is applied in System-on-Chip (SoC) designs comprising hundreds of cores 

(often forming 3D stacks). In addition, SoCs may save a substantial number of resources by 

giving up on output channels that can be reused to strengthen the input test interface. It is a 

vital commodity when testing SoC designs through, for example, an SSN [40], i.e., a bus-

based scan data distribution architecture that enables high-speed test data delivery and facil-

itates testing of many cores with a constant cost (see also Fig. 2.8, where tests are delivered 

as packetized scan data on the SSN bus, and streamed through the Streaming Scan Host 

nodes).  

2.5  Novel X-masking solutions 

As shown in the previous chapters, X-masking hardware is an essential part of many scan 

selection schemes. It is, therefore, mandatory to reduce its area, especially in contemporary 

designs with hundreds or thousands of scan chains that require programmable and very flex-

ible selection algorithms. To respond to these concerns, the next chapter presents a new X-

 

Figure 2.8 Deterministic in-system test setup applied to a 6-core SoC design using SSN [40]. 
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tolerant tunable compactor termed maXpress. Its modular scan selection logic allows mask-

ing X states within controllable groups of scan chains and scan shift cycles. The proposed 

technique helps to tolerate X's discovered very late during the design cycle so that LBIST 

can still provide a desired TC. Furthermore, to facilitate an in-system test whose TC is achiev-

able in a much shorter time than that of a conventional LBIST, the presented scheme can 

work with hybrid test points that capture fault effects every shift cycle into flip-flops forming 

separate observation scan chains [118]. Finally, Chapter 3 presents methods to find the best 

control parameter settings for the proposed scan selection architecture. 

A solution presented in Chapter 3 is intended for low-cost logic BIST applications that 

typically achieve 90% coverage of simple fault models with a minimal amount of test data to 

be stored. However, efficient as it is in LBIST, maXpress requires additional and new fea-

tures to work with DIST. This is because of a gap between LBIST goals and DIST require-

ments manifested in: 

• the ability to target advanced fault models and attain a maximal possible TC (above 

99% of testable faults), 

• the aggressive test time window paired with the ability to run periodic and frequent 

tests in real time (especially in the automotive area),  

• reasonable test storage – it might be of concern, if there is a need to accommodate not 

only stuck-at faults, but also transition, delay, or cell-aware failures,  

• an option to update tests based on defects seen in field returns or in new technology 

nodes,  

• the ability to test selected (idle) cores while others are in a functional mode or to 

perform fault diagnosis with core-level resolution (it applies to multiple-core designs 

using IJTAG and SSN protocols – see Fig. 2.8).  

The X-masking scheme capable of working within the framework of DIST is presented in 

Chapter 4. While building on a highly scalable, layout-friendly, and test-set independent scan 

chain selection approach, the new scheme allows one to selectively block all X states. Work-

ing synergistically with methods to automate settings of the scheme controls, it offers com-

plete observability of errors based on EDT-encoded test data.  
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3. X-tolerant compactor for observation scan 

This chapter presents maXpress - an X-tolerant, modular, and programmable compactor 

[101], [102], deploying a new scan chain selection mechanism capable of completely mask-

ing X states, as required by many in-system or one-directional streaming test applications. 

The proposed scheme also supports separate observation scan chains that, in contrast to con-

ventional scan, capture faulty effects every shift cycle while their content is gradually shifted 

into a compactor that also receives values from regular chains. In addition to a new layout-

friendly architecture, algorithms to automate control settings based on scan chain selection 

rules deployed to suppress X states are presented.  

3.1  Compactor’s circuitry 

The proposed scheme is a part of an on-chip test environment with multiple scan chains. It is 

inserted outside the design core and consists of a few blocks, as shown in Fig. 3.1. A test 

response compactor consists of an MISR, an XOR tree, and a highly modular X-masking 

logic (the gray area in the figure) that outputs scan chain gating signals so that X states orig-

inating at various scan cells do not reach the MISR while observability of the remaining scan 

cells is preserved to such an extent that the test quality remains uncompromised. 

 

Figure 3.1 maXpress overall architecture. 
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The actual masking of the regular scan chains is carried out by scan gaters - devices 

located between the internal scan chain outputs and an MISR, often driven by an XOR tree. 

Essentially, these devices partition scan chains into disjoint groups of almost equal size, and, 

if needed, block test results leaving chains within each group before they could enter a test 

response compaction circuitry. 

The scan gater (Fig. 3.2) is comprised of an n-bit gating logic, where n is the number 

of scan chains served by a single scan gater. Clearly, if s is the total number of scan chains, 

then the total number of scan groups (scan gaters) is given by g = s/n. The actual gating logic 

is composed of n two-input AND gates, and n multiplexers. All scan gaters are driven by a 

common enable line E which works with those scan gaters that have not been selected 

through the configuration register (CR, see below). Setting a configuration flip-flop to 0 dis-

ables the corresponding scan gater, and the actual masking value depends exclusively on 

signal E. If E = 1, then the scan gater remains transparent and channels test responses directly 

to the compactor, thus making the associated scan chains fully observable. Having E set to 

0, however, blocks all scan chains linked with the disabled scan gaters. Two auxiliary flops 

supply signal E, as shown in Fig. 3.1. One of them acts as a shadow register that saves the 

current value of E while reloading its new content in parallel with a shift-in of the next data.  

The scan gaters are driven by a g-bit CR, a red-colored item in Fig. 3.1. The purpose 

of this device is to enable any desired combination of scan gaters. Since every flip-flop of 

CR serves a single designated scan gater, it eliminates additional address registers and the 

corresponding converters. Furthermore, there is no need to use multiple-input gates within 

scan gaters, and there is no need to broadcast scan gaters address data. The CR is daisy-

 

Figure 3.2 Scan gater serving n = 8 scan chains. 
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chained with the remaining on-chip test instruments discussed in the following. The CR con-

tent is typically shared by several test patterns in a row. As a result, it is reloaded only occa-

sionally and thus is sequestered behind a configuration insertion bit (CIB), as shown in Fig. 

3.3 in the spirit of the IEEE 1687 (IJTAG) standard whose segment insertion bits (SIBs) 

allow access to embedded instruments of reconfigurable scan chains [206]. CIB allows on-

demand access to the CR and interfaces the same register with a single channel used to seed 

PRPG, and to deliver other test-related data. If the CIB flip-flop is set to 0, CIB is set up to 

bypass the CR and allows only registers B (see Chapter 3.2) and E to be updated. Indeed, the 

CR is unaffected in this mode by any data transfer due to clock gating. Once asserted, the 

CIB flip-flop routes test data to the CR, at the same time enabling a clock signal to facilitate 

a shift functionality of the CR. The shift path is established from the input channel, through 

the register B, into the CR, and then the register E. All changes in the CIB flip-flop status are 

done through the CIB enable input that allows to capture the first control bit of the input 

sequence. This bit indicates whether the following sequence is to update the X-masking logic 

configuration, or it is just a new content of other registers. 

Enabled scan gaters (their configuration bits are set to 1) receive the actual masking 

values from a selector through a bus S, as shown in Figs. 3.1 and 3.2 (here S accommodates 

8 bits). As can be seen, each scan chain can be individually blocked provided the correspond-

ing selector output is 0. The selector outputs are shared by all scan gaters, so having several 

gaters enabled results in blocking the corresponding scan chains in all involved groups. It is 

worth noting that the scan gaters and the selector lend themselves very well to scenarios 

demanding very aggressive masking of scan chains for the purpose of observing very few or 

 

Figure 3.3 Configuration insertion bit. 
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just a single scan chain. Fig. 3.4 shows a simple summary of the maXpress control settings 

for a single scan gater. We begin with a CR bit CR. If set to 0, then all scan chains of the 

associated group are either masked (E = 0) or connected to a compactor (E = 1). When CR = 

1, the masking status is decided by the selector such that a given scan chain k is blocked 

provided Sk = 0, or observed otherwise (Sk = 1).  

To reduce pseudorandom PCs, maXpress may also work with observation scan chains 

that capture faulty effects, provided by hybrid observation test points, every shift cycle [118], 

[123]. Essentially, the observation chains accumulate test responses using XOR gates placed 

in the front of their scan cells (Fig. 3.1) in a manner similar to that of convolutional com-

pactors. It allows one to encapsulate shift and capture functionality within a single clock 

cycle. The content of observation chains is continuously shifted into the compactor shared 

with the remaining chains. The observation scan cells do not drive any gates of the original 

design to prevent sequential dependencies between subsequent patterns occurring in these 

chains and to avoid over-testing. Selection of test points to elevate TC of pseudorandom 

patterns follows the procedure presented in [118]. 

Because of their activity, it is fair to expect that the observation chains may capture a 

significant fraction of unknown states. Consequently, these scan chains should not be 

grouped, and have to be masked on an individual basis. A scan gater for n observation chains 

boils down to a set of n two-input AND gates. It receives the masking signals from a selector 

similar to that of the regular scan chains. However, per cycle selection data driving the se-

lector are obtained in a different fashion due to much more aggressive X-masking require-

ments. It is worth noting that the presented approach advocates orthogonal handling of regu-

lar and observation chains. It makes it much easier to adapt the proposed solution in designs 

with no observation scan chains. 

 

Figure 3.4 maXpress controls for a single scan gater. 
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We will now discuss the design of a selector which contains two n-bit registers B-off 

and B-on and combinational logic to control and mask scan chains within enabled groups. 

Recall that all scan gaters receive the same controls. The selector of Fig. 3.5 assumes that 

each group consists of eight scan chains, similarly as in Fig. 3.2. There are two groups of the 

selector inputs. The inputs denoted as S gate individually the corresponding scan chains in a 

per-cycle mode unless the content of registers B-off and B-on decides otherwise. Indeed, 

each scan chain is assigned a pair of control bits that determine its masking status, as shown 

in Table 3.1. In response to suitable 0-signals on bits bk of both registers, the selector output 

k is set to 0, and thus scan chain k is blocked for the period of a complete scan unload. As-

serting bit bk of register B-on makes scan chain k fully observable. Finally, setting bit bk of 

B-on to 0 and bit bk of B-off to 1 allows masking of scan chain k as required by the current 

status of input Sk (this is illustrated in Fig. 3.4 by the scan chain controlled by both 0 s and 1 

s). Note that B-off and B-on registers are updated via blockage inputs driven by a shadow 

register B, once per pattern or a group of patterns. 

It appears that the use of per-cycle controls is either relatively rare or involves a few 

scan chains only. Consequently, this type of data can be deterministically encoded and pro-

vided to the selector by a device referred to as a static-reseeding decompressor, or SR-de-

compressor for brevity. Its architecture is shown in Fig. 3.6a. Seeds of this small 

 

Figure 3.5 Selector block. 

Table 3.1 The selector settings. 

B-on B-off  

0 0 scan blocked 

1 x scan observed 

0 1 Sk per cycle 
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decompressor are delivered through the same single input that is used to initialize PRPG. 

Besides a ring generator and a phase shifter driving the selector inputs, a hold register is 

placed between those two devices. It helps in sustaining the selector inputs for more than a 

single clock cycle, while allowing the generator to change its internal state to ensure encoding 

of the next group of selection bits. Hence, one can repeat and pass on to the selector a given 

SR-decompressor state for a number of consecutive scan shift cycles. As is typical of isomet-

ric test compression [96], the SR-decompressor houses a circular template register. A 1-sig-

nal on its output allows the hold register to have the current content of the ring generator 

entered as its next state. Because of its size, the very same template is typically used multiple 

times within the duration of the same test pattern. Note that the ring generator and the tem-

plate register feature shadow registers that are daisy-chained with the remaining scheme test 

instruments.  

The SR-decompressor is capable of decoding selection patterns with additional reload 

points occurring as 1s in the template register to indicate when to update the hold register. It 

is worth noting that within this framework a selection solver assumes that a single equation 

is associated with all selection bits corresponding to the same output and covered by a given 

hold period. As a result, only bits of the period’s first cycle become the subject of encoding 

provided there is at least one such specified selection bit within that period. Experimental 

results indicate that up to 50% of specified bits (on average) are typically handled by the 

constant values of the hold periods rather than direct encoding, thus ensuring high encoding 

efficiency.  

 

Figure 3.6 (a) SR-decompressor with eight outputs and (b) CF-decompressor. 
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A selector working with the observation scan chains has the same structure as that of 

the selector shown in Fig. 3.5. It uses m-bit registers B-off and B-on, where m is the number 

of the observation chains. Similarly, the per-cycle selection data available on its inputs Sk are 

deterministically encoded and provided to the selector by a test data decompressor. However, 

in contrast to the regular chains, a continuous flow compression (and hence a CF-decompres-

sor) is used to facilitate encoding of a much larger number of masking signals. Compressed 

data for the CF-decompressor (stored on chip) are delivered through a separate input (or in-

puts) along with data feeding the update input of the hold register, as shown in Fig. 3.6b. 

3.2  Selection of controls 

The maXpress performance depends on a method employed to select scan gaters through the 

CR, and then individual scan chains by means of the selector and signal E. Having fault 

propagation sites and cells that capture X states (X-cells) associated with test responses, the 

following part now demonstrates how to automate selection of the appropriate maXpress 

controls. As the presented scheme is to work with LBIST, it has to mask all X’s while pre-

serving as many faulty sites as possible.  

To reduce test data volume, several successive test responses are expected to share the 

same control settings. Its selection begins, therefore, by superposing a predefined number of 

test responses, further referred to as a segment. The output patterns of Fig. 3.7 illustrate this 

process by using three groups of 8-bit long scan chains, each group comprising four chains. 

Red-filled circles indicate X-cells, whereas scan cells to which fault f propagates are labeled 

with number f. When superposing test responses, the following rules are observed. First of 

all, the status of X-cells is superimposed on the same cells in the remaining test responses of 

the same segment even if these cells are fault propagation sites. This is a collateral damage 

case, and it applies to faults 1, 2, and 3 in responses 1 and 2 of Fig. 3.7 (indicated by three 

 

Figure 3.7 Superposition of test responses. 
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red-circled cells). A fault that propagates to exactly the same cell a few times (for a given 

segment) is counted only once, as shown by grayed out scan cells that capture faults 6, 7, 8, 

and 9. However, if a fault propagates to different locations, all such scan cells yield a propa-

gation site count c of that fault. The resultant superposition of three test responses of Fig. 3.7 

is shown on the right-hand side of the same figure.  

The next step sets the CR. In terms of TC, this process is dependent on the value of 

signal E. Recall that setting E to 1 enables all scan chains that feed the compactor through 

disabled scan gaters (Fig. 3.4). Consequently, all scan chain groups that host X-cells must be 

enabled by having their CR flip-flops set to 1. It allows the actual X-masking by means of 

the selector module. CR flip-flops of the remaining groups are reset, as shown in Fig. 3.8 

where, for the sake of more comprehensive illustration, there are two extra X-free scan chain 

groups appended to the result of Fig. 3.7. Since the same selector-produced data drive all 

enabled scan gaters, the corresponding groups are merged once more. The X-cells are again 

superimposed on the corresponding cells hosted by other scan chains.  

The first row of the masking pattern (the right-hand side of Fig. 3.8) contains six X-

cells and a single site that captures fault 7. As fault 7 is also observed by two other sites in 

the last row, the first row can be blocked by setting bits b0 of the B-off and B-on registers to 

0, thus effectively gating the first chains of groups 0, 1, and 2. Furthermore, as there are no 

X-cells in the last row, setting b3 of B-on to 1 lets the fourth chains in groups 0, 1, and 2 to 

 

Figure 3.8 Finding maXpress controls for E = 1. 
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be observed in their entirety. Meanwhile, the two internal rows feature a mixture of X-cells 

and fault propagation sites. These rows are handled by the selector (recall that bits b1 and b2 

of the B-off and B-on registers must be set to 1 and 0, respectively) in such a way that X-

cells are masked, whereas faults 5 and 6 are let to go. There is no need to encode separately 

selection bits for faults 8 and 9, as these faults are observed in the last row. Savings like this 

one increase the likelihood of successful encoding of other selection bits.  

As can be easily verified, the above assignments let all faults but four enter the com-

pactor. However, we also need to consider another scenario where E is set to 0. Within this 

control, all scan chains governed by disabled scan gaters are blocked. Scan chains with X-

cells can be, therefore, masked either by means of the selector or by disabling certain scan 

gaters, while having E set to 0. This dual functionality may allow us to observe more failing 

scan cells than those of the approach presented previously (with E set to 1). For that, however, 

one would need to examine 2g different setups of the CR, where g is the number of scan 

gaters. And only after that one can decide which selection of enabled/disabled scan gaters 

delivers the best performance of maXpress. For the running example, consider the CR shown 

in Fig. 3.9 that disables scan gaters 0 and 2. Hence, all scan chains of groups 0 and 2 are 

blocked because of E = 0. The remaining groups are processed by applying the previously 

mentioned rules. As a result, faults 1–6 and 9 are observed. Note that in this case, there is no 

need to employ individual selection bits at all.  

 

Figure 3.9 Finding maXpress controls for E = 0. 
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3.3  Weights assignment 

Given hundreds of thousands of scan cells and millions of faults, a slow processing of long 

fault lists associated with scan cells (or scan cell lists associated with faults) is needed to 

determine the actual TC for a given content of the CR. To alleviate this problem and to avoid 

an exponential growth of the CR states, this register is set up through a greedy approach 

resembling a hill climbing paradigm. Moreover, lists of faults for propagation sites are re-

placed with the corresponding fault weights, and then weights of scan cells. 

A given fault’s weight w is the inverse of its propagation site count c, that is w = 1/c. 

This weight is linked with all different propagation sites of the fault. Within the superposition 

of test patterns, a scan cell receives a weight obtained by summing up all individual weights 

of faults propagating to this particular site. For example, fault 4 (Fig. 3.7) propagates to two 

different scan cells, so its weight equals 0.5. Similarly, fault 7, as reaching three different 

scan cells, gets 0.33. The result of superposing of the three responses of Fig. 3.7 in terms of 

weights is shown in Fig. 3.10. The last but one cell in the fourth scan chain gets the value of 

1 = 0.5 + 0.5 as a sum of weights associated with faults 8 and 9. X-cells get the 0-weight. 

Groups of weighted scan cells can be superposed in such a way that X-cells force 0-

weights on the corresponding cells in other groups, whereas weights of the remaining sites 

are obtained by summing up weights of the corresponding cells. Finally, the resultant group 

weight is equal to the sum of individual weights over all cells of that group. For example, the 

weights of the groups of Fig. 3.10 are equal to 1.3, 5.5, and 2.1, while the weight of a super-

posed group is going to be (as can be easily verified) 4.9. This metric is used as a primary 

figure of merit to assess the performance of the scheme in the selection settings procedure 

presented in the following passage.  

As soon as all cell weights are determined, finding the best setup of the CR proceeds 

as follows. Let H = [hg−1 ... h1 h0] be a g-bit binary vector representing the CR, i.e., hk = 1, if 

 

Figure 3.10 Scan cell weights. 
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kth stage of the register is set to 1. Starting with its randomly selected initial state, the first 

step is to compute a weight of the resultant group obtained by superposing groups associated 

with the enabled scan gaters, i.e., those for which hk = 1. Subsequently, the following process 

iterates. The current state of H is inverted, one bit at a time, to find the resultant weight of 

groups being superposed. Note that throughout this step, either an additional scan gater be-

comes enabled or a so-far-active scan gater gets disabled. Having determined the weights for 

all g inversions, we pick, in a greedy fashion, vector H with a bit whose flipping yields a 

weight higher than do any of the other bits. Then the procedure is repeated for the current 

state of H except the bit whose inversion was the most effective in the previous step. Alt-

hough one may need to compute weights up to g2 times, computations for all inversions are 

independent, and therefore can be easily run in parallel. The selection process continues until 

the method fails to produce a weight higher than the best value obtained so far and represent-

ing the current state of H. Typically, the above selection process is repeated a number of 

times, as a final result may depend on the initial (random) state of H. Given the ultimate 

solution, the obtained TC is used to compare this scenario against the approach with E = 1. 

In summary, it is immediately clear that every segment of test responses is deployed to 

arrive with a separate set of maXpress control settings. Fig. 3.11 sketches out the maXpress 

controls selection flow. First, all response patterns a segment is comprised of are superposed. 

For E = 1, it suffices to determine all groups that feature X-cells, set the CR flip-flops of 

these groups to 1, disable the remaining scan gaters, and merge all enabled groups into a 

single one. That allows computation of TC, i.e., the number of faults whose propagation sites 

have not been canceled out by X values. For E = 0, the greedy optimization procedure is used 

to determine the best setup of the CR with respect to TC. Having found the coverage numbers 

for both scenarios, we pick the one that yields better result and proceeds with finalizing the 

selector setup by assigning the appropriate values to the B-off and B-on registers, as well as 

by choosing the individual selection bits, whenever it is necessary. If the isometric compres-

sion is unable to encode all selection bits because of constraints imposed by available seed 

variables and the size of the test template, one should reduce the number of selection bits by 

gating the least crucial scan chains through setting the corresponding bits of registers B-off 

and B-on to 0.  

Interestingly, a large body of experimental evidence shows that a rate of setting E to 1 

versus having E de-asserted is clearly a circuit-dependent factor, and it is primarily deter-

mined by scan architecture, the number of the scan gaters, and the last but not least—the 

distribution of X states across test responses. Back to Fig. 3.11, if there are still test responses, 

the method goes back to form a new segment of patterns and to create their superposition. 

Otherwise, the procedure terminates. 
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3.4  Masking observation scan chains 

Whereas regular scan chains may capture X states only once per pattern, the observation scan 

chains can do that repeatedly in a per-cycle mode. As a result, a single X value may invalidate 

several faulty effects on its way to the serial output of a scan chain. This is illustrated in Fig. 

3.12 for a 4-bit observation chain.  

The left-hand part of the figure lists variables representing a circuit response that enters 

the observation scan either during regular capture cycle Ck (single-index variables ak, bk, ...), 

where k = 0, 1, 2, ..., or during scan shift cycle Skj (double-index variables akj, bkj, ...), where 

j = 0, 1, 2, 3. The variables are gradually XOR-ed, as indicated by the diagonals, to yield the 

final responses shown on the right-hand side of Fig. 3.12. Each variable represents either an 

X state (red circle) or a fault ID (blue circle). It is ignored if nothing has been injected into 

the observation scan at a particular location and time. Clearly, XOR-ing an X with another 

combination of variables yields X. Adding several fault IDs produces a list of faults being 

observed at the corresponding stage of the observation scan unless two fault IDs are identi-

cal—they cancel each other as a result of aliasing. Successive responses, corresponding to a 

given segment of test patterns, are then superposed, as shown in the figure, using the same 

rules as stated above (except of having the same ID fault several times; such a fault is counted 

only once as there is no error aliasing in the superposition process). 

 

Figure 3.11 Control setting selection flow. 
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Now the superposed test responses become the subject of the scan chain selection pro-

cess that partially resembles the approach presented earlier for the regular scan chains. First, 

we identify X-free observation chains and exclude them from further analysis altogether with 

faults propagating to these chains. They will be unconditionally observed by asserting the 

respective bits of the register B-on so as to reduce the encoding burden on the CF-decom-

pressor. For the remaining faults, using their propagation site counts c, every cell that cap-

tures a given fault is assigned a weight w = 1/c, as shown in Chapter 3.3 (a fault propagating 

multiple times to the same cell is counted once within a given segment of patterns). Recall 

that X-cells receive the value of 0. Moreover, cells that capture neither X nor an error are 

assigned a small, nonzero weight. The actual encoding phase begins by sorting a list L of the 

nonzero observation scan cells such that they are in order by largest weights. As with the 

regular scan chains, all per-cycle gating signals are represented by linear functions of mask 

variables injected into the CF-decompressor. Initially, the set of gating equations is com-

prised of expressions corresponding to all X-cells. Clearly, the right-hand sides of these equa-

tions are assigned the logic value of 0. The main loop of the encoding procedure expands the 

set of equations by adding an expression corresponding to the first element on the list L; then, 

it tries to solve the current set of equations and removes the first item from the list, continuing 

until the list is empty. If, at any stage, the equations are not solvable, then the newly added 

equation is deleted and the corresponding gating signal is discarded. Note that the right-hand 

sides of all equations taken from the list L are always assigned the logic value of 1. It is 

crucial to observe that equations representing both Xs and errors are not necessarily 

 

Figure 3.12 Superposition of signals in a 4-bit observation scan chain. 
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associated with their actual propagation sites. This is because of how the CF-decompressor 

hold register is updated. 

The encoding procedure partitions a superposed test response into several blocks com-

prising certain number of consecutive clock cycles in such a way that there are no observation 

scan chains that capture both Xs and errors inside the blocks. It allows one to repeat the same 

gating signal many times in succession by using the hold register storing a state that the ring 

generator entered at the beginning of a block. Hence, one can cost-effectively encode identi-

cal data such as clustered Xs or multiple errors. The block size is determined by the ability 

to encode data within its boundaries. The encoding process begins with a block and the cor-

responding state of a ring generator which should be applied first, and it gradually moves 

toward the end of a test response. As long as the gating signals can be encoded, the algorithm 

works by repeatedly increasing the size of the block, and by including successive equations. 

At some point, a solution may not exist anymore. This particular time frame is then assigned 

a new block (a reload point), and the procedure continues. It is worth noting that observation 

scan chains that capture exclusively X states are unconditionally blocked, as shown in Table 

3.1. The same rule applies to those observation chains that capture errors, but none of them 

have been eventually added to the set of gating equations. Finally, observation cells with 

small weights can also be taken into account, the encoding capacity permitting. It is possible 

to include unmodeled faults that may propagate to the observation scan chains, as well. 

3.5  Experimental results 

A. Regular scan chains  

This chapter reports several experiments with eight large industrial designs having all com-

ponents of the solution on a chip. In this section, the benchmark designs do not use the ob-

servation scan technology. The experimental results addressing the presence of the observa-

tion chains are presented in Section 3.5B. Table 3.2 lists major characteristics of test cases 

used in the experiments: the number of gates, the number of scan cells, and the scan archi-

tecture. Moreover, Table 3.2 contains the following metrics: 

1) the number of control and observation points used in each design, and the number of 

stuck-at faults;  

2) the error-fill rate, i.e., the fraction of scan cells that capture faulty effects, averaged over 

all test patterns;  

3) the total number of scan cells (X-cells) that capture, at least once, X states across all test 

patterns;  

4) the total number of scan chains (X-chains) that capture, at least once, X states across all 

test patterns;  
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5) the reference TC of 10 K pseudorandom patterns, recorded at the scan cell outputs, i.e., 

assuming that there is no test response compaction;  

6) the reference TC of 10 K pseudorandom patterns, recorded at the output of a compactor 

masking individually X-chains for a duration of their entire unload;  

7) the pseudorandom PC necessary to comply with the functional safety standard ISO 26262 

and its Automotive Safety Integrity Level D (ASIL D) ratings that call for the 90% TC 

target [79] (again, assuming no test response compaction). 

It is worth noting that errors may occur in clusters; local error-fill rates can be therefore 

higher than the average values. In particular, it applies to the first groups of patterns that have 

much higher error fill rates than the remaining responses. 

Table 3.3 summarizes the results of the experiments with the proposed scan selection 

logic enabled. For each circuit, the following information is provided: 

1) the TC of 10 K pseudorandom test patterns;  

2) the PC of tests needed to regain the 90% TC target;  

3) the total number of control bits (CB) per segment necessary to operate maXpress; CB 

multiplied by the number of segments gives the total number of control bits;  

4) the second (real) metric ρ in the column CB is the number of segments that maXpress 

can deploy, if the total number of maXpress-used control bits was the same as that of a 

reference scheme masking individually s scan chains for a duration of their unload, i.e., 

ρ = s/CB;  

5) average observability (OB+) of scan cells which capture neither X states nor errors; this 

figure of merit can be used to assess fortuitous TC, i.e., the odds that an unmodeled fault 

can be detected if it propagates to scan cells which are not observed on purpose. 

Table 3.2 Circuit characteristics. 

  Gates 
Scan 
cells 

Scan 
Test points 

Stuck-at faults 
Error-fill 

rate 
X-cells X-chains 

Test cov-
erage 

Test cov-

erage 

w/Xs 

Pattern 

count 

ISO CP OP 

D1 1.30M 76.9K 1,200  65 1,029 2,362 3,925,255 4.94% 82 60 91.00% 89.41% 5,120 

D2 1.34M 78.1K 1,200  66 976 2,479 3,876,452 5.15% 83 48 91.17% 89.57% 4,608 

D3 1.12M 86.9K 528  169 952 1,818 2,425,160 2.34% 96 11 91.80% 89.77% 4,928 

D4 1.75M 119.3K 729  175 1,229 1,183 3,176,430 2.54% 126 51 91.79% 87.43% 3,456 

D5 2.57M 194.2K 817  242 1,365 2,608 4,831,590 2.14% 102 16 92.71% 91.00% 2,112 

D6 6.66M 294.8K 1,236  242 2,329 3,603 8,967,807 2.51% 105 49 91.66% 89.45% 2,624 

D7 3.73M 207.4K 900  237 2,771 3,731 8,480,378 5.77% 107 54 91.40% 89.61% 5,184 

D8 14.2M 899K 3,163  291 2,418 1,600 30,513,081 5.41% 317 63 90.83% 89.92% 6,848 
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In all experiments but one, maXpress deploys a 32-bit SR-decompressor with a 32-bit 

template. The presented results vary in the number of segments which implies different rates 

of control reloads. It also determines the amount of test data represented by the number CB 

of control bits. Recall that CB comprises the content of the following storage elements: the 

g-bit CR, the registers B-off and B-on, the SR-decompressor seed and the test template, plus 

bit E. Given the number s of scan chains, one needs to store a total of g + 2s/g + Seed + 

Template + 1 bits per load. To minimize the number of flip-flops, one should find a value of 

g for which the above formula assumes its minimum. As can be easily verified, the desired 

number of groups is given by g = √2s. Consequently, the experiments are run for the number 

of groups being equal to ⌈√2s ⌉. Because of its size, design D8 uses a 64-bit SR-decompressor 

and doubles the number of groups. 

Table 3.3 Experimental results – the group size ⌈√2s ⌉. 

   The number of segments   

    1 2 4 8 10 CB 

  TC % 70.99 75.93 84.69 90.24 90.54 162 

D1 PC 82,048 51,264 20,544 9,024 7,232 ρ  = 7.4 

  OB+ % 44.68 43.88 47.19 52.08 51.35   

  TC % 73.76 77.66 83.45 90.51 90.77 162 

D2 PC 92,224 46,144 23,104 8,320 7,232 ρ  = 7.4 

  OB+ % 51.16 51.50 46.90 57.54 60.86   

  TC %  86.12 87.48 90.42 91.82 91.89 131 

D3 PC 30,784 20,544 8,448 5,952 5,184 ρ  = 4 

  OB+ % 88.95 89.42 90.72 92.93 93.83   

  TC % 69.51 74.46 86.90 90.58 91.00 141 

D4 PC 92,288 61,568 18,368 8,448 6,912 ρ  = 5.2 

  OB+ % 62.83 62.28 67.22 65.99 72.91   

  TC % 82.73 85.60 90.76 92.49 92.56 145 

D5 PC 71,744 30,784 7,744 3,904 3,136 ρ  = 5.6 

  OB+ % 83.99 83.46 84.63 78.97 86.18   

  TC % 64.24 71.01 83.39 90.98 91.19 165 

D6 PC > 100K 66,752 20,544 7,744 6,208 ρ  = 7.5 

  OB+ % 56.38 56.76 58.22 66.93 68.70   

  TC % 72.88 78.57 85.14 90.45 90.58 149 

D7 PC 72,128 43,200 20,544 9,024 8,256 ρ  = 6 

  OB+ % 62.73 61.01 55.08 69.24 66.48   

  TC % 71.93 75.02 84.92 89.37 90.00 225 

D8 PC > 100K > 100K 35,200 12,224 10,240 ρ  = 14.1 

  OB+ % 64.72 63.88 66.11 72.19 72.89  
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The number of X-cells in designs of Table 3.2 ranges from 82 (D1) up to 126 (D4). 

Clearly, sites that capture X states as well as the likelihood of this occurring may shape the 

final results. For example, X states populate quite a few scan chains in almost all designs in 

a uniform manner across all test patterns, whereas there are only a few X-chains in design 

D3 where the vast majority of scans has no unknown states at all. It appears that the ability 

of the scheme to work with different sets of groups (scan gaters) allows maXpress to address 

these challenges in an efficient way; see results collected in Table 3.3. In particular, with the 

increasing number of X-chains, the new scheme appears to be much more robust and flexible 

than conventional solutions (compare the coverage numbers in the last but one column of 

Table 3.2 and the corresponding results in Table 3.3). Data reported in Table 3.3 indicate that 

test coverage increases with the increasing number of segments, whereas the corresponding 

number of test patterns systematically decreases. As a result, one can trade-off these factors 

against a test data volume (the number CB of bits) necessary to control maXpress with the 

varying number of segments. It is also worth noting that the over-masking has low impact on 

the test quality, as shown in rows OB+. Indeed, the average observability of scan cells, in-

cluding those not directly protected by the X-masking scheme, remains very high and, in 

particular, guarantees detection of several unmodeled faults. 

Fig. 3.13 plots more detailed outcomes for design D4 while observing test coverage 

and sweeping the number of applied test patterns. The experimental results consist of five 

curves: 

 

Figure 3.13 Test coverage for design D4. 
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• the reference test coverage recorded at the outputs of scan cells (a blue curve), 

• test coverage observed on the output of a compactor se-cured by maXpress while 

partitioning test patterns into 4, 8, and 10 segments (a yellow, green, and red curve, 

respecively) of equal size; recall that the number of segments corresponds directly to 

the number of maXpress configurations, 

• the reference test coverage seen at the output of a com-pactor disabling individually 

scan chains for the entire period of their unload (a black curve; see also Table 3.2). 

Clearly, significant parts of curves representing the reference coverage and that of 10 

segments lie close to each other. Given a minor (or in some cases negligible) difference be-

tween these two cases, one may conclude that the new scheme offers very good observability 

of scan errors even in the presence of a gross number of X states. In other words, maXpress 

does not compromise test quality, and this is accomplished in a very cost-effective manner – 

see the amount of test data needed to control the scheme for each test case. This trend occurs 

systematically across all designs, including those not reported here. 

For the sake of summary, Table 3.4 brings back the key results presented in this chapter. 

Besides two reference test coverage metrics of Table 3.2, it lists three maXpress-produced 

outcomes: (1) test coverage achievable for the same amount of control data (TCCD) as that 

of the scheme masking individually s scan chains for a duration of unload (it needs s control 

bits), (2) the best test coverage (BTC) achieved (typically for 10 segments), (3) a difference 

 between BTC and the second reference. Clearly, maXpress outperforms the conventional 

X-masking scheme and comes close to the upper bound results of an approach (column “no 

compaction”) where test coverage is recorded without a compactor. 

B. Observation scan chains  

Essentially, experiments described in the following section are parallel to those of the previ-

ous section. This time, however, the same designs as before (industrial cores) deploy a certain 

number of observation scan chains replacing a similar number of the regular chains. As 

Table 3.4 Test coverage [%] summary. 

  References maXpress 

  
no  

compaction 
w/Xs TCCD BTC   

D1 91.00 89.41 90.24 90.54 1.13 

D2 91.17 89.57 90.51 90.77 1.20 

D3 91.80 89.77 90.42 91.89 2.12 

D4 91.79 87.43 86.90 91.00 3.57 

D5 92.71 91.00 90.76 92.56 1.56 

D6 91.66 89.45 90.98 91.19 1.74 

D7 91.40 89.61 85.14 90.58 0.97 

D8 90.83 89.92 90.00 90.00 0.08 
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adding the observation scan to an original core changes its test-related functionality, in par-

ticular locations and breakdown of test points (note that almost all observation points are now 

feeding exclusively respective flip-flops of the observation chains), Table 3.5 lists all relevant 

characteristics again. Note that the reference TC metrics reported in Table 3.5 have the same 

definition as that of Table 3.2, including observation scan cells. The number of faults is in-

creased due to additional logic associated with every observation scan cell. The basic data of 

test cores are already available in Table 3.2. Table 3.5 contains, though, additional charac-

teristics d/v of the CF-decompressor, where d is its size, and v gives the number of input 

channels (it accounts for a separate input feeding the hold register). Furthermore, labels “X-

cells” and “X-chains” refer exclusively to the observation scan chains. 

The results of experiments involving regular and observation scan chains are summa-

rized in Table 3.6. The entries regarding TC, the PC, and the average observability of scan 

cells have the same definition as those of Table 3.3. Recall that the table reports TC of 10 K 

pseudorandom test patterns and the number of tests needed to regain the 90% TC target. The 

column CB of Table 3.6 provides the total number of test data used to operate selection logic 

of maXpress per segment, including bits received by CF-decompressor. The latter number is 

equal to the product of the number of input channels and the number of scan shift cycles plus 

the size of the decompressor, i.e., variables uploaded during the decompressor initialization. 

As can be seen, the TC of 10K pseudorandom test patterns is elevated in a very sys-

tematic fashion, whereas tests needed to regain the 90% TC target are shorter than those listed 

in Table 3.3. Also, the average observability of scan cells, including those not targeted by the 

X-masking scheme, remains very high. As a result, one may conclude that maXpress is ca-

pable of successfully working with the observation scan chains in such a way that their basic 

functionality is preserved despite of X states, and, as might be expected, given a PC, the use 

of observation scan increases the resultant TC, or alternatively it reduces PCs given a target 

coverage. 

Table 3.5 Circuit characteristics with observation scan. 

  
Observation 

scan 

CF decom-

pressor 

Test points 
Stuck-at 

faults 

Error-fill 

rate 
X-cells X-chains 

Test 
Test 

coverage 

w/Xs 

Pattern 

count ISO 
CP OP coverage 

D1 34 x 63 32 / 3 1,278 2,113 3,943,552 54.92% 1194 32 93.82% 89.20% 512 

D2 39 x 64 32 / 3 1,367 2,088 3,953,440 44.41% 1201 33 92.66% 89.27% 1024 

D3 6 x 174 32 / 2 1,726 1,044 2,452,660 26.45% 534 4 93.80% 89.81% 1344 

D4 3 x 162 32 / 2 1,823 589 3,190,925 42.19% 261 3 92.02% 86.28% 2688 

D5 4 x 233 32 / 2 3,041 932 4,861,675 30.84% 302 4 94.31% 89.55% 640 

D6 8 x 262 32 / 2 3,839 2,093 9,084,951 35.52% 615 6 91.84% 89.58% 2496 

D7 7 x 238 32 / 2 4,838 1,664 8,634,398 35.15% 1403 7 95.52% 88.72% 706 

D8 3 x 236 32 / 2 3,310 708 30,581,516 46.37% 644 3 92.60% 89.64% 3136 
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Table 3.6 Observation scan results – the group size ⌈√2s ⌉. 

   The number of segments 

    1 2 4 8 10 CB 

  TC % 74.15 77.14 87.04 92.95 93.13 

455 D1 PC > 16K > 16K 15,360 6,400 5,120 

  OB+ % 38.37 35.69 41.58 43.79 50.05 

  TC % 78.60 82.42 87.51 92.31 92.56 

470 D2 PC > 16K >16K 12,864 6,144 4,416 

  OB+ % 52.04 52.90 54.08 52.56 58.87 

  TC % 88.55 90.00 92.28 93.53 93.60 

535 D3 PC 10,688 10,240 5,120 3,264 3,072 

  OB+ % 85.10 84.82 85.93 88.39 89.26 

  TC % 73.47 77.32 87.79 90.75 91.31 

501 D4 PC > 16K > 16K 15,744 7,744 6,464 

  OB+ % 57.5 57.27 61.30 60.75 55.16 

  TC % 83.45 87.58 91.03 92.07 92.14 

681 D5 PC > 16K 15,424 7,680 3,456 3,072 

  OB+ % 79.27 81.81 76.54 79.66 84.40 

  TC % 67.23 72.44 84.05 91.10 91.33 

737 D6 PC > 16K > 16K 15,488 5,952 4,416 

  OB+ % 52.01 51.24 53.62 60.89 58.49 

  TC % 70.28 76.49 87.29 93.52 93.83 

671 D7 PC > 16K > 16K 11,328 5,120 4,160 

  OB+ % 55.82 56.13 41.08 58.43 60.37 

  TC % 73.16 75.78 85.51 91.23 92.09 

735 D8 PC > 16K > 16K > 16K 8,192 6,272 

  OB+ % 55.2 53.51 58.47 65.65 67.96 
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4. Masking unknown values in deterministic in-system test 

The following chapter introduces another user-tunable X-masking scheme [103], [122]. It 

works synergistically with an on-chip test compression logic by employing encoded test data 

to completely filter out unknown values that otherwise might reach a test response compactor 

such as a MISR or test result sticky-bits used by the on-chip compare framework. Moreover, 

methods to select control settings employed by the X-masking scheme to suppress X states 

in both per pattern and per cycle modes are discussed.  

4.1  New scheme vs. maXpress 

Although X-masking is regarded a mature area of research and development, the Moore’s 

Law coupled with ever-increasing complexity in architectural design creates a need for new 

methods that could be used to handle X states in a cost-effective manner, especially with 

respect to the resultant hardware and optimal place and route. In response to these challenges, 

a new X-masking scheme, called maXpress, has been proposed in the previous chapter. It 

was designed to mask-out X values in logic BIST while (1) preserving the around 90% fault 

coverage (2) with the relatively small amount of test data. Consequently, maXpress works 

with relatively large clusters of pseudorandom patterns that share a reasonable amount of 

controls suppressing Xs per pattern and per cycle. A user-defined tunable structure of maX-

press allows grouping of scan chains. As a result, it offers trade-offs between test logic com-

plexity, the collateral damage caused by unpreventable masking of non-X values, the result-

ant test coverage, the test time, as well as test data needed to control X-masking itself. 

However, as mentioned in Chapter 2.5, DIST requirements are much higher than those 

of logic BIST, and have a non-negligible footprint on any X-masking scheme serving DIST. 

This is confirmed here, as this chapter introduces a technique to filter X states out of re-

sponses produced within a DIST environment. It builds on certain architectural principles of 

maXpress to let the new scheme become reusable in the LBIST mode. Still, the new scheme 

is tightly integrated with the EDT technology [146] so that masking of Xs is controlled by 

EDT-encoded test data, i.e., data shared with test compression logic; this is done for each test 

pattern individually. Accordingly, it makes the entire approach compatible with sequential 

test data decompressors acting as PRPGs in test compression/LBIST hybrids. However, it 

implies changes in maXpress scan gaters and requires novel algorithms to select scan chains, 

pick the corresponding masks, integrate ATPG, reduce the amount of control data, and run 

fault crediting. 
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4.2  Compactor’s circuitry 

Fig. 4.1 shows a new test response compactor design. A modular X-masking logic (the grey 

area in the figure) outputs scan chain gating signals to block Xs originating at scan cells. The 

usual ATE input interface is replaced (if needed) with an on-chip memory storing compressed 

test patterns and control data, while test responses are channeled to a MISR through a group 

of XOR trees (spatial compactors).  

The actual blocking of test responses, captured by the scan chains, is carried out by 

scan gaters. These devices are located between the scan chain outputs and the MISR. One of 

the key structural features of the scheme is its equal grouping of scan chains such that each 

group is served by a dedicated scan gater. Let n be the number of scan chains served by a 

single scan gater. As can be seen (Fig. 4.2), it is comprised of 2n 2-input AND gates and n 

 

Figure 4.1 Test response compactor overview. 

 

Figure 4.2 Scan gater serving n = 8 scan chains. 
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3-input OR gates. If s is the total number of scan chains, then the number of scan groups (and 

thus scan gaters) is given by g = s / n. 

Scan gaters are individually controlled by the corresponding segments of a g-bit con-

figuration register (CR) and a g-bit group register (GR). The first register enables – per pat-

tern – a desired combination of scan gaters. The second one aims to increase observability of 

X-free groups, as detailed in Chapter 4.3. There is also an n-bit index register (IR) that is 

shared by all scan gaters, as shown in Fig. 4.1. This control allows deactivation of masking 

of kth scan chain from every group by setting a kth bit of IR to 1. Clearly, this should be done 

only if kth scan chain of every group is X-free. All registers described so far are daisy-chained 

with a 2n-bit register B (Fig. 4.3) to allow test data upload. As can be seen, all registers come 

with shadow counterparts to ensure updates at a proper time. As a result, reloads of the reg-

isters with new content can occur in parallel with a shift-in of data for the next pattern. 

Scan gaters enabled by CR receive masking data from a selector through a single bus 

S (in Fig. 4.2 the bus width is equal to 8). The selector consists of two n-bit registers B-off 

and B-on, and a simple combinational circuit that intakes primary inputs denoted as C (Fig. 

4.4). Signals C are intended to filter test responses of corresponding scan chains in a per 

cycle mode unless values stored in registers B-off and B-on decide otherwise. These registers 

are reloaded once per pattern. Each scan chain is assigned two blockage bits. If kth bits of 

registers B-on and B-off are both set to 0, then scan chain k is blocked during the entire scan 

unload (the selector output Sk is set to 0). Setting the kth bit of B-on to 1 makes scan chain k 

fully observable. Finally, deasserting the very same bit while asserting the corresponding bit 

of B-off allows us to mask scan chain k per cycle by means of C inputs. It is worth recalling 

here that all enabled scan gaters receive exactly the same controls. All control signals used 

by the proposed scheme are summarized in Table 4.1. 

 

Figure 4.3 Feeding daisy-chained control registers. 
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There is a large body of experimental evidence that per-cycle control settings are usu-

ally used for just a few scan chains. Therefore, data occurring on inputs C can be EDT-

encoded and delivered to the selector by the EDT on-chip decompressor. This is a key finding 

for the modus operandi of the test response compactor shown in Fig. 4.1. For further details 

on how to master steps needed to make EDT-based compression part of the X-masking see 

the next chapters. 

4.3  Mask generation 

Selection of masking (or gating) signals plays a key role in the proposed test scheme. With 

three levels of masking, finding values used to either block or observe groups of scan chains, 

individual chains, and finally individual scan cells, is a nontrivial process. This chapter pre-

sents an automated method that aims at assuring observability of scan cells which are unique 

fault propagation sites while reducing an overmasking of non-X values. 

We begin by setting the group register GR, and then, orthogonally, the index register 

IR. These registers are dominators of the entire masking logic, as can be seen in Fig. 4.2. The 

Table 4.1 Control signals. 

Name Purpose Update 

GR Select groups of scan chains to be observed 

Per pattern 
IR Select indexed scan chains to be observed 

CR Select groups of scan chains to be masked by S 

B Mask/observe indexed scan chains in CR-selected groups 

C Mask/observe scan cells in CR-selected groups 

Per cycle 
S Controls shared by CR-selected groups 

 
 

 

Figure 4.4 The selector block. 
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group register GR allows one to observe those bundles of scan chains that are entirely X-free. 

Furthermore, if there are X-free scan chains in all groups, and these chains have the same 

index, then the index register IR unlocks them by sharing the corresponding bit with all 

groups. Faults that propagate to scan chains GR- or IR-unlocked are detected by default (ex-

cept an unlikely event of aliasing), and therefore they are not processed any further. In par-

ticular, they do not play a part in generation of weights, as described below, thus raising the 

chances of other faults to be observed and detected. Moreover, the use of GR and IR increases 

the observability of cells that do not capture target faults. This, in turn, may increase the 

likelihood of detecting unmodeled faults propagating to scan cells that are not observed on 

purpose. 

The next paragraphs will use the following notion. A fault detected by q test patterns 

will be designated as q-D, e.g., 1-D, 2-D, 3-D, etc. In particular, faults detected by just a 

single test pattern (1-D) are often referred to as essential faults, and they are the most crucial 

ATPG targets. 

Scan chains not served by GR and IR are put through an additional mask generation 

process that resembles the approach presented in Chapter 3, although masks are determined 

individually per pattern rather than a group of patterns. Consider the example shown in Fig. 

4.5. Here, there are ten scan chains, each comprising eight scan cells. These scan chains are 

split into two groups. Let us also assume that there are three test patterns P1, P2, and P3. The 

following description will demonstrate how to obtain weights for a test response correspond-

ing to the first pattern (P1). Propagation sites of Xs (X-cells) and faults are indicated by red 

and labeled circles, respectively. While certain faults are detected (and thus observed) more 

than once, special attention should be paid to faults detected by just a single test pattern, 

further referred to as 1D faults. In principle, such faults are the most important ATPG targets, 

and hence to guarantee their observability is of primary concern. As faults from A to G belong 

to the class of 1D faults (they are only detected by P1), all their propagation sites are assigned 

a weight equal to 1, even if some of them propagate to multiple sites, such as faults B and F. 

Following this convention, X cells get the 0 weight. Faults H, J, K, and L (blue circles) are 

 

Figure 4.5 Generation of weights for 1D faults. 



.2                                   INTERNATIONAL TEST CONFERENCE  

                                                                                  

                                                    

54 

also detected by patterns P2 and P3. Hence, their propagation sites are not assigned any weight 

as far as the response corresponding to pattern P1 is concerned. However, if they cannot be 

observed after applying masking signals for pattern P1, faults L and H will become 1D faults 

in a test response corresponding to P2, while faults K and J will get the same status in a test 

response obtained after applying pattern P3. The same rule applies to all q-D faults, q > 1: in 

the worst case (they are masked due to Xs in q − 1 test responses) each of them will eventually 

get the status 1-D and will be subjected to the weight generation process. 

The weights associated with successive observation sites are subsequently used to su-

perpose groups of test responses, as illustrated in Fig. 4.6. X-free scan chains with fault ob-

servation sites as well as chains with no observation sites (D-free) but having Xs are ena-

bled/disabled using a proper combination of B-on/B-off values. Back to Fig. 4.6, the first 

scan chain of every group is to be observed by asserting the first bit of the B-on register, 

whereas the last scan chain of every group will be blocked after de-asserting the last bits of 

B-off and B-on registers. The remaining scan chains receive per-cycle data from the selector 

(see the next chapter): Xs are masked with the value of 0, and faults are observed with the 

masking values set to 1. It is worth noting that some fault observation sites may overlap  with 

certain X-cells when superposing groups of test responses. As masking of X-cells is manda-

tory, it will inevitably result in over-masking of faults. The mask selection has to take account 

of this phenomenon.  

Selection of controls is an iterative greedy process as outlined in Fig. 4.7 for a single 

pattern. It uses a g-bit binary vector H = [hg-1 … h1 h0] representing the configuration register 

CR, i.e., hk = 1, if kth stage of the register is set to 1 (recall that g is the number of groups). 

Essentially, after random initialization of H, the method inverts successive bits of H and 

check the resultant masking solution, keeping the best one, i.e., a group selection that yields 

the largest population of 1D faults which are observed. It then becomes a starting point for 

the next iteration. Typically, N = 3 repetitions of the outer loop (including random initializa-

tion of H) suffice to find the best masking configuration. If there are several masking 

 

Figure 4.6 Superposition of groups. 
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configurations with the same number of observable 1D faults, the number of other faults 

observed fortuitously is used to break a tie. Having determined the group selection for a given 

pattern, a list of 1D faults can be updated. Furthermore, faults whose observability could not 

be secured have their status changed from qD to (q–1)D, with 1D faults becoming new addi-

tions to their list. 

4.4  Encoding of masking cubes 

It has been demonstrated earlier how to determine the per-pattern content of the configura-

tion, group, index as well as B-off and B-on registers. The control signals that can be con-

trasted with these settings are masking values provided through the selector inputs C in a per-

cycle regime (Fig. 4.4). As shown in Chapter 4.2, these masking signals are to be EDT-en-

coded and delivered by the main EDT decompressor. Hence, encoding of a given test pattern 

p is preceded by an attempt to encode a masking cube associated with the previous pattern p 

– 1. This process can be characterized as follows. 

In principle, a two-dimensional masking cube consists of as many cycles as the scan 

chains length while the number of rows matches the number of scan chains per group. Its 

entries are set to 0 or 1, if one needs to mask Xs or enable fault observation sites, respectively. 

These rules do not apply to the entries that are observed or blocked by B-on and B-off regis-

ters. All the remaining entries are considered don’t cares (–). Back to Fig. 4.6, a masking 

cube corresponding to the superposed pattern (the right-hand side of the figure) would have 

the following form:  
–  –  –  –  –  –  –  – 

0  1  0  –  0  –  –  – 

–  0  0  1  –  0  0  – 

–  –  1  0  0  0  0  – 

–  –  –  –  –  –  –  – 

    Maximum sum M  0 

    while the number of iterations is less than N 

          select randomly initial state of H 

          Temporary maximum sum T  0 

          do 

                for each bit in H 

                      set a given bit to its opposite value 

                      compute sum S of weights 

                      if S > T then T  S 

                set H to the value of the best vector resulting in T  

          while T changes its value 

          if T > M then M T 

    update list of 1D faults 

Figure 4.7 Finding masks. 
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Starting with q = 1, the process of forming a masking cube (see also Fig. 4.8) begins 

with the creation of a list L comprising all sites observing qD faults. Recall that they were 

obtained as a result of group superposition (Fig. 4.6). The list is sorted in descending order, 

i.e., an entry with the largest count of qD faults comes first. After filling a masking cube with 

0s corresponding to all X-cells (this initial step is mandatory to ensure that all X states will 

be blocked), we iteratively pick the first item on list L, set the corresponding entry of the 

masking cube to 1, delete that item from the list, and try to encode the resultant cube. If the 

encoding try fails, then a newly added 1 is removed from the masking cube. It is worth noting 

that it need not necessarily preclude detection of certain faults provided they propagate to 

other observation sites. Moreover, assuring observation of a given site results in dropping all 

faults that propagate to it. The above steps are carried out until list L becomes empty. Once 

all test patterns have their masks encoded with respect to qD faults, the process repeats for 

the next (incremented) value of q until all faults are processed. This iterative approach opti-

mizes the usage of masking variables with 1D faults being targeted in the first round. Clearly, 

other sites that have been successfully encoded in every step may enable fortuitus observa-

bility of other faults that remain to be tackled.  

Borrowing input variables to encode masking data may reduce the EDT-based encod-

ing capabilities, but typically the X-masking process requires a very small fraction of the 

total number of variables, and hence it does not compromise the quality of compression of 

the actual test patterns. This is clearly confirmed in Fig. 4.9. It plots experimental data show-

ing how masking cubes consume EDT input variables as a function of test application time 

(these curves represent a moving average to smooth out the actual data points). The experi-

ments were run for four industrial designs (for further details regarding these designs see 

Chapter 4.5). As can be seen, the use of EDT variables tends to decrease as tests proceed. At 

the end, design D9 needed only 5% of the total test data budget, whereas designs D1 and D4 

used just a few bits to encode per-cycle masking signals. More importantly, however, what 

was needed in all experiments to encode masking data at any time was just a small fraction 

of input variables injected through a single EDT input channel.  

  q  1 

  while there are any target faults  

        create list L of sites observing qD faults 

        sort L in descending order of the number of qD faults 

        pick the first item S from L 

        add S to the masking cube 

        if encoding fails then remove S from the masking cube 

        else drop all faults in S from the fault list 

        remove S from L 

     q  q + 1 

Figure 4.8 Encoding of a masking cube. 
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   In the unlikely event of a decreased degree of test cube merging due to X-masking, 

one will just observe a slight increase in a pattern count. It appears that securing observability 

of a given 1D fault in the first place is less expensive in terms of test data usage than encoding 

a new test cube targeting that fault again. It is also worth recalling that faults propagating to 

scan chains selected by either IR or GR registers are not subject to mask encoding. It may 

substantially reduce demands for seed variables. Table 4.2 presents how many faults, out of 

all faults detected so far and reported in the column “Total”, are captured in scan chains 

selected by IR and GR registers during the first 64 and then 640 test patterns deployed in ten 

industrial designs. In fact, more than 50% of faults can be detected this way when applying 

the very first test patterns. Typically, these are qD faults, where q > 1. In other words, a 

majority of faults that require a per-cycle mask encoding and are detected by tail-end test 

patterns are 1D faults.  

 

Figure 4.9 Test data usage by masking cubes. 

Table 4.2 Faults observed in scan chains selected by IR and GR. 

 After 64 patterns After 640 patterns 

 Total IR&GR % Total IR&GR % 

D1 792846 699982 88.29% 1181133 973500 82.42% 

D2 2021033 2016535 99.78% 2647322 2613605 98.73% 

D3 2165261 2160930 99.80% 2591442 2577347 99.46% 

D4 1531689 1072445 70.02% 2113270 1368517 64.76% 

D5 1593889 1401699 87.94% 2658616 2128851 80.07% 

D6 1207023 1198191 99.27% 1376839 1335092 96.97% 

D7 5212999 4960110 95.15% 7363481 6769248 91.93% 

D8 157352 138739 88.17% 188675 153555 81.39% 

D9 2672367 2137507 79.99% 3383130 2357365 69.68% 

D10 2318705 1737063 74.92% 3084714 2074486 67.25% 
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4.5  Experimental results 

Several experiments outlined below were performed with 10 large industrial cores having all 

components of the proposed compactor on a chip. Table 4.3 lists major characteristics of the 

examined test cases: the number of gates, the number of scan cells, and the scan architecture. 

Furthermore, Table 4.3 reports the following metrics: 

• the number of stuck-at faults,  

• the number of EDT input channels and the size of the EDT decompressor, 

• the total number of scan cells that capture X states (X-cells) across all test patterns,  

• the total number of scan chains that capture X states (X-chains) across all test patterns,  

• the reference test coverage recorded for a test setup deploying the EDT default X-

tolerant test response compactor X-Press [149]. 

The number of groups (Fig. 4.1) used in the experiments is equal to ⌈√2s ⌉, where s is 

the number of scan chains; such grouping minimizes the number of memory elements used 

to store the control data, as shown in Chapter 3.3. Designs reported in Table 4.3 feature a 

certain spectrum of X-fill rates represented by the number of X-cells ranging from 223 (D3) 

– it corresponds to 0.12% of the entire population of scan cells – up to 9,668 (6.52%) for 

D10. Furthermore, the amount of scan chains that capture any unknown values may also 

impact the final results. For example, X states propagate to a few scan chains in several de-

signs in a uniform manner across all test patterns reaching over 54% of all scan chains (D10), 

whereas there are only a few percent of scan chains with some accumulation of X states in 

design D2, D3, and D7 where the vast majority of scans (more than 96%) have no unknown 

states at all. 

Table 4.3 Circuit characteristics. 

  Gates 
Scan 

Scan 
Stuck-at 

faults 

EDT 
X-cells X-chains 

Test 

cells inputs / size coverage [%] 

D1 1.02M 35.6K 144  249 2,721,968 8 / 32 2,213 56 97.89 

D2 2.47M 149.4K 1,400  374 5,933,388 2 / 46 837 36 99.71 

D3 2.43M 185K 500  371 6,354,467 2 / 60 223 16 99.84 

D4 1.21M 72.3K 381  190 3,812,564 16 / 64 7,185 148 96.40 

D5 2.09M 145.1K 420  346 5,610,954 4 / 46 6,906 101 98.54 

D6 1.18M 97.8K 300  327 4,251,354 2 / 37 472 22 97.65 

D7 7.86M 428.7K 857  502 8,357,022 8 / 32 1,981 10 92.65 

D8 0.22M 12.6K 122  138 188,486 4 / 32 375 9 98.97 

D9 2.49M 173.7K 114 x 1964 3,688,965 4 / 32 5,708 39 91.23 

D10 2.14M 148.1K 70 x 2579 6,898,121 4 / 32 9,668 38 98.20 
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Table 4.4 summarizes the key experimental results. It lists the following outcomes:  

• the total amount of (static) control data used to feed (per pattern) the configuration, 

group, index as well as B-off and B-on registers; as can be seen, the static control data 

is a small fraction of the overall data volume (see the last but one column of the table) 

used by the proposed solution, i.e., it takes a bit more than 2% for design D6, it 

reaches 15% for D3, while the average value over the reported designs equals 7.54%, 

• the fraction of EDT seed variables needed per pattern to encode the masking cubes; 

this figure of merit is further represented by three numbers: lower (different than 0) 

and upper extremes, as well as the average value; for example, the value of 3.49 in 

the column average indicates that only 3.49% of all seed variables deployed by the 

EDT-based compression were used, on the average, to encode the masking cubes 

handling test responses in the per-cycle mode; as one may expect, the number of EDT 

seed variables needed to encode the masking cubes is typically a negligible fraction 

of the total number of variables employed to encode successive test patterns with only 

one exception of design D10 (here the ratio is above 9%), 

• the effective test coverage achievable with the proposed scheme based on a MISR-

produced signature. 

In addition to the metrics listed above, the last section of Table 4.4 provides a compar-

ison between a reference EDT-based on-chip compare scheme and the solution presented in 

this chapter. The reference scheme deploys the X-Press test response compactor of [149] with 

the same number of outputs as the number of EDT inputs shown in Table 4.3. The total 

Table 4.4 Experimental results. 

  

Static con-

trol data 

[Mb] 

Dynamic control data per pattern 

Test cov-
erage [%] 

Pattern count Data volume [Mb] 
Reduction 

ratio 
[% of EDT seed variables] 

min max average X-Press DIST X-Press DIST 

D1 0.145 0.05 16.30 0.88 97.89 3,040 2,112 17.5806 4.1572 4.23x 

D2 1.6885 0.13 40.13 0.57 99.71 15,797 15,232 34.7705 12.4927 2.78x 

D3 1.3438 0.13 43.92 0.09 99.84 11,897 11,008 26.0047 9.1333 2.85x 

D4 0.2051 0.03 76.32 2.07 96.40 1,920 1,920 17.0801 5.7715 2.96x 

D5 0.9841 0.02 65.35 1.06 98.54 11,328 8,896 45.7625 12.7258 3.60x 

D6 2.4225 0.14 54.66 0.15 97.65 22,976 22,680 354.793 115.5872 3.07x 

D7 0.8738 0.02 25.52 3.49 92.65 5,888 5,454 68.416 21.7624 3.14x 

D8 0.0459 0.17 9.76 0.03 98.97 764 752 1.2299 0.4418 2.78x 

D9 0.375 0.01 81.11 9.68 91.23 6,015 6,144 135.3779 46.4063 2.92x 

D10 0.5619 0.01 61.74 0.62 98.20 3,903 3,876 22.5416 7.9843 2.82x 
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volume of data used by X-Press contains its own control settings and the reference data. The 

reference volume V is equal to  

 V = 2  o  p  L, (4.1) 

where o is the number of X-Press outputs, p is the number of patterns, and L is the size of the 

longest scan chain. This quantity has to be doubled to account for extra bits needed to differ-

entiate between X and non-X results. Consequently, the last five columns of the table display 

respectively:  

• the X-Press-based pattern count,  

• the new pattern count,  

• the X-Press data volume, including the EDT seed variables (in megabits),  

• the new data volume; this quantity includes primarily the number of seed variables 

obtained by multiplying the number of test patterns, the number of EDT input chan-

nels, and the size of scan chains plus initialization cycles, the remaining tiny part is 

shown in the first column reporting the static control data, 

• a ratio between the total volume of test data used by the reference X-Press-based on-

chip compare technique and the method introduced in this chapter. 

 As can be easily verified, the proposed X-masking scheme does not compromise the 

test quality – test coverage remains unaffected in all test cases. Similarly, the resultant pattern 

counts of the new scheme remain virtually the same as those of the X-Press based approach. 

It is worth recalling that X-Press [149] treated here as the reference is not even required to 

mask all unknown states as opposed to the proposed scheme. In fact, the pattern counts get 

even decreased for three examined circuits. Other designs observe a slight increase in their 

pattern counts. This phenomenon is attributed to a distribution of X states which in order to 

be masked intercept (occasionally) a non-negligible fraction of EDT seed variables. This, in 

turn, reduces the EDT-based encoding capacity and thus elevates the pattern counts. Never-

theless, the new scheme reduces the total test data volume in all test cases by the average 

factor of 3.12x relative to the on-chip compare solution.  

Another pragmatic metric used to characterize a new DFT solution is its test logic sili-

con real estate. As shown in Chapter 4.2, the new X-masking scheme requires three logic 

gates per scan chain. Additional gates are used to implement the selector; here two logic gates 

are needed per the selector output – their total number is equal to the number of scan chains 

placed in a single group. The total gate count equals 3 s + g ≈ 3 s. Also, two flips-flops (CR 

and GR) are employed per group (or a scan gater) altogether with their shadow counterparts. 

Furthermore, the index register, registers B-off, B-on, and their shadows require, in total, 6 n 

flip-flops, where n is the number of scan chains served by a single scan gater. Eventually, the 

total number of flip-flops is given by 4 g + 6 n ≈ 7g. It can be verified that if the number s of 

scan chains is greater than or equal to 100, then the flip-flop count becomes smaller than s. 



.2                                   INTERNATIONAL TEST CONFERENCE  

                                                                                  

                                                    

61 

Consider, as an example, design D5 that features 2.09M gates and s = 420 scan chains, with 

the longest chain comprising 346 memory elements (see Table 4.3). In total, this design em-

ploys 145,177 scan cells. Its scan chains are evenly divided into 29 groups, with almost all 

groups comprising 15 chains. D5 requires additional 206 flip-flops and 1290 gates to imple-

ment the proposed X-masking logic. Hence, the fraction of extra flip-flops is equal to 0.14%, 

while the total area overhead incurred by the new scheme (assuming that a single flip-flop is 

equivalent to 6 gates) amounts to 0.12%. Similar results can be obtained for the remaining 

designs, and they are listed in Table 4.5. 

 

  

Table 4.5 Hardware footprint of a new scheme. 

 
#Groups 

#chains per 

groups 
Extra gates 

Extra flip-

flops 

Total area 

[%]  

D1 17 9 449 122 0.116 

D2 53 27 4253 374 0.263 

D3 32 16 1532 224 0.118 

D4 28 14 1171 196 0.194 

D5 29 15 1289 206 0.121 

D6 25 13 925 178 0.169 

D7 42 21 2613 294 0.056 

D8 16 8 382 112 0.479 

D9 16 8 358 112 0.041 

D10 12 6 222 84 0.034 
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5. Hardware security and IC tests 

As shown in the previous chapters, DIST applying deterministic test patterns and using test 

response compaction protected by the new X-masking schemes is well positioned to deliver 

high quality manufacturing tests for large SoC designs. However, the very same test frame-

work may provide unrestricted access to internal states of a device-under-test. Thus, it opens 

a backdoor for security threats such as IP theft/piracy, reverse engineering, counterfeiting, 

tampering, or IC overproduction. This scenario is similar to other scan-based test schemes 

that can make a circuit-under-test potentially vulnerable to various forms of attacks trying to 

retrieve or modify sensitive data and assets [181]. Although the presence of on-chip test com-

pression and encoded test data make a circuit more resistant to scan attacks, test compression 

facilities are not as effective countermeasures to scan-launched attacks [46] as one might 

expect. Notwithstanding the fact that an SSN forms yet another defense line, it remains es-

sential to apply access restrictions and to secure test infrastructure to prevent leakage of any 

secret information while tests are carried out. Consequently, the second part of the thesis is 

devoted to design and analysis of several new security primitives that can eventually establish 

a lightweight hardware root of trust guarding a variety of DFT ecosystems. It begins with a 

brief review of a large volume of published studies describing techniques that address secu-

rity issues caused by IC testing, and then move on with the presentation of new security 

solutions. 

5.1  Design for test vs. security concerns 

A wide range of solutions have been proposed so far to secure test circuitry and test access 

ports in general, and scan chains in particular, with the aim of making it more difficult to 

launch scan-based attacks. One of the first countermeasures was randomly inserting inverters 

between scan cells [164]. As a result, test patterns and test responses are transformed during 

the shift-in and shift-out test phases, respectively. This simple approach, however, can be 

easily broken by resetting a chip and shifting data out in the test mode. Positions of 1s in the 

resultant response reveal locations of the corresponding inverters. A solution immune to such 

reset-based attacks was presented in [8]. As shown in Fig. 5.1a, 3-input XOR gates are used 

to combine a given scan cell input with the outputs of two successive flip-flops. As shown in 

[7], this approach is not secure, either. In addition to a method unveiling locations of XOR 

gates, the authors of [7] presented another technique to secure scan chains. To eliminate 

purely deterministic approach and to add randomness to the XOR-based security mechanism, 

they used a physical unclonable function (PUF). Fig 5.1b shows a PUF serving as a source 

of multiplexer controls. As a result, signals from either the preceding scan cell or the XOR 

gate are selected in a pseudorandom fashion. While this change increases the overall security 

of DFT logic, changes made to scan chains are still static – modifications are test independent 
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as they are based on a known PUF response. A secure scan architecture where scan data is 

changed dynamically was presented in [5]. To achieve this functionality, randomly selected 

scan cells are converted into state-dependent scan flip-flops (SDSFF). With the addition of a 

latch and an XOR gate, the SDSFF value is determined by both flip-flop and latch values. As 

shown in Fig. 5.1.c, an update of the latch value depends on the load signal. The authors 

recommended asserting the load signal every n clock cycles, with n set individually for every 

circuit to further reduce chances of a successful attack.  

Other secure scan architectures deployed key-based scrambling mechanisms [30], [78], 

[97], [153], or additional registers to separate critical and regular data [201], regrouped scan 

chains into sets of smaller sub-chains [98], or took advantage of a combinational ATPG with 

a secure partial scan [32], [84]. However, a secure scan architecture cannot be considered 

safe when an attacker can get design netlists through reverse engineering which has to be, 

therefore, considered a real threat [19], [90]. Knowing the locations of additional logic like 

XOR feedbacks or latches, one can easily access scan data by virtue of, for example, a Bool-

ean satisfiability based [170] attack. Therefore, to increase chip security, it is mandatory to 

employ techniques that guarantee access to a test infrastructure only to authorized users. One 

of the techniques presented in [129] introduces two additional instructions to the JTAG TAP 

controller. By invoking one of these instructions, one can either block or gain access to the 

test infrastructure, provided a correct password is used. Similarly, the solution presented in 

[36] modifies the IEEE 1500 test wrapper by employing an additional LFSR. Users can un-

lock the test wrapper with the proper combination of an LFSR’s seed and a golden key. The 

key corresponds to the final state of the LFSR; thus the seed/key combination can only be 

generated, if one knows an LFSR characteristic polynomial. Clearly, this knowledge is only 

granted to legitimate users. 

 

Figure 5.1 (a) Double feedback XOR scan [8], 

(b) Secure scan with PUF-based feedback selection [7], 

(c) Dynamically modified scan structure employing state dependent scan flip flop [5]. 
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The password-based solutions presented in [36] and [129] relies on the fact that a secret 

password or an LFSR polynomial is known only to authorized users. However, if attackers 

could obtain this data, all the countermeasures become ineffective. Fortunately, the security 

of test infrastructure can be improved by adapting challenge-response communication proto-

cols. Solutions based on symmetrical cryptography employ, for example, SHA-256-based 

protection [37]. Here, a device generates a unique, random challenge and sends it to a user. 

The challenge is then combined with the secret key and hashed with the SHA-256. Both hash 

values are then compared on the chip – they can only match if the user and the design store 

the same secret key. In the PUF-based protection [45], the user must store a PUF challenge-

response pairs (CRPs) instead of a secret key. Here, the challenge sent by a device is a de-

sired, random distance between two PUF responses. The user looks through all the stored 

CRPs to find a proper pair of challenges and sends it back to the device. Finally, access to a 

test infrastructure is granted only if the obtained distance is the same as the expected one. 

However, the PUF-based approach may also need to store individual CRP databases for each 

design and to read out PUF responses during the manufacturing phase. What is more, a SHA-

256 hardware implementation may be problematic, especially within small devices with lim-

ited silicon area resources. Consequently, the challenge-response authentication is typically 

carried out by a device implementing lightweight crypto hash functions. 

5.2  Lightweight cryptographic hash functions 

In recent years, the number of publications devoted to lightweight crypto hashing has been 

increasing steadily in volume and importance as hash functions became key hardware secu-

rity primitives. The existing lightweight cryptographic hash functions can be classified into 

a few groups determined by a construction method [191]. These constructions include (a) the 

Merkle-Damgård scheme [44], [113], (b) the sponge construction [15] with the Keccak hash 

function [16] – its most prominent, although not lightweight, instance and the winner of the 

NIST SHA-3 secure hash standard competition, (c) block-cipher-based solutions such as the 

Davies–Meyer hash functions [138] or functions deploying nonbinary error-correcting codes 

[94], and finally (d) methods which are based on cellular automata [75] or (e) deterministic 

chaotic finite state machines [2].  

Lightweight cryptographic hash function, while designed to be compact, fast, and self-

testable within resource-constrained devices, must be still relatively immune to brute force 

and cryptanalytic attacks. Typically, it is expected that a cryptographic hash function H has 

the following properties related to the brute force attacks:  

• preimage resistance (one way): for virtually every output z, it is computationally in-

feasible to determine input x hashing to that output, i.e., H(x) = z,  

• second-preimage resistance: it is computationally infeasible to determine another 

(distinct) input y hashing to the same output as any given input x, i.e., H(x) = H(y), 
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• collision resistance: it is computationally infeasible to find two colliding inputs x and 

y ≠ x such that H(x) = H(y). 

Each resistance is evaluated as an n-bit security, meaning that to conduct a successful brute 

force attack, one should perform (on average) 2n operations. For a hash function of a size m, 

the best possible preimage resistance and second-preimage resistance n = m. For example, a 

successful preimage and second-preimage attack on a 256-bit hash output would require a 

2256 hash generations (assuming highest possible resistances). On the other hand, an ideal 

collision resistance n = m/2, as is indicated by a birthday paradox. Table 5.1 presents the 

resistance of the selected lightweight cryptographic hash functions, where column “Size” 

reports the hash value length. 

 Metrics shown above describe the resistance to attacks based on brute-force methods. 

More sophisticated techniques are based on the cryptanalytical approach, i.e., identifying 

weak points of hash functions in their structures and algorithms. Cryptanalytical attacks cur-

rently known are based on differential, integral, algebraic, or linear analysis. Other popular 

methods include cube, slide, or rebound attacks as well as zero-sum, rotational, or meet-in-

the-middle distinguishers and truncated or impossible differentials. Due to architectural dif-

ferences between targeted functions, each cryptanalysis is usually dedicated to a single hash-

ing algorithm. An overview and references to the cryptanalytical methods for lightweight 

cryptographic hash functions can be found in [191]. 

It is widely agreeable that a proper hash function matching desired hardware and safety 

requirements is an indispensable component required to implement a secure challenge-re-

sponse procedure. However, to increase the overall security, the authentication phase may be 

combined with the encryption/decryption of test data by using stream ciphers. 

Table 5.1 Security parameters of selected lightweight cryptographic hash functions. 

Hash function Resistance 

Name Size Preimage 2nd Preimage Collision 

ARMADILLO 160 160 160 80 

  256 256 256 128 

ASCON 256 128 128 128 

PHOTON 160 124 64 64 

  256 224 128 128 

DM-PRESENT 64 64 none none 

H-PRESENT 128 128 none none 

QUARK 256 224 112 112 

SLISCP 160 128 80 80 

SPONGENT 128 120 64 64 

SPONGENT 256 240 128 128 
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5.3  Hardware stream ciphers 

Stream ciphers (SCs) are other key security primitives that can be successfully used in the 

area of VLSI test. Their mission is to encrypt and decrypt streams of test data by combining 

them with the secret, cipher-produced, cryptographically secure pseudorandom keystreams. 

Since the role of a combiner is typically assumed by the exclusive-or operations, binary ad-

ditive ciphers [93] make up the vast majority of actually implemented SCs.  

As documented by a large volume of scholarly literature on hardware SCs, many SC 

designs are based on nonlinearly filtered sequences produced by LFSRs. Generators that were 

proposed by Geffe, Jennings, Beth and Piper, Rueppel, Rao, Briier, Massey and Rueppel, or 

Chambers and Gollmann belong to this category; the corresponding details can be found in 

[161]. Other schemes include the shrinking generator [39], WG [61], [70], the self-shrinking 

generator [112], the reconfigurable feedback shift register [207], the Toeplitz-hash-based ci-

phers [48], SNOW [60], as well as XPD, Nanoteq, Rambutan, M, and Gifford’s algorithms 

[161]. Some are based on congruential additive generators (Fish, Pike, Mush [161]), or, like 

the Blum-Blum-Shub generator [17], reuse certain concepts employed in public key cryptog-

raphy. More recent schemes integrate LFSRs with sequential circuits having nonlinear feed-

back networks. Such solutions can be found among the finalists of the eSTREAM competi-

tion funded by the European Union. Their list includes Decim, Edon80, F-FCSR, Grain, 

Mickey, Moustique, Pomaranch, and Trivium. Detailed descriptions of those significant 

milestones are available in [154]. It is worth noting that the Grain cipher has evolved into a 

family of solutions including small-state SCs such as Sprout, Fruit, Plantlet, or Lizard [89]. 

The same has been observed for the Trivium-like designs.  

It appears that LFSRs can be replaced with nonlinear feedback shift registers 

(NLFSRs), as implemented in Achterbahn-128 [68]. Interestingly, some SCs have never been 

officially disclosed. Nevertheless, their details eventually became publicly available. The 

SCs E0 (developed for Bluetooth technology), A5/1 (used by GSM), and RC4 (deployed in 

the 802.11 wireless LAN standard) can serve here as examples. More advanced designs may 

use special forms of finite state machines, as done in Stanislaw [65]. Another group of SCs 

belonging to this category are designs deploying certain concepts used by cryptographic hash 

functions such as Keccak. For example, the Ascon family of SCs is based on a sponge frame-

work [55]. Since many SCs share similar building structures with hash functions, methods 

used for SCs cryptanalysis resemble those mentioned earlier. The comprehensive surveys of 

the most representative and state-of-the-art solutions in the SC domain can be found in the 

review papers such as [85], [135], [204], [205]. They also discuss SC resilience against var-

ious forms of attacks and highlight schemes that can be used even in compact devices with 

limited computing resources. 
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5.4  Hardware root of trust 

Cryptographic hash functions and SCs play a vital role in shaping high-end hardware roots 

of trust (RoT) – foundations on which secure operations of digital IC depend [167]. Typi-

cally, they are integrated into silicon as customized security blocks that handle chip and de-

vice identities, manage cryptographic keys and functions, secure boot processes, attestation, 

authentication, firmware updates, etc. The hardware root of trust is expected to be capable of 

detecting an intrusion, disabling access pending further actions, and/or obfuscating logic op-

erations of the IC. What lays the foundations for a silicon-based fixed-function root of trust 

is its authentication protocol. As an initial part of the actual challenge-response procedure, 

an IC creates a truly random token, commonly known as a challenge or a nonce, and sends it 

over to a security processor that computes a hash of the nonce. This hash (or digest) is sub-

sequently returned to the IC to be compared with a hash value produced internally (by the 

IC). The latter is usually done by a device implementing a lightweight cryptographic hash 

function. Once the user is granted access to the test logic, SCs are used to yield encrypted or 

decrypted streams of test stimuli and test responses. 

The previous chapters have recalled lightweight cryptographic hash functions, general 

purpose SCs as well as solutions designed to secure on-chip DFT ecosystems. However, the 

complexity of these solutions may still be considered unacceptable by many IC vendors who 

often face the dilemma of using an SHA engine [72] or other IP security cores where com-

putations do not lend themselves to lightweight hardware implementations [37], [45]. Fur-

thermore, SoC integration flow, distinguished by the prevalence of design reuse, may gener-

ate extra iterations as pre-designed intellectual property (IP) security soft cores often need to 

be fine-tuned and incrementally optimized until the register-transfer-level (RTL) synthesis 

process reaches the best trade-off between performance, area footprint, security, power, and 

also testability.  

A hardware RoT that maintains both data integrity and hardware quality ensured by 

test should satisfy at least the following requirements: 

• a high degree of defense-in-depth against scan attacks, 

• the ability to scale by adopting cryptographic primitives of a wide range of sizes, 

• full compatibility with a design and DFT flow, 

• a low area overhead, 

• no performance degradation of at-speed test applications. 

To address the above concerns while fulfilling requirements of IC testing, lightweight, yet 

effective, suitable for implementation in an all-digital, standard-cell-synthesis flow, new se-

curity primitives that can be used to design a hardware RoT are proposed and analyzed in the 

next chapters, as summarized below. 
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 Chapter 6 introduces hybrid ring generators (HRG) – a new class of lightweight linear 

finite state machines. While they are structurally similar to conventional ring generators, the 

new devices can circulate test data faster. This improves the performance of linear circuits 

used in test and security realms. Several applications of HRG such as MISRs or programable 

PRPGs are also discussed along with data providing architectural details of HRGs for sizes 

up to 1184 bits. 

 HRGs, working in tandem with a nonlinear sequential circuitry whose feedback net-

work employs Boolean functions that are based on bent functions, are used to build a scalable, 

lightweight cryptographic family of hash functions H2B presented in Chapter 7. Two groups 

of tests, including the NIST test suite, confirm that the scheme can fulfill requirements for a 

trustworthy and cryptographically secure hash function. Furthermore, resilience against 

brute-force, cryptanalytic, and side-channel attacks, as well as the self-testing capabilities of 

the presented design is described. 

 Chapter 8 presents lightweight SCs that can work as standalone units or be destined 

for the root of trust applications. High-speed HRGs and NLFSRs work synergistically to 

yield output keystreams. Desired features of the ciphers were comprehensively examined 

using several statistical tests. It is also shown that the proposed SCs can resist various types 

of cryptographic attacks. 

 The last presented item is a lightweight true random number generator producing a 

nonce, as shown in Chapter 9. The scheme performance was studied with the help of hard-

ware and simulation platforms. The randomness of the raw binary sequences without any 

postprocessing was tested with NIST and AIS-31 test suites. The performance of the new 

scheme is compared with six state-of-the-art solutions. 

Finally, a hardware root of trust (RoT) is presented in Chapter 10. It works with just 

a few blocks whose architectural details are discussed earlier in Chapters 6, 7, 8, and 9. It 

easily integrates with SSN technology by taking advantage of its inherent data scrambling 

and packetized test data distribution. In addition to SSN-based designs, the proposed RoT 

can improve security of other test interfaces that employ a challenge-response authentication 

protocol. 
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6. Hybrid ring generators 

Test compression introduced ring generators – high speed devices formed by transforming 

the structure of conventional LFSRs while preserving their transition functions. Ring gener-

ators feature a reduced number of levels of XOR logic, minimized internal fan-outs, and 

simplified layout and routing. This chapter presents hybrid ring generators (HRGs) [140] 

which take linear finite state machines to the next evolutionary level in the development of 

their ecosystems. While using the principal design rules of ring generators, the new devices 

are structurally improved with enhanced overall performance. 

6.1  Ring generators 

On-chip test data decompressors are the very first devices that had deployed ring generators 

[120], [121], [125], [146], [147] – high performance LFSRs – that quickly started carving 

out a reputation for themselves as versatile solutions capable of outperforming traditional 

schemes through an unmatched speed of operations and layout-friendly structures. Given a 

characteristic (feedback) polynomial, ring generators feature smaller internal fan-outs, 

shorter propagation paths, and simpler circuit layout and routing than popular and commonly 

used Fibonacci or Galois LFSRs [71], [99] whose long irregular feedback paths may limit 

the operating speed, cause severe frequency degradation, and may take up a considerable 

silicon area, especially for polynomials with a large number of terms. Fig. 6.1 recalls a basic 

architecture of a 32-bit ring generator with a primitive polynomial h(x) = x32 + x28 + x23 + x20 

+ x17 + x12 + x8 + x4 + 1, which causes this ring generator to go through all possible 232 – 1 

nonzero values before entering a seed state. Typically, its structure can be created by forming 

a ring counter, and then by adding feedback taps which correspond to successive terms of a 

characteristic polynomial. A feedback loop associated with tap xk is made up from k adjacent 

flip-flops, beginning with the leftmost ones (see Fig. 6.1). Note that two feedback nets cannot 

cross each other [121]. If one uses an appropriate characteristic polynomial, then a ring gen-

erator may assume a regular ladder-like shape. An extensive collection of such primitive 

polynomials is available in [144]. Since a subset of k adjacent flip-flops can be chosen in 

different ways as long as the resultant feedback line does not cross any other feedback line, 

the ring generators offer an appreciable degree of flexibility in forming their structures.  

 

Figure 6.1 Ring generator implementing a primitive polynomial  

h(x) = x32 + x28 + x23 + x20 + x17 + x12 + x8 + x4 + 1. 
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In addition to nanometer test, ring generators can perform more quickly and reliably 

than their conventional predecessors on a wide range of problems in such areas of engineer-

ing as communications, digital broadcasting, data transmission, mobile telephony, security 

and cryptography, white noise generation, error detection and correction, data compression, 

or event counting [124]. In this thesis, new schemes have been proposed to protect scan-

based designs against unauthorized usage of their test logic. These hardware roots of trust 

may use ring generators (or their hybrid versions) to hash proprietary data (Chapter 7), en-

crypt/decrypt test data streams (Chapter 8), or produce true random numbers (Chapter 9). 

Ring generators re-emerged as a research topic in 2011 [188] with the observation that 

conventional ring generators can be rearchitected in such a way that its XOR gate count is 

virtually halved provided a characteristic polynomial meets certain criteria. It has given rise 

to a new solution termed hybrid ring generators, similarly to hybrid LFSRs of [186]. 

6.2  Hybrid linear feedback shift registers 

Hybrid LFSRs reduce the number of XOR gates by combining both external-XOR and inter-

nal-XOR logic within the same register. It was shown [186] that if a characteristic polynomial 

can be rewritten as   

 h(x) = xk b(x) + b(x) + 1,  (6.1)  

where xk b(x) and b(x) have no terms in common but b(x), then a hybrid top-bottom LFSR 

can be set up using the following feedback:    

 F(x) = xk b(x) – xk + 1.  (6.2)  

Note that symbol “–” indicates a top-tap connection back to the first stage, whereas symbol 

“+” indicates a bottom-tap connection to the next stage. Similarly, if a characteristic polyno-

mial can be rewritten as   

 h(x) = xn + xk b(x) + b(x),  (6.3)  

then a hybrid bottom-top LFSR can be constructed using the following feedback:   

 F(x) = xn – xn-k + b(x).  (6.4)  

Again, symbols “–” and “+” are used to indicate respective tap connections.  Touba and Wang 

have proved that if a given LFSR can be converted into a hybrid one, then the same can be 

done with the corresponding ring generator [187], [188]. This is illustrated in Fig. 6.2 for the 

8-bit ring generator implementing a primitive polynomial   

 h(x) = x8 + x6 + x5 + x3 + 1,  (6.5)  

which can be rewritten as 

 h(x) = x3(x5 + x3) + (x5 + x3) + 1.  (6.6)  

The above formula indicates that a HRG can be constructed based on the following feedback:   

 F(x) = x3(x5 + x3) – x3 + 1 = x8 + x6 – x3 + 1.  (6.7)  
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In fact, the same result can be obtained by applying transformations moving feedback con-

nections around LFSRs with the possibility of adding or cancelling certain XOR gates [121] 

should a source tap cross a destination tap (XOR gate) or vice versa. Fig. 6.2 illustrates suc-

cessive steps of such a transformation. The grey arrows indicate a tap and a direction it is 

moved to rearrange the LFSR while preserving its characteristic polynomial. For example, 

the first step rotates feedback tap 6 → 2 counter-clockwise by three flip-flops. Then, feedback 

tap 7 → 1 is moved by two flip-flops. After step 4 two feedback taps cancel each other leading 

finally to an HRG with just two feedback taps as anticipated by formula (6.7). It is also worth 

noting that a hybrid ring defined by its feedback function F(x) can be easily arranged in the 

same way as it is done for conventional ring generators, i.e., by encompassing a given number 

k of flip-flops to form a given feedback loop corresponding to coefficient xk. 

By virtue of the above methods, the number g of 2-input XOR gates employed by a 

conventional ring generator (similarly to conventional LFSRs) can be reduced to (g + 1)/2 

provided a suitable feedback polynomial is used. In particular, an HRG with a primitive pen-

tanomial will feature two 2-input XOR gates instead of three ones. The reference [188] offers 

a list of primitive pentanomials of degree up to 800 that can be employed to get HRGs having 

two 2-input XOR gates. No primitive polynomials, however, have been reported with more 

than 5 terms that meet the requirements (6.1) or (6.3). Moreover, HRGs with more aggres-

sively reduced XOR gate counts have not been thoroughly examined yet, including those 

with a varying number of top-bottom and bottom-top feedback nets. The results presented in 

the next chapters are the first steps in this direction.   

6.3  Basic design scheme  

The HRGs of [187] have an intrinsic component: a single feedback connection going in the 

opposite direction than all the remaining feedback wires – compare Fig. 6.3 showing a 24-

bit HRG implementing the primitive polynomial   

 

Figure 6.2 Ring generator and its hybrid version (after transformations). 
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h(x) = x24 + x22 + x19 + x14 + x12 + x10 + x7 + x2 + 1  

that satisfies (6.1) since   

h(x) = x12 (x12 + x10 + x7 + x2) + x12 + x10 + x7 + x2 + 1.  

As a result, the only advantage of that hybrid ring is its reduced XOR gate count from 7 to 4, 

as otherwise it offers similar performance to that of the conventional ring generators. It ap-

pears, however, that the maximum length HRGs may have much more diversified layouts 

and may offer more substantial area savings. Consider a 32-bit maximum length HRG shown 

in Fig. 6.4a with the following feedback function:   

F(x) = x32 – x28 + x24 – x18 + x12 – x5 +1.  

It was found in O(n2) time, where n is the HRG size, by using the fast LFSR simulation 

technique of [125]. As can be seen, this HRG features five feedback connections selected in 

such a way that they run alternately up and down to form two groups of oppositely disposed 

nets whose mutual spatial separations are roughly the same making the feedback lines 

 

Figure 6.3  Hybrid ring generator with h(x) = x24 + x22 + x19 + x14 + x12 + x10 + x7 + x2 + 1 

obtained by using a method of [187]. 

 

Figure 6.4 Primitive hybrid ring generators with  

      a) h(x) = x32 + x28 + x26 + x25 + x22 + x21 + x20 + x19 + x18 + x16 + x15 +  

x14 + x13 + x11 +x10 + x9 + x8 + x6 + x5 + x4 + 1, 

and b) h(x) = x32 + x26 + x24 + x23 + x21 + x19 + x18 + x17 + x16 + x13 + x12 + x10 + x6 + x4 + 1. 
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(approximately) uniformly distributed. Interestingly, the HRG of Fig. 6.4a implements the 

following primitive polynomial: 

h(x) = x32 + x28 + x26 + x25 + x22 + x21 + x20 + x19 + x18 + x16 + x15 + x14 + x13 + x11 + 

                     x10 + x9 + x8 + x6 + x5 + x4 + 1.   

This result can be easily verified by taking an output sequence of 2n bits observed on any 

stage of the register, and then by running the Berlekamp-Massey algorithm [110] to find the 

minimal polynomial of that linearly recurrent sequence. In contrast to a conventional ring 

generator that would need 19 XOR gates (each having two inputs), the HRG of Fig. 6.4a 

employs just five such gates, thus achieving a 19/5 = 3.8 times reduction of the XOR gate 

count. Another example is illustrated in Fig. 6.4b with the enlarged number of feedback taps. 

This HRG uses the feedback function   

F(x) = x32 + x28 – x24 + x19 – x13 + x8 – x6 + x4 – x2 + 1. 

This is equivalent to the following primitive polynomial:  

h(x) = x32 + x26 + x24 + x23 + x21 + x19 + x18 + x17 + x16 + x13 + x12 + x10 + x6 + x4 + 1.   

Given the high computational efficacy of the primitiveness test [125], one can select a 

suitable HRG by means of the following procedure. Every iteration it works with a candidate 

HRG topology rather than a candidate feedback polynomial. It allows designers to pick the 

most preferable structure characterized by its size, a desired number of feedback taps, their 

orientation (up or down), their mutual separation (minimal or maximal), and other constraints 

that can be easily added. Given an n-bit HRG, the appropriate test is used to see if the exam-

ined structure can yield an m-sequence. Recall that this task can be accomplished in O(n2) 

time. If the test fails, we pick another HRG by relaxing some of the constraints, primarily 

locations of one or more feedback taps. Having found a maximum-length HRG, one can 

retrieve the corresponding characteristic polynomial by virtue of the Berlekamp-Massey al-

gorithm, as shown earlier. It is worth noting that seeking an appropriate primitive polynomial 

to set up the corresponding HRG would take CPU time proportional to O(n2) as well. Unfor-

tunately, there are no known criteria under which one could decide if a given primitive pol-

ynomial can be used to form a desired HRG. Back to Fig. 6.4, it remains to devise how to 

arrive with the HRGs of this figure based only on the primitive polynomials (listed in the 

caption) in an algebraic manner similar to that of [186].  

Using this structural approach, HRGs have been identified for all degrees up to 1184. 

Selected results are gathered in Table 6.1. All HRGs listed there are optimal in the sense of 

having feedback connections distributed as uniformly as possible. They are, therefore, ame-

nable to be highly modular structures. Furthermore, feedback taps have been selected such 

that they alternately go up and down to accelerate internal circulation of data (see Chapter 

6.5). Note that only the exponents of nonzero terms are represented, and terms corresponding 

to feedback taps “going up” are underlined.  
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Table 6.1 Primitive hybrid ring generators, n  1184 

8 5 2 0 280 249 217 185 154 123 92 61 30 0 728 648 566 484 402 321 240 158 79 0 

13 8 3 0 288 256 224 191 158 126 94 62 31 0 736 654 573 490 408 325 244 161 80 0 

16 14 11 7 4 0 296 263 230 197 163 130 96 62 31 0 744 661 578 495 411 329 246 162 81 0 

17 13 9 6 2 0 304 270 235 202 167 134 99 64 32 0 752 667 583 498 413 328 246 164 82 0 

19 17 12 8 4 0 312 278 242 207 172 136 102 66 33 0 760 676 591 506 421 337 252 167 82 0 

 24 19 13 8 3 0 320 285 249 213 177 141 107 72 36 0 768 671 572 472 372 276 207 138 69 0 

 31 25 18 13 6 0 328 292 255 218 183 146 110 73 36 0 776 690 604 517 431 345 258 171 84 0 

32 26 20 13 7 0 336 299 264 227 189 152 114 76 38 0 784 699 611 523 435 347 259 172 85 0 

36 31 26 19 12 7 0 344 307 268 231 193 155 116 77 38 0 792 704 617 528 439 351 263 175 87 0 

40 32 23 17 9 0 352 313 275 235 195 156 117 77 38 0 800 712 623 533 444 354 266 177 87 0 

44 37 28 18 10 0 360 321 280 239 198 157 116 78 38 0 808 719 629 538 447 358 268 177 88 0 

48 41 32 23 14 7 0 368 328 286 244 202 162 120 78 39 0 816 725 634 543 452 361 270 180 89 0 

52 43 35 27 17 7 0 376 335 293 252 209 166 123 81 40 0 824 732 641 548 457 365 272 180 90 0 

56 47 37 30 20 10 0 384 341 298 254 211 167 124 82 41 0 832 727 619 511 407 304 228 152 76 0 

60 51 42 33 22 11 0 392 349 304 261 217 173 128 85 42 0 840 748 654 562 469 375 281 187 93 0 

61 52 42 31 22 11 0 400 356 311 268 223 179 134 89 44 0 848 755 661 566 471 376 281 186 93 0 

64 56 49 40 32 23 15 7 0 408 351 293 233 172 116 87 58 29 0 856 761 666 572 476 380 285 189 93 0 

68 61 52 44 35 27 18 9 0 416 371 325 278 231 184 137 90 45 0 864 769 672 575 480 383 287 191 95 0 

72 64 55 45 37 28 18 8 0 424 377 331 284 236 188 141 94 46 0 872 776 678 580 484 387 289 191 95 0 

76 67 57 47 37 28 18 9 0 432 386 337 289 240 191 142 94 46 0 880 784 685 586 488 389 290 192 96 0 

80 70 59 50 39 29 18 9 0 440 392 342 292 244 194 145 95 47 0 888 789 691 592 494 394 294 196 97 0 

84 73 63 52 41 30 19 9 0 448 398 347 296 246 195 145 96 48 0 896 796 698 599 498 398 299 199 99 0 

88 78 66 54 43 32 20 10 0 456 406 354 302 250 198 147 98 49 0 904 806 705 604 503 402 301 202 101 0 

89 79 68 58 47 35 24 12 0 464 413 360 307 254 203 152 100 50 0 912 796 679 562 446 340 255 170 85 0 

92 80 69 57 45 33 21 10 0 472 420 367 314 263 210 157 105 53 0 920 819 716 615 513 411 308 205 102 0 

96 87 76 65 55 44 33 22 11 0 480 420 359 300 241 180 119 58 0 928 825 722 618 515 411 308 205 101 0 

100 90 78 66 56 45 33 21 10 0 488 434 379 326 271 217 163 108 54 0 936 832 728 623 518 413 309 206 102 0 

104 92 81 69 57 45 33 21 10 0 496 442 388 332 276 220 166 111 55 0 944 840 735 629 523 417 313 207 103 0 

107 96 84 72 59 46 34 21 10 0 504 449 393 338 282 225 168 112 55 0 952 846 739 633 527 421 316 209 104 0 

108 96 85 72 60 47 35 23 11 0 512 455 397 339 281 225 169 111 55 0 960 853 745 638 532 424 316 210 105 0 

112 102 91 80 70 60 49 38 28 18 9 0 520 462 406 348 289 230 171 112 56 0 968 860 752 645 537 429 320 212 106 0 

116 107 97 87 76 66 55 44 33 22 11 0 521 464 405 346 288 230 171 113 56 0 976 857 734 612 489 368 276 184 92 0 

120 109 97 85 74 62 50 38 27 18 9 0 528 470 411 351 291 233 173 114 57 0 984 860 737 619 495 372 279 186 93 0 

124 113 101 91 80 68 56 44 32 20 10 0 536 477 416 356 295 234 174 116 58 0 992 882 771 663 552 441 330 219 109 0 

127 116 104 93 81 69 57 45 33 22 11 0 544 472 398 323 250 176 132 88 44 0 1000 874 747 623 496 380 285 190 95 0 

128 115 100 85 71 57 42 28 13 0 552 476 399 322 250 180 135 90 45 0 1008 897 785 672 560 448 335 222 110 0 

132 118 102 86 71 56 40 26 13 0 560 498 435 373 310 247 185 122 61 0 1016 904 790 676 563 450 337 224 111 0 

136 121 106 90 75 59 44 28 14 0 568 506 442 380 316 253 189 125 62 0 1024 910 796 682 567 453 340 226 112 0 

140 125 109 93 76 60 44 28 14 0 576 513 448 386 323 258 194 129 64 0 1032 917 803 687 571 455 340 226 113 0 

144 128 112 96 79 63 46 30 15 0 584 519 453 387 322 257 191 126 63 0 1040 926 809 692 577 461 345 228 114 0 

148 132 115 100 84 67 50 33 16 0 592 525 458 391 325 258 192 128 64 0 1048 917 786 662 531 400 300 200 100 0 

152 135 117 99 82 64 47 30 15 0 600 533 465 398 330 264 197 130 65 0 1056 939 823 705 588 470 352 234 116 0 

156 140 122 104 87 70 52 34 16 0 607 540 472 404 336 270 203 135 68 0 1064 948 829 711 593 474 357 238 119 0 

160 142 123 104 87 68 51 32 16 0 608 540 471 402 334 267 199 132 66 0 1072 953 833 713 594 474 355 236 118 0 

168 149 131 111 92 72 53 34 17 0 616 533 451 370 286 208 156 104 52 0 1080 960 841 721 600 479 358 238 118 0 

176 157 138 119 100 80 60 40 20 0 624 555 485 415 347 277 207 138 69 0 1088 968 846 724 603 483 361 239 119 0 

184 164 143 123 103 82 62 41 20 0 632 562 491 422 351 281 210 140 69 0 1096 975 852 730 607 485 363 242 120 0 

192 171 150 128 107 85 64 43 22 0 640 569 499 427 356 285 213 142 70 0 1104 981 858 735 612 488 366 242 121 0 

200 178 155 132 109 87 65 42 21 0 648 576 504 431 359 286 213 142 71 0 1112 988 863 740 617 493 369 245 122 0 

208 186 162 140 117 94 71 47 24 0 656 585 512 438 364 290 216 142 71 0 1120 982 847 708 570 432 324 216 108 0 

216 193 170 145 120 95 72 48 24 0 664 590 515 441 367 294 219 144 72 0 1128 1004 878 752 629 503 378 252 126 0 

224 199 173 147 122 98 72 48 23 0 672 598 524 448 372 297 222 147 73 0 1136 1010 886 759 633 506 379 254 127 0 

232 206 180 154 128 101 74 48 24 0 680 605 528 451 375 299 224 149 74 0 1144 1017 891 764 636 509 382 254 126 0 

240 214 187 160 134 107 80 53 27 0 688 598 506 416 325 240 180 120 60 0 1152 1024 895 766 637 508 382 255 127 0 

248 221 194 167 139 111 83 55 27 0 696 605 514 421 329 244 183 122 61 0 1160 1031 901 774 644 516 386 256 127 0 

256 228 199 170 142 113 85 57 29 0 704 627 550 471 392 313 234 155 76 0 1168 1038 908 777 646 517 386 257 128 0 

264 235 205 175 146 118 88 58 30 0 712 633 554 475 395 315 235 155 77 0 1176 1047 917 785 653 522 390 258 129 0 

272 242 212 182 151 121 91 60 29 0 720 640 562 481 400 319 238 159 79 0 1184 1053 921 790 657 524 392 261 130 0 
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For example, 32 28 24 18 12 5 0 stands for the feedback function F(x) = x32 – x28 + x24 

– x18 + x12 – x5 + 1 of HRG in Fig. 6.4a. Note that in addition to sizes which are multiplicities 

of 4 and 8, the table also includes primitive HRGs with a period equal to a Mersenne prime 

number, i.e., for n = 13, 17, 19, 31, 61, 89, 107, 127, 521, and 607. Dividing the number of 

polynomial terms by the number of the corresponding HRG feedback function terms (with 

the exception of terms n and 0) gives the XOR count reduction. It appears that this reduction 

can be strikingly as high as 7.57x, for n ≤ 1184. This is for HRG  

F(x) = x168 – x148 + x128 – x106 + x82 – x59 + x36 – x18 + 1, 

whose feedback polynomial is   

168 150 148 145 144 130 128 127 126 125 124 121 110 109 107 106 105 104 103 102 101 

98 89 87 86 85 84 83 82 81 80 79 78 69 65 64 63 62 61 60 59 58 56 45 43 42 41 40 38 36 23 

22 20 18 0.  

The approach presented in this chapter can be easily used to obtain HRGs of many 

other architectures that may be required, for example, due to space, layout, or routing con-

straints. 

6.4  Reciprocal and dual HRGs  

This chapter briefly discusses two important aspects of deploying HRGs in applications 

where one needs to produce a pseudorandom sequence or its derivatives. In many instances, 

instead of the original pseudorandom sequence, it is necessary to employ a sequence which 

is exactly the reverse of the original vector. Typically, this is achieved by using LFSRs or 

ring generators implementing a reciprocal polynomial h*(x) of a given polynomial h(x), 

where h*(x) = xn h(1/x). As could be expected, given an n-bit HRG, one can obtain its recip-

rocal by converting the feedback function of the HRG the same way it is done for conven-

tional rings. Note that all feedback connections will maintain their original directions. Con-

sider, for example, a 32-bit maximum-length HRG shown in Fig. 6.5a. Its feedback function 

is given by 

F(x) = x32 + x31 – x30 + x27 – x22 + x17 – x12 + x11 – x7 + x3 + 1, 

where the corresponding primitive polynomial is  

h(x) =  x32 + x31 + x30 + x29 + x26 + x25 + x24 + x23 + x20 + x18 + x17 + x14 + x13 + x8 +  

                      x6 + x5 + x3 + x + 1.  

If another HRG is constructed with  

F*(x) = x32 + x29 – x25 + x21 – x20 + x15 – x10 + x5 – x2 + x1 + 1 
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as its feedback function (Fig. 6.5b), it will generate a sequence which is the exact reversal of 

the sequence produced by the circuit of Fig. 6.5a. A key point here is that a reciprocal of a 

given HRG is obtained as its exact mirror image (compare Fig. 6.5a and 6.5b). Consider the 

following two feedback taps in Fig. 6.5a: –x12 and x11. Their reciprocals are –x20 and x21. Tap 

x21, however, is not driven directly by flip-flop 26 (as it might be implied by a formula used 

to compute a reciprocal). Instead, its stem is fed by an XOR gate placed on the output of flip-

flop 26 due to tap –x20. This arrangement preserves the HRG mirror image and assures cor-

rectness of the reciprocal form. The same phenomenon occurs for taps –x30 and x31, and their 

reciprocals –x2 and x1.  

Similarly to reciprocal structures, every HRG has its own dual counterpart. Given a 

conventional ring generator, its dual form has the direction of all feedback connections re-

versed. Hence, a dual ring generator features XOR gates placed on the outputs of those flip-

flops that have been used to drive feedback taps in the original circuit, while the feedback 

lines originate now at the former locations of the respective XOR gates. Dual ring generators 

are instrumental in the process of phase shifter synthesis, as shown in [145]. A phase shifter 

consists of an XOR network driven by a maximum-length LFSR, and is employed to spread 

apart shifted replicas of the same data in various outputs. Every output is driven by a linear 

combination of LFSR stages. It generates an m-sequence with a desired separation from other 

m-sequences by employing the "shift-and-add" property according to which a bitwise sum of 

any two shifts of an m-sequence is a shift of the same m-sequence. The actual phase shifter 

synthesis follows the steps presented in [145]. It appears that the same procedure can be used 

for any HRG. A phase shifter can be obtained by using a dual HRG the same way it is done 

for the conventional rings. For example, a dual HRG for a 32-bit HRG of the upper part of 

Fig. 6.6 is shown in the lower part of the same figure. Assuming an initial state of a dual 

HRG with a single logic 1, the state of the dual HRG after q clock cycles is of interest as 

locations of logic 1s in this vector identify the outputs of the original HRG to be XOR-ed to 

 

Figure 6.5 32-bit HRG (a) and its reciprocal form (b). 
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produce a sequence spaced q shifts up a reference, i.e., a sequence originating from a stage 

pointed out by the logic 1 in the initial state of the dual circuit. The validity proof of this 

technique is analogous to that of [145]. Back to Fig. 6.6, logic simulation of the dual HRG 

for as many as 13,154 clock cycles reveals locations of four 1s in (blue) flip-flops 10, 11, 12, 

and 16. Hence, a sum of bits stored in these four flip-flops yields an m-sequence shifted by 

13,154 steps relative to a reference m-sequence observed on flip-flop 0.   

6.5  Multiple-input signature registers 

A multiple-input signature register is one of the most straightforward applications of HRGs. 

MISR-based test response compaction schemes received a lot of attention in scholarly liter-

ature in the past [136]. One of the prominent results was the observation that the transient 

behavior of the aliasing error probability depends on architectural details of a compactor, and 

it can be shortened by proper selection of how injected test data circulate within a MISR. 

Clearly, this internal circulation can be accelerated in many cases provided an HRG is used 

to implement a MISR rather than a conventional ring generator. Consider a MISR of Fig. 6.7. 

It is built on a maximum-length 24-bit HRG with 4 input channels delivering test results 

through 2 injectors each. If a single error is injected through one of those channels, then one  

 

Figure 6.6 32-bit primitive HRG and its dual form used to obtain a phase shifter. 

 

Figure 6.7 24-bit MISR driven by 4 input channels. 
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Table 6.2 Circulation of errors in MISRs. 

n Input Regular Hybrid Inputs Regular Hybrid 

32 

18 26 21 18, 13 31 17 

20 26 23 20, 11 22 14 

22 19 13 22, 9 18 12 

24 19 15 24, 7 14 14 

48 

27 40 33 27, 20 47 26 

30 40 36 30, 17 34 23 

33 33 25 33, 14 28 20 

36 24 26 36, 11 22 19 

64 

34 63 40 34, 29 58 35 

38 51 44 38, 25 50 31 

42 51 48 42, 21 42 27 

46 41 30 46, 17 34 25 

80 

45 79 52 45, 34 68 41 

50 64 57 50, 29 58 36 

55 53 36 55, 24 48 31 

60 38 41 60, 19 53 59 

96 

54 95 67 54, 41 82 54 

60 78 73 60, 35 70 48 

66 66 50 66, 29 58 42 

72 46 55 72, 23 66 75 

128 

66 127 78 66, 61 122 73 

74 127 86 74, 53 106 65 

82 102 94 82, 45 90 57 

90 81 56 90, 37 74 49 

160 

90 159 105 90, 69 138 84 

100 133 115 100, 59 118 74 

110 103 69 110, 49 98 64 

120 80 77 120, 39 78 68 

192 

108 191 127 108, 83 166 102 

120 165 139 120, 71 142 90 

132 130 90 132, 59 118 78 

144 96 102 144, 47 94 79 

224 

126 223 148 126, 97 194 119 

140 185 162 140, 83 166 105 

154 146 99 154, 69 138 91 

168 146 113 168, 55 110 95 

256 

130 255 159 130, 125 250 154 

146 255 175 146, 109 218 138 

162 210 191 162, 93 186 122 

178 171 123 178, 77 154 106 
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can track its circulation within the MISR by reconstructing a part of its state trajectory be-

ginning with a state having a single or two 1s occurring on the injection sites. A number of 

clock cycles  necessary for the error to reach every flip-flop at least once can be regarded as 

a circulation speed metric (note that several instances of the same error may cancel each other 

in the course of this process). Table 6.2 provides the value of  for several MISRs and differ-

ent error injection sites (reported in the column “Input” for a single injector and in the column 

“Inputs” for two injectors fed by the same input channel as in Fig. 6.7). The same table con-

trasts HRG-based MISRs with MISRs constructed by means of regular ring generators whose 

architecture in each case matches feedback taps of the corresponding HRG (except their di-

rections). The advantage of using HRG-based MISRs is clearly pronounced in each test case 

as they offer smaller values of  than those of conventional rings. For example, it takes 171 

cycles for an error injected into a flip-flop 178 to reach every memory element at least once  

in a 256-bit MISR using a regular ring generator. On the contrary, an error with the same 

injection pattern needs only 123 cycles to be seen at every flip-flop in an HRG-based MISR. 

The experiments have used the following maximum-length ring generators: 

h(x) = x32 + x27 + x20 + x14 + x8 + x4 + 1,  

h(x) = x48 + x41 + x34 + x25 + x16 + x7 + 1,  

h(x) = x64 + x52 + x42 + x33 + x24 + x11 + 1,  

h(x) = x80 + x65 + x54 + x39 + x27 + x13 + 1,  

h(x) = x96 + x79 + x67 + x47 + x26 + x11 + 1,  

h(x) = x128 + x103 + x82 + x63 + x40 + x20 + 1,  

h(x) = x160 + x134 + x104 + x81 + x55 + x26 + 1,  

h(x) = x192 + x166 + x131 + x97 + x70 + x37 + 1,  

h(x) = x224 + x186 + x147 + x107 + x74 + x32 + 1,  

h(x) = x256 + x211 + x172 + x131 + x84 + x37 + 1.  

Note that for those conventional rings it was possible to find maximum-length HRGs 

with such feedback functions that their taps are identical with those of the conventional rings 

but directions, for example 

h(x) = x32 + x27 + x20 + x14 + x8 + x4 + 1   

and   

F(x) = x32 – x27 + x20 – x14 + x8 – x4 + 1. 

6.6  Programmable HRGs 

Another area where HRGs improve on conventional LFSRs is in allowing simple yet effec-

tive usage of multiple characteristic polynomials. Linear devices capable of handling a num-

ber of feedback polynomials have a variety of applications that may include multiple-poly-

nomial test data decompressors, on-chip low power test pattern generators for built-in self-
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test schemes, or cryptographic and security devices working with thousands of primitive pol-

ynomials. Although a conventional ring generator can be redesigned so that it allows one to 

pick any primitive polynomial, this solution requires many AND gates and two XOR gates 

interspersed between every two successive flip-flops of a lower section of a ring generator. 

The latter gates may slow down the entire device. Two 2-input XOR gates in a row could be 

replaced with a faster 3-input XOR gate, but this would be done at a price of a 30% higher 

transistor count [117]. Therefore, the HRG-based solution outlined in Fig. 6.8 offers a good 

tradeoff between the area overhead, speed, and the number of available polynomials. 

As can be seen in Fig. 6.8, XOR logic introduces a single-gate delay (the speed of the 

circuit is also determined by the AND gates used to enable the actual feedback network, as 

in other solutions of this kind). An additional shift register (the blue flip-flops) allows one to 

shift-in a selection mask that determines the current feedback polynomial. Although an n-bit 

selection mask register may pick any of 2n – 1 feedback configurations, only some of them 

correspond to primitive polynomials. Table 6.3 lists the number of primitive polynomials that 

can be used in conjunction with HRGs similar to that of Fig. 6.8, for n = 11, 12, …, 32. These 

numbers were obtained by setting all 2n – 1 feedback nets and running the primitiveness test. 

It is worth noting that different primitive HRGs may actually implement the same character-

istic primitive polynomial. For such isomorphic HRGs, their common feedback polynomial 

is counted only once. As can be verified in Table 6.3, programmable HRGs of sizes common 

to many applications offer a multi-million-polynomial programming capability. 

 

Figure 6.8 32-bit programmable hybrid ring generator. 

Table 6.3 Polynomial count for programmable hybrid ring generators. 

n #Polynomials n #Polynomials n #Polynomials 

12 87 19 12,776 26 648,543 

13 346 20 11,287 27 1,585,744 

14 433 21 39,665 28 1,789,742 

15 1,063 22 56,015 29 3,877,201 

16 1,166 23 95,355 30 5,311,613 

17 2,600 24 102,608 31 20,703,016 

18 3,466 25 487,264 32 23,881,414 
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7. Cryptographic hash function H2B 

Protection of ICs against hardware security threats has been tackled by many schemes pro-

posed to mitigate risks associated with unauthorized access and usage of ICs in general, and 

intellectual property (IP) cores in particular. Typically, this is accomplished by hardware 

roots of trust whose crucial security primitives entail cryptographic hash functions. They 

provide data integrity services and thus can support the IC authentication protocols employed 

to counteract potential threats such as untrusted users accessing ICs. However, complexity 

of certain hash functions in terms of area overhead, the impact on the design flow, and testa-

bility is unacceptable. This is what motivated a new solution presented in this chapter - a 

simple, yet effective, lightweight, scalable cryptographic hash function H2B [139]. It employs 

a HRG which feeds a nonlinear sequential circuitry based on bent-like functions.  

7.1  Basic structure 

Fig. 7.1 is a block diagram of the proposed hash function H2B. It consists of a HRG and a 

nonlinear sequential logic (NSL) receiving and processing data produced by HRG. The next 

paragraphs provide architectural details of these modules. It is worth noting that both parts 

can be initialized by means of secret keys, and a feedback function of HRG can be repro-

grammed by virtue of another secret key or a secret selection mask, as explained in Section 

7.1C. To a certain degree, block NSL can also be rearchitected, if required for security rea-

sons. Given an initial (proprietary) state of HRG, H2B processes an input message of arbitrary 

length, e.g., a one-time nonce, in a number of clock cycles (or iterations). This number is 

equal to the sum of cycles needed to shift-in the input message and a predefined number of 

 

Figure 7.1 Block diagram of the proposed hash function. 
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additional cycles required to complete a hash computation. Hence, input bits enter HRG (in 

a parallel fashion through a certain number of XOR gates) where they will keep circulating 

until the very end. HRG-produced signals feed block NSL that works synchronously with 

HRG and transforms its content into a final digest. The actual hash value of a fixed length is 

obtained by reading out the entire content of NSL memory elements. 

A. Hybrid ring generator 

As with conventional LFSRs, HRGs are not free from structural and linear dependencies in 

their output sequences. Thus, the direct use of HRG to feed the remaining H2B logic with 

correlated sequences may compromise the quality of results. To reduce such dependencies, 

a phase shifter is placed on the outputs of the generator. Also, the same circuitry acting as an 

expander allows one to have a relatively short HRG drive a large number of receivers. It may 

result in substantial savings as far as the sequential logic footprint is concerned (see also 

Chapter 7.2).  

The phase shifter feeds a group of two-way muxes, as shown in Fig. 7.2 for a 24-bit 

HRG feeding a 32-bit NSL. The muxes select randomly and per-cycle data produced by HRG 

and its phase shifter. A signal placed on the selection input of each mux is provided by a 

dedicated FF of the lower ring. In addition to improved randomness, the muxes enhance 

nonlinearity of the results, as linear expressions leaving the phase shifter are turned into 

 

Figure 7.2 Hash function with 24-bit HRG and 32-bit NSL with four nonlinear functions. 
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nonlinear formulas even before they enter the lower ring and its nonlinear feedback network. 

What makes it possible is the equation y = a + bc + ac, i.e., the mux algebraic normal form 

(ANF) with a, b, and c assuming the role of data and selection inputs, respectively. 

B. Maximal nonlinear functions 

Signals that circulate in HRG drive block NSL comprising a ring of memory elements and a 

feedback network which consists of different nonlinear combinational functions in 5, 7, or 9 

variables. These functions are defined as follows:  

 g(rn, …, r1, r0) = b(rn, …, r1) + rk r0,    k  [1, n],  (7.1) 

where ri is an input variable provided by one of the NSL FFs, and b(rn, …, r1) is an n-input 

bent function [158], n = 4, 6, or 8. Bent functions are “the most nonlinear” among all n-

variable Boolean functions. The degree of nonlinearity of a given function h is the minimum 

Hamming distance between the truth tables of h and an affine function. The latter one is 

defined as a linear function (a constant 0 or an exclusive-or of one or more variables) or its 

complement. In other words, the bent function is a switching function that departs from affine 

functions as much as possible, i.e., by 2n-1 – 2n/2 - 1. For example, h(x1, x2, x3, x4) = x1x2  x3x4 

is a bent function which is a distance 6 from 16 affine functions of four variables (and a 

distance 10 from the remaining 16 affine functions). 

Interestingly, the authors of [163] have shown that if a bent function b(rn, …, r1) as-

sumes the value of zero 2n-1 + 2n/2-1 times, and a bent function b(rn, …, r1) + rk, k  [1, n], 

assumes the value of zero 2n-1 – 2n/2-1 times, then g(rn, …, r1, r0) has the following properties:   

1) g(r) is balanced, i.e., it yields as many 0s as 1s over its input set; in other words, g(r) 

outputs both 0s and 1s with the same probability of 0.5 provided picking any of its input 

vectors is equally likely,  

2) g(r) is highly nonlinear as its nonlinearity Ng  2n – 2n/2; the nonlinearity of a function g 

is the minimum number of its truth table entries that have to change to convert g to an 

affine function, i.e., a linear function or its complement,  

3) g(r) satisfies the strict avalanche criterion, i.e., any single input change causes the output 

change with the probability of 0.5. 

These properties are considered desirable for several cryptographic primitives, includ-

ing hash functions, as they can make them less vulnerable to certain algebraic attacks (see 

Chapter 7.3). Fig. 7.2 illustrates how four 5-input nonlinear functions based on four bent 

functions [158] b1, …, b4 receive their (n + 1) input signals. Every bent function is driven by 

a continuous subset of FFs of the lower ring. We also place a driver of variable r0 (see above) 

close to a FF driven by a given nonlinear function (an example of such an assignment is 

shown in Fig. 7.2 for the bent function b2). Moreover, every stream of data produced by the 

phase shifter is injected in the middle of a segment of FFs assigned to one of the bent 
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functions. Usually, a single injector is allocated to a dedicated segment unless the number of 

injectors is greater than the number of segments. If so, some segments can be used more than 

once. Finally, all functions of NSL use its FFs in a uniform manner by having a given FF 

either drive just a single variable r1 or receive data from just a single feedback function. 

Clearly, FFs fed by the phase shifter and acting as inputs to the bent functions are exceptions. 

Selection of NSL functions g(r) is carried out in such a way that the associated bent 

functions are pairwise different and they are not complements of each other. The same pro-

cess is further guided by algebraic normal forms of g(r). Consider, for example, all 3,584 

functions compliant with (8) and having 5-inputs. Putting one of them into ANF yields the 

following expression:  

g(a, b, c, d, e) = d + ae + bc + de. 

It is comprised of 3 additions and 3 multiplications. The same group contains also a function 

whose ANF is as follows:  

g(a, b, c, d, e) = a + d + ac + bc + bd + be + cd + ce + de. 

It features 7 multiplications and 8 additions. Given the same number of inputs, it is preferable 

to choose functions that offer the smallest number of AND operations to enable synthesis of 

area-efficient hash functions. Indeed, results of logic synthesis confirm a noticeable correla-

tion between the number of multiplications and, in a lesser extent, additions in ANF, and the 

resultant silicon area occupied by a given function (see also Chapter 7.2). Moreover, simula-

tion experiments show that both the degree and the complexity of Boolean formulas in input 

variables (bits of a message) representing bits of a digest, i.e., NSL FFs, depend on the num-

ber of iterations rather than the number of monomials a given function g(r) consists of.   

C. Programmability 

The proposed solution can be easily turned into a keyed hash function. In addition to secret 

values that can be used to initialize HRG and FFs of NSL, the scheme of Fig. 7.2 can also be 

redesigned in such a way that HRG becomes a programmable unit capable of working with 

thousands of primitive feedback polynomials, as shown in Fig. 7.3. In this case, the current 

feedback function (and thus a feedback polynomial) is determined by a secret selection mask. 

 

Figure 7.3 Programmable 24-bit hybrid ring generator. 
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This programmable HRG is a slightly modified version of the one presented in Fig. 6.8. An 

additional mux increases the HRG testability, employing 2-bit twisted ring counter in a test 

mode (see also Chpater 7.4).  

7.2  Experimental results 

The proposed hashing scheme was validated by means of statistical tests, including a test 

suite [12] from the National Institute of Standards and Technology (NIST). Several instances 

of H2B were examined by varying the size of both HRG and NSL, as well as by choosing 

different bent functions to implement block NSL. In order to pass all tests, it is essential for 

H2B to iterate for at least c cycles, where c is greater than the size b of the NSL ring register. 

Following this experimental observation, the number of clock cycles needed to complete the 

hashing process once the entire message is uploaded to HRG was set to 2b. Typically, N 

digests subjected to all tests were obtained by hashing N s-bit tokens (messages) produced 

by the Mersenne Twister pseudorandom number generator, where s was chosen to be two 

times longer than the NSL register, e.g., a hash function with a 128-bit NSL register was fed 

by 256-bit messages. In particular, at least 109 bits were collected on the NSL outputs, thereby 

producing 1 000 consecutive sequences, each comprising 106 bits, to meet the requirements 

of the NIST tests. The same sequences were used to run the remaining tests. Hence, given a 

b-bit NSL, the actual number N of random tokens and the corresponding digests was equal 

to 109/b. The following sections briefly introduce each test and subsequently discuss the 

corresponding experimental results.  

Probability of bit values. The simplest test is aimed at checking whether the logic value 

of 1 occurs on every bit position of a digest roughly half of the time (50%). If P1(k) is the 

probability of having 1 on bit k, then:  

 P1(k) = Ck / N,  (7.2) 

where Ck is the 1s count on bit k. For large b, the sample mean S of P1(k), k = 0, 1, …, b – 1, 

will be approximately normally distributed under the null hypothesis that the P1(k)’s are in-

dependent and identically normally distributed random variables. Let  be the sample stand-

ard deviation. Then, the test statistic  

  𝑍 = √𝑏(𝑆 − 0.5)/𝜎  (7.3)  

is normally distributed, and the test passes if |Z| < 1.96 given a 95% confidence level. More-

over, all 1s counts Ck, k = 0, 1, …, b – 1, can also be statistically examined to see how closely 

they resemble a uniformly distributed random variate. This hypothesis can be verified by, for 

instance, the chi-square test. It works with a b-bin histogram of 1s observed on successive 

bits of N b-bit digests and uses the statistic  

χ2 =  ∑
(𝐶𝑘 − 𝑁/2)2

𝑁/2

𝑏−1

𝑘=0
 (7.4) 
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which will be approximately chi-square distributed with b – 1 degrees of freedom under the 

null hypothesis as above.  

Buckets test. In much the same way as bit histograms, buckets histograms show how 

many times hash values regarded as unsigned integers land in a particular bucket, modulo m, 

where m may assume different values, e.g., 103 or 104. To run every instance of this test, we 

form an m-bin histogram, and then for every digest d compute the corresponding value of (d 

mod m) indicating a bin that is to be incremented. Finally, the chi-square test for m – 1 degrees 

of freedom is invoked to test the histogram content for uniformity. 

Weak avalanche effect (diffusion and confusion test). The avalanche effect refers to a 

behavior where a small change in the input results in a significant change in the output, mak-

ing it statistically indistinguishable from random. A hash function demonstrates this effect if 

a single flipped input bit leads to approximately half of the hash bits being flipped at ran-

domly distributed locations. A weak avalanche test proceeds as follows. Let H be an b-bin 

histogram, where b is the digest size. For every random token r, it flips a randomly selected 

bit of r to obtain token r’, determines the corresponding digests d and d’, and computes D = 

d  d’. Next, it increments H(k) provided k-th bit of D is set to 1. As can be seen, H(k) counts 

the number of times the output bit k has flipped in response to a single-bit change in the input. 

Finally, once N tokens have been generated, we examine statistically how closely H resem-

bles a uniform distribution. To verify this hypothesis, one can use the chi-square test with b 

– 1 degrees of freedom and the expected value of each bin being equal to N/2, as in (7.4).   

Strong avalanche test. This test is a generalization of the former test to all s bits of the 

examined tokens. As a result it yields s statistics. For every random token r, it first produces 

s tokens r’ by flipping all bits of r, one at a time. Next, the test is carried out exactly as for 

the weak avalanche effect. That is, for every pair (r, r’) it computes a pair of digests (d, d’) 

and determines the value of d  d’. After repeating the experiment N  s times, it uses the 

statistic of (7.4) to verify the hypothesis that histograms corresponding to successive input 

bits represent uniformly distributed random variates. Only the worst case is reported, i.e., the 

largest value of  among all s statistics collected.  

Correlation. To validate whether a given hash function yields independent random bi-

nary combinations one can measure a correlation between any pair of bits across all N exam-

ined digests, collecting b(b – 1)/2 correlation coefficients. Clearly the correlation coefficient   

  i,k = N-1  (xi – 0.5)(xk – 0.5)  (7.5)  

between bits xi and xk should be close to 0 to confirm that there is no strong, discernible, and 

systematic relation between these two positions. Such a result should hold for all pairs of 

bits. Due to the large number of correlation coefficients, the data regarding their mean value 

S over all pairs (i, k) is reported by using the test statistic   

  𝑍 = √𝑏(𝑏 −  1)/2(𝑆 − 0)/𝜎  (7.6)  

to verify a hypothesis regarding the normality of S.  
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Collision test. This test begins with a randomly produced token and the corresponding 

digest. These steps are then repeated n times until a newly produced digest matches one of 

the earlier generated hash values. The value of n is then recorded, and the entire process 

repeats N times to get the mean value of steps until a collision. To pass this test, the mean 

number of steps before the collision should not be smaller than 2b/2, as indicated by the birth-

day paradox. It is worth noting that this particular test can only be run for relatively small 

hash functions as getting statistically significant outcomes for b > 40 becomes computation-

ally infeasible. 

Architectural details. Table 7.1 lists architectural details of hybrid ring generators and 

nonlinear combinational functions used to run the validation experiments reported in Chapter 

7.3. A feedback function of a given n-bit HRG is represented as an (n + 1)-bit sequence with 

locations of 1s corresponding to respective coefficients, further encoded as a hexadecimal 

number. Also, a repetitive occurrence of the same digit is replaced with a decimal exponent 

as follows (note that a coefficient next to x0 comes with a minus sign; the remaining coeffi-

cients get the alternating signs but xn):   

f(x) = x32 – x27 + x18 – x12 + x8 – x4 + 1 

1 0000 1000 0000 0100 0001 0001 0001 0001B = 1080414
H 

Nonlinear functions are represented by their truth tables, again written in a hexadecimal for-

mat. For instance, a 5-input function whose successive outputs are:  

0101 0101 0101 0100 1010 1010 1010 1001 

is encoded as 534A39. All information is gathered in Table 7.1, where each row corresponds 

to a row with the same index in Table 7.2. Due to space constraints, Table 7.1 reports archi-

tectural details for the first 21 hash functions of Table 7.2. 

Results. The outcomes of all tests summarized above are listed in Table 7.2. Essentially, 

the columns of the table, except the first two, correspond to tests recalled in the column head-

ings. The first column gives the size of HRG and NSL in terms of their memory elements. 

The second column lists the number of 5-input nonlinear functions used by the NSL feedback 

network. The column “probability of bits” reports the test statistic Z given by (7.3); this test 

passes if |Z| < 1.96. The next two columns give the observed values of the chi-square statistic 

of (7.4). Here, a critical test value depends on either the number b of bits or the number of 

buckets m (in the reported experiments m = 1 000). For example, for b = 32 (hence the number 

of degrees of freedom v = 31) and the significance level  = 0.05, we get  = 44.985. If m = 

1 000, then  = 1073.643. For the avalanche tests, Table 7.2 also reports the test statistic of 

(7.4). As the strong avalanche test produces s different values, the table only reports the larg-

est one. The correlation test is summarized by the metric of (7.6) which is expected to be 

normally distributed. Thus again the test passes provided |Z| < 1.96. As can be easily verified, 

all instances of H2B reported in Table 7.2 pass all tests. Similar results were obtained for 
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other hash functions; their detailed results are not shown here because of space constraints. 

Finally, the average number of steps before a collision occurs for b = 32 were recorded; note 

that this number is expected to be above the 2b/2= 65 536 level. For the first three hash func-

tions of Table 7.2 the results are: 82 531, 82 314, and 80 818. These numbers clearly demon-

strate that the functions are collision resistant. 

NIST Test Suite SP800-22. It consists of 15 test cases [12] that capture various types of 

non-randomness in a tested sequence. There are two results reported for each test. The first 

Table 7.1 Experimental test setups. 

ID HRG Nonlinear function of NSL ID HRG Nonlinear function of NSL 

1 104102081 1EB²1E4², 6ACF65C 18 149A4A493 8D7D²828, B128E47D, 1BD728E4, 3A09F6C5, 

2 1²2²1²089 AFC650C6, 9F35903A, 39FAC90A   DB718E24, 6530CF9A, 28E41BD7, DE1D12D1, 

3 12491⁵ 8D7D²828, B128E47D, 1BD728E4, 3A09F6C5   D121²DED, E2ED121D, C56F903A, ACF95C09, 

4 1²0850845 1EB²1E4², 6ACF65C   1D²ED1²2, 56CFA6C, 1²B4B²1E, 8D41BE72, 

5 1084²215² AFC650C6, 9F35903A, 39FAC90A   878²7³8, 1²2DE²2D, 1DB72E84, 3A9F359, 

6 12524924B D²2D2³D, A6C0A63F, 5C936FA, 2³DE³1   C60A935F, F3950C95, ED47B812, 4B4²E1E² 

7 1²084215² 5063FAC9, 8D82D8D7 19 10²8020²80² FAC905C9, 6ACF65C, D8EB1427, B4³1E³, 

8 128A2⁴B 7²4B8²4B, C50635F6, E1³E²1E  80²801 356A9FC, 39A06CF5, 27EB14D8, 1427D8EB, 

9 148³92AB FAC90A39, 1EB³41², CF9AC095, 59FCA90C   1EB²1E4², D4DB242B, C95FC9A0, 935FA06C, 

10 152494925 82²7D7²2, 7B8B7484   6530CF9A, A6F3A60C, 1BD728E4, 2E841DB7, 

11 124³52AB 7²4B8²4B, C50635F6, E1³E²1E   2BE718D4, 95C0A6F3, 6AC059F3, B²4B4³B 

12 1²084³89 FAC90A39, 1EB³41², CF9AC095, 59FCA90C 20 10201010²8 7²4B8²4B, C50635F6, E1³E²1E, 4BE³14², 

13 12²8²92AB C95FC9A0, 6ACF65C, D8EB1427, B4³1E³,  0402041 C9F5C90A, 95CF9AC0, 27D7²282, 2D4²2DB², 

  356A9FC, 39A06CF5, 27EB14D8, 1427D8EB,   CF9A6530, 2²B4D²B4, A930A9CF, 2D7³82², 

  1EB²1E4²,FAC905C9, D4DB242B, 935FA06C   E12³DE², F5930A93, 90AC9FA3, 4ED71B82, 

14 1248⁴AB 182BD4E7, FAC90A39, D2E²1E2², 8³7²87²,   82E4D7B1, 428E71BD, 5C60536F, 1BEB²141, 

  A093F5C6, F5C60536, 8²2D7²2D, 7²D2³87,   8²787³8, 4E827DB1, ED1DE212, B848B747, 

  A06CF539, FC9A3056, FA390539, 9ACF95C,   4B³4B4², FAC60A36, 1²4BE²4B, 41B1EB1B, 

  A903A9FC, D2³87³, 8B1247DE, D2³D²2D,   84E2B7D1, A0635F63,  

  218BED47, F59C0A9C 21 1020202020 FAC90A39, 1EB³41², CF9AC095, 59FCA90C, 

15 18912³AB DED1²21D, 1²87E²87, 93A0935F, 3509C5F9,  4081021 DE8B7421, 3056FC9A, B81274DE, 6C0A6CF5, 

  1E1²D2D², 590C59F3, AC6FA36, 359FC59,   5C6F5360, BD4DB242, E248B71D, 1³E²1E², 

  B7B84748, EB4E41E4, 6FA360AC, 2³D7³8,   5309A3F9, 2D1²E1D², 17E718E8, E7E81718, 

  39AF3950, 90359F3A, 7B474874, EDE2²12E,   D78D82D8, 7484²7B7, 82728D7D, 8D827D72, 

  A39F539, 359F3A90, F9AC095C, 5F93A093,   FCA903A9, 95C0953F, FAC905C9, E4EB4E41, 

  C9FA6350, D8D78D82, 8D7D²828, D2E²1E2²   6A0C593F, AF63A06C, 56F3A603, 6A30653F, 

16 12⁴91³ 35F906CA, DE2E12E2, 82E4D7B1, 74²847²B,   CF95C09A, E³12³D, 9C50935F, E72BD418, 

  2714EBD8, AF63A06C, 1E4²B4E², 9F35CA60,   2E841DB7, 6F35603A, A3F95309, 50635F6C, 

  F9AC095C, 1B284E7D, 60536F5C, 4³B³4B   5F39A039, 6AF359C0, 4E7D82B1, 3A6FCA6 

17 14892³AB 414E²BE4, 84E2B7D1, 509C5F93, 3A6F356,    

  6305C9AF, F6A30653, AFC950C9,     

  ED47218B, 28²D7D²8, 2²78D²78, D2³D²2D,    

  A90365CF, 717E818E, D²878²D2, 356FC56,    

  90AC9FA3, 9FA390AC, EB4E41E4    
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Table 7.2 Test results for selected instances of H2B hash function. 

ID 
Size HRG 

/ NSL 
NSL 
net 

Probability 
of bits (10) 

b-bin histo-
gram (11) 

Buckets m = 
1000 

Weak ava-
lanche (11) 

Strong ava-
lanche (11) 

Correlation 
(13) 

Critical val-
ues for (11) 

1   2 0.341408 15.171714 967.929472 20.857204 26.852667 0.793266   

2 32 / 32 3 0.348225 16.798651 1001.725632 20.496672 25.483826 0.249894 44.98534 

3   4 0.673337 16.17676 981.926464 20.336394 28.869524 0.383264   

4   4 1.065126 42.642986 985.258496 31.624812 51.687925 1.591422   

5 32 / 64 6 1.723612 35.354599 960.810752 32.350022 54.756885 0.202635 82.52873 

6   8 1.3848 30.848388 951.933952 36.762751 44.227083 1.379746   

7   6 1.316382 49.286045 967.252204 46.450458 73.661659 0.837773   

8 32 / 96 9 0.348326 45.50346 994.269867 44.894339 66.963025 0.397192 118.75161 

9   12 0.209959 43.594496 956.403436 53.352724 64.341161 0.1097   

10   8 0.513635 70.351874 962.317312 60.245379 85.330188 1.402851   

11 32 / 128 12 0.589085 67.618693 994.60096 62.572724 85.472336 1.004233 154.30152 

12   16 1.460256 67.721048 970.684672 65.259611 88.169214 0.46436   

13   12 0.058431 103.441275 928.21283 101.792872 123.886677 0.033146   

14 32 / 192 18 0.541091 116.042219 922.640607 114.17055 130.351176 0.593658 224.24462 

15   24 1.113679 89.409325 1010.542804 92.064664 130.33149 0.63668   

16   16 1.842263 135.679799 1057.012096 140.924885 166.756587 0.405582   

17 32 / 256 24 0.927142 117.957137 982.09728 129.330056 160.925416 1.392799 293.24783 

18   32 1.042233 144.349938 1024.012672 130.653598 174.616201 0.525602   

19   20 0.184487 169.817171 982.09856 162.15213 199.359754 0.121529   

20 64 / 320 30 0.139033 166.434921 986.43584 152.88024 212.308449 0.391985 361.65239 

21   40 0.085367 171.152361 1028.7616 153.663869 200.283871 1.749202   

22   24 0.119153 187.555307 977.251886 194.789192 232.267807 0.771511   

23 64 / 384 36 0.30836 196.357552 1070.360354 194.943027 254.049255 0.810477 429.63249 

24   48 0.748154 189.708935 941.473842 171.172819 242.768323 0.157293   

25   28 0.366544 241.595812 973.174457 226.121026 278.82778 1.092339   

26 64 / 448 42 0.79082 220.598005 946.939578 241.547596 279.844239 0.856726 497.29136 

27   56 0.299733 205.334778 959.680697 194.959089 275.479326 0.431033   

28   32 0.957879 236.528548 996.176576 297.408617 312.834819 0.365718   

29 64 / 512 48 0.366708 254.377511 941.661888 282.956952 329.396434 0.526766 564.69613 

30   64 0.480779 253.374794 973.382336 247.546911 315.368642 1.677126   

31   40 0.369358 332.679631 937.48096 331.727029 385.674723 1.501287   

32 96 / 640 60 0.293558 323.976118 988.96256 297.281015 378.35805 0.330312 698.91697 

33   80 0.156441 318.579505 960.39552 315.890412 373.951659 0.643606   

34   48 0.798682 385.520556 990.396122 365.060894 452.516814 0.071368   

35 96 / 768 72 0.617124 424.938139 943.76165 362.100749 448.39882 0.045897 832.53968 

36   96 0.161761 383.813599 991.569625 385.940107 446.586431 0.806889   

37   56 0.059967 495.341478 960.764911 446.291202 531.418474 0.536629   

38 128 / 896 84 0.100422 441.363016 954.734834 447.146135 523.010442 0.65522 965.70946 

39   112 0.631393 449.169172 912.28596 468.867435 519.280321 1.051598   

40   64 1.474067 493.549278 977.460779 482.413517 586.933893 0.225016   

41 128 / 1024 96 0.097678 529.775066 953.794103 469.463117 597.355719 0.513724 1098.52078 

42   128 0.189449 511.86527 971.955758 540.722908 587.341028 0.527427   
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one is the fraction of sequences that pass a test. Given 1 000 sequences and the significance 

level  = 0.01, the pass rate is considered acceptable if it belongs to a range [0.980, 0.999]. 

The second result (PoP-value, i.e., a p-value of p-values) reports the uniformity of the distri-

bution of p-values obtained for each individual 106-bit long sequence. Hence, all 1 000 indi-

vidual p-values are gathered in a 10-bin histogram where they are tested for uniformity. A 

sequence passes an individual test provided the resultant p-value  0.01. The entire sequence 

passes a given test provided the corresponding PoP-value > 0.0001. The results of applying 

the NIST SP800-22 tests to binary sequences produced by four selected hash functions are 

listed in Table 7.3. A number in brackets that follows the test name gives the total number of 

subtests a given test consists of. As can be seen, again all examined hash functions pass all 

tests. The same applies to the remaining instances of H2B reported earlier in Table 7.2.  

Table 7.3 Results for 1,000 1M-bit samples under NIST SP800-22 tests. 

 H2B-128 (12) H2B-256 (18) H2B-512 (30) H2B-1024 (42) 

Test Pass rate PoP-value Pass rate PoP-value Pass rate PoP-value Pass rate PoP-value 

Frequency - mono-
bit (1) 

991/1000 0.401199 996/1000 0.19692 992/1000 0.230755 995/1000 0.437274 

Block frequency 

(1) 
985/1000 0.116746 988/1000 0.504219 989/1000 0.43359 994/1000 0.737915 

Cumulative sums 
(2) 

993/1000 0.092041 997/1000 0.255705 995/1000 0.033584 995/1000 0.55442 

995/1000 0.39594 994/1000 0.331408 993/1000 0.664168 993/1000 0.544254 

Runs (1) 989/1000 0.653773 994/1000 0.538182 987/1000 0.201189 988/1000 0.703417 

Longest runs (1) 996/1000 0.894918 987/1000 0.995162 989/1000 0.775337 990/1000 0.41184 

Matrix rank (1) 991/1000 0.506194 993/1000 0.731886 985/1000 0.626709 990/1000 0.512137 

DFT - spectral (1) 989/1000 0.618385 992/1000 0.268917 988/1000 0.390721 984/1000 0.002028 

Non-overlapping 

template (148) * 

983/1000 0.094285 982/1000 0.55646 981/1000 0.060875 980/1000 0.293952 

996/1000 0.546283 996/1000 0.120207 996/1000 0.328297 997/1000 0.771469 

Overlapping tem-
plate (1) 

992/1000 0.055714 986/1000 0.394195 993/1000 0.872425 991/1000 0.502247 

Maurer's universal 

(1) 
988/1000 0.267573 992/1000 0.100109 991/1000 0.313041 989/1000 0.004908 

Approx. entropy 
(1) 

987/1000 0.989055 993/1000 0.397688 989/1000 0.548314 985/1000 0.727851 

Random excursions 

(8) 

593/602 0.23276 632/641 0.570728 618/619 0.562457 613/619 0.572544 

596/602 0.366918 633/641 0.801923 611/619 0.289435 613/619 0.586055 

597/602 0.736578 634/641 0.61598 611/619 0.116054 613/619 0.903699 

593/602 0.334538 634/641 0.962407 612/619 0.569177 613/619 0.734986 

593/602 0.763025 634/641 0.945201 611/619 0.01265 614/619 0.955982 

596/602 0.122325 636/641 0.732074 613/619 0.306059 613/619 0.684788 

596/602 0.540878 632/641 0.943598 613/619 0.277963 611/619 0.072198 

593/602 0.23276 634/641 0.367178 610/619 0.398895 614/619 0.934434 

Random excursions 
variant (18) * 

591/602 0.931952 631/641 0.336751 609/619 0.039384 609/619 0.357162 

601/602 0.032561 637/641 0.13091 617/619 0.851109 617/619 0.38749 

Serial (2) 
996/1000 0.281232 990/1000 0.705466 994/1000 0.542228 992/1000 0.536163 

992/1000 0.047785 991/1000 0.183547 994/1000 0.440975 988/1000 0.937919 

Linear complexity 

(1) 
996/1000 0.711601 988/1000 0.342451 990/1000 0.971006 992/1000 0.919131 

*) Since this test consists of a large number of subtests, only the smallest and the largest values of the pass 

rate are reported herein altogether with the corresponding PoP-values. 
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Hardware footprint. An important figure of merit characterizing the new design is its 

logic silicon real estate. As shown in Chapter 7.1, the proposed hash function requires h + b 

FFs, where h and b are sizes of HRG and NSL, respectively. Moreover, logic gates are also 

needed to implement all linear and nonlinear functions, data injectors, reset logic, etc. Their 

quantity depends primarily on b. Table 7.4 reports the silicon real estate taken up by different 

instances of H2B in terms of gate equivalents (GE), where one GE is the area occupied by a 

2-input NAND gate. The presented numbers were obtained with a commercial synthesis tool. 

All components of logic were synthesized using a 7nm CMOS standard cell library. In addi-

tion to clock tree synthesis, the deployed design flow was comprised of placement and route 

with intermediate timing optimizations. For selected hash functions of Table 7.2, Table 7.4 

reports the number of combinational and sequential cells, the number of buffers/inverters, 

and the number of references, i.e., library components used in building larger blocks. The 

corresponding GE numbers with respect to the aforementioned cells are listed in the right 

part of the same table. Finally, the last two columns of the table provide a maximal operating 

frequency of each design after assessing its critical paths and results of statistical power anal-

ysis based on the circuits’ switching activity at 400 MHz.  

7.3  Resilience against attacks 

Cryptographic hash functions, essential parts of many security systems, can be exposed to 

various types of malicious activities. This chapter summarizes various arguments applicable 

to the resilience of the proposed family of hash functions against several forms of attacks and 

cryptanalysis techniques when H2B is employed in its unkeyed form, i.e., as a modification 

detection code (MDC). Typically, attacks on a hash function are defined as algorithms that 

Table 7.4 Hardware footprint - equivalent 2-input NAND gates. 

ID 
Size HRG 

/ NSL 
Nets 

Combina-
tional cells 

Sequential 
cells 

Buffers 
inverters 

References 
Combina-
tional area 

Buf/inv 
area 

Sequential 
area 

Total 
area 

Speed 
[GHz] 

Power 
[µW] 

1 32 / 32 348 154 64 37 7 270 28 352 622 6.25 89.26 

4 32 / 64 546 256 96 72 7 429 54 528 957 6.25 134.26 

7 32 / 96 769 385 128 137 7 614 111 704 1318 5.56 309.25 

10 32 / 128 978 497 160 181 7 783 146 880 1663 5.56 387.48 

13 32 / 192 1537 767 224 260 17 1215 209 1232 2447 5.56 566.24 

16 32 / 256 1940 974 288 339 17 1533 273 1584 3117 5.56 720.52 

19 64 / 320 2567 1263 384 427 25 2015 344 2112 4128 5.56 958.24 

22 64 / 384 2979 1484 448 505 25 2358 406 2464 4822 5.56 1116.95 

25 64 / 448 3373 1686 512 589 25 2665 473 2816 5481 5.56 1265.88 

28 64 / 512 3773 1895 576 669 25 2986 537 3168 6155 5.56 1423.48 

31 96 / 640 4998 2480 736 839 45 3941 674 4049 7989 5.56 1835.09 

34 96 / 768 5820 2913 864 1000 45 4607 803 4753 9360 5.56 2153.10 

37 128 / 896 6994 3484 1024 1170 61 5534 940 5633 11167 5.56 2542.66 

40 128 / 1024 7787 3898 1152 1337 61 6165 1073 6337 12501 5.56 2837.17 
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try to find either a collision, second preimage, or preimage with an adversary having full 

control over all input bits.   

Collision resistance. It is an intuitive concept which is rather difficult to formalize 

[156], as collision attacks depend on particulars of a given hash function [87]. Nevertheless, 

the previous chapter has shown the number of hash compressions before a collision occurs 

on the b-bit output of the presented function, i.e., on the outputs of NSL. Experiments run for 

b = 32, …, 64 bits confirmed that in all test cases a mean value of this number was greater 

than the birthday bound. One may conclude, therefore, that the collision resistance level of 

H2B is no less than 2b/2.   

 Second preimage resistance. Recall that collision resistance is strictly stronger than 

second preimage resistance [94], and thus collision resistance implies second preimage re-

sistance (also referred to as weak collision resistance). As a result, the second preimage re-

sistance of H2B is also expected to be 2b/2.  

Preimage resistance. Up to date, it is impossible to find any systematic (algorithmic) 

method that could be used to reverse processing steps of H2B, hence to find an input sequence 

leading to a given state of NSL. Since H2B consists of the hybrid linear ring generator feeding 

the sequential block deploying a group of highly nonlinear yet balanced Boolean functions 

in its feedback network, it makes linearizing all rounds of H2B but a very few computation-

ally infeasible. In other words, finding such an input has the complexity of a brute force 

search that would take approximately 2b steps. As the proposed scheme is not constrained by 

the output size b and the number of rounds – they can be freely selected as shown in the 

previous chapters – H2B can be regarded secure.   

Differential attacks. They exploit nonuniform propagation of differences within blocks 

forming a given cryptographic hash function. To analyze the resistance of H2B to differential 

attacks, experiments were run for all designs of Table 7.2 similar to those of the avalanche 

tests and aimed at checking a responsiveness of successive output bits to a single input 

change. Given a random binary token r, test flips a given bit of r to obtain token r’, determines 

the corresponding digests d and d’, and then D = d  d’. The value of D is subsequently used 

to update H(k) (again, H is a b-bin histogram, where b is the digest size) that counts the 

number of times the output bit k has flipped in a response to a single-bit change in the input. 

After repeating this experiment N times, one can check the average value of H(k) for k = 0, 

…, b – 1 altogether with minimal and maximal results. The same experiment has to iterate 

for all or a subset of input bits. The actual experiments were run for N = 10,000 and by 

flipping all input bits. In all examined test cases, the obtained results have confirmed that the 

resultant hash values cannot be distinguished from random samples, and therefore an adver-

sary will be unable to detect statistical patterns in the distribution of D’s. For the sake of 

illustration, consider the results obtained for design no. 5 with b = 64 and by flipping bits of 

each 63-bit token (see Table 7.5). For each input bit, the table reports the mean value of H(k), 

as well as the minimal and maximal values of H(k) that could be indicative of any excessive 
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deviations from the expected average. As can be easily verified, for all token bits, the corre-

sponding toggling rates of output bits are very close to 0.5, and this is also confirmed earlier 

by the statistics (11) computed for the avalanche tests (Chapter 7.2).   

Cube attacks. A cryptographic hash function can be seen as a black-box computing a 

set of Boolean functions. It paves the way for algebraic cryptanalysis techniques, including 

so-called cube attacks which are based on the reformulation of hashing results as polynomial 

functions over GF(2). The actual attack consists of 1) a preprocessing phase that selects ran-

domly a subset of variables called a maxterm to verify if the resultant factorization of the 

original function by the maxterm yields a linear expression, and then 2) the online phase 

where, given a large number of maxterms and linear expressions found earlier, one uses a 

Gaussian elimination to recover secret variables [53]. This type of attack is applicable to 

functions whose ANF has low degree and low density. Thus, a symbolic simulation of se-

lected instances of H2B was executed to reconstruct ANFs on its outputs. These experiments 

are only feasible for a relatively short s-bit input messages and small registers of HRG and 

NSL  (the latter items determine the number of secret variables). Table 7.6 illustrates a basic 

trend for s = 16, b = 32, and four 5-input nonlinear functions deployed as a feedback network 

of NSL. Given an output bit, the corresponding entries to the table show how many mono-

mials of a given degree   [s – 3, s] occur in ANF of a function associated with that bit. 

Table 7.5 Differential attack results. 

Input Mean Min Max Input Mean Min Max Input Mean Min Max 

0 0.500013 0.498943 0.501206 21 0.499937 0.499008 0.500875 42 0.500046 0.499091 0.500865 

1 0.50015 0.49909 0.501567 22 0.500126 0.499129 0.501354 43 0.500029 0.499038 0.500623 

2 0.499936 0.498999 0.50093 23 0.49997 0.499114 0.500878 44 0.499924 0.4991 0.500727 

3 0.500062 0.499256 0.501063 24 0.499999 0.498861 0.501042 45 0.500018 0.498695 0.50101 

4 0.500098 0.499298 0.50126 25 0.500086 0.499438 0.500892 46 0.500014 0.498984 0.501057 

5 0.499778 0.498832 0.500587 26 0.500165 0.499348 0.501024 47 0.499962 0.499155 0.501035 

6 0.500044 0.49907 0.500832 27 0.499962 0.498922 0.500641 48 0.499975 0.498955 0.500895 

7 0.500026 0.498195 0.501149 28 0.500018 0.499291 0.50101 49 0.500075 0.498592 0.501307 

8 0.499929 0.49912 0.500564 29 0.49979 0.498972 0.500976 50 0.499833 0.499019 0.501219 

9 0.49989 0.498752 0.500966 30 0.500144 0.499204 0.501375 51 0.499888 0.498814 0.500975 

10 0.499934 0.498958 0.501399 31 0.499941 0.498818 0.500785 52 0.499828 0.498791 0.500901 

11 0.499885 0.499044 0.501367 32 0.49994 0.499213 0.500685 53 0.500045 0.498924 0.500946 

12 0.499973 0.498752 0.501033 33 0.500045 0.49922 0.501242 54 0.499813 0.499107 0.500469 

13 0.500028 0.499056 0.50056 34 0.499904 0.499174 0.500739 55 0.500007 0.499135 0.501291 

14 0.499949 0.499389 0.500858 35 0.499894 0.498804 0.500692 56 0.500085 0.499218 0.500831 

15 0.500021 0.499062 0.500944 36 0.500018 0.498931 0.501218 57 0.500081 0.498574 0.501422 

16 0.499984 0.498651 0.500761 37 0.500006 0.498414 0.500836 58 0.499903 0.498834 0.50108 

17 0.500001 0.49879 0.50095 38 0.500099 0.499352 0.501236 59 0.499916 0.498739 0.501195 

18 0.500056 0.498308 0.501083 39 0.499998 0.498912 0.501002 60 0.499892 0.498646 0.500771 

19 0.500177 0.499484 0.501894 40 0.499911 0.498835 0.501051 61 0.499987 0.499161 0.501043 

20 0.499947 0.49896 0.500885 41 0.500065 0.499255 0.501263 62 0.50005 0.498959 0.501059 
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These and other results not reported here clearly confirm a more general observation that if 

the number n of inputs tends to infinity, random Boolean functions have almost certainly 

algebraic degree at least n − 1 since the number of Boolean functions of algebraic degree at 

most n − 2 is negligible with respect to the number of all n-argument Boolean functions [27].   

The above findings are necessary to conclude that H2B is virtually immune to a cube 

attack. However, even a high algebraic degree of a hash function may not guarantee that all 

usable maxterms be of similar degree. Indeed, several maxterms can be of degrees which are 

considerably lower than the degree of the entire function. This is because a cube attack sets 

to zero all public variables that are not part of a maxterm, thus eliminating many higher de-

gree terms. In fact, the degree of usable maxterms depends primarily on the ratio of the num-

ber of secret variables to the number of public variables and the extent to which the secret 

variables have diffused throughout the function. Fortunately, the high degrees of the resultant 

functions associated with all outputs of NSL (see Table 7.6) ensure that monomials of degree 

at least s + 1 comprise the secret variables.  

Slide attacks. A requirement for a slide attack to work on a cryptographic hash function 

is that it can be broken down into multiple rounds of an identical function. As shown in the 

previous chapters, H2B makes it impossible to have two valid initial states shifted by a certain 

number of clock cycles, and such that the shift persists through all iterations required to com-

plete the hashing process. As a result, the proposed hash function is resistant against slide 

attacks.   

Side-channel attacks. This class of attacks comprises several methods aimed at extract-

ing information from microelectronic devices through analyzing their physically observable 

characteristics such as power consumption, processing time, electro-magnetic radiation, heat 

Table 7.6 The number of monomials of a given degree. 

Bit s – 3 s – 2 s – 1 s Bit s – 3 s – 2 s – 1 s 

0 265 64 7 1 16 295 58 8 1 

1 260 52 10 0 17 276 62 7 0 

2 268 52 9 0 18 283 62 7 1 

3 282 61 10 1 19 282 64 4 0 

4 285 60 9 0 20 295 66 7 0 

5 288 58 9 1 21 291 57 10 0 

6 301 63 11 1 22 285 50 9 0 

7 273 61 8 0 23 264 52 9 0 

8 291 59 6 1 24 279 51 11 0 

9 268 57 7 1 25 298 65 7 1 

10 267 52 7 1 26 285 73 10 0 

11 278 61 11 1 27 276 59 10 1 

12 300 67 10 1 28 267 60 9 1 

13 270 50 6 0 29 268 56 12 1 

14 271 57 8 0 30 302 58 9 0 
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dissipation, or light and acoustic emissions. Interestingly, the proposed hash function has 

approximately half of its flip-flops set to 1 most of the time. Hence, it is virtually impossible 

to trace and interpret its internal states at any processing cycle by means of external leakage 

probes. For example, a power consumption model aimed at detecting the number of transi-

tions in each cycle has to take account of toggling in both HRG and NSL. However, with 

secret keys initializing both registers to patterns having roughly the same counts of 0s and 

1s, and with nonlinear functionality of NSL, such analysis becomes impractical.  

In contrast to multiple-round-based hash functions that feature separate steps such as 

substitutions, row shifts, or column swaps, H2B-based hashing is carried out simultaneously 

within its linear and nonlinear logic. This modus operandi makes it infeasible to derive useful 

internal values or sequential states, and it is hard to trace any HRG or NSL-specific charac-

teristics. Finally, one may observe that H2B was primarily designed as a key part of an em-

bedded hardware root of trust. As such, it is hard to measure any physical characteristic of 

either H2B or the root of trust as a whole.  

7.4  Built-in self-test 

As the root-of-trust mission is to secure ICs and to protect their design-for-test (DFT) infra-

structure, its test should be an autonomous routine that relies either entirely or in large part 

on internal on-chip resources that do not interfere with other DFT components such as scan 

chains. As logic BIST provides neither full observability nor full controllability of internal 

storage elements from the IC interface, it can be used to test hardware of cryptographic hash 

functions such as H2B. In LBIST, the original circuit is typically enhanced by PRPGs and 

test response compactors. The simplicity and functionality of the new design, however, can 

facilitate its self-testing without resorting to additional test logic blocks.   

 The entire LBIST session is based on the H2B native functionality. In particular, HRG 

is repurposed to be used as a PRPG. It is worth noting that pseudorandom data and possible 

errors can easily propagate through the HRGs due to their functionality. Moreover, NSL can 

act as a MISR producing a final test result. It observes outputs of the phase shifter and non-

linear functions, and accumulates test responses.  

A test session begins by resetting all memory elements comprising H2B except one 

stage of HRG which is set to 1. Similarly to the mission mode, the actual test runs for a 

number of clock cycles necessary to produce a digest. After test completion, valid test results 

are available in the memory elements of NSL. This simple BIST procedure is fault simulated 

for all single stuck-at faults within the circuitry every H2B of Table 7.2 consists of. It appears 

that 4b clock cycles suffice to obtain a complete coverage of all testable stuck-at faults; recall 

that b is the number of FFs the NSL block consists of. Interestingly, no aliasing events were 

observed, i.e., having a signature of a fault-free circuit produced by a faulty device.  
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A slightly different BIST scenario has to be used to test programmable instances of 

H2B. In order to make it testable, HRG is redesigned in such a way that it becomes capable 

of generating autonomously tests that subsequently will feed the selection mask register. It 

can be accomplished by virtue of a 2-bit twisted ring counter that reuses two rightmost FFs 

of HRG, as shown in Fig. 7.3. Regardless of how the counter is initialized, it will go through 

the following sequence of states: 00 →10 → 11 → 01 → 00, thus producing on its output a 

repeatable pattern 0011 – the test sequence which suffices to check the integrity of the mask 

register and the logic it drives. A multiplexer is used to interface the counter with the mask 

register, with no need for any initialization circuitry. Again, the proposed circuitry was fault 

simulated to find out that 4b clock cycles  are enough to ensure that all nets in the circuit 

assume both values: 0 and 1. It allows one to excite all stuck-at-1 and stuck-at-0 faults, re-

spectively. 

7.5  Comparison with other schemes 

Given the volume of the earlier work, it is virtually infeasible to offer a compact yet compre-

hensive comparison of H2B with the remaining state-of-the-art solutions. Especially since 

such a comparison or assessment might be misleading or unfair for several reasons. For ex-

ample, there is always a certain degree of uncertainty as far as the actual implementation of 

any hash function is concerned, including the impact of a deployed semiconductor technol-

ogy. Moreover, existing solutions differ in terms of design assumptions, their primary objec-

tives, as well as metrics used to evaluate particular schemes. Fortunately, the work presented 

recently in [191] provides a meticulous comparison of lightweight hash functions in terms of 

their performance. One may find there details of a silicon real estate, throughput, latency, and 

power consumption of 34 lightweight hash functions used in academia and industry.   

Based on the results presented in [191] and also [6], Table 7.7 shows the aforemen-

tioned data regarding a few state-of-the-art hashing schemes (references regarding those 

schemes can be found in [191]; the numbers following the name give the digest size). The 

second column of the table provides the silicon area used by the hash functions in terms of 

2-input NAND gates, similarly to a metric deployed in Chapter 7.2. The next column reports 

the number of clock cycles necessary to arrive with the final hash value. Column Throughput 

gives the number of Kbits per seconds that corresponds to the number of plaintexts processed 

per a time unit. Finally, the last column quantifies the amount of power (in W) required to 

run the hashing circuitry. It is worth noting that throughput and power metrics were obtained 

for a frequency of 100 KHz. For the sake of comparison, the same table offers the extracts of 

earlier data characterizing a few instances of H2B (recall that these data were obtained for 

400 MHz frequency). As can be seen, given the digest size, the proposed solution deploys 

similar gate counts and needs iterations in the same ranges as those of other schemes intro-

duced earlier in the technical literature and in the industry. At the same time, thanks to its 
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shall combinational logic, performance and power consumption of H2B either compares fa-

vorably or remains similar relative to its much higher working frequency. 

 

  

Table 7.7 Comparison with other hash functions. 

Hash function Area [GE] 
Latency 
[cycles] 

Through-
put [Kbps] 

Power 
[µW] 

ARMADILLO-80 2923 176 272.00 44.00 

ARMADILLO-160 5406 320 250.00 83.00 

KECCAK-128 2520 900 8.00 5.60 

KECCAK-160 4900 900 222.22 27.60 

PHOTON-128 1122 996 1.61 2.29 

PHOTON-224 2786 204 15.69 6.50 

DM-PRESENT-80 1600 547 14.63 1.83 

H-PRESENT-128 4256 32 200.00 8.09 

U-QUARK-136 1379 544 1.47 2.44 

S-QUARK-256 2296 1024 3.13 4.35 

SLISCP-hash-160 2492 144 29.62 7.44 

SLISCP-light-160 2051 96 44.44 5.05 

SPONGENT-128 1060 2380 0.34 2.20 

SPONGENT-256 3281 120 11.43 6.62 

H2B-128 (10) 1663 512 200 Mbps 387.48 

H2B-256 (16) 3117 1024 200 Mbps 720.52 

H2B-512 (28) 6155 2048 200 Mbps 1423.48 
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8. Stream cipher for scan encryption 

Additive SCs play a host of roles in securing variety of digital ecosystems. In particular, they 

can encrypt and decrypt test data used in manufacturing and in-system test of digital ICs. By 

assuming such a role, SCs become an essential part of hardware roots of trust that protect ICs 

against hardware security threats. However, a common concern raised by IC vendors is re-

lated to the complexity of security primitives that are not optimized for their hardware im-

plementations. This concerns had motivated the following solution that introduces a new 

lightweight and scalable test data stream cipher. It combines a HRG with two nonlinear Gal-

ois feedback shift registers to yield a number of parallel, cryptographically secure pseudoran-

dom keystreams.  

8.1  General architecture 

The cipher presented in this chapter is primarily destined to be a part of DFT ecosystems 

where it can work with a RoT handling secure operations of on-chip test logic used by both 

the semiconductor manufacturing test and in-system test solutions. For example, it can be 

used as a part of a DFT authentication protocol within an SSN. It places two ciphers on inputs 

and outputs of the SSN bus and the IJTAG network, as shown in Fig. 8.1, in order to decrypt 

and encrypt the content of the IJTAG communication and the SSN bus. These ciphers must 

be very fast – they have to match the speed of SSN typically operating at much higher shift 

frequencies than in-core DFT logic does. 

Although both ciphers use the same principles, they can differ with respect to architec-

tural details of modules they both consist of. The proposed SC is comprised of three building 

blocks: an h-bit maximum-length programmable hybrid ring generator (PHRG) and two max-

imum-length NLFSRs [66], which are m- and n-bit wide; Fig. 8.2 is a block diagram of this 

 

Figure 8.1 Root of trust protecting a 6-core SoC design using SSN [40]. 
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design. In general, the values of h, m, and n can be pairwise different, and the periods of these 

registers are 2h – 1, 2m – 1, and 2n – 1, respectively. The sequential parts are initialized by 

uploading secret values, including a selection mask that sets a feedback function of PHRG. 

To maintain a high diffusion level of the cipher, the selection mask is dynamically retrieved 

and stored in a mask register (MR) as a part of PHRG initialization process, as explained in 

Chapter 8.2. In a mission mode, NLFSR-produced streams pass through linear filters to ob-

tain signals among which are those that PHRG randomly selects to form pseudorandom key-

streams. The distinctive feature of the proposed design is its selection mechanism that allows 

PHRG to pick certain signals and output successive bits of a keystream. This is accomplished 

through selectors – represented by green boxes in Fig. 8.2 – one per a single output. Key-

streams are finally used to yield encrypted data by following the Vernam principle.  

A magnified green box in Fig. 8.2 illustrates how a single selector is designed. It em-

ploys two v-input multiplexers implementing a “one-hot” selection method. The multiplexers 

receive dedicated control signals from PHRG via its phase shifter [121]. The latter device is 

employed to enlarge the number of shifted replicas of a PHRG-specific m-sequence (recall 

that PHRG is a customized form of a maximal linear finite state machine). Effectively, the 

selector outputs a sum modulo 2 of two bits, each of which is picked randomly from one of 

v linearly filtered NLFSR-produced sequences. As both multiplexers accept v data inputs, the 

scheme enables v2 dynamic pairs of NLFSR streams in total to produce a single keystream, 

one pair (combination) per clock cycle. For example, if v = 4, then every selector of Fig. 8.2 

allows one to combine two nonlinear streams at a time in one of 16 different ways.  

 

Figure 8.2 Block diagram of the proposed SC. 
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8.2  Programmable hybrid ring generators 

PHRGs allows one to shift-in a secret mask that sets and retains the feedback function when 

this unit is in operation. To initialize the entire circuitry, a selection mask and an initial value, 

both encoded, are separately uploaded to MR and PHRG, respectively, using an XOR gate 

(Fig. 8.3). When MR is receiving data, clocking of PHRG is disabled and vice versa. Next, 

the two sequences are blended with each other by running both registers in parallel until MR 

reaches a state representing a desired feedback function and PHRG settles down to a prede-

fined initial state. During that phase MR receives data from PHRG while the resultant content 

of two selected FFs of PHRG is superposed with two secret keys initializing both NLSFRs, 

as shown by the dotted lines in Fig. 8.2. Since then, the MR clocking and links between 

PHRG and NLFSRs are all disabled. 

The input sequence used by the above process is obtained by virtue of O(h) backward 

logic simulation of both registers, beginning with a final selection mask and a PHRG state 

(see Fig. 8.4a; Boolean variables a, …, g represent here the PHRG content but one FF set to 

1). In principle, this technique reverses direction of all PHRG connections but feedback taps 

whose masks show up gradually in MR as initialization progresses. It allows one to run a 

given PHRG backwards provided there is a single PHRG FF that is not controlled by MR. 

Then its predecessor can feed MR and make it possible to easily recover a previous bit of the 

mask, and thus a feedback function, to carry PHRG another step backwards. Fig. 8.4b is a 

single step back of MR fed by a logic 1 from PHRG, while Fig. 8.4c shows the resultant step 

back of PHRG itself. Note that certain FFs of MR control two feedback taps in a mutually 

exclusive manner. This is to avoid having two oppositely disposed feedback nets, not sepa-

rated by any HRG FF; such nets make a given HRG irreversible as certain states would be 

reachable from two predecessors. 

 

Figure 8.3 Programmable 25-bit HRG. 
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A direct use of HRG to control the selectors of Fig. 8.2 may compromise the encryption 

quality because of structural and linear dependencies between the HRG outputs. To reduce 

such dependencies, a phase shifter is deployed in conjunction with HRG. It entails a set of 

linear combinations of the HRG outputs. Obtained sequences are shifted with respect to every 

other sequence by at least a predefined number of bits. Furthermore, a phase shifter can en-

large the HRG output space, that is, it allows a relatively short HRG to drive a large number 

of selectors. It may substantially reduce the cipher’s sequential logic footprint, as shown in 

Section 8.4G. 

8.3  Primitive nonlinear feedback shift registers 

As shown in Fig. 8.2, the new SC employs two maximum-length (primitive) NLFSRs whose 

output sequences are typically of very large linear complexity and high degrees of security, 

and thus immune to, for example, algebraic attacks. Recall that an n-bit primitive NLFSR 

has a period of 2n – 1 (inclusion of a missing state requires adding a circuit driven by all n 

variables; usually such a solution does not justify this incremental enhancement). Both 

NLFSRs are of Galois type, where, in principle, every FF can be updated by its own individ-

ual feedback function [59]. The actual structure of NLFSRs adapted here is similar to the 

example shown in Fig. 8.5. As in HRG, an n-bit NLFSR consists of an n-bit circular shift 

register and a number of feedback taps driven by Boolean functions of up to five variables. 

 

Figure 8.4 Backward simulation of the 8-bit PHRG: a) a desired initial state (a simulation starting point),  

b) registers after a single step back of MR, and c) after a single step back of PHRG.  

 

Figure 8.5 26-bit primitive NLFSR with ANF 0, 7, (20, 21), (13, 14, 16), (19, 20, 21), (12, 13, 14, 16). 
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Clearly, at least one of these functions has to be nonlinear. To make the used NLFSRs layout-

friendly and capable of matching the SSN speed, their structure is further optimized in such 

a way that each feedback function is fed by five, preferably consecutive, FFs at the most, and 

these input variables are constrained to the “upper” section of the register, if possible.  

Back to Fig. 8.5, it illustrates a primitive 26-bit NLSFR, where three FFs (2, 5, and 8) 

are driven, through the XOR gates, by the following functions:  

f2 = ~x22  x23  x24,   f5 = ~x18  x19  x20  x22,   f8 = x16, 

where “~” denotes a logic inversion. The corresponding algebraic normal form of the feed-

back function is given by: 

x0 + x7 + x20  x21 + x13  x14  x16 + x19  x20  x21 + x12  x13  x14  x16. 

The above formula can be verified by using a method presented in [58]. Boiling the many 

details down, the presented structure is first brought back to its equivalent Fibonacci format 

whose feedback function can be easily retrieved, and then used to obtain the ANF by means 

of well-known algorithms. We adapt a notation where all variables are replaced with their 

indexes, and all product terms comprising more than a single variable are grouped by paren-

theses. For instance, the ANF of NLFSR of Fig. 8.5 can be written down as 0, 7, (20, 21), 

(13, 14, 16), (19, 20, 21), (12, 13, 14, 16). It is worth noting that this particular NLFSR has a 

fully planar structure, and thus it is amenable to efficient place-and-route steps that provide 

layout-friendly and timing-optimized solutions. Fig. 8.6 is another NLFSR example. It is a 

primitive 28-bit circuit with six all-nonlinear feedback taps. Its ANF is given by 0, 14, 23, 6, 

(10, 9), (11, 14), (23, 25), (23, 26), (6, 8), (10, 8, 9), (12, 15, 16), (18, 19, 20), (23, 25, 26), 

(16, 18, 19, 20). In contrast to a direct ANF-based implementation of this NLFSR that would 

need 10 AND gates and even more 2-input XOR gates, the circuit of Fig. 8.6 is area optimized 

and employs just six AND gates and six XOR gates, thus achieving a visible reduction of 

both the gate count and the latency. NLFSRs of Fig. 8.5 and 8.6 have been found, among 

others, by a search engine described briefly at the end of this chapter. 

Primitive n-bit Galois NLFSRs are capable of generating output sequences with the 

period of 2n – 1, as shown in [58]. Among them there is always a sequence (and its shifted 

replicas) that satisfies the first two postulates of randomness by Golomb [71], i.e., (1) in a 

 

Figure 8.6 28-bit primitive NLFSR with ANF 0, 6, 14, 23, (10, 9), (11, 14), (23, 25), (23, 26), (6, 8),  

(10, 8, 9), (12, 15, 16), (18, 19, 20), (23, 25, 26), (16, 18, 19, 20). 
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period of the sequence, the 0 and 1 counts differ by at most 1, (2) in every period, 2–k of runs 

have length k = 1, 2 …, as long as the number of runs so indicated is greater than 1. For each 

of these lengths, there are as many 0-runs as 1-runs. Also, each n-tuple occurs in the se-

quences exactly once but a missing state which is a feedback function dependent. Consider 

again the NLFSR of Fig. 8.5. Sequences observed on the outputs of FFs 2, 1, 0, 25, 24, …, 9 

contain all 226 – 1 = 67 108 863 different (overlapping) 26-tuples. Two other sequences on 

FFs 6, 7, 8, and 3, 4, 5 have the period of  226 – 1, as well. They comprise, however, 41 641 

431 and 37 963 775 different 26-tuples, respectively. In these two cases, certain 26-tuples 

occur more than once, whereas others are missing. In general, an n-bit Galois NLFSR with 

m feedback taps yields as many as m different sequences (and their shifted replicas) having 

the period of 2n – 1, where m is also the number of groups of consecutive FFs separated by 

m XOR gates. The number of different n-tuples produced by each output can be used to rank 

them and thus to help the process of selecting sequences that will feed an associated linear 

filter (Fig. 8.2). 

To increase the number of sequences that drive the multiplexers (see Fig. 8.2), outputs 

of both NLFSRs are linearly filtered within circuits referred to as the expanders, made of 

XOR gates whose fan-in is either two or three to reduce expanders hardware footprint. Alt-

hough linear functions that take as inputs at least two stages of a given n-bit primitive NLFSR 

yield a sequence with a period of 2n – 1 [67], little is known about the distribution of over-

lapping k-tuples across a single period of such a sequence. The number of different n-tuples 

in the same sequence remains an open problem, too. For example, three different output se-

quences observed in the NLFSR of Fig. 8.5 (as mentioned earlier) give rise to 70 new se-

quences with the period of 226 – 1 produced by 2-input XOR gates, and additional 783 se-

quences of the same period obtained by virtue of 3-input XOR gates. Sequences with the 

highest counts of overlapping 26-tuples are formed by the following linear filters: x2 + x9 (65 

174 655 overlapping 26-tuples), x0 + x1 (56 623 103), x0 + x24 (51 445 759), x0 + x21 (49 082 

367), x0 + x23 + x24 (48 529 407), and x0 + x20 + x24 (48 369 663). 

A single keystream is finally generated by XOR-ing two nonlinear sequences observed 

on the outputs of the corresponding multiplexers. As shown before, these devices are fed by 

the expander outputs, i.e., linear combinations of NLFSR stages. To avoid reconvergence of 

a signal originating at a certain NLFSR  stage, each multiplexer accepts only those expander 

outputs that do not share NLFSR-produced sequences. Therefore, a multiplexer may have 

inputs such as x2 + x9 and x3 + x7, but it will avoid, for instance, inputs x0 + x1 and x0 + x7. A 

more detailed characterization of the keystreams is provided in Chapter 8.4. 

A final note on how the deployed NLFSRs were actually identified. No practical way 

is known to determine a feedback function of an n-bit NLFSR that leads to a maximum-

length period of 2n – 1. Although the scheme of [56] allows designers to construct primitive 

Galois NLFSRs for large n in a time-efficient manner, a linear complexity of the resultant 

sequences is low and such NLFSRs do not achieve a desired cryptographic security. This is 
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because the proposed approach reorders partially a state trajectory of a primitive n-bit LFSR 

by adding two copies of a nonlinear Boolean function to the LFSR feedback network; these 

functions are then moved apart from each other. Since checking whether other n-bit NLFSRs 

are primitive takes O(2n) CPU time, experiments employed an FPGA-based search engine 

comprising a large number of identical modules operating in parallel. The chief function of 

every module is to run a Galois NLFSR, structurally similar to those of Fig. 8.5 and 8.7, and 

to verify its period. It requires control signals to select a feedback function, and thus to setup 

an NLFSR it is going to examine. The control part of the engine consists of a large, free-

running, LFSR-based control data generator. In response to a request received from an indi-

vidual module, it returns a pseudorandom sequence of signals that determine a nonlinear 

feedback function. It consists of several feedback taps, each being a product of up to five 

input variables. 

Consequently, a control sequence includes the number of feedback taps as well as bits 

that enable both successive taps and successive variables of a given tap. Additional bits indi-

cate, per a feedback tap, whether a given input variable is to be inverted. Finally, there are 

bits encoding locations of the XOR gates – the outputs of the enabled taps, and signaling 

which outputs are to be inverted. 

Table 8.1 lists selected primitive Galois NLFRSs, ranging in size n from 16 to 32. They 

were found by using the described FPGA-based search engine. Note that other NLFSRs of 

size up to 24 are also reported in [57]. The second column of the table uses a shorthand 

notation of a feedback function as a list of parenthesized feedback taps (product terms). Every 

tap consists of a FF ID (receiver:) fed, through an XOR gate, by an appropriate product of 

variables and their complements; here only the index i of the variable xi is retained, and thus 

it can be represented by a FF ID (driver). Inverted variables appear with a minus sign. Simi-

larly, if a NAND gate forms a given tap, then a minus precedes the receiver ID. For example, 

the NLFSR of Fig. 8.5 is defined as follows: (2: 24, 23, -22), (5: 22, 20, 19, -18), (8: 16). The 

next three columns give the number of different (not shifted replicas) output sequences with 

the period of 2n – 1, which are either observed directly on the outputs of a given NLFSR 

(column S) or are obtained by using a 2-input XOR gate driven by certain outputs of the 

NLFSR (column D), as well as those obtained by a similar linear filter having three inputs 

(column T). The linear complexity of sequences comprising all 2n – 1 n-tuples is given in 

column LC for n  22. The last two columns detail a few selected output sequences with the 

period of 2n – 1 but having the number of different n-tuples smaller than 2n – 1. First, the 

column XOR provides FFs driving a given XOR gate (a linear filter) producing the sequence 

whose n-tuple count is reported in the subsequent column. Consider, for instance, the value 

of 890 999 listed for n = 20. It indicates that a 3-input XOR gate fed by FFs 0, 1, and 19 yields 

a sequence that features 890 999 different 20-bit tuples (out of 220 – 1 possible combinations). 
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8.4  Experimental results 

The presented SC was validated by means of several tests [24], including two statistical test 

suites [12], [179] from the NIST and another test set (AIS-31) provided by the German IT 

security certification authority (BSI) [91]. This chapter reports the results obtained for four 

instances of the cipher with the following values of h, m, and n (the last value c gives the 

total number of states a given cipher can cycle through): 

• L1: h = 48, m = 17, n = 19, c  1.93  1025, 

• L2: h = 61, m = 31, n = 32, c  2.13  1037, 

• L3: h = 89, m = 31, n = 32, c  5.71  1045, 

• L4: h = 127, m = 31, n = 32, c  1.57  1057. 

The architectural details of the maximum-length NLFSRs used in the experiments can be 

found in Table 8.1. The maximum-length feedback functions of the PHRG are as follows:  

• f1(x) =  x48 – x41 – x35 – x28 + x22 – x17 – x12 + x8 + 1, 

• f2(x) =  x61 – x53 + x45 + x38 – x29 + x20 + x14 – x5 + 1, 

• f3(x) =  x89 + x80 – x70 + x58 – x46 – x34 – x23 + x10 + 1, 

• f4(x) =  x127 – x108 – x90 + x75 + x64 – x46 – x34 + x16 + 1. 

Moreover, SCs in all cases used 64 selectors, each comprising two 2-input multiplexers to 

yield 64 keystreams, as shown in Fig. 8.2. Due to space constraints, the tables only report the 

results for a single keystream of each cipher except Table 8.2. 

Binary sequences (keystreams) subjected to tests were serially collected from all 64 

outputs. To mimic accurately the cipher behavior, all its registers were reseeded every c = 

106 clock cycles with pseudorandom values produced by the Mersenne Twister. The cipher 

was run for 109 cycles, thereby producing, on each output, N = 1000 consecutive sequences, 

each comprising 106 bits to meet the requirements of the NIST tests. The same sequences 

were used to run most of the remaining tests. The next sections introduce each test and discuss 

the corresponding experimental results. Several tests that have already been described in 

Chapter 7.2 are also included for the sake of completeness. 

A. Probability of bit values 

This test is aimed at checking if the logic value of 1 occurs on every bit of a keystream 

approximately half of the time. Let P1(b) be the probability of having 1 on bit b: 

 P1(b) = Cb / N, (8.1) 

where Cb is the 1s count on bit b. The sample mean S of P1(b), b = 0, 1, …, c – 1, is then 

approximately normally distributed under the null hypothesis that the P1(b)’s are independent 

and identically normally distributed random variables. If  is the sample standard deviation, 

then the test statistic 

 Z = √c(S - 0.5) /σ (8.2) 
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Table 8.1 Selected maximum-length nonlinear feedback shift registers. 

n Feedback taps S D T LC XOR n-tuples 

16 (0: 14, 15), (1: -13, 14), (2: 12), (4: 10, -11), (5: 9) 5 61 349 216 – 6 
{1, 9, 15} 51711 

{0, 15} 49151 

17 (0: 15, 0), (1: 13, 14), (3: 12, -14), (4: -11, 12), (6: 10) 5 68 437 217 – 2 
{0, 16} 98303 

{1, 16} 93569 

18 (1: 16), (3: 13, -14), (5: -10, 11, 12) 3 46 332 218 – 13 
{0, 1} 196607 

{0, 13} 196351 

19 (1: 16, -17, 18), (2: 14, 15, -16), (4: 12, 13, 14), (6: -10, 11) 4 66 514 219 – 2 
{0, 1} 393215 

{2} 384207 

20 (0: -19, 0), (1: -16, 18), (3: 15, -16), (4: -13, 15), (6: -12, 13), (7: 11) 6 97 748 220 – 2 
{0, 1, 19} 890999 

{1, 19} 796739 

21 (0: 19), (2: -18, 19), (4: -15, 17), (5: 14, -15), (7: -11, 12, 13) 5 88 739 221 – 2 
{6} 1581759 

{0, 20} 1572863 

22 (0: -19, 20), (2: 18, 20), (4: 16, 17, -18), (6: 14, 15), (8: 13) 5 93 825 > 221 
{0, 21} 3145727 

{1, 5, 9} 2951856 

23 (1: 18, 19, 20, -22), (4: 15, 17, 18, -19), (7: 14) 3 61 591 > 221 
{2, 8} 8098171 

{0, 1} 7471103 

24 (0: 0, 20, -23), (2: -21, 23), (5: -16, 17), (8: 15) 4 84 844 > 221 
{1} 14897105 

{0, 23} 12582911 

25 (4: -20, -19), (-5: 21, 20), (7: 18), (9: 15), (10: -12) 3 24 276 > 221 
{5, 20} 22466751 

{5, 19} 22443165 

26 (2: 24, 23, -22), (5: 22, 20,19, -18), (8: 16) 3 70 783 > 221 
{2, 9} 65174655 

{0, 1} 56623103 

27 
(1: 0, 25, -24, 23), (-3: 25, 24, 23, -22), (-4: 24, 22, 21),  

(5: 23, -22, 21, -20, 19), (-7: 21, -20, 19, -18, 17), (10: 17, 16, -15) 
6 141 1593 > 221 

{2} 118652195 

{4} 105876356 

{1, 2} 104206650 

28 
(-1: -0, -27, 25), (-4: 25, 24, 23, -21), (-6: 23, 22, 19),  

(-7: 22, -19),  (-8: 19, 18, -17), (-10: -19, 17) 
6 147 1736 > 221 

{2} 248058975 

{1, 2} 201970330 

{0, 1} 201326591 

29 

(-1: -0, 27), (-4: 26, 25, 24, 22), (-6: -24, -23, 21, -20), 

 (7: 23, 21, -20, 19), (-8: -22, -21, 19, -18), (-9: 21, -20, 19),   
(-10: -20, -19, 17), (11: 18, 17, 16, -15) 

8 196 2324 > 221 

{11} 473137553 

{2} 449487871 

{0, 1} 402653183 

30 
(2: -28, -25), (4: -24, 23), (-6: -25, 24, 21), (7: 24),  

(-9: -22, -21, -18), (11: 20), (12: 18, 17, 15) 
7 178 2198 > 221 

{12} 806130191 

{0, 1} 805306367 

{12, 13} 762932099 

31 
(4: 26), (-6: 26, 28), (9: 21, -23), (-11: 19, 20, -21, 22),  

(-12: -19, -21), (13: -17, 18, 19), (14: 17, -19) 
7 187 2424 > 221 

{14} 1703443913 

{14, 18} 1623357704 

{0, 1} 1610612735 

32 (1: 29, 31), (-4: -26, -27), (-6: 23, 26, -27), (8: 23), (-10: -20, 21) 5 143 1982 > 221 

{0, 1} 3221225471 

{3} 3115801087 

{0, 3} 3052757614 
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is normally distributed, and the test passes if |Z| < 1.96 given a 95% confidence level. Table 

8.2 reports the values of Z for selected keystreams of the new SC (out of 64), including those 

whose statistic Z reaches the minimal and the maximal value. Clearly, as the maximal value 

of (15) remains acceptable, the test passes for all 64 examined keystreams.  

B. Diffusion test 

The diffusion (avalanche) effect refers to a behavior where a single flipped input bit leads to 

approximately half of the output bits being flipped at randomly distributed locations, making 

it statistically indistinguishable from random. In principle, SCs lack diffusion since each 

plaintext bit is mapped to a single ciphertext output bit. However, one can still verify if a 

single bit flip in an s-bit secret initial value (IV) of the cipher causes approximately half of 

the keystream bits being flipped at random [168], [180]. Recall that the initial values for the 

ciphers examined here consist of s = m + n + 2h – 1 bits. Consequently, to get s statistics, the 

test proceeds as follows. Let H be an k-bin histogram, where k is the keystream size. For 

every random IV r, it first produces s sequences r’ by flipping all bits of r, one at a time. 

Every pair (r, r’) yields the keystreams (d, d’), and thus the value of D = d  d’. Next, we 

increment H(b) provided bit b of D is set to 1. As can be seen, H(b) counts the number of 

times the keystream bit b has flipped in response to a single-bit change in the IV. After re-

peating the experiment N  s times, one can use the chi-square test with k – 1 degrees of 

freedom and the expected value of each bin being equal to N/2 to verify the hypothesis that 

histograms corresponding to successive bits of the IV represent uniformly distributed random 

variates. The second row of Table 8.2 only reports the worst cases, i.e., the largest values of 

 among all s statistics collected for selected keystreams of k = 128 bits each. Note that a 

critical value for this test equals  = 154.3, provided that the significance level  = 0.05.  

C. Correlation 

To validate whether a SC yields independent random keystreams, we measure a correlation 

between any pair of bits across N keystreams, collecting k(k – 1)/2 correlation coefficients, k 

= 128. Clearly the correlation coefficient   

 i,j = N–1  (xi – 0.5)(xj – 0.5) (8.3) 

between bits xi and xj should be close to 0 to confirm that there is no discernible relation 

between these two positions. This result should hold for all pairs of bits. Due to the large 

number of correlation coefficients, we only use their mean value S over all pairs (i, j) and 

report the test statistic  

 𝑍 =  √𝑘(𝑘 − 1)/2(𝑆 − 0)/𝜎 (8.4) 

that is expected to be normally distributed. The test passes provided |Z| < 1.96. Results are 

given in the third row of Table 8.2. 
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D. Tuples test 

It examines distribution of r-bit overlapping patterns (r-tuples) in keystreams for values of r 

ranging from 2 to 19 bits. To run every instance of this test, we form a 2r-bin histogram, and 

then, for every r-tuple occurring in a keystream, increment a bin corresponding to its value 

k. Let R and Bk be the total number of r-tuples observed in a given keystream and the final 

value of bin k, respectively. The content of all bins can be statistically examined to see how 

closely they resemble a uniformly distributed random variate. This hypothesis is verified by 

the chi-square test using the statistic  

 𝜒2 = ∑
(𝐵𝑘−𝑅/2𝑟)2

𝑅/2𝑟

2𝑟−1

𝑘=0
 (8.5) 

which is approximately chi-square distributed with 2r – 1 degrees of freedom under the null 

hypothesis as in the diffusion test. Results of this test are gathered in Table 8.3 for selected 

Table 8.2 Results of test from sections 8.4A, 8.4B, and 8.4C. 

Test L1(1) L1(2) L1(3) L2(1) L2(2) L2(3) L3(1) L3(2) L3(3) L4(1) L4(2) L4(3) 

8.4A 0.1092 0.215 0.4638 0.5061 0.2123 0.0957 0.2308 0.0981 0.8857 0.2102 0.3484 0.6535 

8.4B 85.891 91.624 88.271 83.461 81.624 79.958 92.03 82.799 84.297 83.937 85.825 91.048 

8.4C 0.5651 0.3347 1.7179 0.4045 0.3379 0.5977 0.4407 0.5781 0.6205 0.3397 1.8346 0.5526 

 

Table 8.3 Results of tuples test (2
 values). 

r L1 L2 L3 L4 
Critical 
values 

2 0.270635 0.450422 0.692174 1.08798 7.81 

3 3.18169 0.729998 1.89032 1.84773 14.07 

4 10.5418 1.8801 5.19466 13.2537 25.00 

5 24.3318 9.37303 16.1516 28.6746 44.99 

6 54.76 38.4467 52.8443 62.7262 82.53 

7 115.457 99.9071 137.799 123.411 154.30 

8 247.671 209.965 278.299 243.822 293.25 

9 503.976 458.959 529.584 494.991 564.70 

10 972.072 940.508 1053.45 1012.18 1098.52 

11 1977.25 1925.03 2082.86 2039.82 2153.37 

12 3957.5 3911.74 4107.22 4119.77 4244.99 

13 8022.84 7943.5 8313.98 8285.45 8402.66 

14 16116.7 16085.6 16606.8 16533.5 16681.9 

15 32377.7 32451.4 33142.4 32785.7 33189.2 

16 65098.7 64662.8 65945.1 65547.3 66131.6 

17 130469 129764 131480 130504 131914 

18 261427 260059 262383 261265 263335 

19 522070 521419 525626 522565 525972 
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keystreams. The last column of the table provides critical values for successive values of r. 

Similar (passing) results were obtained for keystreams not reported here. 

E. NIST test suites 

The proposed cipher was examined using NIST Test Suite SP800-22 (see Chapter 7.2). Table 

8.4 lists the results of all tests for chosen keystreams of the cipher. A number that follows the 

test name gives the total number of subtests. As can be verified, all examined keystreams 

passed all tests. The same applies to the remaining keystreams not reported here. 

Table 8.4 Results for 1,000 1M-bit samples under NIST SP800-22 tests. 

  L1 L2 L3 L4 

Test Pass rate PoP-value Pass rate PoP-value Pass rate PoP-value Pass rate PoP -value 

Frequency - monobit (1) 993/1000 0.440975 985/1000 0.678686 988/1000 0.422638 982/1000 0.032061 

Block frequency (1) 992/1000 0.884671 989/1000 0.72987 992/1000 0.916599 993/1000 0.927677 

Cumulative sums (2) 
993/1000 0.668321 986/1000 0.498313 989/1000 0.424453 982/1000 0.215574 

993/1000 0.09372 985/1000 0.373625 992/1000 0.331408 982/1000 0.248014 

Runs (1) 986/1000 0.649612 991/1000 0.363593 995/1000 0.234373 991/1000 0.394195 

Longest runs (1) 992/1000 0.821937 985/1000 0.271619 992/1000 0.077131 990/1000 0.926487 

Matrix rank (1) 988/1000 0.24549 990/1000 0.476911 990/1000 0.550347 990/1000 0.603841 

DFT - spectral (1) 985/1000 0.542228 986/1000 0.401199 989/1000 0.968128 988/1000 0.572847 

Non-overlapping 982/1000 0.664168 982/1000 0.377007 982/1000 0.544254 982/1000 0.94008 

template (148) * 997/1000 0.194813 996/1000 0.94008 998/1000 0.314544 997/1000 0.526105 

Overlapping template (1) 988/1000 0.72987 989/1000 0.607993 992/1000 0.063217 987/1000 0.55442 

Maurer’s universal (1) 988/1000 0.285427 991/1000 0.337688 991/1000 0.933472 988/1000 0.745908 

Approx. entropy (1) 992/1000 0.674543 989/1000 0.607993 991/1000 0.514124 991/1000 0.947308 

Random excursions (8) 

599/606 0.712961 590/600 0.571477 626/635 0.158344 586/598 0.614191 

604/606 0.35319 594/600 0.888137 632/635 0.351772 592/598 0.445134 

600/606 0.108791 594/600 0.749884 627/635 0.182187 594/598 0.736521 

599/606 0.746572 592/600 0.200472 629/635 0.594234 596/598 0.70557 

603/606 0.019631 590/600 0.514124 628/635 0.452054 593/598 0.820813 

600/606 0.280306 594/600 0.81047 626/635 0.702896 594/598 0.805381 

601/606 0.024083 594/600 0.90242 623/635 0.660243 590/598 0.316001 

595/606 0.350485 591/600 0.924076 630/635 0.881013 589/598 0.084185 

Random excursions 597/606 0.962959 590/600 0.175049 625/635 0.084192 589/598 0.534146 

variant (18) * 604/606 0.378138 596/600 0.517442 635/635 0.132253 597/598 0.911413 

Serial (2) 
992/1000 0.174728 988/1000 0.205531 982/1000 0.53012 988/1000 0.106246 

994/1000 0.599693 987/1000 0.302657 987/1000 0.457825 992/1000 0.305599 

Linear complexity (1) 980/1000 0.959347 993/1000 0.618385 990/1000 0.820143 990/1000 0.426272 

*) Since this test consists of a large number of subtests, only the smallest and the largest values of the pass  

rate are reported herein altogether with the corresponding PoP-values. 
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The next tests belong to the NIST Test Suite SP800-90B [179]. A major part of the suit 

is comprised of tests that derive certain statistic S0 based on the original test sequence, and 

then repeat the same test 10000 times for randomly permuted versions of the original se-

quence producing statistics Sk, k = 1, … , 10000.  If bits of the original sequence are inde-

pendent and identically distributed (IID), then the statistics corresponding to permuted se-

quences will be similar to that of the original sequence. Every test employs counters C0, C1, 

and C2 which are incremented, if Sk > S0, Sk = S0, or Sk < S0, respectively. Finally, too high 

or too low counters indicate that tested data are non-IID. All tests use a cutoff value of 5 

[179] such that if C0 + C1  5 or C1 + C2  5, then a test fails. Once it is known that none of 

these inequalities will be satisfied, the corresponding test terminates as passing. The experi-

mental results for the same keystreams as before are presented in Table 8.5. It lists, for per-

mutation tests, the counter values saved when a given test was terminated. Again, all key-

streams passed those tests. They also passed four additional statistical tests [179], as shown 

in the table. The last row of Table 8.5 reports the min-entropy extracted from the keystreams 

by native functions of the SP800-90B suite. 

Table 8.5 Results for 1,000 1M-bit samples under NIST SP800-90B IID tests. 

  L1 L2 L3 L4 

Test C0 C1 C2 C0 C1 C2 C0 C1 C2 C0 C1 C2 

Excursion 6 0 6 8 0 6 6 0 6 6 0 48 

#Directional runs 115 0 6 6 0 6 63 0 6 6 0 17 

Length of directional runs 0 6 15 4 6 0 1 6 0 6 6 0 

#Increases and Decreases 6 0 9 6 0 164 6 0 54 9 0 6 

#Runs wrt median 14 0 6 6 0 7 7 0 6 18 0 6 

Length of runs wrt median 4 2 19 11 2 4 3 3 8 265 6 0 

Average collision 6 0 16 6 0 7 6 0 18 6 0 9 

Maximum collision 16 5 1 18 2 4 3 3 5 4 2 7 

Compression 6 0 317 6 0 6 6 0 626 12 0 6 

Periodicity-1 55 0 6 9 0 6 11 0 6 6 0 25 

Periodicity-2 6 0 21 22 0 6 12 0 6 68 0 6 

Periodicity-8 6 0 6 6 0 7 6 0 23 6 0 34 

Periodicity-16 6 0 11 6 0 33 67 0 6 31 0 6 

Periodicity-32 6 0 81 6 0 26 20 0 6 58 0 6 

Covariance-1 6 0 13 6 0 6 6 0 6 6 0 11 

Covariance-2 9 0 6 6 0 432 6 0 11 7 0 6 

Covariance-8 6 0 8 6 0 23 6 0 6 6 0 7 

Covariance-16 6 0 492 6 0 92 86 0 6 6 0 6 

Covariance-32 6 0 19 258 0 6 40 0 6 6 0 87 

Chi-square independence p-value = 0.716681 p-value = 0.861359 p-value = 0.120963 p-value = 0.474993 

Chi-square goodness of fit p-value = 0.154031 p-value = 0.262234 p-value = 0.864069 p-value = 0.712502 

Length of the longest  

repeated substring 
Passed Passed Passed Passed 

Restart Passed Passed Passed Passed 

Min. entropy per byte 7.987918 7.987513 7.988981 7.988605 
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F. AIS test suite 

The last group of tests come from the AIS-31 Test Suite [91] that consists of 9 tests, com-

monly referred to as T0–T8. T0 requires at least 216  48 bits to be conducted. Tests from T1 

to T5 are repeated 257 times on consecutive 20000-bit long parts of a tested sequence. T0 

through T5 aim at evaluating the randomness of the tested sequence. Tests T6–T8 works with 

a 7200000-bit sequence. Their purpose is to find the entropy level of the tested sequence. The 

pass rates corresponding to T1–T5 are reported in Table 8.6. Furthermore, the lower part of 

the same table gives the test statistics obtained for the examined keystreams  (the passing 

criteria for each test can be found in the second column of the table). As can be seen, the 

keystreams pass all statistical tests of AIS-31. In particular, the pass rate for T0–T5 is 100%. 

G. Hardware footprint 

As shown in Chapter 8.1, the proposed cipher requires (m + n + 2h – 1) FFs, where m and n 

are sizes of NLFSRs, while h is the PHRG size (additional h – 1 FFs form MR). Logic gates 

are also needed to implement all linear and nonlinear functions, data injectors, reset logic, 

etc. Their quantity depends primarily on feedback functions of involved shift registers. Table 

8.7 reports the silicon real estate taken up by the examined instances of the cipher in terms 

of GE, where one GE is the area occupied by a 2-input NAND gate, as mentioned in Chapter 

7.2. The presented numbers were obtained with a commercial synthesis tool working with a 

7nm CMOS standard cell library. In addition to clock tree synthesis, the deployed design 

flow was comprised of placement and route with intermediate timing optimizations. Table 

8.7 reports the number of combinational and sequential cells, the number of buffers/inverters, 

Table 8.6 Results for binary sequences under AIS-31 tests. 

    L1 L2 L3 L4 

Test Pass rate 

T0 Disjointness Passed Passed Passed Passed 

T1 Monobit 257/257 257/257 257/257 257/257 

T2 Poker 257/257 257/257 257/257 257/257 

T3 Run 257/257 257/257 257/257 257/257 

T4 Long run 257/257 257/257 257/257 257/257 

T5 Autocorrelation 257/257 257/257 257/257 257/257 

    Test values (Statistics – S) 

T6 - a Uniform distr. ( S < 0.025) 0.00105 0.00086 0.00166 0.00103 

T6 - b Uniform distr. (S < 0.020) 0.00088 0.00010 0.00189 0.00254 

T7 - a 
Comparative multinomial, 

width = 3 (S < 15.13) 

8.65930 0.32258 3.61251 1.77609 

0.13778 1.10450 1.80001 0.35379 

T7 - b 
Comparative multinomial, 

width = 4 (S < 15.13) 

1.22018 0.05408 3.42792 1.29032 

0.46818 0.08450 0.64082 0.29282 

0.03872 0.86528 0.29282 3.74980 

9.80003 0.34322 0.55112 0.07688 

T8 Entropy (S > 7.976) 8.00457 8.00215 7.99972 7.99681 
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and the number of references, i.e., library components used in building larger blocks. The 

corresponding GE numbers with respect to the aforementioned cells are listed in the right 

part of the same table. Finally, the last two columns of the table provide a maximal operating 

frequency of the cipher after assessing its critical paths and results of statistical power anal-

ysis based on the circuits’ switching activity at 400 MHz. 

8.5  Resilience against attacks 

SCs, like other cryptographic primitives, can be exposed to malicious activities. This chapter 

briefly summarizes arguments applicable to the resilience of the proposed SCs against several 

attacks and cryptanalysis techniques. Typically, attacks mounted on SCs are aimed at com-

promising secret keystreams. Therefore, it is crucial to note that initial values are unique per 

each keystream generation. By having the initial values selected this way, the proposed cipher 

increases its resilience against most of the attacks discussed in the following paragraphs. 

Algebraic attacks. Here the attacker tries to solve a system of nonlinear equations, typ-

ically by replacing all products of variables with a single variable and solving the resultant 

system of linear equations. Consequently, a SC is regarded resilient if its nonlinear functions 

have a high degree. Though the cipher consists of a linear HRG, selection of its feedback 

function is carried out by virtue of a secret key. To mount an algebraic attack, one must first 

determine the content of the selector, which is represented by nonlinear equations. Moreover, 

data from PHRG are used to control the outputs of (nonlinear) multiplexers, which are pow-

ered by two different NLFSRs. As can be seen, complex nonlinear equations are deployed at 

each stage of the keystream generation process. These properties can make an algebraic at-

tack on the cipher infeasible within a reasonable period of time.  

What may enable a correlation attack is a statistically biased encryption implied by 

certain internal state variables used as inputs. Hence, guessing such input bits would most 

likely impact the actual output bits. With the help of statistical tools, the adversary can re-

cover these internal values. In addition to results of Chapter 8.4C, nonlinear components of 

the cipher (such as a nonlinear selection of PHRG feedback functions or both NLFSRs) make 

it resistant to correlation-based attacks. 

Table 8.7 Hardware footprint – equivalent 2-input NAND gates. 

  Nets 
Combina- 

tional cells 
Sequential 

cells 
Buffers 
inverters 

References 
Combina-
tional area 

Buf/inv 
area 

Sequential 
area 

Total 
area 

Speed 
[GHz] 

Power 

W] 

L1 1825 1825 105 138 23 2078 104 464 2542 6.5 468.48 

L2 1966 1226 131 164 26 2204 123 581 2784 6.2 507.58 

L3 2235 1575 185 219 27 2429 165 824 3252 5.9 535.04 

L4 2632 2632 264 264 26 2745 236 1179 3924 5.8 695.12 
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 Time-memory trade-off attacks can be successful provided a cipher state space is rela-

tively small. During a preprocessing phase, the attacker generates many initial states and the 

corresponding keystream prefixes that can be compared against a captured keystream. If there 

is a match, the initial state is found and a secret key might be retrieved. As the state space of 

the cipher can be freely enlarged (one of its instances examined in this chapter has more than 

1057 states), it reduces or even precludes any chance of finding, in a time-acceptable manner, 

a keystream prefix identical with one of those precomputed earlier. As a result this attack is 

not feasible.  

For divide and conquer attacks to work a cipher must be broken down into several 

rounds of computationally simpler functions. As shown earlier, the proposed cipher makes 

all input bits spread uniformly across all its registers. As a result, having a given bit (variable) 

appearing in output formulas is equally likely for all keystream bits. It is, therefore, virtually 

impossible to divide the attack into functions of a low complexity, where each one of them 

would be able to recover mutually exclusive bits from the secret key.  

Differential attacks exploit nonuniform propagation of differences within blocks of a 

given cryptographic primitive. Even flipping a single initial bit and observing the resultant 

keystream may reveal its value if the secret key bits are nonuniformly distributed over the 

keystream bits. Fortunately, initialization cycles allow uniform and random diffusion of se-

cret key bits. In particular, toggling rates for each input bit, observed at each output bit, do 

not leak any systematic information regarding the secret key (see Table 8.2).   

Fault attacks assume that an adversary can inject bit-flipping faults by either varying a 

clock, voltage, temperature, or by using a laser beam. These methods exploit various circuit 

characteristics and typically have low spatial precision [73]. Although fault injection may 

expose some input-output relations as far as a linear PHRG is concerned (provided an exact 

location of a fault can be determined), the same hardly applies to both NLFSRs as fault prop-

agation within nonlinear structures is much more difficult to predict and to take advantage 

of. 

To cope with chosen-IV attacks, initial states of a cipher for any two chosen IVs should 

be statistically (and algebraically) unrelated. As shown in the previous chapter, even two IVs 

that differ on a single bit position yield keystreams where each of the output bits changes 

with a 50% probability (a Hamming weight of their difference is a random value). The same 

applies to IVs with multiple differences. It allows the cipher to resist this type of attacks. 

To launch a guess-and-determine attack the adversary takes advantage of the fact that 

certain internal bits of the cipher can be deduced from other internal bits (a guess basis). 

Thus, given a guess basis of a minimal size, one derives the remaining bits, computes the 

output and evaluates its consistency against the corresponding keystream bits that were 

eavesdropped. A high diffusion level of the cipher makes this technique impractical as it 

requires a large guess basis.  
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Malleability attacks. A cipher is “malleable” if one can transform a ciphertext into an-

other ciphertext decrypting to a desired plaintext. Virtually all SCs are vulnerable to this 

attack as they produce a keystream independently of a plaintext. Consequently, another cryp-

tographic technique is required, for instance, based on a message authentication code, to pro-

tect data. As shown earlier, the proposed cipher is a part of a root-of-trust ecosystem whose 

other components define the final security of ICs. Furthermore, it appears that mounting mal-

leability attacks is not that simple [14]. For example, an adversary must know exactly where 

and when the target test data is transmitted to be able to tamper with it. Bit-flipping at wrong 

positions is meaningless and will most likely result in a corrupted transmission.  

Side-channel attacks have already been described in Chapter 7.3. As the cipher is pri-

marily deployed as a part of an embedded hardware root of trust, its logic remains a negligible 

fraction of the entire chip which effectively acts as a source of additive noise distorting any 

measurable physical characteristic of either the cipher or the root of trust as a whole, and thus 

reducing the amount of information in a potential side-channel leakage. 

  

https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Plaintext
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9. Lightweight true random number generator 

This chapter presents a lightweight design of a nonce generator for the root of trust applica-

tions [141]. It appears that the scheme is capable of fulfilling requirements for an efficient 

and secure TRNG. The presented ring-generator-based TRNGs pass a variety of well-known 

statistical tests and feature a low and scalable hardware footprint which makes them suitable 

for both ASIC and FPGA implementations of embedded systems that form a base of contem-

porary security solutions.  

9.1  Motivation 

As mentioned in Chapter 5.4, the root of trust security relies on its authentication protocol. 

What is characteristic for the challenge-response procedure, is its initialization phase that 

employs unique, random token (nonce). The nonce is typically produced by an IC-integrated 

TRNG that should yield different combinations of 0s and 1s every time it is activated. In light 

of the above, it is clear that TRNGs have become key hardware security primitives capable 

of producing random sequences by harvesting the randomness present in physical processes 

such as the thermal instability and noise [21], [22], [88], [111], [133], metastability [62], [76], 

[92], [108], [176], [177], [190], edge racing in digital designs [203], chaotic behavior of cel-

lular automata [63], [82], [104], [132], power supply variations [175], stochastic nature of 

magnetic tunnel junction [183], quantum effects [169], or phase jitters in ring oscillators 

(ROs) [162]. The latter approach has gained noticeable popularity because it provides a sim-

ple yet effective method to build random number generators just by chaining an odd number 

of inverters into a ring structure. As a result, a wide range of solutions using this principle 

and its derivatives have been proposed in the contemporary technical literature and industrial 

practice. For the sake of illustration, let us recall a few exemplary solutions.  

The most straightforward mechanism to extract randomness from a jitter is to sample 

the output of a RO using the output signal of another RO (Fig. 9.1a). Such coupled oscillators 

are presented in [3], [22], [51], [155], [200]. In [51], two ROs are coupled by a non-linear 

circuit, whereas in [200] the first RO feeds a programmable delay chain that is sampled by a 

bit extractor driven by the other RO. If periods of both signals are very close to each other, 

 

Figure 9.1 Conventional RO-based TRNG architectures: (a) sampling RO by another RO,  

(b) combining ROs to form a single sequence. 
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they form a basis for coherent sampling [95], [131], [202]. Alternatively, one can combine 

the output signals of several ROs by means of XOR trees (Fig. 9.1b), as shown in [4], [100], 

[160], [171], [198], or [199]. In particular, the work of [169] provides a thorough mathemat-

ical treatment of an approach where combined jitter signals form a source of entropy. A low 

power scheme where two identical ROs enable, through an XOR gate, a third RO clocking a 

counter is described in [26]. A reconfigurable TRNG based on transient effect ring oscillators 

with two different sampling methods is introduced in [1]. In [37], four ROs drive associated 

LFRSs whose outputs are sampled through a multiplexer driven by yet another RO. ROs with 

a multi-stage feedback structure can be XOR-ed to produce true random numbers, as detailed 

in [41]. Somehow different approach is discussed in [50], [52], [69], [127]; it implements an 

RO by replacing a simple circular feedback with a more complex network comprising XOR 

gates in a way corresponding to conventional Fibonacci or Galois LFSRs. Here, inverters 

replace memory elements. To enhance the performance of RO-based TRNG, one can also 

deploy Muller C-gates instead of inverters. These elements are then interleaved to form an 

asynchronous pipeline that is capable of propagating several simultaneous voltage events 

sampled by an XOR tree [33], [34]. Finally, different RO-based TRNGs are compared in 

[134] to demonstrate how they are amenable to FPGA-based implementations. One may also 

find interesting details in other relevant papers such as [18], [23], [31], [49], [107], [152], 

[176], and [182].   

Besides the schemes recalled above, there are other techniques deployed to produce 

truly random sequences of bits. Those schemes include the use of chaotic maps [13] with von 

Neumann correction algorithm [185], sampling a jitter in a phase-locked loop circuitry [64], 

extracting a design fingerprint during the power-up of SRAMs [81], or detecting a beat fre-

quency in FPGAs [86].  

In addition to its unpredictability, a modern TRNG design is expected to be easily syn-

thesizable by using exclusively digital components [171], i.e., no amplifiers or other analog 

devices are allowed. Furthermore, additional post-processing steps and the corresponding 

circuitry to adjust the sampling frequency or to increase the per-bit entropy [160] should be 

avoided. Consequently, this chapter proposes a high-performance device that may assume 

the role of a lightweight all-digital TRNG. Although it was originally designed as a hardware 

generator of one-time challenges produced for the sake of IC authentication protocols, many 

tests have confirmed that it can be considered as a reliable source of truly random numbers 

used in a variety of cryptographic or security-related applications. The proposed design rests 

on a ring generator architecture [125] harvesting a source of entropy implemented by a con-

ventional free-running ring oscillator, and further processing the captured data due to its feed-

back network. 



.2                                   INTERNATIONAL TEST CONFERENCE  

                                                                                  

                                                    

121 

9.2  General architecture 

Fig. 9.2 illustrates the proposed scheme. Its major part is a ring generator [121], [125], as 

shown in Fig. 9.2 for the polynomial h(x) = x32 + x27 + x21 + x16 + x10 + x5 + 1. Recall that ring 

generators, in a vivid contrast to the corresponding Fibonacci or Galois LFSRs, offer a certain 

degree of flexibility in forming its structure. Every resultant device will feature a different 

state trajectory; all of them, however, will remain maximum-length finite state machines pro-

ducing the same m-sequence, just differently phase-shifted in each case [121].  

Since every ring generator is a planar, high-speed circuit that features reduced internal 

fan-outs and minimal delays on critical paths, it causes no frequency degradation and lets 

designers minimize routing complexity, optimize wire sizing, and make the overall layout as 

compact as possible [125]. Clearly, a synchronous ring generator has deterministic behavior 

which renders the generated values as predictable as any other LFSR-produced pseudoran-

dom sequences (vulnerable to statistical attacks). To make the ring generator suitable for 

TRNG-based applications, it is enhanced by adding an entropy source implemented as a free-

running m-stage gated ring oscillator, as shown in Fig. 9.2, where the oscillator is made of a 

single NAND gate and four inverters chained into a ring. The oscillator internal signals, sam-

pled at the outputs of selected inverters, are subsequently injected into the ring generator via 

XOR gates placed in the front of its “upper level” flip-flops. Consequently, the ring generator 

acts as a special form of a bit extractor processing data collected at several RO stages. Similar 

techniques, i.e., the entropy extraction from a single transition event, are also discussed in 

[159], [200], and [202], though the latter two works deploy an extra RO-driven tapped delay 

chain placed outside of a ring oscillator. Furthermore, since the clocking of the ring generator 

is inherently asynchronous to the state of a ring oscillator, some clock samples may stress the 

metastability region of the ring generator flip-flops (due to setup and hold time violations), 

thereby producing an additional and desired uncertainty (entropy) or randomness. Note that 

the new design does not require any additional zero detector similar to that of [104]. It is also 

worth recalling that upon every successful authentication of a given IC, a challenge-response 

pair can be potentially revealed to the adversary and thus cannot be used again. Fortunately, 

the inherent feature of the proposed TRNG is its ability to produce a different random value 

virtually every time it is invoked or reset.   

 

Figure 9.2 Ring-generator-based true random number generator with the characteristic polynomial  

h(x) = x32 + x27 + x21 + x16 + x10 + x5 + 1. 
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It is worth noting that basic theoretical foundations which the new TRNG depends on 

remain similar to those presented elsewhere. Indeed, as an instance of a linear finite state 

machine sampling a ring oscillator, a modus operandi of the new scheme resembles principles 

analyzed mathematically in several earlier publications. In particular, the urn model of [171] 

is used to analyze random data sampling by virtue of a combinatorial approach. Moreover, a 

detailed entropy model of a ring of identical units acting as a source of chaotic behavior has 

been proposed and meticulously discussed in [63] and [104].  

9.3  First validation steps 

To validate the proposed TRNG scheme, its instances of varying sizes (see Table 9.1) were 

implemented on a single Xilinx Artix-7 FPGA chip using the Digilent Arty Z7-200 board 

with a port that facilitates data collection. It is important to note that all results presented in 

this chapter (with the exception of the entropy estimation) come from the same FPGA plat-

form and were obtained for n-bit numbers bn-1bn-2 … b1b0, where n is the TRNG size, n  

[32, 256]. In order to mimic the challenge generator behavior, every circuit was powered up 

100,000 times and the resultant n-bit values were scanned out after 211 clock cycles. This 

process yielded 100,000 n-bit numbers for further examination. Fig. 9.3 plots the distribution 

of 0s and 1s in 64-bit numbers produced by the new TRNG using the primitive polynomial 

G64 = x64 + x52 + x39 + x26 + x14 + x7 + 1 and working with a ring oscillator of 7 inverters. Fig. 

9.3 illustrates the first (successive) 768 random samples (nonces) obtained this way. They 

are arranged into four columns such that the first 192 samples are displayed in the first col-

umn, the next 192 samples are placed in the second column, etc.  

 

Figure 9.3 Distribution of 64-bit random values after power-up and 211 cycles. 
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 An ideal TRNG has to yield independent random binary combinations as otherwise its 

behavior could be easily anticipated. To validate this feature, one can measure a correlation 

between any pair of bits across all sampled random outputs, effectively collecting n(n – 1)/2 

correlation coefficients. Clearly, given s successive samples (in this case s = 100,000), the 

correlation coefficient   

 i,k = s-1  (bi – 0.5)(bk – 0.5) (9.1) 

between bits bi and bk should be close to 0 to confirm that there is no strong, discernible, and 

systematic relation between these two positions. Such a result should hold for all pairs of 

bits. The test covered random numbers produced by target n-bit TRNGs, taking 100,000 sam-

ples in each case. Consider, for the sake of illustration, a 64-bit TRNG (its polynomial is 

given in Table 9.1). It turns out that the mean value of the correlation over all (64  63) / 2 = 

2,016 pairs of bits is about µ  –2.731e 10-5, whereas its standard deviation is   0.003509. 

Moreover, the minimal value is equal to 0.0 for , the maximal value (absolute) is equal to 

 = 0.002830, and |z-statistic| = 0.349469 < 1.96, for a 95% confidence level. In fact, 

none of the recorded coefficients was significantly different from 0 in comparison with the 

normal distribution, thus indicating that the produced samples do not exhibit observable cor-

relation between any pair of their bits. Similar results were obtained for other TRNGs. Their 

characteristics, i.e., a primitive polynomial used to setup a ring generator and the number of 

injectors provided by an 11-inverter ring oscillator, are listed in Table 9.1, whereas the cor-

relation results are gathered in the left part of Table 9.2.   

Another simple empirical test is aimed at checking whether the logic value of 1 occurs 

on every bit position roughly half of the time (50%). This hypothesis can be verified by, for  

Table 9.1 TRNG characteristics. 

ID Polynomial #IN 

G32 32 25 17 6 0 6 

G48 48 35 22 10 0 5 

G64 64 56 49 40 31 24 16 8 0 4 

G80 80 62 37 15 0 5 

G96 96 73 43 18 0 5 

G112 112 101 92 83 73 62 52 42 32 22 0 5 

G128 128 95 66 29 0 7 

G144 144 113 79 37 0 7 

G160 160 144 125 101 79 37 0 5 

G176 176 169 162 153 144 136 128 120 112 104 96 88 80 72 64 56 48 40 0 6 

G192 192 169 144 96 70 52 39 26 13 0 8 

G208 208 172 139 105 70 35 0 8 

G224 224 206 182 155 131 105 80 54 36 18 0 7 

G240 240 221 200 181 162 141 120 100 80 60 40 20 0 8 

G256 256 212 169 127 86 42 0 6 
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instance, the chi-square test. Thus, the histogram of 1s observed on successive bits of the 64-

bit-TRNG-produced numbers is shown in Fig. 9.4. Here, every bin displays the percentage 

of 1s observed on every bit of 100,000 samples that were collected. Similarly, the number of 

n-bit sequences with the Hamming weight k should be binomially distributed, as illustrated 

in Fig. 9.5. Again, the goodness-of-fit hypothesis test can be used to validate this observation. 

Both tests were employed to successfully validate the ring-generator-based TRNGs listed in 

Table 9.1.   

Table 9.2 Correlation and min-entropy. 

 Correlation Min-entropy 

Mean Std. z-statistic FPGA Simulation 

G32 -2.52E-05 0.001785 -0.314596 0.99282 0.980947 

G48 -1.30E-06 0.002676 -0.016295 0.993773 0.987687 

G64 -2.73E-05 0.003509 -0.349469 0.996669 0.981135 

G80 -6.71E-06 0.004447 -0.084801 0.995552 0.981528 

G96 1.95E-05 0.005342 0.246434 0.993806 0.984408 

G112 1.09E-05 0.006234 0.138298 0.991189 0.986258 

G128 -3.45E-06 0.007168 -0.043407 0.991438 0.985751 

G144 -2.42E-06 0.008018 -0.030578 0.991112 0.982384 

G160 4.90E-06 0.008909 0.06198 0.997344 0.987837 

G176 -1.83E-06 0.009844 -0.023005 0.990098 0.981029 

G192 2.21E-06 0.010724 0.027936 0.990169 0.98616 

G208 -1.93E-06 0.011658 -0.024337 0.991306 0.981105 

G224 2.45E-06 0.012586 0.030701 0.991235 0.985696 

G240 3.14E-06 0.0135 0.039426 0.991911 0.983453 

G256 -9.61E-07 0.01435 -0.012093 0.993663 0.98437 

 

 

Figure 9.4 The fraction of 1s on successive locations in 64-bit random samples. 
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The ability of a TRNG to deliver secure random values requires sufficient entropy on 

its outputs. In order to estimate the amount of entropy produced per bit by the proposed 

scheme, the min-entropy estimate based on the collision count was used[74]. It measures the 

mean number of samples to the first repeated value in a binary sequence. The method assesses 

the probability of the most-likely output value based on the collision times. Consequently, it 

produces a low entropy estimate for sources that have a considerable bias toward a particular 

value, while yielding a higher entropy estimate for a longer mean time to collision [179]. In 

the experiments, serial bit sequences observed on a selected output of the TRNG (see Fig. 

9.2) and comprising 109 bits were harvested both from the FPGA-based implementations as 

well as from a simulation model of the proposed scheme. In the latter case, event-driven 

simulation experiments were run by assuming that the mean delay of individual gates of a 

ring oscillator is set to 280 ps, while their random Gaussian jitter has the mean value of 0 and 

the standard deviation of 30 ps, similarly to a simulation setup described in [18]. The sam-

pling clock driving the ring generator had 2.5 ns time period (or 400 MHz frequency). Its 

flip-flops had 20 ps setup time. Results of both types of experiments are presented in the right 

part of Table 9.1. As can be seen, the lower bound of entropy is above 0.99 per bit based on 

data received from the FPGA setups. The min-entropy recorded and determined by means of 

the simulation model was measured to be above 0.98 per bit. It is also worth noting that in 

all reported experiments the Shannon entropy given by   

H = –p1  log2 (p1) – (1 – p1)  log2 (1 – p1) 

was always greater than 0.999999, which is higher than 0.997 per bit requested by AIS-31 

[91] (p1 is the probability of having 1 in the examined binary sequence).  

 

Figure 9.5 Distribution of 64-bit samples wrt to their Hamming weights. 
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9.4  More experimental results 

This chapter thoroughly evaluates the performance of the proposed TRNG design using two 

statistical test suites [12], [179] from the NIST and another test set (AIS-31) provided by the 

German IT security certification authority (BSI) [91]. Their brief descriptions can be found 

in Chapter 7.2 and Chapter 8.4. Binary sequences subjected to various tests were serially 

collected from FPGA implementations on a single output of a ring generator (see Fig. 9.2). 

After an initialization period of 2s cycles, where s is the ring generator size, TRNG was 

clocked 109 times, thereby producing 1,000 consecutive sequences, each comprising 106 bits.  

Detailed results of applying the NIST SP800-22 [12] tests to binary sequences pro-

duced by four selected TRNGs are listed in Table 9.3. A number in brackets that follows the 

test name gives the total number of subtests a given test consists of. As can be seen, all 

TRNGs pass all tests. The same applies to the remaining TRNGs of Table 9.1; their detailed 

results are not shown here because of space constraints.  

Table 9.3 Results for 1,000 1M-bit samples under NIST SP800-22 tests. 

  G48 G64 G128 G256 

Test Pass rate PoP-value Pass rate PoP-value Pass rate PoP-value Pass rate PoP -value 

Frequency - monobit (1) 989/1000 0.985339 990/1000 0.177628 988/1000 0.622546 988/1000 0.622546 

Block frequency (1) 988/1000 0.930026 987/1000 0.735908 993/1000 0.922855 993/1000 0.922855 

Cumulative sums (2) 
987/1000 0.420827 992/1000 0.917870 989/1000 0.350485 989/1000 0.350485 

990/1000 0.500279 992/1000 0.212184 990/1000 0.347257 990/1000 0.347257 

Runs (1) 991/1000 0.267573 991/1000 0.849708 992/1000 0.998971 992/1000 0.998971 

Longest runs (1) 988/1000 0.890582 993/1000 0.805569 988/1000 0.678686 988/1000 0.678686 

Matrix rank (1) 987/1000 0.846338 989/1000 0.992381 992/1000 0.211064 992/1000 0.211064 

DFT - spectral (1) 987/1000 0.893482 985/1000 0.034942 988/1000 0.821937 988/1000 0.821937 

Non-overlapping 980/1000 0.579021 982/1000 0.325206 984/1000 0.605916 984/1000 0.605916 

template (148) * 996/1000 0.715679 997/1000 0.289667 997/1000 0.045088 997/1000 0.045088 

Overlapping template (1) 994/1000 0.597620 982/1000 0.388990 990/1000 0.397688 990/1000 0.397688 

Maurer’s universal (1) 993/1000 0.024855 994/1000 0.562591 988/1000 0.063615 988/1000 0.063615 

Approx. entropy (1) 992/1000 0.142062 990/1000 0.404728 993/1000 0.289667 993/1000 0.289667 

Random excursions (8) 

615/619 0.681400 604/611 0.613238 606/614 0.841394 606/614 0.841394 

612/619 0.731687 603/611 0.038964 610/614 0.096959 610/614 0.096959 

613/619 0.532495 608/611 0.691554 611/614 0.733338 611/614 0.733338 

613/619 0.243497 604/611 0.864547 608/614 0.158932 608/614 0.158932 

614/619 0.848358 604/611 0.069317 603/614 0.026771 603/614 0.026771 

617/619 0.914620 600/611 0.206917 605/614 0.160394 605/614 0.160394 

613/619 0.176419 607/611 0.080680 609/614 0.83 609/614 0.830000 

612/619 0.239427 604/611 0.099367 606/614 0.073305 606/614 0.073305 

Random excursions 610/619 0.019058 601/611 0.103329 605/614 0.614942 605/614 0.614942 

variant (18) * 618/619 0.260305 609/611 0.341275 611/614 0.733338 611/614 0.048460 

Serial (2) 
993/1000 0.073417 989/1000 0.699313 986/1000 0.045088 986/1000 0.045088 

997/1000 0.181557 989/1000 0.480771 988/1000 0.274341 988/1000 0.274341 

Linear complexity (1) 985/1000 0.757790 991/1000 0.422638 993/1000 0.741918 993/1000 0.741918 

*) Since this test consists of a large number of subtests, only the smallest and the largest values of the pass 

rate are reported herein altogether with the corresponding PoP-values. 
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The second group of tests can be found in the NIST Test Suite SP800-90B [179]. Ex-

perimental results obtained for the same TRNGs as before are presented in Table 9.4. It lists, 

for permutation tests, the counter values saved when a given test was terminated. As can be 

seen, all TRNGs passed those tests. They also passed four additional statistical tests, as shown 

in the table. The last row of Table 9.4 reports the min-entropy extracted from the test se-

quences by native procedures implemented within the SP800-90B suite.  

The last group of tests come from the AIS-31 Test Suite [91]. The pass rate correspond-

ing to tests T1 – T5 are reported in Table 9.5. Furthermore, the lower part of the table gives 

the test statistics obtained for the examined TRNGs (the passing criteria for each test can be 

found in the second column of the table). As can be seen, the random sequences produced by 

the new TRNGs pass all statistical tests. In particular, the pass rate for tests T0 – T5 is as 

high as 100%. 

A crucial figure of merit when introducing a new scheme is its logic silicon real estate. 

As shown earlier, the proposed n-bit TRNG requires n flip-flops (FF) and a certain number 

Table 9.4 Results for 1,000 1M-bit samples under NIST SP800-90B IID tests. 

  G48 G64 G128 G256 

Test C0 C1 C2 C0 C1 C2 C0 C1 C2 C0 C1 C2 

Excursion 32 0 6 13 0 6 6 0 10 6 0 11 

#Directional runs 6 0 28 6 0 44 10 0 6 8 0 6 

Length of directional runs 4 6 0 2 5 1 1 5 16 8 6 0 

#Increases and Decreases 6 0 21 6 0 10 9 0 6 6 0 104 

#Runs wrt median 11 0 6 29 0 6 6 0 26 15 0 6 

Length of runs wrt median 5 1 11 10 3 3 3 3 21 3 3 5 

Average collision 6 0 42 6 0 11 6 0 6 14 0 6 

Maximum collision 21 5 1 4 2 4 10 3 3 4 2 81 

Compression 11 0 6 6 0 61 10 0 6 15 0 6 

Periodicity-1 16 0 6 9 0 6 6 0 8 6 0 8 

Periodicity-2 34 0 6 6 0 10 6 0 10 6 0 6 

Periodicity-8 6 0 6 6 0 112 22 0 6 18 0 6 

Periodicity-16 48 0 6 6 0 15 20 0 6 6 0 15 

Periodicity-32 6 0 13 6 0 14 6 0 48 6 0 7 

Covariance-1 7 0 6 16 0 6 18 0 6 6 0 23 

Covariance-2 6 0 113 6 0 44 17 0 6 6 0 7 

Covariance-8 18 0 6 6 0 22 30 0 6 6 0 41 

Covariance-16 6 0 289 6 0 55 9 0 6 6 0 9 

Covariance-32 6 0 6 75 0 6 6 0 18 8 0 6 

Chi-square independence p-value = 0.283383 p-value = 0.570821 p-value = 0.828947 p-value = 0.524847 

Chi-square goodness of fit p-value = 0.733166 p-value = 0.156913 p-value = 0.427471 p-value = 0.665661 

Length of the longest  
repeated substring 

Passed Passed Passed Passed 

Restart Passed Passed Passed Passed 

Min. entropy per byte 7.987921 7.988972 7.985753 7.989519 
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(depending on n) of XOR gates, plus an even number of inverters, a single 2-input NAND 

gate, and a reset logic. In addition to these numbers, Table 9.6 reports the silicon real estate 

taken up by generators in terms of equivalent area of 2-input NAND gates (measured also in 

µm2). The presented numbers were obtained with a commercial synthesis tool. All compo-

nents of the new TRNG logic were synthesized using a 65nm CMOS standard cell library 

under 2.5ns timing constraint. The last three columns of the table report the resultant silicon 

area with respect to combinational and sequential devices, and the total area taken by the 

circuits. Finally, in order to compare the performance of the new scheme with the existing 

state-of-the-art solutions, Table 9.7 uses six recent techniques as they already compare fa-

vorably with other schemes introduced earlier in the technical literature.  

Table 9.5 Results for binary sequences under AIS-31 tests. 

    G48 G64 G128 G256 

Test Pass rate 

T0 Disjointness Passed Passed Passed Passed 

T1 Monobit 257/257 257/257 257/257 257/257 

T2 Poker 257/257 257/257 257/257 257/257 

T3 Run 257/257 257/257 257/257 257/257 

T4 Long run 257/257 257/257 257/257 257/257 

T5 Autocorrelation 257/257 257/257 257/257 257/257 

    Test values (Statistics – S) 

T6 - a Uniform distr. ( S < 0.025) 0.000580 0.003759 0.001929 0.001879 

T6 - b Uniform distr. (S < 0.020) 0.002950 0.000950 0.002910 0.000099 

T7 - a 
Comparative multinomial, 

width = 3 (S < 15.13) 

0.132880 2.394322 0.011520 0.158421 

0.353780 0.064981 0.144500 2.464020 

T7 - b 
Comparative multinomial, 

width = 4 (S < 15.13) 

2.888009 0.003920 0.079380 0.121680 

0.027380 0.474320 1.764182 0.259920 

0.840506 0.084503 0.095220 0.165621 

0.019220 0.420500 0.014580 0.985681 

T8 Entropy (S > 7.976) 8.001270 7.997012 8.001384 8.001931 

 

Table 9.6 Hardware footprint – equivalent 2-input NAND gates (µm2). 

 

Gate 

count 

FF 

count 
Combinational Sequential Total 

G48 69 48 124 (145.23) 253 (296.31) 377 (441.54) 

G64 91 64 163 (190.9) 337 (394.69) 500 (585.59) 

G128 206 128 331 (387.66) 672 (787.04) 1003 (1174.7) 

G256 390 256 629 (736.68) 1345 (1575.25) 1974 (2311.92) 
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9.5  Resilience against attacks 

TRNGs relying on ring oscillators must be resilient against various types of attacks, including 

those that destroy their source of entropy. One of the most eminent in this category is a so-

called the frequency-injection attack that is capable of successfully locking TRNG to fre-

quencies injected into the power supply, and thus reducing the entropy of a TRNG, as demon-

strated in [109]. Following the procedures discussed in [104] and [109], the frequency injec-

tion was applied to four TRNGs presented earlier in this chapter in Tables 9.3, 9.4, and 9.5. 

In particular, after injecting frequency 0.5f0, where f0 is the base frequency of the ring oscil-

lator, one can identify three visible frequency peaks in the examined spectrum, i.e., f0 as well 

as its second and fourth harmonics. Having the external frequency 0.5f0 injected into the 

power supply rails, test sequences are collected, as reported in the previous chapters. The 

received data are tested by means of NIST SP800–22, NIST SP800–90B, and AIS-31 test 

suites. The obtained test results clearly indicate that the test sequences passed all tests; the 

min-entropy statistics after the frequency-injection attack are reported in Table 9.8. As can 

be seen, the min-entropy drop is negligible; in the worst case it is no greater than 1.7% of the 

original value. 

Table 9.8 The min-entropy after frequency injection. 

TRNG Original Under attack 

G48 0.993773 0.979376 

G64 0.996669 0.980079 

G128 0.991438 0.987242 

G256 0.993663 0.985084 

 

Table 9.7 Comparison with related works. 

 [190] [104] [4] [31] [49] This work 

NIST SP800-22 NA pass pass pass pass pass 

NIST SP800-90B NA pass NA NA NA pass 

AIS-31 T0 - T5 pass T5 and T8 NA pass pass 

Hardware footprint 10 LUT, 5 FF 53 LUT, 22 FF 528 LUT, 177 FF 73 slices 4 LUT, 3 FF n/2 LUT, n FF* 

Postprocessing no yes for FPGA yes not needed not needed not needed 

Bit rate [Mb/s] 1.15 1,600 6 0.011 0.76 200 

FPGA implementation yes yes yes yes yes yes 

NA – not available,   
* n – the ring generator size; the number of LUTs is an upper bound assuming that (1) a LUT can accommodate two 2-input XOR gates,  

(2) a ring generator requires n/2 2-input XOR gates to implement its feedback network, and (3) a ring oscillator needs n/2 2-input XOR 

gates to inject its values to every “upper level” flip-flop of the ring generator; since the total number of required 2-input XOR gates is ty-

pically much smaller than n, the number n/2 of LUTs can be regarded as accounting for inverters implementing the ring oscillator as well. 
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Also the robustness of the new TRNG against power and thermal attacks was validated. 

For instance, a power wasting circuitry is often used to overload the power regulator, and 

hence to degrade the randomness of TRNGs. In order to control the corresponding experi-

ments, the Xilinx system monitor was used to measure the real-time temperature and voltage 

values altogether with additional 1,600 RO-based power-wasting devices [106] working at 

different frequencies. With all these circuits enabled, again the required test sequences are 

collected. As before with the frequency-injection attack, all three test suites are used to eval-

uate the binary sequences. No negative impact of harsh conditions on test results was ob-

served as the generated data passed all tests.  

Finally, with respect to thermal attacks, test sequences produced by TRNG were col-

lected in conjunction with externally injected heat, which does not impact the supply voltage. 

Moreover, all tests were repeated for different temperatures. The collected experimental re-

sults were subsequently validated against the three test suites confirming that the examined 

TRNGs were virtually immune to the thermal attacks. 

9.6  Built-in self-test of the generator 

Although certain parts of the generator behave, on purpose, in a highly unpredictable manner, 

testing of its hardware is carried out in a fully deterministic and digital fashion, as briefly 

discussed in this chapter. As the root-of-trust principal mission is to secure the IC in general, 

and to protect its design-for-test (DFT) infrastructure in particular, its own test should be an 

autonomous procedure that does not require any additional DFT components. Similarly to 

the approach presented in Chapter 7.4, an LBIST can be used to test the generator. In LBIST, 

the original circuit is typically appended with additional modules for generation of test pat-

terns and compaction of test responses. However, simplicity of design and its inherent itera-

tive functionality can easily facilitate its self-testing. 

The entire LBIST session is mainly based on the challenge generator native function-

ality with a few minor exceptions. In particular, it can be easily modified into PRPG by dis-

abling the ring oscillator feedback loop. The ring oscillator requires a few additional test 

patterns, as discussed in the following paragraph. Importantly, pseudorandom test data and 

faulty effects can easily propagate through the ring generator due to its functionality. In fact, 

the very same ring generator serves as a MISR and contains a final test result. It observes 

original outputs of the ring oscillator as well as an additional observation point, as discussed 

below.  

 During the first step of a test session, all memory elements of the ring generator must 

be reset. Similarly to the functional mode, the actual testing requires a number of clock cycles 

necessary to obtain a nonce. The testing results are then available in the ring generator. While 

running a test, a simple control decoder is employed to stimulate the ring oscillator. To make 

it testable, the ring oscillator needs to be redesigned by replacing one of the inverters with a 
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2-input NAND gate G3, and by adding an auxiliary 2-input OR gate G1, as shown in Fig. 9.6. 

In principle, the test breaks the ring oscillator feedback loop and applies three different pat-

terns (the red font) to inputs of G1, G2, and G3 to detect all single stuck-at faults within the 

oscillator and to feed the ring generator with deterministic data. This approach is illustrated 

in Fig. 9.6. It is worth noting that all nets in the circuit assume both values: 0 and 1. It allows 

one to excite all stuck-at-1 and stuck-at-0 faults, respectively. The first pattern (001) disables 

the feedback loop at gate G2, whereas the second pattern (010) does the same at gate G3. The 

last vector (111) blocks the loop at gate G1 that allows us to detect and observe faults on the 

inputs and the output of G2. The output of G1 is directly connected to the ring generator to 

observe a response related to s-a-0 fault affecting the feedback line. Clearly, if one of the 

decoder outputs (driving gates G1, G2, or G3) is stuck at the non-controlling value, and this 

fault causes one of these inputs to change from a dominating value to a non-controlling one, 

then the circuit will oscillate, effectively producing a sequence of erroneous values entering 

the ring generator.  

The BIST procedure described above was fault simulated for all single stuck-at faults 

within the circuitry every generator of Table 9.1 consists of. The obtained results clearly 

confirm that all single stuck-at faults can be detected within duration of the proposed func-

tional test, i.e., a time needed to produce a nonce. 

 

  

 

Figure 9.6 Testing a TRNG. 
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10. Hardware root of trust 

This chapter introduces a low-cost hardware root of trust to guard ICs security sensitive as-

sets [142]. The infrastructure required is very minimal; the presented scheme employs only 

a few blocks discussed in previous chapters. In particular, the proposed design deploys cus-

tomized versions of a challenge generator, a hash function, and input/output SCs, that were 

presented in previous chapters.  

10.1 SSN and its root of trust 

In principle, the SSN [40] allows one to test, in parallel, any number of cores in a very short 

time by enabling high-speed data distribution and efficient handling of imbalances between 

successive modules. Although SSN solves many scan data distribution challenges in large 

SoC or 3D designs, it may pose security risks, and therefore it needs to be protected and 

available only to authorized users. Consequently, this chapter proposes to secure the SSN 

technology by adding a die-centric hardware root of trust protecting SSN-based designs 

against unauthorized access and expanding threatscape. As SSN is compatible with a flexible 

parallel port of IEEE Std 1838 for 3D test access, RoT builds on SSN and takes advantage 

of its central DFT entry to protect a single top level test access point shared by IEEE 1687 

(IJTAG) compliant IP blocks. In 3D ICs, the proposed RoT can be either assigned to every 

silicon wafer or to a master die only. 

A simple example of this approach, applied to a 6-core SoC design using SSN, is 

shown in Fig. 8.1. Each core contains a Streaming Scan Host (SSH) driving local scan re-

sources to load and unload scan chains (or channels) with data delivered on the SSN bus. For 

example, SSH can interface with EDT logic, as shown in the figure. Typically, each SSH has 

two external ports: an IEEE 1687 IJTAG interface and a parallel data bus conveying the 

payload scan data and connecting one SSH to the next one. A single-bit IJTAG network is 

usually used to configure all SSN nodes prior to application of test patterns. As a result, each 

node is preloaded with data regarding the active bus width, its location in the series of nodes 

driven, the number of shift cycles per scan pattern, and other information needed to track the 

streaming operations. Following this setup, test patterns are applied as packetized scan data 

that are streamed through the SSH nodes, each of which can determine when it needs (1) to 

read scan in data from the bus, (2) to place scan out data on the bus, or (3) to pass along data 

that is destined for other nodes. 

The presented SSN modus operandi and a range of data consumed and produced by 

the SSN nodes are diverse enough to merit the presence of an input SC and an output SC 

(see Fig. 8.1). Both devices are deployed to decrypt and encrypt the test data from the IJTAG 

interface and the SSN bus. As a result, they form, in conjunction with the RoT controller and 

its access authentication mechanisms, effective barriers that may obscure many control and 
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data signals, and thus prevent a wide spectrum of attempts to compromise a design. Indeed, 

in the case of unauthorized access, randomly obfuscated test data produced by both the input 

and output SC and sent through the IJTAG and SSN interfaces will cause the entire SoC 

design to enter an unusual test mode. In this mode, the DFT logic architecture becomes com-

pletely unpredictable, leaving the attacker confused or given a fake feedback. Moreover, the 

same signals may trigger other internal on-chip mechanisms [29], [181] which do not allow 

normal IP behavior. Architectural details regarding the input (output) SC can be found in 

Chapter 8. 

10.2 Challenge-response protocol 

The authentication protocol presented in this chapter (and shown in Fig. 10.1) lays foundation 

for a hardware root of trust. Essentially, it is a small and simple finite-state machine designed 

to perform a specific set of limited functions like true random number generation, data hash-

ing and encryption, keys validation, and logic locking. The challenge-response procedure 

works as follows. 

Once a request to run certain test-related functions is received, an IC creates a random 

token (commonly known as a nonce) and sends it to a secure server, further referred to as the 

security processor. The nonce is produced by an on-chip TRNG (see Chapter 9) which yields 

different strings of 0s/1s within each activation. It contains also some individual data from 

the IC such as its electronic identification number. The security processor computes a hash 

of the nonce, as described in Chapter 10.3. This step involves a secret key that is used as an 

initial value for hashing the nonce data. Selection of the actual key is done based on a re-

ceived design ID. If the design ID is invalid, the security processor still uses a unique and 

 

Figure 10.1 The proposed security protocol. 
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fake (ID-dependent) initial hash value, in this case to obfuscate the resultant response. Fur-

thermore, the security processor may keep track of how many times each individual chip 

requested a response, monitoring any unusual behavior. The same (valid) secret key is kept 

in an encrypted form by the IC that hashes the nonce as well, using the secret key the same 

way the security processor does. 

The hash value produced by the security processor is further bitwise XOR-ed with two 

configuration masks, other secret items stored on the server as a part of a given (legitimate) 

test set authentication data. Blended with the hash value, they form a response which is sent 

back to the IC. In order to retrieve the configuration masks, the circuit does a bitwise XOR 

on the response, i.e., the hash value returned by the security processor and a hash value pro-

duced by the IC. They are subsequently used to setup both a test data input and output SC. 

The former device can handle encrypted test data such as EDT test patterns prior to their 

further processing by means of on-chip test data decompressors. This way the proposed 

scheme not only protects the IC through the silicon-based authentication procedure, but also 

allows one to work with encrypted patterns to mitigate oracle-less attacks targeting directly 

test data. The same rules apply to the test data output SC that facilitates encrypting of output 

test data streams. If an attempt of unauthorized access is launched, it triggers changes in the 

circuit internal functionality. Input and output SCs become blurred due to corrupted config-

uration masks. This results in signal corruptions caused by activation of certain elements, 

typically disabled and transparent in the mission mode. The above authentication process is 

fully automated and invisible to the user (clearly, it does not preclude additional counter-

measures such as additional password-based authentication). 

A high-level diagram of the proposed root of trust is given in Fig. 10.2. Two devices 

implementing a random challenge generator (CG) and a hash function sit at the heart of the 

scheme. A ring-generator-based CG uses a group of ring oscillators. After a given number 

 

Figure 10.2 Hardware root of trust. 
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of clock cycles (note that RoT uses its own on-chip clock to avoid noninvasive playing with 

the clock signals), it serially outputs a sequence of bits that form a nonce going to the security 

processor. The same nonce becomes now the subject of hashing that mimics the operations 

carried out by the processor (Chapter 10.3). Activity periods of both devices are controlled 

by a standard n-bit counter, as shown in Fig. 10.2. The same counter signals the main control 

unit when its most significant output bit changes from 0 to 1. It terminates all operations. RoT 

deploys also a group of 2-input XOR gates to restore the configuration masks and to feed an 

input SC, output SC, and obfuscation logic (optional). One group of these gate inputs are 

driven by a shift register that receives a response produced by the security processor. While 

a simple FSM implements the control unit and supervises the authentication process, some 

additional modules such as the control decoder, the MISR, and a 2-way multiplexer as well 

as some extra connectivity are primarily intended for use in the built-in self-test mode. 

A lightweight TRNG presented in Chapter 9 serves as a CG. While the TRNG is driven 

by an on-chip clock generator, a feedback disable circuitry allows the scheme to convert the 

CG into a simple shift register when its content is about to be passed to the security processor 

as a nonce. Typically, it occurs after a predefined number of clock cycles indicated by the 

counter (Fig. 10.2). 

10.3 Nonce hashing 

As discussed in Chapter 10.2, a random nonce produced by a circuit is subsequently hashed 

on chip as well as by the security processor that, to deliver a response, runs an appropriate 

procedure mimicking a built-in hash function of the device-under-test. A hashing circuitry 

has been presented in Chapter 7. Selection of a particular hash function is decided on the 

basis of the size message and digest register assume. The final response becomes ready after 

a predefined number of clock cycles that suffice to rotate the nonce multiple times within the 

circular register. The main counter of the scheme controls this process. 

At the end of the authentication process, the comparator outputs a result that can be 

further split into three parts, as shown in Fig. 10.2. The first group of output bits form a 

decryption mask, which was earlier blended into a response (hash), as presented in Chapter 

10.2. Upon successful authentication, the mask in its original (proper) form is used to setup 

an additive input SC. Its modular and programmable feedback network that allows one to 

implement any characteristic polynomial has been presented in Chapter 8. This, in turn, al-

lows one to pick a suitable secret configuration mask, preferably corresponding to a primitive 

polynomial, depending on other security needs. The pseudorandom sequences produced by 

selected polynomials are employed to decrypt, i.e., complement or retrieve, test data that 

enters the circuit's DFT infrastructure (clearly, this approach requires a prior additive encryp-

tion of test data by using the same feedback polynomial). The input SC is initialized by asyn-

chronously setting or resetting its memory elements during the overall RoT reset step. The 
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input SC initial state remains a proprietary information associated with a given design. The 

second group of output bits form an encryption mask. It is employed to operate the output 

SC by following the same principles as those described above. 

A different scenario applies if the response does not match what is expected, that is, an 

attempt to unauthorized access is detected. First of all, the decryption mask will trigger a 

peculiar feedback polynomial that is going to yield a pseudorandom sequence (even not nec-

essarily a maximum-length on its own) that can effectively blur encrypted test data such that 

it becomes completely useless. The output SC will obscure test results following the same 

principles. 

10.4 Security analysis and evaluation 

At this point, it is essential to observe that in the case of unauthorized access the proposed 

authentication scheme does not openly deny access to the attacker by default. Instead, it 

moves a design (circuit) into a peculiar mode in which its behavior becomes completely un-

predictable and misleading. Although it still accepts streams of input data and produces re-

sults, in reality this mechanism gives fake feedback to the attacker who may believe to have 

successfully opened the circuit. In fact, this process rises the complexity of exploration al-

gorithms enormously, also due to characteristic data scrambling features of combined com-

pression hardware as well as SSN and IJTAG protocols. Furthermore, it highly confuses the 

attacker who is not aware of the actual SoC network configuration and the corresponding 

operational conditions that they have to deal with. 

Having recalled this behavior, consider two basic scenarios. The first one assumes that 

the attacker has no access to the security processor. It forces the attacker to mimic a response 

that a circuit should receive after producing a nonce. Assuming that the cryptographic prim-

itives (CG, the hash function) are secure and invulnerable to side-channel attacks, and the 

secret data kept by the security processor (initial hash values, configuration masks) are secure 

as well, the resultant security depends primarily on the size of such items as the nonce, the 

hashed response, and the aforementioned secrets. It is also worth noting that the scheme as-

sures both secure authentication and communication. Indeed, even if the adversary takes over 

the chip after it has been properly setup by an authorized entity, its usage requires the 

knowledge of how to encrypt the input data and how to interpret data produced by the circuit. 

Clearly, that secret information remains in the exclusive possession of the security server. 

According to another scenario, a malicious party may try to intercept communication 

between the IC and the security processor to collect some exemplary data. This case resem-

bles, to some extent, a man in the middle attack. However, the CG used by the proposed 

scheme to produce a nonce mitigates significantly attempts to discover and resolve challenge-

response pairs as the attacker is incapable of guessing the correct value of the nonce in ad-

vance. Furthermore, a valid response depends on secret (and secure) data related to the circuit 
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ID and configuration masks representing the legitimate test patterns (the attacker will likely 

have to use different patterns that are necessary to compromise internal assets of the IC). In 

other words, the attacker can eavesdrop on the communication channel but is unable to tam-

per with it. Clearly, attacks in which the adversary gets a desired device configuration that 

can be further explored by means of forging patterns are prohibitively expensive if not im-

possible given (again) large enough secrets. In the light of the above findings, several types 

of attacks presented in the technical literature [43], including replay attacks, a challenge for-

gery, response and challenge brute force attacks, are virtually unfeasible. 

As shown in [20], the access protocol-based security protection techniques are some-

how orthogonal to schemes intended to combat invasive attacks such as microprobing or 

reverse engineering, and noninvasive attacks (side-channel analysis or fault injection). Con-

sequently, depending on a desired security degree, one may consider additional countermeas-

ures to detect voltage stress, extreme temperatures, clock instabilities, to name just a few 

anomalies that could be used by malicious parties. 
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11. Conclusions 

What has been presented in the thesis clearly supports the observation that deterministic in-

system tests can be effectively and safely introduced into the SoC realm. The first part of this 

work shows that novel in-system test solutions can have unknown states filtered out in a cost-

effective manner before they could reach test response compactors. The synergistically com-

bined schemes of the second part of the thesis are capable of creating a customized, light-

weight, hardware root of trust for DIST- and SSN-based applications. 

In a brief summary, it is worth recalling that the tunable X-tolerant compactor for 

LBIST applications, presented in Chapter 3, builds on a generic and test set independent scan 

chain selection technology. It allows one to block, in a highly selective manner, X states 

within redefinable groups of chains and scan shift cycles. It is also capable of handling ob-

servation scan chains that capture test responses in a per-cycle fashion. To the best of the 

author's knowledge, the X-masking scheme introduced in Chapter 4 is the first solution of 

that kind developed for DIST applications. The new scan selection logic can be paired with 

any test response compactor while working with EDT-encoded test data. Both solutions offer 

very good error observability even in the presence of a large number of unknown states. 

Hence, the proposed solutions make many in-field and in-system test schemes (such as those 

developed for automotive electronics) compliant with international test quality standards and 

very strict quality requirements. Experimental results confirm that X-masking schemes of 

Chapters 3 and 4 form a robust and superior base for test response compaction techniques 

that do not impact test quality in terms of test time and test coverage, require a minimal 

amount of control information, and are easily scalable with the size of tested designs. 

Hybrid ring generators, introduced in Chapter 6, can make a substantial contribution 

toward the performance of linear circuits used in a variety of applications. Similarly to con-

ventional ring generators, the proposed scheme builds on a ring counter and can preserve the 

maximum-length property. Due to their feedback nets of opposite directions, however, the 

hybrid rings feature improved structural properties and enhanced the overall performance. In 

particular, the hybrid rings preserve small internal fan-outs of their conventional counter-

parts, while simplifying the resultant circuit layout and routing. Consequently, HRGs create 

a new and enlarged implementation domain for linear finite state machines of a given size 

and a desired set of feedback taps. HRGs can be also successfully used as building blocks of 

hardware security primitives, as has been shown in the following chapters. 

Chapters 7, 8, and 9 present lightweight security primitives destined for root of trust 

applications. The cryptographic hash function of Chapter 7 builds on an HRG, which is fur-

ther combined with a sequential circuit comprising bent-like functions forming its nonlinear 

feedback network. The test data stream cipher described in the next chapter is again built 

around an HRG and two additional linearly filtered NLFSRs. A true random number gener-

ator from Chapter 9 employs a ring generator (or a hybrid ring generator) driven by a 
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multiple-output ring oscillator. The presented cryptographic hash function and the test data 

stream cipher are programmable – this feature allows one to pick a linear feedback network 

to set the HRG up (out of millions of available feedback functions). Moreover, it enables a 

proprietary initialization of all sequential parts of those modules. Since devices of Chapters 

7, 8, and 9 are easily scalable, they can be rearchitected by resizing their building components 

so that the resultant schemes meet the desired safety requirements of a particular IC. Several 

desired features of these solutions were examined with various statistical tests, along with 

the NIST and AIS test suites. The results show that they fulfill all test requirements and can 

work across a wide range of sizes. Moreover, all three security primitives can resist various 

types of attacks, including cryptographic ones. 

Finally, the last chapter introduces a hardware RoT combining presented earlier secu-

rity blocks. It is capable of defending designs against unauthorized access to their embedded 

test instruments. With the proposed approach, trusted users can be granted direct access to 

the on-chip DFT infrastructure during manufacturing tests. Upon its completion and after 

blowing test interface fuses, test logic can only be reached through the described RoT. It can 

be done either by (1) running a test in the input-only streaming mode, which uses encrypted 

patterns and reference responses for the on-chip compare approach, or by (2) streaming test 

data in both directions with access to encrypted responses for the sake of fault diagnosis. As 

encrypting data going to and coming from a DUT makes eavesdropping ineffective, the new 

scheme counteracts attacks based on the analysis of applied patterns and received results, and 

it prevents experimentation with varying stimuli and the resulting responses. 

The thesis demonstrates that even in such mature areas as test response compaction and 

in-system test security, there are improvement opportunities. Moreover, the proposed solu-

tions can also be regarded as starting points for future research directions. For example, the 

test response compactors of Chapters 3 and 4 can be rearchitected to function within the 

ATE-based test framework, where it is unnecessary to filter out all unknown values. New 

NLFSRs can be used to further enhance nonlinear sequential logic in hash functions of Chap-

ter 7, or to design fully nonlinear stream ciphers similar to that of Chapter 8. Furthermore, 

the hardware root of trust discussed in Chapter 10 can be strengthened with a protocol provid-

ing access to selected test instruments based on the user’s privilege level. In summary, the 

solutions proposed in the thesis address some of the key challenges of the modern, secure 

VLSI test and help to converge toward an ultimate on-chip test solution with a negligible 

impact on the design and manufacturing realm.  
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