
POZNAŃ UNIVERSITY OF TECHNOLOGY

FACULTY OF COMPUTING AND TELECOMMUNICATIONS

BARTOSZ WŁODARCZAK

ON SECURE DETERMINISTIC IN-SYSTEM TEST SOLUTIONS

Ph. D. Thesis

Supervisors:

prof. dr inż. Janusz Rajski

prof. dr hab. inż. Jerzy Tyszer

Poznań, Poland, 2024

.2 INTERNATIONAL TEST CONFERENCE

2

.2 INTERNATIONAL TEST CONFERENCE

3

ABSTRACT

In the ever-evolving world of integrated circuits (ICs), manufacturing processes have made

it possible to deliver designs of staggering complexity with billions of transistors placed on

a single silicon die. However, with the very small feature sizes, these technologies are ex-

tremely fragile and vulnerable to new types of failure mechanisms and defects. In the auto-

motive domain, hyperscale data centers, healthcare ICs, and many other applications elec-

tronic designs must be continuously tested during a product lifecycle to avoid malfunctions

caused by, for example, silicon degradation. A deterministic in-system test is one of the most

prominent solutions, capable of detecting defects throughout the lifecycle of state-of-the-art

ICs. Although it can significantly improve the in-field test quality, the very same test infra-

structure and other DFT schemes may expose a design to many security threats. Clearly,

securing the electronic devices that underpin the global economy, businesses and personal

lives has become essential in the face of growing cybersecurity threats. In particular, on-chip

test instruments have to be protected against unauthorized access and other malicious activi-

ties. To satisfy current and anticipated VLSI test requirements, the thesis introduces a number

of solutions that target two important aspects of the deterministic in-system test paradigm:

advanced test response compaction and in-system test security.

In the first part of the thesis, new X-masking methods devoted to the in-system test

response compaction are examined. The first compactor is designed for a logic built-in self-

test environment. Furthermore, it is capable of handling test data produced by observation

scan chains that may capture errors at every single scan shift cycle. The second solution is

strictly integrated with a deterministic in-system test. As a result, this X-masking scheme

receives controls from an on-chip test data decompressor. In addition to design principles of

selection logic, the rules that govern the encoding of masking data are also discussed.

The subsequent part of the thesis introduces new lightweight cryptographic schemes

which when working synergistically, may form a hardware root of trust destined to protect

the design’s IP and defend test infrastructure against intrusions. This part begins with a hybrid

ring generator (HRG), a modified version of a conventional ring generator. Among several

HRG applications, the work proposes three new lightweight cryptographic primitives: a

crypto hash function, a stream cipher of test data, and a true random number generator. Fi-

nally, a hardware root of trust is presented that builds on just described primitives to facilitate

development of challenge-response authentication protocols. The solution has a low area

footprint, operates at very high frequencies, and is fully compatible with a design and DFT

flow. Although it primarily targets SSN-based designs, i.e., System-on-Chip solutions with

packetized streaming of test data, the proposed root of trust can improve the security of other

test interfaces, as well.

Both test response compactors have been thoroughly examined through experiments

conducted on large and complex industrial designs representing the latest technology nodes

while varying with respect to design styles and scan methodologies. The new security prim-

itives, on the other hand, have been verified using batteries of statistical tests, including those

provided by National Institute of Standards and Technology (NIST) and BSI - the German

IT security certification authority.

.2 INTERNATIONAL TEST CONFERENCE

4

STRESZCZENIE

W dynamicznie rozwijającej się domenie scalonych układów cyfrowych, procesy ich wytwa-

rzania umożliwiły dostarczanie układów o bezprecedensowej złożoności z miliardami tran-

zystorów umieszczonymi na pojedynczej matrycy krzemowej. Niestety, w związku z bardzo

małymi rozmiarami elementów półprzewodnikowych, nowe technologie są niezwykle wraż-

liwe i podatne na nowe rodzaje uszkodzeń. Układy scalone używane w przemyśle motoryza-

cyjnym, medycynie, w centrach danych oraz w wielu innych zastosowaniach muszą być te-

stowane przez cały okres ich eksploatacji, aby uniknąć nieprawidłowego działania spowodo-

wanego m.in. starzeniem się układu. Deterministyczne testowanie systemowe to jedno z naj-

bardziej obiecujących rozwiązań, pozwalających na wykrywanie uszkodzeń w trakcie eks-

ploatacji najnowszych układów scalonych. Takie podejście umożliwia znaczne podniesienie

jakości testowania, jednak może jednocześnie zostać wykorzystane do nielegalnego zidenty-

fikowania wewnętrznej struktury lub funkcjonalności układu. Zabezpieczenie urządzeń elek-

tronicznych staje się niezbędne, szczególnie w obliczu rosnącej liczby zagrożeń związanej z

cyberbezpieczeństwem. Narzędzia testujące w układach scalonych muszą być w szczególno-

ści chronione przed nieautoryzowanym dostępem i innymi działaniami o wrogim charakte-

rze. W związku z przedstawionymi wymaganiami w pracy przedstawiono rozwiązania, które

koncentrują się na dwóch istotnych aspektach deterministycznego testowania wbudowanego:

zaawansowanej kompakcji (redukcji) odpowiedzi testowych oraz bezpieczeństwie narzędzi

testujących.

W pierwszej części rozprawy podano metody eliminacji stanów nieznanych dla kom-

pakcji odpowiedzi testowych. Pierwsze rozwiązanie zostało zaprojektowane dla wbudowa-

nego testu, opartego o pseudolosowe wektory testowe. Zaproponowane podejście umożliwia

również kompakcję odpowiedzi testowych wygenerowanych przez ścieżki testujące, które

pobierają dane o uszkodzeniach w każdym cyklu zegara. Drugie rozwiązanie jest ściśle zin-

tegrowane z wbudowanym w system deterministycznym testowaniem. W rezultacie stero-

wanie dla nowego kompaktora pochodzi z umieszczonego na chipie dekompresora danych.

Poza szczegółami dotyczącymi projektowania układów maskujących stany nieznane, w

pracy przedstawione zostały również zasady kodowania danych sterujących kompaktorami.

W drugiej części rozprawy przedstawione zostały nowe techniki kryptograficzne,

które mogą stanowić bazę dla sprzętowego rozwiązania zapewniającego obronę infrastruk-

tury testującej przed niepożądanym dostępem. Ta część rozpoczyna się wprowadzeniem hy-

brydowego generatora pierścieniowego. Wśród kilku zastosowań tego układu, w pracy za-

proponowano trzy nowe moduły kryptograficzne: kryptograficzną funkcję skrótu, generator

dla potrzeb szyfrowania strumieniowego oraz sprzętowy generator liczb prawdziwie loso-

wych. Następnie zostały one wykorzystane w ostatnim rozdziale pracy, gdzie zapropono-

wano sprzętowe rozwiązanie, które zapewnia protokół uwierzytelniania oparty o koncepcję

wyzwania/odpowiedzi. Przedstawiona metoda wymaga niewielkiej ilości miejsca na ukła-

dzie scalonym, działa przy bardzo wysokich częstotliwościach oraz jest w pełni kompaty-

bilna z narzędziami projektowania układów scalonych. Chociaż jest on głównie skierowany

do układów scalonych wykorzystujących pakietowe przesyłanie danych testowych, propo-

nowana metoda może również poprawić bezpieczeństwo innych złączy testujących.

.2 INTERNATIONAL TEST CONFERENCE

5

Metody kompakcji odpowiedzi testowych przedstawione w pracy zweryfikowano

eksperymentalnie za pomocą opracowanego przez autora oryginalnego oprogramowania, bę-

dącego rozszerzeniem istniejących narzędzi komercyjnych. W eksperymentach wykorzy-

stano produkowane współcześnie cyfrowe układy scalone. Nowe rozwiązania kryptogra-

ficzne zostały zweryfikowane za pomocą testów statystycznych, w tym opracowanych przez

amerykański National Institute of Standards and Technology (NIST) oraz BSI - niemiecką

instytucję certyfikującą bezpieczeństwo informatyczne.

.2 INTERNATIONAL TEST CONFERENCE

6

.2 INTERNATIONAL TEST CONFERENCE

7

CONTENTS

1. Introduction ... 15

2. Unknown states and design for testability .. 19

2.1 Impact on test response compaction ... 20

2.2 X-tolerant compactors... 22

2.3 Selective masking of scan chains .. 23

2.4 Deterministic in-system test and X-masking .. 25

2.5 Novel X-masking solutions .. 26

3. X-tolerant compactor for observation scan .. 29

3.1 Compactor’s circuitry ... 29

3.2 Selection of controls ... 35

3.3 Weights assignment .. 38

3.4 Masking observation scan chains ... 40

3.5 Experimental results ... 42

A. Regular scan chains .. 42

B. Observation scan chains.. 46

4. Masking unknown values in deterministic in-system test 49

4.1 New scheme vs. maXpress ... 49

4.2 Compactor’s circuitry ... 50

4.3 Mask generation .. 52

4.4 Encoding of masking cubes .. 55

4.5 Experimental results ... 58

5. Hardware security and IC tests ... 63

5.1 Design for test vs. security concerns .. 63

5.2 Lightweight cryptographic hash functions ... 65

5.3 Hardware stream ciphers .. 67

5.4 Hardware root of trust ... 68

6. Hybrid ring generators ... 71

6.1 Ring generators ... 71

6.2 Hybrid linear feedback shift registers ... 72

6.3 Basic design scheme ... 73

6.4 Reciprocal and dual HRGs ... 77

6.5 Multiple-input signature registers ... 79

6.6 Programmable HRGs .. 81

.2 INTERNATIONAL TEST CONFERENCE

8

7. Cryptographic hash function H2B .. 83

7.1 Basic structure .. 83

A. Hybrid ring generator ... 84

B. Maximal nonlinear functions .. 85

C. Programmability ... 86

7.2 Experimental results ... 87

7.3 Resilience against attacks ... 93

7.4 Built-in self-test .. 97

7.5 Comparison with other schemes ... 98

8. Stream cipher for scan encryption .. 101

8.1 General architecture ... 101

8.2 Programmable hybrid ring generators .. 103

8.3 Primitive nonlinear feedback shift registers ... 104

8.4 Experimental results ... 108

A. Probability of bit values ... 108

B. Diffusion test .. 110

C. Correlation .. 110

D. Tuples test ... 111

E. NIST test suites .. 112

F. AIS test suite .. 114

G. Hardware footprint ... 114

8.5 Resilience against attacks ... 115

9. Lightweight true random number generator .. 119

9.1 Motivation .. 119

9.2 General architecture ... 121

9.3 First validation steps ... 122

9.4 More experimental results .. 126

9.5 Resilience against attacks ... 129

9.6 Built-in self-test of the generator .. 130

10. Hardware root of trust ... 133

10.1 SSN and its root of trust ... 133

10.2 Challenge-response protocol .. 134

10.3 Nonce hashing .. 136

10.4 Security analysis and evaluation .. 137

11. Conclusions ... 139

12. Bibliography .. 141

.2 INTERNATIONAL TEST CONFERENCE

9

FIGURES

2.1 X-value circulation in a four-bit MISR ... 19

2.2 Golden signatures for a MISR with 0, 1, 2, and 3 X-states 20

2.3 Space compaction using linear compactor and X-compact 21

2.4 Convolutional compactor with sixteen inputs and two outputs 22

2.5 X-bounding logic ... 23

2.6 OPMISR test architecture and LFSR-based test compactor 24

2.7 X-Press test response compactor ... 24

2.8 Deterministic in-system test setup applied to a 6-core SoC design using SSN .. 26

3.1 maXpress overall architecture ... 29

3.2 Scan gater serving n = 8 scan chains ... 30

3.3 Configuration insertion bit .. 31

3.4 maXpress controls for a single scan gater ... 32

3.5 Selector block .. 33

3.6 SR-decompressor with eight outputs and CF-decompressor 34

3.7 Superposition of test responses ... 35

3.8 Finding maXpress controls for E = 1 .. 36

3.9 Finding maXpress controls for E = 0 .. 37

3.10 Scan cell weights ... 38

3.11 Control setting selection flow.. 40

3.12 Superposition of signals in a 4-bit observation scan chain 41

3.13 Test coverage for design D4 .. 45

4.1 Test response compactor overview ... 50

4.2 Scan gater serving n = 8 scan chains ... 50

4.3 Feeding daisy-chained control registers .. 51

4.4 The selector block ... 52

4.5 Generation of weights for 1D faults .. 53

4.6 Superposition of groups... 54

4.7 Finding masks.. 55

4.8 Encoding of a masking cube ... 56

4.9 Test data usage by masking cubes ... 57

5.1 Secure scan structures ... 64

6.1 32-bit ring generator implementing a primitive polynomial 71

6.2 Ring generator and its hybrid version (after transformations) 73

6.3 24-bit hybrid ring generator .. 74

6.4 Primitive hybrid ring generators .. 74

6.5 32-bit HRG and its reciprocal form ... 78

6.6 32-bit primitive HRG and its dual form used to obtain a phase shifter 79

6.7 24-bit MISR driven by 4 input channels ... 79

6.8 32-bit programmable hybrid ring generator .. 82

.2 INTERNATIONAL TEST CONFERENCE

10

7.1 Block diagram of the proposed hash function .. 83

7.2 Hash function with 24-bit HRG and 32-bit NSL .. 84

7.3 Programmable 24-bit hybrid ring generator ... 86

8.1 Root of trust protecting a 6-core SoC design using SSN 101

8.2 Block diagram of the proposed SC ... 102

8.3 Programmable 25-bit HRG ... 103

8.4 Backward simulation of the 8-bit PHRG .. 104

8.5 26-bit primitive NLFSR .. 104

8.6 28-bit primitive NLFSR .. 105

9.1 Conventional RO-based TRNG architectures ... 119

9.2 Ring-generator-based true random number generator 121

9.3 Distribution of 64-bit random values after power-up and 211 cycles 122

9.4 The fraction of 1s on successive locations in 64-bit random samples 124

9.5 Distribution of 64-bit samples wrt to their Hamming weights 125

9.6 Testing a TRNG .. 131

10.1 The proposed security protocol ... 134

10.2 Hardware root of trust ... 135

.2 INTERNATIONAL TEST CONFERENCE

11

TABLES

3.1 The selector settings. ... 33

3.2 Circuit characteristics. ... 43

3.3 Experimental results – the group size 2s 44

3.4 Test coverage [%] summary. ... 46

3.5 Circuit characteristics with observation scan. ... 47

3.6 Observation scan results – the group size 2s 48

4.1 Control signals. .. 52

4.2 Faults observed in scan chains selected by IR and GR. 57

4.3 Circuit characteristics. ... 58

4.4 Experimental results. ... 59

4.5 Hardware footprint of a new scheme. ... 61

5.1 Security parameters of selected lightweight cryptographic hash functions. 66

6.1 Primitive hybrid ring generators, n  1184 ... 76

6.2 Circulation of errors in MISRs. ... 80

6.3 Polynomial count for programmable hybrid ring generators. 82

7.1 Experimental test setups. ... 90

7.2 Test results for selected instances of H2B hash function. 91

7.3 Results for 1,000 1M-bit samples under NIST SP800-22 tests. 92

7.4 Hardware footprint - equivalent 2-input NAND gates. 93

7.5 Differential attack results. ... 95

7.6 The number of monomials of a given degree. ... 96

7.7 Comparison with other hash functions. ... 99

8.1 Selected maximum-length nonlinear feedback shift registers. 109

8.2 Results of test from sections 8.4A, 8.4B, and 8.4C. .. 111

8.3 Results of tuples test (2
 values).. 111

8.4 Results for 1,000 1M-bit samples under NIST SP800-22 tests. 112

8.5 Results for 1,000 1M-bit samples under NIST SP800-90B IID tests. 113

8.6 Results for binary sequences under AIS-31 tests. ... 114

8.7 Hardware footprint – equivalent 2-input NAND gates. 115

9.1 TRNG characteristics. ... 123

9.2 Correlation and min-entropy. .. 124

9.3 Results for 1,000 1M-bit samples under NIST SP800-22 tests. 126

9.4 Results for 1,000 1M-bit samples under NIST SP800-90B IID tests. 127

9.5 Results for binary sequences under AIS-31 tests. ... 128

9.6 Hardware footprint – equivalent 2-input NAND gates (µm2). 128

9.7 Comparison with related works. .. 129

9.8 The min-entropy after frequency injection. ... 129

.2 INTERNATIONAL TEST CONFERENCE

12

LIST OF ABBREVIATIONS

ANF Algebraic normal form

ATE Automatic test equipment

ATPG Automatic test pattern generation

CG Challenge generator

CRP Challenge-response pair

DFT Design for testability

DIST Deterministic in-system test

EDT Embedded deterministic test

FF Flip-flop

HRG Hybrid ring generator

IC Integrated circuit

IJTAG Internal JTAG

IP Intellectual property

JTAG Joint Test Action Group standard

LBIST Logic built-in self-test

LFSR Linear feedback shift register

MISR Multiple input signature register

NIST National Institute of Standards and Technology

NLFSR Nonlinear feedback shift register

NSL Nonlinear sequential logic

SDC Silent data corruption

PC Pattern count

PHRG Programmable hybrid ring generator

PRPG Pseudorandom pattern generator

PUF Physical unclonable function

RoT Root of trust

SC Stream cipher

SDSFF State-dependent scan flip-flops

SoC System-on-a-chip

SSH Streaming scan host

SSN Streaming scan network

TC Test coverage

TRNG True random number generator

VLSI Very-large-scale integration

.2 INTERNATIONAL TEST CONFERENCE

13

ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my supervisors Prof. Janusz Rajski

and Prof. Jerzy Tyszer. Their unwavering guidance and support during the entire duration of

my PhD project were invaluable. Thanks to their expertise and passion for research I grew

up as a researcher. I am also grateful for the numerous suggestions and discussions we en-

gaged in. The successful completion of this research would not have been possible without

their assistance and dedication at every step.

I am also thankful to Dr. Grzegorz Mrugalski of Siemens Digital Industries Software,

Poznań, Poland, and Dr. Nilanjan Mukherjee of Siemens Digital Industries Software, Wil-

sonville, OR, USA. Their insightful advice and experience with industrial tools were instru-

mental in resolving numerous technical problems. Their mentorship was really influential in

enhancing the quality and relevance of my research. I also extend my thanks to Dr. Maciej

Trawka and Dr. Yingdi Liu, that have been very supportive throughout my PhD journey.

Finally, I would like to acknowledge the scholarships from Siemens and the Doctoral School

of Poznań University of Technology. In particular, that founding let me participate in inter-

national conferences and played a crucial role in making my PhD studies possible.

.2 INTERNATIONAL TEST CONFERENCE

14

.2 INTERNATIONAL TEST CONFERENCE

15

1. Introduction

As can be easily shown, beyond any doubt, the semiconductor industry is ever evolving, with

new integrated circuits (ICs) and their updates coming out all the time. For more than half a

century, Gordon Moore’s eponymous law [119] has well described (and helped drive) steady

and staggeringly fast progress in computing technology. This unprecedented pace of micro-

electronic miniaturization has led to billions of tiny transistors put on single silicon dies. As

ICs are becoming increasingly complex and densely structured, so are physical imperfections

whose likelihood of occurrence within ICs is raising alarmingly. They cause defects of vari-

ous types that may compromise circuits, have a detrimental impact on design performance,

and inevitably result in system malfunctions. In order to deliver reliable products, vendors

need to test ICs during their manufacturing. In the vast majority of cases, however, it will not

suffice to ensure that microchips will function properly throughout their expected lifespan.

Indeed, in a wide range of industries, including automotive, healthcare, telecommunications,

space, defense, and consumer electronics, it is mandatory to thoroughly test designs during

system operations to avoid errors attributed to, for example, post-deployment silicon aging.

In another application area, cloud service providers have reported so-called silent data cor-

ruption errors caused by subtle IC defects escaping manufacturing tests and producing faulty

results only occasionally which makes them extremely difficult to find. It appears that the

roots of these sporadic software failures have been traced to timing-related faults in hardware

where the performance of transistors may change with varying environmental conditions

while running application software. It has raised a call for not only high quality manufactur-

ing tests but also in-system and in-field tests of comparable quality.

Traditionally, deterministic structural tests are used to achieve high quality in chip

manufacturing, whereas in-system tests rely on built-in self-test (BIST). Unfortunately, the

test quality BIST attains may not be sufficient, primarily due to the pseudorandom test pat-

terns it deploys. Although test points and reseeding of test generators may be helpful in cer-

tain cases, logic BIST is usually unable to reach fault coverage visibly higher than 90%.

Moreover, an acceptable fault coverage by virtue of pseudorandom patterns can only be ob-

tained for certain types of failures. On the other hand, conventional automatic test pattern

generation (ATPG) is capable of working with much more comprehensive fault models (see,

for example, cell-aware tests), and it typically achieves a near complete fault coverage. Nev-

ertheless, while automatic test equipment (ATE) employed during the IC production phase

can easily handle deterministic test data, the cost of storing the same data directly on a chip

is often unacceptable. This dichotomy eventually gave rise to a new technology – determin-

istic in-system test (DIST) – that combines the quality of ATPG-produced stimuli with a

BIST-like paradigm of on-chip test application and test response evaluation. It satisfies both

in-field and high-quality test requirements, necessary to ensure reliable operations of ICs

throughout their lifespan.

.2 INTERNATIONAL TEST CONFERENCE

16

DIST begins to play an essential role in safety-critical applications, in large data cen-

ters, or in monitoring silicon aging, to name just a few. These ecosystems require periodic,

high-quality tests to assure desired test coverage and short test application, especially in de-

signs that must test themselves when operating. For deterministic tests to be in-system appli-

cable, multi-million-bit test responses with often unavoidable unknown (X) values have to

be reduced to small signatures. Typically, X states degrade test results, and thus test response

compaction schemes must be duly protected against their negative impact. This is especially

true for time compactors, such as multiple-input signature registers (MISRs), whose feedback

allows X’s to quickly proliferate. Since contaminated signatures render test useless, test re-

sponse compactors require some form of shielding. As a response to these challenges, this

thesis presents two X-masking solutions. The first one is designed to work with a novel logic

BIST scheme that features a per-cycle capture mode [118]. The second technique has been

customized to handle test responses in DIST-like environments.

Thanks to deterministic stimuli and optimized X-masking circuitry, DIST can ensure

very high test quality, also for complex SoC designs. Unfortunately, the very same test solu-

tions may enable malicious activities. Scan-based attacks are considered a serious threat [46]

[181], even though test compression and the Streaming Scan Network (SSN) technology [40]

can partially combat security concerns by, for example, scrambling test data. Other counter-

measures aimed at protecting test interfaces raise concerns regarding their complexity, both

in terms of silicon area and the impact on a design flow. To address these concerns, the sec-

ond part of the thesis presents new security primitives that can be used to create a hardware

root of trust (RoT) capable of defending test infrastructures, specifically those based on SSN.

The remainder of the thesis is organized as follows. Chapter 2 provides a brief overview

of the state-of-the-art X-masking solutions. Having defined requirements for a reliable test

response compaction scheme, Chapter 3 presents maXpress, a new modular X-tolerant com-

pactor that is applicable to LBIST with the observation scan technology [118]. In particular,

it employs dedicated selectors and scan gaters to mask unknown states within redefinable

groups of scan chains and during designated scan shift cycles. To limit additional test data

volume, the scheme allows a predefined number of patterns to share the same control settings.

X-masking discussed in Chapter 4, built on certain modules of maXpress, is tailored to a

DIST environment. Here, the masking controls are reloaded once per pattern and decoded

using an Embedded Deterministic Test (EDT) [146] decompressor. Additionally, the scheme

involves the next level of masking that requires a very small amount of variables to observe

most of the easy-to-detect faults. Chapters 3 and 4 are complemented by experimental results

obtained for both schemes and several large and complex industrial designs.

Chapter 5 opens the second part of the thesis. It brings back common security issues

implied by IC testing and recalls techniques developed to secure test infrastructure. It also

briefly reviews state-of-the-art cryptographic hash functions and stream ciphers. Chapter 6 is

devoted to hybrid ring generators (HRG) – structurally enhanced ring generators [121].

.2 INTERNATIONAL TEST CONFERENCE

17

Although HGRs can be used as efficient test response compactors and programable pseu-

dorandom pattern generators, they have been primarily designed as key components of a new

lightweight cryptographic hash function introduced in Chapter 7 and a test data stream cipher

presented in Chapter 8. Chapter 9 describes a new lightweight true random number generator

that leverages the benefits of both the timing jitter of a single multiple-output ring oscillator

and a high-speed ring generator (or a hybrid ring generator). New cryptographic primitives

of Chapters 7, 8, and 9 are comprehensively evaluated using a variety of statistical tests,

including the NIST and AIS-31 test suites. Finally, a hardware root of trust destined for the

SSN-based designs is presented in Chapter 10. It takes advantage of security primitives pro-

posed in the previous chapters and provides scalable and secure solutions for the authentica-

tion protocol between a chip and a secure server. The thesis concludes with Chapter 11.

.2 INTERNATIONAL TEST CONFERENCE

18

.2 INTERNATIONAL TEST CONFERENCE

19

2. Unknown states and design for testability

The semiconductor industry demand for test data compression has not slowed down since its

first introduction to the market in 2001. In fact, test response compaction, in conjunction with

stimuli compression, continues to play a crucial role in handling test data volume growth.

Although development of compaction schemes reflects ever-changing needs of many appli-

cation domains, reliable test response compactors are expected to (1) maintain very high

compaction ratios, (2) provide ability to detect a variety of failures found in real silicon, and

(3) assure design simplicity. This can only be achieved provided a compactor is capable of

preserving observability of the vast majority of scan cells for a variety of unknown (X) states,

which are increasingly often identified as having potential for rendering test useless. The

presence of X states is attributed to uninitialized memories, non-scan flip-flops, bus conten-

tions, floating buses, internal three-state logic, unwrapped analog circuitry, false paths, cross-

domain paths, or paths with timing closure problems. X states may also show up due to last-

minute timing violations associated with missing constraints, design issues, or engineering

change orders. In many scan-based designs, X states, once captured in scan cells, are subse-

quently injected into a test response compactor where they can severely affect test results.

For example, Xs can result in a loss of test coverage (TC) if not handled properly and tend to

increase pattern counts required to test a device thoroughly. As it is vital to control compactor

operations with a minimal amount of additional data having no negative impact on the effec-

tive test compression, this chapter will briefly revisit certain test schemes and methods to

Figure 2.1 X-value circulation in a four-bit MISR.

.2 INTERNATIONAL TEST CONFERENCE

20

identify potential areas of improvement for existing schemes that face the future requirements

of deep submicron IC testing.

2.1 Impact on test response compaction

As already mentioned, unknown states, once injected into test response compactors, may

render the outcomes of a test unusable, especially if one deploys a time compactor where X

states quickly multiply (due to a feedback fan-out), contaminate a signature, and stay there

until a read out operation. Usually, the time compactors are based on linear feedback shift

registers (LFSRs) that receive test responses through parallel inputs to finally form a structure

known as a multiple-input signature register (MISR). Fig. 2.1 is an example of how a single

X-value can damage a test response produced by a 4-bit MISR.

 First, the faulty effect (D-value1) is injected during the second clock cycle. Once an X

state enters the MISR in the fourth cycle, it overwrites the faulty effect only after the next

seven cycles. Clearly, in this case, the test will not expose any faults. In another outcome, a

MISR may contain both X-values and errors. However, every X-state occurring in a final

signature doubles the required number of golden signatures (signatures corresponding to a

fault-free design to be compared with the signature generated by the compactor). As shown

1 The use of term D-value (or D, for brevity) follows the convention originally introduced in a seminal

paper of P. Roth on D algorithm [157].

Figure 2.2 Golden signatures for a MISR with 0, 1, 2, and 3 X-states.

.2 INTERNATIONAL TEST CONFERENCE

21

in Fig. 2.2, three X states placed in three different MISR locations would increase the number

of potential golden signatures from one to eight. It is therefore essential to ensure that data

injected into the MISR or any other time compactor are X free. While in certain cases designs

can be X-clean, it is usually necessary to eliminate all X values by deploying an additional

X-masking logic.

In contrast to time compaction, its combinational counterparts do not employ memory

elements to collect test responses but process them by means of, for example, XOR trees

[28]. An example of an eight-input and three-output combinational compactor is shown in

Fig. 2.3a. Three XOR gates are used there to compact responses from eight scan chains to

obtain a 2.67x compaction ratio, i.e., the ratio of the number of scan chains and the number

of compactor's outputs. Even though responses are not accumulated timewise, Xs can still

dominate errors when observed in the same cycle. Therefore, to preserve D-values, each scan

chain must be connected to at least two outputs of a compactor.

Such a solution has been used in the X-compact [114], where results from each scan

chain reach three outputs in parallel. As shown in Fig. 2.3b, even though a compactor receives

both a single X and a single D, the error can still be observed on two out of five compactor

outputs. The X-compact tolerance of unknown values highly depends on the compaction ratio

[114]. To maintain its acceptable degree, this scheme can typically handle just a single X

within a single cycle. Such tolerance is usually insufficient; hence, there have been many

Figure 2.3 (a) Space compaction using linear compactor with eight inputs and three outputs [28];

(b) X-compact [114] with eight inputs and five outputs.

.2 INTERNATIONAL TEST CONFERENCE

22

solutions proposed over the years aimed at reducing the negative impact of unknown values

on test outcomes.

2.2 X-tolerant compactors

As documented by the scholarly literature, several works have been tackling design of so-

called X-tolerant compactors. In principle, these devices do not eliminate Xs in their entirety.

Instead, they are capable of preserving erroneous results provided the amount of Xs reaching

a compactor does not exceed a prespecified upper limit. For example, a convolutional com-

pactor [143], [151] employs a finite memory to buffer data from the scan chains for a few

shift cycles. The corresponding design principles, based on the Steiner systems [38], signifi-

cantly reduce the probability of error cancellation. As shown in Fig 2.4, every scan chain is

connected to three different memory elements. Consequently, an error cannot be masked by

a single X, and any pair or odd number of errors cannot mask each other. Depending on the

convolutional compactor's configuration (and its hardware footprint), more than one X can

be tolerated at a time, while the compaction ratios remain relatively high.

 Another solution [115] combines a weighted pseudorandom pattern generator (PRPG)

with an X-tolerant MISR. Here, the signature analyzers are designed with the help of sto-

chastic coding. This method results in high probability of X-masking and is the X-tolerance

basis. Yet another MISR-based scheme uses a programmable XOR network [178]. The con-

trols provided to this circuitry are obtained by solving linear equations for a set of MISR bits

that, when XORed together, produce an X-cancelling combination. An extra phase shifter

placed between scan chains and the MISR reduces a shift correlation of test response values

and decreases the possibility of blocking faulty effects as a side effect of X-cancelling. An-

other group of solutions [130], [166] is based on error-correcting codes, such as Hamming

Figure 2.4 Convolutional compactor [151] with sixteen inputs and two outputs.

.2 INTERNATIONAL TEST CONFERENCE

23

and BCH codes, where probability of error detection in the presence of several Xs could be

increased by adjusting a check word width.

 While X-tolerant compactors can handle up to several unknown values in a single cy-

cle, they are not designed to withstand a sudden burst of Xs. To resolve this problem and

reduce the number of Xs getting into scan chains, one can identify potential X-sources and

block them by utilizing X-bounding logic (Fig 2.5). With an additional AND gate, non-scan

flip-flops, floating ports, or analog block outputs can be isolated during a test mode. How-

ever, not all X-sources can be treated this way. Furthermore, additional gating logic can neg-

atively impact both timing closure and silicon area. Consequently, the presence of X-states

in test responses is inevitable.

2.3 Selective masking of scan chains

As demonstrated in Chapter 2.1, time compactors require a protective mechanism to com-

pletely block (mask) X states before they reach the compactors’ memory elements. Typically,

this is accomplished by virtue of schemes monitoring scan chains selectively. Usually, they

employ a dedicated circuitry to mask selected unload values so that Xs do not reach a com-

pactor. As a result, the X-masking schemes capable of observing scan chains in a per pattern

or/and per cycle manner have been extensively researched for years. The proposed solutions

offer tradeoffs between a silicon area overhead, a potential fault coverage drop caused by

inadvertent masking of faulty effects, and the amount of additional test data used to control

X-masking circuitry. In OPMISR [10], [11], selected unload values can be masked, prevent-

ing X states from reaching a MISR. As shown in Fig. 2.6a, external signals are used to control

mask logic, a MISR state, and the direction of SI/O pins. The EDT technology [146] uses a

selective compactor [172] to mask a given number of scan chains by deploying a register file

encoding targeted scan chains. In addition to the masking logic, it uses an enhanced ATPG

algorithm capable of handling Xs. In [128], scan chains are gated in a per-cycle fashion

thanks to the LFSR reseeding. To minimize the linear dependencies between the masking

signals, and to reduce the probability of blocking X-free responses, mask data can be pro-

cessed through phase shifters and AND gates, as presented in [184]. Fig. 2.6b shows that the

Figure 2.5 X-bounding logic.

.2 INTERNATIONAL TEST CONFERENCE

24

mask bits must be set to 1 to replace Xs with known values. Furthermore, the X-compact is

used to mask X’s that could not be blocked during the previous stage.

The X-Block of [189] uses an LFSR to generate controls for the masking logic. Simi-

larly to the solution of [128], this approach also employs LFSR reseeding to compress mask-

ing data. Furthermore, it targets single-detected faults, thus reducing the amount of control

data. A hybrid selector presented in [194] combines a PRPG-based method to block Xs every

shift cycle with a so-called "Xchains Register" to mask scan chains affected by Xs for several

test patterns. It also works with a masking-aware test generation algorithm to target faults

that can be observed outside of blocked groups of scan chains. An X-masking logic of [173]

is aimed at preserving the coverage of unmodeled defects, and its controls can be provided

by any LBIST or test compression scheme. Another test-dependent masking circuitry is pro-

posed in [137], where unknown values are replaced with a known constant by dedicated

comparison blocks. A channel masking scheme shown in [35] offers three different channel

masking states that either disable all scan chains or select those belonging to one of two

groups at the price of possible over-masking. The X-Press scheme (used by EDT) [149],

Figure 2.7 X-Press [149] test response compactor.

Figure 2.6 (a) OPMISR test architecture with bidirectional scan pins [11];

(b) LFSR-based test compactor with mask bits generated through phase shifter and AND gates [184].

.2 INTERNATIONAL TEST CONFERENCE

25

[150] combines two levels of masking. As shown in Fig 2.7, an X can be blocked in a twofold

manner: either by a per-chain masking circuitry or with the overdrive register. Such an ap-

proach leads to a high probability of linear independence between mask bits – if X cannot be

blocked by the first stage, it might be canceled within the second stage. The controls for both

modules are obtained with a scan chain ranking algorithm based on the locations of observa-

tion points and X values.

A work presented in [42] can block all X states with a per-cycle resolution and is ca-

pable of reusing control data for various test responses. In general, it is based on a finding

that many test responses in scan-based designs feature identical or similar X profiles, with

Xs grouped in adjacent areas of scan chains. A comprehensive scheme working with PRPG,

MISR, and X-masking logic that can be deployed in both scan-based test compression and

LBIST (including hybrid solutions) has been presented in a sequence of works [192]–[197].

Recently, a hybrid space compactor has been introduced in [105] that combines a pseudoran-

dom control of a stochastic test response compaction of [115] with a deterministic compac-

tion phase to cope with high X fill rates varying with frequencies of faster-than-at-speed tests

[77] used to detect small delay faults. Other techniques to block X states are disclosed in

patents; examples may include [25], [126], and [148].

Finally, X-masking schemes for hybrid applications of test compression and LBIST

must respond to yet another number of challenges and needs of in-field and in-system test. A

major source of complexity in this scenario comes from the requirement to control scan se-

lection with a low amount of data while handling a wide range of static and dynamic X-state

profiles. Many unknown states, even if clustered, are typically restrained from capturing by,

for example, DFT logic inserted during design implementation. However, the last-minute

timing violations can show up anywhere in a design, and the resultant Xs are difficult to block

at this very late stage of a development cycle.

2.4 Deterministic in-system test and X-masking

Another challenge for X-masking schemes is related to the foreseen importance of the DIST,

where deterministic test patterns are combined with in-system test compaction. With LBIST's

working only with basic fault models and reaching only around 90% fault coverage, DIST is

expected to gain adoption over the coming years. For example, safety-critical devices, com-

pliant with regulations such as the functional safety standard ISO 26262 must thoroughly test

themselves during system operations, and should a defect occur, they must put the entire

system in a safe state to avoid a system failure. Depending on the safety goal, desired fault

coverage may reach over 99%, which may not be achievable by a regular LBIST.

It appears that deterministic-quality test patterns are also needed to handle SDC failures

that have recently attracted a lot of interest [47], [54], [80], [165]. Their main symptoms are

typically subtle, erroneous computations. When such a failure is not detected, it can quickly

.2 INTERNATIONAL TEST CONFERENCE

26

spread across several services, leaving no trace or information in system logs about the de-

fect's origin. SDC failures are usually caused by small-delay faults that can be only targeted

by timing-aware patterns. Those test patterns must be applied periodically at various stages

of a device's life span. That creates new test problems, especially when considering defects

manifesting in corner cases or after post-deployment aging. Clearly, a deterministic test is

the only known method to guarantee the detection of these types of defects. To be used in-

system, the deterministic test should also enable schemes based on the input-streaming-only

approach that reduces the volume of test data by employing advanced test compression tech-

niques [83], [96], and replacing all explicit test responses with a MISR-produced signature.

The reduction of test data attributed to a MISR-based compaction is meaningful even

within a single circuit. The benefits are even more appreciable when a state-of-the-art X-

masking scheme is applied in System-on-Chip (SoC) designs comprising hundreds of cores

(often forming 3D stacks). In addition, SoCs may save a substantial number of resources by

giving up on output channels that can be reused to strengthen the input test interface. It is a

vital commodity when testing SoC designs through, for example, an SSN [40], i.e., a bus-

based scan data distribution architecture that enables high-speed test data delivery and facil-

itates testing of many cores with a constant cost (see also Fig. 2.8, where tests are delivered

as packetized scan data on the SSN bus, and streamed through the Streaming Scan Host

nodes).

2.5 Novel X-masking solutions

As shown in the previous chapters, X-masking hardware is an essential part of many scan

selection schemes. It is, therefore, mandatory to reduce its area, especially in contemporary

designs with hundreds or thousands of scan chains that require programmable and very flex-

ible selection algorithms. To respond to these concerns, the next chapter presents a new X-

Figure 2.8 Deterministic in-system test setup applied to a 6-core SoC design using SSN [40].

.2 INTERNATIONAL TEST CONFERENCE

27

tolerant tunable compactor termed maXpress. Its modular scan selection logic allows mask-

ing X states within controllable groups of scan chains and scan shift cycles. The proposed

technique helps to tolerate X's discovered very late during the design cycle so that LBIST

can still provide a desired TC. Furthermore, to facilitate an in-system test whose TC is achiev-

able in a much shorter time than that of a conventional LBIST, the presented scheme can

work with hybrid test points that capture fault effects every shift cycle into flip-flops forming

separate observation scan chains [118]. Finally, Chapter 3 presents methods to find the best

control parameter settings for the proposed scan selection architecture.

A solution presented in Chapter 3 is intended for low-cost logic BIST applications that

typically achieve 90% coverage of simple fault models with a minimal amount of test data to

be stored. However, efficient as it is in LBIST, maXpress requires additional and new fea-

tures to work with DIST. This is because of a gap between LBIST goals and DIST require-

ments manifested in:

• the ability to target advanced fault models and attain a maximal possible TC (above

99% of testable faults),

• the aggressive test time window paired with the ability to run periodic and frequent

tests in real time (especially in the automotive area),

• reasonable test storage – it might be of concern, if there is a need to accommodate not

only stuck-at faults, but also transition, delay, or cell-aware failures,

• an option to update tests based on defects seen in field returns or in new technology

nodes,

• the ability to test selected (idle) cores while others are in a functional mode or to

perform fault diagnosis with core-level resolution (it applies to multiple-core designs

using IJTAG and SSN protocols – see Fig. 2.8).

The X-masking scheme capable of working within the framework of DIST is presented in

Chapter 4. While building on a highly scalable, layout-friendly, and test-set independent scan

chain selection approach, the new scheme allows one to selectively block all X states. Work-

ing synergistically with methods to automate settings of the scheme controls, it offers com-

plete observability of errors based on EDT-encoded test data.

.2 INTERNATIONAL TEST CONFERENCE

28

.2 INTERNATIONAL TEST CONFERENCE

29

3. X-tolerant compactor for observation scan

This chapter presents maXpress - an X-tolerant, modular, and programmable compactor

[101], [102], deploying a new scan chain selection mechanism capable of completely mask-

ing X states, as required by many in-system or one-directional streaming test applications.

The proposed scheme also supports separate observation scan chains that, in contrast to con-

ventional scan, capture faulty effects every shift cycle while their content is gradually shifted

into a compactor that also receives values from regular chains. In addition to a new layout-

friendly architecture, algorithms to automate control settings based on scan chain selection

rules deployed to suppress X states are presented.

3.1 Compactor’s circuitry

The proposed scheme is a part of an on-chip test environment with multiple scan chains. It is

inserted outside the design core and consists of a few blocks, as shown in Fig. 3.1. A test

response compactor consists of an MISR, an XOR tree, and a highly modular X-masking

logic (the gray area in the figure) that outputs scan chain gating signals so that X states orig-

inating at various scan cells do not reach the MISR while observability of the remaining scan

cells is preserved to such an extent that the test quality remains uncompromised.

Figure 3.1 maXpress overall architecture.

.2 INTERNATIONAL TEST CONFERENCE

30

The actual masking of the regular scan chains is carried out by scan gaters - devices

located between the internal scan chain outputs and an MISR, often driven by an XOR tree.

Essentially, these devices partition scan chains into disjoint groups of almost equal size, and,

if needed, block test results leaving chains within each group before they could enter a test

response compaction circuitry.

The scan gater (Fig. 3.2) is comprised of an n-bit gating logic, where n is the number

of scan chains served by a single scan gater. Clearly, if s is the total number of scan chains,

then the total number of scan groups (scan gaters) is given by g = s/n. The actual gating logic

is composed of n two-input AND gates, and n multiplexers. All scan gaters are driven by a

common enable line E which works with those scan gaters that have not been selected

through the configuration register (CR, see below). Setting a configuration flip-flop to 0 dis-

ables the corresponding scan gater, and the actual masking value depends exclusively on

signal E. If E = 1, then the scan gater remains transparent and channels test responses directly

to the compactor, thus making the associated scan chains fully observable. Having E set to

0, however, blocks all scan chains linked with the disabled scan gaters. Two auxiliary flops

supply signal E, as shown in Fig. 3.1. One of them acts as a shadow register that saves the

current value of E while reloading its new content in parallel with a shift-in of the next data.

The scan gaters are driven by a g-bit CR, a red-colored item in Fig. 3.1. The purpose

of this device is to enable any desired combination of scan gaters. Since every flip-flop of

CR serves a single designated scan gater, it eliminates additional address registers and the

corresponding converters. Furthermore, there is no need to use multiple-input gates within

scan gaters, and there is no need to broadcast scan gaters address data. The CR is daisy-

Figure 3.2 Scan gater serving n = 8 scan chains.

.2 INTERNATIONAL TEST CONFERENCE

31

chained with the remaining on-chip test instruments discussed in the following. The CR con-

tent is typically shared by several test patterns in a row. As a result, it is reloaded only occa-

sionally and thus is sequestered behind a configuration insertion bit (CIB), as shown in Fig.

3.3 in the spirit of the IEEE 1687 (IJTAG) standard whose segment insertion bits (SIBs)

allow access to embedded instruments of reconfigurable scan chains [206]. CIB allows on-

demand access to the CR and interfaces the same register with a single channel used to seed

PRPG, and to deliver other test-related data. If the CIB flip-flop is set to 0, CIB is set up to

bypass the CR and allows only registers B (see Chapter 3.2) and E to be updated. Indeed, the

CR is unaffected in this mode by any data transfer due to clock gating. Once asserted, the

CIB flip-flop routes test data to the CR, at the same time enabling a clock signal to facilitate

a shift functionality of the CR. The shift path is established from the input channel, through

the register B, into the CR, and then the register E. All changes in the CIB flip-flop status are

done through the CIB enable input that allows to capture the first control bit of the input

sequence. This bit indicates whether the following sequence is to update the X-masking logic

configuration, or it is just a new content of other registers.

Enabled scan gaters (their configuration bits are set to 1) receive the actual masking

values from a selector through a bus S, as shown in Figs. 3.1 and 3.2 (here S accommodates

8 bits). As can be seen, each scan chain can be individually blocked provided the correspond-

ing selector output is 0. The selector outputs are shared by all scan gaters, so having several

gaters enabled results in blocking the corresponding scan chains in all involved groups. It is

worth noting that the scan gaters and the selector lend themselves very well to scenarios

demanding very aggressive masking of scan chains for the purpose of observing very few or

Figure 3.3 Configuration insertion bit.

.2 INTERNATIONAL TEST CONFERENCE

32

just a single scan chain. Fig. 3.4 shows a simple summary of the maXpress control settings

for a single scan gater. We begin with a CR bit CR. If set to 0, then all scan chains of the

associated group are either masked (E = 0) or connected to a compactor (E = 1). When CR =

1, the masking status is decided by the selector such that a given scan chain k is blocked

provided Sk = 0, or observed otherwise (Sk = 1).

To reduce pseudorandom PCs, maXpress may also work with observation scan chains

that capture faulty effects, provided by hybrid observation test points, every shift cycle [118],

[123]. Essentially, the observation chains accumulate test responses using XOR gates placed

in the front of their scan cells (Fig. 3.1) in a manner similar to that of convolutional com-

pactors. It allows one to encapsulate shift and capture functionality within a single clock

cycle. The content of observation chains is continuously shifted into the compactor shared

with the remaining chains. The observation scan cells do not drive any gates of the original

design to prevent sequential dependencies between subsequent patterns occurring in these

chains and to avoid over-testing. Selection of test points to elevate TC of pseudorandom

patterns follows the procedure presented in [118].

Because of their activity, it is fair to expect that the observation chains may capture a

significant fraction of unknown states. Consequently, these scan chains should not be

grouped, and have to be masked on an individual basis. A scan gater for n observation chains

boils down to a set of n two-input AND gates. It receives the masking signals from a selector

similar to that of the regular scan chains. However, per cycle selection data driving the se-

lector are obtained in a different fashion due to much more aggressive X-masking require-

ments. It is worth noting that the presented approach advocates orthogonal handling of regu-

lar and observation chains. It makes it much easier to adapt the proposed solution in designs

with no observation scan chains.

Figure 3.4 maXpress controls for a single scan gater.

.2 INTERNATIONAL TEST CONFERENCE

33

We will now discuss the design of a selector which contains two n-bit registers B-off

and B-on and combinational logic to control and mask scan chains within enabled groups.

Recall that all scan gaters receive the same controls. The selector of Fig. 3.5 assumes that

each group consists of eight scan chains, similarly as in Fig. 3.2. There are two groups of the

selector inputs. The inputs denoted as S gate individually the corresponding scan chains in a

per-cycle mode unless the content of registers B-off and B-on decides otherwise. Indeed,

each scan chain is assigned a pair of control bits that determine its masking status, as shown

in Table 3.1. In response to suitable 0-signals on bits bk of both registers, the selector output

k is set to 0, and thus scan chain k is blocked for the period of a complete scan unload. As-

serting bit bk of register B-on makes scan chain k fully observable. Finally, setting bit bk of

B-on to 0 and bit bk of B-off to 1 allows masking of scan chain k as required by the current

status of input Sk (this is illustrated in Fig. 3.4 by the scan chain controlled by both 0 s and 1

s). Note that B-off and B-on registers are updated via blockage inputs driven by a shadow

register B, once per pattern or a group of patterns.

It appears that the use of per-cycle controls is either relatively rare or involves a few

scan chains only. Consequently, this type of data can be deterministically encoded and pro-

vided to the selector by a device referred to as a static-reseeding decompressor, or SR-de-

compressor for brevity. Its architecture is shown in Fig. 3.6a. Seeds of this small

Figure 3.5 Selector block.

Table 3.1 The selector settings.

B-on B-off

0 0 scan blocked

1 x scan observed

0 1 Sk per cycle

.2 INTERNATIONAL TEST CONFERENCE

34

decompressor are delivered through the same single input that is used to initialize PRPG.

Besides a ring generator and a phase shifter driving the selector inputs, a hold register is

placed between those two devices. It helps in sustaining the selector inputs for more than a

single clock cycle, while allowing the generator to change its internal state to ensure encoding

of the next group of selection bits. Hence, one can repeat and pass on to the selector a given

SR-decompressor state for a number of consecutive scan shift cycles. As is typical of isomet-

ric test compression [96], the SR-decompressor houses a circular template register. A 1-sig-

nal on its output allows the hold register to have the current content of the ring generator

entered as its next state. Because of its size, the very same template is typically used multiple

times within the duration of the same test pattern. Note that the ring generator and the tem-

plate register feature shadow registers that are daisy-chained with the remaining scheme test

instruments.

The SR-decompressor is capable of decoding selection patterns with additional reload

points occurring as 1s in the template register to indicate when to update the hold register. It

is worth noting that within this framework a selection solver assumes that a single equation

is associated with all selection bits corresponding to the same output and covered by a given

hold period. As a result, only bits of the period’s first cycle become the subject of encoding

provided there is at least one such specified selection bit within that period. Experimental

results indicate that up to 50% of specified bits (on average) are typically handled by the

constant values of the hold periods rather than direct encoding, thus ensuring high encoding

efficiency.

Figure 3.6 (a) SR-decompressor with eight outputs and (b) CF-decompressor.

.2 INTERNATIONAL TEST CONFERENCE

35

A selector working with the observation scan chains has the same structure as that of

the selector shown in Fig. 3.5. It uses m-bit registers B-off and B-on, where m is the number

of the observation chains. Similarly, the per-cycle selection data available on its inputs Sk are

deterministically encoded and provided to the selector by a test data decompressor. However,

in contrast to the regular chains, a continuous flow compression (and hence a CF-decompres-

sor) is used to facilitate encoding of a much larger number of masking signals. Compressed

data for the CF-decompressor (stored on chip) are delivered through a separate input (or in-

puts) along with data feeding the update input of the hold register, as shown in Fig. 3.6b.

3.2 Selection of controls

The maXpress performance depends on a method employed to select scan gaters through the

CR, and then individual scan chains by means of the selector and signal E. Having fault

propagation sites and cells that capture X states (X-cells) associated with test responses, the

following part now demonstrates how to automate selection of the appropriate maXpress

controls. As the presented scheme is to work with LBIST, it has to mask all X’s while pre-

serving as many faulty sites as possible.

To reduce test data volume, several successive test responses are expected to share the

same control settings. Its selection begins, therefore, by superposing a predefined number of

test responses, further referred to as a segment. The output patterns of Fig. 3.7 illustrate this

process by using three groups of 8-bit long scan chains, each group comprising four chains.

Red-filled circles indicate X-cells, whereas scan cells to which fault f propagates are labeled

with number f. When superposing test responses, the following rules are observed. First of

all, the status of X-cells is superimposed on the same cells in the remaining test responses of

the same segment even if these cells are fault propagation sites. This is a collateral damage

case, and it applies to faults 1, 2, and 3 in responses 1 and 2 of Fig. 3.7 (indicated by three

Figure 3.7 Superposition of test responses.

.2 INTERNATIONAL TEST CONFERENCE

36

red-circled cells). A fault that propagates to exactly the same cell a few times (for a given

segment) is counted only once, as shown by grayed out scan cells that capture faults 6, 7, 8,

and 9. However, if a fault propagates to different locations, all such scan cells yield a propa-

gation site count c of that fault. The resultant superposition of three test responses of Fig. 3.7

is shown on the right-hand side of the same figure.

The next step sets the CR. In terms of TC, this process is dependent on the value of

signal E. Recall that setting E to 1 enables all scan chains that feed the compactor through

disabled scan gaters (Fig. 3.4). Consequently, all scan chain groups that host X-cells must be

enabled by having their CR flip-flops set to 1. It allows the actual X-masking by means of

the selector module. CR flip-flops of the remaining groups are reset, as shown in Fig. 3.8

where, for the sake of more comprehensive illustration, there are two extra X-free scan chain

groups appended to the result of Fig. 3.7. Since the same selector-produced data drive all

enabled scan gaters, the corresponding groups are merged once more. The X-cells are again

superimposed on the corresponding cells hosted by other scan chains.

The first row of the masking pattern (the right-hand side of Fig. 3.8) contains six X-

cells and a single site that captures fault 7. As fault 7 is also observed by two other sites in

the last row, the first row can be blocked by setting bits b0 of the B-off and B-on registers to

0, thus effectively gating the first chains of groups 0, 1, and 2. Furthermore, as there are no

X-cells in the last row, setting b3 of B-on to 1 lets the fourth chains in groups 0, 1, and 2 to

Figure 3.8 Finding maXpress controls for E = 1.

.2 INTERNATIONAL TEST CONFERENCE

37

be observed in their entirety. Meanwhile, the two internal rows feature a mixture of X-cells

and fault propagation sites. These rows are handled by the selector (recall that bits b1 and b2

of the B-off and B-on registers must be set to 1 and 0, respectively) in such a way that X-

cells are masked, whereas faults 5 and 6 are let to go. There is no need to encode separately

selection bits for faults 8 and 9, as these faults are observed in the last row. Savings like this

one increase the likelihood of successful encoding of other selection bits.

As can be easily verified, the above assignments let all faults but four enter the com-

pactor. However, we also need to consider another scenario where E is set to 0. Within this

control, all scan chains governed by disabled scan gaters are blocked. Scan chains with X-

cells can be, therefore, masked either by means of the selector or by disabling certain scan

gaters, while having E set to 0. This dual functionality may allow us to observe more failing

scan cells than those of the approach presented previously (with E set to 1). For that, however,

one would need to examine 2g different setups of the CR, where g is the number of scan

gaters. And only after that one can decide which selection of enabled/disabled scan gaters

delivers the best performance of maXpress. For the running example, consider the CR shown

in Fig. 3.9 that disables scan gaters 0 and 2. Hence, all scan chains of groups 0 and 2 are

blocked because of E = 0. The remaining groups are processed by applying the previously

mentioned rules. As a result, faults 1–6 and 9 are observed. Note that in this case, there is no

need to employ individual selection bits at all.

Figure 3.9 Finding maXpress controls for E = 0.

.2 INTERNATIONAL TEST CONFERENCE

38

3.3 Weights assignment

Given hundreds of thousands of scan cells and millions of faults, a slow processing of long

fault lists associated with scan cells (or scan cell lists associated with faults) is needed to

determine the actual TC for a given content of the CR. To alleviate this problem and to avoid

an exponential growth of the CR states, this register is set up through a greedy approach

resembling a hill climbing paradigm. Moreover, lists of faults for propagation sites are re-

placed with the corresponding fault weights, and then weights of scan cells.

A given fault’s weight w is the inverse of its propagation site count c, that is w = 1/c.

This weight is linked with all different propagation sites of the fault. Within the superposition

of test patterns, a scan cell receives a weight obtained by summing up all individual weights

of faults propagating to this particular site. For example, fault 4 (Fig. 3.7) propagates to two

different scan cells, so its weight equals 0.5. Similarly, fault 7, as reaching three different

scan cells, gets 0.33. The result of superposing of the three responses of Fig. 3.7 in terms of

weights is shown in Fig. 3.10. The last but one cell in the fourth scan chain gets the value of

1 = 0.5 + 0.5 as a sum of weights associated with faults 8 and 9. X-cells get the 0-weight.

Groups of weighted scan cells can be superposed in such a way that X-cells force 0-

weights on the corresponding cells in other groups, whereas weights of the remaining sites

are obtained by summing up weights of the corresponding cells. Finally, the resultant group

weight is equal to the sum of individual weights over all cells of that group. For example, the

weights of the groups of Fig. 3.10 are equal to 1.3, 5.5, and 2.1, while the weight of a super-

posed group is going to be (as can be easily verified) 4.9. This metric is used as a primary

figure of merit to assess the performance of the scheme in the selection settings procedure

presented in the following passage.

As soon as all cell weights are determined, finding the best setup of the CR proceeds

as follows. Let H = [hg−1 ... h1 h0] be a g-bit binary vector representing the CR, i.e., hk = 1, if

Figure 3.10 Scan cell weights.

.2 INTERNATIONAL TEST CONFERENCE

39

kth stage of the register is set to 1. Starting with its randomly selected initial state, the first

step is to compute a weight of the resultant group obtained by superposing groups associated

with the enabled scan gaters, i.e., those for which hk = 1. Subsequently, the following process

iterates. The current state of H is inverted, one bit at a time, to find the resultant weight of

groups being superposed. Note that throughout this step, either an additional scan gater be-

comes enabled or a so-far-active scan gater gets disabled. Having determined the weights for

all g inversions, we pick, in a greedy fashion, vector H with a bit whose flipping yields a

weight higher than do any of the other bits. Then the procedure is repeated for the current

state of H except the bit whose inversion was the most effective in the previous step. Alt-

hough one may need to compute weights up to g2 times, computations for all inversions are

independent, and therefore can be easily run in parallel. The selection process continues until

the method fails to produce a weight higher than the best value obtained so far and represent-

ing the current state of H. Typically, the above selection process is repeated a number of

times, as a final result may depend on the initial (random) state of H. Given the ultimate

solution, the obtained TC is used to compare this scenario against the approach with E = 1.

In summary, it is immediately clear that every segment of test responses is deployed to

arrive with a separate set of maXpress control settings. Fig. 3.11 sketches out the maXpress

controls selection flow. First, all response patterns a segment is comprised of are superposed.

For E = 1, it suffices to determine all groups that feature X-cells, set the CR flip-flops of

these groups to 1, disable the remaining scan gaters, and merge all enabled groups into a

single one. That allows computation of TC, i.e., the number of faults whose propagation sites

have not been canceled out by X values. For E = 0, the greedy optimization procedure is used

to determine the best setup of the CR with respect to TC. Having found the coverage numbers

for both scenarios, we pick the one that yields better result and proceeds with finalizing the

selector setup by assigning the appropriate values to the B-off and B-on registers, as well as

by choosing the individual selection bits, whenever it is necessary. If the isometric compres-

sion is unable to encode all selection bits because of constraints imposed by available seed

variables and the size of the test template, one should reduce the number of selection bits by

gating the least crucial scan chains through setting the corresponding bits of registers B-off

and B-on to 0.

Interestingly, a large body of experimental evidence shows that a rate of setting E to 1

versus having E de-asserted is clearly a circuit-dependent factor, and it is primarily deter-

mined by scan architecture, the number of the scan gaters, and the last but not least—the

distribution of X states across test responses. Back to Fig. 3.11, if there are still test responses,

the method goes back to form a new segment of patterns and to create their superposition.

Otherwise, the procedure terminates.

.2 INTERNATIONAL TEST CONFERENCE

40

3.4 Masking observation scan chains

Whereas regular scan chains may capture X states only once per pattern, the observation scan

chains can do that repeatedly in a per-cycle mode. As a result, a single X value may invalidate

several faulty effects on its way to the serial output of a scan chain. This is illustrated in Fig.

3.12 for a 4-bit observation chain.

The left-hand part of the figure lists variables representing a circuit response that enters

the observation scan either during regular capture cycle Ck (single-index variables ak, bk, ...),

where k = 0, 1, 2, ..., or during scan shift cycle Skj (double-index variables akj, bkj, ...), where

j = 0, 1, 2, 3. The variables are gradually XOR-ed, as indicated by the diagonals, to yield the

final responses shown on the right-hand side of Fig. 3.12. Each variable represents either an

X state (red circle) or a fault ID (blue circle). It is ignored if nothing has been injected into

the observation scan at a particular location and time. Clearly, XOR-ing an X with another

combination of variables yields X. Adding several fault IDs produces a list of faults being

observed at the corresponding stage of the observation scan unless two fault IDs are identi-

cal—they cancel each other as a result of aliasing. Successive responses, corresponding to a

given segment of test patterns, are then superposed, as shown in the figure, using the same

rules as stated above (except of having the same ID fault several times; such a fault is counted

only once as there is no error aliasing in the superposition process).

Figure 3.11 Control setting selection flow.

.2 INTERNATIONAL TEST CONFERENCE

41

Now the superposed test responses become the subject of the scan chain selection pro-

cess that partially resembles the approach presented earlier for the regular scan chains. First,

we identify X-free observation chains and exclude them from further analysis altogether with

faults propagating to these chains. They will be unconditionally observed by asserting the

respective bits of the register B-on so as to reduce the encoding burden on the CF-decom-

pressor. For the remaining faults, using their propagation site counts c, every cell that cap-

tures a given fault is assigned a weight w = 1/c, as shown in Chapter 3.3 (a fault propagating

multiple times to the same cell is counted once within a given segment of patterns). Recall

that X-cells receive the value of 0. Moreover, cells that capture neither X nor an error are

assigned a small, nonzero weight. The actual encoding phase begins by sorting a list L of the

nonzero observation scan cells such that they are in order by largest weights. As with the

regular scan chains, all per-cycle gating signals are represented by linear functions of mask

variables injected into the CF-decompressor. Initially, the set of gating equations is com-

prised of expressions corresponding to all X-cells. Clearly, the right-hand sides of these equa-

tions are assigned the logic value of 0. The main loop of the encoding procedure expands the

set of equations by adding an expression corresponding to the first element on the list L; then,

it tries to solve the current set of equations and removes the first item from the list, continuing

until the list is empty. If, at any stage, the equations are not solvable, then the newly added

equation is deleted and the corresponding gating signal is discarded. Note that the right-hand

sides of all equations taken from the list L are always assigned the logic value of 1. It is

crucial to observe that equations representing both Xs and errors are not necessarily

Figure 3.12 Superposition of signals in a 4-bit observation scan chain.

.2 INTERNATIONAL TEST CONFERENCE

42

associated with their actual propagation sites. This is because of how the CF-decompressor

hold register is updated.

The encoding procedure partitions a superposed test response into several blocks com-

prising certain number of consecutive clock cycles in such a way that there are no observation

scan chains that capture both Xs and errors inside the blocks. It allows one to repeat the same

gating signal many times in succession by using the hold register storing a state that the ring

generator entered at the beginning of a block. Hence, one can cost-effectively encode identi-

cal data such as clustered Xs or multiple errors. The block size is determined by the ability

to encode data within its boundaries. The encoding process begins with a block and the cor-

responding state of a ring generator which should be applied first, and it gradually moves

toward the end of a test response. As long as the gating signals can be encoded, the algorithm

works by repeatedly increasing the size of the block, and by including successive equations.

At some point, a solution may not exist anymore. This particular time frame is then assigned

a new block (a reload point), and the procedure continues. It is worth noting that observation

scan chains that capture exclusively X states are unconditionally blocked, as shown in Table

3.1. The same rule applies to those observation chains that capture errors, but none of them

have been eventually added to the set of gating equations. Finally, observation cells with

small weights can also be taken into account, the encoding capacity permitting. It is possible

to include unmodeled faults that may propagate to the observation scan chains, as well.

3.5 Experimental results

A. Regular scan chains

This chapter reports several experiments with eight large industrial designs having all com-

ponents of the solution on a chip. In this section, the benchmark designs do not use the ob-

servation scan technology. The experimental results addressing the presence of the observa-

tion chains are presented in Section 3.5B. Table 3.2 lists major characteristics of test cases

used in the experiments: the number of gates, the number of scan cells, and the scan archi-

tecture. Moreover, Table 3.2 contains the following metrics:

1) the number of control and observation points used in each design, and the number of

stuck-at faults;

2) the error-fill rate, i.e., the fraction of scan cells that capture faulty effects, averaged over

all test patterns;

3) the total number of scan cells (X-cells) that capture, at least once, X states across all test

patterns;

4) the total number of scan chains (X-chains) that capture, at least once, X states across all

test patterns;

.2 INTERNATIONAL TEST CONFERENCE

43

5) the reference TC of 10 K pseudorandom patterns, recorded at the scan cell outputs, i.e.,

assuming that there is no test response compaction;

6) the reference TC of 10 K pseudorandom patterns, recorded at the output of a compactor

masking individually X-chains for a duration of their entire unload;

7) the pseudorandom PC necessary to comply with the functional safety standard ISO 26262

and its Automotive Safety Integrity Level D (ASIL D) ratings that call for the 90% TC

target [79] (again, assuming no test response compaction).

It is worth noting that errors may occur in clusters; local error-fill rates can be therefore

higher than the average values. In particular, it applies to the first groups of patterns that have

much higher error fill rates than the remaining responses.

Table 3.3 summarizes the results of the experiments with the proposed scan selection

logic enabled. For each circuit, the following information is provided:

1) the TC of 10 K pseudorandom test patterns;

2) the PC of tests needed to regain the 90% TC target;

3) the total number of control bits (CB) per segment necessary to operate maXpress; CB

multiplied by the number of segments gives the total number of control bits;

4) the second (real) metric ρ in the column CB is the number of segments that maXpress

can deploy, if the total number of maXpress-used control bits was the same as that of a

reference scheme masking individually s scan chains for a duration of their unload, i.e.,

ρ = s/CB;

5) average observability (OB+) of scan cells which capture neither X states nor errors; this

figure of merit can be used to assess fortuitous TC, i.e., the odds that an unmodeled fault

can be detected if it propagates to scan cells which are not observed on purpose.

Table 3.2 Circuit characteristics.

 Gates
Scan
cells

Scan
Test points

Stuck-at faults
Error-fill

rate
X-cells X-chains

Test cov-
erage

Test cov-

erage

w/Xs

Pattern

count

ISO CP OP

D1 1.30M 76.9K 1,200  65 1,029 2,362 3,925,255 4.94% 82 60 91.00% 89.41% 5,120

D2 1.34M 78.1K 1,200  66 976 2,479 3,876,452 5.15% 83 48 91.17% 89.57% 4,608

D3 1.12M 86.9K 528  169 952 1,818 2,425,160 2.34% 96 11 91.80% 89.77% 4,928

D4 1.75M 119.3K 729  175 1,229 1,183 3,176,430 2.54% 126 51 91.79% 87.43% 3,456

D5 2.57M 194.2K 817  242 1,365 2,608 4,831,590 2.14% 102 16 92.71% 91.00% 2,112

D6 6.66M 294.8K 1,236  242 2,329 3,603 8,967,807 2.51% 105 49 91.66% 89.45% 2,624

D7 3.73M 207.4K 900  237 2,771 3,731 8,480,378 5.77% 107 54 91.40% 89.61% 5,184

D8 14.2M 899K 3,163  291 2,418 1,600 30,513,081 5.41% 317 63 90.83% 89.92% 6,848

.2 INTERNATIONAL TEST CONFERENCE

44

In all experiments but one, maXpress deploys a 32-bit SR-decompressor with a 32-bit

template. The presented results vary in the number of segments which implies different rates

of control reloads. It also determines the amount of test data represented by the number CB

of control bits. Recall that CB comprises the content of the following storage elements: the

g-bit CR, the registers B-off and B-on, the SR-decompressor seed and the test template, plus

bit E. Given the number s of scan chains, one needs to store a total of g + 2s/g + Seed +

Template + 1 bits per load. To minimize the number of flip-flops, one should find a value of

g for which the above formula assumes its minimum. As can be easily verified, the desired

number of groups is given by g = √2s. Consequently, the experiments are run for the number

of groups being equal to ⌈√2s ⌉. Because of its size, design D8 uses a 64-bit SR-decompressor

and doubles the number of groups.

Table 3.3 Experimental results – the group size ⌈√2s ⌉.

 The number of segments

 1 2 4 8 10 CB

 TC % 70.99 75.93 84.69 90.24 90.54 162

D1 PC 82,048 51,264 20,544 9,024 7,232 ρ = 7.4

 OB+ % 44.68 43.88 47.19 52.08 51.35

 TC % 73.76 77.66 83.45 90.51 90.77 162

D2 PC 92,224 46,144 23,104 8,320 7,232 ρ = 7.4

 OB+ % 51.16 51.50 46.90 57.54 60.86

 TC % 86.12 87.48 90.42 91.82 91.89 131

D3 PC 30,784 20,544 8,448 5,952 5,184 ρ = 4

 OB+ % 88.95 89.42 90.72 92.93 93.83

 TC % 69.51 74.46 86.90 90.58 91.00 141

D4 PC 92,288 61,568 18,368 8,448 6,912 ρ = 5.2

 OB+ % 62.83 62.28 67.22 65.99 72.91

 TC % 82.73 85.60 90.76 92.49 92.56 145

D5 PC 71,744 30,784 7,744 3,904 3,136 ρ = 5.6

 OB+ % 83.99 83.46 84.63 78.97 86.18

 TC % 64.24 71.01 83.39 90.98 91.19 165

D6 PC > 100K 66,752 20,544 7,744 6,208 ρ = 7.5

 OB+ % 56.38 56.76 58.22 66.93 68.70

 TC % 72.88 78.57 85.14 90.45 90.58 149

D7 PC 72,128 43,200 20,544 9,024 8,256 ρ = 6

 OB+ % 62.73 61.01 55.08 69.24 66.48

 TC % 71.93 75.02 84.92 89.37 90.00 225

D8 PC > 100K > 100K 35,200 12,224 10,240 ρ = 14.1

 OB+ % 64.72 63.88 66.11 72.19 72.89

.2 INTERNATIONAL TEST CONFERENCE

45

The number of X-cells in designs of Table 3.2 ranges from 82 (D1) up to 126 (D4).

Clearly, sites that capture X states as well as the likelihood of this occurring may shape the

final results. For example, X states populate quite a few scan chains in almost all designs in

a uniform manner across all test patterns, whereas there are only a few X-chains in design

D3 where the vast majority of scans has no unknown states at all. It appears that the ability

of the scheme to work with different sets of groups (scan gaters) allows maXpress to address

these challenges in an efficient way; see results collected in Table 3.3. In particular, with the

increasing number of X-chains, the new scheme appears to be much more robust and flexible

than conventional solutions (compare the coverage numbers in the last but one column of

Table 3.2 and the corresponding results in Table 3.3). Data reported in Table 3.3 indicate that

test coverage increases with the increasing number of segments, whereas the corresponding

number of test patterns systematically decreases. As a result, one can trade-off these factors

against a test data volume (the number CB of bits) necessary to control maXpress with the

varying number of segments. It is also worth noting that the over-masking has low impact on

the test quality, as shown in rows OB+. Indeed, the average observability of scan cells, in-

cluding those not directly protected by the X-masking scheme, remains very high and, in

particular, guarantees detection of several unmodeled faults.

Fig. 3.13 plots more detailed outcomes for design D4 while observing test coverage

and sweeping the number of applied test patterns. The experimental results consist of five

curves:

Figure 3.13 Test coverage for design D4.

.2 INTERNATIONAL TEST CONFERENCE

46

• the reference test coverage recorded at the outputs of scan cells (a blue curve),

• test coverage observed on the output of a compactor se-cured by maXpress while

partitioning test patterns into 4, 8, and 10 segments (a yellow, green, and red curve,

respecively) of equal size; recall that the number of segments corresponds directly to

the number of maXpress configurations,

• the reference test coverage seen at the output of a com-pactor disabling individually

scan chains for the entire period of their unload (a black curve; see also Table 3.2).

Clearly, significant parts of curves representing the reference coverage and that of 10

segments lie close to each other. Given a minor (or in some cases negligible) difference be-

tween these two cases, one may conclude that the new scheme offers very good observability

of scan errors even in the presence of a gross number of X states. In other words, maXpress

does not compromise test quality, and this is accomplished in a very cost-effective manner –

see the amount of test data needed to control the scheme for each test case. This trend occurs

systematically across all designs, including those not reported here.

For the sake of summary, Table 3.4 brings back the key results presented in this chapter.

Besides two reference test coverage metrics of Table 3.2, it lists three maXpress-produced

outcomes: (1) test coverage achievable for the same amount of control data (TCCD) as that

of the scheme masking individually s scan chains for a duration of unload (it needs s control

bits), (2) the best test coverage (BTC) achieved (typically for 10 segments), (3) a difference

 between BTC and the second reference. Clearly, maXpress outperforms the conventional

X-masking scheme and comes close to the upper bound results of an approach (column “no

compaction”) where test coverage is recorded without a compactor.

B. Observation scan chains

Essentially, experiments described in the following section are parallel to those of the previ-

ous section. This time, however, the same designs as before (industrial cores) deploy a certain

number of observation scan chains replacing a similar number of the regular chains. As

Table 3.4 Test coverage [%] summary.

 References maXpress

no

compaction
w/Xs TCCD BTC 

D1 91.00 89.41 90.24 90.54 1.13

D2 91.17 89.57 90.51 90.77 1.20

D3 91.80 89.77 90.42 91.89 2.12

D4 91.79 87.43 86.90 91.00 3.57

D5 92.71 91.00 90.76 92.56 1.56

D6 91.66 89.45 90.98 91.19 1.74

D7 91.40 89.61 85.14 90.58 0.97

D8 90.83 89.92 90.00 90.00 0.08

.2 INTERNATIONAL TEST CONFERENCE

47

adding the observation scan to an original core changes its test-related functionality, in par-

ticular locations and breakdown of test points (note that almost all observation points are now

feeding exclusively respective flip-flops of the observation chains), Table 3.5 lists all relevant

characteristics again. Note that the reference TC metrics reported in Table 3.5 have the same

definition as that of Table 3.2, including observation scan cells. The number of faults is in-

creased due to additional logic associated with every observation scan cell. The basic data of

test cores are already available in Table 3.2. Table 3.5 contains, though, additional charac-

teristics d/v of the CF-decompressor, where d is its size, and v gives the number of input

channels (it accounts for a separate input feeding the hold register). Furthermore, labels “X-

cells” and “X-chains” refer exclusively to the observation scan chains.

The results of experiments involving regular and observation scan chains are summa-

rized in Table 3.6. The entries regarding TC, the PC, and the average observability of scan

cells have the same definition as those of Table 3.3. Recall that the table reports TC of 10 K

pseudorandom test patterns and the number of tests needed to regain the 90% TC target. The

column CB of Table 3.6 provides the total number of test data used to operate selection logic

of maXpress per segment, including bits received by CF-decompressor. The latter number is

equal to the product of the number of input channels and the number of scan shift cycles plus

the size of the decompressor, i.e., variables uploaded during the decompressor initialization.

As can be seen, the TC of 10K pseudorandom test patterns is elevated in a very sys-

tematic fashion, whereas tests needed to regain the 90% TC target are shorter than those listed

in Table 3.3. Also, the average observability of scan cells, including those not targeted by the

X-masking scheme, remains very high. As a result, one may conclude that maXpress is ca-

pable of successfully working with the observation scan chains in such a way that their basic

functionality is preserved despite of X states, and, as might be expected, given a PC, the use

of observation scan increases the resultant TC, or alternatively it reduces PCs given a target

coverage.

Table 3.5 Circuit characteristics with observation scan.

Observation

scan

CF decom-

pressor

Test points
Stuck-at

faults

Error-fill

rate
X-cells X-chains

Test
Test

coverage

w/Xs

Pattern

count ISO
CP OP coverage

D1 34 x 63 32 / 3 1,278 2,113 3,943,552 54.92% 1194 32 93.82% 89.20% 512

D2 39 x 64 32 / 3 1,367 2,088 3,953,440 44.41% 1201 33 92.66% 89.27% 1024

D3 6 x 174 32 / 2 1,726 1,044 2,452,660 26.45% 534 4 93.80% 89.81% 1344

D4 3 x 162 32 / 2 1,823 589 3,190,925 42.19% 261 3 92.02% 86.28% 2688

D5 4 x 233 32 / 2 3,041 932 4,861,675 30.84% 302 4 94.31% 89.55% 640

D6 8 x 262 32 / 2 3,839 2,093 9,084,951 35.52% 615 6 91.84% 89.58% 2496

D7 7 x 238 32 / 2 4,838 1,664 8,634,398 35.15% 1403 7 95.52% 88.72% 706

D8 3 x 236 32 / 2 3,310 708 30,581,516 46.37% 644 3 92.60% 89.64% 3136

.2 INTERNATIONAL TEST CONFERENCE

48

Table 3.6 Observation scan results – the group size ⌈√2s ⌉.

 The number of segments

 1 2 4 8 10 CB

 TC % 74.15 77.14 87.04 92.95 93.13

455 D1 PC > 16K > 16K 15,360 6,400 5,120

 OB+ % 38.37 35.69 41.58 43.79 50.05

 TC % 78.60 82.42 87.51 92.31 92.56

470 D2 PC > 16K >16K 12,864 6,144 4,416

 OB+ % 52.04 52.90 54.08 52.56 58.87

 TC % 88.55 90.00 92.28 93.53 93.60

535 D3 PC 10,688 10,240 5,120 3,264 3,072

 OB+ % 85.10 84.82 85.93 88.39 89.26

 TC % 73.47 77.32 87.79 90.75 91.31

501 D4 PC > 16K > 16K 15,744 7,744 6,464

 OB+ % 57.5 57.27 61.30 60.75 55.16

 TC % 83.45 87.58 91.03 92.07 92.14

681 D5 PC > 16K 15,424 7,680 3,456 3,072

 OB+ % 79.27 81.81 76.54 79.66 84.40

 TC % 67.23 72.44 84.05 91.10 91.33

737 D6 PC > 16K > 16K 15,488 5,952 4,416

 OB+ % 52.01 51.24 53.62 60.89 58.49

 TC % 70.28 76.49 87.29 93.52 93.83

671 D7 PC > 16K > 16K 11,328 5,120 4,160

 OB+ % 55.82 56.13 41.08 58.43 60.37

 TC % 73.16 75.78 85.51 91.23 92.09

735 D8 PC > 16K > 16K > 16K 8,192 6,272

 OB+ % 55.2 53.51 58.47 65.65 67.96

.2 INTERNATIONAL TEST CONFERENCE

49

4. Masking unknown values in deterministic in-system test

The following chapter introduces another user-tunable X-masking scheme [103], [122]. It

works synergistically with an on-chip test compression logic by employing encoded test data

to completely filter out unknown values that otherwise might reach a test response compactor

such as a MISR or test result sticky-bits used by the on-chip compare framework. Moreover,

methods to select control settings employed by the X-masking scheme to suppress X states

in both per pattern and per cycle modes are discussed.

4.1 New scheme vs. maXpress

Although X-masking is regarded a mature area of research and development, the Moore’s

Law coupled with ever-increasing complexity in architectural design creates a need for new

methods that could be used to handle X states in a cost-effective manner, especially with

respect to the resultant hardware and optimal place and route. In response to these challenges,

a new X-masking scheme, called maXpress, has been proposed in the previous chapter. It

was designed to mask-out X values in logic BIST while (1) preserving the around 90% fault

coverage (2) with the relatively small amount of test data. Consequently, maXpress works

with relatively large clusters of pseudorandom patterns that share a reasonable amount of

controls suppressing Xs per pattern and per cycle. A user-defined tunable structure of maX-

press allows grouping of scan chains. As a result, it offers trade-offs between test logic com-

plexity, the collateral damage caused by unpreventable masking of non-X values, the result-

ant test coverage, the test time, as well as test data needed to control X-masking itself.

However, as mentioned in Chapter 2.5, DIST requirements are much higher than those

of logic BIST, and have a non-negligible footprint on any X-masking scheme serving DIST.

This is confirmed here, as this chapter introduces a technique to filter X states out of re-

sponses produced within a DIST environment. It builds on certain architectural principles of

maXpress to let the new scheme become reusable in the LBIST mode. Still, the new scheme

is tightly integrated with the EDT technology [146] so that masking of Xs is controlled by

EDT-encoded test data, i.e., data shared with test compression logic; this is done for each test

pattern individually. Accordingly, it makes the entire approach compatible with sequential

test data decompressors acting as PRPGs in test compression/LBIST hybrids. However, it

implies changes in maXpress scan gaters and requires novel algorithms to select scan chains,

pick the corresponding masks, integrate ATPG, reduce the amount of control data, and run

fault crediting.

.2 INTERNATIONAL TEST CONFERENCE

50

4.2 Compactor’s circuitry

Fig. 4.1 shows a new test response compactor design. A modular X-masking logic (the grey

area in the figure) outputs scan chain gating signals to block Xs originating at scan cells. The

usual ATE input interface is replaced (if needed) with an on-chip memory storing compressed

test patterns and control data, while test responses are channeled to a MISR through a group

of XOR trees (spatial compactors).

The actual blocking of test responses, captured by the scan chains, is carried out by

scan gaters. These devices are located between the scan chain outputs and the MISR. One of

the key structural features of the scheme is its equal grouping of scan chains such that each

group is served by a dedicated scan gater. Let n be the number of scan chains served by a

single scan gater. As can be seen (Fig. 4.2), it is comprised of 2n 2-input AND gates and n

Figure 4.1 Test response compactor overview.

Figure 4.2 Scan gater serving n = 8 scan chains.

.2 INTERNATIONAL TEST CONFERENCE

51

3-input OR gates. If s is the total number of scan chains, then the number of scan groups (and

thus scan gaters) is given by g = s / n.

Scan gaters are individually controlled by the corresponding segments of a g-bit con-

figuration register (CR) and a g-bit group register (GR). The first register enables – per pat-

tern – a desired combination of scan gaters. The second one aims to increase observability of

X-free groups, as detailed in Chapter 4.3. There is also an n-bit index register (IR) that is

shared by all scan gaters, as shown in Fig. 4.1. This control allows deactivation of masking

of kth scan chain from every group by setting a kth bit of IR to 1. Clearly, this should be done

only if kth scan chain of every group is X-free. All registers described so far are daisy-chained

with a 2n-bit register B (Fig. 4.3) to allow test data upload. As can be seen, all registers come

with shadow counterparts to ensure updates at a proper time. As a result, reloads of the reg-

isters with new content can occur in parallel with a shift-in of data for the next pattern.

Scan gaters enabled by CR receive masking data from a selector through a single bus

S (in Fig. 4.2 the bus width is equal to 8). The selector consists of two n-bit registers B-off

and B-on, and a simple combinational circuit that intakes primary inputs denoted as C (Fig.

4.4). Signals C are intended to filter test responses of corresponding scan chains in a per

cycle mode unless values stored in registers B-off and B-on decide otherwise. These registers

are reloaded once per pattern. Each scan chain is assigned two blockage bits. If kth bits of

registers B-on and B-off are both set to 0, then scan chain k is blocked during the entire scan

unload (the selector output Sk is set to 0). Setting the kth bit of B-on to 1 makes scan chain k

fully observable. Finally, deasserting the very same bit while asserting the corresponding bit

of B-off allows us to mask scan chain k per cycle by means of C inputs. It is worth recalling

here that all enabled scan gaters receive exactly the same controls. All control signals used

by the proposed scheme are summarized in Table 4.1.

Figure 4.3 Feeding daisy-chained control registers.

.2 INTERNATIONAL TEST CONFERENCE

52

There is a large body of experimental evidence that per-cycle control settings are usu-

ally used for just a few scan chains. Therefore, data occurring on inputs C can be EDT-

encoded and delivered to the selector by the EDT on-chip decompressor. This is a key finding

for the modus operandi of the test response compactor shown in Fig. 4.1. For further details

on how to master steps needed to make EDT-based compression part of the X-masking see

the next chapters.

4.3 Mask generation

Selection of masking (or gating) signals plays a key role in the proposed test scheme. With

three levels of masking, finding values used to either block or observe groups of scan chains,

individual chains, and finally individual scan cells, is a nontrivial process. This chapter pre-

sents an automated method that aims at assuring observability of scan cells which are unique

fault propagation sites while reducing an overmasking of non-X values.

We begin by setting the group register GR, and then, orthogonally, the index register

IR. These registers are dominators of the entire masking logic, as can be seen in Fig. 4.2. The

Table 4.1 Control signals.

Name Purpose Update

GR Select groups of scan chains to be observed

Per pattern
IR Select indexed scan chains to be observed

CR Select groups of scan chains to be masked by S

B Mask/observe indexed scan chains in CR-selected groups

C Mask/observe scan cells in CR-selected groups

Per cycle
S Controls shared by CR-selected groups

Figure 4.4 The selector block.

.2 INTERNATIONAL TEST CONFERENCE

53

group register GR allows one to observe those bundles of scan chains that are entirely X-free.

Furthermore, if there are X-free scan chains in all groups, and these chains have the same

index, then the index register IR unlocks them by sharing the corresponding bit with all

groups. Faults that propagate to scan chains GR- or IR-unlocked are detected by default (ex-

cept an unlikely event of aliasing), and therefore they are not processed any further. In par-

ticular, they do not play a part in generation of weights, as described below, thus raising the

chances of other faults to be observed and detected. Moreover, the use of GR and IR increases

the observability of cells that do not capture target faults. This, in turn, may increase the

likelihood of detecting unmodeled faults propagating to scan cells that are not observed on

purpose.

The next paragraphs will use the following notion. A fault detected by q test patterns

will be designated as q-D, e.g., 1-D, 2-D, 3-D, etc. In particular, faults detected by just a

single test pattern (1-D) are often referred to as essential faults, and they are the most crucial

ATPG targets.

Scan chains not served by GR and IR are put through an additional mask generation

process that resembles the approach presented in Chapter 3, although masks are determined

individually per pattern rather than a group of patterns. Consider the example shown in Fig.

4.5. Here, there are ten scan chains, each comprising eight scan cells. These scan chains are

split into two groups. Let us also assume that there are three test patterns P1, P2, and P3. The

following description will demonstrate how to obtain weights for a test response correspond-

ing to the first pattern (P1). Propagation sites of Xs (X-cells) and faults are indicated by red

and labeled circles, respectively. While certain faults are detected (and thus observed) more

than once, special attention should be paid to faults detected by just a single test pattern,

further referred to as 1D faults. In principle, such faults are the most important ATPG targets,

and hence to guarantee their observability is of primary concern. As faults from A to G belong

to the class of 1D faults (they are only detected by P1), all their propagation sites are assigned

a weight equal to 1, even if some of them propagate to multiple sites, such as faults B and F.

Following this convention, X cells get the 0 weight. Faults H, J, K, and L (blue circles) are

Figure 4.5 Generation of weights for 1D faults.

.2 INTERNATIONAL TEST CONFERENCE

54

also detected by patterns P2 and P3. Hence, their propagation sites are not assigned any weight

as far as the response corresponding to pattern P1 is concerned. However, if they cannot be

observed after applying masking signals for pattern P1, faults L and H will become 1D faults

in a test response corresponding to P2, while faults K and J will get the same status in a test

response obtained after applying pattern P3. The same rule applies to all q-D faults, q > 1: in

the worst case (they are masked due to Xs in q − 1 test responses) each of them will eventually

get the status 1-D and will be subjected to the weight generation process.

The weights associated with successive observation sites are subsequently used to su-

perpose groups of test responses, as illustrated in Fig. 4.6. X-free scan chains with fault ob-

servation sites as well as chains with no observation sites (D-free) but having Xs are ena-

bled/disabled using a proper combination of B-on/B-off values. Back to Fig. 4.6, the first

scan chain of every group is to be observed by asserting the first bit of the B-on register,

whereas the last scan chain of every group will be blocked after de-asserting the last bits of

B-off and B-on registers. The remaining scan chains receive per-cycle data from the selector

(see the next chapter): Xs are masked with the value of 0, and faults are observed with the

masking values set to 1. It is worth noting that some fault observation sites may overlap with

certain X-cells when superposing groups of test responses. As masking of X-cells is manda-

tory, it will inevitably result in over-masking of faults. The mask selection has to take account

of this phenomenon.

Selection of controls is an iterative greedy process as outlined in Fig. 4.7 for a single

pattern. It uses a g-bit binary vector H = [hg-1 … h1 h0] representing the configuration register

CR, i.e., hk = 1, if kth stage of the register is set to 1 (recall that g is the number of groups).

Essentially, after random initialization of H, the method inverts successive bits of H and

check the resultant masking solution, keeping the best one, i.e., a group selection that yields

the largest population of 1D faults which are observed. It then becomes a starting point for

the next iteration. Typically, N = 3 repetitions of the outer loop (including random initializa-

tion of H) suffice to find the best masking configuration. If there are several masking

Figure 4.6 Superposition of groups.

.2 INTERNATIONAL TEST CONFERENCE

55

configurations with the same number of observable 1D faults, the number of other faults

observed fortuitously is used to break a tie. Having determined the group selection for a given

pattern, a list of 1D faults can be updated. Furthermore, faults whose observability could not

be secured have their status changed from qD to (q–1)D, with 1D faults becoming new addi-

tions to their list.

4.4 Encoding of masking cubes

It has been demonstrated earlier how to determine the per-pattern content of the configura-

tion, group, index as well as B-off and B-on registers. The control signals that can be con-

trasted with these settings are masking values provided through the selector inputs C in a per-

cycle regime (Fig. 4.4). As shown in Chapter 4.2, these masking signals are to be EDT-en-

coded and delivered by the main EDT decompressor. Hence, encoding of a given test pattern

p is preceded by an attempt to encode a masking cube associated with the previous pattern p

– 1. This process can be characterized as follows.

In principle, a two-dimensional masking cube consists of as many cycles as the scan

chains length while the number of rows matches the number of scan chains per group. Its

entries are set to 0 or 1, if one needs to mask Xs or enable fault observation sites, respectively.

These rules do not apply to the entries that are observed or blocked by B-on and B-off regis-

ters. All the remaining entries are considered don’t cares (–). Back to Fig. 4.6, a masking

cube corresponding to the superposed pattern (the right-hand side of the figure) would have

the following form:
– – – – – – – –

0 1 0 – 0 – – –

– 0 0 1 – 0 0 –

– – 1 0 0 0 0 –

– – – – – – – –

 Maximum sum M  0

 while the number of iterations is less than N

 select randomly initial state of H

 Temporary maximum sum T  0

 do

 for each bit in H

 set a given bit to its opposite value

 compute sum S of weights

 if S > T then T  S

 set H to the value of the best vector resulting in T

 while T changes its value

 if T > M then M T

 update list of 1D faults

Figure 4.7 Finding masks.

.2 INTERNATIONAL TEST CONFERENCE

56

Starting with q = 1, the process of forming a masking cube (see also Fig. 4.8) begins

with the creation of a list L comprising all sites observing qD faults. Recall that they were

obtained as a result of group superposition (Fig. 4.6). The list is sorted in descending order,

i.e., an entry with the largest count of qD faults comes first. After filling a masking cube with

0s corresponding to all X-cells (this initial step is mandatory to ensure that all X states will

be blocked), we iteratively pick the first item on list L, set the corresponding entry of the

masking cube to 1, delete that item from the list, and try to encode the resultant cube. If the

encoding try fails, then a newly added 1 is removed from the masking cube. It is worth noting

that it need not necessarily preclude detection of certain faults provided they propagate to

other observation sites. Moreover, assuring observation of a given site results in dropping all

faults that propagate to it. The above steps are carried out until list L becomes empty. Once

all test patterns have their masks encoded with respect to qD faults, the process repeats for

the next (incremented) value of q until all faults are processed. This iterative approach opti-

mizes the usage of masking variables with 1D faults being targeted in the first round. Clearly,

other sites that have been successfully encoded in every step may enable fortuitus observa-

bility of other faults that remain to be tackled.

Borrowing input variables to encode masking data may reduce the EDT-based encod-

ing capabilities, but typically the X-masking process requires a very small fraction of the

total number of variables, and hence it does not compromise the quality of compression of

the actual test patterns. This is clearly confirmed in Fig. 4.9. It plots experimental data show-

ing how masking cubes consume EDT input variables as a function of test application time

(these curves represent a moving average to smooth out the actual data points). The experi-

ments were run for four industrial designs (for further details regarding these designs see

Chapter 4.5). As can be seen, the use of EDT variables tends to decrease as tests proceed. At

the end, design D9 needed only 5% of the total test data budget, whereas designs D1 and D4

used just a few bits to encode per-cycle masking signals. More importantly, however, what

was needed in all experiments to encode masking data at any time was just a small fraction

of input variables injected through a single EDT input channel.

 q  1

 while there are any target faults

 create list L of sites observing qD faults

 sort L in descending order of the number of qD faults

 pick the first item S from L

 add S to the masking cube

 if encoding fails then remove S from the masking cube

 else drop all faults in S from the fault list

 remove S from L

 q  q + 1

Figure 4.8 Encoding of a masking cube.

.2 INTERNATIONAL TEST CONFERENCE

57

 In the unlikely event of a decreased degree of test cube merging due to X-masking,

one will just observe a slight increase in a pattern count. It appears that securing observability

of a given 1D fault in the first place is less expensive in terms of test data usage than encoding

a new test cube targeting that fault again. It is also worth recalling that faults propagating to

scan chains selected by either IR or GR registers are not subject to mask encoding. It may

substantially reduce demands for seed variables. Table 4.2 presents how many faults, out of

all faults detected so far and reported in the column “Total”, are captured in scan chains

selected by IR and GR registers during the first 64 and then 640 test patterns deployed in ten

industrial designs. In fact, more than 50% of faults can be detected this way when applying

the very first test patterns. Typically, these are qD faults, where q > 1. In other words, a

majority of faults that require a per-cycle mask encoding and are detected by tail-end test

patterns are 1D faults.

Figure 4.9 Test data usage by masking cubes.

Table 4.2 Faults observed in scan chains selected by IR and GR.

 After 64 patterns After 640 patterns

 Total IR&GR % Total IR&GR %

D1 792846 699982 88.29% 1181133 973500 82.42%

D2 2021033 2016535 99.78% 2647322 2613605 98.73%

D3 2165261 2160930 99.80% 2591442 2577347 99.46%

D4 1531689 1072445 70.02% 2113270 1368517 64.76%

D5 1593889 1401699 87.94% 2658616 2128851 80.07%

D6 1207023 1198191 99.27% 1376839 1335092 96.97%

D7 5212999 4960110 95.15% 7363481 6769248 91.93%

D8 157352 138739 88.17% 188675 153555 81.39%

D9 2672367 2137507 79.99% 3383130 2357365 69.68%

D10 2318705 1737063 74.92% 3084714 2074486 67.25%

.2 INTERNATIONAL TEST CONFERENCE

58

4.5 Experimental results

Several experiments outlined below were performed with 10 large industrial cores having all

components of the proposed compactor on a chip. Table 4.3 lists major characteristics of the

examined test cases: the number of gates, the number of scan cells, and the scan architecture.

Furthermore, Table 4.3 reports the following metrics:

• the number of stuck-at faults,

• the number of EDT input channels and the size of the EDT decompressor,

• the total number of scan cells that capture X states (X-cells) across all test patterns,

• the total number of scan chains that capture X states (X-chains) across all test patterns,

• the reference test coverage recorded for a test setup deploying the EDT default X-

tolerant test response compactor X-Press [149].

The number of groups (Fig. 4.1) used in the experiments is equal to ⌈√2s ⌉, where s is

the number of scan chains; such grouping minimizes the number of memory elements used

to store the control data, as shown in Chapter 3.3. Designs reported in Table 4.3 feature a

certain spectrum of X-fill rates represented by the number of X-cells ranging from 223 (D3)

– it corresponds to 0.12% of the entire population of scan cells – up to 9,668 (6.52%) for

D10. Furthermore, the amount of scan chains that capture any unknown values may also

impact the final results. For example, X states propagate to a few scan chains in several de-

signs in a uniform manner across all test patterns reaching over 54% of all scan chains (D10),

whereas there are only a few percent of scan chains with some accumulation of X states in

design D2, D3, and D7 where the vast majority of scans (more than 96%) have no unknown

states at all.

Table 4.3 Circuit characteristics.

 Gates
Scan

Scan
Stuck-at

faults

EDT
X-cells X-chains

Test

cells inputs / size coverage [%]

D1 1.02M 35.6K 144  249 2,721,968 8 / 32 2,213 56 97.89

D2 2.47M 149.4K 1,400  374 5,933,388 2 / 46 837 36 99.71

D3 2.43M 185K 500  371 6,354,467 2 / 60 223 16 99.84

D4 1.21M 72.3K 381  190 3,812,564 16 / 64 7,185 148 96.40

D5 2.09M 145.1K 420  346 5,610,954 4 / 46 6,906 101 98.54

D6 1.18M 97.8K 300  327 4,251,354 2 / 37 472 22 97.65

D7 7.86M 428.7K 857  502 8,357,022 8 / 32 1,981 10 92.65

D8 0.22M 12.6K 122  138 188,486 4 / 32 375 9 98.97

D9 2.49M 173.7K 114 x 1964 3,688,965 4 / 32 5,708 39 91.23

D10 2.14M 148.1K 70 x 2579 6,898,121 4 / 32 9,668 38 98.20

.2 INTERNATIONAL TEST CONFERENCE

59

Table 4.4 summarizes the key experimental results. It lists the following outcomes:

• the total amount of (static) control data used to feed (per pattern) the configuration,

group, index as well as B-off and B-on registers; as can be seen, the static control data

is a small fraction of the overall data volume (see the last but one column of the table)

used by the proposed solution, i.e., it takes a bit more than 2% for design D6, it

reaches 15% for D3, while the average value over the reported designs equals 7.54%,

• the fraction of EDT seed variables needed per pattern to encode the masking cubes;

this figure of merit is further represented by three numbers: lower (different than 0)

and upper extremes, as well as the average value; for example, the value of 3.49 in

the column average indicates that only 3.49% of all seed variables deployed by the

EDT-based compression were used, on the average, to encode the masking cubes

handling test responses in the per-cycle mode; as one may expect, the number of EDT

seed variables needed to encode the masking cubes is typically a negligible fraction

of the total number of variables employed to encode successive test patterns with only

one exception of design D10 (here the ratio is above 9%),

• the effective test coverage achievable with the proposed scheme based on a MISR-

produced signature.

In addition to the metrics listed above, the last section of Table 4.4 provides a compar-

ison between a reference EDT-based on-chip compare scheme and the solution presented in

this chapter. The reference scheme deploys the X-Press test response compactor of [149] with

the same number of outputs as the number of EDT inputs shown in Table 4.3. The total

Table 4.4 Experimental results.

Static con-

trol data

[Mb]

Dynamic control data per pattern

Test cov-
erage [%]

Pattern count Data volume [Mb]
Reduction

ratio
[% of EDT seed variables]

min max average X-Press DIST X-Press DIST

D1 0.145 0.05 16.30 0.88 97.89 3,040 2,112 17.5806 4.1572 4.23x

D2 1.6885 0.13 40.13 0.57 99.71 15,797 15,232 34.7705 12.4927 2.78x

D3 1.3438 0.13 43.92 0.09 99.84 11,897 11,008 26.0047 9.1333 2.85x

D4 0.2051 0.03 76.32 2.07 96.40 1,920 1,920 17.0801 5.7715 2.96x

D5 0.9841 0.02 65.35 1.06 98.54 11,328 8,896 45.7625 12.7258 3.60x

D6 2.4225 0.14 54.66 0.15 97.65 22,976 22,680 354.793 115.5872 3.07x

D7 0.8738 0.02 25.52 3.49 92.65 5,888 5,454 68.416 21.7624 3.14x

D8 0.0459 0.17 9.76 0.03 98.97 764 752 1.2299 0.4418 2.78x

D9 0.375 0.01 81.11 9.68 91.23 6,015 6,144 135.3779 46.4063 2.92x

D10 0.5619 0.01 61.74 0.62 98.20 3,903 3,876 22.5416 7.9843 2.82x

.2 INTERNATIONAL TEST CONFERENCE

60

volume of data used by X-Press contains its own control settings and the reference data. The

reference volume V is equal to

 V = 2  o  p  L, (4.1)

where o is the number of X-Press outputs, p is the number of patterns, and L is the size of the

longest scan chain. This quantity has to be doubled to account for extra bits needed to differ-

entiate between X and non-X results. Consequently, the last five columns of the table display

respectively:

• the X-Press-based pattern count,

• the new pattern count,

• the X-Press data volume, including the EDT seed variables (in megabits),

• the new data volume; this quantity includes primarily the number of seed variables

obtained by multiplying the number of test patterns, the number of EDT input chan-

nels, and the size of scan chains plus initialization cycles, the remaining tiny part is

shown in the first column reporting the static control data,

• a ratio between the total volume of test data used by the reference X-Press-based on-

chip compare technique and the method introduced in this chapter.

 As can be easily verified, the proposed X-masking scheme does not compromise the

test quality – test coverage remains unaffected in all test cases. Similarly, the resultant pattern

counts of the new scheme remain virtually the same as those of the X-Press based approach.

It is worth recalling that X-Press [149] treated here as the reference is not even required to

mask all unknown states as opposed to the proposed scheme. In fact, the pattern counts get

even decreased for three examined circuits. Other designs observe a slight increase in their

pattern counts. This phenomenon is attributed to a distribution of X states which in order to

be masked intercept (occasionally) a non-negligible fraction of EDT seed variables. This, in

turn, reduces the EDT-based encoding capacity and thus elevates the pattern counts. Never-

theless, the new scheme reduces the total test data volume in all test cases by the average

factor of 3.12x relative to the on-chip compare solution.

Another pragmatic metric used to characterize a new DFT solution is its test logic sili-

con real estate. As shown in Chapter 4.2, the new X-masking scheme requires three logic

gates per scan chain. Additional gates are used to implement the selector; here two logic gates

are needed per the selector output – their total number is equal to the number of scan chains

placed in a single group. The total gate count equals 3 s + g ≈ 3 s. Also, two flips-flops (CR

and GR) are employed per group (or a scan gater) altogether with their shadow counterparts.

Furthermore, the index register, registers B-off, B-on, and their shadows require, in total, 6 n

flip-flops, where n is the number of scan chains served by a single scan gater. Eventually, the

total number of flip-flops is given by 4 g + 6 n ≈ 7g. It can be verified that if the number s of

scan chains is greater than or equal to 100, then the flip-flop count becomes smaller than s.

.2 INTERNATIONAL TEST CONFERENCE

61

Consider, as an example, design D5 that features 2.09M gates and s = 420 scan chains, with

the longest chain comprising 346 memory elements (see Table 4.3). In total, this design em-

ploys 145,177 scan cells. Its scan chains are evenly divided into 29 groups, with almost all

groups comprising 15 chains. D5 requires additional 206 flip-flops and 1290 gates to imple-

ment the proposed X-masking logic. Hence, the fraction of extra flip-flops is equal to 0.14%,

while the total area overhead incurred by the new scheme (assuming that a single flip-flop is

equivalent to 6 gates) amounts to 0.12%. Similar results can be obtained for the remaining

designs, and they are listed in Table 4.5.

Table 4.5 Hardware footprint of a new scheme.

#Groups

#chains per

groups
Extra gates

Extra flip-

flops

Total area

[%]

D1 17 9 449 122 0.116

D2 53 27 4253 374 0.263

D3 32 16 1532 224 0.118

D4 28 14 1171 196 0.194

D5 29 15 1289 206 0.121

D6 25 13 925 178 0.169

D7 42 21 2613 294 0.056

D8 16 8 382 112 0.479

D9 16 8 358 112 0.041

D10 12 6 222 84 0.034

.2 INTERNATIONAL TEST CONFERENCE

62

.2 INTERNATIONAL TEST CONFERENCE

63

5. Hardware security and IC tests

As shown in the previous chapters, DIST applying deterministic test patterns and using test

response compaction protected by the new X-masking schemes is well positioned to deliver

high quality manufacturing tests for large SoC designs. However, the very same test frame-

work may provide unrestricted access to internal states of a device-under-test. Thus, it opens

a backdoor for security threats such as IP theft/piracy, reverse engineering, counterfeiting,

tampering, or IC overproduction. This scenario is similar to other scan-based test schemes

that can make a circuit-under-test potentially vulnerable to various forms of attacks trying to

retrieve or modify sensitive data and assets [181]. Although the presence of on-chip test com-

pression and encoded test data make a circuit more resistant to scan attacks, test compression

facilities are not as effective countermeasures to scan-launched attacks [46] as one might

expect. Notwithstanding the fact that an SSN forms yet another defense line, it remains es-

sential to apply access restrictions and to secure test infrastructure to prevent leakage of any

secret information while tests are carried out. Consequently, the second part of the thesis is

devoted to design and analysis of several new security primitives that can eventually establish

a lightweight hardware root of trust guarding a variety of DFT ecosystems. It begins with a

brief review of a large volume of published studies describing techniques that address secu-

rity issues caused by IC testing, and then move on with the presentation of new security

solutions.

5.1 Design for test vs. security concerns

A wide range of solutions have been proposed so far to secure test circuitry and test access

ports in general, and scan chains in particular, with the aim of making it more difficult to

launch scan-based attacks. One of the first countermeasures was randomly inserting inverters

between scan cells [164]. As a result, test patterns and test responses are transformed during

the shift-in and shift-out test phases, respectively. This simple approach, however, can be

easily broken by resetting a chip and shifting data out in the test mode. Positions of 1s in the

resultant response reveal locations of the corresponding inverters. A solution immune to such

reset-based attacks was presented in [8]. As shown in Fig. 5.1a, 3-input XOR gates are used

to combine a given scan cell input with the outputs of two successive flip-flops. As shown in

[7], this approach is not secure, either. In addition to a method unveiling locations of XOR

gates, the authors of [7] presented another technique to secure scan chains. To eliminate

purely deterministic approach and to add randomness to the XOR-based security mechanism,

they used a physical unclonable function (PUF). Fig 5.1b shows a PUF serving as a source

of multiplexer controls. As a result, signals from either the preceding scan cell or the XOR

gate are selected in a pseudorandom fashion. While this change increases the overall security

of DFT logic, changes made to scan chains are still static – modifications are test independent

.2 INTERNATIONAL TEST CONFERENCE

64

as they are based on a known PUF response. A secure scan architecture where scan data is

changed dynamically was presented in [5]. To achieve this functionality, randomly selected

scan cells are converted into state-dependent scan flip-flops (SDSFF). With the addition of a

latch and an XOR gate, the SDSFF value is determined by both flip-flop and latch values. As

shown in Fig. 5.1.c, an update of the latch value depends on the load signal. The authors

recommended asserting the load signal every n clock cycles, with n set individually for every

circuit to further reduce chances of a successful attack.

Other secure scan architectures deployed key-based scrambling mechanisms [30], [78],

[97], [153], or additional registers to separate critical and regular data [201], regrouped scan

chains into sets of smaller sub-chains [98], or took advantage of a combinational ATPG with

a secure partial scan [32], [84]. However, a secure scan architecture cannot be considered

safe when an attacker can get design netlists through reverse engineering which has to be,

therefore, considered a real threat [19], [90]. Knowing the locations of additional logic like

XOR feedbacks or latches, one can easily access scan data by virtue of, for example, a Bool-

ean satisfiability based [170] attack. Therefore, to increase chip security, it is mandatory to

employ techniques that guarantee access to a test infrastructure only to authorized users. One

of the techniques presented in [129] introduces two additional instructions to the JTAG TAP

controller. By invoking one of these instructions, one can either block or gain access to the

test infrastructure, provided a correct password is used. Similarly, the solution presented in

[36] modifies the IEEE 1500 test wrapper by employing an additional LFSR. Users can un-

lock the test wrapper with the proper combination of an LFSR’s seed and a golden key. The

key corresponds to the final state of the LFSR; thus the seed/key combination can only be

generated, if one knows an LFSR characteristic polynomial. Clearly, this knowledge is only

granted to legitimate users.

Figure 5.1 (a) Double feedback XOR scan [8],

(b) Secure scan with PUF-based feedback selection [7],

(c) Dynamically modified scan structure employing state dependent scan flip flop [5].

.2 INTERNATIONAL TEST CONFERENCE

65

The password-based solutions presented in [36] and [129] relies on the fact that a secret

password or an LFSR polynomial is known only to authorized users. However, if attackers

could obtain this data, all the countermeasures become ineffective. Fortunately, the security

of test infrastructure can be improved by adapting challenge-response communication proto-

cols. Solutions based on symmetrical cryptography employ, for example, SHA-256-based

protection [37]. Here, a device generates a unique, random challenge and sends it to a user.

The challenge is then combined with the secret key and hashed with the SHA-256. Both hash

values are then compared on the chip – they can only match if the user and the design store

the same secret key. In the PUF-based protection [45], the user must store a PUF challenge-

response pairs (CRPs) instead of a secret key. Here, the challenge sent by a device is a de-

sired, random distance between two PUF responses. The user looks through all the stored

CRPs to find a proper pair of challenges and sends it back to the device. Finally, access to a

test infrastructure is granted only if the obtained distance is the same as the expected one.

However, the PUF-based approach may also need to store individual CRP databases for each

design and to read out PUF responses during the manufacturing phase. What is more, a SHA-

256 hardware implementation may be problematic, especially within small devices with lim-

ited silicon area resources. Consequently, the challenge-response authentication is typically

carried out by a device implementing lightweight crypto hash functions.

5.2 Lightweight cryptographic hash functions

In recent years, the number of publications devoted to lightweight crypto hashing has been

increasing steadily in volume and importance as hash functions became key hardware secu-

rity primitives. The existing lightweight cryptographic hash functions can be classified into

a few groups determined by a construction method [191]. These constructions include (a) the

Merkle-Damgård scheme [44], [113], (b) the sponge construction [15] with the Keccak hash

function [16] – its most prominent, although not lightweight, instance and the winner of the

NIST SHA-3 secure hash standard competition, (c) block-cipher-based solutions such as the

Davies–Meyer hash functions [138] or functions deploying nonbinary error-correcting codes

[94], and finally (d) methods which are based on cellular automata [75] or (e) deterministic

chaotic finite state machines [2].

Lightweight cryptographic hash function, while designed to be compact, fast, and self-

testable within resource-constrained devices, must be still relatively immune to brute force

and cryptanalytic attacks. Typically, it is expected that a cryptographic hash function H has

the following properties related to the brute force attacks:

• preimage resistance (one way): for virtually every output z, it is computationally in-

feasible to determine input x hashing to that output, i.e., H(x) = z,

• second-preimage resistance: it is computationally infeasible to determine another

(distinct) input y hashing to the same output as any given input x, i.e., H(x) = H(y),

.2 INTERNATIONAL TEST CONFERENCE

66

• collision resistance: it is computationally infeasible to find two colliding inputs x and

y ≠ x such that H(x) = H(y).

Each resistance is evaluated as an n-bit security, meaning that to conduct a successful brute

force attack, one should perform (on average) 2n operations. For a hash function of a size m,

the best possible preimage resistance and second-preimage resistance n = m. For example, a

successful preimage and second-preimage attack on a 256-bit hash output would require a

2256 hash generations (assuming highest possible resistances). On the other hand, an ideal

collision resistance n = m/2, as is indicated by a birthday paradox. Table 5.1 presents the

resistance of the selected lightweight cryptographic hash functions, where column “Size”

reports the hash value length.

 Metrics shown above describe the resistance to attacks based on brute-force methods.

More sophisticated techniques are based on the cryptanalytical approach, i.e., identifying

weak points of hash functions in their structures and algorithms. Cryptanalytical attacks cur-

rently known are based on differential, integral, algebraic, or linear analysis. Other popular

methods include cube, slide, or rebound attacks as well as zero-sum, rotational, or meet-in-

the-middle distinguishers and truncated or impossible differentials. Due to architectural dif-

ferences between targeted functions, each cryptanalysis is usually dedicated to a single hash-

ing algorithm. An overview and references to the cryptanalytical methods for lightweight

cryptographic hash functions can be found in [191].

It is widely agreeable that a proper hash function matching desired hardware and safety

requirements is an indispensable component required to implement a secure challenge-re-

sponse procedure. However, to increase the overall security, the authentication phase may be

combined with the encryption/decryption of test data by using stream ciphers.

Table 5.1 Security parameters of selected lightweight cryptographic hash functions.

Hash function Resistance

Name Size Preimage 2nd Preimage Collision

ARMADILLO 160 160 160 80

 256 256 256 128

ASCON 256 128 128 128

PHOTON 160 124 64 64

 256 224 128 128

DM-PRESENT 64 64 none none

H-PRESENT 128 128 none none

QUARK 256 224 112 112

SLISCP 160 128 80 80

SPONGENT 128 120 64 64

SPONGENT 256 240 128 128

.2 INTERNATIONAL TEST CONFERENCE

67

5.3 Hardware stream ciphers

Stream ciphers (SCs) are other key security primitives that can be successfully used in the

area of VLSI test. Their mission is to encrypt and decrypt streams of test data by combining

them with the secret, cipher-produced, cryptographically secure pseudorandom keystreams.

Since the role of a combiner is typically assumed by the exclusive-or operations, binary ad-

ditive ciphers [93] make up the vast majority of actually implemented SCs.

As documented by a large volume of scholarly literature on hardware SCs, many SC

designs are based on nonlinearly filtered sequences produced by LFSRs. Generators that were

proposed by Geffe, Jennings, Beth and Piper, Rueppel, Rao, Briier, Massey and Rueppel, or

Chambers and Gollmann belong to this category; the corresponding details can be found in

[161]. Other schemes include the shrinking generator [39], WG [61], [70], the self-shrinking

generator [112], the reconfigurable feedback shift register [207], the Toeplitz-hash-based ci-

phers [48], SNOW [60], as well as XPD, Nanoteq, Rambutan, M, and Gifford’s algorithms

[161]. Some are based on congruential additive generators (Fish, Pike, Mush [161]), or, like

the Blum-Blum-Shub generator [17], reuse certain concepts employed in public key cryptog-

raphy. More recent schemes integrate LFSRs with sequential circuits having nonlinear feed-

back networks. Such solutions can be found among the finalists of the eSTREAM competi-

tion funded by the European Union. Their list includes Decim, Edon80, F-FCSR, Grain,

Mickey, Moustique, Pomaranch, and Trivium. Detailed descriptions of those significant

milestones are available in [154]. It is worth noting that the Grain cipher has evolved into a

family of solutions including small-state SCs such as Sprout, Fruit, Plantlet, or Lizard [89].

The same has been observed for the Trivium-like designs.

It appears that LFSRs can be replaced with nonlinear feedback shift registers

(NLFSRs), as implemented in Achterbahn-128 [68]. Interestingly, some SCs have never been

officially disclosed. Nevertheless, their details eventually became publicly available. The

SCs E0 (developed for Bluetooth technology), A5/1 (used by GSM), and RC4 (deployed in

the 802.11 wireless LAN standard) can serve here as examples. More advanced designs may

use special forms of finite state machines, as done in Stanislaw [65]. Another group of SCs

belonging to this category are designs deploying certain concepts used by cryptographic hash

functions such as Keccak. For example, the Ascon family of SCs is based on a sponge frame-

work [55]. Since many SCs share similar building structures with hash functions, methods

used for SCs cryptanalysis resemble those mentioned earlier. The comprehensive surveys of

the most representative and state-of-the-art solutions in the SC domain can be found in the

review papers such as [85], [135], [204], [205]. They also discuss SC resilience against var-

ious forms of attacks and highlight schemes that can be used even in compact devices with

limited computing resources.

.2 INTERNATIONAL TEST CONFERENCE

68

5.4 Hardware root of trust

Cryptographic hash functions and SCs play a vital role in shaping high-end hardware roots

of trust (RoT) – foundations on which secure operations of digital IC depend [167]. Typi-

cally, they are integrated into silicon as customized security blocks that handle chip and de-

vice identities, manage cryptographic keys and functions, secure boot processes, attestation,

authentication, firmware updates, etc. The hardware root of trust is expected to be capable of

detecting an intrusion, disabling access pending further actions, and/or obfuscating logic op-

erations of the IC. What lays the foundations for a silicon-based fixed-function root of trust

is its authentication protocol. As an initial part of the actual challenge-response procedure,

an IC creates a truly random token, commonly known as a challenge or a nonce, and sends it

over to a security processor that computes a hash of the nonce. This hash (or digest) is sub-

sequently returned to the IC to be compared with a hash value produced internally (by the

IC). The latter is usually done by a device implementing a lightweight cryptographic hash

function. Once the user is granted access to the test logic, SCs are used to yield encrypted or

decrypted streams of test stimuli and test responses.

The previous chapters have recalled lightweight cryptographic hash functions, general

purpose SCs as well as solutions designed to secure on-chip DFT ecosystems. However, the

complexity of these solutions may still be considered unacceptable by many IC vendors who

often face the dilemma of using an SHA engine [72] or other IP security cores where com-

putations do not lend themselves to lightweight hardware implementations [37], [45]. Fur-

thermore, SoC integration flow, distinguished by the prevalence of design reuse, may gener-

ate extra iterations as pre-designed intellectual property (IP) security soft cores often need to

be fine-tuned and incrementally optimized until the register-transfer-level (RTL) synthesis

process reaches the best trade-off between performance, area footprint, security, power, and

also testability.

A hardware RoT that maintains both data integrity and hardware quality ensured by

test should satisfy at least the following requirements:

• a high degree of defense-in-depth against scan attacks,

• the ability to scale by adopting cryptographic primitives of a wide range of sizes,

• full compatibility with a design and DFT flow,

• a low area overhead,

• no performance degradation of at-speed test applications.

To address the above concerns while fulfilling requirements of IC testing, lightweight, yet

effective, suitable for implementation in an all-digital, standard-cell-synthesis flow, new se-

curity primitives that can be used to design a hardware RoT are proposed and analyzed in the

next chapters, as summarized below.

.2 INTERNATIONAL TEST CONFERENCE

69

 Chapter 6 introduces hybrid ring generators (HRG) – a new class of lightweight linear

finite state machines. While they are structurally similar to conventional ring generators, the

new devices can circulate test data faster. This improves the performance of linear circuits

used in test and security realms. Several applications of HRG such as MISRs or programable

PRPGs are also discussed along with data providing architectural details of HRGs for sizes

up to 1184 bits.

 HRGs, working in tandem with a nonlinear sequential circuitry whose feedback net-

work employs Boolean functions that are based on bent functions, are used to build a scalable,

lightweight cryptographic family of hash functions H2B presented in Chapter 7. Two groups

of tests, including the NIST test suite, confirm that the scheme can fulfill requirements for a

trustworthy and cryptographically secure hash function. Furthermore, resilience against

brute-force, cryptanalytic, and side-channel attacks, as well as the self-testing capabilities of

the presented design is described.

 Chapter 8 presents lightweight SCs that can work as standalone units or be destined

for the root of trust applications. High-speed HRGs and NLFSRs work synergistically to

yield output keystreams. Desired features of the ciphers were comprehensively examined

using several statistical tests. It is also shown that the proposed SCs can resist various types

of cryptographic attacks.

 The last presented item is a lightweight true random number generator producing a

nonce, as shown in Chapter 9. The scheme performance was studied with the help of hard-

ware and simulation platforms. The randomness of the raw binary sequences without any

postprocessing was tested with NIST and AIS-31 test suites. The performance of the new

scheme is compared with six state-of-the-art solutions.

Finally, a hardware root of trust (RoT) is presented in Chapter 10. It works with just

a few blocks whose architectural details are discussed earlier in Chapters 6, 7, 8, and 9. It

easily integrates with SSN technology by taking advantage of its inherent data scrambling

and packetized test data distribution. In addition to SSN-based designs, the proposed RoT

can improve security of other test interfaces that employ a challenge-response authentication

protocol.

.2 INTERNATIONAL TEST CONFERENCE

70

.2 INTERNATIONAL TEST CONFERENCE

71

6. Hybrid ring generators

Test compression introduced ring generators – high speed devices formed by transforming

the structure of conventional LFSRs while preserving their transition functions. Ring gener-

ators feature a reduced number of levels of XOR logic, minimized internal fan-outs, and

simplified layout and routing. This chapter presents hybrid ring generators (HRGs) [140]

which take linear finite state machines to the next evolutionary level in the development of

their ecosystems. While using the principal design rules of ring generators, the new devices

are structurally improved with enhanced overall performance.

6.1 Ring generators

On-chip test data decompressors are the very first devices that had deployed ring generators

[120], [121], [125], [146], [147] – high performance LFSRs – that quickly started carving

out a reputation for themselves as versatile solutions capable of outperforming traditional

schemes through an unmatched speed of operations and layout-friendly structures. Given a

characteristic (feedback) polynomial, ring generators feature smaller internal fan-outs,

shorter propagation paths, and simpler circuit layout and routing than popular and commonly

used Fibonacci or Galois LFSRs [71], [99] whose long irregular feedback paths may limit

the operating speed, cause severe frequency degradation, and may take up a considerable

silicon area, especially for polynomials with a large number of terms. Fig. 6.1 recalls a basic

architecture of a 32-bit ring generator with a primitive polynomial h(x) = x32 + x28 + x23 + x20

+ x17 + x12 + x8 + x4 + 1, which causes this ring generator to go through all possible 232 – 1

nonzero values before entering a seed state. Typically, its structure can be created by forming

a ring counter, and then by adding feedback taps which correspond to successive terms of a

characteristic polynomial. A feedback loop associated with tap xk is made up from k adjacent

flip-flops, beginning with the leftmost ones (see Fig. 6.1). Note that two feedback nets cannot

cross each other [121]. If one uses an appropriate characteristic polynomial, then a ring gen-

erator may assume a regular ladder-like shape. An extensive collection of such primitive

polynomials is available in [144]. Since a subset of k adjacent flip-flops can be chosen in

different ways as long as the resultant feedback line does not cross any other feedback line,

the ring generators offer an appreciable degree of flexibility in forming their structures.

Figure 6.1 Ring generator implementing a primitive polynomial

h(x) = x32 + x28 + x23 + x20 + x17 + x12 + x8 + x4 + 1.

.2 INTERNATIONAL TEST CONFERENCE

72

In addition to nanometer test, ring generators can perform more quickly and reliably

than their conventional predecessors on a wide range of problems in such areas of engineer-

ing as communications, digital broadcasting, data transmission, mobile telephony, security

and cryptography, white noise generation, error detection and correction, data compression,

or event counting [124]. In this thesis, new schemes have been proposed to protect scan-

based designs against unauthorized usage of their test logic. These hardware roots of trust

may use ring generators (or their hybrid versions) to hash proprietary data (Chapter 7), en-

crypt/decrypt test data streams (Chapter 8), or produce true random numbers (Chapter 9).

Ring generators re-emerged as a research topic in 2011 [188] with the observation that

conventional ring generators can be rearchitected in such a way that its XOR gate count is

virtually halved provided a characteristic polynomial meets certain criteria. It has given rise

to a new solution termed hybrid ring generators, similarly to hybrid LFSRs of [186].

6.2 Hybrid linear feedback shift registers

Hybrid LFSRs reduce the number of XOR gates by combining both external-XOR and inter-

nal-XOR logic within the same register. It was shown [186] that if a characteristic polynomial

can be rewritten as

 h(x) = xk b(x) + b(x) + 1, (6.1)

where xk b(x) and b(x) have no terms in common but b(x), then a hybrid top-bottom LFSR

can be set up using the following feedback:

 F(x) = xk b(x) – xk + 1. (6.2)

Note that symbol “–” indicates a top-tap connection back to the first stage, whereas symbol

“+” indicates a bottom-tap connection to the next stage. Similarly, if a characteristic polyno-

mial can be rewritten as

 h(x) = xn + xk b(x) + b(x), (6.3)

then a hybrid bottom-top LFSR can be constructed using the following feedback:

 F(x) = xn – xn-k + b(x). (6.4)

Again, symbols “–” and “+” are used to indicate respective tap connections. Touba and Wang

have proved that if a given LFSR can be converted into a hybrid one, then the same can be

done with the corresponding ring generator [187], [188]. This is illustrated in Fig. 6.2 for the

8-bit ring generator implementing a primitive polynomial

 h(x) = x8 + x6 + x5 + x3 + 1, (6.5)

which can be rewritten as

 h(x) = x3(x5 + x3) + (x5 + x3) + 1. (6.6)

The above formula indicates that a HRG can be constructed based on the following feedback:

 F(x) = x3(x5 + x3) – x3 + 1 = x8 + x6 – x3 + 1. (6.7)

.2 INTERNATIONAL TEST CONFERENCE

73

In fact, the same result can be obtained by applying transformations moving feedback con-

nections around LFSRs with the possibility of adding or cancelling certain XOR gates [121]

should a source tap cross a destination tap (XOR gate) or vice versa. Fig. 6.2 illustrates suc-

cessive steps of such a transformation. The grey arrows indicate a tap and a direction it is

moved to rearrange the LFSR while preserving its characteristic polynomial. For example,

the first step rotates feedback tap 6 → 2 counter-clockwise by three flip-flops. Then, feedback

tap 7 → 1 is moved by two flip-flops. After step 4 two feedback taps cancel each other leading

finally to an HRG with just two feedback taps as anticipated by formula (6.7). It is also worth

noting that a hybrid ring defined by its feedback function F(x) can be easily arranged in the

same way as it is done for conventional ring generators, i.e., by encompassing a given number

k of flip-flops to form a given feedback loop corresponding to coefficient xk.

By virtue of the above methods, the number g of 2-input XOR gates employed by a

conventional ring generator (similarly to conventional LFSRs) can be reduced to (g + 1)/2

provided a suitable feedback polynomial is used. In particular, an HRG with a primitive pen-

tanomial will feature two 2-input XOR gates instead of three ones. The reference [188] offers

a list of primitive pentanomials of degree up to 800 that can be employed to get HRGs having

two 2-input XOR gates. No primitive polynomials, however, have been reported with more

than 5 terms that meet the requirements (6.1) or (6.3). Moreover, HRGs with more aggres-

sively reduced XOR gate counts have not been thoroughly examined yet, including those

with a varying number of top-bottom and bottom-top feedback nets. The results presented in

the next chapters are the first steps in this direction.

6.3 Basic design scheme

The HRGs of [187] have an intrinsic component: a single feedback connection going in the

opposite direction than all the remaining feedback wires – compare Fig. 6.3 showing a 24-

bit HRG implementing the primitive polynomial

Figure 6.2 Ring generator and its hybrid version (after transformations).

.2 INTERNATIONAL TEST CONFERENCE

74

h(x) = x24 + x22 + x19 + x14 + x12 + x10 + x7 + x2 + 1

that satisfies (6.1) since

h(x) = x12 (x12 + x10 + x7 + x2) + x12 + x10 + x7 + x2 + 1.

As a result, the only advantage of that hybrid ring is its reduced XOR gate count from 7 to 4,

as otherwise it offers similar performance to that of the conventional ring generators. It ap-

pears, however, that the maximum length HRGs may have much more diversified layouts

and may offer more substantial area savings. Consider a 32-bit maximum length HRG shown

in Fig. 6.4a with the following feedback function:

F(x) = x32 – x28 + x24 – x18 + x12 – x5 +1.

It was found in O(n2) time, where n is the HRG size, by using the fast LFSR simulation

technique of [125]. As can be seen, this HRG features five feedback connections selected in

such a way that they run alternately up and down to form two groups of oppositely disposed

nets whose mutual spatial separations are roughly the same making the feedback lines

Figure 6.3 Hybrid ring generator with h(x) = x24 + x22 + x19 + x14 + x12 + x10 + x7 + x2 + 1

obtained by using a method of [187].

Figure 6.4 Primitive hybrid ring generators with

 a) h(x) = x32 + x28 + x26 + x25 + x22 + x21 + x20 + x19 + x18 + x16 + x15 +

x14 + x13 + x11 +x10 + x9 + x8 + x6 + x5 + x4 + 1,

and b) h(x) = x32 + x26 + x24 + x23 + x21 + x19 + x18 + x17 + x16 + x13 + x12 + x10 + x6 + x4 + 1.

.2 INTERNATIONAL TEST CONFERENCE

75

(approximately) uniformly distributed. Interestingly, the HRG of Fig. 6.4a implements the

following primitive polynomial:

h(x) = x32 + x28 + x26 + x25 + x22 + x21 + x20 + x19 + x18 + x16 + x15 + x14 + x13 + x11 +

 x10 + x9 + x8 + x6 + x5 + x4 + 1.

This result can be easily verified by taking an output sequence of 2n bits observed on any

stage of the register, and then by running the Berlekamp-Massey algorithm [110] to find the

minimal polynomial of that linearly recurrent sequence. In contrast to a conventional ring

generator that would need 19 XOR gates (each having two inputs), the HRG of Fig. 6.4a

employs just five such gates, thus achieving a 19/5 = 3.8 times reduction of the XOR gate

count. Another example is illustrated in Fig. 6.4b with the enlarged number of feedback taps.

This HRG uses the feedback function

F(x) = x32 + x28 – x24 + x19 – x13 + x8 – x6 + x4 – x2 + 1.

This is equivalent to the following primitive polynomial:

h(x) = x32 + x26 + x24 + x23 + x21 + x19 + x18 + x17 + x16 + x13 + x12 + x10 + x6 + x4 + 1.

Given the high computational efficacy of the primitiveness test [125], one can select a

suitable HRG by means of the following procedure. Every iteration it works with a candidate

HRG topology rather than a candidate feedback polynomial. It allows designers to pick the

most preferable structure characterized by its size, a desired number of feedback taps, their

orientation (up or down), their mutual separation (minimal or maximal), and other constraints

that can be easily added. Given an n-bit HRG, the appropriate test is used to see if the exam-

ined structure can yield an m-sequence. Recall that this task can be accomplished in O(n2)

time. If the test fails, we pick another HRG by relaxing some of the constraints, primarily

locations of one or more feedback taps. Having found a maximum-length HRG, one can

retrieve the corresponding characteristic polynomial by virtue of the Berlekamp-Massey al-

gorithm, as shown earlier. It is worth noting that seeking an appropriate primitive polynomial

to set up the corresponding HRG would take CPU time proportional to O(n2) as well. Unfor-

tunately, there are no known criteria under which one could decide if a given primitive pol-

ynomial can be used to form a desired HRG. Back to Fig. 6.4, it remains to devise how to

arrive with the HRGs of this figure based only on the primitive polynomials (listed in the

caption) in an algebraic manner similar to that of [186].

Using this structural approach, HRGs have been identified for all degrees up to 1184.

Selected results are gathered in Table 6.1. All HRGs listed there are optimal in the sense of

having feedback connections distributed as uniformly as possible. They are, therefore, ame-

nable to be highly modular structures. Furthermore, feedback taps have been selected such

that they alternately go up and down to accelerate internal circulation of data (see Chapter

6.5). Note that only the exponents of nonzero terms are represented, and terms corresponding

to feedback taps “going up” are underlined.

.2 INTERNATIONAL TEST CONFERENCE

76

Table 6.1 Primitive hybrid ring generators, n  1184

8 5 2 0 280 249 217 185 154 123 92 61 30 0 728 648 566 484 402 321 240 158 79 0

13 8 3 0 288 256 224 191 158 126 94 62 31 0 736 654 573 490 408 325 244 161 80 0

16 14 11 7 4 0 296 263 230 197 163 130 96 62 31 0 744 661 578 495 411 329 246 162 81 0

17 13 9 6 2 0 304 270 235 202 167 134 99 64 32 0 752 667 583 498 413 328 246 164 82 0

19 17 12 8 4 0 312 278 242 207 172 136 102 66 33 0 760 676 591 506 421 337 252 167 82 0

 24 19 13 8 3 0 320 285 249 213 177 141 107 72 36 0 768 671 572 472 372 276 207 138 69 0

 31 25 18 13 6 0 328 292 255 218 183 146 110 73 36 0 776 690 604 517 431 345 258 171 84 0

32 26 20 13 7 0 336 299 264 227 189 152 114 76 38 0 784 699 611 523 435 347 259 172 85 0

36 31 26 19 12 7 0 344 307 268 231 193 155 116 77 38 0 792 704 617 528 439 351 263 175 87 0

40 32 23 17 9 0 352 313 275 235 195 156 117 77 38 0 800 712 623 533 444 354 266 177 87 0

44 37 28 18 10 0 360 321 280 239 198 157 116 78 38 0 808 719 629 538 447 358 268 177 88 0

48 41 32 23 14 7 0 368 328 286 244 202 162 120 78 39 0 816 725 634 543 452 361 270 180 89 0

52 43 35 27 17 7 0 376 335 293 252 209 166 123 81 40 0 824 732 641 548 457 365 272 180 90 0

56 47 37 30 20 10 0 384 341 298 254 211 167 124 82 41 0 832 727 619 511 407 304 228 152 76 0

60 51 42 33 22 11 0 392 349 304 261 217 173 128 85 42 0 840 748 654 562 469 375 281 187 93 0

61 52 42 31 22 11 0 400 356 311 268 223 179 134 89 44 0 848 755 661 566 471 376 281 186 93 0

64 56 49 40 32 23 15 7 0 408 351 293 233 172 116 87 58 29 0 856 761 666 572 476 380 285 189 93 0

68 61 52 44 35 27 18 9 0 416 371 325 278 231 184 137 90 45 0 864 769 672 575 480 383 287 191 95 0

72 64 55 45 37 28 18 8 0 424 377 331 284 236 188 141 94 46 0 872 776 678 580 484 387 289 191 95 0

76 67 57 47 37 28 18 9 0 432 386 337 289 240 191 142 94 46 0 880 784 685 586 488 389 290 192 96 0

80 70 59 50 39 29 18 9 0 440 392 342 292 244 194 145 95 47 0 888 789 691 592 494 394 294 196 97 0

84 73 63 52 41 30 19 9 0 448 398 347 296 246 195 145 96 48 0 896 796 698 599 498 398 299 199 99 0

88 78 66 54 43 32 20 10 0 456 406 354 302 250 198 147 98 49 0 904 806 705 604 503 402 301 202 101 0

89 79 68 58 47 35 24 12 0 464 413 360 307 254 203 152 100 50 0 912 796 679 562 446 340 255 170 85 0

92 80 69 57 45 33 21 10 0 472 420 367 314 263 210 157 105 53 0 920 819 716 615 513 411 308 205 102 0

96 87 76 65 55 44 33 22 11 0 480 420 359 300 241 180 119 58 0 928 825 722 618 515 411 308 205 101 0

100 90 78 66 56 45 33 21 10 0 488 434 379 326 271 217 163 108 54 0 936 832 728 623 518 413 309 206 102 0

104 92 81 69 57 45 33 21 10 0 496 442 388 332 276 220 166 111 55 0 944 840 735 629 523 417 313 207 103 0

107 96 84 72 59 46 34 21 10 0 504 449 393 338 282 225 168 112 55 0 952 846 739 633 527 421 316 209 104 0

108 96 85 72 60 47 35 23 11 0 512 455 397 339 281 225 169 111 55 0 960 853 745 638 532 424 316 210 105 0

112 102 91 80 70 60 49 38 28 18 9 0 520 462 406 348 289 230 171 112 56 0 968 860 752 645 537 429 320 212 106 0

116 107 97 87 76 66 55 44 33 22 11 0 521 464 405 346 288 230 171 113 56 0 976 857 734 612 489 368 276 184 92 0

120 109 97 85 74 62 50 38 27 18 9 0 528 470 411 351 291 233 173 114 57 0 984 860 737 619 495 372 279 186 93 0

124 113 101 91 80 68 56 44 32 20 10 0 536 477 416 356 295 234 174 116 58 0 992 882 771 663 552 441 330 219 109 0

127 116 104 93 81 69 57 45 33 22 11 0 544 472 398 323 250 176 132 88 44 0 1000 874 747 623 496 380 285 190 95 0

128 115 100 85 71 57 42 28 13 0 552 476 399 322 250 180 135 90 45 0 1008 897 785 672 560 448 335 222 110 0

132 118 102 86 71 56 40 26 13 0 560 498 435 373 310 247 185 122 61 0 1016 904 790 676 563 450 337 224 111 0

136 121 106 90 75 59 44 28 14 0 568 506 442 380 316 253 189 125 62 0 1024 910 796 682 567 453 340 226 112 0

140 125 109 93 76 60 44 28 14 0 576 513 448 386 323 258 194 129 64 0 1032 917 803 687 571 455 340 226 113 0

144 128 112 96 79 63 46 30 15 0 584 519 453 387 322 257 191 126 63 0 1040 926 809 692 577 461 345 228 114 0

148 132 115 100 84 67 50 33 16 0 592 525 458 391 325 258 192 128 64 0 1048 917 786 662 531 400 300 200 100 0

152 135 117 99 82 64 47 30 15 0 600 533 465 398 330 264 197 130 65 0 1056 939 823 705 588 470 352 234 116 0

156 140 122 104 87 70 52 34 16 0 607 540 472 404 336 270 203 135 68 0 1064 948 829 711 593 474 357 238 119 0

160 142 123 104 87 68 51 32 16 0 608 540 471 402 334 267 199 132 66 0 1072 953 833 713 594 474 355 236 118 0

168 149 131 111 92 72 53 34 17 0 616 533 451 370 286 208 156 104 52 0 1080 960 841 721 600 479 358 238 118 0

176 157 138 119 100 80 60 40 20 0 624 555 485 415 347 277 207 138 69 0 1088 968 846 724 603 483 361 239 119 0

184 164 143 123 103 82 62 41 20 0 632 562 491 422 351 281 210 140 69 0 1096 975 852 730 607 485 363 242 120 0

192 171 150 128 107 85 64 43 22 0 640 569 499 427 356 285 213 142 70 0 1104 981 858 735 612 488 366 242 121 0

200 178 155 132 109 87 65 42 21 0 648 576 504 431 359 286 213 142 71 0 1112 988 863 740 617 493 369 245 122 0

208 186 162 140 117 94 71 47 24 0 656 585 512 438 364 290 216 142 71 0 1120 982 847 708 570 432 324 216 108 0

216 193 170 145 120 95 72 48 24 0 664 590 515 441 367 294 219 144 72 0 1128 1004 878 752 629 503 378 252 126 0

224 199 173 147 122 98 72 48 23 0 672 598 524 448 372 297 222 147 73 0 1136 1010 886 759 633 506 379 254 127 0

232 206 180 154 128 101 74 48 24 0 680 605 528 451 375 299 224 149 74 0 1144 1017 891 764 636 509 382 254 126 0

240 214 187 160 134 107 80 53 27 0 688 598 506 416 325 240 180 120 60 0 1152 1024 895 766 637 508 382 255 127 0

248 221 194 167 139 111 83 55 27 0 696 605 514 421 329 244 183 122 61 0 1160 1031 901 774 644 516 386 256 127 0

256 228 199 170 142 113 85 57 29 0 704 627 550 471 392 313 234 155 76 0 1168 1038 908 777 646 517 386 257 128 0

264 235 205 175 146 118 88 58 30 0 712 633 554 475 395 315 235 155 77 0 1176 1047 917 785 653 522 390 258 129 0

272 242 212 182 151 121 91 60 29 0 720 640 562 481 400 319 238 159 79 0 1184 1053 921 790 657 524 392 261 130 0

.2 INTERNATIONAL TEST CONFERENCE

77

For example, 32 28 24 18 12 5 0 stands for the feedback function F(x) = x32 – x28 + x24

– x18 + x12 – x5 + 1 of HRG in Fig. 6.4a. Note that in addition to sizes which are multiplicities

of 4 and 8, the table also includes primitive HRGs with a period equal to a Mersenne prime

number, i.e., for n = 13, 17, 19, 31, 61, 89, 107, 127, 521, and 607. Dividing the number of

polynomial terms by the number of the corresponding HRG feedback function terms (with

the exception of terms n and 0) gives the XOR count reduction. It appears that this reduction

can be strikingly as high as 7.57x, for n ≤ 1184. This is for HRG

F(x) = x168 – x148 + x128 – x106 + x82 – x59 + x36 – x18 + 1,

whose feedback polynomial is

168 150 148 145 144 130 128 127 126 125 124 121 110 109 107 106 105 104 103 102 101

98 89 87 86 85 84 83 82 81 80 79 78 69 65 64 63 62 61 60 59 58 56 45 43 42 41 40 38 36 23

22 20 18 0.

The approach presented in this chapter can be easily used to obtain HRGs of many

other architectures that may be required, for example, due to space, layout, or routing con-

straints.

6.4 Reciprocal and dual HRGs

This chapter briefly discusses two important aspects of deploying HRGs in applications

where one needs to produce a pseudorandom sequence or its derivatives. In many instances,

instead of the original pseudorandom sequence, it is necessary to employ a sequence which

is exactly the reverse of the original vector. Typically, this is achieved by using LFSRs or

ring generators implementing a reciprocal polynomial h*(x) of a given polynomial h(x),

where h*(x) = xn h(1/x). As could be expected, given an n-bit HRG, one can obtain its recip-

rocal by converting the feedback function of the HRG the same way it is done for conven-

tional rings. Note that all feedback connections will maintain their original directions. Con-

sider, for example, a 32-bit maximum-length HRG shown in Fig. 6.5a. Its feedback function

is given by

F(x) = x32 + x31 – x30 + x27 – x22 + x17 – x12 + x11 – x7 + x3 + 1,

where the corresponding primitive polynomial is

h(x) = x32 + x31 + x30 + x29 + x26 + x25 + x24 + x23 + x20 + x18 + x17 + x14 + x13 + x8 +

 x6 + x5 + x3 + x + 1.

If another HRG is constructed with

F*(x) = x32 + x29 – x25 + x21 – x20 + x15 – x10 + x5 – x2 + x1 + 1

.2 INTERNATIONAL TEST CONFERENCE

78

as its feedback function (Fig. 6.5b), it will generate a sequence which is the exact reversal of

the sequence produced by the circuit of Fig. 6.5a. A key point here is that a reciprocal of a

given HRG is obtained as its exact mirror image (compare Fig. 6.5a and 6.5b). Consider the

following two feedback taps in Fig. 6.5a: –x12 and x11. Their reciprocals are –x20 and x21. Tap

x21, however, is not driven directly by flip-flop 26 (as it might be implied by a formula used

to compute a reciprocal). Instead, its stem is fed by an XOR gate placed on the output of flip-

flop 26 due to tap –x20. This arrangement preserves the HRG mirror image and assures cor-

rectness of the reciprocal form. The same phenomenon occurs for taps –x30 and x31, and their

reciprocals –x2 and x1.

Similarly to reciprocal structures, every HRG has its own dual counterpart. Given a

conventional ring generator, its dual form has the direction of all feedback connections re-

versed. Hence, a dual ring generator features XOR gates placed on the outputs of those flip-

flops that have been used to drive feedback taps in the original circuit, while the feedback

lines originate now at the former locations of the respective XOR gates. Dual ring generators

are instrumental in the process of phase shifter synthesis, as shown in [145]. A phase shifter

consists of an XOR network driven by a maximum-length LFSR, and is employed to spread

apart shifted replicas of the same data in various outputs. Every output is driven by a linear

combination of LFSR stages. It generates an m-sequence with a desired separation from other

m-sequences by employing the "shift-and-add" property according to which a bitwise sum of

any two shifts of an m-sequence is a shift of the same m-sequence. The actual phase shifter

synthesis follows the steps presented in [145]. It appears that the same procedure can be used

for any HRG. A phase shifter can be obtained by using a dual HRG the same way it is done

for the conventional rings. For example, a dual HRG for a 32-bit HRG of the upper part of

Fig. 6.6 is shown in the lower part of the same figure. Assuming an initial state of a dual

HRG with a single logic 1, the state of the dual HRG after q clock cycles is of interest as

locations of logic 1s in this vector identify the outputs of the original HRG to be XOR-ed to

Figure 6.5 32-bit HRG (a) and its reciprocal form (b).

.2 INTERNATIONAL TEST CONFERENCE

79

produce a sequence spaced q shifts up a reference, i.e., a sequence originating from a stage

pointed out by the logic 1 in the initial state of the dual circuit. The validity proof of this

technique is analogous to that of [145]. Back to Fig. 6.6, logic simulation of the dual HRG

for as many as 13,154 clock cycles reveals locations of four 1s in (blue) flip-flops 10, 11, 12,

and 16. Hence, a sum of bits stored in these four flip-flops yields an m-sequence shifted by

13,154 steps relative to a reference m-sequence observed on flip-flop 0.

6.5 Multiple-input signature registers

A multiple-input signature register is one of the most straightforward applications of HRGs.

MISR-based test response compaction schemes received a lot of attention in scholarly liter-

ature in the past [136]. One of the prominent results was the observation that the transient

behavior of the aliasing error probability depends on architectural details of a compactor, and

it can be shortened by proper selection of how injected test data circulate within a MISR.

Clearly, this internal circulation can be accelerated in many cases provided an HRG is used

to implement a MISR rather than a conventional ring generator. Consider a MISR of Fig. 6.7.

It is built on a maximum-length 24-bit HRG with 4 input channels delivering test results

through 2 injectors each. If a single error is injected through one of those channels, then one

Figure 6.6 32-bit primitive HRG and its dual form used to obtain a phase shifter.

Figure 6.7 24-bit MISR driven by 4 input channels.

.2 INTERNATIONAL TEST CONFERENCE

80

Table 6.2 Circulation of errors in MISRs.

n Input Regular Hybrid Inputs Regular Hybrid

32

18 26 21 18, 13 31 17

20 26 23 20, 11 22 14

22 19 13 22, 9 18 12

24 19 15 24, 7 14 14

48

27 40 33 27, 20 47 26

30 40 36 30, 17 34 23

33 33 25 33, 14 28 20

36 24 26 36, 11 22 19

64

34 63 40 34, 29 58 35

38 51 44 38, 25 50 31

42 51 48 42, 21 42 27

46 41 30 46, 17 34 25

80

45 79 52 45, 34 68 41

50 64 57 50, 29 58 36

55 53 36 55, 24 48 31

60 38 41 60, 19 53 59

96

54 95 67 54, 41 82 54

60 78 73 60, 35 70 48

66 66 50 66, 29 58 42

72 46 55 72, 23 66 75

128

66 127 78 66, 61 122 73

74 127 86 74, 53 106 65

82 102 94 82, 45 90 57

90 81 56 90, 37 74 49

160

90 159 105 90, 69 138 84

100 133 115 100, 59 118 74

110 103 69 110, 49 98 64

120 80 77 120, 39 78 68

192

108 191 127 108, 83 166 102

120 165 139 120, 71 142 90

132 130 90 132, 59 118 78

144 96 102 144, 47 94 79

224

126 223 148 126, 97 194 119

140 185 162 140, 83 166 105

154 146 99 154, 69 138 91

168 146 113 168, 55 110 95

256

130 255 159 130, 125 250 154

146 255 175 146, 109 218 138

162 210 191 162, 93 186 122

178 171 123 178, 77 154 106

.2 INTERNATIONAL TEST CONFERENCE

81

can track its circulation within the MISR by reconstructing a part of its state trajectory be-

ginning with a state having a single or two 1s occurring on the injection sites. A number of

clock cycles  necessary for the error to reach every flip-flop at least once can be regarded as

a circulation speed metric (note that several instances of the same error may cancel each other

in the course of this process). Table 6.2 provides the value of  for several MISRs and differ-

ent error injection sites (reported in the column “Input” for a single injector and in the column

“Inputs” for two injectors fed by the same input channel as in Fig. 6.7). The same table con-

trasts HRG-based MISRs with MISRs constructed by means of regular ring generators whose

architecture in each case matches feedback taps of the corresponding HRG (except their di-

rections). The advantage of using HRG-based MISRs is clearly pronounced in each test case

as they offer smaller values of  than those of conventional rings. For example, it takes 171

cycles for an error injected into a flip-flop 178 to reach every memory element at least once

in a 256-bit MISR using a regular ring generator. On the contrary, an error with the same

injection pattern needs only 123 cycles to be seen at every flip-flop in an HRG-based MISR.

The experiments have used the following maximum-length ring generators:

h(x) = x32 + x27 + x20 + x14 + x8 + x4 + 1,

h(x) = x48 + x41 + x34 + x25 + x16 + x7 + 1,

h(x) = x64 + x52 + x42 + x33 + x24 + x11 + 1,

h(x) = x80 + x65 + x54 + x39 + x27 + x13 + 1,

h(x) = x96 + x79 + x67 + x47 + x26 + x11 + 1,

h(x) = x128 + x103 + x82 + x63 + x40 + x20 + 1,

h(x) = x160 + x134 + x104 + x81 + x55 + x26 + 1,

h(x) = x192 + x166 + x131 + x97 + x70 + x37 + 1,

h(x) = x224 + x186 + x147 + x107 + x74 + x32 + 1,

h(x) = x256 + x211 + x172 + x131 + x84 + x37 + 1.

Note that for those conventional rings it was possible to find maximum-length HRGs

with such feedback functions that their taps are identical with those of the conventional rings

but directions, for example

h(x) = x32 + x27 + x20 + x14 + x8 + x4 + 1

and

F(x) = x32 – x27 + x20 – x14 + x8 – x4 + 1.

6.6 Programmable HRGs

Another area where HRGs improve on conventional LFSRs is in allowing simple yet effec-

tive usage of multiple characteristic polynomials. Linear devices capable of handling a num-

ber of feedback polynomials have a variety of applications that may include multiple-poly-

nomial test data decompressors, on-chip low power test pattern generators for built-in self-

.2 INTERNATIONAL TEST CONFERENCE

82

test schemes, or cryptographic and security devices working with thousands of primitive pol-

ynomials. Although a conventional ring generator can be redesigned so that it allows one to

pick any primitive polynomial, this solution requires many AND gates and two XOR gates

interspersed between every two successive flip-flops of a lower section of a ring generator.

The latter gates may slow down the entire device. Two 2-input XOR gates in a row could be

replaced with a faster 3-input XOR gate, but this would be done at a price of a 30% higher

transistor count [117]. Therefore, the HRG-based solution outlined in Fig. 6.8 offers a good

tradeoff between the area overhead, speed, and the number of available polynomials.

As can be seen in Fig. 6.8, XOR logic introduces a single-gate delay (the speed of the

circuit is also determined by the AND gates used to enable the actual feedback network, as

in other solutions of this kind). An additional shift register (the blue flip-flops) allows one to

shift-in a selection mask that determines the current feedback polynomial. Although an n-bit

selection mask register may pick any of 2n – 1 feedback configurations, only some of them

correspond to primitive polynomials. Table 6.3 lists the number of primitive polynomials that

can be used in conjunction with HRGs similar to that of Fig. 6.8, for n = 11, 12, …, 32. These

numbers were obtained by setting all 2n – 1 feedback nets and running the primitiveness test.

It is worth noting that different primitive HRGs may actually implement the same character-

istic primitive polynomial. For such isomorphic HRGs, their common feedback polynomial

is counted only once. As can be verified in Table 6.3, programmable HRGs of sizes common

to many applications offer a multi-million-polynomial programming capability.

Figure 6.8 32-bit programmable hybrid ring generator.

Table 6.3 Polynomial count for programmable hybrid ring generators.

n #Polynomials n #Polynomials n #Polynomials

12 87 19 12,776 26 648,543

13 346 20 11,287 27 1,585,744

14 433 21 39,665 28 1,789,742

15 1,063 22 56,015 29 3,877,201

16 1,166 23 95,355 30 5,311,613

17 2,600 24 102,608 31 20,703,016

18 3,466 25 487,264 32 23,881,414

.2 INTERNATIONAL TEST CONFERENCE

83

7. Cryptographic hash function H2B

Protection of ICs against hardware security threats has been tackled by many schemes pro-

posed to mitigate risks associated with unauthorized access and usage of ICs in general, and

intellectual property (IP) cores in particular. Typically, this is accomplished by hardware

roots of trust whose crucial security primitives entail cryptographic hash functions. They

provide data integrity services and thus can support the IC authentication protocols employed

to counteract potential threats such as untrusted users accessing ICs. However, complexity

of certain hash functions in terms of area overhead, the impact on the design flow, and testa-

bility is unacceptable. This is what motivated a new solution presented in this chapter - a

simple, yet effective, lightweight, scalable cryptographic hash function H2B [139]. It employs

a HRG which feeds a nonlinear sequential circuitry based on bent-like functions.

7.1 Basic structure

Fig. 7.1 is a block diagram of the proposed hash function H2B. It consists of a HRG and a

nonlinear sequential logic (NSL) receiving and processing data produced by HRG. The next

paragraphs provide architectural details of these modules. It is worth noting that both parts

can be initialized by means of secret keys, and a feedback function of HRG can be repro-

grammed by virtue of another secret key or a secret selection mask, as explained in Section

7.1C. To a certain degree, block NSL can also be rearchitected, if required for security rea-

sons. Given an initial (proprietary) state of HRG, H2B processes an input message of arbitrary

length, e.g., a one-time nonce, in a number of clock cycles (or iterations). This number is

equal to the sum of cycles needed to shift-in the input message and a predefined number of

Figure 7.1 Block diagram of the proposed hash function.

.2 INTERNATIONAL TEST CONFERENCE

84

additional cycles required to complete a hash computation. Hence, input bits enter HRG (in

a parallel fashion through a certain number of XOR gates) where they will keep circulating

until the very end. HRG-produced signals feed block NSL that works synchronously with

HRG and transforms its content into a final digest. The actual hash value of a fixed length is

obtained by reading out the entire content of NSL memory elements.

A. Hybrid ring generator

As with conventional LFSRs, HRGs are not free from structural and linear dependencies in

their output sequences. Thus, the direct use of HRG to feed the remaining H2B logic with

correlated sequences may compromise the quality of results. To reduce such dependencies,

a phase shifter is placed on the outputs of the generator. Also, the same circuitry acting as an

expander allows one to have a relatively short HRG drive a large number of receivers. It may

result in substantial savings as far as the sequential logic footprint is concerned (see also

Chapter 7.2).

The phase shifter feeds a group of two-way muxes, as shown in Fig. 7.2 for a 24-bit

HRG feeding a 32-bit NSL. The muxes select randomly and per-cycle data produced by HRG

and its phase shifter. A signal placed on the selection input of each mux is provided by a

dedicated FF of the lower ring. In addition to improved randomness, the muxes enhance

nonlinearity of the results, as linear expressions leaving the phase shifter are turned into

Figure 7.2 Hash function with 24-bit HRG and 32-bit NSL with four nonlinear functions.

.2 INTERNATIONAL TEST CONFERENCE

85

nonlinear formulas even before they enter the lower ring and its nonlinear feedback network.

What makes it possible is the equation y = a + bc + ac, i.e., the mux algebraic normal form

(ANF) with a, b, and c assuming the role of data and selection inputs, respectively.

B. Maximal nonlinear functions

Signals that circulate in HRG drive block NSL comprising a ring of memory elements and a

feedback network which consists of different nonlinear combinational functions in 5, 7, or 9

variables. These functions are defined as follows:

 g(rn, …, r1, r0) = b(rn, …, r1) + rk r0, k  [1, n], (7.1)

where ri is an input variable provided by one of the NSL FFs, and b(rn, …, r1) is an n-input

bent function [158], n = 4, 6, or 8. Bent functions are “the most nonlinear” among all n-

variable Boolean functions. The degree of nonlinearity of a given function h is the minimum

Hamming distance between the truth tables of h and an affine function. The latter one is

defined as a linear function (a constant 0 or an exclusive-or of one or more variables) or its

complement. In other words, the bent function is a switching function that departs from affine

functions as much as possible, i.e., by 2n-1 – 2n/2 - 1. For example, h(x1, x2, x3, x4) = x1x2  x3x4

is a bent function which is a distance 6 from 16 affine functions of four variables (and a

distance 10 from the remaining 16 affine functions).

Interestingly, the authors of [163] have shown that if a bent function b(rn, …, r1) as-

sumes the value of zero 2n-1 + 2n/2-1 times, and a bent function b(rn, …, r1) + rk, k  [1, n],

assumes the value of zero 2n-1 – 2n/2-1 times, then g(rn, …, r1, r0) has the following properties:

1) g(r) is balanced, i.e., it yields as many 0s as 1s over its input set; in other words, g(r)

outputs both 0s and 1s with the same probability of 0.5 provided picking any of its input

vectors is equally likely,

2) g(r) is highly nonlinear as its nonlinearity Ng  2n – 2n/2; the nonlinearity of a function g

is the minimum number of its truth table entries that have to change to convert g to an

affine function, i.e., a linear function or its complement,

3) g(r) satisfies the strict avalanche criterion, i.e., any single input change causes the output

change with the probability of 0.5.

These properties are considered desirable for several cryptographic primitives, includ-

ing hash functions, as they can make them less vulnerable to certain algebraic attacks (see

Chapter 7.3). Fig. 7.2 illustrates how four 5-input nonlinear functions based on four bent

functions [158] b1, …, b4 receive their (n + 1) input signals. Every bent function is driven by

a continuous subset of FFs of the lower ring. We also place a driver of variable r0 (see above)

close to a FF driven by a given nonlinear function (an example of such an assignment is

shown in Fig. 7.2 for the bent function b2). Moreover, every stream of data produced by the

phase shifter is injected in the middle of a segment of FFs assigned to one of the bent

.2 INTERNATIONAL TEST CONFERENCE

86

functions. Usually, a single injector is allocated to a dedicated segment unless the number of

injectors is greater than the number of segments. If so, some segments can be used more than

once. Finally, all functions of NSL use its FFs in a uniform manner by having a given FF

either drive just a single variable r1 or receive data from just a single feedback function.

Clearly, FFs fed by the phase shifter and acting as inputs to the bent functions are exceptions.

Selection of NSL functions g(r) is carried out in such a way that the associated bent

functions are pairwise different and they are not complements of each other. The same pro-

cess is further guided by algebraic normal forms of g(r). Consider, for example, all 3,584

functions compliant with (8) and having 5-inputs. Putting one of them into ANF yields the

following expression:

g(a, b, c, d, e) = d + ae + bc + de.

It is comprised of 3 additions and 3 multiplications. The same group contains also a function

whose ANF is as follows:

g(a, b, c, d, e) = a + d + ac + bc + bd + be + cd + ce + de.

It features 7 multiplications and 8 additions. Given the same number of inputs, it is preferable

to choose functions that offer the smallest number of AND operations to enable synthesis of

area-efficient hash functions. Indeed, results of logic synthesis confirm a noticeable correla-

tion between the number of multiplications and, in a lesser extent, additions in ANF, and the

resultant silicon area occupied by a given function (see also Chapter 7.2). Moreover, simula-

tion experiments show that both the degree and the complexity of Boolean formulas in input

variables (bits of a message) representing bits of a digest, i.e., NSL FFs, depend on the num-

ber of iterations rather than the number of monomials a given function g(r) consists of.

C. Programmability

The proposed solution can be easily turned into a keyed hash function. In addition to secret

values that can be used to initialize HRG and FFs of NSL, the scheme of Fig. 7.2 can also be

redesigned in such a way that HRG becomes a programmable unit capable of working with

thousands of primitive feedback polynomials, as shown in Fig. 7.3. In this case, the current

feedback function (and thus a feedback polynomial) is determined by a secret selection mask.

Figure 7.3 Programmable 24-bit hybrid ring generator.

.2 INTERNATIONAL TEST CONFERENCE

87

This programmable HRG is a slightly modified version of the one presented in Fig. 6.8. An

additional mux increases the HRG testability, employing 2-bit twisted ring counter in a test

mode (see also Chpater 7.4).

7.2 Experimental results

The proposed hashing scheme was validated by means of statistical tests, including a test

suite [12] from the National Institute of Standards and Technology (NIST). Several instances

of H2B were examined by varying the size of both HRG and NSL, as well as by choosing

different bent functions to implement block NSL. In order to pass all tests, it is essential for

H2B to iterate for at least c cycles, where c is greater than the size b of the NSL ring register.

Following this experimental observation, the number of clock cycles needed to complete the

hashing process once the entire message is uploaded to HRG was set to 2b. Typically, N

digests subjected to all tests were obtained by hashing N s-bit tokens (messages) produced

by the Mersenne Twister pseudorandom number generator, where s was chosen to be two

times longer than the NSL register, e.g., a hash function with a 128-bit NSL register was fed

by 256-bit messages. In particular, at least 109 bits were collected on the NSL outputs, thereby

producing 1 000 consecutive sequences, each comprising 106 bits, to meet the requirements

of the NIST tests. The same sequences were used to run the remaining tests. Hence, given a

b-bit NSL, the actual number N of random tokens and the corresponding digests was equal

to 109/b. The following sections briefly introduce each test and subsequently discuss the

corresponding experimental results.

Probability of bit values. The simplest test is aimed at checking whether the logic value

of 1 occurs on every bit position of a digest roughly half of the time (50%). If P1(k) is the

probability of having 1 on bit k, then:

 P1(k) = Ck / N, (7.2)

where Ck is the 1s count on bit k. For large b, the sample mean S of P1(k), k = 0, 1, …, b – 1,

will be approximately normally distributed under the null hypothesis that the P1(k)’s are in-

dependent and identically normally distributed random variables. Let  be the sample stand-

ard deviation. Then, the test statistic

 𝑍 = √𝑏(𝑆 − 0.5)/𝜎 (7.3)

is normally distributed, and the test passes if |Z| < 1.96 given a 95% confidence level. More-

over, all 1s counts Ck, k = 0, 1, …, b – 1, can also be statistically examined to see how closely

they resemble a uniformly distributed random variate. This hypothesis can be verified by, for

instance, the chi-square test. It works with a b-bin histogram of 1s observed on successive

bits of N b-bit digests and uses the statistic

χ2 = ∑
(𝐶𝑘 − 𝑁/2)2

𝑁/2

𝑏−1

𝑘=0
 (7.4)

.2 INTERNATIONAL TEST CONFERENCE

88

which will be approximately chi-square distributed with b – 1 degrees of freedom under the

null hypothesis as above.

Buckets test. In much the same way as bit histograms, buckets histograms show how

many times hash values regarded as unsigned integers land in a particular bucket, modulo m,

where m may assume different values, e.g., 103 or 104. To run every instance of this test, we

form an m-bin histogram, and then for every digest d compute the corresponding value of (d

mod m) indicating a bin that is to be incremented. Finally, the chi-square test for m – 1 degrees

of freedom is invoked to test the histogram content for uniformity.

Weak avalanche effect (diffusion and confusion test). The avalanche effect refers to a

behavior where a small change in the input results in a significant change in the output, mak-

ing it statistically indistinguishable from random. A hash function demonstrates this effect if

a single flipped input bit leads to approximately half of the hash bits being flipped at ran-

domly distributed locations. A weak avalanche test proceeds as follows. Let H be an b-bin

histogram, where b is the digest size. For every random token r, it flips a randomly selected

bit of r to obtain token r’, determines the corresponding digests d and d’, and computes D =

d  d’. Next, it increments H(k) provided k-th bit of D is set to 1. As can be seen, H(k) counts

the number of times the output bit k has flipped in response to a single-bit change in the input.

Finally, once N tokens have been generated, we examine statistically how closely H resem-

bles a uniform distribution. To verify this hypothesis, one can use the chi-square test with b

– 1 degrees of freedom and the expected value of each bin being equal to N/2, as in (7.4).

Strong avalanche test. This test is a generalization of the former test to all s bits of the

examined tokens. As a result it yields s statistics. For every random token r, it first produces

s tokens r’ by flipping all bits of r, one at a time. Next, the test is carried out exactly as for

the weak avalanche effect. That is, for every pair (r, r’) it computes a pair of digests (d, d’)

and determines the value of d  d’. After repeating the experiment N  s times, it uses the

statistic of (7.4) to verify the hypothesis that histograms corresponding to successive input

bits represent uniformly distributed random variates. Only the worst case is reported, i.e., the

largest value of  among all s statistics collected.

Correlation. To validate whether a given hash function yields independent random bi-

nary combinations one can measure a correlation between any pair of bits across all N exam-

ined digests, collecting b(b – 1)/2 correlation coefficients. Clearly the correlation coefficient

 i,k = N-1  (xi – 0.5)(xk – 0.5) (7.5)

between bits xi and xk should be close to 0 to confirm that there is no strong, discernible, and

systematic relation between these two positions. Such a result should hold for all pairs of

bits. Due to the large number of correlation coefficients, the data regarding their mean value

S over all pairs (i, k) is reported by using the test statistic

 𝑍 = √𝑏(𝑏 − 1)/2(𝑆 − 0)/𝜎 (7.6)

to verify a hypothesis regarding the normality of S.

.2 INTERNATIONAL TEST CONFERENCE

89

Collision test. This test begins with a randomly produced token and the corresponding

digest. These steps are then repeated n times until a newly produced digest matches one of

the earlier generated hash values. The value of n is then recorded, and the entire process

repeats N times to get the mean value of steps until a collision. To pass this test, the mean

number of steps before the collision should not be smaller than 2b/2, as indicated by the birth-

day paradox. It is worth noting that this particular test can only be run for relatively small

hash functions as getting statistically significant outcomes for b > 40 becomes computation-

ally infeasible.

Architectural details. Table 7.1 lists architectural details of hybrid ring generators and

nonlinear combinational functions used to run the validation experiments reported in Chapter

7.3. A feedback function of a given n-bit HRG is represented as an (n + 1)-bit sequence with

locations of 1s corresponding to respective coefficients, further encoded as a hexadecimal

number. Also, a repetitive occurrence of the same digit is replaced with a decimal exponent

as follows (note that a coefficient next to x0 comes with a minus sign; the remaining coeffi-

cients get the alternating signs but xn):

f(x) = x32 – x27 + x18 – x12 + x8 – x4 + 1

1 0000 1000 0000 0100 0001 0001 0001 0001B = 1080414
H

Nonlinear functions are represented by their truth tables, again written in a hexadecimal for-

mat. For instance, a 5-input function whose successive outputs are:

0101 0101 0101 0100 1010 1010 1010 1001

is encoded as 534A39. All information is gathered in Table 7.1, where each row corresponds

to a row with the same index in Table 7.2. Due to space constraints, Table 7.1 reports archi-

tectural details for the first 21 hash functions of Table 7.2.

Results. The outcomes of all tests summarized above are listed in Table 7.2. Essentially,

the columns of the table, except the first two, correspond to tests recalled in the column head-

ings. The first column gives the size of HRG and NSL in terms of their memory elements.

The second column lists the number of 5-input nonlinear functions used by the NSL feedback

network. The column “probability of bits” reports the test statistic Z given by (7.3); this test

passes if |Z| < 1.96. The next two columns give the observed values of the chi-square statistic

of (7.4). Here, a critical test value depends on either the number b of bits or the number of

buckets m (in the reported experiments m = 1 000). For example, for b = 32 (hence the number

of degrees of freedom v = 31) and the significance level  = 0.05, we get  = 44.985. If m =

1 000, then  = 1073.643. For the avalanche tests, Table 7.2 also reports the test statistic of

(7.4). As the strong avalanche test produces s different values, the table only reports the larg-

est one. The correlation test is summarized by the metric of (7.6) which is expected to be

normally distributed. Thus again the test passes provided |Z| < 1.96. As can be easily verified,

all instances of H2B reported in Table 7.2 pass all tests. Similar results were obtained for

.2 INTERNATIONAL TEST CONFERENCE

90

other hash functions; their detailed results are not shown here because of space constraints.

Finally, the average number of steps before a collision occurs for b = 32 were recorded; note

that this number is expected to be above the 2b/2= 65 536 level. For the first three hash func-

tions of Table 7.2 the results are: 82 531, 82 314, and 80 818. These numbers clearly demon-

strate that the functions are collision resistant.

NIST Test Suite SP800-22. It consists of 15 test cases [12] that capture various types of

non-randomness in a tested sequence. There are two results reported for each test. The first

Table 7.1 Experimental test setups.

ID HRG Nonlinear function of NSL ID HRG Nonlinear function of NSL

1 104102081 1EB²1E4², 6ACF65C 18 149A4A493 8D7D²828, B128E47D, 1BD728E4, 3A09F6C5,

2 1²2²1²089 AFC650C6, 9F35903A, 39FAC90A DB718E24, 6530CF9A, 28E41BD7, DE1D12D1,

3 12491⁵ 8D7D²828, B128E47D, 1BD728E4, 3A09F6C5 D121²DED, E2ED121D, C56F903A, ACF95C09,

4 1²0850845 1EB²1E4², 6ACF65C 1D²ED1²2, 56CFA6C, 1²B4B²1E, 8D41BE72,

5 1084²215² AFC650C6, 9F35903A, 39FAC90A 878²7³8, 1²2DE²2D, 1DB72E84, 3A9F359,

6 12524924B D²2D2³D, A6C0A63F, 5C936FA, 2³DE³1 C60A935F, F3950C95, ED47B812, 4B4²E1E²

7 1²084215² 5063FAC9, 8D82D8D7 19 10²8020²80² FAC905C9, 6ACF65C, D8EB1427, B4³1E³,

8 128A2⁴B 7²4B8²4B, C50635F6, E1³E²1E 80²801 356A9FC, 39A06CF5, 27EB14D8, 1427D8EB,

9 148³92AB FAC90A39, 1EB³41², CF9AC095, 59FCA90C 1EB²1E4², D4DB242B, C95FC9A0, 935FA06C,

10 152494925 82²7D7²2, 7B8B7484 6530CF9A, A6F3A60C, 1BD728E4, 2E841DB7,

11 124³52AB 7²4B8²4B, C50635F6, E1³E²1E 2BE718D4, 95C0A6F3, 6AC059F3, B²4B4³B

12 1²084³89 FAC90A39, 1EB³41², CF9AC095, 59FCA90C 20 10201010²8 7²4B8²4B, C50635F6, E1³E²1E, 4BE³14²,

13 12²8²92AB C95FC9A0, 6ACF65C, D8EB1427, B4³1E³, 0402041 C9F5C90A, 95CF9AC0, 27D7²282, 2D4²2DB²,

 356A9FC, 39A06CF5, 27EB14D8, 1427D8EB, CF9A6530, 2²B4D²B4, A930A9CF, 2D7³82²,

 1EB²1E4²,FAC905C9, D4DB242B, 935FA06C E12³DE², F5930A93, 90AC9FA3, 4ED71B82,

14 1248⁴AB 182BD4E7, FAC90A39, D2E²1E2², 8³7²87², 82E4D7B1, 428E71BD, 5C60536F, 1BEB²141,

 A093F5C6, F5C60536, 8²2D7²2D, 7²D2³87, 8²787³8, 4E827DB1, ED1DE212, B848B747,

 A06CF539, FC9A3056, FA390539, 9ACF95C, 4B³4B4², FAC60A36, 1²4BE²4B, 41B1EB1B,

 A903A9FC, D2³87³, 8B1247DE, D2³D²2D, 84E2B7D1, A0635F63,

 218BED47, F59C0A9C 21 1020202020 FAC90A39, 1EB³41², CF9AC095, 59FCA90C,

15 18912³AB DED1²21D, 1²87E²87, 93A0935F, 3509C5F9, 4081021 DE8B7421, 3056FC9A, B81274DE, 6C0A6CF5,

 1E1²D2D², 590C59F3, AC6FA36, 359FC59, 5C6F5360, BD4DB242, E248B71D, 1³E²1E²,

 B7B84748, EB4E41E4, 6FA360AC, 2³D7³8, 5309A3F9, 2D1²E1D², 17E718E8, E7E81718,

 39AF3950, 90359F3A, 7B474874, EDE2²12E, D78D82D8, 7484²7B7, 82728D7D, 8D827D72,

 A39F539, 359F3A90, F9AC095C, 5F93A093, FCA903A9, 95C0953F, FAC905C9, E4EB4E41,

 C9FA6350, D8D78D82, 8D7D²828, D2E²1E2² 6A0C593F, AF63A06C, 56F3A603, 6A30653F,

16 12⁴91³ 35F906CA, DE2E12E2, 82E4D7B1, 74²847²B, CF95C09A, E³12³D, 9C50935F, E72BD418,

 2714EBD8, AF63A06C, 1E4²B4E², 9F35CA60, 2E841DB7, 6F35603A, A3F95309, 50635F6C,

 F9AC095C, 1B284E7D, 60536F5C, 4³B³4B 5F39A039, 6AF359C0, 4E7D82B1, 3A6FCA6

17 14892³AB 414E²BE4, 84E2B7D1, 509C5F93, 3A6F356,

 6305C9AF, F6A30653, AFC950C9,

 ED47218B, 28²D7D²8, 2²78D²78, D2³D²2D,

 A90365CF, 717E818E, D²878²D2, 356FC56,

 90AC9FA3, 9FA390AC, EB4E41E4

.2 INTERNATIONAL TEST CONFERENCE

91

Table 7.2 Test results for selected instances of H2B hash function.

ID
Size HRG

/ NSL
NSL
net

Probability
of bits (10)

b-bin histo-
gram (11)

Buckets m =
1000

Weak ava-
lanche (11)

Strong ava-
lanche (11)

Correlation
(13)

Critical val-
ues for (11)

1 2 0.341408 15.171714 967.929472 20.857204 26.852667 0.793266

2 32 / 32 3 0.348225 16.798651 1001.725632 20.496672 25.483826 0.249894 44.98534

3 4 0.673337 16.17676 981.926464 20.336394 28.869524 0.383264

4 4 1.065126 42.642986 985.258496 31.624812 51.687925 1.591422

5 32 / 64 6 1.723612 35.354599 960.810752 32.350022 54.756885 0.202635 82.52873

6 8 1.3848 30.848388 951.933952 36.762751 44.227083 1.379746

7 6 1.316382 49.286045 967.252204 46.450458 73.661659 0.837773

8 32 / 96 9 0.348326 45.50346 994.269867 44.894339 66.963025 0.397192 118.75161

9 12 0.209959 43.594496 956.403436 53.352724 64.341161 0.1097

10 8 0.513635 70.351874 962.317312 60.245379 85.330188 1.402851

11 32 / 128 12 0.589085 67.618693 994.60096 62.572724 85.472336 1.004233 154.30152

12 16 1.460256 67.721048 970.684672 65.259611 88.169214 0.46436

13 12 0.058431 103.441275 928.21283 101.792872 123.886677 0.033146

14 32 / 192 18 0.541091 116.042219 922.640607 114.17055 130.351176 0.593658 224.24462

15 24 1.113679 89.409325 1010.542804 92.064664 130.33149 0.63668

16 16 1.842263 135.679799 1057.012096 140.924885 166.756587 0.405582

17 32 / 256 24 0.927142 117.957137 982.09728 129.330056 160.925416 1.392799 293.24783

18 32 1.042233 144.349938 1024.012672 130.653598 174.616201 0.525602

19 20 0.184487 169.817171 982.09856 162.15213 199.359754 0.121529

20 64 / 320 30 0.139033 166.434921 986.43584 152.88024 212.308449 0.391985 361.65239

21 40 0.085367 171.152361 1028.7616 153.663869 200.283871 1.749202

22 24 0.119153 187.555307 977.251886 194.789192 232.267807 0.771511

23 64 / 384 36 0.30836 196.357552 1070.360354 194.943027 254.049255 0.810477 429.63249

24 48 0.748154 189.708935 941.473842 171.172819 242.768323 0.157293

25 28 0.366544 241.595812 973.174457 226.121026 278.82778 1.092339

26 64 / 448 42 0.79082 220.598005 946.939578 241.547596 279.844239 0.856726 497.29136

27 56 0.299733 205.334778 959.680697 194.959089 275.479326 0.431033

28 32 0.957879 236.528548 996.176576 297.408617 312.834819 0.365718

29 64 / 512 48 0.366708 254.377511 941.661888 282.956952 329.396434 0.526766 564.69613

30 64 0.480779 253.374794 973.382336 247.546911 315.368642 1.677126

31 40 0.369358 332.679631 937.48096 331.727029 385.674723 1.501287

32 96 / 640 60 0.293558 323.976118 988.96256 297.281015 378.35805 0.330312 698.91697

33 80 0.156441 318.579505 960.39552 315.890412 373.951659 0.643606

34 48 0.798682 385.520556 990.396122 365.060894 452.516814 0.071368

35 96 / 768 72 0.617124 424.938139 943.76165 362.100749 448.39882 0.045897 832.53968

36 96 0.161761 383.813599 991.569625 385.940107 446.586431 0.806889

37 56 0.059967 495.341478 960.764911 446.291202 531.418474 0.536629

38 128 / 896 84 0.100422 441.363016 954.734834 447.146135 523.010442 0.65522 965.70946

39 112 0.631393 449.169172 912.28596 468.867435 519.280321 1.051598

40 64 1.474067 493.549278 977.460779 482.413517 586.933893 0.225016

41 128 / 1024 96 0.097678 529.775066 953.794103 469.463117 597.355719 0.513724 1098.52078

42 128 0.189449 511.86527 971.955758 540.722908 587.341028 0.527427

.2 INTERNATIONAL TEST CONFERENCE

92

one is the fraction of sequences that pass a test. Given 1 000 sequences and the significance

level  = 0.01, the pass rate is considered acceptable if it belongs to a range [0.980, 0.999].

The second result (PoP-value, i.e., a p-value of p-values) reports the uniformity of the distri-

bution of p-values obtained for each individual 106-bit long sequence. Hence, all 1 000 indi-

vidual p-values are gathered in a 10-bin histogram where they are tested for uniformity. A

sequence passes an individual test provided the resultant p-value  0.01. The entire sequence

passes a given test provided the corresponding PoP-value > 0.0001. The results of applying

the NIST SP800-22 tests to binary sequences produced by four selected hash functions are

listed in Table 7.3. A number in brackets that follows the test name gives the total number of

subtests a given test consists of. As can be seen, again all examined hash functions pass all

tests. The same applies to the remaining instances of H2B reported earlier in Table 7.2.

Table 7.3 Results for 1,000 1M-bit samples under NIST SP800-22 tests.

 H2B-128 (12) H2B-256 (18) H2B-512 (30) H2B-1024 (42)

Test Pass rate PoP-value Pass rate PoP-value Pass rate PoP-value Pass rate PoP-value

Frequency - mono-
bit (1)

991/1000 0.401199 996/1000 0.19692 992/1000 0.230755 995/1000 0.437274

Block frequency

(1)
985/1000 0.116746 988/1000 0.504219 989/1000 0.43359 994/1000 0.737915

Cumulative sums
(2)

993/1000 0.092041 997/1000 0.255705 995/1000 0.033584 995/1000 0.55442

995/1000 0.39594 994/1000 0.331408 993/1000 0.664168 993/1000 0.544254

Runs (1) 989/1000 0.653773 994/1000 0.538182 987/1000 0.201189 988/1000 0.703417

Longest runs (1) 996/1000 0.894918 987/1000 0.995162 989/1000 0.775337 990/1000 0.41184

Matrix rank (1) 991/1000 0.506194 993/1000 0.731886 985/1000 0.626709 990/1000 0.512137

DFT - spectral (1) 989/1000 0.618385 992/1000 0.268917 988/1000 0.390721 984/1000 0.002028

Non-overlapping

template (148) *

983/1000 0.094285 982/1000 0.55646 981/1000 0.060875 980/1000 0.293952

996/1000 0.546283 996/1000 0.120207 996/1000 0.328297 997/1000 0.771469

Overlapping tem-
plate (1)

992/1000 0.055714 986/1000 0.394195 993/1000 0.872425 991/1000 0.502247

Maurer's universal

(1)
988/1000 0.267573 992/1000 0.100109 991/1000 0.313041 989/1000 0.004908

Approx. entropy
(1)

987/1000 0.989055 993/1000 0.397688 989/1000 0.548314 985/1000 0.727851

Random excursions

(8)

593/602 0.23276 632/641 0.570728 618/619 0.562457 613/619 0.572544

596/602 0.366918 633/641 0.801923 611/619 0.289435 613/619 0.586055

597/602 0.736578 634/641 0.61598 611/619 0.116054 613/619 0.903699

593/602 0.334538 634/641 0.962407 612/619 0.569177 613/619 0.734986

593/602 0.763025 634/641 0.945201 611/619 0.01265 614/619 0.955982

596/602 0.122325 636/641 0.732074 613/619 0.306059 613/619 0.684788

596/602 0.540878 632/641 0.943598 613/619 0.277963 611/619 0.072198

593/602 0.23276 634/641 0.367178 610/619 0.398895 614/619 0.934434

Random excursions
variant (18) *

591/602 0.931952 631/641 0.336751 609/619 0.039384 609/619 0.357162

601/602 0.032561 637/641 0.13091 617/619 0.851109 617/619 0.38749

Serial (2)
996/1000 0.281232 990/1000 0.705466 994/1000 0.542228 992/1000 0.536163

992/1000 0.047785 991/1000 0.183547 994/1000 0.440975 988/1000 0.937919

Linear complexity

(1)
996/1000 0.711601 988/1000 0.342451 990/1000 0.971006 992/1000 0.919131

*) Since this test consists of a large number of subtests, only the smallest and the largest values of the pass

rate are reported herein altogether with the corresponding PoP-values.

.2 INTERNATIONAL TEST CONFERENCE

93

Hardware footprint. An important figure of merit characterizing the new design is its

logic silicon real estate. As shown in Chapter 7.1, the proposed hash function requires h + b

FFs, where h and b are sizes of HRG and NSL, respectively. Moreover, logic gates are also

needed to implement all linear and nonlinear functions, data injectors, reset logic, etc. Their

quantity depends primarily on b. Table 7.4 reports the silicon real estate taken up by different

instances of H2B in terms of gate equivalents (GE), where one GE is the area occupied by a

2-input NAND gate. The presented numbers were obtained with a commercial synthesis tool.

All components of logic were synthesized using a 7nm CMOS standard cell library. In addi-

tion to clock tree synthesis, the deployed design flow was comprised of placement and route

with intermediate timing optimizations. For selected hash functions of Table 7.2, Table 7.4

reports the number of combinational and sequential cells, the number of buffers/inverters,

and the number of references, i.e., library components used in building larger blocks. The

corresponding GE numbers with respect to the aforementioned cells are listed in the right

part of the same table. Finally, the last two columns of the table provide a maximal operating

frequency of each design after assessing its critical paths and results of statistical power anal-

ysis based on the circuits’ switching activity at 400 MHz.

7.3 Resilience against attacks

Cryptographic hash functions, essential parts of many security systems, can be exposed to

various types of malicious activities. This chapter summarizes various arguments applicable

to the resilience of the proposed family of hash functions against several forms of attacks and

cryptanalysis techniques when H2B is employed in its unkeyed form, i.e., as a modification

detection code (MDC). Typically, attacks on a hash function are defined as algorithms that

Table 7.4 Hardware footprint - equivalent 2-input NAND gates.

ID
Size HRG

/ NSL
Nets

Combina-
tional cells

Sequential
cells

Buffers
inverters

References
Combina-
tional area

Buf/inv
area

Sequential
area

Total
area

Speed
[GHz]

Power
[µW]

1 32 / 32 348 154 64 37 7 270 28 352 622 6.25 89.26

4 32 / 64 546 256 96 72 7 429 54 528 957 6.25 134.26

7 32 / 96 769 385 128 137 7 614 111 704 1318 5.56 309.25

10 32 / 128 978 497 160 181 7 783 146 880 1663 5.56 387.48

13 32 / 192 1537 767 224 260 17 1215 209 1232 2447 5.56 566.24

16 32 / 256 1940 974 288 339 17 1533 273 1584 3117 5.56 720.52

19 64 / 320 2567 1263 384 427 25 2015 344 2112 4128 5.56 958.24

22 64 / 384 2979 1484 448 505 25 2358 406 2464 4822 5.56 1116.95

25 64 / 448 3373 1686 512 589 25 2665 473 2816 5481 5.56 1265.88

28 64 / 512 3773 1895 576 669 25 2986 537 3168 6155 5.56 1423.48

31 96 / 640 4998 2480 736 839 45 3941 674 4049 7989 5.56 1835.09

34 96 / 768 5820 2913 864 1000 45 4607 803 4753 9360 5.56 2153.10

37 128 / 896 6994 3484 1024 1170 61 5534 940 5633 11167 5.56 2542.66

40 128 / 1024 7787 3898 1152 1337 61 6165 1073 6337 12501 5.56 2837.17

.2 INTERNATIONAL TEST CONFERENCE

94

try to find either a collision, second preimage, or preimage with an adversary having full

control over all input bits.

Collision resistance. It is an intuitive concept which is rather difficult to formalize

[156], as collision attacks depend on particulars of a given hash function [87]. Nevertheless,

the previous chapter has shown the number of hash compressions before a collision occurs

on the b-bit output of the presented function, i.e., on the outputs of NSL. Experiments run for

b = 32, …, 64 bits confirmed that in all test cases a mean value of this number was greater

than the birthday bound. One may conclude, therefore, that the collision resistance level of

H2B is no less than 2b/2.

 Second preimage resistance. Recall that collision resistance is strictly stronger than

second preimage resistance [94], and thus collision resistance implies second preimage re-

sistance (also referred to as weak collision resistance). As a result, the second preimage re-

sistance of H2B is also expected to be 2b/2.

Preimage resistance. Up to date, it is impossible to find any systematic (algorithmic)

method that could be used to reverse processing steps of H2B, hence to find an input sequence

leading to a given state of NSL. Since H2B consists of the hybrid linear ring generator feeding

the sequential block deploying a group of highly nonlinear yet balanced Boolean functions

in its feedback network, it makes linearizing all rounds of H2B but a very few computation-

ally infeasible. In other words, finding such an input has the complexity of a brute force

search that would take approximately 2b steps. As the proposed scheme is not constrained by

the output size b and the number of rounds – they can be freely selected as shown in the

previous chapters – H2B can be regarded secure.

Differential attacks. They exploit nonuniform propagation of differences within blocks

forming a given cryptographic hash function. To analyze the resistance of H2B to differential

attacks, experiments were run for all designs of Table 7.2 similar to those of the avalanche

tests and aimed at checking a responsiveness of successive output bits to a single input

change. Given a random binary token r, test flips a given bit of r to obtain token r’, determines

the corresponding digests d and d’, and then D = d  d’. The value of D is subsequently used

to update H(k) (again, H is a b-bin histogram, where b is the digest size) that counts the

number of times the output bit k has flipped in a response to a single-bit change in the input.

After repeating this experiment N times, one can check the average value of H(k) for k = 0,

…, b – 1 altogether with minimal and maximal results. The same experiment has to iterate

for all or a subset of input bits. The actual experiments were run for N = 10,000 and by

flipping all input bits. In all examined test cases, the obtained results have confirmed that the

resultant hash values cannot be distinguished from random samples, and therefore an adver-

sary will be unable to detect statistical patterns in the distribution of D’s. For the sake of

illustration, consider the results obtained for design no. 5 with b = 64 and by flipping bits of

each 63-bit token (see Table 7.5). For each input bit, the table reports the mean value of H(k),

as well as the minimal and maximal values of H(k) that could be indicative of any excessive

.2 INTERNATIONAL TEST CONFERENCE

95

deviations from the expected average. As can be easily verified, for all token bits, the corre-

sponding toggling rates of output bits are very close to 0.5, and this is also confirmed earlier

by the statistics (11) computed for the avalanche tests (Chapter 7.2).

Cube attacks. A cryptographic hash function can be seen as a black-box computing a

set of Boolean functions. It paves the way for algebraic cryptanalysis techniques, including

so-called cube attacks which are based on the reformulation of hashing results as polynomial

functions over GF(2). The actual attack consists of 1) a preprocessing phase that selects ran-

domly a subset of variables called a maxterm to verify if the resultant factorization of the

original function by the maxterm yields a linear expression, and then 2) the online phase

where, given a large number of maxterms and linear expressions found earlier, one uses a

Gaussian elimination to recover secret variables [53]. This type of attack is applicable to

functions whose ANF has low degree and low density. Thus, a symbolic simulation of se-

lected instances of H2B was executed to reconstruct ANFs on its outputs. These experiments

are only feasible for a relatively short s-bit input messages and small registers of HRG and

NSL (the latter items determine the number of secret variables). Table 7.6 illustrates a basic

trend for s = 16, b = 32, and four 5-input nonlinear functions deployed as a feedback network

of NSL. Given an output bit, the corresponding entries to the table show how many mono-

mials of a given degree   [s – 3, s] occur in ANF of a function associated with that bit.

Table 7.5 Differential attack results.

Input Mean Min Max Input Mean Min Max Input Mean Min Max

0 0.500013 0.498943 0.501206 21 0.499937 0.499008 0.500875 42 0.500046 0.499091 0.500865

1 0.50015 0.49909 0.501567 22 0.500126 0.499129 0.501354 43 0.500029 0.499038 0.500623

2 0.499936 0.498999 0.50093 23 0.49997 0.499114 0.500878 44 0.499924 0.4991 0.500727

3 0.500062 0.499256 0.501063 24 0.499999 0.498861 0.501042 45 0.500018 0.498695 0.50101

4 0.500098 0.499298 0.50126 25 0.500086 0.499438 0.500892 46 0.500014 0.498984 0.501057

5 0.499778 0.498832 0.500587 26 0.500165 0.499348 0.501024 47 0.499962 0.499155 0.501035

6 0.500044 0.49907 0.500832 27 0.499962 0.498922 0.500641 48 0.499975 0.498955 0.500895

7 0.500026 0.498195 0.501149 28 0.500018 0.499291 0.50101 49 0.500075 0.498592 0.501307

8 0.499929 0.49912 0.500564 29 0.49979 0.498972 0.500976 50 0.499833 0.499019 0.501219

9 0.49989 0.498752 0.500966 30 0.500144 0.499204 0.501375 51 0.499888 0.498814 0.500975

10 0.499934 0.498958 0.501399 31 0.499941 0.498818 0.500785 52 0.499828 0.498791 0.500901

11 0.499885 0.499044 0.501367 32 0.49994 0.499213 0.500685 53 0.500045 0.498924 0.500946

12 0.499973 0.498752 0.501033 33 0.500045 0.49922 0.501242 54 0.499813 0.499107 0.500469

13 0.500028 0.499056 0.50056 34 0.499904 0.499174 0.500739 55 0.500007 0.499135 0.501291

14 0.499949 0.499389 0.500858 35 0.499894 0.498804 0.500692 56 0.500085 0.499218 0.500831

15 0.500021 0.499062 0.500944 36 0.500018 0.498931 0.501218 57 0.500081 0.498574 0.501422

16 0.499984 0.498651 0.500761 37 0.500006 0.498414 0.500836 58 0.499903 0.498834 0.50108

17 0.500001 0.49879 0.50095 38 0.500099 0.499352 0.501236 59 0.499916 0.498739 0.501195

18 0.500056 0.498308 0.501083 39 0.499998 0.498912 0.501002 60 0.499892 0.498646 0.500771

19 0.500177 0.499484 0.501894 40 0.499911 0.498835 0.501051 61 0.499987 0.499161 0.501043

20 0.499947 0.49896 0.500885 41 0.500065 0.499255 0.501263 62 0.50005 0.498959 0.501059

.2 INTERNATIONAL TEST CONFERENCE

96

These and other results not reported here clearly confirm a more general observation that if

the number n of inputs tends to infinity, random Boolean functions have almost certainly

algebraic degree at least n − 1 since the number of Boolean functions of algebraic degree at

most n − 2 is negligible with respect to the number of all n-argument Boolean functions [27].

The above findings are necessary to conclude that H2B is virtually immune to a cube

attack. However, even a high algebraic degree of a hash function may not guarantee that all

usable maxterms be of similar degree. Indeed, several maxterms can be of degrees which are

considerably lower than the degree of the entire function. This is because a cube attack sets

to zero all public variables that are not part of a maxterm, thus eliminating many higher de-

gree terms. In fact, the degree of usable maxterms depends primarily on the ratio of the num-

ber of secret variables to the number of public variables and the extent to which the secret

variables have diffused throughout the function. Fortunately, the high degrees of the resultant

functions associated with all outputs of NSL (see Table 7.6) ensure that monomials of degree

at least s + 1 comprise the secret variables.

Slide attacks. A requirement for a slide attack to work on a cryptographic hash function

is that it can be broken down into multiple rounds of an identical function. As shown in the

previous chapters, H2B makes it impossible to have two valid initial states shifted by a certain

number of clock cycles, and such that the shift persists through all iterations required to com-

plete the hashing process. As a result, the proposed hash function is resistant against slide

attacks.

Side-channel attacks. This class of attacks comprises several methods aimed at extract-

ing information from microelectronic devices through analyzing their physically observable

characteristics such as power consumption, processing time, electro-magnetic radiation, heat

Table 7.6 The number of monomials of a given degree.

Bit s – 3 s – 2 s – 1 s Bit s – 3 s – 2 s – 1 s

0 265 64 7 1 16 295 58 8 1

1 260 52 10 0 17 276 62 7 0

2 268 52 9 0 18 283 62 7 1

3 282 61 10 1 19 282 64 4 0

4 285 60 9 0 20 295 66 7 0

5 288 58 9 1 21 291 57 10 0

6 301 63 11 1 22 285 50 9 0

7 273 61 8 0 23 264 52 9 0

8 291 59 6 1 24 279 51 11 0

9 268 57 7 1 25 298 65 7 1

10 267 52 7 1 26 285 73 10 0

11 278 61 11 1 27 276 59 10 1

12 300 67 10 1 28 267 60 9 1

13 270 50 6 0 29 268 56 12 1

14 271 57 8 0 30 302 58 9 0

.2 INTERNATIONAL TEST CONFERENCE

97

dissipation, or light and acoustic emissions. Interestingly, the proposed hash function has

approximately half of its flip-flops set to 1 most of the time. Hence, it is virtually impossible

to trace and interpret its internal states at any processing cycle by means of external leakage

probes. For example, a power consumption model aimed at detecting the number of transi-

tions in each cycle has to take account of toggling in both HRG and NSL. However, with

secret keys initializing both registers to patterns having roughly the same counts of 0s and

1s, and with nonlinear functionality of NSL, such analysis becomes impractical.

In contrast to multiple-round-based hash functions that feature separate steps such as

substitutions, row shifts, or column swaps, H2B-based hashing is carried out simultaneously

within its linear and nonlinear logic. This modus operandi makes it infeasible to derive useful

internal values or sequential states, and it is hard to trace any HRG or NSL-specific charac-

teristics. Finally, one may observe that H2B was primarily designed as a key part of an em-

bedded hardware root of trust. As such, it is hard to measure any physical characteristic of

either H2B or the root of trust as a whole.

7.4 Built-in self-test

As the root-of-trust mission is to secure ICs and to protect their design-for-test (DFT) infra-

structure, its test should be an autonomous routine that relies either entirely or in large part

on internal on-chip resources that do not interfere with other DFT components such as scan

chains. As logic BIST provides neither full observability nor full controllability of internal

storage elements from the IC interface, it can be used to test hardware of cryptographic hash

functions such as H2B. In LBIST, the original circuit is typically enhanced by PRPGs and

test response compactors. The simplicity and functionality of the new design, however, can

facilitate its self-testing without resorting to additional test logic blocks.

 The entire LBIST session is based on the H2B native functionality. In particular, HRG

is repurposed to be used as a PRPG. It is worth noting that pseudorandom data and possible

errors can easily propagate through the HRGs due to their functionality. Moreover, NSL can

act as a MISR producing a final test result. It observes outputs of the phase shifter and non-

linear functions, and accumulates test responses.

A test session begins by resetting all memory elements comprising H2B except one

stage of HRG which is set to 1. Similarly to the mission mode, the actual test runs for a

number of clock cycles necessary to produce a digest. After test completion, valid test results

are available in the memory elements of NSL. This simple BIST procedure is fault simulated

for all single stuck-at faults within the circuitry every H2B of Table 7.2 consists of. It appears

that 4b clock cycles suffice to obtain a complete coverage of all testable stuck-at faults; recall

that b is the number of FFs the NSL block consists of. Interestingly, no aliasing events were

observed, i.e., having a signature of a fault-free circuit produced by a faulty device.

.2 INTERNATIONAL TEST CONFERENCE

98

A slightly different BIST scenario has to be used to test programmable instances of

H2B. In order to make it testable, HRG is redesigned in such a way that it becomes capable

of generating autonomously tests that subsequently will feed the selection mask register. It

can be accomplished by virtue of a 2-bit twisted ring counter that reuses two rightmost FFs

of HRG, as shown in Fig. 7.3. Regardless of how the counter is initialized, it will go through

the following sequence of states: 00 →10 → 11 → 01 → 00, thus producing on its output a

repeatable pattern 0011 – the test sequence which suffices to check the integrity of the mask

register and the logic it drives. A multiplexer is used to interface the counter with the mask

register, with no need for any initialization circuitry. Again, the proposed circuitry was fault

simulated to find out that 4b clock cycles are enough to ensure that all nets in the circuit

assume both values: 0 and 1. It allows one to excite all stuck-at-1 and stuck-at-0 faults, re-

spectively.

7.5 Comparison with other schemes

Given the volume of the earlier work, it is virtually infeasible to offer a compact yet compre-

hensive comparison of H2B with the remaining state-of-the-art solutions. Especially since

such a comparison or assessment might be misleading or unfair for several reasons. For ex-

ample, there is always a certain degree of uncertainty as far as the actual implementation of

any hash function is concerned, including the impact of a deployed semiconductor technol-

ogy. Moreover, existing solutions differ in terms of design assumptions, their primary objec-

tives, as well as metrics used to evaluate particular schemes. Fortunately, the work presented

recently in [191] provides a meticulous comparison of lightweight hash functions in terms of

their performance. One may find there details of a silicon real estate, throughput, latency, and

power consumption of 34 lightweight hash functions used in academia and industry.

Based on the results presented in [191] and also [6], Table 7.7 shows the aforemen-

tioned data regarding a few state-of-the-art hashing schemes (references regarding those

schemes can be found in [191]; the numbers following the name give the digest size). The

second column of the table provides the silicon area used by the hash functions in terms of

2-input NAND gates, similarly to a metric deployed in Chapter 7.2. The next column reports

the number of clock cycles necessary to arrive with the final hash value. Column Throughput

gives the number of Kbits per seconds that corresponds to the number of plaintexts processed

per a time unit. Finally, the last column quantifies the amount of power (in W) required to

run the hashing circuitry. It is worth noting that throughput and power metrics were obtained

for a frequency of 100 KHz. For the sake of comparison, the same table offers the extracts of

earlier data characterizing a few instances of H2B (recall that these data were obtained for

400 MHz frequency). As can be seen, given the digest size, the proposed solution deploys

similar gate counts and needs iterations in the same ranges as those of other schemes intro-

duced earlier in the technical literature and in the industry. At the same time, thanks to its

.2 INTERNATIONAL TEST CONFERENCE

99

shall combinational logic, performance and power consumption of H2B either compares fa-

vorably or remains similar relative to its much higher working frequency.

Table 7.7 Comparison with other hash functions.

Hash function Area [GE]
Latency
[cycles]

Through-
put [Kbps]

Power
[µW]

ARMADILLO-80 2923 176 272.00 44.00

ARMADILLO-160 5406 320 250.00 83.00

KECCAK-128 2520 900 8.00 5.60

KECCAK-160 4900 900 222.22 27.60

PHOTON-128 1122 996 1.61 2.29

PHOTON-224 2786 204 15.69 6.50

DM-PRESENT-80 1600 547 14.63 1.83

H-PRESENT-128 4256 32 200.00 8.09

U-QUARK-136 1379 544 1.47 2.44

S-QUARK-256 2296 1024 3.13 4.35

SLISCP-hash-160 2492 144 29.62 7.44

SLISCP-light-160 2051 96 44.44 5.05

SPONGENT-128 1060 2380 0.34 2.20

SPONGENT-256 3281 120 11.43 6.62

H2B-128 (10) 1663 512 200 Mbps 387.48

H2B-256 (16) 3117 1024 200 Mbps 720.52

H2B-512 (28) 6155 2048 200 Mbps 1423.48

.2 INTERNATIONAL TEST CONFERENCE

100

.2 INTERNATIONAL TEST CONFERENCE

101

8. Stream cipher for scan encryption

Additive SCs play a host of roles in securing variety of digital ecosystems. In particular, they

can encrypt and decrypt test data used in manufacturing and in-system test of digital ICs. By

assuming such a role, SCs become an essential part of hardware roots of trust that protect ICs

against hardware security threats. However, a common concern raised by IC vendors is re-

lated to the complexity of security primitives that are not optimized for their hardware im-

plementations. This concerns had motivated the following solution that introduces a new

lightweight and scalable test data stream cipher. It combines a HRG with two nonlinear Gal-

ois feedback shift registers to yield a number of parallel, cryptographically secure pseudoran-

dom keystreams.

8.1 General architecture

The cipher presented in this chapter is primarily destined to be a part of DFT ecosystems

where it can work with a RoT handling secure operations of on-chip test logic used by both

the semiconductor manufacturing test and in-system test solutions. For example, it can be

used as a part of a DFT authentication protocol within an SSN. It places two ciphers on inputs

and outputs of the SSN bus and the IJTAG network, as shown in Fig. 8.1, in order to decrypt

and encrypt the content of the IJTAG communication and the SSN bus. These ciphers must

be very fast – they have to match the speed of SSN typically operating at much higher shift

frequencies than in-core DFT logic does.

Although both ciphers use the same principles, they can differ with respect to architec-

tural details of modules they both consist of. The proposed SC is comprised of three building

blocks: an h-bit maximum-length programmable hybrid ring generator (PHRG) and two max-

imum-length NLFSRs [66], which are m- and n-bit wide; Fig. 8.2 is a block diagram of this

Figure 8.1 Root of trust protecting a 6-core SoC design using SSN [40].

.2 INTERNATIONAL TEST CONFERENCE

102

design. In general, the values of h, m, and n can be pairwise different, and the periods of these

registers are 2h – 1, 2m – 1, and 2n – 1, respectively. The sequential parts are initialized by

uploading secret values, including a selection mask that sets a feedback function of PHRG.

To maintain a high diffusion level of the cipher, the selection mask is dynamically retrieved

and stored in a mask register (MR) as a part of PHRG initialization process, as explained in

Chapter 8.2. In a mission mode, NLFSR-produced streams pass through linear filters to ob-

tain signals among which are those that PHRG randomly selects to form pseudorandom key-

streams. The distinctive feature of the proposed design is its selection mechanism that allows

PHRG to pick certain signals and output successive bits of a keystream. This is accomplished

through selectors – represented by green boxes in Fig. 8.2 – one per a single output. Key-

streams are finally used to yield encrypted data by following the Vernam principle.

A magnified green box in Fig. 8.2 illustrates how a single selector is designed. It em-

ploys two v-input multiplexers implementing a “one-hot” selection method. The multiplexers

receive dedicated control signals from PHRG via its phase shifter [121]. The latter device is

employed to enlarge the number of shifted replicas of a PHRG-specific m-sequence (recall

that PHRG is a customized form of a maximal linear finite state machine). Effectively, the

selector outputs a sum modulo 2 of two bits, each of which is picked randomly from one of

v linearly filtered NLFSR-produced sequences. As both multiplexers accept v data inputs, the

scheme enables v2 dynamic pairs of NLFSR streams in total to produce a single keystream,

one pair (combination) per clock cycle. For example, if v = 4, then every selector of Fig. 8.2

allows one to combine two nonlinear streams at a time in one of 16 different ways.

Figure 8.2 Block diagram of the proposed SC.

.2 INTERNATIONAL TEST CONFERENCE

103

8.2 Programmable hybrid ring generators

PHRGs allows one to shift-in a secret mask that sets and retains the feedback function when

this unit is in operation. To initialize the entire circuitry, a selection mask and an initial value,

both encoded, are separately uploaded to MR and PHRG, respectively, using an XOR gate

(Fig. 8.3). When MR is receiving data, clocking of PHRG is disabled and vice versa. Next,

the two sequences are blended with each other by running both registers in parallel until MR

reaches a state representing a desired feedback function and PHRG settles down to a prede-

fined initial state. During that phase MR receives data from PHRG while the resultant content

of two selected FFs of PHRG is superposed with two secret keys initializing both NLSFRs,

as shown by the dotted lines in Fig. 8.2. Since then, the MR clocking and links between

PHRG and NLFSRs are all disabled.

The input sequence used by the above process is obtained by virtue of O(h) backward

logic simulation of both registers, beginning with a final selection mask and a PHRG state

(see Fig. 8.4a; Boolean variables a, …, g represent here the PHRG content but one FF set to

1). In principle, this technique reverses direction of all PHRG connections but feedback taps

whose masks show up gradually in MR as initialization progresses. It allows one to run a

given PHRG backwards provided there is a single PHRG FF that is not controlled by MR.

Then its predecessor can feed MR and make it possible to easily recover a previous bit of the

mask, and thus a feedback function, to carry PHRG another step backwards. Fig. 8.4b is a

single step back of MR fed by a logic 1 from PHRG, while Fig. 8.4c shows the resultant step

back of PHRG itself. Note that certain FFs of MR control two feedback taps in a mutually

exclusive manner. This is to avoid having two oppositely disposed feedback nets, not sepa-

rated by any HRG FF; such nets make a given HRG irreversible as certain states would be

reachable from two predecessors.

Figure 8.3 Programmable 25-bit HRG.

.2 INTERNATIONAL TEST CONFERENCE

104

A direct use of HRG to control the selectors of Fig. 8.2 may compromise the encryption

quality because of structural and linear dependencies between the HRG outputs. To reduce

such dependencies, a phase shifter is deployed in conjunction with HRG. It entails a set of

linear combinations of the HRG outputs. Obtained sequences are shifted with respect to every

other sequence by at least a predefined number of bits. Furthermore, a phase shifter can en-

large the HRG output space, that is, it allows a relatively short HRG to drive a large number

of selectors. It may substantially reduce the cipher’s sequential logic footprint, as shown in

Section 8.4G.

8.3 Primitive nonlinear feedback shift registers

As shown in Fig. 8.2, the new SC employs two maximum-length (primitive) NLFSRs whose

output sequences are typically of very large linear complexity and high degrees of security,

and thus immune to, for example, algebraic attacks. Recall that an n-bit primitive NLFSR

has a period of 2n – 1 (inclusion of a missing state requires adding a circuit driven by all n

variables; usually such a solution does not justify this incremental enhancement). Both

NLFSRs are of Galois type, where, in principle, every FF can be updated by its own individ-

ual feedback function [59]. The actual structure of NLFSRs adapted here is similar to the

example shown in Fig. 8.5. As in HRG, an n-bit NLFSR consists of an n-bit circular shift

register and a number of feedback taps driven by Boolean functions of up to five variables.

Figure 8.4 Backward simulation of the 8-bit PHRG: a) a desired initial state (a simulation starting point),

b) registers after a single step back of MR, and c) after a single step back of PHRG.

Figure 8.5 26-bit primitive NLFSR with ANF 0, 7, (20, 21), (13, 14, 16), (19, 20, 21), (12, 13, 14, 16).

.2 INTERNATIONAL TEST CONFERENCE

105

Clearly, at least one of these functions has to be nonlinear. To make the used NLFSRs layout-

friendly and capable of matching the SSN speed, their structure is further optimized in such

a way that each feedback function is fed by five, preferably consecutive, FFs at the most, and

these input variables are constrained to the “upper” section of the register, if possible.

Back to Fig. 8.5, it illustrates a primitive 26-bit NLSFR, where three FFs (2, 5, and 8)

are driven, through the XOR gates, by the following functions:

f2 = ~x22  x23  x24, f5 = ~x18  x19  x20  x22, f8 = x16,

where “~” denotes a logic inversion. The corresponding algebraic normal form of the feed-

back function is given by:

x0 + x7 + x20  x21 + x13  x14  x16 + x19  x20  x21 + x12  x13  x14  x16.

The above formula can be verified by using a method presented in [58]. Boiling the many

details down, the presented structure is first brought back to its equivalent Fibonacci format

whose feedback function can be easily retrieved, and then used to obtain the ANF by means

of well-known algorithms. We adapt a notation where all variables are replaced with their

indexes, and all product terms comprising more than a single variable are grouped by paren-

theses. For instance, the ANF of NLFSR of Fig. 8.5 can be written down as 0, 7, (20, 21),

(13, 14, 16), (19, 20, 21), (12, 13, 14, 16). It is worth noting that this particular NLFSR has a

fully planar structure, and thus it is amenable to efficient place-and-route steps that provide

layout-friendly and timing-optimized solutions. Fig. 8.6 is another NLFSR example. It is a

primitive 28-bit circuit with six all-nonlinear feedback taps. Its ANF is given by 0, 14, 23, 6,

(10, 9), (11, 14), (23, 25), (23, 26), (6, 8), (10, 8, 9), (12, 15, 16), (18, 19, 20), (23, 25, 26),

(16, 18, 19, 20). In contrast to a direct ANF-based implementation of this NLFSR that would

need 10 AND gates and even more 2-input XOR gates, the circuit of Fig. 8.6 is area optimized

and employs just six AND gates and six XOR gates, thus achieving a visible reduction of

both the gate count and the latency. NLFSRs of Fig. 8.5 and 8.6 have been found, among

others, by a search engine described briefly at the end of this chapter.

Primitive n-bit Galois NLFSRs are capable of generating output sequences with the

period of 2n – 1, as shown in [58]. Among them there is always a sequence (and its shifted

replicas) that satisfies the first two postulates of randomness by Golomb [71], i.e., (1) in a

Figure 8.6 28-bit primitive NLFSR with ANF 0, 6, 14, 23, (10, 9), (11, 14), (23, 25), (23, 26), (6, 8),

(10, 8, 9), (12, 15, 16), (18, 19, 20), (23, 25, 26), (16, 18, 19, 20).

.2 INTERNATIONAL TEST CONFERENCE

106

period of the sequence, the 0 and 1 counts differ by at most 1, (2) in every period, 2–k of runs

have length k = 1, 2 …, as long as the number of runs so indicated is greater than 1. For each

of these lengths, there are as many 0-runs as 1-runs. Also, each n-tuple occurs in the se-

quences exactly once but a missing state which is a feedback function dependent. Consider

again the NLFSR of Fig. 8.5. Sequences observed on the outputs of FFs 2, 1, 0, 25, 24, …, 9

contain all 226 – 1 = 67 108 863 different (overlapping) 26-tuples. Two other sequences on

FFs 6, 7, 8, and 3, 4, 5 have the period of 226 – 1, as well. They comprise, however, 41 641

431 and 37 963 775 different 26-tuples, respectively. In these two cases, certain 26-tuples

occur more than once, whereas others are missing. In general, an n-bit Galois NLFSR with

m feedback taps yields as many as m different sequences (and their shifted replicas) having

the period of 2n – 1, where m is also the number of groups of consecutive FFs separated by

m XOR gates. The number of different n-tuples produced by each output can be used to rank

them and thus to help the process of selecting sequences that will feed an associated linear

filter (Fig. 8.2).

To increase the number of sequences that drive the multiplexers (see Fig. 8.2), outputs

of both NLFSRs are linearly filtered within circuits referred to as the expanders, made of

XOR gates whose fan-in is either two or three to reduce expanders hardware footprint. Alt-

hough linear functions that take as inputs at least two stages of a given n-bit primitive NLFSR

yield a sequence with a period of 2n – 1 [67], little is known about the distribution of over-

lapping k-tuples across a single period of such a sequence. The number of different n-tuples

in the same sequence remains an open problem, too. For example, three different output se-

quences observed in the NLFSR of Fig. 8.5 (as mentioned earlier) give rise to 70 new se-

quences with the period of 226 – 1 produced by 2-input XOR gates, and additional 783 se-

quences of the same period obtained by virtue of 3-input XOR gates. Sequences with the

highest counts of overlapping 26-tuples are formed by the following linear filters: x2 + x9 (65

174 655 overlapping 26-tuples), x0 + x1 (56 623 103), x0 + x24 (51 445 759), x0 + x21 (49 082

367), x0 + x23 + x24 (48 529 407), and x0 + x20 + x24 (48 369 663).

A single keystream is finally generated by XOR-ing two nonlinear sequences observed

on the outputs of the corresponding multiplexers. As shown before, these devices are fed by

the expander outputs, i.e., linear combinations of NLFSR stages. To avoid reconvergence of

a signal originating at a certain NLFSR stage, each multiplexer accepts only those expander

outputs that do not share NLFSR-produced sequences. Therefore, a multiplexer may have

inputs such as x2 + x9 and x3 + x7, but it will avoid, for instance, inputs x0 + x1 and x0 + x7. A

more detailed characterization of the keystreams is provided in Chapter 8.4.

A final note on how the deployed NLFSRs were actually identified. No practical way

is known to determine a feedback function of an n-bit NLFSR that leads to a maximum-

length period of 2n – 1. Although the scheme of [56] allows designers to construct primitive

Galois NLFSRs for large n in a time-efficient manner, a linear complexity of the resultant

sequences is low and such NLFSRs do not achieve a desired cryptographic security. This is

.2 INTERNATIONAL TEST CONFERENCE

107

because the proposed approach reorders partially a state trajectory of a primitive n-bit LFSR

by adding two copies of a nonlinear Boolean function to the LFSR feedback network; these

functions are then moved apart from each other. Since checking whether other n-bit NLFSRs

are primitive takes O(2n) CPU time, experiments employed an FPGA-based search engine

comprising a large number of identical modules operating in parallel. The chief function of

every module is to run a Galois NLFSR, structurally similar to those of Fig. 8.5 and 8.7, and

to verify its period. It requires control signals to select a feedback function, and thus to setup

an NLFSR it is going to examine. The control part of the engine consists of a large, free-

running, LFSR-based control data generator. In response to a request received from an indi-

vidual module, it returns a pseudorandom sequence of signals that determine a nonlinear

feedback function. It consists of several feedback taps, each being a product of up to five

input variables.

Consequently, a control sequence includes the number of feedback taps as well as bits

that enable both successive taps and successive variables of a given tap. Additional bits indi-

cate, per a feedback tap, whether a given input variable is to be inverted. Finally, there are

bits encoding locations of the XOR gates – the outputs of the enabled taps, and signaling

which outputs are to be inverted.

Table 8.1 lists selected primitive Galois NLFRSs, ranging in size n from 16 to 32. They

were found by using the described FPGA-based search engine. Note that other NLFSRs of

size up to 24 are also reported in [57]. The second column of the table uses a shorthand

notation of a feedback function as a list of parenthesized feedback taps (product terms). Every

tap consists of a FF ID (receiver:) fed, through an XOR gate, by an appropriate product of

variables and their complements; here only the index i of the variable xi is retained, and thus

it can be represented by a FF ID (driver). Inverted variables appear with a minus sign. Simi-

larly, if a NAND gate forms a given tap, then a minus precedes the receiver ID. For example,

the NLFSR of Fig. 8.5 is defined as follows: (2: 24, 23, -22), (5: 22, 20, 19, -18), (8: 16). The

next three columns give the number of different (not shifted replicas) output sequences with

the period of 2n – 1, which are either observed directly on the outputs of a given NLFSR

(column S) or are obtained by using a 2-input XOR gate driven by certain outputs of the

NLFSR (column D), as well as those obtained by a similar linear filter having three inputs

(column T). The linear complexity of sequences comprising all 2n – 1 n-tuples is given in

column LC for n  22. The last two columns detail a few selected output sequences with the

period of 2n – 1 but having the number of different n-tuples smaller than 2n – 1. First, the

column XOR provides FFs driving a given XOR gate (a linear filter) producing the sequence

whose n-tuple count is reported in the subsequent column. Consider, for instance, the value

of 890 999 listed for n = 20. It indicates that a 3-input XOR gate fed by FFs 0, 1, and 19 yields

a sequence that features 890 999 different 20-bit tuples (out of 220 – 1 possible combinations).

.2 INTERNATIONAL TEST CONFERENCE

108

8.4 Experimental results

The presented SC was validated by means of several tests [24], including two statistical test

suites [12], [179] from the NIST and another test set (AIS-31) provided by the German IT

security certification authority (BSI) [91]. This chapter reports the results obtained for four

instances of the cipher with the following values of h, m, and n (the last value c gives the

total number of states a given cipher can cycle through):

• L1: h = 48, m = 17, n = 19, c  1.93  1025,

• L2: h = 61, m = 31, n = 32, c  2.13  1037,

• L3: h = 89, m = 31, n = 32, c  5.71  1045,

• L4: h = 127, m = 31, n = 32, c  1.57  1057.

The architectural details of the maximum-length NLFSRs used in the experiments can be

found in Table 8.1. The maximum-length feedback functions of the PHRG are as follows:

• f1(x) = x48 – x41 – x35 – x28 + x22 – x17 – x12 + x8 + 1,

• f2(x) = x61 – x53 + x45 + x38 – x29 + x20 + x14 – x5 + 1,

• f3(x) = x89 + x80 – x70 + x58 – x46 – x34 – x23 + x10 + 1,

• f4(x) = x127 – x108 – x90 + x75 + x64 – x46 – x34 + x16 + 1.

Moreover, SCs in all cases used 64 selectors, each comprising two 2-input multiplexers to

yield 64 keystreams, as shown in Fig. 8.2. Due to space constraints, the tables only report the

results for a single keystream of each cipher except Table 8.2.

Binary sequences (keystreams) subjected to tests were serially collected from all 64

outputs. To mimic accurately the cipher behavior, all its registers were reseeded every c =

106 clock cycles with pseudorandom values produced by the Mersenne Twister. The cipher

was run for 109 cycles, thereby producing, on each output, N = 1000 consecutive sequences,

each comprising 106 bits to meet the requirements of the NIST tests. The same sequences

were used to run most of the remaining tests. The next sections introduce each test and discuss

the corresponding experimental results. Several tests that have already been described in

Chapter 7.2 are also included for the sake of completeness.

A. Probability of bit values

This test is aimed at checking if the logic value of 1 occurs on every bit of a keystream

approximately half of the time. Let P1(b) be the probability of having 1 on bit b:

 P1(b) = Cb / N, (8.1)

where Cb is the 1s count on bit b. The sample mean S of P1(b), b = 0, 1, …, c – 1, is then

approximately normally distributed under the null hypothesis that the P1(b)’s are independent

and identically normally distributed random variables. If  is the sample standard deviation,

then the test statistic

 Z = √c(S - 0.5) /σ (8.2)

.2 INTERNATIONAL TEST CONFERENCE

109

Table 8.1 Selected maximum-length nonlinear feedback shift registers.

n Feedback taps S D T LC XOR n-tuples

16 (0: 14, 15), (1: -13, 14), (2: 12), (4: 10, -11), (5: 9) 5 61 349 216 – 6
{1, 9, 15} 51711

{0, 15} 49151

17 (0: 15, 0), (1: 13, 14), (3: 12, -14), (4: -11, 12), (6: 10) 5 68 437 217 – 2
{0, 16} 98303

{1, 16} 93569

18 (1: 16), (3: 13, -14), (5: -10, 11, 12) 3 46 332 218 – 13
{0, 1} 196607

{0, 13} 196351

19 (1: 16, -17, 18), (2: 14, 15, -16), (4: 12, 13, 14), (6: -10, 11) 4 66 514 219 – 2
{0, 1} 393215

{2} 384207

20 (0: -19, 0), (1: -16, 18), (3: 15, -16), (4: -13, 15), (6: -12, 13), (7: 11) 6 97 748 220 – 2
{0, 1, 19} 890999

{1, 19} 796739

21 (0: 19), (2: -18, 19), (4: -15, 17), (5: 14, -15), (7: -11, 12, 13) 5 88 739 221 – 2
{6} 1581759

{0, 20} 1572863

22 (0: -19, 20), (2: 18, 20), (4: 16, 17, -18), (6: 14, 15), (8: 13) 5 93 825 > 221
{0, 21} 3145727

{1, 5, 9} 2951856

23 (1: 18, 19, 20, -22), (4: 15, 17, 18, -19), (7: 14) 3 61 591 > 221
{2, 8} 8098171

{0, 1} 7471103

24 (0: 0, 20, -23), (2: -21, 23), (5: -16, 17), (8: 15) 4 84 844 > 221
{1} 14897105

{0, 23} 12582911

25 (4: -20, -19), (-5: 21, 20), (7: 18), (9: 15), (10: -12) 3 24 276 > 221
{5, 20} 22466751

{5, 19} 22443165

26 (2: 24, 23, -22), (5: 22, 20,19, -18), (8: 16) 3 70 783 > 221
{2, 9} 65174655

{0, 1} 56623103

27
(1: 0, 25, -24, 23), (-3: 25, 24, 23, -22), (-4: 24, 22, 21),

(5: 23, -22, 21, -20, 19), (-7: 21, -20, 19, -18, 17), (10: 17, 16, -15)
6 141 1593 > 221

{2} 118652195

{4} 105876356

{1, 2} 104206650

28
(-1: -0, -27, 25), (-4: 25, 24, 23, -21), (-6: 23, 22, 19),

(-7: 22, -19), (-8: 19, 18, -17), (-10: -19, 17)
6 147 1736 > 221

{2} 248058975

{1, 2} 201970330

{0, 1} 201326591

29

(-1: -0, 27), (-4: 26, 25, 24, 22), (-6: -24, -23, 21, -20),

 (7: 23, 21, -20, 19), (-8: -22, -21, 19, -18), (-9: 21, -20, 19),
(-10: -20, -19, 17), (11: 18, 17, 16, -15)

8 196 2324 > 221

{11} 473137553

{2} 449487871

{0, 1} 402653183

30
(2: -28, -25), (4: -24, 23), (-6: -25, 24, 21), (7: 24),

(-9: -22, -21, -18), (11: 20), (12: 18, 17, 15)
7 178 2198 > 221

{12} 806130191

{0, 1} 805306367

{12, 13} 762932099

31
(4: 26), (-6: 26, 28), (9: 21, -23), (-11: 19, 20, -21, 22),

(-12: -19, -21), (13: -17, 18, 19), (14: 17, -19)
7 187 2424 > 221

{14} 1703443913

{14, 18} 1623357704

{0, 1} 1610612735

32 (1: 29, 31), (-4: -26, -27), (-6: 23, 26, -27), (8: 23), (-10: -20, 21) 5 143 1982 > 221

{0, 1} 3221225471

{3} 3115801087

{0, 3} 3052757614

.2 INTERNATIONAL TEST CONFERENCE

110

is normally distributed, and the test passes if |Z| < 1.96 given a 95% confidence level. Table

8.2 reports the values of Z for selected keystreams of the new SC (out of 64), including those

whose statistic Z reaches the minimal and the maximal value. Clearly, as the maximal value

of (15) remains acceptable, the test passes for all 64 examined keystreams.

B. Diffusion test

The diffusion (avalanche) effect refers to a behavior where a single flipped input bit leads to

approximately half of the output bits being flipped at randomly distributed locations, making

it statistically indistinguishable from random. In principle, SCs lack diffusion since each

plaintext bit is mapped to a single ciphertext output bit. However, one can still verify if a

single bit flip in an s-bit secret initial value (IV) of the cipher causes approximately half of

the keystream bits being flipped at random [168], [180]. Recall that the initial values for the

ciphers examined here consist of s = m + n + 2h – 1 bits. Consequently, to get s statistics, the

test proceeds as follows. Let H be an k-bin histogram, where k is the keystream size. For

every random IV r, it first produces s sequences r’ by flipping all bits of r, one at a time.

Every pair (r, r’) yields the keystreams (d, d’), and thus the value of D = d  d’. Next, we

increment H(b) provided bit b of D is set to 1. As can be seen, H(b) counts the number of

times the keystream bit b has flipped in response to a single-bit change in the IV. After re-

peating the experiment N  s times, one can use the chi-square test with k – 1 degrees of

freedom and the expected value of each bin being equal to N/2 to verify the hypothesis that

histograms corresponding to successive bits of the IV represent uniformly distributed random

variates. The second row of Table 8.2 only reports the worst cases, i.e., the largest values of

 among all s statistics collected for selected keystreams of k = 128 bits each. Note that a

critical value for this test equals  = 154.3, provided that the significance level  = 0.05.

C. Correlation

To validate whether a SC yields independent random keystreams, we measure a correlation

between any pair of bits across N keystreams, collecting k(k – 1)/2 correlation coefficients, k

= 128. Clearly the correlation coefficient

 i,j = N–1  (xi – 0.5)(xj – 0.5) (8.3)

between bits xi and xj should be close to 0 to confirm that there is no discernible relation

between these two positions. This result should hold for all pairs of bits. Due to the large

number of correlation coefficients, we only use their mean value S over all pairs (i, j) and

report the test statistic

 𝑍 = √𝑘(𝑘 − 1)/2(𝑆 − 0)/𝜎 (8.4)

that is expected to be normally distributed. The test passes provided |Z| < 1.96. Results are

given in the third row of Table 8.2.

.2 INTERNATIONAL TEST CONFERENCE

111

D. Tuples test

It examines distribution of r-bit overlapping patterns (r-tuples) in keystreams for values of r

ranging from 2 to 19 bits. To run every instance of this test, we form a 2r-bin histogram, and

then, for every r-tuple occurring in a keystream, increment a bin corresponding to its value

k. Let R and Bk be the total number of r-tuples observed in a given keystream and the final

value of bin k, respectively. The content of all bins can be statistically examined to see how

closely they resemble a uniformly distributed random variate. This hypothesis is verified by

the chi-square test using the statistic

 𝜒2 = ∑
(𝐵𝑘−𝑅/2𝑟)2

𝑅/2𝑟

2𝑟−1

𝑘=0
 (8.5)

which is approximately chi-square distributed with 2r – 1 degrees of freedom under the null

hypothesis as in the diffusion test. Results of this test are gathered in Table 8.3 for selected

Table 8.2 Results of test from sections 8.4A, 8.4B, and 8.4C.

Test L1(1) L1(2) L1(3) L2(1) L2(2) L2(3) L3(1) L3(2) L3(3) L4(1) L4(2) L4(3)

8.4A 0.1092 0.215 0.4638 0.5061 0.2123 0.0957 0.2308 0.0981 0.8857 0.2102 0.3484 0.6535

8.4B 85.891 91.624 88.271 83.461 81.624 79.958 92.03 82.799 84.297 83.937 85.825 91.048

8.4C 0.5651 0.3347 1.7179 0.4045 0.3379 0.5977 0.4407 0.5781 0.6205 0.3397 1.8346 0.5526

Table 8.3 Results of tuples test (2
 values).

r L1 L2 L3 L4
Critical
values

2 0.270635 0.450422 0.692174 1.08798 7.81

3 3.18169 0.729998 1.89032 1.84773 14.07

4 10.5418 1.8801 5.19466 13.2537 25.00

5 24.3318 9.37303 16.1516 28.6746 44.99

6 54.76 38.4467 52.8443 62.7262 82.53

7 115.457 99.9071 137.799 123.411 154.30

8 247.671 209.965 278.299 243.822 293.25

9 503.976 458.959 529.584 494.991 564.70

10 972.072 940.508 1053.45 1012.18 1098.52

11 1977.25 1925.03 2082.86 2039.82 2153.37

12 3957.5 3911.74 4107.22 4119.77 4244.99

13 8022.84 7943.5 8313.98 8285.45 8402.66

14 16116.7 16085.6 16606.8 16533.5 16681.9

15 32377.7 32451.4 33142.4 32785.7 33189.2

16 65098.7 64662.8 65945.1 65547.3 66131.6

17 130469 129764 131480 130504 131914

18 261427 260059 262383 261265 263335

19 522070 521419 525626 522565 525972

.2 INTERNATIONAL TEST CONFERENCE

112

keystreams. The last column of the table provides critical values for successive values of r.

Similar (passing) results were obtained for keystreams not reported here.

E. NIST test suites

The proposed cipher was examined using NIST Test Suite SP800-22 (see Chapter 7.2). Table

8.4 lists the results of all tests for chosen keystreams of the cipher. A number that follows the

test name gives the total number of subtests. As can be verified, all examined keystreams

passed all tests. The same applies to the remaining keystreams not reported here.

Table 8.4 Results for 1,000 1M-bit samples under NIST SP800-22 tests.

 L1 L2 L3 L4

Test Pass rate PoP-value Pass rate PoP-value Pass rate PoP-value Pass rate PoP -value

Frequency - monobit (1) 993/1000 0.440975 985/1000 0.678686 988/1000 0.422638 982/1000 0.032061

Block frequency (1) 992/1000 0.884671 989/1000 0.72987 992/1000 0.916599 993/1000 0.927677

Cumulative sums (2)
993/1000 0.668321 986/1000 0.498313 989/1000 0.424453 982/1000 0.215574

993/1000 0.09372 985/1000 0.373625 992/1000 0.331408 982/1000 0.248014

Runs (1) 986/1000 0.649612 991/1000 0.363593 995/1000 0.234373 991/1000 0.394195

Longest runs (1) 992/1000 0.821937 985/1000 0.271619 992/1000 0.077131 990/1000 0.926487

Matrix rank (1) 988/1000 0.24549 990/1000 0.476911 990/1000 0.550347 990/1000 0.603841

DFT - spectral (1) 985/1000 0.542228 986/1000 0.401199 989/1000 0.968128 988/1000 0.572847

Non-overlapping 982/1000 0.664168 982/1000 0.377007 982/1000 0.544254 982/1000 0.94008

template (148) * 997/1000 0.194813 996/1000 0.94008 998/1000 0.314544 997/1000 0.526105

Overlapping template (1) 988/1000 0.72987 989/1000 0.607993 992/1000 0.063217 987/1000 0.55442

Maurer’s universal (1) 988/1000 0.285427 991/1000 0.337688 991/1000 0.933472 988/1000 0.745908

Approx. entropy (1) 992/1000 0.674543 989/1000 0.607993 991/1000 0.514124 991/1000 0.947308

Random excursions (8)

599/606 0.712961 590/600 0.571477 626/635 0.158344 586/598 0.614191

604/606 0.35319 594/600 0.888137 632/635 0.351772 592/598 0.445134

600/606 0.108791 594/600 0.749884 627/635 0.182187 594/598 0.736521

599/606 0.746572 592/600 0.200472 629/635 0.594234 596/598 0.70557

603/606 0.019631 590/600 0.514124 628/635 0.452054 593/598 0.820813

600/606 0.280306 594/600 0.81047 626/635 0.702896 594/598 0.805381

601/606 0.024083 594/600 0.90242 623/635 0.660243 590/598 0.316001

595/606 0.350485 591/600 0.924076 630/635 0.881013 589/598 0.084185

Random excursions 597/606 0.962959 590/600 0.175049 625/635 0.084192 589/598 0.534146

variant (18) * 604/606 0.378138 596/600 0.517442 635/635 0.132253 597/598 0.911413

Serial (2)
992/1000 0.174728 988/1000 0.205531 982/1000 0.53012 988/1000 0.106246

994/1000 0.599693 987/1000 0.302657 987/1000 0.457825 992/1000 0.305599

Linear complexity (1) 980/1000 0.959347 993/1000 0.618385 990/1000 0.820143 990/1000 0.426272

*) Since this test consists of a large number of subtests, only the smallest and the largest values of the pass

rate are reported herein altogether with the corresponding PoP-values.

.2 INTERNATIONAL TEST CONFERENCE

113

The next tests belong to the NIST Test Suite SP800-90B [179]. A major part of the suit

is comprised of tests that derive certain statistic S0 based on the original test sequence, and

then repeat the same test 10000 times for randomly permuted versions of the original se-

quence producing statistics Sk, k = 1, … , 10000. If bits of the original sequence are inde-

pendent and identically distributed (IID), then the statistics corresponding to permuted se-

quences will be similar to that of the original sequence. Every test employs counters C0, C1,

and C2 which are incremented, if Sk > S0, Sk = S0, or Sk < S0, respectively. Finally, too high

or too low counters indicate that tested data are non-IID. All tests use a cutoff value of 5

[179] such that if C0 + C1  5 or C1 + C2  5, then a test fails. Once it is known that none of

these inequalities will be satisfied, the corresponding test terminates as passing. The experi-

mental results for the same keystreams as before are presented in Table 8.5. It lists, for per-

mutation tests, the counter values saved when a given test was terminated. Again, all key-

streams passed those tests. They also passed four additional statistical tests [179], as shown

in the table. The last row of Table 8.5 reports the min-entropy extracted from the keystreams

by native functions of the SP800-90B suite.

Table 8.5 Results for 1,000 1M-bit samples under NIST SP800-90B IID tests.

 L1 L2 L3 L4

Test C0 C1 C2 C0 C1 C2 C0 C1 C2 C0 C1 C2

Excursion 6 0 6 8 0 6 6 0 6 6 0 48

#Directional runs 115 0 6 6 0 6 63 0 6 6 0 17

Length of directional runs 0 6 15 4 6 0 1 6 0 6 6 0

#Increases and Decreases 6 0 9 6 0 164 6 0 54 9 0 6

#Runs wrt median 14 0 6 6 0 7 7 0 6 18 0 6

Length of runs wrt median 4 2 19 11 2 4 3 3 8 265 6 0

Average collision 6 0 16 6 0 7 6 0 18 6 0 9

Maximum collision 16 5 1 18 2 4 3 3 5 4 2 7

Compression 6 0 317 6 0 6 6 0 626 12 0 6

Periodicity-1 55 0 6 9 0 6 11 0 6 6 0 25

Periodicity-2 6 0 21 22 0 6 12 0 6 68 0 6

Periodicity-8 6 0 6 6 0 7 6 0 23 6 0 34

Periodicity-16 6 0 11 6 0 33 67 0 6 31 0 6

Periodicity-32 6 0 81 6 0 26 20 0 6 58 0 6

Covariance-1 6 0 13 6 0 6 6 0 6 6 0 11

Covariance-2 9 0 6 6 0 432 6 0 11 7 0 6

Covariance-8 6 0 8 6 0 23 6 0 6 6 0 7

Covariance-16 6 0 492 6 0 92 86 0 6 6 0 6

Covariance-32 6 0 19 258 0 6 40 0 6 6 0 87

Chi-square independence p-value = 0.716681 p-value = 0.861359 p-value = 0.120963 p-value = 0.474993

Chi-square goodness of fit p-value = 0.154031 p-value = 0.262234 p-value = 0.864069 p-value = 0.712502

Length of the longest

repeated substring
Passed Passed Passed Passed

Restart Passed Passed Passed Passed

Min. entropy per byte 7.987918 7.987513 7.988981 7.988605

.2 INTERNATIONAL TEST CONFERENCE

114

F. AIS test suite

The last group of tests come from the AIS-31 Test Suite [91] that consists of 9 tests, com-

monly referred to as T0–T8. T0 requires at least 216  48 bits to be conducted. Tests from T1

to T5 are repeated 257 times on consecutive 20000-bit long parts of a tested sequence. T0

through T5 aim at evaluating the randomness of the tested sequence. Tests T6–T8 works with

a 7200000-bit sequence. Their purpose is to find the entropy level of the tested sequence. The

pass rates corresponding to T1–T5 are reported in Table 8.6. Furthermore, the lower part of

the same table gives the test statistics obtained for the examined keystreams (the passing

criteria for each test can be found in the second column of the table). As can be seen, the

keystreams pass all statistical tests of AIS-31. In particular, the pass rate for T0–T5 is 100%.

G. Hardware footprint

As shown in Chapter 8.1, the proposed cipher requires (m + n + 2h – 1) FFs, where m and n

are sizes of NLFSRs, while h is the PHRG size (additional h – 1 FFs form MR). Logic gates

are also needed to implement all linear and nonlinear functions, data injectors, reset logic,

etc. Their quantity depends primarily on feedback functions of involved shift registers. Table

8.7 reports the silicon real estate taken up by the examined instances of the cipher in terms

of GE, where one GE is the area occupied by a 2-input NAND gate, as mentioned in Chapter

7.2. The presented numbers were obtained with a commercial synthesis tool working with a

7nm CMOS standard cell library. In addition to clock tree synthesis, the deployed design

flow was comprised of placement and route with intermediate timing optimizations. Table

8.7 reports the number of combinational and sequential cells, the number of buffers/inverters,

Table 8.6 Results for binary sequences under AIS-31 tests.

 L1 L2 L3 L4

Test Pass rate

T0 Disjointness Passed Passed Passed Passed

T1 Monobit 257/257 257/257 257/257 257/257

T2 Poker 257/257 257/257 257/257 257/257

T3 Run 257/257 257/257 257/257 257/257

T4 Long run 257/257 257/257 257/257 257/257

T5 Autocorrelation 257/257 257/257 257/257 257/257

 Test values (Statistics – S)

T6 - a Uniform distr. (S < 0.025) 0.00105 0.00086 0.00166 0.00103

T6 - b Uniform distr. (S < 0.020) 0.00088 0.00010 0.00189 0.00254

T7 - a
Comparative multinomial,

width = 3 (S < 15.13)

8.65930 0.32258 3.61251 1.77609

0.13778 1.10450 1.80001 0.35379

T7 - b
Comparative multinomial,

width = 4 (S < 15.13)

1.22018 0.05408 3.42792 1.29032

0.46818 0.08450 0.64082 0.29282

0.03872 0.86528 0.29282 3.74980

9.80003 0.34322 0.55112 0.07688

T8 Entropy (S > 7.976) 8.00457 8.00215 7.99972 7.99681

.2 INTERNATIONAL TEST CONFERENCE

115

and the number of references, i.e., library components used in building larger blocks. The

corresponding GE numbers with respect to the aforementioned cells are listed in the right

part of the same table. Finally, the last two columns of the table provide a maximal operating

frequency of the cipher after assessing its critical paths and results of statistical power anal-

ysis based on the circuits’ switching activity at 400 MHz.

8.5 Resilience against attacks

SCs, like other cryptographic primitives, can be exposed to malicious activities. This chapter

briefly summarizes arguments applicable to the resilience of the proposed SCs against several

attacks and cryptanalysis techniques. Typically, attacks mounted on SCs are aimed at com-

promising secret keystreams. Therefore, it is crucial to note that initial values are unique per

each keystream generation. By having the initial values selected this way, the proposed cipher

increases its resilience against most of the attacks discussed in the following paragraphs.

Algebraic attacks. Here the attacker tries to solve a system of nonlinear equations, typ-

ically by replacing all products of variables with a single variable and solving the resultant

system of linear equations. Consequently, a SC is regarded resilient if its nonlinear functions

have a high degree. Though the cipher consists of a linear HRG, selection of its feedback

function is carried out by virtue of a secret key. To mount an algebraic attack, one must first

determine the content of the selector, which is represented by nonlinear equations. Moreover,

data from PHRG are used to control the outputs of (nonlinear) multiplexers, which are pow-

ered by two different NLFSRs. As can be seen, complex nonlinear equations are deployed at

each stage of the keystream generation process. These properties can make an algebraic at-

tack on the cipher infeasible within a reasonable period of time.

What may enable a correlation attack is a statistically biased encryption implied by

certain internal state variables used as inputs. Hence, guessing such input bits would most

likely impact the actual output bits. With the help of statistical tools, the adversary can re-

cover these internal values. In addition to results of Chapter 8.4C, nonlinear components of

the cipher (such as a nonlinear selection of PHRG feedback functions or both NLFSRs) make

it resistant to correlation-based attacks.

Table 8.7 Hardware footprint – equivalent 2-input NAND gates.

 Nets
Combina-

tional cells
Sequential

cells
Buffers
inverters

References
Combina-
tional area

Buf/inv
area

Sequential
area

Total
area

Speed
[GHz]

Power

W]

L1 1825 1825 105 138 23 2078 104 464 2542 6.5 468.48

L2 1966 1226 131 164 26 2204 123 581 2784 6.2 507.58

L3 2235 1575 185 219 27 2429 165 824 3252 5.9 535.04

L4 2632 2632 264 264 26 2745 236 1179 3924 5.8 695.12

.2 INTERNATIONAL TEST CONFERENCE

116

 Time-memory trade-off attacks can be successful provided a cipher state space is rela-

tively small. During a preprocessing phase, the attacker generates many initial states and the

corresponding keystream prefixes that can be compared against a captured keystream. If there

is a match, the initial state is found and a secret key might be retrieved. As the state space of

the cipher can be freely enlarged (one of its instances examined in this chapter has more than

1057 states), it reduces or even precludes any chance of finding, in a time-acceptable manner,

a keystream prefix identical with one of those precomputed earlier. As a result this attack is

not feasible.

For divide and conquer attacks to work a cipher must be broken down into several

rounds of computationally simpler functions. As shown earlier, the proposed cipher makes

all input bits spread uniformly across all its registers. As a result, having a given bit (variable)

appearing in output formulas is equally likely for all keystream bits. It is, therefore, virtually

impossible to divide the attack into functions of a low complexity, where each one of them

would be able to recover mutually exclusive bits from the secret key.

Differential attacks exploit nonuniform propagation of differences within blocks of a

given cryptographic primitive. Even flipping a single initial bit and observing the resultant

keystream may reveal its value if the secret key bits are nonuniformly distributed over the

keystream bits. Fortunately, initialization cycles allow uniform and random diffusion of se-

cret key bits. In particular, toggling rates for each input bit, observed at each output bit, do

not leak any systematic information regarding the secret key (see Table 8.2).

Fault attacks assume that an adversary can inject bit-flipping faults by either varying a

clock, voltage, temperature, or by using a laser beam. These methods exploit various circuit

characteristics and typically have low spatial precision [73]. Although fault injection may

expose some input-output relations as far as a linear PHRG is concerned (provided an exact

location of a fault can be determined), the same hardly applies to both NLFSRs as fault prop-

agation within nonlinear structures is much more difficult to predict and to take advantage

of.

To cope with chosen-IV attacks, initial states of a cipher for any two chosen IVs should

be statistically (and algebraically) unrelated. As shown in the previous chapter, even two IVs

that differ on a single bit position yield keystreams where each of the output bits changes

with a 50% probability (a Hamming weight of their difference is a random value). The same

applies to IVs with multiple differences. It allows the cipher to resist this type of attacks.

To launch a guess-and-determine attack the adversary takes advantage of the fact that

certain internal bits of the cipher can be deduced from other internal bits (a guess basis).

Thus, given a guess basis of a minimal size, one derives the remaining bits, computes the

output and evaluates its consistency against the corresponding keystream bits that were

eavesdropped. A high diffusion level of the cipher makes this technique impractical as it

requires a large guess basis.

.2 INTERNATIONAL TEST CONFERENCE

117

Malleability attacks. A cipher is “malleable” if one can transform a ciphertext into an-

other ciphertext decrypting to a desired plaintext. Virtually all SCs are vulnerable to this

attack as they produce a keystream independently of a plaintext. Consequently, another cryp-

tographic technique is required, for instance, based on a message authentication code, to pro-

tect data. As shown earlier, the proposed cipher is a part of a root-of-trust ecosystem whose

other components define the final security of ICs. Furthermore, it appears that mounting mal-

leability attacks is not that simple [14]. For example, an adversary must know exactly where

and when the target test data is transmitted to be able to tamper with it. Bit-flipping at wrong

positions is meaningless and will most likely result in a corrupted transmission.

Side-channel attacks have already been described in Chapter 7.3. As the cipher is pri-

marily deployed as a part of an embedded hardware root of trust, its logic remains a negligible

fraction of the entire chip which effectively acts as a source of additive noise distorting any

measurable physical characteristic of either the cipher or the root of trust as a whole, and thus

reducing the amount of information in a potential side-channel leakage.

https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Plaintext

.2 INTERNATIONAL TEST CONFERENCE

118

.2 INTERNATIONAL TEST CONFERENCE

119

9. Lightweight true random number generator

This chapter presents a lightweight design of a nonce generator for the root of trust applica-

tions [141]. It appears that the scheme is capable of fulfilling requirements for an efficient

and secure TRNG. The presented ring-generator-based TRNGs pass a variety of well-known

statistical tests and feature a low and scalable hardware footprint which makes them suitable

for both ASIC and FPGA implementations of embedded systems that form a base of contem-

porary security solutions.

9.1 Motivation

As mentioned in Chapter 5.4, the root of trust security relies on its authentication protocol.

What is characteristic for the challenge-response procedure, is its initialization phase that

employs unique, random token (nonce). The nonce is typically produced by an IC-integrated

TRNG that should yield different combinations of 0s and 1s every time it is activated. In light

of the above, it is clear that TRNGs have become key hardware security primitives capable

of producing random sequences by harvesting the randomness present in physical processes

such as the thermal instability and noise [21], [22], [88], [111], [133], metastability [62], [76],

[92], [108], [176], [177], [190], edge racing in digital designs [203], chaotic behavior of cel-

lular automata [63], [82], [104], [132], power supply variations [175], stochastic nature of

magnetic tunnel junction [183], quantum effects [169], or phase jitters in ring oscillators

(ROs) [162]. The latter approach has gained noticeable popularity because it provides a sim-

ple yet effective method to build random number generators just by chaining an odd number

of inverters into a ring structure. As a result, a wide range of solutions using this principle

and its derivatives have been proposed in the contemporary technical literature and industrial

practice. For the sake of illustration, let us recall a few exemplary solutions.

The most straightforward mechanism to extract randomness from a jitter is to sample

the output of a RO using the output signal of another RO (Fig. 9.1a). Such coupled oscillators

are presented in [3], [22], [51], [155], [200]. In [51], two ROs are coupled by a non-linear

circuit, whereas in [200] the first RO feeds a programmable delay chain that is sampled by a

bit extractor driven by the other RO. If periods of both signals are very close to each other,

Figure 9.1 Conventional RO-based TRNG architectures: (a) sampling RO by another RO,

(b) combining ROs to form a single sequence.

.2 INTERNATIONAL TEST CONFERENCE

120

they form a basis for coherent sampling [95], [131], [202]. Alternatively, one can combine

the output signals of several ROs by means of XOR trees (Fig. 9.1b), as shown in [4], [100],

[160], [171], [198], or [199]. In particular, the work of [169] provides a thorough mathemat-

ical treatment of an approach where combined jitter signals form a source of entropy. A low

power scheme where two identical ROs enable, through an XOR gate, a third RO clocking a

counter is described in [26]. A reconfigurable TRNG based on transient effect ring oscillators

with two different sampling methods is introduced in [1]. In [37], four ROs drive associated

LFRSs whose outputs are sampled through a multiplexer driven by yet another RO. ROs with

a multi-stage feedback structure can be XOR-ed to produce true random numbers, as detailed

in [41]. Somehow different approach is discussed in [50], [52], [69], [127]; it implements an

RO by replacing a simple circular feedback with a more complex network comprising XOR

gates in a way corresponding to conventional Fibonacci or Galois LFSRs. Here, inverters

replace memory elements. To enhance the performance of RO-based TRNG, one can also

deploy Muller C-gates instead of inverters. These elements are then interleaved to form an

asynchronous pipeline that is capable of propagating several simultaneous voltage events

sampled by an XOR tree [33], [34]. Finally, different RO-based TRNGs are compared in

[134] to demonstrate how they are amenable to FPGA-based implementations. One may also

find interesting details in other relevant papers such as [18], [23], [31], [49], [107], [152],

[176], and [182].

Besides the schemes recalled above, there are other techniques deployed to produce

truly random sequences of bits. Those schemes include the use of chaotic maps [13] with von

Neumann correction algorithm [185], sampling a jitter in a phase-locked loop circuitry [64],

extracting a design fingerprint during the power-up of SRAMs [81], or detecting a beat fre-

quency in FPGAs [86].

In addition to its unpredictability, a modern TRNG design is expected to be easily syn-

thesizable by using exclusively digital components [171], i.e., no amplifiers or other analog

devices are allowed. Furthermore, additional post-processing steps and the corresponding

circuitry to adjust the sampling frequency or to increase the per-bit entropy [160] should be

avoided. Consequently, this chapter proposes a high-performance device that may assume

the role of a lightweight all-digital TRNG. Although it was originally designed as a hardware

generator of one-time challenges produced for the sake of IC authentication protocols, many

tests have confirmed that it can be considered as a reliable source of truly random numbers

used in a variety of cryptographic or security-related applications. The proposed design rests

on a ring generator architecture [125] harvesting a source of entropy implemented by a con-

ventional free-running ring oscillator, and further processing the captured data due to its feed-

back network.

.2 INTERNATIONAL TEST CONFERENCE

121

9.2 General architecture

Fig. 9.2 illustrates the proposed scheme. Its major part is a ring generator [121], [125], as

shown in Fig. 9.2 for the polynomial h(x) = x32 + x27 + x21 + x16 + x10 + x5 + 1. Recall that ring

generators, in a vivid contrast to the corresponding Fibonacci or Galois LFSRs, offer a certain

degree of flexibility in forming its structure. Every resultant device will feature a different

state trajectory; all of them, however, will remain maximum-length finite state machines pro-

ducing the same m-sequence, just differently phase-shifted in each case [121].

Since every ring generator is a planar, high-speed circuit that features reduced internal

fan-outs and minimal delays on critical paths, it causes no frequency degradation and lets

designers minimize routing complexity, optimize wire sizing, and make the overall layout as

compact as possible [125]. Clearly, a synchronous ring generator has deterministic behavior

which renders the generated values as predictable as any other LFSR-produced pseudoran-

dom sequences (vulnerable to statistical attacks). To make the ring generator suitable for

TRNG-based applications, it is enhanced by adding an entropy source implemented as a free-

running m-stage gated ring oscillator, as shown in Fig. 9.2, where the oscillator is made of a

single NAND gate and four inverters chained into a ring. The oscillator internal signals, sam-

pled at the outputs of selected inverters, are subsequently injected into the ring generator via

XOR gates placed in the front of its “upper level” flip-flops. Consequently, the ring generator

acts as a special form of a bit extractor processing data collected at several RO stages. Similar

techniques, i.e., the entropy extraction from a single transition event, are also discussed in

[159], [200], and [202], though the latter two works deploy an extra RO-driven tapped delay

chain placed outside of a ring oscillator. Furthermore, since the clocking of the ring generator

is inherently asynchronous to the state of a ring oscillator, some clock samples may stress the

metastability region of the ring generator flip-flops (due to setup and hold time violations),

thereby producing an additional and desired uncertainty (entropy) or randomness. Note that

the new design does not require any additional zero detector similar to that of [104]. It is also

worth recalling that upon every successful authentication of a given IC, a challenge-response

pair can be potentially revealed to the adversary and thus cannot be used again. Fortunately,

the inherent feature of the proposed TRNG is its ability to produce a different random value

virtually every time it is invoked or reset.

Figure 9.2 Ring-generator-based true random number generator with the characteristic polynomial

h(x) = x32 + x27 + x21 + x16 + x10 + x5 + 1.

.2 INTERNATIONAL TEST CONFERENCE

122

It is worth noting that basic theoretical foundations which the new TRNG depends on

remain similar to those presented elsewhere. Indeed, as an instance of a linear finite state

machine sampling a ring oscillator, a modus operandi of the new scheme resembles principles

analyzed mathematically in several earlier publications. In particular, the urn model of [171]

is used to analyze random data sampling by virtue of a combinatorial approach. Moreover, a

detailed entropy model of a ring of identical units acting as a source of chaotic behavior has

been proposed and meticulously discussed in [63] and [104].

9.3 First validation steps

To validate the proposed TRNG scheme, its instances of varying sizes (see Table 9.1) were

implemented on a single Xilinx Artix-7 FPGA chip using the Digilent Arty Z7-200 board

with a port that facilitates data collection. It is important to note that all results presented in

this chapter (with the exception of the entropy estimation) come from the same FPGA plat-

form and were obtained for n-bit numbers bn-1bn-2 … b1b0, where n is the TRNG size, n 

[32, 256]. In order to mimic the challenge generator behavior, every circuit was powered up

100,000 times and the resultant n-bit values were scanned out after 211 clock cycles. This

process yielded 100,000 n-bit numbers for further examination. Fig. 9.3 plots the distribution

of 0s and 1s in 64-bit numbers produced by the new TRNG using the primitive polynomial

G64 = x64 + x52 + x39 + x26 + x14 + x7 + 1 and working with a ring oscillator of 7 inverters. Fig.

9.3 illustrates the first (successive) 768 random samples (nonces) obtained this way. They

are arranged into four columns such that the first 192 samples are displayed in the first col-

umn, the next 192 samples are placed in the second column, etc.

Figure 9.3 Distribution of 64-bit random values after power-up and 211 cycles.

.2 INTERNATIONAL TEST CONFERENCE

123

 An ideal TRNG has to yield independent random binary combinations as otherwise its

behavior could be easily anticipated. To validate this feature, one can measure a correlation

between any pair of bits across all sampled random outputs, effectively collecting n(n – 1)/2

correlation coefficients. Clearly, given s successive samples (in this case s = 100,000), the

correlation coefficient

 i,k = s-1  (bi – 0.5)(bk – 0.5) (9.1)

between bits bi and bk should be close to 0 to confirm that there is no strong, discernible, and

systematic relation between these two positions. Such a result should hold for all pairs of

bits. The test covered random numbers produced by target n-bit TRNGs, taking 100,000 sam-

ples in each case. Consider, for the sake of illustration, a 64-bit TRNG (its polynomial is

given in Table 9.1). It turns out that the mean value of the correlation over all (64  63) / 2 =

2,016 pairs of bits is about µ  –2.731e 10-5, whereas its standard deviation is   0.003509.

Moreover, the minimal value is equal to 0.0 for , the maximal value (absolute) is equal to

 = 0.002830, and |z-statistic| = 0.349469 < 1.96, for a 95% confidence level. In fact,

none of the recorded coefficients was significantly different from 0 in comparison with the

normal distribution, thus indicating that the produced samples do not exhibit observable cor-

relation between any pair of their bits. Similar results were obtained for other TRNGs. Their

characteristics, i.e., a primitive polynomial used to setup a ring generator and the number of

injectors provided by an 11-inverter ring oscillator, are listed in Table 9.1, whereas the cor-

relation results are gathered in the left part of Table 9.2.

Another simple empirical test is aimed at checking whether the logic value of 1 occurs

on every bit position roughly half of the time (50%). This hypothesis can be verified by, for

Table 9.1 TRNG characteristics.

ID Polynomial #IN

G32 32 25 17 6 0 6

G48 48 35 22 10 0 5

G64 64 56 49 40 31 24 16 8 0 4

G80 80 62 37 15 0 5

G96 96 73 43 18 0 5

G112 112 101 92 83 73 62 52 42 32 22 0 5

G128 128 95 66 29 0 7

G144 144 113 79 37 0 7

G160 160 144 125 101 79 37 0 5

G176 176 169 162 153 144 136 128 120 112 104 96 88 80 72 64 56 48 40 0 6

G192 192 169 144 96 70 52 39 26 13 0 8

G208 208 172 139 105 70 35 0 8

G224 224 206 182 155 131 105 80 54 36 18 0 7

G240 240 221 200 181 162 141 120 100 80 60 40 20 0 8

G256 256 212 169 127 86 42 0 6

.2 INTERNATIONAL TEST CONFERENCE

124

instance, the chi-square test. Thus, the histogram of 1s observed on successive bits of the 64-

bit-TRNG-produced numbers is shown in Fig. 9.4. Here, every bin displays the percentage

of 1s observed on every bit of 100,000 samples that were collected. Similarly, the number of

n-bit sequences with the Hamming weight k should be binomially distributed, as illustrated

in Fig. 9.5. Again, the goodness-of-fit hypothesis test can be used to validate this observation.

Both tests were employed to successfully validate the ring-generator-based TRNGs listed in

Table 9.1.

Table 9.2 Correlation and min-entropy.

 Correlation Min-entropy

Mean Std. z-statistic FPGA Simulation

G32 -2.52E-05 0.001785 -0.314596 0.99282 0.980947

G48 -1.30E-06 0.002676 -0.016295 0.993773 0.987687

G64 -2.73E-05 0.003509 -0.349469 0.996669 0.981135

G80 -6.71E-06 0.004447 -0.084801 0.995552 0.981528

G96 1.95E-05 0.005342 0.246434 0.993806 0.984408

G112 1.09E-05 0.006234 0.138298 0.991189 0.986258

G128 -3.45E-06 0.007168 -0.043407 0.991438 0.985751

G144 -2.42E-06 0.008018 -0.030578 0.991112 0.982384

G160 4.90E-06 0.008909 0.06198 0.997344 0.987837

G176 -1.83E-06 0.009844 -0.023005 0.990098 0.981029

G192 2.21E-06 0.010724 0.027936 0.990169 0.98616

G208 -1.93E-06 0.011658 -0.024337 0.991306 0.981105

G224 2.45E-06 0.012586 0.030701 0.991235 0.985696

G240 3.14E-06 0.0135 0.039426 0.991911 0.983453

G256 -9.61E-07 0.01435 -0.012093 0.993663 0.98437

Figure 9.4 The fraction of 1s on successive locations in 64-bit random samples.

.2 INTERNATIONAL TEST CONFERENCE

125

The ability of a TRNG to deliver secure random values requires sufficient entropy on

its outputs. In order to estimate the amount of entropy produced per bit by the proposed

scheme, the min-entropy estimate based on the collision count was used[74]. It measures the

mean number of samples to the first repeated value in a binary sequence. The method assesses

the probability of the most-likely output value based on the collision times. Consequently, it

produces a low entropy estimate for sources that have a considerable bias toward a particular

value, while yielding a higher entropy estimate for a longer mean time to collision [179]. In

the experiments, serial bit sequences observed on a selected output of the TRNG (see Fig.

9.2) and comprising 109 bits were harvested both from the FPGA-based implementations as

well as from a simulation model of the proposed scheme. In the latter case, event-driven

simulation experiments were run by assuming that the mean delay of individual gates of a

ring oscillator is set to 280 ps, while their random Gaussian jitter has the mean value of 0 and

the standard deviation of 30 ps, similarly to a simulation setup described in [18]. The sam-

pling clock driving the ring generator had 2.5 ns time period (or 400 MHz frequency). Its

flip-flops had 20 ps setup time. Results of both types of experiments are presented in the right

part of Table 9.1. As can be seen, the lower bound of entropy is above 0.99 per bit based on

data received from the FPGA setups. The min-entropy recorded and determined by means of

the simulation model was measured to be above 0.98 per bit. It is also worth noting that in

all reported experiments the Shannon entropy given by

H = –p1  log2 (p1) – (1 – p1)  log2 (1 – p1)

was always greater than 0.999999, which is higher than 0.997 per bit requested by AIS-31

[91] (p1 is the probability of having 1 in the examined binary sequence).

Figure 9.5 Distribution of 64-bit samples wrt to their Hamming weights.

.2 INTERNATIONAL TEST CONFERENCE

126

9.4 More experimental results

This chapter thoroughly evaluates the performance of the proposed TRNG design using two

statistical test suites [12], [179] from the NIST and another test set (AIS-31) provided by the

German IT security certification authority (BSI) [91]. Their brief descriptions can be found

in Chapter 7.2 and Chapter 8.4. Binary sequences subjected to various tests were serially

collected from FPGA implementations on a single output of a ring generator (see Fig. 9.2).

After an initialization period of 2s cycles, where s is the ring generator size, TRNG was

clocked 109 times, thereby producing 1,000 consecutive sequences, each comprising 106 bits.

Detailed results of applying the NIST SP800-22 [12] tests to binary sequences pro-

duced by four selected TRNGs are listed in Table 9.3. A number in brackets that follows the

test name gives the total number of subtests a given test consists of. As can be seen, all

TRNGs pass all tests. The same applies to the remaining TRNGs of Table 9.1; their detailed

results are not shown here because of space constraints.

Table 9.3 Results for 1,000 1M-bit samples under NIST SP800-22 tests.

 G48 G64 G128 G256

Test Pass rate PoP-value Pass rate PoP-value Pass rate PoP-value Pass rate PoP -value

Frequency - monobit (1) 989/1000 0.985339 990/1000 0.177628 988/1000 0.622546 988/1000 0.622546

Block frequency (1) 988/1000 0.930026 987/1000 0.735908 993/1000 0.922855 993/1000 0.922855

Cumulative sums (2)
987/1000 0.420827 992/1000 0.917870 989/1000 0.350485 989/1000 0.350485

990/1000 0.500279 992/1000 0.212184 990/1000 0.347257 990/1000 0.347257

Runs (1) 991/1000 0.267573 991/1000 0.849708 992/1000 0.998971 992/1000 0.998971

Longest runs (1) 988/1000 0.890582 993/1000 0.805569 988/1000 0.678686 988/1000 0.678686

Matrix rank (1) 987/1000 0.846338 989/1000 0.992381 992/1000 0.211064 992/1000 0.211064

DFT - spectral (1) 987/1000 0.893482 985/1000 0.034942 988/1000 0.821937 988/1000 0.821937

Non-overlapping 980/1000 0.579021 982/1000 0.325206 984/1000 0.605916 984/1000 0.605916

template (148) * 996/1000 0.715679 997/1000 0.289667 997/1000 0.045088 997/1000 0.045088

Overlapping template (1) 994/1000 0.597620 982/1000 0.388990 990/1000 0.397688 990/1000 0.397688

Maurer’s universal (1) 993/1000 0.024855 994/1000 0.562591 988/1000 0.063615 988/1000 0.063615

Approx. entropy (1) 992/1000 0.142062 990/1000 0.404728 993/1000 0.289667 993/1000 0.289667

Random excursions (8)

615/619 0.681400 604/611 0.613238 606/614 0.841394 606/614 0.841394

612/619 0.731687 603/611 0.038964 610/614 0.096959 610/614 0.096959

613/619 0.532495 608/611 0.691554 611/614 0.733338 611/614 0.733338

613/619 0.243497 604/611 0.864547 608/614 0.158932 608/614 0.158932

614/619 0.848358 604/611 0.069317 603/614 0.026771 603/614 0.026771

617/619 0.914620 600/611 0.206917 605/614 0.160394 605/614 0.160394

613/619 0.176419 607/611 0.080680 609/614 0.83 609/614 0.830000

612/619 0.239427 604/611 0.099367 606/614 0.073305 606/614 0.073305

Random excursions 610/619 0.019058 601/611 0.103329 605/614 0.614942 605/614 0.614942

variant (18) * 618/619 0.260305 609/611 0.341275 611/614 0.733338 611/614 0.048460

Serial (2)
993/1000 0.073417 989/1000 0.699313 986/1000 0.045088 986/1000 0.045088

997/1000 0.181557 989/1000 0.480771 988/1000 0.274341 988/1000 0.274341

Linear complexity (1) 985/1000 0.757790 991/1000 0.422638 993/1000 0.741918 993/1000 0.741918

*) Since this test consists of a large number of subtests, only the smallest and the largest values of the pass

rate are reported herein altogether with the corresponding PoP-values.

.2 INTERNATIONAL TEST CONFERENCE

127

The second group of tests can be found in the NIST Test Suite SP800-90B [179]. Ex-

perimental results obtained for the same TRNGs as before are presented in Table 9.4. It lists,

for permutation tests, the counter values saved when a given test was terminated. As can be

seen, all TRNGs passed those tests. They also passed four additional statistical tests, as shown

in the table. The last row of Table 9.4 reports the min-entropy extracted from the test se-

quences by native procedures implemented within the SP800-90B suite.

The last group of tests come from the AIS-31 Test Suite [91]. The pass rate correspond-

ing to tests T1 – T5 are reported in Table 9.5. Furthermore, the lower part of the table gives

the test statistics obtained for the examined TRNGs (the passing criteria for each test can be

found in the second column of the table). As can be seen, the random sequences produced by

the new TRNGs pass all statistical tests. In particular, the pass rate for tests T0 – T5 is as

high as 100%.

A crucial figure of merit when introducing a new scheme is its logic silicon real estate.

As shown earlier, the proposed n-bit TRNG requires n flip-flops (FF) and a certain number

Table 9.4 Results for 1,000 1M-bit samples under NIST SP800-90B IID tests.

 G48 G64 G128 G256

Test C0 C1 C2 C0 C1 C2 C0 C1 C2 C0 C1 C2

Excursion 32 0 6 13 0 6 6 0 10 6 0 11

#Directional runs 6 0 28 6 0 44 10 0 6 8 0 6

Length of directional runs 4 6 0 2 5 1 1 5 16 8 6 0

#Increases and Decreases 6 0 21 6 0 10 9 0 6 6 0 104

#Runs wrt median 11 0 6 29 0 6 6 0 26 15 0 6

Length of runs wrt median 5 1 11 10 3 3 3 3 21 3 3 5

Average collision 6 0 42 6 0 11 6 0 6 14 0 6

Maximum collision 21 5 1 4 2 4 10 3 3 4 2 81

Compression 11 0 6 6 0 61 10 0 6 15 0 6

Periodicity-1 16 0 6 9 0 6 6 0 8 6 0 8

Periodicity-2 34 0 6 6 0 10 6 0 10 6 0 6

Periodicity-8 6 0 6 6 0 112 22 0 6 18 0 6

Periodicity-16 48 0 6 6 0 15 20 0 6 6 0 15

Periodicity-32 6 0 13 6 0 14 6 0 48 6 0 7

Covariance-1 7 0 6 16 0 6 18 0 6 6 0 23

Covariance-2 6 0 113 6 0 44 17 0 6 6 0 7

Covariance-8 18 0 6 6 0 22 30 0 6 6 0 41

Covariance-16 6 0 289 6 0 55 9 0 6 6 0 9

Covariance-32 6 0 6 75 0 6 6 0 18 8 0 6

Chi-square independence p-value = 0.283383 p-value = 0.570821 p-value = 0.828947 p-value = 0.524847

Chi-square goodness of fit p-value = 0.733166 p-value = 0.156913 p-value = 0.427471 p-value = 0.665661

Length of the longest
repeated substring

Passed Passed Passed Passed

Restart Passed Passed Passed Passed

Min. entropy per byte 7.987921 7.988972 7.985753 7.989519

.2 INTERNATIONAL TEST CONFERENCE

128

(depending on n) of XOR gates, plus an even number of inverters, a single 2-input NAND

gate, and a reset logic. In addition to these numbers, Table 9.6 reports the silicon real estate

taken up by generators in terms of equivalent area of 2-input NAND gates (measured also in

µm2). The presented numbers were obtained with a commercial synthesis tool. All compo-

nents of the new TRNG logic were synthesized using a 65nm CMOS standard cell library

under 2.5ns timing constraint. The last three columns of the table report the resultant silicon

area with respect to combinational and sequential devices, and the total area taken by the

circuits. Finally, in order to compare the performance of the new scheme with the existing

state-of-the-art solutions, Table 9.7 uses six recent techniques as they already compare fa-

vorably with other schemes introduced earlier in the technical literature.

Table 9.5 Results for binary sequences under AIS-31 tests.

 G48 G64 G128 G256

Test Pass rate

T0 Disjointness Passed Passed Passed Passed

T1 Monobit 257/257 257/257 257/257 257/257

T2 Poker 257/257 257/257 257/257 257/257

T3 Run 257/257 257/257 257/257 257/257

T4 Long run 257/257 257/257 257/257 257/257

T5 Autocorrelation 257/257 257/257 257/257 257/257

 Test values (Statistics – S)

T6 - a Uniform distr. (S < 0.025) 0.000580 0.003759 0.001929 0.001879

T6 - b Uniform distr. (S < 0.020) 0.002950 0.000950 0.002910 0.000099

T7 - a
Comparative multinomial,

width = 3 (S < 15.13)

0.132880 2.394322 0.011520 0.158421

0.353780 0.064981 0.144500 2.464020

T7 - b
Comparative multinomial,

width = 4 (S < 15.13)

2.888009 0.003920 0.079380 0.121680

0.027380 0.474320 1.764182 0.259920

0.840506 0.084503 0.095220 0.165621

0.019220 0.420500 0.014580 0.985681

T8 Entropy (S > 7.976) 8.001270 7.997012 8.001384 8.001931

Table 9.6 Hardware footprint – equivalent 2-input NAND gates (µm2).

Gate

count

FF

count
Combinational Sequential Total

G48 69 48 124 (145.23) 253 (296.31) 377 (441.54)

G64 91 64 163 (190.9) 337 (394.69) 500 (585.59)

G128 206 128 331 (387.66) 672 (787.04) 1003 (1174.7)

G256 390 256 629 (736.68) 1345 (1575.25) 1974 (2311.92)

.2 INTERNATIONAL TEST CONFERENCE

129

9.5 Resilience against attacks

TRNGs relying on ring oscillators must be resilient against various types of attacks, including

those that destroy their source of entropy. One of the most eminent in this category is a so-

called the frequency-injection attack that is capable of successfully locking TRNG to fre-

quencies injected into the power supply, and thus reducing the entropy of a TRNG, as demon-

strated in [109]. Following the procedures discussed in [104] and [109], the frequency injec-

tion was applied to four TRNGs presented earlier in this chapter in Tables 9.3, 9.4, and 9.5.

In particular, after injecting frequency 0.5f0, where f0 is the base frequency of the ring oscil-

lator, one can identify three visible frequency peaks in the examined spectrum, i.e., f0 as well

as its second and fourth harmonics. Having the external frequency 0.5f0 injected into the

power supply rails, test sequences are collected, as reported in the previous chapters. The

received data are tested by means of NIST SP800–22, NIST SP800–90B, and AIS-31 test

suites. The obtained test results clearly indicate that the test sequences passed all tests; the

min-entropy statistics after the frequency-injection attack are reported in Table 9.8. As can

be seen, the min-entropy drop is negligible; in the worst case it is no greater than 1.7% of the

original value.

Table 9.8 The min-entropy after frequency injection.

TRNG Original Under attack

G48 0.993773 0.979376

G64 0.996669 0.980079

G128 0.991438 0.987242

G256 0.993663 0.985084

Table 9.7 Comparison with related works.

 [190] [104] [4] [31] [49] This work

NIST SP800-22 NA pass pass pass pass pass

NIST SP800-90B NA pass NA NA NA pass

AIS-31 T0 - T5 pass T5 and T8 NA pass pass

Hardware footprint 10 LUT, 5 FF 53 LUT, 22 FF 528 LUT, 177 FF 73 slices 4 LUT, 3 FF n/2 LUT, n FF*

Postprocessing no yes for FPGA yes not needed not needed not needed

Bit rate [Mb/s] 1.15 1,600 6 0.011 0.76 200

FPGA implementation yes yes yes yes yes yes

NA – not available,
* n – the ring generator size; the number of LUTs is an upper bound assuming that (1) a LUT can accommodate two 2-input XOR gates,

(2) a ring generator requires n/2 2-input XOR gates to implement its feedback network, and (3) a ring oscillator needs n/2 2-input XOR

gates to inject its values to every “upper level” flip-flop of the ring generator; since the total number of required 2-input XOR gates is ty-

pically much smaller than n, the number n/2 of LUTs can be regarded as accounting for inverters implementing the ring oscillator as well.

.2 INTERNATIONAL TEST CONFERENCE

130

Also the robustness of the new TRNG against power and thermal attacks was validated.

For instance, a power wasting circuitry is often used to overload the power regulator, and

hence to degrade the randomness of TRNGs. In order to control the corresponding experi-

ments, the Xilinx system monitor was used to measure the real-time temperature and voltage

values altogether with additional 1,600 RO-based power-wasting devices [106] working at

different frequencies. With all these circuits enabled, again the required test sequences are

collected. As before with the frequency-injection attack, all three test suites are used to eval-

uate the binary sequences. No negative impact of harsh conditions on test results was ob-

served as the generated data passed all tests.

Finally, with respect to thermal attacks, test sequences produced by TRNG were col-

lected in conjunction with externally injected heat, which does not impact the supply voltage.

Moreover, all tests were repeated for different temperatures. The collected experimental re-

sults were subsequently validated against the three test suites confirming that the examined

TRNGs were virtually immune to the thermal attacks.

9.6 Built-in self-test of the generator

Although certain parts of the generator behave, on purpose, in a highly unpredictable manner,

testing of its hardware is carried out in a fully deterministic and digital fashion, as briefly

discussed in this chapter. As the root-of-trust principal mission is to secure the IC in general,

and to protect its design-for-test (DFT) infrastructure in particular, its own test should be an

autonomous procedure that does not require any additional DFT components. Similarly to

the approach presented in Chapter 7.4, an LBIST can be used to test the generator. In LBIST,

the original circuit is typically appended with additional modules for generation of test pat-

terns and compaction of test responses. However, simplicity of design and its inherent itera-

tive functionality can easily facilitate its self-testing.

The entire LBIST session is mainly based on the challenge generator native function-

ality with a few minor exceptions. In particular, it can be easily modified into PRPG by dis-

abling the ring oscillator feedback loop. The ring oscillator requires a few additional test

patterns, as discussed in the following paragraph. Importantly, pseudorandom test data and

faulty effects can easily propagate through the ring generator due to its functionality. In fact,

the very same ring generator serves as a MISR and contains a final test result. It observes

original outputs of the ring oscillator as well as an additional observation point, as discussed

below.

 During the first step of a test session, all memory elements of the ring generator must

be reset. Similarly to the functional mode, the actual testing requires a number of clock cycles

necessary to obtain a nonce. The testing results are then available in the ring generator. While

running a test, a simple control decoder is employed to stimulate the ring oscillator. To make

it testable, the ring oscillator needs to be redesigned by replacing one of the inverters with a

.2 INTERNATIONAL TEST CONFERENCE

131

2-input NAND gate G3, and by adding an auxiliary 2-input OR gate G1, as shown in Fig. 9.6.

In principle, the test breaks the ring oscillator feedback loop and applies three different pat-

terns (the red font) to inputs of G1, G2, and G3 to detect all single stuck-at faults within the

oscillator and to feed the ring generator with deterministic data. This approach is illustrated

in Fig. 9.6. It is worth noting that all nets in the circuit assume both values: 0 and 1. It allows

one to excite all stuck-at-1 and stuck-at-0 faults, respectively. The first pattern (001) disables

the feedback loop at gate G2, whereas the second pattern (010) does the same at gate G3. The

last vector (111) blocks the loop at gate G1 that allows us to detect and observe faults on the

inputs and the output of G2. The output of G1 is directly connected to the ring generator to

observe a response related to s-a-0 fault affecting the feedback line. Clearly, if one of the

decoder outputs (driving gates G1, G2, or G3) is stuck at the non-controlling value, and this

fault causes one of these inputs to change from a dominating value to a non-controlling one,

then the circuit will oscillate, effectively producing a sequence of erroneous values entering

the ring generator.

The BIST procedure described above was fault simulated for all single stuck-at faults

within the circuitry every generator of Table 9.1 consists of. The obtained results clearly

confirm that all single stuck-at faults can be detected within duration of the proposed func-

tional test, i.e., a time needed to produce a nonce.

Figure 9.6 Testing a TRNG.

.2 INTERNATIONAL TEST CONFERENCE

132

.2 INTERNATIONAL TEST CONFERENCE

133

10. Hardware root of trust

This chapter introduces a low-cost hardware root of trust to guard ICs security sensitive as-

sets [142]. The infrastructure required is very minimal; the presented scheme employs only

a few blocks discussed in previous chapters. In particular, the proposed design deploys cus-

tomized versions of a challenge generator, a hash function, and input/output SCs, that were

presented in previous chapters.

10.1 SSN and its root of trust

In principle, the SSN [40] allows one to test, in parallel, any number of cores in a very short

time by enabling high-speed data distribution and efficient handling of imbalances between

successive modules. Although SSN solves many scan data distribution challenges in large

SoC or 3D designs, it may pose security risks, and therefore it needs to be protected and

available only to authorized users. Consequently, this chapter proposes to secure the SSN

technology by adding a die-centric hardware root of trust protecting SSN-based designs

against unauthorized access and expanding threatscape. As SSN is compatible with a flexible

parallel port of IEEE Std 1838 for 3D test access, RoT builds on SSN and takes advantage

of its central DFT entry to protect a single top level test access point shared by IEEE 1687

(IJTAG) compliant IP blocks. In 3D ICs, the proposed RoT can be either assigned to every

silicon wafer or to a master die only.

A simple example of this approach, applied to a 6-core SoC design using SSN, is

shown in Fig. 8.1. Each core contains a Streaming Scan Host (SSH) driving local scan re-

sources to load and unload scan chains (or channels) with data delivered on the SSN bus. For

example, SSH can interface with EDT logic, as shown in the figure. Typically, each SSH has

two external ports: an IEEE 1687 IJTAG interface and a parallel data bus conveying the

payload scan data and connecting one SSH to the next one. A single-bit IJTAG network is

usually used to configure all SSN nodes prior to application of test patterns. As a result, each

node is preloaded with data regarding the active bus width, its location in the series of nodes

driven, the number of shift cycles per scan pattern, and other information needed to track the

streaming operations. Following this setup, test patterns are applied as packetized scan data

that are streamed through the SSH nodes, each of which can determine when it needs (1) to

read scan in data from the bus, (2) to place scan out data on the bus, or (3) to pass along data

that is destined for other nodes.

The presented SSN modus operandi and a range of data consumed and produced by

the SSN nodes are diverse enough to merit the presence of an input SC and an output SC

(see Fig. 8.1). Both devices are deployed to decrypt and encrypt the test data from the IJTAG

interface and the SSN bus. As a result, they form, in conjunction with the RoT controller and

its access authentication mechanisms, effective barriers that may obscure many control and

.2 INTERNATIONAL TEST CONFERENCE

134

data signals, and thus prevent a wide spectrum of attempts to compromise a design. Indeed,

in the case of unauthorized access, randomly obfuscated test data produced by both the input

and output SC and sent through the IJTAG and SSN interfaces will cause the entire SoC

design to enter an unusual test mode. In this mode, the DFT logic architecture becomes com-

pletely unpredictable, leaving the attacker confused or given a fake feedback. Moreover, the

same signals may trigger other internal on-chip mechanisms [29], [181] which do not allow

normal IP behavior. Architectural details regarding the input (output) SC can be found in

Chapter 8.

10.2 Challenge-response protocol

The authentication protocol presented in this chapter (and shown in Fig. 10.1) lays foundation

for a hardware root of trust. Essentially, it is a small and simple finite-state machine designed

to perform a specific set of limited functions like true random number generation, data hash-

ing and encryption, keys validation, and logic locking. The challenge-response procedure

works as follows.

Once a request to run certain test-related functions is received, an IC creates a random

token (commonly known as a nonce) and sends it to a secure server, further referred to as the

security processor. The nonce is produced by an on-chip TRNG (see Chapter 9) which yields

different strings of 0s/1s within each activation. It contains also some individual data from

the IC such as its electronic identification number. The security processor computes a hash

of the nonce, as described in Chapter 10.3. This step involves a secret key that is used as an

initial value for hashing the nonce data. Selection of the actual key is done based on a re-

ceived design ID. If the design ID is invalid, the security processor still uses a unique and

Figure 10.1 The proposed security protocol.

.2 INTERNATIONAL TEST CONFERENCE

135

fake (ID-dependent) initial hash value, in this case to obfuscate the resultant response. Fur-

thermore, the security processor may keep track of how many times each individual chip

requested a response, monitoring any unusual behavior. The same (valid) secret key is kept

in an encrypted form by the IC that hashes the nonce as well, using the secret key the same

way the security processor does.

The hash value produced by the security processor is further bitwise XOR-ed with two

configuration masks, other secret items stored on the server as a part of a given (legitimate)

test set authentication data. Blended with the hash value, they form a response which is sent

back to the IC. In order to retrieve the configuration masks, the circuit does a bitwise XOR

on the response, i.e., the hash value returned by the security processor and a hash value pro-

duced by the IC. They are subsequently used to setup both a test data input and output SC.

The former device can handle encrypted test data such as EDT test patterns prior to their

further processing by means of on-chip test data decompressors. This way the proposed

scheme not only protects the IC through the silicon-based authentication procedure, but also

allows one to work with encrypted patterns to mitigate oracle-less attacks targeting directly

test data. The same rules apply to the test data output SC that facilitates encrypting of output

test data streams. If an attempt of unauthorized access is launched, it triggers changes in the

circuit internal functionality. Input and output SCs become blurred due to corrupted config-

uration masks. This results in signal corruptions caused by activation of certain elements,

typically disabled and transparent in the mission mode. The above authentication process is

fully automated and invisible to the user (clearly, it does not preclude additional counter-

measures such as additional password-based authentication).

A high-level diagram of the proposed root of trust is given in Fig. 10.2. Two devices

implementing a random challenge generator (CG) and a hash function sit at the heart of the

scheme. A ring-generator-based CG uses a group of ring oscillators. After a given number

Figure 10.2 Hardware root of trust.

.2 INTERNATIONAL TEST CONFERENCE

136

of clock cycles (note that RoT uses its own on-chip clock to avoid noninvasive playing with

the clock signals), it serially outputs a sequence of bits that form a nonce going to the security

processor. The same nonce becomes now the subject of hashing that mimics the operations

carried out by the processor (Chapter 10.3). Activity periods of both devices are controlled

by a standard n-bit counter, as shown in Fig. 10.2. The same counter signals the main control

unit when its most significant output bit changes from 0 to 1. It terminates all operations. RoT

deploys also a group of 2-input XOR gates to restore the configuration masks and to feed an

input SC, output SC, and obfuscation logic (optional). One group of these gate inputs are

driven by a shift register that receives a response produced by the security processor. While

a simple FSM implements the control unit and supervises the authentication process, some

additional modules such as the control decoder, the MISR, and a 2-way multiplexer as well

as some extra connectivity are primarily intended for use in the built-in self-test mode.

A lightweight TRNG presented in Chapter 9 serves as a CG. While the TRNG is driven

by an on-chip clock generator, a feedback disable circuitry allows the scheme to convert the

CG into a simple shift register when its content is about to be passed to the security processor

as a nonce. Typically, it occurs after a predefined number of clock cycles indicated by the

counter (Fig. 10.2).

10.3 Nonce hashing

As discussed in Chapter 10.2, a random nonce produced by a circuit is subsequently hashed

on chip as well as by the security processor that, to deliver a response, runs an appropriate

procedure mimicking a built-in hash function of the device-under-test. A hashing circuitry

has been presented in Chapter 7. Selection of a particular hash function is decided on the

basis of the size message and digest register assume. The final response becomes ready after

a predefined number of clock cycles that suffice to rotate the nonce multiple times within the

circular register. The main counter of the scheme controls this process.

At the end of the authentication process, the comparator outputs a result that can be

further split into three parts, as shown in Fig. 10.2. The first group of output bits form a

decryption mask, which was earlier blended into a response (hash), as presented in Chapter

10.2. Upon successful authentication, the mask in its original (proper) form is used to setup

an additive input SC. Its modular and programmable feedback network that allows one to

implement any characteristic polynomial has been presented in Chapter 8. This, in turn, al-

lows one to pick a suitable secret configuration mask, preferably corresponding to a primitive

polynomial, depending on other security needs. The pseudorandom sequences produced by

selected polynomials are employed to decrypt, i.e., complement or retrieve, test data that

enters the circuit's DFT infrastructure (clearly, this approach requires a prior additive encryp-

tion of test data by using the same feedback polynomial). The input SC is initialized by asyn-

chronously setting or resetting its memory elements during the overall RoT reset step. The

.2 INTERNATIONAL TEST CONFERENCE

137

input SC initial state remains a proprietary information associated with a given design. The

second group of output bits form an encryption mask. It is employed to operate the output

SC by following the same principles as those described above.

A different scenario applies if the response does not match what is expected, that is, an

attempt to unauthorized access is detected. First of all, the decryption mask will trigger a

peculiar feedback polynomial that is going to yield a pseudorandom sequence (even not nec-

essarily a maximum-length on its own) that can effectively blur encrypted test data such that

it becomes completely useless. The output SC will obscure test results following the same

principles.

10.4 Security analysis and evaluation

At this point, it is essential to observe that in the case of unauthorized access the proposed

authentication scheme does not openly deny access to the attacker by default. Instead, it

moves a design (circuit) into a peculiar mode in which its behavior becomes completely un-

predictable and misleading. Although it still accepts streams of input data and produces re-

sults, in reality this mechanism gives fake feedback to the attacker who may believe to have

successfully opened the circuit. In fact, this process rises the complexity of exploration al-

gorithms enormously, also due to characteristic data scrambling features of combined com-

pression hardware as well as SSN and IJTAG protocols. Furthermore, it highly confuses the

attacker who is not aware of the actual SoC network configuration and the corresponding

operational conditions that they have to deal with.

Having recalled this behavior, consider two basic scenarios. The first one assumes that

the attacker has no access to the security processor. It forces the attacker to mimic a response

that a circuit should receive after producing a nonce. Assuming that the cryptographic prim-

itives (CG, the hash function) are secure and invulnerable to side-channel attacks, and the

secret data kept by the security processor (initial hash values, configuration masks) are secure

as well, the resultant security depends primarily on the size of such items as the nonce, the

hashed response, and the aforementioned secrets. It is also worth noting that the scheme as-

sures both secure authentication and communication. Indeed, even if the adversary takes over

the chip after it has been properly setup by an authorized entity, its usage requires the

knowledge of how to encrypt the input data and how to interpret data produced by the circuit.

Clearly, that secret information remains in the exclusive possession of the security server.

According to another scenario, a malicious party may try to intercept communication

between the IC and the security processor to collect some exemplary data. This case resem-

bles, to some extent, a man in the middle attack. However, the CG used by the proposed

scheme to produce a nonce mitigates significantly attempts to discover and resolve challenge-

response pairs as the attacker is incapable of guessing the correct value of the nonce in ad-

vance. Furthermore, a valid response depends on secret (and secure) data related to the circuit

.2 INTERNATIONAL TEST CONFERENCE

138

ID and configuration masks representing the legitimate test patterns (the attacker will likely

have to use different patterns that are necessary to compromise internal assets of the IC). In

other words, the attacker can eavesdrop on the communication channel but is unable to tam-

per with it. Clearly, attacks in which the adversary gets a desired device configuration that

can be further explored by means of forging patterns are prohibitively expensive if not im-

possible given (again) large enough secrets. In the light of the above findings, several types

of attacks presented in the technical literature [43], including replay attacks, a challenge for-

gery, response and challenge brute force attacks, are virtually unfeasible.

As shown in [20], the access protocol-based security protection techniques are some-

how orthogonal to schemes intended to combat invasive attacks such as microprobing or

reverse engineering, and noninvasive attacks (side-channel analysis or fault injection). Con-

sequently, depending on a desired security degree, one may consider additional countermeas-

ures to detect voltage stress, extreme temperatures, clock instabilities, to name just a few

anomalies that could be used by malicious parties.

.2 INTERNATIONAL TEST CONFERENCE

139

11. Conclusions

What has been presented in the thesis clearly supports the observation that deterministic in-

system tests can be effectively and safely introduced into the SoC realm. The first part of this

work shows that novel in-system test solutions can have unknown states filtered out in a cost-

effective manner before they could reach test response compactors. The synergistically com-

bined schemes of the second part of the thesis are capable of creating a customized, light-

weight, hardware root of trust for DIST- and SSN-based applications.

In a brief summary, it is worth recalling that the tunable X-tolerant compactor for

LBIST applications, presented in Chapter 3, builds on a generic and test set independent scan

chain selection technology. It allows one to block, in a highly selective manner, X states

within redefinable groups of chains and scan shift cycles. It is also capable of handling ob-

servation scan chains that capture test responses in a per-cycle fashion. To the best of the

author's knowledge, the X-masking scheme introduced in Chapter 4 is the first solution of

that kind developed for DIST applications. The new scan selection logic can be paired with

any test response compactor while working with EDT-encoded test data. Both solutions offer

very good error observability even in the presence of a large number of unknown states.

Hence, the proposed solutions make many in-field and in-system test schemes (such as those

developed for automotive electronics) compliant with international test quality standards and

very strict quality requirements. Experimental results confirm that X-masking schemes of

Chapters 3 and 4 form a robust and superior base for test response compaction techniques

that do not impact test quality in terms of test time and test coverage, require a minimal

amount of control information, and are easily scalable with the size of tested designs.

Hybrid ring generators, introduced in Chapter 6, can make a substantial contribution

toward the performance of linear circuits used in a variety of applications. Similarly to con-

ventional ring generators, the proposed scheme builds on a ring counter and can preserve the

maximum-length property. Due to their feedback nets of opposite directions, however, the

hybrid rings feature improved structural properties and enhanced the overall performance. In

particular, the hybrid rings preserve small internal fan-outs of their conventional counter-

parts, while simplifying the resultant circuit layout and routing. Consequently, HRGs create

a new and enlarged implementation domain for linear finite state machines of a given size

and a desired set of feedback taps. HRGs can be also successfully used as building blocks of

hardware security primitives, as has been shown in the following chapters.

Chapters 7, 8, and 9 present lightweight security primitives destined for root of trust

applications. The cryptographic hash function of Chapter 7 builds on an HRG, which is fur-

ther combined with a sequential circuit comprising bent-like functions forming its nonlinear

feedback network. The test data stream cipher described in the next chapter is again built

around an HRG and two additional linearly filtered NLFSRs. A true random number gener-

ator from Chapter 9 employs a ring generator (or a hybrid ring generator) driven by a

.2 INTERNATIONAL TEST CONFERENCE

140

multiple-output ring oscillator. The presented cryptographic hash function and the test data

stream cipher are programmable – this feature allows one to pick a linear feedback network

to set the HRG up (out of millions of available feedback functions). Moreover, it enables a

proprietary initialization of all sequential parts of those modules. Since devices of Chapters

7, 8, and 9 are easily scalable, they can be rearchitected by resizing their building components

so that the resultant schemes meet the desired safety requirements of a particular IC. Several

desired features of these solutions were examined with various statistical tests, along with

the NIST and AIS test suites. The results show that they fulfill all test requirements and can

work across a wide range of sizes. Moreover, all three security primitives can resist various

types of attacks, including cryptographic ones.

Finally, the last chapter introduces a hardware RoT combining presented earlier secu-

rity blocks. It is capable of defending designs against unauthorized access to their embedded

test instruments. With the proposed approach, trusted users can be granted direct access to

the on-chip DFT infrastructure during manufacturing tests. Upon its completion and after

blowing test interface fuses, test logic can only be reached through the described RoT. It can

be done either by (1) running a test in the input-only streaming mode, which uses encrypted

patterns and reference responses for the on-chip compare approach, or by (2) streaming test

data in both directions with access to encrypted responses for the sake of fault diagnosis. As

encrypting data going to and coming from a DUT makes eavesdropping ineffective, the new

scheme counteracts attacks based on the analysis of applied patterns and received results, and

it prevents experimentation with varying stimuli and the resulting responses.

The thesis demonstrates that even in such mature areas as test response compaction and

in-system test security, there are improvement opportunities. Moreover, the proposed solu-

tions can also be regarded as starting points for future research directions. For example, the

test response compactors of Chapters 3 and 4 can be rearchitected to function within the

ATE-based test framework, where it is unnecessary to filter out all unknown values. New

NLFSRs can be used to further enhance nonlinear sequential logic in hash functions of Chap-

ter 7, or to design fully nonlinear stream ciphers similar to that of Chapter 8. Furthermore,

the hardware root of trust discussed in Chapter 10 can be strengthened with a protocol provid-

ing access to selected test instruments based on the user’s privilege level. In summary, the

solutions proposed in the thesis address some of the key challenges of the modern, secure

VLSI test and help to converge toward an ultimate on-chip test solution with a negligible

impact on the design and manufacturing realm.

.2 INTERNATIONAL TEST CONFERENCE

141

12. Bibliography

[1] B. Acar and S. Ergun, “A reconfigurable random number generator based on the transient effects of

ring oscillators,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 9, pp. 1609-1613, Sept. 2020.

[2] M. Alawida, J.S. Teh, D.P. Oyinloye, W.H. Alshoura, M. Ahmad, and R.S. Alkhawaldeh, “A new hash

function based on chaotic maps and deterministic finite state automata,” IEEE Access, vol. 8, pp.

113163-113174, 2020.

[3] T. Amaki, M. Hashimoto, and T. Onoye, “An oscillator-based true random number generator with jitter

amplifier,” in Proc. IEEE Int. Symp. Circuits and Systems, 2011, pp. 725–728.

[4] N.N. Anandakumar, S.K. Sanadhya, and M.S. Hashmi, „FPGA-based true random number generation

using programmable delays in oscillator-rings,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no.

3, pp. 570-574, March 2020.

[5] Y. Atobe, Y. Shi, M. Yanagisawa and N. Togawa, "Dynamically changeable secure scan architecture

against scan-based side channel attack," in Proc. ISOCC, pp. 155-158, Nov. 2012.

[6] J.-P. Aumasson, L. Henzen, W. Meier, M. Naya-Plasencia, “Quark: a lightweight hash,” Journal of

Cryptology, vol. 26, pp. 313-339, 2013.

[7] S. Banik, A. Chattopadhyay and A. Chowdhury, "Cryptanalysis of the double-feedback XOR-chain

scheme proposed in indocrypt 2013," Int. Conf. Cryptol. India, vol. 2014, pp. 179-196.

[8] S. Banik and A. Chowdhury, "Improved scan-chain based attacks and related countermeasures," in

Proc. Int. Conf. Cryptol. India, pp. 78-97, 2013.

[9] R. Baranowski, M.A. Kochte, and H.-J. Wunderlich, “Fine-grained access management in reconfigu-

rable scan networks,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 6, pp. 937-

946, June 2015.

[10] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, A. Ferko, B. Keller, D. Scott, B. Koenemann,

and T. Onodera, “Extending OPMISR beyond 10x scan test efficiency,” IEEE Design and Test of Com-

puters, vol. 19, no. 5, pp. 65–73, Sep./Oct. 2002.

[11] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, B. Keller, and B. Koenemann, “OPMISR: The

foundation for compressed ATPG vectors,” in Proc. ITC, 2001, pp. 748–757.

[12] L. Bassham, et al., “A statistical test suite for random and pseudorandom number generators for cryp-

tographic applications,” NIST Special Publication, Tech. Rep. 800-22 Rev 1a, 2010.

[13] A. Beirami and H. Nejati, “A framework for investigating the performance of chaotic-map truly random

number generators,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 7, pp. 446-450, Jul. 2013.

[14] C. Berbain and H. Gilbert, “On the security of IV dependent stream ciphers,” in Proc. Int. Workshop

on Fast Software Encryption, LNCS, vol. 4593, Springer-Verlag, 2007, pp. 254–273.

[15] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “On the indifferentiability of the sponge con-

struction,” in Proc. Int. Conf. Theory and Applications of Cryptographic Techniques, Springer, 2008,

pp. 181–197.

[16] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak,” in Proc. Int. Conf. Theory and Ap-

plications of Cryptographic Techniques, Springer, 2013, pp. 313-314.

[17] L. Blum, M. Blum, and M. Shub, “A simple unpredictable pseudorandom number generator,” SIAM J.

Comput., vol. 15, no. 2, pp. 364–383, 1986.

[18] N. Bochard, F. Bernard, V. Fischer, and B. Valtchanov, “True randomness and pseudo-randomness in

ring oscillator-based true random number generators,” Int. J. Reconfig. Comput., vol. 2010, Dec. 2010,

Art. no. 879281.

[19] U.J. Botero, R. Wilson, H. Lu, M. T. Rahman, M. A. Mallaiyan, F. Ganji, et al., "Hardware trust and

assurance through reverse engineering: A survey and outlook from image analysis and machine learning

perspectives", arXiv:2002.04210, 2020

[20] D. Brauchler and J. Dworak, "Multi level access protection for future IEEE P1687.1 IJTAG networks,"

in Proc. ITC, 2020, pp. 1-10.

.2 INTERNATIONAL TEST CONFERENCE

142

[21] R. Brederlow, R. Prakash, C. Paulus, and R. Thewes, “A low-power true random number generator

using random telegraph noise of single oxide-traps,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech.

Papers, 2006, pp. 1666-1675

[22] M. Bucci, L. Germani, R. Luzzi, A. Trifiletti, and M. Varanonuovo, “A high-speed oscillator-based

truly random number source for cryptographic applications on a smart card IC,” IEEE Trans. Comput.,

vol. 52, no. 4, pp. 403-409, Apr. 2003.

[23] M. Bucci and R. Luzzi, “Design of testable random bit generators,” in Proc. Cryptograph. Hardw.

Embedded Syst., 2005, pp. 147-156.

[24] D. Bucerzan, M. Craciun, V. Chis, and C. Ratiu, “Stream ciphers analysis methods,” Int. J. of Comput-

ers, Communications & Control, vol. V, no. 4, pp. 483-489, 2010.

[25] K.M. Butler and T. J. Powell, “System and method for structurally testing integrated circuit devices,”

U.S. Patent 5,694,402, Dec. 2, 1997.

[26] Y. Cao, X. Zhao, W. Zheng, Y. Zheng, and C.-H. Chang, “A new energy-efficient and high throughput

two-phase multi-bit per cycle ring oscillator-based true random number generator,” IEEE Trans. Cir-

cuits Syst. I, Regular papers, vol. 69, no. 1, pp. 272-283, Jan. 2022.

[27] C. Carlet, Boolean Functions for Cryptography and Coding Theory, Cambridge University Press, Cam-

bridge, 2021.

[28] K. Chakrabarty, "Zero-aliasing space compaction using linear compactors with bounded overhead,"

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 17, no. 5, pp. 452-457, May 1998.

[29] A. Chakraborty, N.G. Jayasankaran, Y. Liu, I. Rajendran, O. Sinanoglu, A.Srivastava, Y. Xie, M. Yasin,

and M. Zuzak, "Keynote: A disquisition on logic locking," IEEE Trans. Comput.-Aided Design Integr.

Circuits Syst., vol. 39, pp. 1952-1972, Oct. 2020.

[30] U. Chandran and D. Zhao, "SS-KTC: A high-testability low-overhead scan architecture with multi-

level security integration," in Proc. VTS, pp. 321-326, May 2009.

[31] T. Chen, Y. Ma, J. Lin, Y. Cao, N. Lv, and J. Jing, “A lightweight full entropy TRNG with on-chip

entropy assurance,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 12, pp.

2431–2444, Dec. 2021.

[32] X. Chen, Z. Lu, G. Qu and A. Cui, "Partial scan design against scan-based side channel attacks," in

Proc. IEEE Int. Conf. Trust Secur. Privacy Comput. Commun., pp. 1484-1489, Aug. 2018.

[33] A. Cherkaoui, V. Fischer, A. Aubert, and L. Fesquet, “A self-timed ring based true random number

generator,” in Proc. Int. Symp. Asynchronous Circuits and Systems, 2013, pp. 99-106.

[34] A. Cherkaoui, V. Fischer, L. Fesquet, and A. Aubert, “A very high speed true random number generator

with entropy assessment,” in Proc. Int. Workshop Cryptograph. Hardw. Embedded Syst., 2013, pp.

179-196.

[35] V. Chickermane, B. Foutz, and B. Keller, “Channel masking synthesis for efficient on-chip test com-

pression,” in Proc. ITC, 2004, pp. 452-461.

[36] G.M. Chiu and J. C. M. Li, "A secure test wrapper design against internal and boundary scan attacks

for embedded cores," IEEE Trans. VLSI Systems, vol. 20, no. 1, pp. 126-134, Jan. 2012.

[37] C. Clark, "Anti-tamper JTAG TAP design enables DRM to JTAG registers and P1687 on-chip instru-

ments," in Proc. IEEE Int. Symp. Hardware-Oriented Security Trust, pp. 19-24, 2010.

[38] C.J. Colburn and A. Rosa, Triple Systems, Oxford University Press, New York, 1999.

[39] D. Coppersmith, H. Krawczyk, and Y. Mansour, “The shrinking generator,” Advances in Cryptology,

LNCS, vol 773, Springer, 1994.

[40] J.-F. Côté, M. Kassab, W. Janiszewski, R. Rodrigues, R. Meier, B. Kaczmarek, P. Orlando, G. Eide, J.

Rajski, G. Colon-Bonet, N. Mysore, Y. Yin, and P. Pant, “Streaming scan network (SSN): An efficient

packetized data network for testing of complex SoCs,” in Proc. ITC, 2020, paper 6B.2.

[41] J. Cui, M. Yi, D. Cao, L. Yai, X. Wang, H. Kiang, Z. Huang, H. Qi, T. Ni, and Y. Lu, “Design of true

random number generator based on multi-stage feedback ring oscillator,” IEEE Trans. Circuits Syst. II,

Exp. Briefs, vol. 69, no. 3, pp. 1752-1756, March 2022.

.2 INTERNATIONAL TEST CONFERENCE

143

[42] D. Czysz, G. Mrugalski, N. Mukherjee, J. Rajski, and J. Tyszer, “On compaction utilizing inter and

intra correlation of unknown states,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 29,

pp. 117-126, Jan. 2010.

[43] J. Da Rolt, A. Das, G. Di Natale, M.-L. Flottes, B. Rouzeyre, and I. Verbauwhede, "Test versus security:

past and present," IEEE Trans. Emerging Topics in Computing, vol. 2, pp. 50-62, March 2014.

[44] I.B. Damgård, “A design principle for hash functions,” in Proc. Int. Cryptology Conf., Springer, 1989,

pp. 416–427.

[45] A. Das et al., "PUF-based secure test wrapper design for cryptographic SoC testing," in Proc. DATE,

pp. 866-869, 2012.

[46] A. Das, B. Ege, S. Ghosh, L. Batina and I. Verbauwhede, "Security analysis of industrial test compres-

sion schemes", IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 32, pp. 1966-1977, Dec.

2013.

[47] H. Dattatraya, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy, B. Muthiah, and S. Sankar, “Si-

lent data corruptions at scale,” https://arxiv.org/abs/2102.11245, 2021.

[48] P.P. Deepthi and P.S. Sathidevi, “Design, implementation and analysis of hardware efficient stream

ciphers using LFSR based hash functions,” Computers & Security, Elsevier, vol. 28, pp. 229–241, 2009.

[49] R. Della Sala, D. Bellizia, and G. Scotti. “A novel ultra-compact FPGA-compatible TRNG architecture

exploiting latched ring oscillators,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 3, pp. 1672-

1676, March 2022.

[50] K. Demir and S. Ergun, “Random number generators based on irregular sampling and Fibonacci–Galois

ring oscillators,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 10, pp. 1718-1722, Oct. 2019.

[51] S.N. Dhanuskodi, A. Vijayakumar, and S. Kundu, “A chaotic ring oscillator based random number

generator,” in Proc. Int. Symp. Hardware-Oriented Security Trust, 2014, pp. 160-165.

[52] M. Dichtl and J.D. Golić, “High-speed true random number generation with logic gates only,” in Proc.

Cryptograph. Hardw. Embedded Syst., 2007, pp. 45-62.

[53] I. Dinur and A. Shamir, “Cube attacks on tweakable black box polynomials,” in Proc. EUROCRYPT,

Springer, 2009, pages 278–299.

[54] H.D. Dixit, L. Boyle, G. Vunnam, S. Pendharkar, M. Beadon, and S. Sankar, “Detecting silent data

corruptions in the wild,” https://arxiv.org/abs/2203.08989, 2022.

[55] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schlaffer, “ASCON v2.1: lightweight encryption and

hashing,” J. of Cryptology, vol. 34, paper no. 33, 2021.

[56] E. Dubrova, “A scalable method for constructing Galois NLFSRs with period 2n – 1 using cross-join

pairs,” IEEE Trans. on Inf. Theory, vol. 59, no. 1, pp. 703-709, Jan. 2013.

[57] E. Dubrova, “A list of maximum period NLFSRs,” IACR Cryptol. ePrint Arch., vol. 2012, pp. 166-174,

2012.

[58] E. Dubrova, “A transformation from the Fibonacci to the Galois NLFSRs,” IEEE Trans. on Inf. Theory,

vol. 55, no. 11, pp. 5263-5271, Nov. 2009.

[59] E. Dubrova, M. Teslenko, and H. Tenhunen, “On analysis and synthesis of (n, k)-non-linear feedback

shift registers,” in Proc. Design, Automation and Test in Europe, 2008, pp. 1286-1291.

[60] P. Ekdahl and T. Johansson, “A new version of the stream cipher SNOW,” Selected Areas in Cryptog-

raphy, Springer, LNCS 2595, pp. 47-61, 2002.

[61] H. El-Razouk, A. Reyhani-Masoleh, and G. Gong, "New implementations of the WG stream cipher,"

IEEE Trans. VLSI Systems, vol. 22, no. 9, pp. 1865-1878, Sept. 2014.

[62] M. Epstein, L. Hars, R. Krasinski, M. Rosner, and H. Zheng, “Design and implementation of a true

random number generator based on digital circuit artifacts,” in Proc. Cryptograph. Hardw. Embedded

Syst., 2003, pp. 152-165.

[63] E. Farcot, S. Best, R. Edwards, I. Belgacem, X. Xu, and P. Gill, “Chaos in a ring circuit,” Chaos,

Interdiscipl. J. Nonlinear Sci., vol. 29, no. 4, Apr. 2019, Art. no. 043103.

[64] V. Fischer and M. Drutarovsky, “True random number generator embedded in reconfigurable hard-

ware,” in Proc. Cryptograph. Hardw. Embedded Syst., 2002, pp. 415-430.

.2 INTERNATIONAL TEST CONFERENCE

144

[65] J. Francq, L. Besson, P. Huynh, P. Guillot, G. Millerioux, and M. Minier, “Non-triangular self-syn-

chronizing stream ciphers,” IEEE Trans. Comput., vol. 71, no. 1, pp. 134-145, Jan. 2022.

[66] H. Fredricksen, “A survey of full length nonlinear shift register cycle algorithms,” SIAM Review, vol.

24, no. 2, pp. 195–221, 1982.

[67] B.M. Gammel and R. Göttfert, “Linear filtering of nonlinear shift-register sequences,” in Proc. Coding

and Cryptography, LNCS, vol 3969, Springer, 2005, pp. 354-370.

[68] B.M. Gammel, R. Göttfert, and O. Kniffler, “An NLFSR-based stream cipher,” in Proc. Int. Symp. On

Circuits and Systems, 2006, pp. 2917-2920.

[69] J.D. Golić, “New methods for digital generation and postprocessing of random data,” IEEE Trans.

Comput., vol. 55, no. 10, pp. 1217-1229, Oct. 2006.

[70] G. Gong and A. Youssef, “Cryptographic properties of the Welch-Gong transformation sequence gen-

erators,” IEEE Trans. Infor. Theory, vol. 48, No. 11, pp. 2837-2846, Nov. 2002.

[71] S.W. Golomb, Shift Register Sequences, Aegean Park Press, Laguna Hills, California, 1982.

[72] U. Guin, Z. Zhou, and A. Singh, “Robust design-for-security architecture for enabling trust in IC man-

ufacturing and test,” IEEE Trans. VLSI Systems, vol. 26, pp. 818–830, May 2018.

[73] X. Guo et al., “Can algorithm diversity in stream cipher implementation thwart (natural and) malicious

faults?,” IEEE Trans. Emerging Topic in Computing, vol. 4, no. 3, pp. 363-373, July-Sept. 2016.

[74] P. Hagerty and T. Draper, “Entropy bounds and statistical tests,” in Proc. NIST Random Bit Generation

Workshop, 2012.

[75] C. Hanin, B. Echandouri, F. Omary, and S.E. Bernoussi, “L-CAHASH: A novel lightweight hash func-

tion based on cellular automata for RFID,” Ubiquitous Networking, Springer, 2017, pp. 287–298

[76] H. Hata and S. Ichikawa, “FPGA implementation of metastability-based true random number genera-

tor,” IEICE Trans. Inf. Syst., vol. E95.D, no. 2, pp. 426-436, 2012

[77] S. Hellebrand, T. Indlekofer, M. Kampmann, M.A. Kochte, C. Liu, and H.-J. Wunderlich, “FAST-

BIST: Faster-than-at-speed BIST targeting hidden delay defects,” in Proc. ITC, 2014, paper 29.3.

[78] D. Hely, M. Flottes, F. Bancel, B. Rouzeyre, N. Berard and M. Renovell, "Scan design and secure chip,"

in Proc. Int. Line Test. Symp. (IOLTS), pp. 219-224, 2004.

[79] C. Hobbs and P. Lee, “Understanding ISO 26262 ASILs,” Electronic Design, July 9, 2013.

[80] P.H. Hochschild, P. Turner, J.C. Mogul, R. Govindaraju, P. Ranganathan, D.E. Culler, and A. Vahdat,

“Cores that don’t count,” in Proc. Workshop on Hot Topics in Operating Systems, 2021, pp. 9-16.

[81] D.E. Holcomb, W.P. Burleson, and K. Fu, “Power-up SRAM state as an identifying fingerprint and

source of true random numbers,” IEEE Trans. Comput., vol. 58, no. 9, pp. 1198-1210, Sept. 2009.

[82] P.D. Hortensius, R. D. McLeod, and H. C. Card, “Parallel random number generation for VLSI systems

using cellular automata,” IEEE Trans. Comput., vol. 38, no. 10, pp. 1466–1473, 1989.

[83] Y. Huang, S. Milewski, J. Rajski, J. Tyszer, and C. Wang, “Low cost hypercompression of test data,”

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10, pp. 2964-2975, Oct. 2020.

[84] M. Inoue, T. Yoneda, M. Hasegawa and H. Fujiwara, "Partial scan approach for secret information

protection," in Proc. ETS, pp. 143-148, May 2009.

[85] S.A. Jassim and A.K. Farhan, “A survey on stream ciphers for constrained environments,” in Proc.

Babylon Int. Conf. on Information Technology and Science, 2021, pp. 228-233.

[86] A.P. Johnson, R.S. Chakraborty, and D. Mukhopadyay, “An improved DCM-based tunable true random

number generator for Xilinx FPGA,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 64, no. 4, pp. 452-

456, Apr. 2017.

[87] A. Joux, “Multicollisions in iterated hash functions. Application to cascaded constructions,” in Proc.

Ann. Int. Cryptology Conference, Springer, 2004, pp. 306-316.

[88] B. Jun and P. Kocher, The Intel random number generator, Cryptography Res. Inc., San Francisco, CA,

USA, Apr. 1999.

[89] O. Kara and M. F. Esgin, “On analysis of lightweight stream ciphers with keyed update,” IEEE Trans.

Comput., vol. 68, no. 1, pp. 99-110, Jan. 2019.

.2 INTERNATIONAL TEST CONFERENCE

145

[90] S. Keshavarz, C. Yu, S. Ghandali, X. Xu and D. Holcomb, "Survey on applications of formal methods

in reverse engineering and intellectual property protection," J. Hardw. Syst. Secur., vol. 2, no. 3, pp.

214-224, Sep. 2018.

[91] W. Killmann and W. Schindler, “AIS 31: Functionality classes and evaluation methodology for true

(physical) random number generators, version 3.1,” in Proc. Bundesamt Sicherheit der Informations-

technik (BSI), Bonn, Germany, 2001, pp. 1-9.

[92] D. Kinniment and E. Chester, “Design of an on-chip random number generator using metastability,” in

Proc. Eur. Solid-State Circuits Conf., 2002, pp. 595-598.

[93] A. Klein, Stream Ciphers, Springer-Verlag, London, 2013.

[94] L. Knudsen and B. Preneel, “Construction of secure and fast hash functions using nonbinary error-

correcting codes,” IEEE Trans. Inf. Theory, vol. 48, no. 9, pp. 2524-2539, Sept. 2002.

[95] P. Kohlbrenner and K. Gaj, “An embedded true random number generator for FPGAs,” in Proc.

ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2004, pp. 71-78.

[96] A. Kumar, M. Kassab, E. Moghaddam, N. Mukherjee, J. Rajski, S.M. Reddy, J. Tyszer, and C. Wang,

„Isometric test compression,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, pp.

1847-1859, Nov. 2015.

[97] J. Lee, M. Tebranipoor and J. Plusquellic, "A low-cost solution for protecting IPs against scan-based

side-channel attacks," in Proc. VTS, pp. 6, Oct. 2006.

[98] J. Lee, M. Tehranipoor, C. Patel and J. Plusquellic, "Securing designs against scan-based side-channel

attacks," IEEE Trans. Dependable Secure Comput., vol. 4, no. 4, pp. 325-336, Oct. 2007.

[99] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cambridge University

Press, 1994

[100] D. Liu, Z. Liu, L. Li, and X. Zou, “A low-cost low-power ring oscillator-based truly random number

generator for encryption on smart cards,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 6, pp.

608-612, Jun. 2016.

[101] Y. Liu, S. Milewski, G. Mrugalski, N. Mukherjee, J. Rajski, J. Tyszer, and B. Włodarczak, "X-Tolerant

compactor maXpress for in-system test applications with observation scan," IEEE Trans. VLSI Systems,

vol. 29, no. 8, pp. 1553-1566, Aug. 2021.

[102] Y. Liu, S. Milewski, G. Mrugalski, N. Mukherjee, J. Rajski, J. Tyszer, and B. Włodarczak, "X-Tolerant

tunable compactor for in-system test," in Proc. ITC, 2020, pp. 1-10.

[103] Y. Liu, G. Mrugalski, N. Mukherjee, J. Rajski, J. Tyszer, and B. Włodarczak, „Universal compactor

architecture for testing circuits” U.S. Patent 11,815,555, Nov. 14, 2023.

[104] Y. Luo, W. Wang, S. Best, Y. Wang, and X. Xu, “A high-performance and secure TRNG based on

chaotic cellular automata topology,” IEEE Trans. Circuits Syst. I, Regular papers, vol. 67, no. 12, pp.

4970-4983, Dec. 2020.

[105] M.U. Maaz, A. Sprenger, and S. Hellebrand, “A hybrid space compactor for adaptive X-handling,” in

Proc. ITC, 2019, paper 3.3.

[106] D. Mahmoud and M. Stojilovic, “Timing violation induced faults in multi-tenant FPGAs,” in Proc.

DATE, 2019, pp. 1745–1750.

[107] A. Maiti, R. Nagesh, A. Reddy, and P. Schaumont, “Physical unclonable function and true random

number generator: A compact and scalable implementation,” in Proc. ACM Great Lakes Symp. VLSI,

2009, pp. 425-428.

[108] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA-based true random number generation using

circuit metastability with adaptive feedback control,” in Proc. Cryptograph. Hardw. Embedded Syst.,

2011, pp. 17-32.

[109] A.T. Markettos and S. W. Moore, “The frequency injection attack on ring-oscillator-based true random

number generators,” in Proc. Int. Workshop Cryptograph. Hardw. Embedded Syst., 2009, pp. 317–331.

[110] J.L. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans. Inf. Theory, vol. 15, no. 1, pp.

122-127, Jan. 1969.

.2 INTERNATIONAL TEST CONFERENCE

146

[111] M. Matsumoto, S. Yasuda, R. Ohba, K. Ikegami, T. Tanamoto, and S. Fujita, “1200μm2 physical ran-

dom-number generators based on sin MOSFET for secure smart-card application,” in Proc. IEEE Int.

Solid-State Circuits Conf., 2008, pp. 414-624.

[112] W. Meier and O. Staffelbach, “The self-shrinking generator,” Advances in Cryptology, LNCS, vol 950,

Springer, 1995, pp. 205-214.

[113] R.C. Merkle, “One way hash functions and DES,” in Proc. Int. Cryptology Conf., Springer, 1989, pp.

428–446.

[114] S. Mitra and K. S. Kim, “X-compact: An efficient response compaction technique,” IEEE Trans. Com-

put.-Aided Design Integr. Circuits Syst., vol. 23, no. 3, pp. 421–432, Mar. 2004.

[115] S. Mitra, S.S. Lumetta, and M. Mitzenmacher, “X-tolerant signature analysis,” in Proc. ITC, 2004, pp.

432-441.

[116] A. Mittelbach and M. Fischlin, The Theory of Hash Functions and Random Oracles: An Approach to

Modern Cryptography, Springer, New York, 2021.

[117] M.H. Moaiyeri, R.F. Mirzaee, K. Navi, T. Nikoubin, and O. Kavehei, “Novel direct designs for 3-input

XOR function for low-power and high-speed applications,” Int. Journal of Electronics, vol. 97, no. 6,

pp. 647-662, 2010.

[118] E. Moghaddam, N. Mukherjee, J. Rajski, J. Solecki, J. Tyszer, and J. Zawada, “Logic BIST with cap-

ture-per-clock hybrid test points,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38,

no. 6, pp. 1028–1041, Jun. 2019.

[119] G.E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, pp.

114-117, April 1965.

[120] G. Mrugalski, N. Mukherjee, J. Rajski, and J. Tyszer, “High performance dense ring generators,” IEEE

Trans. Comput., vol. 55, no. 1, pp. 83-87, Jan. 2006.

[121] G. Mrugalski, J. Rajski, and J. Tyszer, “Ring generators – new devices for embedded test applications,”

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.., vol. 23, no. 9, pp. 1306-1320, Sep. 2004.

[122] G. Mrugalski, J. Rajski, J. Tyszer, and B. Włodarczak, "X-Masking for deterministic in-system tests,"

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 42, no. 11, pp. 4260-4269, Nov. 2023.

[123] N. Mukherjee et al., “Time and area optimized testing of automotive ICs,” IEEE Trans. VLSI Systems,

vol. 29, no. 1, pp. 76–88, Jan. 2021.

[124] N. Mukherjee, A Pogiel, J. Rajski, and J. Tyszer, “High-speed on-chip event counters for embedded

systems”, in Proc. Int. Conf. on VLSI Design, 2009, pp. 275-280.

[125] N. Mukherjee, J. Rajski, G. Mrugalski, A. Pogiel, and J. Tyszer, “Ring generator: an ultimate linear

feedback shift register,” IEEE Computer, vol. 44, no. 6, pp. 64-71, June 2011.

[126] B. Nadeau-Dostie, “Method of masking corrupt bits during signature analysis and circuit for use there-

with,” U.S. Patent 6,745,359, Jun. 1, 2004.

[127] P. Nannipieri, S. Di Matteo, L. Baldanzi, L. Crocetti, J. Bell, L. Fanucci, and S. Saponara, “True random

number generator based on Fibonacci-Galois ring oscillators for FPGA,” Appl. Sci., vol. 11, 3330, 2021.

[128] M. Naruse, I. Pomeranz, S.M. Reddy, and S. Kundu, “On-chip compression of output responses with

unknown values using LFSR reseeding,” in Proc. ITC, 2003, pp. 1060-1068.

[129] F. Novak and A. Biasizzo, "Security extension for IEEE Std 1149.1,” J. Electron. Test. Theory Appl.,

vol. 22, no. 3, pp. 301-303, 2006.

[130] J.H. Patel, S. S. Lumetta, and S. M. Reddy, “Application of Saluja-Karpovsky compactors to test re-

sponses with many unknowns,” in Proc. VTS, 2003, pp. 107–112.

[131] A. Peetermans, V. Rozić, and I. Verbauwhede, “A highly-portable true random number generator based

on coherent sampling ,” in Proc. IEEE Int. Conf. on Field Programmable Logic and Applications, 2019,

pp. 218-224.

[132] L. Petrica, “FPGA optimized cellular automaton random number generator,” J. Parallel Distrib. Com-

put., vol. 111, pp. 251-259, Jan. 2018.

[133] C.S. Petrie and J. A. Connelly, “A noise-based IC random number generator for applications in cryp-

tography,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 47, no. 5, pp. 615-621, May 2000.

.2 INTERNATIONAL TEST CONFERENCE

147

[134] O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet, “A survey of AIS-20/31 compliant

TRNG cores suitable for FPGA devices,” in Proc. Int. Conf. Field Program. Logic Appl., 2016, pp. 1-

10

[135] M.A. Philip and Vaithiyanathan, “A survey on lightweight ciphers for IoT devices,” in Proc. Int. Conf.

on Technological Advancements in Power and Energy, 2017, pp. 1-4.

[136] S. Pilarski and T. Kameda, Probabilistic Analysis of Test-Response Compaction, IEEE Computer So-

ciety Press, Los Alamitos, CA, 1995.

[137] I. Pomeranz, S. Kundu, and S.M. Reddy, “On output response compression in the presence of unknown

output values,” in Proc. DAC, 2002, pp. 255-258.

[138] B. Preneel, “Davies–Meyer hash function,” in Encyclopedia of Cryptography and Security, Boston,

Springer, 2005, p. 136

[139] J. Rajski, M. Trawka, J. Tyszer, and B. Włodarczak, "H2B: Crypto hash functions based on hybrid ring

generators," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 43, no. 2, pp. 442-455, Feb.

2024.

[140] J. Rajski, M. Trawka, J. Tyszer, and B. Włodarczak, “Hybrid ring generators for in-system test appli-

cations,” in Proc. ETS, 2023, pp. 1-6.

[141] J. Rajski, M. Trawka, J. Tyszer, and B. Włodarczak, “A lightweight true random number generator for

root of trust applications,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.., vol. 42, no. 9, pp.

2815-2825, Sept. 2023.

[142] J. Rajski, M. Trawka, J. Tyszer, and B. Włodarczak, “Hardware root of trust for SSN-based DFT eco-

systems”, in Proc. ITC, 2022, pp. 450-454.

[143] J. Rajski and J. Tyszer, “Synthesis of X-tolerant convolutional compactors,” in Proc. VTS, 2005, pp.

114–119.

[144] J. Rajski and J. Tyszer, “Primitive polynomials over GF(2) of degree up to 660 with uniformly distrib-

uted coefficients,” Journal of Electronic Testing: Theory and Applications, vol. 19, pp. 645-657, 2003.

[145] J. Rajski and J. Tyszer, “Automated synthesis of phase shifters for built-in self-test applications,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 19, no. 10, pp. 1175-1188, Oct. 2000.

[146] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded deterministic test,” IEEE Trans. Com-

put.-Aided Design Integr. Circuits Syst., vol. 23, no. 5, pp. 776–792, May 2004.

[147] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Method for synthesizing linear finite state ma-

chines”, US patent 6,353,842, 2002.

[148] J. Rajski, J. Tyszer, G. Mrugalski, W.-T. Cheng, N. Mukherjee, and M. Kassab, “Multi-stage test re-

sponse compactors,” U.S. Patent 7,818,644, Oct. 19, 2010.

[149] J. Rajski, J. Tyszer, G. Mrugalski, N. Mukherjee, W.-T. Cheng, M. Kassab, “X-Press: two-stage X-

tolerant compactor with programmable selector”, IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 27, no. 1, pp. 147-159, Jan. 2008.

[150] J. Rajski, J. Tyszer, G. Mrugalski, N. Mukherjee, W.-T. Cheng, M. Kassab, M. Sharma, and L. Lai, “X-

tolerant compactor with on-chip registration and signature-based diagnosis,” IEEE Design and Test of

Computers, vol. 24, pp. 476 – 485, Sept.-Oct. 2007.

[151] J. Rajski, J. Tyszer, C. Wang, and S. Reddy, “Convolutional compaction of test responses,” in Proc.

ITC, 2003, pp. 745–754.

[152] M.T. Rahman, K. Xiao, D. Forte, X. Zhang, J. Shi, and M. Tehranipoor, “TI-TRNG: Technology inde-

pendent true random number generator,” in Proc. DAC, 2014, pp. 1-6.

[153] M.A. Razzaq, V. Singh and A. Singh, "SSTKR: Secure and testable scan design through test key ran-

domization,” in Proc. ATS, pp. 60-65, Nov. 2011.

[154] M. Robshaw and O. Billet (eds), New Stream Cipher Designs, The eSTREAM Finalists, LNCS, vol

4986, Springer, 2008.

[155] S. Robson, B. Leung, and G. Gong, “Truly random number generator based on a ring oscillator utilizing

last passage time,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 12, pp. 937-941, Dec. 2014.

.2 INTERNATIONAL TEST CONFERENCE

148

[156] P. Rogaway, “Formalizing human ignorance: collision-resistant hashing without the keys,” in Proc.

VIETCRYPT, Springer, 2006, pp. 211–228.

[157] J. Roth, “Diagnosis of automata failures: a calculus and a method,” IBM Journal of Research and De-

velopment, vol. 10, no. 4, pp. 278–291, Jul. 1966.

[158] O.S. Rothaus, “On bent functions,” Journal of Combinatorial Theory, Ser. A, vol. 20, no. 3, pp. 300-

305, May 1976.

[159] V. Rozić, B. Yang, W. Dehaene, and I. Verbauwhede, “Highly efficient entropy extraction for true

random number generators on FPGAs,” in Proc. DAC, 2015, pp. 1-6.

[160] D. Schellekens, B. Preneel, and I. Verbauwhede, “FPGA vendor agnostic true random number genera-

tor,” in Proc. Int. Conf. Field Programmable Logic and Applications, 2006, pp. 1-6 .

[161] B. Schneier, Applied Cryptography, Protocols, Algorithms, and Source Code in C, Second edition, John

Wiley and Sons, New York, 1996.

[162] R.A. Schulz, “Random number generator circuit,” US Patent 4,905,176, Feb. 27, 1990.

[163] J. Seberry and X.-M. Zhang, “Highly nonlinear 0-1 balanced Boolean functions satisfying strict ava-

lanche criterion,” Advances in Cryptography, vol. 718, LNCS, Springer, pp. 145-155, 1993.

[164] G. Sengar, D. Mukhopadhyay, and D. R. Chowdhury, ‘‘Secured flipped scan-chain model for crypto-

architecture,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.., vol. 26, no. 11, pp. 2080–

2084, Nov. 2007.

[165] K. Serebryany, M. Lifantsev, K. Shtoyk, D. Kwan, and P. Hochschild, “SiliFuzz: Fuzzing CPUs by

proxy,” https://arxiv.org/abs/2110.11519, 2021.

[166] M. Sharma and W.-T. Cheng, “X-filter: Filtering unknowns from compacted test responses,” in Proc.

ITC, 2005, pp. 1–10, paper 42.1.

[167] N. Sklavos, R. Chaves, G. Di Natale, and F. Regazzoni (eds.), Hardware security and trust, Springer,

New York, 2017.

[168] C. Srinivasan, K.V. Lakshmy, and M. Sethumadhavan, “Measuring diffusion in stream ciphers using

statistical testing methods,” Defense Science Journal, vol. 62, no. 1, pp. 6-10, Jan. 2012.

[169] A. Stefanov, N. Gisin, L. Guinnard, and H. Zbinden, “Optical quantum random number generator,” J.

Modern Opt., vol. 47, no. 4, pp. 595-598, 2000.

[170] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascón, W. Y. Tan, A. Tiwari, N. Shankar, S. A Seshia,

and S. Malik, “Reverse engineering digital circuits using structural and functional analyses” IEEE

Transactions on Emerging Topics in Computing , vol. 2, no. 1, pp. 63-80, March 2014.

[171] B. Sunar, W. J. Martin, and D.R. Stinson, “A provably secure true random number generator with built-

in tolerance to active attacks,” IEEE Trans. Comput., vol. 56, no. 1, pp. 109-119, Jan. 2007.

[172] H. Tang, C. Wang, J. Rajski, S.M. Reddy, J. Tyszer, and I. Pomeranz, “On efficient X-handling using

a selective compaction scheme to achieve high test response compaction ratios,” in Proc. VLSI Design,

2005, pp. 59-64.

[173] Y. Tang, H.-J. Wunderlich, P. Engelke, I. Polian, B. Becker, J. Schloffel, F. Hapke, and M. Wittke, “X-

masking during logic BIST and its impact on defect coverage,” IEEE Trans. VLSI Systems, vol. 14, no

2, pp. 193-202, Feb. 2006.

[174] M. Techranipoor and C. Wang (eds.), Introduction to Hardware Security and Trust, Springer, New

York, 2012.

[175] F. Tehranipoor, P. Wortman, N. Karimian, W. Yan, and J.A. Chandy, “DVFT: A lightweight solution

for power-supply noise-based TRNG using dynamic voltage feedback tuning system,” IEEE Trans.

VLSI Systems, vol. 26, no. 6, pp. 1084-1097, June 2018.

[176] T.E. Tkacik, “A hardware random number generator,” in Proc. Cryptograph. Hardw. Embedded Syst.,

2002, pp. 450-453.

[177] C. Tokunaga, D. Blaauw, and T. Mudge, “True random number generator with a metastability-based

quality control,” IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 78-85, Jan. 2008.

[178] N.A. Touba, “X-canceling MISR – An X-tolerant methodology for compacting output responses with

unknowns using a MISR,” in Proc. ITC, 2007, paper 6.2.

.2 INTERNATIONAL TEST CONFERENCE

149

[179] M.S. Turan et al., “Recommendation for the entropy sources used for random bit generation,” NIST

Special Publication, Tech. Rep. 800-90B, 2018.

[180] M.S. Turan, A. Doganaksoy, and C. Calık, “Statistical analysis of synchronous stream ciphers,” in Proc.

Int. Workshop on Stream Ciphers Revisited, 2006, pp. 84-93.

[181] E. Valea, M. Da Silva, G. Di Natale, M.-L. Flottes and B. Rouzeyre, "A survey on security threats and

countermeasures in IEEE test standards", IEEE Design & Test, vol. 36, pp. 95-116, May/June 2019.

[182] I. Vasyltsov, E. Hambardzumyan, Y.-S. Kim, and B. Karpinsky, “Fast digital TRNG based on metasta-

ble ring oscillator,” in Proc. Cryptograph. Hardw. Embedded Syst., 2008, pp. 164-180.

[183] E.I. Vatajelu and G. Di Natale, “High-entropy STT-MTJ-based TRNG,” IEEE Trans. VLSI Systems,

vol. 27, no. 2, pp. 491-495, Feb. 2019.

[184] E.H. Volkerink and S. Mitra, “Response compaction with any number of unknowns using a new LFSR

architecture,” in Proc. DAC, 2005, pp. 117–122.

[185] J. von Neumann, “Various techniques used in connection with random digits,” in Monte Carlo Method.,

Washington, DC, USA: Nat. Bureau Stand. Appl. Math., Dec. 1951, pp. 36-38.

[186] L.-T. Wang and E.J. McCluskey, “Hybrid designs generating maximum-length sequences,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 7, no. 1, pp. 91-99, Jan. 1988.

[187] L.-T. Wang and N.A. Touba, “Method and apparatus for hybrid ring generator design,” US Patent

8,949,299, 2015.

[188] L.-T. Wang, N.A. Touba, R.P. Brent, H. Wang, and H. Xu, “High speed hybrid ring generator design

providing maximum-length sequences with low hardware cost,” Technical report, Computer Engineer-

ing Research Center, The University of Texas at Austin, 2011.

[189] S. Wang, K.J. Balakrishnan, and W. Wei, “X-Block: an efficient LFSR reseeding-based method to

block unknowns for temporal compactors,” IEEE Trans. Comput., vol. 57, no. 7, pp. 978-989, July

2008.

[190] P.Z. Wieczorek and K. Gołofit, “Dual-metastability time-competitive true random number generator,”

IEEE Trans. Circuits Syst. I, Regular Papers, vol. 61, no.1, pp. 134–145, Jan. 2014.

[191] S. Windarta, S. Suryadi, K. Ramli, B. Pranggono, and T. Surya Gunawan, “Lightweight cryptographic

hash functions: design trends, comparative study, and future directions,” IEEE Access, vol. 10, pp.

82272-82294, 2022.

[192] P. Wohl, J.E. Colburn, J.A. Waicukauski, and G.A. Maston, “X-LBIST: X-tolerant logic BIST,” in

Proc. ITC, 2018, paper 13.1.

[193] P. Wohl, J.A. Waicukauski, R. Kapur, S. Ramnath, E. Gizdarski, T.W. Williams, and P. Jaini, “Mini-

mizing the impact of scan compression,” in Proc. VTS, 2007, pp. 67-74.

[194] P. Wohl, J.A. Waicukauski, F. Neuveux, and J.E. Colburn, “Hybrid selector for high-X scan compres-

sion,” in Proc. ITC, 2012, paper 9.2.

[195] P. Wohl, J.A. Waicukauski, F. Neuveux, and E. Gizdarski, “Fully X-tolerant, very high scan compres-

sion,” in Proc. DAC, 2010, pp. 362-367.

[196] P. Wohl, J.A. Waicukauski, S. Patel, and A. Amin, “X-tolerant compression and application of scan-

ATPG patterns in a BIST architecture,” in Proc. ITC, 2003, pp. 727-736.

[197] P. Wohl, J.A. Waicukauski, and S. Ramnath, “Fully X-tolerant combinational scan compression,” in

Proc. ITC, 2007, paper 6.1.

[198] K. Wold and S. Petrović, “Security properties of oscillator rings in true random number generators,” in

Proc. IEEE Int. Symp. Design Diagn. Electron. Circuits Syst,, 2012, pp. 145–150.

[199] K. Wold and C.H. Tan, “Analysis and enhancement of random number generator in FPGA based on

oscillator rings,” in Proc. Int. Conf. Reconfig. Comput. FPGAs, 2008, pp. 385-390.

[200] B. Yang, V. Rožic, M. Grujic, N. Mentens, and I. Verbauwhede, “ES- TRNG: A high-throughput, low-

area true random number generator based on edge sampling,” IACR Trans. Cryptograph. Hardw. Em-

bedded Syst., vol. 2018, no. 3, pp. 267-292, Aug. 2018.

[201] B. Yang, K. Wu and R. Karri, "Secure scan: A Design-for-Test architecture for crypto chips," IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 10, pp. 2287-2293, Oct. 2006.

.2 INTERNATIONAL TEST CONFERENCE

150

[202] J. Yang, Y. Ma, T. Chen, J. Lin, and J. Jing, “Extracting more entropy for TRNGs based on coherent

sampling,” in Proc. Int. Conf. on Security and Privacy in Communication Systems, Springer, 2016, pp.

694–709.

[203] K. Yang, D. Blaauw, and D. Sylvester, “An all-digital edge racing true random number generator robust

against PVT variations,” IEEE J. of Solid-State Circuits, vol. 51, no. 4, pp. 1022-1031, Apr. 2016.

[204] G. Yao and U. Parampalli, “Cryptanalysis of the class of maximum period Galois NLFSR-based stream

ciphers,” Cryptography and Communications, Springer, vol. 13, pp. 847-864, 2021.

[205] N. Yerukala, V. Kamakshi Prasad, and A. Apparao, “Performance and statistical analysis of stream

ciphers in GSM communications,” J. of Communications Software and Systems, vol. 16, no. 1, pp. 11-

18, March 2020.

[206] F.G. Zadegan, U. Ingelsson, E. Larsson, and G. Carlsson, “Reusing and retargeting on-chip instrument

access procedures in IEEE P1687,” IEEE Design and Test of Computers, vol. 29, no. 2, pp. 79–88, Apr.

2012.

[207] G. Zeng, X. Dong, and J. Bornemann, “Reconfigurable feedback shift register based stream cipher for

wireless sensor networks,” IEEE Wireless Comm. Letters, vol. 2, no. 5, pp. 559-562, Oct. 2013.

