
POZNAN UNIVERSITY OF TECHNOLOGY

Deep reinforcement learning for motion
planning in man-made environments

by

Piotr Kicki

in the
Institute of Robotics and Machine Intelligence

Faculty of Control, Robotics and Electrical Engineering

Supervisor: Prof. Piotr Skrzypczyński, Ph.D., D.Sc.
Co-supervisor: Krzysztof Walas, Ph.D.

2023

http://www.put.poznan.pl/
piotr.kicki@put.poznan.pl
http://www.cie.put.poznan.pl/
http://www.creef.put.poznan.pl/
piotr.skrzypczynski@put.poznan.pl
krzysztof.walas@put.poznan.pl

Abstract

Motion planning is a mature area of research in robotics with many well-established methods
based on optimization or sampling the state space, suitable for solving a variety of motion plan-
ning problems. Recently, a new trend in the field of motion planning emerged, whose key feature
is the utilization of the experience in order to improve future motion planning attempts, i.e.,
machine learning-based motion planning. In this dissertation, we propose advancements in this
field, particularly by introducing new solutions to learning-based motion planning for car-like
vehicles and constrained kinodynamic motion planning problems. We propose a method for
rapid path planning for car-like vehicles that sequentially builds the solution from the locally
defined polynomial segments inferred by a neural network, taking into account the geometry
of the environment and the non-holonomic constraints. We also introduce another approach
that is able to generate, in a single neural network inference, a feasible path that guarantees to
reach the goal state exactly. Moreover, we propose a new method for constrained kinodynamic
planning that utilizes a neural network to rapidly plan trajectories parametrized using two B-
spline curves. Thanks to the proposed parametrization, which allows for imposing boundary
constraints on the planned trajectory and its derivatives, and constant planning time, it allows
for replaning the robot’s motion on-the-fly. The proposed approach allows for incorporating not
only boundary constraints but also kinodynamic ones over the whole trajectory, and minimizing
some user-defined task loss, thanks to the use of the Lagrangian multipliers-inspired learning
procedure. To train our proposed motion planning neural networks, we follow the reinforcement
learning paradigm and utilize loss functions that penalize the unwanted behavior of the proposed
planners, like a violation of the constraints, collisions with obstacles, long motion times, etc. In
the proposed setting, we define the loss functions based on the geometry of the solution, such that
they are differentiable and allow for efficient learning of how to plan feasible motions. We pro-
pose to use only weak supervision in order to guide the plans outside of the non-convex collision
areas, which cannot be done using gradients. Finally, we performed an extensive experimental
evaluation of the proposed solutions. All introduced approaches were quantitatively compared
with the state-of-the-art motion planning algorithms and showed superb performance in solv-
ing local motion planning problems. Moreover, we showed that the proposed approaches also
have qualitative advantages over the state-of-the-art algorithms, such as guarantees of boundary
constraint satisfaction, constant and short planning time, or the ability to replan the motion on-
the-fly. These evaluations were conducted both on the datasets and in a wide range of simulated
and several real-world scenarios. This dissertation is concluded with a summary of the contri-
butions made to the field of learning-based robotic motion planning and a list of the limitations
of the proposed solutions, as well as the directions of the potential future work.

Streszczenie

Planowanie ruchu jest dojrzałym obszarem badań w robotyce z wieloma ugruntowanymi me-
todami opartymi na optymalizacji lub próbkowaniu przestrzeni stanów, odpowiednimi do roz-
wiązywania szerokiej gamy problemów planowania ruchu. Ostatnio pojawił się nowy trend w
dziedzinie planowania ruchu, którego kluczową cechą jest wykorzystanie doświadczenia w celu
poprawy przyszłych prób planowania ruchu, tj. planowanie ruchu oparte o uczenie maszynowe.
W niniejszej rozprawie proponujemy innowacje w tej dziedzinie, w szczególności poprzez zapro-
ponowanie nowych metod planowania ruchu dla pojazdów podobnych do samochodów i syste-
mów z ograniczeniami kinodynamicznymi. Proponujemy metodę szybkiego planowania ścieżki
dla pojazdów o kinematyce samochodu, która sekwencyjnie buduje rozwiązanie z lokalnie zde-
finiowanych segmentów wielomianowych, wywnioskowanych przez sieć neuronową, która bierze
pod uwagę geometrię środowiska i ograniczenia nieholonomiczne. Przedstawiamy również inne
podejście, które jest w stanie wygenerować, przy pomocy pojedynczej ewaluacji sieci neuronowej,
wykonalną ścieżkę, która gwarantuje dokładne osiągnięcie stanu docelowego. Ponadto proponu-
jemy nową metodę ograniczonego planowania kinodynamicznego, która wykorzystuje sieć neu-
ronową do szybkiego planowania trajektorii sparametryzowanych za pomocą dwóch krzywych
B-sklejanych. Dzięki zaproponowanej parametryzacji, która pozwala na nałożenie ograniczeń
brzegowych na planowaną trajektorię i jej pochodne, oraz stałemu czasowi planowania, możliwe
jest replanowanie ruchu robota w locie. Proponowane podejście pozwala na uwzględnienie nie
tylko ograniczeń brzegowych, ale także kinodynamicznych dla całej trajektorii oraz minimaliza-
cję funkcji kosztu związanej z zadaniem zdefiniowanym przez użytkownika, dzięki zastosowaniu
procedury uczenia inspirowanej mnożnikami Lagrange’a. Aby wytrenować proponowane przez
nas algorytmy planowania ruchu oparte o sieci neuronowe, stosujemy paradygmat uczenia ze
wzmocnieniem i wykorzystujemy funkcje kosztów, które penalizują niepożądane zachowanie pro-
ponowanych planerów, takie jak naruszenie ograniczeń, kolizje z przeszkodami, długie czasy ruchu
itp. W niniejszej rozprawie definiujemy funkcje kosztów w oparciu o geometrię rozwiązania, tak
aby były one różniczkowalne i pozwalały na efektywne uczenie się planowania dopuszczalnych
ruchów. Proponujemy użycie jedynie słabego nadzoru w celu skierowywania planów poza niewy-
pukłe obszary kolizyjne, co nie jest możliwe do osiągnięcia korzytsając z prostych gradientów. Na
koniec przeprowadziliśmy obszerną ocenę eksperymentalną proponowanych rozwiązań. Wszystkie
wprowadzone podejścia zostały ilościowo porównane z nowoczesnymi algorytmami planowania
ruchu i wykazały doskonałą wydajność w rozwiązywaniu lokalnych problemów planowania ruchu.
Co więcej, wykazaliśmy, że proponowane podejścia mają również zalety jakościowe w porównaniu
do algorytmów wyznaczających aktualny stan wiedzy, takie jak gwarancja spełnienia ograniczeń
brzegowych, stały i krótki czas planowania lub możliwość replanowania ruchu w locie. Wspo-
mniane eksperymenty zostały przeprowadzone zarówno na zbiorach danych, jak i w szerokim
zakresie symulowanych oraz kilku rzeczywistych scenariuszach. Niniejsza rozprawa zakończona
jest podsumowaniem wkładu wniesionego w dziedzinę planowania ruchu robotów opartego na
uczeniu maszynowym oraz listą ograniczeń proponowanych rozwiązań, a także kierunkami po-
tencjalnych przyszłych prac.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor, Piotr Skrzypczyński, for
his scientific guidance, constant support, and availability, and to my co-supervisor Krzysztof
Walas for introducing me to the world of science and inspiring me to try to enrich it with my
ideas and hard work.

I would like to thank Jan Reinhard Peters for a three-month internship at the Intelligent Au-
tonomous Systems Group of the Technische Universitaet Darmstadt that allowed me to work with
the best in the field of robotic reinforcement learning, greatly improve my scientific workshop,
and test my motion planning algorithms in the wild. I would also like to thank all my colleagues
at TU Darmstadt, but especially Davide Tateo and Puze Liu for the inspiring conversations and
a lot of honest and hard work we have done together during my stay in Darmstadt.

Last but not least, I would like to thank my family. I would like to thank my beloved wife for
her continuous support and overall happiness in my life, and for being extremely patient and
understanding. I would also like to thank my son, for being a living and truly inspiring example
of how reinforcement learning works at its finest. Finally, I would like to thank my parents for
their constant support and everything they managed to teach me.

v

Abbreviations

ABIT* Advanced Batch Informed Trees.

ADRC Active Disturbance Rejection Control.

AIT* Adaptively Informed Trees.

AQP Anchored Quadratic Programming.

BIT* Batch Informed Trees.

CBiRRT Constrained Bi-directional RRT.

cc-Dubins continous curvature Dubins curve.

CEM Cross Entropy Method.

CMPCB Contextualized Motion Planning Continous Bandit.

CNP-B Constrained Neural motion Planning with B-splines.

iLQR iterative Linear Quadratic Regulator.

LCS Local Coordinate System.

LOAM LiDAR Odometry and Mapping.

LQR Linear Quadratic Regulator.

MDP Markov Decision Process.

MPC Model Predictive Control.

MPC-MPNet Model-Predictive Motion Planning Network.

NLP Nonlinear Programming.

NN Neural Network.

OMPL Open Motion Planning Library.

ReLU Rectified Linear Unit.

vii

viii

RL Reinforcement Learning.

RNEA Recursive Newton-Euler.

RRT Rapidly Exploring Random Trees.

SBMP Sampling-Based Motion Planning.

SL State Lattices.

SLSQP Sequential Least Squares Programming.

SST Stable Sparse RRT.

VFO Vector Field Orientation.

Notation

𝑓 the motion planning function
N+ the set of natural numbers without 0
𝒫 the set of motion planning problems
𝒮 the set of all solutions to motion planning problems
s the random seed
ℵ the symbol of no solution
𝒫𝑓 the set of solvable motion planning problems
𝑓* the ideal motion planning function
𝐹 * the set of all ideal motion planning functions
𝑓*𝑜 the optimal ideal motion planning function
𝐽 the optimality criterion
𝜁 the path
𝑞 the state of the system
𝑄 the state space
𝑞0 the initial state of the system
𝑞𝑑 the desired state of the system
𝑄𝑑 the set of the desired system states
𝑥 the x coordinate of the robot position
𝑦 the y coordinate of the robot position
𝜃 the orientation of the robot
𝛽 the angle of the virtual steering wheel
R the set of real numbers
S the circle group
𝑝𝐺 the vehicle’s guiding point
𝜉 the angular speed of the virtual steering wheel
𝑣 the linear velocity
𝐿 the distance between the front and rear axles
𝛽𝑚𝑎𝑥 the maximal admissible angle of the virtual steering wheel
Π the car body
𝑠 the phase variable
S the swath of the robot
F the free space
ℰ the environment

ix

Notation x

𝜅 the curvature of the path
𝜅𝑚𝑎𝑥 the maximal admissible curvature of the path
𝑥′ the derviative of 𝑥 w.r.t. the phase variable
𝑥′′ the second derviative of 𝑥 w.r.t. the phase variable
C𝑛 the set of 𝑛-times differentiable functions
� transformation between the solution space and state space
𝐴 the action space
𝑎 the action
𝑇 the transition function
𝑃 the probability
𝑅 the reward function
𝑟 the reward
𝑡 the time
𝑞𝑡 the state at time 𝑡
𝜁𝑖 the 𝑖-th subpath of the path 𝜁
𝛼 the sequence of numbers that partition the interval into subintervals
𝑛𝑠𝑒𝑔 number of segments
𝐶 the context
𝜋 the policy
𝑚 the polynomial coefficients
L𝑖 the 𝑖-th local coordinate system
𝑋L𝑖

the 𝑥 axis of the 𝑖-th local coordinate system
𝑌L𝑖

the 𝑦 axis of the 𝑖-th local coordinate system
𝑥L𝑖 the 𝑥 coordinate of the robot expressed in the 𝑖-th local coordinate system
𝑦L𝑖

the 𝑦 coordinate of the robot expressed in the 𝑖-th local coordinate system
𝑆𝜁 the matrix of the parameters of the segment endpoints
𝐸 the environment representation
𝒯 the task definition
F𝐶 the collision space
𝜋* the optimal policy
R+ the set of positive real numbers
𝜋𝜑 the planning policy
𝜑 the parameters of the planning policy
𝜁𝑟 the reference path
𝑍𝑟 the space of all reference paths
P (𝑋) the power set of the set 𝑋
ℒ the loss function
ℒ𝑐𝑜𝑙𝑙 the collision loss
ℒ𝑐𝑢𝑟𝑣 the curvature loss
ℒ𝑜𝑣𝑒𝑟 the overshoot loss
ℒ𝑡𝑐𝑢𝑟𝑣 the total curvature loss
𝜌 the feasibility indicator function
𝜎 the collision indicator function
𝑑(𝒳 ,𝒴) the smallest Euclidean distance between elements of the sets 𝒳 and 𝒴

Notation xi

F𝐶
𝐸 the collision space represented by the map 𝐸
𝑄𝑑𝑋 , 𝑄𝑑𝑌 , 𝑄𝑑𝜃 the lengths of the edges of the orthotope of desired configurations 𝑞𝑑

𝑙𝑖𝑗 the Euclidean distance between the (𝑗 − 1)-th and the 𝑗-th point in the 𝑖-th path segment
𝑊 the width of the vehicle
𝐿𝐵 the distance between the vehicle’s guiding point and its rear bumper
𝐿𝐹 the distance between the vehicle’s guiding point and its front bumper
𝛿𝜑 the update of the neural network parameters 𝜑
𝛾 the learning rate
𝒞 the space of all contexts
𝜓 the neural network output
ℬ the function that represents the proposed B-spline path construction method
𝑝(𝑠) the B-spline curve
𝑛𝑝 the number of B-spline control points
𝑝1, 𝑝2, . . . , 𝑝𝑛𝑝

the B-spline control points
𝑜𝑝 the B-spline order
𝑑𝑝 the B-spline degree
𝐵𝑖,𝑗 the 𝑖-th B-spline basis function of order 𝑗
𝜔 the B-spline basis function weight
𝑢 the vector of B-spline knots
𝑢𝑖𝑛𝑡 the vector of B-spline internal knots
𝑑𝑖,𝑗 the length of the side of the square between 𝑖-th and 𝑗-th B-spline control points
𝑙𝑖,𝑗 the Euclidean distance between 𝑖-th and 𝑗-th B-spline control points
𝑙𝑇 the level of the B-spline control points tree
𝑅𝑚𝑖𝑛 the minimal vehicle turning radius
𝑙𝑖 the Euclidean distance between the (𝑖)-th and the (𝑖+ 1)-th path discretization point
ℳ the constraint manifold
𝜁 the trajectory of the system
𝑇 the duration of the trajectory
𝑐, 𝑔 the constraint functions
𝑁 the number of equality constriants
𝑀 the number of inequality constraints
ℒ𝑡 the loss function at time step 𝑡
f the trajectory parameters
𝜁f the trajectory parametrized by the set of parameters f

𝜇 the vector of slack variables
ℳ𝜇 the slack variables dependent constraint manifold
ℒℳ the manifold loss
𝑐𝑖 the desired acceptable violation level of the 𝑖-th constraint
𝐶 the square of the desired acceptable violation level of the 𝑖-th constraint
𝜆 the vector of Lagrange multipliers
𝐿 the Lagrangian
Λ the manifold metric
m the vector for the manifold metric parameters
ℒℳ,Λ the manifold loss under the metric Λ

Notation xii

r the time scaling factor
t the transformation from phase variable to time
𝑝(𝑠) the configuration B-spline curve
𝑛r the number of control points of the time-scaling B-spline curve
𝐷𝑝, 𝐷r the degrees of configuration and time-scaling B-splines
¯̇𝑞, ¯̈𝑞, 𝜏 the velocity, acceleration and torque limits
𝑇𝑒𝑥𝑝 the expected trajectory duration
𝜈 the number of neurons in the fully connected layers
𝑛𝑏𝑐 the number of boundary control points
𝑛𝑑𝑜𝑓 the number of the degrees of freedom
𝜓𝑝 the output of the configuration head of the neural network
𝑛𝑖𝑏𝑐, 𝑛𝑒𝑏𝑐 the numbers of boundary constraints imposed on the beginning and end of the trajectory
𝜁𝑒𝑓𝑓𝑜𝑟𝑡 the total effort along the trajectory
𝜏 the torque
FK the forward kinematics
SE the special Euclidean group
𝑑SE(3) the metric defined over SE(3)

𝑑𝑒𝑢𝑐 the Euclidean distance
ℳFK the manifold defined in the task space
𝑛𝑠 the number of trajectories
𝑛𝑒 the number of elite trajectoreies
ℎ the simulation horizon
𝑇𝑠 the simulation time step̂︀𝛽 the standard deviation of the steering angle distribution
𝛽 the mean value of the steering angle distribution
𝒩 the normal distribution
𝑙𝑧1𝑖 , 𝑙

𝑧2
𝑖 , 𝑙

𝑧3
𝑖 the extended state observer gains

𝑘𝑝𝑖 , 𝑘𝑑𝑖 the controller proportional and derivative gains
𝑀𝑖𝑖 the 𝑖-th diagonal element of the mass matrix
𝜔𝑜 the observer bandwidth
𝜔𝑐 the controller bandwidth
𝑧 the state vector of the extended state observeer
𝛿𝐵𝑁 the node search radius
𝛿𝑠 = 0.1m the witness radius
𝑟𝑔 the goal radius
(𝜇𝑡, 𝜎𝑡) the mean and standard deviation of the motion time Gaussian
(𝜇𝑐, 𝜎𝑐) the mean and standard deviation of the control Gaussian
𝐻 the Huber loss function
ℒ𝑂 the vertical orientation loss
ℒ𝐸𝑟 the robot collision loss
FK𝑘𝑐 the set of points in the workspace located along the kinematic chain
ℒ𝐸𝑜 the object collision loss
FK𝑜 the set of points that belong to the handled object
I(𝑋,𝑌) the indicator function if 𝑋 ∈ 𝑌

Notation xiii

𝜂 the regularization factor

Contents

Abstract iii

Streszczenie iv

Acknowledgements v

Abbreviations vii

Notation ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 3
1.3 Related work . 4

1.3.1 Overview of the motion planning methods 5
1.3.2 Motion planning methods for autonomous vehicles 6
1.3.3 Constrained motion planning . 9
1.3.4 Kinodynamic motion planning . 11
1.3.5 Learning-based motion planning . 12

1.4 Proposed solution . 14
1.5 Content of the thesis . 16
1.6 Projects and publications . 17

2 Learning Rapid Maneuver Planning for Car-Like Vehicles Using Gradient-
based Policy Search 19
2.1 Introduction . 19
2.2 Problem definition . 21
2.3 Proposed solution . 23

2.3.1 Path planning as Markov Decision Process 23
2.3.2 Action and context definition . 24

2.3.2.1 Action . 25
2.3.2.2 Context . 27

2.3.3 Policy representation . 27
2.3.4 Loss function . 30
2.3.5 Dataset . 34
2.3.6 Overall structure of the proposed solution 36

3 Fast neural network-based planning via efficient B-spline path construction 39
3.1 Introduction . 39
3.2 Proposed solution . 40

3.2.1 General idea . 40
3.2.2 Path representation . 43
3.2.3 Path construction method . 46

xv

Contents xvi

3.2.4 Neural network planner architecture . 49
3.2.5 Loss function . 50

4 Fast Kinodynamic Planning on the Constraint Manifold with Deep Neural
Networks 53
4.1 Introduction . 53
4.2 Proposed solution . 56

4.2.1 Problem statement . 56
4.2.2 Learning how to plan with constraints . 57

4.2.2.1 Defining the constraint manifold 58
4.2.2.2 Approximated optimization problem 59
4.2.2.3 Loss function learning . 60

4.2.3 Trajectory parametrization . 62
4.2.3.1 Boundary conditions . 64

4.2.4 Neural network architecture . 65
4.2.5 Loss functions . 67

5 Experimental verification of the neural network-based path planning for car-
like vehicles 71
5.1 Introduction . 71

5.1.1 State-of-the-art path planning algorithms 72
5.2 Exepriments on the dataset . 73

5.2.1 Performance . 74
5.2.2 Training speed . 76
5.2.3 Parameters of the methods . 77
5.2.4 Ablation studies . 78

5.3 Experiments in CARLA . 80
5.3.1 Controller . 80
5.3.2 Planning typical maneuvers . 82

6 Experimental verification of the constrained neural kinodynamic motion plan-
ning 87
6.1 Introduction . 87

6.1.1 Baseline motion planning algorithms . 88
6.1.2 Evaluation environment . 89
6.1.3 Controller . 89
6.1.4 Parameters of the algorithms used for evaluation 90

6.2 Kinodynamic planning for moving a heavy vertically oriented object in simulation 93
6.2.1 Task description . 93
6.2.2 Dataset and method adjustments . 94

6.2.2.1 Dataset . 94
6.2.2.2 Loss functions . 95

6.2.3 Quantitative comparison with state-of-the-art 96
6.3 Planning high-speed hitting movements in the simulated robotic Air-Hockey . . . 97

6.3.1 Task description . 97
6.3.2 Dataset and method adjustments . 98

6.3.2.1 Dataset . 98
6.3.2.2 Loss functions . 100

6.3.3 Quantitative comparison with state-of-the-art 100
6.3.4 Qualitative results for replanning . 101

6.4 Planning high-speed hitting movements on the real robotic Air-Hockey setup . . 102
6.4.1 Quantitative comparison with state-of-the-art 103
6.4.2 Trick shots . 105

Contents xvii

6.5 Ablation studies . 105
6.5.1 Training set size . 106
6.5.2 Size of the neural network . 107
6.5.3 Number of B-spline control points . 108
6.5.4 Generalization abilities . 108

6.6 Discussion . 110

7 Conclusions 113
7.1 Summary . 113
7.2 Conclusions and thesis contribution . 116
7.3 Limitations . 118
7.4 Future work . 119

Bibliography 121

Chapter 1

Introduction

1.1 Motivation

Since its beginnings, robotics has been trying to match human capabilities to be able to replace
or support humans in tedious and hazardous tasks. We can see the abundance of industrial
manipulators in factories, which significantly boost the production capacity, or specialized robots
built specifically to perform a particular task such as search and rescue, or inspections. However,
most robots operate today in specially prepared environments and are unable to deal with the
complexity of the world outside the factory. In recent years, robotics research has focused on
expanding the ability of robots to cope with other environments, including structured ones,
such as those created by humans, but also natural ones, which are characterized by much less
structuring and greater unpredictability. However, even man-made environments full of right
angles and geometric shapes are challenging for robots. Moreover, we strive to require robots to
be flexible and adaptable to many different tasks. We look to them for the ability to adapt to
new challenges, similar to the one that characterizes people who can both thread a needle, catch
a fast-flying ball, and lift weights, all with the same body.

Nowadays, we can see great advancements in spreading the presence of robots outside of spe-
cially prepared environments. Robots like ANYmal are shown to be able to traverse challenging
terrains [117] and navigate inside mine [33] or office [65]. But even greater effort is put into
the development of self-driving vehicles. Companies like Tesla, Waymo, and Apollo endeavor
to make cars autonomously move on the streets of our cities [108]. In turn, developments of
Boston Dynamics’s Atlas lead to increasing the robot’s agility and versatility, which allows it to
seamlessly switch between doing parkour and carrying objects [42].

All of these abilities are possible thanks to the recent substantial advances in the fields of control,
perception, localization, mapping, and motion planning. However, in the case of some sudden
changes in the environment, like a pedestrian intrusion into the roadway, robots still rely on
reflexes and lack the ability to rapidly replan. While this may be sufficient in some cases,
sometimes we need to deliberately plan the robot’s reaction to the dangerous situation to ensure
that following the reflexes will not cause more damage than not reacting at all. Moreover,

1

Introduction 2

motion planning is still a big challenge in complex environments that introduce tight constraints,
especially if they require a very fast response. Fast motion planning and replanning are key
abilities of humans, which on the lowest level are performed unconsciously [128], but provide us
with great agility and incredible ability to run, play sports, and drive cars. Therefore, in this
thesis, we will focus our attention on motion planning, and assume that the rest of the robot
navigation framework, i.e., control, perception, mapping, and localization tasks, are solved.

The two most popular groups of robot motion planning algorithms are the ones based on sampling
the state or action space and the ones that utilize optimization. Although Sampling-Based
Motion Planning (SBMP) algorithms, such as Rapidly Exploring Random Trees (RRT) [99] or
Stable Sparse RRT (SST) [105], are guaranteed to find the solution, this warranty only holds for
a time tending to infinity. In practice, they need a significant amount of time to find a feasible
solution, which makes them unreliable in the case of the need for rapid motion planning. In
turn, optimization-based motion planning algorithms typically requires much less computation
to find a solution, but are prone to get stuck in suboptimal local minima or even infeasible
solution. Over the last two decades, researchers have been trying to address the shortcomings
of the classical planning methods. Nevertheless, they are still far from the speed of planning
achieved by humans for practical traffic planning problems [131].

One of the key factors of human success is the ability to learn. We can observe that the motions
of infants are rather chaotic and uncoordinated, but during the first years of life, they gain
incredible motor skills through learning. Inspired by this observation, we see the necessity of
enabling robots to learn in order to reach or even surpass human motor skills. Thanks to the
recent advances in machine learning, it seems this is becoming possible. With the use of neural
networks, even now, we are able to equip robots with similar abilities to learn and improve
their skills, e.g., motion planning. In recent years, a lot of effort was put into incorporating the
experience and learning into motion planning [173]. One of the first trials to reuse the motion
planning experience was exploiting the memory of previously planned motions and reusing them
based on the task similarity [13]. Another approach to utilize the experience is to use it to bias
the sampling distribution in SBMP algorithms [28, 73, 186], or to directly predict the next states
that should be attached to the search tree [142]. However, even the use of these kinds of methods
is not enough to plan complex motions within tens of milliseconds. Moreover, the use of expert
demonstrations by these methods usually requires inefficient data collection and strictly limits
their performance. Furthermore, we do not engage in sampling of the state space nor in choosing
the subsequent states to reach while we are running or playing basketball. Furthermore, we do
not engage in sampling the state space nor in choosing the subsequent states to reach while we
are running or playing basketball. These observations lead us to conclude that this approach
may be insufficient to achieve human-level motion planning performance.

Therefore, we suspect that a new approach to learning how to plan is necessary. Thus, in this
thesis, we propose a novel approach to learning how to plan motion that is rooted in the concept of
planning as inference [19] and extensively uses the Reinforcement Learning (RL) paradigm [162]
and differentiable loss functions [122], to efficiently learn based on its own experience. Thanks
to this approach, we are able to learn motion planning behavior that takes into account robot

Introduction 3

and environment constraints and generates plans at the human or even super-human level, i.e.,
within milliseconds [131].

While, in general, it is preferable to have motion planning methods that can generate plans fast
to increase the responsiveness of the robotic systems, the necessity of rapid motion planning is
especially visible in applications that require rapid responses to the changes that take place in
the environment. One of the most prominent examples of this is autonomous driving, as the
situation on the road can change rapidly due to the relatively high velocities of the vehicles and
the unpredictability of the pedestrians. Similarly, in various sports, like football, table tennis,
or fencing, the reaction time needs to be minimized to achieve the best results. Moreover, these
activities also require very dynamic, complex, and precise movements, that simple reactive policy
may not be able to generate. Therefore, we presume that to enable robots to achieve the agility
of humans, we need more efficient motion planning approaches that utilize the experience to
excel at the considered tasks.

1.2 Problem statement

In the previous section, we have shown the need for efficient robot motion planning for further
development of agile robots. By efficient robot motion planning, we understand the broad aspects
of making motion planning algorithms feasible to use in practical scenarios, like satisfying the
constraints imposed by the robot or environment and finding a solution within tightly limited
computation time. In this thesis, we would like to develop motion planning methods that are
practical in the above-described sense, allow to rapidly replan the motion, taking into account
constantly changing conditions, generate smooth solutions, and are reliable. To achieve this, we
strongly utilize the concept of learning for motion planning, as we believe that for complex robotic
systems, only the exploitation of the experience enables one to satisfy all of the aforementioned
goals of efficient motion planning.

For many years, a significant effort was made to introduce motion planning methods that are
complete, as this is a warranty of being able to solve the problem or to report problem infeasibility.
Unfortunately, for non-trivial motion planning problems in continuous domains, these kinds of
solutions are hard to define. The best we could achieve was probabilistic completeness, which is
a very powerful feature of the motion planning algorithms that guarantees the solution will be
found with a probability equal to 1 for planning time going to infinity [100]. Yet theoretically
sound, this is not very practical as typically, in the robotic use-cases, we cannot wait so long
to complete the planning, especially for planning some dynamic motions in rapidly changing
environments like playing some sports or driving a car. In this thesis, we would rather like to
achieve practical reliability than completeness. One of the key aspects of reliability is the small,
deterministic, and known amount of computations needed to generate a plan. By knowing the
result of a planning attempt in a very short fixed time, even in the case of failure robot is able to
react by replanning the motion, changing the goal, or even stopping its activity and reassessing
its goals and their feasibility. Moreover, fixed planning time enables planning the motion exactly
from the approximately known state of the robot – the one predicted to be achieved within

Introduction 4

planning time. This feature is very important in terms of replanning the motion on the fly,
which is a crucial ability needed to achieve human-level agility [131].

Another important aspect of motion planning is the satisfaction of the constraints. Robots
themselves can introduce a very severe limitation to the motion plans that are feasible for them,
i.e., possible to be followed. For example, car-like robots cannot move sideways and make
arbitrarily sharp turns, and basically, all movements of all robots are limited by the power of
their motors and the durability of their construction. These limitations make optimization-based
motion planning methods struggle due to the nonlinearity of these constraints and significantly
slow down the SBMP algorithms by introducing some narrow passages in the search space.
While, in general, one may trade off the quality of the solution for the planning time, it may
be hazardous in the case of the hard constraints. Similar effects are also visible in terms of
the extrinsic constraints stemming from the geometry of the environment. We suppose that an
efficient solution to motion planning problems considering these types of constraints is to exploit
the structure of the environmental and robot constraints and learn how to deal with them during
motion planning. Therefore, in this thesis, we focus our attention on man-made environments as
they are characterized by strong structurization and reduced complexity. Moreover, we assume
that these constraints are known and well described, which is practical to achieve in the context
of planning in man-made environments for known robots.

The pursuit of the aforementioned practical goals allowed us to formulate the following scientific
hypothesis of the dissertation:

A wide range of robotic motion planning problems defined in man-made environ-
ments can be solved in nearly constant time using deep reinforcement learning.

This general hypothesis is followed by supportive hypotheses, which detail the benefits of using
deep reinforcement learning in robot motion planning tasks as proposed in this research:

• Formalization of the path planning problem for a car-like vehicle as the Markov Decision
Process (MDP) allows for sequentially building the solution using the sub-paths generated
with a neural network trained using reinforcement learning.

• Using the B-spline path representation and the proposed path construction method allows
for efficient planning within a single inference of the neural network and introduces an
inductive bias to the learning process.

• It is possible to solve constrained kinodynamic motion planning problems using neural
networks trained under the reinforcement learning paradigm and B-spline-based trajectory
representation.

1.3 Related work

Motion planning is one of the fundamental components of the robotics system and is necessary
to achieve the desired level of autonomy. This crucial role explains why motion planning is
one of the most mature and important areas of robotic research. Despite tremendous efforts,

Introduction 5

known planning algorithms are insufficient for many robotic tasks because they cannot handle
task constraints or produce the plan within the specified amount of time. In this section, we
present a brief of the most important concepts in robot motion planning and a comprehensive
review of the motion planning methods that are the most related to the ones proposed in this
dissertation, i.e., motion planning methods for autonomous vehicles, motion planning problems
with constraints, kinodynamic motion planning problems, and learning-based motion planning
techniques.

1.3.1 Overview of the motion planning methods

Robot motion planning is, in general, a computationally hard problem, specifically PSPACE-
hard [145]. Even for relatively low-dimensional spaces, it is hard to find a collision-free path
among the obstacles. One of the first approaches to robot motion planning focused on decom-
posing the state space into a graph of connected cells [100, 111, 127], so that classical graph
search techniques can be used, such as breadth-first search, depth-first search, or Dijkstra algo-
rithm [31]. However, these types of methods typically focus on the low-dimensional spaces and
obstacles that are characterized by simple geometry, which limits its practical applicability for
robot motion planning. More complex shapes of obstacles reduce the feasibility of these search
techniques as they cause the graph, which represents the free space, to grow. Similarly, to obtain
more fine-grained solutions, one has to increase the resolution of these graphs, which also results
in much bigger graphs. To search these types of graphs efficiently, authors of [61] proposed an
A* algorithm. It utilizes a heuristic to guide the search through the free-space graph, such that
the nodes that are likely to be a part of the solution are considered first.

Nevertheless, even efficient graph search techniques may be insufficient if the free-space graph
is large, which is a typical case in robotics. The number of vertices grows exponentially with
the number of degrees of freedom, which makes planning particularly hard for high-dimensional
systems, such as manipulators or humanoids. Similarly, as the state spaces we typically consider
in robotics are continuous, planning precise motion requires one to increase the resolution of the
state space discretization, which also causes a fast growth of the graph size even for relatively low-
dimensional systems. To overcome these limitations, methods that construct the graph while
searching through the continuous state spaces were proposed, called sampling-based motion
planning algorithms [100]. Their name originates from the sampling procedure, which tries to
identify new nodes in the graph and connects them to the existing search tree. Methods of this
kind, starting from Probabilistic Roadmaps [85] and RRT [99], and their more recent successors
like RRT* [83], Bidirectional Fast Marching Trees* [154], or Batch Informed Trees (BIT*)[49]
were at the core of the motion planning research through last two decades. While these types of
methods are characterized by the probabilistic completness [100], early approaches like RRT [99]
in practice require significant amounts of time to find a solution path, which in the end can
be far from the optimal one. To make SBMPs find optimal solutions, the RRT* algorithm
was proposed [83]. In turn, to improve the execution time, informed sampling strategies were
proposed as a part of Informed RRT* [50] or BIT*[49] algorithms.

Introduction 6

The use of informed sampling strategies is also one of the most popular approaches to the
recently constituted field of learning-based motion planning methods [73]. This area of research
is motivated by the fact that one can take advantage by exploiting the knowledge of how to plan
gained in previous planning attempts or by mimicking the behavior of some planning expert,
instead of starting the planning from scratch every time. One of the first works in this field
considers memorizing and reusing the already computed solutions [13]. However, nowadays most
of the learning-based methods focus on improving the specific parts of the sampling-based motion
planning algorithms, such as sampling [28, 142, 186], extending the nodes in a tree [114, 152],
collision-checking [34, 184], or learning a guiding heuristics [68, 166]. In turn, the learning-
based motion planning methods we propose in this dissertation use machine learning models to
directly infer the motion plan. These kinds of approaches, while being less popular, are the topic
of several recent papers like [45, 81, 153].

In parallel with sampling-based approaches, optimization-based motion planning methods have
been developed. Instead of building a search tree and constructing the solution, these methods
begin with an initial solution and modify it to minimize the cost function, taking into account the
constraints imposed on the solution. Methods like CHOMP [189], TrajOpt [151] or GPMP2 [123]
showed an ability to solve tasks like avoiding obstacles with PR2 robot [123, 151] or planning
the walking movements of a quadruped [189]. The machine learning-based motion planning
methods we propose in this dissertation draw inspiration from the optimization-based planners,
especially [27], but instead of directly optimizing the solution, we optimize the parameters of our
motion planning function. This approach allows us to spend more time on motion optimization,
due to learning how to plan in an offline stage, while being extremely fast at the online inference
phase, which, in fact, is similar to the concept of planning as inference [19]. Moreover, in the
learning phase, we can use privileged information, like reference paths, to learn how to solve
motion planning problems that are difficult to solve online using optimization due to the local
minima.

In the next subsections, we will focus on the specific areas of the robotic motion planning research
that relate the most to the techniques introduced in this dissertation.

1.3.2 Motion planning methods for autonomous vehicles

. A substantial part of this dissertation considers introducing novel approaches to machine
learning-based motion planning in the specific use case of planning paths for car-like vehicles.
Therefore, in this subsection, we give an overview of the motion planning methods in the au-
tonomous vehicle context.

Early works on self-driving cars adopted the usage of graph search algorithms, especially A* [61],
which was proven to be effective in solving the motion planning for the mobile robot [126].
Variants of A* were used by almost all teams that participated in the Darpa Urban Challenge [22,
37]. While A* may be considered a standalone planner, in the case of car-like vehicles, it is
typically used jointly with some post-processing steps such as trajectory optimization [37, 119].
In turn, authors of [22] utilized A* only as a high-level route planner, while for the fine-grained

Introduction 7

planning of the local motions, they adopted a sampling-based motion planner that was based on
the RRTs [99].

There are several approaches in which RRT-based motion planning algorithms can be used to
plan the motion of a car [130]. The one used in [22] relies on sampling the control signals. A
similar approach was also used to avoid solving two-point boundary value problem, which may
be difficult to solve for a car-like vehicle [82], by the asymptotically optimal sampling-based
kinodynamic planning algorithm SST proposed in [105]. While approaches of this type are
dynamically feasible, they may not be sufficient in terms of planning time. To approach this
issue with sampling-based motion planning algorithms, one can focus on two aspects: (i) defining
an appropriate search space, and (ii) improving the sample efficiency of the SBMP algorithms.
A search space that is particularly relevant for car-like vehicles is the so-called Dubins state
space [160], which is a SE(2) state space where distance is measured by the length of Dubins
curves [41]. In this space, the distances are easy to compute and it is possible to connect any
two states using a feasible Dubins curve, which is particularly important for SBMP algorithms.
Regarding recent advances in the sample-efficiency of the SBMP algorithms, we can mention
BIT* [51], which is an asymptotically optimal anytime algorithm that quickly finds feasible
solutions thanks to the restriction of the search space. Its latest modification, Advanced Batch
Informed Trees (ABIT*) [157], sacrifices the resolution optimality to achieve faster initial solution
times. In turn, the Adaptively Informed Trees (AIT*) algorithm [158], adapts its search to each
problem instance by simultaneously estimating and exploiting a problem-specific heuristic.

Planning in Dubin’s state spaces is very practical from the computational point of view but also
has some disadvantages. Dubins paths [41] are, in general, not smooth enough to be followed
with a continuous steering angle while the vehicle is moving, such that to change between straight
segments and arcs, one needs to stop a car. A direct response to this issue is the use of continous
curvature Dubins curve (cc-Dubins) [48], which inserts clothoid between the segments to allow
for continuous change of the steering angle. Nevertheless, even the use of cc-Dubinss results
in paths that are characterized by maximum curvature segments, which are undesirable from
both passenger comfort and driving speed points of view. One of the approaches that address
these limitations is the State Lattices (SL) algorithm [134], which considers searching for the
solution path in the dense graph, created over the state space in which edges can be defined
as more sophisticated curves than plain Dubins curves with maximal curvature arcs, using A*
algorithm [61]. However, as for the other approaches that utilize predefined graphs, there is a
tradeoff between the planning time and the solution spatial resolution.

Another interesting idea in terms of solving motion planning problems is to avoid explicitly
planning a solution but transform the problem into the control domain. Khatib in [87] proposed
to utilize artificial potential fields to compute the control signals that guide the robot toward
the desired state while avoiding obstacles. However, methods that are based on the artificial
potential fields are difficult to apply to car-like vehicles due to their limited speed and curvature
of motion [180].

An important branch of local motion planning for car-like vehicles is trajectory optimization [130].
Approaches of this type can relatively quickly generate local trajectories that are kinematically
or even dynamically feasible [26, 148], however, they are typically focused on solving simple

Introduction 8

collision avoidance problems around the reference trajectory, path or sequence of waypoints
that need to be supplied by another planning algorithm [26, 58, 107]. Moreover, to maintain
short planning time, the considered obstacles are typically simplified to disks, ellipses, or rect-
angles [36, 107, 148] or the robot dynamics is linearized [159]. These simplifications allow for
computing the reference trajectory in real time but, at the same time, reduce the applicability of
these trajectory optimization methods to use cases that do not require very precise motions in
confined spaces. While being extremely practical, trajectory optimization methods for car-like
vehicle motion planning are at a different level of the hierarchy than the planning approaches
proposed in this dissertation, as typically, they are used as a lower-level trajectory generator
combined with some traditional reference path search techniques, such as SL [58, 107] or Di-
jkstra over the route graph [36]. In a similar manner, these methods can be considered as an
efficient approach to improve the existing solutions [179] that do not meet all of the requirements,
e.g., slightly collide with the environment or violate the path curvature constraints. This can be
a good complement to the fast path planning methods proposed in this work, as it may happen
that the path generated by a neural network violates some of the constraints, which may be
quickly fixed with an optimization approach.

The success of deep learning in robotics [161] increased the interest in path and motion planning
methods entirely learned from data. While for the autonomous vehicles, most of the deep
learning approaches are rather focused on predicting control commands directly [176], some of
them consider learning how to plan trajectories, paths, or waypoints that can be then followed
using a classical controller [94, 176].

A significant number of neural motion planning methods for autonomous vehicles rely on paths
demonstrated by experts and use imitation learning to learn from them. Among these methods,
we can find the most straightforward ones that are trained to predict sequences of timed way-
points [9, 80, 136, 146], but also those that predict parameters of the classical motion planners
to improve their efficiency [177], or cost maps [68, 185] that can be further used to guide plan-
ning algorithms. Most of these methods use human expert demonstrations as a ground truth
data [136, 146, 177], which enable them to learn human-like driving behaviors, however, these
data is expensive to get and contain mostly very safe and not-interesting, from the efficiency of
learning point of view, examples. To address this issue, authors of [68, 80] used RRT* to generate
expert plans, while in [9] they propose to augment the data by adding some perturbations and go
beyond simple behavior cloning by adding some loss functions that encourage desired behaviors
on the planner, which seems like a step towards the reinforcement learning approaches.

While the performance of imitation learning methods is bounded by the quality of the data
provided by experts and requires sometimes tedious data collection, one can avoid these limita-
tions by learning from its own experience, following the reinforcement learning paradigm. This
is particularly popular in the context of autonomous driving [5, 94], however, these solutions
typically focus on generating actions directly, instead of planning the path or trajectory [5, 94].
In [74] Q-learning was used to learn how to plan the sequence of waypoints that solve motion
planning problems at simulated road intersections. In turn, authors of [25] trained in a reinforce-
ment learning paradigm efficient extend procedure that can be used by the RRT-style planning
algorithm. The most similar approach to the one proposed in this dissertation was presented

Introduction 9

in [44], which learns, in a RL paradigm, how to plan the motion of the autonomous car, by
choosing 𝑦-coordinates of the two intermediate points that are then used to fit the solution path.
The method proposed in [44] allows for planning only very simple maneuvers, and differs from
our work in terms of the need to estimate the gradients, while the methods we propose allow
for learning by directly computing the gradient of the loss functions w.r.t. generated plans, and
so neural planner weights, which is more similar to the approaches proposed in [9] and [122].
Moreover, our methods focus on predicting a smooth path that provides the autonomous vehicle
with the representation of the motion plan that is interpretable, possible to validate, and easily
trackable in a predictable way, which is important from the safety point of view [165].

In this subsection, we discussed the motion planning approaches for autonomous vehicles, which
are characterized by a special type of constraint, i.e., non-holonomic ones. In the next subsection,
however, we will present the current state of knowledge about more general methods of planning
with constraints.

1.3.3 Constrained motion planning

The term contrained motion planning can be understood in many ways. For example, in robotic
applications, we may require the planning algorithm to find a solution within some specified
time budget [76, 84], such that we can claim the system to be able to plan in real-time. Another
interesting constraint that stems from the real-world requirements is to finish the movement
within some specified time limit, which is typically addressed in the optimization-based motion
planners by minimizing the movement time while maintaining the other constraints satisfied [115,
171]. However, most of the robotic research on constrained motion planning is devoted to the
constraints stemming from the physics of the robot and the considered task, e.g., the limited
effort of the robot motors, the limited velocity of the robot’s joints, or the constrained movement
of the end-effector. Thus, in this one and the following subsection, we focus on the approaches
to planning the robot’s motion that consider these types of constraints, with particular emphasis
on planning for manipulators. Some of the tasks that we assign to robots require constraining
the robot’s movements to some manifold embedded in the task space, for example, keeping the
cup held by the robot in an upright position or ensuring that the end-effector of a window
cleaning robot remains at some constant distance from the window surface. In recent years,
two main approaches to this class of problems have been developed: (i) adding task constraints
to the motion optimization problem [15], (ii) sampling constraint-satisfying configurations and
generating constraint-satisfying motions in the sample-based motion planners [92, 93].

Although the inclusion of additional task constraints in motion optimization is conceptually sim-
ple, it typically leads to a much more difficult optimization problem to solve, since the equations
governing the kinematics of robots are usually nonlinear. To overcome the computational burden
arising from these nonlinearities, the authors of [151] proposed to use the sequential quadratic
programming approach that transforms the Nonlinear Programming (NLP) problem into a se-
quence of its convex approximations around the current solution. In [15], this idea was extended
to a non-Euclidean setting, by transforming the manifold-constrained trajectory optimization
problem into an equivalent problem defined in a space with a Euclidean structure. Another

Introduction 10

general approach to solving constrained motion planning problems was proposed in [39], where
authors modified the update rule of CHOMP by projecting it onto the tangent space of the
constraint manifold and adding a correction term to move the solution towards the manifold. In
turn, a recent approach to constrained optimization-based motion planning [66] tries to achieve
faster convergence and numerical robustness by utilizing augmented Lagrangian optimization
using an iterative Linear Quadratic Regulator (iLQR), introduced in [104], and systematically
updating Lagrangian multipliers, which is conceptually similar to our approach to training neural
network-based motion planners for constrained motion planning problems. However, in prac-
tice, if we are looking for a solution to a specific motion planning problem, it may be useful
to exploit the structure of the constraints to improve planning efficiency. In [110], the problem
of fast planning dynamic movements of a robotic arm whose end effector is limited to moving
in a plane has been decoupled into two simpler optimization problems: planning the Cartesian
trajectory in a 2D plane and then planning the trajectory in the joint space that follows the
Cartesian path. However, this kind of decoupling may result in planning suboptimal trajectories
as the simplified solution to the first problem is likely to cut out the optimal solution from the
search space of the second one. In contrast, in this dissertation, we propose to plan directly
in the robot’s configuration space, and we show that it is possible to use a general approach to
learning-based motion planning, to plan better trajectories than using handcrafted optimization.

In contrast to optimization-based motion planning methods, the adaptation of SBMP algorithms
to solve constrained motion planning problems is not so straightforward. Simply discarding
samples that are outside the constraint manifold usually results in a severely reduced likelihood
of drawing an acceptable state, also connecting two states by a path that lies within the manifold
is non-trivial [92, 93]. Therefore, a number of approaches to this class of problems have been
proposed, such as constraint relaxation, projection onto the manifold, using the tangent space of
the constraint manifold, or the topological atlas. The constraint relaxation approach originated
from the assumption that there is some acceptable level of constraint violation, such that we can
relax the constraints that define the manifold surface and give it some non-zero volume to allow
for sampling [16, 17]. However, this approach circumvents the problem by creating a new one –
planning in narrow passages [164]. To mitigate this, Constrained Bi-directional RRT (CBiRRT)
algorithm was proposed [12]. This method exploits projections onto the constraint manifold
to make the sampled and interpolated states satisfy the constraints. A significant reduction in
planning time compared to projection-based methods was achieved by Tangent bundle RRT [89],
which, instead of sampling in the configuration space, proposes to sample in the tangent space of
the constraint manifold. An alternative to tangent space sampling is the approach that defines
charts that parameterize the manifold locally and coordinate them by creating a topological
atlas [77]. In this approach, RRT seeks the direction of the atlas expansion, and then sampling
is performed only in the space defined by the atlas.

However, sampling-based methods for constrained motion planning methods usually generate
only paths, neglecting the dynamics of the movement that is essential for planning the dynamic
motion of the robot. Therefore, in the following subsection, we discuss approaches to kinody-
namic motion planning.

Introduction 11

1.3.4 Kinodynamic motion planning

The key point in kinodynamic motion planning is to include knowledge about the robot dynamics
and its limitations in terms of the maximal torque generated by the motors or its maximal
velocities, so that planned motions can be executed on the given robotic platform.

It is straightforward to convert motion optimization problems to the kinodynamic setting by
including the robot’s dynamics in the constraints. However, this introduces more nonlineari-
ties to the optimization problem, slows down the solvers, and increases the likelihood that the
optimization converges to a local minimum unless it is properly initialized [178].

In turn, to adjust the sampling-based motion planners to the kinodynamic setting, a significant
effort has to be made in terms of both the Extend procedure of the search tree and state
cost-to-go estimation. One of the first approaches to address these issues was to linearize the
system and utilize Linear Quadratic Regulator (LQR) to connect states and calculate the cost
of this connection [132]. To avoid problems that arise from linearization, the authors of [155]
proposed using a gradient-based method to solve the NLP problem of connecting any two robot
configurations. A similar idea was recently presented in [138], where Model Predictive Control
(MPC) was used to perform a search tree extension.

A problem with kinodynamic planning that uses sampling is the need to sample a state space
that has a high number of dimensions (as the velocities are included in the state). One of
the important issues of the sampling-based approaches to kinodynamic planning is the need
to sample a high-dimensional state space, since the state in kinodynamic planning needs to
consist not only of the configuration but also of velocities. To mitigate this, in [188], an optimal
partial-final-state-free controller was used to connect the states so that the dimensionality of
the sampling space is reduced twice. An interesting alternative approach to solving SBMP
problems with kinodynamic constraints is to sample controls instead of states [24, 105]. This
significantly simplifies the satisfaction of the constraints, but usually leads to relatively slow
planning due to the need to simulate the system behavior and efficiently guide the tree expansion.
Nevertheless, none of these approaches allows one to simultaneously handle both kinodynamic
and task-based constraints. To address motion planning problems of this type, an adaptation of
the atlas method [77] with the LQR-based search tree Extend procedure was proposed in [18].
Unfortunately, this algorithm strongly relies on the linearization of the system and still requires
a significant amount of time to prepare the plan.

In contrast to the methods mentioned above, the approach proposed in this dissertation, thanks
to the use of machine learning, B-spline-based trajectory parameterization, and constraint re-
laxation technique [16], is capable of planning smooth trajectories that can satisfy, up to the
specified constraint violation budget, an arbitrary set of constraints, including both task-related
and kinodynamic ones. Moreover, we can guarantee that the solution will be computed in a
small constant time and that it can be optimized to meet the execution time requirements.

Introduction 12

1.3.5 Learning-based motion planning

In this subsection, we want to present different approaches to learning-based robot motion plan-
ning, with a particular emphasis on the methods that consider planning with task and kinody-
namic constraints. The overview of the method devoted to motion planning for car-like vehicles
is given in Section 1.3.2.

For many real-world robotic applications, conventional planning methods are not fast enough
to meet the processing time constraints imposed by real-world dynamics (e.g., for rapid car ma-
neuvers [88]) or produce solutions far from optimal. Moreover, tasks performed by the robots,
even though they may require solving different planning problems, seem to reveal some simi-
larities. Therefore, to obtain plans of better quality within tighter time bounds, learning-based
approaches to improve robot motion planning were proposed. These types of methods origi-
nated from [13], in which, the conventional planner was used to solve the problems. However,
generated plans were not only executed but also saved in the library of solved problems. After
gathering plans, they can be reused to solve new but similar problems in a shorter time by simply
modifying the most appropriate known path.

Most of the learning-based motion planning methods build upon the algorithms from RRT family
to use their guaranties of probabilistic completeness [173]. Some of these methods try to modify
the sampling distribution based on the experience and the representation of the task. In [186]
neural network decides whether the sampled state should be rejected or not, whereas in [67]
neural network is used to predict the state-action value function to choose the best nodes to
expand. Authors of [121] used a convolutional neural network to predict some crucial regions
of the environment to increase the sampling in them. At the same time, in [28], a probability
distribution is directly inferred by the neural network in the form of a heatmap. In [142], the
sampling distribution is encoded in a stochastic neural network (due to dropout used during
inference), which is trained to predict the next state towards the goal. An adaptation of biasing
the sampling distribution to comply with a manifold of constraints was presented in [101, 129],
where adversarial training was used to learn how to generate data on the constraint manifold.
An architecture consisting of a generator and discriminator trained jointly was also used in [141].
This work builds upon [142] and uses a generator to predict the next state, but extends it with
a discriminator, which is used to predict deviation from the constraint manifold and to project
the predictions on it.

Another approach to learning-based planning is to utilize a neural network to transform the
considered planning space into a new one that poses features that are useful from the motion
planning perspective, and another one to retrieve the solution in the original space. At first, this
concept was proposed in [72], where the higher-dimensional planning space is transformed to
the lower one, which should have a positive effect on the planning efficiency of SBMP methods.
For efficient planning in the latent space, authors of [72] also propose to learn dynamics and
collision-checking networks to mirror the local steering and collision-checking procedures of the
traditional SBMP. Notably, these networks can be trained through only raw data of the system’s
states and actions, along with a supervising collision checker, without the need for expert planner
demonstrations. Instead of using the concepts of the SBMP algorithms, authors of [69] proposed

Introduction 13

to use a gradient-based optimization in the latent space to navigate from the initial to the
desired robot state, taking into account a single obstacle represented by the neural network that
predicts collisions with it, while in the recent paper [181] they extended the approach with the
scene embeddings to plan in more complex scenarios. In turn, in [4] a collision-free mapping
between the state space and latent space is proposed. The idea is to generate a latent space that
allows for connecting any two states using linear segments that are collision-free after remapping
to the original planning space. The main drawback of the approaches of these types is that
we have no direct control over the transients between the points from the planned sequence.
Moreover, they still require a sequential process of planning, by sampling or by gradient-based
updates, which may not be fast enough for time-critical applications.

Interesting utilization of previous experience in the context of motion planning is proposed
in [78] and [8]. Instead of learning how to generate a solution or improving the parts of the
SBMP algorithms, they focus on trajectory optimization, which is supported by the knowledge
gained in past optimization attempts. Trajectories predicted by both non-parametric [78] and
parametric [8] models are used to warm-start the classical trajectory optimization. This kind of
approach to learning-based motion planning can be an interesting use case for the fast motion
planning methods proposed in this dissertation, as they rapidly generate solutions that can be
further optimized using standard trajectory optimization approaches.

Learning-based approaches are also used to improve the feasibility of solving kinodynamic mo-
tion planning problems. Authors of [175] emphasized that solving a two-point boundary value
problem for a nonlinear dynamical system is NP-hard and proposed to learn a distance metric
and steering function to connect two nodes of RRT, based on the examples generated using
optimal control. In turn, in [6], the learning of control policy is done indirectly by learning the
state trajectory of some optimal motion planner and then using inverse dynamics of the system
to determine controls. A lazy approach to limit the number of computationally expensive NLP
solver calls was presented in [182], where the neural network, instead of replacing the solver, is
trained to predict which nodes of a RRT are steerable to, and what will be the cost of steering.
Contrary to these methods, authors of [102] propose to use a MPC extensively to solve local
NLP problems and learn only how to determine the next state in a way towards the goal using
the experience gained by mimicking demonstration trajectories.

In contrast to these methods, the approach proposed in this thesis offers an extremely fast
way of finding near-optimal trajectories that are able to solve constrained kinodynamic motion
planning problems. Moreover, our proposed approach is able to smoothly replan the motion
on-the-fly, which is not possible with the use of state-of-the-art constrained kinodynamic motion
planning algorithms. Furthermore, the solutions proposed in this dissertation, do not require
demonstration trajectories, as they learn from their own experience. Thus, their performance is
not upper-bounded by the quality of the demonstrations.

Introduction 14

1.4 Proposed solution

In the previous section, we have shown a broad perspective on the existing motion planning
methods. We intentionally used the terms planner and algorithm interchangeably, because all
of the presented solutions are in fact algorithms, as they gradually construct or improve the
solution according to some prescribed sequence of instructions and procedures. However, all
of these methods can be seen from a slightly different perspective, which focuses on the input-
output characteristics disregarding the specific way of processing. In this sense, we can describe
any motion planning algorithm as a function

𝑓 : 𝒫 × N+ −→ 𝒮 ∪ {ℵ}, (1.1)

that transforms elements of the set of all motion planning problems 𝒫, taking into account the
value of some random seed s ∈ N+ (to include probabilistic algorithms), into the elements of the
set of all solutions 𝒮 or into a symbol of no solution ℵ, under some specified motion planning
problems and solutions representations. This perspective on motion planning is schematically
shown in Figure 1.1, where the representation of the motion planning problem, i.e., environment
map and initial and desired configurations is transformed by some motion planning function into
the representation of the solution, i.e., a path. In this formalism, for example, we can describe
a complete algorithm as a motion planning function that for all elements of the set 𝒫 returns a
feasible solution or report that it does not exist. Showing the inexistence of the solution for non-
trivial motion planning problems is a tough challenge and an active area of research [100, 103].
However, in this thesis, we will focus our attention on the subset of motion planning problems
that have solutions, i.e., a set of feasible motion planning problems 𝒫𝑓 ⊂ 𝒫, and functions
defined on this set. One very special motion planning function defined on the set of solvable
motion planning problems 𝒫𝑓 is an ideal planning function defined by

𝑓* : 𝒫𝑓 −→ 𝒮, (1.2)

which transforms all feasible motion planning problems into solutions. In fact, we can presume
that there exists a big family of these kinds of functions 𝐹 * as many motion planning problems
have more than one solution. In practice, we would be more interested in solutions that are
optimal in some predefined sense, e.g., minimizing the time needed to execute the solution, or
energy input required. Therefore, we focus our attention on a specific ideal planning function,
i.e., optimal ideal planning function 𝑓*𝑜 defined by

𝑓*𝑜 = argmin
𝑓*∈𝐹*

∀𝑝∈𝒫𝑓
𝐽(𝑓*(𝑝)), (1.3)

which for all feasible motion planning problems generates solutions that are optimal w.r.t. a
given optimality criterion 𝐽 .

One of the most important goals of motion planning would be to know the formula of this
function or at least be able to evaluate it in some reasonable time. However, for most of the
practical motion planning problems, it is extremely hard to provide a closed form of this function,
and trials made to replicate its behavior with an algorithm still require tremendous amounts of

Introduction 15

Motion planning
problem representation Solution representationMotion

planning
function

e.g.
RRT,
BIT*,

TrajOpt,
CHOMP,
GPMP2

seed

Figure 1.1: Scheme of the functional perspective on the robot motion planning. Every
planning algorithm can be viewed as a planning function that transforms the problem repre-

sentation into the representation of the solution.

computation. Therefore, the key point of the solution proposed in this thesis is to exploit the
experience and learning to approximate the optimal ideal planning function. In particular, to
make this approximation feasible we focus only on some very narrow subsets of the set 𝒫𝑓 and
utilize a Neural Network (NN) to serve as a universal apprixmator [133]. To train a NN to
be able to generate motion plans, as the optimal ideal planning function, we need to somehow
copy its behavior. One of the most popular approaches to this problem is to utilize behavior
cloning [149] and try to directly copy the responses of the function 𝑓*𝑜 to some sample input
motion planning problems. Unfortunately, this approach requires spending tremendous amounts
of computation to find optimal solutions to the given planning problems using probabilistically-
complete motion planning methods. Moreover, it gives no clue, during the learning process,
about the feasibility of the solution generated by the NN as it allows only to asses the similarity
to the ground truth solution. Having in mind these significant limitations of behavior cloning,
we propose to follow a different approach. Instead of blindly copying the behavior, we propose to
describe mathematically the properties which the optimal ideal planning function should have,
i.e., define this function implicitly and try to learn how to satisfy the same properties with the
plans generated by the NN. By doing so we can validate any plan generated by the NN against
the set of criteria that have to be met by the optimal ideal planning function, without the need
to collect a specific optimal solution. This approach, is an instance of the RL paradigm, as we
do not know the ground truth output the NN should generate, but rely on some function that
asses the quality of the NN response directly.

To further improve the quality of the optimal ideal planning function approximation, we propose
ways to utilize the structure of both problem and solution representations, introduce new ways of
constructing the solutions from the neural network outputs, and propose differentiable learning
procedures based on the geometrical properties of the solution representation. Thanks to these
advances, we are able to efficiently learn how to plan and replan near-optimal motions, within
the time scale of at most a few inferences of the NN, for a few very challenging classes of motion
planning problems.

Introduction 16

1.5 Content of the thesis

The content of the dissertation is divided into two main parts. The machine learning-based
approach to path planning for autonomous vehicles is presented in Chapters 2 and 3, while in
Chapter 4 we introduce a more general approach to machine learning-based trajectory planning
with a particular focus on robotic manipulation. The proposed methods are experimentally
evaluated and quantitatively and qualitatively analyzed in chapters 5 and 6. The dissertation is
concluded in Chapter 7.

Chapter 2 describes the implementation of the idea of planning by learning how to approximate
the ideal optimal planning function for planning local maneuvers for car-like vehicles. The
chapter formalizes the planning problem as a MDP and proposes a neural network to represent
the planning policy.

The core idea of Chapter 2 is extended in Chapter 3. In this chapter, MDP formalism is
abandoned in favor of the bandit formulation, making it possible to speed up the planning
process. Moreover, in this chapter, we introduce a B-spline path representation and a novel
procedure for path construction, which allow us to directly impose the boundary constraints on
the solution and introduce an inductive bias to the proposed neural planner.

While the previous chapters focus on path planning for non-holonomic mobile robots, in Chap-
ter 4 we put an emphasis on the kinodynamic motion planning for robotic manipulators. In
this chapter, we introduce a general approach to learning how to plan in the close vicinity of
the constraint manifold, and a novel B-spline trajectory parametrization. Thanks to these ad-
vancements, in the same chapter, we propose a machine learning-based planning algorithm able
to solve tedious constrained kinodynamic motion planning problems in several milliseconds and
replan the motion of the robot on-the-fly.

In Chapter 5 we present the experimental evaluation of the machine learning-based path planning
methods for car-like vehicles introduced in Chapters 2 and 3. The experimental evaluation of
their capabilities and comparison with baseline motion planners is performed on the dataset of
local motion planning problems introduced in Chapter 2, while the qualitative comparison is
done on some predefined scenarios simulated using CARLA [38].

The experiments regarding constrained kinodynamic learning-based motion planning are pre-
sented in Chapter 6. The chapter focuses on the trajectory planning for robotic manipulators,
presenting the applicability of the general method proposed in Chapter 4 for two challenging
tasks: (i) rapid movement of a heavy vertically oriented cuboid, and (ii) fast shooting in the
robotic Air Hockey. The proposed approach is compared to state-of-the-art motion planners for
both tasks and evaluated on the real robotic setup for the second one. Moreover, in this chapter,
we present the abilities of the proposed method to replan the motion on-the-fly and show it in
action by performing some trick shots.

The dissertation is summarized in Chapter 7. This chapter also contains conclusions with clearly
stated contributions of the dissertation. The final part contains the future work plans.

Introduction 17

1.6 Projects and publications

The work presented in the thesis was possible due to funding from several sources. The author
of the thesis took part in the following projects as:

• Researcher in “Robotic technologies for the manipulation of complex deformable linear
objects (REMODEL)” funded by the European Commission in the Horizon 2020 framework
under the grant agreement No 870133, 01.2020–10.2023.

• Researcher in “Perception and control in the task of robotic manipulation of elastic objects
(RoManElO)” funded by the National Centre for Research and Development under the
grant No LIDER/3/0183/L-7/15/NCBR/2016, 03.2019–12.2020.

P. Kicki also received the following scholarships:

• NAWA STER – 3-month Ph.D. internship at Technische Universität Darmstadt in the
group of prof. Jan Peters within the MOBILITY part of the programme of International-
isation of doctoral schools, grant no. BPI/STE/2021/1/00005 funded by National Agency
for Academic Exchange,

• ICRA Travel Grants for the participation in the 39th International Conference on
Robotics and Automation 2022 in Philadelphia and 40th International Conference on
Robotics and Automation 2023 in London,

• NAWA PROM – 2 weeks of the research stay at University of Technology Sydney and
further remote cooperation within the programme of International scholarship exchange
of Ph.D. candidates and academic staff, grant no. PPI/PRO/2018/1/00005 funded by
National Agency for Academic Exchange.

The results of the dissertation were already presented in the following journal articles:

1. P. Kicki, T. Gawron, K. Ćwian, M. Ozay, P. Skrzypczyński, Learning from experience for
rapid generation of local car maneuvers, Engineering Applications of Artificial Intelligence,
Volume 105, 2021, 104399, October 2021, IF2021: 7.802, Quartile: Q1 in Artificial
Intelligence.

2. P. Kicki, P. Liu, D. Tateo, H. Bou-Ammar, K. Walas, P. Skrzypczyński, J. Peters, “Fast
Kinodynamic Planning on the Constraint Manifold”, IEEE Transactions on Robotics (early
access), IF2023: 7.8, Quartile: Q1 in Control and Systems Engineering.

The thesis also contains results presented during the conferences and workshops:

1. P. Kicki, P. Liu, D. Tateo, H. Bou-Ammar, K. Walas, P. Skrzypczyński, J. Peters, “To-
wards Fast Kinodynamic Planning on the Constraint Manifold”, 2023 International Con-
ference on Robotics and Automation, Agile Movements: Animal Behavior, Biomechanics,
and Robot Devices workshop, London, Great Britain.

Introduction 18

2. P. Kicki, P. Liu, D. Tateo, K. Walas, P. Skrzypczyński, J. Peters, “Fast Constrained
Kinodynamic Neural Motion Planning”, 34th Polish Conference on Artificial Intelligence,
2023, Łódź, Poland.

3. P. Kicki, P. Skrzypczyński, “Speeding up deep neural network-based planning of local
car maneuvers via efficient B-spline path construction”, 2022 International Conference on
Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 4422-4428.

4. P. Kicki, P. Liu, D. Tateo, P. Skrzypczyński, J. Peters, “Fast Motion Planning of a 7-DoF
Manipulator Arm for Robotic Air-Hockey ”, 3rd Polish Conference on Artificial Intelligence,
2022, Gdynia, Poland.

5. P. Kicki, P. Skrzypczyński, “Speeding up DNN-based planning of local maneuvers via effi-
cient B-spline path construction”, 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Combining Learning and Motion Planning workshop, virtual.

6. P. Kicki, T. Gawron, P. Skrzypczyński, “Learning Rapid Maneuver Planning for Car-
Like Vehicles Using Gradient-based Policy Search”, 2020 Robotics: Science and Systems,
Learning (in) Task and Motion Planning workshop, virtual.

Chapter 2

Learning Rapid Maneuver Planning

for Car-Like Vehicles Using

Gradient-based Policy Search

2.1 Introduction

While most of the robots are statically mounted industrial manipulators, the advent of service
robotics brings to the table a massive proliferation of mobile robots. In recent years, there has
been intensified work on the development of autonomous cars, as they are believed to signifi-
cantly change the way we travel and transport goods. To make self-driving cars to be used on
public roads, several key enabling technologies must be developed, such as efficient environment
perception, vehicle localization, and motion planning, to name a few [63, 79]. While most of
these challenges seem to be solved already, a very important aspect of self-driving is the innate
need to create systems able to rapidly react to the sudden changes in the environment, which
constantly happen in road traffic.

To avoid collisions and move nimbly in traffic, accurate and extremely fast local motion planning
systems are needed [30]. However, planning for self-driving cars needs to consider the constraints
imposed by the kinematics of the cars and states of scenes perceived by their sensors, which makes
it difficult to fit into the time frame. While state-of-the-art path planning methods are considered
sufficient for autonomous vehicles [55], their ability to solve highly constrained planning problems
comes at a high computational cost. In contrast, lane changing, parking, or overtaking maneuvers
are relatively easy for experienced human drivers, who in a short time horizon intuitively generate
nearly-optimal paths for their vehicles, exploiting the previous experience in performing these
maneuvers [57]. However, conventional path planners [100] do not take advantage of the prior
experience that comes from learning from similar cases solved earlier. This seems to waste a huge
potential of exploiting the experience gained in the past to create, through machine learning,
knowledge useful for solving motion planning problems.

19

Learning Rapid Maneuver Planning 20

Figure 2.1: Conceptual scheme of the rapid path generation system. We use gradient-based
policy search to teach the neural network to plan feasible paths.

Therefore, we want to investigate whether is it possible to learn a path planning policy, which
is then used to rapidly generate feasible and near-optimal local paths for typical maneuvers
of a car-like vehicle subject to severe kinematic constraints. To do so, we propose a motion
planning policy represented by a deep neural network, which based on the representation of
the motion planning problem, generates a proposition of the solution (Fig. 2.1). To learn how
to approximate the optimal ideal planning function, we utilize the gradient-based policy search
approach [40] in a reinforcement learning framework with a differentiable loss function and weak
supervision. While the proposed loss function relies on the reference paths, these paths are used
only in the training stage to retreat from the collision areas. Therefore, they do not constitute
a performance upper bound for the proposed method (weak supervision), which can find paths
that are shorter and/or smoother than the reference ones. Thanks to this property, the reference
paths may be easily computed (as they do not have to be optimal) using any complete path
planning algorithm able to handle the constraints present in the considered problem.

In this chapter, we present the following contributions to the field of motion planning:

1. An approach for rapid path generation under differential constraints by approximating the
optimal ideal planning function by a neural network.

2. A novel differentiable loss function that penalizes infeasible paths, due to the violation
of the constraints imposed either by the vehicle kinematics or the environment map, and
encourages the paths to be optimal with respect to the chosen criterion.

3. We introduce a dataset of local maps of the urban environment (based on real sensory
data) and motion planning scenarios that can be used for the training and evaluation of
local planners for self-driving cars. Using this dataset, we demonstrate the generalization
abilities of the learned model of our network, illustrate its advantages over selected state-
of-the-art planning algorithms, and quantitatively analyze the accuracy of the proposed
solution, planning times, and properties of the generated paths.

Learning Rapid Maneuver Planning 21

2.2 Problem definition

To present the proposed neural network-based approach to motion planning for car-like vehicles,
we need first to define the problem we are trying to solve. In this chapter, we consider the
problem of planning a feasible monotonic path 𝜁, from the initial state of the robot 𝑞0 to a
subset of desired robot configurations 𝑄𝑑. To formalize this definition, we need to introduce the
notion of the robot state 𝑞 defined by

𝑞 =

⎡⎢⎢⎢⎢⎣
𝑥

𝑦

𝜃

𝛽

⎤⎥⎥⎥⎥⎦ ∈ 𝑄, (2.1)

where 𝜃, 𝑥 and 𝑦 define vehicle orientation and position in the global coordinate frame, 𝛽 is the
angle of the virtual steering wheel in the kinematic bicycle model [144], and 𝑄 = R2 × S2 is the
state space. To simplify the description of the kinematics of the considered system, we assume
that the 𝑥 and 𝑦 coordinates describe the position of the velocity guiding point 𝑝𝐺 located in the
middle of the vehicle’s rear axle. Therefore, the kinematics of the car-like vehicle can be written
as

�̇� =

⎡⎢⎢⎢⎢⎣
�̇�

�̇�

𝜃

�̇�

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
cos 𝜃 0

sin 𝜃 0
tan 𝛽
𝐿 0

0 1

⎤⎥⎥⎥⎥⎦
[︃
𝑣

𝜉

]︃
, (2.2)

where 𝜉 is the rate of change of the steering wheel angle, 𝑣 is the speed of the vehicle’s guiding
point 𝑝𝐺, and 𝐿 is the distance between the front and rear axles. In this thesis, we assume a
simplified kinematic car model, i.e., no lateral and longitudinal slip [144], which is subject to
the limited steering angle 𝛽 ∈ [−𝛽𝑚𝑎𝑥;𝛽𝑚𝑎𝑥]. The last but not least aspect of the object whose
movement we want to plan is its body. We model the car body Π with a rectangle aligned with
the robot orientation 𝜃. Finally, we can define the solution path 𝜁 as a parametric curve that
maps the parameter 𝑠 ∈ [0; 1] into the elements of the state space 𝑄.

Having defined the kinematic car model and the form of a solution path we want to plan, we can
focus on explaining the keywords included in the problem definition stated above. Firstly, the
monotonicity of the path means that the velocity 𝑣 along this path cannot change its sign, i.e.,
we limit our planner to solve only local motion planning problems that do not require switching
between moving forward and backward. In turn, the path feasibility we understood as the
possibility to be safely followed, i.e., a path has to be collision-free and satisfy the constraints
imposed by the car kinematics. We assume path 𝜁 to be collision-free if the swath S(𝜁,Π) of
the car body Π along the path 𝜁 is a subset of the free space F, i.e.,

S(𝜁,Π) =
⋃︁
𝑞∈𝜁

Π(𝑞) ⊂ F. (2.3)

In our setup, environment ℰ is modeled with a 128×128 occupancy grid with resolution of 0.2m,
thus we consider a 25.6 × 25.6m local map. This size of the map is sufficient to represent the

Learning Rapid Maneuver Planning 22

robot’s nearby environment to enable local traffic planning for a wide range of urban driving
scenarios (the maximal allowed velocity in the urban areas in most EU countries is 50km/h,
which is equivalent to about 2s of the planning temporal horizon). In turn, the chosen resolution
is a trade-off between the ability to represent small obstacles and the size of the environment
representation that needs to be processed by the motion planning algorithm. The free space F

is a union of the empty cells of the above-mentioned grid map. In turn, the satisfaction of the
kinematics constraints of a car-like vehicle means that the movement of the vehicle guiding point
𝑝𝐺 along a path 𝜁 is aligned with the planned car orientation 𝜃, i.e.,

𝜃(𝑠) = tan
𝑦′(𝑠)

𝑥′(𝑠)
, (2.4)

where 𝑥′ = 𝑑𝑥
𝑑𝑠 , and the curvature 𝜅 of the path 𝜁, defined by

𝜅(𝑠) =
𝑥′(𝑠)𝑦′′(𝑠)− 𝑥′′(𝑠)𝑦′(𝑠)

(𝑥′2(𝑠) + 𝑦′2(𝑠))
3
2

, (2.5)

is limited to the following range 𝜅 ∈ [−𝜅𝑚𝑎𝑥, 𝜅𝑚𝑎𝑥] for all 𝑠 ∈ [0; 1], where 𝜅𝑚𝑎𝑥 = 1
𝐿 tan𝛽𝑚𝑎𝑥.

One can see that due to the differential flatness of the considered system [11, 46], all abovemen-
tioned constraints can be defined as functions of the 𝑥 and 𝑦 coordinates along the path and
their derivatives w.r.t. phase variable 𝑠. Thus, instead of defining the path 𝜁 as a mapping into
the configuration space 𝑄, we can compactly define it as a twice differentiable mapping

C2 ∋ 𝜁 : [0; 1] −→ R2, (2.6)

and introduce a transformation � between any point on the solution path 𝜁 and state space 𝑄,
defined by

�(𝜁(𝑠)) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜁1(𝑠)

𝜁2(𝑠)

tan
𝜁′
2(𝑠)

𝜁′
1(𝑠)

arctan

(︂
𝐿

𝜁′
1(𝑠)𝜁

′′
2 (𝑠)−𝜁′′

1 (𝑠)𝜁′
2(𝑠)

(𝜁′
1
2(𝑠)+𝜁′

2
2(𝑠))

3
2

)︂

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.7)

In Figure 2.2, we present a schematic view of the motion planning problem described above. Red
areas represent the complement of the free space F, i.e., the collision space, the blue rectangle
is the body of the vehicle at the initial state 𝑞0, while the green rectangle depicts the set of the
desired configurations 𝑄𝑑.

Learning Rapid Maneuver Planning 23

XG

YG

Figure 2.2: A scheme of the considered motion planning problem. Planning a monotonic,
feasible path from an initial state 𝑞0 =

[︀
𝑥0 𝑦0 𝜃0 𝛽0

]︀𝑇 to a subset of desired configura-
tions 𝑄𝑑.

2.3 Proposed solution

2.3.1 Path planning as Markov Decision Process

One of the key ideas of the proposed solution to robotic motion planning is the use of the RL
paradigm to learn how to plan. As we mentioned in the Introduction RL enables us to learn
based on the evaluations of the generated plan against some loss functions that implicitly define
the behavior of the ideal planning function. In RL two basic classes of problems are considered,
i.e., bandit problems that assume single-state environments, and MDPs that describe sequential
decision-making problems [162]. In this thesis, we cover both problem types. However, in this
chapter, we focus on the formulation of the motion planning problem as MDP.

MDP is, in general, a discrete-time stochastic control process with the Markov property imposed
on the state transitions. We define an MDP as a 4-tuple (𝑄,𝐴, 𝑇,𝑅), where:

• 𝑄 is the set of all possible states called state space,

• 𝐴 is the set of all possible actions called action space,

• 𝑇 is a transistion function that describes the probability 𝑃 (𝑞′|𝑞, 𝑎) of reaching state 𝑞′

from state 𝑞 by taking the action 𝑎,

• 𝑅 is a reward function that assigns a reward 𝑟 to the given state-action pair (𝑞, 𝑎).

At each time step 𝑡, the process is in some state 𝑞𝑡 ∈ 𝑄, and the actor may choose any action
𝑎 ∈ 𝐴 that is available in state 𝑞. The process responds by randomly moving into a new
state 𝑞𝑡+1, according to the probabilities defined by the transition function 𝑇 , and giving a
corresponding reward 𝑟 = 𝑅(𝑞𝑡, 𝑎).

Using the MDP formalism introduced above, we can define the process of path planning for a
car-like vehicle. State space 𝑄 of the MDP is then defined as the state space of the robot (2.1).

Learning Rapid Maneuver Planning 24

Subsequent actions can be represeted with subpaths C2 ∋ 𝜁𝑖 : [𝛼𝑖, 𝛼𝑖+1] −→ R2 of the solution path
𝜁 (2.6), where [𝛼𝑖, 𝛼𝑖+1] ⊂ [0; 1], defines the 𝑖-th subpath domain, and

⋃︀
𝑖=1,...,𝑛𝑠𝑒𝑔

[𝛼𝑖;𝛼𝑖+1] =

[0; 1], where 𝑛𝑠𝑒𝑔 is the number of subpaths. We assume that in a given state 𝑞𝑖, the only possible
action-paths are those which start at the state 𝑞𝑖 = �(𝜁𝑖(𝛼𝑖)). Transition function 𝑇 defines the
probability of reaching state 𝑞𝑖+1 by following the subpath 𝜁𝑖. While the reward function 𝑅

assesses the feasibility and quality of the given path 𝜁𝑖. As the path 𝜁𝑖 always contains the state
𝑞, we can drop the dependency on the state 𝑞.

Thanks to some properties of the problem of planning local maneuvers for car-like vehicles, we
can narrow down some parts of the MDP definition introduced above. For first, we will consider
only finite-horizon MDPs, as we expect to reach the goal in a finite sequence of actions. Secondly,
we assume that the paths can be followed with arbitrary precision, thus the transition function
𝑇 degenerates and assigns the probability of reaching the subpath’s final state 𝑃 (𝜁𝑖(𝛼𝑖+1)|𝑞, 𝜁𝑖)
equal to 1 and 0 otherwise. By doing so, we no longer have any stochasticity in the process, thus
we obtained a deterministic MDP. Moreover, in motion planning problems, the same solution
path 𝜁 in different environments or under different task requirements may be considered feasible
or infeasible, optimal or nonoptimal. Therefore, we introduce the context 𝐶, which contains
information about the current task and the state of the robot’s environment. We assume that
within a planning episode (i.e., a single maneuver), the context remains unchanged.

The part of the MDP definition, that strongly depends on the context is the reward function 𝑅.
Due to the introduction of the context and the assumption that subpaths begin at the actual
state 𝑞𝑖 = �(𝜁𝑖(𝛼𝑖)), we can redefine the arguments of the reward function as 𝑅(𝜁𝑖, 𝐶). However,
as in the proposed learning method we utilize the weak supervision by using the reference paths
𝜁𝑟 in the learning process, we also need to add it to the arguments of the reward function
𝑅(𝜁𝑖, 𝐶, 𝜁𝑟).

To solve the considered problem (see section 2.2), instead of applying a search algorithm to every
single problem instance, we utilize the MDP formulation introduced above and aim to find a
policy 𝜋(𝑞, 𝐶). The policy 𝜋(𝑞, 𝐶) is a function that specifies the action the agent will choose
in state 𝑞, taking into account the context 𝐶. Thanks to framing the problem into the MDP
formalism, we know that the optimal policy is Markovian and deterministic [139], therefore we
can approximate it with a function of the current state 𝑞 and the motion planning problem
context 𝐶.

2.3.2 Action and context definition

In the previous section, we introduced the 𝜋(𝑞, 𝐶), which based on the state 𝑞 and context 𝐶,
determines the action 𝑎. While the state is relatively straightforward to represent, as it can be
described just by 4 numbers (see (2.1)), the definitions of action 𝑎 and context 𝐶 require much
more detailed description.

Learning Rapid Maneuver Planning 25

2.3.2.1 Action

As we stated in section 2.3.1, actions are in our path planning problem defined as solution
subpaths 𝜁𝑖. However, to enable the policy 𝜋 to compute them, we need an appropriate path
representation. In the proposed solution, solution path 𝜁 is represented as a spline of the 5th-
degree polynomials as they have a sufficient level of smoothness so they may be tracked by a car
with a continuous steering angle [59]. Therefore, the subpaths 𝜁𝑖 are 5th-degree polynomials,
which must satisfy, at all connection points, the following continuity conditions

𝜁𝑖0(𝛼𝑖+1) = 𝜁𝑖+1
0 (𝛼𝑖+1), (2.8)

𝜁𝑖1(𝛼𝑖+1) = 𝜁𝑖+1
1 (𝛼𝑖+1), (2.9)

𝑑𝜁𝑖0
𝑑𝑠

(𝛼𝑖+1) =
𝑑𝜁𝑖+1

0

𝑑𝑠
(𝛼𝑖+1) (2.10)

𝑑𝜁𝑖1
𝑑𝑠

(𝛼𝑖+1) =
𝑑𝜁𝑖+1

1

𝑑𝑠
(𝛼𝑖+1) (2.11)

𝑑2𝜁𝑖0
𝑑𝑠2

(𝛼𝑖+1) =
𝑑2𝜁𝑖+1

0

𝑑𝑠2
(𝛼𝑖+1) (2.12)

𝑑2𝜁𝑖1
𝑑𝑠2

(𝛼𝑖+1) =
𝑑2𝜁𝑖+1

1

𝑑𝑠2
(𝛼𝑖+1), (2.13)

to form a spline. Although we generally allow these subpaths to be polynomial functions of the
phase variable 𝑠, control algorithms, which in the end will be used to track planned paths, may
require some specific representation, e.g., Vector Field Orientation (VFO) [116] control algorithm
requires the path to be represented as level-curve [53]. Therefore, we represent the subsequent
segments by functions of the form 𝑦 = 𝑓(𝑥). To satisfy this, we redefine the 𝑖-th subpath by

𝜁𝑖(𝑠𝑖) =

[︃
𝑥𝑖 · 𝑠𝑖∑︀5

𝑗=0𝑚𝑖𝑗𝑠
𝑗
𝑖 (1− 𝑠𝑖)5−𝑗

]︃
, (2.14)

where 𝑚𝑖𝑗 are the polynomial coefficients and 𝑥𝑖 is the range of the movement in the 𝑥 axis,
and 𝑠𝑖 =

𝑠−𝛼𝑖

𝛼𝑖+1−𝛼𝑖
. Unfortunately, this definition is very restrictive, as it limits the orientation

along the path to (−𝜋
2 ;

𝜋
2) interval. To alleviate the level-curve requirements and not restrict the

representational power of our path representation too much, we choose not to interpret (2.14) in
the global coordinate system, but in the local coordinates instead. Starting from the initial state

𝑞0 =
[︁
𝑥0 𝑦0 𝜃0 𝛽0

]︁𝑇
, we define the first Local Coordinate System (LCS) L1 at the point

(𝑥0, 𝑦0) with orientatioon defined by 𝜃0, all described in the global coordinate system. Next, LCSs
are constructed in the same way based on the subsequent states 𝑞𝑖 for 𝑖 ∈ 1, 2, . . . , 𝑛𝑠𝑒𝑔, but each
of which is defined in the LCS that preceded it. The sequence of LCSs, dependencies between
them, and defined subpaths 𝜁𝑖 are schematically presented in Figure 2.3. Our formulation
enables us to represent paths that are not functions of the 𝑥 coordinate. However, it limits
the maximum possible turn during the maneuver to 𝑛𝑠𝑒𝑔𝜋

2 rad, which is enough for most of the
typical local car maneuvers. The number of segments 𝑛𝑠𝑒𝑔 affects not only the ability to represent
complex maneuvers but also the path computation time, as in the proposed approach amount
of computations scales linearly with it.

Assuming that we know the initial state 𝑞0, we can define the aforementioned spline using a

Learning Rapid Maneuver Planning 26

XG

YG

P

Figure 2.3: Scheme of the sequence of LCSs. Each subpath 𝜁𝑖 as well as each (𝑖+1)-th LCS
is deifned in the 𝑖-th LCS.

𝑛𝑠𝑒𝑔 × 4 matrix 𝑆𝜁 of parameters of segment endpoints. Each row of the matrix defines a 2D
position (𝑥, 𝑦) of an endpoint as well as the first 𝑑𝑦

𝑑𝑥 |(𝑥,𝑦) and the second 𝑑2𝑦
𝑑𝑥2 |(𝑥,𝑦) derivative of

the path at that point. Notice that all parameters in the 𝑖-th row of the 𝑆𝜁 are expressed with
respect to the 𝑖-th local coordinate system L𝑖. Note that for the second derivative, the coordinate
system does not matter. However, for brevity, we will assume that all parameters are expressed
in 𝑖-th LCS.

From the transition point of view, it is important to determine the state 𝑞𝑖 of the robot after per-
forming an action 𝑆𝜁𝑖 in state 𝑞𝑖−1. Let’s observe that each row of the 𝑆𝜁 matrix unambiguously
defines this state by the following transformation

𝑞𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥𝑖−1 + 𝑥L𝑖 cos 𝜃𝑖−1 − 𝑦L𝑖 sin 𝜃𝑖−1

𝑦𝑖−1 + 𝑥L𝑖 sin 𝜃𝑖−1 + 𝑦L𝑖 cos 𝜃𝑖−1

𝜃𝑖−1 + tan
(︁

𝑑𝑦
𝑑𝑥 |(𝑥L𝑖,𝑦L𝑖)

)︁
arctan

(︂
𝐿

𝑑2𝑦

𝑑𝑥2 |(𝑥L𝑖,𝑦L𝑖)

(1+(𝑑𝑦
𝑑𝑥 |(𝑥L𝑖,𝑦L𝑖)

)2)
3
2

)︂

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.15)

Moreover, based on the current state 𝑞𝑖−1 and these parameters one can determine the 𝑚𝑖𝑗

parameters of the locally defined polynomial (2.14) using following formulas

𝑚𝑖0 = 0,

𝑚𝑖1 = 0,

𝑚𝑖2 =
1

2𝐿
𝑥2L𝑖 tan𝛽𝑖−1,

𝑚𝑖5 = 𝑦L𝑖,

𝑚𝑖4 = 5𝑚𝑖5 −
𝑑𝑦

𝑑𝑥
|(𝑥L𝑖,𝑦L𝑖)𝑥L𝑖,

𝑚𝑖3 =
1

2

(︂
𝑑2𝑦

𝑑𝑥2
|(𝑥L𝑖,𝑦L𝑖)𝑥

2
L𝑖 − 20𝑚𝑖5 + 8𝑚𝑖4

)︂
.

(2.16)

Learning Rapid Maneuver Planning 27

2.3.2.2 Context

A second argument of the policy 𝜋(𝑞, 𝐶) is the context 𝐶 = (𝐸, 𝒯), which we define as a tuple of
environment representation 𝐸 and task definition 𝒯 . As we mentioned in the problem definition
(see 2.2) the information about the robot’s environment ℰ is represented with an occupancy grid
map 𝐸, which defines the free space F, and its complement F𝐶 , that is a crucial information
from the perspective of planning and evaluating paths. The second element of the context is the
definition of the task 𝒯 . To define the motion planning task, we need to specify at first the set
of goal configurations 𝑄𝑑, the achievement of which is one of the prerequisites to conclude that
the planned path solves the task.

2.3.3 Policy representation

In the previous section, we defined the representation of the action 𝑎 and 𝐶, which together with
the state 𝑞 enables us to define the policy 𝜋(𝑞, 𝐶)) that is used to determine subpaths 𝜁𝑖. Taking
into account that transitions in the considered MDP are deterministic, we can limit ourselves to
analyzing only the deterministic policies. Hence, we can define a policy that is meant to solve
considered path planning problems as a function defined by

𝜋(𝑞𝑖, 𝐶) = 𝜁𝑖+1, (2.17)

which for every considered state 𝑞 of the robot, and every context 𝐶 genrates a path segment
𝜁𝑖+1. We are particularly interested in the functions 𝜋, that generate path segments which,
in some finite horizon, assuming recursive application of the policy 𝜋, lead to the set of goal
configurations𝑄𝑑. We especially seek policies that can reach the goal in a low number of recursive
calls. Moreover, we look for the policies that generate paths that are feasible given the constraints
stemming both from the robot kinematics and the geometry of the robot and environment, and
at the same time, optimal w.r.t. the considered optimality criterion. Deterministic policies that
satisfy the abovementioned properties are fulfilling our definition of the optimal ideal planning
function presented in Section 1.4, thus we denote them as 𝜋*(𝑞, 𝐶).

Following the main idea introduced in Section 1.4, instead of searching for the exact and general
formulation of the optimal ideal planning function 𝜋*(𝑞, 𝐶), we propose to approximate it for
some subset of motion planning problems. To approximate a function, we need to define:

• the signature of a planning function we want to approximate, which we understand as the
definition of its inputs and outputs representations,

• the approximator’s structure,

• the method to assess the quality of the approximation and update the parameters of the
approximator,

• set of problems of our interest on which we want to approximate the behavior of 𝜋*(𝑞, 𝐶).

Learning Rapid Maneuver Planning 28

In this section, we will address the first two points, while the remaining two are thoroughly
discussed in the next sections.

We start defining the signature of the considered planning function from the inputs. In general,
our planning policy 𝜋(𝑞, 𝐶) depends on the current state 𝑞 and context 𝐶. While the current
state is directly defined by (2.1), context 𝐶 is more complex and consists of the environment rep-
resentation ℰ and task definition 𝒯 . Following the propsoed problem definition (see Section 2.2),
we describe the environment ℰ using an occupancy grid 𝐸 ∈ {0, 1}128×128, which assigns 1 to
the pixels that lie in the free space F and 0 otherwise. In turn, the task definition 𝒯 , introduced
in Section 2.3.2.2, consists of the set of goal configurations 𝑄𝑑 and some solution optimality
criterion, e.g., path length or accumulated path curvature. While, in general, the optimality
criterion can be task-specific, in this thesis, we assume that it is common for all considered
motion planning problems. Thus, we do not have to include it in the policy arguments. The
opposite is true for the set of goal configurations 𝑄𝑑, which can be different for different tasks
that fit our problem definition, but constant within the planning episode, i.e., a single maneuver.
While, in general, these sets may be defined in any way, we decided to restrict our motion plan-
ning problems to reach some axis-aligned orthotope1 centered at some specific configuration 𝑞𝑑.
Assuming that for the whole considered motion planning problem, the lengths of the orthotope
edges remain constant, i.e., we assume the same margins of achieving the desired configuration
𝑞𝑑 for all motion planning problem instances. Therefore, to unambiguously define the arguments
of the considered motion planning function, we need to specify an occupancy grid 𝐸 and the
desired state of the robot 𝑞𝑑. In turn, the output of the considered policy is, in general, defined
as a solution path segment 𝜁𝑖. However, using the sequential nature of the considered problem
and reasoning shown in Section 2.3.2.1, we can greatly simplify the subpath representation and
define it unambiguously using just 4 numbers. Therefore, we expect the policy 𝜋 to return the
2D position (𝑥, 𝑦) of a segment endpoint as well as the first 𝑑𝑦

𝑑𝑥 |(𝑥,𝑦) and the second 𝑑2𝑦
𝑑𝑥2 |(𝑥,𝑦)

derivative of the path at that point, all expressed in the LCS defined by the current state 𝑞.
Such a quadruple (𝑥, 𝑦, 𝑑𝑦𝑑𝑥 |(𝑥,𝑦),

𝑑2𝑦
𝑑𝑥2 |(𝑥,𝑦)) we denote as 𝑆𝜁𝑖 for 𝑖-th segment endpoint parameters.

Moreover, because we consider only the monotonic maneuvers, we can put a constraint on the
𝑥 coordinate of the segment endpoint, i.e., 𝑥 > 0. Summing up the reasoning above, we can
clearly define the policy 𝜋 as a function defined by

𝜋 : 𝑄× {0, 1}128×128 −→ 𝐴, (2.18)

where action space 𝐴 = R+ × R3.

Having the policy 𝜋 signature defined, we can think about the structure of the optimal ideal
planning function approximator. The main idea of the proposed approach to optimal policy
approximation is to learn it from data. Therefore, we need to decide which method from the
library of machine learning algorithms will best suit the needs of robotic motion planning. Let’s
note that the argument space defined in (2.18) is huge, consisting of 4 continuous state dimen-
sions times 214 boolean states representing the map. Moreover, we would like to mimic the
optimality of 𝜋*. Thus, we presume that the use of non-parametric machine learning methods,
such as decision trees or k-Neares Neighbours, would be infeasible, as they would have problems

1a generalization of a rectangle for higher dimensions

Learning Rapid Maneuver Planning 29

accurately adjusting their decision boundaries to pursue the optimality and likely cannot gener-
alize to unseen environments [90, 172]. Therefore, we focus our attention on parametric machine
learning methods, particularly NNs, as they have shown great approximation and generaliza-
tion abilities among different domains, including robotics. Moreover, they are proven to be a
universal approximator [133] and have a great track record in solving problems that require the
processing of image-like structures, which include the maps we are considering. To denote the
dependency of the approximation of the policy 𝜋 on the parameters 𝜑 of a NN, typically called
weights, we write 𝜋𝜑.

To approximate the optimal policy 𝜋* accurately, we propose a NN architecture presented in
Figure 2.4. This architecture consists of 3 main functional components: (i) map processor, (ii)
configuration processor, and (iii) parameter estimator. The map processor is meant to process
the map 𝐸 representing the robot’s environment. We encode map 𝐸 using one-hot encoding
to ease the processing by NN and apply a sequence of 3 × 3 2D convolution and 2 × 2 max-
pooling layers. In this way, we obtain a 4 × 4 × 512 tensor, which, after being flattened to an
8192-dimensional vector, is then processed by the fully connected layers, finally achieving a size
of 256. Due to the assumption that the environment remains unchanged during the planning
process, we construct a 256-dimensional embedding of the map 𝐸 once per episode, thus saving
inference time. The second building block of our NN is the configuration processor, which is a
sequence of fully connected layers that creates a 256-dimensional embedding of the actual 𝑞 and
desired 𝑞𝑑 states. To facilitate the processing of the vehicle orientations in NN, we represent
them by their sine and cosine to maintain the topology of the orientation space. Finally, both
map and configuration embeddings are concatenated and jointly processed by 4 heads of the
parameter estimator, which, by a sequence of 4 fully connected layers, generates the segment
endpoint parameters. Each parameter has its own network head, and they differ only in terms
of the last layer. Heads that estimate 𝑦L𝑖

, 𝑑𝑦
𝑑𝑥 |(𝑥L𝑖

,𝑦L𝑖
), and 𝑑2𝑦

𝑑𝑥2 |(𝑥L𝑖
,𝑦L𝑖

) do not use activation
functions in the last layer, to enable the network to produce arbitrary derivatives and choose
displacement in the local 𝑦-axis freely. Whereas, for the 𝑥L𝑖 head, there is a sigmoid at the
end, and its output is scaled 10 times to set the maximal length of the single path segment to a
reasonable value, relative to the map size, of 10m and to stabilize gradient propagation. Except
for these layers, the rest of the fully connected layers use tanh non-linearity, while convolutional
layers utilize Rectified Linear Unit (ReLU) activations, which have been commonly used in
fully-connected [113] and convolutional neural networks [120]. Such a network calculates the
parameters of a single segment endpoint. Thus, to generate a spline made of 𝑛𝑠𝑒𝑔 polynomial
segments, we perform 𝑛𝑠𝑒𝑔 inferences by changing the representation of the actual state 𝑞 each
time, according to the previously determined segment.

Learning Rapid Maneuver Planning 30

Figure 2.4: The proposed architecture of the NN-based optimal policy approximator. The
network consists of three branches: (i) map processor, which creates the latent representation
of the environment; (ii) configuration processor, which learns representations for the vehicle’s
actual and desired configurations; and (iii) parameter estimator with 4 heads, which produces
parameters of the next segment endpoint using the latent representation of the problem. Num-

bers under layers represent the shape of the data at its output.

2.3.4 Loss function

To train the proposed neural network, we need to define a loss function, which will drive our
model towards some optimal ideal planning function. A trivial solution is to use imitation
learning to copy the behavior of a complete planning algorithm on multiple path planning tasks
[70]. However, this approach has several important drawbacks. First, using a planning algorithm
requires a significant amount of time to generate training data. Moreover, the quality of the paths
generated by the chosen planner constitutes an upper bound on the performance of the proposed
planning policy, which results in paths far from optimal paths or increases the time needed to
create the training data. Furthermore, the loss function minimized in supervised learning drives
the solutions toward the planned paths without considering their actual feasibility, which may
be an issue for models with limited capacity. Such a situation is schematically illustrated in
Figure 2.5.

Due to the aforementioned drawbacks of imitation learning, we decided to learn to approximate
the optimal policy differently. Instead of directly copying the exact behavior of the otpimal ideal
planning function, we propose to define what kind of features characterize the optimal policy and
to construct mathematically defined functions that implicitly define the behavior of the optimal
policy. Having these functions defined, we can evaluate all actions taken by a policy 𝜋𝜑 and
learn from these evaluations how to plan using the Reinforcement Learning paradigm. In the
considered problem, we show that these functions can be defined in such a way that all of them
are differentiable and thus allow us to use their gradient directly to optimize the parameters
𝜑 of the neural network. Thanks to this property, we can use a Gradient-based Policy Search
[40] algorithm to train the model to act almost, due to the limited capacity of our model, as an
optimal policy 𝜋*, i.e., to generate feasible and near-optimal paths.

These functions that implicitly define the behavior of the optimal policy 𝜋* can be considered in
the MDP framework as the components of the reward function 𝑅. Thus to properly optimize the
policy parameters 𝜑 we need to define a differentiable reward function 𝑅. While the codomain

Learning Rapid Maneuver Planning 31

Figure 2.5: The path 𝜁′′ has a lower error in terms of imitation learning (lies closer and is
more geometrically similar to the reference path 𝜁𝑟) than the path 𝜁′. However, the path 𝜁′′

is infeasible due to the collision with the environment, in contrast to 𝜁′.

of the reward function is clearly the set of real numbers R, we need to pay more attention to its
arguments. To evaluate the reward function 𝑅 in the considered problem we not only need the
current state and action pair (𝑞, 𝑎) but also the context 𝐶 in which this state occurred and action
was applied, and a reference path 𝜁𝑟 to weakly supervise the path generation. Particularly, we
need to know the environment geometry 𝐸 to check for the collisions and the set of the desired
states 𝑄𝑑 to evaluate whether the given path leads us to the goal region. Therefore, the reward
function 𝑅 can be redefined by

𝑅(𝑞𝑖, 𝑆𝜁𝑖+1, 𝐸,𝑄𝑑, 𝜁
𝑟) : 𝑄×𝐴× ℰ × P (𝑄)× 𝑍𝑟 −→ R, (2.19)

where 𝑍𝑟 is a space of all reference paths 𝜁𝑟 and P (𝑄) is the power set (set of all subsets) of the
state space 𝑄. This function allows us to evaluate the quality of the 𝑖-th path segment, however,
to assess the whole solution path 𝜁 we need to asses the whole rollout from the state 𝑞0 using
the policy 𝜋𝜑, i.e., a sequence of state action pairs ((𝑞0, 𝑆𝜁1), (𝑞1, 𝑆𝜁2), . . . , (𝑞𝑛𝑠𝑒𝑔−1, 𝑆𝜁𝑛𝑠𝑒𝑔

)). To
do so we define a total expected return 𝑅𝜋𝜑

by

𝑅𝜋𝜑
(𝑞0, 𝐸,𝑄𝑑, 𝜁

𝑟) =

𝑛𝑠𝑒𝑔∑︁
𝑖=1

𝑅(𝑞𝑖−1, 𝑆𝜁𝑖, 𝐸,𝑄𝑑, 𝜁
𝑟), (2.20)

where 𝑆𝜁𝑖 = 𝜋𝜑(𝑞𝑖−1, 𝐸) and 𝑞𝑖 is computed based on 𝑞𝑖−1 and 𝑆𝜁𝑖 using (2.15).

Because neural networks are typically trained using the gradient descend method, which requires
the gradient of the loss function, from now on we will refer to the loss function

ℒ(𝜁, 𝐸,𝑄𝑑, 𝜁
𝑟) : C2 × ℰ × P (𝑄)× 𝑍𝑟 −→ R (2.21)

Learning Rapid Maneuver Planning 32

instead to the total expected return function 𝑅𝜋𝜑
, having in mind that

𝑅𝜋𝜑
(𝑞0, 𝐸,𝑄𝑑, 𝜁

𝑟) = −ℒ(𝜁, 𝐸,𝑄𝑑, 𝜁
𝑟), (2.22)

where solution path 𝜁 is obtained by applying the policy 𝜋𝜑 to the initial 𝑞0 and subsequent
states 𝑞𝑖, 𝑞𝑖+1, . . . , 𝑞𝑛𝑠𝑒𝑔−1.

The proposed loss function ℒ consists of four components:

• Collision loss ℒ𝑐𝑜𝑙𝑙, to ensure that the planner produces collision-free paths,

• Curvature loss ℒ𝑐𝑢𝑟𝑣, to ensure that the produced paths are possible to follow by the car
with a limited steering angle 𝛽,

• Overshoot loss ℒ𝑜𝑣𝑒𝑟, to ensure that the end of the last segment lies within a neighborhood
𝑄𝑑 of the goal configuration 𝑞𝑑,

• Total curvature loss ℒ𝑡𝑐𝑢𝑟𝑣, to regularize generated paths, such that they have reasonably
low total curvature, as it allows for following them with greater velocity,

All listed above losses are summed together to obtain the main loss

ℒ = ℒ𝑐𝑜𝑙𝑙 + ℒ𝑐𝑢𝑟𝑣 + ℒ𝑜𝑣𝑒𝑟 + 𝜌(ℒ𝑐𝑜𝑙𝑙,ℒ𝑐𝑢𝑟𝑣,ℒ𝑜𝑣𝑒𝑟)ℒ𝑡𝑐𝑢𝑟𝑣, (2.23)

where 𝜌(ℒ𝑐𝑜𝑙𝑙,ℒ𝑐𝑢𝑟𝑣,ℒ𝑜𝑣𝑒𝑟) is the feasibility indicator function equal to 1 if the path is feasible,
that is ℒ𝑐𝑜𝑙𝑙 + ℒ𝑐𝑢𝑟𝑣 + ℒ𝑜𝑣𝑒𝑟 = 0, and 0 otherwise. Note, that we changed the way the expected
return is computed compared to that shown in (2.22). Instead of computing the loss for each
segment and then summing these up, we propose to define several functional losses that refer
to the different properties of the optimal policy 𝜋* we want to approximate. By doing so, we
can assess the whole solution path 𝜁 at once w.r.t. to the given criterion, thus we move the
summation over the segments inside each of the abovementioned loss function components.

As all the cost functions outlined above are rather not standard loss functions encountered in
training machine learning models, we need to introduce their definitions. For collision, curvature,
and total curvature losses, we consider a path 𝜁 as a sequence of 𝑛𝑠𝑒𝑔 segments 𝜁𝑖, and we divide
each of these segments with 128 points with orientation, equally distant from each other along the
𝑥 axis of the local coordinate system in which given segment is defined. By doing so we achieve
the resolution of configurations along the local 𝑥 axis greater than 10 cm (as the maximum length
of the path segment along the 𝑥 axis is set to 10m).

The key idea behind the collision loss is to encourage the neural network to generate paths
outside the collision regions in a differentiable way. To do so, we need a reference path, which
will serve as a goal of the optimization for the parts of the segments of the produced path that
lie inside obstacles, and a way to efficiently detect that the collision has happened. Thus, the
loss function consists of two main components: (i) a collision indicator function 𝜎(Π𝑖𝑗 ,F

𝐶
𝐸) and

Learning Rapid Maneuver Planning 33

(ii) the distance between reference path 𝜁𝑟 and characteristic points, and it is defined by

ℒ𝑐𝑜𝑙𝑙(𝑞0, 𝜁, 𝐸, 𝜁
𝑟) =

𝑛𝑠𝑒𝑔∑︁
𝑖=1

127∑︁
𝑗=1

5∑︁
𝑘=1

𝜎(Π𝑖𝑗 ,F
𝐶
𝐸)𝑑(𝜁

𝑟,Π𝑖𝑗𝑘)𝑙𝑖𝑗 , (2.24)

where F𝐶
𝐸 is the collision space represented by the environment map 𝐸, Π𝑖𝑗𝑘 denotes the five

characteristic points on the vehicle body [183], i.e., four corners of the rectangular body of the
vehicle and the guiding point in the middle of the rear axle, for the car configuration at 𝑗-th point
on the 𝑖-th segment. Moreover, 𝑑(𝒳 ,𝒴) is a function used to compute the smallest Euclidean
distance between elements of the sets 𝒳 and 𝒴, and 𝑙𝑖𝑗 is the Euclidean distance between the
(𝑗−1)-th and the 𝑗-th point in the 𝑖-th segment. However, those distances are taken into account
only if the vehicle periphery Π𝑖𝑗 is in collision with the environment, which was denoted in (2.24)
by 𝜎(Π𝑖𝑗 ,F

𝐶
𝐸). Collision 𝜎(Π𝑖𝑗 ,F

𝐶
𝐸) of the car body Π at 𝑗-th point on the 𝑖-th segment with

the obstacles F𝐶
𝐸 is determined by checking if any point on the circumference of the vehicle lie

inside the complement of the free space F𝐶
𝐸 represented with 0 values on the map 𝐸. In our

experiments, we computed points from the circumference such that they lie no further than 0.2m

from each other to ensure that we are checking collisions at the same resolution as the resolution
of the grid map 𝐸.

Similar to collision loss, curvature loss ℒ𝑐𝑢𝑟𝑣 and total curvature loss ℒ𝑡𝑐𝑢𝑟𝑣 are also calculated
using the points defined on all segments. Curvature loss is defined by

ℒ𝑐𝑢𝑟𝑣(𝑞0, 𝜁) =

𝑛𝑠𝑒𝑔∑︁
𝑖=1

127∑︁
𝑗=1

max(|𝜅𝑖𝑗 | − 𝜅𝑚𝑎𝑥, 0)𝑙𝑖𝑗 , (2.25)

while total curvature loss by

ℒ𝑡𝑐𝑢𝑟𝑣(𝑞0, 𝜁) = 𝜂

𝑛𝑠𝑒𝑔∑︁
𝑖=1

127∑︁
𝑗=1

|𝜅𝑖(𝑗+1) − 𝜅𝑖𝑗 |, (2.26)

where |·| denotes the absolute value, 𝜅𝑖𝑗 is a curvature of the path at the 𝑗-th point in the
𝑖-th segment, 𝜅𝑚𝑎𝑥 is maximal admissible path curvature, and 𝜂 is a regularization strength
parameter, which we set to 10−4.

In turn, the overshoot loss ℒ𝑜𝑣𝑒𝑟 is defined as a Manhattan Distance [32] between the final

configuration of the planned path
[︁
𝑥𝑓 𝑦𝑓 𝜃𝑓 𝛽𝑓

]︁𝑇
and the set of the desired configurations

𝑄𝑑, what can be formally written as

ℒ𝑜𝑣𝑒𝑟(𝑞0, 𝜁, 𝑄𝑑) = min
𝑞∈𝑄𝑑

(|𝑥𝑓 − 𝑞1|+ |𝑦𝑓 − 𝑞2|+ |𝜃𝑓 − 𝑞3|) , (2.27)

where 𝑞𝑖 is the 𝑖-th element of 𝑞 ∈ 𝑄𝑑, for 𝑖 ∈ {1, 2, 3, 4}. However, thanks to the imposed
geometry of the set of the desired configurations 𝑄𝑑 (see Section 2.3.3), we can simplify the
computation of the overshoot loss and define it by

ℒ𝑜𝑣𝑒𝑟(𝑞0, 𝜁, 𝑞𝑑) = ReLU(|𝑥𝑓 − 𝑥𝑑| −
𝑄𝑑𝑋

2
) +ReLU(|𝑦𝑓 − 𝑦𝑑| −

𝑄𝑑𝑌

2
) +ReLU(|𝜃𝑓 − 𝜃𝑑| −

𝑄𝑑𝜃

2
),

(2.28)

Learning Rapid Maneuver Planning 34

where 𝑥𝑑, 𝑦𝑑, 𝜃𝑑 are the respective elements of the desired state 𝑞𝑑, while 𝑄𝑑𝑋 , 𝑄𝑑𝑌 , 𝑄𝑑𝜃 are the
lengths of the edges of the orthotope of desired configurations 𝑞𝑑 centered at 𝑞𝑑, and ReLU(·) =
max(·, 0).

All parts of the loss function ℒ are differentiable almost everywhere, which enables us to train it
directly using the gradient of the proposed loss function in a Reinforcement Learning paradigm.
By almost everywhere, we mean that, due to the use of absolute value, the loss function is
not differentiable only at 0, however, it is perfectly fine for learning purposes as for the zero
loss we don’t have to make any updates. Among loss components, there is only one, which
cannot be calculated using the features of the generated path, and thus cannot be trained using
Reinforcement Learning methods exclusively – collision loss ℒ𝑐𝑜𝑙𝑙. To evaluate (2.24), we need
a reference path 𝜁𝑟, which we obtain from some other planner. However, since the supervision
is used only to escape from the forbidden areas of the state space and it is not a performance
upper-bound, we call it weak supervision. Thus, we called the proposed training procedure
Weakly Supervised Gradient-based Policy Search.

2.3.5 Dataset

To train our model in a weakly-supervised manner, we need a dataset of local planning problems,
of the type described in Section 2.2, with sample solutions. In this work, we make several addi-
tional assumptions to further limit the domain of the problems that we want to be able to solve,
following the idea of approximating the optimal ideal planning function only on some important
but relatively small subset of the motion planning problems. These additional assumptions can
be summarized as follows:

1. environment maps have to be aligned with the current position and orientation of the ego
vehicle,

2. both initial and desired configurations are expressed in the LCS defined by the initial
position and orientation of the ego vehicle,

3. vehicle dimensions (see 𝑊,𝐿𝐵 , 𝐿𝐹 , 𝐿 in Figure 2.2) as well as maximal steering angle 𝛽𝑚𝑎𝑥

are constant,

4. the dimensions of the orthotope that defines 𝑄𝑑 are constant.

These assumptions are thoroughly explained below. By the 1st and 2nd assumptions, we remove
the translational and rotational symmetry of the considered problems. By doing so, we express
all problems w.r.t. the initial configuration of the ego vehicle and practically maintain the same
applicability of the proposed method, while reducing the space of the problems which our learning
system has learned how to solve. In turn, 3rd assumption definitely narrows down the range of the
problem which can be solved with the proposed approach. Our idea is that the planning policy is
specific for a given vehicle on which we want to apply it. Nevertheless, for smaller vehicle models
and bigger maximal steering angles, our proposed solution will still work, however, generated
solutions will be more conservative. Moreover, we expect that for some deviations in the vehicle

Learning Rapid Maneuver Planning 35

model parameters, for which the feasible path does not change the homotopy class, the transfer
of the knowledge from the motion planning neural network pre-trained on different vehicle model
parameters to different ones is possible. Finally, the 4th assumption simplifies the problem of
planning towards some set of desired configurations 𝑄𝑑 to planning towards specific desired
configuration 𝑞𝑑 with allowed deviations in each state dimension that from an orthotope in the
configuration space 𝑄. For simplicity, we assume that these allowed deviations are constant no
matter the desired configuration or environment shape around it. Thus, we don’t need to include
it in the training data. While this assumption may seem a bit non-practical, it is very popular
in the context of robotic motion planning [160].

Given all the assumptions introduced above, we can consider a dataset of motion planning prob-
lems completely defined by the initial 𝑞0 and desired 𝑞𝑑 robot configuration, and the environment
representation 𝐸 in the form of an occupancy grid, as the rest of the parameters are the same
for the entire data set. These problems should be solvable using a complete path planner em-
ploying our representation of the path. Therefore, the purpose of using an auxiliary planner in
our method is twofold:

• if the auxiliary planner finds a path, then we know that the particular problem, i.e., the
combination of task and environment, is solvable, thus it is safe to include it in the training
data,

• the path planned by the auxiliary planner can be used as a reference path 𝜁𝑟 to drive the
learned solution outside the collision regions.

To generate a dataset of this form, we started from the environments and harvested maps of
some real urban environments. Using the Velodyne HDL-64E LiDAR measurements from the
KITTI dataset [54] and data we have acquired in town suburbs with a Sick MRS-6124 LiDAR
mounted on a bus, we generated a set of occupation grid maps. In all cases, the LiDAR scans
were registered using the LiDAR Odometry and Mapping (LOAM) algorithm [187], and the 2D
drivable terrain maps were obtained by processing the registered laser scans with an elevation
mapping method that handles properly sparse laser data [10]. Finally, 2D occupancy grids were
produced from the elevation maps by thresholding the elevation values and setting the drivable
(empty) and non-drivable (occupied) cells. In addition, we used the CARLA simulator to gather,
much less noisy maps, with multiple obstacles such as pedestrians and different vehicles. We
built some maps of Town05 and Town07 [38] to capture both city and rural areas. All the
aforementioned maps have the same grid resolution of 0.2 m/px.

From all these maps, we sampled vehicle-centered local maps (128×128 px). We tied the initial
configuration of the robot in the middle column and the 120th row of the map image, oriented
upwards. To increase the variability of the maps and to simulate the other actors and obstacles
on the roads e.f. pedestrians or vehicles, we augmented maps with up to 15 randomly placed
rectangular obstacles of different sizes.

For each local map, we generated multiple plans with random final configurations. The plans
have been obtained using a modified SL planner [134] utilizing 73 polynomial path primitives.
To speed up the generation process, we guided the SL search using a Dubins distance [41] as

Learning Rapid Maneuver Planning 36

a heuristic. Such a lattice-based approach makes it easy to ensure that the time and memory
needed to generate a plan are bounded. Furthermore, one can easily tune the search resolution (it
corresponds to the number of primitives) and can guarantee the desired accuracy of reaching the
final configuration (here 0.2m in terms of Dubins distance). Sample problems of the proposed
dataset together with generated reference paths are visualized in Figure 2.6.

Figure 2.6: Visualization of sample elements of the proposed dataset – maps together with
exemplary paths planned with the SL algorithm, which connect the actual robot state with
some randomly drawn configurations. Scenarios in the first row are obtained from CARLA
Town05 and Town07, whereas in the second row, we show maps that are obtained from real

LiDAR data.

For training and evaluation purposes we generated training, validation, and test sets. Firstly,
the test set was generated entirely from a single map of our own Sick LiDAR dataset. It contains
1014 local maps and 8128 scenarios. Secondly, we collected maps using; (i) another map from our
dataset, (ii) maps built from the KITTI dataset, and (iii) maps generated in CARLA. From these
maps, we created a validation set by randomly selecting 1996 of them, while the rest were used
to create a training set. Finally, on these maps, we randomly drew desired configurations and
generated solution paths. By doing so, we obtained 11008 and 115319 scenarios in the validation
and training set, respectively. By using data collected from entirely different environments in
the training and test sets, we will be able to examine the generalization ability of the proposed
method to plan motions in previously unseen environments.

2.3.6 Overall structure of the proposed solution

In the previous sections, we discussed in detail all elements of the proposed solution for the
problem of fast motion planning of local monotonic car maneuvers. Having all these elements
in mind we can finally draw the big picture of the proposed method. The general scheme of the
proposed solution is presented in Figure 2.7. As our method needs to be trained before being used
for planning we divided this scheme into two parts. In the upper part of the figure, we can see
the behavior of the proposed method in the learning phase. We start from the training set that
consists of scenarios defined by the initial and desired robot configurations (𝑞0, 𝑞𝑑) and map of
the environment 𝐸, and a sample solution generated with the use of SL motion planning method.
Robot desired and initial configurations and a map of the environment are fed into the planning
policy 𝜋𝜑 represented with a neural network that generates based on this data a solution path 𝜁.
This path, using the full information about the scenario and a reference path, is then assessed
by the differentiable loss function ℒ. Based on the loss function ℒ, our proposed gradient-based

Learning Rapid Maneuver Planning 37

policy search method computes the update of the neural network weights 𝜑 according to the
following update rule

𝜑 := 𝜑+ 𝛿𝜑 = 𝜑− 𝛾 𝜕ℒ
𝜕𝜑

, (2.29)

where 𝛿𝜑 denotes the weights update and 𝛾 is the learning rate. After the learning phase is
completed, the trained planning policy 𝜋𝜑 can be used for planning. Similarly, like in the
learning phase, it takes maps 𝐸, initial 𝑞0, and desired 𝑞𝑑 configurations, and plans a path 𝜁.
In the inference phase, no precomputed reference paths are involved and the whole planning
process can be realized in less than 50ms on a medium-class x86 CPU.

Finally, the whole motion planning process can be described procedurally by Algorithm 1. Start-
ing from an initial configuration 𝑞0, taking into account environment representation 𝐸 and de-
sired state 𝑞𝑑, the neural network determines the parameters of the segment endpoint 𝑆𝜁𝑖 (line 3).
Based on these parameters, the current vehicle configuration is virtually moved to the end of this
segment (line 4), and the new current state is fed to the policy network to determine the next
move. After 𝑛𝑠𝑒𝑔 iterations this process ends, and we obtain the whole path 𝜁 that is represented
by the sequence of segments 𝜁𝑖 (line 6).

Figure 2.7: A conceptual scheme of the proposed approach to rapid path planning. During
the inference phase (bottom part of the diagram), task and map representations are processed
by a planning policy represented by a neural network to sequentially produce a feasible path
that solves the task. In the learning phase (upper part of the diagram), task and map repre-
sentations, together with reference and planned paths are used to calculate the differentiable
loss, and the policy network is improved using the gradient-based policy search algorithm.

Learning Rapid Maneuver Planning 38

Algorithm 1: Our proposed path planning algorithm.
1 Given: Map 𝐸, initial configuration 𝑞0, desired configuration 𝑞𝑑, planning policy 𝜋𝜑;
2 for 𝑖← 1 to 𝑛𝑠𝑒𝑔 do
3 Evaluate policy 𝜋𝜑(𝑞𝑖−1, 𝐸, 𝑞𝑑) to obtain parameters 𝑆𝜁𝑖 of the 𝑖-th segment endpoint;
4 Perform virtual nominal move along the 𝑖-th path segment 𝜁𝑖, defined by the current

state 𝑞𝑖−1 and segment parameters 𝑆𝜁𝑖, using (2.15), to achieve new vehicle
configuration 𝑞𝑖;

5 end
6 Parameters 𝑆𝜁 determined by the policy 𝜋𝜑 define a path 𝜁;
7 Using (2.16) generate a sequence of locally defined polynomial paths of the form defined

by (2.14) that can be tracked with VFO controller [53];

Chapter 3

Fast neural network-based planning

via efficient B-spline path

construction

3.1 Introduction

In this chapter, we will continue our considerations about the path planning problem for a car-like
vehicle introduced in Section 2. Therefore, we skip the introduction of the motivations behind
solving problems of this type, and, as we will be considering a similar approach to motion planning
through learning how to plan, we focus on the possible improvement areas w.r.t. the method
introduced in the previous chapter. So, can we do better? The quick response is "for sure",
however, let’s identify particular areas that are promising in terms of potential amendments.

One of the key aspects of the previous approach was the inspiration on the MDPs and the se-
quential nature of the planning process so deeply ingrained in motion planning. However, the
important question is: "Is it necessary?", especially, because we focus on the local maneuvers.
One can argue that in global motion planning, like solving a maze or navigating in a very confined
space, even humans tend to sequentially plan some parts of the solution and actively explore the
state space searching for the right path. Nevertheless, for local car maneuvers, no driver deliber-
ately plans a sequence of motions, as it takes too much time. The plan for motion that allows for
completing the maneuver is somehow intuitively inferred on-the-fly. Inspired by this observation
and the pursuit of increasing the planner’s reactiveness, we adapt the proposed motion planning
policy that was applied sequentially by breaking up with the MDP formalism and fitting the
robotic path planning problem into the bandit problem [163] to avoid the sequentiality and to
speed-up planning.

Another element of the approach proposed in the previous chapter that we want to focus on
is the representation of the path, which also relates to breaking up with sequentiality. Already

39

Fast neural network-based planning via efficient B-spline path construction 40

introduced path representation seems to be a bit more complicated than the typical path repre-
sentations and has sequentiality built-in, as each of the segments needs the previous ones to be
properly cast to the global coordinate system (see Section 2.3.2.1). While in general, the idea
of gradually building the solution from the current robot configuration to the desired one seems
natural, for local motion planning we could benefit from a representation that will allow us to
determine the solution at once. Moreover, if the desired configuration is given by the definition
of the task, which fits our problem definition (see 2.2), it is hard for a sequential path-building
approach to reach this state exactly. Obviously, one can imagine that after inferring the last
segment the connection to the desired state can be made automatically. However, it may be
cumbersome to do so for robots with nonholonomic constraints, which are our particular objects
of interest.

A topic strictly related to the solution representation is how to interpret the outputs of the
neural network in order to build a solution out of them. Choosing a good way of constructing
the path from the neural network outputs may be beneficial in terms of making it easier for a
neural network to learn how to plan by structuring the optimization landscape and imposing
an inductive bias on the solutions that pose some features that are important to solve the task
efficiently.

To address these potential fields of improvement, in this chapter, we propose a novel path
parametrization and procedure for its construction. The new parametrization, even though it
follows the idea of the approximation of an implicitly defined oracle planning function, breaks
up with the Markov Decision Process formalism used in the previous chapter, instead, it follows
a bandit problem structure and plans the whole maneuver at once. The path is no longer
represented with a sequence of polynomials but with a single 7th-degree 2D B-spline curve.
The new representation allows imposing boundary conditions of the solution path. By doing
so, we can guarantee that the planned path reaches the goal configuration accurately, unlike
the previous approach that usually produced small offsets. The proposed path construction
procedure enables our method to compute the solution path within a single inference of a neural
network. Moreover, this new parametrization and an interpretation of the neural network outputs
introduces an inductive bias [64] to the NN and simplifies the loss function, which significantly
speeds up the training.

3.2 Proposed solution

3.2.1 General idea

As the problem we consider is identical to the one described in detail in Section 2.2, we can
start directly with introducing the new ideas on improvements to learning how to plan for local
car maneuvers. In the previous chapter, we investigated the possibility of using Reinforcement
Learning to learn how to plan following a MDP formalism. However, we presume that MDP-
based formulation may be not the optimal one from the perspective of the motion planning time,
which is crucial for problems that require rapid and reactive planning. Therefore, following the

Fast neural network-based planning via efficient B-spline path construction 41

idea of learning how to approximate the optimal ideal planning function using Reinforcement
Learning, we want to frame the motion planning problem for a car-like vehicle as a bandit
problem.

Bandits are the class of simplified RL problems that consider only one-step episodes, thus avoid-
ing much of the complexity of the full reinforcement learning problem. This assumption degen-
erates the decision-making process to making a single decision, which in the original 𝑛-armed
bandit game (a gambling machine with 𝑛 levers), was to choose the best out of 𝑛 actions, based
on the past experience. This, in general, describes a problem similar to motion planning, in
which the main idea is also to choose the best plan for a given scenario, and does not require
planning it in several steps. The main deviations from the original 𝑛-armed bandit problem
are that (i) the set of available actions is replaced with an action chosen from the continuous
space of available actions, (ii) the introduction of the context of an episode [20], and (iii) the
decoupling the phase of exploring the environment, and learning the optimal policy from the
policy application in new episodes. In a typical 𝑛-armed bandit problem there is a set number
of episodes, e.g., 1000, in which the goal is to explore possible actions, find the best one, and
apply it over and over again to maximize the reward. In a slightly more complicated bandit, the
reward obtained for each action may fluctuate over time, nevertheless, the idea is still to balance
the exploration and exploitation in order to maximize the mean reward for a given number of
episodes. Instead, in the proposed motion planning bandit, we want to learn how to plan on a
set of episodes, taking into account the context, i.e., the environment and task definitions, such
that the learned policy can be used to plan for new scenarios.

Let’s describe mathematically our proposed adaptation of the 𝑛-armed bandit problem – Con-
textualized Motion Planning Continous Bandit (CMPCB). The CMPCB problem can be defined
as {𝐴, 𝒞, 𝑅} tuple, where 𝐴 is the space of available actions, i.e., paths 𝜁 possible to be planned
from the current robot configuration, 𝒞 is the space of the contexts, which describe the given
motion planning task and environment, and finally 𝑅(𝜁, 𝐶) is a reward function that is meant
to assess the quality of the generated plan 𝜁 ∈ 𝐴 in a given context 𝐶 ∈ 𝒞. One can notice
that the considered bandit problem is significantly simplified w.r.t. the MDP-based RL problem
formulation, as its definition does not directly contain the state space 𝑄 and transition function
𝑇 , as we will not explore the state space at all. Instead, the single action 𝜁 determined by the
planning policy 𝜋𝜑(𝐶), based on the context 𝐶, will be immediately assessed by the reward
function 𝑅 to update the policy parameters 𝜑 using the gradient of the reward 𝑑𝑅

𝑑𝜑 .

The general idea of the proposed solution to the CMPCB problem is schematically shown in
Figure 3.1. The idea of this approach is similar to the one presented in the previous chapter
(see Figure 2.7). We distinguish 2 phases: the learning phase and the inference phase. In the
learning phase, planning policy generates, based on the context 𝐶 represented by environment
𝐸 and task (𝑞0, 𝑞𝑑) description, some output 𝜓 that can be interpreted by the proposed B-spline
path construction method. Next, obtained path 𝜁 is evaluated using a differentiable loss function
ℒ, based on the current task (𝑞0, 𝑞𝑑) and environment 𝐸 representations and reference path 𝜁𝑟

that is used to escape from the collision areas. Finally, the gradient of this loss function w.r.t.
network weights 𝜑 is determined and used to improve the planning behavior. The inference

Fast neural network-based planning via efficient B-spline path construction 42

Figure 3.1: Conceptual scheme of the rapid B-spline path generation system. The planning
policy is represented with a neural network and trained using a gradient-based policy search
as in the previous chapter, however, in this case, we are able to generate a plan within a single
neural network inference. Neural network outputs are interpreted as B-spline control points

by the proposed path construction method.

phase consists of the same steps as the learning phase, except for the path evaluation and policy
update. Note, that in this phase there is no reference path.

Although in general planning algorithm proposed in this chapter is similar to the one from the
previous one, the policy network is not being queried recursively, but instead, a single forward
pass through the planning network is performed. One can see that the proposed approach even
better corresponds with the idea of motion planning as a function described in Section 1.4 because
in this case, we propose a neural network that directly transforms the representation of the task
into the representation of the solution. However, in the proposed approach, the output of the
network cannot be directly understood as a solution path, thus we need to add another layer
of the interpretation of the neural network outputs. Nevertheless, this approach allows one to
generate an entire path using a single inference of a neural network.

As a result, we can describe the planning process as a composition of two functions acting on
the task and environment representations

𝜁 = ℬ(𝜋𝜑(𝑞0, 𝑞𝑑, 𝐸)), (3.1)

where ℬ is a function that represents the proposed B-spline path construction method. Thus,
to maintain the differentiability of the whole pipeline we need ℬ to also be differentiable. Then,
the gradient of the loss can be described by

∇𝜑ℒ =
𝜕ℒ
𝜕𝜁

𝜕𝜁

𝜕𝜓

𝜕𝜓

𝜕𝜑
. (3.2)

Fast neural network-based planning via efficient B-spline path construction 43

In the following sections we will focus on describing main innovations w.r.t. the approach pro-
posed in Chapter 2, i.e., B-spline path representation and the proposed path construction pro-
cedure. Moreover, we will highlight the differences in terms of the neural network architecture
and loss function.

3.2.2 Path representation

The representation of the solution is one of the crucial decisions one has to make when designing a
motion planning method. Typical approaches represent the solution as a polyline, polynomial, or
sequence of polynomials. Polylines allow us to easily describe solutions and to connect points in
state or task space, however, they result in non-smooth paths, which may be undesirable in terms
of the planning of the motion of autonomous cars, or require additional nontrivial smoothing. In
contrast, using sequences of polynomials (of order higher than 1) allows us to introduce higher
orders of continuity. This enables us to maintain the velocity, accelerations, and higher-order
derivatives at the boundaries of segments. Unfortunately, the polynomial-based representation
introduced in Chapter 2 does not allow to easily connect arbitrary points in the task space due to
the use of the description in local coordinates systems (see Section 2.3.2.1). This approach also
has a sequential nature, which we want to avoid in order to improve planning time. Therefore,
to enable fast planning of smooth paths that can be forced to connect initial and desired states,
we propose to represent paths using B-spline curves.

B-spline curves are parametric curves 𝑝(𝑠) described by: (i) a sequence of 𝑛𝑝 control points
𝑝1, 𝑝2, . . . , 𝑝𝑛𝑝 , (ii) B-spline order 𝑜𝑝 defining the degree of polynomials 𝑑𝑝 = 𝑜𝑝 − 1 that consti-
tutes the curve, and (iii) a sequence of (𝑛𝑝+𝑜𝑝+1) nondecreasing knots 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛𝑝+𝑜𝑝+1)

that represents the curve arguments at which the pieces of polynomial meet. The B-spline curve
is parametrized with a phase variable 𝑠 ∈ [0; 1] and can be defined by

𝑝(𝑠) =

𝑛𝑝∑︁
𝑖=1

𝑝𝑖𝐵𝑖,𝑜𝑝(𝑠), (3.3)

where 𝐵𝑖,𝑜𝑝 is a 𝑜𝑝-th order B-spline basis function that can be defined recursively by

𝐵𝑖,𝑜𝑝(𝑠) = 𝜔𝑖,𝑜𝑝−1(𝑠)𝐵𝑖,𝑜𝑝−1(𝑠) + (1− 𝜔𝑖+1,𝑜𝑝−1(𝑠)))𝐵𝑖+1,𝑜𝑝−1(𝑠), (3.4)

where

𝜔𝑖,𝑜𝑝(𝑠) =

⎧⎨⎩
𝑠−𝑢𝑖

𝑢𝑖+𝑜𝑝−𝑢𝑖
for 𝑢𝑖+𝑜𝑝 ̸= 𝑢𝑖

0 otherwise
, (3.5)

and

𝐵𝑖,1(𝑠) =

⎧⎨⎩1 for 𝑢𝑖 ≤ 𝑠 ≤ 𝑢𝑖+1

0 otherwise
. (3.6)

Similarly like in Chapter 2, to uniquely define the trajectory to be followed by a car we use
the differential flatness property and need to define a trajectory as at least twice differentiable
2-dimensional curve, which defines the path in 𝑥𝑦 plane, as the rest of the state variables can

Fast neural network-based planning via efficient B-spline path construction 44

be computed based on them. Thus, we define B-spline curve as a function 𝑝(𝑠) : [0; 1] −→ R2

that has 𝑥(𝑠) : [0; 1] −→ R and 𝑦(𝑠) : [0; 1] −→ R components, by setting B-spline control points
𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) ∈ R2 to lie on the 𝑥𝑦 plane. In contrast to the representation defined in (2.15),
we no longer need to rely on local coordinate systems and define paths as functions of the form
𝑦 = 𝑓(𝑥). Instead, we can compute the global state of the car-like robot by directly using (2.7),
assuming that the solution path 𝜁 from (2.6) is our proposed B-spline curve 𝑝. We can do this, as
B-spline paths are twice differentiable (assuming 𝑜𝑝 ≥ 3) which is necessary to compute curvature
𝜅 of the path. Moreover, thanks to the structure of the B-spline curves computation of their
derivatives is very easy. An important property of B-splines is that the derivative of the B-spline
basis function can be defined using two B-spline basis functions of the reduced order [35], by

𝑑

𝑑𝑠
𝐵𝑖,𝑜𝑝(𝑠) = 𝑜𝑝

(︂
𝐵𝑖,𝑜𝑝−1(𝑠)

𝑢𝑖+𝑜𝑝 − 𝑢𝑖
−

𝐵𝑖+1,𝑜𝑝−1(𝑠)

𝑢𝑖+𝑜𝑝+1 − 𝑢𝑖+1

)︂
, (3.7)

and therefore the derivative of the B-spline curve can be also defined as a B-spline curve of the
reduced order, i.e.,

𝑑

𝑑𝑠
𝑝(𝑠) =

𝑛𝑝∑︁
𝑖=1

𝐵𝑖,𝑜𝑝−1(𝑠)𝑜𝑝

(︂
𝑝𝑖+1 − 𝑝𝑖

𝑢𝑖+𝑜𝑝+1 − 𝑢𝑖+1

)︂
. (3.8)

The property we care about a lot is the ability to enforce the boundary conditions on the paths.
In the case of the B-splines, this is quite straightforward to implement. As we already mentioned,
one of the components needed to define a B-spline is a vector of knots 𝑢 that determines the
ranges of the impact of subsequent control points on the shape of the resultant B-spline curve.
To enforce the boundary conditions one can set first and last 𝑜𝑝 knots to 0 and 1 respectively.
This will eliminate the impact of all of the control points on the curve at its ends, except the
first and last ones. Thus if

𝑢 = (0, . . . , 0⏟ ⏞
𝑜𝑝 knots

, 𝑢𝑜𝑝+1, 𝑢𝑜𝑝+2, . . . , 𝑢𝑛𝑝
, 𝑢𝑛𝑝+1⏟ ⏞

internal knots vector 𝑢𝑖𝑛𝑡

, 1, . . . , 1⏟ ⏞
𝑜𝑝 knots

), (3.9)

then
𝑝(0) = 𝑝1 and 𝑝(1) = 𝑝𝑛𝑝

. (3.10)

Note, that in the case of planning paths for kinematic cars, the positional boundary conditions
are not the only ones we need to satisfy. Therefore, we need to address satisfaction of the initial
and desired orientation, and, if we would like to avoid turning the steering wheels in place, the
initial steering angle (we assume that the desired configuration does not have an imposed desired
steering angle). To fix the boundary conditions for higher-order B-spline derivatives we need to
define a sequence of internal knots 𝑢𝑖𝑛𝑡. To equally distribute the impact of each control point
we decided to define them as equidistant to the adjacent knots, thus the knots sequence is defined
by

𝑢 =

⎛⎜⎜⎜⎝0, . . . , 0⏟ ⏞
𝑜𝑝 knots

,
1

𝑛𝑝 − 𝑜𝑝 + 2
,

1

𝑛𝑝 − 𝑜𝑝 + 2
, . . . ,

𝑛𝑝 − 𝑜𝑝
𝑛𝑝 − 𝑜𝑝 + 2

,
𝑛𝑝 − 𝑜𝑝 + 1

𝑛𝑝 − 𝑜𝑝 + 2⏟ ⏞
internal knots vector 𝑢𝑖𝑛𝑡

, 1, . . . , 1⏟ ⏞
𝑜𝑝 knots

⎞⎟⎟⎟⎠ . (3.11)

Fast neural network-based planning via efficient B-spline path construction 45

By doing so, we not only enable the computation of the B-spline curve and its derivatives to be
done using a single matrix-vector product but also we can represent the first B-spline derivative
at the boundaries by

𝑑

𝑑𝑠
𝑝(0) =(𝑛𝑝 − 𝑑𝑝)𝑑𝑝(𝑝2 − 𝑝1), (3.12)

𝑑

𝑑𝑠
𝑝(1) =(𝑛𝑝 − 𝑑𝑝)𝑑𝑝(𝑝𝑛𝑝 − 𝑝𝑛𝑝−1), (3.13)

and second derivative by

𝑑2

𝑑𝑠2
𝑝(0) =(𝑛𝑝 − 𝑑𝑝)2

𝑑𝑝(𝑑𝑝 − 1)

2
(2𝑝1 − 3𝑝2 + 𝑝3). (3.14)

To compute the position of the control points one has to first solve equations (3.12) and (3.13)
to determine control point 𝑝2 and 𝑝𝑛𝑝−1, and only then, using the computed value of 𝑝2, solve
(3.14). To do so, we need to transform (3.12, 3.13, 3.14) into

𝑝2 =
𝑑
𝑑𝑠𝑝(0)

(𝑛𝑝 − 𝑑𝑝)𝑑𝑝
+ 𝑝1, (3.15)

𝑝𝑛𝑝−1 =−
𝑑
𝑑𝑠𝑝(1)

(𝑛𝑝 − 𝑑𝑝)𝑑𝑝
+ 𝑝𝑛𝑝

, (3.16)

𝑝3 =
2 𝑑2

𝑑𝑠2 𝑝(0)

(𝑛𝑝 − 𝑑𝑝)2𝑑𝑝(𝑑𝑝 − 1)
− 2𝑝1 + 3𝑝2. (3.17)

However, note that we do not have straight access to any of 𝑑
𝑑𝑠𝑝(0),

𝑑
𝑑𝑠𝑝(1),

𝑑2

𝑑𝑠2 𝑝(0), instead our
boundary constraints are defined in terms of initial and desired orientation 𝜃0, 𝜃𝑑, and initial
steering angle 𝛽0. Therefore, to define 𝑑

𝑑𝑠𝑝(0),
𝑑
𝑑𝑠𝑝(1),

𝑑2

𝑑𝑠2 𝑝(0) in terms of the 𝜃0, 𝜃𝑑, 𝛽0 we need
to fix the value of derivatives of 𝑥 or 𝑦 w.r.t. phase variable 𝑠. In our considerations, we assume
that

𝑑𝑥

𝑑𝑠
(0) =𝑥′0, (3.18)

𝑑𝑥

𝑑𝑠
(1) =𝑥′𝑑, (3.19)

𝑑2𝑥

𝑑𝑠2
(0) =𝑥′′0 , (3.20)

where 𝑥′0, 𝑥
′
𝑑 and 𝑥′′0 are some predefined positive constants. While in general any positive

constant satisfies the formal requirements, one should have in mind that choosing too big values
of 𝑥′0, 𝑥′𝑑 and 𝑥′′0 w.r.t. the distance between the initial and end configuration would lead to
putting the boundary control points very far away from each other, and thus will reduce the
flexibility fo the B-spline representation. Therefore, in our experiments we typically set 𝑥′0 =

∆𝑥2(𝑛𝑝 − 𝑑𝑝)𝑑𝑝, 𝑥′𝑑 = ∆𝑥𝑛𝑝−1(𝑛𝑝 − 𝑑𝑝)𝑑𝑝 and 𝑥′′0 = ∆𝑥3
1
2 (𝑛𝑝 − 𝑑𝑝)

2𝑑𝑝(𝑑𝑝 − 1), where ∆𝑥𝑖 is a
small constant, e.g., 0.01. By doing so we squeeze the initial control points, as their distance in
the 𝑥 axis will be equal to ∆𝑥𝑖, and thus allow for more sharp maneuvers from the beginning of
the motion at the price of possibly higher values of higher-order derivatives.

Fast neural network-based planning via efficient B-spline path construction 46

The last quantities we need to compute are 𝑑𝑦
𝑑𝑠 (0),

𝑑𝑦
𝑑𝑠 (0) and 𝑑2𝑦

𝑑𝑠2 (0). To do so, we use the
following formulas

𝑑𝑦

𝑑𝑠
(0) = 𝑥′0 tan 𝜃0, (3.21)

𝑑𝑦

𝑑𝑠
(1) = 𝑥′𝑑 tan 𝜃𝑑, (3.22)

𝑑2𝑦

𝑑𝑠2
(0) =

1

𝑥′0

⎛⎝ tan𝛽0
𝐿

(︃
(𝑥′0)

2
+

(︂
𝑑𝑦

𝑑𝑠
(0)

)︂2
)︃ 3

2

+ 𝑥′′0
𝑑𝑦

𝑑𝑠
(0)

⎞⎠ . (3.23)

Finally, we can compute boundary control points 𝑝2, 𝑝3 and 𝑝𝑛𝑝−1 using (3.15, 3.16, 3.17) with
substitutions defined in (3.18-3.23).

3.2.3 Path construction method

In the previous section, we introduced a B-spline path representation. Thanks for fixing the
vector of knots, the only remaining parameters that impact the shape of the path are the B-
spline control points (𝑝1, 𝑝2, . . . , 𝑝𝑛𝑝). As proposed in Section 3.2.1, these parameters need to be
determined by the neural network. The most straightforward way to achieve this is to just let
the neural network planner determine directly the coordinates of (𝑛𝑝− 5) control points (taking
into account that 5 boundary control points can be directly computed using the formulas from
Section 3.2.2). It can be also done in a constrained way by restricting the coordinates of the
control points to lie in some rectangular area in order to regularize the available solution space
and facilitate the training procedure. Unfortunately, direct estimation of the control points
has an important drawback. At the very beginning of neural network training, we initialize
its parameters 𝜑 using some random values drawn from the distribution that has an expected
value equal to 0. This initialization results in random outputs of the neural network and thus
random position of the control points. In turn, the random position of control points may result
in a very unexpected and undesirable shape of the path. One of the unwanted effects is a very
high path curvature, but even more harmful, from the perspective of further optimization, are
self-intersections. The main issue with self-intersections comes from the fact that if we want to
optimize the path using gradient-based methods, and we would like to reduce the path length
and curvature, then it is extremely hard to untangle the self-intersection, as reducing the size
of the loop in the path results in the growth of the curvature. This property may lead to much
slower learning or even impede it at all. In Figure 3.2, we present a visualization of a sample
path generated by a randomly initialized neural network, whose outputs are directly interpreted
as B-spline control points. It is highly unlikely to obtain a path without self-intersections.

We can see that introducing some kind of structure into the process of interpretation of neural
network planner predictions is inevitable for efficient learning of how to generate paths possible
to follow with a car-like vehicle. To address this observation, we propose a new method of
constructing the B-spline path based on the neural network outputs. The main concept of this
approach is to implement an ordering of the control points and bias the distributions of the
subsequent control points such that a randomly initialized neural network will produce a path
without self-intersections. In particular, we propose to insert control points sequentially, based

Fast neural network-based planning via efficient B-spline path construction 47

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.2: Sample B-spline path obtained for control points generated by a randomly
initialized neural network. The color of the control point represents the ordering (blue is the

initial pose and green is the final pose).

on the subsequent predictions of the neural network biased and restricted using a pair of adjacent
control points inserted earlier. We start by inserting 5 boundary control points using the method
introduced in Section 3.2.2. Next, using the pair of innermost control points (𝑝3, 𝑝𝑛𝑝−1) and the
first two outputs of the neural network (𝜓1, 𝜓2) ∈ [−1; 1]2 we define a new control point 𝑝(𝑛𝑝/2+1)

by
𝑝((𝑛𝑝−4)/2+3) =

𝑝3 + 𝑝𝑛𝑝−1

2
+

1

2
𝑑3,𝑛𝑝−1 · (𝜓1, 𝜓2), (3.24)

where
𝑑3,𝑛𝑝−1 = max{

⃒⃒
𝑥3 − 𝑥𝑛𝑝−1

⃒⃒
,
⃒⃒
𝑦3 − 𝑦𝑛𝑝−1

⃒⃒
}. (3.25)

Obtained in this way 𝑝(𝑛𝑝/2+1) constitutes the first level of the tree-like structure that determines
how the subsequent control points are computed. In a similar way as for the first level, we can
insert another 2 control points on the second level of the tree, 4 control points on the third one,
and so on. All of these control points are determined based on the subsequent neural network
predictions using (3.24) with different indexes. The general formula for inserting control points
can be defined by

𝑝𝑖 =
𝑝𝑖−𝑎 + 𝑝𝑖+𝑎

2
+

1

2
𝑑𝑖−𝑎,𝑖+𝑎 · (𝜓𝑏, 𝜓𝑏+1), (3.26)

where 𝑏 = 2(𝑖 − 4) + 1, and 𝑎 = log2(𝑛𝑝 − 4) − 𝑙 + 1, where 𝑙𝑇 is the level in the tree on which
𝑖-th control points is located. To better visualize the dependencies between the control points
and indexing scheme, they were illustrated in Figure 3.3. One can see that each control point
is defined based on the pair of adjacent control points from higher levels of the tree, which was
visualized with the solid black lines. Each level contains the indexes defined by{︂

1

2𝑙𝑇
(𝑛𝑝 − 4) + 3,

3

2𝑙
(𝑛𝑝 − 4) + 3,

5

2𝑙𝑇
(𝑛𝑝 − 4) + 3, . . . ,

2𝑙𝑇 − 1

2𝑙𝑇
(𝑛𝑝 − 4) + 3

}︂
. (3.27)

Fast neural network-based planning via efficient B-spline path construction 48

Note, that because of the binary structure of the tree, we restrict the number of control points
𝑛𝑝 to be equal to 2𝑙𝑇 +4 for 𝑙𝑇 ∈ N+. We visualize the process of path construction in Figure 3.4.

Le
ve

l 1
Le

ve
l 2

Le
ve

l 3
.

.
.

Figure 3.3: The diagram of the control points dependencies (denoted with the solid black
lines). Starting from the control points defined by the task constraints, we insert internal

control points level by level, based on the previously inserted ones.

The proposed way of constructing the path from the neural network outputs is beneficial in terms
of the feasibility of the training process and introduces an inductive bias into the inference and
learning phase. Due to this representation, the neural network, even randomly initialized, favors
paths that have smaller curvature, do not self-intersect, and are ensured to connect initial and
goal configurations. Moreover, let’s observe that all of the operations performed by the proposed
path construction method are differentiable w.r.t. the neural network outputs 𝜓. Therefore, the
introduced path construction procedure fits the framework proposed in (3.2).

Fast neural network-based planning via efficient B-spline path construction 49

Figure 3.4: General idea of defining the B-spline control points. Brown control points stem
from the motion planning problem boundary conditions, while black ones are determined by
the neural network output and two adjacent control points that define the area (marked in
yellow) where the new point can be placed. Subsequent subfigures show (a) the insertion of
the control point at the 1st level of the tree, (b) the insertion of the control points at the
2nd level, (c) the generated B-spline path (in blue), and (d) possible further step of B-spline

construction, i.e., defining the areas for control points from 3rd level of the tree.

3.2.4 Neural network planner architecture

The significant changes we proposed in this chapter to the solution representation, require us
to adjust the architecture of the motion planning neural network-based motion planning policy
approximator introduced in Section 2.3.3. For first, we no longer need to repetitively ask the
neural network to generate subsequent parts of the solution, but instead, we generate the whole
solution at once. Therefore, the input to the Configuration processor consists of the initial 𝑞0
and desired 𝑞𝑑 robot configurations. Moreover, we completely rebuilt the Parameter estimator,
as thanks to the new path representation and the proposed path construction mechanism, it no
longer needs specialized heads. Instead, we have a single head made up of fully connected layers
that compute 2(𝑛𝑝−5) outputs. These outputs are in the range [−1; 1] due to the use of the 𝑡𝑎𝑛ℎ
function and are interpreted as 𝑥 and 𝑦 coordinates of the control points in the coordinate systems
determined by their parents in the tree according to the algorithm introduced in the previous
section. The scheme of the proposed neural network architecture is presented in Figure 3.5.

Fast neural network-based planning via efficient B-spline path construction 50

Figure 3.5: A general scheme of the proposed neural network-based motion planning policy
approximator that generates parameters based on which the B-spline path is constructed. Both
Map and Configuration processor are identical to the ones presented in Figure 2.4, however,

we redesigned the Parameter estimator to fit the new path representation.

3.2.5 Loss function

The introduced substantial changes in the solution representation, the way of constructing the
path, and incorporating the boundary constraints impact the way we compute loss function and
its components. The set of features we want to impose on the planned paths is identical to the
one introduced in Section 2.3.4, i.e., we want the proposed approach to generate paths that (i)
are collision-free, (ii) are of limited and bounded curvature, and (iii) achieve the goal.

Thanks to the proposed path representation and the introduced method of computing the bound-
ary control points of the B-splines, based on the task definition, we ensure that boundary condi-
tions are met. Therefore, the term of the loss function responsible for driving the path towards
the goal region is no longer required. Thanks to this, our loss function can be simplified and po-
tentially allows for faster training. Moreover, in contrast to the approach presented in Section 2,
we not only have a guarantee of a plan reaching the goal but also reaching the goal state exactly,
not the goal region. Nevertheless, the rest of the loss function components are still needed to
learn how to plan feasible solutions. Thus, we need to adjust them slightly to match the B-spline
path representation.

Firstly, let’s observe that having the path represented by a single curve parametrized with a
phase variable 𝑠, we can easily discretize the path and its derivatives w.r.t. 𝑠, which can be
easily computed, based on the B-spline control points (see (3.8)), by choosing a sequence of
phase variable values, e.g., 𝑠 = {0, 1

1023 ,
2

1023 , . . . , 1}, and evaluating B-spline function and its
derivatives at these points. Following this idea we can compute the curvature 𝜅 of the path 𝜁

using (2.5) at all discretization points 𝑠𝑖, and therefore compute the discretized curvature values
𝜅𝑖. Based on them, we define the curvature loss by

ℒ𝑐𝑢𝑟𝑣 =

1024∑︁
𝑖=1

max (|𝜅| − 𝜅𝑚𝑎𝑥, 0) , (3.28)

Fast neural network-based planning via efficient B-spline path construction 51

where 𝜅𝑚𝑎𝑥 = 1
𝑅𝑚𝑖𝑛

is a maximal admissible path curvature that can be followed by the given
robot with minimal turning radius 𝑅𝑚𝑖𝑛, and total curvature loss by

ℒ𝑡𝑐𝑢𝑟𝑣 =

1024∑︁
𝑖=2

|𝜅𝑖 − 𝜅𝑖−1|. (3.29)

Similarly like for curvature, we can use the same discretization to compute the robot configura-
tions along the path and as a result positions of its body. Due to this, we can define the collision
loss by

ℒ𝑐𝑜𝑙𝑙(𝑞0, 𝜁, 𝐸, 𝜁
𝑟) =

1023∑︁
𝑖=1

5∑︁
𝑘=1

𝜎(Π𝑖,F
𝐶
𝐸)𝑑(𝜁

𝑟,Π𝑖𝑘)𝑙𝑖, (3.30)

where, similarly like for (2.24), F𝐶
𝐸 is the collision space represented on the environment map

ℰ , Π𝑖𝑘 denotes the five characteristic points on the vehicle body [183], i.e., four corners of the
rectangular body of the vehicle and the guiding point in the middle of the rear axle, for the
car configuration at 𝑖-th point on the discretized B-spline path. Moreover, 𝑑(𝒳 ,𝒴) is a function
used to compute the smallest Euclidean distance between elements of the sets 𝒳 and 𝒴, and 𝑙𝑖

is the Euclidean distance between the (𝑖)-th and the (𝑖 + 1)-th discretization point. However,
those distances are taken into account only if the vehicle periphery Π𝑖 is in collision with the
environment, which is denoted in (3.30) by 𝜎(Π𝑖,F

𝐶). Collision 𝜎(Π𝑖,F
𝐶
𝐸) of the car body Π

at 𝑖-th discretization point with the obstacles F𝐶
𝐸 is determined by checking if any point on the

circumference of the vehicle lie inside the complement of the free space F𝐶
𝐸 represented with 0

values on the map 𝐸. In our experiments, we computed points from the circumference such that
they lie no further than 0.2m from each other to ensure that we are checking collisions at the
same resolution as the resolution of the grid map 𝐸.

Note that in the proposed collision loss formulation we are not computing the distance to the
free space, which seems to be the most natural way to escape from the forbidden areas. In-
stead, we propose to use a collision-free reference path as a guidance, and a kind of compact
representation of a subset of free space. This compactness and simplicity of the geometric path
representation play a key role in gradient-based optimization, as it makes differentiating (3.30)
w.r.t. 𝜁 very simple, which is definitely not the case for complex representations like occupancy
grids. Nevertheless, we use occupancy grids in the part that does not require differentiability
but which defines a mask that denotes the parts of the path that require being pushed out of
obstacles.

Having all the loss components defined we can define the general loss function by

ℒ = ℒ𝑐𝑢𝑟𝑣 + ℒ𝑐𝑜𝑙𝑙 + 𝜌(ℒ𝑐𝑜𝑙𝑙,ℒ𝑐𝑢𝑟𝑣)𝛾ℒ𝑡𝑐𝑢𝑟𝑣, (3.31)

where 𝜌(ℒ𝑐𝑜𝑙𝑙,ℒ𝑐𝑢𝑟𝑣) is an indicator function equal to 1 if the path is feasible, that is ℒ𝑐𝑜𝑙𝑙 +

ℒ𝑐𝑢𝑟𝑣 = 0, and 0 otherwise, and 𝛾 is a regularization factor. Note, that (3.31) is very similar to
(2.23) but in (3.31) we were able to rule out the dependency on the overshoot loss thanks to the
B-spline properties. Importantly, all considered losses, similarly to the loss functions defined in
Section 2.3.4, are differentiable with respect to the neural network outputs, and, as we shown
in Section 3.2.3, our path construction method is also differentiable. Therefore, the gradient of

Fast neural network-based planning via efficient B-spline path construction 52

the proposed loss function can be used to directly optimize the neural network weights using
gradient descent algorithms.

Chapter 4

Fast Kinodynamic Planning on the

Constraint Manifold with Deep

Neural Networks

4.1 Introduction

In previous chapters, we focused on planning the motion for autonomous cars. However, self-
driving cars are not the only robots that are in need of reactiveness and rapid motion planning.
Similar skills can be essential for other types of robots, such as drones, walking robots, and
manipulators. Despite the recent tremendous advancements in robotics we are still far away
from human- or animal-level agility. Nowadays we observe that quadrupeds and humanoids are
finally capable of not only making steps but also running [29, 42], however, they are still far away
from the ability to make sudden turns and react to a rapidly changing environment. In turn,
industrial manipulators are typically programmed to perform a given task with great speed and
accuracy, however, in most cases, they are limited to performing one repetitive task. Whereas in
research applications of multipurpose robotic manipulators, they typically perform very clumsy
movements [142], and the full agility potential of the given platform is not exploited [2]. One of
the most prominent examples of human agility is sports. However, to beat a human in even a
relatively simple sports discipline, like table tennis, billiards, or air hockey, we typically need a
specialized robot, while humans are capable of doing all of them using the same multipurpose
arms. Even, in our language we often refer to the term robotic to the movements that are
performed without agility and smoothness, as a sequence of very simple motion primitives. One
of the reasons for the above-described shortages of robot agility is the inability to rapidly plan
fast and complex robotic movements. The main theme of this chapter is to propose a robot
learning framework focused on filling this gap. We pay special attention to the tasks that may
be performed with robotic manipulators and require fast and precise movements that have to be
computed online due to the dynamics of the task.

53

Constrained Neural Planning with B-splines 54

Speaking about the dynamic and fast movements, we no longer can plan in the space of geometric
paths, as it was done in previous chapters, instead, we are forced to plan trajectories to properly
address the above-mentioned agility gap. By introducing the time dependency we have to have
in mind not only the robot’s kinematics, the geometry of the robot, and the environment but
also the innate dynamic limitations of the robotic platform we use, like velocity, acceleration,
and torque limits. Moreover, in some cases we would like to impose additional constraints that
are related to the task robot is meant to solve, e.g., maintaining a certain orientation of the
end-effector, constraining the movement of the end-effector to some subset of the workspace,
or satisfying some boundary conditions. Even obstacle avoidance tasks can be described by
constraints imposed on the position and orientation of the robot links. Examples of complex,
from the robot’s point of view, tasks that require a quick computation of a feasible trajectory,
i.e., a trajectory solving the task while respecting all kinematic, dynamic, safety and task-related
constraints, are ball-in-a-cup [86, 95], table tennis [21, 124], juggling [135], diabolo [170], and air
hockey [110, 125].

Although there have been attempts to solve these problems using optimization and sampling-
based motion planning algorithms, they all have significant limitations, such as long planning
time, computing hard-to-follow plans, or inability to satisfy boundary conditions. One of the
approaches to the planning on the constraint manifold is to represent it as a collision-free space,
which makes sampling valid states highly improbable [92, 93], resulting in considerably increased
planning time. To address this issue, Berenson et al. [12] introduced the concept of projecting
the states onto the constraint manifold. However, this approach is restricted to plan paths,
which can be hard to follow, as they disregard the system’s dynamics. Recent work of Bordalba
et al. [18] proposes to solve constrained kinodynamic motion planning problems by building a
topological atlas of the constraint manifold and then using LQR to control the system locally.
Even though this approach allows for solving complex problems, the motion planning times are
prohibitively long for dynamic tasks like the game of air hockey or table tennis. Lengthy planning
is also noticeable for optimization-based motion planners, which slow down significantly when
subjected to highly non-linear constraints [178] and are prone to get stuck in local minima. An
efficient alternative to the above-mentioned methods can be to build a reduced actuator space
that keeps the system on states satisfying the constraints [109]. However, this approach may
have problems with the satisfaction of boundary constraints.

To address all the above-mentioned issues exhibited by the existing state-of-the-art motion plan-
ners and to fill the part of the agility gap between humans and robots, we propose a novel
learning-based approach for constrained kinodynamic planning, called Constrained Neural mo-
tion Planning with B-splines (CNP-B). Similarly to [12], we frame the problem as planning on a
constraint manifoldℳ. Using a similar derivation to [109], we define all the kinematics, dynam-
ics, and safety/task constraints as a single constraint manifold, defined as the zero level set of
an arbitrary constraint function 𝑐(𝑞, �̇�, 𝑞). Our approach does not use an online projection [12]
nor continuation [18]. Instead, it exploits the representation power of Deep Neural Networks to
learn a motion planning function, indirectly encoding the constraint manifold structure. Implic-
itly learning the manifold enables us to rapidly plan smooth, dynamically feasible trajectories
under arbitrary constraints and highly dynamic motions. Differently from [109], our approach
does not require building an abstract action space, making it easy to exploit standard planning

Constrained Neural Planning with B-splines 55

Figure 4.1: Proposed learning-based motion planning approach enables rapid planning and
replanning of smooth trajectories under complex kinodynamic constraints in dynamic scenar-

ios, e.g., the robotic Air Hockey hitting.

heuristics and improving the interpretability of the plan. In our approach, we frame constraint
satisfaction as a manifold learning problem, where the planning function is encouraged to gener-
ate trajectories that minimize not only some arbitrary task cost but also the distance from the
constraint manifold. Furthermore, violating particular constraints to a certain degree can have
only a minor negative impact, while violating other constraints can be unacceptable or danger-
ous. Hence, we estimate the metric of the constraints manifold, which allows us to attribute
different priorities to different constraints.

The proposed approach draws an important inspiration from the previous chapters in terms of
learning from experience with a deep neural network and using B-splines for efficient represen-
tation of the learned path. In this chapter, we extend these concepts by introducing a method
to train a neural network to rapidly plan trajectories, represented using two B-spline curves,
that are meant to lie in a close vicinity of the manifold of constraints. To meet this require-
ment, we extend the learning system architecture by learning the Lagrangian multipliers in the
optimization problem, resulting in the learning of the metric of our constraint manifold. This
novel approach allows us to weigh each constraint by how much it is important to find a feasible
solution to the planning problem. Moreover, thanks to the B-spline representation we show that
our method allows us to enforce satisfaction of the boundary constraints, such that the trajectory
inferred by the neural network connects precisely two arbitrary robot configurations (positions,
velocities, and higher order derivatives). As we will show in simulations and experiments, this
new approach is not only much faster than all state-of-the-art motion planning methods we were
able to compare as baselines, but also generates trajectories that allow faster and more accurate
robot motion while being executed. Furthermore, we show the applicability of the CNP-B in the
task of hitting in the game of robotic Air Hockey on a real-world Kuka LBR Iiwa 14 robot (see
Figure 4.1). Our proposed general learning for motion planning framework enables the robot
to learn how to plan precise dynamic motions outperforming the motion planning algorithm
designed specifically for this task [110]. Finally, thanks to the properties of our planner, i.e.,

Constrained Neural Planning with B-splines 56

short deterministic planning time and ability to satisfy boundary constraints, it is able to replan
motion on-the-fly and smoothly connect it to the current robot’s movement.

4.2 Proposed solution

4.2.1 Problem statement

In previous chapters, we formulated the motion planning problem using Markov Decision Problem
and bandit problem formalisms. While the problem we consider in this chapter can be framed
as a bandit, due to the lack of sequentiality, we utilize the optimization-based approach, as it is
more natural to include the notion of constraints in this case.

Let 𝑞(𝑡) ∈ R𝑛 be a vector of 𝑛 generalized coordinates describing a mechanical system at time
𝑡. Let �̇�(𝑡) and 𝑞(𝑡) be the first and second derivative w.r.t. time, i.e., velocity and acceleration
of the coordinate vector 𝑞. Let the tuple 𝜁 = ⟨𝑞, �̇�, 𝑞, 𝑇 ⟩ be a trajectory of the system for
𝑡 ∈ [0, 𝑇], with 𝑇 denoting the duration of the given trajectory. In the following, we assume that
𝜁(𝑡) = ⟨𝑞(𝑡), �̇�(𝑡), 𝑞(𝑡)⟩ is a tuple containing the information of the trajectory 𝜁 at timestep 𝑡.
We define the constrained planning problem as:

argmin
𝜁

ℒ(𝜁)

s.t. 𝑐𝑖(𝜁(𝑡), 𝑡) = 0 ∀𝑡,∀𝑖 ∈ {1, . . . , 𝑁}

𝑔𝑗(𝜁(𝑡), 𝑡) ≤ 0 ∀𝑡,∀𝑗 ∈ {1, . . . ,𝑀}, (4.1)

where 𝑁 is the number of equality constraints 𝑐𝑖, 𝑀 is the number of inequality constraints 𝑔𝑗 ,
and ℒ is an arbitrary loss function describing the task. Typically, to solve a motion planning
task, it is enough to generate a trajectory that satisfies some locally defined properties, like
limited joint velocity, torque, or ensuring manipulation in free space, at every time step 𝑡, and
minimize locally defined objectives due to composability. We can exploit this by transforming
the objective function of the considered problem into an integral, and describe it by

ℒ(𝜁) =
∫︁ 𝑇

0

ℒ𝑡(𝜁(𝑡), 𝑡)𝑑𝑡 =

∫︁ 𝑇

0

ℒ𝑡(𝑞(𝑡), �̇�(𝑡), 𝑞(𝑡), 𝑡)𝑑𝑡, (4.2)

where ℒ𝑡 is a locally defined loss function.

One of the key design choices in terms of solving problems defined by (4.1) is to specify how the
solution trajectory 𝜁, we are looking for, can be represented. A very popular approach to this,
which is very often used in numerical optimization, is to define the components of the trajectory 𝜁

as polygonal chains and a bunch of new constraints are added to make these components satisfy
the differential dependencies between them. This representation, while being straightforward
and appropriate for numerical optimization, is not smooth which can pose a problem in case
of very fast movements on a thin constraint manifold. One can also decide to define 𝑞(𝑡) ∈ C2

as at least twice-differentiable function, such that its derivatives w.r.t. time are well defined.
However, searching for a solution in the functional space C2 is not so straightforward and may

Constrained Neural Planning with B-splines 57

be problematic. Therefore, we propose to rely on the parametric representation, such that the
generalized coordinates and their derivatives can be represented as at least twice-differentiable
function and can be determined based on some set of parameters f. By doing so we transform
the constrained optimization problem (4.1) that seeks optimal trajectory 𝜁 into the one that
looks for the optimal set of parameters f, i.e.,

argmin
f

ℒ(𝜁f)

s.t. 𝑐𝑖(𝜁f(𝑡), 𝑡) = 0 ∀𝑡, ∀𝑖 ∈ {1, . . . , 𝑁}

𝑔𝑗(𝜁f(𝑡), 𝑡) ≤ 0 ∀𝑡, ∀𝑗 ∈ {1, . . . ,𝑀}, (4.3)

where 𝜁f denotes the trajectory parametrized by the set of parameters f in the sense that 𝑞f(𝑡)

is parametrized with f and has at least two analytical derivatives w.r.t. time �̇�f(𝑡), 𝑞f(𝑡).

4.2.2 Learning how to plan with constraints

The original problem formulation introduced in the previous section (4.3) is a complex con-
strained optimization problem. The direct application of this formulation makes finding a so-
lution difficult and time-consuming, especially in the presence of complex equality constraints.
In fact, while an exact solution may exist, it may be hard to perfectly fit the constraints, due
to the use of trajectory parametrization and numerical errors. Moreover, the form presented
in (4.3) is not suitable to be used in machine learning-based planning, as it gives no idea how the
satisfaction of the constraints should be imposed on the trajectories generated by the machine
learning model.

To efficiently solve the considered constrained planning problem and facilitate the use of learning-
based solutions, we reformulate it into an unconstrained one by incorporating the constraints
into the objective function and scaling them accordingly. We formalize the constraints in the
notion of the constraint manifold and allow the solutions to lie close to it, taking into account
the acceptable violation budget for each constraint. In our approach, we treat the constraint
scaling factors as a metric of the constraint manifold and update it during the learning process.

We base our reformulation on the following steps:

1. defining the constrained manifold as the zero-level curve of an implicit function, unifying
equality and inequality constraints,

2. relaxing the original problem by imposing that all solutions should lie in the vicinity of the
constraint manifold,

3. transforming this problem into an unconstrained optimization problem by learning the
metric of the constraint manifold.

Constrained Neural Planning with B-splines 58

4.2.2.1 Defining the constraint manifold

Our first step towards defining the constraint manifold is to eliminate inequality constraints
from (4.3), by introducing slack variables 𝜇𝑗 and 𝑀 new equality constraints

𝑐𝑁+𝑗(𝜁f, 𝑡, 𝜇𝑗) = 𝑔𝑗(𝜁f, 𝑡) + 𝜇2
𝑗 . (4.4)

Thus, we obtain the following formulation of our parametrized constrained optimization problem

argmin
f

ℒ(𝜁f)

s.t. 𝑐𝑖(𝜁f(𝑡), 𝑡, [𝜇𝑖−𝑁]) = 0 ∀𝑡, ∀𝑖 ∈ {1, . . . , 𝑁 +𝑀}, (4.5)

where the squared brackets indicate an optional argument. Thanks to dropping inequality con-
straints we can define a constraint manifoldℳ𝜇 by

{(𝜁(𝑡), 𝜇) | 𝑐𝑖(𝜁(𝑡), 𝑡, [𝜇𝑖−𝑁]) = 0, ∀𝑖 ∈ {1, . . . , 𝑁 +𝑀}}. (4.6)

However, in general, we don’t want the manifold to be dependent on the slack variables 𝜇 ∈ R𝑀 .
Therefore, to drop this dependency, we first introduce the manifold loss function

ℒℳ(𝜁(𝑡), 𝑡,𝜇) = ‖𝑐(𝜁(𝑡), 𝑡,𝜇)‖2 =

𝑁+𝑀∑︁
𝑖=1

𝑐𝑖(𝜁(𝑡), 𝑡, [𝜇𝑖−𝑁])2 =

𝑁+𝑀∑︁
𝑖=1

ℒ𝑖
ℳ(𝜁(𝑡), 𝑡, [𝜇𝑖−𝑁]), (4.7)

where ‖·‖ denotes a L2 norm, and ℒ𝑖
ℳ is a manifold loss function associated with 𝑖-th constraint.

Introduced ℒℳ can be interpreted as a distance from the manifold ℳ defined in a 𝑁 + 𝑀 -
dimensional space, such that the constraint manifoldℳ can be defined by its 0-level set.

As our goal is to remove the dependency from 𝜇 we focus on the transformed inequality con-
straints and therefore on the manifold loss function associated with these constraints. Consider
𝑖-th manifold loss for 𝑖 > 𝑁 defined by

ℒ𝑖
ℳ(𝜁f(𝑡), 𝑡, 𝜇𝑖) = 𝑐𝑖(𝜁f(𝑡), 𝑡, 𝜇𝑖)

2 =
(︀
𝑐𝑖(𝜁f(𝑡), 𝑡) + 𝜇2

𝑖

)︀2
= 𝑐𝑖(𝜁f(𝑡), 𝑡)

2+2𝑐𝑖(𝜁f(𝑡), 𝑡)𝜇
2
𝑖 +𝜇

4
𝑖 . (4.8)

To eliminate the dependency of 𝜇𝑖, we need to redefine our loss for inequality constraint as
follows

ℒ𝑖
ℳ(𝜁f(𝑡), 𝑡) = min

𝜇
ℒ𝑖
ℳ(𝜁f(𝑡), 𝑡, 𝜇𝑖). (4.9)

We can find a value that minimizes ℒ𝑖
ℳ(𝜁f(𝑡), 𝜇𝑖) by taking the derivative of ℒ𝑖

ℳ(𝜁f(𝑡), 𝜇𝑖) w.r.t.
the slack variable and setting it to zero

𝑑

𝑑𝜇
ℒ𝑖
ℳ(𝜁f(𝑡), 𝑡, 𝜇𝑖) = 4𝑐𝑖(𝜁f(𝑡), 𝑡)𝜇𝑖 + 4𝜇3

𝑖 = 0. (4.10)

Thus, we obtain 𝜇𝑖 = 0 ∨ 𝜇𝑖 = ±
√︀
−𝑐𝑖(𝜁f(𝑡), 𝑡), where the second solution exists only for

𝑐𝑖(𝜁f(𝑡), 𝑡) < 0. Plugging back the obtained stationary points in (4.8), we obtain a form of

Constrained Neural Planning with B-splines 59

inequality loss that does not depend on 𝜇, and is defined by

ℒ𝑖
ℳ(𝜁f(𝑡), 𝑡) =

⎧⎨⎩𝑐𝑖(𝜁f(𝑡), 𝑡)2 𝑐𝑖(𝜁(𝑓𝑡), 𝑡) > 0

0 otherwise.
(4.11)

This loss can be computed in an equivalent but much more compact form, as

ℒ𝑖
ℳ(𝜁f(𝑡), 𝑡) = (max (𝑐𝑖(𝜁f(𝑡), 𝑡), 0))

2
, (4.12)

which is continuous and differentiable everywhere: notice that in 0, the derivative is 0. As a
result, we obtain a new definition of the constraint manifoldℳ that is free from the dependency
on 𝜇, and is defined by

ℳ ≜ {𝜁(𝑡) | ℒ𝑖
ℳ(𝜁f(𝑡), 𝑡) = 0, ∀𝑡,∀𝑖 ∈ {1, . . . , 𝑁 +𝑀}}. (4.13)

4.2.2.2 Approximated optimization problem

As we mentioned before, our newly defined manifold loss expresses the distance of a given tra-
jectory 𝜁f from the manifold ℳ. Ideally, we could use the ℒℳ(𝜁f, 𝑡) = 0 as a single constraint
of our optimization problem. However, numerical issues, the finite capacity of the used machine
learning model, and trajectory parametrization may cause small unavoidable errors. Further-
more, often the task loss ℒ and manifold constraints ℒ𝑖

ℳ will counteract each other, making
this optimization particularly difficult and prone to constraint violations imbalances. Indeed,
the optimization may favor reducing some constraint violations at the expense of others. When
considering real-world tasks, it is often not crucial to have the constraint violation exactly equal
to 0, as long as it is below an acceptable threshold. Thus, we simplify the problem by intro-
ducing an acceptable level of constraint violations. For simplicity, we bound the elements of the
non-negative valued manifold loss function (see (4.7) and (4.12)), i.e., ℒ𝑖

ℳ ≤ 𝐶𝑖, where 𝐶𝑖 = 𝑐2𝑖 is
a square of the desired acceptable constraint violation level 𝑐𝑖. Thus, we can write the following
optimization problem

argmin
f

ℒ(𝜁f)

s.t. ℒ𝑖
ℳ(𝜁f(𝑡), 𝑡) ≤ 𝐶𝑖 ∀𝑡, ∀𝑖 ∈ {1, . . . , 𝑁 +𝑀}, (4.14)

and transform it into the canonical form

argmin
f

ℒ(𝜁f)

s.t.
ℒ𝑖
ℳ(𝜁f(𝑡))

𝐶𝑖
− 1 ≤ 0 ∀𝑡,∀𝑖 ∈ {1, . . . , 𝑁 +𝑀}. (4.15)

Constrained Neural Planning with B-splines 60

One possible way to solve (4.15) is by applying a Lagrange relaxation technique [14], framing it
as an unconstrained optimization of the following function

argmin
f

max
𝜆

𝐿(𝜁f,𝜆)

s.t. 𝜆 ≥ 0, (4.16)

where 𝐿(𝜁f(𝑡),𝜆) is the Lagrangian defined by

𝐿(𝜁f(𝑡),𝜆) = ℒ(𝜁f) +
𝑁+𝑀∑︁
𝑖=1

𝜆𝑖

(︂
ℒ𝑖
ℳ(𝜁f)

𝐶𝑖
− 1

)︂
, (4.17)

and 𝜆 is a vector of non-negative Lagrange multipliers.

4.2.2.3 Loss function learning

Unfortunately, (4.16) is not a practical optimization problem, leading to ineffective learning and
convergence to local optima. We propose instead an approximate solution, inspired by [156],
that updates the Lagrangian multipliers during the minimization of the 𝐿. In our approach, we
decouple the min-max problem into interleaving minimization of (4.16) w.r.t f and updating the
values of the multipliers 𝜆 based on the violation level of the constraints associated with them,
i.e., values of ℒℳ.

First, we remove the maximization w.r.t 𝜆 from (4.16) and write the following minimization
problem

argmin
f

ℒ(𝜁f) +
𝑁+𝑀∑︁
𝑖=1

𝜆𝑖

(︂
ℒ𝑖
ℳ(𝜁f)

𝐶𝑖
− 1

)︂
. (4.18)

Thanks to dropping the maximization w.r.t. 𝜆, we can remove the −1 term from the Lagrangian,
as it is not dependent on f, such that we obtain

argmin
f

ℒ(𝜁f) +
𝑁+𝑀∑︁
𝑖=1

𝜆𝑖
ℒ𝑖
ℳ(𝜁f)

𝐶𝑖
, (4.19)

which can be also written down in the form in which the constraints-related terms of the La-
grangian are in diagonal quadratic form, such that we can write

argmin
f

ℒ(𝜁f) + c𝑇Λc, (4.20)

where c𝑖 =
√︀
ℒℳ𝑖

for 𝑖 = 1, 2, . . . , 𝑁 +𝑀 and matrix Λ is a metric of the manifold ℳ defined
by

Λ = diag

(︂
𝜆1
𝐶1
,
𝜆2
𝐶2
, . . . ,

𝜆𝑁+𝑀

𝐶𝑁+𝑀

)︂
. (4.21)

By doing so, we framed our extended objective function as a minimization of the sum of task
loss ℒ(𝜁f) and a squared distance from the manifold scaled by the manifold metric Λ. Therefore,
our proposed procedure of interleaving minimization of ℒ(𝜁f)+ c𝑇Λc and updating 𝜆 can be seen

Constrained Neural Planning with B-splines 61

as a process of simultaneous learning an appropriate metric of the constraint manifold ℳ and
the parameters f.

Note, that in the derivations made above we neglected the 𝜆 ≤ 0 term from (4.16). Nevertheless,
this still needs to be satisfied in order to maintain the negative impact of the constraint violations
on the minimization of Lagrangian 𝐿. To do so, we simplify the elements of manifold metric Λ,
by the following substitution m𝑖 = log 𝜆𝑖

𝐶𝑖
. Therefore, we can redefine the manifold metric by

Λ = diag 𝑒m = diag (𝑒m1 , 𝑒m2 , . . . , 𝑒m𝑁+𝑀) , (4.22)

where m =
[︁
m1 m2 . . . m𝑁+𝑀−1

]︁
is a vector of real-valued parameters defining the manifold

metric. Now, we can introduce a manifold loss under the metric Λ defined by

ℒℳ,Λ = c𝑇Λc. (4.23)

Thus, we can rewrite (4.20) into

argmin
f
ℒ(𝜁f) + ℒℳ,Λ(𝜁f). (4.24)

Finally, we introduce the metric learning approach. While we can straightforwardly opti-
mize (4.24) w.r.t. f using any gradient optimizer, we need to derive a learning rule for the
vector m. Let ℒ¬𝑖

ℳ,Λ ≜ c𝑇¬𝑖Λ¬𝑖c¬𝑖 be the complement of the 𝑖-th manifold loss element, where
index ¬𝑖 means all elements except 𝑖-th element. Using this notation, we analyze how the m𝑖

should change between 𝑘-th and 𝑘 + 1-th iterations so as not to surpass the desired level of
constraint violation 𝐶𝑖, i.e.,

ℒ(𝑘) + ℒ¬𝑖
ℳ,Λ

(𝑘)
+ 𝑒m̄

(𝑘)
𝑖 ℒ𝑖

ℳ = ℒ(𝑘+1) + ℒ¬𝑖
ℳ,Λ

(𝑘+1)
+ 𝑒m𝑖𝐶𝑖. (4.25)

Assuming that the changes of ℒ¬𝑖
ℳ,Λ and ℒ are small, e.g., by choosing a small learning rate, we

obtain
𝑒m

(𝑘)
𝑖 ℒ𝑖

ℳ = 𝑒m̄𝑖𝐶𝑖 ⇒ m̄𝑖 = m
(𝑘)
𝑖 + log

(︂
ℒ𝑖
ℳ
𝐶𝑖

)︂
. (4.26)

Finally, we can define our update rule for m𝑖 as a small step towards the desired value m̄𝑖, i.e.,

∆m𝑖 = 𝛾(m̄𝑖 −m𝑖) = 𝛾 log

(︂
ℒ𝑖
ℳ
𝐶𝑖

)︂
, (4.27)

with the learning rate 𝛾 ∈ R+.

As a result, we transformed a very general form of the optimal trajectory planning problem
posed in (4.1) into an alternately solving of an unconstrained optimization problem defined
in (4.24) and adaptation of the manifold metric Λ using the update rule defined in (4.27). More-
over, we reformulated the optimization from the general domain of at least twice-differentiable
trajectories, into the optimization of the trajectory represented by a set of parameters f. Nev-
ertheless, our ultimate goal of all of these transformations is to train a machine learning model
to plan trajectories. In our considerations, we limit ourselves to parametric models which are

Constrained Neural Planning with B-splines 62

neural networks, parametrized, similarly like in previous chapters using neural network connec-
tion weights 𝜑. Therefore, we aim not to find the best parameters f to minimize the augmented
loss ℒ(𝜁f) + ℒℳ,Λ(𝜁f) for a particular motion planning problem. Instead, our focus is to find a
set of parameters 𝜑 that allow the neural network 𝜋𝜑 to generate, based on the obtained task
specifications, sets of function parameters f that minimize the augmented loss for a set of mo-
tion planning problems drawn from some distribution of considered motion planning problems.
Following the typical approach to optimize the neural network weights, we propose to apply
stochastic gradient descend methods to optimize ℒ(𝜁f) + ℒℳ,Λ(𝜁f) w.r.t. 𝜑, i.e.,

∇𝜑 (ℒ(𝜁f) + ℒℳ,Λ(𝜁f)) =

(︂
𝜕ℒ
𝜕𝜁f

+
𝜕ℒℳ,Λ

𝜕𝜁f

)︂
𝜕𝜁f
𝜕𝜑

, (4.28)

by assuming that both ℒ(𝜁f) and ℒℳ,Λ(𝜁f) are differentiable w.r.t. 𝜁f.

4.2.3 Trajectory parametrization

In previous chapters, we focused on learning how to plan feasible paths. However, to plan
dynamic movements we no longer can limit ourselves to paths and have to propose a way to
generate trajectories. Therefore, it is a vital question what should be the representation of the
trajectory that meets the requirements posed by robotic motion planning? Let’s analyze some
desirable features we expect a trajectory representation to have:

• smoothness,

• ease of evaluation with minimal computational overhead,

• ease of the computation of the derivatives,

• possibility to impose boundary conditions,

• possibility to represent trajectories of different time lengths.

Although there are many trajectory representations, such as a sequence of timed waypoints,
dynamical movement primitives [150], or B-splines [174], we decided to use uniform B-spline
curves as they fulfill all the abovementioned requirements. The smoothness is directly controlled
by the B-spline degree. In turn, the computational overhead can be minimized easily by assuming
the position of knots to be constant. We satisfy this assumption by focusing on uniform B-splines,
i.e., B-splines which knots satisfy (3.11). Thanks to this assumption, we can easily pre-compute
the values of the B-spline basis functions 𝐵 for a range of values of the phase variable 𝑠 and store
them in a matrix. In this setting, the computation of the trajectory is a simple matrix-vector
product, which can be computed extremely fast even for fine-grained trajectories. Due to B-
spline properties, the computation of the derivatives is also a matter of computing matrix-vector
products.

While the first 3 points are quite straightforward to satisfy thanks to the B-spline properties,
the latter two pose a bit of a challenge. From the considerations made in the previous chapter
we know that imposing the boundary conditions on the B-splines is simple, however, now we

Constrained Neural Planning with B-splines 63

need to include the time dependency and satisfy conditions related to velocity and acceleration.
A very naive approach to introduce the dependency on the time is to identify the phase variable
𝑠 with time 𝑡, i.e., 𝑠 = 𝑡. While simple, this approach does not fulfill the requirement of the
possibility of representing trajectories of different time lengths. Nevertheless, this can be fixed
easily by introducing some time scaling factor r ∈ R+, such that 𝑠 = r𝑡. Although the use of
scaling factor enables planning trajectories of different time-lengths, it is far too constraining.
The constant scaling factor directly binds the planned path with the velocity and acceleration
with which it is followed, which is highly undesirable as it reduces the representational power
of the proposed trajectory parametrization and limits the available spectrum of motions we
can represent. The answer to this may be the use of a non-constant monotonically increasing
transformation from the phase variable 𝑠 into the time domain 𝑡 = t(𝑠). We can represent this
function by its derivative, i.e., by introducing a variable time-scaling factor r(𝑠) ∈ R+, which
allows for adaptively change the relation between the path and the speed and acceleration along
it. In fact, the variable time-scaling factor represents the inverse rate of change of the time 𝑡
w.r.t. phase variable 𝑠, and can be defined by

r(𝑠) =

(︂
𝑑𝑡

𝑑𝑠

)︂−1

=

(︂
𝑑t(𝑠)

𝑑𝑠

)︂−1

, (4.29)

such that
t(𝑠) =

∫︁
r−1(𝑠)𝑑𝑠. (4.30)

Following this approach, we introduce a trajectory representation that is composed of two B-
spline curves: configuration 𝑝(𝑠) and time scaling r(𝑠). Using these two curves and their deriva-
tives one can define the trajectory 𝜁 and even higher order derivatives of the configuration vector
𝑞(𝑡). Therefore, 𝑞(𝑡) can be defined by

𝑞(𝑡) ≜ 𝑞 (t(𝑠)) = 𝑞 ∘ t(𝑠) = 𝑝(𝑠), (4.31)

where ∘ indicates function composition. Whereas, the first derivative of 𝑞 w.r.t. time can be
defined by

�̇�(𝑡) =
𝑑𝑝(𝑠)

𝑑𝑠

𝑑𝑠

𝑑𝑡
=
𝑑𝑝(𝑠)

𝑑𝑠
r(𝑠) = �̇�(𝑠), (4.32)

while the second derivative of 𝑞 w.r.t. time can be defined by

𝑞(𝑡) =
𝑑

𝑑𝑡

(︂
𝑑𝑝(𝑠)

𝑑𝑠

)︂
r(𝑠) +

𝑑𝑝(𝑠)

𝑑𝑠

𝑑

𝑑𝑡
r(𝑠) =

𝑑2𝑝(𝑠)

𝑑𝑠2
(r(𝑠))

2
+
𝑑𝑝(𝑠)

𝑑𝑠

𝑑r(𝑠)

𝑑𝑠
r(𝑠) = 𝑞(𝑠). (4.33)

This procedure can be continued in order to compute jerk ...
𝑞 (𝑡) and higher order derivatives.

Note that to compute 𝑖-th time derivative of the configuration trajectory 𝑞(𝑡), we need 𝑖-th
derivative of the configuration B-spline 𝑝(𝑠) and (𝑖 − 1)-th derivative of the time scaling r(𝑠)

curve, so the smoothness of the time trajectory depends directly on the smoothness level of B-
splines that defines it. Finally, the definition of the trajcetory 𝜁 contains the trajectory duration
𝑇 , which can be defined by

𝑇 =

∫︁ 1

0

r−1(𝑠)𝑑𝑠. (4.34)

Constrained Neural Planning with B-splines 64

4.2.3.1 Boundary conditions

One of the key features of the B-spline representation, from the motion planning point of view,
is the ease of imposing boundary conditions. This also applies to the proposed B-spline-based
trajectory representation. In fact, we can easily satisfy boundary conditions imposed on the
configurations, velocities, accelerations, and higher-order derivatives, which can be defined by⎧⎨⎩𝑞(0) = 𝑞0, �̇�(0) = �̇�0, 𝑞(0) = 𝑞0, . . . ,

𝑞(1) = 𝑞𝑑, �̇�(1) = �̇�𝑑, 𝑞(1) = 𝑞𝑑, . . . ,
(4.35)

where 𝑞0, �̇�0, 𝑞0, 𝑞𝑑, �̇�𝑑, 𝑞𝑑 are the initial and desired configurations and their derivatives given
by the task definition. By doing so, we can ensure that the planned motion will start and end
at given configurations, but also control for example the end velocity, which may be crucial in
the tasks that require hitting some object with the robot in a certain direction, e.g., hitting the
ball with the baseball bat. Moreover, by the control of the boundary velocity and acceleration,
we can ensure the smoothness of the robot’s motion and the continuity of the robot’s control
signals.

To make our proposed trajectory representation satisfy (4.35), we need to provide formulas that
will constrain some of the control points of the configuration and time-scaling B-spline curves.
Firstly, we focus on the satisfaction of the boundary configuration constraints. To do so, similarly
to what we have done in Section 3.2.2, we have to fix the first and last control points of the
configuration B-spline, i.e., ⎧⎨⎩𝑝1 = 𝑞0,

𝑝𝑛𝑝
= 𝑞𝑑,

(4.36)

where 𝑝𝑖 denotes 𝑖-th control point of the configuration B-spline and 𝑛𝑝 is the number of con-
figuration B-spline control points. Similarly, we can think about the satisfaction of the velocity
constraints, by the definition of the 2nd and (𝑛𝑝 − 1)-th configuration control points. However,
it also requires the use of the time-scaling B-spline parameters as in the velocity formula (4.32)
we see the multiplication by r(𝑠). By the analysis of (4.32) at 𝑠 = 0 and 𝑠 = 1 we can see that⎧⎨⎩�̇�(0) = 𝑑𝑝

𝑑𝑠 (0)r(0) = a𝑝1 (𝑝2 − 𝑝1)r1,

�̇�(𝑇) = 𝑑𝑝
𝑑𝑠 (1)r(1) = a𝑝1 (𝑝𝑛𝑝

− 𝑝𝑛𝑝−1)r𝑛r
,

(4.37)

where r𝑖 is an 𝑖-th time-scaling B-spline control point, while 𝑛r denotes the number of control
points of the time-scaling B-spline curve. Therefore, by assuming that we know the 1st and 𝑛r-th
control points of the time-scaling B-spline, we can compute the 2nd and (𝑛𝑝−1)-th configuration
control points using the following formulas⎧⎨⎩𝑝2 = �̇�0

a𝑝
1 r1

+ 𝑝1,

𝑝𝑛𝑝−1 = 𝑝𝑛𝑝 −
�̇�𝑑

a𝑝
1 r𝑛r

.
(4.38)

By following the same reasoning one can provide formulas for the computation of the next
configuration control points. However, for most cases it is enough to provide the formulas up to

Constrained Neural Planning with B-splines 65

the accelerations, thus we give them in the equations below⎧⎨⎩𝑝3 =
ℵ−2a𝑝

2 𝑝1+3a𝑝
2 𝑝2

a𝑝
2

, where ℵ =
𝑞0−a𝑝

1a
r
1(𝑝2−𝑝1)(r2−r1)r1

r21

𝑝𝑛𝑝−2 =
ℵ−2a𝑝

2 𝑝𝑛𝑝+3a𝑝
2 𝑝𝑛𝑝−1

a𝑝
2

, where ℵ =
𝑞𝑑−a𝑝

1a
r
1(𝑝𝑛𝑝−𝑝𝑛𝑝−1)(r𝑛r−r𝑛r−1)r𝑛r

r2𝑛r

.
(4.39)

One can spot, that equations (4.38) and (4.39) rely on the values of a𝑝1 , a
𝑝
2 and ar1. These are

some constant quantities, that can be computed based on the parameters of the configuration
and time-scaling B-splines. Specifically, given that 𝐷𝑝, 𝐷r are the degrees of configuration and
time-scaling B-splines respectively, we can compute a𝑝1 , a

𝑝
2 , and ar1 by

a𝑝1 =𝐷𝑝(𝑛𝑝 −𝐷𝑝)
2, (4.40)

a𝑝2 =
𝐷𝑝(𝐷𝑝 − 1)

2
(𝑛𝑝 −𝐷𝑝)

2, (4.41)

ar1 =𝐷r(𝑛r −𝐷r)
2. (4.42)

4.2.4 Neural network architecture

Our proposed trajectory parametrization requires us to determine control points of the configu-
ration and time-scaling B-splines. While some of them can be computed analytically based on
the definition of the considered task, the majority of them are free parameters that have to be
adjusted to satisfy all remaining constraints imposed by the task and optimize some notion of the
trajectory quality. In the optimization approach to robotic motion planning these parameters
are determined for every motion planning problem instance by some optimization procedure. In-
stead, in our approach, we propose to optimize the weights of the neural network on a spectrum
of motion planning problems, such that it will be able to rapidly generate appropriate B-spline
control points for previously unseen tasks by shifting the computational effort from evaluation
to the training phase, which can be done offline.

Therefore, we propose a neural network of the architecture presented in Figure 4.2. This archi-
tecture is only a proposition, as in general one has a variety of options on how to process the
initial and desired states, in order to obtain configuration and time-scale control points. We
propose to use a sequence of fully connected layers thanks to its simplicity and short inference
time. A minimal input to the proposed network is the initial and desired robot configurations,
however, they can be easily augmented with velocities and accelerations. The number of inputs
defines the number of boundary conditions 𝑛𝑏𝑐, which allows us to compute 𝑛𝑏𝑐 control points
analytically, which is done by the Ω block. In the first layer, we perform a normalization of the
inputs, by dividing the configurations 𝑞0, 𝑞𝑑 by 𝜋, while the velocities �̇�0, �̇�𝑑 and accelerations
𝑞0, 𝑞𝑑 are divided by the velocity ¯̇𝑞 and acceleration ¯̈𝑞 limits respectively. Then, normalized
inputs are processed jointly by a sequence of fully connected layers with 𝜈 neurons and tanh ac-
tivation function. Next, the obtained feature vector is split into two heads. Time head consists
of a single fully connected layer with 𝑛r neurons with exponential activation function to ensure
positiveness of outputs, which are scaled by the heuristically chosen expectation of the trajec-
tory duration 𝑇𝑒𝑥𝑝, and then interpreted as a sequence of time-scaling B-spline control points

Constrained Neural Planning with B-splines 66

[︁
r1 r2 . . . r𝑛r

]︁𝑇
. The idea behind the introduced expectation of the trajectory duration is

to bias the time-scaling control points to the estimate of the trajectory duration. This can be
done in many different ways, nevertheless, we propose a very simple lower-bound for the real
trajectory duration by setting

𝑇𝑒𝑥𝑝 = max
𝑖=1,2,...,𝑛𝑑𝑜𝑓

|𝑞𝑑𝑖
− 𝑞0𝑖 |
¯̇𝑞𝑖

, (4.43)

which can be interpreted as the minimal time needed to complete the movement, assuming
moving with maximal feasible velocity along the trajectory and infinite acceleration.

A bit more complex than the time-scaling head is the configuration head, which consists of 2
fully connected layers with 𝜈 and (𝑛𝑝 − 𝑛𝑏𝑐)𝑛𝑑𝑜𝑓 neurons and tanh activation. We subtract
the number of boundary control points 𝑛𝑏𝑐 from the total number of control points 𝑛𝑝 as they
are already defined based on equations (4.36-4.39). One can see, that these equations require
only some of the control points of the time-scaling B-spline to be computed, which is already
done thanks to the time-scaling head output. However, they are completely independent of the

configuration head outputs 𝜓𝑝 =
[︁
𝜓𝑝
1 𝜓𝑝

2 . . . 𝜓𝑝
𝑛𝑝−𝑛𝑏𝑐

]︁𝑇
. In fact, we propose to introduce

the opposite dependence, i.e., that the remaining 𝑛𝑝 − 𝑛𝑏𝑐 configuration control points will be
computed based on the configuration head outputs 𝜓𝑝 scaled by a factor 𝜋, and biased by the
linear combination of the inner-most boundary control points. This operation can be defined by

𝑝𝑖 = 𝜋𝜓𝑝
𝑖 + 𝑝𝑏𝑖 , for 𝑖 ∈ {𝑛𝑖𝑏𝑐 + 1, 𝑛𝑖𝑏𝑐 + 2, . . . , 𝑛𝑝 − 𝑛𝑒𝑏𝑐 − 2, 𝑛𝑝 − 𝑛𝑒𝑏𝑐 − 1}, (4.44)

where 𝑛𝑖𝑏𝑐 and 𝑛𝑒𝑏𝑐 are numbers of boundary constraints imposed on the beginning and end of
the trajectory (𝑛𝑏𝑐 = 𝑛𝑖𝑏𝑐 + 𝑛𝑒𝑏𝑐), while 𝑝𝑏𝑖 is the 𝑖-th element of the baseline vector, which can
be defined by

𝑝𝑏𝑖 =
𝑖𝑒𝑏𝑐 − (𝑖− 𝑛𝑖𝑏𝑐)

𝑖𝑒𝑏𝑐
𝑝𝑛𝑖𝑏𝑐

+
𝑖− 𝑛𝑖𝑏𝑐
𝑖𝑒𝑏𝑐

𝑝𝑖𝑒𝑏𝑐 for 𝑖 ∈ {𝑛𝑖𝑏𝑐+1, 𝑛𝑖𝑏𝑐+2, . . . , 𝑖𝑒𝑏𝑐−2, 𝑖𝑒𝑏𝑐−1}, (4.45)

where 𝑖𝑒𝑏𝑐 = 𝑛𝑝 − 𝑛𝑒𝑏𝑐 is the smallest index of the boundary control point that is defined at the
end of the trajectory. Thus, to compute the whole vector of the configuration control points we
need formulas (4.36-4.45), which are schematically represented in Figure 4.2 as the Ω block.

Constrained Neural Planning with B-splines 67

no
rm

al
iz

at
io

nIn
iti

al
st

at
e

D
es

ire
d

st
at

e

Configuration head

Time head

Fully Connected Layer

Input processing stage

Figure 4.2: A neural network architecture that we used to plan trajectories in the experiments
presented in this thesis. The dashed line indicates the optional arguments, 𝜈 stands for the
size of neural network layers, and Ω is a block that performs the computation of the boundary
control points of the configuration B-spline, based on the formulas presented in Section 4.2.3.1
and concatenates them with the rest of the configuration control points that are computed

based on the last fully connected layer of the configuration head.

4.2.5 Loss functions

In the considered problem we introduced 2 types of losses: (i) task losses, which measure the
quality of the trajectory w.r.t. some optimality criteria, and (ii) constraint losses that quantify
the violation of the constraints and encourage the trajectories to lie on the constraint manifold.
The core idea of the first type of loss we consider is to make neural network models generate
trajectories that are close to being optimal. One of the typical values one may want to optimize
is the duration of the trajectory, which can be computed easily using (4.34), while another may
be the cost of the control, which we can compute using

𝜁𝑒𝑓𝑓𝑜𝑟𝑡 =

𝑛𝑑𝑜𝑓∑︁
𝑖=1

∫︁ 𝑇

0

|𝜏𝑖(𝑡)| 𝑑𝑡 =
𝑛𝑑𝑜𝑓∑︁
𝑖=1

∫︁ 1

0

|𝜏𝑖(𝑠)| r−1(𝑠)𝑑𝑠, (4.46)

where 𝜏𝑖(𝑠) is the torque on the 𝑖-th joint, which can be computed based on the trajectory 𝑡𝑟𝑎𝑗
using inverse dynamics algorithm, e.g., Recursive Newton-Euler (RNEA) [43]

𝜏𝑖(𝑠) = RNEA(𝑞𝑖(𝑠), �̇�𝑖(𝑠), 𝑞𝑖(𝑠)), (4.47)

assuming no external force, except gravity, is acting on the manipulator.

The second type of losses are the ones stemming from the constraints. The main purpose of
them is to penalize trajectories that violate the respective constraint. In typical manipulation
tasks, one may encounter the constraints coming from the following sources:

• initial and desired joints position,

• initial and desired joints velocities,

• initial and desired joints accelerations,

• maximal joints velocities,

Constrained Neural Planning with B-splines 68

• maximal joints accelerations,

• maximal joints torques,

• restrictions of the task space, e.g., obstacles, movement of the end-effector restricted to
some manifold.

Thanks to the proposed method of boundary constraints satisfaction introduced in the previous
section we don’t need to make neural network learn how to satisfy them. Therefore, we can omit
the first three constraints sources listed above, and focus on the remaining ones. First, violation
of the maximal joint’s velocities ¯̇𝑞 can be penalized by

ℒ�̇� =

𝑛𝑑𝑜𝑓∑︁
𝑖=1

∫︁ 𝑇

0

(︀
ReLU

(︀
�̇�𝑖(𝑡)− ¯̇𝑞𝑖

)︀)︀2
𝑑𝑡 =

𝑛𝑑𝑜𝑓∑︁
𝑖=1

∫︁ 1

0

(︀
ReLU

(︀
�̇�𝑖(𝑠)− ¯̇𝑞𝑖

)︀)︀2
r−1(𝑠)𝑑𝑠, (4.48)

which is completely in line with the general formula for the 𝑖-th component of the manifold loss
(see (4.12)). Similarly, we can define loss connected with the maximal joint’s accelerations ¯̈𝑞 by

ℒ𝑞 =

𝑛𝑑𝑜𝑓∑︁
𝑖=1

∫︁ 𝑇

0

(︀
ReLU

(︀
𝑞𝑖(𝑡)− ¯̈𝑞𝑖

)︀)︀2
𝑑𝑡 =

𝑛𝑑𝑜𝑓∑︁
𝑖=1

∫︁ 1

0

(︀
ReLU

(︀
𝑞𝑖(𝑠)− ¯̈𝑞𝑖

)︀)︀2
r−1(𝑠)𝑑𝑠, (4.49)

and the one related to maximal joint’s torques 𝜏 by

ℒ𝜏 =

𝑛𝑑𝑜𝑓∑︁
𝑖=1

∫︁ 𝑇

0

(ReLU (𝜏𝑖(𝑡)− 𝜏𝑖))
2
𝑑𝑡 =

𝑛𝑑𝑜𝑓∑︁
𝑖=1

∫︁ 1

0

(ReLU (𝜏𝑖(𝑠)− 𝜏𝑖))
2
r−1(𝑠)𝑑𝑠, (4.50)

where, similarly like in (4.46), 𝜏𝑖(𝑠) can be computed using (4.47). In turn, to impose the
constraints related to some restrictions of the task space, one has to utilize the forward kinematics
of the robot FK(𝑞) ∈ SE(3). While constraints of this type cover a broad range of workspace-
related limitations, in this chapter we will give only some sample formulas that are closely related
to the constraints we will encounter in the experimental section. In general, one may require
the robot’s end-effector to remain on some predefined manifold ℳFK, i.e., to keep the distance
between the robot’s end-effector and this manifold close to 0. The loss associated with this
requirement can be expressed by

ℒFK =

∫︁ 1

0

(︂
min

𝑚∈ℳFK

𝑑SE(3) (FK(𝑞(𝑠)),𝑚)

)︂2

r−1(𝑠)𝑑𝑠, (4.51)

where 𝑑SE(3) is some distance defined on SE(3). In a similar way, one can describe the collision
loss by

ℒΠ =

∫︁ 1

0

⎛⎝ ∑︁
𝑏∈Π(𝑞(𝑠))

min
𝑓∈F

𝑑𝑒𝑢𝑐 (𝑏, 𝑓)

⎞⎠2

r−1(𝑠)𝑑𝑠, (4.52)

where 𝑑𝑒𝑢𝑐 (𝑏, 𝑓) is an Euclidean distance between an element 𝑏 of the robot body Π(𝑞(𝑠)), and
an element 𝑓 of the collision-free space F.

In (4.28) we stated that the proposed neural network-based motion planner can be trained end-
to-end using stochastic gradient descent and backpropagation if the task and constraint losses
are differentiable w.r.t. 𝜁f. In fact, due to the differentiability of the functions like forward

Constrained Neural Planning with B-splines 69

kinematics or inverse dynamics, and the perfect knowledge of the used model of the world and
robot itself, we can easily compute the gradient w.r.t. 𝜁f of all loss functions introduced in
this section. Moreover, it is relatively straightforward to propose many more loss functions that
encourage some desired behaviors and are rooted in the differential geometry of the trajectory
generated by the neural network. This approach to learning how to plan may be related to the
processes that occur in our brains. Humans often, even subconsciously, generate in their heads
some hypothetical problems relevant to the ones they solve in the real world and are trying to
solve them using the models of the environment, their bodies, and even other agents. Based
on this imagined experience we can improve our future actions without the need to try them in
the wild, which is faster than executing actions in the real world but at the same time biased
towards the assumed models of the environment and actors. This is the core idea of model-
based reinforcement learning, however, in our approach, we focus on the behaviors that can be
analytically described by the differentiable loss functions, such that we can directly optimize the
parameters of the planner.

Moreover, in (4.2) we introduced a concept of defining the losses locally and using an integral
over the duration of the whole trajectory. Note, that all losses introduced in this chapter have
the structure shown in (4.2). This may not be obvious at first look, however, the summation over
the degrees of freedom can be included in the integral, and for the sake of the implementation
we decided to move from the integration in the time domain to the integral of the phase variable
𝑠 using substitution given in (4.30).

Chapter 5

Experimental verification of the

neural network-based path planning

for car-like vehicles

5.1 Introduction

In Chapter 2 we introduced a novel approach to learning how to rapidly plan feasible monotonic
paths that enable a car-like vehicle to perform local maneuvers. In turn, in Chapter 3 we
proposed a new solution to the same class of motion planning problems, which utilizes B-spline
path representation to improve the planning speed, as well as the smoothness and accuracy of
the generated plans. In this Chapter, we want to verify the abilities of both proposed methods
(further referred as sequential for the method introduced in Chapter 2 and episodic for the one
introduced in Chapter 3) to rapidly generate paths that are:

• collision-free when followed with a robot of predefined geometry,

• of limited curvature, such that they can be followed by a car with a limited steering angle,

• short,

• smooth,

• easy-to-be-followed.

Moreover, we want to compare these methods in terms of the above-mentioned criteria and relate
them to state-of-the-art path-planning algorithms for car-like vehicles.

To evaluate these abilities and perform comparisons we perform 2 types of experiments:

1. comparison using the motion planning problems from the dataset introduced in Chap-
ter 2.3.5,

71

Experimental verification of the neural network-based path planning for car-like vehicles 72

2. closed-loop planning and control in challenging scenarios in the CARLA simulator [38].

5.1.1 State-of-the-art path planning algorithms

To obtain a fair perspective on the performance of the proposed motion planning algorithms, we
compared them with several state-of-the-art path planning algorithms adjusted to planning for
car-like vehicles:

• asymptotically optimal version of RRT – RRT* [83] – a sampling-based motion planning
algorithm that builds a tree of robot configurations and modifies it to maintain the opti-
mality of connections,

• BIT* [51] – a sampling-based motion planning algorithm that uses a heuristic to efficiently
search a series of increasingly dense implicit random geometric graphs while reusing infor-
mation from previous batches,

• AIT* [158] – a planner based on BIT* that adapts its search to each problem instance by
simultaneously estimating and exploiting a problem-specific heuristic,

• ABIT* [157] – a planner based on BIT* that sacrifices the resolution optimality to achieve
faster initial solution times,

• SL [134] – a discrete planner that connects points in the task space using primitives from
some predefined set, by doing so it searches for a solution only on a finite lattice of possible
moves.

The abovementioned motion planning algorithms propose a general way to efficiently solve mo-
tion planning problems. However, the case of monotonic path planning for a car-like vehicle
requires making some adjustments and concretizing them.

For SL, we used an implementation of Dynamic Multi-Heuristic A* [75] from SBPL library [106].
SL algorithm was searching on the grid with 0.2m spatial and 𝜋

16 rad angular resolution using 11
different motion primitives per orientation, which were made with 3rd-degree polynomials with
zero curvature at the boundaries to preserve the continuity of the path curvature.

While the rest of the considered planners differ in terms of the adaptation of the search space and
heuristic, at the core of all of them are the procedures of sampling the task space and extending
the search tree. The basic versions of these algorithms connect the points in the task space
using straight lines, which is infeasible in the case of the car-like robot. To mitigate this issue
and not cause a significant drop in their performance we used Dubins curves [41] as an extender
and Dubins path length as a cost function, which together constitute a DubinsStateSpace im-
plemented in Open Motion Planning Library (OMPL) [160]. This allows us to rapidly connect
any two states in the SE2 state space using paths of limited curvature. The only drawback of
this approach is that Dubins curves do not maintain path smoothness and thus the continuity of
curvature, which results in the necessity of stopping to turn the steering wheel when changing
between straight segments and arcs. To eliminate this issue, one can use cc-Dubins [48] to extend
the tree, which connects the segments of the Dubins curves using clothoid.

Experimental verification of the neural network-based path planning for car-like vehicles 73

In the case of the sampling-based algorithms, we used their OMPL [160] implementations and
in most of the cases default parameter values for all considered algorithms, as we observed no
significant improvement for different sets of the parameters. In particular, for:

• RRT*:

– maximal motion range – 7.55m,

• BIT*:

– number of allowed failed samplings = 2,

– pruning is applied if the number of the samples that can be pruned is bigger than 5%
of the number of samples and vertices in the search tree,

• ABIT* – the same as for BIT* and additionally:

– initial inflation – 106,

– inflation scaling factor – 10,

– truncation scaling factor – 5,

Besides that, few of the parameters were common, i.e., the probability of choosing the goal state
as a goal for tree extension was set to 0.05, the rewiring factor was equal to 1.1, the batch size
was set to 100, and all algorithms were using k-nearest search. To interface OMPL with SBPL
and cc-Dubins [48] we used Bench-MR library [62].

Our proposed methods also require choosing some parameters. In general, one may search space
of neural network architectures, however, we do not aim at finding the very best architecture
but rather present the idea and capabilities of proposed neural network-based motion planning.
Thus we fixed the architectures of the neural networks to the simple ones presented in Fig-
ures 2.4 and 3.5. The most important parameter of our proposed methods is the expressiveness
of the path representation understood as the number of its degrees of freedom. In the case of
sequential planner, this is steered by the number of path segments, which we set in our experi-
ments to 6, which is a balance between the planning time and accuracy. We followed a similar
motivation while choosing the depth of the control points tree to 3, which controls the expres-
siveness of the B-spline paths. The rest of the parameters are related to the learning process of
the neural network. In particular, we choose Adam optimizer [91] and set its learning rate to
10−4 for sequential and 5 · 10−4 for episodic model, while the batch size was set to 128 for both
models. We trained all models on NVIDIA GTX1080Ti GPU for 400 epochs after which there
were no significant improvements, while for the fairness of the evaluation in the experiments
below, we used an Intel Core i7-9750H CPU.

5.2 Exepriments on the dataset

In the first part of the experiments, we focus purely on analyzing the planning performance,
without any direct reference to the realization of the planned paths except for the feasibility

Experimental verification of the neural network-based path planning for car-like vehicles 74

validation, which is done purely geometrically. In our experiments, we used a mathematical
model of a Kia Rio III [1], whose physical dimensions are the following:

• distance from the rear axle to the rear bumper 𝐿𝐵 = 0.67m,

• distance from rear axle to front bumper 𝐿𝐹 = 3.375m,

• distance between axles 𝐿 = 2.57m,

• vehicle width 𝑊 = 1.72m.

Moreover, for the length 𝐿 and maximal steering angle 𝛽𝑚𝑎𝑥 = 0.53 rad, the maximal admissible
path curvature is 𝜅𝑚𝑎𝑥 = 0.227 1

m . The subset of the desired states 𝑄𝑑 is defined around a given
desired state 𝑞𝑑, such that its elements should not lie further than 0.2m from the 𝑞𝑑 both in 𝑋
and 𝑌 axes, and the orientation 𝜃 should satisfy 0.05 rad.

We evaluate the performance of the considered planners in terms of accuracy, which we define as
a ratio of the feasible paths generated by the planner for the test set of path-planning problems
(defined in Section 2.3.5) to the cardinality of this set. In our considerations, feasibility is defined
by simultaneously zeroing: collision loss ℒ𝑐𝑜𝑙𝑙, curvature loss ℒ𝑐𝑢𝑟𝑣, and overshoot loss ℒ𝑜𝑣𝑒𝑟,
which ensure that the path is collision-free, possible to follow with a limited steering wheel angle
and leads to the close neighborhood of the goal.

5.2.1 Performance

First, we want to qualitatively analyze the planning abilities of the proposed neural network-
based motion planners. To do so, we show its performance on several maps from the test set
by visualizing the areas that are feasibly reachable with the plans generated by the planner
(assuming nominal motion along the path). These visualizations, together with sample planned
paths are presented in Figure 5.1. One can see that our proposed planners learned to plan
feasible paths that cover wide areas of accessible state space in previously unseen environments.
Nevertheless, some areas that seem reachable are not covered by the plans generated by our
planners, which illustrates that the proposed planners are not complete. However, they can still
perform complex maneuvers in narrow passages that require very precise collision avoidance and
judicious use of the available maximum turning angle. We also show that our planners can use
both high-quality maps obtained from the CARLA simulator, as well as lower-quality maps,
which are obtained from real LiDAR measurements. Speaking about the differences between
proposed planners, we can see that they differ in terms of the size and color of the heatmaps.
Although sometimes one or another planner does better on individual maps, a general trend can
be noticed that the sequential planner generates slightly more extensive heatmaps. This may
be caused by the fact that the path generated by the sequential planner is considered feasible
if it reaches a set of configurations around the desired one 𝑄𝑑 (see Sections 2.2 and 2.3.4) but
also by the smaller level of its smoothness when compared to the ones generated by the episodic
planner, which allows for more flexible maneuvering at the price of smoothness of control, and
thus driving comfort. This difference in path smoothness is also visible in Figure 5.1, especially
thanks to the paths traced by the front corners of the vehicle.

Experimental verification of the neural network-based path planning for car-like vehicles 75

Figure 5.1: Visualizations of the sets of the final states (denoted by heatmaps) for which
the planner (top rows – sequential, bottom rows – episodic) generated feasible paths (so-called
reachable sets). Darker dots represent wider ranges of possible end orientations of the vehicle,
expressed in degrees. Colored lines depict paths drawn by the four corners of the vehicle and

the guiding point while moving along the path provided by the network.

Next, we would like to analyze quantitatively the performance of the proposed planners on the
test set introduced in Section 2.3.5 and compare it with the state-of-the-art motion planners.
In Table 5.1, we compare the proposed methods with the SBMP algorithms in the Dubins state
space in terms of accuracy, accumulated vehicle orientation change within an episode, and length
of the planned path. The maximal planning time was set to 50ms to match the time scale of
the proposed planners, which is also reasonable from the autonomous driving perspective, as
rapid planning is necessary for such fast-moving robots. One can see that using appropriate
state space and modern SBMP algorithms results in very fast and accurate motion planning.
However, when the time budget for the planning is low, as in the considered case, we see that
learning-based solutions achieve a better success ratio. Nevertheless, BIT*, AIT*, and ABIT*
outperform our methods in terms of the path length and accumulated turn. This is an effect of
the use of Dubin’s search space, which guarantees the possibility of finding the shortest paths
with a minimal amount of turns. However, this comes at a price of curvature discontinuity,
which results in the necessity of stopping to change the curvature of motion, and poor comfort
for passengers, as the curvature of the motion at the turns is maximal, thus the centrifugal force.

Table 5.1: Comparison of the proposed methods with the SBMP algorithms in the Dubins
state space. The maximal planning time was set to 50ms. Both accumulated turns and lengths

are reported only for paths valid for all planners (except RRT* due to its low accuracy).

Planner RRT* BIT* AIT* ABIT* sequential episodic
Accuracy [%] 15.97 84.19 84.12 84.15 92.24 90.11

Accum. turn [rad] — 0.63 ± 0.43 0.63 ± 0.43 0.63 ± 0.43 0.78 ± 0.55 0.94 ± 0.55
Length [m] – 11.6 ± 6.1 11.6 ± 6.1 11.6 ± 6.1 11.8 ± 6.2 13.9 ± 5.3

To mitigate these phenomena, one has to resort to planners that plan smoother paths. A

Experimental verification of the neural network-based path planning for car-like vehicles 76

comparison of those is presented in Table 5.2. We compared our solutions with the SL planner
and a BIT* planner with the cc-Dubins extender, whose segments are guaranteed to maintain
the continuity of the curvature. As these methods need more computations to plan, we limit
their maximal runtime to 100ms. We can see that by increasing the continuity BIT* lose on
the accuracy, also SL solves only about half of the considered motion planning problems, while
the proposed methods have a success ratio above 90%. In terms of the planning time, sequential
planner is comparable to BIT* and about 2 times slower than SL, as it needs to query the
neural network multiple times. In contrast, the episodic planner performs only a single neural
network inference and thus achieves the shortest planning time of 11ms. The episodic planner
also generates paths of the lowest maximal curvature, which results in smaller centrifugal forces
acting on the car following this path and allows for taking these turns with greater velocity. In
contrast, the most accurate state-of-the-art approach – cc-Dubins BIT*, still plans paths with
very sharp turns due to the Dubins path definition.

When we were analyzing the reachable sets of the configurations we mentioned that the path
generated by the sequential planner is considered feasible if it reaches a set of configurations
around the desired one 𝑄𝑑, while the episodic planner reaches the desired state exactly. There-
fore, the comparison of the accuracies of sequential and episodic planners is biased towards the
former one. Therefore, to analyze quantitatively how the performance of the sequential planner
changes when the size of the set of the allowable end configurations 𝑄𝑑 is reduced, we added to
the Table 5.2 sequential† planner. In this case, the allowed deviation between the desired and
the actually reached configurations is reduced 10 times. The introduction of tighter constraints
on the final configuration in the training phase resulted in much harder problems to solve and
thus in the reduction of the accuracy parameter to about 80% and significantly higher maximal
curvatures.

Table 5.2: Comparison of the proposed methods with the planning methods that generate
smooth solutions. The sequential† planner is a sequential planner retrained with 10 times
tighter bounds imposed on the end configuration to enable more direct comparison with an

episodic planner that guarantees the exact reaching of the desired state.

Planner SL BIT* sequential sequential† episodic
Accuracy [%] 49.4 72.83 92.24 79.25 90.1

Time [ms] 23±27 45±35 43±2 43±2 11±1
Mean max 𝜅 [𝑚−1] 0.179 0.226 0.152 0.192 0.145

Continuity G2 G2 G2 G2 G5

5.2.2 Training speed

In Chapter 3 we stated that the proposed B-spline path definition and the proposed construction
method introduce an inductive bias on the generated paths. Here, we experimentally analyze
their impact on the training of the episodic model and refer it to the sequential one. In Figure 5.2,
we present the plot of epochs mean accuracy achieved by both methods on the training and
validation sets. One can see that thanks to the fact that for B-spline path representation, we are
able to fix the end configuration to be exactly equal to the desired state, which results in about
a 60% success ratio just in the first epoch of training. Fixing the end state relieves us of the
need to learn how to reach the goal, which significantly speeds up the training. Moreover, the

Experimental verification of the neural network-based path planning for car-like vehicles 77

speed up in training can be also attributed to the proposed path construction method. Thanks
to it, even a randomly initialized neural network can produce reasonable paths, which may solve
easier motion planning tasks.

Figure 5.2: Accuracy on the training (solid) and validation (dashed) sets obtained by the
sequential (red) and episodic (green) neural network planners throughout the learning process.
The episodic planner trains much faster thanks to the proposed B-spline path representation

and construction method.

5.2.3 Parameters of the methods

The proposed neural network-based motion planning methods don’t have many parameters.
Particularly, if we assume that the architecture of the network is fixed then the most important
parameter is the expressiveness of the path representation understood as the number of its
degrees of freedom. In the case of sequential planner, this is strictly connected with the number
of segments, while for episodic with the depth of the control points tree. We show the dependence
of the accuracy and planning time on these quantities in Figure 5.3 and 5.4. In both cases,
increasing the number of the path’s degrees of freedom results in increased planning time. For the
sequential planner the dependence is linear, as each additional segment results in the additional
neural network inference, which is the most computationally expensive part of this algorithm.
In turn for the episodic planner, growth is non-linear as for the deeper trees the amount of
computations needed to interpret the output of the neural network dominates the evaluation of
the neural network. Interestingly, in both cases, increasing the expressiveness of the path results
in better accuracy only up to some point, after which further increasing leads to the degradation
of the performance. For this reason, in the considered dataset, there is no reason to use a number
of segments bigger than 8 for the sequential planner and a depth bigger than 3 for the episodic
one.

Experimental verification of the neural network-based path planning for car-like vehicles 78

10 12 152 4 6 8
Number of segments

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

 [%
]

0

20

40

60

80

Ti
m

e
[m

s]

Figure 5.3: Accuracy and inference time with respect to the number of segments 𝑛𝑠𝑒𝑔.

2 3 4 5
Depth of the control points tree

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

 [%
]

10

11

12

13

14

15

16

Ti
m

e
[m

s]

Figure 5.4: Accuracy and inference time with respect to the depth of the control points tree.

5.2.4 Ablation studies

In this section, we want to analyze: (i) the impact of the total curvature loss that we introduced
in Section 2.3.4 to smooth out the paths generated by the neural network-based planners, and
(ii) qualitatively the differences between Dubins curves, cc-Dubins and paths generated by our
proposed planner

Impact of the total curvature loss. In Section 2.3.4 in equations (2.23) and (2.26) we
introduced a total curvature loss ℒ𝑡𝑐𝑢𝑟𝑣 that is meant to smooth out feasible paths generated
by the neural network-based planner. The conditional construction of the total loss of the
planner (2.23) shows us that total curvature loss is the only term in the loss function that is not
necessary to obtain a feasible path. Therefore, we analyze the impact of this part of our loss
function on the planner accuracy and the quality of generated paths. To conduct this analysis,
we trained and tested a new sequential model in the same conditions as the one analyzed in
previous experiments but without ℒ𝑡𝑐𝑢𝑟𝑣. Although the proposed solution can plan feasible
paths without this loss, and do it even slightly more frequently than when the loss is added –
92.53% vs. 92.24%, the impact of the ℒ𝑡𝑐𝑢𝑟𝑣 is visible in terms of the mean accumulated turn,
which is equal to 0.86rad for the model trained without the ℒ𝑡𝑐𝑢𝑟𝑣 term, and 0.78rad for the

Experimental verification of the neural network-based path planning for car-like vehicles 79

model trained with it. Note, that such a small difference in terms of the planner’s accuracies is
very likely caused by the fact that the total curvature loss is applied only to the paths that are
already feasible, such that it is not affecting the process of improving the infeasible paths.

A more direct view of the impact of the total curvature loss is presented in Figure 5.5, in
which we compare paths generated by the aforementioned models in several different scenarios.
Even though in all cases the maximal admissible curvature is not exceeded, paths in the top
row (generated by the model with full loss function) are visually much smoother than those
in the second row (generated by the model trained without ℒ𝑡𝑐𝑢𝑟𝑣). This smoothness is highly
desirable as it limits the sudden and frequent turns, which are usually unnecessary to perform the
maneuver, limit maximal allowed velocity, and cause problems in control. Moreover, maneuvers
performed smoothly, without redundant turns, are far closer to the expectations of human drivers
and give a feeling of safe and comfortable driving.

Figure 5.5: Sample paths generated by the sequential neural network-based motion planner
trained with the standard loss function (defined in Section 2.3.4) – first row, and with modified
loss function without ℒ𝑡𝑐𝑢𝑟𝑣 (defined in (2.26)) – second row. The presence of the total

curvature loss term results in much smoother-looking and easier-to-follow paths.

Paths representations. To better visualize the differences between the paths generated by
our planner and state-of-the-art competitors, i.e., BIT* with Dubins and cc-Dubins extenders,
we showed in Figure 5.6 paths they were able to generate in a scenario of very narrow turn.
For the considered problem our planner was able to plan a collision-free path, that satisfies the
curvature constraints within 12 ms, in contrast to the BIT* with continuous curvature Dubins
paths, which was unable to do so, even when allowed to plan for 100s. The reason it performs so
poorly may be due to problems with sampling states that are possible to connect with cc-Dubins
curves, and the need to include the clothoid segments between the straight lines and arcs, which
is hard to perform when the free space is heavily confined. In turn, BIT* with Dubins extender
manages to find a solution, however, finding a collision-free Dubins path in such a turn requires
the vehicle to stop 5 times in order to reach the goal. This type of maneuver exposes the problems
in planning with the use of curves which enables one to plan fast, but at the same time imposes
severe constraints on the curvature of path segments. In contrast, the proposed solution is able
to plan extremely fast, while being able to produce smooth paths with a curvature tailored to
the specific motion planning problem.

Experimental verification of the neural network-based path planning for car-like vehicles 80

ours
BIT* Dubins
BIT* cc-Dubins

Figure 5.6: Paths generated by the proposed planner (purple) and BIT* with continuous
curvature Dubins curves (orange) and BIT* with plain Dubins curves (blue) for the turn

scenario on the extremely narrow road.

5.3 Experiments in CARLA

In the second part of the experimental evaluation, we focus on the application of the proposed
neural network-based motion planning methods in the simulated autonomous vehicle in CARLA
simulator [38]. These experiments aim to show not only the pure planning performance, as it
was the goal of the previous section, but also the impact of planning time and execution of the
generated plans in conditions close to the real robotic platform. In these experiments, we used
the same neural network models as in the previous ones, however, due to the fact that Kia Rio
III is not modeled in CARLA we applied the planned paths on the Audi A2, whose physical
dimensions and steering properties are very similar to the Kia’s ones.

5.3.1 Controller

While for the experiments in the dataset, we assumed that the motion of the robot is nominal
along the planned path, i.e., ideal path tracking, this is typically not the case when deployed to
the robot, even in simulation. Thus, to perform the experiments in a simulated environment in
the CARLA simulator, we need a controller able to track the paths generated by the planner.
The way of representing the paths by the solution proposed in Chapter 2 allows to use of a specific
kinematic controller proposed in [53], however, it is not suitable to be directly used to track the
paths represented as B-splines. Therefore, to obtain a fair comparison between the performance
of the proposed planners and to bring the conditions closer to those of real autonomous driving
systems [7, 47], we decided to implement a MPC style controller that is agnostic to the definition
of the solution path.

In these experiments, we used a Cross Entropy Method (CEM) [147] based controller. The core
idea of this algorithm is to draw random controls from the normal distribution, simulate the
behavior of the system, assess its quality w.r.t. some performance criterion and then update
the parameters of the distribution of actions, and repeat the whole process until a satisfactory
sequence of actions is found or the time budget is spent. In our considered scenarios, we would
like to follow paths, thus we assume that the target velocity is controlled by an internal PID
controller in the CARLA simulator and is meant to be constant. Similarly, in CARLA we do not

Experimental verification of the neural network-based path planning for car-like vehicles 81

have control over the steering wheel rotation speed 𝜉 as in (2.2) but need to specify the desired
steering angle 𝛽 instead, which is then achieved using some low-level PID controller. Therefore,
we adjust the model introduced in (2.2) to the following form

�̇� =

⎡⎢⎢⎣
�̇�

�̇�

𝜃

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑣 cos 𝜃

𝑣 sin 𝜃

𝑣 tan 𝛽
𝐿

⎤⎥⎥⎦ , (5.1)

thus the purpose of our implemented CEM based controller is to adjust the steering angle 𝛽
to follow the planned path with some predefined velocity 𝑣. The pseudocode of CEM in our
particular case is presented in Algorithm 2. For a more detailed description of the CEM, we
refer the reader to [147].

The proposed algorithm has several parameters, which were set constant throughout all of the
experiments, i.e., the number of trajectories 𝑛𝑠 was set to 32, the number of elite trajectories
𝑛𝑒 = 4, simulation horizon ℎ was set to 15 steps with timestep 𝑇𝑠 = 50ms. Besides that, we
initialize all ̂︀𝛽𝑖 to 0.2 rad, while for the mean 𝛽 values we use 0 rad for all timesteps at the
beginning of the simulation and then we initialize 𝛽 with the values obtained at the end of the
last iteration of control algorithm. Finally, to choose the best actions we proposed a custom
optimality criterion that takes into account the quality of the path tracking in terms of the
position and orientation, as well as a penalty factor for too sharp changes in the steering angle
to encourage smooth driving. As a result, the criterion 𝐽 is computed as a sum of (i) the distance
between the robot position on the XY plane and the closest point on the path, (ii) the error
between the robot orientation and desired orientation at the closest point on the path, and (iii)
a sum of absolute differences between the steering wheel orientations in consecutive timesteps.
Both orientation-related parts of the criterion are scaled by a factor of 10.

Algorithm 2: CEM based control algorithm for the vehicle steering angle.
1 Given: number of elite trajectories 𝑛𝑒, number of trajectories 𝑛𝑠, simulation horizon ℎ,

vector of means of the steering angles 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽ℎ), vector of standard deviations of
the steering angles ̂︀𝛽 = (̂︀𝛽1, ̂︀𝛽2, . . . , ̂︀𝛽ℎ), vector of trajectory costs j, optimality criterion 𝐽 ;

2 j = inf, actual state 𝑞0 and velocity 𝑣 of the robot, timestep 𝑇𝑠;
3 while computatiton time is not exceeded and min(j) > �̄� do
4 for 𝑖← 1 to 𝑛𝑠 do
5 Draw a sequence of steering angles 𝛽𝑖 from a normal distrubution 𝒩 (𝛽, ̂︀𝛽);
6 Simulate behavior of the car for 𝑇𝑠 using (5.1), its initial state 𝑞0 and velocity 𝑣, and

a sequece of controls 𝛽𝑖 and store as a trajectory 𝜁;
7 The obtained trajectory 𝜁 of the vehicle state evolution is then assessed using

criterion 𝑗𝑖 = 𝐽(𝜁);
8 end
9 Find 𝑛𝑒 best trajectories and fit the normal distribution parameters (𝛽, ̂︀𝛽) using their

sample steering angles;
10 end
11 return 𝛽

argmin(j)
1 ;

Experimental verification of the neural network-based path planning for car-like vehicles 82

5.3.2 Planning typical maneuvers

In our experiments, we want to evaluate the ability of the proposed neural network-based planners
to plan feasible paths that are possible to be safely followed with the above-described controller
for several practical maneuvers including perpendicular, parallel, and diagonal parking, turning,
passing densely parked vehicles and avoiding the collision with the vehicle that suddenly crosses
the path of the ego-vehicle. Moreover, we would like to analyze the driving quality, which is
affected not only by the quality of the planned path but also by the time spent on the planning,
as during this time no new control is computed because both planning and control are calculated
in a single thread.

Each of the scenarios is defined as a map, the initial position of all agents, including the ego-
vehicle, schedules of controls for other moving agents, and a series of sparse waypoints (located
about 15-20m apart from the consecutive ones) that are guiding the vehicle to reach its ultimate
goal. The goal of the ego vehicle is to plan and execute a path to the next waypoint on the list.
To perform each of the maneuvers in a way that allows for reacting to the changing environment
conditions and thanks to the extremely fast motion planning provided by the neural networks,
the plan is recomputed every 10 timesteps of the simulation, which framerate is set to 20. To
achieve smooth transitions between waypoints, the next one is selected after reaching a distance
less than 7m from the actual one. In general, the desired velocity of the ego-vehicle is constant
but for the scenarios that should end in the steady-still configuration, we introduce a schedule
that after reaching some distance from the ultimate goal linearly reduces the desired velocity
down to 0.

Using the proposed neural network-based motion planning algorithms one can plan in a variety
of the typical driving scenarios. Here, we present the planning and execution of several typical
ones1.

First, we show 3 maneuvers that were executed successfully using both proposed planners:

• dynamically pass with a velocity of 5 m
s several vehicles parked on both lanes of the road

avoiding collisions with them (see Figure 5.7),

• go forward with a velocity of 7 m
s to find a parking space and perform parallel parking

(see Figure 5.8),

• turn left on the crossroad with a velocity of 10 m
s (see Figure 5.9).

For all of these maneuvers, our proposed planners were able to plan paths that followed by the
controller resulted in successfully completed tasks. Even though both of them are able to solve
these challenging tasks there are some notable differences in the planning time and the quality of
the planned paths. In particular, we want to analyze the path-tracking errors to find out which
ones are easier-to-follow and if there are any issues that result in deviations from the planned
paths for a common controller, as even the best-planned path if cannot be followed accurately

1the videos presenting the conducted experiments that are described below can be found at https://chmura.
put.poznan.pl/s/PLZPIpRr5C9O0Bn

https://chmura.put.poznan.pl/s/PLZPIpRr5C9O0Bn
https://chmura.put.poznan.pl/s/PLZPIpRr5C9O0Bn

Experimental verification of the neural network-based path planning for car-like vehicles 83

may result in dangerous behavior or even an accident. In Table 5.3 we present the integrals of
positional (IPE) and orientation errors (IOE) obtained by tracking the paths planned by the
sequential and episodic planners.

Table 5.3: Path-tracking performance for both proposed motion planning methods in 3
different scenarios. Results are represented as: integral of position error [m] / integral of

orientation error [rad].

Passing densely parked vehicles Turning left Parallel parking

sequential 0.48 / 0.52 0.81 / 0.4 1.54 / 0.62

episodic 0.2 / 0.25 0.56 / 0.18 0.25 / 0.13

Figure 5.7: Sequences of frames from the scenario of passing densely parked vehicles executed
with the use of the sequential (top rows) and episodic planners (bottom rows).

Figure 5.8: Sequences of frames from the scenario of parallel parking executed with the use
of the sequential (top rows) and episodic planners (bottom rows).

In the second part of our experiments in the CARLA simulator, we want to evaluate further the
practical differences in solving scenarios of typical maneuvers when using sequential and episodic
planners.

One of the fundamental differences between sequential and episodic planners is that the second
one guarantees that the desired goal state is reached precisely, at least for the nominal move along
the planned path. To evaluate the impact of the guaranteed boundary conditions satisfaction
we consider the task of diagonal parking between tightly parked cars. We performed several
experiments to identify the smallest gap between cars that allow collision-free parking for both
planners. In Figure 5.10 we present a failure scenario, in which the gap is set to 205cm, which

Experimental verification of the neural network-based path planning for car-like vehicles 84

Figure 5.9: Sequences of frames from the scenario of left turn executed with the use of the
sequential (top rows) and episodic planners (bottom rows).

is the biggest distance that causes the sequential planner to fail. In turn, in Figure 5.11 we
present the scenario with the smallest gap that allows for successful parking using episodic
planner – 175cm. Having in mind that the width of the ego-vehicle is 167.3cm, we can claim
that the proposed episodic planner allows for precise parking in extremely narrow parking places.
Note that the absolute numbers are taken from the datasheets of the considered cars, while the
practical collision bodies used in the simulator may be slightly different.

Figure 5.10: Sequence of frames from the scenario of diagonal parking in a 205cm wide
parking place using sequential planner.

Figure 5.11: Sequence of frames from the scenario of diagonal parking in a 175cm wide
parking place using episodic planner. Precise planning and superior path-tracking performance

allow for parking in a place that has only about 8cm of theoretical slack.

In all of the above-described experiments, the desired velocity was set to some predefined value.
In the next experiment, we want to evaluate how increasing the desired velocity affects the success
ratio of the perpendicular parking scenario. This scenario consists of the straight segment in
which the ego vehicle needs to avoid collision with the vehicle leaving the parking space, and then
perpendicular parking in a relatively wide parking place. A sequence of frames that visualize
the scenario is presented in Figure 5.12, while the success ratios of solving this scenario with
different velocities are presented in Table 5.4. Wide parking place allows for aggressive parking
with relatively high velocity. Both the sequential and episodic planners are able to successfully
park even with the desired velocity up to 9 m

s . However, the stable performance requires limiting
the velocity to 7 m

s for episodic planner, while the sequential one works consistently only up to
5 m

s .

Finally, we evaluated the proposed episodic neural network-based planner on the challenging task
of avoiding a collision with a car that suddenly crosses the ego vehicle’s trajectory. To make this
task even more challenging we set the desired velocity to 15 m

s and for responsiveness we replan
the path every 5th simulation iteration. Due to such high velocity and replanning frequency,

Experimental verification of the neural network-based path planning for car-like vehicles 85

Figure 5.12: Sequence of frames from the task of perpendicular parking using the episodic
planner.

Table 5.4: The number of successfully executed scenarios (out of 5) of perpendicular parking
for several different desired velocities. Plans generated by the episodic planner enable successful

parking with greater velocities.

5 m
s 7 m

s 9 m
s

sequential 5 3 1

episodic 5 5 2

we were unable to run the same experiment using the sequential planner as the relatively long
planning time was introducing a time delay that caused the controller instability.

A sequence of frames that visualize a collision avoidance scenario is presented in Figure 5.13.
The ego vehicle is going straight at the speed of 15 m

s , while suddenly the blue car changes lanes
and intersects its trajectory. Thanks to the frequent replanning, the ego vehicle is able to react
to the change in the environment and plan a path to smoothly avoid the collision.

Figure 5.13: Sequence of frames from the high-speed collision avoidance using the episodic
planner.

Chapter 6

Experimental verification of the

constrained neural kinodynamic

motion planning

6.1 Introduction

In Chapter 4 we introduced a novel approach to learning how to rapidly solve kinodynamic
motion planning problems using B-spline trajectory representation and neural networks. In this
Chapter, we want to verify the abilities of the proposed method to generate plans:

• under very tight planning time limitations,

• minimizing some optimality criterion,

• satisfying the robot’s internal limitations, such as maximal joint’s velocity, acceleration,
and torque,

• satisfying constraints imposed on the position and orientation of the end-effector,

• satisfying the boundary conditions imposed not only on the configuration but also on the
velocity and acceleration,

• lying in the collision-free space.

To evaluate these abilities we introduce 2 challenging motion planning tasks:

1. moving a heavy (close to the payload limit) vertically oriented object using KUKA LBR
Iiwa 14 robot,

2. high-speed hitting in the robotic Air-Hockey using KUKA LBR Iiwa 14 manipulator.

87

Experimental verification of the constrained neural kinodynamic motion planning 88

We chose KUKA LBR Iiwa 14 as this is a widely spread robotic manipulator with 7 degrees
of freedom which gives us great flexibility in terms of planning complex movements taking into
account the task and robot constraints.

6.1.1 Baseline motion planning algorithms

To obtain a fair perspective on the performance of the proposed motion planning algorithm, we
compared it with several State-of-the-Art motion planning algorithms that span the space of
different solutions to the considered motion planning problems:

• TrajOpt [151] – a motion optimization algorithm that utilizes Sequential Least Squares
Programming (SLSQP),

• CBiRRT [12] – a sampling-based path planning algorithm that uses RRTConnect [98] with
the projection of sampled points onto the constraint manifold,

• SST [105] – a sampling-based motion planning algorithm that builds a sparse tree of robot
configurations and extends it using random controls,

• Model-Predictive Motion Planning Network (MPC-MPNet) [102] – a sampling-based mo-
tion planning algorithm, which uses a neural network to determine the next node in a
search tree and CEM to steer towards this configuration.

It is worth noting, however, that the considered motion planning problems are extremely complex
as they join the problems of kinodynamic motion planning, with severe constraints imposed not
only on the joint’s velocities and accelerations but also on the movement of the end-effector,
which is highly-nonlinear w.r.t. the movements in joints. The only state-of-the-art approach that
matches all of the requirements is trajectory optimization [151]. In turn, the rest of the methods
need to be properly adjusted to meet the requirements or we need to accept their limitations.
For example, most of the algorithms are not suited to incorporate boundary conditions different
than positional ones, therefore, even if they can plan a feasible path to follow, they cannot ensure
the right hitting direction in the robotic Air Hockey.

To adjust SST and MPC-MPNet to work on the constrained motion planning problems, we
implemented the workspace constraints as obstacles. In the case of the equality constraints, we
added margins, for moving a vertically-oriented object, the object’s orientation was assumed
valid until the product of cosine of roll and pitch angles was bigger than 0.95, while for Air
Hockey hitting task, we added an acceptable deviation of 1 cm from the table surface. In turn,
to allow CBiRRT to plan in kinodynamic tasks we followed the idea introduced by the authors
of [12], which assumes that the movement is quasi-static, such that during the planning only
the feasibility of maintaining the robot in a given configuration is checked, while velocities and
accelerations are disregarded.

Moreover, to introduce a very competitive benchmark, in the Air Hockey hitting task we extend
the baseline by the Anchored Quadratic Programming (AQP) method [110], which is the current
state-of-the-art in this area – an algorithm developed specifically to solve the problem of planning
in the Air Hockey game.

Experimental verification of the constrained neural kinodynamic motion planning 89

6.1.2 Evaluation environment

Both the baselines and our method were evaluated in simulation environments developed using
ROS1 Noetic [140] and Gazebo [96]. The experiments of real Air Hockey hitting were possible
thanks to the in-house constructed physical setup [110] with a Kuka LBR Iiwa 14 robot, full-
scale Air-Hockey table, and OptiTrack. All considered motion planning methods were run on
the CPUs. For the experiments in simulation, we used an Intel Core i7-9750H CPU, while the
real robot experiment uses AMD Ryzen 9 3900x CPU.

6.1.3 Controller

To deploy the proposed motion planning method and fairly compare it with state-of-the-art
planners, we need a controller able to track planned trajectories. In particular, as we want to ex-
ecute fast trajectories on the constraint manifold we need a fast and precise one. Unfortunately,
the controller provided by the robot manufacturer has considerable problems with tracking fast
trajectories close to the robot’s limits. Therefore, to satisfy these requirements we used a decen-
tralized controller based on the Active Disturbance Rejection Control (ADRC) paradigm [52, 60].
Nevertheless, we kept the gravity compensation part of the KUKA controller in the inner control
loop on the real robot and mimicked its behavior in simulation. In Figure 6.1 we present the
general control scheme of our system.

ADRC Joint 1
Controller

ADRC Joint 2
Controller

ADRC Joint 7
Controller

KU
KA

 g
ra

vi
ty

 c
om

pe
ns

at
io

n KUKA LBR
IIWA 14

Joint Trajectory Controller Robot

Figure 6.1: General scheme of the controller used in our experiments. We utilized the KUKA
gravity compensation in the inner loop and the joint trajectory controller in the outer loop.

The crucial parts of the controller we used are the ADRC joint’s controllers in the outer loop.
ADRC is a paradigm of designing controllers that owes its effectiveness to the rapid online
estimation of the total disturbance, which is used to decouple the controlled system from the
actual perturbation acting on the plant. By total disturbance we understand an additional
fictitious state variable that represents the effects of the unmodelled parts of the controlled
system dynamics as well as external disturbances. In the case of the decentralized manipulator
controller, we assume that this disturbance encompasses unmodelled phenomena like stiction and
cross-couplings between joints. While in general, cross-coupling is a substantial part of the robot
dynamics, its impact is significantly reduced thanks to the robot design and high-ratio gears.
Nevertheless, we still need to estimate total disturbance to obtain high control performance.

Experimental verification of the constrained neural kinodynamic motion planning 90

This estimation in the ADRC paradigm is performed using extended state observer [118, 143],
which in our case is implemented as typical Luenberger observer [112]. In Figure 6.2, we present
schematically a 𝑖-th ADRC joint controller we used. In fact, specific joint controllers differ only
in terms of the observer gains 𝑙𝑧1𝑖 , 𝑙

𝑧2
𝑖 , 𝑙

𝑧3
𝑖 , controller proportional and derivative gains 𝑘𝑝𝑖

, 𝑘𝑑𝑖

and respective diagonal element of the mass matrix 𝑀𝑖𝑖. While 𝑀𝑖𝑖 elements are just taken from
the model, the rest of the parameters need to be set. To do so, we utilized the pole placement
technique [137], such that we needed to only choose the location of the poles for the controller
and observer. One of the most common approaches to place the poles is to locate them at a
single value −𝜔, where 𝜔 can be interpreted as a bandwidth, specifically observer bandwidth 𝜔𝑜

and controller bandwidth 𝜔𝑐. Based on these parameters one can easily compute the observer
and controller gains using the following formulas

(𝑙𝑧1𝑖 , 𝑙
𝑧2
𝑖 , 𝑙

𝑧3
𝑖) =(3𝜔𝑜𝑖 , 3𝜔

2
𝑜𝑖 , 𝜔

3
𝑜𝑖), (6.1)

(𝑘𝑝𝑖 , 𝑘𝑑𝑖) =(𝜔2
𝑐𝑖 , 2𝜔𝑐𝑖). (6.2)

Specific values of these bandwidths for all joints, which were used in the experiments we per-
formed, are described in the next section.

Extended state observer

Figure 6.2: General scheme of the ADRC-based joint trajectory controller.

6.1.4 Parameters of the algorithms used for evaluation

One of the key features of the research should be its reproducibility [56]. Therefore none of the
considered baseline methods was implemented by ourselves, instead, we relied on the following
implementations:

• for TrajOpt we employed the SLSQP minimization implemented in SciPy, with constraints
and cost function implemented by us, using Pinochchio library [23],

• for MPC-MPNet and SST we used the implementation provided by the authors of [102]
with some necessary modifications required to compile and run their code, and our C++
implementation of the heavy object manipulation and robotic Air Hockey systems which
also utilizes the Pinocchio library [23],

• for CBiRRT we used the OMPL [160] implementation and our own constraint and distance
definitions,

Experimental verification of the constrained neural kinodynamic motion planning 91

• for AQP we relied on the implementation provided by the authors of [110].

An important part of every motion planning method is its parameters. To make our compar-
ison fair we tried to adjust the parameters of these motion planning algorithms, to maximize
their performance. Appropriate parameter tuning is especially important for the sampling-based
motion planning algorithms, therefore we performed a random search of the parameters to find
the regions of the parameter space, which give the highest success ratios and shortest planning
times.

In the case of the SST and MPC-MPNet, some of their parameters are common because they
use the same algorithm (RRT*) under the hood, the difference is in the way of selecting the
node to expand and in the Expand procedure itself, which is done using MPC in MPC-MPNet
algorithm, while in SST random controls are used. Therefore, we set for both algorithms the
same parameters of the RRT* algorithm:

• Heavy object manipulation

– node search radius 𝛿𝐵𝑁 = 0.2m,

– witness radius 𝛿𝑠 = 0.1m,

– goal radius 𝑟𝑔 = 0.2m,

• Robotic Air Hockey hitting

– node search radius 𝛿𝐵𝑁 = 0.05m,

– witness radius 𝛿𝑠 = 0.02m,

– goal radius 𝑟𝑔 = 0.02m.

For the specific meaning of these parameters, we refer the reader to the original work on
SST* [105]. Regarding the Extend procedure, for both tasks, we set the m following param-
eters, for SST

• minimum number of steps – 1,

• maximum number of steps – 20,

• integration step – 5ms,

whereas for MPC-MPNet we set the following parameters of the CEM MPC solver

• number of samples – 64,

• number of elite samples – 4,

• maximal number of iterations – 30,

• convergence radius – 0.02,

• integration step – 10ms,

Experimental verification of the constrained neural kinodynamic motion planning 92

• Heavy object manipulation:

– motion time Gaussian – (𝜇𝑡, 𝜎𝑡) = (0.05, 0.1), clipped at time 𝑡𝑚𝑎𝑥 = 0.1 s,

– control Gaussian – (𝜇𝑐, 𝜎𝑐) = (0, 0.8𝜏),

• Robotic Air Hockey hitting:

– motion time Gaussian – (𝜇𝑡, 𝜎𝑡) = (0.1, 0.4), clipped at time 𝑡𝑚𝑎𝑥 = 0.5 s,

– control Gaussian – (𝜇𝑐, 𝜎𝑐) = (0, 0.5𝜏).

Nevertheless, despite the tuning of the above-mentioned parameters, obtained motion planning
times were relatively long, which may be caused by the innate difficulty of the considered problem
and very tight constraints, which can be viewed as narrow passages in the configuration space [92].
For both SST and MPC-MPNet, we used the Euclidean distance function in the task space.
This simplifies the motion planning problem a lot, as it requires the planners to plan only for
the position, disregarding the task of reaching the desired velocity. It is also possible to define
a distance function that takes into account the distance in the space of the velocities weighted
with the distance in the task space, however, this makes the exploration of the states-space
inefficient, slowing down further the planning process. Another very important parameter of
the MPC-MPNet is the training data. The MPC-MPNet relies on behavior cloning, therefore,
we trained it on the solutions generated by AQP in the Air Hockey task, and by our proposed
method for lifting a heavy object. For CBiRRT, for both tasks, we set the goal radius to 1 cm,
and the allowed tolerance of the constraint to 0.01, while for the range parameter, we used
a value automatically determined by OMPL. In the case of the TrajOpt implementation in
SciPy [97, 168], there are no parameters that affect the performance of the method, so we only
limited the maximum number of iterations to 100, to avoid prolonged optimization.

Our proposed method also has some important parameters that have to be chosen. For our
experiments, we set the nominal number of control points of the 𝑝(𝑠) and r B-splines to 15 and
20 respectively, as it gives enough freedom to plan accurate trajectories that satisfy constraints.
To ensure a high level of trajectory smoothness we set the degree of both B-splines to 7, and the
number of neurons in each layer of the proposed neural network to 2048. Note that the impact
of the size of the neural network and the number of control points is evaluated in the ablation
study (see Section 6.5), where we show how robust to these parameters is the proposed approach.
Another group of parameters is the one related to the manifold metric optimization. We set the
initial values of the constraint scaling factors m(0) to zeros for the heavy object manipulation,
while for the Air Hockey task, we proposed a different initialization, which was meant to equalize
the initial gradients of loss functions and was equal to m(0) =

[︁
m

(0)
𝒯 m

(0)
�̇� m

(0)
𝑞 m

(0)
𝜏

]︁
=[︁

1 1 10−2 10−4
]︁
. For the heavy object manipulation task, we defined the following levels of

the allowed constraint violations 𝐶𝐸 = 10−6, 𝐶𝑂 = 10−5, 𝐶�̇� = 6 · 10−3, 𝐶𝑞 = 𝐶𝜏 = 6 · 10−2,
while for the hittng task 𝐶𝒯 = 2 ·10−6, 𝐶�̇� = 6 ·10−3, 𝐶𝑞 = 6 ·10−2, 𝐶𝜏 = 6 ·10−1. Note that the
subscripts indicate to which constraint is a given value related, such that 𝒯 relates to constraints
of the Air-Hockey table geometry, �̇� joints maximal velocities, 𝑞 joints maximal accelerations, 𝜏
joints maximal torques, 𝐸 collisions with the environment, and 𝑂 orientation constraints. The
update step for the m parameters was set to 10−2 for both motion planning problems. Finally,

Experimental verification of the constrained neural kinodynamic motion planning 93

the learning step for neural network parameters was set to 5 · 10−5, while the batch size was set
to 128.

Last but not least, in our experiments, we are not only evaluating the plans themselves but
also the effects of their execution by the controller. Due to this reason, we needed to choose
the parameters of the used control algorithm. Thanks to the parametrization introduced in
Section 6.1.3 to fully define the controller parameters we only need to set observer 𝜔𝑜 and
controller 𝜔𝑐 bandwidth for each joint. In Table 6.1 we presented the chosen values that provided
good tracking performance.

Table 6.1: Parameters of the ADRC-based controller.

Parameter Value

𝜔o

[︀
60 80 100 140 120 120 140

]︀
𝜔c

[︀
30 35 60 60 60 60 60

]︀

6.2 Kinodynamic planning for moving a heavy vertically

oriented object in simulation

6.2.1 Task description

The goal of this task is to quickly move a heavy cuboid (12 kg, which is close to the pay-
load limit of 14 kg) between two blue boxes using Kuka LBR Iiwa 14, without any collisions,
while maintaining the upward orientation of the cuboid. An illustration of this task is shown
in Figure 6.3. This task requires planning a joint trajectory between two random configura-
tions, minimizing movement time, and simultaneously satisfying joints’ velocity, acceleration,
and torque constraints. Moreover, the robot’s trajectory has to ensure that both the robot and
the handled object will not collide with the environment and that the object will be oriented
vertically throughout the whole movement.

Experimental verification of the constrained neural kinodynamic motion planning 94

Figure 6.3: A Gazebo simulation of the task of kinodynamic planning for moving a heavy
vertically oriented object using KUKA LBR Iiwa 14 between two boxes.

6.2.2 Dataset and method adjustments

6.2.2.1 Dataset

To learn how to solve the task, we generated a dataset of 26400 planning problems of this
kind, split into training (24000) and validation (2400) subsets. In the dataset, we randomize
both the initial and desired position of the object and the initial and desired robot’s null space
configuration. Both initial and desired velocities are set to 0. Note, that the dataset used
in the training and validation contains only motion planning problems, without precomputed
solutions, thanks to the use of a loss function that does not require any supervision. Therefore,
the generation of the dataset does not require a significant amount of computation, and the
performance of the method trained on this dataset is not bounded by the quality of the solutions
included in the dataset.

The dataset for this experiment was generated in the following way:

1. draw random initial and desired position of the heavy object,

2. assume that the pedestal boxes have fixed dimensions and are located just beneath the
objects,

3. draw initial guess configuration of the robot,

4. starting from this configuration, optimize the robot’s initial configuration, such that its
end-effector position matches the initial position of the heavy object, and the orientation
is vertical,

5. validate if the robot in the initial configuration does not collide with the environment and
if it does not violate the torque constraints,

Experimental verification of the constrained neural kinodynamic motion planning 95

6. starting from the initial configuration, optimize the robot desired configuration, such that
its end-effector position matches the desired position of the heavy object,

7. validate if the robot in the desired configuration does not collide with the environment and
if it does not violate the torque constraints.

The specific parameters values and ranges are shown in Table 6.2, where 𝑧0, 𝑧𝑑 represents the
object’s initial and desired position along 𝑧-axis, whereas 𝑜ℎ = 0.15m is the fixed height of the
object.

Table 6.2: Parameters of the data generation procedure for heavy object manipulation task.

Parameter Value

Initial object position (𝑥0, 𝑦0, 𝑧0) ∈ [0.2; 0.6]× [−0.6;−0.3]× [0.2; 0.5]

Desired object position (𝑥𝑑, 𝑦𝑑, 𝑧𝑑) ∈ [0.2; 0.6]× [0.3; 0.6]× [0.2; 0.5]

Pedestal 1
{(𝑥, 𝑦, 𝑧) | 0.2 ≤ 𝑥 ≤ 0.6,

− 0.6 ≤ 𝑦 ≤ −0.3, 𝑧 ≤ 𝑧0 − 𝑜ℎ}

Pedestal 2
{(𝑥, 𝑦, 𝑧) | 0.2 ≤ 𝑥 ≤ 0.6,

0.3 ≤ 𝑦 ≤ 0.6, 𝑧 ≤ 𝑧𝑑 − 𝑜ℎ}

Initial guess robot configuration
𝑞 ∈ [−𝜋

2
;
𝜋

2
]× [0;

𝜋

2
]× [−𝜋

2
;
𝜋

2
]

× [
𝜋

2
; 0]× [−𝜋

2
;
𝜋

2
]2 × [−𝜋;𝜋]

6.2.2.2 Loss functions

Each of the tasks we place before the robots may require the use of different loss functions.
However, based on the task requirements one can easily decide what kind of loss functions are
necessary to learn how to solve a particular task. In the case of the task we consider in this
Section, the optimality criterion is to minimize the time of the movement. Thus, we can use the
task loss function based on (4.34):

ℒ(𝜁f) =
∫︁ 𝑇

0

𝑑𝑡 =

∫︁ 1

0

r−1(𝑠)𝑑𝑠. (6.3)

In terms of the constraint losses, some of them are rather generic and were already defined in
Section 4.2.5. Particularly, in this task we want to satisfy the constraints related to the maximal
joint’s velocity, acceleration, and torques, which were defined in (4.48-4.50). The only adjustment
we made w.r.t. the nominal form of these losses, is the use of Huber loss function 𝐻, instead of
the square of the internal loss. In practice, we observed that principal squaring may introduce
too big updates, especially at the beginning of the training, and cause instabilities. These
observations were rather general, therefore in all constraint losses we followed the same idea of
using a Huber loss that is much more robust to outliers while having the same characteristics for

Experimental verification of the constrained neural kinodynamic motion planning 96

the values close to constraint satisfaction. Moreover, to satisfy the specific constraints imposed
on this task, we add three additional loss terms, i.e., vertical orientation loss, robot collision loss,
and object collision loss. The vertical orientation loss is defined by

ℒ𝑂(𝑠) =

∫︁ 1

0

𝐻(1− R2,2(𝑞(𝑠)))r
−1(𝑠)𝑑𝑠, (6.4)

where R2,2 is the element of the end-effector rotation matrix with an index of (2, 2), robot
collision loss defined by

ℒ𝐸𝑟 (𝑠) =

∫︁ 1

0

𝐻

⎛⎝ ∑︁
𝑝∈FK𝑘𝑐(𝑞(𝑠))

ReLU(0.15− 𝑑𝑒𝑢𝑐(𝑝,𝐸))

⎞⎠ r−1(𝑠)𝑑𝑠, (6.5)

where 𝐸 represents the set of the collision objects in the environment (pedestals), FK𝑘𝑐 is a
set of points in the workspace located along the kinematic chain (representation of the robot
geometry), and 𝑑𝑒𝑢𝑐(𝑋,𝑌) is a Euclidean distance between 𝑋 and 𝑌 , and finally, object collision
loss

ℒ𝐸𝑜(𝑠) =

∫︁ 1

0

𝐻

⎛⎝ ∑︁
𝑝∈FK𝑜(𝑞(𝑠))

ReLU(𝑑𝑒𝑢𝑐(𝑝,𝐸) · I(𝑝,𝐸))

⎞⎠ r−1(𝑠)𝑑𝑠, (6.6)

where FK𝑜 represents the set of points that belong to the handled object and I(𝑋,𝑌) is an
indicator function, which is equal to 1 if 𝑋 ∈ 𝑌 and 0 otherwise. In our experiments, we defined
environment 𝐸 as two cuboids defined in Table 6.2. The heavy object handled by the robot is
a cuboid with dimensions 0.2× 0.2× 0.3 m, which for collision-checking purposes is represented
by its corners. The robot itself is represented by the positions of the joints in the workspace and
points linearly interpolated between them, such that no point lies further than 10 cm from its
neighbors. We assume that there is no collision if the obstacles are at least 0.15m away from
the point of the kinematic chain.

6.2.3 Quantitative comparison with state-of-the-art

Finally, after preparing a training dataset and appropriate loss functions we can train our pro-
posed neural network-based motion planner and compare its performance with several state-of-
the-art motion planners. To perform the evaluation we generated 2400 random test tasks, using
the same procedure that was used to generate the training set but ensuring that the generated
data points are different from the ones used for training. For all these tasks, we asked all plan-
ners to plan the solution movements, which were then executed in simulation using the control
algorithm described in Section 6.1.3.

The results of these experiments are presented in Figure 6.4. The first two bar plots show that
our planner reaches the goal in all scenarios, and in nearly 97% of them, it does not violate any
of the constraints. In contrast, comparable results are obtained only by CBiRRT [12], which
reaches the goal in 86.5% of cases, and only about 66% are valid. The reason for this may
be that CBiRRT is not able to accurately validate the feasibility of motions due to the quasi-
static assumption. Moreover, this method needs more than 19 times more time to compute the
solution (in terms of median values), and generated solutions are almost 3 times longer. The

Experimental verification of the constrained neural kinodynamic motion planning 97

0

20

40

60

80

100
Success ratio [%]

0

20

40

60

80

100

Success ratio
(no constraints) [%]

10 1

100

101

102

103

104

105 Planning time [ms]

0

2

4

6

8

Motion time [s]

10 4

10 3

10 2

10 1

100

101

Vertical error [rad s]

CNP-B (ours) CBiRRT [11] TrajOpt [25] MPC-MPNet [54] SST [41]

Figure 6.4: Planners statistics on the task of rapid movement of a heavy object with orien-
tation constraints and collision avoidance.

last plot shows the error of maintaining the object in an upward position, which we compute
as an integral along the trajectory of the sum of the absolute values of roll and pitch angles.
The smallest deviation from the orientation constraint is achieved by our proposed solution,
while the highest violations are generated by executing the trajectories planned using SST [105].
The only statistic in which our planner is not outperforming significantly other planners is the
time of the planned motion. However, this metric cannot be considered without the success
ratios, due to the fact that computing a short path that is not solving the given task is not
particularly challenging. Last but not least, the result of the MPC-MPNet [102] deserves special
attention, as it is the state-of-the-art learning-based solution for kinodynamic motion planning.
We trained it using the plans generated by our planner, however, it was unable even to come
close to the results achieved by the TrajOpt [151] and CBiRRT [12], not to mention our proposed
planner. This behavior may be assigned to the very specific way of introducing randomness in
this method, which relies on a strong dropout used at the inference phase. Thanks to this,
MPC-MPNet relatively easily violated very strict constraints that were present in the considered
motion planning problem.

6.3 Planning high-speed hitting movements in the simu-

lated robotic Air-Hockey

6.3.1 Task description

The goal of this task is to score a goal in the game of robotic Air Hockey from a steady-still puck.
This should be done by moving the Kuka LBR Iiwa 14 robot handling the mallet from some
predefined initial configuration to the position of the puck and achieving the end-velocity vector
pointing towards the middle of the goal of the opponent. An illustration of this task is shown
in Figure 6.5. The desired configuration of the robot and velocities in its joints are determined
using the optimization algorithm proposed in [110] for a given puck position and desired velocity
direction. To achieve feasible and dynamic hitting movement we require the planner to generate
a joint trajectory that satisfies the robot joint’s velocity, acceleration, and torque constraints
and minimize movement time. We also impose task space constraints, such that the mallet

Experimental verification of the constrained neural kinodynamic motion planning 98

handled by the robot remains on the table surface and between the bands throughout the whole
movement.

This task challenges the planner in several important ways. First, to use a planner for generating
the movements in the robotic Air Hockey it needs to be extremely fast, as the game could be
very dynamic. Also, the movement of the robot needs to be high-speed to catch up with the pace
of the game but at the same time, the mallet moved by the robot has to obey a strict constraint
of moving only on the table plane. Finally, it is extremely important to plan trajectories that
satisfy velocity, and acceleration constraints such that the planned motion is feasible to be tracked
accurately, and boundary conditions, such that the planned motion results in hitting the puck
towards the goal.

Figure 6.5: A Gazebo simulation of the task of fast hitting in the simulated game of robotic
Air Hockey with a KUKA LBR Iiwa 14.

6.3.2 Dataset and method adjustments

6.3.2.1 Dataset

To learn how to solve the considered task, we generated a dataset of 19800 Air Hockey hitting
planning problems, split into 2 subsets: training (18000) and validation (1800), while the test set
was defined separately. The generation of a single data point of these datasets can be described
with the following steps:

1. draw random initial and desired position of the mallet, such that they are at least 10 cm

apart and fit into the sets defined in Table 6.3,

2. starting from the base configuration (defined in Table 6.3), optimize the robot’s initial
configuration, such that the position of its end-effector matches the initial position of the
mallet,

3. using the desired mallet position and the position of the goal, define the desired hitting
angle, that points towards the middle of the goal, and add uniform noise of a range ±0.3 rad
to it,

Experimental verification of the constrained neural kinodynamic motion planning 99

Table 6.3: Parameters of the data generation procedure for Air Hockey hitting task.

Parameter Value

Initial mallet position (𝑥, 𝑦, 𝑧) ∈ [0.6; 0.7]× [−0.05; 0.05]× [0.155; 0.165]

Desired mallet position (𝑥, 𝑦, 𝑧) ∈ [0.65; 1.3]× [−0.45; 0.45]× {0.16}

Base robot configuration 𝑞0 = [0 0.697 0 − 0.505 0 1.93]

4. compute the desired joint velocity of the robot that maximizes the manipulability along
the hitting direction using the optimization procedure proposed in [110],

5. in half of the cases randomly scale the magnitude of the desired joint velocity, and in the
other half set it to a maximal one,

6. validate the possibility of performing the hit, by analyzing if it is possible to avoid a collision
after the hit, i.e., if the point defined by 𝑝ℎ = 𝑝𝑑 + 𝑣ℎ · 50ms lies between the table bands,
where 𝑝𝑑 is the desired hitting point, and 𝑣ℎ is the hitting velocity in the workspace.

Note, that similarly to the previous task, the generated dataset does not contain any precomputed
solution, only motion planning problems.

While the above-described dataset is useful for learning how to plan for a very challenging
problem of high-speed robotic Air-Hockey hitting, using our proposed motion planning method
we can solve even more difficult ones, namely rapid replanning of the trajectory that smoothly
connects to the current robot’s motion. To learn this behavior, we need to create a dataset that
is similar to the one for the steady-still hitting, however, far more diversified. To learn how to
replan, we need to know how to plan between any two feasible configurations in the workspace.
Moreover, to make our planner more versatile and to enable it to plan from any initial state we
also randomized the desired hitting direction and initial velocity. Finally, to ensure a smooth
connection to the previous trajectory, also at the level of controls, we randomized the initial
joint’s acceleration. The data generation procedure scheme is similar to the one shown above
and differs only in the following steps

1. Initial and desired mallet positions range defined by (𝑥, 𝑦, 𝑧) ∈ [0.6; 1.3] × [−0.45; 0.45] ×
{0.16}

3. draw a hitting angle which differs from the direction of the line connecting initial and
desired positions no more than 2

3𝜋,

5. in 80% of the cases randomly scale the magnitude of the desired joint velocity, and set to
maximal in the rest,

7. compute random initial joint velocity constrained to the table manifold, or set it to 0 in
20% of cases,

8. compute random initial joint acceleration constrained to the table manifold.

Experimental verification of the constrained neural kinodynamic motion planning 100

The created dataset consists of 120 000 samples, from which 112 000 belong to the training set
and the rest to the validation set.

6.3.2.2 Loss functions

To learn how to plan robot motions for high-speed robotic Air Hockey hitting we need to define
appropriate loss functions. The goal in this case is also to move as fast as possible, thus the task
loss can be defined in the same way as in (6.3). However, we observed that when the trajectory
curvature in the workspace and the robot’s joint velocities are high, then the robot controller has
problems with accurate trajectory tracking. Therefore, we introduce an additional centrifugal-
forces-related regularization term to the typical time-minimization task loss and define the task
loss function by

ℒ(𝜁f) =
∫︁ 1

0

(︀
1 + 𝜂𝜅𝑒𝑒(𝑠)𝑣

2
𝑒𝑒(𝑠)

)︀
r−1(𝑠)𝑑𝑠, (6.7)

where 𝜂 = 0.01 is an experimentally chosen regularization factor, while 𝜅𝑒𝑒 and 𝑣𝑒𝑒 are respec-
tively the curvature and velocity of the end-effector trajectory.

In turn, in the case of the constraints function we used standard ones for penalizing the viola-
tions of the joint’s velocity, acceleration, and torque limits (see (4.48-4.50)), and introduced an
additional constraint manifold loss term that penalizes the displacement of the robot end-effector
from the Air Hockey table surface. We define this loss function as the integral over the sum of
the losses in 𝑥, 𝑦, 𝑧 directions

ℒ𝒯 (𝜁f) =

∫︁ 1

0

(︀
ℒ𝒯𝑥(𝑠) + ℒ𝒯𝑦 (𝑠) + ℒ𝒯𝑧 (𝑠)

)︀
r−1(𝑠)𝑑𝑠, (6.8)

where specific local losses are defined by

ℒ𝒯𝑥(𝑠) =𝐻(ReLU(𝒯𝑥 − FK𝑥(𝑞(𝑠)))) +𝐻(ReLU(FK𝑥(𝑞(𝑠))− 𝒯𝑥)), (6.9)

ℒ𝒯𝑦 (𝑠) =𝐻(ReLU(𝒯𝑦 − FK𝑦(𝑞(𝑠)))) +𝐻(ReLU(FK𝑦(𝑞(𝑠))− 𝒯𝑦)), (6.10)

ℒ𝒯𝑧 (𝑠) =𝐻(𝐹𝐾𝑧(𝑞(𝑠))− 𝒯𝑧), (6.11)

where 𝒯𝑥, 𝒯𝑥, 𝒯𝑦, 𝒯𝑦 are the lower and upper boundaries of the table in the 𝑥 and 𝑦 directions,
while 𝒯𝑧 is the table surface height. In turn, FK𝑥, FK𝑦, FK𝑧 stands for the 𝑥, 𝑦 and 𝑧 components
of the mallet position determined using forward kinematics FK.

6.3.3 Quantitative comparison with state-of-the-art

Finally, we trained our proposed neural network-based motion planner on the prepared dataset
using introduced loss functions and compared its performance with several state-of- the-art
motion planners on the set of 1681 hitting scenarios. These hitting problems were not present in
the training and validation sets, and they were prepared by setting the initial robot configuration
to the base one and locating the puck on a 41×41 uniform grid of locations in the range of the puck
positions in the training data. For all these tasks, we asked all planners to plan the solution

Experimental verification of the constrained neural kinodynamic motion planning 101

0

20

40

60

80

100
Score ratio [%]

0

20

40

60

80

100
Hit ratio [%]

101

102

103

104

105 Planning time [ms]

0

1

2

3

4

5

Puck velocity [m/s]

0

1

2

3

4

Hitting time [s]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
Z-axis error [mm s]

CNP-B (ours) AQP [8] TrajOpt [25] SST [41] MPC-MPNet [54] CBiRRT [11]

Figure 6.6: Planners statistics on the task of hitting in the simulated robotic Air Hockey.

movements, which were then executed in simulation using the control algorithm described in
Section 6.1.3.

One of the key challenges of this task is that to score a goal the desired configuration has to be
reached with a given velocity. Satisfaction of this constraint is non-trivial for many of the motion
planning algorithms, especially sampling-based ones. Therefore for CBiRRT, MPC-MPNet and
SST algorithms, we simplified the task, such that their goal was to hit the puck just by reaching
the puck position disregarding the desired end velocity direction, i.e., we computed the distance
function only for positional coordinates. Moreover, to train the learning-based baseline planner
MPC-MPNet we used the trajectories generated by the CNP-B algorithm.

In Figure 6.6 we present the statistical evaluation of all considered planners on the task of the
robotic Air Hockey hitting from the steady-still puck. Even though we simplified the task for
MPC-MPNet and SST planners, they cannot plan trajectories within a reasonable time. The
only sampling-based algorithm that is able to reach the target in almost all scenarios is CBiRRT,
however, it produces plans that are very hard to follow (see z-axis error chart in Figure 6.6).
Far better performance is achieved by optimization-based planners (TrajOpt and AQP), which
always hit the puck and score in 91.97% and 94.88% of scenarios respectively. The main limitation
of TrajOpt is that it requires nearly 4s on average to compute the plan, whereas the AQP
median planning time is 26ms. A similar planning time scale is achieved only by our proposed
method, which enables one to plan within 6.5ms on average. Moreover, our solution achieves a
99.28% scoring ratio, plans the fastest trajectories (except for MPC-MPNet which plans shorter
trajectories but rarely hits the puck not to mention scoring), obtains on average highest puck
velocities, and despite this, it generates the trajectories that are possible to follow with the
accumulated 𝑧-axis deviation smaller than 3mm·s.Interestingly, AQP is a state-of-the-art solution
tailored specifically to planning for robotic Air Hockey, and yet its performance is dominated in
terms of all considered criteria by the solution trained on automatically generated data using
our general framework.

6.3.4 Qualitative results for replanning

In the previous section, we have quantified how the proposed solution compares to state-of-the-
art solutions in the task of hitting a steady-still puck using a manipulator starting its motion
from a steady state. However, our proposed planner can do even more. Due to the short
and deterministic planning time, and the ability to satisfy boundary conditions, our proposed

Experimental verification of the constrained neural kinodynamic motion planning 102

Figure 6.7: Sequence of frames form the replanning scenario. The robot starts the hitting
motion with the puck located in the upper part of the table, but after 300ms puck is moved
to the lower part. In response to this, CNP-B immediately replans the trajectory and scores

the goal.

approach allows for solving tasks, that are impossible to solve using state-of-the-art planners,
i.e., replanning the robot moves on the fly and smoothly connecting the new motion to the old
one.

In this case, we consider a situation when the robot is performing some previously computed
plan, and in the meantime, the goal of the movement changes, e.g., the desired hitting direction
or the puck’s expected position has changed. For this kind of task, the planning time of almost
all state-of-the-art methods is too long to react on time. Moreover, classical motion planning
methods do not give any practical guarantee about the maximal planning time for such a task.
Unlike these approaches, our solution needs a small constant amount of computation to plan
the motion. Therefore, we can predict a robot configuration located forward in time along the
current trajectory, and plan from this configuration, taking into account the smoothness of the
motion and continuity of control, by imposing the boundary conditions on the planned motion.

To visualize on-the-fly replanning we prepared a scenario where the robot tries to hit the puck,
but after about 300ms from the beginning of the motion, the puck position changes suddenly.
In response to this, the robot replans the trajectory from the point on the actual trajectory
that is located a few tens of milliseconds in the future (to compensate for the non-real-time
operating system and nondeterministic communication times). Then it waits until the vicinity
of this point is reached and switches to the new plan. In Figure 6.7 we show a sequence of frames
that visualize the above-described replanning procedure in action. One can see that the robot
smoothly changes between plans and is able to score the goal with the replanned trajectory.

6.4 Planning high-speed hitting movements on the real robotic

Air-Hockey setup

The most important validation step of the proposed motion planning solution is an experimental
evaluation on a real robot. This is especially important in robotics, because of the well-known
problem of the reality gap, which is common in systems that use machine learning in simulation,
learn from a dataset of simulated examples [71]. Moreover, in the development of a planning
method typically some theoretical assumptions are made. Thus to reliably deploy the system we

Experimental verification of the constrained neural kinodynamic motion planning 103

need to verify if they hold in a real-world experiment or are violated to an acceptable degree. To
evaluate if the reality gap exists in our solution, i.e., if our model trained in simulation is able
to generalize to the planning on the real manipulator, we used exactly the same neural network
as in the simulation, without any additional learning 1.

6.4.1 Quantitative comparison with state-of-the-art

Similarly, like in simulation, we test our proposed neural network-based motion planner on the
task of high-speed hitting in robotic Air Hockey starting from a steady-still manipulator in a
base configuration. In the real-robot experiment, we reduced the number of test scenarios to
110, which were defined by the puck positions located on the 10×11 grid. To reduce the reality
gap the whole setup is done exactly the same as it was in the simulation, such that the only
differences stem from the inaccurately or incompletely modeled physics of the robotic system.
Particularly, in the simulation we did not consider any friction, air bearing of the table, limited
stiffness of the end-effector elements, backlash in the Cardan joint, etc.

The results of the experiments we performed in simulation show us clearly that AQP is the
only baseline able to compete with the CNP-B, as it is able to compute safe-to-follow plans in
a reasonably short time. Moreover, in the real-world experiment, we need to plan not only the
hitting movement but also the safe slowing down movement of the robot after performing a hit.
Thus, to ensure safety in real robot experiments, we limited the set of baselines to AQP only.
Statistical comparison between AQP and our proposed planner is presented in Figure 6.8. The
hitting movement times correspond with the ones obtained in the simulation, and we can see that
CNP-B is characterized by a much smaller mean and variance. The puck velocity magnitude
is higher for the proposed solution, due to the fact that AQP method scales down the hitting
velocity if it cannot find a feasible plan. The biggest advantage of the proposed planner is visible
in terms of the z-axis error, as the generated plans are much closer to the table surface. Also,
the trajectory tracking errors are smaller for CNP-B, despite significantly faster trajectories.

Nevertheless, from the task point of view, the most important metric (besides safety) is the ratio
of scored goals to all attempts. In terms of this metric, CNP-B outperforms AQP, by achieving
a ratio of 78.2% compared to 52.7%. In Figure 6.9 we present the grid of puck initial positions
and indicate the scored goal from this position with green squares and miss with red dots. One
can see that AQP has problems with scoring for the puck close to the corners of the table,
while CNP-B errors seem not to show any particular correlation with the position of the puck
w.r.t. robot. We hypothesize that these few unsuccessful hits planned by CNP-B are related to
some features of the mechanical setup that were not modeled in the simulation, particularly the
backlashes in the Cardan joint and the elasticity of the end-effector construction, which are part
of the reality gap.

1The videos of the performed experiments can be found at https://sites.google.com/view/
constrained-neural-planning/

https://sites.google.com/view/constrained-neural-planning/
https://sites.google.com/view/constrained-neural-planning/

Experimental verification of the constrained neural kinodynamic motion planning 104

0.2

0.4

0.6

0.8

1.0

1.2

Hitting
 time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Puck
 velocity [m/s]

1

2

3

4

5

6

7

Planned z-axis
 error [mm s]

1

2

3

4

5

6

7

Z-axis
 error [mm s]

1.0

1.5

2.0

2.5

3.0

Joint trajectory
 error [rad s]

CNP-B (ours) AQP [8]

Figure 6.8: Planners statistics on the task of hitting in the real robotic Air Hockey.

Figure 6.9: Visualization of the puck positions in the scenarios on which CNP-B and AQP
planners were evaluated. The green squares represent scored goals (success), while the red

dots missed shots (failure).

Experimental verification of the constrained neural kinodynamic motion planning 105

6.4.2 Trick shots

The ability of the proposed neural motion planner to replan robot motions on-the-fly, which
we have shown in simulation, is also easily transferable to the real robot without any further
learning. In Figure 6.10 we present a sequence of robot movements that were planned by the
proposed approach. First, the robot is making feinting movements to confuse the opponent.
Next, at some randomly chosen moment, the manipulator is asked to replan its motion to score
the goal. To achieve this it queries CNP-B to compute a new trajectory, starting from non-
zero velocity and acceleration, and leading to hitting the puck and scoring a goal. This kind
of dynamic replanning behavior is possible only because our proposed solution plans within a
very short and almost constant time, and is able to plan from non-zero boundary conditions
imposed on velocity and acceleration. Nevertheless, on the real robotic platform, there can be
some non-deterministic delays stemming for example from the communication between the PC
and robot controller. To account for this one can try to estimate the mean delay and plan from
the point on the current trajectory located further in the future. However, for the systems with
non-negligible delays of high variance, this may be not enough. Interestingly, planning as a single
inference of a neural network extends a helping hand to us, namely batch processing. Having
an estimate of the possible delay one can plan with a neural network from many possible initial
states and finally choose a generated trajectory that starts from the state that is the closest to
the actual one. Note that using the same approach may also compensate for different types of
errors of replanning from the wrong state, like inaccurate trajectory tracking. Thanks to batch
planning we can ensure a smoother transition between planned trajectories, which may be crucial
for high-speed movements of the real robot on the constraint manifold.

Figure 6.10: Fast on-the-fly motion replanning can be used to smoothly change the robot’s
behavior from feinting to striking almost instantaneously.

6.5 Ablation studies

The proposed motion planning method has multiple parameters that may affect its performance.
While in section 6.1.4 we introduced some exemplary values of these parameters that were used

Experimental verification of the constrained neural kinodynamic motion planning 106

in all above-described experiments, in this section we analyze what is the impact of the changes
of these parameters and the experiment’s conditions on the performance of CNP-B. Particularly,
we want to analyze how the performance of our proposed planner is affected by the size of the
dataset used for training, the size of the neural network, and number of the control points of
the configuration B-spline. Finally, we want to analyze the generalization abilities of CNP-B to
the modification of some crucial parameters of the considered tasks, i.e., the mass of the cuboid
handled by the robot and the height of the Air Hockey table.

6.5.1 Training set size

First, we analyze the impact of the training set size. The quality of the machine learning models
depends heavily on the training data. To quantitatively assess this dependence in our particular
case, we trained CNP-B for the task of simulated Air Hockey hitting on several different-sized
subsets of the training dataset (see section 6.3.2.1), and analyzed its planning performance.
In Figure 6.11 we present the results achieved by the models trained on fractions of the base
dataset. As expected, the best result is obtained by the planner trained on the whole dataset.
However, comparable success ratios and mean puck velocities are also achieved by the models
trained on 10% and 1% of data. Nevertheless, the reduced number of training planning problems
results in significant deterioration of other metrics, i.e., increased hitting time and deviation from
the table plane. Time to hit is on average about 50% greater for models trained on 10% and
1% of the training set, and more than 2 times longer for the one trained with 0.1% of data.
It is clearly visible, that if the space of the possible motion planning problems is covered more
sparsely, planners are not pushing the performance so much to the limits and prefer safer but sub-
optimal solutions. In terms of the violations of the table surface constraint, using less training
data leads to remarkably worse performance only for the model trained on the smallest fraction
of training data. However, for the models trained on 10% and 1% of the training data we observe
a notable shift of the error distributions, while their medians stay at a similar level as for the
model trained on the whole dataset. It seems that for both 1% and 10% of data, the movement
time was traded off for a table constraint satisfaction. Nevertheless, when the space of motion
planning problems is not so densely populated, in some of the areas the planned motions may
not be accurate enough to maintain the end-effector right on the table plane.

Experimental verification of the constrained neural kinodynamic motion planning 107

0

20

40

60

80

100
Score ratio [%]

1.5

2.0

2.5

3.0

3.5

4.0

Mean puck
 velocity [m/s]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Mean hitting
 time [s]

101

102

Z-axis error [mm s]

100% 10% 1% 0.1%
Figure 6.11: Comparison of the proposed neural planner trained on 100%, 10%, 1% and

0.1% samples of the training dataset.

6.5.2 Size of the neural network

In addition to the training data, the quality of the machine learning-based motion planner is
also affected by the model used to approximate the planning policy. Particularly, the size of
the model impacts its expressiveness and the number of computations needed to evaluate it. To
assess its impact on the performance of the CNP-B in the task of moving a vertically oriented
heavy object between boxes, we evaluated several neural networks of the architecture presented
in Figure 4.2 with different numbers of neurons in each layer. Results of this experiment are
presented in Figure 6.12. In general, it is clearly visible that almost all analyzed measures are
nearly constant for all considered sizes of neural networks. There are only two exceptions. First,
scaling the neural network down to 16 neurons caused a notable growth of the motion time and a
significant increase in the orientation error. Second, in general, reducing the number of neurons
leads to a decrease in the planning time and reaching the possibility to plan at the frequency of
1kHz. Although this finding seems rather obvious, as scaling down the number of computations
should reduce the time needed to execute them, surprisingly, the timings for 16, 32, and 64
neurons are almost constant. We presume that this phenomenon may be related to the neural
network size fitting the cache of the CPU.

0

20

40

60

80

100
Success ratio [%]

0

20

40

60

80

100

Success ratio
(no constraints) [%]

1

2

3

4

5

6

7
Mean planning time [ms]

0.5

1.0

1.5

2.0

2.5

3.0
Mean motion time [s]

0.00

0.05

0.10

0.15

0.20

Vertical error [rad s]

16 32 64 128 256 512 1024 2048

Figure 6.12: Comparison of CNP-B with different neural network sizes (numbers of neurons
in each layer) in a task of moving a heavy vertically oriented object.

Experimental verification of the constrained neural kinodynamic motion planning 108

6.5.3 Number of B-spline control points

One of the most important parameters of the proposed method is the number of B-spline control
points as it has a direct impact on the expressiveness and flexibility of the solution representation.
In Figure 6.13 we present the results of the simulated Air Hockey hitting experiments with
different numbers of configuration B-spline control points. We observe that in general, our
proposed neural network-based planner is quite robust to the number of control points within a
range between 9 and 21. Nevertheless, one can note that reducing the number of control points
causes the score ratio and mean puck velocity to decrease slightly, which may be caused by the
reduced flexibility of the solution representation. The statistics of deviations from the table
plane in the 𝑧 axis are also quite interesting. It seems that both extreme values lead to slightly
increased errors. This may be caused by two different reasons. For 9 control points, by the
insufficient expressiveness to plan the movement closer to the constraint manifold, while for 21
points, by the over-parametrization that led to a slightly worse generalization.

95

96

97

98

99

100
Score ratio [%]

2.5

3.0

3.5

4.0

Mean puck
 velocity [m/s]

0.3

0.4

0.5

Mean hitting
 time [s]

2
3
4
5
6
7

Z-axis error [mm s]

9 12 15 18 21
Figure 6.13: Comparison of CNP-B performance in simulated Air Hockey hitting for different

numbers of B-spline control points.

6.5.4 Generalization abilities

One of the most desired properties of machine learning-based systems is the ability to generalize.
We already tested it to some extent, by showing that the proposed planning method is able
to solve motion planning problems that were not included in the training dataset. However,
in all previous experiments, these test problems belonged to the training data distribution, as
the manifold on which we would like to plan was constant for all considered motion planning
problem instances. Therefore, to thoroughly test the generalization abilities we need to validate
the abilities of CNP-B to plan for the problems from a different data distribution than the
one from which the training dataset was drawn. Problems of this kind are likely to happen
as they may correspond to a situation where the mass of the object we want to move with
the robot is different from the one on which our planner was trained, or the Air Hockey table
height has changed. In general, there are two ways of handling these types of situations. The
first one, called domain randomization [167] focuses on training the machine learning model
to be robust to different environmental conditions by training it on the data that comes from
a variety of possible environments. While being general, in the sense of not assuming any

Experimental verification of the constrained neural kinodynamic motion planning 109

knowledge about the test environment, this approach typically trades off the performance for
robustness. However, in some cases, we may expect that some of the crucial parameters of the
test environment are accessible to the planner, e.g., by the system identification. In this case, we
may handle the out-of-distribution test samples by parametrizing our planner with these crucial
parameters and training them to include knowledge about them in the planning process. As
we don’t want to trade off the performance, in our experiments we focus on two aspects of the
generalization: (i) the ability to generalize outside the conditions of the training set without any
domain randomization, and (ii) the possibility to learn how to plan on parametrized manifolds
and how it will affect the generalization abilities of CNP-B.

To evaluate the first issue, we tested a neural network-based planner, which was trained to solve
the task of moving a vertically oriented object that weighs exactly 12kg (see Section 6.2), on the
task of moving lighter and heavier ones. In Figure 6.14 we present the results of this evaluation.
As expected, moving objects of smaller mass pose no problem for the proposed planner. However,
due to the reduced mass, the generated trajectories are presumably not optimal, as the robot
motion with lighter objects could be faster. Nevertheless, the ability to generalize to smaller
masses is an important feature of the proposed solution, which is possible because we plan
the whole trajectory that is then tracked with a controller. Conversely, typical reinforcement-
learning approaches to learning these kinds of skills generate the actions directly in the space
of points torques, which may lead to violations of the velocity limits if applied to much lighter
objects. In turn, planning for much heavier objects is much more challenging, as the increased
mass simply leads to violations of the maximal joint’s torques, since the maximal robot’s payload
is 14kg. This has a major impact on the success rate, by making it impossible to solve some
tasks. Infeasible torque commands also lead to inaccurate trajectory tracking, causing collisions
with obstacles and increased orientation error. Nevertheless, our method shows reasonably high
success rates when the object mass is close to the one used in training.

To further investigate the generalization abilities of the proposed method, and address the second
issue that refers to the manifold parametrization, we performed an experiment of simulated Air
Hockey hitting with different table heights. In Figure 6.15 we present scoring ratios and errors of
maintaining the robot’s end-effector on the table plane for a wide range of table heights. The blue
color denotes the results for the model that was trained only on the table height equal to 16 cm.
It generalizes very well for the heights between 14 and 20 cm, but for greater height differences,
the 𝑧-axis errors grow significantly. However, it is still able to score for the vast majority of
planning problems for a wide range of the considered heights. As a second model, we tested a
parametrized one. It was modified slightly to include the height of the table in the input to the
neural network and trained on motion planning problems with the tables of heights randomly
drawn from the range between 10 and 20 cm (marked with green dashed lines). While in the
training range, the score ratio of this model is similar to that obtained by the non-parametrized
one, we observe a huge difference outside this region. The parametrized model achieves very low
𝑧-axis errors on all heights between -20 and 30 cm showing outstanding generalization properties.
Moreover, it achieves a score ratio higher than 75% on almost the whole range of tested heights.

Experimental verification of the constrained neural kinodynamic motion planning 110

6 8 10 12 14 16 18
Object mass [kg]

0

20

40

60

80

100
Success ratio [%]

6 8 10 12 14 16 18
Object mass [kg]

0.50
0.75
1.00
1.25
1.50
1.75
2.00

Mean motion time [s]

6 8 10 12 14 16 18
Object mass [kg]

0.0

0.1

0.2

0.3

0.4

0.5
Mean vertical error [rad]

Figure 6.14: Analysis of the generalization abilities of CNP-B for different object mass in
the task of moving a vertically oriented heavy object.

20 0 20 40
Table height [cm]

0

50

100
Score ratio [%]

-20 -12 -4 4 12 20 28 36
Table height [cm]

0

20

40

60

Z-axis error [mm s]

Figure 6.15: Analysis of the generalization abilities of CNP-B for different table heights in
simulated Air Hockey hitting task. Blue denotes the model trained only on height equal to
16 cm, while the red one is a parametrized model trained on random table height from the

range denoted by dashed green lines.

6.6 Discussion

In this section, we conclude the conducted experiments and analyze the strengths and weaknesses
of our approach. Our experiments have shown that the proposed methodology effectively out-
performs all considered state-of-the-art methods in terms of all considered metrics. We believe
that this superb performance can be attributed to three crucial aspects of our approach: (i) the
way of handling constraints, (ii) the use of flexible trajectory parameterization, (iii) the learning
setup.

First, instead of requiring hard satisfaction of all constraints at all times, we include them in the
loss function directly with adaptable weighting factors. This allows us to accept small violations
both during training and deployment. While in some tasks, even small trajectory violations can
be a major problem, these violations are acceptable for most practical motion planning problems.
Unfortunately, our handling of the constraints does not guarantee the planned trajectory will
satisfy all the constraints. However, it is fairly easy to verify that a planned trajectory complies
with the requirements and abort the plan if necessary. Moreover, in the case of inequality

Experimental verification of the constrained neural kinodynamic motion planning 111

constraints, during the training phase, one can easily modify the set of constraint-satisfying
solutions, such that the learned solutions are pushed towards safety at the price of sub-optimality.

Second, thanks to the introduced B-spline parameterization, we can easily ensure that the plans
will always start from the current state, which can be represented by the configuration and its
derivatives, and reach the planned one in every trajectory computed by the network. While this
property could cause issues in the learning process and plan generation, our B-spline parametriza-
tion decouples the geometrical path and the speed of traversing it by learning a spline for the
time coordinate. This decoupling gives the proposed planner great flexibility and simplifies its
learning process. Using parametrized trajectories simplifies the structure of the neural network,
avoiding complex learning procedures required for recurrent networks. Moreover, our proposed
method is robust to the choice of the number of B-spline control points, which can be used to
control the maximum allowed complexity of the path.

Finally, our learning setup is simple and effective. It does not require any dataset of expert
demonstration or tedious estimation of the loss gradient. Instead, it relies on the models of the
robot and the environment to compute the differentiable loss function that is used to improve
the plans generated by CNP-B. Furthermore, based on the performed generalization experiments
we presume that our approach can be generalized to different tasks and settings. In principle, if
we provide a sufficiently large set of planning problems, this approach could process all relevant
information to solve the task, allowing for example for advanced obstacle avoidance or feasible
dynamic movements. Nevertheless, we foresee that there is a huge potential for future research
in terms of generating informative planning problems to effectively train versatile skills, limiting
the required amounts of computations performed during training.

The most important limitation of the proposed approach is the lack of guarantees that the
generated plans do not violate any of the constraints. This can be potentially seen as a drawback
w.r.t. other methods, as some of them guarantee that in time going to infinity they will find
a solution if one exists. Nevertheless, we argue that from a practical point of view in many
robotics applications, it is more important to have a verifiable, but possibly wrong, plan within
milliseconds than to have a certifiable planner that needs plenty of time to compute a solution.
Moreover, generated solutions, even if infeasible or sub-optimal, can be further improved using
optimization techniques, especially because the planning time of our method is negligible w.r.t.
to the basic trajectory optimization.

Another important gain from the short planning time, combined with a constant amount of
computation and boundary conditions satisfaction thanks to B-spline trajectory representation,
is the ability to feasible and smooth replanning on the fly. To the best of our knowledge, it is the
first time this kind of dynamic smooth replanning is presented for problems of this complexity,
along with a demonstration on a real robot.

Chapter 7

Conclusions

7.1 Summary

This dissertation deals with a reinforcement learning-based approach to local robotic motion
planning. We showed that this approach may be successfully applied both for path planning for
autonomous cars and trajectory planning for robotic manipulators. Each of these application
areas challenges the motion planning algorithms in a different way. In the case of planning for an
autonomous car, one should generate paths that are: (i) collision-free, (ii) possible to be followed
by a car with a limited steering angle, i.e., with limited curvature, (iii) smooth enough to ensure
passenger comfort, (iv) minimizing the overall curvature to facilitate negotiating them at higher
speeds without skidding, (v) considering not only the initial position of the vehicle guidance
point but also vehicle orientation and steering angle, and (vi) achieve the desired goal precisely.
In turn, in the case of robotic manipulation, we focus on the tasks that require the solution
trajectory to (i) satisfy the internal constraints of the used robotic platform, such as limited
velocities, accelerations, and torques, (ii) satisfy the constraints stemming from the given task,
such as the movement of the end-effector limited to some subset of the task space, (iii) optimize
some optimality criterion, such as minimization of its duration or energy consumption during its
execution, and (iv) allow for imposing the boundary constraints, e.g., to set its beginning and
end to arbitrary states, taking into account not only position but also velocity and acceleration.
The common requirement in both tasks is to be able to compute the motion plans as fast as
possible, to give the robots the ability to adapt to rapidly changing situations and replan the
movement to the goal within at most tens of milliseconds. In this dissertation, we showed that
the proposed approach to reinforcement learning-based local robotic motion planning addresses
all the challenges and requirements listed above.

The core of the proposed approach is the observation that any motion planning algorithm can
be viewed as a motion planning function that transforms the representation of the task into the
representation of the solution. Our aim was to approximate in a narrow range of its parameters
the behavior of a special function of this kind, i.e., optimal ideal motion planning function that
generates a feasible and optimal, w.r.t. some criterion, motion plans. To do so, we employed

113

Conclusions 114

neural networks that directly generate the solution to a considered motion planning problem and
are trained using the differentiable loss function that is developed based on the implicit definition
of the optimal ideal motion planning function, i.e., by defining the features it has to poses in
the form of differentiable functions. These two features distinguish our approach from the most
popular machine learning-based motion planning algorithms, such as [13, 73, 142], or [81].

In Chapter 2 we introduced a sequential approach to planning a path for a car-like vehicle.
We trained a neural network to generate the subsequent segment end-points, such that they
can be connected using 5th-degree polynomials and form a solution path. It does so based
on the representation of the task that consists of a local map of the environment, and the
initial and desired state of the vehicle. We proposed a loss function that is differentiable and
penalizes the paths that: (i) do not reach the goal state neighborhood, (ii) violate the maximal
allowed curvature constraint, (iii) collide with the environment, and (iv) perform unnecessary
turns. Especially hard to obtain is the differentiability of the collisions with the environment.
To overcome this difficulty, we proposed to use, during the training phase, the solution path,
precomputed with a SL algorithm, as a proxy that attracts the parts of the solution that are
colliding with the obstacles. By doing so we ensured that no performance upper bound is put
on the paths generated by the proposed method, in contrast to typical learning-based motion
planning approaches that utilize behavior cloning [28, 142, 186]. Moreover, we do not have to
ensure that the generated reference path is optimal, which significantly reduces the time needed
to create a training dataset. To train and evaluate the proposed approach we introduced a
dataset of 115319 training, 11008 validation, and 8128 testing motion planning problems, which
utilize maps generated from the maps from CARLA simulator [38] and the ones created using
real LiDAR scans and LOAM algorithm [187]. The experiments performed on this dataset have
shown that the proposed approach is able to generate, in almost constant time of 43ms, paths
that in 92.24% of the test motion planning problems are feasible. It outperforms state-of-the-art
planners like BIT*, AIT*, and ABIT*, even though they were solving a simplified problem of
searching for a path in a Dubin’s state space.

In Chapter 3 we proposed a different way to see the motion planning problems from a learning-
based perspective. Instead of considering sequential decision-making and building the solution
path from segments, we reframed the path planning problem for a car-like vehicle to the contex-
tual bandits, which even better suits our proposition of treating the motion planning algorithm
as a planning function because of the lack of sequentiality. Thanks to this and the utilized
B-spline path representation, we were able to generate the solution path in a single inference of
the neural network, which resulted in the decrease of the planning time to 11ms. To achieve
this and enable efficient training, we proposed a novel way of interpreting the neural network
outputs and constructing the solution path. This new representation, despite allowing for com-
puting the path within a single forward pass through the neural network, introduces several
advantages to the motion planner that utilizes it. It enables enforcing boundary conditions, such
that we can guarantee that the solution path will reach the goal precisely, not only in terms of
the position but also in higher-order derivatives. Moreover, the proposed way of constructing
the subsequent control points from the neural network output introduces an inductive bias such
that a randomly initialized neural network generates intuitive paths to the goal configuration,
which, together with a simplified loss function that no longer needs to encourage reaching the

Conclusions 115

goal, significantly speeds up the training. The experiments performed on the test set introduced
in Chapter 2 have shown that our approach that utilizes B-spline paths reaches an accuracy
of 90.1%, which in fact is a result slightly worse than the sequential approach introduced in
Chapter 2. However, if we reduce the size of the set of allowed end configurations, the innately
precise approach from Chapter 3 outperforms the sequential one. Moreover, the generated so-
lutions have a higher level of smoothness and are characterized by significantly lower maximal
path curvature, which makes these paths easier to follow with higher velocities.

To further compare the proposed neural network-based motion planning approaches we per-
formed several experiments in the CARLA simulator, which extends the test of the motion
planning algorithms on the dataset to a more realistic setting. In these experiments, we tested
the abilities of these planners to online plan the path to perform typical maneuvers, such as
perpendicular, diagonal, and parallel parking, turning, passing densely parked vehicles, and
avoiding a collision with a vehicle that suddenly crosses the path of the ego-vehicle. In general,
the paths generated by the non-sequential neural network-based path planning algorithm were
significantly easier to follow, which manifested in more than 3 times lower position and orien-
tation tracking errors. Moreover, the proposed B-spline path planning approach allowed for a
more robust execution of the parallel parking scenario with higher velocities than the proposed
sequential planner. Furthermore, the tests on diagonal parking task with an extremely narrow
parking spot showed that imposing the boundary conditions on the solution allowed for very
precise parking with only a few centimeters of slack. Finally, we showed that thanks to the very
short planning time the B-spline-based neural network motion planner allows for rapid reactions
to the sudden lane intrusion and collision avoidance while moving at 15 m

s .

In turn, in Chapter 4 we focused on planning dynamic trajectories for the robotic manipulator
under different types of constraints including kinodynamic ones. Similarly, as for the path
planning, we used a neural network to generate a B-spline path in the joint space, however, to
obtain a trajectory the same network also generates a B-spline that represents the rate of change
of the phase variable. The proposed solution representation allows for generating variable-length
smooth trajectories and enables imposing the boundary conditions not only on the configuration
but also on its derivatives w.r.t. time. The latter property enables planning for the tasks that
require, e.g., reaching a certain velocity at the end of the movement or which begins from non-zero
velocities and accelerations. Thanks to this, and due to the constant amount of computations
needed to generate a trajectory, one can use the proposed approach to replan the dynamic
motion on-the-fly and seamlessly connect the new plan to the old one ensuring the continuity
of the velocity and control signals. Our focus was not only on the satisfaction of the boundary
constraints but also on the ones that were imposed on the whole trajectory. In this dissertation,
we considered the limits of the manipulator joint’s velocities, accelerations, and torques, as
well as limiting the movement of the end-effector to a plane in the workspace, or fixing its
orientation during the movement. To learn how to plan trajectories that satisfy these constraints
we introduced a formulation of the constraint manifold and proposed a learning procedure to
update the neural network weights in a way that optimizes them w.r.t. some optimality criterion
and at the same time minimizes a distance to the aforementioned constraint manifold.As a result,
we proposed an interleaving neural network learning and adaptation of the constraint manifold
metric to ensure that the constraints will not exceed the violation budget. All of these allow us to

Conclusions 116

solve very challenging motion-planning tasks, such as planning the fast collision-free movement of
a heavy (close to the robot’s maximal payload) object while maintaining its vertical orientation
throughout the whole movement, and high-velocity hitting movement in the game of robotic Air
Hockey, with reaching some predefined end joint’s velocity and maintaining the position of the
end-effector on the table plane. These examples showed not only an overwhelming dominance
of the proposed method over both classical motion planning approaches and machine learning-
based ones, in terms of task success ratio, motion planning time, planned motion time, and
constraint violations. Moreover, we showed its ability to rapidly (within several milliseconds)
and successfully plan and replan the movements of the real robot. We presented these abilities
in the Air Hockey hitting task from the steady puck but also by performing some trick shots,
such as feinting the opponent and suddenly scoring, and bouncing the puck against the wall,
and then hitting from the moving puck. Finally, we analyzed the generalization abilities of the
proposed motion planning method and showed in the example of the Air Hockey table height
that it can successfully plan for a wide range of the constraint manifold parameter.

7.2 Conclusions and thesis contribution

The concepts presented in the dissertation and their experimental verification make several con-
tributions to the current state of the art in robotics and machine learning. The main contributions
may be summarized as:

1. A novel approach for rapid path generation under nonholonomic constraints
by approximating the implicitly defined optimal ideal planning function using
a neural network. We proposed a novel concept of learning how to plan the motion of a
car-like vehicle with nonholonomic constraints that emerges from the idea of approximating
optimal ideal planning function using a neural network. The experiments suggest that this
approach is more effective in rapid motion planning for a car-like vehicle than state-of-the-
art motion planners even if they are allowed to plan in a simplified setting.

2. A novel differentiable loss function which penalizes infeasible paths, since they
violate constraints imposed by the vehicle kinematics and environment maps.
To train the proposed neural network-based motion planner we propose a novel differen-
tiable loss function. Each of the features that optimal ideal planning function should have
is defined as a differentiable loss function that zeroes out in the optimal case. By doing
so, we can train a neural network to plan feasible paths in an efficient way, thanks to the
analytic form of the loss function gradient, without imposing on its performance any upper
bound stemming from the data as is the case with behavior cloning. Due to this, we can
speed up the data generation procedure as we no longer need to generate optimal feasible
reference paths.

3. A B-spline path parametrization and a novel procedure of its construction using
neural network outputs. Instead of building the solution path in a sequential way, we
propose to learn how to infer the whole solution at once, which is crucial for speeding up
planning. To do so, we proposed to use a uniform B-spline path representation and propose

Conclusions 117

a novel procedure for its construction, which interprets the subsequent neural network
outputs as the B-spline control points in a recursive way, using already defined ones. This
approach introduces several important advantages over the previous one, such as (i) it
allows for imposing the boundary constraints on the generated path, (ii) it introduces an
inductive bias to the proposed motion planner, which significantly speeds up the training,
and (iii) it produces smoother paths, with lower maximal path curvature, which allows one
to traverse the path faster or with lower centrifugal forces, which affects the ride comfort.
In the experiments, we show that thanks to the proposed representation enables one to
learn faster and that the planned motions are smoother, of lower curvature, and more
accurate.

4. A new machine learning-based approach to robotic arm motion planning that
enables planning dynamic trajectories under constraints. We proposed a new
approach to learn how to plan dynamic trajectories that minimize some predefined opti-
mality criterion while satisfying multiple constraints. We formalize these constraints as
a constraint manifold and extend the learning system architecture to learn Lagrangian
multipliers in the optimization problem, learning simultaneously a metric of our constraint
manifold. This novel approach allows us to weigh each constraint by how much it is im-
portant to find a feasible solution to the planning problem. We demonstrate in simulations
and experiments that this new approach is not only much faster than all state-of-the-art
methods we were able to compare as baselines, but also generates trajectories that allow
faster and more accurate robot motion while being executed.

5. A new B-spline-based trajectory representation and a technique to enforce sat-
isfaction of the boundary constraints. We proposed a new B-spline-based trajectory
representation that consists of two B-spline curves, one that defines the solution path as
a function of the phase variable, and another one that defines the rate of change of the
phase variable w.r.t. time. Using these two functions, one can compute the arbitrary time
derivatives of the trajectory, and therefore it is possible to enforce the satisfaction of the
boundary constraints that include not only the configurations but also their derivatives
w.r.t. time, which allows to connect precisely two arbitrary robot states. The performed
experiments confirmed that the proposed representation allows for the effective solving of
complex motion-planning problems that require precise and rapid motions.

6. An ability of the learning-based motion planner to replan on-the-fly motion
plans that seamlessly connect with the currently executed trajectory. Thanks
to the proposed B-spline-based trajectory representation, which is able to satisfy arbitrary
boundary constraints, and due to the ability of the proposed neural network-based planner
to compute the trajectory within a single neural network inference, i.e., in a constant time,
we are able to replan the motion of the robot on-the-fly. Specifically, thanks to the small
constant planning time one can accurately anticipate what will be the robot configuration
in several milliseconds, and due to the boundary constraints satisfaction, plan the new
motion right from this state. this allows for a seamless connection with the currently
executed trajectory and ensures the continuity of the velocities and torques.

Conclusions 118

When considering the supportive hypotheses stated at the beginning of the dissertation, it is
possible to conclude that:

1. The experiments presented in Sections 5.2.1 and 5.3.2, and particularly in Table 5.1, sup-
port the first supportive hypothesis, i.e., "Formalization of the path planning problem for a
car-like vehicle as the MDP allows for sequentially building the solution using the sub-paths
generated with a neural network trained using reinforcement learning".

2. Sections 5.2.1, 5.3.2 and 5.2.2, and particularly results presented in Table 5.2 and Figure 5.2,
support the second supportive hypothesis, i.e., "The B-spline path representation and the
proposed path construction method allows for efficient planning within a single inference
of the neural network and introduces an inductive bias to the learning process".

3. The experiments presented in Sections 6.2.3, 6.3.3, and 6.4.1, and particularly in Fig-
ures 6.4, 6.6, and 6.8, support the third supportive hypothesis, i.e., "Solving constrained
kinodynamic motion planning problems is possible with the use of neural networks trained
under reinforcement learning paradigm and B-spline-based trajectory representation".

The supportive hypotheses are proven experimentally, therefore it is possible to affirm the
veracity of the main hypothesis of the dissertation.

7.3 Limitations

Every method and approach has some limitations and the ones proposed in this dissertation
are no exception. Thus in this section, we want to list and discuss the most prominent
limitations of the introduced approaches:

(a) The proposed approach addresses the problem of local motion planning and thus is
not intended to be a standalone global planner. However, we suppose that it could be
successfully used by some global planners as a subroutine that is efficient at solving
subtasks thanks to the utilization of the experience. In this dissertation, we focused
on planning the motion of the robot, not how to solve the whole task. We rather
want to equip the robot with agility in performing basic movements and by doing so
enable the robot to schedule them in order to complete high-level tasks, which can
be done either algorithmically or used by a higher-level learning algorithm to learn
how to conduct a task, without the need to specify low-level commands such as joint’s
torques.

(b) The proposed machine learning-based approach to motion planning gives no war-
ranties about the feasibility of the generated plan. However, this problem is greatly
mitigated by the fact that checking the feasibility of the plan is often faster than gen-
erating a feasible trajectory, which allows for preventing the execution of dangerous
motions [169]. Moreover, from our empirical results, our planner has a much higher
success rate than the other state-of-the-art planners on all the tasks considered in this
dissertation for a limited computation time.

Conclusions 119

(c) In this work, we focused on describing the behavior of the optimal ideal planning
function using the differentiable loss functions, which not always may be possible.
However, in principle, it is possible to extend this approach by using estimated deriva-
tives and turning the problem into a typical Reinforcement Learning one in which
derivatives of the objective w.r.t. policy parameters are not possible to be computed
analytically.

(d) In this dissertation, we did not consider planning for dynamic obstacles. However,
one may presume that an approach that allows for planning trajectories very quickly
may be extended to handle this problem.

(e) Similarly to most planning algorithms, we assume perfect knowledge of system dy-
namics such that the model mismatch is handled by the tracking algorithm only.

(f) In the case of car-like vehicles, we showed the path planning methods that neglect
the car dynamics which is definitely present in the real system. This may excessively
limit the maximum feasible velocity along the planned paths.

(g) In the case of non-convex obstacle avoidance, the proposed method may in principle
not be able to generate solutions in a different homotopy class than the one to which
the reference path belongs.

7.4 Future work

Taking into account the limitations mentioned above, one can propose natural paths for
future research in the area of machine learning for motion planning. First, it would be
interesting to confirm that the proposed planning module can be used by a higher-level
reinforcement learning agent or motion planning algorithm, to generate a low-level mo-
tion after being trained to solve local motion planning problems. The use of high-quality
low-level skills planning may facilitate the learning or planning of complex behaviors, such
as playing an Air Hockey game or car racing. Secondly, to fully take advantage of rapid
planning in the case of car-like vehicles one may consider planning trajectories instead of
paths and using more complex models of the car dynamics to enable accurate planning
for higher velocities and sharper maneuvers. Thirdly, a very important research direction
would be to incorporate the dynamically moving obstacles into the considered motion plan-
ning problems, as this kind of situation is extremely common in mobile robotics. Moreover,
as we presented the solutions only for two types of robots, i.e., car-like and manipulators,
it would be interesting to validate whether the proposed methods can be generalized for
planning also for other types, such as drones, or walking robots. Furthermore, in this dis-
sertation, we focused our attention on the optimal ideal planning functions which features
may be described implicitly using differentiable functions that assess their geometry. How-
ever, this in general does not have to be always possible, e.g., if we cannot use reference
solutions for non-convex collision avoidance. Therefore it would be interesting to check if
similar motion planning behaviors are possible to be learned using typical Reinforcement
Learning approaches that estimate the gradient of the loss function, instead of using the
analytical one. Finally, one of the most important shortcomings of the proposed approach

Conclusions 120

to motion planning is the fact that it can generate infeasible solutions. An interesting
way to address this issue is to employ standard optimization techniques to fix trajectories
that slightly violate the constraints. This direction of research is in line with the recently
proposed amortized optimization [3], which proposes to use learning-based techniques to
improve the efficiency of solving optimization problems, and a more mature idea of trajec-
tory prediction [78], which propose to utilize the experience for more informed initialization
of trajectory optimization. In fact, one can view machine learning-based motion planning
as a subroutine of generating high-quality initial guesses for the optimization-based motion
planner [8, 78].

Besides addressing the current limitations of the proposed approach, future work can con-
sider the adaptation of the proposed methods to work outside the man-made environments.
This seems doable, as we already have shown that using LiDAR-based 2D occupancy grid
one can learn how to avoid obstacles, however, adapting these methods to work with
high-dimensional measurements of the unstructured environment and high-dimensional
environment representations may be an interesting challenge.

Bibliography

[1] Kia Rio III specification. https://autodata24.com/kia/rio/rio-iii-sedan/

details. Accessed: 2023-09-12.
[2] Saminda Wishwajith Abeyruwan, Laura Graesser, David B D’Ambrosio, Avi Singh,

Anish Shankar, Alex Bewley, Deepali Jain, Krzysztof Marcin Choromanski, and
Pannag R Sanketi. i-sim2real: Reinforcement learning of robotic policies in tight
human-robot interaction loops. In Karen Liu, Dana Kulic, and Jeff Ichnowski, edi-
tors, Proceedings of The 6th Conference on Robot Learning, volume 205 of Proceed-
ings of Machine Learning Research, pages 212–224. PMLR, 14–18 Dec 2023. URL
https://proceedings.mlr.press/v205/abeyruwan23a.html.

[3] Brandon Amos. Tutorial on amortized optimization for learning to optimize over
continuous domains. CoRR, abs/2202.00665, 2022. URL https://arxiv.org/abs/

2202.00665.
[4] Tomoki Ando, Hiroto Iino, Hiroki Mori, Ryota Torishima, Kuniyuki Takahashi,

Shoichiro Yamaguchi, Daisuke Okanohara, and Tetsuya Ogata. Learning-based
collision-free planning on arbitrary optimization criteria in the latent space through
cgans. Advanced Robotics, 37(10):621–633, 2023. doi: 10.1080/01691864.2023.
2180327. URL https://doi.org/10.1080/01691864.2023.2180327.

[5] Szilárd Aradi. Survey of deep reinforcement learning for motion planning of au-
tonomous vehicles. IEEE Transactions on Intelligent Transportation Systems, 23(2):
740–759, 2022. doi: 10.1109/TITS.2020.3024655.

[6] Pranav Atreya and Joydeep Biswa. State supervised steering function for sampling-
based kinodynamic planning. In 2022 International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pages 35–43, 2022.

[7] Baidu. Apolloauto. https://github.com/ApolloAuto/apollo, 2023.
[8] Somrita Banerjee, Thomas Lew, Riccardo Bonalli, Abdulaziz Alfaadhel, Ibrahim Ab-

dulaziz Alomar, Hesham M Shageer, and Marco Pavone. Learning-based warm-
starting for fast sequential convex programming and trajectory optimization. In
2020 IEEE Aerospace Conference, pages 1–8, 2020. doi: 10.1109/AERO47225.2020.
9172293.

[9] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauffeurnet: Learning to
drive by imitating the best and synthesizing the worst. In Proceedings of Robotics:
Science and Systems, FreiburgimBreisgau, Germany, June 2019. doi: 10.15607/RSS.
2019.XV.031.

121

https://autodata24.com/kia/rio/rio-iii-sedan/details
https://autodata24.com/kia/rio/rio-iii-sedan/details
https://proceedings.mlr.press/v205/abeyruwan23a.html
https://arxiv.org/abs/2202.00665
https://arxiv.org/abs/2202.00665
https://doi.org/10.1080/01691864.2023.2180327
https://github.com/ApolloAuto/apollo

Bibliography 122

[10] D. Belter, P. Labȩcki, and P. Skrzypczyński. Estimating terrain elevation maps
from sparse and uncertain multi-sensor data. In IEEE International Conference on
Robotics and Biomimetics (ROBIO), pages 715–722, 2012.

[11] Atallah Benalia, Mohamed Djemai, and J-P Barbot. Control of the kinematic car
using trajectory generation and the high order sliding mode control. In SMC’03 Con-
ference Proceedings. 2003 IEEE International Conference on Systems, Man and Cy-
bernetics. Conference Theme-System Security and Assurance (Cat. No. 03CH37483),
volume 3, pages 2455–2460. IEEE, 2003.

[12] Dmitry Berenson, Siddhartha S. Srinivasa, Dave Ferguson, and James J. Kuffner.
Manipulation planning on constraint manifolds. In 2009 IEEE International Confer-
ence on Robotics and Automation, pages 625–632, 2009. doi: 10.1109/ROBOT.2009.
5152399.

[13] Dmitry Berenson, Pieter Abbeel, and Ken Goldberg. A robot path planning frame-
work that learns from experience. In 2012 IEEE International Conference on Robotics
and Automation, pages 3671–3678, 2012. doi: 10.1109/ICRA.2012.6224742.

[14] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.
[15] Riccardo Bonalli, Abhishek Cauligi, Andrew Bylard, Thomas Lew, and Marco

Pavone. Trajectory optimization on manifolds: A theoretically-guaranteed embedded
sequential convex programming approach. In Proceedings of Robotics: Science and
Systems, Freiburg, Germany, June 2019. doi: 10.15607/RSS.2019.XV.078.

[16] Manuel Bonilla, Edoardo Farnioli, L. Pallottino, and Antonio Bicchi. Sample-based
motion planning for robot manipulators with closed kinematic chains. Proceedings
- IEEE International Conference on Robotics and Automation, 2015:2522–2527, 06
2015. doi: 10.1109/ICRA.2015.7139537.

[17] Manuel Bonilla, Lucia Pallottino, and Antonio Bicchi. Noninteracting constrained
motion planning and control for robot manipulators. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 4038–4043, 2017. doi: 10.
1109/ICRA.2017.7989463.

[18] Ricard Bordalba, Lluís Ros, and Josep M. Porta. A randomized kinodynamic planner
for closed-chain robotic systems. IEEE Transactions on Robotics, 37(1):99–115, 2021.
doi: 10.1109/TRO.2020.3010628.

[19] Matthew Botvinick and Marc Toussaint. Planning as inference. Trends in Cognitive
Sciences, 16(10):485–488, 2012. ISSN 1364-6613. doi: https://doi.org/10.1016/j.
tics.2012.08.006. URL https://www.sciencedirect.com/science/article/pii/

S1364661312001957.
[20] Djallel Bouneffouf, Irina Rish, and Charu Aggarwal. Survey on applications of multi-

armed and contextual bandits. In 2020 IEEE Congress on Evolutionary Computation
(CEC), pages 1–8, 2020. doi: 10.1109/CEC48606.2020.9185782.

[21] Dieter Büchler, Simon Guist, Roberto Calandra, Vincent Berenz, Bernhard
Schölkopf, and Jan Peters. Learning to play table tennis from scratch using muscular
robots. IEEE Transactions on Robotics, 2022.

[22] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The DARPA urban challenge:
autonomous vehicles in city traffic, volume 56. Springer, 2009.

https://www.sciencedirect.com/science/article/pii/S1364661312001957
https://www.sciencedirect.com/science/article/pii/S1364661312001957

Bibliography 123

[23] Justin Carpentier, Guilhem Saurel, Gabriele Buondonno, Joseph Mirabel, Florent
Lamiraux, Olivier Stasse, and Nicolas Mansard. The Pinocchio c++ library – a fast
and flexible implementation of rigid body dynamics algorithms and their analytical
derivatives. In IEEE International Symposium on System Integrations (SII), 2019.

[24] Massimo Cefalo and Giuseppe Oriolo. Dynamically feasible task-constrained motion
planning with moving obstacles. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 2045–2050, 2014. doi: 10.1109/ICRA.2014.6907130.

[25] Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, and Le Song. Learning to
plan in high dimensions via neural exploration-exploitation trees. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020, 2020.

[26] Jianyu Chen, Wei Zhan, and Masayoshi Tomizuka. Autonomous driving motion
planning with constrained iterative lqr. IEEE Transactions on Intelligent Vehicles,
4(2):244–254, 2019. doi: 10.1109/TIV.2019.2904385.

[27] Yao-Chon Chen. Solving robot trajectory planning problems with uniform cubic
b-splines. Optimal Control Applications and Methods, 12(4):247–262, 1991. doi:
https://doi.org/10.1002/oca.4660120404. URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/oca.4660120404.
[28] Richard Cheng, Krishna Shankar, and Joel W. Burdick. Learning an optimal sam-

pling distribution for efficient motion planning. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 7485–7492, 2020. doi:
10.1109/IROS45743.2020.9341245.

[29] Suyoung Choi, Gwanghyeon Ji, Jeongsoo Park, Hyeongjun Kim, Juhyeok Mun,
Jeong Hyun Lee, and Jemin Hwangbo. Learning quadrupedal locomotion
on deformable terrain. Science Robotics, 8(74):eade2256, 2023. doi: 10.
1126/scirobotics.ade2256. URL https://www.science.org/doi/abs/10.1126/

scirobotics.ade2256.
[30] Laurène Claussmann, Marc Revilloud, Dominique Gruyer, and Sébastien Glaser. A

review of motion planning for highway autonomous driving. IEEE Transactions on
Intelligent Transportation Systems, 21(5):1826–1848, 2020. doi: 10.1109/TITS.2019.
2913998.

[31] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009. ISBN
0262033844.

[32] Susan Craw. Manhattan distance. In Claude Sammut and Geoffrey I. Webb, editors,
Encyclopedia of Machine Learning and Data Mining, pages 790–791, Boston, 2017.
Springer.

[33] Tung Dang, Marco Tranzatto, Shehryar Khattak, Frank Mascarich, Kostas Alexis,
and Marco Hutter. Graph-based subterranean exploration path planning using aerial
and legged robots. Journal of Field Robotics, 37(8):1363–1388, 2020. doi: https:
//doi.org/10.1002/rob.21993.

[34] Nikhil Das and Michael Yip. Learning-based proxy collision detection for robot mo-
tion planning applications. IEEE Transactions on Robotics, 36(4):1096–1114, 2020.
doi: 10.1109/TRO.2020.2974094.

https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.4660120404
https://onlinelibrary.wiley.com/doi/abs/10.1002/oca.4660120404
https://www.science.org/doi/abs/10.1126/scirobotics.ade2256
https://www.science.org/doi/abs/10.1126/scirobotics.ade2256

Bibliography 124

[35] Carl de Boor. A Practical Guide to Splines. Springer Verlag, New York, 1978.
[36] Rowan Dempster, Mohammad Al-Sharman, Derek Rayside, and William Melek.

Real-time unified trajectory planning and optimal control for urban autonomous
driving under static and dynamic obstacle constraints. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 10139–10145, 2023. doi:
10.1109/ICRA48891.2023.10160577.

[37] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel. Path
planning for autonomous vehicles in unknown semi-structured environments. The
International Journal of Robotics Research, 29(5):485–501, 2010. doi: 10.1177/
0278364909359210. URL https://doi.org/10.1177/0278364909359210.

[38] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st Annual
Conference on Robot Learning, pages 1–16, 2017.

[39] Anca D. Dragan, Nathan D. Ratliff, and Siddhartha S. Srinivasa. Manipulation
planning with goal sets using constrained trajectory optimization. In 2011 IEEE
International Conference on Robotics and Automation, pages 4582–4588, 2011. doi:
10.1109/ICRA.2011.5980538.

[40] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep
reinforcement learning for continuous control. In M. F. Balcan and K. Q. Weinberger,
editors, Proceedings of The 33rd International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Research, pages 1329–1338, New York,
USA, 2016. PMLR.

[41] Lester E. Dubins. On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. American Journal
of Mathematics, 79:497, 1957.

[42] Boston Dynamics. Picking up momentum, 2023. URL https://bostondynamics.

com/blog/picking-up-momentum/.
[43] Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014.
[44] Árpád Fehér, Szilárd Aradi, Ferenc Hegedüs, Tamás Bécsi, and Péter Gáspár.

Hybrid ddpg approach for vehicle motion planning. In International Conference
on Informatics in Control, Automation and Robotics, 2019. URL https://api.

semanticscholar.org/CorpusID:202094527.
[45] Adam Fishman, Adithyavairavan Murali, Clemens Eppner, Bryan Peele, Byron

Boots, and Dieter Fox. Motion policy networks. In Proceedings of the 6th Con-
ference on Robot Learning (CoRL), 2022.

[46] MICHEL FLIESS, JEAN LÉVINE, PHILIPPE MARTIN, and PIERRE ROU-
CHON. Flatness and defect of non-linear systems: introductory theory and ex-
amples. International Journal of Control, 61(6):1327–1361, 1995. doi: 10.1080/
00207179508921959. URL https://doi.org/10.1080/00207179508921959.

[47] Autoware Foundation. Autoware universe. https://github.com/

autowarefoundation/autoware.universe, 2023.
[48] T. Fraichard and A. Scheuer. From Reeds and Shepp’s to continuous-curvature paths.

IEEE Transactions on Robotics, 20(6):1025–1035, 2004.

https://doi.org/10.1177/0278364909359210
https://bostondynamics.com/blog/picking-up-momentum/
https://bostondynamics.com/blog/picking-up-momentum/
https://api.semanticscholar.org/CorpusID:202094527
https://api.semanticscholar.org/CorpusID:202094527
https://doi.org/10.1080/00207179508921959
 https://github.com/autowarefoundation/autoware.universe
 https://github.com/autowarefoundation/autoware.universe

Bibliography 125

[49] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Batch informed trees (BIT*):
Sampling-based optimal planning via the heuristically guided search of implicit ran-
dom geometric graphs. In IEEE International Conference on Robotics and Automa-
tion, pages 3067–3074, 2015.

[50] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Timothy D. Barfoot. Informed
rrt*: Optimal sampling-based path planning focused via direct sampling of an admis-
sible ellipsoidal heuristic. In 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2997–3004, 2014. doi: 10.1109/IROS.2014.6942976.

[51] Jonathan D Gammell, Timothy D Barfoot, and Siddhartha S Srinivasa. Batch
informed trees (BIT*): Informed asymptotically optimal anytime search. The
International Journal of Robotics Research, 39(5):543–567, 2020. doi: 10.1177/
0278364919890396.

[52] Zhiqiang Gao, Yi Huang, and Jingqing Han. An alternative paradigm for control
system design. In Proceedings of the 40th IEEE Conference on Decision and Control
(Cat. No.01CH37228), volume 5, pages 4578–4585 vol.5, 2001. doi: 10.1109/CDC.
2001.980926.

[53] Tomasz Gawron and Maciej Marcin Michałek. A g3-continuous extend procedure for
path planning of mobile robots with limited motion curvature and state constraints.
Applied Sciences, 8(11), 2018. ISSN 2076-3417. doi: 10.3390/app8112127. URL
https://www.mdpi.com/2076-3417/8/11/2127.

[54] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the
KITTI vision benchmark suite. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 3354–3361, 2012.

[55] D. González, J. Pírez, V. Milanís, and F. Nashashibi. A review of motion planning
techniques for automated vehicles. IEEE Transactions on Intelligent Transportation
Systems, 17(4):1135–1145, 2016.

[56] Steven N. Goodman, Daniele Fanelli, and John P. A. Ioannidis. What does research
reproducibility mean? Science Translational Medicine, 8(341):341ps12–341ps12,
2016. doi: 10.1126/scitranslmed.aaf5027. URL https://www.science.org/doi/

abs/10.1126/scitranslmed.aaf5027.
[57] J. A. Groeger. Understanding Driving: Applying Cognitive Psychology to a Complex

Everyday Task. Psychology Press, East Sussex, 2000.
[58] Tianyu Gu, Jarrod Snider, John M. Dolan, and Jin-woo Lee. Focused trajectory plan-

ning for autonomous on-road driving. In 2013 IEEE Intelligent Vehicles Symposium
(IV), pages 547–552, 2013. doi: 10.1109/IVS.2013.6629524.

[59] Corrado Guarino Lo Bianco and Oscar Gerelli. Generation of paths with minimum
curvature derivative with 𝜂3 -splines. IEEE Transactions on Automation Science and
Engineering, 7(2):249–256, 2010. doi: 10.1109/TASE.2009.2023206.

[60] Jingqing Han. From pid to active disturbance rejection control. IEEE Transactions
on Industrial Electronics, 56(3):900–906, 2009. doi: 10.1109/TIE.2008.2011621.

[61] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968. doi: 10.1109/TSSC.1968.300136.

https://www.mdpi.com/2076-3417/8/11/2127
https://www.science.org/doi/abs/10.1126/scitranslmed.aaf5027
https://www.science.org/doi/abs/10.1126/scitranslmed.aaf5027

Bibliography 126

[62] Eric Heiden, Luigi Palmieri, Leonard Bruns, Kai O. Arras, Gaurav S. Sukhatme, and
Sven Koenig. Bench-MR: A motion planning benchmark for wheeled mobile robots.
IEEE Robotics and Automation Letters, 6(3):4536–4543, 2021.

[63] Kersten Heineke, Philipp Kampshoff, Armen Mkrtchyan, and Emily Shao. Self-
driving car technology: When will the robots hit the road?, 2017. URL https:

//www.mckinsey.com/industries/automotive-and-assembly/our-insights/

self-driving-car-technology-when-will-the-robots-hit-the-road.
[64] Matteo Hessel, Hado van Hasselt, Joseph Modayil, and David Silver. On inductive

biases in deep reinforcement learning, 2019.
[65] David Hoeller, Lorenz Wellhausen, Farbod Farshidian, and Marco Hutter. Learning

a state representation and navigation in cluttered and dynamic environments. IEEE
Robotics and Automation Letters, 6(3):5081–5088, 2021. doi: 10.1109/LRA.2021.
3068639.

[66] Taylor A. Howell, Brian E. Jackson, and Zachary Manchester. ALTRO: A fast solver
for constrained trajectory optimization. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 7674–7679, 2019. doi: 10.1109/
IROS40897.2019.8967788.

[67] Jinwook Huh and Daniel D. Lee. Efficient sampling with q-learning to guide rapidly
exploring random trees. IEEE Robotics and Automation Letters, 3(4):3868–3875,
2018. doi: 10.1109/LRA.2018.2856927.

[68] Jinwook Huh, Daniel D. Lee, and Volkan Isler. Learning continuous cost-to-
go functions for non-holonomic systems. In 2021 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 5772–5779, 2021. doi:
10.1109/IROS51168.2021.9636139.

[69] Chia-Man Hung, Shaohong Zhong, Walter Goodwin, Oiwi Parker Jones, Martin
Engelcke, Ioannis Havoutis, and Ingmar Posner. Reaching through latent space: From
joint statistics to path planning in manipulation. IEEE Robotics and Automation
Letters, pages 1–1, 2022. doi: 10.1109/LRA.2022.3152697.

[70] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imita-
tion learning: A survey of learning methods. ACM Comput. Surv., 50(2), 2017.

[71] Sebastian Höfer, Kostas Bekris, Ankur Handa, Juan Higuera, Florian Golemo,
Melissa Mozifian, Chris Atkeson, Dieter Fox, Ken Goldberg, John Leonard, C. Liu,
Jan Peters, Shuran Song, Peter Welinder, and Martha White. Perspectives on
sim2real transfer for robotics: A summary of the r:ss 2020 workshop, 12 2020.

[72] Brian Ichter and Marco Pavone. Robot motion planning in learned latent spaces.
IEEE Robotics and Automation Letters, 4(3):2407–2414, 2019. doi: 10.1109/LRA.
2019.2901898.

[73] Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distributions
for robot motion planning. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 7087–7094, 2018. doi: 10.1109/ICRA.2018.8460730.

[74] David Isele, Reza Rahimi, Akansel Cosgun, Kaushik Subramanian, and Kikuo Fu-
jimura. Navigating occluded intersections with autonomous vehicles using deep re-
inforcement learning. In 2018 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 2034–2039, 2018. doi: 10.1109/ICRA.2018.8461233.

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/self-driving-car-technology-when-will-the-robots-hit-the-road

Bibliography 127

[75] Fahad Islam, Venkatraman Narayanan, and Maxim Likhachev. Dynamic multi-
heuristic a*. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 2376–2382, 2015. doi: 10.1109/ICRA.2015.7139515.

[76] Fahad Islam, Oren Salzman, Aditya Agarwal, and Maxim Likhachev. Prov-
ably constant-time planning and replanning for real-time grasping objects off a
conveyor belt. The International Journal of Robotics Research, 40(12-14):1370–
1384, 2021. doi: 10.1177/02783649211027194. URL https://doi.org/10.1177/

02783649211027194.
[77] Léonard Jaillet and Josep M. Porta. Path planning under kinematic constraints by

rapidly exploring manifolds. IEEE Transactions on Robotics, 29(1):105–117, 2013.
doi: 10.1109/TRO.2012.2222272.

[78] Nikolay Jetchev and Marc Toussaint. Fast motion planning from experience: tra-
jectory prediction for speeding up movement generation. Autonomous Robots, 34
(1):111–127, Jan 2013. ISSN 1573-7527. doi: 10.1007/s10514-012-9315-y. URL
https://doi.org/10.1007/s10514-012-9315-y.

[79] Kichun Jo, Junsoo Kim, Dongchul Kim, Chulhoon Jang, and Myoungho Sunwoo.
Development of autonomous car—part ii: A case study on the implementation of an
autonomous driving system based on distributed architecture. IEEE Transactions
on Industrial Electronics, 62(8):5119–5132, 2015. doi: 10.1109/TIE.2015.2410258.

[80] Jacob J. Johnson, Linjun Li, Fei Liu, Ahmed H. Qureshi, and Michael C. Yip.
Dynamically constrained motion planning networks for non-holonomic robots. In
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 6937–6943, 2020. doi: 10.1109/IROS45743.2020.9341283.

[81] Tom Jurgenson and Aviv Tamar. Harnessing reinforcement learning for neural motion
planning. In Proceedings of Robotics: Science and Systems, FreiburgimBreisgau,
Germany, June 2019. doi: 10.15607/RSS.2019.XV.026.

[82] S. Karaman and E. Frazzoli. Sampling-based optimal motion planning for non-
holonomic dynamical systems. In IEEE International Conference on Robotics and
Automation, pages 5041–5047, Karlsruhe, 2013.

[83] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, 30(7):846–894, 2011. doi:
10.1177/0278364911406761.

[84] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, and Lipika Deka. Real-
time motion planning methods for autonomous on-road driving: State-of-the-art
and future research directions. Transportation Research Part C: Emerging Tech-
nologies, 60:416–442, 2015. ISSN 0968-090X. doi: https://doi.org/10.1016/j.
trc.2015.09.011. URL https://www.sciencedirect.com/science/article/pii/

S0968090X15003447.
[85] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps

for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation, 12(4):566–580, 1996. doi: 10.1109/70.508439.

[86] Mitsuo Kawato, Francesca Gandolfo, Hiroaki Gomi, and Yasuhiro Wada. Teaching
by showing in kendama based on optimization principle. In International Conference
on Artificial Neural Networks, pages 601–606. Springer, 1994.

https://doi.org/10.1177/02783649211027194
https://doi.org/10.1177/02783649211027194
https://doi.org/10.1007/s10514-012-9315-y
https://www.sciencedirect.com/science/article/pii/S0968090X15003447
https://www.sciencedirect.com/science/article/pii/S0968090X15003447

Bibliography 128

[87] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In
Proceedings. 1985 IEEE International Conference on Robotics and Automation, vol-
ume 2, pages 500–505, 1985. doi: 10.1109/ROBOT.1985.1087247.

[88] Piotr Kicki, Tomasz Gawron, Krzysztof Ćwian, Mete Ozay, and Piotr Skrzypczyński.
Learning from experience for rapid generation of local car maneuvers. Engineering
Applications of Artificial Intelligence, 105:104399, 2021.

[89] Beobkyoon Kim, Terry Um, Chansu Suh, and F. Park. Tangent bundle RRT: A
randomized algorithm for constrained motion planning. Robotica, 34:202–225, 01
2016. doi: 10.1017/S0263574714001234.

[90] Jinho Kim, Byung-Soo Kim, and Silvio Savarese. Comparing image classification
methods: K-nearest-neighbor and support-vector-machines. In Proceedings of the 6th
WSEAS International Conference on Computer Engineering and Applications, and
Proceedings of the 2012 American Conference on Applied Mathematics, AMERICAN-
MATH’12/CEA’12, page 133–138, Stevens Point, Wisconsin, USA, 2012. World Sci-
entific and Engineering Academy and Society (WSEAS). ISBN 9781618040640.

[91] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

[92] Zachary Kingston, Mark Moll, and Lydia E. Kavraki. Sampling-based
methods for motion planning with constraints. Annual Review of Con-
trol, Robotics, and Autonomous Systems, 1(1):159–185, 2018. doi: 10.1146/
annurev-control-060117-105226.

[93] Zachary Kingston, Mark Moll, and Lydia E. Kavraki. Exploring implicit spaces
for constrained sampling-based planning. The International Journal of Robotics Re-
search, 38(10-11):1151–1178, 2019. doi: 10.1177/0278364919868530.

[94] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab,
Senthil Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous
driving: A survey. IEEE Transactions on Intelligent Transportation Systems, 23(6):
4909–4926, 2022. doi: 10.1109/TITS.2021.3054625.

[95] Jens Kober and Jan Peters. Policy search for motor primitives in robotics. Advances
in neural information processing systems, 21, 2008.

[96] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149–2154
vol.3, 2004. doi: 10.1109/IROS.2004.1389727.

[97] Dieter Kraft. A software package for sequential quadratic programming. Technical
Report DFVLR-FB 88-28, DLR German Aerospace Center – Institute for Flight
Mechanics, Koln, Germany, 1988.

[98] J.J. Kuffner and S.M. LaValle. Rrt-connect: An efficient approach to single-
query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), volume 2, pages 995–1001 vol.2, 2000. doi: 10.1109/ROBOT.2000.
844730.

http://arxiv.org/abs/1412.6980

Bibliography 129

[99] Steven M. LaValle. Rapidly-exploring random trees: a new tool for path planning.
The annual research report, 1998.

[100] Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.
[101] Teguh Santoso Lembono, Emmanuel Pignat, Julius Jankowski, and Sylvain Calinon.

Learning constrained distributions of robot configurations with generative adversarial
network. IEEE Robotics and Automation Letters, 6(2):4233–4240, 2021. doi: 10.
1109/LRA.2021.3068671.

[102] Linjun Li, Yinglong Miao, Ahmed H. Qureshi, and Michael C. Yip. MPC-MPNet:
Model-predictive motion planning networks for fast, near-optimal planning under
kinodynamic constraints. IEEE Robotics and Automation Letters, 6(3):4496–4503,
2021. doi: 10.1109/LRA.2021.3067847.

[103] Sihui Li and Neil T. Dantam. A sampling and learning framework to prove
motion planning infeasibility. The International Journal of Robotics Research, 0
(0), 2023. doi: 10.1177/02783649231154674. URL https://doi.org/10.1177/

02783649231154674.
[104] Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for non-

linear biological movement systems. In Proceedings of the 1st International Confer-
ence on Informatics in Control, Automation and Robotics, (ICINCO 2004), volume 1,
pages 222–229, 01 2004.

[105] Yanbo Li, Zakary Littlefield, and Kostas E. Bekris. Asymptotically optimal sampling-
based kinodynamic planning. The International Journal of Robotics Research, 35(5):
528–564, 2016. doi: 10.1177/0278364915614386. URL https://doi.org/10.1177/

0278364915614386.
[106] Maxim Likhachev and Dave Ferguson. Planning long dynamically feasible maneuvers

for autonomous vehicles. The International Journal of Robotics Research, 28(8):933–
945, 2009.

[107] Wonteak Lim, Seongjin Lee, Myoungho Sunwoo, and Kichun Jo. Hierarchical trajec-
tory planning of an autonomous car based on the integration of a sampling and an
optimization method. IEEE Transactions on Intelligent Transportation Systems, 19
(2):613–626, 2018. doi: 10.1109/TITS.2017.2756099.

[108] Todd Litman. Autonomous vehicle implementation predictions: Implications for
transport planning, 2023.

[109] Puze Liu, Davide Tateo, Haitham Bou Ammar, and Jan Peters. Robot reinforcement
learning on the constraint manifold. In 5th Annual Conference on Robot Learning,
2021. URL https://openreview.net/forum?id=zwo1-MdMl1P.

[110] Puze Liu, Davide Tateo, Haitham Bou-Ammar, and Jan Peters. Efficient and re-
active planning for high speed robot air hockey. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 586–593. IEEE, 2021.

[111] Tomás Lozano-Pérez and Michael A. Wesley. An algorithm for planning collision-free
paths among polyhedral obstacles. Commun. ACM, 22(10):560–570, oct 1979. ISSN
0001-0782. doi: 10.1145/359156.359164. URL https://doi.org/10.1145/359156.

359164.
[112] D. Luenberger. An introduction to observers. IEEE Transactions on Automatic

Control, 16(6):596–602, 1971. doi: 10.1109/TAC.1971.1099826.

https://doi.org/10.1177/02783649231154674
https://doi.org/10.1177/02783649231154674
https://doi.org/10.1177/0278364915614386
https://doi.org/10.1177/0278364915614386
https://openreview.net/forum?id=zwo1-MdMl1P
https://doi.org/10.1145/359156.359164
https://doi.org/10.1145/359156.359164

Bibliography 130

[113] Franco Manessi and Alessandro Rozza. Learning combinations of activation func-
tions. In 2018 24th International Conference on Pattern Recognition (ICPR), pages
61–66, 2018. doi: 10.1109/ICPR.2018.8545362.

[114] Troy McMahon, Aravind Sivaramakrishnan, Kushal Kedia, Edgar Granados, and
Kostas E. Bekris. Terrain-aware learned controllers for sampling-based kinodynamic
planning over physically simulated terrains. In 2022 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pages 2925–2930, 2022. doi:
10.1109/IROS47612.2022.9982136.

[115] Tim Mercy, Wannes Van Loock, and Goele Pipeleers. Real-time motion planning
in the presence of moving obstacles. In 2016 European Control Conference (ECC),
pages 1586–1591, 2016. doi: 10.1109/ECC.2016.7810517.

[116] Maciej Marcin Michałek and Tomasz Gawron. Vfo path following control with guar-
antees of positionally constrained transients for unicycle-like robots with constrained
control input. Journal of Intelligent & Robotic Systems, 89(1):191–210, Jan 2018.

[117] Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun,
and Marco Hutter. Learning robust perceptive locomotion for quadrupedal robots in
the wild. Science Robotics, 7(62):eabk2822, 2022. doi: 10.1126/scirobotics.abk2822.

[118] R. Miklosovic, A. Radke, and Zhiqiang Gao. Discrete implementation and general-
ization of the extended state observer. In 2006 American Control Conference, pages
6 pp.–, 2006. doi: 10.1109/ACC.2006.1656547.

[119] Isaac Miller, Mark Campbell, Dan Huttenlocher, Frank-Robert Kline, Aaron Nathan,
Sergei Lupashin, Jason Catlin, Brian Schimpf, Pete Moran, Noah Zych, Ephrahim
Garcia, Mike Kurdziel, and Hikaru Fujishima. Team cornell’s skynet: Robust per-
ception and planning in an urban environment. Journal of Field Robotics, 25(8):493–
527, 2008. doi: https://doi.org/10.1002/rob.20253. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/rob.20253.
[120] Dmytro Mishkin, Nikolay Sergievskiy, and Jiri Matas. Systematic evaluation of con-

volution neural network advances on the imagenet. Computer Vision and Image
Understanding, 161:11–19, 2017. ISSN 1077-3142. doi: https://doi.org/10.1016/j.
cviu.2017.05.007. URL https://www.sciencedirect.com/science/article/pii/

S1077314217300814.
[121] Daniel Molina, Kislay Kumar, and Siddharth Srivastava. Learn and link: Learn-

ing critical regions for efficient planning. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), pages 10605–10611, 2020. doi: 10.1109/
ICRA40945.2020.9196833.

[122] Miguel Angel Zamora Mora, Momchil Peychev, Sehoon Ha, Martin Vechev, and
Stelian Coros. Pods: Policy optimization via differentiable simulation. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages
7805–7817. PMLR, 18–24 Jul 2021.

[123] Mustafa Mukadam, Jing Dong, Xinyan Yan, Frank Dellaert, and Byron Boots.
Continuous-time gaussian process motion planning via probabilistic inference. The
International Journal of Robotics Research, 37(11):1319–1340, Sep 2018. ISSN

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20253
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20253
https://www.sciencedirect.com/science/article/pii/S1077314217300814
https://www.sciencedirect.com/science/article/pii/S1077314217300814

Bibliography 131

1741-3176. doi: 10.1177/0278364918790369. URL http://dx.doi.org/10.1177/

0278364918790369.
[124] Katharina Mülling, Jens Kober, and Jan Peters. A biomimetic approach to robot

table tennis. Adaptive Behavior, 19(5):359–376, 2011.
[125] Akio Namiki, Sakyo Matsushita, Takahiro Ozeki, and Kenzo Nonami. Hierarchical

processing architecture for an air-hockey robot system. In 2013 IEEE International
Conference on Robotics and Automation, pages 1187–1192. IEEE, 2013.

[126] Nils J. Nilsson. Shakey the robot. Technical report, SRI International, 1984.
[127] Colm ó’Dúnlaing, Micha Sharir, and Chee K. Yap. Retraction: A new approach to

motion-planning. In Proceedings of the Fifteenth Annual ACM Symposium on Theory
of Computing, STOC ’83, page 207–220, New York, NY, USA, 1983. Association
for Computing Machinery. ISBN 0897910990. doi: 10.1145/800061.808750. URL
https://doi.org/10.1145/800061.808750.

[128] Mohsen Omrani, Matthew T Kaufman, Nicholas G Hatsopoulos, and Paul D Cheney.
Perspectives on classical controversies about the motor cortex. J Neurophysiol, 118
(3):1828–1848, June 2017.

[129] Joaquim Ortiz-Haro, Jung-Su Ha, Danny Driess, and Marc Toussaint. Struc-
tured deep generative models for sampling on constraint manifolds in sequential
manipulation. In Aleksandra Faust, David Hsu, and Gerhard Neumann, editors,
Proceedings of the 5th Conference on Robot Learning, volume 164 of Proceedings
of Machine Learning Research, pages 213–223. PMLR, 08–11 Nov 2022. URL
https://proceedings.mlr.press/v164/ortiz-haro22a.html.

[130] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli.
A survey of motion planning and control techniques for self-driving urban vehicles.
IEEE Transactions on Intelligent Vehicles, 1(1):33–55, 2016. doi: 10.1109/TIV.2016.
2578706.

[131] Joseph J. Paton and Dean V. Buonomano. The neural basis of timing: Distributed
mechanisms for diverse functions. Neuron, 98(4):687–705, May 2018. doi: 10.1016/
j.neuron.2018.03.045. URL https://doi.org/10.1016/j.neuron.2018.03.045.

[132] Alejandro Perez, Robert Platt, George Konidaris, Leslie Kaelbling, and Tomas
Lozano-Perez. LQR-RRT*: Optimal sampling-based motion planning with auto-
matically derived extension heuristics. In 2012 IEEE International Conference on
Robotics and Automation, pages 2537–2542, 2012. doi: 10.1109/ICRA.2012.6225177.

[133] Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta
Numerica, 8:143–195, 1999. doi: 10.1017/S0962492900002919.

[134] Mihail Pivtoraiko, Ross A. Knepper, and Alonzo Kelly. Differentially constrained
mobile robot motion planning in state lattices. Journal of Field Robotics, 26(3):308–
333, 2009. doi: https://doi.org/10.1002/rob.20285. URL https://onlinelibrary.

wiley.com/doi/abs/10.1002/rob.20285.
[135] Kai Ploeger, Michael Lutter, and Jan Peters. High acceleration reinforcement learn-

ing for real-world juggling with binary rewards. In Conference on Robot Learning,
pages 642–653. PMLR, 2021.

[136] Ashwini Pokle, Roberto Martín-Martín, Patrick Goebel, Vincent Chow, Hans M.
Ewald, Junwei Yang, Zhenkai Wang, Amir Sadeghian, Dorsa Sadigh, Silvio Savarese,

http://dx.doi.org/10.1177/0278364918790369
http://dx.doi.org/10.1177/0278364918790369
https://doi.org/10.1145/800061.808750
https://proceedings.mlr.press/v164/ortiz-haro22a.html
https://doi.org/10.1016/j.neuron.2018.03.045
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20285
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20285

Bibliography 132

and Marynel Vázquez. Deep local trajectory replanning and control for robot naviga-
tion. In 2019 International Conference on Robotics and Automation (ICRA), pages
5815–5822, 2019. doi: 10.1109/ICRA.2019.8794062.

[137] Jan Willem Polderman and Jan C. Willems. Pole Placement by State Feedback,
pages 311–339. Springer New York, New York, NY, 1998. ISBN 978-1-4757-
2953-5. doi: 10.1007/978-1-4757-2953-5_9. URL https://doi.org/10.1007/

978-1-4757-2953-5_9.
[138] Stefano Primatesta, Abdalla Osman, and Alessandro Rizzo. MP-RRT#: a model

predictive sampling-based motion planning algorithm for unmanned aircraft sys-
tems. Journal of Intelligent & Robotic Systems, 103(4):59, Nov 2021. ISSN
1573-0409. doi: 10.1007/s10846-021-01501-3. URL https://doi.org/10.1007/

s10846-021-01501-3.
[139] Martin L Puterman. Markov decision processes: discrete stochastic dynamic pro-

gramming. John Wiley & Sons, 2014.
[140] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,

Eric Berger, Rob Wheeler, and Andrew Ng. Ros: an open-source robot operating sys-
tem. In Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop
on Open Source Robotics, Kobe, Japan, may 2009.

[141] Ahmed Hussain Qureshi, Jiangeng Dong, Asfiya Baig, and Michael C. Yip. Con-
strained motion planning networks x. IEEE Transactions on Robotics, pages 1–19,
2021. doi: 10.1109/TRO.2021.3096070.

[142] Ahmed Hussain Qureshi, Yinglong Miao, Anthony Simeonov, and Michael C. Yip.
Motion planning networks: Bridging the gap between learning-based and classical
motion planners. IEEE Transactions on Robotics, 37(1):48–66, 2021. doi: 10.1109/
TRO.2020.3006716.

[143] A. Radke and Zhiqiang Gao. A survey of state and disturbance observers for
practitioners. In 2006 American Control Conference, pages 6 pp.–, 2006. doi:
10.1109/ACC.2006.1657545.

[144] Rajesh Rajamani. Vehicle Dynamics and Control. Springer, 2012.
[145] John H. Reif. Complexity of the mover’s problem and generalizations. In 20th Annual

Symposium on Foundations of Computer Science (sfcs 1979), pages 421–427, 1979.
doi: 10.1109/SFCS.1979.10.

[146] Nicholas Rhinehart, Rowan McAllister, and Sergey Levine. Deep imitative models
for flexible inference, planning, and control. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=Skl4mRNYDr.

[147] Reuven Y. Rubinstein and Dirk P. Kroese. The Cross Entropy Method: A Unified Ap-
proach To Combinatorial Optimization, Monte-Carlo Simulation (Information Sci-
ence and Statistics). Springer-Verlag, Berlin, Heidelberg, 2004. ISBN 038721240X.

[148] Christoph Rösmann, Frank Hoffmann, and Torsten Bertram. Kinodynamic trajec-
tory optimization and control for car-like robots. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 5681–5686, 2017. doi:
10.1109/IROS.2017.8206458.

https://doi.org/10.1007/978-1-4757-2953-5_9
https://doi.org/10.1007/978-1-4757-2953-5_9
https://doi.org/10.1007/s10846-021-01501-3
https://doi.org/10.1007/s10846-021-01501-3
https://openreview.net/forum?id=Skl4mRNYDr

Bibliography 133

[149] Caude Sammut. Behavioral Cloning, pages 93–97. Springer US, Boston, MA, 2010.
ISBN 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_69. URL https://doi.

org/10.1007/978-0-387-30164-8_69.
[150] Stefan Schaal. Dynamic Movement Primitives -A Framework for Motor Control

in Humans and Humanoid Robotics, pages 261–280. Springer Tokyo, Tokyo, 2006.
ISBN 978-4-431-31381-6. doi: 10.1007/4-431-31381-8_23. URL https://doi.org/

10.1007/4-431-31381-8_23.
[151] John Schulman, Jonathan Ho, Alex X. Lee, Ibrahim Awwal, Henry Bradlow, and

P. Abbeel. Finding locally optimal, collision-free trajectories with sequential convex
optimization. Robotics: Science and Systems IX, 2013.

[152] Aravind Sivaramakrishnan, Edgar Granados, Seth Karten, Troy McMahon, and
Kostas E. Bekris. Improving kinodynamic planners for vehicular navigation with
learned goal-reaching controllers. In 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 9038–9043, 2021. doi: 10.1109/
IROS51168.2021.9636657.

[153] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Uni-
versal planning networks: Learning generalizable representations for visuomotor con-
trol. In International Conference on Machine Learning, pages 4732–4741. PMLR,
2018.

[154] Joseph A. Starek, Javier V. Gomez, Edward Schmerling, Lucas Janson, Luis Moreno,
and Marco Pavone. An asymptotically-optimal sampling-based algorithm for bi-
directional motion planning. In 2015 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 2072–2078, 2015. doi: 10.1109/IROS.2015.
7353652.

[155] Samantha Stoneman and Roberto Lampariello. Embedding nonlinear optimization
in RRT for optimal kinodynamic planning. In 53rd IEEE Conference on Decision
and Control, pages 3737–3744, 2014. doi: 10.1109/CDC.2014.7039971.

[156] Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforce-
ment learning by pid lagrangian methods. In International Conference on Machine
Learning, pages 9133–9143. PMLR, 2020.

[157] Marlin P. Strub and Jonathan D. Gammell. Advanced bit* (abit*): Sampling-
based planning with advanced graph-search techniques. In 2020 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 130–136, 2020. doi:
10.1109/ICRA40945.2020.9196580.

[158] Marlin P Strub and Jonathan D Gammell. Adaptively Informed Trees (AIT*) and
Effort Informed Trees (EIT*): Asymmetric bidirectional sampling-based path plan-
ning. The International Journal of Robotics Research (IJRR), 41(4):390–417, 2022.

[159] John K. Subosits and J. Christian Gerdes. From the racetrack to the road: Real-
time trajectory replanning for autonomous driving. IEEE Transactions on Intelligent
Vehicles, 4(2):309–320, 2019. doi: 10.1109/TIV.2019.2904390.

[160] Ioan A. Şucan, Mark Moll, and Lydia E. Kavraki. The Open Motion Planning
Library. IEEE Robotics & Automation Magazine, 19(4):72–82, December 2012. doi:
10.1109/MRA.2012.2205651. https://ompl.kavrakilab.org.

https://doi.org/10.1007/978-0-387-30164-8_69
https://doi.org/10.1007/978-0-387-30164-8_69
https://doi.org/10.1007/4-431-31381-8_23
https://doi.org/10.1007/4-431-31381-8_23
https://ompl.kavrakilab.org

Bibliography 134

[161] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jürgen
Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford, and Peter
Corke. The limits and potentials of deep learning for robotics. The International
Journal of Robotics Research, 37(4-5):405–420, 2018.

[162] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
Cambridge, 1998.

[163] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018. URL http://incompleteideas.net/book/

the-book-2nd.html.
[164] Jakub Szkandera, Ivana Kolingerová, and Martin Maňák. Narrow passage problem

solution for motion planning. In Valeria V. Krzhizhanovskaya, Gábor Závodszky,
Michael H. Lees, Jack J. Dongarra, Peter M. A. Sloot, Sérgio Brissos, and João
Teixeira, editors, Computational Science – ICCS 2020, pages 459–470, Cham, 2020.
Springer International Publishing.

[165] Siyu Teng, Xuemin Hu, Peng Deng, Bai Li, Yuchen Li, Yunfeng Ai, Dongsheng
Yang, Lingxi Li, Zhe Xuanyuan, Fenghua Zhu, and Long Chen. Motion planning for
autonomous driving: The state of the art and future perspectives. IEEE Transactions
on Intelligent Vehicles, 8(6):3692–3711, 2023. doi: 10.1109/TIV.2023.3274536.

[166] Ryo Terasawa, Yuka Ariki, Takuya Narihira, Toshimitsu Tsuboi, and Kenichiro Na-
gasaka. 3d-cnn based heuristic guided task-space planner for faster motion planning.
In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages
9548–9554, 2020. doi: 10.1109/ICRA40945.2020.9196883.

[167] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for transferring deep neural networks from simulation
to the real world. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 23–30, 2017. doi: 10.1109/IROS.2017.8202133.

[168] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Mill-
man, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[169] Matt Vitelli, Yan Chang, Yawei Ye, Ana Ferreira, Maciej Wołczyk, Błażej Osiński,
Moritz Niendorf, Hugo Grimmett, Qiangui Huang, Ashesh Jain, and Peter Ondruska.
Safetynet: Safe planning for real-world self-driving vehicles using machine-learned
policies. In 2022 International Conference on Robotics and Automation (ICRA),
pages 897–904, 2022. doi: 10.1109/ICRA46639.2022.9811576.

[170] Felix von Drigalski, Devwrat Joshi, Takayuki Murooka, Kazutoshi Tanaka, Masashi
Hamaya, and Yoshihisa Ijiri. An analytical diabolo model for robotic learning
and control. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 4055–4061. IEEE, 2021.

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

Bibliography 135

[171] José L. Vázquez, Marius Brühlmeier, Alexander Liniger, Alisa Rupenyan, and John
Lygeros. Optimization-based hierarchical motion planning for autonomous racing. In
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 2397–2403, 2020. doi: 10.1109/IROS45743.2020.9341731.

[172] Alvin Wan. Making decision trees accurate again: Explaining what explainable ai
did not, 2020. URL https://bair.berkeley.edu/blog/2020/04/23/decisions/

#fnref:data.
[173] Jiankun Wang, Tianyi Zhang, Nachuan Ma, Zhaoting Li, Han Ma, Fei Meng, and

Max Q.-H. Meng. A survey of learning-based robot motion planning. IET Cyber-
Systems and Robotics, 2021. URL https://api.semanticscholar.org/CorpusID:

236381976.
[174] Kesheng Wang. B-splines joint trajectory planning. Computers in Indus-

try, 10(2):113–122, 1988. ISSN 0166-3615. doi: https://doi.org/10.1016/
0166-3615(88)90016-4. URL https://www.sciencedirect.com/science/article/

pii/0166361588900164.
[175] Wouter J. Wolfslag, Mukunda Bharatheesha, Thomas M. Moerland, and Martijn

Wisse. RRT-CoLearn: Towards kinodynamic planning without numerical trajectory
optimization. IEEE Robotics and Automation Letters, 3(3):1655–1662, 2018. doi:
10.1109/LRA.2018.2801470.

[176] Xuesu Xiao, Bo Liu, Garrett Warnell, and Peter Stone. Motion planning and control
for mobile robot navigation using machine learning: a survey. Autonomous Robots,
46(5):569–597, Jun 2022. ISSN 1573-7527. doi: 10.1007/s10514-022-10039-8. URL
https://doi.org/10.1007/s10514-022-10039-8.

[177] Xuesu Xiao, Zizhao Wang, Zifan Xu, Bo Liu, Garrett Warnell, Gauraang Dhamankar,
Anirudh Nair, and Peter Stone. Appl: Adaptive planner parameter learning.
Robotics and Autonomous Systems, 154:104132, 2022. ISSN 0921-8890. doi:
https://doi.org/10.1016/j.robot.2022.104132. URL https://www.sciencedirect.

com/science/article/pii/S0921889022000744.
[178] Mandy Xie and Frank Dellaert. Batch and incremental kinodynamic motion planning

using dynamic factor graphs, 2020. URL https://arxiv.org/abs/2005.12514.
[179] Wenda Xu, Junqing Wei, John M. Dolan, Huijing Zhao, and Hongbin Zha. A real-

time motion planner with trajectory optimization for autonomous vehicles. In 2012
IEEE International Conference on Robotics and Automation, pages 2061–2067, 2012.
doi: 10.1109/ICRA.2012.6225063.

[180] Zhihao Xu, Robin Hess, and Klaus Schilling. Constraints of potential field
for obstacle avoidance on car-like mobile robots. IFAC Proceedings Vol-
umes, 45(4):169–175, 2012. ISSN 1474-6670. doi: https://doi.org/10.3182/
20120403-3-DE-3010.00077. URL https://www.sciencedirect.com/science/

article/pii/S1474667015404616. 1st IFAC Conference on Embedded Systems,
Computational Intelligence and Telematics in Control.

[181] Jun Yamada, Chia-Man Hung, Jack Collins, Ioannis Havoutis, and Ingmar Posner.
Leveraging scene embeddings for gradient-based motion planning in latent space. In
2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2023.

https://bair.berkeley.edu/blog/2020/04/23/decisions/#fnref:data
https://bair.berkeley.edu/blog/2020/04/23/decisions/#fnref:data
https://api.semanticscholar.org/CorpusID:236381976
https://api.semanticscholar.org/CorpusID:236381976
https://www.sciencedirect.com/science/article/pii/0166361588900164
https://www.sciencedirect.com/science/article/pii/0166361588900164
https://doi.org/10.1007/s10514-022-10039-8
https://www.sciencedirect.com/science/article/pii/S0921889022000744
https://www.sciencedirect.com/science/article/pii/S0921889022000744
https://arxiv.org/abs/2005.12514
https://www.sciencedirect.com/science/article/pii/S1474667015404616
https://www.sciencedirect.com/science/article/pii/S1474667015404616

Bibliography 136

[182] Mohammadreza Yavari, Kamal Gupta, and Mehran Mehrandezh. Lazy steering
RRT: An optimal constrained kinodynamic neural network based planner with no
in-exploration steering. In 2019 19th International Conference on Advanced Robotics
(ICAR), pages 400–407, 2019. doi: 10.1109/ICAR46387.2019.8981551.

[183] Sangyol Yoon, Dasol Lee, Jiwon Jung, and David Shim. Spline-based rrt* using
piecewise continuous collision-checking algorithm for car-like vehicles. Journal of
Intelligent & Robotic Systems, 90:1–13, 09 2017.

[184] Chenning Yu and Sicun Gao. Reducing collision checking for sampling-based motion
planning using graph neural networks. Advances in Neural Information Processing
Systems, 34:4274–4289, 2021.

[185] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin Yang, Sergio Casas,
and Raquel Urtasun. End-to-end interpretable neural motion planner. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
8652–8661, 2019. doi: 10.1109/CVPR.2019.00886.

[186] Clark Zhang, Jinwook Huh, and Daniel D. Lee. Learning implicit sampling dis-
tributions for motion planning. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3654–3661, 2018. doi: 10.1109/IROS.
2018.8594028.

[187] Ji Zhang and Sanjiv Singh. Low-drift and real-time lidar odometry and mapping.
Autonomous Robots, 41:401–416, 2017.

[188] Dongliang Zheng and Panagiotis Tsiotras. Accelerating kinodynamic RRT through
dimensionality reduction. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3674–3680, 2021. doi: 10.1109/IROS51168.2021.
9636754.

[189] Matt Zucker, Nathan Ratliff, Anca D. Dragan, Mihail Pivtoraiko, Matthew Klin-
gensmith, Christopher M. Dellin, J. Andrew Bagnell, and Siddhartha S. Srini-
vasa. CHOMP: Covariant hamiltonian optimization for motion planning. The In-
ternational Journal of Robotics Research, 32(9-10):1164–1193, 2013. doi: 10.1177/
0278364913488805.

	Abstract
	Streszczenie
	Acknowledgements
	Abbreviations
	Notation
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Related work
	1.3.1 Overview of the motion planning methods
	1.3.2 Motion planning methods for autonomous vehicles
	1.3.3 Constrained motion planning
	1.3.4 Kinodynamic motion planning
	1.3.5 Learning-based motion planning

	1.4 Proposed solution
	1.5 Content of the thesis
	1.6 Projects and publications

	2 Learning Rapid Maneuver Planning for Car-Like Vehicles Using Gradient-based Policy Search
	2.1 Introduction
	2.2 Problem definition
	2.3 Proposed solution
	2.3.1 Path planning as Markov Decision Process
	2.3.2 Action and context definition
	2.3.2.1 Action
	2.3.2.2 Context

	2.3.3 Policy representation
	2.3.4 Loss function
	2.3.5 Dataset
	2.3.6 Overall structure of the proposed solution

	3 Fast neural network-based planning via efficient B-spline path construction
	3.1 Introduction
	3.2 Proposed solution
	3.2.1 General idea
	3.2.2 Path representation
	3.2.3 Path construction method
	3.2.4 Neural network planner architecture
	3.2.5 Loss function

	4 Fast Kinodynamic Planning on the Constraint Manifold with Deep Neural Networks
	4.1 Introduction
	4.2 Proposed solution
	4.2.1 Problem statement
	4.2.2 Learning how to plan with constraints
	4.2.2.1 Defining the constraint manifold
	4.2.2.2 Approximated optimization problem
	4.2.2.3 Loss function learning

	4.2.3 Trajectory parametrization
	4.2.3.1 Boundary conditions

	4.2.4 Neural network architecture
	4.2.5 Loss functions

	5 Experimental verification of the neural network-based path planning for car-like vehicles
	5.1 Introduction
	5.1.1 State-of-the-art path planning algorithms

	5.2 Exepriments on the dataset
	5.2.1 Performance
	5.2.2 Training speed
	5.2.3 Parameters of the methods
	5.2.4 Ablation studies

	5.3 Experiments in CARLA
	5.3.1 Controller
	5.3.2 Planning typical maneuvers

	6 Experimental verification of the constrained neural kinodynamic motion planning
	6.1 Introduction
	6.1.1 Baseline motion planning algorithms
	6.1.2 Evaluation environment
	6.1.3 Controller
	6.1.4 Parameters of the algorithms used for evaluation

	6.2 Kinodynamic planning for moving a heavy vertically oriented object in simulation
	6.2.1 Task description
	6.2.2 Dataset and method adjustments
	6.2.2.1 Dataset
	6.2.2.2 Loss functions

	6.2.3 Quantitative comparison with state-of-the-art

	6.3 Planning high-speed hitting movements in the simulated robotic Air-Hockey
	6.3.1 Task description
	6.3.2 Dataset and method adjustments
	6.3.2.1 Dataset
	6.3.2.2 Loss functions

	6.3.3 Quantitative comparison with state-of-the-art
	6.3.4 Qualitative results for replanning

	6.4 Planning high-speed hitting movements on the real robotic Air-Hockey setup
	6.4.1 Quantitative comparison with state-of-the-art
	6.4.2 Trick shots

	6.5 Ablation studies
	6.5.1 Training set size
	6.5.2 Size of the neural network
	6.5.3 Number of B-spline control points
	6.5.4 Generalization abilities

	6.6 Discussion

	7 Conclusions
	7.1 Summary
	7.2 Conclusions and thesis contribution
	7.3 Limitations
	7.4 Future work

	Bibliography

