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Abstract

Data Envelopment Analysis (DEA) is a method for evaluating the efficiency of the
Decision Making Units (DMUs) consuming multiple inputs and producing multiple out-
puts. Its applications include real-world problems from various fields, e.g., banking,
healthcare, education, or transportation. In the original DEA setting, the performance
of a unit is assessed using the single, most favorable input-output weight vector. It allows
only to indicate the set of efficient DMUs without the possibility of comparing them. In
this dissertation, we address these drawbacks and propose a novel framework for robust-
ness analysis in the context of DEA. First, we propose a set of methods that explore the
complete spectrum of feasible weight vectors using two efficiency models, i.e., the basic
ratio-based model and the Value-based additive DEA (VDEA) model inspired by the field
of MCDA. The framework introduced in this dissertation consists of two complementary
types of methods: the exact ones, based on mathematical programming, and the stochas-
tic ones, based on the Monte Carlo simulation. We consider three different viewpoints of
the analysis: the efficiency scores, the pairwise comparisons between units, and the effi-
ciency rankings. In addition, this dissertation extends the proposed approach to consider
the imprecise information (in the form of interval and ordinal input/output performances
and the admissible ranges of marginal functions) and the hierarchical structure of indi-
cators. We propose the algorithms to determine the efficiency reducts and constructs
useful for explaining the recommendations. Moreover, the method for finding the single
representative weight vector based on the outcomes of the robustness analysis was pro-
posed. Furthermore, we have introduced some measures which aggregate the outcomes
for multiple scenarios. Finally, this dissertation contains the experimental comparison
of the existing approaches providing the full ranking of DMUs. The applicability of the
methodological contribution of this dissertation is illustrated with some real-world case
studies including, among others, the efficiency evaluation of Polish airports, Emergency
Department physicians or resilience of counrties’ electricity systems.
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Chapter 1

Introduction

Data Envelopment Analysis (DEA) is a method allowing to evaluate the relative efficiency
of Decision Making Units (DMUs). A DMU can be any entity that consumes multiple
inputs and produces multiple outputs. The idea of DEA has its origins in Farrell’s
definition of performance [33]. He proposed a method to assess the efficiency of a unit
using a frontier production function, in contrast to the average production used in most
of the literature up to this time. His idea, focused on a single-output scenario, was further
developed, resulting in the work [16], which forms the origin of DEA. In their problem
formulation, the efficiency of a unit was defined as a ratio between a virtual output and
a virtual input. The goal of the standard DEA method is to identify the set of units that
perform efficiently. It is done by finding the single vector of input and output weights,
which is the most favorable for the examined unit, i.e., its efficiency score is the greatest
possible.

During the last 50 years, multiple researchers explored the DEA approach resulting
in new models of efficiency and multiple extensions [20, 31] and applications. The most
popular areas of DEA applications are banking, health care, agriculture, transportation,
and education [60, 77]. The DEA-related literature contains over ten thousand journal
papers with continuous and rapid growth [32].

The main DEA models are the CCR model [16], the BCC model [10], and the additive
model [15]. The first two are the radial models and require distinguishing between the
input and output orientation. The latter is a non-radial model, in which the efficiency
score is based on the L1 distance to the efficient frontier. Such an approach combines both
orientations into a single model [23]. Such a combination is often desirable. However,
the original formulation of the additive model has some drawbacks. First, there is a
scale problem – the projections of the inefficient units on the efficient frontier depend
significantly on the scale of inputs and outputs. Moreover, the efficiency measure in
this model has no intuitive interpretation [38]. To address these problems, in [26, 38],
the authors proposed another additive model for DEA, which draws from the field of
Multi-Criteria Decision Analysis (MCDA). They transform the inputs and outputs into
possibly non-linear value functions and aggregate them using an additive function based
on the concept of the Multi-Attribute Value Theory (MAVT) [34, 48].

Independently on the chosen model, the evaluation of DMUs is always based only on
the most favorable scenario for the examined DMU. The vectors of weights assigned to
inputs and outputs are different for each unit, which casts doubts about the legitimacy
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of the comparisons between them [58]. Moreover, the standard DEA setting does not
respond to the question of how the DMUs perform under other weight vectors [70].
Moreover, the efficiency scores are highly sensitive to changes in the set of DMUs under
consideration [71, 89]. Finally, DEA allows only to indicate the set of efficient DMUs,
not providing tools to discriminate between them.

These drawbacks were an area of concern for further research. First, multiple methods
that allow discrimination between the efficient units and provide the complete ranking of
DMUs were proposed [1, 3]. The most popular among them are cross-efficiency [72] and
super-efficiency [9]. Second, the preference information was included to limit the feasible
weight vector space [65, 79]. The above techniques address some of the problems related
to the original DEA. However, they do not explore the whole spectrum of weights.

In this dissertation, the novel framework for the robustness analysis in a context of
DEA was proposed for both the ratio-based and the value-based efficiency models. It
provides a set of methods that explore the whole spectrum of feasible weight vectors.
We consider three different points of view: the efficiency scores (or distances to the best
unit), efficiency ranks, and the pairwise comparisons between the DMUs. On the one
hand, for each of these viewpoints, we propose the methods based on the mathematical
programming providing the extreme (minimal and maximal) values for the considered
measure, the extreme efficiency scores, extreme distances to the best DMU, and extreme
efficiency ranks. For the pairwise comparisons perspective, we define the necessary and
possible efficiency preferences for pairs of DMUs and verify the truth of such relations.
On the other hand, the intervals between the extreme values are, in many cases, very
wide, so the robustness analysis framework incorporates also some stochastic methods,
based on Monte Carlo simulation, allowing us to determine the distributions of considered
metrics over the feasible weight vector space. We capture these distributions by accept-
ability indices, such as the Efficiency Acceptability Interval Indices (EAIIs), Distance
Acceptability Interval Indices (DAIIs), Efficiency Rank Acceptability Indices (ERAIs)
and Pairwise Efficiency Outranking Indices (PEOIs).

In many real-world problems, the provided information is imperfect. Sometimes, the
input and output values cannot be measured precisely, or such a measurement would
be too expensive. It is also possible that these values change over time [8, 25]. This
is why the robustness analysis methods introduced in this dissertation were adapted for
the situation where inputs and outputs are imprecisely defined. In a context of DEA,
two types of uncertainty are usually considered, the interval and ordinal factors [22, 60].
Both of them are included in this dissertation. Moreover, for problems where the Value-
based additive DEA (VDEA) model is used, we also consider a third type of imprecise
information concerning the marginal value functions. The precise value functions may
be replaced with the range of admissible values defined by two boundary functions.

In the standard DEA applications, the structure of inputs and outputs is flat. Often,
it is beneficial for the users to organize them in a hierarchical structure of categories.
The higher-lever factors represent more general concepts, while the lower-lever are more
specific. Such a structure has some useful properties [24]. First, modifying and updating
the hierarchy is easy if new information becomes available. Second, it allows to decompose
the problem into smaller pieces, which are more manageable and provide more specific
information. Third, with the hierarchical structure, it is possible to model the interactions
between the categories, not only the individual factors. The weight constraints may
be defined at any level of the hierarchy. In MCDA, the benefits of the hierarchical
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structure were widely explored (e.g., [24, 27, 68]. In a context of DEA, the Multiple-
Layer DEA (MLDEA) model was proposed to handle an arbitrary number of levels
[73]. Moreover, in this work, the inputs and outputs must be organized into two separate
hierarchies. In this dissertation, we introduce the model which uses the VDEA to evaluate
the DMUs with inputs and outputs organized into a single hierarchy. We also adapt the
robustness analysis framework to the hierarchical DEA problems.

The outcomes of the robustness analysis framework may be, sometimes, hard to
understand and interpret, so we introduced the method which provides a single weight
vector, which represents the most the outcomes of the robustness analysis. Based on
this vector, one may evaluate the whole set of units and generate their ranking with
an advantage of a common base while retaining the idea of representation of the whole
feasible weight vector space.

The last two extensions of the proposed framework include the multiple scenario
analysis, which is applicable in situations when the same set of DMUs is evaluated un-
der different scenarios. We propose some methods which aggregate the outcomes from
individual scenarios. Moreover, we define and propose the algorithm to determine the ef-
ficiency reducts and constructs. For the efficient units, we indicate the efficiency reducts,
i.e., the minimal subsets of inputs and outputs, for which the given unit is efficient. For
inefficient DMUs, we search for the efficiency constructs, i.e., the minimal subsets of
units, which should be removed from the data set to make the examined unit efficient.

The methodological part of this dissertation is illustrated with real-world case studies.
First, the robustness analysis framework with the ratio-based efficiency model is applied
to evaluate Polish airports and the electricity supply resilience of different countries. In
the latter, we applied also the algorithm for the determination of the efficiency reducts
and constructs. Second, we analyzed the 20 Emergency Department physicians using
the VDEA model enriched with identification of the representative set of weights and
the multiple-scenario analysis for different patients’ complaint groups. Third, several
case studies, including the evaluation of Special Economic Zones in Poland, Chinese
ports, and industrial robots, were conducted using the robustness analysis for DEA with
imprecise data. Finally, the case study of the healthcare systems in Polish voivodeships
was considered using the VDEA with hierarchical structure of factors.

Furthermore, this dissertation includes the experimental comparison of the methods
providing the full ranking of DMUs in a context of DEA. We identified and implemented
fifteen ranking procedures, which represent different concepts, such as super- and cross-
efficiency, multivariate statistics, the role of units as benchmarks for others, and the
outcomes of the robustness analysis. The experiments included ten real-world and 960
randomly generated data sets. The rankings provided by the analyzed methods were
compared using five measures: hit ratio and normalized hit ratio for the choice problem,
as well as Kendall’s τ , Rank Difference Measure (RDM), and Rank Acceptance Measure
(RAM) for complete rankings [47]. The obtained results allowed us to identify some
groups of procedures for which the provided rankings are similar and some procedures
representing unique concepts. Such an analysis, combined with identifying the strengths
and weaknesses of each procedure, eases the users to choose the method that is the most
suitable for their problem.

The remainder of this doctoral dissertation is organized in the following way. Chap-
ter 2 discusses the DEA method, its main efficiency models, concepts of the super- and
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cross-efficiency, and the existing robustness analysis approaches. Chapter 3 extensively
describes the proposed robustness analysis framework for the ratio-based and VDEA
efficiency models. In Chapter 4, we present the extensions of the proposed framework
and the conducted case studies. Chapter 5 concludes the dissertation and presents some
areas for future research.
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Chapter 2

Data Envelopment Analysis

This chapter describes the idea of DEA. We focus on the main efficiency models and
delineate the general aim of the traditional efficiency analysis.

2.1 Ratio-based efficiency model

This section describes the original ratio-based efficiency model of DEA [16]. It is inspired
by the commonly used measure of efficiency for the DMUs with one input and one output:

efficiency =
output
input

. (2.1)

For example, when evaluating an employee, the managers can determine the “output per
hour”, while for the production companies, the performance is usually calculated with
the “cost per unit” measure. Such an approach is intuitive. However, it does not deal
with the situation when the units must be evaluated in terms of consuming multiple
inputs and producing multiple outputs.

We consider a set of K DMUs, denoted as D = {DMU1, DMU2, . . . , DMUK}. Each
unit is described with a set of M inputs (IN = {x1, x2, . . . xM}) and a set of N outputs
(OUT = {y1, y2, . . . , yN}). The values of k-th DMU on m-th input and n-th output are
denoted as, respectively, xm,k and yn,k.

The efficiency score of DMUo is defined as the ratio of the virtual output and the
virtual input:

Eo =

∑N
n=1 µnyn,o∑M
m=1 νmxm,o

, (2.2)

where µm and νn are, respectively, weights assigned to the m-th input and n-th output.

To evaluate the efficiency of a given unit DMUo, one may want to determine the
most favorable input-output weight vector for this DMU. Such the most favorable weight
vector can be determined by solving the following mathematical programming model:

max Eo =

∑N
n=1 µnyn,o∑M
m=1 νmxm,o

subject to:
∑N

n=1 µnyn,k∑M
m=1 νmxm,k

≤ 1, for k = 1, 2, . . . ,K,

µn, νm ≥ 0, for n = 1, 2, . . . , N, m = 1, 2, . . . ,M.

(2.3)
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In this model, the ratio-based efficiency score for considered DMU is maximized with the
restriction that the efficiency scores do not exceed 1 for all units in the data set.

As the model above is not linear, the authors used the Charnes-Cooper transforma-
tion [14] to obtain the equivalent linear model:

max Eo =
N∑

n=1

µnyn,o

subject to:
M∑

m=1

νmxm,o = 1,

N∑

n=1

µnyn,k ≤
M∑

m=1

νmxm,k, for k = 1, 2, . . . ,K,

µn, νm ≥ 0, for n = 1, 2, . . . , N, m = 1, 2, . . . ,M.

(2.4)

In this model, the weighted sum of outputs for analyzed DMU is maximized with the
restriction that the weighted sum of inputs for this unit is equal to 1. The remaining
constraints ensure that the efficiency score of all DMUs is not greater than 1 and that
the inputs’ and outputs’ weights are non-negative. If the optimal objective value (E∗

o) is
equal to 1 for some DMUo, it means that there exists at least one input-output weight
vector, for which DMUo is the best unit in terms of the ratio-based efficiency score. In
this case, DMUo is deemed weakly efficient. If, in addition, there exists at least one
solution where all input and output weights are strictly positive, then DMUo is called
CCR efficient. The opposite situation (E∗

o < 1) means that, for all weight vectors, there
is at least one other DMU better than DMUo, so DMUo is inefficient.

Example For illustrative purposes, let us consider six DMUs described with single
input and single output (see Table 2.1). The efficiency of DMU E can be determined by
solving the model below:

max EE = 4µout

subject to: 2.5νin = 1,

6µout ≤ 2νin (A),

2µout ≤ νin (B),

7µout ≤ 3νin (C),

6µout ≤ 4νin (D),

4µout ≤ 2.5νin (E),

2.5µout ≤ 3.5νin (F ).

(2.5)

Based on the optimal solution of the model above, the CCR efficiency score of E is equal
to 0.533, so this unit is inefficient. The input and output weights are equal, respec-
tively, νin = 0.4 and µout = 0.133. Similarly, the efficiency score for other units can be
determined.

The CCR DEA model also takes the alternative form, which is a dual formulation of
the problem presented in Equation 2.4. In this case, the model does not focus on the
efficiency scores of DMUs but on the efficient frontier formed by a linear combination
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Table 2.1: Input and output values for DMUs from the considered example.

DMU input output

A 2 6
B 1 2
C 3 7
D 4 6
E 2.5 4
F 3.5 2.5

of efficient units. The Linear Programming model for the dual formulation of the CCR
model is presented below:

min θ

subject to:
K∑

k=1

λkxm,k ≤ θxm,o, for m = 1, 2, . . . ,M,

K∑

k=1

λkyn,k ≥ yn,o, for n = 1, 2, . . . , N,

λk ≥ 0, for k = 1, 2, . . . ,K,

θ ≥ 0.

(2.6)

In the dual formulation of the CCR model, we search for a virtual unit (a conical com-
bination of the existing DMUs), which attains better performance, i.e., lower inputs and
greater outputs than the analyzed DMUo. Moreover, the input values of DMUo are mul-
tiplied with a variable θ, which is minimized. This assures that all inputs are reduced
proportionally (radially) as most as possible – the virtual DMU is as far from DMUo as
possible. If the optimal value of θ (θ∗) is equal to 1, then the DMUo is compared to itself
(λo = 1, λk = 0 for k = 1, 2, . . . ,K, k ̸= o). This situation takes place for units deemed
as weakly efficient. For inefficient DMUs θ∗ is lesser than 1.

Example When considering unit E from the exemplary data set, the dual CCR model
takes the following form:

min θ

subject to: 2λA + λB + 3λC + 4λD + 2.5λE + 3.5λF ≤ 2.5θ

6λA + 2λB + 7λC + 6λD + 4λE + 2.5λF ≥ 4

λA, λB, λC , λD, λE , λF ≥ 0,

θ ≥ 0.

(2.7)

To determine if some weakly efficient unit is fully efficient (CCR efficient), we need
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to solve the following LP model, which maximizes the slacks for a considered DMU:

max
M∑

m=1

s−m +
N∑

n=1

s+n

subject to:
K∑

k=1

λkxm,k = θ∗xm,o − s−m, for m = 1, 2, . . . ,M,

K∑

k=1

λkyn,k = yn,o + s+n , for n = 1, 2, . . . , N,

λk ≥ 0, for k = 1, 2, . . . ,K,

s−m ≥ 0, s+n ≥ 0, m = 1, 2, . . . ,M, n = 1, 2, . . . , N,

(2.8)

where θ∗ is an optimal solution for the dual CCR model (Equation 2.6). If all slacks in
the optimal solution (s−m and s

+
n ) are zeros, then the considered DMUo is CCR efficient.

The linear combination of DMUs obtained with the dual formulation of the CCR
model forms an artificial DMU which is a projection of the analyzed DMUo into the
efficiency frontier. This artificial unit is called a Hypothetical Comparison Unit (HCU).
Its input and output values are calculated as follows:

xm,HCU =
K∑

k=1

λ∗
kxm,k, (2.9)

ym,HCU =

K∑

k=1

λ∗
kyn,k, (2.10)

where λ∗
k are the optimal values from model 2.6. Figure 2.1 presents, graphically, the

efficiency frontier and the HCU for the DMU E from the considered example.

Figure 2.1: Hypothetical Comparison Unit (HCU) for exemplary DMU E.

Having determined the inputs and outputs values of the HCU, it is possible to de-
termine the improvements that need to be implemented for all inputs simultaneously
to achieve efficiency. The necessary improvement of m-th input or n-th output can be
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obtained as follows:

∆xm,o = xm,o − xm,HCU , (2.11)

∆yn,o = yn,HCU − yn,o. (2.12)

Output oriented problem

Up to this point, we focused on the input-oriented perspective, i.e., the objective was
to minimize the inputs and remain the outputs at the same level. Hence, it is called an
input-oriented model. However, it is possible to conduct the efficiency analysis from the
perspective of increasing outputs with inputs remaining at the same level. Such models
are called output-oriented. The primal formulation of the output-oriented efficiency
model is the following:

min
1

Eo
=

M∑

m=1

νmxm,o

subject to:
N∑

n=1

µnyn,o = 1,

N∑

n=1

µnyn,k ≤
M∑

m=1

νmxm,k, for k = 1, 2, . . . ,K,

µn, νm ≥ 0, for n = 1, 2, . . . , N, m = 1, 2, . . . ,M.

(2.13)

This time, the weighted sum of outputs is restricted to the value of one, while the weighted
sum of inputs for DMUo is minimized. The normalizing constraints remain the same as
in the input-oriented model. The efficiency score of DMUo is the inverse of the objective
value obtained with this model.

The following LP model presents the dual (envelopment) formulation for the output-
oriented problem for DMUo. In this model, the inputs of the artificial DMU need to be
at most as big as for DMUo, while the outputs must be not lesser than these of DMUo

multiplied by a variable θ which is maximized. So, the model searches for the maximal
value by which all outputs of a considered unit can be increased proportionally without
exceeding the outputs of the artificial DMU.

max θ

subject to:
K∑

k=1

λkxm,k ≤ xm,o, for m = 1, 2, . . . ,M,

K∑

k=1

λkyn,k ≥ θyn,o, for n = 1, 2, . . . , N,

λk ≥ 0, for k = 1, 2, . . . ,K.

(2.14)

Again, the inverse of the optimal objective value (θ∗) is the efficiency score of DMUo.

Example Both formulations of the output-oriented model allow evaluating the DMU
E from the considered example are presented below.

9



Primal formulation:

min 2.5νin

s.t. 4µout = 1,

6µout ≤ 2νin (A),

2µout ≤ νin (B),

7µout ≤ 3νin (C),

6µout ≤ 4νin (D),

4µout ≤ 2.5νin (E),

2.5µout ≤ 3.5νin (F ).

(2.15)

Dual formulation:

max θ

s.t. 2λA + λB + 3λC + 4λD + 2.5λE + 3.5λF ≤ 2.5,

6λA + 2λB + 7λC + 6λD + 4λE + 2.5λF ≥ 4θ,

λA, λB , λC , λD, λE , λF ≥ 0,

θ ≥ 0

(2.16)

Similarly to the input-oriented model, the linear combination of DMUs obtained with
the dual formulation of DEA model (λk) forms a HCU and allows to find the necessary
improvements of outputs to become efficient. The projections of all inefficient units
onto the efficient frontier in both: input-oriented in output-oriented models are shown in
Figure 2.2.

(a) Input-oriented model. (b) Output-oriented model.

Figure 2.2: Comparison between the HCUs in input and output orientated DEA models.

2.2 Other Data Envelopment Analysis models

In the previous part of this dissertation, we described the original ratio-based efficiency
model, called CCR. It is based on the assumption of the constant returns to scale of
activities, i.e., it assumes that any production plan, which is a conical combination of
the existing units, is feasible. Such assumption can be modified, resulting in different
production possibility sets [11, 23]. In this section, we discuss some other efficiency
models in the context of DEA, such as the BCC model, additive model, and a VDEA
model.

BCC model

Firstly, let us focus on the BCC DEA model [10]. It assumes the variable return to the
scale of activities. In this model, only the convex combinations of the existing DMUs are
feasible. Figure 2.3 compares the efficiency frontiers in a CCR and BCC models for the
considered example.

As mentioned before, the BCC model allows only the convex combination of units, i.e.,
the sum of their contributions in the artificial DMU must be equal to one (

∑K
k=1 λk = 1).

10



The input-oriented model to determine the BCC efficiency in the units’ combinations
perspective (dual formulation) is the following:

min θ

subject to:
K∑

k=1

λkxm,k ≤ θxm,o, for m = 1, 2, . . . ,M,

K∑

k=1

λkyn,k ≥ yn,o, for n = 1, 2, . . . , N,

K∑

k=1

λk = 1,

λk ≥ 0, for k = 1, 2, . . . ,K.

(2.17)

Note that the only difference from the CCR model (see Equation 2.6) is the additional
constraint, which ensures that the artificial DMUs is the convex combination of units, in
contrast to the conical combination in the CCR model. Similarly to the CCR model, the
unit is deemed weakly efficient if the optimal value of the objective function (θ∗) is equal
to one. In the second stage, the fully efficient units, in terms of the BCC model, can be
determined with the analogous model to the second phase CCR model (Equation 2.8),
with additional constraint, which normalizes the sum of variables λk. It is worth noticing
that all units which are CCR efficient are also efficient in terms of the BCC model, but
not the opposite.

The primal formulation of the input-oriented BCC model is the following:

max Eo = µ0 +

N∑

n=1

µnyn,o

subject to:
M∑

m=1

νmxm,o = 1,

µ0 +

N∑

n=1

µnyn,k ≤
M∑

m=1

νmxm,k, for k = 1, 2, . . . ,K,

µn, νm ≥ 0, for n = 1, 2, . . . , N, m = 1, 2, . . . ,M,

µ0 free.
(2.18)

In this model, when compared to the CCR model, the additional variable µ0 is added
to the objective function and the normalizing constraints. Note that this variable is
free in sign, i.e., it may take both positive or negative values. Again, the DMUs, for
which the optimal objective function is equal to one, are weakly efficient. Moreover, if
for some DMUo, in any optimal solution of this model, all weights µn, νm are non-zero,
then DMUo is strongly (fully) efficient.

Analogously, we can formulate the LP models for output-oriented problems.

Additive model

In the ratio-based efficiency models discussed before, choosing the input or output ori-
entation is necessary. In the additive model [15], both orientations are combined into a
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Figure 2.3: Efficiency frontier in CCR and BCC models of Data Envelopment Analysis.

single model. In the further part of this section, we present the additive model for the
constant return to scale. However, it can be easily adapted to the problems with variable
returns to scale [5]. This model aims to maximize the L1 distance from the analyzed
DMUo to the efficient frontier. Such a goal is obtained by maximizing the sum of slacks
for all inputs and outputs:

max
M∑

m=1

s+m +

N∑

n=1

s−n

subject to:
K∑

k=1

λkxm,k − s+m = xm,o, for m = 1, 2, . . . ,M,

K∑

k=1

λkyn,k − s−n = yn,o, for n = 1, 2, . . . , N,

λk ≥ 0, for k = 1, 2, . . . ,K,

s+m ≥ 0, s−n ≥ 0 for m = 1, 2, . . . ,M, n = 1, 2, . . . , N.

(2.19)

The DMUo is efficient, in terms of the additive model, if all slacks (s+m and s−n ), in the
optimal solution, are equal to zero. Moreover, the units deemed efficient with the additive
model are the same as those fully efficient in the CCR model [2].

The LP model of the additive model in the efficiency scores (primal) perspective is
the following:

min
M∑

m=1

νmxm,o −
N∑

n=1

µnyn,o

subject to:
N∑

n=1

µnyn,k ≤
M∑

m=1

νmxm,k, for k = 1, 2, . . . ,K,

µn, νm ≥ 0, for n = 1, 2, . . . , N, m = 1, 2, . . . ,M.

(2.20)

Example The LP models for evaluating the DMU E from the considered data set,
using the additive DEA model are presented below.
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Primal formulation:

min 2.5νin − 4µout

s.t. 6µout ≤ 2νin,

2µout ≤ νin,

7µout ≤ 3νin,

6µout ≤ 4νin,

4µout ≤ 2.5νin,

2.5µout ≤ 3.5νin.

(2.21)

Dual formulation:

max s+in + s−out
s.t. 2λA + λB + 3λC + 4λD + 2.5λE + 3.5λF + s+in = 2.5,

6λA + 2λB + 7λC + 6λD + 4λE + 2.5λF − s−out = 4,

λA, λB, λC , λD, λE , λF ≥ 0,

s+in, s
−
out ≥ 0.

(2.22)

Some other DEA models, based on the additive models, are the weighted additive
model [4], a slack-based measure of efficiency [80], and the VDEA model [26]. The latter
is described in more detail in the next section.

Value-based additive DEA model

Another efficiency model, called Value-based additive DEA (VDEA) [26, 38], is inspired
by the additive DEA model and the MAVT [34, 48] gathered from MCDA. In this model,
for each factor q (input and output), we define a value function (uq) that transforms the
original input and output values into the values from the range [0, 1]. To maintain the
spirit of DEA, the increase of inputs is undesirable, so the value function for input factors
must be non-increasing. For outputs, the value function must be non-decreasing, as the
increase of outputs in a desirable situation. The examples of the value functions proposed
for the considered example data set are presented in Figure 2.4. For example, for DMU
A the input value is equal to 2, so its utility is equal to 0.8 (uin(A) = uin(2) = 0.8),
while its output value is equal to 6, which corresponds to the utility value 0.7 (uout(A) =
uout(6) = 0.7). The efficiency score of DMUo, within the VDEA model, is a weighted
sum of values assigned to all factors:

Eo =

Q∑

q=1

wquq(DMUo), (2.23)

where Q is the number of factors (Q = N + M). The sum of weights assigned to inputs
and outputs must be equal to one. This ensures that the efficiency score is always between
0 for an anty-ideal DMU and 1 for the ideal one.

To evaluate the DMUo under this model, we compare them to all other units and
minimize the maximal distance of DMUo to any other unit in terms of the efficiency
score:

min do

subject to:
Q∑

q=1

wquq(DMUk)−
Q∑

q=1

wquq(DMUo) ≤ do, for k = 1, 2, . . . ,K,

Q∑

q=1

= 1,

do ≥ 0,

wq ≥ 0, for q = 1, 2, . . . Q.

(2.24)
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Figure 2.4: The value functions assigned to the input and output in the example data
set.

The DMUs, for which the minimal distance (d∗o) in the optimal solution of this model is
equal to 0, are efficient. If d∗o > 0, then DMUo is inefficient.

Example To evaluate the efficiency of the example DMU E, with the VDEA model,
the following model need to be solved:

min dE
subject to: winuin(2) + woutuout(6)− (winuin(2.5) + woutuout(4)) ≤ dE ,

winuin(1) + woutuout(2)− (winuin(2.5) + woutuout(4)) ≤ dE ,

winuin(3) + woutuout(7)− (winuin(2.5) + woutuout(4)) ≤ dE ,

winuin(4) + woutuout(6)− (winuin(2.5) + woutuout(4)) ≤ dE ,

winuin(2.5) + woutuout(4)− (winuin(2.5) + woutuout(4)) ≤ dE ,

winuin(3.5) + woutuout(2.5)− (winuin(2.5) + woutuout(4)) ≤ dE ,

dE ≥ 0,

win, wout ≥ 0.

(2.25)

The minimal distance d∗E obtained with this model is equal to 0.117, so DMU E is
inefficient.

2.3 Super-efficiency

The standard DEA method, described in Section 2.1, allows us to determine the efficiency
score of DMUs and divide their set into two subsets: efficient and inefficient ones. Such an
approach is not capable of comparing the efficient units. One of the DEA extensions which
deal with this problem is super-efficiency [6]. This approach eliminates the considered
unit from the data set and measures its distance from the efficient frontier constructed
with the remaining DMUs. This idea is presented in Figure 2.5. In this case, the super-
efficiency of the DMU A is calculated as follows:

SEo =
|OA′|
|OA| . (2.26)
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Figure 2.5: Super-efficiency for DMU A from the considered example.

This approach allows for the efficient units to attain a super-efficiency score greater
than 1, which eliminates some ties between them. The super-efficiency measure also has
some other practical usage. See [66, 85] for further details.

The following LP model is an input-oriented variant for determining the super-
efficiency for DMUo. It is similar to the standard primal input-oriented model. However,
the constraint which limits the efficiency score of the evaluated unit is removed, so it can
attain the super-efficiency score greater than 1:

max SEo =

N∑

n=1

µnyn,o

s.t.:
M∑

m=1

νmxm,o = 1,

N∑

n=1

µnyn,k ≤
M∑

m=1

νmxm,k, for k = 1, 2, . . . ,K, k ̸= o,

µn, νm ≥ 0, for n = 1, 2, . . . , N, m = 1, 2, . . . ,M.

(2.27)

The input-oriented model for super-efficiency calculation from the perspective of the
efficiency frontier is presented below:

min θ

subject to:
K∑

k=1,k ̸=o

λkxm,k ≤ θxm,o, for m = 1, 2, . . . ,M,

K∑

k=1,k ̸=o

λkyn,k ≥ yn,o, for n = 1, 2, . . . , N,

λk ≥ 0, for k = 1, 2, . . . ,K, k ̸= o,

θ ≥ 0.

(2.28)

It is possible to construct analogous models for the output-oriented problem.
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Example: To determine the super-efficiency of the efficient DMU A, one the following
models must be solved:

Primal formulation:

max 6µout

s.t.: 2νin = 1,

2µout ≤ νin (B),

7µout ≤ 3νin (C),

6µout ≤ 4νin (D),

4µout ≤ 2.5νin (E),

2.5µout ≤ 3.5νin (F ).
(2.29)

Dual formulation:

min θ

s.t. λB + 3λC + 4λD + 2.5λE + 3.5λF ≤ 2θ,

2λB + 7λC + 6λD + 4λE + 2.5λF ≥ 6,

λB, λC , λD, λE , λF ,

θ ≥ 0.

(2.30)

The idea of the super-efficiency was also developed for other efficiency models, e.g., the
VDEA [39], the slacks-based efficiency model [81], and the additive model [30].

2.4 Cross-efficiency

Another measure, which deals with the incomparability of the efficient units, is a cross-
efficiency [72]. The main idea of this procedure is to evaluate the considered DMUo with
the most favorable weight vectors obtained for other units from the data set.

In the first step of calculating the cross-efficiency of any DMU, we need to determine
the most favorable weight vectors for each unit. It can be done by solving the primal for-
mulation of the standard model of DEA. Depending on the chosen model and orientation,
it is one of the models presented in Equations 2.4, 2.13, 2.17 or similar. The set of the
optimal weights for the DMUk is denoted as (ν∗

k,µ
∗
k),ν∗

k = {ν∗1,k, ν∗2,k, . . . , ν∗M,k},µk =
{µ∗

1,k, µ
∗
2,k, . . . µ

∗
N,k}. The cross-efficiency score of DMUo under the optimal weights of

DMUk is computed as follows:

CEo,k =

∑N
n=1 µ

∗
n,kyn,o∑M

m=1 ν
∗
m,kxm,o

. (2.31)

Having determined the cross-efficiency matrix (CEi,j , i = 1, 2, . . . ,K, j = 1, 2, . . . ,K),
the DMUs can be compared by the arithmetical mean of their cross-efficiency scores
(CEo), i.e.

CEo =

∑K
k=1CEo,k

K
. (2.32)

The aggregation of the individual cross-efficiency scores has three main drawbacks
[88]. First, the set of weights for which the efficiency score is the best may not be unique,
which implies some randomness in the average cross-efficiency result [29]. Second, the
correlation between the weights and the cross-efficiency score is lost in the averaging pro-
cedure, so the decision-makers can be deprived of valuable information about the possible
improvements [87]. Third, the means of the cross-efficiency scores are not Pareto opti-
mal [86]. The further development of the cross-efficiency measures resulted in multiple
extensions which deal with these problems [7, 52, 87].
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2.5 Robustness analysis in Data Envelopment Analysis

In this section, we discuss the existing approaches of robustness analysis in the context
of DEA. The idea of the robustness analysis has its origins in the MCDA and accounts
for the uncertainty in real-world problems [46]. The outcomes of some methods are con-
sidered robust if they are true for the majority of the feasible combinations of parameters
[67, 83]. The results of the robustness analysis are often helpful to the decision makers
and guide them to enrich the provided preference information and narrow down the space
of the feasible solutions to obtain results more robust.

In the context of DEA, the robustness analysis approaches are focused on different
aspects of the analyzed data set, e.g., the changes of the input and output values, adding
or removing factors, or choosing the efficiency model [89, 18]. In this dissertation, we
propose the robustness analysis, which explores the feasible space of the weight vectors.
We build on the two concepts.

On the one hand, [70] proposed the Ratio-based Efficiency Analysis (REA), which
explores the whole set of the input/output weight vectors and provides results in three
perspectives: the efficiency bounds, i.e., the greatest and the lowest possible efficiencies
of a unit compared to a subset of other DMUs, the dominance relations between pairs
of DMUs and the ranking intervals (the range of efficiency ranks attained by a DMU).
Unlike the standard DEA, the outcomes are derived from pairwise comparisons rather
than measuring their distance to the efficient frontier.

On the other hand, [59] introduces the stochastic approach, based on the Stochastic
Multicriteria Acceptability Analysis (SMAA) [58, 64], called Stochastic Multicriteria Ac-
ceptability Analysis for Data Envelopment Analysis (SMAA-D). The proposed method
handles the uncertainties of the input/output weights and performances. It provides the
stochastic index, which calculates how often the given DMU attains the specific position
in the efficiency raking.
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Chapter 3

Robustness analysis framework
for Data Envelopment Analysis

In this chapter, we describe the robustness analysis framework for DEA proposed in this
dissertation.

3.1 Basic concepts

In Data Envelopment Analysis, the standard approach allows us to find the efficiency
score for each DMU considering its most favorable input-output weight vector. Such
efficiency score allows dividing the set of analyzed DMUs into efficient and inefficient
ones. However, the number of efficient units can be relatively high, especially when the
number of indicators (inputs and output) increases. We cannot compare the efficient units
as they all attain the same efficiency score equal to 1. Moreover, even for the inefficient
units, their comparison may be irrelevant because of the different weight vectors used to
assess the performance of each DMU. Publication P1 presents the novel framework for
robustness analysis for DEA with a ratio-based efficiency model. The proposed methods
concern three points of view: efficiency scores, pairwise efficiency preference relations,
and efficiency ranks.

The efficiency evaluation using the proposed framework is conducted in two comple-
mentary ways. Firstly, we use the LP techniques to determine the exact outcomes in
each point of view: extreme efficiency scores, extreme efficiency ranks, and to verify the
truth of the necessary and possible efficiency preference relations. Finally, the Monte
Carlo simulation is used to find the estimated stochastic indices based on the sample of
the feasible weight vector space.

The combination of both types of results is beneficial for further analysis. On the one
hand, mathematical programming methods provide information on what happens in the
most and the least favorable scenario for a given unit. However, the difference between
the extreme efficiencies or ranks can be, in many cases, large. Moreover, these extreme
values occur only for a single, particular weight vector and may be very far from the
efficiencies and ranks attained in the average situation. Similarly, the possible preference
relation may be true for the majority of pairs, making many DMUs incomparable in
terms of a robust preference. In this situation, the stochastic analysis can give some
additional information about the distributions of the efficiency scores and ranks, the
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estimated average score and rank, and the probability of the preference of one DMU over
the other. On the other hand, the stochastic indices can be estimated with high accuracy.
However, they are not exact. In particular, the chance of hitting the weight vector, for
which a unit attains the extreme score, is very low. Analogously, the pairwise efficiency
outranking index for some pair can be equal to one, which does not confirm that one
DMU is always preferred to another. Thus, the confrontation of the stochastic indices
with the exact outcomes is desirable.

To determine the stochastic indices for problems with ratio-based efficiency model,
the following algorithm is applied. As the weight vector space is unbounded, we added
the constraints which normalize the weights in the following form:

N∑

n=1

µn =
M∑

m=1

νm = 1. (3.1)

Then, we sample a set of weight vectors from this space using the Hit-And-Run algo-
rithm [78]. Following the SMAA-D [59], we use the uniform distribution for sampling.
However, it can generally be replaced with any probability distribution with a joint den-
sity function in the feasible weight space.

After obtaining the input/output weight vectors, the efficiency scores for each DMU
are computed. After that, we normalize them by dividing them by the maximal obtained
efficiency, which transforms the efficiency scores into the interval between zero and one, as
in the traditional DEA approach. Thus obtained efficiency scores are analyzed, providing
the estimates of the distributions of the efficiency score and efficiency ranks over the
feasible weight vector space. Moreover, we estimate the share of weight vectors for which
some DMU is preferred to another.

3.2 Efficiency scores

In this section, we describe the robustness measures considering the viewpoint of the
efficiency scores. To obtain the extreme (minimal and maximal) efficiency scores, the
LP models were proposed. The maximal efficiency score can be determined by solving
the original Charnes, Cooper and Rhodes (CCR) DEA model (see Equation 2.4). To
determine the worst efficiency score for DMUo (Eo,∗) the following LP model must be
solved:

min Eo,∗ =
N∑

n=1

µnyn,o

subject to:
M∑

m=1

νmxm,o = 1,

N∑

n=1

µnyn,k ≥
M∑

m=1

νmxm,k − C(1− bk), for k = 1, 2, . . . ,K,

K∑

k=1

bk ≥ 1,

bk ∈ {0, 1}, for k = 1, 2, . . . ,K,

(µ, ν) ∈ Sw,

(3.2)
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where C is a large positive constant. In this case, we look for the least advantageous
weight vector for DMUo. Its efficiency score is minimized with the restriction that at
least one DMU remains efficient (E ≥ 1). This condition is ensured by using the binary
variables bk. If bk for some DMUk is set to 1 then the component C(1− bk) is equal to
0 and the constraint takes form

∑N
n=1 µnyn,k ≥

∑M
m=1 νmxm,k. Otherwise (is bk = 0),

C(1 − bk) = C, and the right side of the constraint is small enough to make it always
met. By adding the constraint

∑K
k=1 bk ≥ 1, we ensure that for at least one DMUk, the

constraint holds and the efficiency score is not worse than 1.

To determine the distribution of the efficiency scores over the weight vector space,
we estimate the EAIIs for all DMUs. The Efficiency Acceptability Interval Index for a
DMUo and an interval bi (EAII(DMUo, bi)) is the share of the feasible weight vectors
(µ, ν) ∈ Sw, for which the DMUo attains the efficiency score in the interval bi. The
intervals (buckets) bi, i = 1, 2, . . . , B, are defined by their extreme values bi,∗ and b∗i ,
i.e., bi = (bi,∗, b∗i ] with the proviso that b1 is also left-closed. They must be disjoint and
cover the whole efficiency space, i.e., bi ∩ bj = ∅, if i ̸= j and

⋃B
i=1 bi = [0, 1]. Moreover,

by default, we assume that the buckets have equal widths. However, it is possible to
construct buckets with different widths. For each DMUo, the sum of its EAIIs is equal
to one, i.e.:

B∑

i=1

EAII(DMUo, bi) = 1. (3.3)

Moreover, the stochastic analysis is enriched by determining some additional measures
for eachDMUo, such as the extreme efficiencies (E′∗

o and E
′
o,∗) observed with Monte Carlo

simulation and the estimated expected efficiency score EE′
o, defined as:

EE′
o =

∑
(µ,ν)∈SS

w
Eo(µ, ν)

W
, (3.4)

where SS
w is the set weight vector samples and W is the number of samples.

3.3 Efficiency ranks

For a given DMUo and the weight vector (µ, ν) ∈ Sw, the efficiency rank of DMUo (Ro)
is defined as the number of DMUs for which the efficiency score with this weight vector
is greater than the efficiency score of DMUo increased by one, i.e.:

Ro = 1 +
K∑

k=1,k ̸=o

h(o, k, (µ, ν)), where (3.5)

h(o, k, (µ, ν)) =

{
1, if Ek(µ, ν) > Eo(µ, ν)

0, otherwise.
(3.6)

To indicate the best (minimal) efficiency rank (R∗
o) forDMUo, the following LP model
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need to be solved:

min R∗
o = 1 +

K∑

k=1,k ̸=o

bk

subject to:
M∑

m=1

νmxm,o = 1,

N∑

n=1

µnyn,o = 1,

N∑

n=1

µnyn,k ≤
M∑

m=1

νmxm,k + Cbk, for k = 1, 2, . . . ,K, k ̸= o

bk ∈ {0, 1} for k = 1, 2, . . . ,K, k ̸= o

(µ, ν) ∈ Sw.

(3.7)

In this case, we fix the efficiency score ofDMUo to the value of 1 and minimize the number
of DMUs for which the efficiency score is greater than 1. If, for some weight vector, the
efficiency score cannot lesser than or equal to 1 (

∑N
n=1 µnyn,k ≤

∑M
m=1 νmxm,k), then the

binary variable bk is set to 1. By multiplying it by a large constant C, it is ensured that
the constraint is satisfied. The variables bk set to 1 in the optimal solution of the model
identify the DMUs better than DMUo. If Ek(µ, ν) ≤ Eo(µ, ν), then bk is instantiated
with zero. By minimizing the sum of the variables bk, the solver assigns as many zeros as
possible. This sum, increased by one, gives the minimal (best) efficiency rank of DMUo.

The worst efficiency rank for DMUo (Ro,∗) can be determined with the following LP
model:

max Ro,∗ = 1 +

K∑

k=1,k ̸=o

bk

subject to:
M∑

m=1

νmxm,o = 1,

N∑

n=1

µnyn,o = 1,

M∑

m=1

νmxm,k ≤
N∑

n=1

µnyn,k + C(1− bk), for k = 1, 2, . . . ,K, k ̸= o

bk ∈ {0, 1} for k = 1, 2, . . . ,K, k ̸= o

(µ, ν) ∈ Sw.

(3.8)

Again, we assign Eo(µ, ν) = 1, but in this case, we search for the maximal number of
DMUs (DMUk), for which Ek(µ, ν) ≥ Eo(µ, ν). If Ek(µ, ν) is not worse than Eo(µ, ν),
then a binary variable bk is instantiated with one. Otherwise, if the efficiency score
of DMUk cannot be better than or equal to the efficiency score of DMUo, then bk is
instantiated with zero. The sum of the binary variables bk, increased by one, gives the
worst possible rank for DMUo.

To enrich the analysis from the viewpoint of efficiency ranks, we estimate the Effi-
ciency Rank Acceptability Indices (ERAIs) for all DMUs. ERAI for a given DMUo and

22



a rank r (ERAI(DMUo, r)) is defined as the share of feasible weight vectors (µ, ν) ∈ Sw,
for which the DMUo attains rth position in the efficiency ranking. For each DMU ERAIs
have the following propoerty:

∑

k=1K

ERAI(DMUo, k) = 1. (3.9)

Moreover, we also use the Monte Carlo simulation to estimate the expected efficiency
rank (ER′

o) for each DMUo:

ER′
o =

K∑

k=1

k · ERAI(DMUo, k). (3.10)

3.4 Preference relations

From the viewpoint of pairwise efficiency comparisons, we define two efficiency preference
relations:

• possible efficiency preference relation, (≿P
E), for a pair of DMUs (DMUo, DMUk),

is verified if there exists at least one weight vector, for which the efficiency score of
DMUo is not worse than the efficiency score of DMUk,

• necessary efficiency preference relation, (≿N
E ), for a pair of DMUs (DMUo, DMUk),

is verified if, for all feasible weight vectors, the efficiency score of DMUo is better
than or equal to the efficiency score of DMUk.

To verify if the possible efficiency preference relation is held for a pair of DMUs
(DMUo, DMUk), the following model must be solved:

max Eo =
N∑

n=1

µnyn,o

subject to:
M∑

m=1

νmxm,o = 1,

N∑

n=1

µnyn,k =
M∑

m=1

νmxm,k,

(µ, ν) ∈ Sw.

(3.11)

In this model, we maximize the efficiency score ofDMUo with the restriction that Ek = 1.
If the objective value of the optimal solution of this problem (Emax

o ) is not worse than
1, then exists some weight vector (µ, ν) for which Eo(µ, ν) ≥ Ek(µ, ν), so Eo ≿P

E Ek.

The same LP model, but with the opposite optimization direction, allows us to assess
if the necessary efficiency preference holds for a pair (DMUo, DMUk). In this case, if
the minimal objective value is greater than or equal to 1, then Eo(µ, ν) ≥ Ek(µ, ν) for
all (µ, ν) ∈ Sw, i.e., Eo ≿N

E Ek.

For a pair of DMUs, (DMUo, DMUk), we define the Pairwise Efficiency Outranking
Index PEOI(DMUo, DMUk) as the share of feasible weight vectors for which the effi-
ciency score of DMUo is not worse than the efficiency score of DMUk. The PEOIs for
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all DMUs are estimated with Monte Carlo simulation. We can point out the following
properties of the PEOIs:

• for each DMUo ∈ D, PEOI(DMUo, DMUo) = 1, i.e., any unit is always as good
as itself;

• For a pair (DMUo, DMUk) ∈ D ×D,

1 ≤ PEOI(DMUo, DMUk) + PEOI(DMUk, DMUo) ≤ 2,

i.e., the sum of PEOIs for a pair of units and the same pair reversed is always within
the interval [1, 2], which results from the possible ties in efficiency scores. If there are
no ties, such a sum is equal to 1. On contrary, if the efficiency scores of both DMUs
is always the same, then PEOI(DMUo, DMUk) + PEOI(DMUk, DMUo) = 2.

3.5 Robustness analysis for Value-based additive
efficiency model

In publication P4 the robustness analysis framework for the VDEA model was proposed.
Similarly to the ratio-based efficiency model, in terms of VDEA, we perform the analysis
using the mathematical programming (extreme outcomes) and Monte Carlo simulation
(stochastic distributions), and again, we provide outcomes on three different points of
view: efficiency scores, efficiency ranks and DMUs’ pairwise preferences.

In the context of VDEA, in the perspective of the efficiency scores, we may consider
the relative distances to the best DMU and the absolute values. When it comes to the
efficiency distance, we search for the interval [do,∗, d∗o] delimited by the minimal (the
best) do,∗ and the maximal (the worst) d∗o distance to the best DMU. The best distance
is computed using the standard formulation of VDEA, described in Section 2.2. The
maximal distance can be determined by solving the following LP model:

max do

subject to:
Q∑

q=1

wquq(DMUk)− do ≥
Q∑

q=1

wquq(DMUo)− C(1− bk), for k = 1, . . . ,K,

do ≥ 0,

K∑

k=1,k ̸=o

bk = 1,

bk ∈ {0, 1}, for k = 1, 2, . . . ,K; k ̸= o,
∑Q

q=1wq = 1,

wq ≥ 0, for q = 1, . . . , Q,
w ∈ Sw.



W

In this model, we maximize the distance of DMUo from some other DMU. The first
four constraints ensure that do equals the difference between DMUo and some DMUk

(o ̸= k). When bk is equal to 0 then the fist constraint is always satisfied, while for bk = 1
the component C(1 − bk) = 0 and do = Ek − Eo. Is it requred that bk = 1 for some
DMUk, k ̸= o.
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When considering the absolute values of efficiencies, one wants to determine the
extreme, i.e., minimal and maximal possible efficiency scores for analyzed DMUs. Such
extreme efficiency scores for a DMUo can be determined by solving the following model:

min/ max
Q∑

q=1

wquq(DMUo), s.t. W.

This time we optimize the efficiency score of DMUo subject to the constraints defining
a set of admissible inputs and output weights.

When considering the other perspectives of the exact analysis, we construct mathe-
matical programming models which allow us to determine the extreme efficiency ranks
and to verify the truth of the necessary and possible efficiency preference relations for
pairs of DMUs. The proposed models are analogous to those proposed for the ratio-based
efficiency model. For brevity, they are not presented in this dissertation.

The stochastic robustness analysis for VDEA is also performed similarly to these
proposed for the ratio-based model, which is described in Section 3.1. Again, we use the
Hit-And-Run algorithm to obtain a representative set of weight vectors. However, for the
VDEA model, we ensure that the sum of the weights is equal to one for all indicators,
i.e.

Q∑

q=1

wq = 1. (3.12)

After generating the weight samples, the efficiency scores for all DMUs are computed
using the standard equation: Eo =

∑Q
q=1wquq(DMUo). Note that the application of the

marginal value functions and the restriction on the sum of the weights already make the
efficiency score lay within the range [0− 1], so no normalization is needed.

Based on the efficiency scores, obtained for weight samples, we compute the same
stochastic acceptability indices and measures as for the ratio-based model, i.e., EAIIs,
ERAIs, PEOIs, expected efficiency score and expected efficiency rank. Moreover, we also
determine the Distance Acceptability Interval Indices (DAIIs) for all DMUs. Analogously
to EAII, the DAII for a given DMUo and a bucket bi is defined as the share of the feasible
weight vectors (µ, ν) ∈ Sw for which the distance of DMUo to the best DMU is within
the interval bi. The construction of those intervals is the same as for EAIIs. Moreover,
based on the obtained weight vector samples, for a given DMUo, we also estimate the
expected value of the distance to the best unit (Edo).

3.6 Interdependencies between the robust and stochastic
results

The extreme, necessary, and possible results from the mathematical programming influ-
ence the stochastic indices in the following way. For each DMUo ∈ D :

• if bi,∗ > E∗
o or b

∗
i < Eo,∗, then EAII(DMUo, bi) = 0, i.e,. if the whole subinterval

bi is outside the range of extreme efficiency scores, then the EAII must be equal to
zero;

•
∑

i:bi,∗≤E∗
o∧b∗i≥Eo,∗ EAII(DMUo, bi) = 1, i.e., the sum of the EAIIs corresponding

to the intervals with non-empty intersection with the [E∗
o , Eo,∗] is equal to one;
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• [E′
o,∗, E

′∗
o ] ⊆ [Eo,∗, E∗

o ], i.e., the interval defined by the estimated extreme efficiency
scores is always a subinterval of the real extreme efficiency scores;

• if bi,∗ > d∗o or b
∗
i < do,∗, then DAII(DMUo, bi) = 0, i.e., for subintervals bi with

empty intersection with the extreme distances, the DAII must be equal to zero;

•
∑

i:bi,∗≤d∗o∧b∗i≥do,∗ DAII(DMUo, bi) = 1, i.e., the sum of the DAIIs corresponding to
the intervals with a non-empty intersection with the extreme distance to the best
DMU is always equal to one;

• If DMUo ≿N
E DMUk, then PEOI(DMUo, DMUk) = 1, i.e., for pairs of units,

for which the necessary efficiency preference is valid, it has to be confirmed by all
feasible weight vectors, thus the PEOI is equal to one;

• ¬(DMUo ≿P
E DMUk) =⇒ PEOI(DMUo, DMUk) = 0, i.e., if the preference for a

pair of (DMUo, DMUk) is not possible, then the preference may not be confirmed
by any of the sampled weight vectors, so PEOI(DMUo, DMUk) = 0;

• r : {r < R∗
o ∨ r > Ro,∗} =⇒ ERAI(DMUo, r) = 0, i.e., if a rank is outside the

extreme ranks range, then the ERAI is equal to zero;

•
∑Ro,∗

r=R∗
o
ERAI(DMUo, r) = 1, i.e. the sum of ERAIs for all ranks possible attained

by DMUo must be equal to one.

The inverse relations may not be true because of the stochastic nature of the indices.
For example, the estimated PEOI(DMUo, DMUk) = 1 for some pair of DMUs does
not imply that the preference between these units is necessary. It means only that for
all sampled weight vectors, DMUo was not worse than DMUk. However, this may not
be true for some vectors which were not hit in the sampling procedure. The following
properties are the only ones that can be indicated between the estimated stochastic
indices and the exact outcomes:

• EAII(DMUo, bi) > 0 =⇒ bi,∗ ≤ E∗
o ∧ b∗i ≥ Eo,∗, i.e., if the estimated EAII for

some bucket is non-zero, then this bucket must have a non-empty intersection with
the extreme efficiency scores;

• PEOI(DMUo, DMUk) > 0 =⇒ DMUo ≿P
E DMUk, i.e., if the PEOI for a pair of

units is positive, then the possible preference for this pair is always possible;

• PEOI(DMUo, DMUk) < 1 =⇒ ¬(DMUo ≿N
E DMUk), i.e., if PEOI is lesser than

one, then for some weight vector DMUo is worse than DMUk, thus the necessary
preference is not true;

• ERAI(DMUo, r) > 0 =⇒ r ≥ R∗
o ∧ r ≤ Ro,∗, i.e., if the ERAI for some rank is

non-zero, then this rank must be within the extreme ranks interval.

3.7 Evolution of robust results with incremental
specification of weight constraints

In this section, we describe how the robust outcomes change when incrementally intro-
ducing the weight constraints. Let us consider a Decision-Maker (DM), who introduces
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the weight constraints in s iterations. They denote the nested sets of weight constraints
provided by the DM as A1 ⊆ A2 ⊆ . . . ⊆ As. These constraints translate into the
sets of the feasible weight vectors. For the set of constraints At, t = 1, 2, . . . , s, the set
of feasible weight vectors is denoted as St

w. These are incrementally constrained, i.e.,
S1
w ⊇ S2

w ⊇ . . . ⊇ Ss
w. The outcomes obtained in t − th iteration for DMUo are the

following:

• the extreme efficiency scores – E∗,t
o and Et

o,∗;

• the extreme distances to the best unit – do,∗t and d
∗,t
o ;

• the extreme efficiency ranks – R∗,t
o and Rt

o,∗;

• the pairwise efficiency preference relations – ≿N,t
E and ≿P,t

E .

The evolution of the results with an increase of weight constraints is the following:

• E∗,t
o ≤ E∗,t−1

o and Et
o,∗ ≥ Et−1

o,∗ , i.e., the extreme efficiency scores in the subsequent
iterations are becoming narrower;

• d∗,to ≤ d∗,t−1
o and dto,∗ ≥ dt−1

o,∗ , i.e., the extreme distances to the best unit may
become narrower when introducing new constraints;

• R∗,t
o ≥ R∗,t−1

o and Rt
o,∗ ≤ Rt−1

o,∗ , i.e., the ranking intervals obtained in subsequent
iterations are nested;

• ≿N,t
E ⊇≿

N,t−1
E and ≿P,t

E ⊆≿
P,t−1
E , i.e., the necessary preference relations may be en-

riched, while the possible relations may be impoverished.

3.8 Robustness analysis for Data Envelopment Analysis
with imprecise information

In Publications P5 and P6, we present the robustness analysis framework for DEA with
imprecise information [22, 28, 90]. Publication P5 focuses on the ratio-based model, while
in Publication P6, we consider the VDEA model. For both efficiency models, we account
for two types of uncertainty. The performance can be defined in the form of interval
[39] or in the form of ranking defining only the order of DMUs for a given indicator.
Moreover, for VDEA, we also consider the uncertainty at the level of the marginal value
functions. Instead of the precise marginal functions, the user can provide the range of
the admissible marginal values for cardinal factors. In the further part of this section,
we describe how to deal with imprecise information in both mathematical programming
and stochastic methods.

Mathematical programming methods

This section presents how the different types of uncertainty are treated in mathematical
programming models.
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Interval inputs and outputs. Let us consider an interval input inm and the in-
terval output outn. We denote the interval of the possible values of inn of DMUk as
[xm,k,∗, x∗m,k]. The interval of possible values of outn for DMUk is marked as [yn,k,∗, y∗n,k].
For mathematical programming models, the interval values are replaced with the precise
ones representing the optimistic (the most favorable) or pessimistic (the least favor-
able) scenario for the analyzed unit DMUo, depending on the considered result type.
When identifying the best possible outcome for DMUo (SCE = OPT ), the precise in-
put/output values contain the most favorable ones for DMUo and the least favorable for
the remaining DMUs, i.e.:

xOPT,o
n,k =

{
xm,k,∗, if k = o,

x∗m,k, otherwise,
(3.13)

yOPT,o
n,k =

{
y∗n,k, if k = o,

yn,k,∗, otherwise.
(3.14)

. Analogously, when searching for the worst possible result for DMUo (SCE = PES),
the precise inputs and outputs must represent the least favorable scenario for the analyzed
unit, i.e., the maximal inputs and the minimal outputs and the most favorable for others
(minimal inputs and maximal outputs):

xPES,o
m,k =

{
x∗m,k, if k = o,

xm,k,∗, otherwise,
(3.15)

yPES,o
n,k =

{
yn,k,∗, if k = o,

y∗n,k, otherwise.
(3.16)

Ordinal factors. For ordinal factors, we ensure that the order defined by performances
is preserved. For this purpose, let us introduce the symbol πq, which denotes the per-
mutation of DMUs that reorders them according to the non-decreasing order of their
performances on factor q. For example πq(1) denotes the DMU with the lowest perfor-
mance on factor q and xq,πq(1) is the value of qth input for this unit. Having defined such
permutation, we need to model the monotonicity of this permutation in mathematical
programming. In the ratio-based model, we replace the product νm ·xm,o or µn ·yn,o by a
single variable, respectively Xm,o or Yn,o, which allows omitting the non-linearity of the
model. After that, we ensure the monotonous order of these variables according to the
permutation πq, i.e., if xq,πq(k) = xq,πq(k+1), then Xq,πq(k) must be equal to Xq,πq(k+1),
while if xq,πq(k) < xq,πq(k+1), then αXq,πq(k) ≤ Xq,πq(k+1), for some α > 1. The constraints
are constructed analogously to output factors. Note that the multiplicative form of the
monotonicity constraints maintains the spirit of DEA [90].

For VDEA model, the ordinal inputs and outputs are treated in a similar way.
However, the replacement variable does not model the product of the weight and the
performance, but the product of the weight and the marginal value for a given fac-
tor and unit, i.e., Uq,o = wq · uq(DMUo). As the direction of the monotonicity of the
marginal value functions is different for inputs and outputs, the constraints must rep-
resent the non-descending order for outputs and non-increasing for inputs. Obviously,
if xq,πq(k) = xq,πq(k+1) or yq,πq(k) = yq,πq(k+1), then Uq,πq(k) = Uq,πq(k). Otherwise, if q
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is an input and xq,πq(k) < xq,πq(k+1), then Uq,πq(k) ≥ αUq,πq(k+1). If q is an output and
yq,πq(k) < yq,πq(k+1), then αUq,πq(k) ≤ Uq,πq(k+1). Moreover, we ensure that the values
assigned to the worst performances (Uq,πq(1) for outputs and Uq,πq(K) for inputs) are pos-
itive (greater than the small value ϵ). The values corresponding to the best performances
(Uq,πq(K) for outputs and Uq,πq(1) for inputs) must not be greater than the weight assigned
to the factor q.

Admissible marginal function range. For the value-based efficiency model, we con-
sider the third form of uncertainty: the range of the admissible marginal value functions.
Such range is defined by the shapes of two functions that limit the range from the top (u∗q)
and bottom (uq,∗). The examples of value function ranges, defined for indicators from
the case study considered in P6, are presented in Figure 3.1. To deal with such factors in
mathematical programming, we introduce the replacement variables Uq,o as for ordinal
factors. If the considered factor q is also the interval one, the interval performances of
this factor must be replaced by the precise ones (as described before). After that, we
need to ensure that the values for individual DMUs are between the defined lower and
upper bound, i.e., uq,∗(DMUk) ≤ uq(DMUk) ≤ u∗q(DMUk). With the replacement vari-
ables, such constraints take form: wquq,∗(DMUk) ≤ Uq,k ≤ wqu

∗
q(DMUk). Moreover, we

impose monotonicity constraints similar to these introduced for the ordinal factors.

Figure 3.1: Examples of admissible function ranges.

The LP model, which allows determining the minimal distance of DMUo to the best
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unit for VDEA with all three types of imprecise information, is the following:
min do

s.t.:
Q∑

q=1

Uq,k −
Q∑

q=1

Uq,o ≤ do, for k = 1, . . . ,K,

do ≥ 0,

W,

for q ∈ OI :
Uq,πq(K) ≥ ϵ, Uq,πq(1) ≤ wq,
Uq,πq(k) ≥ αUq,πq(k+1), for k = 1, . . . ,K − 1, such that xq,πq(k+1) > xq,πq(k),
Uq,πq(k) = Uq,πq(k+1), for k = 1, . . . ,K − 1, such that xq,πq(k+1) = xq,πq(k)

ORDOI(q, πq)

for q ∈ OO :
Uq,πq(1) ≥ ϵ, Uq,πq(K) ≤ wq,
αUq,πq(k) ≤ Uq,πq(k+1), for k = 1, . . . ,K − 1, such that yq,πq(k+1) > yq,πq(k),
Uq,πq(k) = Uq,πq(k+1), for k = 1, . . . ,K − 1, such that yq,πq(k+1) = yq,πq(k).

ORDOO(q, πq)


ORD(OI,OO)

for q ∈ II :

Uq,πOPT
q,o (k) ≥ wquq,∗(xq,πOPT

q,o (k)), k = 1, . . .K,

Uq,πOPT
q,o (k) ≤ wqu

∗
q(xq,πOPT

q,o (k)), k = 1, . . .K,

ORDOI(q, πOPT
q,o (k)),

 IMP II(q, πOPT
q,o )

for q ∈ IO :

Uq,πOPT
q,o (k) ≥ wquq,∗(yq,πOPT

q,o (k)), k = 1, . . .K,

Uq,πOPT
q,o (k) ≤ wqu

∗
q(yq,πOPT

q,o (k)), k = 1, . . .K,

ORDOO(q, πOPT
q,o (k)).

 IMP IO(q, πOPT
q,o )


IMPOPT (II, IO),

where OI, OO, II, and IO represent, respectively, the sets of ordinal inputs, ordinal
outputs, interval inputs, and interval outputs. πOPT

q,o is the permutation of DMU, which
reorders them according to the non-decreasing order of precise performances in the opti-
mistic scenario for DMUo. The first three constraints have the same interpretation as for
standard VDEA (with precise information). The constraints marked as ORD(OI,OO)
preserve the order of preference for ordinal inputs and outputs. The last constraints
(IMPOPT (II, IO)) are responsible for ensuring that the shapes of the marginal value
functions are monotonous and lay within the predefined range.

To find the maximal distance of DMUo to the best unit for VDEA with imprecise
data, the following model must be solved:

max do

s.t.:
Q∑

q=1

Uq,k −
Q∑

q=1

Uq,o ≥ do − C(1 − bk), for k = 1, . . . ,K,

K∑
k=1

bk ≥ 1,

bk ∈ {0, 1} for k = 1, . . . ,K,

do ≥ 0,

for q ∈ II :

Uq,πPES
q,o (k) ≥ wquq,∗(xq,πPES

q,o (k)), k = 1, . . .K,

Uq,πPES
q,o (k) ≤ wqu

∗
q(xq,πPES

q,o (k)), k = 1, . . .K,

ORDOI(q, πPES
q,o (k)),

 IMP II(q, πPES
q,o )

for q ∈ IO :

Uq,πPES
q,o (k) ≥ wquq,∗(yq,πPES

q,o (k)), k = 1, . . .K,

Uq,πPES
q,o (k) ≤ wqu

∗
q(yq,πPES

q,o (k)), k = 1, . . .K,

ORDOO(q, πPES
q,o (k)).

 IMP IO(q, πPES
q,o )


IMPPES(II, IO)

ORD(OI,OO), W.
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The interpretation of constraints in this model is similar to the one described for the
minimal distance model. However, this time, we need to apply the permutation of the
precise values from the pessimistic scenario for DMUo (πPES

q,o ).

The mathematical models for the remaining robustness analysis perspectives con-
cerning both the VDEA as well as the ratio-based model are constructed analogously
and presented in Publications P5 and P6. We omit them in this dissertation to keep it
concise.

Stochastic methods

To determine the stochastic indices for DEA with imprecise inputs and outputs, we
perform the sampling procedure in multiple stages. Firstly, we run the Hit-And-Run
algorithm to obtain the predefined number of weight vector samples in the same way
as for precise DEA (see Section 3.1). The next steps depend on the indicator type and
efficiency model. For both efficiency models, if the interval indicator is considered, we
need to generate the performance samples from the interval [xq,o,∗, x∗q,o]. For ordinal
indicators, we use the SMAA-O approach [59]. We assume that the performances for
ordinal factors are drawn from the interval [0, 1] without losing generality. We choose,
at random, K values from this range. Then, these values are sorted and treated as a
single sample of precise performances of DMUs consistent with the order πq. When
the value-based efficiency model with an admissible function range is applied, in the last
step, we generate the marginal value samples. Having precise performances, we randomly
choose the marginal values from the interval between the lower and upper functions. In
addition, we ensure that the value function generated by each sample is monotonous.
For example, if the obtained in previous step precise performance for some DMUo and
factor q is marked as x(t)q,o, the marginal value u

(t)
q (DMUo) must satisfy the following

constraint: uq,∗(x
(t)
q,o) ≤ u

(t)
q (x

(t)
q,o) ≤ u∗q(x

(t)
q,o). Having obtained the weight, performance,

and marginal values samples, the efficiency score for each sample is computed according
to the chosen efficiency model. Finally, the stochastic indices are computed similarly to
standard (precise) DEA.

3.9 Robustness analysis for Data Envelopment Analysis
with a hierarchical structure of inputs and outputs

In publication P7, we consider the efficiency of DMUs in the situation, where the indi-
cators (inputs and outputs) are organized in a multiple-level hierarchical structure using
the value-based efficiency model.

The problem formulation is the following. Similarly to the standard DEA problems,
the DMUs are evaluated using a set of inputs (IN ) and a set of outputs (OUT ). All
factors (inputs and outputs) form a set of indicators, denoted as F = {f1, f2, . . . , fQ0}.
Set F forms level 0 of the hierarchy. These factors are grouped into Q1 categories of the
first level, named C(1) = {c(1)1 , c

(1)
2 , . . . , c

(1)
Q1
}. Analogously, the first-level categories can

be grouped into second-level categories forming a set C(2) = {c(2)1 , c
(2)
2 , . . . , c

(2)
Q2
}, etc. The

entire structure contains L levels. In the last (L-th) level, there is only a single category
(c(L)1 ), called a root. Such a structure is presented in Figure 3.2.
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When looking at the hierarchy of indicators from the mathematical viewpoint, the
factors and categories form a tree. The set of all nodes within this tree is denoted by
N = F ∪ C(1) ∪ C(2) ∪ . . . ∪ C(L). For each node t, except the root, we can determine a
parent p(t) as a category in which it is directly contained. For each category at hierarchy
level c(l)i , we define set Ac

(l)
i

as a subset of F (inputs and outputs), which are the indirect
children of c(l)i . For an elementary factor f , Af is a singleton, i.e., Af = {f}, f ∈ F . To
maintain the spirit of DEA, for each category c(l)i , the respective set of factors (Ac

(l)
i

) needs

to contain at least one input and one output, i.e., A
c
(l)
i

∩ IN ≠ ∅ and A
c
(l)
i

∩ OUT ̸= ∅,
for l = 1, 2, . . . , L, i = 1, 2, . . . , Ql.

Figure 3.2: A hierarchical structure of inputs and outputs

For each node t, except the root, we assign weight wt. Moreover, the linear constraints
for these weights can be specified at each hierarchy level. Factors or categories involved
in the same constraint must have a common parent.

Mathematical programming methods

For the mathematical programming methods, we introduce the additional variables (ŵq),
which allow us to represent the weight constraints without losing the linearity of the
problem. For an elementary factor q ∈ F , the variable ŵq represents the aggregated
weights of q in the hierarchy and is defined as the product of all weights on the path
from the analyzed category (c(l)i ) at the hierarchy level l to the analyzed factor q:

ŵ
c
(l)
i
q = wq ·

∏

t=1,...,l−1∧t∈c(l)i ∧q∈At

wt. (3.17)

The efficiency of DMUo is analyzed separately in each node of the hierarchy. For
category c(l)i , such an efficiency is defined as follows:

E
c
(l)
i

o =
∑

q∈A
c
(l)
i

ŵ
c
(l)
i
q · uq(DMUo). (3.18)

The true weights assigned to each hierarchy category c
(l)
i are defined as the ratio of

the sum of weights of indicators contained in this category and the sum of weights of

32



indicators in the parent category:

w
c
(l)
i

=

∑
f∈A

c
(l)
i

ŵ
c
(k)
j

f

∑
fp∈A

p(c
(l)
i

)

ŵ
c
(k)
j

fp

. (3.19)

The minimal distance of the analyzed DMUo to the best unit, when considering the
category c(l)i is determined by solving the following model:

min d
c
(l)
i
o

s.t.
∑

q∈A
c
(l)
i

ŵ
c
(l)
i
q uq(DMUk)−

∑

q∈A
c
(l)
i

ŵ
c
(l)
i
q uq(DMUo) ≤ d

c
(l)
i
o , for k = 1, . . . ,K,

d
c
(l)
i
o ≥ 0,
∑

q∈A
c
(l)
i

ŵ
c
(l)
i
q = 1,

ŵq ≥ 0, q ∈ A
c
(l)
i

,

wt =

∑
f∈At

ŵ
c
(l)
i
f

∑
f∈Ap(t)

ŵ
c
(l)
i
f

∈ Sw, for t ∈ N \ {root}.

(3.20)

The remaining LP models, allowing us to determine the maximal distance to the
best DMU, the extreme ranks, and the truth of the necessary and possible efficiency
preference relations are given in Publication P7.

The robust results for the problems with hierarchical structure have the following
properties First, if, for some category, the minimal distance to the best unit is equal to
zero in all children nodes, then the minimal distance in this category must also be zero:

Proposition 1 For DMUo ∈ D and category c(l)i ∈ N \ F , if ∀t ∈ ch(c
(l)
i ) : dto,∗ = 0,

then d
c
(l)
i
o,∗ = 0.

Similarly, if the minimal rank of some DMUo is first (or last) in all children categories
of some category c(l)i, then its minimal rank must be equal to 1 (K) also in c(l)i:

Proposition 2 For DMUo and category c
(l)
i ∈ N \ F , if ∀t ∈ ch(c

(l)
i ) : Rt

∗,o = 1

then R
c
(l)
i∗,o = 1,

Proposition 3 For DMUo and category c
(l)
i ∈ N \ F , if ∀t ∈ ch(c

(l)
i ) : Rt

o,∗ = K

then R
c
(l)
i
o,∗ = K.

Moreover, if the maximal rank of DMUo in all children nodes of some more general
category is 1, then it needs to be ranked first in this category even in the worst case:
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Proposition 4 For DMUo and category c
(l)
i ∈ N \ F , if ∀t ∈ ch(c

(l)
i ) : R∗,t

o = 1,

then R
∗,c(l)i
o = 1.

When DMUo is necessarily preferred to DMUk in all children nodes of some more general
category, then DMUo must be necessarily preferred to DMUk given this category:

Proposition 5 For pair (DMUo, DMUk) and category c(l)i ∈ N \ F , if ∀t ∈ ch(c
(l)
i ) :

DMUo ≿N,t
E DMUk, then DMUo ≿

N,c
(l)
i

E DMUk.

When DMUo is not possibly preferred to DMUk in all children nodes of some more
general category, then DMUo is not possibly preferred to DMUk given this category:

Proposition 6 For pair (DMUo, DMUk) and category c
(l)
i ∈ N \ F , if ∀t ∈ ch(c

(l)
i ) :

¬(DMUo ≿P,t
E DMUk), then ¬(DMUo ≿

P,c
(l)
i

E DMUk).

Also, when DMUo is necessarily preferred to DMUk in all children nodes of some more
general category except one node for which it is possibly preferred, then DMUo needs to
be possibly preferred to DMUk given this category:

Proposition 7 For pair (DMUo, DMUk) and category c
(l)
i ∈ N \ F , if ∀t ∈ ch(c

(l)
i ) \ a :

DMUo ≿N,t
E DMUk ∧ DMUo ≿P,a

E DMUk, then DMUo ≿
P,c

(l)
i

E DMUk.

Simulation-based methods

We again apply the Monte Carlo simulation to compute the stochastic indices for prob-
lems with the hierarchical structure of factors. Similarly to the problem with a flat
structure, we estimate the DAIIs, ERAIs, and PEOIs as well at the expected distance to
the best DMU and the expected rank. However, in the considered situation, we generate
weights for all categories and factors, which respect the condition that the sum of weights
of categories or factors with the same parent must be equal to one. Moreover, we ensure
that the provided weight constraints for all hierarchy levels are satisfied.

3.10 Robustness analysis methods for multiple scenarios
of efficiency evaluation

In this section, we describe the extension of the robustness analysis framework proposed
in Publication P4. It applies when the same set of DMUs is evaluated under different
scenarios. Let us denote a set o such scenarios as S. For each scenario, the same
DMU attains different input and output values, leading to different efficiency results.
For example, for the case study considered in the described publication, consisting of
evaluating the efficiency of physicians (see Section 4.4), the different scenarios represent
the different patients’ complaint groups. The proposed extension is an adaptation of
the approach proposed for the group decision-making problems [40]. We focus on the
exact methods of the robustness analysis framework. Let us denote the results of the
analysis of the single scenario (S ∈ S) as follows: the extreme distances to the best unit
as [d∗,o,S , d∗o,S ], extreme ranks as [R∗,o,S , R∗

o,S ] and the pairwise preference relations as
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≿N
E,S and ≿P

E,S . Having obtained the robust results for individual scenarios, we consider
some robust measures for multiple scenarios as the necessary and possible outcomes
representing the results obtained, respectively, for all and at least one scenario. For the
necessary efficiency preferences and efficiency ranks, such methods are defined as follows:

• the necessary-necessary preference relation ≿N,N
E,S holds for (DMUo, DMUk) if

∀S∈SDMUo ≿N
E,S DMUk;

• the necessary-possible preference relation ≿N,P
E,S holds for (DMUo, DMUk) if

∃S∈SDMUo ≿N
E,S DMUk;

• the set of possible-necessary efficiency ranks [RN
∗,o,S , R

∗,N
o,S ] is a set of ranks attained

for all S ∈ S, i.e., [RN
∗,o,S , R

∗,N
o,S ] =

⋂
S∈S [R∗,o,S , R∗

o,S ];

• the set of possible-possible efficiency ranks [RP
∗,o,S , R

∗,P
o,S ] is a set of ranks attained

for at least one S ∈ S, i.e., [RN
∗,o,S , R

∗,N
o,S ] =

⋃
S∈S [R∗,o,S , R∗

o,S ].

The analogous measures can be defined for the other analysis perspectives: the possible
preference relations, the efficiency scores, and the distances to the best DMU.
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Chapter 4

Extensions and applications

4.1 Selection of a common vector of weights based on the
outcomes of robustness analysis

In the traditional DEA approach, we select the different, most favorable, weight vector
for each DMU. Such an approach may prevent a justifiable ranking or selection of the
best DMU because of the lack of a common base for their comparison [19]. This is why,
for some applications, it may be appropriate to determine the common set of weights for
all DMUs, giving the joint base for their comparison. The idea of finding the common
set of weights in DEA was first introduced in [17]. Over the last years, multiple such
methods were proposed [19].

In this section, we describe the novel method of finding the common set of weights
based on the outcomes from the robustness analysis proposed in Publication P4. The
main idea of the method is to find a single weight vector that represents the most the
whole set of feasible input/output weight vectors. Specifically, if the robustness analysis
outcomes conclude that DMUo is better than DMUk, then the difference between the
efficiency scores of them should be enhanced. On the contrary, if the results of the
robustness analysis indicate some ambiguity in the comparison of some DMUs, then
the difference in their efficiency scores should be as small as possible. The results of
the robustness analysis allow us to provide multiple robust relations which confirm the
evident advantage of one DMU over the other one. We denote such relation as ≻W . The
incomparability between a pair of DMUs in terms of the relation ≻w is denoted as RW .
In the publication, we propose four such relations, which are based on the necessary
preference relation (≿N

E ), expected efficiency scores (EEs), expected rank (ERs), and
PEOIs. The conditions needed for establishing relations ≻W and RW are defined in
Table 4.1. For example, when referring to the EEs, one DMU can be judged as preferred
to another if the difference between their expected efficiency scores is greater than the
predefined threshold tEE . If the absolute value of such difference is lesser than the
threshold, then we may assume that the difference is negligible (DMUs are incomparable).
A similar approach can be applied for the expected efficiency ranks (ERs) and PEOIs.
For the necessary preference relations, we judge one unit better than another if it is
necessarily preferred to it. If none of the pair of DMUs is necessarily preferred to another,
then we judge them as incomparable.

Having determined the sets of pairs of DMUs for which the relations ≻W and RW
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Table 4.1: Conditions justifying the truth of the robust preference ≻W and incompara-
bility RW relations.

Result DMUo ≻W DMUk DMUlR
WDMUp

≿N
E DMUo ≿N

E DMUk and not(DMUk ≿N
E DMUo) not(DMUl ≿N

E DMUp) and not(DMUp ≿N
E DMUl)

EE EE(DMUo)− EE(DMUk) > tEE |EE(DMUo)− EE(DMUk)| ≤ tEE

ER ER(DMUo)− ER(DMUk) > tER |ER(DMUo)− ER(DMUk)| ≤ tER

PEOI PEOI(DMUo, DMUk)− PEOI(DMUk, DMUo) > tPEOI |PEOI(DMUl, DMUp)− PEOI(DMUp, DMUl)| ≤ tPEOI

hold, selecting the common set of weights is conducted in a two-step procedure. Firstly,
we maximize the minimal difference between the efficiency scores for pairs of units related
by ≻W , that is,

max α

subject to:

for (DMUo, DMUk), such that DMUo ≻W DMUk :

Q∑

q=1

uq(DMUo)−
Q∑

q=1

uq(DMUk) ≥ α.

Secondly, we minimize the maximal distance for pairs of units (DMUl, DMUp ), for
which DMUlR

WDMUp (α∗ denotes the optimal solution from the previous step):

min β

subject to:

for (DMUl, DMUp), such that DMUlR
WDMUp :

Q∑

q=1

Uq(DMUl)−
Q∑

q=1

uq(DMUp) ≤ β,

Q∑

q=1

Uq(DMUp)−
Q∑

q=1

uq(DMUps) ≤ β,

for (DMUo, DMUk), such that DMUo ≻W DMUk :

Q∑

q=1

uq(DMUo)−
Q∑

q=1

uq(DMUk) ≥ α∗,

W.

4.2 Efficiency reducts and costructs

In Publication P2, we introduce two novel concepts, which aid in generating the expla-
nations of the outcomes of the DEA method:

• the efficiency reduct, for an efficient DMUo, is a minimal subset of indicators that
make it efficient;

• the efficiency construct, for an inefficient DMUo, is a smallest subset of DMUs,
that underlie its inefficiency.
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To identify all efficiency reducts, we propose an additive method (see Algorithm 1),
which verifies, progressively, the efficiency score of DMUo using different subsets of in-
puts and outputs starting with the smallest ones. If for some subset of indicators SUBk,
the DMUo is efficient, then all supersets of SUBk are eliminated from further consider-
ation [43]. For each efficient unit, there is at least one efficiency reduct. The analogous
algorithm can be applied to the value-based efficiency model.

Algorithm 1 Additive method for identifying all efficiency reducts

Require: sets of inputs IN and outputs OUT
Ensure: RED, all efficiency reducts for DMUo

SUB ← all subsets containing at least one input from IN and one output from OUT
for each SUBk ∈ SUB do
Determine the efficiency score (E∗

o) for DMUo, by solving the Equation2.4, with
inputs and outputs reduced to SUBk

if thenE∗
o = 1

RED = RED ∪ SUBk

Remove all supersets of SUBk from SUB
end if

end for

To determine the efficiency constructs for DMUo, we solve the MILP model con-
structed for finding the minimal efficiency rank (see Equation 3.7). The DMUs for which
the variable bk is equal to one need to be eliminated from the data set to make DMUo

efficient. The optimal solution of the LP model indicates one of the efficiency con-
structs: ICw = {DMUk ∈ D : b∗k = 1}. It is possible to determine other constructs by
adding the constraints which forbid finding the solutions found in the previous iterations:
(w,w − 1, . . . , 1):

∑
DMUk∈ICw

bk ≤ R∗
k − 2 [44].

4.3 Experimental comparison of ranking methods in Data
Envelopment Analysis

Publication P3 describes the review and experimental comparison of the methods proving
the full ranking of DMUs in a context of DEA. We consider fifteen ranking procedures
from different categories, such as super- and cross-efficiency, multivariate statistics, de-
cision analysis, benchmarking, virtual DMU, and social networks. The detailed list of
the considered procedures is presented in Table 4.2. Four of them are based on the
outcomes of the robustness analysis and were originally proposed in this dissertation
(Publications P1 and P3).

The four ranking procedures introduced in this dissertation are based on the outcomes
from the robustness analysis. The first of them orders the DMUs based on the expected
efficiency score (see Section 3.2), i.e., the unit with the greatest expected efficiency score is
ranked at the top, etc. Similarly, we construct a ranking based on the expected efficiency
rank (see Section 3.3). This time, the DMU with the lowest expected rank is deemed the
best, while the one with the greatest expected rank is ranked at the bottom.

The remaining two methods are inspired by MCDA methods and exploit the matrix of
PEOIs (see Section 3.4). First, we propose the NFS-PEOI method, which is an adaptation
of the Net Flow Score (NFS) procedure used, e.g., in the PROMETHEE methods [13].
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In this method, for each DMUo, we calculate its net flow (Φo), which is the difference
between the positive (Φ+

o ) and the negative (Φ
−
o ) flows. The positive flow quantifies

the relative strength of the examined unit, i.e., its advantage over the remaining DMUs.
Analogously, the negative flow represents the relative weakness of DMUo. The ranking
of DMUs is based on the overall measure NFSo defined as follows:

NFSo =

K∑

k=1

[PEOI(DMUo, DMUk)− PEOI(DMUk, DMUo)]. (4.1)

The units with the highest NFSo are the most preferred.

The last ranking procedure, based on the robustness analysis, exploits the PEOIs ma-
trix using the eigenvector method [68]. In this approach, the units are ranked according
to their priorities corresponding to the values in the principal eigenvector of the PEOI
matrix.

In the discussed publication, we first describe the considered methods and illustrate
them with a common small example. Then, we identify and present the features of
each ranking procedure, summarizing them as a list of strengths and weaknesses (see
Table 4.3), which can be treated as a guide supporting selecting a ranking method for a
particular problem. Finally, the rankings provided with different procedures have been
compared with five measures [47]:

• Hit Ratio (HR) [12] – a binary measure which is equal to one if both methods rank
the same DMU at the top, i.e.

HR(R1, R2) =

{
1, if R1(1) ∩R2(1) ̸= ∅,

0, otherwise,
(4.2)

where Rx(r) is a set of DMUs ranked r − th by procedure Rx.

• Normalized Hit Ratio (NHR) [47] – an extension of the HR measure considering
the partial agreement between rankings. It is defined as follows:

NHR(R1, R2) =
R1(1) ∩R2(1)

R1(1) ∪R2(1)
. (4.3)

• Kendall’s τ [49] is determined based on the agreements and disagreements for pairs
of DMUs. Firstly, the preferences (≻R) and indifferences (∼R) observed for pairs
of DMUs (DMUo, DMUk), within the ranking provided by procedure R, are trans-
lated into the numerical values (p(R,DMUo, DMUk) as follows:

p(R,DMUo, DMUk) =





1, if DMUo ≻R DMUk,

0.5, if DMUo ∼R DMUk

0, if o = k ∨DMUk ≻R DMUo.

(4.4)

Kendall’s τ is then calculated with the following formula:

τ(R1, R2,K) = 1− 4
dk(R1, R2)

K · (K − 1)
, (4.5)
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where dk(R1, R2) is the Kendall’s distance:

dk(R1, R2) = 0.5
∑

DMUo,DMUkinD×D
|p(R1, DMUo, DMUk)− p(R2, DMUo, DMUk|.

(4.6)

• RDM [47] is computed based on the difference between positions attained by the
same DMU in rankings provided by different procedures. Let us define the best
rank of DMUo in the ranking provided by R (r∗(R,DMUo)) as the number of
other DMUs which are preferred to DMUo in the ranking R, increased by one.
Analogously, r∗(R,DMUo) denotes the worst possible rank for DMUo in R and is
calculated as the number of other DMUs over which DMUo is preferred or indif-
ferent, increased by one. The RDM is computed with the following formula:

RDM(R1, R2,K) = 1−
∑

DMUo∈D |r(R1, DMUo)− r(R2, DMUo)|
maxrankdiff (K)

, (4.7)

where |r(R1, DMUo)− r(R2, DMUo)| is an average distance between positions at-
tained by DMUo in the two rankings, R1 and R2:

|r(R1, DMUo)− r(R2, DMUo)| =
∑r∗(R1,DMUo)

r1=r∗(R1,DMUo)

∑r∗(R2,DMUo)
r2=r∗(R2,DMUo)

|r1 − r2|
(r∗(R1, DMUo)− r∗(R1, DMUo) + 1) · (r∗(R2, DMUo)− r∗(R2, DMUo) + 1)

(4.8)

and

maxrankdiff (K) =

{
⌊K2 ⌋ ·K, if K is even,

⌈K2 ⌉ · (K − 1), if K is odd.
(4.9)

• RAM [47] quantifies how often the same DMU attains the same rank in two rank-
ings. It is a generalization of the NHR measure to the entire ranking:

RAM(R1, R2,K) =
1

K

K∑

r=1

RA(R1, R2, r) , (4.10)

where:

RA(R1, R2, r) =
|R1(r) ∩R2(r)|
|R1(r) ∪R2(r)| . (4.11)

The experiments performed to compare the results of the rankings obtained by dif-
ferent procedures were two-fold. On the one hand, we run the procedures on the 960
randomly generated data sets for 96 different problem settings. The input and output
values for artificial data sets were generated from the interval [0− 1] from both uniform
and truncated normal distribution. We also distinguished two sizes of problems: typical
ones, with 5 to 30 DMUs, and large instances, with 75 to 100 units. On the other sets,
we verified the conclusions obtained with the artificial data sets with those obtained for
the ten real-world case studies, which represent the most common application areas of
DEA, such as finances, education, transportation, healthcare, farming, and the energy
industry.
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Table 4.2: Considered DEA ranking procedures.

Category Procedure Year
Cross-efficiency Cross-efficiency (CE) [72] 1986
Super-efficiency Super-efficiency (SE) [6] 1993

Statistical-based methods
Linear discriminant analysis (LDA) [75] 1994
Canonical correlation analysis (CCA) [35] 1997
Discriminant analysis of ratios (DR-DEA) [74] 1998

Benchmark-based
methods

Slack-adjusted efficiency ranking (BSA) [82] 1996
Ranking based on changing the reference set (BCRS) [41] 2007

Interactive benchmark model (BI) [62] 2009
MCDA-based method AHP-DEA [76] 2000
Virtual DMU Virtual DMU method (VDMU) [84] 2006

Network-based DEA Network-based DEA (NDEA) [61] 2010

Methods based on
robustness analysis

Expected Efficiency Score (EE) [45] 2017
Expected Efficiency Rank (ER) [45] 2017

Net Flow Score based on PEOI (NFS-PEOI) [53] 2021
Principal Eigenvector based on PEOI (PEV-PEOI) [53] 2021

The outcomes obtained with all five similarity measures were coherent, i.e., all mea-
sures identify the same pairs of methods as providing similar rankings. However, com-
bining all of them was beneficial because of the different interpretations of their results.
The first two measures (HR and NHR) focus only on the units ranked first. They are
useful in choice problems, i.e., when one wants to choose one, the best, DMU. HR is
insensitive to the ties at the top of the ranking. It is equal to one when at least one
DMU is ranked at the top in both rankings. In contrast, NHR penalizes the ties. That is
why, when comparing to the standard CCR model, for 11 out of 15 ranking procedures,
the average HR is equal to one. On the contrary, the NHR for methods compared with
CCR is never greater than 0.333. The combination of these two measures provides the
information that the majority of procedures rank at the top some efficient units (HR)
and allow for discriminating between them (NHR).

When it comes to the three measures quantifying the similarity of the whole rankings
(Kendall’s τ , RDM, and RAM), the observations about the similarities and dissimilarities
between pairs of ranking methods are consistent to a great extent and allow to draw
trustworthy conclusions.

The results of the analysis allow us to identify three groups of methods that provide
similar rankings. The first group contains the cross-efficiency, the VDMU method, and
three procedures based on the robustness analysis: EE, ER, and NFS-PEOI. All these
approaches summarize the results obtained with different weight vectors. The second
group is formed by SE, BSA, BCRS, BI, and NDEA. The procedures within this group
focus on the role of different DMUs as a benchmark. Moreover, all methods from this
group, except the BI, discriminate only between the efficient units, while the other ones
are ranked according to their standard DEA efficiency score. The last group, containing
LDA and DR-DEA, is formed by methods that apply statistical methods to find the set
of the common weights for all DMUs.

Three ranking procedures (CCA, AHP-DEA, and PEV-PEOI) do not belong to any
of the identified groups. They represent some unique concepts, and we did not find
significant similarities for other considered approaches.
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The important conclusion derived from the performed experimental analysis is that
the selection of the ranking method significantly impacts the obtained results. The pro-
cedure can be chosen based on its features (strengths and weaknesses) or the underlying
idea. However, it may be worth incorporating a few of them, representing different
groups, to obtain rankings of DMUs from different viewpoints.

4.4 Case studies

The proposed framework and its extensions were illustrated with multiple case studies.
In this section, we describe them briefly.

Efficiency evaluation of Polish airports. In Publication P1 we analyze the effi-
ciency of 11 Polish airports evaluated with 4 inputs, such as an annual capacity of a
terminal, a maximal throughput capacity, a dynamic apron capacity, and a catchment
area of the airport. The considered outputs include the passenger traffic and the annual
number of movements (landings or takeoffs). We presented and discussed the results of
the robustness analysis framework with the ratio-based efficiency model for three different
situations. Firstly, we considered the standard problem setting, i.e. taking into account
the whole set of airports without the weight constraints. Secondly, some additional linear
weight constraints were added. Finally, we identified and eliminated the outlier airports
(with super-efficiency greater than 2 [9]). The analysis of all three problem settings proves
the usefulness of the framework and illustrates the discriminative value of the weight con-
straints and the applicability of the robustness analysis to indicate and eliminate outlier
DMUs.

Quantifying electricity supply resilience of countries. The second application
of the robustness analysis framework with the ratio-based efficiency model considers the
electricity supply resilience of 140 countries (see Publication P2). In this application,
we consider 12 indicators. As the analyzed study is a general benchmarking problem,
where DEA is applied for decision-making, the inputs are the indicators with the nega-
tive preference order (to be minimized), and the outputs are the ones with the positive
preference (to be maximized) [21]. As a result, we identified 4 inputs and 12 outputs
representing both the electricity supply situation within the analyzed countries and their
political situation. The analysis of countries’ electricity resilience was conducted from a
few different perspectives. Firstly, we applied the standard ratio-based DEA model to
identify the sets of efficient and inefficient DMUs. Then, we run the algorithm described
in Section 4.2 to identify the efficiency reducts for efficient countries and constructs for
inefficient ones. In the next step, we identified the benchmark efficient countries (HCUs)
for all inefficient ones and the necessary improvements to achieve efficiency in both input-
oriented and output-oriented perspectives (see Section 2.1). The following part of the
analysis included a discussion of the robust results of the framework presented in this
dissertation. Finally, we identified and analyzed three scenarios for future development:

1. Singapore: 8% Solar Photovoltaic Electricity Production – comparison of how the
increase in photovoltaic energy would affect the robust results of Singapore’s elec-
tricity resiliency.
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2. Singapore: the changes included in Scenario 1 and the increase of the electricity
import and GDP per capita (the improvements assumed to be achieved by 2030) –
assessment of how these changes would affect the relative efficiency of Singapore,

3. Japan: Required electricity generation portfolio to make Japan efficient: in this
scenario, we searched for the set of improvements that should be implemented for
inputs and outputs at the same time to make Japan efficient.

Overall, this study showed that combining the CCR model with the robust efficiency
analysis provides a holistic methodology that can be applied to multiple problems from
different domains.

Efficiency assessment of Emergency Department physicians. Another case study
is described in Publication P4 and considers the efficiency assessment of 20 Emergency
Department physicians from the Children’s Hospital of Eastern Ontario in Ottawa using
the VDEA efficiency model. The considered data set contained three inputs and one
output. The physicians’ performances were evaluated separately for different patients’
complaint groups. The primary focus of the case study was on the patients complain-
ing about abdominal pain and constipation (G1). The two other complaint groups were
considered as separate scenarios of the analysis: fever (G2) and lower or upper extremity
injury, head injury, and laceration/puncture (G3). The paper discusses the full results
of the robustness analysis for group G1. Moreover, we applied the method described in
Section 4.1 to determine the sets of the common weights based on the outcomes from the
robustness analysis, specifically the expected efficiencies, expected ranks, the necessary
preference relations and PEOIs. Such an approach allowed us to construct 4 rankings
of physicians. The comparison of these rankings with Kandall’s τ coefficient [49, 53]
showed the high similarity of all these rankings. It leads to the conclusion that different
perspectives of the efficiency analysis identify the same physicians as the best, medium,
and worst performers. Finally, we aggregated the robust results for different complaint
groups using the multi-scenario robustness analysis (see Section 3.10).

Evaluation of Chinese ports and industrial robots. The robustness analysis
framework for problems with imprecise information using the ratio-based model was
illustrated with two case studies concerning 27 industrial robots and 17 Chinese ports.
They are built on the data from, respectively, [69] and [42]. The industrial robots are
described in terms of two inputs (cost and vendor reputation) and two outputs (load
capacity and velocity). Vendor reputation is treated as an ordinal input, while the load
capacity is provided as interval. In the second case study, concerning the Chinese ports,
we consider two precise inputs (labor population and energy consumption) and two de-
sirable outputs (cargo throughput – precise and employee satisfaction – ordinal). There
is also one undesirable output (water pollutants – interval), which is treated as input, fol-
lowing the [42]. In both case studies, we introduce some weight constraints that prevent
individual factors’ overwhelming role. We computed and discussed the robust outcomes
for both case studies.

Evaluation of Special Economic Zones in Poland. In Publication P6 we apply
the robustness analysis for Imprecise VDEA model (see Section 3.8) to evaluate the
performance of Polish Special Economic Zones. We consider 14 zones that are described
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with two inputs (the total area and capital expenditures) and two outputs (the number
of jobs and financial results). The area and number of jobs are considered interval
factors. The interval performances are constructed with the extreme values observed in
the analyzed term. Additionally, for each input and output, we account for the admissible
range of the marginal value functions. The discussed results demonstrate the usefulness
of the outcomes of the robustness analysis.

Hierarchical efficiency analysis of Polish voivodeships’ healthcare systems.
The last case study illustrates the usage of the robustness analysis methods for the prob-
lem with a hierarchical structure of inputs and outputs (see Section 3.9). In Publication
P7 we consider the problem of the efficiency evaluation of healthcare systems in 16 Polish
voivodeships. The assessment was conducted from the perspective of the comprehensive
efficiency index, including all nine indicators and three sub-problems representing inhab-
itants’ health improvement perspective, efficient financial management, and consumer
satisfaction. We discuss the robustness analysis results for each category. The results
of all four perspectives allow us to indicate the strong and weak points for individual
voivodeships. Moreover, the rankings, based on the robust outcomes (expected distance
to the best voivodeship and expected efficiency rank) are compared to those provided by
traditional methods, i.e., cross-efficiency and super-efficiency.
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Table 4.3: Main advantages and disadvantages of the considered ranking methods.

Method Advantages Disadvantages

CE
Multiple weight vectors considered.
Drops unrealistic weight schemes.

Applies peer and unbiased self-evaluation.

Limited set of common weights.
Ambiguity in the selection of weights.

SE
Simplicity.

Detecting outliers.

Ranks only efficient units.
Occasional infeasibility.

No common basis for the comparison of units.
Can favor specialized units.

CCA
Common basis for the comparison of units.

Ranks all units.

Reliance on a single weight vector.
Inefficient unit can be ranked at the top.

Occasional infeasibility.
Complex application.

Sensitivity of eigenvector computation.

LDA
Common basis for the comparison of units.

Ranks all units.

Reliance on a single weight vector.
Inefficient unit can be ranked at the top.

Occasional infeasibility.

DR-DEA
Common basis for the comparison of units.

Ranks all units.
Reliance on a single weight vector.

Inefficient unit can be ranked at the top.

BSA
Investigates the impact of efficient units

on the inefficient ones.
Ranks only efficient units.

Complex interpretation of scores.

BCRS

Investigates the impact of efficient units
on the inefficient ones.

Multiple weight vectors considered.
Simple and direct application.

Ranks only efficient units.
Limited set of common weights considered.

BI
Investigates the impact of units
on the efficiency of others.

Ranks all units.
No common basis for the comparison of units.

AHP-DEA
Incorporates DMUs’ cross-efficiency comparisons.

Ranks all units.
Inefficient unit can be ranked at the top.
Sensitivity of eigenvector computation.

NDEA
Considers multiple input-output settings.

Ranks all units.

High time complexity.
Sensitivity of eigenvector computation.
Complex interpretation of scores.

EE

All feasible weight vectors considered.
Avoids arbitrary selection of weights.
Intuitive interpretation of scores.

Ranks all units.

Requires sampling procedure.
Inefficient unit can be ranked at the top.

ER

All feasible weight vectors considered.
Avoids arbitrary selection of weights.
Intuitive interpretation of scores.

Ranks all units.

Requires sampling procedure.
Averages ordinal measures (ranks).

Inefficient unit can be ranked at the top.

PEV-PEOI

All feasible weight vectors considered.
Avoids arbitrary selection of weights.
Based on DMUs’ pairwise comparisons.

Ranks all units.

High time complexity.
Requires sampling procedure.

Sensitivity of eigenvector computation.
Inefficient unit can be ranked at the top.

NFS-PEOI

All feasible weight vectors considered.
Avoids arbitrary selection of weights.
Based on DMUs’ pairwise comparisons.

Ranks all units.

Requires sampling procedure.
Inefficient unit can be ranked at the top.

VDMU
Simplicity and intuitiveness.
Low time complexity.
Ranks all units.

Changes the original set of DMUs.
High sensitivity to outlying DMUs
due to incorporating extreme units.
Limited set of weight vectors.

Ambiguity in the selection of weights.
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Chapter 5

Summary

DEA is a tool that evaluates the relative efficiency of DMUs consuming multiple inputs
and producing multiple outputs. Its original statement defines the efficiency of a unit as
the ratio of the weighted sum of outputs and the weighted sum of inputs. The two formu-
lations of the mathematical programming models represent the equivalent perspectives of
productivity, i.e., the perspective of the efficiency scores and the perspective of the unit
combinations. The former provides the vector of input and output weights, which gives
the best possible efficiency score of the considered DMU. The optimal solution of the
latter is the combination of the existing units, which is the projection of a given DMU
on the efficient frontier.

Over the decades, multiple researchers worked on developing DEA. They proposed
various efficiency models which extend the original CCR model, such as the variable
return to scale (BCC) model, the additive model, or the value-based additive (VDEA)
efficiency model.

The outcomes of the standard DEA approach provide only information about the
most favorable scenario for the examined unit. This dissertation fills the research gap by
focusing on the whole spectrum of feasible weight vectors. We propose the robustness
analysis framework, which provides two complementary types of results. On the one
hand, the mathematical programming models were implemented to determine the exact,
extreme outcomes. On the other hand, we use the Monte Carlo simulation to calculate
the stochastic indices representing the distributions of the measures over the feasible
weight vector space. On the one hand, the extreme results obtained by mathematical
programming allow us to investigate the efficiency of units under the most and the least
favorable scenario. However, these extreme values are often insufficiently conclusive. The
stochastic analysis provides additional information on how efficiencies, ranks, and pair-
wise preferences are distributed over the feasible weight vector space. On the other hand,
we should not focus only on the stochastic indices because of their probabilistic nature.
In particular, it is improbable to choose at random the weight vectors corresponding to
the extreme values. Thus, it is reasonable to analyze both the exact and stochastic per-
spectives. We implement the proposed framework for the standard ratio-based efficiency
model and the VDEA model.

The proposed robustness analysis methods consider the productivity of DMUs from
three different perspectives. First, we consider the efficiency scores and, for the additive
model, the distances to the best DMU. The second perspective focuses on the pairwise
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comparisons between pairs of units, while the third one on the efficiency ranks. For
each of these perspectives, we propose LP models which explore the most and the least
favorable scenario for the examined DMU, i.e., the extreme efficiency scores, the extreme
distances to the best DMU, the truth of the necessary and the possible preference re-
lations for pairs of units and the extreme efficiency ranks. In addition, we define and
compute four stochastic indices calculated using the Hit-And-Run algorithm: Efficiency
Acceptability Interval Index, Distance Acceptability Interval Index, Pairwise Efficiency
Outranking Index, and Efficiency Rank Acceptability Index. They provide information
on how the measures in different perspectives are distributed within the ranges obtained
with the exact methods. Finally, we indicate the interdependencies between the robust
and stochastic results, the evolution of the outcomes with an incremental specification
of weight constraints, and the impact of the outlier removal on the analysis results.

In many real-world problems, it is impossible to collect precise data about DMUs’
performances. Such uncertainty results from measurement inaccuracy, cost of such mea-
surement, or changes in input and output values over time. To consider this situation,
we adapted the proposed framework to work with the imprecise data in the form of the
interval and ordinal inputs and outputs and the admissible ranges of the marginal value
functions, defined by two boundary functions. In mathematical programming, we imple-
ment the transformation of the interval performances into the precise ones representing
the optimistic or pessimistic scenario for the examined unit. Moreover, we introduced
the additional variables and constraints, which ensure that the order of DMUs for ordi-
nal factors is remained and that the obtained marginal value functions are monotonic.
In addition, for stochastic methods, the sampling procedure needed to be enhanced for
problems with imprecise data. We proposed a three-step sampling. First, we obtain
the exact performances for units from the given intervals. Next, when VDEA model is
applied, we randomly choose the marginal values from the predefined range. Finally, we
sample the weight vectors similarly to the standard problems.

This dissertation also considers the efficiency problems with a multiple-layer hierarchi-
cal structure of inputs and outputs. In this case, the factors are organized into categories,
which can be included in other, more general categories, etc. The main benefits of such a
structure are the following. First, it is easy to modify and update the hierarchy. Second,
the problem can be decomposed into smaller subproblems, which are manageable and
allow to draw more specific conclusions. Third, is it possible to model the interactions at
different levels, not only for individual factors. We proposed mathematical programming
models, which allow us to find robust outcomes in any category within the hierarchy.
Moreover, they consider the weight constraints defined at all hierarchy levels. Similarly,
when calculating the acceptability indices, the sampling procedure generates the weights
at different hierarchy levels with predefined constraints.

Sometimes, the same set of units is evaluated under different scenarios (e.g., vari-
ous patients’ complaint groups). The input and output values differ for each individual
scenario. We propose the methods inspired by the MCDA group decision-making, repre-
senting two robustness levels. First, the units are evaluated with the proposed framework
separately for each scenario, which allows for analyzing the efficiency within one partic-
ular situation. Second, the robust outcomes are aggregated and capture the stability
of the results over the different scenarios. We introduce some additional necessary and
possible measures which represent the results obtained for, respectively, for all and at
least one scenario.
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Furthermore, the analysis of the whole set of robust results and acceptability indices
may be overwhelming for the DM. That is why we developed a procedure to identify the
single, representative weight vector based on the outcomes from the robustness analysis.
The approach is based on two goals. On the one hand, for pairs of DMUs, for which the
robust outcomes conclude that one unit is preferred to another, we enhance the difference
in efficiency scores. On the other hand, for pairs of units that are incomparable according
to chosen measure (e.g., the truth of the necessary preference relation), the difference in
efficiency scores should be possibly small. Both goals are achieved by solving, in sequence,
two linear programming models proposed in this dissertation. Such an approach provides
a full ranking of DMU with a common base of comparison while ensuring its maximum
possible representation of the whole weight vector space.

The last extension of the robustness analysis framework introduced in this dissertation
includes the two algorithms allowing us to find the efficiency reducts and constructs.
First of them, i.e., efficiency reducts, are defined for the efficient units and represent the
minimal sets of inputs and outputs for which the examined DMU is efficient. We propose
an additive algorithm, which identifies all efficiency reducts for some efficient DMU by
starting from the smallest sets of factors and progressively verifying the unit’s efficiency.
The efficiency construct, for an inefficient unit, is a minimal set of other DMUs which
make this unit inefficient. We propose the LP model allowing us to find one particular
efficiency construct. To determine all of them, the proposed model should be solved
multiple times, adding, each time, a constraint that prevents finding the same construct
again.

Moreover, we performed the experimental comparison of different ranking procedures
for DEA proposed in the literature. We compared fifteen methods, among which four
are based on the outcomes of the robustness analysis and were originally proposed in this
dissertation. First two methods rank the DMUs based on the expected efficiency scores
and the expected ranks obtained with the stochastic robustness analysis. The remaining
ones exploit the matrix of PEOIs in two different ways. The method called NFS-PEOI
is inspired by the Net Flow Score procedure from MCDA and ranks units according to
the difference in their relative strength and weakness gathered from the PEOI matrix.
The last method, called PEV-PEOI, ranks the units based on the values in the principal
eigenvector of PEOI matrix. The experiments, performed using ten real-world and 960
randomly generated data sets, allowed us to identify three groups of methods providing
similar rankings and three methods representing unique concepts for which the provided
rankings were not similar to those produced by any other procedure.

The robustness analysis framework and its extension were illustrated with a few
case studies, including evaluating airports, Special Economic Zones, and voivodeships’
healthcare systems in Poland. Moreover, we extensively analyzed the electricity supply
resilience of 140 countries and Emergency Department physicians from the Children’s
Hospital in Eastern Ontario in Ottawa.

To make the framework presented in this dissertation available, we implemented the
proposed methods in R and shared them in the form of modules in an open-source
diviz platform [63]. Their source code is available at https://github.com/alabijak/
diviz_DEA/. Within this dissertation, we created a few tens of modules to compute the
robustness analysis outcomes for both ratio-based and VDEA models for standard, i.e.,
flat and precise problems, problems with imprecise information, and hierarchical ones.
The implemented modules can be combined into complex workflows with other modules,
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both computational and visualization. Generated workflows can be easily exported and
shared with other users. Moreover, diviz allows storing the history of workflow executions,
which could be useful when comparing the results for different settings.

The dissertation opens some directions for future development. First, the methods for
eliciting the shape of the marginal value functions can be adapted and implemented for
the proposed framework with the value-based model. As direct elicitation is challenging
for the decision-makers, it may be worth indirectly inferring such information, e.g., with
pairwise comparisons. Second, the interactions between the factors can be accounted for
in the model. Third, the stochastic analysis may consider other probability distributions.
Next, the experimental comparison of the ranking methods can be extended to consider
other procedures and the possibility of defining some preference information, e.g., weight
constraints. Moreover, we could develop the methods for generating explanations of the
robust outcomes, similarly to the approaches proposed for the MCDA field (e.g., [37, 51]).
The proposed framework should also be adapted for the big data problems addressed in
recent DEA studies, e.g., [50, 91]. Finally, we could apply the DEA approach to the
sorting problems by classifying the DMUs into multiple preference-ordered efficiency
classes.
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a b s t r a c t

We consider a problem of evaluating efficiency of Decision Making Units (DMUs) based on their deter-
ministic performance on multiple consumed inputs and multiple produced outputs. We apply a ratio-
based efficiency measure, and account for the Decision Maker's preference information representable
with linear constraints involving input/output weights. We analyze the set of all feasible weights to
answer various robustness concerns by deriving: (1) extreme efficiency scores and (2) extreme efficiency
ranks for each DMU, (3) possible and necessary efficiency preference relations for pairs of DMUs,
(4) efficiency distribution, (5) efficiency rank acceptability indices, and (6) pairwise efficiency outranking
indices. The proposed hybrid approach combines and extends previous results from Ratio-based Effi-
ciency Analysis and the SMAA-D method. The practical managerial implications are derived from the
complementary character of accounted perspectives on DMUs' efficiencies. We present an innovative
open-source software implementing an integrated framework for robustness analysis using a ratio-based
efficiency model on the diviz platform. The proposed approach is applied to a real-world problem of
evaluating efficiency of Polish airports. We consider four inputs related to the capacities of a terminal,
runways, and an apron, and to the airport's catchment area, and two outputs concerning passenger traffic
and number of aircraft movements. We present how the results can be affected by integrating the weight
constraints and eliminating outlier DMUs.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The framework of Data Envelopment Analysis (DEA) offers a
variety of methods for evaluating the relative efficiency of Decision
Making Units (DMUs) which consume multiple inputs and pro-
duce multiple outputs [18,39,38]. Conceptually, efficiency is the
ratio between virtual output and virtual input, i.e., respectively,
outputs or inputs aggregated using some weights assigned to
these factors [14]. Typically, DEA methods have been used to
classify the DMUs into efficient and inefficient ones. By definition,
the former ones have an efficiency score equal to one, whereas for
the latter ones this measure is less than one. For the inefficient
DMUs, such scores convey information on how close to being
efficient they are. Analysis of these measures may lead to for-
mulating the corrective actions, revealing an excess use of some
inputs or shortfalls in the production of outputs, as well as to
indicating a reference set of some comparable DMUs.

1.1. Critical view on the traditional methods of data envelopment
analysis

Although DEA has proven its usefulness when applied to a
variety of real-world problems (see, e.g., [23,18,40]), some criti-
cism has been leveled against its discriminative power and the
way the efficiency scores are computed. Firstly, the efficiency
measures for each DMU are derived from the analysis of the input/
output weights which are the most favorable to it. However, a
weight vector for which a DMU attains its maximal efficiency is
not unique [36]. Thus, choosing among them is arbitrary to a large
extent. Secondly, the underlying Linear Programming (LP) tech-
niques require some normalization of weights for each DMU
individually. This implies that scaling affects the optimal weights
and a meaningful comparison of these weights across different
DMUs is difficult. Thirdly, the efficiency measures fail to reflect
how the efficiencies of DMUs compare to each other for other
feasible weight vectors [53]. In fact, only extremely small share of
feasible weights is taken into account in the analysis, while others
are neglected despite being equally desirable. Fourth, DEA mea-
sures efficiency relative to the efficient frontier. This requires some
assumptions about possible returns to scale (e.g., constant or
variable). These may be, however, difficult to formulate or justify.
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Further, we may sometimes prefer a DMU judged as inefficient,
which is dominated only by some convex combination of other
DMUs, but not by any existing DMU [36]. Moreover, an efficiency
frontier and, thus, the efficiency scores, vastly depend on the
DMUs under consideration [74,58]. The outcomes of DEA may be
very sensitive even to the inclusion or removal of a single DMU. In
the same spirit, the outcomes of DEA can be interpreted only when
the number of DMUs is large enough in comparison with the
number of inputs and outputs. Finally, while DEA is useful for
indicating which DMUs are efficient, it does not discriminate
between them. In some real-world situations, the share of efficient
DMUs may be very large, and we may wish to identify among
them a small subset of the most distinguishing ones.

Several techniques have been proposed in the literature to
address these drawbacks. In particular, preference information on
the relative comparisons of inputs and/or outputs may be used to
reduce the space of feasible weight vectors [63,50], and, thus, the
conclusiveness of efficiency scores. Further, the cross-efficiency
methods exploit the space of feasible weights to derive for each
DMU an average efficiency obtained from the analysis of weights
for which other DMU's efficiency is maximal [59,22]. Moreover,
the super-efficiency discriminates the efficient DMUs by indicating
for each of them how much more efficient it can be relative to the
remaining ones [2,75]. Although following the right direction,
these approaches do not address all aforementioned concerns
comprehensively. Doing so, requires incorporation of robustness
analysis into the DEA framework.

1.2. Existing approaches for robustness analysis in data envelopment
analysis

Robustness analysis accounts for the uncertainties which can
be observed in the real-world decision problems [33]. A conclusion
is considered to be robust if it is true for all or for the most
plausible combinations of parameter values [52,67]. As noted in
[20], this type of analysis provides information that may allow the
users to avoid answering questions they find too demanding. It
may also guide them in revising or enriching the provided pre-
ference information, progressively constraining the space of
admissible values for the parameters of employed model. In the
context of DEA, robustness concern refers to the relative effi-
ciencies of DMUs for all feasible input and output weights or their
representative sample. Advances in this regard, that we build on in
this paper, have been presented in [53] and [36].

On one hand, [53] consider the whole set of weights that are
compatible with the preference information concerning input/
output variables. The so-called Ratio-based Efficiency Analysis
(REA) does not make any assumptions in terms of the production
possibilities beyond the set of DMUs that are under comparison. To
materialize the relations between the DMUs' efficiencies, the
method exhibits three kinds of results derived from the analysis of
the whole set of feasible weights: efficiency bounds exposing the
greatest and the least relative efficiencies of a DMU compared to a
subset of other DMUs, dominance relation indicating for a pair of
DMUs if one of them dominates the other in pairwise efficiency
comparison, and ranking intervals indicating the range of effi-
ciency ranks that are attained by a DMU. All these results are
derived from comparing DMUs' efficiencies pairwise rather than
measuring their distance from an efficient frontier as in the tra-
ditional DEA models. As a result, these outcomes are interpretable
even if the set of DMU is relatively small, being at the same time
less sensitive to the inclusion of DMU whose input/output values
are distant from the performances of other units.

On the other hand, [36] apply simulation to provide stochastic
indices which characterize the possible outcomes of a decision
problem. In Stochastic Multicriteria Acceptability Analysis for Data

Envelopment Analysis (SMAA-D), it is possible to handle impre-
cision and uncertainty regarding the input/output weights and
performances of DMUs. The method computes rank acceptability
indices which measure the variety of model variables that grant
each DMU any rank from the best to the worst. In particular, the
best (most acceptable) DMUs are those with high acceptabilities
for the first rank. When compared with the basic DEA models, the
stochastic measures originally provided in SMAA-D have been
found useful for making the efficient DMUs more comparable [36].

1.3. Aim of the paper

The aim of this paper is fourth-fold. Firstly, from a methodo-
logical point of view, we extend the range of outcomes considered
in REA and SMAA-D. With respect to the robustness analysis, we
show how to determine the least efficiency measure for each
DMU, i.e., what is the lower bound of the efficiency range when
the whole set of DMUs (including the DMU under consideration) is
analyzed. When considering stability of the efficiency comparison
for pairs of DMUs, we propose to consider the necessary and
possible efficiency preference relations instead of the dominance
relation. The necessary relation needs to be confirmed by all fea-
sible weight vectors, while the possible one has to be supported by
at least one feasible weight vector. We show that taking into
account these results is more beneficial than analyzing the dom-
inance relation because of their interpretability and intuitive
convergence with the growth of the preference information for
input/output variables.

When it comes to SMAA-D, we significantly enrich the range of
stochastic indices that can be derived from the representative
sample of weight vectors so that they additionally capture the
efficiency scores and pairwise efficiency relations. In particular, we
analyze the extreme observed efficiencies, the distribution of
efficiency measures, and pairwise efficiency outranking (winning)
indices indicating the probability that one DMU has an efficiency
at least as good (better) than the other. In this way, we provide
both exact and stochastic outcomes reflecting three different
perspectives on DMUs' efficiency: scores, pairwise preference
relations, and attained ranks.

Secondly, we clearly demonstrate the benefits of considering
together the outcomes of thus revised REA and SMAA-D. On one
hand, with the necessary, possible, and extreme outcomes of the
revisited REA, we can analyze what happens for all, some, the
most and the least advantageous model parameters. However,
the difference between extreme ranks and efficiencies may often
be very large, and in practical decision analysis the information
on the sole possibility of attaining a particular rank or an effi-
ciency in a given subinterval may be insufficient. Similarly, REA
leaves incomparable the pairs of units which are possibly pre-
ferred to each other. In this perspective, SMAA-D may enrich REA
with answering questions on how probable are the possible
efficiency preference relations and what is the distribution of
ranks or efficiencies between the best and the worst ones. These
results can be further exploited to indicate the expected rank
(efficiency) for a given DMU, the ranks (efficiencies) which are
attained most often, and the probability of being judged as effi-
cient (obtaining the highest efficiency).

On the other hand, even though the stochastic indices can be
estimated with high accuracy using Monte Carlo simulation, they
are not exact. In particular, it may be unlikely to hit the weight
vector corresponding to the extreme results. This, in turn, implies
that such results would not be reflected in the distribution of ranks
or efficiency scores. For the same reason, an estimated pairwise
efficiency outranking index equal to one or zero does not,
respectively, confirm the necessity or exclude the possibility of one
DMU being preferred over another. Still, all these input/output
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weights whose indications are not reflected in the estimations of
stochastic indices are feasible. Thus, it is desirable to confront the
indices derived from Monte Carlo simulation with the possible,
necessary, and extreme outcomes of exact robustness analysis
conducted with LP techniques.

By combining REA and SMAA-D within an integrated frame-
work incorporating robustness and stochastic analysis, we provide
a DEA-type variant of hybrid methods that have been recently
proposed in Multiple Criteria Decision Aiding (MCDA) [32,33]. In
this way, we tighten the interrelations between DEA and MCDA
(for a comparison of these two methodological frameworks, see,
e.g., [3,13,17,28,29,55,61]).

The third contribution of this paper consists in presenting an
open-source software implementing the methods for robustness
analysis using ratio-based data envelopment model. They are
made available in the form of independent software components
on the diviz platform [42]. These modules can be subsequently
combined, using an intuitive user interface, to construct complex
algorithmic workflows. From a technological point of view, they
are implemented as web-services, which read the input formatted
with respect to a well-defined XML-based standard. The basic
components we provide deliver either exact results using GLPK
solver or stochastic indices using a Hit-And-Run sampling proce-
dure [62]. Apart from analyzing in this way three types of results
concerning efficiency scores, pairwise efficiency preference rela-
tions, and efficiency ranks, we enrich the range of DEA-based tools
that can be used within diviz by providing modules which derive,
e.g., cross-efficiency or super-efficiency scores. All implemented
components allow incorporating linear weight constraints.

Finally, we apply the presented methodological framework to
the real-world problem of evaluating efficiency of Polish airports.
We take into account four inputs and two outputs. The inputs are
related to the capacities of a terminal, runways, and an apron, and
to the airport's catchment area. The outputs concern passenger
traffic and number of aircraft movements. By illustrating the use of
DEA-based robustness analysis for this particular problem, we
prove the usefulness of the proposed approach for studying the
performances and measuring the efficiency of airports. This type of
research has aroused great interest in the recent years (see, e.g.,
[26,24,48,25,7,70,72]). Nevertheless, the introduced framework
should be perceived as more general one; its use is not limited to
this particular domain.

The remainder of this paper is organized as follows. Section 2
presents the new hybrid approach for DEA, combining and
extending the ideas from REA and SMAA-D. We present how to
compute and interpret robust outcomes and stochastic indices. We
also discuss the interdependencies between these two types of
results as well as the evolution of robust results with incremental
specification of weight constraints. Section 3 concerns an open-
source software implementing the proposed integrated framework
for robustness analysis in DEA. Section 4 is devoted to the real-
world case study investigating efficiency of Polish airports. In
Section 5, we focus on the practical considerations. Section 6
concludes the paper.

2. Integrated framework for robustness analysis using ratio-
based efficiency measure

2.1. Notation and basic concepts

The following notation is used in the paper:

� D¼ fDMU1;…;DMUK g – the set of considered DMUs; thus, K is
the number of compared DMUs ðK ¼ jDj Þ;

� xm – m-th input, mAf1;…;Mg;

� yn – n-th output, nAf1;…;Ng;
� xmo – an amount of m-th input consumed by DMUoAD;
� yno – an amount of n-th output produced by DMUoAD;
� v¼ fv1;…; vmg – a vector of input weights;
� u¼ fu1;…;umg – a vector of output weights;
� Sv ¼ fv¼ ðv1;…; vMÞT a0jvZ0;Avvr0g and Su ¼ fu¼ ðu1; …;uN

ÞT a0juZ0;Auur0g – a space of feasible input and output
weights, respectively; Av and Au are matrices of coefficients
derived from linear constraint on weights representing the
user's (Decision Maker's) preference information.

To measure the efficiency of each DMUoAD, we apply the ratio of
virtual output for uASu and virtual input for vASv, defined as
follows:

Eoðv;uÞ ¼
PN

n ¼ 1 unynoPM
m ¼ 1 vmxmo

: ð1Þ

For all feasible weights, the virtual inputs and outputs need to be
strictly positive. For conditions satisfying this assumption, see [53].

Referring to the set of feasible weight vectors ðv;uÞAðSv; SuÞ,
robustness of the efficiency analysis may concern three points of
view: efficiency scores, pairwise efficiency preference relations,
and efficiency ranks. In this section, we discuss in detail two
complementary ways for conducting such analysis. On one hand,
LP techniques are employed to determine in an exact way:
extreme efficiencies and ranks for each DMU as well as verifying
the truth of the necessary and possible efficiency preference
relations. On the other hand, Monte Carlo simulation algorithms
are used to compute stochastic indices based on a representative
sample of feasible weight vectors. The latter approach is based on
normalizing input and output weights so that the following con-
straint is respected:

XN
n ¼ 1

un ¼
XM
m ¼ 1

vm ¼ 1:

This normalization makes the space of feasible weights bounded.
Then, a Hit-And-Run method is used to efficiently sample weights
from the convex space of feasible weights [62,66]. For this pur-
pose, some probability distribution with joint density function in
the feasible weight space needs to be assumed. Such distribution
constitutes a form of partial preference information provided by
an analyst. In general, our approach can work with any arbitrarily
provided distribution. However, in most decision situations, its
specification would be rather challenging. Thus, following SMAA-D
[36] and MCDA-based Stochastic Ordinal Regression (SOR) [33,32],
when other weight distribution is not exogenously given, we use a
uniform one. In this way, each weight vector has equal chances
(¼ 1=volðWÞ, where vol(W) is the volume of the feasible weight
space) to be considered within a sample of weights. This
assumption is also in line with the spirit of robustness analysis,
where each individual feasible weight vector is equally authorized
to make some outcome non-necessary or possible, or shift the
extreme bounds.

For each sampled input/output weight vector, we compute
efficiency scores for all DMUs, and then normalize them by the
maximal obtained efficiency. In this way, the final efficiency
measures are in the interval between zero and one as in the tra-
ditional DEA methods. Such results are analyzed to derive esti-
mates of the shares of feasible weight vectors for which: a DMU
attains an efficiency score in some pre-defined efficiency sub-
interval or a specific rank, and for which some DMU is preferred to
another.

When it comes to weight restrictions, as noted in [49], typical
examples of such constraints are absolute weight bounds (e.g.,
2rv1r5), bounds on virtual inputs or outputs (e.g., 5v1þv2Z1
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or 2u1þ3u2r1), and bounds on the ratio of two weights (e.g.,
0:5ru1=u2r2 ) 0:5u2ru1r2u2). All these forms are admitted
within the proposed framework.

2.2. Efficiency scores

In this section, we discuss the measures that are useful for
analysis of efficiency scores attained by the DMUs across all fea-
sible weight vectors. When compared to REA, we additionally
discuss how to determine the lower bound of the efficiency range
when the whole set of DMUs (including the DMU under con-
sideration) is analyzed within a single mathematical programming
model. When compared to SMAA-D, we propose to consider the
efficiency acceptability interval indices which capture the dis-
tribution of efficiency scores attained by each DMU.

2.2.1. Extreme efficiency scores
For each DMUoAD, the best En

o and the worst Eo;n efficiencies
attained in the set of feasible weight vectors ðSv; SuÞ may be
computed using LP. The following program needs to be solved to
determine En

o :

max En

o ¼
XN
n ¼ 1

unyno

subject to :
XM
m ¼ 1

vmxmo ¼ 1;

XN
n ¼ 1

unynkr
XM
m ¼ 1

vmxmk; k¼ 1;…;K ; ðv;uÞAðSv; SuÞ: ð2Þ

The idea underlying problem (2) consists in finding the most
advantageous feasible weight vector ðv;uÞAðSv; SuÞ for DMUo in
terms of its efficiency score. Note that En

o is equivalent to the
efficiency originally proposed in the CCR model [14]. Thus, if
En

o ¼ 1, DMUo is efficient; otherwise, it is inefficient. The worst
efficiency Eo;n can be determined with the following LP:

min Eo;n ¼
XN
n ¼ 1

unyno

subject to :
XM
m ¼ 1

vmxmo ¼ 1;

XN
n ¼ 1

unynkZ
XM
m ¼ 1

vmxmk�Cð1�bkÞ; k¼ 1;…;K;

XK
k ¼ 1

bkZ1; bkAf0;1g; k¼ 1;…;K ; ðv;uÞAðSv; SuÞ: ð3Þ

In the above problem, we adapt a more general technique for
dealing with inconsistency in LP which is called “The Big-M (or
Big-C) method” or “Exact Big-M MIP Formulation” [43,15]. To
prevent undesired compensations, this technique assumes that the
value assigned to constant C is great enough. In our context, it is
sufficient if:

C4 max
DMUo ;DMUk AD

max
m ¼ 1;…;M

fxmk=xmog� min
n ¼ 1;…;N

fynk=ynog
� �

:

For all values of C satisfying this condition, we are guaranteed to
obtain the same results.

To find the least advantageous feasible weight vector ðv;uÞA ð
Sv; SuÞ for DMUo in terms of its efficiency score, we need to mini-
mize its efficiency while ensuring that some DMUkAD is efficient.
To guarantee that an efficiency score of some DMU is not less than
one, we use binary variables bk, k¼ 1;…;K . If bk¼1, then Cð1�1Þ
¼ 0 and

PN
n ¼ 1 unynkZ

PM
m ¼ 1 vmxmk; thus, Ekðv;uÞZ1. Since we

require that
PK

k ¼ 1 bkZ1, this condition needs to be satisfied for at
least one DMUk, k¼ 1;…;K . Otherwise, if bk¼0, the use of C

prevents constraint violation. The minimization of Eo;n in the
objective function implies that a solver will assign ones to the
binary variables so that to implement the least advantageous
scenario for DMUo.

2.2.2. Efficiency distribution
For each DMUoAD, an efficiency acceptability interval index

EAIIðDMUo; biÞ is the share of feasible weight vectors ðv;uÞA ðSv; SuÞ
for which DMUo attains an efficiency score in the interval bi � ½0;1�
(i¼ 1;…;B, where B is the number of subintervals (buckets)). Let
us denote with bi;n and bn

i the extreme values of the subinterval bi.
Thus, bi ¼ ðbi;n; bn

i � with the proviso that b1 is also left-closed (i.e.,
b1 ¼ ½b1;n ¼ 0; bn

1�. The buckets are constructed in the following
way:

⋃
B

i ¼ 1
bi ¼ ½0;1�; bi \ bj ¼∅; ia j;

and bn

i �bi;n ¼ bn

iþ1�biþ1;n; for i¼ 1;…;B�1:

While this is a default setting, in general, it is possible to construct
buckets with different amplitudes so that bn

i �bi;nabn

iþ1�biþ1;n,
for iAf1;…;B�1g.

In the following we consider estimations EAIIs0 of efficiency
acceptability interval indices derived with Monte Carlo simulation.
The same remark applies to pairwise efficiency outranking indices
PEOIs and efficiency rank acceptability indices ERAIs defined in
Sections 2.3.2 and 2.4.2, respectively.

Proposition 2.1. For each DMUoAD,
PB

i ¼ 1 EAII
0ðDMUo; biÞ ¼ 1.

To enrich the view on the efficiency scores obtained in the
representative sample ðSv; SuÞS of weight vectors ðSv; SuÞ, we pro-
vide the following measures:

� the extreme efficiencies En0
o and E0o;n observed in ðSv; SuÞS � ðSv; SuÞ

for each DMUoAD;
� an estimate of the expected efficiency EE0o ¼

P
ðv;uÞA ðSv ;SuÞS Eoðv;

uÞ=W , where W is the number of weight vectors in ðSv; SuÞS.

2.3. Pairwise efficiency preference relations

In this section, we present the outcomes which materialize the
outcomes of robustness analysis while referring to pairwise com-
parisons of DMUs. When compared to REA, we propose to con-
sider a pair of efficiency preference relations instead of a single
dominance relation. When compared to SMAA-D, we additionally
analyze the pairwise efficiency outranking indices which indicate
the probability that one DMU attains an efficiency at least as good
as the other.

2.3.1. Possible and necessary efficiency preference relations
Applying all feasible weight vectors ðv;uÞAðSv; SuÞ, we define

two efficiency preference relations in the set of DMUs D :

� Possible efficiency preference relation, ≿P
E, which is verified for a

pair of DMUs ðDMUo;DMUkÞAD�D, in case Eoðv;uÞZEkðv;uÞ
holds for at least one ðv;uÞA ðSv; SuÞ;

� Necessary efficiency preference relation, ≿N
E , which is verified for a

pair of DMUs ðDMUo;DMUkÞAD�D, in case Eoðv;uÞZEkðv;uÞ
holds for all ðv;uÞAðSv; SuÞ.

The following LP needs to be considered to assess whether these
relations hold:

min=max Eo ¼
XN
n ¼ 1

unyno
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subject to :
XM
m ¼ 1

vmxmo ¼ 1;

XN
n ¼ 1

unynk ¼
XM
m ¼ 1

vmxmk;

ðv;uÞA ðSv; SuÞ: ð4Þ

If Emax
o ¼max Eo obtained in problem (4) is not less than one, there

exists some ðv;uÞAðSv; SuÞ for which Eoðv;uÞZEkðv;uÞ, and, thus,

DMUo≿P
EDMUk. If E

min
o ¼min Eo obtained in problem (4) is greater or

equal to one, there is no feasible weight vector ðv;uÞAðSv; SuÞ for which
Ekðv;uÞ4Eoðv;uÞ, and, thus, DMUo≿N

E DMUk.
In [53], the robustness analysis for pairs of DMUs is materi-

alized with the efficiency dominance relation gE . It holds for ð
DMUo;DMUkÞ if DMUo necessarily attains the efficiency not less
than DMUk, while attaining strictly greater efficiency for some
feasible weight vector. Thus, DMUogEDMUk iff DMUo≿N

E DMUk

and :ðDMUk≿N
E DMUoÞ. We consider a separate consideration of ≿N

E

and ≿P
E (rather than aggregating these two results into gE) more

beneficial for the three following reasons:

� in case DMUogEDMUk, we may indicate whether DMUk is
possibly weakly preferred to DMUo or not (i.e., whether Eoðv;uÞ
4Ekðv;uÞ for all ðv;uÞAðSv; SuÞ, or for some ðv0;u0ÞA ðSv; SuÞ,
Eoðv0;u0Þ ¼ Ekðv0;u0Þ);

� in case :ðDMUogEDMUkÞ and :ðDMUkgEDMUoÞ, we may
indicate if DMUo and DMUk are related by the necessary indif-
ference or necessary incomparability; in the former case, for all
ðv;uÞAðSv; SuÞ, Eoðv;uÞ ¼ Ekðv;uÞ; in the latter case, for some
ðv0;u0ÞAðSv; SuÞ, Eoðv0;u0Þ4Ekðv0;u0Þ and for some ðv″;u″ÞA ðSv; SuÞ,
Ekðv″;u″Þ4Eoðv″;u″Þ;

� the possible and necessary efficiency preference relations con-
verge with the growth of weight constraints provided by the DM
(see Appendix C), while the dominance relation does not [53].

2.3.2. Pairwise efficiency outranking indices
For a pair of DMUs, ðDMUo;DMUkÞAD�D, a pairwise effi-

ciency outranking index PEOIðDMUo;DMUkÞ is the share of feasible
weight vectors for which DMUo is not worse than DMUk in terms of
the efficiency score, i.e., Eoðv;uÞZEkðv;uÞ.

Proposition 2.2. For DMUoAD; PEOIðDMUo;DMUoÞ ¼ 1.

Proposition 2.3. For DMUo;DMUkAD, 1rPEOIðDMUo;DMUkÞ
þPEOIðDMUk;DMUoÞr2.

The pairwise efficiency winning index PEWIðDMUo;DMUkÞ is
the share of feasible weight vectors for which Eoðv;uÞ is strictly
better than Ekðv;uÞ.

Proposition 2.4. For DMUo;DMUkAD, PEWIðDMUo;DMUkÞ ¼ 1
�PEOIðDMUk;DMUoÞ.

In the following we consider estimations of the pairwise effi-
ciency indices PEOI0 and PEWI0 which are computed with Monte
Carlo simulation.

2.4. Efficiency ranks

In this section, we discuss a set of results clearly indicating how
the DMUs' efficiency ranks vary across the entire space of feasible
weights. When compared to REA, to enhance understanding of the
underlying logic, we discuss alternative formulations of linear
programs for identifying the extreme ranks. When compared to
SMAA-D, we propose to aggregate the rank acceptability indices
into the estimates of expected efficiency rank for each DMU.

2.4.1. Extreme efficiency ranks
The rank of DMUo relative to all DMUs in D is defined with the

ranking function:

Roðv;uÞ ¼ 1þ
X

DMUk AD⧹fDMUog
hðo; k; ðv;uÞÞ; where ð5Þ

hðo; k; ðv;uÞÞ ¼
1; if Ekðv;uÞ4Eoðv;uÞ
0; otherwise:

(
ð6Þ

To identify the best Rn

o ¼minðv;uÞA ðSv ;SuÞRoðv;uÞ efficiency rank that
DMUoAD can attain, the following Mixed-Integer Linear Pro-
gramming (MILP) model needs to be considered [53]:

min Rn

o ¼ 1þ
XK

k ¼ 1;kao

bk

subject to :
XN
n ¼ 1

unyno ¼
XM
m ¼ 1

vmxmo ¼ 1;

½n�
XN
n ¼ 1

unynkr
XM
m ¼ 1

vmxmkþCbk ðk¼ 1;…;K; kaoÞ;

bkAf0;1g ðk¼ 1;…;K ; kaoÞ;
ðv;uÞAðSv; SuÞ; ð7Þ

where C is a large positive constant. In the above problem, it is
sufficient if:

C4 max
DMUo ;DMUk AD

max
n ¼ 1;…;N

fynk=ynog� min
m ¼ 1;…;M

fxmk=xmog
� �

:

In problem (7), we identify the feasible weight vector ðv;uÞAðSv; SuÞ
for which the number of DMUs with efficiency better than Eoðv;uÞ is
minimal. If

PN
n ¼ 1 unynk cannot be less or equal to

PM
m ¼ 1 vmxmk for

some particular weight vector, a binary variable bk corresponding to
DMUk, kao, is instantiated with one. Then, being multiplied by a
large positive constant C, bk¼1 prevents violation of constraint ½n�
for the respective k. This scenario occurs only if Ekðv;uÞ ¼PN

n ¼ 1 unynk=
PM

m ¼ 1 vmxmk41, (i.e., if
PN

n ¼ 1 unynk�
PM

m ¼ 1 vmxmk

4 0) while Eoðv;uÞ ¼ 1. Then, Ekðv;uÞ4Eoðv;uÞ, and each bk¼1
identifies a unit ranked better than DMUo. Otherwise, i.e., when
Ekðv;uÞrEoðv;uÞ, bk is instantiated with zero (then, Cbk¼0). Since
the objective function is minimized, the solver tries to assign as
many zeros as possible to bk, k¼ 1;…;K; kao, thus, minimizing the
cardinality of the set of DMUs which are ranked better than DMUo.
As a result, the sum of binary variables bk, k¼ 1;…;K ; kao,
increased by one is equal to the best (highest) rank of DMUo. For
example, in case there are three units simultaneously ranked better
than DMUo, R

n

o ¼ 3þ1¼ 4.
The worst efficiency rank of DMUo, Ro;n ¼maxðv;uÞA ðSv ;SuÞ Roðv;uÞ,

is obtained as the optimum of the following MILP problem:

max Ro;n ¼ 1þ
XK

k ¼ 1;kao

bk

subject to :
XN
n ¼ 1

unyno ¼
XM
m ¼ 1

vmxmo ¼ 1;

½n�
XM
m ¼ 1

vmxmkr
XN
n ¼ 1

unynkþCð1�bkÞ ðk¼ 1;…;K ; kaoÞ;

bkAf0;1g ðk¼ 1;…;K ; kaoÞ; ðv;uÞAðSv; SuÞ: ð8Þ
To prevent undesired compensations in the above problem, it is
sufficient if:

C4 max
DMUo ;DMUk AD

max
m ¼ 1;…;M

fxmk=xmog� min
n ¼ 1;…;N

fynk=ynog
� �

:

In problem (8), we identify the feasible weight vector ðv;uÞA ðSv;
SuÞ for which the number of DMUs with efficiency not worse than
Eoðv;uÞ is maximal. If Ekðv;uÞZEoðv;uÞ, a binary variable bk is
instantiated with one. Thus, the sum of binary variables bk,
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k¼ 1;…;K ; kao, is equal to the number of DMUs simultaneously
ranked not lower than DMUo. When increased by one, this number
indicates the worst rank of DMUo.

To enhance understanding of the underlying reasoning, in
Appendix A we present alternative formulations of the above MILPs.

2.4.2. Efficiency rank acceptability indices
For DMUoAD and rank k¼ 1;…;K , the efficiency rank accept-

ability index ERAIðDMUo; kÞA ½0;1�, is the share of feasible weight
vectors that grant DMUo rank k.

Proposition 2.5. For each DMUoAD,
PK

k ¼ 1 ERAIðDMUo; kÞ ¼ 1.

In what follows, we consider Monte Carlo estimations of the
efficiency rank acceptability indices ERAI0. They can be used to
compute an estimate of the expected rank for DMUoAD :

ER0
o ¼

XK
k ¼ 1

k � ERAI0ðDMUo; kÞ:

In the Appendix, we provide additional relevant information con-
cerning different types of discussed results. In Appendix B, we present
the interdependencies between robust results and stochastic indices,
thus, proving how they complement each other. In Appendix C, we
elaborate on the evolution of results with incremental specification of
weight constraints. Finally, in Appendix D, we discuss the impact of
removing some DMUs from the considered set of units on the results.

3. Implementation on the Diviz platform

3.1. Diviz

Diviz is an open-source software which allows us to design,
execute, and share complex workflows implementing procedures
of decision analysis [42]. Even though it was originally designed
for MCDA, its characteristics are general enough to account for
methods of DEA. The software infrastructure consists of:

� a Java client for algorithmic workflow design and visual analysis
of the outcomes,

� distant servers for executing the workflows, i.e., computing the
results.

Decision analysis procedures as well as visualization or reporting
tools are available in diviz via XMCDA web-services. They need to
read inputs and write outputs formatted using the XMCDA
standard. In this way, the web-services can interoperate and be
combined into complex workflows.

3.2. Implemented methods for robustness analysis using ratio-based
efficiency measure

Methods for robustness analysis using ratio-based data envelop-
ment model have been implemented and made available on diviz as a

collection of individual components (modules). They can be subse-
quently used to construct complex algorithmic workflows. Each
module requires three input files specifying, respectively, the list of
DMUs, sets of inputs and outputs, and performance matrix. The linear
weight constraints may be optionally provided in yet another input
file. The modules implementing stochastic analysis need to be addi-
tionally provided with the number of weight vectors that should be
sampled to compute the stochastic indices. The list of implemented
modules is the following:

� DEACCREfficiency (computes En

o and Eo;n for each DMUoAD).
� DEACCRPreferenceRelations (verifies the truth of ≿P

E and ≿N
E for all

pairs of DMUs).
� DEACCRExtremeRanks (computes Rn

o and Ro;n for each DMUoAD).
� DEASMAACCREfficiencies (computes EAIIs0, En0

o , E
0
o;n, and EE0o for

each for DMUoAD; it requires specification of the number of
efficiency subintervals (buckets) B and number of samples used
in the Hit-And-Run algorithm).

� DEASMAACCRPreferenceRelations (computes PEOIs0 for all pairs of
DMUs; it requires specification of the number of samples), and

� DEASMAACCRRanks (computes ERAIs0 for all DMUs and ranks; it
requires specification of the number of samples).

To enrich the arsenal of methods that can be used to investigate
efficiency of DMUs, we provide the following additional components:
CCRSuperEfficiency (computes super-efficiency for each DMU [2]),
CCRCrossEfficiency (computes cross-efficiency of each DMU either with
an aggressive or benevolent approach [59,22]), and CCREfficiency-
Bounds (computes four types of results: the minimal and maximal
ratios of each DMU's efficiency and the best or the worst efficiency of
any DMU [53]). Thanks to this, the practitioners can easily compare
results of different methods, while teachers can present a wide
spectrum of approaches to their students using the same data format
and user interface. Moreover, all available DEA components in diviz are
open-source, which enhances the addition of yet other methods by
the researchers.

The structures of two exemplary modules, DEACCREfficiency
and DEASMAACCREfficiencies, are presented in Figs. 1 and 2. They
exhibit the required inputs, provided outputs, possible para-
metrization, and computation procedures.

3.3. Workflow design

The design of decision analysis workflows in diviz is performed
via an intuitive graphical user interface. Each component is repre-
sented by a box which can be linked to data files or other compu-
tation modules. Thus, the design of the workflow does not require
any programming skills, but rather understanding the role of each
module [42]. To construct a workflow, the user chooses the modules
(s)he is interested in from the list of available elements. Using a
“drag-and-drop” function, (s)he adds them to the workspace along
with the data files. Subsequently, the inputs and outputs of different
components can be linked using connectors to define the structure

DEACCREfficiency

out1: minimal efficiency

computation procedure:

out2: maximal efficiency

param1: with weight
 constraints
 (by default: no)

- Eo,* for all DMUo
- Eo

* for all DMUo

in2: inputs and outputs

in1: units

in3: performance table

in4 (opt) : linear constraints
on weights

Fig. 1. Structure of diviz module which computes the extreme efficiency scores for each DMU using LP.
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of the workflow. In this way, the analysts may experiment with
their own creations, suitably adjusting the arsenal of employed DEA
methods to their own needs, while the researchers may design new
software components that would built on the results delivered
within our framework.

Once the design is finished, it is possible to execute the work-
flow. As already mentioned, the underlying calculations are per-
formed on computing servers through the use of the XMCDA web-
services. Thus, diviz requires connection to the Internet. From the
point of view of practitioners, this allows us to avoid performing
heavy calculations on their local computers. The possibly multiple
outcomes can be viewed either in diviz or in an external web-
browser. The software maintains the history of all the past
executions, which – in the context of efficiency analysis – is useful
for studying the impact of additional weight constraints or
removing the outlier DMUs on the results.

The diviz software enables to export any workflow as an archive
(i.e., single file containing all necessary information including
input data). This archive can be subsequently shared with other
users, who can then import it (by loading the archive) into their
software and execute it on the original data or continue the
workflow's development. This is useful for the researchers for both
dissemination and reproducibility of their results as well as for
collaborative work on a particular case study.

Fig. 3 presents the workflow for our case study concerning
analysis of efficiency of Polish airports, whose results are discussed
in Section 4. Each module delivers different results based on the
input data concerning the DMUs (DEA-unit.xml), definition of
inputs and outputs (DEA-inOut.xml), and underlying performances
(DEA-performanceTable.xml). Note that, e.g., to draw the graph of
necessary efficiency preference relation, the appropriate output of
the DEACCRPreferenceRelations module is provided as the input for
plotAlternativesHasseDiagram module.

4. Application to efficiency analysis of Polish airports

4.1. Review of airport efficiency applications

As noted in [70], continuous improvement of airports' compe-
titiveness greatly affects economic development of countries. Over
the last twenty years DEA has proven its usefulness for studying
the performance and measuring the efficiency of airports. Such
examination is important from several points of view [70]. Firstly,
governments or private owners can verify that the resources
available to the airport are used as effectively as possible. Secondly,
airlines and passengers want to use efficient airports. Thirdly,

managers can improve the competitiveness of the airports by
following the best policy based on the competitors' performances.

The literature concerning DEA application to measuring the
efficiency and productivity of the airports can be viewed from a
few perspectives:

1. Employed model:
� CCR or BCC model for measuring airports' efficiency in a
single year or season (e.g., [26,46,47,1,48,56,57,71]).

� DEA coupled with Malmquist productivity index to measure
the airports' efficiency change over a few year period (e.g.,
[44,27,25,9]).

� DEA two-stage model, which first examines efficiency of the
airports, and then uses a procedure to bootstrap DEA scores
with a regression model for explanatory purpose (e.g., [8,7]).

2. Type of considered inputs:
� inputs related to the terminal services (e.g., number of check-
in desks, gates, baggage collection belts, or parking spots, and
terminal or baggage claim area) used, e.g., in [26,27,47,1,24,
48,56,57,71,25,8];

� inputs related to the movement model (e.g., airport area,
apron area, aircraft parking positions, numbers of runways
and air routes connecting with other airports, runway length)
used, e.g., in [26,27,48,72];

� monetary inputs (e.g., operational costs, labor costs, capital
invested, capital stock, and airport charge) used, e.g., in
[46,44,56,57,71,8];

� inputs related to the labor (e.g., number of employees) used,
e.g., in [46,44,56,57];

� inputs related to the airport's localization (e.g., distance to the
nearest city centre) used, e.g., in [1].

3. Type of considered outputs:
� outputs related to the terminal services (e.g., number of
passengers, cargo throughput, and mail tonnes) used, e.g., in
[26,46,44,27,47,48,56,71,25,8,72]);

� outputs related to the movement model (e.g., aircraft move-
ment, commuter movements, and number of air carrier
operations) used, e.g., in [26,27,47,48,71,25,8,72];

� monetary outputs (e.g., total revenue, operational revenue, sales
to plane, sales to passengers, commercial revenue, handling
revenue, and non-aeronautical fee) used, e.g., in [56,57,8].

4. Geographical scope:
� single country (e.g., Argentina [8], Brazil [24], China [25], Italy
[8], Japan [71], Spain [44,41], Turkey [35], United Kingdom
[46,9], or United States [26,56,57]);

� continental or intercontinental scope (e.g., Europe [47,1,48] or
Asia-Pacific region [65,70]).

DEASMAACCREfficiencies

out1:  efficiency acceptability
 interval indices

computation procedure: 
- EAIIs’ for all DMUo
- Eo

*’ for all DMUo
- Eo,*’ for all DMUo
- EEo’ for all DMUo

out2:  maximal efficiency
 in the sample

param2:  number of samples 
 (input/output weights)

out3:  minimal efficiency
 in the sample

out4:  expected efficiency

param3:  number of
 efficiency buckets

param1:  with weight constraints
 (by default: no)in1: units

in2: inputs and outputs

in3: performance table

in4 (opt) : linear constraints
on weights

Fig. 2. Structure of divizmodule which computes the efficiency acceptability interval indices, observed extreme efficiency scores, and expected efficiency for each DMU using
Monte Carlo simulation.
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4.2. Data description

We analyze data concerning performances of 11 Polish airports.
The geographical distribution of the airports is presented in Fig. 4.
Instead of the traditionally used basic inputs, such as the number
of gates, aircraft parking positions, or runway length, we refer to
more general and aggregated data on capacities of a terminal,
runways, and an apron. These are derived from the report pre-
pared by the world-wide leading consultancy companies [51] (see
Table 1). As mentioned in [51], the values for i1� i3 have been
obtained directly from the airports. Additionally, we take into
account a catchment area of each airport. The values for i4 can be
easily obtained from the Polish central statistical office. Detailed
description of the four inputs is as follows:

i1: an annual capacity of a terminal defined as a passenger flow
that an airport can accommodate without serious incon-
venience (in million passengers per year); it takes into account

Warsaw

Gdansk

Szczecin

Zielona Gora

Poznan

Wroclaw

Katowice

Cracow

Rzeszow

Bydgoszcz

Lodz

Fig. 4. Geographical distribution of Polish airports.

Fig. 3. Algorithmic workflow for the efficiency analysis of Polish airports.
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limits on the traffic related to the terminal area, the numbers of
gates and check-in counters, as well as severe congestion in
access facilities;

i2: a maximal throughput capacity defined as an average number
of movements (arrivals and/or departures) that can be per-
formed on the airport's runways (in number of movements per
hour); it accounts for the configuration of runways, taxiways,
waiting areas, and high speed exits, air traffic flow in the
runway area (including an average runway occupancy time),
and air traffic delays to the landing and takeoff moments;

i3: a dynamic apron capacity defined as an average number of
planes that can be served by the airport (in number of planes
per hour); it is derived from the number and configuration of
stands and ramps as well as an average stand occupancy time;

i4: a catchment area of an airport defined as the number of
inhabitants living within the range of 100 km from the airport
(in million inhabitants); it reflects the airport's potential for
attracting the surrounding population.

When it comes to the outputs, we focus on the two primary
indicators related to the terminal services and movement model,
defined in the following way:

o1: passengers traffic measured by the total number of passengers
served by the airport (in million passengers per year);

o2: number of aircraft movements (one total movement is a
landing or takeoff of an aircraft) (in thousand movements
per year).

The outputs are derived from the statistical data provided by the
Civil Aviation Authority (CAA) in Poland [16] (see Table 1, columns
o1�o2). Let us emphasize that we have carefully selected the
inputs and outputs so that they harmonize. Indeed, the inputs of
each airport reflect its individually judged potential, whereas the
outputs indicate the degree to which this potential is used in
practice.

4.3. Results

In this section, we discuss results derived from robustness and
stochastic analysis of efficiency of Polish airports. As proven in the
review presented in Section 4.1, such comprehensive analysis has
never been conducted for any airport efficiency application.
Moreover, while there exist some reports on measuring the effi-
ciency of airports in many other countries, this aims to be the first
comprehensive study for Poland.

First, we focus on the efficiency scores; then, we elaborate on
the efficiency ranks; we conclude with the efficiency preference
relations. All stochastic results presented in this section were
derived from the analysis of 10 000 input and output weights

obtained with a Hit-And-Run algorithm. Then, we illustrate the
impact of considering weight constraints and eliminating some
outlier DMU.

For this purpose, we have constructed dedicated diviz work-
flows which are available online1:

� DEAPolishAirports.dvz for results presented in Sections 4.3.1,
4.3.2 and 4.3.3 without considering weight constraints.

� DEAPolishAirportsWithConstraints.dvz for results discussed in
Section 4.3.4 when considering weight constraints.

� DEAPolishAirportsWithoutOutlier.dvz for results discussed in
Section 4.3.5 when considering the set of airports without
WAW.

These workflows can be used to reproduce the results discussed in
this section. For this purpose: (1) download diviz,2 (2) launch it,
(3) import the workflow (“Workflow - Import as new”), (4) run it
on diviz (“Execution - Run”), and (5) view the results of interest by
selecting a particular module's output. Moreover, they illustrate
how to prepare the input data so that they can be later easily
adapted to other problems.

4.3.1. Efficiency distribution and extreme efficiencies
Table 2 (columns En

o and Eo;n) shows the best and the worst
efficiency scores for each DMU, DMUoAD. Five airports with En

o ¼ 1
(WAW, KRK, WRO, GDN, and BZG) are deemed as efficient. Among
the six inefficient airports with En

oo1, POZ and IEG have, respec-
tively, the least and the greatest gap that needs to be covered for
reaching efficiency. Their maximal efficiency scores are equal to
0.799 and 0.258, respectively. The minimum efficiencies Eo;n for all
airports are less than 0.5. This means that for the least advanta-
geous weight vector for each DMU, it is at least twice less efficient
than another DMU. Interestingly, when taking into account the
worst efficiency scores, POZ (judged inefficient) compares posi-
tively to KRK and BZG (judged efficient).

The efficiency acceptability interval indices are provided in
Table 3. We used 10 efficiency buckets with the same amplitude of
0.1. While for some airports the vast majority of attained efficiency
scores is concentrated within a single bucket (e.g., for WAW in
ð0:9;1:0�, or LCJ and SZZ in ð0:1;0:2�), for some other airports the
distribution of scores is more balanced. In particular, for BZG the
probability of attaining efficiency in seven different ranges
between ð0:3;0:4� and ð0:9;1:0� is greater than 8%. Analogously, for
WRO three out of ten different EAIIs0 are greater than 20%.

It is worthwhile analyzing the EAIIs0 along with the extreme
efficiencies observed in the sample (see columns En0

o and E0o;n in
Table 2). For most airports these differ from the true extreme
efficiency scores computed with LP. In particular, for RZE, En

RZE ¼
0:4094En0

RZE ¼ 0:359 and ERZE;n ¼ 0:069oE0RZE;n ¼ 0:085, whereas
for IEG, En

IEG ¼ 0:2584En0
IEG ¼ 0:051. Such analysis allows us to

identify the ranges of scores which are attained only for marginal
share of feasible weight vectors. In this perspective, the estimates
of EAIIs derived from Monte Carlo simulation may be equal to 0.0,
while there exists some feasible input/output weight vector (not
included in the sample) for which a DMU would attain efficiency
contained in the underlying bucket (see, e.g., EAIIðWAW; ð0:4;0:5�Þ
or EAIIðIEG; ð0:1;0:2�Þ).

Finally, the estimates of expected efficiency EE0o (see column
EE0o in Table 2) may be used to rank the airports. In this case, WAW
significantly outperforms other cities with EE0WAW ¼ 0:944, and IEG
is placed at the very bottomwith EE0IEG ¼ 0:010. When compared to
cross-efficiencies (see column CEo in Table 2), the advantage of

Table 1
Input and output performances for the problem of efficiency examination of Polish
airports (all analyzed values concern 2009).

Airport Short name i1 i2 i3 i4 o1 o2

Warsaw WAW 10.5 36 129.4 7.0 9.5 129.7
Cracow KRK 3.1 19 31.6 7.9 2.9 31.3
Katowice KAT 3.6 32 57.6 10.5 2.4 21.1
Wroclaw WRO 1.5 12 18.0 3.0 1.5 18.8
Poznan POZ 1.5 10 24.0 4.0 1.3 16.2
Lodz LCJ 0.6 12 24.0 3.9 0.3 4.2
Gdansk GDN 1.0 15 42.9 2.5 2.0 23.6
Szczecin SZZ 0.7 10 25.7 1.9 0.3 4.2
Bydgoszcz BZG 0.3 6 3.4 1.2 0.3 4.2
Rzeszow RZE 0.6 6 11.3 2.7 0.3 3.5
Zielona Gora IEG 0.1 10 63.4 3.0 0.005 0.61

1 http://www.decision-deck.org/diviz/workflows.html
2 http://www.decision-deck.org/diviz/download.html
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using expected efficiencies consists in more in-depth exploitation
of the space of feasible weights. In our case, EE0o is derived from the
analysis of 10 000 uniformly distributed weight vectors, whereas
for each DMUoAD, CEo is based only on 10 arbitrarily selected
vectors for which the efficiency of some other DMU is maximal.
This arbitrariness may lead to results which are surprising when
compared with the indications of larger subset of feasible weights.
For example, CEWAW ¼ 0:773oCEBZG ¼ 0:849, while the outcomes
of stochastic analysis are more favorable for WAW than BZG.
In particular, EAII0ðWAW ; ð0:9;1:0�Þ ¼ 78:934EAII0ðBZG; ð0:9;1:0�Þ ¼
36:16, and EE0WAW ¼ 0:9444EE0BZG ¼ 0:726. Additionally, when
compared with super-efficiencies (see column SEo in Table 2), EEs0

enrich the conclusions that can be derived from the traditional
efficiency analysis for all airports, including both the efficient and
inefficient ones. Let us remind that for the inefficient DMUs,
En

o ¼ SEo. Instead, EE0o indicates an average performance of DMUo,
which is, in general, unique for each individual unit and different

than En

o, Eo;n, CEo, and SEo. Thus, by indicating which units perform
well subject to different preferences, EEs0 make them more
comparable.

4.3.2. Efficiency rank acceptability indices and extreme ranks
Table 4 (columns Rn

o and Ro;n) shows the extreme ranks of each
DMU, DMUoAD, for all possible weight vectors. Obviously, the
airports identified as efficient are potential top DMUs, i.e., the best
rank for WAW, KRK, WRO, GDN, and BZG is one. BZG is more
sensitive to the choice of a weight vector than other efficient
DMUs, because its rank may drop to 8, while, e.g., WAW and WRO
are ranked fifth in the worst case. Among the inefficient airports,
POZ is possibly ranked third, whereas no other inefficient airport is
placed in top 5. KAT, LCJ, SZZ, RZE, and IEG are the least ranked
DMUs though only the latter two are possibly ranked at the very
bottom. The average width of the rank interval for the analyzed
airports is four, and the least variation of the attained positions is
observed for IEG, POZ, LCJ, and SZZ.

The rank acceptability indices are presented in Table 4 (col-
umns 1–11). Although WAW may be ranked in positions between
1 and 5, for over 70% of weight vectors it is ranked at the top (thus,
attaining the best result among the efficient DMUs), and only for
less than 5% it is ranked outside top two. Further, BZG is ranked
first for over 28% weight vectors, while for the remaining efficient
DMUs the probability of attaining the greatest efficiency is less
than 1%. All airports but BZG attain a particular rank for the pre-
vailing share of weight vectors. When it comes to the potentially
efficient DMUs, e.g., WRO, KRK, and GDN are most often ranked
third, fourth, and sixth, respectively. As for the inefficient airports,
the indication of the most probable rank is even more clear. For
the vast majority of weight vectors the ranks between 7 and 11 are
attained by, respectively, KAT (7), RZE (8), SZZ (9), LCJ (10), and IEG
(11). From another perspective, analysis of rank acceptability
indices exhibits the range of ranks most often attained by the
DMUs. For example, for over 99% (97%) of weight vectors, KRK

Table 2
Extreme efficiency scores (En

o and Eo;n), cross-efficiency (CEo) and super-efficiency

(SEo) measures, extreme efficiencies observed in the sample (En0
o and E0o;n), and

estimate of the expected efficiency ðEE0oÞ for each DMUo.

Airport En

o Eo;n CEo SEo En0
o

E0o;n EE0o

WAW 1.000 0.452 0.773 2.277 1.000 0.560 0.944
KRK 1.000 0.213 0.689 1.123 1.000 0.257 0.664
KAT 0.591 0.108 0.362 0.591 0.519 0.131 0.281
WRO 1.000 0.338 0.731 1.039 0.991 0.387 0.702
POZ 0.799 0.218 0.551 0.799 0.732 0.258 0.533
LCJ 0.300 0.057 0.203 0.300 0.255 0.068 0.133
GDN 1.000 0.302 0.793 2.000 1.000 0.310 0.531
SZZ 0.271 0.089 0.193 0.271 0.265 0.092 0.145
BZG 1.000 0.184 0.849 1.745 1.000 0.196 0.726
RZE 0.409 0.069 0.275 0.409 0.359 0.085 0.221
IEG 0.258 0.001 0.016 0.258 0.051 0.001 0.010

Table 3
Efficiency acceptability interval indices (in %).

Airport ½0:0;0:1� ð0:1;0:2� ð0:2;0:3� ð0:3;0:4� ð0:4;0:5� ð0:5;0:6� ð0:6;0:7� ð0:7;0:8� ð0:8;0:9� ð0:9;1:0�

WAW 0.00 0.00 0.00 0.00 0.00 0.76 5.15 7.35 7.81 78.93
KRK 0.00 0.00 0.13 1.64 8.95 18.52 31.02 27.07 9.94 2.73
KAT 0.00 5.00 61.98 29.75 3.23 0.04 0.00 0.00 0.00 0.00
WRO 0.00 0.00 0.00 0.05 6.43 14.32 24.53 31.21 21.16 2.30
POZ 0.00 0.00 0.15 3.08 28.43 50.18 18.07 0.09 0.00 0.00
LCJ 4.39 95.02 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GDN 0.00 0.00 0.00 5.97 21.50 60.17 9.48 1.91 0.61 0.36
SZZ 0.94 97.68 1.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BZG 0.00 0.04 1.59 11.35 11.10 11.73 10.35 8.93 8.78 36.16
RZE 0.14 28.16 70.31 1.39 0.00 0.00 0.00 0.00 0.00 0.00
IEG 100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4
Extreme ranks and efficiency rank acceptability indices (in %).

Airport Rn

o Ro;n ER0
o 1 2 3 4 5 6 7 8 9 10 11

WAW 1 5 1.3534 70.70 24.59 3.38 1.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00
KRK 1 6 3.5354 0.54 16.17 19.85 56.50 6.53 0.41 0.00 0.00 0.00 0.00 0.00
KAT 6 10 6.9947 0.00 0.00 0.00 0.00 0.00 0.58 99.37 0.05 0.00 0.00 0.00
WRO 1 5 2.7192 0.04 32.08 64.22 3.36 0.33 0.00 0.00 0.03 0.00 0.00 0.00
POZ 3 6 5.0994 0.00 0.00 0.13 9.89 69.89 20.09 0.00 0.00 0.00 0.00 0.00
LCJ 7 10 9.7795 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.05 77.95 0.00
GDN 1 6 5.0322 0.19 9.67 5.42 11.11 18.67 54.94 0.00 0.00 0.00 0.00 0.00
SZZ 7 10 9.1935 0.00 0.00 0.00 0.00 0.00 0.00 0.05 2.60 75.40 22.05 0.00
BZG 1 8 3.2662 28.56 17.49 7.00 17.81 4.58 23.98 0.58 0.00 0.00 0.00 0.00
RZE 7 11 8.0265 0.00 0.00 0.00 0.00 0.00 0.00 0.00 97.35 2.65 0.00 0.00
IEG 8 11 11.0000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.0
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(SZZ) is ranked between 2 and 5 (9 and 10), whereas, in general, its
rank interval is ½1;6� ð½7;10�Þ. Finally, six airports have some rank
acceptability indices equal to 0.0, even though analysis of the exact
extreme results indicates that they may be possibly attained for at
least one weight vector (ðWAW;5Þ, ðKAT;9�10Þ, ðLCJ;7�8Þ,
ðBZG;8Þ, ðRZE;8;10�11Þ, ðIEG;8�10Þ). For each airport, ERAIs' can
be aggregated into the estimates of an expected rank (see Table 4,
column ER0

o). The airports with low ERs0 (e.g., WAW, WRO, and
KRK) are average good performers, while the units with high ERs0

(e.g., RZE, SZZ, LCJ, and IEG) are on average far from being efficient,
being ranked lower than the majority of airports.

4.3.3. Pairwise efficiency outranking indices and necessary/possible
efficiency preference relations

The necessary and possible preference relations are provided in
Table 5. Obviously, the truth of necessary efficiency relation
implies the truth of a less demanding possible relation (for clarity,
in Table 5 we list only these possible relations which are not
necessary at the same time). There are 32 pairs of airports
ðDMUo;DMUkÞAD�D; oak, related by the necessary preference.

For example, WAW and BZG are necessarily preferred to, respec-
tively, six and four other airports.

The graph of necessary efficiency relation, subject to a transi-
tive reduction, is illustrated in Fig. 5. When analyzing this graph,
the efficient airports are confirmed to be the best DMUs, because
there is no other airport which is necessarily preferred to them.
Note, however, than the inverse implication is not true, i.e., there
may exist some inefficient DMU such that there is no other DMU
necessarily preferred to it. Among the inefficient airports, POZ
confirms its necessary superiority over the five remaining ineffi-
cient DMUs. Further, IEG, RZE, and SZZ should be viewed as the
worst airports, because they are not necessarily preferred to any
other airports.

The analysis of the diagram may be enriched with the view on
the possible relations. For example, on one hand, LCJ is not pos-
sibly preferred to BZG, which means that the efficiency of BZG is
always strictly greater than that of LCJ. On the other hand,
although BZG is necessarily preferred to RZE, the latter is possibly
preferred to the former. This means that there is at least one
weight vector for which efficiencies of these two airports
are equal.

Furthermore, it is interesting to analyze the graph of the
necessary relation in the context of extreme ranks. Some of the
observed interdependencies are straightforward. For example,
while GDN (LCJ) is necessarily preferred to five (by six) other air-
ports, its worst (best) rank is 11�5¼ 6 (1þ6¼7). However, some
other results are not that obvious. For example, POZ is necessarily
preferred only by WAW, but its best rank is 3, whereas SZZ is not
necessarily preferred to any other airport, but it is not ranked at
the very bottom in the worst case.

Finally, let us note that the nodes which are not related by an
arc in the diagram, indicate the airports which are incomparable in
terms of ≿N

E (e.g., (WAW,BZG), (POZ,WRO), (BZG,KAT), or (LCJ,
RZE)). For such pairs, one of the airports is possibly (for some
weight vector) more efficient than the other, and vice versa. When
considering the outcomes of the traditional robustness analysis,
these pairs are left incomparable (no additional information is
given). Instead of leaving the analyst only with information that
the possible preference relations are observed for at least one
weight vector, our approach provides estimates of the shares of
weight vectors confirming these outcomes.

In Table 6, we present pairwise efficiency outranking indices for
all DMUs. Obviously, for pairs of airports related by the necessary
relation (e.g., (WAW,KAT) or (GDN,RZE)), the respective PEOI0 is
100%, while for pairs not related by the possible relation (e.g.,
(KAT,KRK) or (SZZ,WRO)), PEOI0 is 0%. When it comes to pairs
related by the necessary incomparability, for some of them one
airport is more efficient than the other for the vast majority of
weight vectors. In particular, for (WAW,KRK) PEOI0ðWAW;KRKÞ ¼
98:01% and PEOI0ðKRK;WAWÞ ¼ 1:99%, and for (WRO,POZ), PEOI0

ðWRO;POZÞ ¼ 99:58% and PEOI0ðPOZ;WROÞ ¼ 0:42%. As for the

Table 5
Necessary and possible efficiency preference relations.

Airport Necessary preference Additional possible preference

WAW KAT, POZ, LCJ, SZZ, RZE, IEG WAW KRK, WRO, GDN, BZG
KRK KAT, LCJ, SZZ, RZE, IEG KRK WAW, WRO, POZ, GDN, BZG
KAT RZE KAT LCJ, SZZ, BZG, IEG
WRO KAT, LCJ, SZZ, RZE, IEG WRO WAW, KRK, POZ, GDN, BZG
POZ KAT, LCJ, SZZ, RZE, IEG POZ KRK, WRO, GDN, BZG
LCJ IEG LCJ KAT, SZZ, RZE
GDN KAT, LCJ, SZZ, RZE, IEG GDN WAW, KRK, WRO, POZ, BZG
SZZ SZZ KAT, LCJ, RZE, IEG
BZG LCJ, SZZ, RZE, IEG BZG WAW, KRK, KAT, WRO, POZ, GDN
RZE RZE LCJ, SZZ, BZG, IEG
IEG IEG KAT, SZZ, RZE

KRK WRO BZGGDN

POZ

SZZ LCJKAT

IEGRZE

WAW

Fig. 5. The necessary efficiency preference relation.

Table 6
Pairwise efficiency outranking indices (in %).

Airport WAW KRK KAT WRO POZ LCJ GDN SZZ BZG RZE IEG

WAW 100.0 98.01 100.0 95.41 100.0 100.0 99.84 100.0 71.37 100.0 100.0
KRK 1.99 100.0 100.0 18.35 99.56 100.0 83.45 100.0 43.53 100.0 100.0
KAT 0.00 0.00 100.0 0.00 0.00 100.0 0.00 99.97 0.56 100.0 100.0
WRO 4.59 81.65 100.0 100.0 99.58 100.0 89.13 100.0 53.25 100.0 100.0
POZ 0.00 0.44 100.0 0.42 100.0 100.0 62.51 100.0 26.86 100.0 100.0
LCJ 0.00 0.00 0.00 0.00 0.00 100.0 0.00 22.29 0.00 0.00 100.0
GDN 0.16 16.55 100.0 10.87 37.49 100.0 100.0 100.0 31.53 100.0 100.0
SZZ 0.00 0.00 0.03 0.00 0.00 77.71 0.00 100.0 0.00 2.82 100.0
BZG 28.63 56.47 99.44 46.75 73.14 100.0 68.47 100.0 100.0 100.0 100.0
RZE 0.00 0.00 0.00 0.00 0.00 100.00 0.00 97.18 0.00 100.0 100.0
IEG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.0
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efficient airports, analysis of the pairwise efficiency outranking
indices supports WAW in comparison with KRK, WRO, GDN, and
BZG. For some pairs of airports, indicating the more advantageous
one on the basis of PEOIs is not possible. For example, for (WRO,
BZG), PEOI0ðWRO;BZGÞ ¼ 53:25% and PEOI0ðBZG;WROÞ ¼ 46:75%.
Finally, although PEOI0 for (RZE,BZG) is equal to 0%, the possible
efficiency relation for this pair holds, whereas even though PEOI0

for (SZZ,IEG) is equal to 100%, the necessary preference relation for
this pair does not hold.

As justified in Section 2.1, when conducting Monte Carlo simula-
tion, we assumed a uniform weight distribution for the space of fea-
sible weights. Let us emphasize that with other exogenously given
distribution the values of efficiency acceptability indices could be
different. This is partially illustrated in Section 4.3.4, when a value of a
density function assigned to some weight vectors is zeroed, because
they are excluded from the feasible space by the provided weight
constraints.

4.3.4. Incremental specification of weight constraints
For illustrative purpose, in this section, we assume that the

following set of linear weights constraints has been provided by
the DM:

� input weights: v1Z3v3, v1Z5v3, v2Z2v3, and v2Z5v4;
� output weights: u1Z5u2.

In Table 7, we provide extreme efficiency scores and ranks in two
iterations, i.e., when considering the weight space without (1) and
with (2) the above specified constraints. These illustrate that the
ranges of efficiencies and ranks become more precise when
preference information is taken into accounted. In particular,
KRK, WRO, and BZG become not efficient. Their best efficiency
score is less than one (En

o;2o1 and En

o;1 ¼ 1) and they are ranked
second in the best case (Rn

o;2 ¼ 2 and Rn

o;1 ¼ 1). This implies that
only WAW and GDN remain efficient. Constraining the weight
space is neither advantageous for IEG. Its best efficiency score
drops from 0.258 to 0.188, while the best rank decreases from 8 to
11. As a result, IEG is ranked at the very bottom for all feasible
weight vectors. Furthermore, with limited weight space, GDN
attains the best lowest efficiency score (EGDN;n;2 ¼ 0:4554
EWAW ;n;2 ¼ 0:452), while for KRK and POZ the increase of the worst
efficiency is greater than 0.2. Even though their lowest scores are
much better now, their least ranks remain unchanged. On the
contrary, RZE (KAT) is now ranked 9 (8) for the least advantageous
weight vector, while it was ranked 11 (10) without weight
constraints.

In Fig. 6, we depict the graph of the necessary efficiency pre-
ference relation derived from the analysis of constrained weight
space. This graph is enriched when compared with the one pre-
sented in Fig. 5. Precisely, there are five pairs for which the
necessary relation has become true: (KAT,RZE), (KAT,IEG), (SZZ,
IEG), (RZE,SZZ), and (RZE,IEG). Interestingly, even though KRK,
WRO, and BZG are not efficient and ranked second in the best case,
there is no other airport that would be necessarily preferred to
them. This confirms the benefits of joint consideration of the three
outcome perspectives: scores, ranks, and preference relations.

To illustrate the effect of incorporating weight constraints on
the acceptability indices, in Table 8 we present EAIIs0, ERAIs0, and
PEOIs0 for BZG without and with weight constraints. The most
evident effect of integrating these constraints into the efficiency
model is that for the vast majority of feasible weight vectors
(about 97%) BZG attains efficiency scores in the range ð0:2;0:6� and
ranks 6–7, while previously it attained the best efficiency scores
ðð0:9;1:0�Þ and ranks on the podium (1–3) for, respectively, over
35% and 50%. Moreover, BZG is now far less advantageous when
compared with WAW, KRK, WRO, POZ, and GDN.

4.3.5. Elimination of outlier DMUs
For illustrative purpose, in this section, we investigate the

impact of removing some outlier airports on the obtained results.
We refer to the backward approach presented in [6], and eliminate
the units with super-efficiency greater than 2.0. Subsequently, we
compare the original results from Sections 4.3.1–4.3.3 with the
ones obtained while neglecting WAW.3 Note that WAW is the
largest and busiest airport in Poland, which also proved to be the
best in terms of robustness analysis in our results.

In Table 9, we provide the extreme efficiency scores and ranks
as well as the estimates of expected efficiencies and efficiency
ranks for the set of airports with ðD1Þ and without ðD2Þ considering
WAW. For all airports, the extreme efficiency scores are not worse
when WAW is neglected. Precisely, for POZ and SZZ the best effi-
ciencies have been improved. In fact, POZ is the greatest bene-
ficiary of removing WAW from the analysis ðEn;D2

POZ ¼ 0:9894
En;D1
POZ ¼ 0:799Þ. Furthermore, the worst efficiencies have been

improved significantly for all airports (e.g., En;D2
WRO ¼ 0:54

En;D1
WRO ¼ 0:338) but GDN, SZZ, and IEG. When it comes to the

extreme ranks, all airports have improved their worst ranks by one
(e.g., RD2

BZG;n ¼ 7oRD1
BZG;n ¼ 8). The same holds for the non-efficient

airports in terms of their best ranks (e.g., Rn;D2
POZ ¼ 2oRn;D1

POZ ¼ 3). This

Table 7
Extreme efficiency scores and ranks without (1) and with (2) weight constraints.

Airport En

o;1 Eo;n;1 En

o;2 Eo;n;2 Rn

o;1 Ro;n;1 Rn

o;2 Ro;n;2

WAW 1.000 0.452 1.000 0.452 1 5 1 5
KRK 1.000 0.213 0.962 0.439 1 6 2 6
KAT 0.591 0.108 0.554 0.210 6 10 6 8
WRO 1.000 0.338 0.922 0.445 1 5 2 5
POZ 0.799 0.218 0.779 0.433 3 6 3 6
LCJ 0.300 0.057 0.282 0.094 7 10 7 10
GDN 1.000 0.302 1.000 0.455 1 6 1 6
SZZ 0.271 0.089 0.260 0.113 7 10 9 10
BZG 1.000 0.184 0.954 0.189 1 8 2 8
RZE 0.409 0.069 0.383 0.169 7 11 7 9
IEG 0.258 0.001 0.188 0.001 8 11 11 11

KRK WRO BZGGDN

POZ

SZZ

LCJKAT

IEG

RZE

WAW

Fig. 6. The necessary preference relation when accounting for the weight
constraints.

3 In diviz, elimination of some DMU from the analysis can be conducted easily
by setting a unit-specific attribute “active” to “false”.
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confirms the robustness of the ranking intervals, which change at
most by one when a single unit is removed or introduced.

As far as the expected efficiency scores and ranks are con-
cerned, the estimates of these measures obtained from the Monte
Carlo simulation after removing WAW indicate a clear improve-
ment (i.e., greater expected efficiency and less expected rank) for
all airports (e.g., EE0D2

KRK ¼ 0:8544EE0D1
KRK ¼ 0:664 and ER0D2

KRK ¼ 2:5769
o ER0D1

KRK ¼ 3:5354).
In Fig. 7, we depict the graph of the necessary efficiency pre-

ference relation and pairwise efficiency outranking indices derived
from the analysis neglecting WAW. For all pairs of airports, the

truth or falsity of ≿N
E as well as the values of PEOIs are the same as

in Fig. 5 and Table 6, respectively.4 This confirms that the removal
of some outlier DMUs does not influence the pairwise one-on-one
results for the remaining units.

Finally, let us remind that the convergence of results with the
removal/introduction of some unit cannot be predicted in case of

Table 8
Efficiency acceptability interval indices (in %), rank efficiency acceptability indices (in %), and pairwise efficiency outranking indices (in %) for BZG without (1) and with
(2) weight constraints.

Indices ½0:0;0:1� ð0:1;0:2� ð0:2;0:3� ð0:3;0:4� ð0:4;0:5� ð0:5;0:6� ð0:6;0:7� ð0:7;0:8� ð0:8;0:9� ð0:9;1:0�

EAII01 0.00 0.04 1.59 11.35 11.10 11.73 10.35 8.93 8.78 36.16

EAII02 0.00 0.00 16.04 40.99 26.75 12.75 2.97 0.40 0.10 0.00

1 2 3 4 5 6 7 8 9 10–11

ERAI01 28.56 17.49 7.00 17.81 4.58 23.98 0.58 0.00 0.00 0.00

ERAI02 0.00 0.01 0.07 0.40 1.22 84.45 13.85 0.00 0.00 0.00

WAW KRK KAT WRO POZ LCJ GDN SZZ RZE IEG

PEOI01 28.63 56.47 99.44 46.75 73.14 100.0 68.47 100.0 100.0 100.0
PEOI02 0.02 0.20 85.65 0.06 1.25 100.0 0.06 100.0 100.0 100.0

Table 9
Extreme efficiency scores and ranks, estimates of expected efficiencies and efficiency ranks with ðD1Þ and without ðD2Þ considering WAW.

Airport En;D1
o ED1

o;n En;D2
o ED2

o;n EE0D1
o EE0D2

o Rn;D1
o RD1

o;n Rn;D2
o RD2

o;n ER0D1
o ER0D2

o

WAW 1.000 0.452 – – 0.944 – 1 5 – – 1.3534 –

KRK 1.000 0.213 1.000 0.420 0.664 0.854 1 6 1 5 3.5354 2.5769
KAT 0.591 0.108 0.591 0.220 0.281 0.362 6 10 5 9 6.9947 5.9953
WRO 1.000 0.338 1.000 0.500 0.702 0.901 1 5 1 4 2.7192 1.7638
POZ 0.799 0.218 0.989 0.370 0.533 0.699 3 6 2 5 5.0994 4.1006
LCJ 0.300 0.057 0.300 0.095 0.133 0.174 7 10 6 9 9.7795 8.7795
GDN 1.000 0.302 1.000 0.302 0.531 0.707 1 6 1 5 5.0322 4.0201
SZZ 0.271 0.089 0.274 0.089 0.145 0.192 7 10 6 9 9.1935 8.1943
BZG 1.000 0.184 1.000 0.312 0.726 0.891 1 8 1 7 3.2662 2.5440
RZE 0.409 0.069 0.409 0.137 0.221 0.286 7 11 6 10 8.0265 7.0305
IEG 0.258 0.001 0.258 0.001 0.010 0.014 8 11 7 10 11.000 10.000

KRK WRO BZGGDN POZ

SZZ KATLCJ

IEGRZE

KRK WRO BZGGDN POZ

SZZ KATLCJ

IEGRZE

37.49

62.51

0.44

99.56

18.35

81.65

53.25

46.75

16.55 0.42 43.53

83.45 99.58 56.47

10.87 26.86

89.13 73.14

31.53

68.47

22.29

77.71

0.03

99.97

0.56 99.44

2.82
0.0

100.0
97.18 0.0

100.0

100.0
0.0

Fig. 7. The necessary preference relation (a) and pairwise efficiency outranking indices (b) without considering WAW.

4 In general, the estimates of the pairwise efficiency outranking indices may
differ slightly from one Monte Carlo simulation to another because there is no
guarantee that the sets of feasible weight vectors sampled in these simulations are
the same.
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efficiency acceptability interval indices and efficiency rank
acceptability indices. To illustrate this phenomenon, in Table 10,
we present the EAIIs0 and ERAIs0 for BZG obtained with and with-
out considering WAW. The share of compatible weight vectors for
which BZG attains the most advantageous efficiency scores ðð0:9;
1:0�Þ and rank (1) has now increased, but for the remaining sto-
chastic results one cannot observe any regularities except the ones
already captured with the expected efficiency scores and ranks.

5. Practical consideration

5.1. In what contexts is the proposed framework relevant?

The proposed integrated framework for robustness analysis
should be used when facing at least one of the following
characteristics:

1. The management wishes to investigate the performance of
DMUs for all feasible input/output weights and/or their sig-
nificant share. It is desirable, because the feasible weight vectors
reflect relevant preference information and represent the full
spectrum of priorities that can be assigned to different inputs
and outputs. This allows us to judge the goodness of DMUs as
overall performers in a more reliable way that in the traditional
DEA approaches, which take into account only extremely small
share of feasible weights.

2. The analyst does not want or know how to formulate, or is not
able to justify the assumptions about possible returns to scale.
In the proposed framework, the production possibilities are
defined only by the considered DMUs, and the results are
derived from pairwise comparisons among the existing units
rather than measuring efficiency relative to the efficient fron-
tier. This makes the results more reliable and less sensitive to
changing the set of DMUs.

3. The number of compared DMUs is relatively small. Indeed, our
framework can be used with any number of DMUs, even if it is
not large enough compared to the overall number of inputs and
outputs as required for the interpretability of traditional DEA
outcomes (e.g., maximal efficiency scores, cross-efficiencies, or
super-efficiencies). In our case study, the number of analyzed
airports (11) is not significantly greater than the number of
inputs and outputs (6). Nonetheless, the proposed approach can
still provide interpretable and valuable results derived from the
one-on-one comparisons of airports.

4. The management is interested in an in-depth analysis that
would concern at least one of the following perspectives on
DMUs' efficiency: scores, ranks, or preference relation. Firstly,
the scores determine how much worse is a given DMU than the
most efficient unit. Secondly, the ranks indicate how many
DMUs are better/worse than a given DMU in terms of their
efficiency ratio. Thirdly, the preference relation offers a unique
one-on-one perspective for the efficiency analysis instead of
one-against-all viewpoint being more typical for DEA.

These three perspectives are complementary, and the results
offered by one of them, in general, cannot be derived from the
analysis of another. Let us provide some examples supporting
this claim:
� if there is no unit that would be necessarily preferred to a

given DMU, it may still be not efficient, thus, attaining an
efficiency score less than one in the best case (see, e.g., the
case of POZ in Section 4.3.5 which is not necessarily preferred
by any other airport, but attains En;D2

POZ ¼ 0:989o1);
� if the intersection of the ranges of possible efficiency ranks for

a pair of DMUs is non-empty, one of them may be still
necessarily preferred to another (see, e.g., the case of KAT and
RZE in Section 4.3.5 with KAT ≿N;D2

E RZE and ½Rn;D2
KAT ;R

D2
n;KAT �

\½Rn;D2
RZE ;RD2

n;RZE� ¼ ½6;9�); furthermore, the pairwise outranking
index may indicate that the vast majority of feasible weights
ranks higher a DMU with less advantageous ranking interval
(see, e.g., the case of SZZ and RZE in Sections 4.3.1–4.3.3,
where Rn

SZZrRn

RZE and Rn;SZZrRn;RZE , but PEOI0ðRZE; SZZÞ ¼
97:18%);

� if the least efficiency indicates a significantly worse perfor-
mance of a given DMU when compared to the most efficient
unit, it can be still better that the vast majority of other DMUs
as proven by its worst possible rank (see, e.g., the case of GDN
in Section 4.3.5 with ED2

GDN;n ¼ 0:302, thus, being over 3 times
less efficient than the most efficient airport, while still being
ranked better than 5 out of 9 other airports ðRD2

GDN;n ¼ 5Þ).

Nonetheless, in practical efficiency analysis, one can use only a
small subset of results that may be delivered within the
proposed framework.

5.2. How to interpret different robust results and which managerial
concerns they address?

Traditionally, DEA has been used for indicating which DMUs
are efficient and inefficient, thus discriminating only between
these two groups. In some real-world situations, the shares of
efficient or inefficient DMUs may be very large, and the manage-
ment may wish to identify a small subset of the most distin-
guishing ones among them. In their work, Tsou and Huang [64]
discuss several ranking methods that have been proposed to
improve the discrimination power of DEA. Our framework derives
from the fact that each feasible weight vector provides a basis for
the performance comparison, thus, offering greater discrimination
among DMUs. The robust results which synthesize the outcomes
obtained for different weight vectors can be used for answering
the following relevant questions (we will provide the exemplary
answers to these questions while referring to the results of our
case study presented in Sections 4.3.1–4.3.3):

1. Which efficient DMUs perform well compared to other DMUs? For the
efficient DMUs with En

o ¼ 1 and Rn

o ¼ 1, one should consider how
frequently they attain the best ranks and efficiency scores and
how bad they can be at worst (i.e., En;o and Rn;o). This allows us

Table 10
Efficiency acceptability interval indices (in %) and rank efficiency acceptability indices (in %) for BZG with ðD1Þ and without ðD2Þ considering WAW.

Indices ½0:0;0:1� ð0:1;0:2� ð0:2;0:3� ð0:3;0:4� ð0:4;0:5� ð0:5;0:6� ð0:6;0:7� ð0:7;0:8� ð0:8;0:9� ð0:9;1:0�

EAII0D1 0.00 0.04 1.59 11.35 11.10 11.73 10.35 8.93 8.78 36.16

EAII0D2 0.00 0.00 0.00 0.11 0.54 2.58 9.08 13.90 14.53 59.26

1 2 3 4 5 6 7 8 9 10

ERAI0D1 28.56 17.49 7.00 17.81 4.58 23.98 0.58 0.00 0.00 0.00

ERAI0D2 46.38 7.25 17.23 4.41 24.19 0.54 0.00 0.00 0.00 0.00
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to distinguish the overall good performers exhibiting more
universal good practices to follow from the more niche DMUs
which are efficient only under very specific conditions, while
being far from efficiency for the vast majority of feasible
weights. In our study, the best examples of the former group
are WAW and BZG, while GDN is the most representative for
the latter group. Following these conclusions, WAWand BZG are
advised to be used for benchmarking. Such discrimination
between the efficient DMUs may also stimulate data mining to
generate hypotheses about the drivers of strong or weak
efficiency.

2. Which inefficient DMUs do not perform significantly worse com-
pared to other DMUs? For the inefficient DMUs with En

oo1 and
Rn

oo1, one should analyze how good they can be at best (i.e., En

o
and Rn

o) as well as how often they attain their worst ranks and
efficiency scores. This allows us to discriminate between the
inefficient DMUs which have the greatest potential for becom-
ing efficient and these for which attaining efficiency would be
most challenging. The management may decide to implement
the corrective actions for the former group in the first order,
while the latter group seems to be crucial in terms of reducing
the performance gap between the best and worst performers. In
our study, the most advantageous inefficient airport is POZ,
while KAT, RZE, SZZ, LCJ, and IEG require considerable
improvement in their efficiency ratios, which is confirmed by a
large spectrum of priorities that can be assigned to the inputs
and outputs.

3. Which DMUs are the average good or bad performers? Irrespective
of their efficiency status, all DMUs can be ranked from the best
to the worst based on their average efficiency scores (EEo) or
ranks (ERo). These results compare the DMUs using a large
number of weight vectors, clearly exhibiting which units per-
form good for different priorities that can be assigned to inputs
and outputs. In some situations, the expected efficiency scores
or ranks can prove that inefficient DMUs are on average better
than some efficient ones, thus, indicating the need for possible
corrective actions also in the context of the efficient units. In our
study, this is the case of GDN, since the comparison of expected
efficiencies of POZ (deemed inefficient) and GDN (judged effi-
cient) indicates that EE0POZ4EE0GDN . Although in general we built
on the rankings and scores that DMUs can attain for the entire
set of feasible weight vectors, these two measures can be used
alike the existing DEA ranking methods for assigning a single
efficiency score or position to each DMU.

4. For which DMUs the relative efficiency scores and ranks vary much
in the set of feasible weights? For this purpose, one should ana-
lyze the difference between the extreme efficiency scores and
ranks as well as the distribution of these measures across all
feasible weights. High dispersion of scores and ranks indicates
that the priorities of DMUs differ significantly. In some decision
contexts, this should prompt investigation as to whether the
guidelines for standard practice can be used as a tool to reduce
variance in management. In our study, the best example of an
airport for which such investigation should be conducted is
BZG, which apart from being efficient in the best case, attains
efficiency scores lower than 0.5 and ranks in the bottom half for
about 25% of feasible weight vectors.

5. How DMUs perform in one-on-one comparisons? Traditionally,
DEA referred to the efficiency scores and/or ranks. Although
these two perspectives are deepened in the proposed frame-
work, the necessary/possible efficiency preference relations and
pairwise efficiency outranking indices offer a yet different one-
on-one perspective, which is not influenced by the remaining
DMUs. Indeed, the analyst may be sometimes more interested
in the peer comparison. This is particularly useful if (s)he knows
some units better. Then, they can be used as fixed benchmarks

for the remaining DMUs. In our study, an expert interested, e.g.,
in the performance of SZZ and knowing POZ quite well, would
get to know that POZ – despite being inefficient overall – is
more efficient than SZZ for all possible priorities assigned to the
inputs and outputs.
The necessary preference relation may be very useful also in
terms of formulating the corrective actions for the inefficient
units. For such units, the efficient ones being necessarily
preferred to them represent their hypothetical comparison units
(HCUs). Differences in inputs and outputs between DMU and
thus identified HCUs clearly indicate the productivity gaps and
improvement potential. Moreover, when analyzing the graph of
necessary efficiency preference relation, one can think of
applying the step-wise benchmarking based on the specifica-
tion of short-, medium-, and long-term targets. This requires
identification of the paths that originate in the node represent-
ing some inefficient DMU and finish in one of the nodes
corresponding to the efficient unit having no predecessors. In
case there are multiple such paths, one may compare the
underlying strategies to be potentially adopted. In our study,
since GDN ≿N

E KAT ≿N
E RZE and BZG ≿N

E RZE, the exemplary
recommendation for RZE may be either to follow the example of
BZG, or to focus first on reaching the efficiency level of KAT and
only then following the practice of GDN.

The robust results can be also applied in other contexts which are
important from the managerial perspective:

1. Specification of performance targets [31,53]: In the traditional
DEA methods, one investigated only the improvement that
needs to be made to become efficient (i.e., to be ranked first
or to attain the greatest efficiency score for some feasible
weight vector). On the contrary, when referring to the robust
results, the management may formulate more detailed and
diverse questions. In the context of our study, they may concern,
e.g., the improvement of performances that warrants that WRO
is ranked at worst third for all feasible weights (while currently
RWRO;n ¼ 543), or that BZG is necessarily preferred to KAT
(while currently notðBZG≿N

E KATÞ and PEOI0ðBZG;KATÞ ¼
99:44%), or that the efficiency of WAW is worse at most twice
than that of the most efficient unit (while currently
EWAW ;n ¼ 0:452o0:5). The answers to these questions can be
obtained with LP [53], directly indicating to the management
how the DMU's performances should be bettered to attain the
desired target.

2. Identification of outlier DMUs: The high values for the first rank
efficiency acceptability indices and/or efficiency acceptability
interval indices for the best scores can be used for detection of
the outlier DMUs, similarly as super-efficiencies greater than a
pre-defined threshold in a backward approach discussed in [6].
An obvious example of such an outlier in our study is WAW for
which EAII0ðWAW; ð0:9;1:0�Þ ¼ 78:93% and ERAI0ðWAW;1Þ ¼
70:70%.

3. Adding discrimination among the DMUs by introducing the
restrictions on the relative values among different outputs and
inputs which represent relevant managerial constraints. This is
enhanced by the desirable evolution of the robust results with
an incremental specification of weight constraints as discussed
in Appendix C.

6. Conclusions

We have proposed an integrated framework for robustness
analysis using a data envelopment model. While referring to a
ratio-based measure, we considered three different viewpoints on
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the efficiency of Decision Making Units in the set of feasible input/
output weights. Precisely, we evaluated the units' performance in
terms of attained efficiency scores, pairwise preference relations,
and ranks. On one hand, we assessed the extreme (in case of
scores and ranks), necessary and possible (in case preference
relations) performance of units using Linear Programming tech-
niques. On the other hand, we used Monte Carlo simulation to
enrich these exact outcomes with stochastic indices. The latter
provide estimates of probability of attaining some result as well as
some aggregated measures (e.g., expected efficiency score or effi-
ciency rank) derived from a large set of feasible input/output
weights. Apart from the complementary characteristics of the
considered results, the discussed algorithms compare positively to
the traditional techniques of efficiency analysis in terms of
requiring less arbitrary assumptions, being less sensitive to a set of
considered units, and offering greater discriminative power.

All these benefits have been illustrated on the problem of
assessing efficiency of Polish airports. We took into account four
inputs (i.e., capacities of a terminal, runways, and an apron, and a
catchment area) and two outputs (i.e., passenger traffic and
number of aircraft movements) related to the terminal services
and movement model. Nevertheless, the scope of problems in
which answering similar questions may be of interest to the
analyst is very broad. Indeed, our approach can be used in a variety
of efficiency analysis problems concerning, e.g., agricultural farms
[4], banks [5,34,37,68], container ports and terminals [19,69],
courts [54], local governments [21], shipping companies [45],
urban rail firms [30], or transportation networks [73].

To support the applicability of our results in other decision
contexts, we implemented an open-source software distributed as
a part of the diviz platform. Apart from providing the modules for
both robustness and stochastic analysis, we accounted for the
well-known procedures of data envelopment analysis such as
super-efficiency or cross-efficiency.

We envisage the following future developments:

� accounting for the hierarchical structure of inputs and outputs
[60];

� admitting imprecise performance values;
� extension of the range of considered efficiency preference

relations derived from robustness analysis, and studying their
properties in terms of transitivity, completeness, reflexivity,
continuity, and non-triviality;

� adapting the proposed framework to other data envelopment
models such as additive DEA [28,29] or preference models
admitting interactions between different inputs and outputs;

� application to different decision problems in transport, medi-
cine, environmental management, and education.
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Appendix A. Alternative formulation of the MILPs for com-
putation of extreme efficiency ranks

To enhance understanding of the underlying reasoning, in this
section we present alternative formulations of the MILPs for

computation of the extreme efficiency ranks presented in Section
2.4.1. Instead of minimizing the number of DMUs that can be simul-
taneously better than DMUo, R

n

o can be obtained while subtracting
from K the cardinality of the maximal subset of DMUs that are at the
same time at most as good as DMUo. For this purpose, the objective
function in (7) should be replaced with:

min Rn

o ¼ K�
XK

k ¼ 1;kao

bk;

while constraint ½n� needs to be substituted with:

XN
n ¼ 1

unynkr
XM
m ¼ 1

vmxmkþCð1�bkÞ ðk¼ 1;…;K ; kaoÞ:

Furthermore, instead of maximizing the number of DMUs that are
simultaneously not worse than DMUo, Rn;o can be obtained while
subtracting from K the cardinality of the minimal subset of DMUs that
are at the same time worse than DMUo. Then, the objective function in
(8) should be replaced with:

max Rn;o ¼ K�
XK

k ¼ 1;kao

bk;

while constraint ½n� needs to be substituted with:

XM
m ¼ 1

vmxmkr
XN
n ¼ 1

unynkþCbk ðk¼ 1;…;K; kaoÞ:

Appendix B. Interdependencies between robust results and
stochastic indices

The extreme, necessary, and possible results determined with
LP influence the stochastic indices in the following way:

Remark B.1. For DMUo;DMUkAD :
1. i : fbi;n4En

o3bn

i oEo;ng ) EAII0ðDMUo; biÞ ¼ 0 (i.e., for the effi-
ciency subintervals outside the range delimited by the extreme
efficiencies, the efficiency acceptability interval indices are 0,
because a unit does not attain such efficiency scores for any
feasible weight vector, including these sampled in the Monte
Carlo simulation).

2.
P

i:bi;n rEn

o 4bn

i ZEo;nEAII
0ðDMUo; biÞ ¼ 1 (i.e., the sum of EAIIs0 corre-

sponding to the efficiency intervals with non-empty intersection
with ½Eo;n; En

o� is equal to one (see Proposition 2.1 and point 1)).
3. DMUo≿N

E DMUk ) PEOI0ðDMUo;DMUkÞ ¼ 1 (if the necessary effi-
ciency relation was valid, this needs to be confirmed by all
feasible weight vectors, including these sampled in the simu-
lation, and, thus, PEOI0ðDMUo;DMUkÞ is equal to one).

4. :ðDMUo≿P
EDMUkÞ ) PEOI0ðDMUo;DMUkÞ ¼ 0 (i.e., if the possible

efficiency relation was false, the truth of efficiency preference
relation is not confirmed by any feasible weight vector, and,
thus, PEOI0ðDMUo;DMUkÞ ¼ 0).

5. l : floRn

o3 l4Ro;ng ) ERAI0ðDMUo; lÞ ¼ 0 (i.e., for the ranks out-
side the interval delimited by the extreme ones, the efficiency
rank acceptability indices are 0).

6.
PRo;n

l ¼ Rn

o
ERAI0ðDMUo; lÞ ¼ 1 (i.e., the sum of ERAIs0 for the ranks

between the extreme ones, is equal to one (see Proposition 2.5
and point 5)).

Note that the inverse implications or relations are not neces-
sarily true. In particular, the ranges of efficiencies or ranks deter-
mined exactly with LP may be wider than the respective ranges
observed in the Monte Carlo sample of weight vectors. Conse-
quently, the estimates EAII0 and ERAI0 may be equal to 0, whereas
the true EAII and ERAI are greater than 0. Further, PEOI0ðDMUo;

DMUkÞ ¼ 1 ðPEOI0ðDMUo;DMUkÞ ¼ 0Þ does not imply that DMUo≿N
E
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DMUk ð:ðDMUo≿P
EDMUkÞÞ since the set of sampled weight vectors

might not contain some feasible weights ðv;uÞA ðSv; SuÞ such that
Ekðv;uÞ4Eoðv;uÞ ðEoðv;uÞZEkðv;uÞÞ. The only valid inter-
dependencies between the estimates of stochastic indices and
extreme, necessary, and possible outcomes are the following:

Remark B.2. For DMUo;DMUkAD :

1. EAII0ðDMUo; biÞ40 ) bi;nrEn

o4bn

i ZEo;n (i.e., when an effi-
ciency acceptability interval index is positive, there is at least
one feasible weight vectors for which a unit attains efficiency in
the respective interval; this implies that the true best efficiency
En

o of a unit is greater than the lower bound bi;n of the interval
and its worst efficiency Eo;n is less than the upper bound bn

i ).
2. PEOI0ðDMUo;DMUkÞ40 ) DMUo≿P

EDMUk (i.e. when the pairwise
efficiency outranking index is greater than 0, the efficiency pre-
ference has been observed for at least one weight vector in the
sample, and, thus, the possible efficiency preference relation holds).

3. PEOI0ðDMUo;DMUkÞ ¼ 0 ) :ðDMUo≿N
E DMUkÞ (i.e. when the

pairwise efficiency outranking index is 0, the efficiency pre-
ference has not been observed for any weight vector in the
sample, and, thus, it certainly does not hold for all feasible
weight vectors; this, in turn, implies that the necessary effi-
ciency preference relation is not valid).

4. ERAI0ðDMUo; lÞ40 ) Rn

or l and lrRo;n (i.e., when an efficiency
rank acceptability index for rank l is positive, there is at least one
feasible weight vector for which a unit attains l-th position; this
implies that the true best efficiency rank Rn

o of the unit and its
worst rank Ro;n are, respectively, not greater and not less than l).

Appendix C. Evolution of robust results with incremental
specification of weight constraints

In this section, we consider a specification of weight constraints
in the following iterations of DM's interaction with the proposed
framework. We denote with A1

vDA2
vD…DAs

v nested sets of
weight constraints provided by the DM. These sets Av

t, t ¼ 1;…; s;
generate the respective sets of feasible weight vectors ðSv; SuÞt .
These are incrementally constrained, i.e., ðSv; SuÞ1+ ðSv; SuÞ2
+…+ðSv; SuÞs. For each iteration t ¼ 1;…; s, the following results
can be derived:
� extreme efficiencies En;t

o and Eto;n,� possible ≿P;t
E and necessary ≿N;t

E efficiency preference relations,
� extreme efficiency ranks Rn;t

o and Rt
o;n.

The evolution of the robust results with the increase of weight
constraints is summarized in Proposition C.1.

Proposition C.1. For DMUoAD and t ¼ 1;…; s�1:
� En;t

o ZEn;tþ1
o and Eto;nrEtþ1

o;n (i.e., in the following iteration, when
the space of feasible weights is more constrained, the ranges of
attained efficiencies may be narrowed down).

� ≿N;t
E D≿N;tþ1

E and ≿P;t
E +≿P;tþ1

E (i.e., the necessary and possible
relations may be, respectively, enriched and impoverished).

� Rn;t
o rRn;tþ1

o and Rt
o;nZRtþ1

o;n (i.e., the ranking intervals may
become narrower, but not wider).

Appendix D. Impact of removing/introducing outlier DMUs on
robust results

Traditionally, DEA methods have been focused on identifying the
efficient frontier on which the DMUs are considered efficient. In this
regard, much attention has been paid to identification of atypical
DMUs that may greatly influence the frontier's shape [11,74]. In gen-
eral, there exist two basic approaches for detection of such outlier

DMUs. On one hand, in a backward approach [6], DMUs with super-
efficiencies greater than a pre-defined threshold are identified as
outliers. On the other hand, in the forward search procedure [11], the
subjectivity of using some arbitrary threshold can be avoided by using
a dedicated distance function (see also [10,12]).

In this subsection, we discuss the impact of removing/introducing
some (outlier) DMUs on the robust results. In this perspective it is
important to remind that all our results are derived from comparing
DMUs' efficiencies pairwise rather than measuring their distance from
an efficient frontier as in the traditional DEA models.

Let us consider the following subsets of DMUs: D0 �D″DD. Thus,
D‴ ¼D″⧹D0 contains the DMUs removed from D″/introduced to D0.
We will denote the results obtained when analyzing a given subset of
DMUs by using its symbol in the superscript (e.g., ≿N;D0

E indicates the
necessary efficiency preference relation obtained for D0). Then, the
following proposition summarizes the interdependencies between the
outcomes that can be obtained for D0 and D″.

Proposition D.1. For DMUo;DMUkAD0 �D0 0DD:
� EED

0
o ZEED

″

o (i.e., for each feasible weight an efficiency attained by
DMUo in D0 is not worse than its respective efficiency in D″; thus,
after removing some DMUs, the expected efficiency EE of DMUo

cannot be deteriorated).
� En;D0

o ZEn;D″

o and ED
0

o;nZED
″

o;n (i.e., the extreme efficiency scores of
each DMU obtained within the constrained set D0 are not less than
its respective scores within D″).

� PEOID
0 ðDMUo;DMUkÞ ¼ PEOID

″ ðDMUo;DMUkÞ (although the abso-
lute efficiency scores attained by DMUo and DMUk may change
after removing/introducing some other DMUs, the order between
these scores remains the same for all feasible weight vectors;
consequently, the value of pairwise efficiency outranking index for
a given pair of DMUs does not depend on the remaining units,
being the same in both D0 and D″).

� DMUo≿N;D″

E DMUk3DMUo≿N;D0

E DMUk (the above justification
proves that the status of ≿N

E for a given pair of DMUs does not
depend on other units; as a result, for all pairs of units contained in
D0 �D0, the truth or falsity of ≿N

E is the same in both D0 and D″).
� 0rERD″

o �ERD0
o r jD‴ j (i.e., for each feasible weight vector DMUo

is ranked not worse in D0 than in D″; in fact, it can be ranked better
by at most jD‴ j , which is the cardinality of the removed subset of
DMUs; thus, after removing some DMUs from D″, the expected
rank ER of DMUo cannot be deteriorated, being at most by jD‴ j
better (lower) in D0 than in D″).

� 0rRn;D″

o �Rn;D0
o r jD‴ j and 0rRD″

o;n�RD0
o;nr jD‴ j (i.e., after remov-

ing jD‴ j units from D″, the extreme ranks of DMUo in D0 cannot be
deteriorated, being at most by jD‴ j better in D0 than in D″).

Since the efficiency acceptability interval indices EAIIs and efficiency
rank acceptability indices ERAIs depend on the entire set of DMUs and
all feasible sets of weights, one cannot formulate any general remarks
for their evolution after removing/introducing some DMUs.
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Abstract: The interest in studying energy systems’ resilience is increasing due to a rising awareness
of the importance of having a secure energy supply. This growing trend is a result of a series of recent
disruptions, among others also affecting electricity systems. Therefore, it is of crucial importance for
policymakers to determine whether their country has a resilient electricity supply. Starting from a set
of 12 indicators, this paper uses data envelopment analysis (DEA) to comprehensively evaluate the
electricity supply resilience of 140 countries worldwide. Two DEA models are applied: (1) the original
ratio-based Charnes, Cooper, and Rhodes (CCR) model and (2) a novel hybrid framework for robust
efficiency analysis incorporating linear programming and Monte Carlo simulations. Results show
that the CCR model deems 31 countries as efficient and hence lacks the capability to differentiate
them. Furthermore, the CCR model considers only the best weight vectors for each country, which
are not necessarily representative of the overall performance of the countries. The robustness analysis
explores these limitations and identifies South Korea, Singapore and Canada as the most resilient
countries. Finally, country analyses are conducted, where Singapore’s and Japan’s performances and
improvement potentials are discussed.

Keywords: data envelopment analysis; electricity supply; resilience; energy security; ratio-based
efficiency model; robustness analysis

1. Introduction

Electricity is a crucial commodity to foster the economic development and well-being of a
country [1]. Governments are increasingly aware of the need to improve the energy efficiency of
electricity production (i.e., decrease the total amount of energy required to produce the desired quantity
of electricity), as it leads to better supply security and reduced greenhouse gas emissions. Even
though recently the global average efficiency slowly improved [1], major electricity supply disruptions
still happen (e.g., the 2012 India blackout [2] or the 2015 Turkey blackout [3]). The financial, social
and environmental consequences of such disruptions can cause great damage to the economy of a
country, its government and citizens [4,5]. Resilience aims at minimizing the impact of these adverse
consequences by defining pre- and post-event strategies, making outages less likely or smaller in
extent [6,7].
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A resilient electricity supply is fundamental to guarantee a well-functioning modern society [8].
In this regard, one of the key interests of policymakers is to assess how their country performs compared
to others. This kind of international comparison supports them in identifying improvement potentials
and quantifying achievements or progress towards predefined objectives and targets [9]. Many
international country performance assessments are indicator-based [10], because indicators are suitable
to model multi-dimensional problems [11]. Countries are commonly ranked based on the indicators
only or on aggregated measures, sometimes also called indices or composite indicators, that combine
the individual indicators [12]. Within the energy sector, a wide range of operational research methods
are used to build such indices [13]. Examples include the analytical hierarchy process (AHP) [14,15],
technique for order preference by similarity to ideal solution (TOPSIS) [16], outranking methods
such as the preference ranking organization method for enrichment evaluation (PROMETHEE) [17]
or elimination et choix traduisant la réalité (ELECTRE) [18], weighted averages [19], multi-attribute
value/utility theory (MAVT/MAUT) [20] and data envelopment analysis (DEA) [21].

In the context of electricity supply resilience, comparative country evaluations and rankings
are missing [22]. Hence, building upon the framework proposed by Gasser et al. (2017) [23] and
Gasser et al. (2020) [24] to define a set of 12 indicators that cover resilience holistically, this paper
assesses the electricity supply resilience of 140 countries following a security of supply perspective.
Due to the fact that the indicators have positive and negative preference orders, and the requirement to
not involve preferences from decision-makers, DEA, a family of non-parametric methods to derive
efficiencies of decision-making units (DMUs) [25], is particularly suitable to rank the countries. In fact,
for DEA, the indicator weights are endogenously determined (directly calculated from the performance
matrix itself) [26]. The final scores of the DMUs are commonly called efficiencies, as they represent the
ratio of the weighted output indicators’ performances to the weighted input indicators performances.
Hence, a DMU that is deemed efficient is also resilient, as the indicator set represents electricity supply
resilience. DEA efficiency and resilience have thus equal meanings in this context and the terms can be
used interchangeably.

The DEA methodology hereby developed allows the following important questions to be answered,
which are relevant to (inter-) governmental agencies as well as research institutions:

1. What are the best performing (i.e. most resilient) countries and what are the reasons for this
achievement (see Section 4.1)?

2. Why are some countries inefficient, how can they improve their scores and which are their
benchmarks (see Section 4.2)?

3. How robust is the performance of the countries (see Section 4.3)?
4. What is the univocal ranking of the countries (see Section 4.4)?
5. How well does a country perform in comparison to another one (see Section 4.5)?
6. How does the performance of countries vary according to changes in selected indicators (see

Section 4.6)?

The current paper is organized as follows. In Section 2, a detailed literature review about
energy-related country comparisons using DEA is provided, which leads to the formulation of the
research gaps. Section 3 describes the case study and the methodology. The latter includes the original
ratio-based Charnes, Cooper, and Rhodes (CCR) DEA model [27] and a hybrid framework for robust
efficiency analysis incorporating linear programming and Monte Carlo simulations [28]. The CCR
model was considered because it is the most commonly used DEA model. The hybrid framework
explores the limitations of the CCR model by performing a robustness assessment through selecting
random weight vectors obtained via a Hit-And-Run algorithm. To the authors’ best knowledge, the
present study represents the first application of such an analysis to a country ranking. In Section 4,
comparative results answering the research questions are presented and discussed. Furthermore,
improvement potentials for Singapore and Japan are analyzed. Section 5 provides the main conclusions
of the study.
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2. Literature Review—Energy-Related Country Comparisons with Data Envelopment Analysis

The first notions of DEA can be traced back to early publications by Farrell (1957) [29] and
Brockhoff (1970) [30], but the seminal paper by Charnes et al. (1978) provided the first application
of linear programming to estimate an efficiency frontier [27]. A comprehensive overview of DEA in
past decades is given in a review by Liu et al. (2013) [31]. The popularity of DEA is also reflected by
its numerous applications in different fields such as the evaluation of socio-economic, environmental
and productivity performance [31]. There are also diverse applications in the energy sector [32–37], as
shown in Table 1.

A detailed, global study by Wang (2015) compared the sustainability of the energy systems in
109 countries [38]. However, this study was based on only three, rather generic, indicators from the
World Bank: (1) the CO2 emissions intensity in kg per 2005 USD of Gross Domestic Product (GDP),
(2) the energy intensity in kg of oil equivalent per GDP (constant 2005 Purchasing Power Parity (PPP)),
and (3) the share of electricity produced from renewables in %. Overall, results demonstrated that the
energy systems in high-income countries have a better sustainability performance.

Another worldwide study analyzes emission reductions, energy conservation and economic
output of 87 countries based on the GDP, the capital stock, the labor force, the energy consumption and
the overall CO2 emissions [39]. European countries were found to perform better than non-European
ones. Li and Wang (2014) used the same indicators and applied them to 95 countries [40]. They
identified tremendous gaps between countries according to income groups, and similarly high-income
countries were ranked top.
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Table 1. Literature review of publications using data envelopment analysis (DEA) to analyze energy-related topics.

Source Scope Geographical Coverage Number of DMUs Inputs Outputs

Apergis et al. (2015) [34] Energy efficiency
Organisation for

Economic Co-operation
and Development (OECD)

20 Labor; energy consumption;
capital stock GDP; CO2 emissions

Bampatsou et al. (2013) [41]
Capacity of an economy to

produce a higher GDP given
fixed energy inputs

European Union 15 Fossil and non-fossil fuel energy
consumption GDP

Cai et al. (2019) [42] Carbon emissions efficiency in
Chinese cities China 280 Labor; capital; energy and water

consumption GDP; CO2 emissions

Camarero et al. (2013) [43] Impact of CO2, SO2 and NOx
air-pollutants on the environment OECD 22 CO2, SO2 and NOx emissions GDP

Chang (2014) [44] Energy intensity European Union 27 Capital stock; labor force; energy
consumption GDP

Cui et al. (2014) [45] Energy efficiency Global 9 Employees; energy consumption;
energy services

CO2 emissions; industrial
profit

Gómez-Calvet et al. (2016)
[46]

Abatement opportunities of CO2,
SO2 and NOx air-pollutants European Union 27 CO2, SO2 and NOx emissions GDP

Halkos and Petrou (2019) [47] Energy recovery from waste European Union 28 Energy consumption; labor;
capital; population density

GDP; Greenhouse Gases
(GHG), NOx and SOx

emissions

Hsieh et al. (2019) [48] Environmental assessment European Union 28 Labor; capital; energy
consumption

GHG and SOx emissions;
GDP

Hu and Kao (2007) [49] Energy-saving target ratio Asia-Pacific 17 Energy; labor; capital GDP

Li and Wang (2014) [40] Environmental efficiency Global 95 Capital stock; labor force; energy
consumption GDP; CO2 emissions

Liou and Wu (2011) [50]
Effect of economic development

on energy use efficiency and CO2
emissions

Global 57 Labor; capital; energy
consumption GDP; CO2 emissions

Pang et al. (2015) [39] Clean energy use and total-factor
efficiencies Global 87 Capital stock; labor force; energy

consumption GDP; CO2 emissions

Ramanathan (2005) [51] Energy consumption and carbon
dioxide emissions

Middle East and North
Africa 17 Fossil fuel energy comsumption;

carbon emissions
Non-fossil fuel energy

consumption; GDP
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Table 1. Cont.

Source Scope Geographical Coverage Number of DMUs Inputs Outputs

Robaina-Alves et al. (2015)
[52]

Resource and environment
efficiency Europe 26 Capital stock; labor force;

energy consumption GDP; GHG emissions

Song et al. (2013) [53] Energy efficiency
Brazil, Russia, India,

China and South Africa
(BRICS)

5
Energy consumption;
economically active
population; capital

GDP

Wang et al. (2019) [54] Relation between CO2 emissions
and GDP Global 25 Gross capital formation; labor

force; energy consumption GDP; CO2 emissions

Wang (2015) [38] Energy systems’ sustainability Global 109 CO2 emissions; energy intensity Share of renewables

Wegener and Amin (2019) [37] Greenhouse gas emissions
minimization Canada and USA 23 Wells; employees; capital

expenditures; total assets GHG emissions; production

Zeng et al. (2017) [55] Economic; energy supply;
environmental Baltic States 3

Energy intensity; energy weight
in HICP; electricity prices; import

dependency; diversification of
import sources; diversification of

energy mix

Energy balance of trade; share
of renewables; carbon

intensity

Zhang et al. (2011) [56] Total-factor energy efficiency Developing countries 23 Labor force; energy consumption;
capital stock GDP

Zhou and Ang (2008) [57] Energy efficiency performance OECD 21
Capital stock; labor force;

consumption of coal, oil, gas
and other

GDP; CO2 emissions

Zhou et al. (2014) [58] Energy efficiency of transport
sector China 30

Labor; consumption of coal,
gasoline, kerosene, diesel oil,

electricity and other

Passenger kilometers;
tonne-kilometers; CO2

emissions

Zhou et al. (2016) [59] Energy efficiency Global 32
Capital stock; labor force; fossil

and non-fossil energy
consumption

GDP; CO2 emissions

This study Electricity supply resilience Global 140

System Average Interruption
Duration Index (SAIDI); accident

risks; import dependence;
average outage time

Control of corruption;
political stability and absence

of violence/terrorism; mix
diversity; equivalent

availability factor; GDP per
capita; insurance penetration;

government effectiveness;
ease of doing business
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Gómez-Calvet et al. (2016) studied the opportunities for abatement of CO2, SO2 and NOx

air-pollutants by looking at the evolution of environmental performance over time [46]. They found
that the environmental efficiency of European countries had improved over the period 1993–2010.
The same three air-pollutants were also analyzed by Camarero et al. (2013) and they reached similar
conclusions, with the exception that the eco-efficiency of NOx emissions did not improve [43]. Regarding
energy efficiency improvements, Wang et al. (2019) compared the CO2 emissions in relation to GDP
growth from 25 countries and found that India and China are the two worst countries in terms of
energy efficiency [54]. A similar study focusing on energy recovery from waste for European Union
(EU) member states was produced by Halkos and Petrou (2019) [47]. Furthermore, Robaina-Alves et al.
(2015) derived the efficiencies of European countries based on the maximization of the ratio between
the GDP (desired output) and GHG emissions (undesired output) [52]. Their key finding was that
since the ratification of the Kyoto Protocol, countries have taken steps to reduce emissions and this is
reflected in the evolution of the eco-efficiency level of some countries.

Several other publications address energy-efficiency issues in general. Cui et al. (2014) found that
energy efficiency is mostly driven by investments into energy technologies research and tax exemptions
for technology companies [45]. Based on the analysis of 28 European countries, Hsieh et al. (2019)
recommend that “the EU’s strategy for environmental energy improvement should be to pay attention to
the benefits of renewable energy utilization, reducing GHG emissions, and enhancing the development
of renewable energy utilization to help achieve the goal of lower GHG emissions” [48]. Apergis et al.
(2015) show that capital-intensive countries are more energy efficient than labor-intensive ones [34].
Zhang et al. (2011) compare 23 developing countries according to their total-factor energy efficiency,
which is defined as the ratio between the targeted energy input and the actual energy input [56].
Similarly, Chang (2014) studies the difference between the targeted and actual energy intensities of
27 EU member countries in order to make conclusions about the potentials for improvement [44].
With a data set of 57 countries, Liou and Wu (2011) found that economic development is interrelated
with energy use efficiency and CO2 emission control [50]. Furthermore, Zhou et al. (2014) used the
DEA to rank 30 administrative regions of China according to the energy efficiency of their transport
sector [58]. Results show that the Eastern area generally performs better than the Central and Western
areas. Song et al. (2013) found that the economies of Brazil, Russia, India, China and South Africa
(BRICS) have low energy efficiencies but the trend is increasing quickly [53]. Cai et al. (2019) quantify
the carbon emissions of 280 Chinese cities to find that only nine of them are efficient [42]. Results show
that coastal regions are performing better than central and western regions. Finally, Zhou et al. (2016)
develop novel energy-efficiency measures that seem to handle undesirable outputs better and are more
effective at identifying inefficient production behaviour [60]. Their data set consists of 32 countries.

Economic efficiency has also been analyzed as the capacity of an economy to produce higher GDP
for a given total energy input. In particular, Bampatsou et al. (2013) study the effect of different energy
mixes and find that adding nuclear energy into a country’s energy mix affects negatively its economic
efficiency, due to fewer efforts invested in energy saving and conservation [41].

In summary, as seen in Table 1, most of these studies deal with energy or eco-efficiency. Out of the
25 studies analyzed (including the present one), 15 of them (60%) use the same set of inputs: labor
force, capital stock and energy consumption [34,39,40,42,44,47–50,52–54,56,57,59]. Furthermore, out of
these 15 studies, four consider only the GDP as an output [44,49,53,56], while the rest consider the GDP
as a desirable output and GHG emissions as an undesirable output [34,39,40,42,47,48,50,52,54,57,59].
Within DEA country comparisons, efficiency is, therefore, usually measured as a minimization of the
labor force, capital stock, and energy consumption (inputs) in order to maximize the GDP (desirable
output) and minimize the GHG emissions (undesirable output). Further studies use only a subset
of these indicators, such as only the energy consumption as an input and the GDP as an output [41],
or only the GHG emissions as an input and the GDP as an output [43,46]. Overall, only five studies
do not directly use the GDP as an output [37,38,45,55,58]. Three studies differentiate between fossil
fuel and non-fossil fuel energy consumption [38,51,55]. The fossil fuel energy consumption would
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be classified as an input (hence to be minimized), while the non-fossil fuel or renewable sources are
classified as outputs (hence to be maximized).

Finally, to the authors’ best knowledge, no study using DEA to comprehensively rank countries
with regard to their electricity supply resilience performance has been published. This implies that a
broader set of indicators needs to be considered, including grid reliability, accident risks, diversity
of generation and availability of production technologies. Furthermore, the present study uses DEA
models to assess ranking robustness, and to explore scenario-based improvement strategies. Therefore,
the research gaps filled by the present study are:

1. The use of DEA models to develop rankings that represent the electricity supply resilience
of countries.

2. The development of novel DEA algorithms to better understand why some countries are efficient
and others are not. These new models are applied for the first time in a real-life case study.

3. The examination of ranking stability by means of robustness analysis.
4. The study of country-specific improvement strategies from an optimization point of view.

3. Case Study Description and Methodology

In this section, first the general scope of the case study and the indicator set selection process are
described. Second, the quantification of the data and preparation for DEA are presented. Finally, the
DEA concept, its notation and formulas are explained.

3.1. Indicator Set Selection, Quantification and Data Set Preparation

The first step was to conduct a literature review in order to identify relevant indicators. As shown
by Gasser et al. (2017) [23], most of the indicators used in the security of electricity supply studies are
related to resilience too. Hence, the abundance of security of supply studies is a promising starting
point (e.g., [10,61–65]). On top of these, further ones related to resilience were considered as well
(e.g., [8,66]). This resulted in an extensive list of resilience-related indicators. Subsequently, all of these
were assessed according to four quality criteria [67]: (1) their relevance to resilience, (2) the credibility of
the data source, (3) the availability of the data and (4) the comparability of the data between countries.
The more countries in the list, the more likely data becomes unavailable or incomparable. Thus, as
the present case study is about the electricity sector, the limiting data was the electricity production
by fuel type. The most comprehensive data for this comes from the International Energy Agency
(IEA) and is available for 140 countries worldwide [68]. Therefore, the final set of 140 countries
consists of 12 indicators fulfilling the four assessment criteria (see Table 2) [24,69]. The indicators
cover resilience holistically, i.e., both the pre- and post-event phases, and represent, among others,
the quality, reliability and interconnectivity of the electricity system, the generation diversity, the fuel
supply security and self-sufficiency, the available financial resources, the equivalent availability factor
(EAF), the average outage times and geopolitical factors such as corruption, government effectiveness
and political stability. Overall, this study covers more than 96% of the world’s population and 99.6% of
the world’s electricity consumption.

The data come from a variety of reliable, credible and widely recognized sources, ranging from
governmental agencies to international organizations and private companies [68,70–75]. Furthermore,
the values of each indicator originate from a unique source, making it homogeneous and comparable.
However, there are some missing values, which were inserted as the mean of the other values in order
not to distort the data [76]. Inserting the mean of the other values is one of the three most standard
techniques employed for dealing with data incompleteness in different scientific disciplines [77].
The other two procedures consist in (1) excluding the incomplete cases and (2) replacing the unknown
value with the entire range of all possible values on a given indicator (input or output). These two other
procedures were neglected for the following reasons. First, the countries with missing performances
were not excluded from the analysis as the data was not available only for a limited subset of inputs
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or outputs, whereas for the vast majority of countries it has been reliably collected. In the context
of DEA, the practical usefulness and credibility of the results increase with the greater number of
DMUs. Considering that we have 140 countries for only 12 indicators, the ratio country to indicators is
very high [32,78]. This increases the discriminatory power of DEA, ultimately resulting in less bias.
In addition, by using the novel hybrid framework for robust efficiency analysis (i.e., a Hit-And-Run
Monte Carlo simulation), subjectivity is again minimized. Second, analyzing the entire range of
admissible values, it would have markedly deteriorated the robustness of the results. For example,
such a hypothetical country would be allowed to attain the best and the worst performances on a given
indicator. Due to the application of a ratio-based efficiency model, such a unit would attain the extreme
comprehensive performances (e.g., the first and the last ranks depending on the precise performance
adopted in a given scenario) only because of treating the missing values in this particular way.

The next step in the preparation of the data for further analysis is the normalization. In fact, the
algorithm used in this research is a weighted sum over another weighted sum (called the ratio-based
efficiency measure, see formula 1), which makes normalization a necessary step to render the different
measurement units comparable [79]. The normalization method adopted in the present case study
is the target one, which consists in dividing all the indicators by their maximum value, because it
conserves the ratios. Hence, each indicator has a maximum value of 1 and a minimum value in the
range [0, 1]. Additionally, the ratios are conserved (see Table S2 in the electronic supplementary
information (ESI)).

Finally, DEA requires the indicators to be classified into either being inputs or outputs (see formula
1). As the present case study represents a general benchmarking problem, where DEA is employed for
decision-making, the inputs are the indicators with a negative preference order (i.e., to be minimized)
and the outputs are the ones with a positive preference order (i.e., to be maximized) [78]. Hence, the
classification of the indicators is straightforward and univocal. This results in a total of 4 inputs (i1, i2,
i6 and i11) and 8 outputs (i3, i4, i5, i7, i8, i9, i10 and i12) (see Table 2).



Energies 2020, 13, 1535 9 of 35

Table 2. Performance matrix with selected countries and 12 indicators. The table including all 140 countries is available in Table S1 in the electronic supplementary
information (ESI). For the preference order of the values, an upward pointing arrow indicates better performance for higher values (positive preference order), whereas
a downward pointing arrow indicates better performance for lower values (negative preference order).

0-Country 1-SAIDI 2-Accident
Risks

3-Control
of

Corruption

4-Political Stability
and Absence of

Violence/Terrorism

5-Electricity
Mix

Diversity

6-Electricity
Import

Dependence

7-Equivalent
Availability

Factor

8-GDP per
Capita

9-Insurance
Penetration

10-Government
Effectiveness

11-Average
Outage
Time

12-Ease of Doing
Business

Measurement
Unit

Hours per
Customer
per Year

Fatalities/r
GWey

Percentile
Rank Percentile Rank

Normalized
Shannon

Index

Ratio
Consumption/

Production
% 2010 USD per

Capita % of GDP Percentile Rank Hours
Distance to

Frontier (100 =
Best, 0 = Worst)

Preference
Order of the

Values
↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↑

Albania 111.8 7.03 38.46 58.10 0.00 1.02 39% 4543 0.90% 53.85 2.15 66.06

Cambodia 34.2 3.53 12.02 49.52 0.39 1.16 64% 1021 0.30% 25.00 1.40 52.34

Canada 1.0 0.02 95.19 95.24 0.60 0.81 56% 50,108 4.23% 94.71 0.71 80.34

China 1.3 9.65 48.56 26.19 0.42 0.95 74% 6498 1.63% 68.27 3.25 63.43

Congo, Dem.
Rep. 92.6 7.01 8.17 4.76 0.01 0.81 39% 384 0.30% 2.88 2.03 34.54

Denmark 0.4 0.04 98.08 76.67 0.57 1.14 54% 60,037 2.69% 97.60 0.80 83.91

Eritrea 92.6 0.95 7.69 19.05 0.01 0.86 85% 528 0.40% 4.81 2.03 26.16

Finland 0.2 0.03 99.52 87.14 0.71 1.20 73% 45,208 2.18% 96.15 0.50 80.34

France 0.1 0.01 88.94 51.43 0.39 0.82 80% 41,768 3.09% 88.46 1.00 75.19

Germany 0.3 0.07 93.27 68.57 0.74 0.89 71% 45,252 3.36% 93.75 1.50 78.52

Haiti 92.6 1.44 10.10 22.38 0.12 0.41 81% 728 1.00% 0.96 2.03 38.63

Iceland 0.5 0.00 95.67 95.71 0.25 0.97 53% 45,939 2.20% 90.87 1.00 78.33

Iraq 2352.0 0.97 4.81 2.86 0.31 0.64 83% 5120 1.63% 9.62 2.33 44.56

Italy 0.7 0.05 57.69 58.57 0.76 1.09 68% 33,912 2.06% 69.23 0.28 71.16

Japan 0.4 0.08 91.35 89.05 0.65 0.96 78% 47,142 2.55% 95.19 4.00 75.36

Kenya 188.5 2.88 13.94 9.52 0.46 0.81 69% 1134 1.88% 43.27 11.42 54.19

Libya 1883.4 0.50 0.96 3.33 0.30 0.28 85% 5447 0.40% 1.92 3.11 32.84

Luxembourg 0.2 0.02 97.12 98.10 0.49 2.97 54% 108,965 1.79% 93.27 1.00 68.77

Myanmar 92.6 4.20 20.67 10.48 0.33 0.84 58% 1643 0.10% 10.10 2.03 38.68

Nepal 92.6 7.02 32.21 14.29 0.01 1.12 39% 690 1.63% 12.98 2.03 59.99

Netherlands 0.3 0.08 94.71 80.48 0.57 1.03 80% 51,285 8.35% 97.12 1.00 75.21
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Table 2. Cont.

0-Country 1-SAIDI 2-Accident
Risks

3-Control
of

Corruption

4-Political Stability
and Absence of

Violence/Terrorism

5-Electricity
Mix

Diversity

6-Electricity
Import

Dependence

7-Equivalent
Availability

Factor

8-GDP per
Capita

9-Insurance
Penetration

10-Government
Effectiveness

11-Average
Outage
Time

12-Ease of Doing
Business

Measurement
Unit

Hours per
Customer
per Year

Fatalities/r
GWey

Percentile
Rank Percentile Rank

Normalized
Shannon

Index

Ratio
Consumption/

Production
% 2010 USD per

Capita % of GDP Percentile Rank Hours
Distance to

Frontier (100 =
Best, 0 = Worst)

Preference
Order of the

Values
↓ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↑

New Zealand 2.4 0.02 100.00 99.05 0.56 0.94 56% 36,236 4.64% 98.56 1.71 86.42

Niger 290.0 0.79 30.77 13.33 0.31 2.07 84% 384 0.70% 31.25 1.50 45.39

Nigeria 2900.5 1.37 12.50 6.19 0.21 0.83 77% 2535 0.20% 16.35 6.38 46.40

North Korea 92.6 5.30 9.13 10.95 0.32 0.84 52% 1068 1.63% 2.40 2.03 62.67

Norway 1.8 0.00 99.04 91.43 0.10 0.84 40% 89,595 2.21% 98.08 0.82 82.49

Paraguay 15.9 7.03 15.87 48.57 0.00 0.20 39% 3822 1.20% 17.31 2.03 59.82

Qatar 0.7 0.12 78.37 84.29 0.00 0.94 85% 74,531 1.50% 77.40 1.75 65.32

Singapore 0.0 0.12 96.63 96.19 0.11 0.98 85% 51,809 1.69% 100.00 0.00 84.60

South Korea 0.0 0.07 66.83 53.81 0.56 0.97 85% 25,021 4.12% 79.81 0.00 83.52

South Sudan 92.6 0.95 0.48 2.38 0.02 0.94 85% 332 1.63% 0.48 2.03 35.70

Spain 0.3 0.05 69.71 55.71 0.84 0.91 66% 30,486 2.75% 85.10 0.50 73.87

Sweden 1.9 0.01 98.56 80.95 0.53 0.82 58% 55,159 1.88% 96.63 1.46 80.23

Switzerland 0.1 0.01 97.60 96.67 0.41 0.92 58% 75,594 4.12% 99.52 1.00 75.80

Syria 92.6 0.52 1.92 0.00 0.31 0.84 84% 919 0.30% 5.29 2.03 41.53

Togo 92.6 5.10 25.48 38.10 0.34 15.06 53% 554 1.10% 11.06 2.03 46.30

Turkmenistan 92.6 0.12 5.77 42.86 0.00 0.73 85% 6937 1.63% 19.23 2.03 62.67

UK 0.4 0.05 93.75 61.43 0.75 0.98 76% 41,196 2.44% 94.23 2.00 82.57

Uruguay 5.6 4.34 89.42 85.24 0.49 0.80 46% 13,950 1.55% 72.60 1.75 61.69

USA 0.6 0.07 89.90 67.14 0.67 0.96 79% 51,593 4.22% 89.90 2.00 82.03

Venezuela 92.6 4.66 4.33 15.71 0.39 0.65 56% 12,793 3.89% 10.58 2.03 35.30

Vietnam 21.4 2.79 41.83 50.00 0.49 0.92 68% 1685 0.74% 55.29 1.98 59.04

Yemen 92.6 0.62 3.37 0.48 0.29 0.74 85% 775 0.20% 3.37 2.03 44.58
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3.2. Ratio-Based Efficiency Analysis with the Charnes, Cooper, and Rhodes (CCR) Model

DEA is a method for assessing efficiencies of DMUs, which in the present case study are countries.
Considering a set of DMUs (D = {DMU1, . . . , DMUK}, where K is the number of DMUs), the efficiency
of DMUo ∈ D is calculated as the ratio between virtual output and virtual input, which are quantified
as weighted sums of individual outputs and inputs, respectively [27]. The equation is:

Eo(v, u) =

∑
n ∈ OUT unyno∑
m ∈ IN vmxmo

(1)

where:

• Eo(v, u) is the efficiency of DMUo ∈ D;
• xmo is the amount of m-th input consumed by DMUo ∈ D, m ∈ IN (by default a set of inputs is

defined as IN = {1, . . . , M});
• yno is the amount of n-th output produced by DMUo ∈ D, n ∈ OUT (by default a set of inputs is

defined as OUT = {1, . . . , N});
• vIN =

{
vj : j ∈ IN

}
: a vector of input weights (by default vIN = {v1, . . . , vM});

• uOUT =
{
uj : j ∈ OUT

}
: a vector of output weights (by default uOUT = {u1, . . . , uN}).

In a standard DEA setting, the aim is to divide the DMUs into efficient and inefficient ones. For
this purpose, one has to find for each DMUo ∈ D a weight vector that maximizes its efficiency score.
Hence, the ratio-based efficiency analysis with the CCR model consists in solving the following primal
optimization problem [27]:

maxE∗o =
∑

n ∈ OUT unyno

subject to :
∑

m ∈ IN vmxmo = 1;∑
n ∈ OUT unynk ≤

∑
m ∈ IN vmxmk; k = 1, . . . , K;

vm, un ≥ 0; m ∈ IN, n ∈ OUT.

(2)

By definition, the DMUs with efficiency score E∗o equal to 1 are considered as efficient. The rest
of the DMUs are inefficient (efficiency scores between 0 and 1 exclusive), because other DMUs or
their conical combination achieve higher scores under the same conditions. Note that E∗o indicates a
multiplier that should be applied to all inputs xmo, m ∈ IN so that DMUo ∈ D becomes efficient (e.g., in
case E∗o = 0.8, DMUo would become efficient by decreasing its inputs by 20%).

Moreover, DEA allows to identify benchmarks to be followed and improvement strategies for the
inefficient DMUs. These can be determined by solving the following dual optimization problem:

minθo

subject to :
∑

k=1,...,K λkxmk ≤ θoxm0; m ∈ IN;∑
k=1,...,K λkynk ≥ yn0; n ∈ OUT;

λk ≥ 0, k = 1, . . . , K.

(3)

On the one hand, for an efficient DMUo ∈ D, θo = 1 and λk=o = 1. On the other hand, for an
inefficient DMUo ∈ D, all DMUs with λk > 0 are contained in the reference set of DMUo and can be
used for constructing a hypothetical reference unit with greater or equal outputs and lower inputs
than DMUo. The differences between the inputs of such a reference unit and DMUo indicate the
improvements of inputs that are expected from DMUo for attaining the efficiency. Overall, the CCR
model allows tackling research questions 1 and 2.

The aforementioned analysis represents an input-oriented perspective. It derives the required
reduction of inputs, if any, that would ensure efficiency (i.e., the best ratio between the virtual outputs
and inputs for at least one feasible vector of weights associated with these factors), assuming that
the outputs of a given DMU remain unchanged. Note that in DEA, it is also possible to conduct an
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output-oriented analysis, hence finding the improvements of outputs needed for reaching the efficiency
while holding the current amount of inputs (for details, see [27]).

3.3. In-Depth Analysis of Status of Efficiency

Explanation of the efficiency status requires construction of arguments, which can be used to
justify its validity and logic. In this section, the task of generating explanations of the outcomes of
DEA in view of the following procedures is considered:

• in case DMUo ∈ D is efficient, identification of the minimal subsets of indicators that make it
efficient (such minimal subsets of inputs and outputs are called efficiency reducts);

• in case DMUo ∈ D is inefficient, identification of the smallest subsets of other DMUs that underlie
its inefficiency (such minimal subsets of DMUs are denoted as efficiency constructs).

It is to be noted that the efficiency reducts and constructs are new methodological developments,
as explained in the following sentences. On the one hand, to determine all efficiency reducts for
some efficient DMUo ∈ D, an additive method is implemented (see Algorithm 1). It consists of a
progressive verification if DMUo is efficient when using different subsets of inputs IN and outputs
OUT, while starting with the smallest ones, and eliminating from further consideration the proper
supersets (a superset is a set that includes another set. For example, i1, i2 and i3 is a superset of i1 and
i3, and i2 and i3.) of these subsets of indicators that already guaranteed the efficiency [80]. For each
efficient DMUo there exists at least one efficiency reduct (in the worst-case scenario, it contains all
inputs and outputs).

Algorithm 1. Additive method for identifying all efficiency reducts.

Require: sets of inputs IN and outputs OUT
Ensure: ERs, all efficiency reducts for DMUo ∈ D
1: IO = all subsets containing at least one input from IN and at least one output from OUT ordered with
respective to the increasing cardinality
2: for each IOk ∈ IO do
3: Solve equation (2) for DMUo ∈ D with inputs and outputs reduced to IOk to derive an optimal solution
E∗o(IOk)
4: if E∗o(IOk) = 1 then
5: ERs = ERs∪ IOk
6: Remove all supersets of IOk from IO
7: end if
8: end for

On the other hand, to identify an efficiency construct for some inefficient DMUo ∈ D, the aim is to
find a subset of other DMUs that once removed from the analysis would make DMUo efficient. This
can be attained by solving the following mixed-integer linear programming (MILP) problem:

min fw =
K∑

k=1,k,0
bk

subject to :
∑

n ∈ OUT unyno =
∑

m ∈IN vmxmo = 1;∑
n ∈ OUT unynk ≤

∑
m ∈IN vmxmk + Cbk(k = 1, . . . , K, k , 0);

bk ∈ {0, 1}(k = 1, . . . , K, k , 0);
vm, un ≥ 0; m ∈ IN, n ∈ OUT;

(4)

where C is a large positive constant. If bk = 1, DMUk needs to be eliminated to make DMUo

efficient. Hence, the optimal solution of the above MILP (denoted with *; e.g., f ∗w) indicates one of the
efficiency constructs ICw =

{
DMUk ∈ D : b∗k = 1

}
. It is possible to identify other constructs by adding
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the constraints that forbid finding again the solutions found in the previous iterations (w, w− 1, . . . , 1):∑
DMUk ∈ ICw bk ≤ f ∗w − 1 [81].

3.4. Robust Efficiency Analysis

The standard ratio-based efficiency analysis derives the efficiency scores from the best-case
scenario for each DMU. As a result, such scores may not be representative, because they may only be
achieved for a very limited number of weight vector combinations, which—in addition—are different
for each DMU. Therefore, some DMUs may be considered as efficient even though they do not perform
particularly well in general. Moreover, the subsets of efficient and inefficient DMUs can be large, and
standard DEA methods offer poor arguments to discriminate within these subsets [78]. For this purpose,
a variety of measures that reflect how DMUs perform across all feasible vectors of input/output weights
are accounted for [28]. These results refer to three different perspectives: cardinal ratings (efficiency
scores; answers research question 3), pairwise one-on-one comparisons (preference relations; answers
research question 4), and ordinal comparisons of all DMUs (efficiency ranks; answers research question
5). Specifically, linear programming (LP) to derive the following exact outcomes is used:

• maximal E∗o and minimal Eo,∗ efficiency scores for DMUo ∈ D attained in the set of all feasible
input/output weights (note that E∗o corresponds to the score derived from the standard analysis);

• a necessary efficiency preference relation �N
E , which holds for a pair (DMUo, DMUk) ∈ D×D in

case DMUo attains efficiency at least as good as DMUk for all feasible input/output weights;
• the best R∗o and the worst Ro,∗ efficiency ranks for DMUo ∈ D, which are derived from the analysis

of, respectively, minimal and maximal subsets of DMUs that attain better efficiency than DMUo

for some feasible input/output weights.

The measures convey useful knowledge on the performances of DMUs in the most and least
advantageous scenarios as well as for all feasible weight vectors combinations. Nonetheless, the
difference between extreme outcomes can, in general, be quite large, whereas the necessary relation can
leave many DMUs incomparable. For this reason, a stochastic efficiency analysis based on the Monte
Carlo (MC) simulation to estimate the probability of different outcomes is applied [82]. Hence, a large
representative set of feasible weight vectors (v, u)S (with W being the number of samples) is derived,
using a dedicated algorithm such as Hit-And-Run [83]. Hit-And-Run samplers have been proven to
perform well for problems of larger sizes [83]. Note that each vector from the feasible weight space is
assigned equal chances to be hit (uniform distribution). For each (v, u) ∈ (v, u)S, the efficiency score
Eo(v, u) for each DMUo ∈ D is computed, which allows us to approximate the following stochastic
acceptability indexes:

• an efficiency acceptability interval index EAII(DMUo, bi), which is the share of feasible weight
vectors for which DMUo ∈ D attains an efficiency score in the interval bi ⊂ [0, 1] (i = 1, . . . , B),
where B is the number of subintervals (

⋃B
i=1 bi = [0, 1]; bi ∩ b j = ∅, i , j). This represents the

distribution of scores, providing the performance robustness assessment that answers research
question 3;

• an expected (average) efficiency EEo =
∑

(v,u)∈(v,u)S Eo(v, u)/W for DMUo ∈ D;

• a pairwise efficiency outranking index PEOI(DMUo, DMUk) for (DMUo, DMUk) ∈ D×D, which
is the share of feasible weight vectors for which DMUo is not worse than DMUk in terms of the
efficiency score, i.e., Eo(v, u) ≥ Ek(v, u). This answers research question 4 as it indicates how well
countries perform in comparison with each other;

• an efficiency rank acceptability index ERAI(DMUo, r), which is the share of feasible weight vectors
for which DMUo ∈ D attains r-th rank. This answers research question 5 as it allows to rank
the countries;

• an expected (average) rank ERo =
∑K

r=1 r·ERAI(DMUo, r) for DMUo ∈ D.
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Most importantly, all of the above results indicate how stable the scores, rankings, and
relations observed for different DMUs are across all feasible weight vectors including those that
are disadvantageous for each DMU. Hence, it is complementary to the CCR model as it provides a
more likely and plausible representation compared to the standard efficiency analysis. Moreover, these
outcomes offer arguments (e.g., average efficiencies or ranks), which enable univocal rankings. For the
computational details, discussion on the properties and detailed interrelations between the outcomes
computed with LP and MC simulation, see [28]. Overall, the robust efficiency analysis allows us to
explore research questions 3, 4 and 5.

4. Results and Discussion

In this section, the results are discussed according to the research questions formulated in Section 1.

4.1. What Are the Best Performing (i.e., Most Resilient) Countries and What Are the Reasons for This
Achievement?

The main interest of decision-makers might be knowing which countries are the best. Therefore,
the results of the CCR model are given in Table 3. According to this model, 31 out of the 140 countries
are deemed as efficient (having a value of 1). All of these countries have at least some inputs and
outputs performing well enough so that with specific weight vectors no other countries do better.

Among the inefficient countries, Togo, Benin, Namibia and the Democratic Republic of Congo
(DRC) score the lowest, with maximal CCR efficiencies of 0.040, 0.245, 0.268 and 0.373, respectively.
This means that even in the best case, i.e., with the most advantageous weight vector combination,
other countries perform significantly better. While the CCR model provides a clear differentiation
of scores for inefficient countries, it does not allow us to differentiate the efficient ones, with 31
receiving an efficiency of 1. Therefore, building a univocal ranking is impossible with the CCR model.
The differentiation between efficient countries comes in the context of ranking robustness assessment
presented in Sections 4.3 and 4.5.

After the efficient countries were identified, in the next step it was analyzed why they are efficient.
This can be done by identifying the individual indicators that make the corresponding country efficient,
i.e., efficiency reducts, as shown in Table 4. For example, it is possible to find priorities (weight vectors)
that make the United States of America (USA) efficient when considering inputs 1 and 6 and outputs
5, 7, 8 and 9 only (the numbers correspond to the indicator numbers). In fact, on the inputs, the
USA’s SAIDI (i1) of 0.6 hours per customer per year and its electricity import dependence (i6) are
well-performing. On the outputs, the USA’s electricity production mix (i5) is diverse, its EAF (i7) is
high and both its GDP per capita (i8) and insurance penetration (i9) are comparatively high on an
international scale. In other words, these indicators represent the strengths of the USA and no other
country performs better under such priorities. However, this efficiency might not be obvious to reach
as the USA requires, under specific weight vectors, the combination of at least two inputs and at least
four outputs.
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Table 3. Charnes, Cooper, and Rhodes (CCR) maximum efficiencies of the 140 countries.

Country CCR Country CCR Country CCR Country CCR

Algeria 1.000 Armenia 0.987 Mauritius 0.858 Brazil 0.700
Australia 1.000 Taiwan 0.983 Cyprus 0.846 Hungary 0.700
Bulgaria 1.000 Israel 0.979 Guatemala 0.843 Pakistan 0.698
Canada 1.000 UK 0.970 Uzbekistan 0.838 Mongolia 0.692

Costa Rica 1.000 Tunisia 0.967 Serbia 0.831 Vietnam 0.683
Czech Republic 1.000 Brunei Darussalam 0.953 Nicaragua 0.825 Peru 0.678

Estonia 1.000 Uruguay 0.953 Turkey 0.821 Latvia 0.671
Finland 1.000 Portugal 0.946 Hong Kong 0.815 El Salvador 0.667
France 1.000 India 0.943 Syria 0.811 Honduras 0.665

Germany 1.000 Venezuela 0.942 Bangladesh 0.807 Botswana 0.654

Haiti 1.000 United Arab
Emirates 0.941 Bosnia and

Herzegovina 0.806 Montenegro 0.648

Iceland 1.000 Azerbaijan 0.936 Belgium 0.806 Angola 0.625
Italy 1.000 Iran 0.936 Congo, Rep. 0.805 Gabon 0.624

Jamaica 1.000 Oman 0.914 Tanzania 0.803 Suriname 0.599
Kuwait 1.000 Malaysia 0.912 South Africa 0.797 North Korea 0.584
Libya 1.000 Argentina 0.906 Iraq 0.796 Kyrgyzstan 0.576

Luxembourg 1.000 Slovenia 0.905 Dominican
Republic 0.791 Malta 0.567

Netherlands 1.000 Slovakia 0.895 Austria 0.791 Zimbabwe 0.564
New Zealand 1.000 Saudi Arabia 0.895 Senegal 0.785 Cambodia 0.552

Norway 1.000 Poland 0.890 Panama 0.779 Myanmar 0.551

Paraguay 1.000 Trinidad and
Tobago 0.888 Georgia 0.776 Sudan 0.542

Qatar 1.000 Ukraine 0.886 Bolivia 0.770 Mozambique 0.531
Romania 1.000 Yemen 0.883 Colombia 0.763 Croatia 0.514

Russia 1.000 Denmark 0.880 Kosovo 0.761 Albania 0.502
Singapore 1.000 Morocco 0.877 Ghana 0.756 Zambia 0.488

South Korea 1.000 Indonesia 0.876 Egypt 0.747 Nigeria 0.486
Spain 1.000 Chile 0.874 Eritrea 0.745 Cameroon 0.483

Sweden 1.000 Bahrain 0.867 Greece 0.743 Tajikistan 0.478
Switzerland 1.000 Jordan 0.865 China 0.742 Ethiopia 0.461

Turkmenistan 1.000 Cuba 0.865 Kenya 0.739 Nepal 0.429
USA 1.000 Philippines 0.864 Sri Lanka 0.729 Niger 0.396

Ireland 0.993 Cote d’Ivoire 0.864 Ecuador 0.720 Congo, Dem. Rep. 0.373
Mexico 0.992 Thailand 0.860 Lebanon 0.716 Namibia 0.268

Moldova 0.992 Kazakhstan 0.859 Lithuania 0.707 Benin 0.245
Japan 0.991 Belarus 0.858 South Sudan 0.706 Togo 0.040

Considering another example, Singapore can become efficient under certain weight vectors if
inputs 1 and 2 and output 4 are considered. This efficiency reduct corresponds to the SAIDI, where
Singapore is the best country in the world as it only experiences less than a minute of electricity supply
interruption per customer per year [84], the low severe accidents risks, indicating that Singapore’s
electricity production mix is safe from the point of view of human fatalities, and its outstanding
political stability and absence of violence/terrorism. Hence, Singapore requires only two inputs and
one output to reach efficiency, indicating that these are stronger compared to those from the USA.

Furthermore, a rather surprising result is given by Libya. Considering its low indicator
performances (e.g., SAIDI of 1883.4 hours per customer per year, high corruption and low political
stability, GDP per capita, insurance penetration, government effectiveness and ease of doing business),
it is unexpected that Libya still is deemed efficient. However, as it has the best ratios of i5/i6 or i7/i6,
these subsets of indicators still make it efficient for specific weighting vectors.
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Table 4. Minimal subsets of indicators (efficiency reducts) that make the corresponding country efficient.
The numbers refer to the indicator number listed in Table 2. The full table for all efficient countries is
available in the electronic supplementary information (ESI), Table S3.

Country Inputs Outputs Country Inputs Outputs Country Inputs Outputs

Algeria 1;2;6;11 7

Norway
(continued)

2;6 3

South Korea
(continued)

6;11 9

Australia 1;6 5;7;8 2;6 10 6;11 12

Canada

6 3;4 2;6 12 6;11 3;5

6 4;5 2;11 4 6;11 4;5

6 5;8 6;11 3 6;11 5;8

6 9;10 6;11 10 6;11 7;8

1;6 10

Qatar

1;6 7;8 Spain 6 3;5

1;6 12 2;6 7;8 6 5;10

2;6 10;12 6;11 7;8

Sweden

6 3

2;11 9

Singapore

1;2 4 6 10

6;11 10 1;2 8 1;6 5;7;8

2;6;11 12 1;6 3 2;6 5

Estonia 1;2;6 3;7;12 1;6 10 2;6 4;7

Germany
6 3;5 2;11 4 2;6 7;12

6 5;8 2;11 8

Switzerland

6 5;8;9

Haiti
1;6 5;7 6;11 3 1;2 3

6;11 7 6;11 4 1;2 4

Italy 2;11 5 6;11 8 1;2 5

Jamaica 1;6 7 6;11 10 1;2 7

Kuwait
1;6 7

South Korea

1;2 3 1;2 8

6;11 7 1;2 5 1;2 9

Libya

6 5 1;2 7 1;2 10

6 7 1;2 9 1;2 12

2;6 12 1;2 10 2;6 9

Luxembourg
2;11 5;8 1;2 12 2;6 4;7

1;2;11 8 2;11 3 2;6 7;8

Netherlands 6 9 2;11 5 2;11 5

New
Zealand 2;6 9;12 2;11 7 6;11 4;7;8;9

Norway

2 8 2;11 9 6;11 7;8;9;10

6 8 2;11 10 Turkmenistan 2;6 7

6 4;10 2;11 12 USA 1;6 5;7;8;9

1;6 10;12

Knowing which countries are the best might be the first requirement of a decision-maker, but
not all countries perform at the top. Therefore, it is necessary to also look at the inefficient countries,
including the reasons why they are inefficient and how they can improve themselves, which leads to
Section 4.2 below.
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4.2. Why Are Some Countries Inefficient, How Can They Improve Their Scores and What Are Their
Benchmarks?

Table 5 shows the projections of inefficient countries onto the efficiency frontier. For example, the
projection for Uruguay represents 0.691 of Canada and 0.240 of Sweden (the sum of the shares does
not necessarily have to be equal to 1, because conical combinations of existing units are tolerated). This
means that the closest virtual country to Uruguay, that is situated on the efficiency frontier, is composed
of 0.691 times the indicator values of Canada plus 0.240 times the indicator values of Sweden. The
distance to this virtual country represents the closest path for Uruguay to become efficient. In other
words, Canada and Sweden are its benchmarks. The higher the share, the closer the original country
already is to its benchmark. In this example, Uruguay is already closer to Canada compared to Sweden.
The same analysis can be made with other countries. For example, Denmark can become efficient with
contributions from six countries and Japan from four.

Table 5. Projection of inefficient countries onto the efficiency frontier. Only the shares of Denmark,
Japan and Uruguay are hereby displayed. For these three countries, the shares from other countries are
null. The full table for all countries is available in the ESI, Table S4.

Country Canada Czech
Republic Germany Norway Singapore South Korea Spain Sweden Switzerland

Denmark 0.251 0.000 0.000 0.008 0.078 0.183 0.145 0.000 0.446
Japan 0.039 0.416 0.427 0.000 0.000 0.000 0.000 0.000 0.225

Uruguay 0.691 0.000 0.000 0.000 0.000 0.000 0.000 0.240 0.000

Furthermore, the necessary improvements for all inputs or outputs that need to be applied to
make a certain country efficient are given in Table 6. The values are negative for the inputs, as they
need to be decreased, and positive for the outputs because they have to be increased. These necessary
improvements have to be applied to all the inputs together or all the outputs together.

Table 6. Necessary improvements to make a country efficient. These improvements need to be achieved
on all inputs cumulatively or all outputs cumulatively. The full table for all countries is available in the
ESI, Table S5.

Country i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12

Denmark 0.000 −0.001 0.133 0.295 0.091 −0.009 0.327 0.075 0.249 0.202 −0.007 0.175
Japan 0.000 −0.002 0.030 0.008 0.007 −0.001 0.029 0.004 0.098 0.055 −0.182 0.122

Uruguay −0.002 −0.448 0.044 0.042 0.095 −0.002 0.103 0.333 0.239 0.204 −0.068 0.194

Finally, as DEA is a measure of efficiency in relation to other DMUs, it is also possible to become
efficient when the country list is changed. Table 7 represents the efficiency construct to be removed
in order to make a given country efficient. In the case of Uruguay, it is inefficient because Canada
is included in the analysis. In other words, even under the most favorable conditions for Uruguay,
Canada will perform better. Another example is Denmark, which has a high level of electricity supply
resilience at an absolute level, but it can do even better as under similar conditions, Switzerland scores
higher. Furthermore, for Denmark, Japan and Uruguay, only one country has to be removed to make
them efficient. This indicates that these three countries are close to being efficient. On the contrary, for
example, the Democratic Republic of Congo (DRC) requires the removal of 119 countries to become
efficient (see Table S6). In other words, the DRC is far away from the efficiency frontier. It is important
to note that, for policymaking, the efficiency constructs should not be misused. In fact, it would
not make sense to adapt the list of countries in order to artificially increase the score of a country of
interest. The efficiency constructs should rather be seen as a tool to identify benchmarks towards
which inefficient countries should aim for.

The results presented in Sections 4.1 and 4.2 demonstrated that the CCR model successfully
identified (1) the benchmarks, (2) the leading indicators for each country from an efficiency perspective,
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(3) the distance from the efficiency frontier, (4) the required indicator improvements to make inefficient
countries efficient and (5) the list of countries making others inefficient. However, one has to bear in
mind that these findings are based on the most advantageous weight vectors for each country, clearly
representing best-case scenarios.

Therefore, the analysis is extended using robust efficiency analysis models to address the
following questions:

• What is the average or most likely performance of a country? What is the expected distribution of
its performance (Section 4.3)? This answers research question 3.

• Is there a univocal ranking of countries (Section 4.4)? This answers research question 4.
• How does each country perform against all others (pairwise comparisons) (Section 4.5)? This

answers research question 5.

Table 7. Minimal subset of countries (efficiency constructs) to be removed in order to make the
respective country efficient. For Denmark, Japan and Uruguay, the countries not listed all contain zeros.
The full table for all countries is available in the ESI, Table S6.

Countries Canada Czech
Republic Germany Norway Singapore South Korea Spain Sweden Switzerland

Denmark 0 0 0 0 0 0 0 0 1
Japan 0 0 1 0 0 0 0 0 0

Uruguay 1 0 0 0 0 0 0 0 0

Identifying benchmarks allows us to analyze weaknesses and develop successful policies. However,
the results of Sections 4.1 and 4.2 are based on the CCR model, i.e., a best-case scenario, as explained
in Section 3.4. Decision-makers might be interested in a more unbiased view of the results in which
ranking robustness is assessed. This leads to Section 4.3 below.

4.3. How Robust Is the Performance of the Countries?

Instead of analyzing only the best-case scenario, the Hit-And-Run Monte Carlo-based robust
efficiency model accounts for the wide variability of preference models and it calculates a distribution
of performance scores of the countries, thus providing a measure of robustness [83,85]. Table 8 shows
the results for the maximum and average performance of the scores obtained with 10,000 model runs.
Furthermore, the efficiency acceptability interval indices (10 bins of equal size) are displayed. The sum
of the efficiency acceptability interval indices per country is equal to 100%. The table shows only a
selection of 45 from the 140 countries, ordered by decreasing values of average efficiency.

According to this model, South Korea, Singapore and Canada are the most efficient countries
as in 64.1%, 47.8% and 34.7% of the simulations, respectively, their efficiency is situated in [0.9, 1].
As these countries perform well on multiple inputs and multiple outputs, their efficiency score is high
for many weight vectors. On the other end of the spectrum, Togo, the DRC and Nigeria have, for
more than 98% of the Monte Carlo simulations performed, efficiencies situated in [0, 0.1]. In Togo’s
or the DRC’s case, neither of their indicators is well-performing. Regarding Nigeria, only its EAF
(i7) performs at an average level, which in comparison with other countries, still makes it one of the
worst-performing ones.
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Table 8. Maximum and average efficiency scores for the robust efficiency analysis model, as well as the efficiency acceptability interval indices. The number after the
countries’ names corresponds to their ranks computed based on the average efficiency. The full table for all countries is available in the ESI, Table S7.

Country
Simulation-Based

Monte Carlo Simulation-Based Monte Carlo Efficiency Acceptability Interval Indices (in %)

Maximum Average [0.0–0.1] [0.1–0.2] [0.2–0.3] [0.3–0.4] [0.4–0.5] [0.5–0.6] [0.6–0.7] [0.7–0.8] [0.8–0.9] [0.9–1]

South Korea (1) 1.000 0.911 0.0 0.0 0.1 0.2 0.5 1.1 4.3 10.9 18.8 64.1
Singapore (2) 1.000 0.852 0.0 0.1 0.3 0.6 1.6 4.6 9.4 15.6 19.9 47.8

Canada (3) 1.000 0.668 3.7 6.1 7.1 6.9 8.0 7.5 8.6 7.8 9.6 34.7
Spain (4) 1.000 0.594 2.8 5.2 7.0 7.9 9.1 10.7 15.5 21.0 16.2 4.6

Finland (5) 1.000 0.583 2.2 4.6 6.3 7.5 9.4 12.3 20.2 28.8 7.0 1.7
Norway (6) 1.000 0.576 5.2 8.2 8.9 8.6 9.4 9.3 9.9 11.6 13.4 15.4

Switzerland (7) 1.000 0.571 5.6 8.5 9.0 9.3 8.5 9.2 8.1 9.5 20.3 12.0
Italy (8) 0.919 0.554 1.2 3.5 5.1 7.8 11.3 23.7 31.0 14.1 2.3 0.1

Netherlands (9) 1.000 0.523 5.2 8.9 9.5 9.9 10.5 11.0 13.1 17.9 10.9 3.0
France (10) 1.000 0.516 6.8 10.3 9.9 9.5 10.1 9.1 10.9 15.9 12.9 4.6

Denmark (11) 0.786 0.489 4.8 8.2 9.3 10.6 11.4 13.7 27.8 14.2 0.0 0.0
Iceland (12) 0.984 0.477 6.9 10.5 10.4 10.9 11.1 10.8 15.3 20.1 3.9 0.2
Sweden (14) 1.000 0.471 10.1 12.5 11.4 10.6 9.0 8.8 9.4 13.2 10.3 4.7

Germany (16) 0.975 0.438 10.1 13.1 11.9 12.0 10.2 10.8 12.0 11.9 7.1 0.8
New Zealand (17) 0.915 0.435 11.1 13.1 12.5 11.4 9.3 9.4 11.5 13.7 7.7 0.2

USA (24) 0.949 0.381 13.7 15.1 13.9 11.9 11.1 12.0 11.5 8.1 2.7 0.1
UK (26) 0.916 0.366 14.4 15.4 14.0 12.5 11.4 12.9 11.0 6.9 1.4 0.0

Qatar (35) 0.914 0.318 16.0 17.5 16.7 15.1 13.3 12.2 6.8 1.9 0.3 0.0
Japan (42) 0.886 0.263 26.6 21.6 14.5 12.3 10.0 6.4 5.0 2.8 0.8 0.0

Luxembourg (43) 0.690 0.260 7.2 17.3 40.4 30.0 4.1 0.7 0.2 0.0 0.0 0.0
Algeria (54) 0.769 0.225 16.7 29.3 28.2 16.5 6.8 1.8 0.5 0.1 0.0 0.0

Turkmenistan (75) 0.775 0.143 44.3 30.0 16.2 6.5 1.9 0.8 0.2 0.1 0.0 0.0
United Arab Emirates (77) 0.823 0.141 52.4 23.2 11.8 5.4 3.7 2.3 0.9 0.2 0.0 0.0

Costa Rica (78) 0.863 0.138 57.8 20.4 8.7 5.4 3.0 2.5 1.4 0.6 0.2 0.0
Uruguay (83) 0.749 0.115 60.6 23.0 8.4 4.3 2.0 1.1 0.5 0.1 0.0 0.0
Vietnam (91) 0.548 0.100 63.1 24.3 8.4 3.1 1.0 0.1 0.0 0.0 0.0 0.0
Yemen (98) 0.650 0.083 69.5 22.9 5.7 1.3 0.4 0.1 0.0 0.0 0.0 0.0
Syria (99) 0.600 0.082 69.5 23.5 5.4 1.1 0.4 0.1 0.0 0.0 0.0 0.0
Haiti (102) 0.736 0.077 74.8 18.4 4.4 1.4 0.5 0.3 0.1 0.0 0.0 0.0
Niger (107) 0.299 0.070 77.4 21.7 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Cambodia (110) 0.379 0.068 77.7 17.6 4.2 0.5 0.0 0.0 0.0 0.0 0.0 0.0
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Table 8. Cont.

Country
Simulation-Based

Monte Carlo Simulation-Based Monte Carlo Efficiency Acceptability Interval Indices (in %)

Maximum Average [0.0–0.1] [0.1–0.2] [0.2–0.3] [0.3–0.4] [0.4–0.5] [0.5–0.6] [0.6–0.7] [0.7–0.8] [0.8–0.9] [0.9–1]

Eritrea (111) 0.485 0.061 81.9 15.2 2.3 0.5 0.2 0.0 0.0 0.0 0.0 0.0
South Sudan (112) 0.475 0.059 82.6 14.8 2.0 0.5 0.1 0.0 0.0 0.0 0.0 0.0

Venezuela (115) 0.511 0.054 85.3 11.2 2.8 0.6 0.1 0.0 0.0 0.0 0.0 0.0
China (116) 0.471 0.051 86.7 9.5 2.7 0.9 0.2 0.0 0.0 0.0 0.0 0.0

Paraguay (119) 1.000 0.048 88.2 8.0 2.1 0.9 0.4 0.2 0.1 0.0 0.0 0.0
Myanmar (123) 0.362 0.043 90.5 8.2 1.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0

North Korea (124) 0.344 0.042 90.1 8.5 1.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Kenya (128) 0.407 0.036 93.4 5.5 1.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
Libya (130) 0.979 0.035 93.1 5.2 0.9 0.3 0.2 0.0 0.0 0.1 0.0 0.0
Iraq (132) 0.568 0.034 93.7 5.1 0.8 0.2 0.1 0.0 0.0 0.0 0.0 0.0

Nepal (126) 0.258 0.031 94.8 5.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nigeria (138) 0.355 0.020 98.3 1.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Congo, Dem. Rep. (139) 0.189 0.018 98.8 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Togo (140) 0.033 0.015 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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When it comes to the distribution of performance, South Korea, Singapore and Canada consistently
rank at the top, as they attain efficiencies higher than 0.7 for most of the simulations. This indicates
that these three countries clearly outperform the others leading to lower efficiencies for all other
countries. In the middle, there are countries that show more balanced distributions of scores. For
example, Germany, Sweden, New Zealand and France attained efficiencies in all intervals and the
sum of their three highest interval values represent between 37% and 40%. Hence, the efficiency of
these countries is highly dependent on the weight vector considered. If more weight is placed on their
well-performing indicators, they will score higher, and reciprocally. This aspect is not revealed by the
CCR model, as it only retains the single most advantageous weight vector. When analyzing France in
more detail, it can be seen that all its indicators are performing well except its political stability and
absence of violence/terrorism (i4), where it ranks 60th, and its relatively low electricity mix diversity
(i5, 77% of its electricity production comes from nuclear energy). Hence, France mostly performs well,
but there exist some disadvantageous weight vectors, resulting in more balanced distribution of scores.
Finally, about half of the countries are clustered at the bottom. In fact, for most weight vectors, these
countries attain efficiencies situated in [0, 0.1] and only rarely exceed 0.5.

The maximum efficiency column in Table 8 corresponds to the extreme value of the 10,000 Monte
Carlo simulations (the convergence of the results was verified by increasing the number of simulations
stepwise and the confidence interval of 95% for Stochastic Multicriteria Acceptability Analysis (SMAA)
analyses is not exceeded [85]). While the CCR model deemed 31 countries as efficient, the stochastic
analysis only identified 13 as efficient, indicating that the Monte Carlo simulation could not find the
best scenario for each country based on the chosen number of runs. Both scores would of course be
equal, if an infinite amount of simulations would have been performed [28]. Also, as the CCR model
is a linear optimization problem, the simulation-based maximum efficiencies will always be lower
or equal to the CCR efficiencies. The difference of both scores, along with the efficiency acceptability
interval indices, provides an indication of the likelihood of finding weight vectors that result in a high
country score. The largest differences between the CCR (best-case) and the simulation-based maximum
efficiency were found for Venezuela, Kenya and Luxembourg with differences of 0.430, 0.332 and 0.310,
respectively. Among the countries considered efficient by the CCR, the largest differences were found
for Luxembourg, Haiti and Algeria (0.310, 0.264, 0.231). This means that, even though these countries
can be efficient based on the CCR model, the corresponding weight vectors are limited. This indicates
that relying on the CCR model only might be misleading, as some countries are considered efficient
even though efficiency is reached for very few and unlikely weight vectors.

Finally, Table 8 also shows the average efficiency, taken as the arithmetic average of all the
simulations. Once again, South Korea, Singapore and Canada are the most efficient countries with
average efficiency scores of 0.911, 0.852 and 0.668, respectively. On the lower end is again Togo, the
DRC and Nigeria. It is important to note that this average efficiency can be used to rank the countries
as it is highly unlikely that two or more countries have equal values. Furthermore, a ranking based on
the average makes more sense because it is not just driven by the best-case scenario of the CCR model.

Interestingly, even though Libya, among others, reaches maximal efficiency in the CCR model, its
average efficiency is extremely low (0.035). In fact, it is lower than numerous countries that do not
reach efficiency. Therefore, Libya reaches unitary efficiency only for a very small number of randomly
selected weight vectors and hence should not be seen as a country with an overall high electricity supply
resilience. As shown in Table 4, only three efficiency reducts make it efficient. These are indicators
{5, 6}, {6, 7} and {2, 6, 12}. In particular, its electricity import dependence is excellent as it produces
much more electricity than it consumes and, therefore, can, in the case of shortage, easily cover its
own demand. But this particular situation does not mean that Libya’s electricity supply is resilient
holistically, as 8 out of its 12 indicators perform poorly. On the other end, Denmark is the inefficient
country with the highest average efficiency (0.489). In fact, Denmark actually scores high on all of its
indicators, except for its EAF (i7, 49% of Denmark’s electricity production comes from wind energy
which has a low EAF) and its insurance penetration (i9). Nevertheless, for each weight vector, there are
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still other countries that perform better. However, based on the average efficiency, one can safely state
that Denmark’s electricity supply resilience is higher than Libya’s. Hence, compared to the CCR model,
the stochastic model allows us to distinguish which countries are more robustly deemed efficient
than others, even though they all may be considered as efficient in the CCR model. Furthermore, the
simulation-based analysis ranks many inefficient countries higher than several efficient ones in the
CCR model. Therefore, for policymaking, it is crucial to consider the CCR model in combination with
the robust efficiency model, as it gives a more realistic and broader interpretation.

To confirm the robustness of these results, a sensitivity analysis was performed which investigated
how the outputs of a model are affected by varying its inputs and which inputs have the highest effect
on the results. If the variations in the inputs result in small variations of the outputs, then the model
is considered robust. In the present study, the sensitivity analysis was applied on the Monte Carlo
simulation by removing each indicator one by one and keeping the others. The Spearman’s rank
correlation coefficients (rho) was calculated between the average country efficiencies for the complete
indicator set and one indicator removed at a time. It can be seen from Table 9 that all the coefficients
are very high and significant at the 0.01 level. The lowest value is for i2, where the correlation factor
between the vectors of average efficiencies is ca. 0.897. This still represents a very high correlation and
the general trend in the ranking is preserved. Thus, it can be concluded that the results are robust.

Table 9. Spearman’s rank correlation coefficients (rho) between vectors of average efficiencies when
removing the 12 indicators one by one. All correlation coefficients are significant at the 0.01 level.

Indicator Removed Correlation

1 (input) 0.998

2 (input) 0.872

3 (output) 0.999

4 (output) 0.998

5 (output) 0.995

6 (input) 0.871

7 (output) 0.996

8 (output) 0.998

9 (output) 0.999

10 (output) 1.000

11 (input) 0.874

12 (output) 0.999

The distribution of performance of the countries presented in this section shows how robust the
results are, which is a key interest of decision-makers. Once the robustness is analyzed, it is important
for decision-makers to verify the rank of the countries. In fact, a certain score could lead to a high,
average or low rank, depending on the performance scores of the other countries. In Section 4.4, it will
become clear that there is no one-to-one relationship between scores and ranks.

4.4. What Is the Univocal Ranking of the Countries?

The previous three sections discussed country scores. However, a certain rank can be achieved
by different scores and a certain score can result in different ranks. In order to analyze the rank
distribution, this section shows the country ranks computed with the simulation-based Monte Carlo
analysis (see Table 10). For the optimal weight vectors, the 31 efficient countries obviously have rank 1
as their best. All the inefficient countries rank at best second. Additionally, the expected rank (ERo)
allows us to differentiate all countries, including the efficient ones. As with the average efficiency, the
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ERo can be used to build a univocal country ranking. Therefore, the ERo once again confirms that the
top place is taken by South Korea (ERo of 3.6). As shown in Section 4.3, the close followers are Canada
and Singapore (ERo of 4.1 and 4.6, respectively). In conformity with previous results, the DRC is the
country with the lowest ERo (137.9).

Table 10. Best and expected ranks for selected countries obtained by the simulation-based Monte
Carlo analysis. The three highest efficiency rank acceptability indices (ERAI) are shown with their
corresponding ranks. The ERAIs are expressed in %. The number in parenthesis after a country’s name
is its overall rank according to the expected rank ER0. The full table for all countries is available in the
ESI, Table S9.

Country Best (Ro*) Expected (ERo) Rank ERAI Rank ERAI Rank ERAI

South Korea (1) 1 3.6 1 46.8 2 25.5 3 5.3
Canada (2) 1 4.1 3 21.5 1 20.9 6 18.1

Singapore (3) 1 4.6 2 42.0 1 25.2 3 4.9
Switzerland (6) 1 8.0 8 14.2 9 12.5 5 8.3
Denmark (11) 2 12.4 10 14.5 11 14.3 9 13.9

USA (28) 1 30.1 30 4.6 29 4.4 26 4.2
UK (32) 2 32.8 35 4.3 30 4.2 30 4.2

Japan (55) 2 53.8 50 2.9 50 2.9 50 2.9
Turkmenistan (77) 1 76.8 66 2.7 77 2.6 70 2.5

Costa Rica (79) 1 79.1 102 2.7 103 2.6 99 2.4
Uruguay (83) 2 83.9 89 3.6 87 3.2 95 3.0

United Arab Emirates (88) 3 87.3 75 2.9 94 2.0 111 1.9
Syria (98) 10 98.9 105 3.5 86 2.8 78 2.7
Niger (99) 44 99.1 89 3.6 87 3.5 87 3.5
Libya (129) 1 126.8 138 12.0 139 11.4 137 10.7

Nigeria (139) 32 135.4 140 31.6 139 19.2 138 8.6
Congo, Dem. Rep. (140) 120 137.9 140 42.1 139 16.5 137 9.0

Furthermore, it is interesting to analyze the distribution of the ranks. The countries with the most
concentrated ranks are the top- and bottom-performing ones (e.g., South Korea, Singapore, the DRC,
Canada and Nigeria, among others). In fact, these are clustered at the top or at the bottom, hence it is
more likely for them to have large ERAIs. On the contrary, the United Arab Emirates (UAE), Costa Rica
and Luxembourg show only small ERAIs. In fact, the sum of their three largest ERAIs is only 6.8%, 7.7%
and 7.8%, respectively. An extreme case is Libya, which according to the weight vectors considered,
can attain every possible rank. However, Libya’s ERo is 126.8, indicating that it most likely does not
rank high. It can be seen that Denmark performs much better than Libya as its ERo is 12.4. Switzerland,
the country that makes Denmark inefficient, ranks slightly better at 8.0. Finally, the tie between Niger
and Syria is also reflected through their almost identical ERo (99.1 and 98.9, respectively).

After the analysis of scores and ranks of the countries, it would be valuable for decision-makers to
identify close competitors. These would help to identify strengths and weaknesses, therefore supporting
the development of realistic targets and appropriate policies. This leads to Section 4.5 below.

4.5. How Well Does One Country Perform in Comparison to Another?

Pairwise efficiency outranking indices (PEOI) are used to compare the performance of countries
between each other. It represents the share of simulations where a country performs at least as good or
better than another (see Table 11). PEOIs become extremely useful for identifying close competitors.
In country rankings, relevant comparisons can be made in smaller peer groups, i.e., with similarly
performing or geographically neighboring countries. For example, Syria and Niger are in a tie (50.1%).
Hence, these two countries can benchmark their performance and closely monitor each other over time.
If a country turns out to outperform its peer, then the policies of the two countries can be analyzed and
successful strategies identified.
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Table 11. Pairwise efficiency outranking indices (PEOI) for selected pairs of countries. The values indicate the shares (in percentage) of weight vector samples for
which a country has an efficiency score not worse than another (i.e., at least as good). Due to the large number of countries in the data set, the complete table is
available in the ESI, Table S8. Countries hereby shown include the best- and worst-performing ones, ties and some of the ones discussed in this paper.

Country Canada Congo, Dem. Rep. Denmark Libya Niger Nigeria Singapore South Korea Switzerland Syria Togo

Canada 100.0 100.0 100.0 100.0 100.0 100.0 34.1 33.9 97.1 100.0 100.0
Congo, Dem. Rep. 0.0 100.0 0.0 28.0 0.5 46.1 0.0 0.0 0.0 0.1 32.3

Denmark 0.0 100.0 100.0 99.9 100.0 100.0 9.0 5.1 27.9 100.0 100.0
Japan 0.0 100.0 5.6 100.0 97.6 100.0 3.9 3.8 0.3 99.2 100.0
Libya 0.0 72.0 0.1 100.0 4.4 98.2 0.0 0.0 0.0 1.9 62.3
Niger 0.0 99.5 0.0 95.6 100.0 99.6 0.0 0.0 0.0 49.9 99.5

Nigeria 0.0 53.9 0.0 1.8 0.4 100.0 0.0 0.0 0.0 0.0 42.3
Singapore 65.9 100.0 91.0 100.0 100.0 100.0 100.0 41.7 76.1 100.0 100.0

South Korea 66.1 100.0 94.9 100.0 100.0 100.0 58.3 100.0 77.8 100.0 100.0
Switzerland 2.9 100.0 72.1 100.0 100.0 100.0 23.9 22.2 100.0 100.0 100.0

Syria 0.0 99.9 0.0 98.1 50.1 100.0 0.0 0.0 0.0 100.0 97.7
Togo 0.0 67.7 0.0 37.7 0.5 57.7 0.0 0.0 0.0 2.3 100.0
UK 0.0 100.0 11.3 100.0 100.0 100.0 7.9 6.0 0.8 100.0 100.0

Uruguay 0.0 100.0 0.3 92.0 66.8 99.1 0.1 0.3 0.0 66.0 100.0
USA 0.0 100.0 13.5 100.0 100.0 100.0 9.0 7.8 1.2 100.0 100.0
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Furthermore, as expected, the top-performing countries (i.e., South Korea, Singapore and Canada)
only rarely score lower than other countries. Similarly, on the other end of the spectrum, Togo, the
DRC and Nigeria rarely achieve higher efficiencies than the other countries. Furthermore, even though
Libya is deemed efficient, it performs better than Denmark in ca. 1%� of the simulations only (the CCR
model deemed Denmark as inefficient). Once again, this confirms that Denmark has a better electricity
supply resilience than Libya.

Another interesting case is how Switzerland performs compared to the top three countries.
Switzerland wins against Singapore and South Korea in ca. 22%–24% of the simulations, but wins
against Canada for only 2.9% of the cases, even though the average efficiency of Canada is lower than
that from South Korea and Singapore. This is due to the fact that the Euclidian distance between
Switzerland’s and Canada’s indicator performances is smaller, meaning that Switzerland and Canada
have more similar indicator values compared to Singapore and South Korea. Hence, for the weight
vectors that are advantageous for Switzerland, Canada almost always performs slightly better, whereas
South Korea and Singapore do not.

4.6. How Does the Performance of Countries Vary According to Changes in Selected Indicators?

The previous sections presented results on the performance of countries, their potentials for
improvement and their position in a univocal ranking. In this section, DEA is used as a means
to make country-specific improvement potential evaluations. In this way, policymakers can detect
early warning signals and explore different future pathways, leading to more effective decisions and
subsequent implementation of strategies to reach the targets. In the present study, two types of country
analyses were applied:

1. Obtain a new country ranking, based on updated indicator values according to specific scenarios
(Singapore, Section 4.6.1).

2. Determine the minimal required improvements on the indicators in order to become an efficient
country (Japan, Section 4.6.2)

4.6.1. Country Analysis: Singapore’s Electricity Supply Resilience

Located in Southeast Asia, the small sovereign city-state and island country of Singapore is
often referred to as the Switzerland of Asia (e.g., [86]). It portrays a high standard of living [87], a
strong economy [88] and political stability [89]. Furthermore, Singapore is one of the largest and
most competitive financial centers in the world [90]. Additionally, it is one of the world’s top five
oil trading and refining hubs [91] and is home to the world’s second busiest container port [92].
Regarding the energy sector, Singapore imports mainly petroleum products, crude oil and natural
gas. Furthermore, natural gas is the source for 95.2% of the electricity produced [93]. Currently, the
Singaporean government is trying to diversify its energy supply, in order to be able to better cope with
supply disruptions and price increases [94]. Its Economic Strategies Committee (ESC) published a
report aiming at ensuring energy resilience and sustainable growth [95]. It contains five key strategies:
(1) diversifying the energy sources, (2) enhancing infrastructure and systems, (3) increasing energy
efficiency, (4) strengthening the green economy and (5) pricing energy right.

Overall Singapore, deemed as efficient with the CCR model (see Table 3), has the second highest
average efficiency (see Table 8) and the third best expected rank (see Table 10). Its outstanding
infrastructure is ranked the second best in the world [96], which is reflected by its low SAIDI (i1) of less
than a minute per customer per year, and by the fact that there are almost no fatalities related to electricity
production (i2). Furthermore, being among the top performers in controlling the levels of corruption
(i3) and political stability (i4), Singapore has a stable environment that enables clear policymaking and
transparent directives. However, its electricity generation mix diversity (i5), consisting of 95.2% of
natural gas, makes it particularly vulnerable to potential disruptions. Additionally, on its electricity
import dependence (i6), Singapore’s electricity grid is currently not strongly connected in the region,
even though this might change in the near future as there are growing efforts to establish electricity
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interconnections in Southeast Asia, in particular between Singapore, Malaysia and Indonesia [97].
Nowadays, Singapore basically produces what it consumes. If there were a shortage for any reason,
only limited amounts of electricity could be imported from its neighbors. Furthermore, its EAF (i7) is
high, which is attributed to the fact that the electricity is mainly produced by natural gas (natural gas
has an EAF of 0.85 [74]). Also, Singapore excels with a high GDP per capita (i8) and an outstanding
government effectiveness (i10). This is the result of a series of successful developments undertaken in
the past decades [98]. However, its insurance penetration as a percentage of GDP (i9), a central part
for accelerating recovery processes [99], is not expected to increase in the future [75]. Regarding the
average outage time (i11), Singapore is the top-performing country having almost no interruptions at all
and even if there happens to be one, it usually is so short that it is hardly noticeable by the population.
Lastly, Singapore’s ease of doing business (i12) is already the second highest in the world [100].

Based on these premises, two scenario analyses were developed and discussed in the following
two sections (Sections 4.6.2 and 4.6.3).

4.6.2. Scenario 1: 8% Solar Photovoltaic Electricity Production

One of the weaknesses of Singapore’s electricity supply is its generation mix diversity (i5) consisting
of 95.2% of natural gas, which makes it particularly vulnerable to potential disruptions. To address
this issue, one of the government’s current strategies is to diversify its sources [101], by for example
increasing the share of renewables [102]. In particular, by 2030, Singapore has a potential of producing
8% of its electricity by solar photovoltaics (PV). This change affects the following indicators:

• i2; improvement from 0.124 to 0.115 fatalities/GWeyr: solar PV has lower fatality rates than natural
gas [71].

• i5; improvement from 0.11 to 0.22: replacing natural gas generation by solar PV improves the
mix diversity.

• i7; deterioration from 0.85 to 0.79: solar PV has a lower EAF than natural gas [74].

Therefore, as the performance of i2 and i5 increases, but that from i7 decreases, it is not yet clear if
this will have a positive effect on Singapore’s electricity supply resilience. However, results show that,
in this particular case, it is advisable to pursue this strategy as Singapore’s score effectively improves
(see Table 12). In fact, even though Singapore keeps its second position for the average efficiency and
the third rank according to the ERAIs, its performance improved, hence reducing the gap to South
Korea and Canada.

Overall, this shows that it is not possible to predict a priori if an increase of the share of renewables
is good or bad for resilience. It has to be studied on a case-by-case basis. In the present example, it
turned out that increasing the share of solar PV generated electricity to 8% is positive for Singapore’s
electricity supply resilience.

Table 12. Results for scenario 1. The efficiency acceptability interval indices (EAIIs) and the ERAIs are
given in %. Even though Singapore does not get the first position, having 8% of solar photovoltaic (PV)
generation improves its electricity supply resilience.

Efficiency
Interval

Average
Efficiency [0.0–0.1] [0.1–0.2] [0.2–0.3] [0.3–0.4] [0.4–0.5] [0.5–0.6] [0.6–0.7] [0.7–0.8] [0.8–0.9] [0.9–1]

South Korea 0.905 0.0 0.3 0.0 0.2 0.3 1.1 4.3 11.9 19.7 62.2
Singapore new 0.872 0.1 0.2 0.2 0.3 0.9 2.7 6.2 15.6 22.8 51.0

Canada 0.680 2.6 6.5 6.8 6.5 7.5 8.3 8.1 8.4 8.6 36.7
Singapore original 0.852 0.0 0.1 0.3 0.6 1.6 4.6 9.4 15.6 19.9 47.8

ERAI ERo Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank
10

South Korea 3.7 43.2 26.8 6.2 3.1 4.1 2.3 0.9 1.3 0.9 0.7
Canada 4.0 20.4 11.3 22.2 7.3 8.2 17.9 3.6 1.5 4.2 1.3

Singapore new 4.3 27.7 40.6 5.1 4.5 2.7 2.6 0.9 1.4 1.6 1.9
Singapore original 4.6 25.2 42.0 4.9 3.2 2.6 2.5 2.3 1.4 1.6 1.0
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4.6.3. Scenario 2: Singapore in 2030

The second scenario for Singapore assumes that in the year 2030 it not only reaches an 8% share of
solar PV, but that the following two indicators change as well:

• i6; improvement from 0.98 to 0.92: Singapore’s electricity grid is currently not strongly connected in
the region, but its import dependence is expected to decrease as a result of planned interconnections
with Malaysia and Indonesia [97] and according to the projected production and consumption in
2030 [103].

• i8; improvement from 51,809 to 67,360 USD/capita: according to predictions, Singapore’s GDP
will increase to 67,360 USD/capita in 2030 [104].

With the new values for i2, i5, i6, i7 and i8, Singapore’s expected performance in 2030 will improve
even more (see Table 13), and it will overtake South Korea and Canada, i.e., reaching the first position
as the most resilient country in the world regarding electricity supply.

Table 13. Results for scenario 2. The EAIIs and the ERAIs are given in %. According to this scenario,
Singapore has the best electricity supply resilience in the world.

Efficiency
Interval

Average
Efficiency [0.0–0.1] [0.1–0.2] [0.2–0.3] [0.3–0.4] [0.4–0.5] [0.5–0.6] [0.6–0.7] [0.7–0.8] [0.8–0.9] [0.9–1]

Singapore new 0.912 0.0 0.1 0.1 0.2 0.5 1.5 5.5 8.7 17.2 66.2
South Korea 0.878 0.0 0.1 0.1 0.0 0.4 1.7 5.5 17.8 26.3 48.1

Canada 0.662 3.1 7.2 7.2 7.2 7.0 7.6 7.2 10.3 11.3 31.9
Singapore original 0.852 0.0 0.1 0.3 0.6 1.6 4.6 9.4 15.6 19.9 47.8

ERAI ERo Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank
10

Singapore new 3.2 47.2 29.7 3.8 3.3 3.1 1.7 1.1 1.5 1.0 1.2
Canada 3.9 18.8 12.2 24.2 9.1 7.0 17.6 3.5 0.9 3.7 1.2

South Korea 4.1 27.5 39.0 7.1 4.5 3.4 1.7 1.9 1.4 1.4 2.0
Singapore original 4.6 25.2 42.0 4.9 3.2 2.6 2.5 2.3 1.4 1.6 1.0

4.6.4. Country Analysis: Japan’s Electricity Supply Resilience

In the three decades following 1960, Japan’s economy has boomed with average GDP growth
rates of up to 12.9% [105] and is currently the third-largest in the world [106]. This lead it to become the
fifth best country worldwide, according to a global index from the U.S. News and World Report [107].
Its population enjoys the highest life expectancy in the world [108] proving that the quality of life
is high [87]. Japan also ranks particularly high for entrepreneurship (2nd [107]) which portrays
its numerous innovations and comparatively high number of patent applications [109]. Regarding
the energy sector, Japan has gone through tremendous changes since the 2011 Tōhoku earthquake
and tsunami [110]. In fact, due to the Fukushima Daiichi nuclear disaster, the nuclear produced
electricity was replaced almost instantaneously by mostly imported oil, gas and coal [68], making Japan
more vulnerable to supply disruptions. As this option comes with risks and drawbacks (e.g., import
dependence, environmental concerns [111], financial burden [112]), the Japanese government published
a revised version of its Strategic Energy Plan (SEP) in 2014 [113]. Its goals are to ensure a stable supply,
enhance economic efficiency on the premise of safety and pursue environmental suitability.

Based on these premises, Japan’s low SAIDI (i1) and low fatality rates related to electricity
production (i2) reflect the overall high quality of its infrastructure [96]. Furthermore, having low levels
of corruption (i3) [114] and high political stability (i4), Japan has a stable environment that enables
clear policymaking and transparent directives. Even though Japan’s performance on the electricity
mix diversity (i5) is far from alarming, it shows slightly lower scores compared to some years ago, as
its mix diversity has since the Fukushima Daiichi nuclear disaster increasingly been dependent on
imported fossil fuels. Regarding the electricity import dependence (i6), due to its geographical location,
Japan’s electricity grid is currently isolated [115], which means that the production simply follows the
consumption pattern. Recently, an interconnected Northeast Asia (NEA) grid has received increasing
attention. However, modest economic benefits are a major problem for its implementation [115,116].
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Additionally, if this plan were to be realized, it is likely that Japan would overall import electricity
which would further increase its dependence on its neighbors. Furthermore, its EAF (i7) is high, which
is attributed to the fact that the electricity is mainly produced by fossil fuels (Fossil fuels have EAFs of
0.85 [74]). Also, Japan shows high GDP per capita (i8) and government effectiveness (i10). Its insurance
coverage (i9) is expected to grow [75], as a result of increased awareness of potential losses due to
frequent recent natural catastrophes [117]. In fact, Japan is the fourth most exposed country in the
world [118]. This is probably also the reason why its average outage time (i11) is long (4 hours), even
though there is on average only one interruption per citizen every tenth year [100]. Lastly, Japan
currently ranks 34th in the ease of doing business ranking [100].

Overall, Japan performs well on most of its indicators. Its average efficiency is 0.263 (42nd, see
Table S7) and it ranks 55th according to its expected rank. However, it still does not reach efficiency
(CCR score of 0.991, see Table 3). Based on these premises, Section 4.6.5. describes Japan’s scenario
analysis and its results.

4.6.5. Scenario 3: Required Electricity Generation Portfolio to Make Japan Efficient

Unlike the two scenarios for Singapore, where the original calculations were made with an
updated data set, the scenario for Japan is an optimization scenario, where the aim was to find the
minimal improvement that makes Japan efficient. The first step was to determine which indicators
should be varied. The second step consisted in calculating the minimum required performance changes
for these indicators in order to make Japan efficient. The chosen scenario investigated if by varying
only the electricity generation portfolio Japan can become efficient. As a consequence, the minimum
improvements for indicators i2, i5 and i7 were calculated to make Japan efficient (see Table 14). These
improvements were obtained by running the CCR model and considering a constant, proportional
improvement over the three indicators.

Table 14. Required minimum performance on i2, i5 and i7 in order to make Japan efficient.

Indicator i2: Severe Accident Risk i5: Electricity Mix
Diversity

i7: Equivalent
Availability Factor

Unit Fatalities/GWeyr Normalized Shannon
Index %

Original performance 0.0782 0.6526 78.14
Required performance 0.0765 0.6664 79.80

The third step was to calculate to what electricity generation portfolio these new values correspond.
Considering the 10 fuel sources that are currently producing electricity in Japan (see Table 15), there are
numerous portfolios that result in the required performance on indicators i2, i5, i7. From an optimization
point of view, this is equivalent to an underdetermined system (3 indicators for 10 technologies; fewer
equations than unknowns). Hence, for each of the portfolios fulfilling the constraints on the three
indicators of Table 14, its Euclidian distance was calculated. Performing the calculations for 10 million
randomly selected portfolios, Table 15 shows the 10 closest portfolios to Japan’s current one (smallest
Euclidian distances). In fact, these represent the ones that require the least amount of change in order
to make Japan efficient.

Although the 10 portfolios do not show large differences, they can provide different policy
perspectives. For example, if the target is to reduce the amount of fossil fuels (coal, oil and natural
gas), then portfolios 3 and 10 are most suitable. These two portfolios come with an increase of biomass
(biofuels and waste combined), nuclear, hydropower and geothermal electricity, whereas solar PV and
wind decrease. Portfolio 8 is the only one that increases the share of solar PV, which already today is
on a sharp rise [68]. However, no portfolio jointly increases the shares of solar PV and wind. Overall,
portfolio 8 is closest to the Japanese government’s goals [113,119,120], as (1) it decreases the amount
of coal and oil, (2) only slightly increases the share of natural gas (currently the cleanest fossil fuel,
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especially if used in combination with carbon capture and storage [121]), (3) increases the shares of
biomass, solar PV, geothermal and nuclear electricity, but (4) decreases the share of hydropower and
wind electricity.

Table 15. 10 closest electricity generation portfolios to Japan’s current one (listed in increasing order of
Euclidian distance).

Technology
Share Coal Oil Natural

Gas Biofuels Waste Nuclear Hydropower Geothermal Solar
PV Wind

Original 32.96% 9.85% 39.36% 3.32% 0.66% 0.91% 8.76% 0.25% 3.44% 0.50%

Portfolio 1 32.19% 10.05% 38.84% 4.67% 0.52% 1.38% 8.70% 1.90% 1.75% 0.02%
Portfolio 2 30.71% 9.65% 40.27% 4.15% 1.89% 0.10% 8.16% 2.98% 1.64% 0.46%
Portfolio 3 32.34% 9.02% 37.30% 4.99% 2.75% 1.09% 10.12% 1.45% 0.86% 0.07%
Portfolio 4 32.20% 8.50% 41.23% 3.98% 1.02% 0.76% 6.24% 2.62% 1.78% 1.67%
Portfolio 5 31.14% 9.51% 41.61% 4.69% 0.52% 0.58% 6.25% 2.02% 1.76% 1.91%
Portfolio 6 33.73% 8.43% 38.17% 2.10% 2.13% 3.92% 9.18% 0.73% 0.64% 0.96%
Portfolio 7 32.04% 11.35% 36.59% 4.01% 2.38% 2.33% 10.30% 0.19% 0.29% 0.52%
Portfolio 8 31.72% 7.28% 40.74% 5.02% 2.88% 0.98% 5.88% 1.83% 3.53% 0.13%
Portfolio 9 34.52% 7.01% 38.91% 1.96% 3.31% 1.51% 8.13% 2.34% 1.28% 1.02%

Portfolio 10 31.58% 9.76% 37.66% 1.66% 3.60% 3.38% 11.27% 0.66% 0.31% 0.11%

5. Conclusions and Policy Implications

Starting from a set of 12 indicators, this study uses two DEA models to assess the electricity supply
resilience of 140 countries. First, the classical CCR model deemed 31 countries as efficient (score of 1),
and hence resilient. For these countries, it is possible to find at least one weight vector under which
no other country performs better. To gain insights into these efficient countries, a novel algorithm
that allows us to calculate their efficiency reducts was developed. This demonstrated which minimal
combinations of indicators can make a country efficient. Furthermore, another novel algorithm was
developed to identify the efficiency constructs of each inefficient country. In other words, the minimal
subsets of countries that make it inefficient was computed.

Second, a robust efficiency analysis was applied. To the authors’ best knowledge, the present
study represents the first application of such an analysis to a country ranking. A distribution of
efficiency scores for each country is calculated, which provides information about ranking stability
as it depicts the likelihood of a country scoring in a certain performance bin. Additionally, it allows
calculating both the average efficiency and the expected rank of a country that can be used to establish
a univocal country ranking. The robustness analysis also allows computing the pairwise efficiency
outranking indices.

Finally, scenario analyses for Singapore and Japan were carried out. For Singapore, the analysis
consisted in verifying if its current energy policies lead to an even higher resilience, even though
Singapore is already efficient according to the CCR model. Results showed that increasing electricity
production from solar PV is beneficial for Singapore’s electricity supply resilience. In contrast, as
Japan is an inefficient country, an optimization problem was solved to determine the minimal required
improvement on selected indicators in order to make it efficient. From a policymaking perspective, this
is equivalent to finding the optimal way to allocate resources in order to increase its rank. By strictly
considering technologies that are already producing electricity, results showed that it is possible to
reach efficiency by only slightly changing the production shares.

Overall, this study showed that combining the CCR model, including its efficiency reducts and
constructs, with the robust efficiency analysis provides a holistic assessment methodology that can
be applied to the present electricity supply resilience assessment of 140 countries, but also similar
problems in other domains to support robust decision-making by stakeholders. In fact, even though
the CCR model is the most widely used, its results are limited and can be misleading. While the
CCR model provides a clear differentiation of scores for inefficient countries, it does not differentiate
between the efficient ones. Therefore, building a univocal ranking is impossible. Furthermore, the
CCR model provides a best-case scenario, as it computes the most advantageous weight vector for
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each country separately. As a result, such scores may not be representative, because they might only be
achieved for a very limited number of weight vector combinations. Therefore, the authors believe that
by using the hereby developed methodology, policymakers would have a broader view of how the
alternatives under study perform. Many policies are indeed based on the results of indices obtained by
aggregating average values without considering uncertainty or robustness of the results. This might
lead to ill-informed decisions. Accounting for uncertainty in input data and problem structure brings a
dynamic component to the usual indices that are static.

By considering the CCR and robust efficiency analysis simultaneously, decision-makers can
identify close competitors. This provides important learning lessons from comparable countries
(so-called benchmarks). Furthermore, this methodology stimulates a multi-disciplinary approach
when considering improving the overall performance of a country. In fact, as the indicators are
interrelated, multiple specialists should share knowledge in order to tackle the complexity of today’s
world. Through collaboration between multiple parties, including research institutions, industry and
governmental agencies, it would be possible to develop improvement plans and policies to reach
predefined targets. The methodology proposed in this paper could provide an interactive discussion
platform to lead the decision-making process.
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A B S T R A C T   

We consider the problem of ranking Decision Making Units (DMUs) in Data Envelopment Analysis. We illustrate 
the use of fifteen selected approaches on a numerical example. They represent different categories, including 
cross- and super-efficiency, multivariate statistics, decision analysis, benchmarking, virtual DMU, and social 
networks. Moreover, we formalize a new category of ranking methods based on the concept of Robustness 
Analysis. They exploit a space of feasible input/output weight vectors with the Monte Carlo simulation to derive 
the expected efficiencies or ranks, or to compute the priorities or net flow scores of DMUs based on the matrix of 
pairwise efficiency outranking indices. The rankings constructed by all methods are compared on both artificially 
generated and real-world datasets with different numbers units, inputs and outputs, and performance distribu-
tions. The considered datasets represent the most common application areas of the DEA methods, such as fi-
nances, education, transportation, healthcare, farming, and the energy industry. The results are quantified in 
terms of five measures. We indicate that the choice of a method has a significant impact on the ranking, revealing 
the procedures that offer similar results or differ vastly in terms of the recommended order or the most preferred 
DMU.   

1. Introduction 

Data Envelopment Analysis (DEA) is a sub-field of operational 
research and management science, oriented toward measuring the 
relative efficiency of Decision Making Units (DMUs) (Cooper et al., 
2014). The research on estimating the efficiency frontier in production 
theory dates back to the work of Farrell (1957). It considers the effi-
ciency defined as the ratio of a single output and a single input. This 
model was further generalized by Charnes et al. (1978), accounting for a 
more complex scenario involving multiple inputs and multiple outputs. 
Specifically, this seminal work refers to an efficiency expressed as the 
ratio of the virtual output and the virtual input, i.e., weighted sums of 
outputs and inputs, respectively. The status of efficiency is determined 
using a linear programming model that compares a given DMU with all 
other units in the considered set. Such a performance evaluation and 
measurement is conducted without assigning prior weights and knowing 
the production function a priori. 

The successful applications of DEA can be found in a variety of areas 
(Emrouznejad and Yang, 2018) such as banking (Thanassoulis, 1999), 
transportation (Chu et al., 1992), healthcare (Fiallos et al., 2017), 

agriculture (Toma et al., 2015), education (Nazarko and Saparauskas, 
2014), manufacturing (Bracke et al., 2019), environmental management 
(Matsumoto et al., 2020), and energy sector (Gasser et al., 2020). 
Indeed, DEA has the capability of handling complex relations between 
inputs and outputs of different characters and expressed on various 
units, while making functional assumptions neither on the considered 
factors nor on the underlying process (Charnes et al., 1994). For 
example, in transportation, the efficiency of airports can be evaluated by 
referring to the inputs capturing the capacities of terminal and apron as 
well as the catchment area and the outputs corresponding to the 
numbers of aviation operations and passengers (Kadziński et al., 2017). 
In manufacturing, the inputs could be raw materials, manpower, floor 
space, and energy consumption, and the outputs could refer to the 
numbers of finished goods. In turn, when assessing universities’ effi-
ciency, we can consider the inputs in the form of the academic and non- 
academic staff, operating costs, and area, and the outputs measuring the 
numbers of students enrolled and completions or research income. In all 
these contexts, DEA can deliver some objective measures of efficiency, 
identify the best practice units, and for the under-performing ones – 
indicate the excess use of inputs or shortfalls in the production of 
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Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

https://doi.org/10.1016/j.eswa.2021.114739 
Received 11 August 2020; Received in revised form 8 December 2020; Accepted 13 February 2021   



Expert Systems With Applications 173 (2021) 114739

2

outputs. 
Traditional DEA models divide the set of considered DMUs into 

efficient and inefficient ones (Salo and Punkka, 2011). The efficiency of 
a given DMU is understood so that there is neither any DMU nor any 
combination of existing DMUs that would attain greater efficiency in the 
best possible scenario. Thus, all units which are deemed efficient reach 
an efficiency score of one. In turn, for the inefficient units – this score is 
lesser than one. From another perspective, efficiency is defined relative 
to the frontier capturing the observed efficient trade-offs among inputs 
and outputs for a given set of DMUs. The efficient units lie on the effi-
cient frontier, whereas the relative distance of inefficient units to the 
frontier is greater than zero (Charnes et al., 1994). 

In many decision problems, the binary classification performed with 
the DEA model is not sufficient because the division into efficient and 
inefficient units offers too weak discrimination power. When many 
DMUs are efficient, they cannot be compared, attaining the same 
maximal efficiency score for different weight vectors. Moreover, when 
more DMUs are contained in the analyzed dataset, they become too 
specialized. It is then even more challenging to compare the DMUs, and 
the classical DEA models fail to provide enriched information about the 
efficient units. Also, DEA does not perform well for scenarios involving 
numerous inputs and outputs, as the DMUs tend to become all optimal. 

Over the years, numerous solutions have been proposed to increase 
the discriminatory power of DEA (Kadziński et al., 2017). Specifically, 
the incorporation of preference information such as weight restrictions, 
target setting, or value judgments usually leads to fewer efficient DMUs 
(Podinovski, 2001). Such information may be based on market prices, 
expert opinion, or preference of a DM (Decision Maker) controlling the 
units, which are evaluated (for a review, see Joro and Korhonen, 2015). 
Furthermore, the traditional DEA models are optimistic because each 
DMU is evaluated in terms of the weights, which are the most advan-
tageous for it. To introduce a joint criterion for the evaluation of all 
DMUs, techniques based on the common set of weights have been pro-
posed. Such weights form a unique hyperplane as the frontier used to 
evaluate all DMUs, allowing for their comparison on a common scale. 
Finally, several ranking approaches have been introduced to impose a 
complete order on the considered set of DMUs. 

Although all ranking methods in DEA aim to order the DMUs from 
the best to the worst, they are based on different principles. As indicated 
by the reviews presented by Adler et al. (2002), Aldamak and and Zol-
faghari (2017) and Hosseinzadeh Lotfi et al. (2013), there already exist a 
few tens of such methods either implementing a post-analysis to tradi-
tional DEA models or offering some dedicated DEA-specific solutions. 
This paper considers the problem of ranking DMUs with a threefold aim. 

First, we illustrate the use of selected ranking methods applicable in 
the DEA context on the same problem. This serves a didactic purpose as 
we do not limit ourselves to the presentation of the mathematical model 
and description of the underlying ranking procedures. In turn, we show 
the elementary results and explain the underlying steps. This is done in 
the context of fifteen approaches representative for various categories of 
ranking methods. These categories include cross-efficiency (Sexton 
et al., 1986), super-efficiency (Andersen and Petersen, 1993), bench-
marking (Lu and Lo, 2009; Jahanshahloo et al., 2007), statistics 
(Friedman and Sinuany-Stern, 1997; Sinuany-Stern et al., 1994), virtual 
DMU (Wang and Luo, 2006), social network (Liu and Lu, 2010), and 
Multiple Criteria Decision Analysis (MCDA) (Sinuany-Stern et al., 2000). 

Second, we formalize a new category of ranking methods in DEA, 
which incorporates Ronustness Analysis (RA) (Kadziński et al., 2017). In 
general, RA accounts for uncertainties observable in the decision prob-
lems already at the stage of working out a recommendation (Guo et al., 
2019; Kadziński et al., 2020). In the context of DEA, RA refers to the 
efficiencies attained by the DMUs for all input/output weights or their 
representative sample. This contrasts with the cross-efficiency tech-
nique, which averages the efficiency scores for each DM across a limited 
subset of weight vectors for which other DMUs attain their maximal 
efficiency (Sexton et al., 1986). In turn, we incorporate the Monte Carlo 

simulation to sample a large set of input/output weight vectors (Lah-
delma and and Salminen, 2006; Kadziński et al., 2017). For each of 
them, we compute the efficiency scores and the underlying ranks 
attained by each DMU. 

The proposed category includes two methods that were introduced in 
the previous works (see Lahdelma and and Salminen, 2006; Kadziński 
et al., 2017) and two novel approaches elaborated in the context of DEA 
in this paper. Following Lahdelma and and Salminen (2006) and Kad-
ziński et al. (2017), in the two RA-based ranking methods we recall, the 
results for all sampled weight vectors are summarized by the expected 
efficiency or the expected efficiency rank. These measures can be used to 
order the DMUs from the best to the worst univocally. With a sufficient 
number of samples, such robust outcomes accurately approximate the 
average scores or ranks in the entire space of feasible weights (Tervonen 
and Lahdelma, 2007). The original methods introduced in this paper 
consider the matrix of pairwise efficiency outranking indices (Kadziński 
et al., 2017), which captures the shares of weights for which one DMU 
attains at least as good score as the other. This matrix is exploited in a 
twofold way to derive desirability measures for each DMU, given its 
relative advantage or disadvantage compared with all the remaining 
units. For this purpose, we incorporate a Net Flow Score procedure 
(Kadziński and Michalski, 2016) and the eigenvector method (Saaty, 
1980). 

Third, we conduct the first experimental comparison of ranking 
methods in DEA regarding the results they provide. For this purpose, we 
consider two kinds of datasets. On the one hand, we generate artificial 
sets of DMUs differing in the numbers of units, inputs, and outputs, and 
performance distributions. On the other hand, we account for ten real- 
world sets differing for both sizes and application domains. The results 
are captured by five similarity measures quantifying for all pairs of ap-
proaches the agreement between either the entire rankings or the most 
preferred unit these methods indicate (Kadziński and Michalski, 2016). 
Such outcomes suggest which ranking procedures offer very similar 
results and which approaches differ vastly in terms of the recommended 
order or best choice DMU. The indicated groups of methods can be 
perceived as suitable substitutes for each other or complementary pro-
cedures, offering different perspectives on the ranking of DMUs. This 
contributes to a better understanding of the comparative strengths and 
weaknesses of different ranking methods, which have not been well 
understood until now (Wang, 2020). 

The remainder of this paper is organized in the following way. Sec-
tion 2 introduces the basic concepts of DEA. In Section 3, we describe 
fifteen ranking methods applicable in the context of DEA and illustrate 
their use on a numerical example. Section 4 is devoted to an experi-
mental comparison of rankings constructed by different approaches for 
both artificially generated and real-world datasets. The last section 
concludes and provides avenues for future research. 

2. Notation and basic concepts 

The following notation is used in the paper:  

• D = {DMU1,…,DMUK} – a set of considered DMUs, where K is the 
number of DMUs (K = |D |); each DMU consumes multiple inputs 
and produces multiple outputs;  

• xm – m-th input, m ∈ {1,…,M}, where M is the number of inputs;  
• yn – n-th output, n ∈ {1,…,N}, where N is the number of outputs;  
• xmo – an amount or value of m-th input consumed by DMUo ∈ D ;  
• yno – an amount or value of n-th output produced by DMUo ∈ D ;  
• v = {v1,…, vM} – a vector of input weights;  
• u = {u1,…, uN} – a vector of output weights;  
• λko, k = 1,…,K – the share of k-th DMU in the linear combination 

when evaluating DMUo. 
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2.1. Efficiency analysis 

We will use a ratio-based efficiency measure Eo defined as the ratio of 
the weighted sum of outputs and the weighted sum of inputs of the 
analyzed DMUo ∈ D (Charnes et al., 1978; Salo and Punkka, 2011): 

Eo =

∑N

n=1
unyno

∑M

m=1
vmxmo

. (1) 

To verify the efficiency of DMUo, Charnes et al. (1978) proposed the 
following linear programming model, called the CCR model: 

max Eo =
∑N

n=1
unyno

subject to :
∑M

m=1
vmxmo = 1

∑N

n=1
unynk⩽

∑M

m=1
vmxmk, k = 1, 2,…,K,

un, vm⩾0, n = 1, 2…N; m = 1, 2…M.

(2) 

It finds the most advantageous set of input/output weights (un, vm) 
that allow maximizing the efficiency score of DMUo subject to the as-
sumptions that efficiencies of all DMUs are not greater than one. The 
obtained solution enables the division of all DMUs into a pair of distinct 
subsets. The units with an efficiency score equal to one are deemed 
efficient, whereas those with a score lower than one are inefficient. 

Each inefficient unit can be projected onto the efficient frontier. The 
conical combination of the efficient units, which is the closest to it, in-
dicates the improvements required for becoming efficient. The following 
model – being the dual form of model (2) – allows finding such a com-
bination for DMUo: 

min θ

subject to :
∑K

k=1
λkoxmk⩽θxmo, m = 1, 2,…,M,

∑K

k=1
λkoynk⩾yno, n = 1, 2…N,

λko, θ⩾0, k = 1, 2…K.

(3) 

The solutions of models (2) and (3) represent the input-oriented 
perspective. It is focused on the improvement of inputs while keeping 
the outputs unchanged. It is also possible to formulate the output- 
oriented counterparts of these models. However, whenever the prob-
lem can be analyzed by taking either the input- or the output-oriented 
perspective, we implement the former without loss of generality. 

2.2. Numerical example 

Throughout the paper, we will consider an example dataset con-
cerning ten DMUs (A–J) which consume two inputs (i1 and i2) and 
produce two outputs (o1 and o2) (see Table 1). 

Table 2 presents the efficiency scores obtained with the standard 
CCR model and the ranks attained by the units according to these scores. 

In particular, there are five efficient DMUs with an efficiency score of 
one, which ranks them at the very top. The inefficient units are ordered 
according to their efficiency scores. For example, J, with a score of 
0.709, attains the highest rank among the inefficient units, whereas C is 
ranked last with an efficiency of 0.212. 

3. Ranking methods applicable in the context of DEA 

In this section, we present fifteen ranking methods applicable in the 
context of DEA. They represent various categories and impose a com-
plete order on the of DMUs by following some distinct principles. Apart 
from discussing the underlying mathematical background, we illustrate 
the use of each method on the same example problem introduced in 
Section 2. Some of these methods are focused only on ranking the effi-
cient units. In these cases, we assume that the ranks of the inefficient 
ones remain as imposed by the standard CCR model. 

3.1. Cross-efficiency (CE) 

Cross-efficiency was introduced by Sexton et al. (1986) to verify the 
efficiency of all DMUs in different settings. Specifically, K efficiency 
scores are computed for each DMU, each using the weights forming the 
most advantageous scenario for some other DMU. In this way, the idea of 
peer evaluation is implemented, and a common basis in the form of a set 
of weight vectors is used to compare DMUs. Thus obtained scores are 
stored in a cross-efficiency matrix, where each cell Eij contains the ef-
ficiency attained by DMUi using the weights optimal for DMUj. Then, the 
average efficiency score is computed for each DMU, posing the base for 
ranking construction: 

CEi =
1
K
∑K

j=1
Eij. (4) 

An important extension of the cross-efficiency model addressing the 
problem of non-uniqueness of the weights for which a given DMU attains 
its maximal efficiency was proposed by Doyle and Green (1994). Also, 
other aggregation operators than the arithmetic mean can be used to 
derive the final score for each DMU (Green et al., 1996). A detailed 
discussion on the practical usefulness of this method was provided by 
Zhu (2014). 

The cross-efficiency method requires solving the standard CCR 
model for each DMU and identifying the weights for which it attained 
the maximal score. For the considered example, such ten weight vectors 
are presented in Table 3. The scores achieved by all DMUs for these 
weights are shown in Table 4. The average scores called cross- 
efficiencies and the underlying ranks are presented in the last two col-
umns. The efficient units (A, B, D, F, and G) became more comparable 
than with the standard CCR model. In particular, D proves to be an 
overall good performer, attaining high scores (greater than 0.6) for the 
weight vectors being the most advantageous for all DMUs and the 
maximal score of one under five different scenarios. In turn, A turns out 
to be a niche performer, being efficient only for its most advantageous 
scenario, with an efficiency score lower than 0.4 for the three considered 
settings. 

3.2. Super-efficiency (SE) 

Super-efficiency was proposed by Andersen and Petersen (1993) by 
revising the CCR model (Charnes et al., 1978) through eliminating the 
constraint that limits the efficiency score of the investigated DMU 
(DMUo) to values not greater than one, i.e.: 

Table 1 
A set of ten DMUs considered in the illustrative example.  

Unit i1  i2  o2  o2  

A 347 842 852 356 
B 515 136 428 231 
C 356 983 12 90 
D 851 53 163 626 
E 635 554 18 199 
F 770 960 285 919 
G 73 112 305 54 
H 893 847 753 23 
I 910 219 197 11 
J 687 587 186 502  
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max SEo =
∑N

n=1
unyno

subject to :
∑M

m=1
vmxmo = 1

∑N

n=1
unynk⩽

∑M

m=1
vmxmk, k = 1, 2,…,K, k ∕= o

un, vm⩾0, n = 1, 2…N; m = 1, 2…M.

(5) 

The optimal solution to the above problem is called super-efficiency. 
The efficient DMU is allowed to attain a score higher than one. Such a 
score can be interpreted as the distance of a given DMU from the effi-
cient frontier determined with the CCR model when this DMU cannot 
participate in its delimitation. In general, super-efficiency quantifies the 
distance between the efficient frontier and the efficient unit after 
excluding it. Hence, higher super-efficiency values admit a greater 
reduction of outputs without losing the status of an efficient unit. Some 
important revisions of the original super-efficiency approach were 
proposed, e.g., by Chen (2004), Cook et al. (2009), and Shen et al. 
(2016). 

The super-efficiencies and ranks attained by the efficient units for the 
illustrative example are presented in Table 5. All these scores are greater 
than one. Unit D proves to be the most advantageous with super- 
efficiency equal to 6.954, and A is the worst among the efficient units 
with a score of 1.065. Nevertheless, all efficient units are guaranteed to 
be ranked better than inefficient ones. For the latter, super-efficiencies 
are equal to efficiencies, hence being lesser than one. 

3.3. Statistical-based methods 

In this subsection, we discuss some ranking approaches based on the 
multivariate statistical measures to better discriminate between efficient 
and inefficient DMUs. These approaches aim to derive the sets of 

common weights of inputs and outputs, which can be used to evaluate 
and rank the DMUs. They also admit that some inefficient units are 
ranked higher than the efficient ones. For some other ranking methods 
based on statistics and common weights, see Alirezaee and Afsharian 
(2007), Hatami-Marbini et al. (2015), and Wang et al. (2011). For a 
hybrid approach combining common weights with Multiple Objective 
Optimization (MOO), see Carrillo and Jorge (2016). 

3.3.1. Canonical correlation analysis (CCA) 
The first method based on statistics adapts the Canonical Correlation 

Analysis (CCA) to the context of DEA (Friedman and Sinuany-Stern, 
1997). This approach finds a vector of common weights for all DMUs 
by incorporating the canonical correlation method for finding the co-
efficients of linear combinations of inputs or outputs with the maximal 
correlation degree. Once these coefficients (vm and un) are found, the 
scaling ratio score, To, is computed for each DMUo as the ratio of the 
linear combinations of outputs Wo and inputs Zo, i.e.: 

To =
Wo

Zo
=

∑N
n=1unyno

∑M
m=1vmxmo

. (6)  

3.3.2. Linear discriminant analysis (LDA) 
Another DEA ranking method incorporating a statistical analysis was 

proposed by Sinuany-Stern et al. (1994). It is based on Linear Discrim-
inant Analysis (LDA), aiming to find a vector of input/output weights 
that separate efficient and inefficient units. Since LDA is designed to 
detect a linear combination of features, the authors suggested the 
following formula to convert the efficiency model into a linear function: 

Do =
∑N

n=1
unyno +

∑M

m=1
vm

(
− xmo

)
. (7)  

3.3.3. Discriminant analysis of ratios (DR-DEA) 
The statistical discriminant analysis (DR-DEA) was introduced by 

Sinuany-Stern and Friedman (1998). This method avoids the infeasi-
bility issues existing in the methods based on CCA and LDA. The linear 
combination from LDA is replaced with the ratio of linear combinations 
of outputs and inputs. This ratio score Tj is defined analogously to the 

Table 2 
Efficiency scores and ranks computed with the CCR model.   

A B C D E F G H I J 

CCR score 1.000 1.000 0.212 1.000 0.299 1.000 1.000 0.320 0.286 0.709 
Rank 1 1 10 1 8 1 1 7 9 6  

Table 3 
The inputs/output weights for which each DMU attained its maximal efficiency.  

Unit i1  i2  o1  o2  

A 0.00247 0.00017 0.00027 0.00216 
B 0.00052 0.00539 0.00199 0.00064 
C 0.00281 0.00000 0.00000 0.00235 
D 0.00114 0.00062 0.00000 0.00160 
E 0.00107 0.00058 0.00000 0.00150 
F 0.00077 0.00042 0.00000 0.00109 
G 0.00044 0.00864 0.00328 0.00000 
H 0.00006 0.00112 0.00043 0.00000 
I 0.00000 0.00457 0.00145 0.00000 
J 0.00099 0.00055 0.00020 0.00134  

Table 4 
Cross-efficiency matrix, cross-efficiency scores, and ranks attained by all DMUs in the illustrative example.  

Unit A B C D E F G H I J CE Rank CE 

A 1.000 0.408 0.860 0.622 0.622 0.622 0.376 0.376 0.322 0.805 0.601 5 
B 0.475 1.000 0.376 0.551 0.551 0.551 1.000 1.000 1.000 0.677 0.718 3 
C 0.189 0.015 0.212 0.142 0.142 0.142 0.005 0.005 0.004 0.138 0.099 10 
D 0.663 1.000 0.616 1.000 1.000 1.000 0.640 0.640 0.977 1.000 0.854 1 
E 0.262 0.049 0.263 0.299 0.299 0.299 0.012 0.012 0.010 0.290 0.179 7 
F 1.000 0.208 1.000 1.000 1.000 1.000 0.108 0.108 0.094 1.000 0.652 4 
G 1.000 1.000 0.620 0.567 0.567 0.567 1.000 1.000 0.865 1.000 0.819 2 
H 0.108 0.301 0.022 0.024 0.024 0.024 0.320 0.320 0.282 0.135 0.156 8 
I 0.034 0.241 0.010 0.015 0.015 0.015 0.281 0.281 0.286 0.053 0.123 9 
J 0.633 0.197 0.612 0.701 0.701 0.701 0.113 0.113 0.101 0.709 0.458 6  

Table 5 
Super-efficiency scores and ranks for the five efficient DMUs in the illustrative 
example.   

A B D F G 

SE 1.065 1.126 6.954 1.355 2.341 
Rank SE 5 4 1 3 2  
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standard efficiency score: 

Tj =

∑N
n=1unynj

∑M
m=1vmxmj

. (8) 

Similar to the LDA method, this approach exploits the division of 
DMUs into efficient and inefficient units. Specifically, it looks for the set 
of common weights maximizing the ratio of the between-group variance 
of T (SSB(T)) and the within-group variance of T (SSW(t)): 

max λ =
SSB(T)
SSW(T)

,

SSB

(

T
)

= n1

(
T1 − T

)2
+ n2

(
T2 − T

)2
=

n1n2

n1 + n2

(
T1 − T2

)2
,

SSW

(
T
)
=
∑n1

k=1

(
Tk − T1

)2
+
∑K

k=n1+1

(
Tk − T2

)2
,

(9)  

where n1 and n2 are, respectively, the numbers of efficient and ineffi-
cient DMUs, whereas T1,T2, and T are arithmetic means of ratio scores of 
the efficient DMUs, inefficient DMUs, and all units, respectively: 

T1 =

∑n1

k=1
Tk

n1
T2 =

∑K

k=n1+1
Tk

n2
, and T =

∑K

k=1
Tk

K
. (10) 

The common sets of weights identified by the three statistical ap-
proaches for the illustrative example are presented in Table 6. In the 
CCA or DR-DEA methods, these weights are incorporated into the 
standard ratio-based model to obtain each DMU’s final score. For 
example, the score of unit A is computed using DR-DEA as follows: 

EA =
1.9245⋅852 + 5.8447⋅356
8.1711⋅347 + 7.8150⋅842

=
3720.3872
9415.6017

≈ 0.395. (11) 

In turn, LDA uses a linear model for aggregation. In the context of 
unit A, the computation of score can be performed in the following way: 

EA = − (0.0050⋅347+ 0.0038⋅842)+ 0.0044⋅852+ 0.0066⋅356 ≈ 1.20.
(12) 

The scores and ranks of all DMUs considered in the illustrative 
example, according to the three statistical-based methods, are presented 
in Table 7. The ranges of these scores are very different. For instance, for 
CCA, they differ from 1.661 for unit G to 0.106 for unit C. In contrast, for 
LDA, the highest value of 1.201 is attained by unit A and the least value 
of − 4.854 by unit C. Nevertheless, for all three approaches, the five 
efficient units are ranked better than the five inefficient ones. 

3.4. Benchmark-based methods 

The benchmarking approaches quantify the importance of efficient 
DMUs in terms of their role as a reference for the inefficient units, or, 
equivalently, their usefulness compared with the other DMUs. 

3.4.1. Slack-adjusted efficiency ranking (BSA) 

A ranking method for the efficient units based on their importance as 
benchmarks for the inefficient one has been proposed by Torgersen et al. 
(1996). Within a two-stage procedure, one first employs an additive 
model (Charnes et al., 1985) to evaluate the value of slacks of DMUs. All 
units V with the slacks equal to zero are assumed to be efficient. The 
underlying model is as follows:   

Once the weights are found, the following output-oriented model is 
applied for each DMU (note that it is possible to replace it with the input- 
oriented one): 

max
1
Eo

= ϕ

subject to :
∑

k∈V
λkoynk − ϕyno = sy

no n = 1, 2,…,N

xmo −
∑

k∈V
λkoxmk = sx

mo m = 1, 2,…,M

λko⩾0 k = 1, 2,…,K.

(14) 

The above model is an output-oriented counterpart of the standard 
CCR model operating on the linear combinations of DMUs (see model 
(3)). The variables sx

mo and sy
yo are interpreted as the slacks. The slack for 

a given input/output is the difference between this factor’s values for the 
analyzed DMU and the obtained benchmark (i.e., a linear combination 
of efficient units). 

To construct a ranking of efficient DMUs, for each such a unit DMUo 

and n-th output, the potential output value yP
no and the DMU’s bench-

mark measure ρn
o have been introduced. The benchmark value is defined 

as a ratio of the scaled potential increase of n-th output for which a given 
DMU acts as a referent and all potential increases of this output. The 
former is defined as a sum, over all units DMUk, k = 1, …, K, of the 
differences between potential output value yP

nk and the actual one ynk 

multiplied by the benchmark coefficient (λko) of DMUo. Overall, yP
no and 

ρn
o are computed as follows: 

Table 6 
Common input/output weights obtained by the three statistical ranking methods 
for the illustrative example.  

Method i1  i2  o1  o2  

CCA 0.0023 0.0020 0.0016 0.0031 
LDA 0.0050 0.0038 0.0044 0.0066 
DR-DEA 8.1711 7.8150 1.9245 5.8447  

max
∑N

n=1
sy

no +
∑M

m=1
sx

mo

subject to :
∑K

k=1
λkoynk − yno = sy

no, n= 1,2,…,N

xmo −
∑K

k=1
λkoxmk = sx

mo, m= 1,2,…,M
∑K

k=1
λko = 1

sy
no⩾0,sx

mo⩾0,λko⩾0, m= 1,2,…,M;n= 1,2,…,N;k = 1,2,…,K.

(13)   

A. Labijak-Kowalska and M. Kadziński                                                                                                                                                                                                    



Expert Systems With Applications 173 (2021) 114739

6

yP
no =

yno

Eo
+ sy

no, (15)  

ρn
o =

∑K
k=1λko

(
yP

nk − ynk
)

yP
n − yn

, (16)  

where yP
n and yn are sums of, respectively, the potential and actual n-th 

output values of all DMUs, i.e.: 

yP
n =

∑K

k=1
yP

nk and yn =
∑K

k=1
ynk. (17) 

Having determined all values of ρn
o, the efficient DMUs can be ranked 

according to the values of ρo computed as an average of ρn
o for DMUo: 

ρo =

∑N
n=1ρn

o

N
. (18) 

When it comes to the illustrative example, we have implemented the 
input-oriented version of the algorithm for consistency with other 
ranking methods. In the first stage, the slacks and reference values (λij) 
for the inefficient units are determined using model (14) (see Table 8). 
These slacks are employed to determine the improved input values. For 
example, the radial (xR

c2) and improved (xP
c2) values for unit C on i2 are 

computed as follows: 

xR
c2 = θcxc2 = 0.212⋅983 = 208.396, (19)  

xP
c2 = xR

c2 − sc2 = 208.396 − 114.204 = 94.192. (20) 

In the other stage, for each input and DMU, we determine the 
comprehensive aggregated potential for a decrease of this input for 
which a given DMU acts as a referent (ρk

m). Subsequently, we rank the 
efficient units according to the comprehensive potential values. Finally, 
the mean values of these ranks are determined, leading to a complete 
ranking of efficient DMUs. The values of comprehensive potentials with 
the underlying ranks and final ranking are presented in Table 9. The 
comprehensive potentials are by far the greatest for unit G and equal to 

zero for unit A. As a result, these units are ranked first and fifth, 
respectively. 

3.4.2. Ranking based on changing the reference set (BCRS) 
The idea underlying another method investigating the role of an 

efficient DMU as the benchmark for inefficient units derives from 
measuring the changes of efficiency scores of the inefficient units after 
removing the examined DMU from the dataset (Jahanshahloo et al., 
2007). The more the efficiency frontier approaches the inefficient 
DMUs, the more efficient is the detached efficient units. 

In the first stage, the standard CCR model is applied to divide the 
units into efficient (JE) and inefficient (JI) ones. In the other stage, for 
each unit (DMUa) from JE, we compute an average efficiency score for 
units from JI considering a set of DMUs without DMUa. To determine the 
efficiency of inefficient unit DMUb without accounting for DMUa, the 
following model needs to be solved: 

max Ea
b =

∑N

n=1
unynb,

subject to :
∑M

m=1
vmxmb = 1,

∑N

n=1
unynk⩽

∑M

m=1
vmxmk, k = 1, 2,…,K, k ∕= a,

un, vm⩾0, n = 1, 2…N; m = 1, 2…M.

(21) 

Then, an overall score of the efficient DMU, DMUa, is computed as 
follows: 

Ωa =

∑
b∈JI

Ea
b

|JI |
. (22) 

The efficiencies Ea
b of inefficient units DMUb after removing the 

efficient units DMUa for the illustrative example are presented in 
Table 10. The mean values (Ωa) derived from these efficiencies and the 
final ranks are provided in the last two columns. G and F attained the 

Table 7 
The scores and ranks of all DMUs in the illustrative example according to the three statistical-based methods (CCA, LDA, and DR-DEA).   

A B C D E F G H I J 

CCA 0.985 0.953 0.106 1.053 0.248 0.884 1.661 0.339 0.137 0.664 
Rank CCA 3 4 10 2 8 5 1 7 9 6 
LDA 1.201 0.347 − 4.854 0.440 − 3.861 − 0.123 0.917 − 4.175 − 4.410 − 1.494 
Rank LDA 1 4 10 3 7 5 2 8 9 6 
DR-DEA 0.395 0.412 0.052 0.539 0.126 0.429 0.613 0.114 0.048 0.323 
Rank DR-DEA 5 4 9 2 7 3 1 8 10 6  

Table 8 
Slack values and shares in the efficient projection of the inefficient units obtained with the slack-adjusted model (BSA) for the illustrative example.  

Unit si1  si2  so1  so2  λA  λB  λD  λF  λG  θ  

C 0.000 114.204 15.911 0.000 0.000 0.000 0.000 0.098 0.000 0.212 
E 0.000 0.000 41.520 0.000 0.000 0.000 0.070 0.169 0.000 0.299 
H 0.000 0.000 0.000 150.046 0.000 0.256 0.000 0.000 2.110 0.320 
I 23.067 0.000 0.000 95.325 0.000 0.460 0.000 0.000 0.000 0.286 
J 0.000 0.000 0.000 0.000 0.000 0.000 0.192 0.408 0.126 0.709  

Table 9 
Values of comprehensive aggregated potentials and ranks for inputs of efficient 
DMUs along with the average ranks and the final ranks.  

Unit ρk
i1  

ρk
i2  

Average rank Rank BSA 

A 0.000 (5) 0.000 (5) 5 5 
B 0.206 (2) 0.112 (2) 2 2 
D 0.032 (4) 0.031 (4) 4 4 
F 0.085 (3) 0.102 (3) 3 3 
G 0.605 (1) 0.633 (1) 1 1  

Table 10 
Efficiency scores of inefficient DMUs after removal of efficient ones with average 
values and final ranks.  

Unit Ea
C  Ea

E  Ea
H  Ea

I  Ea
J  Ωa  Rank BCRS 

A 0.212 0.299 0.320 0.286 0.709 0.365 5 
B 0.212 0.299 0.325 0.321 0.709 0.373 4 
D 0.212 0.344 0.320 0.286 0.815 0.396 3 
F 0.246 0.375 0.320 0.286 0.877 0.421 2 
G 0.212 0.299 0.627 0.286 0.716 0.428 1  
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first two ranks mainly because of the high efficiencies attained by H and 
J, respectively, once these units are removed from the analysis. 

3.4.3. Interactive benchmark model (BI) 
Another method to rank the units based on the roles of the bench-

mark they play for other units was proposed by Lu and Lo (2009). In the 
first stage, this approach fixes each DMU as a benchmark and estimates 
the efficiency scores for other DMUs. Based on the standard CCR model, 
the production possibility set is spanned by (xb, yb): 

P = {(x, y) | x⩾λbxb, y⩽λbyb, y⩾0}. (23) 

The subset P of the production set P is defined as: 

P = P ∩
{

x⩾xo, y⩽yo

}
, (24)  

where (xb, yb) are vectors of input and output values of benchmark 
DMUb, and (xo, yo) are vectors of input and output values of examined 
DMUo. In the next step, index θb

o is computed as the ratio of a weighted 
distance from (xo, yo) to (x, y): 

θb
o =

1
M

∑M
m=1

xm
xmo

1
N

∑N
n=1

yn
yno

. (25) 

Having defined the variables ϕm and ψn as: 

xm = xmo(1+ϕm)andyn = yno(1 − ψn), (26)  

index θb
o can be expressed in the following way: 

θb
o = 1+

1
M

∑M
m=1ϕm

1 − 1
N

∑N
n=1ψn

. (27) 

To find the efficiency of DMUo considering DMUb as the benchmark, 
the following problem needs to be solved: 

min θb
o =

1 +
1
M

∑M

m=1
ϕm

1 −
1
N
∑N

n=1
ψn

subject to : λboxmb − xmoϕm⩽xmo, m = 1, 2,…,M

λboynb + ynoψn⩾yno, n = 1, 2,…,N

ϕm⩾0, ψn⩾0, λbo⩾0.

(28) 

The above model can be transformed into its linear programming 
counterpart using the Charnes-Cooper transformation (Charnes and 
Cooper, 1962). For this purpose, we introduce an additional variable t 
and replace the original variables with the new ones defined as follows: 
τb

o = θb
o,Λbo = tλbo,Φm = tϕm and Ψn = tψn. Then, the resulting model is 

the following: 

min τb
o = t +

1
M
∑M

m=1
Φm

subject to : t −
1
N
∑N

n=1
Ψn = 1,

Λboxmb − xmoΦm − xmot⩽0, m = 1, 2,…,M,

Λboynb + ynoΨn − ynot⩾0, n = 1, 2,…,N,

Φm⩾0, Ψn⩾0, Λbo⩾0.

(29) 

In the second stage, the DMUs are ranked according to the technical 
efficiency indices (TE). For DMUo, such an index is defined as an arith-
metic mean of the optimal values of θb

o obtained from the above model: 

TEo =

∑K
k=1θk

o

K
. (30) 

As far as the illustrative example is concerned, the minimum dis-
tances of DMUo to the point in the intersection of the projection set of 
DMUo and benchmark DMUb (θb

o) are presented in Table 11. The tech-
nical efficiency (TEo), computed as an average of these distances, and 
the underlying ranks are given in the last two columns. Such a score is 
very high for unit D, which attains the first rank. It derives from great 
efficiencies computed when some inefficient units (e.g., C or E) are set as 
the benchmarks. On the contrary, the technical efficiency is close to one 
for unit C, which attains a unitary score for seven out of ten considered 
scenarios. 

3.5. MCDA-based method (AHP-DEA) 

The next group of methods for ranking DMUs is inspired by MCDA. 
We refer to the adaptation of the Analytic Hierarchy Process (AHP) 
(Abastante et al., 2019; Saaty, 1980), which was proposed by Sinuany- 
Stern et al. (2000). The idea is to evaluate the cross-efficiency for each 
pair of DMUs (DMUa, DMUb). The cross-efficiency of DMUa using the 
weights optimal for DMUb is marked as Eab. Having found four cross- 
efficiency scores: Eaa,Eab Eba Ebb for each pair (DMUa, DMUb) ∈ D ×

D , we construct comparison matrix M with the elements defined in the 
following way: 

aaa = 1, a = 1, 2,…,K,

aab =
Eaa + Eab

Ebb + Eba
a = 1, 2,…K, b = 1, 2,…,K, a ∕= b.

(31) 

In the second step, matrix M is exploited with AHP. Specifically, we 
find the eigenvector w corresponding to the maximal eigenvalue λmax of 
matrix M. Such an eigenvector contains the priorities of all DMUs. The 
DMU corresponding to the greatest value in w is ranked at the top, and 
other DMUs are ordered according to the descending values of w. 

The matrix of cross-efficiency scores derived from the analysis of all 
pairs of DMUs in the illustrative example is shown in Table 12. For 
example, cross-efficiency for unit C using weights optimal for unit B is 
equal to 0.564. In contrast, unit B’s cross-efficiency using weights 

Table 11 
Optimal distances of DMUs to the projection sets of other DMUs (θb

o), values of technical efficiency (TEo) and ranks for all DMUs in the illustrative example.  

Unit A B C D E F G H I J TEo  Rank BI 

A 1.000 1.853 8.218 2.160 4.289 1.738 1.162 3.774 10.997 2.082 3.727 4 
B 2.317 1.000 18.961 1.625 5.873 2.377 1.623 4.297 6.650 2.488 4.721 2 
C 1.000 1.000 1.000 1.000 1.086 1.000 1.000 1.815 1.909 1.000 1.181 10 
D 3.643 1.749 87.242 1.000 26.146 6.175 2.036 4.424 4.356 6.287 14.306 1 
E 1.000 1.000 2.182 1.000 1.000 1.000 1.000 1.859 1.926 1.000 1.297 9 
F 1.387 1.454 10.614 1.426 5.012 1.000 1.330 1.958 2.664 1.289 2.813 5 
G 1.503 1.995 8.003 1.917 3.644 1.837 1.000 6.838 16.974 1.888 4.560 3 
H 1.000 1.007 1.973 1.630 1.935 1.499 1.000 1.000 2.024 1.514 1.458 7 
I 1.000 1.000 1.973 1.061 1.630 1.504 1.000 1.030 1.000 1.479 1.325 8 
J 1.338 1.239 8.994 1.171 3.788 1.033 1.279 1.938 2.205 1.000 2.399 6  

A. Labijak-Kowalska and M. Kadziński                                                                                                                                                                                                    



Expert Systems With Applications 173 (2021) 114739

8

optimal for unit C is equal to 1. Then, we construct the comparison 
matrix (see Table 13). The principal eigenvector derived from its anal-
ysis and the corresponding ranks based on the priorities contained in the 
results obtained with AHP are provided in the last two columns. All 
efficient units have priorities of at least 0.113. In contrast, the least 
priority of 0.050 is assigned to unit C. In particular, the highest score of 
unit G follows the favorable results of its comparison with the inefficient 
units such as C, H, and I. 

3.6. Network-based DEA (NDEA) 

A network-based approach for ranking DMUs follows a five-step 
procedure (Liu and Lu, 2010). The idea is based on investigating the 
role of each DMU as a benchmark for another DMU, considering all 
possible input–output combinations. The five steps are as follows: 

Step 1: Each unit is considered as a node in the network. The nodes 
are connected with the directed links with weights equal to the 
values of λko from the dual formulation of the standard DEA model. 
Step 2: The standard DEA model is applied for multiple problem 
specifications. A single specification (t) corresponds to one input/ 
output combination. The DEA model is run for all input/output 
combinations. 

Step 3: The values λt
ko obtained in the previous step are normalized. It 

prevents smaller DMUs from receiving greater λt
ko values than the 

bigger DMUs. The normalization is performed as follows: 

IWt,o
mi =

λt
ioxmi

∑K

k=1
λt

koxmk

and OWt,o
ni =

λt
ioyni

∑K

k=1
λt

koynk

. (32)  

A normalized overall share of contribution of DMUi in the refer-
ence set of DMUo is computed using the following formula: 

IOWt
oi =

∑M
m=1IWt,o

mi +
∑N

n=1OWt,o
ni

N + M
. (33)   

Step 4: The network is constructed by aggregating the results for all w 
specifications into a single network represented as an adjacency 
matrix A with elements defined as: 

aij =
[∑w

t=1
IOWt

ij

]
. (34)   

Step 5: The eigenvector v corresponding to the greatest eigenvalue of 
A is computed, and the DMUs are ranked according to the descending 
values of v. 

Table 12 
Cross efficiency matrix derived from the analysis of all pairs of DMUs for the illustrative example.  

Unit A B C D E F G H I J 

A 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
B 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
C 0.246 0.564 1.000 0.344 1.000 0.212 0.342 1.000 1.000 0.346 
D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
E 0.850 0.699 1.000 0.426 1.000 0.375 0.745 1.000 1.000 0.429 
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
G 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
H 0.879 1.000 1.000 1.000 1.000 1.000 0.326 1.000 1.000 1.000 
I 0.889 0.286 1.000 1.000 1.000 1.000 0.330 1.000 1.000 1.000 
J 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  

Table 13 
Comparison matrix for the AHP-DEA ranking approach, values wi contained in the corresponding principal eigenvector, and final ranks of DMUs in the illustrative 
example.  

Unit A B C D E F G H I J wi  Rank AHP-DEA 

A 1.000 1.000 4.058 1.000 1.177 1.000 1.000 1.138 1.125 1.000 0.113 4 
B 1.000 1.000 1.774 1.000 1.431 1.000 1.000 1.000 3.499 1.000 0.120 3 
C 0.246 0.564 1.000 0.344 1.000 0.212 0.342 1.000 1.000 0.346 0.050 10 
D 1.000 1.000 2.910 1.000 2.347 1.000 1.000 1.000 1.000 1.000 0.113 5 
E 0.850 0.699 1.000 0.426 1.000 0.375 0.745 1.000 1.000 0.429 0.067 9 
F 1.000 1.000 4.721 1.000 2.665 1.000 1.000 1.000 1.000 1.000 0.124 2 
G 1.000 1.000 2.926 1.000 1.342 1.000 1.000 3.063 3.027 1.000 0.138 1 
H 0.879 1.000 1.000 1.000 1.000 1.000 0.326 1.000 1.000 1.000 0.085 7 
I 0.889 0.286 1.000 1.000 1.000 1.000 0.330 1.000 1.000 1.000 0.077 8 
J 1.000 1.000 2.890 1.000 2.332 1.000 1.000 1.000 1.000 1.000 0.113 6  

Table 14 
Adjacency matrix for the network obtained in the illustrative example.  

Unit A B C D E F G H I J 

A 0.000 0.822 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.083 
B 2.000 0.000 1.000 2.000 1.286 1.243 2.000 2.514 4.000 1.548 
C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
D 1.000 1.592 2.000 0.000 2.375 1.866 1.000 1.147 1.615 2.137 
E 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F 2.000 1.586 4.000 2.000 3.625 0.000 2.000 1.853 1.385 3.460 
G 2.000 1.000 2.000 1.000 1.714 1.890 0.000 3.486 2.000 1.773 
H 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
J 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  
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The adjacency matrix for the network constructed after the analysis 
of all different specifications, normalization, and aggregation is pre-
sented in Table 14. The corresponding graph is given in Fig. 1. The 
principal eigenvector of the adjacency matrix and the ranking of effi-
cient DMUs are provided in Table 15. The priorities assigned to B, D, F, 
and G are 4 − 5 times greater than A’s priority. 

3.7. Methods based on robustness analysis 

The methods based on RA exploit the results derived with the Monte 
Carlo simulation (Kadziński et al., 2017; Ciomek & Kadziński, 2021). 
They take advantage of the multiplicity of input/output weights that can 
serve as the basis for comparing DMUs. For each weight vector (ui, vi) 
from a large representative subset S of input/output weights sampled 
from a uniform distribution, we compute the efficiency score Ei

o for 
DMUo: 

Ei
o =

∑N
n=1ui

nyno
∑M

m=1vi
mxmo

. (35) 

The results obtained for all analyzed samples are summarized or 
exploited in four different ways. Two of them have been originally 
elaborated by Lahdelma and and Salminen (2006) and Kadziński et al. 
(2017), whereas the other two approaches are introduced in the context 
of DEA in this paper. Overall, these ranking methods exploit the results 
which are derived from one vs. one or one against all comparisons, 
building on the three relevant perspectives on the robustness of DMUs’ 
efficiency, i.e., scores, attained ranks, and pairwise preference relations. 

First, as originally proposed by Lahdelma and and Salminen (2006), 
we may compute the expected efficiency (EE) over all weight vectors: 

EEo =

∑|S|
i=1Ei

o

|S|
. (36) 

Second, instead of analyzing the efficiency scores, we may focus on 
the ranks. For DMUo efficiency rank acceptability index ERAI(DMUo, k)
quantifies the share of weights for which DMUo is ranked k-th. Then, an 
expected efficiency rank (ER) can be computed as follows (Kadziński 
et al., 2017): 

ERo =
∑K

k=1
k⋅ERAI

(
DMUo, k

)
. (37) 

The remaining two methods exploit the pairwise efficiency out-
ranking indices PEOI(DMUo,DMUk) that capture the share of weights for 
which DMUo attains at least as good efficiency as DMUk. The matrix of 
PEOIs may be exploited in a twofold way, inspired by different MCDA 
methods. For this reason, they may also be classified with the category of 
MCDA-inspired approaches. On the one hand, we may adapt the idea 
initially implemented within the Net Flow Score (NFS) procedures used, 
e.g., in the PROMETHEE methods (Kadziński and Michalski, 2016). Let 
us denote this method by NFS-PEOI. Specifically, for each DMU, we may 
derive its net flow Φ(DMUo) as a difference between its positive Φ+ and 
negative Φ− flows. The positive flow quantifies the comprehensive 
strength of DMUo as its advantage over all remaining DMUs in terms of 
PEOIs. In contrast, the negative flow captures the comprehensive 
weakness of DMUo compared with all other units. In this perspective, an 
overall measure of desirability NFSo quantifies the difference between 
shares of feasible input/output weights for which DMUo is ranked at 
least as good and not better as other units: 

NFSo =
∑K

k=1

[
PEOI

(
DMUo,DMUk

)
− PEOI

(
DMUk,DMUo

)]
. (38) 

On the other hand, within the PEV-PEOI (Principal Eigenvector- 
based exploitation of PEOIs) method, the matrix of PEOIs is exploited 
using the eigenvector method (Saaty, 1980). Even if the exploitation 
procedure is the same as in AHP-DEA and NDEA, the results’ interpre-
tation is very different. The derived priorities – corresponding to the 
values in the principal eigenvector of the PEOI matrix – capture each 
DMU’s importance given the shares of feasible weights for which it is 
better and worse than other units. Hence, they are strictly linked to the 
robustness concern. The main difference between PEV-PEOI and NFS- 
PEOI comes from the fact that the former derives a score for each 
DMU while already accounting for the quality of other DMUs. In 
contrast, the latter sums up the arguments in favor and against a given 
DMU irrespective of the status of other DMUs that proved to be better or 
worse from the considered unit. 

To illustrate the methods based on Robustness Analysis, we analyze 
only five vectors of input/output weights (see Table 16). In practice, the 
number of such vectors is usually a few thousand. For each weight 
vector, we compute the efficiency scores. As they are not necessarily 
laying in the interval [0,1], we normalize them through dividing by the 
maximal value obtained for a given weight vector. In Table 17, we 
present the efficiencies and ranks for each weight vector. Such 
elementary results are averaged over all samples to derive the expected 
efficiencies and ranks. For example, when analyzing only the outcomes 
for the five generated sample, unit I attains an average efficiency of 
0.058, hence being ranked at the very bottom according to EE, and an 
average rank of 9, which places it in the ninth position in terms of ER. 

The matrix of PEOIs is presented in Table 18. For example, unit A is 
ranked at least as good as unit B for all studied weight vectors (PEOI(A,
B) = 1). In case of units B and F, the former attains a higher efficiency 

Fig. 1. The network obtained with the network-based DEA method for the 
illustrative example (thicker lines correspond to greater weights). 

Table 15 
Priorities wi of the efficient DMUs derived from the principal eigenvector of 
the adjacency matrix and the final ranks obtained in the network-based DEA 
for the illustrative example.  

Unit wi  NDEA Rank 

A 0.085 5 
B 0.525 2 
D 0.470 3 
F 0.554 1 
G 0.435 4  

Table 16 
A sample of five input/output weights derived with the Monte Carlo simulation.  

Sample v1  v2  u1  u2  

1 0.900 0.100 0.252 0.748 
2 0.769 0.231 0.448 0.552 
3 0.974 0.026 0.754 0.246 
4 0.942 0.058 0.356 0.644 
5 0.600 0.400 0.631 0.369  
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for 40% of feasible weights (PEOI(B, G) = 0.4), whereas an inverse 
relation holds for 60% of input/output weights (PEOI(F,B) = 0.6). 

We exploit the matrix of PEOIs in two different ways. First, we 
compute the Net Flow Scores for each DMU. In this regard, a detailed 
analysis for unit B can be conducted as follows: 

NFSB = (0+ 1+ 1+ 0.8+ 1+ 0.4+ 0+ 1+ 1+ 0.8)
− (1+ 1+ 0+ 0.2+ 0+ 0.6+ 1+ 0+ 0+ 0.2) = 7 − 4 = 3.

(39) 

It sums up the row’s values corresponding to unit B in the PEOI 
matrix and subtracts the values from the respective column. A positive 
score for B means that the share of feasible weight vectors for which it 
attained a better score than other DMUs is greater than the share of 
input/output weights for which it proved to be worse. The detailed 
scores and ranks derived with this method are presented in Table 19. For 
example, unit G attains the highest possible score because it turned out 
to better than all remaining DMUs for all weight vectors. On the other 
extreme, unit C’s score is very negative because the results of its com-
parison with all remaining units are unfavorable. 

For the scores and ranks derived with PEV-PEOI, see Table 19. For 
this particular problem, the ranks are the same as those obtained with 

NFS-PEOI. However, the scores differ a lot. First, they are all positive, 
whereas in NFS-PEOI, the least advantageous units attain the negative 
scores. Second, their interpretation is relative rather than absolute. That 
is, in NFS-PEOI, the score can be interpreted on a scale between the 
greatest and the least possible values, whereas in PEV-PEOI, one should 
rather focus on the ratios of scores attained by different pairs of units. 
Third, PEV-PEOI tends to emphasize the evident advantage of some 
units over the others observed in the matrix of PEOIs. For example, when 
comparing the top-ranked units G and A, the score assigned to G is by 
over 60% higher. This is mainly due to its superiority over unit A 
demonstrated by PEOI(G,A) = 1. In NFS-PEOI, the advantage of G over 
A also derives from the direct comparison of these two units. However, it 
is smaller in magnitude because both these units compare positively 
with all remaining ones. 

3.8. Virtual DMU method (VDMU) 

The last presented method (Wang and Luo, 2006) is inspired by 
another MCDA approach, called TOPSIS (Hwang and Yoon, 1981; de 
Lima Silva et al., 2020). It is representative of the group of procedures 
incorporating single or multiple artificial, invisible, dummy, or virtual 
DMUs in the ranking procedure (see, e.g., Hosseinzadeh Lotfi et al., 
2011; Jahanshahloo et al., 2010; Kritikos, 2017; Wang and Yang, 2007). 
Specifically, it accounts for a pair of virtual DMUs, ideal (IDMU) and 
anti-ideal (ADMU) ones. IDMU consumes the least possible inputs and 
produces the greatest outputs: 

xmI = min
k

{

xmk

}

m = 1, 2,…,M, k = 1, 2,…,K,

ynI = max
k

{

ynk

}

n = 1, 2,…,N, k = 1, 2,…,K.

(40) 

In turn, ADMU consumes the greatest inputs and produces the least 
outputs: 

xmA = max
k

{

xmk

}

m = 1, 2,…,M, k = 1, 2,…,K,

ynA = min
k

{

ynk

}

n = 1, 2,…,N, k = 1, 2,…,K.

(41) 

The super-efficiency model is applied for the basic dataset enriched 
with IDMU. Specifically, the efficiency of an ideal unit is maximized: 

max θIDMU =
∑N

n=1
unynI

subjectto :
∑M

m=1
vmxmI = 1,

∑N

n=1
unynk⩽

∑M

m=1
vmxmk, k= 1,2,…,K,

un⩾0,vm⩾0, n= 1,2,…,N; m= 1,2,…,M.

(42) 

Since the above model can have multiple optimal solutions, the 

Table 17 
The efficiency scores and ranks obtained for five generated samples, expected efficiency scores (EE), expected ranks (ER) and ranks obtained by the DMUs according to 
these two measures (Rank EE) and (Rank ER) for the illustrative example.   

Sample     

Unit 1 2 3 4 5 EE Rank EE ER Rank ER 

A 0.796 (2) 0.618 (2) 0.617 (2) 0.744 (2) 0.512 (2) 0.657 2 2.0 2 
B 0.386 (6) 0.368 (4) 0.229 (3) 0.321 (4) 0.408 (3) 0.342 4 4.0 4 
C 0.11 (9) 0.054 (10) 0.026 (10) 0.083 (9) 0.028 (10) 0.060 9 9.6 10 
D 0.433 (4) 0.309 (5) 0.101 (7) 0.301 (5) 0.262 (4) 0.281 5 5.0 5 
E 0.161 (7) 0.094 (8) 0.03 (9) 0.112 (8) 0.059 (9) 0.091 8 8.2 8 
F 0.631 (3) 0.384 (3) 0.173 (5) 0.466 (3) 0.256 (5) 0.382 3 3.8 3 
G 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 1 1.0 1 
H 0.153 (8) 0.195 (7) 0.196 (4) 0.167 (7) 0.231 (6) 0.188 7 6.4 7 
I 0.045 (10) 0.062 (9) 0.052 (8) 0.047 (10) 0.085 (8) 0.058 10 9.0 9 
J 0.409 (5) 0.267 (6) 0.117 (6) 0.3 (6) 0.195 (7) 0.258 6 6.0 6  

Table 18 
Pairwise efficiency outranking indices (PEOIs) for all pairs of DMUs in the 
considered example.  

Unit A B C D E F G H I J 

A 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 
B 0.0 1.0 1.0 0.8 1.0 0.4 0.0 1.0 1.0 0.8 
C 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 
D 0.0 0.2 1.0 1.0 1.0 0.2 0.0 0.8 1.0 0.8 
E 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.2 0.6 0.0 
F 0.0 0.6 1.0 0.8 1.0 1.0 0.0 0.8 1.0 1.0 
G 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
H 0.0 0.0 1.0 0.2 0.8 0.2 0.0 1.0 1.0 0.4 
I 0.0 0.0 0.6 0.0 0.4 0.0 0.0 0.0 1.0 0.0 
J 0.0 0.2 1.0 0.2 1.0 0.0 0.0 0.6 1.0 1.0  

Table 19 
Scores and ranks derived with PEV-PEOI and NFS-PEOI for the illustrative 
example based on the matrix of PEOIs.  

Unit PEV-PEOI Score Rank PEV-PEOI NFS-PEOI Score Rank NFS-PEOI 

A 0.4866 2 7.0 2 
B 0.2276 4 3.0 4 
C 0.0007 10 − 8.2 10 
D 0.1447 5 1.0 5 
E 0.0108 8 − 5.4 8 
F 0.2506 3 3.4 3 
G 0.7842 1 9.0 1 
H 0.0760 7 − 1.8 7 
I 0.0029 9 − 7.0 9 
J 0.0822 6 − 1.0 6  
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following model is subsequently applied for each DMUo ∈D : 

max θo=
∑N

n=1
unyno

subjectto :
∑M

m=1
vmxmo=1,

∑N

n=1
unynk⩽

∑M

m=1
vmxmk, k=1,2,…,K,

∑N

n=1
unynI =θ*

IDMU

∑M

m=1
vmxmI ,

un⩾0,vm⩾0, n=1,2,…,N; m=1,2,…,M,

(43)  

where θ*
IDMU is the optimal objective value from model (42). Hence, 

IDMU is constrained to attain the greatest possible efficiency θ*
IDMU. The 

optimal value for the model above is denoted by θ*
o. A similar analysis is 

conducted for the dataset enriched with ADMU, whose efficiency is 
minimized. Specifically, we consider the following two models: 

min ϕADMU =
∑N

n=1
unynA

subjectto :
∑M

m=1
vmxmA = 1,

∑N

n=1
unynk⩾

∑M

m=1
vmxmk, k= 1,2,…,K,

un⩾0,vm⩾0, n= 1,2,…,N; m= 1,2,…,M.

(44)  

min ϕo=
∑N

n=1
unyno

subjectto :
∑M

m=1
vmxmo=1,

∑N

n=1
unynk⩾

∑M

m=1
vmxmk, k=1,2,…,K,

∑N

n=1
unynA=ϕ*

ADMU

∑M

m=1
vmxmA,

un⩾0,vm⩾0, n=1,2,…,N;m=1,2,…,M.

(45) 

The optimal solutions of models (44) and (45) are denoted by, 
respectively, ϕ*

ADMU and ϕ*
o. The DMUs are ranked according to the 

relative closeness (RC) index defined as follows: 

RCo =
ϕ*

o − ϕ*
ADMU(

ϕ*
o − ϕ*

ADMU

)
+
(
θ*

IDMU − θ*
o

) . (46) 

The inputs and outputs for the ideal and anti-ideal virtual units for 
the illustrative example are presented in Table 20. The maximal effi-
ciency score for the ideal unit IDMU is θ*

IDMU = 13.843, and the minimal 
efficiency for the anti-ideal unit is ϕ*

ADMU = 0.09. 
For each DMUo, the efficiency scores relative to the ideal and anti- 

ideal DMUs (ϕ*
o and θ*

o) are presented in Table 21. Finally, the units 
are ordered according to the relative closeness scores (RCo). The highest 
value is attained by unit G, whereas the lowest one by unit I. Interest-
ingly, efficient unit D is ranked lower than two inefficient units H and J. 

3.9. Features of the considered ranking methods 

In Table 22, we summarize the strengths and weaknesses of the 
presented ranking methods. They can serve as a guide supporting 

selecting a ranking method based on its features. In particular, we refer 
to the number of weight vectors considered when constructing a 
ranking, a subset of units affected by ranking with a given method, 
computational complexity and techniques, intuitiveness of the provided 
scores, and some peculiar characteristics that cannot be generalized to 
all methods. 

3.10. Summary of the rankings derived with different methods for the 
illustrative example 

In Table 23, we present the rankings obtained with sixteen consid-
ered methods (including the standard CCR model). Let us emphasize 
that the inefficient units are ordered according to their CCR efficiency 
scores for the approaches that discriminate only between the efficient 
ones. When it comes to the very top of rankings, the first position is 
attained by G, D, and A for, respectively, 11,4, and 2 methods. In turn, C 
and I are ranked at the very bottom by, respectively, 13 and 3 proced-
ures. The positions attained by the inefficient units for various methods 
are relatively stable. For example, J is always ranked sixth, E attains 
positions between 7 and 9, whereas C is ranked at the two bottom ranks 
by all procedures. When it comes to efficient units, the variety of 
attained ranks is greater. In particular, A is ranked first in the best 
possible scenarios and fifth in the worst case, whereas the ranks of G are 
in the interval [1,4]. D is the only efficient unit ranked worse than some 
inefficient units for some ranking methods (see VDMU, where H and J 
are ranked better than E). 

4. Experimental comparison of rankings provided by different 
methods 

This section aims to demonstrate how the same problem (i.e., a 
ranking of DMUs with the same input and output values) can be 
approached by methods representing different streams in DEA. Specif-
ically, we report the results of an extensive experimental comparison of 
ranking methods in DEA in terms of the results they provide. For this 
purpose, we consider artificial and real-world datasets, as well as five 
similarity measures. However, we do not indicate a clear winner nor 
good or bad methods. We neither claim that there are clear benefits in 
favor of one approach compared to the others. Unlike in machine 
learning, there is no objective truth to be attained in DEA, and the 
assumption that the DM’s true ranking pre-exists is unrealistic. Hence, 
the experimental comparison of different ranking methods with objec-
tive reality is ill-founded. Nevertheless, the empirical comparison of the 
outputs of different DEA ranking methods is meaningful because there 
exists a common context of their use. Numerous ranking methods have 
been proposed over the last decades. Each of them is based on different 
axioms and introduces some instrumental bias in its steps, potentially 
leading to different results. Our experiments constitute an important 
step in verifying the similarity of outputs provided by several ranking 
methods. We want to reveal analogies and differences between these 

Table 20 
Input and output values for virtual ideal (IDMU) and anti-ideal (ADMU) DMUs.  

Virtual Unit i1  i2  o1  o2  

IDMU 73 53 852 919 
ADMU 910 983 12 11  

Table 21 
Efficiency scores in relation to the ideal and anti-ideal units, relative closeness 
scores and final ranks of DMUs according to the virtual DMU method for the 
illustrative example.  

Unit ϕ*
o  θ*

o  RCo  Rank VDMU 

A 0.805 14.333 0.522 2 
B 0.677 5.192 0.279 4 
C 0.138 1.000 0.062 9 
D 1.000 3.324 0.201 7 
E 0.290 1.180 0.074 8 
F 1.000 5.656 0.302 3 
G 1.000 21.004 0.619 1 
H 0.135 3.823 0.214 5 
I 0.053 1.000 0.061 10 
J 0.709 3.658 0.213 6  
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approaches while referring to the results they provide. Such conclusions 
can be used in a twofold way. On the one hand, in real-world decision 
analysis, one can select a single approach from a sub-group providing 
the same or very similar results on a broad spectrum of problems. Even if 
the underlying rules of these methods differ, their recommendations 
match to a large extent. In this way, the user is guided in the plethora of 
available methods. On the other hand, to investigate different aspects of 
the problem, one can apply approaches from sub-groups whose appli-
cation on the same problem instances leads to dissimilar results. This is 
useful for understanding the conditions under which different units can 
be judged more or less preferred than others. Obviously, these findings 
need to be confronted against potential users’ subjective opinions 
because the usefulness of adopting some ideas in practice is the matter of 
the reader’s individual interpretation that should also consider the 
strength and weaknesses discussed in Section 3.9. 

4.1. Choice and ranking correlation measures 

To compare the rankings generated by different methods, we 
considered the following choice and ranking similarity measures (Kad-
ziński and Michalski, 2016):  

• Hit ratio (HR) (Barron and Barrett, 1996) – a binary measure which 
is equal to one if both methods rank the same DMU at the top, which 
can be represented with the following formula: 

HR
(

R1,R2

)

=

{
1 if R1(1) ∩ R2(1) ∕= ∅
0 otherwise, (47)  

where Rx(r) is a set of DMUs ranked r-th in the order imposed by the 
Rx method (e.g., R1(1) is a set of DMUs ranked at the very top by 
procedure R1). For example, based on the results presented in Section 
3.10, HR(CE, SE) = 1 as both CE and SE rank D at the top, whereas 
HR(CCA,LDA) = 0, because CCA and LDA rank, respectively, G and 
A at the first position. The examples for the remaining measures are 
also based on the outcomes provided in Section 3.10.  

• Normalized Hit Ratio (NHR) (Kadziński and Michalski, 2016) is an 
extension of the HR measure, which takes into consideration the 
partial agreement between rankings. It is defined as follows: 

Table 22 
Main advantages and disadvantages of the considered ranking methods.  

Method Advantages Disadvantages 

CE Multiple weight vectors 
considered.  
Drops unrealistic weight 
schemes.  
Applies peer and unbiased self- 
evaluation. 

Limited set of common weights.  
Ambiguity in the selection of 
weights. 

SE Simplicity. Detecting outliers. Ranks only efficient units.  
Occasional infeasibility.  
No common basis for the comparison 
of units.  
Can favor specialized units. 

CCA Common basis for the 
comparison of units. 
Ranks all units. 

Reliance on a single weight vector.  
Inefficient unit can be ranked at the 
top.  
Occasional infeasibility.  
Complex application. Sensitivity of 
eigenvector computation. 

LDA Common basis for the 
comparison of units.  
Ranks all units. 

Reliance on a single weight vector.  
Inefficient unit can be ranked at the 
top.  
Occasional infeasibility. 

DR-DEA Common basis for the 
comparison of units.  
Ranks all units. 

Reliance on a single weight vector.  
Inefficient unit can be ranked at the 
top. 

BSA Investigates the impact of 
efficient units on the inefficient 
ones. 

Ranks only efficient units.  
Complex interpretation of scores. 

BCRS Investigates the impact of 
efficient units on the inefficient 
ones.  
Multiple weight vectors 
considered.  
Simple and direct application. 

Ranks only efficient units.  
Limited set of common weights 
considered. 

BI Investigates the impact of units 
on the efficiency of others. 
Ranks all units. 

No common basis for the comparison 
of units. 

AHP- 
DEA 

Incorporates DMUs’ cross- 
efficiency comparisons.  
Ranks all units. 

Inefficient unit can be ranked at the 
top.  
Sensitivity of eigenvector 
computation. 

NDEA Considers multiple 
input–output settings.  
Ranks all units. 

High time complexity.  
Sensitivity of eigenvector 
computation.  
Complex interpretation of scores. 

EE All feasible weight vectors 
considered.  
Avoids arbitrary selection of 
weights.  
Intuitive interpretation of 
scores.  
Ranks all units. 

Requires sampling procedure.  
Inefficient unit can be ranked at the 
top. 

ER All feasible weight vectors 
considered.  
Avoids arbitrary selection of 
weights.  
Intuitive interpretation of 
scores.  
Ranks all units. 

Requires sampling procedure.  
Averages ordinal measures (ranks).  
Inefficient unit can be ranked at the 
top. 

PEV- 
PEOI 

All feasible weight vectors 
considered.  
Avoids arbitrary selection of 
weights.  
Based on DMUs’ pairwise 
comparisons.  
Ranks all units. 

High time complexity.   

Requires sampling procedure.  
Sensitivity of eigenvector 
computation. Inefficient unit can be 
ranked at the top. 

NFS- 
PEOI 

All feasible weight vectors 
considered.  
Avoids arbitrary selection of 
weights.  
Based on DMUs’ pairwise 
comparisons.  
Ranks all units. 

Requires sampling procedure.  
Inefficient unit can be ranked at the 
top. 

VDMU Changes the original set of DMUs.  
High sensitivity to outlying DMUs  

Table 22 (continued ) 

Method Advantages Disadvantages 

Simplicity and intuitiveness.  
Low time complexity.  
Ranks all units. 

due to incorporating extreme units.  
Limited set of weight vectors. 
Ambiguity in the selection of 
weights.  

Table 23 
Ranks attained by the ten DMUs according to sixteen ranking methods appli-
cable in the context of DEA for the illustrative example.  

Method A B C D E F G H I J 

CCR 1 1 10 1 8 1 1 7 9 6 
CE 5 3 10 1 7 4 2 8 9 6 
SE 5 4 10 1 8 3 2 7 9 6 
CCA 3 4 10 2 8 5 1 7 9 6 
LDA 1 4 10 3 7 5 2 8 9 6 
DR-DEA 5 4 9 2 7 3 1 8 10 6 
BSA 5 2 10 4 8 3 1 7 9 6 
BCRS 5 4 10 3 8 2 1 7 9 6 
BI 4 2 10 1 9 5 3 7 8 6 
AHP-DEA 4 3 10 5 9 2 1 7 8 6 
NDEA 5 2 10 3 8 1 4 7 9 6 
EE 2 4 9 5 8 3 1 7 10 6 
ER 2 4 10 5 8 3 1 7 9 6 
PEV-PEOI 2 4 10 5 8 3 1 7 9 6 
NFS-PEOI 2 4 10 5 8 3 1 7 9 6 
VDMU 2 4 9 7 8 3 1 5 10 6  
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NHR
(

R1,R2

)

=
R1(1) ∩ R2(1)
R1(1) ∪ R2(1)

. (48)  

When both methods rank the same set of DMUs at the top, then 
NHR(R1,R2) = HR(R1,R2) = 1 (e.g., NHR(CE,SE) = 1). If some DMU 
is ranked the best using both procedures, but the subsets of top units 
are not the same (R1(1) ∕= R2(1)), then HR(R1,R2) = 1 and NHR(R1,

R2) < 1 (e.g., NHR(CCR,CE) = 0.2 as CCR ranks five units at the top, 
and one of them is D, which is also judged as the most preferred by 
CE).  

• Kendall’s τ (Hays and Winkler, 1970) is derived from the analysis of 
agreements and disagreements between relations observed in the 
two rankings for all pairs of DMUs. Let us denote the preference and 
indifference relations in the ranking provided by R by, respectively, 
≻R and ̃R. A function p(R,DMUo,DMUk) translating the relation 
observed for a pair (DMUo,DMUk) of DMUs into a numerical value is 
defined as follows: 

p

⎛

⎜
⎜
⎝R,DMUo,DMUk

⎞

⎟
⎟
⎠=

⎧
⎪⎪⎨

⎪⎪⎩

1, if DMUo≻
RDMUk,

0.5, if DMUo∼
RDMUk,

0, if DMUo =DMUk ∨DMUk≻
RDMUo.

(49)  

Then, Kendall’s τ is defined in the following way: 

τ
(

R1,R2,K
)

= 1 − 4
dk(R1,R2)

K⋅(K − 1)
, (50)  

where dk(R1,R2) is a Kendall’s distance between R1 and R2:   

The extreme values of τ(R1,R2,K) are 1 and − 1, indicating that the 
two rankings are the same or one ranking negates all pairwise re-
lations observed in the other one. For example, τ(BI,AHP − DEA,10)
= 0.778, hence being relatively high, because the relations observed 
in BI and AHP-DEA are different only for 10 out of 90 pairs of DMUs.  

• Rank Difference Measure (RDM) (Kadziński and Michalski, 2016) 
takes into account the difference between positions attained by each 
DMU in the generated rankings. To account for the shared ranks, we 
consider the best r*(R,DMUo) and the worst r*(R,DMUo) ranks of 
DMUo in ranking R. They can be computed in the following way: 

r*( R,DMUo
)
= K −

⃒
⃒DMUk, k = 1,…,K, k ∕= o : DMUo≿RDMUk

⃒
⃒,

(52)  

r*
(
R,DMUo

)
= 1+

⃒
⃒DMUk, k = 1,…,K, k ∕= o : DMUk≿RDMUo

⃒
⃒,

(53)  

where ≿R = ≻R ∪ ∼R is a weak preference relation interpreted as 
“being at least as good” in ranking R. For example, when considering 
the illustrative example, the best rank r* of units A, B, D, F, and G in 
the ranking obtained by applying the CCR method is one because 
they are at least as good as nine other DMUs (10 − 9 = 1). On the 
contrary, their worst rank r* is the fifth position (1 + 4 = 5) because 
four other units are ranked at least as good. Then, the RDM measure 
is defined as follows: 

RDM

(

R1,R2,K

)

= 1 −
∑

DMUo∈D

⃒
⃒r
(
R1,DMUo

)
− r
(
R2,DMUo

)⃒
⃒

maxrank
diff

(
K
) ,

(54)  

where |r(R1,DMUo) − r(R2,DMUo)| is an average distance between 
positions attained by DMUo in the two rankings, R1 and R2: 

⃒
⃒
⃒
⃒
⃒
r

(

R1,DMUo

)

− r

(

R2,DMUo

)⃒
⃒
⃒
⃒
⃒

=

∑r*(R1 ,DMUo)

r1=r*(R1 ,DMUo)

∑r*(R2 ,DMUo)

r2=r*(R2 ,DMUo)

⃒
⃒
⃒r1 − r2

⃒
⃒
⃒

(r*(R1,DMUo) − r*(R1,DMUo) + 1)⋅(r*(R2,DMUo) − r*(R2,DMUo) + 1)
(55)  

and 

maxrank
diff

⎛

⎜
⎜
⎜
⎝

K

⎞

⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⌊
K
2

⌋

⋅K, if K is even,

⌈
K
2

⌉

⋅
(

K − 1
)

, if K is odd.

(56)  

The RDM measure takes values between 0 and 1, where 1 means 
that the analyzed rankings are the same, and 0 denotes that they are 
inverse and hence a difference between the positions attained by the 
DMUs is the highest possible. For example, RDM(CCA, LDA, 10) =

1 − 6/50 = 0.88, hence indicating a very high agreement, because 
the sum of rank differences for all DMUs is equal to six (for a single 

DMU, the difference amounts to two, for four DMUs – it is equal to 
one, and for the remaining five DMUs – it is zero), and in the worst 
possible case, when considering ten DMUs, the maximal difference 
between all ranks could be fifty. Note that when comparing the 
ranking derived with a given procedure with itself, RDM can be lesser 
than one. This is desired for scenarios when multiple alternatives are 
ranked ex-aequo, i.e., attain the same rank. In case there are no 
shared ranks, RDM(R,R,K) = 1 for all procedures R and values of K.  

• Rank Acceptance Measure (RAM) (Kadziński and Michalski, 2016) 
quantifies how often the same alternative attains the same ranks in 
both analyzed rankings, hence generalizing NHR to the entire 
ranking. It is defined as follows: 

RAM
(

R1,R2,K
)

=
1
K
∑K

r=1
RA
(

R1,R2, r
)

, (57)  

where: 

RA
(

R1,R2, r
)

=
|R1(r) ∩ R2(r)|
|R1(r) ∪ R2(r)|

. (58)  

RAM takes values in the interval [0, 1], where 1 means that all 
DMUs attain the same position in both rankings, whereas 0 indicates 
that each DMU attains a different position in the compared rankings. 
For example, RAM(ER, VDMU, 10) = 0.6, because six out of ten 
DMUs attain the same position in the rankings determined by ER and 
VDMU. 

dk

(
R1,R2

)
=0.5

∑

(DMUo ,DMUk)∈D ×D

⃒
⃒
⃒p
(

R1,DMUo,DMUk

)
− p
(

R2,DMUo,DMUk

)⃒
⃒
⃒. (51)   
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4.2. Experimental comparison involving artificial datasets 

To compare the results of ranking methods discussed in Section 3, we 
generated 960 random datasets for 96 different problem settings. The 
datasets involved from 2 to 5 inputs and outputs. To select the number of 
units, we have studied the typical problem sizes considered in the DEA 
applications. In particular, we have reviewed a few papers reporting at 
least several studies and computed some statistics. They indicate that the 
median number of units in these studies ranges from 23 to 66 (see, e.g., 
applications on seaports (Panayides et al., 2009) – median of 23, airports 
(Fasone and Zapata-Aguirre, 2016) – 29, power engineering (Meng 
et al., 2016) – 30, dynamic DEA (Mariz et al., 2018) – 31.5, healthcare 
(Kohl et al., 2019) – 53, banking and finances (Kaffash and Marra, 2017) 
– 57, and education (Worthington, 2001) – 66). The minimal number of 
units is usually at most ten, whereas the maximum is often a few hun-
dred. Note, however, that in the case of large datasets, it is very rare that 
one analyzes the whole ranking. In fact, the rank of at most several 
dozen units is of interest to the user, while the rest of the units are 
neglected and can remain unordered. For this reason, we have decided 
to distinguish two size ranges: the most typical, small-scale DEA appli-
cations with K ranging from 5 to 30 and large problem instances for 
which still the entire ranking may be of interest to the user, where K 
ranges from 75 to 100. Finally, the values of consumed inputs and 
produced outputs were generated from the following two distributions 
within the range [0,1]: (a) the uniform distribution, and (b) the truncated 
normal distribution with μ = 0.5 and σ = 0.1. 

For all pairs of methods, we computed five similarity measures. To 
investigate the potential impact of the number of units K and the dis-
tribution of performances, we averaged the results separately for the 
four scenarios distinguished by the small or large data sets and the 
uniform or normal performance distribution. In the main paper, we 
discuss the results for small problem instances with K ranging from 5 to 
30 and uniformly distributed performances. The respective results are 
provided in Tables 24–28. The outcomes for the remaining scenarios are 
discussed in the e-Appendix (supplementary material available online). 

4.2.1. Measures for choice for small problem instances and uniform 
performance distribution 

In Tables 24 and 25, we provide the average results for Hit Ratio and 
Normalized Hit Ratio. When it comes to HR, let us first focus on the 
comparisons of CCR with all remaining methods. Its value is equal to one 
for 11 out of 15 ranking procedures, which means that in all considered 
problem settings, they rank at the top some unit, which is deemed 
efficient and hence ranked first with the standard CCR model. The four 

methods which rank some inefficient DMU first for some considered 
settings are CCA (agreement for 63.3% datasets), LDA (99.2%), AHP- 
DEA (97.9%), and PEV-PEOI (57.9%). The highest agreement in terms 
of HR is attained by the methods based on Robustness Analysis that 
incorporate the Monte Carlo simulations to compute the expected ranks, 
expected efficiencies or net flow scores (HR(ER, NFS − PEOI) = 0.975,
HR(EE, NFS − PEOI) = 0.871, and HR(ER, EE) = 0.850) and the two 
benchmarking methods (HR(BSA,BCRS) = 0.767). In general, AHP-DEA 
attains the highest average similarity to all other methods. For 7 out of 
15 methods, its agreement in terms of HR is greater than 0.7. The other 
three methods which attain high average similarity to all other methods 
are NFS-PEOI, EE, and ER. On the contrary, CCA attains the least simi-
larity to all other methods, which means that the rules it employs to 
select the most preferred DMU are very different from these incorpo-
rated by the remaining procedures. Three other approaches that score 
relatively low in terms of HR (i.e., < 0.5) compared with the remaining 
methods are SE, BI, and PEV-PEOI. 

Note that the high similarity of CCR with the remaining ranking 
procedures in terms of HR results from identifying a subset of DMUs by 
the CCR model as efficient and equally desirable. This is penalized by 
NHR, which computes the share of DMUs that are jointly ranked at the 
top by a pair of methods instead of capturing only a binary agreement. 
Consequently, the agreement of CCR with all remaining methods in 
terms of ranking the same DMU at the top quantified with NHR is very 
low, i.e., ≤ 0.333. This confirms that ranking methods can discriminate 
between the efficient units, making them more comparable using some 
arbitrary measures. In general, NHR values are lower than HR, and when 
the methods do not rank multiple DMUs at the very top, they are the 
same or only slightly lesser. The highest average decrease in terms of 
NHR when compared with HR can be observed for LDA, DR-DEA, and 
AHP-DEA. The most and the least similar pairs of approaches remained 
the same as for HR. In particular, CCA is very dissimilar from the 
remaining procedures in indicating the top-ranked DMU. In contrast, the 
simulation-based methods NFS-PEOI, EE, and ER capture well, on 
average, the indications of the most preferred DMU provided by all 
remaining approaches. 

4.2.2. Measures for ranking for small problem instances and uniform 
performance distribution 

In Tables 26–28, we provide the average results for Kendall’s τ,RDM, 
and RAM. When considering these three similarity measures that take 
into account the entire rankings, the conclusions in terms of the most 
similar and dissimilar rankings are consistent to a great extent. Hence, 
we discuss the conclusions derived from the analysis of Kendall’s τ and 

Table 24 
Average Hit Ratio for all pairs of ranking procedures over all artificial datasets with a small number of units K and uniform performance distribution.   

CCR CE SE CCA LDA DR- 
DEA 

BSA BCRS BI AHP- 
DEA 

NDEA EE ER PEV- 
PEOI 

NFS- 
PEOI 

VDMU 

CCR 1.000 1.000 1.000 0.633 0.992 1.000 1.000 1.000 1.000 0.979 1.000 1.000 1.000 0.579 1.000 1.000 
CE 1.000 1.000 0.321 0.171 0.508 0.513 0.554 0.554 0.312 0.717 0.425 0.637 0.654 0.308 0.654 0.367 
SE 1.000 0.321 1.000 0.150 0.354 0.267 0.246 0.279 0.625 0.425 0.479 0.375 0.312 0.150 0.312 0.308 
CCA 0.633 0.171 0.150 1.000 0.292 0.212 0.188 0.196 0.133 0.337 0.163 0.188 0.171 0.183 0.175 0.142 
LDA 0.992 0.508 0.354 0.292 1.000 0.633 0.492 0.462 0.312 0.567 0.371 0.508 0.521 0.362 0.525 0.371 
DR-DEA 1.000 0.513 0.267 0.212 0.633 1.000 0.429 0.404 0.275 0.525 0.350 0.492 0.508 0.300 0.517 0.342 
BSA 1.000 0.554 0.246 0.188 0.492 0.429 1.000 0.767 0.212 0.763 0.321 0.533 0.558 0.267 0.562 0.313 
BCRS 1.000 0.554 0.279 0.196 0.462 0.404 0.767 1.000 0.246 0.742 0.371 0.579 0.592 0.258 0.596 0.329 
BI 1.000 0.312 0.625 0.133 0.312 0.275 0.212 0.246 1.000 0.421 0.500 0.321 0.267 0.117 0.267 0.250 
AHP- 

DEA 
0.979 0.717 0.425 0.337 0.567 0.525 0.763 0.742 0.421 1.000 0.500 0.704 0.754 0.467 0.750 0.488 

NDEA 1.000 0.425 0.479 0.163 0.371 0.350 0.321 0.371 0.500 0.500 1.000 0.517 0.450 0.183 0.450 0.317 
EE 1.000 0.637 0.375 0.188 0.508 0.492 0.533 0.579 0.321 0.704 0.517 1.000 0.850 0.400 0.871 0.342 
ER 1.000 0.654 0.312 0.171 0.521 0.508 0.558 0.592 0.267 0.754 0.450 0.850 1.000 0.458 0.975 0.342 
PEV- 

PEOI 
0.579 0.308 0.150 0.183 0.362 0.300 0.267 0.258 0.117 0.467 0.183 0.400 0.458 1.000 0.467 0.183 

NFS- 
PEOI 

1.000 0.654 0.312 0.175 0.525 0.517 0.562 0.596 0.267 0.750 0.450 0.871 0.975 0.467 1.000 0.346 

VDMU 1.000 0.367 0.308 0.142 0.371 0.342 0.313 0.329 0.250 0.488 0.317 0.342 0.342 0.183 0.346 1.000  
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then comment on some interesting aspects observed for RDM and RAM. 
Let us first focus on the pairs of ranking methods that construct the 

most similar rankings in terms of pairwise preference relations (see 
Table 26). Specifically, the highest values of Kendall’s τ are attained by 
the pairs of simulation-based methods (for NFS-PEOI and ER – 0.979, EE 
and ER – 0.927, and NFS-PEOI and EE – 0.926), benchmarking ap-
proaches (for BSA and BCRS – 0.851) as well NDEA and SE (0.815). Also, 
the three methods that compute expected ranks and efficiencies or net 
flow scores attain similar results to CE, which is understandable in view 
of related rules that drive their ranking construction procedures. Note 
that when Kendall’s τ is greater than 0.7, this means that the same 
pairwise relations are observed for over 85% of DMUs. In general, EE, 
NFS-PEOI, ER, CE, and BCRS attain the highest average similarity with 
the remaining methods. 

On the contrary, the least similarities are observed for comparing 
PEV-PEOI and CCA with other procedures. Indeed, for all or the vast 
majority of methods compared with PEV-PEOI and CCA, Kendall’s τ is 
lesser than zero. This means that PEV-PEOI and CCA rank the majority 
pairs in a different way than other approaches. Another method 
attaining relatively low similarities when compared with the remaining 
methods is VDMU. Specifically, the greatest similarity (0.509) that it 
reaches is when being compared with CE. When comparing the ranking 
provided by CCR and other procedures, the values of Kendall’s τ are 
relatively high (from 0.311 to 0.670, when neglecting PEV-PEOI and 
CCA). However, this is mainly due to greater consistency in terms of 
ordering the inefficient units. Placing all efficient DMUs at the top by 
CCR deteriorates the similarity measure when compared with the 
methods imposing a complete order without tied ranks in the vast ma-
jority of scenarios. 

The observations derived from the analysis of RDM and RAM in terms 
of the most and the least similar pairs of methods are very alike (see 
Tables 27 and 28). In what follows, we raise some interesting points:  

• for the vast majority of methods compared with themselves, RDM is 
lower than one, which is due to the shared ranks attained by multiple 
DMUs in numerous scenarios (e.g., RDM(CCR,CCR) = 0.729);  

• the greatest similarity in terms of RDM is observed for NFS-PEOI and 
ER, revealing over 98% consistency in terms of the differences be-
tween ranks attained by all DMUs;  

• the least similarity in terms of RDM is observed for BSA and CCA with 
only 32% consistency (when comparing CCA with all methods, the 
RDM similarity is never higher than 0.35);  

• the consistency in terms of rank differences is relatively low, around 
50%, for all pairs including AHP-DEA, PEV-PEOI, LDA, and VDMU; 

• even though the values of Kendall’s τ and RDM indicate high simi-
larities, RAM confirms that there is no perfect consistency in terms of 
the ranks attained by the same DMUs for various procedures;  

• when analyzing the similarity of rankings in terms of the share of 
alternatives attaining the same positions, the greatest values are 
observed for NFS-PEOI and ER as well as BSA and BCRS, pointing 
out, respectively, over 84% and 76% consistency; these two pairs of 
procedures along with EE and CCR are also, on average, the most 
similar in terms of RAM to the remaining approaches;  

• when comparing CCA and VDMU with other ranking methods, the 
consistency quantified with RAM is always lower than 11% and 19%, 
respectively. 

The detailed results obtained for larger problem instances and per-
formances generated from a normal rather than uniform distribution are 
discussed in the e-Appendix. In the main paper, we summarize only the 
main findings. Above all, the conclusions on the sub-groups of ranking 
methods providing the most and the least similar results are the same 
irrespective of the considered measure, problem size, and performance 
distribution. Moreover, when more units are considered, similarity 
measures for choice get slightly lower, whereas they get higher for 
ranking. Since when more units are considered, a lesser share of DMUs 
are tied for the same ranks, NHR is closer to HR and for RAM – an even 
greater polarization of values can be observed (e.g., the most similar 
methods rank an even greater share of units at the same positions). 
When input/output performances are normally distributed, the rank 
similarity measures are slightly higher. Finally, the least stable results 
for different settings can be observed for methods such as AHP-DEA, 
CCA, and NFS-PEOI. This can be attributed to the sensitiveness of the 
eigenvector computations that are involved in these approaches. 

4.3. Experimental comparison involving real-world datasets 

To confirm the conclusions derived from the analysis based on the 
artificially generated datasets, we considered ten real-world datasets. In 
this way, we can verify if the outcomes discussed in Section 4.2 are not 
affected by the arbitrariness of the generation procedure. The consid-
ered datasets represent the most common application areas of the DEA 
methods, such as finances, education, transportation, healthcare, 
farming, and the energy industry. These sets involve from 13 to 42 DMUs 
described in terms of 2–3 inputs and 1–5 outputs (see Table 29). 

4.3.1. Measures for choice 
The values of measures quantifying the agreement between different 

Table 25 
Average Normalized Hit Ratio for all pairs of ranking procedures over all artificial datasets with a small number of units K and uniform performance distribution.   

CCR CE SE CCA LDA DR- 
DEA 

BSA BCRS BI AHP- 
DEA 

NDEA EE ER PEV- 
PEOI 

NFS- 
PEOI 

VDMU 

CCR 1.000 0.164 0.159 0.113 0.292 0.248 0.175 0.164 0.159 0.333 0.184 0.159 0.159 0.089 0.159 0.159 
CE 0.164 1.000 0.313 0.143 0.327 0.415 0.522 0.534 0.304 0.508 0.394 0.629 0.646 0.306 0.646 0.360 
SE 0.159 0.313 1.000 0.127 0.176 0.178 0.223 0.275 0.625 0.222 0.444 0.375 0.312 0.150 0.312 0.308 
CCA 0.113 0.143 0.127 1.000 0.137 0.147 0.147 0.173 0.110 0.158 0.127 0.164 0.148 0.160 0.152 0.118 
LDA 0.292 0.327 0.176 0.137 1.000 0.544 0.298 0.287 0.134 0.434 0.177 0.330 0.342 0.184 0.347 0.192 
DR-DEA 0.248 0.415 0.178 0.147 0.544 1.000 0.324 0.311 0.186 0.411 0.232 0.403 0.419 0.211 0.428 0.253 
BSA 0.175 0.522 0.223 0.147 0.298 0.324 1.000 0.729 0.193 0.545 0.285 0.510 0.539 0.258 0.543 0.295 
BCRS 0.164 0.534 0.275 0.173 0.287 0.311 0.729 1.000 0.237 0.543 0.337 0.569 0.585 0.256 0.586 0.318 
BI 0.159 0.304 0.625 0.110 0.134 0.186 0.193 0.237 1.000 0.218 0.465 0.321 0.267 0.117 0.267 0.250 
AHP- 

DEA 
0.333 0.508 0.222 0.158 0.434 0.411 0.545 0.543 0.218 1.000 0.275 0.501 0.551 0.264 0.547 0.285 

NDEA 0.184 0.394 0.444 0.127 0.177 0.232 0.285 0.337 0.465 0.275 1.000 0.488 0.423 0.165 0.423 0.283 
EE 0.159 0.629 0.375 0.164 0.330 0.403 0.510 0.569 0.321 0.501 0.488 1.000 0.850 0.400 0.871 0.342 
ER 0.159 0.646 0.312 0.148 0.342 0.419 0.539 0.585 0.267 0.551 0.423 0.850 1.000 0.458 0.975 0.342 
PEV- 

PEOI 
0.089 0.306 0.150 0.160 0.184 0.211 0.258 0.256 0.117 0.264 0.165 0.400 0.458 1.000 0.467 0.183 

NFS- 
PEOI 

0.159 0.646 0.312 0.152 0.347 0.428 0.543 0.586 0.267 0.547 0.423 0.871 0.975 0.467 1.000 0.346 

VDMU 0.159 0.360 0.308 0.118 0.192 0.253 0.295 0.318 0.250 0.285 0.283 0.342 0.342 0.183 0.346 1.000  

A. Labijak-Kowalska and M. Kadziński                                                                                                                                                                                                    



Expert Systems With Applications 173 (2021) 114739

16

procedures in terms of indicating the same most preferred DMU are 
presented in Tables 30 and 31. The analysis of HR confirms that 13 out of 
15 ranking methods rank some efficient unit at the top for all ten 
analyzed datasets (see HR(CCR, ⋅) = 1). The two exceptions in this re-
gard are CCA and PEV-PEOI, which rank some inefficient DMU first for 2 
out of 10 datasets. Nonetheless, the NHR values are significantly lower 
(at most 0.271), suggesting that CCR identifies multiple DMUs as effi-
cient. In contrast, other methods indicate only one or a few of them as 
the most preferred ones. 

When it comes to pairs of ranking procedures that attain the greatest 
similarity in terms of HR and NHR, they partially confirm findings from 
the analysis of artificial datasets. In particular, a very high similarity is 
observed for AHP-DEA and CE (HR and NHR equal to, respectively, 0.8 
and 0.708), as they rank the same DMU at the very top for 8 out of 10 
considered problems. Unlike for the artificially generated datasets, the 
most preferred DMU indicated by VDMU is often the same as for EE 
(HR = NHR = 0.8), NFS-PEOI (HR = NHR = 0.8), and ER (HR =

NHR = 0.7). Other pairs with relatively high similarity scores in terms 
of choice include: (EE, ER) and (BI, SE) (for both pairs, HR = NHR =

0.7) as well as (EE, AHP-DEA) (HR = 0.7,NHR = 0.608). The perfect 
agreement in terms of indicating the most preferred DMU for 6 out of 10 
problem can be observed for all pairs concerning SE, NDEA, and PEV- 
PEOI (HR = NHR = 0.6). 

As far as HR and NHR confirming low agreement are concerned, the 
least obtained values for these measures are equal to 0.1. This means 
that pairs of methods for which such a value is attained, rank the same 
DMU at the very top only for a single considered problem. In general, the 
most significant disagreements in indicating the most preferred DMU are 
observed for the comparison of CCA or LDA with the remaining ap-
proaches. For these two procedures based on statistics and a common set 
of weights, an average similarity with other methods quantified with HR 
and NHR is lesser than 0.3. Apart from the pairs involving CCA or LCA, 
poor agreement degrees can be observed for (DR-DEA, BSA) as well as 
for the comparisons of NFS-PEOI with NDEA, PEV-PEOI, CE, SE, and BI; 
ER with CE, SE, and PEV-PEOI; or VDMU with NDEA and PEV-PEOI. For 
all these pairs, the most advantageous DMU indications are different for 
at least 7 out of 10 considered datasets. 

4.3.2. Measures for ranking 
Tables 32–34 provide the similarity measures built on the analysis of 

entire rankings constructed by different procedures. Although the ab-
solute values of these measures are different than for the artificial 
datasets, the most and the least similar procedures are the same. In 
particular, the greatest agreement in terms of the entire rankings can be 
observed for the following pairs of methods:  

• (VDMU, EE) with τ = 0.950,RDM = 0.956, and RAM = 0.623;  
• (BCRS, SE) with τ = 0.944,RDM = 0.948, and RAM = 0.809;  
• (SE, NDEA) with τ = 0.921,RDM = 0.937, and RAM = 0.770;  
• (BCRS, NDEA) with τ = 0.899,RDM = 0.923, and RAM = 0.744;  
• (VDMU, ER) with τ = 0.890,RDM = 0.910, and RAM = 0.402;  
• (EE, ER) with τ = 0.833,RDM = 0.907, and RAM = 0.410;  
• (BCRS, BSA) with τ = 0.814,RDM = 0.868, and RAM = 0.762. 

For the above pairs, the values of similarity measures indicate very 
high agreements when taking into account three perspectives, i.e., at 
least 90% of agreement given pairwise preference relations, at least 86% 
of consistency in terms of rank differences, and at least 62% of 
compatibility when it comes to the analysis of ranks attained by the 
same DMUs (except for (VDMU, ER) and (EE, ER)). As far as the rankings 
obtained with the standard CCR model are concerned, they are the most 
similar to the orders imposed by SE, BSA, BCRS, and NDEA. However, 
this is mainly because these procedures focus only on discriminating 
between the efficient units while adopting the ranking of inefficient ones 
after CCR. 

When analyzing the similarities for all pairs of methods, the most Ta
bl
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representative rankings are delivered by BCRS, SE, NDEA, and EE. This 
is confirmed by the highest average similarities to all remaining ap-
proaches in terms of Kendalls τ, RDM, and RAM. On the contrary, the 
least representative rankings are constructed by CCA and LDA. Very low 
similarity measures confirm the uniqueness of the orders they impose. 
For example, when comparing the rankings obtained with CCA with the 
orders determined with any other approach, the highest similarities are 
extremely low (for τ – 0.318, for RDM – 0.554, and for RAM – 0.118). 

Let us emphasize two additional observations. For the real-world 
datasets, Kendall’s τ and RDM are significantly higher than for the 
small artificial ones. In particular, there are no negative values for 
Kendall’s τ, and the minimal agreement in terms of rank differences is 
equal to 37%, hence being by 5% greater than for the artificially 
generated problems. This suggests that the rankings obtained with 
different methods for the real-world problems are more similar than for 
the artificial ones. On the other hand, RAM’s analysis confirms that these 
rankings do differ vastly for many pairs of procedures. Specifically, for 
almost 75% of pairs of ranking methods, RAM values are not higher than 
0.2. This means that only at most 20% of DMUs attain the same position 
in the compared rankings. 

Table 27 
Average Rank Difference Measure for all pairs of ranking procedures over all artificial datasets with a small number of units K and uniform performance distribution.   

CCR CE SE CCA LDA DR- 
DEA 

BSA BCRS BI AHP- 
DEA 

NDEA EE ER PEV- 
PEOI 

NFS- 
PEOI 

VDMU 

CCR 0.729 0.629 0.729 0.327 0.588 0.615 0.697 0.729 0.616 0.566 0.729 0.621 0.601 0.368 0.601 0.517 
CE 0.629 0.999 0.699 0.343 0.609 0.697 0.659 0.704 0.697 0.608 0.705 0.800 0.780 0.407 0.782 0.644 
SE 0.729 0.699 1.000 0.322 0.609 0.644 0.728 0.786 0.768 0.579 0.862 0.705 0.672 0.376 0.669 0.570 
CCA 0.327 0.343 0.322 0.981 0.332 0.328 0.322 0.337 0.324 0.334 0.326 0.330 0.329 0.335 0.330 0.347 
LDA 0.588 0.609 0.609 0.332 0.856 0.671 0.579 0.612 0.578 0.526 0.605 0.609 0.596 0.365 0.597 0.504 
DR-DEA 0.615 0.697 0.644 0.328 0.671 0.928 0.622 0.654 0.622 0.560 0.650 0.694 0.680 0.388 0.680 0.564 
BSA 0.697 0.659 0.728 0.322 0.579 0.622 0.961 0.860 0.611 0.579 0.729 0.649 0.633 0.352 0.633 0.537 
BCRS 0.729 0.704 0.786 0.337 0.612 0.654 0.860 0.966 0.659 0.605 0.782 0.695 0.675 0.373 0.674 0.563 
BI 0.616 0.697 0.768 0.324 0.578 0.622 0.611 0.659 1.000 0.569 0.742 0.744 0.722 0.381 0.722 0.586 
AHP- 

DEA 
0.566 0.608 0.579 0.334 0.526 0.560 0.579 0.605 0.569 0.717 0.581 0.611 0.613 0.373 0.614 0.532 

NDEA 0.729 0.705 0.862 0.326 0.605 0.650 0.729 0.782 0.742 0.581 0.989 0.730 0.700 0.377 0.698 0.562 
EE 0.621 0.800 0.705 0.330 0.609 0.694 0.649 0.695 0.744 0.611 0.730 1.000 0.938 0.460 0.938 0.635 
ER 0.601 0.780 0.672 0.329 0.596 0.680 0.633 0.675 0.722 0.613 0.700 0.938 1.000 0.466 0.981 0.632 
PEV- 

PEOI 
0.368 0.407 0.376 0.335 0.365 0.388 0.352 0.373 0.381 0.373 0.377 0.460 0.466 1.000 0.467 0.361 

NFS- 
PEOI 

0.601 0.782 0.669 0.330 0.597 0.680 0.633 0.674 0.722 0.614 0.698 0.938 0.981 0.467 1.000 0.633 

VDMU 0.517 0.644 0.570 0.347 0.504 0.564 0.537 0.563 0.586 0.532 0.562 0.635 0.632 0.361 0.633 1.000  

Table 28 
Average Rank Agreement Measure for all pairs of ranking procedures over all artificial datasets with small size and uniform performance distribution.   

CCR CE SE CCA LDA DR- 
DEA 

BSA BCRS BI AHP- 
DEA 

NDEA EE ER PEV- 
PEOI 

NFS- 
PEOI 

VDMU 

CCR 1.000 0.196 0.496 0.108 0.276 0.267 0.543 0.550 0.181 0.461 0.517 0.194 0.180 0.122 0.181 0.135 
CE 0.196 1.000 0.230 0.088 0.155 0.226 0.231 0.239 0.226 0.205 0.235 0.328 0.291 0.169 0.299 0.175 
SE 0.496 0.230 1.000 0.087 0.150 0.187 0.496 0.526 0.284 0.191 0.594 0.243 0.217 0.134 0.217 0.166 
CCA 0.108 0.088 0.087 1.000 0.107 0.099 0.093 0.097 0.083 0.108 0.083 0.091 0.087 0.088 0.089 0.087 
LDA 0.276 0.155 0.150 0.107 1.000 0.291 0.156 0.168 0.138 0.270 0.150 0.163 0.149 0.104 0.152 0.114 
DR-DEA 0.267 0.226 0.187 0.099 0.291 1.000 0.189 0.198 0.179 0.249 0.199 0.229 0.214 0.140 0.213 0.153 
BSA 0.543 0.231 0.496 0.093 0.156 0.189 1.000 0.761 0.183 0.266 0.506 0.227 0.218 0.135 0.220 0.138 
BCRS 0.550 0.239 0.526 0.097 0.168 0.198 0.761 1.000 0.199 0.266 0.534 0.245 0.232 0.141 0.234 0.148 
BI 0.181 0.226 0.284 0.083 0.138 0.179 0.183 0.199 1.000 0.174 0.255 0.268 0.251 0.153 0.252 0.156 
AHP- 

DEA 
0.461 0.205 0.191 0.108 0.270 0.249 0.266 0.266 0.174 1.000 0.203 0.220 0.227 0.143 0.227 0.136 

NDEA 0.517 0.235 0.594 0.083 0.150 0.199 0.506 0.534 0.255 0.203 1.000 0.264 0.241 0.139 0.240 0.153 
EE 0.194 0.328 0.243 0.091 0.163 0.229 0.227 0.245 0.268 0.220 0.264 1.000 0.619 0.328 0.624 0.185 
ER 0.180 0.291 0.217 0.087 0.149 0.214 0.218 0.232 0.251 0.227 0.241 0.619 1.000 0.380 0.845 0.180 
PEV- 

PEOI 
0.122 0.169 0.134 0.088 0.104 0.140 0.135 0.141 0.153 0.143 0.139 0.328 0.380 1.000 0.383 0.110 

NFS- 
PEOI 

0.181 0.299 0.217 0.089 0.152 0.213 0.220 0.234 0.252 0.227 0.240 0.624 0.845 0.383 1.000 0.180 

VDMU 0.135 0.175 0.166 0.087 0.114 0.153 0.138 0.148 0.156 0.136 0.153 0.185 0.180 0.110 0.180 1.000  

Table 29 
Characteristics of ten real-world datasets used in the experimental analysis.  

Source DMUs No. of 
inputs 

No. of 
outputs 

Al-Shammari (1999) 15 hospitals in Jordan 3 3 
Osman et al. (2011) 32 nurses of Intensive Care 

Unit 
3 5 

Thanassoulis and 
Dunstan (1994) 

42 schools in the UK 2 2 

Cristobal (2011) 13 renewable energy 
technologies 

3 4 

Stokes et al. (2007) 34 dairy farms in 
Pennsylvania 

4 3 

Malana and Malano 
(2006) 

25 wheat areas in Pakistan 
and India 

3 1 

Gutierrez-Nieto et al. 
(2007) 

30 micro-finance institutions 
in Latin America 

2 3 

Kao and Hwang (2008) 24 insurance companies in 
Taiwan 

2 2 

Valentine and Gray 
(2001) 

32 ports from all over the 
world 

2 2 

Köksal and Aksu 
(2007) 

24 travel agencies in Turkey 3 1  
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Table 30 
Average Hit Ratio for all pairs of ranking procedures over all real-world datasets.   

CCR CE SE CCA LDA DR- 
DEA 

BSA BCRS BI AHP- 
DEA 

NDEA EE ER PEV- 
PEOI 

NFS- 
PEOI 

VDMU 

CCR 1.000 1.000 1.000 0.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.800 1.000 
CE 1.000 1.000 0.500 0.200 0.500 0.500 0.400 0.600 0.500 0.800 0.500 0.400 0.300 0.500 0.300 0.400 
SE 1.000 0.500 1.000 0.200 0.100 0.500 0.400 0.600 0.700 0.500 0.600 0.400 0.300 0.600 0.300 0.400 
CCA 0.800 0.200 0.200 1.000 0.100 0.200 0.300 0.400 0.200 0.400 0.200 0.300 0.400 0.300 0.200 0.200 
LDA 1.000 0.500 0.100 0.100 1.000 0.500 0.300 0.200 0.200 0.500 0.300 0.300 0.300 0.200 0.100 0.300 
DR-DEA 1.000 0.500 0.500 0.200 0.500 1.000 0.300 0.400 0.600 0.600 0.500 0.500 0.400 0.300 0.400 0.500 
BSA 1.000 0.400 0.400 0.300 0.300 0.300 1.000 0.400 0.400 0.500 0.600 0.500 0.600 0.400 0.400 0.500 
BCRS 1.000 0.600 0.600 0.400 0.200 0.400 0.400 1.000 0.500 0.700 0.400 0.500 0.400 0.500 0.500 0.600 
BI 1.000 0.500 0.700 0.200 0.200 0.600 0.400 0.500 1.000 0.500 0.500 0.400 0.400 0.500 0.300 0.400 
AHP- 

DEA 
1.000 0.800 0.500 0.400 0.500 0.600 0.500 0.700 0.500 1.000 0.500 0.700 0.500 0.500 0.500 0.600 

NDEA 1.000 0.500 0.600 0.200 0.300 0.500 0.600 0.400 0.500 0.500 1.000 0.400 0.400 0.600 0.200 0.300 
EE 1.000 0.400 0.400 0.300 0.300 0.500 0.500 0.500 0.400 0.700 0.400 1.000 0.700 0.400 0.600 0.800 
ER 1.000 0.300 0.300 0.400 0.300 0.400 0.600 0.400 0.400 0.500 0.400 0.700 1.000 0.300 0.500 0.700 
PEV- 

PEOI 
1.000 0.500 0.600 0.300 0.200 0.300 0.400 0.500 0.500 0.500 0.600 0.400 0.300 1.000 0.200 0.300 

NFS- 
PEOI 

0.800 0.300 0.300 0.200 0.100 0.400 0.400 0.500 0.300 0.500 0.200 0.600 0.500 0.200 1.000 0.800 

VDMU 1.000 0.400 0.400 0.200 0.300 0.500 0.500 0.600 0.400 0.600 0.300 0.800 0.700 0.300 0.800 1.000  

Table 31 
Average Normalized Hit Ratio for all pairs of ranking procedures over all real-world datasets.   

CCR CE SE CCA LDA DR- 
DEA 

BSA BCRS BI AHP- 
DEA 

NDEA EE ER PEV- 
PEOI 

NFS- 
PEOI 

VDMU 

CCR 1.000 0.187 0.187 0.137 0.187 0.187 0.253 0.187 0.207 0.271 0.187 0.187 0.187 0.207 0.142 0.187 
CE 0.187 1.000 0.500 0.200 0.500 0.500 0.333 0.600 0.500 0.708 0.500 0.400 0.300 0.500 0.300 0.400 
SE 0.187 0.500 1.000 0.200 0.100 0.500 0.333 0.600 0.700 0.408 0.600 0.400 0.300 0.600 0.300 0.400 
CCA 0.137 0.200 0.200 1.000 0.100 0.200 0.233 0.400 0.200 0.308 0.200 0.300 0.400 0.300 0.200 0.200 
LDA 0.187 0.500 0.100 0.100 1.000 0.500 0.233 0.200 0.200 0.408 0.300 0.300 0.300 0.200 0.100 0.300 
DR-DEA 0.187 0.500 0.500 0.200 0.500 1.000 0.233 0.400 0.600 0.508 0.500 0.500 0.400 0.300 0.400 0.500 
BSA 0.253 0.333 0.333 0.233 0.233 0.233 1.000 0.333 0.333 0.341 0.533 0.433 0.533 0.333 0.333 0.433 
BCRS 0.187 0.600 0.600 0.400 0.200 0.400 0.333 1.000 0.500 0.608 0.400 0.500 0.400 0.500 0.500 0.600 
BI 0.207 0.500 0.700 0.200 0.200 0.600 0.333 0.500 1.000 0.408 0.500 0.400 0.400 0.500 0.300 0.400 
AHP- 

DEA 
0.271 0.708 0.408 0.308 0.408 0.508 0.341 0.608 0.408 1.000 0.408 0.608 0.408 0.408 0.408 0.508 

NDEA 0.187 0.500 0.600 0.200 0.300 0.500 0.533 0.400 0.500 0.408 1.000 0.400 0.400 0.600 0.200 0.300 
EE 0.187 0.400 0.400 0.300 0.300 0.500 0.433 0.500 0.400 0.608 0.400 1.000 0.700 0.400 0.600 0.800 
ER 0.187 0.300 0.300 0.400 0.300 0.400 0.533 0.400 0.400 0.408 0.400 0.700 1.000 0.300 0.500 0.700 
PEV- 

PEOI 
0.207 0.500 0.600 0.300 0.200 0.300 0.333 0.500 0.500 0.408 0.600 0.400 0.300 1.000 0.200 0.300 

NFS- 
PEOI 

0.142 0.300 0.300 0.200 0.100 0.400 0.333 0.500 0.300 0.408 0.200 0.600 0.500 0.200 1.000 0.800 

VDMU 0.187 0.400 0.400 0.200 0.300 0.500 0.433 0.600 0.400 0.508 0.300 0.800 0.700 0.300 0.800 1.000  

Table 32 
Average Kendall’s τ for all pairs of ranking procedures over all real-world datasets.   

CCR CE SE CCA LDA DR- 
DEA 

BSA BCRS BI AHP- 
DEA 

NDEA EE ER PEV- 
PEOI 

NFS- 
PEOI 

VDMU 

CCR 1.000 0.653 0.850 0.250 0.426 0.584 0.800 0.860 0.596 0.638 0.842 0.571 0.534 0.415 0.285 0.549 
CE 0.653 1.000 0.728 0.318 0.443 0.675 0.621 0.734 0.657 0.651 0.707 0.627 0.575 0.554 0.345 0.608 
SE 0.850 0.728 1.000 0.232 0.444 0.643 0.786 0.944 0.670 0.568 0.921 0.593 0.541 0.473 0.308 0.567 
CCA 0.250 0.318 0.232 1.000 0.078 0.175 0.247 0.228 0.155 0.271 0.237 0.206 0.201 0.215 0.157 0.215 
LDA 0.426 0.443 0.444 0.078 1.000 0.596 0.411 0.419 0.423 0.406 0.419 0.327 0.322 0.235 0.142 0.319 
DR-DEA 0.584 0.675 0.643 0.175 0.596 1.000 0.555 0.628 0.674 0.615 0.611 0.609 0.585 0.467 0.270 0.600 
BSA 0.800 0.621 0.786 0.247 0.411 0.555 1.000 0.814 0.545 0.537 0.785 0.546 0.537 0.400 0.311 0.534 
BCRS 0.860 0.734 0.944 0.228 0.419 0.628 0.814 1.000 0.669 0.605 0.899 0.628 0.575 0.481 0.339 0.603 
BI 0.596 0.657 0.670 0.155 0.423 0.674 0.545 0.669 1.000 0.631 0.654 0.680 0.658 0.659 0.361 0.662 
AHP- 

DEA 
0.638 0.651 0.568 0.271 0.406 0.615 0.537 0.605 0.631 1.000 0.547 0.564 0.541 0.522 0.310 0.564 

NDEA 0.842 0.707 0.921 0.237 0.419 0.611 0.785 0.899 0.654 0.547 1.000 0.591 0.542 0.467 0.305 0.564 
EE 0.571 0.627 0.593 0.206 0.327 0.609 0.546 0.628 0.680 0.564 0.591 1.000 0.883 0.616 0.556 0.950 
ER 0.534 0.575 0.541 0.201 0.322 0.585 0.537 0.575 0.658 0.541 0.542 0.883 1.000 0.609 0.491 0.890 
PEV- 

PEOI 
0.415 0.554 0.473 0.215 0.235 0.467 0.400 0.481 0.659 0.522 0.467 0.616 0.609 1.000 0.346 0.625 

NFS- 
PEOI 

0.285 0.345 0.308 0.157 0.142 0.270 0.311 0.339 0.361 0.310 0.305 0.556 0.491 0.346 1.000 0.561 

VDMU 0.549 0.608 0.567 0.215 0.319 0.600 0.534 0.603 0.662 0.564 0.564 0.950 0.890 0.625 0.561 1.000  
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5. Conclusions 

We considered the problem of ranking Decision Making Units that 
consume multiple inputs and produce multiple outputs. The methods 
tackling this problem are considered one of the most important exten-
sions of Data Envelopment Analysis, which has been traditionally ori-
ented only toward dividing the units into efficient and inefficient ones. 
The contribution of this paper is threefold. 

First, we reviewed the methods representing different categories, 
including cross- and super-efficiency, multivariate statistics, decision 
analysis, benchmarking, virtual DMU, and social networks. Second, we 
formalized a novel category of ranking methods based on the concept of 
Robustness Analysis, which is currently composed of four approaches, 
including two newly proposed in this paper. These approaches exploit a 
space of feasible input/output weight vectors with the Monte Carlo 
simulation to derive the expected efficiencies or ranks, or to compute the 
priorities or net flow scores of DMUs based on the matrix of pairwise 
efficiency outranking indices. The use of fifteen methods was illustrated 
on a numerical example. Third, we compared the rankings constructed 
by these approaches on 960 artificially generated and 10 real-world 
datasets with different numbers of inputs and outputs. The results 
were quantified in terms of five measures, including Hit Ratio and 

Normalized Hit Ratio, which focus only on the top-ranked DMUs, as well 
as Kendall’s τ, Rank Difference Measure, and Rank Agreement Measure, 
capturing the similarity between the entire rankings. 

The analysis of experimental results allowed us to identify three 
groups of ranking procedures that provide consistent results. The first 
group comprises the cross-efficiency, three methods based on Robust-
ness Analysis computing the expected efficiencies and ranks or net flow 
scores, and Virtual DMU. These approaches summarize the efficiency 
results obtained for multiple feasible weight vectors. For cross- 
efficiency, these are the most favorable weights for each DMU; for 
VDMU – the vectors obtained from the analysis of the ideal and anti- 
ideal units, whereas Robustness Analysis exploits all feasible weights. 
Even if these methods differ in terms of exploiting ordinal or cardinal 
measures, focusing on pairwise-oriented or one vs. all comparisons, and 
incorporating fictive DMUs, the joint idea of building on multiple 
feasible scenarios implies that the constructed rankings are very similar. 

The second group is formed by super-efficiency, BSA, BCRS, BI, and 
Network DEA. Two main reasons are underlying a high similarity be-
tween rankings provided by these methods. Specifically, they investi-
gate the changes in the efficiency scores while focusing on the role of 
different DMUs as benchmarks. This is attained by quantifying the im-
pacts that each DMU has on the efficiency of remaining ones or that 

Table 33 
Average Rank Difference Measure for all pairs of ranking procedures over all real-world datasets.   

CCR CE SE CCA LDA DR- 
DEA 

BSA BCRS BI AHP- 
DEA 

NDEA EE ER PEV- 
PEOI 

NFS- 
PEOI 

VDMU 

CCR 0.889 0.748 0.889 0.504 0.590 0.699 0.846 0.889 0.707 0.681 0.889 0.691 0.659 0.587 0.545 0.675 
CE 0.748 0.999 0.797 0.554 0.601 0.760 0.725 0.798 0.739 0.742 0.779 0.727 0.695 0.679 0.580 0.718 
SE 0.889 0.797 0.991 0.491 0.598 0.731 0.856 0.948 0.761 0.689 0.937 0.703 0.667 0.629 0.558 0.687 
CCA 0.504 0.554 0.491 0.999 0.369 0.451 0.483 0.496 0.439 0.501 0.492 0.491 0.477 0.475 0.467 0.497 
LDA 0.590 0.601 0.598 0.369 0.999 0.703 0.568 0.588 0.594 0.576 0.574 0.523 0.518 0.469 0.432 0.514 
DR-DEA 0.699 0.760 0.731 0.451 0.703 0.999 0.680 0.726 0.761 0.718 0.713 0.723 0.705 0.629 0.552 0.713 
BSA 0.846 0.725 0.856 0.483 0.568 0.680 0.984 0.868 0.673 0.651 0.849 0.676 0.657 0.570 0.553 0.665 
BCRS 0.889 0.798 0.948 0.496 0.588 0.726 0.868 0.983 0.752 0.703 0.923 0.723 0.684 0.623 0.578 0.706 
BI 0.707 0.739 0.761 0.439 0.594 0.761 0.673 0.752 0.995 0.735 0.745 0.761 0.744 0.750 0.602 0.753 
AHP- 

DEA 
0.681 0.742 0.689 0.501 0.576 0.718 0.651 0.703 0.735 0.929 0.680 0.680 0.668 0.652 0.550 0.679 

NDEA 0.889 0.779 0.937 0.492 0.574 0.713 0.849 0.923 0.745 0.680 0.997 0.700 0.667 0.624 0.555 0.683 
EE 0.691 0.727 0.703 0.491 0.523 0.723 0.676 0.723 0.761 0.680 0.700 0.999 0.907 0.731 0.753 0.956 
ER 0.659 0.695 0.667 0.477 0.518 0.705 0.657 0.684 0.744 0.668 0.667 0.907 0.993 0.722 0.703 0.910 
PEV- 

PEOI 
0.587 0.679 0.629 0.475 0.469 0.629 0.570 0.623 0.750 0.652 0.624 0.731 0.722 0.995 0.583 0.737 

NFS- 
PEOI 

0.545 0.580 0.558 0.467 0.432 0.552 0.553 0.578 0.602 0.550 0.555 0.753 0.703 0.583 0.999 0.762 

VDMU 0.675 0.718 0.687 0.497 0.514 0.713 0.665 0.706 0.753 0.679 0.683 0.956 0.910 0.737 0.762 0.999  

Table 34 
Average Rank Agreement Measure for all pairs of ranking procedures over all real-world datasets.   

CCR CE SE CCA LDA DR- 
DEA 

BSA BCRS BI AHP- 
DEA 

NDEA EE ER PEV- 
PEOI 

NFS- 
PEOI 

VDMU 

CCR 1.000 0.192 0.737 0.057 0.100 0.129 0.720 0.750 0.146 0.229 0.713 0.163 0.122 0.119 0.133 0.138 
CE 0.192 1.000 0.251 0.062 0.144 0.182 0.182 0.224 0.144 0.193 0.211 0.118 0.128 0.143 0.106 0.139 
SE 0.737 0.251 1.000 0.060 0.116 0.148 0.715 0.809 0.207 0.173 0.770 0.161 0.128 0.160 0.137 0.144 
CCA 0.057 0.062 0.060 1.000 0.046 0.097 0.063 0.068 0.043 0.067 0.062 0.086 0.088 0.081 0.063 0.118 
LDA 0.100 0.144 0.116 0.046 1.000 0.156 0.086 0.104 0.104 0.110 0.100 0.085 0.075 0.077 0.054 0.075 
DR-DEA 0.129 0.182 0.148 0.097 0.156 1.000 0.122 0.137 0.150 0.140 0.136 0.198 0.221 0.141 0.125 0.173 
BSA 0.720 0.182 0.715 0.063 0.086 0.122 1.000 0.762 0.135 0.162 0.692 0.170 0.131 0.122 0.143 0.144 
BCRS 0.750 0.224 0.809 0.068 0.104 0.137 0.762 1.000 0.169 0.184 0.744 0.183 0.132 0.129 0.159 0.163 
BI 0.146 0.144 0.207 0.043 0.104 0.150 0.135 0.169 1.000 0.212 0.179 0.196 0.153 0.241 0.205 0.190 
AHP- 

DEA 
0.229 0.193 0.173 0.067 0.110 0.140 0.162 0.184 0.212 1.000 0.155 0.129 0.116 0.146 0.146 0.120 

NDEA 0.713 0.211 0.770 0.062 0.100 0.136 0.692 0.744 0.179 0.155 1.000 0.175 0.125 0.157 0.139 0.147 
EE 0.163 0.118 0.161 0.086 0.085 0.198 0.170 0.183 0.196 0.129 0.175 1.000 0.410 0.206 0.434 0.623 
ER 0.122 0.128 0.128 0.088 0.075 0.221 0.131 0.132 0.153 0.116 0.125 0.410 1.000 0.173 0.253 0.402 
PEV- 

PEOI 
0.119 0.143 0.160 0.081 0.077 0.141 0.122 0.129 0.241 0.146 0.157 0.206 0.173 1.000 0.132 0.207 

NFS- 
PEOI 

0.133 0.106 0.137 0.063 0.054 0.125 0.143 0.159 0.205 0.146 0.139 0.434 0.253 0.132 1.000 0.492 

VDMU 0.138 0.139 0.144 0.118 0.075 0.173 0.144 0.163 0.190 0.120 0.147 0.623 0.402 0.207 0.492 1.000  
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other DMUs have on a given DMU’s efficiency. Moreover, apart from BI, 
they discriminate between the efficient units while deriving the order of 
inefficient units from the analysis of standard efficiency scores. 

The third group contains LDA and DR-DEA. They incorporate some 
statistical methods oriented toward finding the set of common weights 
based on the division of DMUs into the subsets of efficient and inefficient 
units. Three remaining methods do not belong to the above-described 
groups. Specifically, Canonical Correlation Analysis, AHP-DEA, and 
PEV-PEOI incorporate some unique concepts, and significant similarities 
to the remaining approaches could not be found. In particular, CCA 
ranks all units using just a single weight vector selected to maximize the 
correlation between the linear combination of the outputs and inputs. 
This involves the computation of eigenvalues and eigenvectors (Fried-
man and Sinuany-Stern, 1997). Although applied to the exploitation of 
some partial efficiency results, similar operations are performed by 
AHP-DEA and PEV-PEOI. Many works (see, e.g., Kendall, 1975) indicate 
that the weights or scores derived from such an analysis are very sen-
sitive, changing drastically from eigenvalue to another or with small 
deviations in the input matrix. In this perspective, the uniqueness of the 
rankings delivered by these methods should be attributed to the 
computational technique incorporated in one of their steps. Nonethe-
less, due to the specificity of cross-efficiency results exploited by AHP- 
DEA, the DMUs ranked at the top by this approach are slightly closer 
to the DMUs indicated by the first group’s approaches. In turn, the PEV- 
PEOI method – building on the robust outcomes – tends to provide a 
similar ranking to the procedures from the first group on real-world 
datasets. 

The comparative analysis shows clearly that the selection of a 
ranking method has a significant impact on the obtained results. The 
choice of such a technique for dealing with a particular study can be 
conducted based on its properties, strengths and weaknesses, intuitive-
ness of the underlying idea, and suitability for a specific context of the 
decision. However, it is also possible to incorporate a few ranking pro-
cedures. Our analysis allowed us to identify methods that may be 
deemed representative for a subset of various procedures (e.g., EE or 
BCRS) and approaches that offer some unique perspective, hence lead-
ing to the rankings that are significantly different from the orders 
imposed by other algorithms. 

We envisage the following directions for future research. First, in this 
paper, we have selected the representative ranking methods in each 
category. However, as demonstrated by the extensive reviews by Adler 
et al. (2002), Aldamak and and Zolfaghari (2017), Hinojosa et al. 
(2017), and Hosseinzadeh Lotfi et al. (2013), many other methods can 
be included in the experimental comparison. Second, we considered the 
setting without preference information. The comparison could be 
extended to the scenarios where constraints on the input/output are 
available and possibly distinguish various loads of such preference 
statements. Third, other methods exploiting the results of Robustness 
Analysis can be proposed. In Multiple Criteria Decision Analysis, such 
approaches have been recently devised (Kadziński and Michalski, 2016), 
and they can be adapted to the context of DEA. 
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Kadziński, M., Badura, J., & Figueira, J. (2020). Using a segmenting description approach 
in multiple criteria decision aiding. Expert Systems with Applications, 147, Article 
113186. 
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Abstract

We propose a novel variant of the value-based additive data envelopment analysis model. It conducts a com-
prehensive robustness analysis of efficiency outcomes for all feasible input and output weights using mathe-
matical programming and the Monte Carlo simulation. We also introduce the original procedures for select-
ing a common vector of weights and an approach for investigating the stability of results in a multiscenario
setting. The presented framework is applied to evaluate the performance of emergency department physicians
using data from the Children’s Hospital of Eastern Ontario in Ottawa. Our focus is on the physicians’ perfor-
mance when dealing with groups of patients’ complaints related to abdominal pain and constipation, fever,
extremity injury, head injury, and laceration/puncture. The obtained results emphasize the strong depen-
dence of the physicians’ performances on the selected weight vectors. However, they prove helpful in pointing
out overall good performers who can serve as universal benchmarks or niche performers being markedly bet-
ter in providing care to a given complaint group. They also offer a basis for developing an improvement plan
for the underperforming physicians, identifying the priorities for a practice-oriented model, and recognizing
the most challenging patients’ complaints.

Keywords: data envelopment analysis; physician’s performance; emergency department; robustness analysis; efficiency
analysis; value-based additive efficiency; multiattribute value function; common set of weights

∗Corresponding author.

© 2021 The Authors.
International Transactions in Operational Research © 2021 International Federation of Operational Research Societies.
Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148,
USA.



504 A. Labijak-Kowalska et al. / Intl. Trans. in Op. Res. 30 (2023) 503–544

1. Introduction

Measuring the performance in healthcare is a complex, multidimensional problem. At each level—
from individual physicians through medical practice and tertiary care to the entire healthcare
system—one expects that the properly working unit or institution provides the best possible care ef-
ficiently using available resources. The variety of indicators does not allow for a direct performance
assessment by monitoring only selected individual measures that should be optimized. In turn,
it is required to find a proper trade-off between consumed resources and the quality of provided
care.

One of the primary methods for assessing healthcare efficiency is through patient satisfaction
surveys, using, for example, a predefined Likert scale (Smith et al., 2004; Jennings et al., 2009).
However, such a survey-based approach gives information only about the patients’ perceptions
while failing to capture how efficiently resources are utilized. Another approach that, in turn, con-
siders multiple performance aspects consists of using the composite indicators to aggregate all
the individual indicators into a single quality measure (Goddard and Jacobs, 2009). Nonetheless,
this method requires selecting an appropriate aggregation approach and an arbitrary parametriza-
tion with weights associated with different indicators. A slight change in these subjective val-
ues may vastly influence the relative performance evaluation of healthcare units (Jacobs et al.,
2005).

The subjectivity and arbitrariness issues related to setting the weight values are no longer present
when using the data envelopment analysis (DEA) (Charnes et al., 1978), that is, a nonparametric
efficiency evaluation method. This approach allows measuring the relative efficiency of decision-
making units (DMUs), which consume multiple inputs (resources) and produce multiple outputs
(effects). DEA allows performing evaluation and measurement without assigning prior weights. In
turn, one DMU’s efficiency score depends on the input and output values of others. These aspects
contribute to DEA’s applicability, making the results objective in relation to the scores computed
using composite indicators.

Healthcare is, next to banking, agriculture, transportation, and education, one of the most com-
mon application areas of DEA (Liu et al., 2013). The most frequently considered DMUs are hos-
pitals. Kohl et al. (2019) provided an in-depth review of DEA applications in healthcare with a par-
ticular focus on hospitals. Recent examples include evaluating the Greek National Health Service
hospitals (Flokou et al., 2017), investigating an impact of the economic recession on the perfor-
mance of hospitals in Pennsylvania (Chen et al., 2019), or assessment of the technical efficiency of
a few hundred Turkish hospitals (Küçük et al., 2020).

When it comes to other types of DMUs, medical-group practices are becoming increasingly
popular. Andes et al. (2002) investigated the organizational factors affecting the overall physician
practice efficiency for over one hundred primary care physician practices in the United States. Fur-
thermore, Testi et al. (2013) assessed the primary care physician practices in Italy when treating
diabetic patients. In Portugal, primary healthcare units were assessed from a perspective of geo-
graphical inequity (Amado and Santos, 2009) and comparing two types of units (Gouveia et al.,
2016). DEA has also been used to evaluate individual departments, such as emergency departments
(EDs) or operating rooms (ORs). In particular, Kang et al. (2017) examined the efficiency of EDs to
help hospitals plan the redesign. Ketabi et al. (2018) and Akkan et al. (2020) evaluated EDs of hos-
pitals in Isfahan (Iran) and Istanbul (Turkey), intending to identify the improvement strategies for
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the underperforming units. In turn, Basson and Butler (2006) compared multiple ORs to propose
new resource allocations to improve their performance.

DEA has also proved helpful in evaluating the performance of nursing homes. In this context, a
combination of different DEA models was used to study the care planning process, determine the
best techniques to ensure the quality of care, and identify the determinants that affect the homes’
efficiency. Such studies were conducted for the nursing homes in The Netherlands (Lee et al., 2009),
Portugal (Veloso et al., 2018), and the United States (Kooreman, 1994; Shimshak et al., 2009).
Other types of healthcare institutions evaluated included fire and emergency services (Choi, 2005),
visiting nurse service agencies (Kuwahara et al., 2013), and health maintenance organizations (Sid-
dharthan et al., 2000). DEA was also used to evaluate the performance of national healthcare
systems (Zehra and Serpil, 2018).

Finally, DEA was used for the assessment of individual physicians working in the hospital.
Chilingerian and Sherman (1990) identified the inefficient practice patterns of the physicians treat-
ing cardiac patients, whereas Wagner and Shimshak (2000) evaluated the primary care physicians
from a managed care organization. Furthermore, Ozcan et al. (2000) compared the resource uti-
lization between medical specialists in the treatment of Medicaid sinusitis patients in Virginia. Also,
Johannessen et al. (2017) investigated the impact of hospital reform in Norway on the perfor-
mance of individual physicians. Finally, Fiallos et al. (2017) developed a model to assess ED physi-
cians’ performance taking into account different complaint groups and different types of medical
trainees.

The literature on the DEA-based evaluation of healthcare units is rich. Both standard (Basson
and Butler, 2006; Kuwahara et al., 2013) and enhanced DEA models (e.g., network DEA; Khusha-
lani and Ozcan, 2017; Gerami et al., 2020 or window-DEA; Flokou et al., 2017) have been used.
Moreover, DEA has also been combined with statistical analysis (Chilingerian, 1995; Akkan et al.,
2020), multiple criteria decision analysis (MCDA); Rouyendegh et al., 2019), or machine learning
(Tosun, 2012). All these applications assess each DMU based on a single vector of input/output
weights, namely the vector that yields the most favorable assessment for that unit. Yet, as the choice
of any specific vector is open to debate, it is worth analyzing how assessments would change when
applying other feasible weight vectors. A noteworthy exception in this regard is the work of Schang
et al. (2016) who used ratio-based efficiency analysis (Salo and Punkka, 2011) to evaluate the im-
pact of the chosen weights on the final score of composite indicators applied for evaluating a set of
Scottish Health Boards.

This paper introduces a novel robust value-based framework for efficiency analysis. Specifically,
we extend the value-based additive DEA (VDEA) model (Gouveia et al., 2008), which combines
DEA with the multiattribute value theory (MAVT) (Keeney and Raiffa, 1993). The underlying idea
is to convert the relevant inputs and outputs into criteria associated with marginal value func-
tions and aggregate them using an additive model. In the standard VDEA model, each DMU can
choose the weights associated with the marginal value functions that minimize the difference of
comprehensive value (efficiency score) to the best DMU. In turn, we investigate the robustness of
results attained for all feasible input and output weights. We deliver the outcomes referring to the
efficiency measures, ranks, and preference relations, and for each of those, we propose methods
based on mathematical programming providing information about the extreme values (minimum
and maximum) obtained for a given result. As the differences between the extreme bounds are often
large, the robustness analysis framework also incorporates stochastic methods based on the Monte
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Carlo simulations. They are useful for estimating the distributions of the considered measures or
relations. Such distributions are captured by acceptability indices, quantifying the proportion of
feasible weights confirming a given result. For the purpose of this work, these methods have been
implemented and made available as independent modules on the open-source diviz platform (Meyer
and Bigaret, 2012).

The proposed methodological framework is also enriched in two ways. On the one hand, we
introduce novel procedures for computing a representative vector of common weights that allows
ranking all DMUs univocally. Such a vector is chosen to match as well as possible the conclusions
obtained through the robustness analysis. In case one unit is robustly better than the other, the
selected vector should emphasize this advantage. In turn, for DMU pairs that are indistinguishable
in terms of robust results, the chosen vector should make the difference between these DMUs as
small as possible. On the other hand, we provide methods for quantifying the results’ robustness
under different evaluation scenarios. These outcomes consider two levels of robustness. The first
level refers to the robustness of outcomes for an individual scenario, whereas the second captures
the stability of results given the multiplicity of possible scenarios.

We applied the proposed robust value-based efficiency analysis methods for evaluating the per-
formance of ED physicians using data from the Children’s Hospital of Eastern Ontario (CHEO) in
Ottawa, Canada. We consider three inputs (the average encounter time per patient visit, the average
number of laboratory tests per patient visit, and the average number of radiology orders per patient
visit), and one output (rate of nonreturn patient visits within 72 hours). Our primary focus is on a
group of patients with primary complaints upon presentation being abdominal pain and constipa-
tion. However, in a multiscenario analysis, we also consider two other complaint groups related to
fever and lower or upper extremity injury, head injury, and laceration/puncture.

In Fiallos et al. (2017), the performance of the same physicians was evaluated using an origi-
nal SBM-SWAT VRS efficiency model. The main motivation for its use was to penalize a “com-
pensatory behavior,” that is, preventing some physicians from being judged as efficient because
of attaining advantageous results on only a single input or output. However, such an approach
considers an extremely limited space of symmetric weights, hence clearly favoring the physicians
with balanced performance profiles. Also, it involves an arbitrary parameterization of the model
with precise values of symmetry factors (β) that are difficult to specify or determine experimen-
tally. Finally, it derives the efficiency measures from analyzing the most favorable weight vector
for each physician, providing precise scores that do not offer a common basis for physicians’
comparison.

We demonstrate that a more fair and justified way for preventing the above-mentioned “com-
pensatory effect” is to conduct a robustness analysis. It provides meaningful means for comparing
physicians based on their performance for diverse scenarios relevant to efficiency analysis. The ro-
bust results are less affected by the inclusion or removal of a single physician; they can be derived
when the number of DMUs is relatively small compared to the number of inputs and outputs, while
highly discriminating between physicians. In this way, we may identify the subsets of the most dis-
tinguishing and underperforming physicians while counteracting the “compensatory effect” related
to excelling at only a single aspect of their clinical role and performing poorly on the remaining
inputs and outputs. Moreover, we demonstrate that the application of our framework is beneficial
for directly comparing pairs of physicians, yielding insights for identifying potential outliers, and
proposing gradual improvement paths for the DMUs.
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The remainder of this paper is organized as follows. Section 2 describes the novel robust value-
based methods for efficiency analysis. In Section 3, we describe a case study. Section 4 concludes
the paper and discusses the potential implications of the proposed approach.

2. Robustness analysis framework for value-based additive efficiency analysis

In this section, we present the robustness analysis methods for the value-based additive efficiency
model. First, we will remind the basic framework that selects for each DMU the input and output
weights that minimize the difference of comprehensive value to the best DMU. We will then dis-
cuss two streams of procedures for investigating the robustness of efficiency results attained for all
feasible input and output weights. Moreover, we will generalize the proposed approaches for inves-
tigating the stability of results in multiple scenarios that can be considered for the same DMUs.
Finally, we will present the algorithms for selecting a common vector of weights based on robust
outcomes.

In what follows, we will use the following notation:

• K—a number of units (DMUs);
• D—a finite set of DMUs, D = {DMU1, . . . , DMUK};
• N and M—the number of inputs and outputs, respectively;
• Q = N + M—a number of all factors relevant for the analysis;
• wq—a weight associated with the qth factor (input or output);
• uq—a marginal value function associated with the qth factor;
• Sw = {w = (w1, w2, . . . , wq)T |w ≥ 0, Aww ≤ 0}—a space of feasible weight vectors, where Aw is

the coefficient matrix of user-defined linear weight constrains.

2.1. Reminder on value-based additive data envelopment analysis

DEA encompasses several models that can be used to measure the relative efficiency of DMUs.
In the most standard approach, the efficiency is expressed as a ratio between a single virtual out-
put and a single virtual input, that is, weighted sums of outputs and inputs, respectively (Charnes
et al., 1978). The seminal CCR (Charnes et al., 1978) and BCC models (Banker et al., 1984) be-
long to this category of radial models, in which the weights involved in the efficiency measure
are established by identifying the most advantageous scenario for the DMU under evaluation.
Later, several nonradial models have been proposed, such as the directional distance function (Färe
and Grosskopf, 2000) and the additive model (Charnes et al., 1985). All these methods share the
core DEA features of considering an empirical production possibility set and allowing each DMU
under evaluation to select the weights involved in the definition of efficiency in a way that makes
its efficiency score as good as possible. When using an additive efficiency model (Charnes et al.,
1985), the underlying idea is to maximize the L1 distance of each DMU to the efficient fron-
tier. A few issues can be associated with this model: the comparability of the scales on which
the inputs and outputs are expressed, the very pessimistic character of the derived efficiency
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measures, and the lack of their intuitive interpretation. To address these issues, Gouveia et al.
(2008) proposed a variant of an additive DEA model, exploiting the links between DEA and
MAVT. In this approach, the DMUs are treated as decision alternatives evaluated in terms of
multiple relevant criteria. Each criterion corresponds to an input or an output factor in the tra-
ditional efficiency model. Specifically, a comprehensive value Eo of DMUo is computed using an
additive value function, that is, a weighted sum of the marginal values assigned to the performance
on each factor:

Eo =
Q∑

q=1

wquq(DMUo), (1)

where wq is the weight, interpreted as a scale coefficient of the marginal value functions u j , such that
wq, q = 1, . . . , Q, and

∑Q
q=1 wq = 1. Moreover, a preference direction is associated with each fac-

tor q, q = 1, . . . , Q. Function u j takes values between 0 and 1, being nonincreasing for the criteria
corresponding to inputs and nondecreasing for outputs. In this way, lesser inputs and greater out-
puts are more preferred and all inputs and outputs are express in comparable value scales. Overall,
the comprehensive value lies in the range of [0, 1]. Using the above model, the efficiency of DMUo
relatively to the set of DMUs can be verified by solving the following linear programming (LP)
problem:

Minimize do (2)

s.t.

Q∑
q=1

wquq(DMUk) −
Q∑

q=1

wquq(DMUo) ≤ do, for k = 1, . . . , K,

do ≥ 0,

Q∑
q=1

wq = 1,

wq ≥ 0, q = 1, . . . , Q,

w ∈ Sw.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

W

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

This LP minimizes the distance do of analyzed DMUo ∈ D to the unit with the greatest compre-
hensive value. If the least distance (d∗,o) is equal to 0, then DMUo is considered efficient. It means
that there exists some feasible weight vector for which DMUo attains a comprehensive value not
worse than the value of all other units. Otherwise, that is, if d∗,o > 0, DMUo is not efficient, and d∗,o
reflects a “min-max regret” perspective. In the following sections, we will denote a set of constraints
specifying all feasible, nonnegative, and normalized weights by W .

The assessment of a DMUo with Eo and d∗,o reflects two different perspectives. On the one hand,
Eo might be called an absolute efficiency score, as it is independent of the other DMUs. It indicates
a score in [0, 1], where 1 corresponds to an ideal situation in which a DMU has a value of 1 on
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every criterion, that is, it produces the maximum amount of outputs with the minimum amount of
inputs, whereas 0 corresponds to a value of 0 on every criterion, that is, it produces the minimum
amount of outputs with the maximum amount of inputs. On the other hand, d∗,o corresponds to
a DEA relative efficiency, that is, relative to the empirically observed efficient frontier, which could
change if other DMUs were added or excluded from D.

Let us emphasize that in terms of MCDA, DMUs with d∗,o = 0 would be formally called “weakly
efficient.” It is possible that a dominated unit would attain a comprehensive value that is at least as
good as all other units’ scores. If this effect was undesired, one could either assume that the weights
wq, q = 1, . . . , Q, should be positive or solve a second LP problem to maximize the minimal weight
values for do = 0 (Gouveia et al., 2008).

When computing d∗,o, only the input/output weight vector most favorable to DMUo is taken
into account, which limits the insights that can be obtained from the analysis. First, it makes the
comparison of efficiency scores questionable due to the nonuniqueness of the weight vectors favor-
able to each DMU, that is, the analyst lacks a common basis to analyze the attained efficiencies.
Second, such an analysis neglects other weight vectors that could provide a realistic setting for the
comparison of DMUs, potentially leading to useful information on the variety of efficiency scores
under a variety of scenarios. Third, it provides limited means for discriminating between the units.
This is particularly true when the number of considered factors is large, implying that a large subset
of DMUs can be deemed efficient.

The limitations of using a single weight vector motivated the development of methods for robust-
ness analysis (Lahdelma and Salminen, 2006; Salo and Punkka, 2011; Kadziński et al., 2017). Their
essence consists of investigating the stability of outcomes for all feasible weights associated with
the inputs and outputs. In what follows, we discuss the methods that incorporate the mathematical
programming techniques to capture the exact, extreme outcomes, or the Monte Carlo simulation to
estimate the distribution of results observed for feasible weights. When doing so, we assume a uni-
form distribution of weights. In this way, each weight vector has equal chances (= 1/vol(W ), where
vol(W ) is the volume of the feasible weight space) to be considered within a sample of weights de-
rived in the simulation. However, it is also possible to use the method with some exogenously given
weight distribution.

2.2. Robustness analysis with mathematical programming

In this section, we discuss the mathematical models for computing the extreme efficiency results
observed in the set of all feasible weights. We refer to three types of outcomes: efficiency scores,
ranks, and pairwise preference relations.

When it comes to the efficiency scores, we may consider the relative distances or absolute values.
For the former (Gouveia et al., 2008), we are interested in the range [d∗,o, d∗

o ] delimited by the
least d∗,o and the greatest d∗

o possible distance of DMUo from the efficient unit that attains the
maximal comprehensive value for a given weight vector. The minimal distance d∗,o can be computed
as explained in Section 2.1, whereas the maximal one, d∗

o , can be obtained by solving the following
mixed-integer linear programming (MILP) model:
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Maximize do (3)

s.t.

Q∑
q=1

wquq(DMUk) − do ≥
Q∑

q=1

wquq(DMUo) − C(1 − bk), for k = 1, . . . , K, k �= o,

∑
k=1,...,K;k �=o

bk = 1,

bk ∈ {0, 1}, for k = 1, 2, . . . , K; k �= o,

do ≥ 0,

W,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where C is a large positive constant. The above model maximizes the distance of DMUo from some
other DMU. The first four constraints guarantee that do is equal to the difference between Ek and
Eo for some k ∈ {1, . . . , K} and k �= o. Note that if a binary variable bk ∈ {0, 1} is equal to 0, then
the first constraint is always satisfied, whereas in case bk = 1, then C(1 − bk) = 0 and do = Ek − Eo.
We require that the latter holds for some DMUk, k ∈ {1, . . . , K} and k �= o.

In turn, the interval [E∗,o, E∗
o ], delimited by the least E∗,o and the greatest E∗

o efficiency scores, can
be determined by optimizing the comprehensive value of DMUo subject to the constraints defining
a set of admissible inputs and output weights, that is,

Minimize/maximize
Q∑

q=1

wquq(DMUo), s.t. W . (4)

The rank-oriented perspective offers greater stability because it is based on ordinal rather than
cardinal comparisons (Salo and Punkka, 2011). Note that some small changes in the data that
might change DMU scores might still keep the ranking of the DMUs unchanged (Kadziński et al.,
2017). To compute the best (minimal) possible R∗,o rank for DMUi, the following MILP problem
needs to be solved:

Minimize 1 +
∑

k=1,...,K;k �=o

bk (5)

s.t.

Q∑
q=1

wquq(DMUk) −
Q∑

q=1

wquq(DMUo) ≤ Cbk, for k = 1, . . . , K; k �= o,

bk ∈ {0, 1}, for k = 1, 2, . . . , K; k �= o,

W .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

The above problem minimizes the number of DMUs that, for some feasible weight vector, at-
tain greater (absolute) efficiency than DMUo. Such a number increased by one is equal to
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R∗,o (Kadziński et al., 2012b). To compute the worst (maximal) possible R∗
o rank for DMUo, we

need to maximize the number of DMUs with the efficiency scores greater than the efficiency of
DMUo. This can be attained by solving the following MILP problem:

Maximize 1 +
∑

k=1,...,K;k �=o

bk

s.t.

Q∑
q=1

wquq(DMUo) −
Q∑

q=1

wquq(DMUk) ≤ C(1 − bk), for k = 1, . . . , K; k �= o,

bk ∈ {0, 1}, for k = 1, 2, . . . , K; k �= o,

W .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6)

The extreme relative distances, absolute values, and ranks indicate the performance of each DMU
in the least and the most favorable scenarios that correspond to the pessimistic and optimistic
settings, respectively. When referring to the latter concepts, we will mean the weight vectors for
which a DMU attains the worst or the best results in the entire space of feasible input and output
weights from a particular outcome perspective.

It is also possible to compare DMUs in a pairwise fashion concerning their efficiencies for all
feasible weights. This efficiency-based binary relation, which we call pairwise preference relation, is
defined for any pair of DMUs, being independent of the remaining DMUs. Given a set of feasible
weights associated with different factors, two certainty levels can be considered (Greco et al., 2008).
On the one hand, the possible preference relation �P

E holds for a pair (DMUo, DMUk) if Eo ≥ Ek
for at least one feasible weight vector. To verify its truth, the following LP model needs to be
solved:

Maximize do,k, s.t.
Q∑

q=1

wquq(DMUo) −
Q∑

q=1

wquq(DMUk) ≥ do,k and W . (7)

If the maximal attained value of do,k is not lesser than 0, there exists at least one feasible vector
w for which Eo ≥ Ek, and thus DMUo �P

E DMUk. On the other hand, the necessary preference
relation �N

E holds for a pair (DMUo, DMUk) if Eo ≥ Ek for all feasible weight vectors. Its truth can
be verified be considering the following LP problem:

Minimize do,k, s.t.
Q∑

q=1

wquq(DMUo) −
Q∑

q=1

wquq(DMUk) ≤ do,k and W . (8)

When the minimal value of do,k is greater than or equal to 0, there is no feasible weight vector
for which Ek > Eo. This, in turn, implies that Eo ≥ Ek holds for all feasible weights, and thus
DMUo �N

E DMUk.
Analyzing exact robust results is fundamental in decision problems with high stakes, where the

specification of weight constraints is impossible or hampered by significant uncertainties. Then,
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the variety of results is greater, and one may implement more “precautionary” rules based on the
analysis of the worst possible results (in case of efficiency scores or ranks) or the necessary outcomes
(in case of preference relations).

2.3. Robustness analysis methods for multiple scenarios of efficiency evaluation

The robustness analysis methods for DEA have been initially designed for dealing with a single sce-
nario (Kadziński et al., 2017; Salo and Punkka, 2011), representing a particular evaluation context
for a set of homogeneous DMUs. In such a scenario, the units are characterized by precise val-
ues of inputs and outputs. However, in some situations, the same set of DMUs could be evaluated
under multiple scenarios. Let us denote a set of such scenarios by S. For each DMU, the input
and output values may differ from one scenario to another, hence potentially leading to different
efficiency results. For example, in the study discussed in this paper, the scenarios correspond to
different complaint groups, with complaints in each group forming a relatively homogenous popu-
lation regarding ED management. It does not make sense to jointly consider different clinical and
diagnostic categories, as this would lead to an averaging effect. Practice variations are expected
and observed across presenting complaints due to the difference in resource utilization patterns
for each type of complaint. This motivated accounting for each group separately and producing
performance evaluations per type of complaint.

In this section, we extend the robust methods to address such multi-scenario settings. This is at-
tained by adopting the approaches proposed initially for dealing with group decision-making prob-
lems (Greco et al., 2012). The multiscenario robust results consider two levels of certainty for the
efficiency outcomes. The first level refers to the robustness analysis results for each scenario S ∈ S.
In what follows, we focus only on the exact outcomes computed with mathematical programming
(see Section 2.2). Let us denote the extreme distances to the efficient unit by [d∗,o,S, d∗

o,S], the ex-
treme efficiency scores by [E∗,o,S, E∗

o,S], the extreme ranks by [R∗,o,S, R∗
o,S], and the necessary and

possible preference relations by �N
E,S and �P

E,S, respectively. The other level concerns the support
given to some robust results by different scenarios. For this purpose, we consider the necessary and
possible support depending on whether some outcome is confirmed by all or at least one scenario,
respectively. Without loss of generality, we define the considered results only in the context of the
necessary preference relation and extreme efficiency scores, and they can be generalized analogously
to the possible relation, extreme distances, and scores:

• the necessary-necessary preference relation �N,N
E,S holds for (DMUo, DMUk) ∈ D × D if for all

S ∈ S, DMUo �N
E,S DMUk;

• the necessary-possible preference relation �N,P
E,S holds for (DMUo, DMUk) ∈ D × D if for at least

one S ∈ S, DMUo �N
E,S DMUk;

• the set of possible-necessary efficiency ranks [RN
∗,o,S, R∗,N

o,S ] is a set of ranks attained for all S ∈ S,
that is, [RN

∗,o,S, R∗,N
o,S ] = ⋂

S∈S [R∗,o,S, R∗
o,S];

• the set of possible-possible efficiency ranks [RP
∗,o,S, R∗,P

o,S ] is a set of ranks attained for at least one
S ∈ S, that is, [RP

∗,o,S, R∗,P
o,S ] = ⋃

S∈S [R∗,o,S, R∗
o,S].

© 2021 The Authors.
International Transactions in Operational Research © 2021 International Federation of Operational Research Societies.



A. Labijak-Kowalska et al. / Intl. Trans. in Op. Res. 30 (2023) 503–544 513

Note that in the case of great divergence of results for various scenarios, [RN
∗,o,S, R∗,N

o,S ] can be
empty, whereas [RP

∗,o,S, R∗,P
o,S ] does not need to be continuous, that is, there can be some holes in the

range delimited by RP
∗,o,S and R∗,P

o,S . In any case, these outcomes are useful for verifying the stability
of performance under multiple scenarios, indicating the spaces of agreement and discordance for
the same unit or pair of DMUs.

2.4. Robustness analysis with the Monte Carlo simulation

In most decision problems, the difference between the extreme distances, scores, or ranks is large, the
possible relation is rich, whereas the necessary one is relatively poor. Thus, it is important to deter-
mine the distribution of distances, scores, ranks, and relations over the feasible weight space. Such
a probability distribution can be estimated with Monte Carlo simulations. To generate a random
sample of weights, we apply the hit-and-run algorithm (Ciomek and Kadziński, 2021). In general,
it is possible to use any arbitrarily chosen probability distribution on the joint density function in
the feasible weight space. When it can be reliably defined, the evaluation model reflects the DM’s
preferences more faithfully. However, elicitation of a fully specified probability distribution calls
for a major effort. When it is not possible, a standard assumption—also made in this paper—is
to consider weights that are uniformly distributed in the feasible space (Lahdelma and Salminen,
2006). As noted in Kadziński et al. (2017), it is in line with the spirit of robustness analysis, where
each feasible weight vector is equally authorized to make some outcome nonnecessary or possible,
or shift the extreme bounds.

The distribution of different efficiency results can be captured with the stochastic acceptability
indices quantifying the shares of feasible weights confirming a given outcome. We consider the
following four types of indices:

• Distance acceptability interval index (DAII ) (DMUo, bi) is the share of feasible weights for which
the distance (to the efficiency frontier) of DMUo to the best unit belongs to the interval bi =
(bi,∗, b∗

i ], being one of the B buckets partitioning the range [0,1] so that
⋃B

i=1 bi = [0, 1], bi ∪ b j =
∅, i �= j, and b1 is left-closed, that is, b1 = [b1,∗ = 0, b∗

1] (by default, we assume that b∗
i − bi,∗ =

b∗
i+1 − bi+1,∗, i = 1, . . . , B − 1).

• Efficiency acceptability interval index (EAII ) (DMUo, bi) is the share of feasible weights for which
the efficiency (in terms of comprehensive score) of DMUo, Eo, belongs to the interval bi.

• Efficiency rank acceptability index (ERAI ) (DMUo, r) is the share of feasible weights for which
DMUo attains rth rank (in terms of comprehensive score).

• Pairwise efficiency outranking index (PEOI ) (DMUo, DMUk) is the share of feasible weights for
which DMUo attains at least as good efficiency as DMUk (Eo ≥ Ek) (in terms of comprehensive
score).

Also, by averaging the measures observed for all feasible weight vectors derived with the Monte
Carlo simulations, we may estimate for DMUo its expected distance Ed (DMUo) to the effi-
cient DMU, expected efficiency EE (DMUo), and expected rank ER(DMUo). These measures
can be used to impose a complete order on the considered set of DMUs (Labijak-Kowalska and
Kadziński, 2021). Their analysis is beneficial in decision problems with modest stakes or relatively
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rich weight constraints, when the average performance or expected values may be used for deriving
a decision recommendation representative for the entire set feasible weights.

In Section A1, we illustrate how such stochastic acceptability indices and expected efficiency
measures are computed for the study considered in Section 3. To keep this illustration concise, we
use a limited set of 10 samples. On the contrary, the results reported for the case study in the main
paper are derived from the analysis of 10,000 uniformly distributed weight vectors.

The proposed robustness analysis based on mathematical programming and the Monte Carlo
simulations have been made available on the open-source software platform diviz (Meyer and Bi-
garet, 2012). Each method was implemented as an independent module. These modules accept
inputs and provide results in the XMCDA standard, enabling combining them into complex work-
flows and visualizing the results using other modules available on diviz.

2.5. Selection of a common vector of weights based on the outcomes of robustness analysis

In the traditional DEA models, for each DMU, we select a potentially different weight vector that
reflects the most advantageous performance scenario for this unit. While this way of proceeding is
useful for verifying the efficiency status of different DMUs, it may prevent a justifiable ranking or a
selection of the best units due to the lack of a common base for their comparison (Contreras, 2020).
In turn, robustness analysis is oriented toward summarizing the results of comparing the DMUs
on all feasible input and output weights, hence offering multiple, possibly infinitely many, bases for
joint consideration of all units. Even though such results are useful for understanding the stability
of results, some users may find them challenging to understand, mainly due to the multiplicity of
weight vectors that serve as the basis for conducting the robustness analysis.

In some applications, it might be more appropriate to consider the same basis for evaluating
the DMUs, namely by selecting a common vector of weights for evaluating all DMUs. In this
way, all units can be ranked on a unified scale, which increases the discrimination power compared
to the classical DEA models. The idea of selecting a common vector of weights was introduced
by Charnes et al. (1989), quickly finding its first applications in the evaluation of highway main-
tenance patrols (Cook et al., 1990) and farms in Kansas (Thompson et al., 1990). Over the last
decades, multiple methods for determining a common vector of weights have been proposed. These
approaches build on the concepts of ideal and anti-ideal alternatives, weighting schemes, cross-
efficiency analysis, incorporating the DM’s preferences, evaluating only a proper subset of DMUs,
statistical analysis, or game theory (Contreras, 2020).

This section introduces the novel procedures for selecting a common vector of weights based
on the analysis of results derived with robustness analysis. Overall, we aim at selecting a single
weight vector representing the whole set of feasible input and output weights. Our purpose is to
find a vector that matches as well as possible the results deemed to be robust. In particular, if the
robust results warrant concluding that some DMUo is better than some DMUk, then the difference
between the efficiency scores of these two DMUs should be enhanced. This will depend on the truth
of a specific robust relation (let us denote it by 	W ), confirming the evident advantage of one DMU
over another given the results attained for all feasible weights. On the other hand, we can point out
the pairs of DMUs for which the efficiency difference should be small due to the ambiguity in their
comparison, given all input and output weights. Such pairs are incomparable (RW ) in terms of the
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Table 1
Conditions justifying the truth of the robust preference 	W and incomparability RW relations

Result DMUo 	W DMUk DMUl RWDMUp

�N
E DMUo �N

E DMUk and not (DMUk �N
E DMUo) not (DMUl �N

E DMUp) and not(DMUp �N
E DMUl )

EE EE (DMUo) − EE (DMUk) > tEE |EE (DMUo) − EE (DMUk)| ≤ tEE

ER ER(DMUo) − ER(DMUk) > tER |ER(DMUo) − ER(DMUk)| ≤ tER

PEOI PEOI (DMUo, DMUk) − PEOI (DMUk, DMUo)
> tPEOI

|PEOI (DMUl , DMUp) − PEOI (DMUp, DMUl )|
≤ tPEOI

robust relation 	W . Thus interpreted, the selected common vector of weights is representative for
all feasible weight vectors in the sense of the robustness concern.

The outcomes discussed in Sections 2.2 and 2.4 provide diverse bases for defining the conditions
underlying the truth or falsity of the robust relation 	W . In this paper, we will refer to four possi-
bilities that build on the necessary preference relation (�N

E ), expected efficiency scores (EEs) and
ranks (ERs), and PEOIs. The respective conditions needed for establishing relations 	W and RW

are defined in Table 1. For example, when referring to �N
E , one unit can be judged as univocally

more advantageous than another if it is necessarily preferred to it, confirming that its efficiency is
at least as good for all feasible weights. On the contrary, the comparison based on �N

E can be judged
ambiguous if a given pair of units is incomparable in terms of �N

E . This means that for at least one
feasible weight vector, one unit is judged more efficient, whereas, for some other input and output
weights, the relation is inverse. Furthermore, when referring to the EEs and ERs, we can judge
one unit as stochastically preferred to another if its expected efficiency or rank is better by some
pre-defined threshold, tEE or tER, specifying the minimal difference in expected results justifying
an evident advantage. When such a threshold is not exceeded, we may assume that the difference
is negligible. Finally, as far as PEOIs are concerned, the truth of a robust preference relation 	W

is well motived when the share of feasible weights for which DMUo is more efficient than DMUk
is greater than the share of weights for which the relation is inverse by more than threshold tPEOI .
By default, thresholds tEE , tER, and tPEOI are set to zero. However, the user can also set them to
some positive values, hence imposing more demanding requirements for instantiating 	W as well
as a greater tolerance for establishing RW .

The selection of a common vector of weights is conducted by attaining the two targets lexico-
graphically. First, we maximize the minimal difference between efficiency scores for pairs of units
related by 	W , that is,

Maximize α (9)

s.t.

for (DMUo, DMUk) ∈ D × D : DMUo 	W DMUk :

Q∑
q=1

wquq(DMUo) −
Q∑

q=1

wquq(DMUk) ≥ α,

W .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
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Let us denote the optimal solution of the above LP problem by α∗. Second, we minimize the maxi-
mal difference between efficiency scores for pairs of units related by RW , that is,

Minimize β (10)

s.t.

for (DMUl , DMUp) ∈ D × D : DMUl RWDMUp :

Q∑
q=1

wquq(DMUl ) −
Q∑

q=1

wquq(DMUp) ≤ β,

Q∑
q=1

wquq(DMUp) −
Q∑

q=1

wquq(DMUl ) ≤ β,

for (DMUo, DMUk) ∈ D × D : DMUo 	W DMUk :

Q∑
q=1

wquq(DMUo) −
Q∑

q=1

wquq(DMUk) ≥ α∗,

W .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The common vector of weights selected in this way can be used to order all units from the best to
the worst. The obtained ranking emphasizes the outcomes following the use of all feasible weights,
which contributed to the selection of an underlying representative vector of weights. It positively
affects the accuracy of the provided results while extending the robustness analysis in the capacity
to explain its outcomes. The user can analyze the computed weights and efficiency scores, which
is more understandable than examining the necessary, extreme, expected, or stochastic outcomes.
Note that this idea has not yet been explored in the context of DEA, even though it has been
successfully applied in MCDA (Kadziński et al., 2012a).

3. Case study: efficiency evaluation of emergency department physicians

In this section, we discuss the application of the proposed method for evaluating the performance
of 20 full-time ED physicians. Data used in the study came from a sufficiently long period of time
(12 months) and was controlled for a case-mix. A detailed description of the case study setting can
be found in Fiallos et al. (2017).

We consider the following three inputs, reflecting the essential resources consumed by the physi-
cians in the process of managing patients in the ED:

• i1—an average encounter time per patient visit (AVG_MDTIME_PAT), which is defined as an
average number of minutes between the first contact of the physician with the patient and the
moment a disposition decision is made and recorded on a patient’s chart;

• i2—an average number of laboratory tests per patient visit (AVG_LAB_PAT) when diagnosing
a patient;
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Table 2
Input and output values for the 20 physicians given complaint group G1 (abdominal pain and constipation) (Fiallos et al.,
2017)

MD i1—AVG_MDTIME_PAT i2—AVG_LAB_PAT i3—AVG_RAD_PAT o1—RATE_NR72

MD1 2.026 2.760 0.920 1.000
MD2 1.959 2.381 0.774 0.961
MD3 2.223 2.333 0.643 0.905
MD4 1.884 1.823 0.661 0.952
MD5 1.511 0.857 0.487 0.952
MD6 1.456 1.330 0.648 0.978
MD7 1.903 1.877 0.596 0.956
MD8 1.704 1.730 0.678 0.939
MD9 1.708 1.927 0.657 0.968
MD10 1.979 1.508 0.820 0.922
MD11 1.652 1.618 0.592 0.981
MD12 2.169 1.863 0.608 0.961
MD13 1.634 1.538 0.786 0.979
MD14 1.745 2.117 0.738 0.942
MD15 1.594 1.548 0.602 0.957
MD16 2.311 1.538 0.462 0.974
MD17 1.962 1.748 0.557 0.948
MD18 1.804 1.590 0.723 0.977
MD19 1.567 1.487 0.601 0.937
MD20 1.435 1.198 0.568 0.969

• i3—an average number of radiology orders per patient visit (AVG_RAD_PAT) used in the diag-
nosis.

Indeed, one can expect that an efficiently working physician arrives at the correct diagnosis in
a shorter time and ordering fewer laboratory tests and radiology orders than a less efficient one.
As an output (o1), we will consider each physician’s quality of care measured by the rate of nonre-
turn patient visits within 72 hours of discharge (RATE_NR72). Such a value has been traditionally
considered one of the most informative indicators of the physicians’ performance (Hung and Cha-
lut, 2008).

Patients have a variety of reasons for visiting an ED. Given different complaint groups, one may
observe variations in the clinical practices and different levels of the available resources such as
time, tests, or orders. For this reason, the efficiency of physicians should be evaluated individu-
ally for each complaint type, representing a different clinical and diagnostic category. In this case
study, our primary focus is on a group of patients complaining (G1) about abdominal pain and
constipation. The input and output values for this group are presented in Table 2. In this context,
we will discuss the results of robustness analysis obtained with mathematical programming, the
Monte Carlo simulation, and common sets of weights selected using different procedures. We will
also consider two other complaint groups—fever (G2) and lower or upper extremity injury, head
injury, and laceration/puncture (G3). The three groups will serve as the basis for the multiscenario
robustness analysis. The descriptive statistics of inputs and outputs for all considered groups are
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Fig. 1. Marginal value functions for the inputs and output used to evaluate the performance of ED physicians
(x-axis—performances; y-axis—marginal value).

given in Section A2. To keep the main paper concise, some other data and results are also presented
or discussed in the Appendices.

The marginal functions that will be used in the value-based efficiency analysis are presented
in Fig. 1. They have been elicited from an independent medical expert using a direct questioning
technique. He took into account performance ranges for each factor, the per-factor preferences, and
the performances’ distribution. This led to defining the convex functions for i3 and o1, a concave
function for i2, and a sigmoid-like function for i1. Moreover, to prevent the dominating role of
any factor on the final results, their weights have been constrained to at most 0.5 (i.e., wq ≤ 0.5,
q ∈ {i1, i2, i3, o1}). We incorporated the latter assumption to avoid scenarios in which a physician
is deemed efficient simply because of excelling at only one aspect of the clinical role while being
ineffective at all other aspects.

Note that in the original case study, physicians’ performance was analyzed using a more tradi-
tional SBM-SWAT VRS model that considers a single most advantageous weight vector for each
DMU (Fiallos et al., 2017). The results presented in Fiallos et al. (2017) take the form of pre-
cise efficiency scores for each physician and each complaint group, providing somewhat limited
and straightforward insights. In the following subsections, we discuss the insights derived from the
analysis of all feasible weights offering means for identifying overall good or bad performers and
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applying individual common sets of weights forming the basis for deriving univocal and well-
justified ranking of physicians. In this perspective, we increase the discriminative power of efficiency
results compared to the traditional methods and address the criticism leveled against the way the
efficiency scores are computed in these approaches when analyzing only the input/output weights,
which are the most favorable to each DMU. Moreover, we focus on different perspectives on the
efficiency of physicians while acknowledging that ranks and pairwise preference relations are more
interpretable to nonspecialists in DEA. When it comes to multiple scenarios, we present the aggre-
gated results summarizing physicians’ performance for different complaint groups instead of simply
displaying the numerical outcomes for each considered scenario individually.

3.1. Robust efficiency results for complaint group G1: abdominal pain and constipation

This section presents the robust results for complaint group G1 concerning abdominal pain and
constipation. First, we discuss robustness analysis outcomes referring to the efficiency scores (the
discussion on the rank-related perspective and pairwise preference relations is provided in the Ap-
pendices). Second, we present the common sets of weights and the underlying rankings of physi-
cians.

3.1.1. Distances to the efficient unit and efficiency scores
This section discusses the robustness of distances to the efficient physician and efficiency scores
for the set of 20 physicians (further referred to as MD1, etc.). In Table 3, we present the extreme
distances (columns d∗ and d∗) and scores (columns E∗ and E∗). The minimal distance d∗ is equal
to 0 for six physicians: MD1, MD5, MD6, MD11, MD16, and MD20. They are deemed efficient
because they attain the greatest efficient score for at least one feasible weight vector. On the other
extreme, even for the best scenario for MD2 and MD3, their minimal distances to the efficient
physician are quite large (0.1836 and 0.1911, respectively). This implies that they are far from work-
ing efficiently.

The maximal efficiency score E∗ is strongly correlated with the minimal distance d∗. This is un-
derstandable because if some physician acts efficiently or (s)he is close to being efficient, this should
be due to attaining a relatively high efficiency score in the most favorable scenario. The greatest
efficiency scores are attained by MD20 (0.6712) and MD6 (0.6547). It is worth noting that E∗ for
the efficient physician MD1 (0.5900) is lesser than E∗ for the inefficient physicians: MD13 (0.6239),
MD18 (0.5940), and MD19 (0.6015). This confirms the importance of analyzing the relative dis-
tances rather than absolute scores when deciding about efficiency.

When considering the least favorable scenarios, the best maximal distances d∗ are between the
two efficient physicians, MD11 (0.2041) and MD6 (0.2601), and inefficient MD13 (0.2688). This
indicates that even in the most pessimistic scenarios for these physicians, the differences in their
efficiencies are relatively small in terms of their scores on a scale of comprehensive value. The worst
maximal distances d∗ are for MD3 (0.4974) and MD1 (0.5575), being about twice as large as for the
best performing physicians. When it comes to the minimal efficiency scores E∗, the best physicians
are also MD6 (0.2465) and MD11 (0.2170). In turn, the least performing ones are MD1 (0.0304)
and MD3 (0.0264), with efficiency scores very close to zero in the most pessimistic scenario.
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Table 3
Extreme and expected values of distances to the efficient unit and efficiency scores for all considered physicians

MD d∗ d∗ Ed E∗ E∗ EE

1 0.0000 0.5575 0.1601 0.0304 0.5900 0.3169
2 0.1836 0.4103 0.2844 0.0599 0.3096 0.1882
3 0.1911 0.4974 0.3096 0.0264 0.2914 0.1619
4 0.0921 0.4155 0.1945 0.0911 0.4565 0.2785
5 0.0000 0.3658 0.0675 0.1409 0.6628 0.4048
6 0.0000 0.2601 0.0196 0.2465 0.6547 0.4552
7 0.0764 0.3957 0.1854 0.1177 0.4477 0.2873
8 0.0950 0.4345 0.1667 0.0721 0.5327 0.3061
9 0.0812 0.3744 0.1436 0.1323 0.5188 0.3297
10 0.0967 0.4650 0.2275 0.0417 0.4390 0.2457
11 0.0000 0.2041 0.0380 0.2170 0.6455 0.4370
12 0.0755 0.4297 0.2031 0.0678 0.4611 0.2699
13 0.0153 0.2688 0.0646 0.1861 0.6239 0.4108
14 0.1377 0.4415 0.2089 0.0652 0.4559 0.2638
15 0.0543 0.3862 0.1157 0.1205 0.5871 0.3572
16 0.0000 0.3609 0.1373 0.1025 0.5572 0.3361
17 0.0634 0.4355 0.1953 0.0882 0.4566 0.2772
18 0.0382 0.2903 0.1094 0.1248 0.5940 0.3656
19 0.0563 0.4142 0.1226 0.0925 0.6015 0.3499
20 0.0000 0.3465 0.0543 0.1602 0.6712 0.4188

To judge the stability of efficiency results for all feasible weights, we can refer to the distance and
efficiency intervals’ widths. On the one hand, the difference between d∗ and d∗ is the smallest for
MD11 (0.2041), confirming the robustness of its relatively high-performance evaluation. On the
other hand, for MD1, this difference is the greatest (0.5575), indicating high dependence of results
on the selected input and output weights.

To expand the analysis of extreme distances and efficiency scores, we will estimate their distribu-
tions using Monte Carlo simulation (see Section A3 for the detailed results), considering 10 equally
distributed buckets, from [0.0, 0.1] to (0.9, 1.0]. Note that the methods would work with any other
arbitrarily specified subranges. Such distributions are useful for identifying the physicians consum-
ing all their inputs and producing outputs efficiently, independently of the selected factor weights,
or those physicians who are more oriented toward optimizing an individual input or output. Let
us emphasize that smaller values are better when considering the distances, and larger values are
better when considering the efficiency scores.

The distance of MD6 and MD11 to the efficient physician is lower than 0.1 for more than 95%
weight vectors. This confirms that these physicians perform efficiently or are very close to being
efficient for the vast majority of scenarios. Furthermore, even though MD16 is efficient, its distance
from the efficient physician is most often between 0.1 and 0.2 (51.2%), and only for 29.5% weights,
it lies in the interval [0.0, 0.1]. This suggests that MD16 cannot optimize all inputs and outputs
equally well. The analysis of DAIIs and EAIIs is also helpful to identify the underperforming
physicians. For example, the efficiency scores for MD2 and MD3 are at most 0.2 for, respectively,
57.3% and 68.4% feasible weight vectors, hence confirming their low performance in terms of the
efficiency of provided care.
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Table 4
Common sets of weights selected using four different procedures

Procedure wi1 wi2 wi3 wo1

�N
E 0.46541 0.21630 0.11753 0.20076

ER 0.23715 0.24646 0.26183 0.25456
EE 0.36510 0.30947 0.00000 0.32543
PEOI 0.25502 0.19246 0.29040 0.26213

To construct a complete ranking of physicians without using a common vector of weights, we can
use the expected distances to the efficient unit (Ed) and expected efficiencies (EE). These metrics
are summarized in Table 3. They impose the same orders on the set of physicians under consid-
eration. On the one hand, the top-ranked physicians are MD6 (Ed = 0.0196 and EE = 0.4552)
and MD11 (Ed = 0.038 and EE = 0.437). For them, the difference to the best physician is, on
average, very low, which confirms their position as overall good performers. On the other hand,
the bottom-ranked physicians are MD2 (Ed = 0.2844 and EE = 0.1882) and MD3 (Ed = 0.3096
and EE = 0.1619), characterized by larger expected distances to the best physicians and lower ex-
pected efficiencies.

In general, the analysis of extreme distances and efficiency scores allows distinguishing the MDs
exhibiting universal good practices to follow. These include units that attain favorable results for the
wide spectrum of feasible weights. In this perspective, MD6 and MD11 can be considered for others
as the benchmarks. Other MDs that are efficient only under specific conditions can be judged more
niche (see, e.g., MD1 and MD16). These results are also helpful in discriminating between the in-
efficient DMUs. On the one hand, MDs with favorable extreme distances and scores have the most
significant potential for becoming efficient. Therefore, the management may implement the correc-
tive plan for units such as MD13 and MD18 in the first order. On the other hand, high distances
and low scores indicate the MDs for which becoming efficient would be the most challenging, and
the corrective actions need to be distributed over a longer-term (see, e.g., MD2 and MD3).

An analogous discussion on the robustness of efficiency ranks and pairwise preference relations
is presented in Sections A4 and A5.

3.1.2. Analysis of rankings obtained by applying the common sets of weights
This section reports the results obtained using four procedures for selecting the common vector of
weights presented in Section 2.5. They build on the expected efficiencies EEs (see Section 3.1.1),
expected ranks ERs (see Section A4), the necessary preference relation �N

E , or PEOIs (see Sec-
tion A5). We parameterize the procedures with the following thresholds justifying the truth of a
robust preference relation: tER = 0.5, tEE = 0.1, and tPEOI = 0.15. Hence, to justify an evident ad-
vantage in performance of one physician over another, his/her expected rank should be better by
more than 0.5, or the expected efficiency should be greater by more than 0.1, or the share of feasible
input/output weights confirming better performance should be greater by more than 15% than the
share of weights confirming worse performance.

In Table 4, we present the common sets of weights selected using four different procedures. For
example, when considering the weights chosen based on the analysis of �N

E , the highest priority
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Table 5
Efficiency scores and ranks attained by physicians for the common sets of weights selected using four different procedures

Procedure �N
E ER EE PEOI

MD Efficiency Rank Efficiency Rank Efficiency Rank Efficiency Rank

1 0.2633 13 0.3137 11 0.3984 10 0.3127 8
2 0.1742 19 0.1832 19 0.2241 19 0.1618 19
3 0.1358 20 0.1578 20 0.1731 20 0.1339 20
4 0.2631 15 0.2706 14 0.3261 13 0.2343 14
5 0.4368 3 0.3956 5 0.4701 5 0.3609 5
6 0.4941 1 0.4444 1 0.5662 1 0.4133 1
7 0.2631 14 0.2802 13 0.3251 14 0.2453 13
8 0.3244 10 0.2971 12 0.3720 11 0.2622 12
9 0.3407 9 0.3210 10 0.3984 9 0.2886 11
10 0.2207 18 0.2372 18 0.2927 18 0.1958 18
11 0.4347 4 0.4279 2 0.5251 2 0.3975 2
12 0.2245 17 0.2632 16 0.2999 17 0.2265 17
13 0.4238 5 0.4002 4 0.5160 3 0.3669 4
14 0.2819 11 0.2559 17 0.3243 15 0.2265 16
15 0.3852 7 0.3481 7 0.4278 7 0.3152 7
16 0.2669 12 0.3303 9 0.3567 12 0.2947 10
17 0.2410 16 0.2706 15 0.3024 16 0.2343 15
18 0.3510 8 0.3562 6 0.4481 6 0.3208 6
19 0.3853 6 0.3407 8 0.4194 8 0.3073 9
20 0.4669 2 0.4088 3 0.5063 4 0.3767 3

is assigned to i1, whereas the lowest priority is attributed to i3. On the contrary, the values of
weights selected based on ERs are more balanced, ranging between 0.23715 (for i1) and 0.26183
(for i3).

The respective efficiency scores and ranks for the 20 physicians are given in Table 5. These scores
are derived from the lexicographic optimization of two targets—maximization of the efficiency dif-
ference for pairs of physicians related by the robust preference relations and minimization of such
a difference for pair incomparable in terms of this relation.

Let us discuss in detail the results built on ER and �N
E . When it comes to the expected ranks

(see Section A4), the three best performing physicians are MD6 (1.860), MD11 (2.914), and MD20
(3.682), whereas the three bottom-ranked physicians are MD10 (17.347), MD2 (18.669), and MD3
(19.640). The expected ranks’ analysis is the basis for selecting a common vector of weights. For
example, MD6 should be preferred to MD20, which, in turn, should be judged better than MD5,
etc., according to the common weight vector to be chosen. Solving the LP problem (Section 2.5),
the minimal efficiency difference for pairs with expected ranks differing by more than 0.5 is positive
(0.00738). This means that the derived rankings reflect the order of physicians implied by ERs. For
example, MD6 is ranked first with an efficiency of 0.444, and MD3 is ranked last with an efficiency
of 0.1578. Thus, the expected results derived from the analysis of all feasible weights have been
captured with a single common weight vector: [0.23715, 0.24646, 0.26183, 0.25456]. Moreover, the
derived ranking can be seen as a synthetic representation of the expected results derived from the
stochastic analysis.
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Table 6
Values of Kendall’s τ coefficient for all pairs of rankings obtained with different
procedures

Procedure �N
E ER EE PEOI

�N
E 1.000 0.842 0.853 0.821

ER 0.842 1.000 0.926 0.958
EE 0.853 0.926 1.000 0.926
PEOI 0.821 0.958 0.926 1.000

In the same spirit, the efficiency scores built on �N
E (see Section A5) allowed flattening, in a

reasonable way, the graph of the necessary preference relation determined with mathematical pro-
gramming. The minimal efficiency difference for pairs related by �N

E is 0.04243. Hence, the pro-
cedure succeeded in reflecting the preference confirmed by all feasible weights in a complete or-
der imposed by applying a single weight vector: [0.46541, 0.21630, 0.11753, 0.20076]. For example,
such an advantage can be observed for the following pairs: (MD6, MD15), (MD15, MD8), (MD8,
MD14), and (MD14, MD3). Furthermore, the physicians who are necessarily preferred to many
other physicians attain the best scores and ranks according (see MD6 (1), MD20 (2), MD5 (3),
MD11 (4), and MD13 (5)). On the contrary, the physicians necessarily outperformed by many oth-
ers are ranked at the bottom (see MD10 (18), MD2 (19), and MD3 (20)). Interestingly, MD1, being
incomparable in terms of �N

E with any other physician, is ranked 13th, hence attaining an interme-
diate position. Overall, the analysis of such a ranking supports the comprehension of the necessary
preference relation, making comparisons among the physicians more clear and the entire order well
justified due to its roots in the outcomes observed for all feasible weight vectors.

The rankings constructed by the four procedures (see Table 5) are very similar. In Table 6, we
present the values of Kendall’s τ coefficient (Winkler and Hays, 1985) for all pairs of obtained rank-
ings. For example, MD6 and MD3 are ranked at, respectively, the very top and very bottom by all
procedures. The slight differences between the ranking produced by different procedures are the re-
sult of different tolerance levels that were used. On the one hand, the necessary preference relations
left many pairs of physicians incomparable, whereas the expected ranks coupled with tER = 0.5
allowed comparing almost all pairs of physicians. On the other hand, requiring that physician’s
expected efficiency is better than another by more than 0.1 is clearly more limiting than requiring
the difference in expected ranks to be greater than 0.5. Consequently, different numbers of pairs
of physicians were considered in the two phases of lexicographic optimization. While this had an
impact on the rankings, the subsets of the best, medium, and the worst performers stay the same.

The discussed rankings are also strongly correlated with the one presented in Fiallos et al. (2017),
derived using the SBM-SWAT VRS model. The correlation coefficients range from 0.611 to 0.723
when considering the ranking based on EE or �N

E , respectively. When comparing the four rankings
with the order reported in Fiallos et al. (2017), the positions attained by MD2, MD6, MD10,
MD12, MD15, and MD20 differ by at most 2. The greatest differences are observed for MD1,
MD3, MD11, and MD16 (up to 10, 6, 7, and 6 positions, respectively). The reasons underlying
these differences have various origins. For example, we demonstrated that the performance of MD1
highly depends on the selected weight vector, while it was ranked at the bottom in Fiallos et al.
(2017). Moreover, MD3 was judged as the worst performing physician according to all ranking
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Table 7
The possible-necessary and possible-possible intervals of distances to the efficient physician, efficiency scores, and ranks
based on the analysis of three complaint groups

MD [dP
∗,o,S, d∗,P

o,S ] [dN
∗,o,S, d∗,N

o,S ] [EP
∗,o,S, E∗,P

o,S ] [EN
∗,o,S, E∗,N

o,S ] [RP
∗,o,S, R∗,P

o,S ] [RN
∗,o,S, R∗,N

o,S ]

1 [0.0000, 0.5575] [0.0631, 0.3784] [0.0304, 0.9623] [0.3095, 0.5900] [1, 20] [12, 18]
2 [0.0861, 0.4292] [0.1836, 0.3437] [0.0599, 0.7936] [0.2861, 0.3096] [13, 20] [14, 20]
3 [0.0607, 0.4974] [0.1911, 0.4653] [0.0264, 0.8663] [0.1735, 0.2914] [9, 20] [18, 20]
4 [0.0072, 0.4938] [0.1277, 0.1317] [0.0911, 0.9928] [0.3850, 0.4565] [2, 20] [12, 18]
5 [0.0000, 0.4423] [0.0839, 0.3174] [0.1409, 0.8954] [0.2710, 0.6628] [1, 17] [7, 8]
6 [0.0000, 0.4358] [0.0000, 0.1670] [0.2465, 0.9486] [0.4215, 0.6547] [1, 14] [1, 5]
7 [0.0444, 0.4231] [0.1057, 0.1830] [0.1177, 0.8876] [0.4054, 0.4477] [6, 18] [11, 12]
8 [0.0019, 0.4345] [0.0950, 0.3191] [0.0721, 0.9359] [0.3579, 0.5327] [2, 17] [8, 10]
9 [0.0461, 0.4367] [0.0812, 0.2946] [0.1323, 0.9001] [0.2938, 0.5188] [5, 18] [9, 15]
10 [0.0172, 0.4650] [0.0967, 0.2591] [0.0417, 0.8471] [0.3318, 0.4390] [3, 20] ∅
11 [0.0000, 0.4421] [0.0706, 0.2041] [0.2170, 0.8971] [0.3515, 0.6455] [1, 20] [6, 8]
12 [0.0000, 0.4445] [0.0755, 0.1401] [0.0678, 0.9340] [0.4483, 0.4611] [1, 18] ∅
13 [0.0153, 0.3145] [0.0257, 0.1597] [0.1861, 0.9150] [0.4287, 0.6239] [2, 14] [3, 7]
14 [0.0507, 0.4415] [0.1377, 0.1791] [0.0652, 0.8690] [0.4106, 0.4559] [4, 19] [10, 16]
15 [0.0000, 0.3862] [0.0543, 0.3312] [0.1205, 0.9686] [0.3120, 0.5871] [1, 18] [5, 11]
16 [0.0000, 0.4585] ∅ [0.1025, 1.0000] [0.5094, 0.5572] [1, 20] [2, 6]
17 [0.0602, 0.4355] [0.0910, 0.1881] [0.0882, 0.8724] [0.4003, 0.4566] [3, 18] [6, 18]
18 [0.0382, 0.4230] [0.0915, 0.2903] [0.1248, 0.8061] [0.3039, 0.5940] [4, 19] [12, 14]
19 [0.0269, 0.4142] [0.0584, 0.1659] [0.0925, 0.9056] [0.4225, 0.6015] [3, 15] [4, 9]
20 [0.0000, 0.4541] [0.0139, 0.3465] [0.1602, 0.9711] [0.2278, 0.6712] [1, 18] [2, 8]

methods considered in this paper. This is implied by its unfavorable evaluation for the vast majority
of feasible weights, which follows the transformation of its performances into marginal values using
the functions presented in Fig. 1. However, according to Fiallos et al. (2017), five other physicians
were judged worse than MD3.

3.2. Multiscenario robustness analysis for different complaint groups

In this section, we present the aggregated results of robustness analysis for the three complaint
groups related to abdominal pain and constipation (G1), fever (G2), and lower or upper extremity
injury, head injury, and laceration/puncture (G3). The input and output values for groups G2 and
G3 are given in Section A6. The analysis of pairwise-oriented outcomes is provided in Section A7.
In the main paper, we focus on the robust intervals of distances to the best physician, efficiencies,
and ranks.

To derive the aggregated score- and rank-related results for three complaint groups, we conducted
a robustness analysis for each of them individually and introduced a second level of certainty to
capture the stability of outcomes for physicians treating patients from different groups. In Table 7,
we present the extreme distances to the efficient physician, efficiency scores, and ranks obtained
in that way. These marked as necessary (N) indicate the values obtained for all complaint groups,
while the ones denoted as possible (P) specify the values obtained for at least one group.
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The lower bound of the possible distance interval [dP
∗,o,S, d∗,P

o,S ] is equal to 0 for eight physicians:
MD1, MD5, MD6, MD11, MD12, MD15, MD16, and MD20. These physicians perform effi-
ciently, treating at least one complaint group. Moreover, MD6 is the only physician for whom the
lower bound of the necessary distance interval [dN

∗,o,S, d∗,N
o,S ] is 0. This confirms its efficiency for

all three complaint groups. The next two best results are attained by MD20 (0.0139) and MD13
(0.0257), which means that they are nearly efficient for all considered settings. In turn, for MD16,
the intersection of the distances to the efficient physician over all groups is empty. Such an outcome
indicates that MD16’s performance strongly depends on the group. (S)he performed quite well for
one group and all feasible input and output weights and poorly for some other group.

The possible-possible intervals of efficiency scores [EP
∗,o,S, E∗,P

o,S ] are wide for all physicians. The
minimal width is for MD11 (0.6801), whereas the maximal difference between the extreme scores
for different complaint groups is equal to 0.9319 (see MD1). When it comes to the width of the
possible-necessary efficiency score interval [EN

∗,o,S, E∗,N
o,S ], it is minimal for MD12 (0.0128) and max-

imal for MD20 (0.4434). The physicians with the greatest width of the possible-necessary interval
and the least width of the necessary-necessary interval are the most specialized ones, attaining
highly variable results for different complaint groups.

Similar conclusion can be derived from the analysis of multiscenario rank intervals (see
[RP

∗,o,S, R∗,P
o,S ] and [RN

∗,o,S, R∗,N
o,S ]). The relative performance of MD2 and MD3 is rather poor for

all complaint groups. Their best rank for any group is 13 and 9, respectively. For other physicians,
the possible-possible rank intervals are rather wide, again confirming their varied performance. In
particular, there are three physicians (MD1, MD11, and MD16) who attributed all ranks when
considering the three complaint groups.

When considering the possible-necessary rank intervals [RN
∗,o,S, R∗,N

o,S ], we can observe that for
MD10 and MD12, there is no single rank attained for all complaint groups. The best results are
observed for MD5 who attained ranks in the interval [1, 5] for all scenarios. Similarly, in the most fa-
vorable scenario, MD16 and MD20 are ranked at least second (RN

∗,o,S = 2) for all complaint groups.
On the contrary, MD1 is ranked only 12th for one group (RN

∗,o,S = 12). Given its efficiency for some
other group (RP

∗,o,S = 1), this means that the performance of MD1 mostly depends on the selected
priorities and evaluation scenario.

In Section A8, we summarize the results derived for each physician with the proposed robustness
analysis framework for a single scenario referring to complaint group G1 and multiple scenarios
concerning groups G1, G2, and G3. Specifically, we refer to the ranks attained by each physician
according to various measures.

4. Conclusions and implications

We presented a novel robustness analysis framework for DEA incorporating a value-based additive
efficiency model. The basic framework incorporates mathematical programming techniques and
the Monte Carlo simulation to exploit all feasible input and output weights. These methods derive
two types of results concerning four perspectives relevant to the analysis. One type of results, ex-
treme outcomes, captures exact outcomes observed for the most and the least advantageous weight
vectors for a given DMU or instantiated for all or at least one feasible weight vector. Another type
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of results, stochastic acceptability indices, quantify the share of feasible weight vectors supporting
some conclusions. The four accounted perspectives concern efficiency scores, distances from the
efficient unit, ranks, and pairwise efficiency preference relations. Such outcomes provide rich in-
formation on the stability of efficiency outcomes from the complementary perspectives that focus
on the DMUs assessed individually, compared pairwise, or collated with all remaining units in the
analyzed set. To facilitate the application of these methods in practice, we created an open-source
system implementing them on the diviz platform.

In addition, the primary framework was extended in two ways. On the one hand, we introduced
the procedures for selecting the common vector of weights. These procedures incorporate robust-
ness by exploiting stability analysis outcomes to define the score differences that should be em-
phasized in the ranking constructed with the chosen weight vector. One may either maximize the
differences between efficiencies for pairs of DMUs for which an evident advantage of either of them
can be observed given results attained for all feasible weight vectors or minimize such a difference if
the results of such a comparison are not univocal. Specifically, we discussed the procedures exploit-
ing the necessary efficiency preference relation, expected efficiencies, expected ranks, or PEOIs. On
the other hand, we adjusted the robustness analysis framework to a multiscenario setting, in which
the same DMUs are evaluated under different conditions or from various perspectives. The main
innovation consisted of accounting for the second level of certainty, referring to the necessity or
possibility of some robust conclusion given multiple relevant scenarios.

The proposed approach was applied to evaluating the performance of the ED physicians, assum-
ing time, laboratory tests, and radiology orders as inputs, and rate of nonreturn visits to the ED
within 72 hours as a single output that is a proxy for physicians’ performance and the quality of
the provided care. The robust results provide multiple implications for both individual physicians
and hospital managers. Let us emphasize that due to the specificity of DEA, these conclusions are
limited by considering a specific setup involving a particular group of analyzed peers, factors se-
lected as relevant for the analysis, and an adopted efficiency model. Thus, they do not refer to any
external standards.

First, the wide intervals of efficiency scores, distances to the efficient physician, and ranks, ob-
served for most physicians for a single complaint group, serve as the evidence for the strong de-
pendence of the physicians’ performances on the selected weight vector (i.e., priorities assigned to
different inputs and outputs). Such a high variability of results should make the analysts careful
with some definitive judgments about the physicians’ performance and might help identify the out-
liers. This variability also puts into question the results obtained with traditional DEA methods
taking into account only the most advantageous scenario for each DMU, MCDA approaches, or
composite indicators, due to their reliance on a single, often user-defined subjective weight vector
or a limited subset of weight vectors.

Second, even though one should not draw strict conclusions about individual physicians’ effi-
ciency, the robust results serve as a good starting point for an in-depth investigation. In particular,
these outcomes can be used to identify physicians who are markedly better in providing care to a
given complaint group. These best performers should have low distances to the efficient physician,
high efficiency scores or ranks for most feasible weight vectors, and not be outperformed by one
other physician in terms of the necessary preference relation. The physicians satisfying these condi-
tions may be considered a benchmark or “role models.” A detailed analysis of their performances
can facilitate developing an improvement plan and guidelines for the underperforming ones.
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Third, to facilitate communicating the performance assessment results, we provide means for
ranking the physicians. On the one hand, such ranking can be determined based on the expected
efficiency scores or ranks. They offer an overview of the physicians’ average performance (consid-
ering different weights), pointing out the overall good performers, niche performers, and lower-
performing physicians. On the other hand, the rankings can be determined using a common vector
of weights selected to represent the robust results attained for all feasible weight vectors. Such rep-
resentative weights can also be interpreted as the priorities assigned to different inputs and outputs.
They can be used in a practice-oriented model for a given complaint group.

Fourth, the results of robustness analysis are helpful in designing the corrective plans for under-
performing physicians. In particular, the necessary preference relation can serve to construct the
improvement paths based on the performance of other physicians, who outperform others. Hence,
these outcomes may find application in a stepwise benchmarking process. Moreover, when refer-
ring to the robust results, the management may formulate detailed and diverse performance targets
(e.g., improving inputs and outputs warranting a possible rank in the top three or the necessary
preference over some other unit).

Fifth, the outcomes of multiscenario robustness analysis for different complaint groups are useful
from individual physicians’ and hospital managers’ viewpoints. Specifically, we may identify physi-
cians performing well given all complaint groups. They may be treated as universal benchmarks.
Other physicians who performed well only for some complaint groups while underperforming for
others may be considered “specialists,” particularly efficient in managing patients of a given type.
Overall, we observed a significant variability of results in the three complaint groups, indicating
that medical practices and quality of care vary. From the managerial viewpoint, these outcomes
help distinguish physicians into subsets treating patients with different complaints, which can pos-
itively affect the overall quality of care. They are also useful for identifying the most difficult com-
plaint groups that are characterized by a low number of efficient physicians and a high number of
inefficient physicians.

The main purpose of our research was to show the clinical management insights that can be
gained from the robust analytical approach. These insights confirmed some hypotheses (e.g., on
the differences between physicians in terms of their efficiencies and in the clinical judgments across
the groups), supported common beliefs (e.g., that it is barely possible to excel at only all aspects of
the clinical role), and provided answers to some performance-oriented questions (e.g., by identify-
ing specialists or overall good performers). However, having such an approach actually applied in
CHEO would require the Research Ethics Board approval and consent of the ED physicians, which
was beyond the scope of this study.

Our model’s main limitations come from the need to specify the marginal value functions and
the lack of indicating precise performance improvements on the particular inputs or outputs that
allow attaining efficiency. When it comes to the former, in MCDA, there exist some well-established
techniques for eliciting such marginal functions. Moreover, such functions help differentiate be-
tween performances on a particular factor based on a given problem’s specific features, a set of
analyzed DMUs, and management preferences. If such a specification is not possible, one can use
a default option of linear marginal value functions. As far as the required improvements are con-
cerned, we instead opt for pointing out the peers from whom one should learn and improvement
paths indicating the set of benchmarks.
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Let us emphasize that when all components of the proposed methodology are employed simul-
taneously, the number of results to be considered by decision analysts can be prohibitively large.
However, in the context of a real-world application, these components can be limited by accounting
for the following three aspects. The first aspect refers to whether the performance of DMUs should
be analyzed in single or multiple scenarios (in our paper, these scenarios corresponded to different
complaint groups). The second aspect concerns the model exploitation by looking at the robust-
ness of efficiency results or developing a univocal recommendation using a common set of weights
emphasizing the robust outcomes. The last aspect refers to a type of output variability (extreme
or stochastic) and a perspective on the efficiency analysis (scores, distances, ranks, or preference
relations) that should be considered. Having answered such questions, one can limit the scope of
the proposed methodological framework to one’s own needs.

Several future research directions can be explored. From the application viewpoint, the most
interesting one concerns extending the analysis to other complaint groups and more performance
measures. In particular, the input- and output-oriented perspectives could be enriched by consid-
ering specialist consults and patient satisfaction, respectively. Such data were not available for our
study. One could also analyze the impact of a trainee factor on physicians’ performance by sep-
arately considering the visits when any trainee did not assist them, or junior or senior trainees
supported them. From the methodological viewpoint, the proposed robustness analysis framework
incorporating a value-based additive efficiency model can be extended to account for the imprecise
(interval and ordinal) performances, the interactions between the considered factors, and a hierar-
chical structure of inputs and outputs.
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Appendix

A.1. Computing the stochastic acceptability indices: an illustrative example

In this section, we discuss how to estimate the distribution of distances to the efficient unit and how
to compute the ranks of physicians based on the expected efficiency, distance, or rank. We apply
the hit-and-run algorithm to derive samples of weights for all inputs and outputs. Table A1 shows
10 examples of weight vectors used to compute the illustrative results in this section. Note that the
outcomes reported in the main paper are derived from the analysis of 10,000 samples, which offers
sufficient precision of the estimation.

Then, we compute a value-based efficiency score for each physician and each sample (see Ta-
ble A2). When considering MDi, its distance to the efficient unit is calculated as the differ-
ence between the maximal efficiency score of any physician obtained for a given sample and
the efficiency score of MDi. For example, for sample 1 and MD3, such a distance is equal to
d3 = 0.275 − 0.066 = 0.209. An efficiency rank of MDi is computed based on the number of physi-
cians with greater efficiencies than MDi. For example, for sample 1, there are three physicians
(MD6, MD11, and MD20) ranked better than MD5, and hence it is ranked fourth. The dis-
tances to the efficient unit and efficiency ranks for all physicians and samples are provided in
Table A2.

Having computed the distances to the efficient unit for each decision-making unit (DMU) and
each sample, we calculate DAII as the ratio of the number of samples for which the distance lies
within the analyzed interval to the number of all considered samples (see Table A3). For example,
DAII (MD1, (0.1, 0.2]) is equal to 0.3 because for MD1, its distance to the efficient unit is in the
(0.1,0.2] interval for 3 of 10 samples (samples 2, 5, and 9). The distributions of efficiency scores
(EAIIs), ranks (ERAIs), and preference relations (PEOIs) are computed analogously.

The results obtained for various samples can be averaged to estimate the expected measure values.
The expected efficiencies EE , distances Ed , and ranks ER are presented in Table A2. To impose a

Table A1
Ten examples of input and output weight vectors obtained with the Monte Carlo simulation (for each vector, the weights
sum up to 1)

1 2 3 4 5 6 7 8 9 10

wi1 0.285 0.185 0.348 0.215 0.440 0.060 0.325 0.324 0.268 0.162
wi2 0.025 0.456 0.304 0.135 0.158 0.296 0.050 0.258 0.051 0.062
wi3 0.499 0.016 0.301 0.376 0.142 0.471 0.383 0.355 0.474 0.289
wo1 0.191 0.344 0.047 0.274 0.261 0.174 0.242 0.063 0.207 0.487

© 2021 The Authors.
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Table A3
Distribution of the distances to the efficient unit (DAIIs) based on 10 examples of weight vectors

MD [0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1.0]

1 0.5 0.3 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.2 0.5 0.3 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0
4 0.0 0.8 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
5 0.9 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.1 0.7 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 0.9 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
9 0.1 0.8 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
10 0.0 0.3 0.6 0.0 0.1 0.0 0.0 0.0 0.0 0.0
11 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 0.1 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0
13 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 0.0 0.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
15 0.7 0.2 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
16 0.4 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
17 0.1 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
18 0.4 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
19 0.5 0.4 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
20 0.9 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

complete order on the set of physicians, they need to be sorted accordingly (e.g., in the ascending
order when accounting for Ed). In the considered example, the best (minimal) expected distance
is associated with MD6 (0.020) and the worst (maximal) distance is attained by MD3 (0.284).
These physicians are ranked at top and bottom, respectively. The rankings based on the expected
ranks (ERs) or efficiencies can be constructed analogously. Note, however, that while lower dis-
tances and ranks are preferred, greater values are more favorable when considering the efficiency
scores.

A.2. Descriptive statistics of input and output data for the three considered complaint groups

In Table A4, we report the descriptive statistics of input and output data for the three complaint
groups considered in the main paper: G1—abdominal pain and constipation; G2—fever; and G3—
lower or upper extremity injury, head injury, and laceration/puncture.

A.3. Distributions of the distances to the efficient unit and the efficiency scores for complaint group G1

In Tables A5 and A6, we report the distributions of the distances to the efficient unit and the effi-
ciency scores for complaint group G1 estimated based on 10,000 weight vectors. They are captured
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Table A4
Descriptive statistics of input and output data for the three considered complaint groups (G1, G2, and G3)

Group Statistic i1 – AVG_MDTIME_PAT i2 – AVG_LAB_PAT i3 – AVG_RAD_PAT o1 – RATE_NR72

G1 Min 1.435 0.857 0.462 0.905
Max 2.311 2.760 0.920 1.000
Mean 1.811 1.739 0.656 0.958
St. dev. SD 0.254 0.431 0.112 0.022

G2 Min 1.017 0.357 0.207 0.907
Max 1.752 1.101 0.419 1.000
Mean 1.367 0.668 0.322 0.963
SD 0.227 0.206 0.061 0.020

G2 Min 0.836 0.000 0.478 0.957
Max 1.293 0.176 0.847 1.000
Mean 1.058 0.071 0.684 0.985
SD 0.132 0.055 0.090 0.010

Table A5
Distribution of the distances to the efficient unit (DAIIs)

MD [0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1.0]

1 0.405 0.237 0.187 0.120 0.051 0.000 0.000 0.000 0.000 0.000
2 0.000 0.017 0.617 0.365 0.001 0.000 0.000 0.000 0.000 0.000
3 0.000 0.005 0.423 0.518 0.054 0.000 0.000 0.000 0.000 0.000
4 0.004 0.598 0.344 0.054 0.000 0.000 0.000 0.000 0.000 0.000
5 0.750 0.196 0.050 0.004 0.000 0.000 0.000 0.000 0.000 0.000
6 0.955 0.043 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.027 0.618 0.309 0.046 0.000 0.000 0.000 0.000 0.000 0.000
8 0.008 0.781 0.170 0.041 0.000 0.000 0.000 0.000 0.000 0.000
9 0.072 0.834 0.085 0.009 0.000 0.000 0.000 0.000 0.000 0.000
10 0.000 0.365 0.493 0.122 0.020 0.000 0.000 0.000 0.000 0.000
11 0.965 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
12 0.022 0.470 0.434 0.074 0.000 0.000 0.000 0.000 0.000 0.000
13 0.891 0.103 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000
14 0.000 0.515 0.420 0.063 0.002 0.000 0.000 0.000 0.000 0.000
15 0.495 0.420 0.076 0.009 0.000 0.000 0.000 0.000 0.000 0.000
16 0.295 0.512 0.191 0.002 0.000 0.000 0.000 0.000 0.000 0.000
17 0.044 0.511 0.373 0.071 0.001 0.000 0.000 0.000 0.000 0.000
18 0.418 0.553 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.000
19 0.457 0.432 0.090 0.021 0.000 0.000 0.000 0.000 0.000 0.000
20 0.853 0.119 0.028 0.000 0.000 0.000 0.000 0.000 0.000 0.000

by distance acceptability interval indices DAIIs, and efficiency acceptability interval indices, EAIIs,
respectively. These results are referred to in Section 3.1 of the main paper.

The analysis of such distributions allows identifying the DMUs for which the results vary much
in the set of feasible weights. High dispersion of scores and distances should prompt investigation
as to whether the guidelines for standard practice can be used to reduce variance in management.
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Table A6
Distribution of the efficiency scores (EAIIs)

MD [0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1.0]

1 0.030 0.183 0.230 0.265 0.206 0.086 0.000 0.000 0.000 0.000
2 0.040 0.533 0.427 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.199 0.485 0.316 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.233 0.332 0.325 0.110 0.000 0.000 0.000 0.000 0.000
5 0.000 0.012 0.152 0.318 0.320 0.187 0.011 0.000 0.000 0.000
6 0.000 0.000 0.030 0.250 0.399 0.291 0.030 0.000 0.000 0.000
7 0.000 0.197 0.348 0.335 0.120 0.000 0.000 0.000 0.000 0.000
8 0.001 0.150 0.335 0.321 0.188 0.005 0.000 0.000 0.000 0.000
9 0.000 0.063 0.324 0.371 0.239 0.003 0.000 0.000 0.000 0.000
10 0.098 0.274 0.282 0.277 0.069 0.000 0.000 0.000 0.000 0.000
11 0.000 0.000 0.032 0.313 0.402 0.244 0.009 0.000 0.000 0.000
12 0.019 0.243 0.341 0.312 0.085 0.000 0.000 0.000 0.000 0.000
13 0.000 0.001 0.118 0.348 0.355 0.175 0.003 0.000 0.000 0.000
14 0.009 0.216 0.423 0.332 0.020 0.000 0.000 0.000 0.000 0.000
15 0.000 0.029 0.253 0.369 0.309 0.040 0.000 0.000 0.000 0.000
16 0.000 0.075 0.304 0.331 0.267 0.023 0.000 0.000 0.000 0.000
17 0.004 0.236 0.332 0.325 0.103 0.000 0.000 0.000 0.000 0.000
18 0.000 0.018 0.231 0.380 0.307 0.064 0.000 0.000 0.000 0.000
19 0.000 0.056 0.262 0.355 0.285 0.042 0.000 0.000 0.000 0.000
20 0.000 0.006 0.099 0.322 0.364 0.196 0.013 0.000 0.000 0.000

In our study, the example units for which such verification should be carried out are MD1, MD8,
MD12, MD17, and MD19.

A.4. Analysis of efficiency ranks for complaint group G1

In this section, we discuss the robustness of efficiency ranks for complaint group G1. The distances
to the efficient DMU and efficiency scores are derived from the cardinal-oriented comparison of
physicians. In turn, efficiency ranks build on the ordinal comparisons between the physicians. In
Table A7, we report the extreme (R∗ and R∗) and expected (ER) ranks. The physicians identified as
efficient have the best ranks equal to 1. Based on R∗, MD13 is the best among the inefficient units.
(S)he is ranked second in the best case R∗ = 2), which means that in the most favorable scenario,
it is less efficient only than a single efficient MD, while attaining better scores than the remaining
18 physicians. MD2 and MD3 have the least positive results in terms of R∗. For these physicians,
there are at least 13 and 17 other physicians in a group who are more efficient for any feasible
weight vector.

The analysis of the worst efficiency ranks (R∗) indicates that four efficient physicians (MD5,
MD6, MD11, and MD20) never fall out of the top eight. Thus, the stability of derived ranks is
the highest for MD6 because even in the least favorable scenario, only four other physicians attain
better efficiencies. The performance of the other two efficient physicians is less stable. In particular,
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MD16 is ranked 16th in the worst case, whereas MD1 is ranked at the very bottom. There are only
three other physicians (MD2, MD3, and MD10) ranked 20th for at least one feasible weight vector.

The analysis of extreme efficiency ranks can be enriched with consideration of the ERAIs (see
Table A7), indicating for each physician the distribution of ranks over the feasible weight vectors.
For some physicians, the derived ranks are relatively stable. For example, MD3 is ranked at the very
bottom for 76.1% weights and MD2 is ranked 18th or 19th for 95.2% samples. MD6 is ranked at
the top for 46.6% weight, making him/her the most efficient physician in the group. In general, such
a high value for the first rank acceptability index may indicate the outlier DMU. It may motivate
the management to investigate the results without considering such an overall good performer who
influences the distances of many other DMUs.

As far as MD13 is concerned, its possible rank interval is relatively wide [2, 14]. However, for
96.5% feasible weights, it is ranked in the top seven. For some other physicians, the ranks are
more distributed. In particular, the ERAIs for MD1 are positive for all ranks with ERAI (MD1, 1)
(16.6%) being close to ERAI (MD1, 20) (20.9%). This means that, depending on the chosen in-
put/output weights, it is almost equally likely for MD1 to be ranked at the top or at the bottom.
A similar distribution of ranks can be observed for MD16. For this physician, ERAIs are nonzero
for ranks between 2 and 16, with the greatest one being lower than 0.2.

The ERs (see Table A7) can also be used to order all physicians. The top-ranked physicians
are MD6 (ER = 1.860) and MD11 (ER = 2.914), whereas the bottom-ranked physicians are
MD2 (ER = 18.669) and MD3 (ER = 19.640). The ranking determined by ERs is very similar
to the orders imposed by Eds and EEs. The swaps occur only for two pairs, (MD5, MD13) and
(MD17, MD4), which confirms the stability of conclusions derived from the multiperspective ro-
bustness analysis.

In general, the expected results exhibit which units perform good or bad for different priorities
assigned to inputs and outputs. In some situations, the expected efficiencies or ranks of inefficient
units can be, on average, better than for some efficient units (see, e.g., the average ranks of inefficient
MD13 and MD15 compared to the expected positions for the efficient MD1 and MD16). Such
results may indicate the need to implement the corrective actions for the average bad performers
who prove to be efficient only under specific scenarios.

A.5. Analysis of pairwise preference relations for complaint group G1

Another aspect considered in the robustness analysis concerns pairwise comparisons between
physicians. The Hasse diagram of the necessary preference relation is presented in Fig. A1. No
physician is necessarily preferred over the six efficient physicians. However, there is also one
inefficient physician (MD13) who is not necessarily worse than any other physician (depending
on the weights, the physicians performing better than MD13 are not the same). Overall, MD5,
MD6, and MD20 are necessarily preferred to the largest number of other physicians (12), which
confirms their superior performance. On the other hand, MD1, MD2, MD3, and MD10 are not
necessarily preferred to any other physician. MD1 can be seen as a potential outlier because it is
neither necessarily better nor worse than any other physician.

The graph of the necessary preference relation can be used for constructing the corrective actions
and improvement paths for inefficient physicians. From a short-term perspective, one can focus on
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Fig. A1. The Hasse diagram of the necessary efficiency preference relation �N
E .

the units that are necessarily preferred over some inefficient DMUs. For example, for MD8, these
can be MD11, MD15, or MD19. The differences in inputs and outputs for such units indicate
the improvement potential. From a long-term perspective, one can apply the stepwise benchmark-
ing based on the paths observed in the Hasse diagram of �N

E . For example, MD3—ranked at the
bottom—can improve by following some improvement paths, for example, (MD14, MD8, MD19,
MD5) or (MD7, MD15, MD20).

For pairs of physicians who are incomparable in terms of �N
E , the efficiency comparison results

are not univocal, given all feasible weights. Such pairs are not connected by an arc in Fig. A1.
The shares of feasible weights confirming one physician’s better performance over another are cap-
tured by PEOIs (see Table A8). For some other pairs, one physician performs clearly better, for
example, PEOI (MD16, MD17)—0.980 indicates that for 98% of feasible weights, MD16 is at least
as efficient as MD17. Thus, even if the preference relation is not fully robust for this pair, it is close
to being so. Similar conclusions can be drawn for (MD18, MD12), (MD13, MD7), and (MD8,
MD2). For some pairs of physicians these shares are more balanced, for example, for (MD13,
MD5)—PEOI (MD13, MD5)—0.513 and PEOI (MD5, MD13)—0.487. Similar observations ap-
ply to (MD17, MD4) or (MD18, MD15).

The remaining DMUs do not influence such pairwise comparisons. The analyst may be interested
in such a one-on-one perspective if (s)he knows some units better than others. Then, they can be
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Table A9
Input and output values for the complaint groups G2 (fever) and G3 (lower or upper extremity injury, head injury, and
laceration/puncture) by physician

Group G2 G3

MD i1 i2 i3 o1 i1 i2 i3 o1

MD1 1.639 0.604 0.333 1.000 1.293 0 .000 0.699 0.957
MD2 1.682 1.031 0.374 0.969 1.287 0.166 0.847 0.983
MD3 1.386 0.551 0.318 0.907 1.123 0.030 0.723 0.970
MD4 1.482 0.600 0.419 0.943 1.122 0.115 0.803 1.000
MD5 1.362 0.561 0.305 0.952 1.050 0.021 0.609 0.979
MD6 1.017 0.496 0.207 0.953 0.914 0.021 0.689 0.992
MD7 1.457 0.934 0.316 0.969 1.056 0.108 0.652 0.990
MD8 1.084 0.632 0.212 0.964 0.95 0.000 0.728 0.981
MD9 1.223 0.751 0.279 0.959 1.027 0.090 0.754 0.983
MD10 1.140 0.357 0.260 0.959 1.173 0.024 0.778 0.986
MD11 1.538 0.384 0.299 0.943 1.046 0.020 0.654 0.986
MD12 1.061 0.407 0.407 0.966 0.943 0.074 0.595 0.992
MD13 1.255 0.730 0.340 0.977 0.995 0.052 0.617 0.991
MD14 1.473 0.659 0.388 0.976 1.139 0.176 0.617 0.991
MD15 1.265 0.581 0.372 0.977 0.852 0.090 0.639 0.976
MD16 1.752 0.912 0.412 0.985 0.988 0.000 0.478 1.000
MD17 1.571 1.101 0.314 0.977 1.092 0.127 0.756 0.991
MD18 1.597 0.772 0.308 0.965 1.264 0.110 0.793 0.984
MD19 1.306 0.743 0.273 0.97 1.010 0.109 0.592 0.990
MD20 1.044 0.549 0.302 0.941 0.836 0.085 0.667 0.977

employed as fixed benchmarks for the inefficient DMUs. For example, if an expert knows MD16
quite well, (s)he may use it to formulate guidelines for MD2 and MD12, which are worse than
MD16 for all possible weights assigned to inputs and outputs.

A.6. Input and output values for the complaint groups G2 and G3

In Table A9, we present the input and output values for the complaint groups G2 (fever) and G3
(lower or upper extremity injury, head injury, and laceration/puncture). Together with group G1,
they form the basis for conducting a multiscenario robustness analysis, whose results are discussed
in Section 3.3 of the main paper and Section A7.

A.7. The analysis of pairwise preference relations for a multiscenario setting

This section presents the pairwise comparisons of physicians for three complaint groups. Table A10
reports the truth of the necessary-necessary �N,N

E,S and necessary-possible �N,P
E,S preference relations

for all pairs of physicians. Since �N,N
E,S is transitive, it can be presented graphically by its Hasse

diagram (see Fig. A2). For 10 pairs of physicians, the necessary preference relation holds for all
complaint groups. In particular, five physicians (MD5, MD6, MD8, MD19, and MD20) are always

© 2021 The Authors.
International Transactions in Operational Research © 2021 International Federation of Operational Research Societies.
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Table A10
The truth of the necessary-necessary �N,N

E,S (NN) and necessary-possible �N,P
E,S (NP) efficiency preference relations for all

pairs of physicians based on the analysis of three complaint groups

MD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 NN NP NP

2 NN

3 NN

4 NP NP NN NP NP

5 NP NP NN NP NN NP NP NP NP NP NP NP NP NP NP

6 NP NP NN NP NN NP NP NN NP NP NP NP NP NP

7 NP NN NP NN NP NP NP

8 NP NN NN NP NP

9 NP NP NN NP NP

10 NP NP NP NP NN NP

11 NP NP NP NP NP NP NP NP NN NP NP NP

12 NP NP NP NP NP NP NP NP NN NP NP NP NP NP NP

13 NP NN NP NP NP NP NP NP NN NN NP NP NP

14 NP NP NP NP NN NP

15 NP NP NP NP NP NP NP NP NP NP NN NP NP

16 NP NP NP NP NP NP NP NP NP NP NP NP NN NP NP NP

17 NP NP NP NN NP

18 NN NP NP NP NN

19 NP NP NN NP NP NP NP NP NP NP NN

20 NP NP NN NP NP NP NP NP NP NP NP NP NP NP NN

MD2 MD3

MD5 MD6MD7 MD8

MD9

MD13

MD14

MD18 MD19 MD20

Fig. A2. The Hasse diagram of the necessary-necessary efficiency preference relation �N,N
E,S based on the analysis of

three complaint groups (for clarity of presentation, physicians not related by �N,N
E,S with any other physician have been

omitted).

© 2021 The Authors.
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Table A11
Ranks attained by physicians in the orders imposed by different measures derived from robustness analysis for complaint
group G1 and differences between extreme distances, efficiencies, and ranks

Ranks according to different measures Widths of intervals

MD d∗ d∗ Ed E∗ E∗ EE R∗ R∗ ER | �N | | �N | d∗ − d∗ E∗ − E∗ R∗ − R∗

1 1 20 11 8 19 11 1 17 11 17 1 0.558 0.560 19
2 19 11 19 19 17 19 19 17 19 17 18 0.227 0.250 6
3 20 19 20 20 20 20 20 17 20 17 20 0.306 0.265 2
4 15 13 14 15 12 14 17 13 15 13 16 0.323 0.365 7
5 1 7 5 2 5 5 1 2 4 1 1 0.366 0.522 7
6 1 2 1 3 1 1 1 1 1 1 1 0.260 0.408 4
7 13 10 13 17 9 13 14 8 13 9 12 0.319 0.330 6
8 16 15 12 11 14 12 12 12 12 9 15 0.340 0.461 9
9 14 8 10 12 6 10 12 10 10 9 12 0.293 0.387 8
10 17 18 18 18 18 18 18 17 18 17 19 0.368 0.397 7
11 1 1 2 4 2 2 1 2 2 4 1 0.204 0.429 7
12 12 14 16 13 15 16 14 13 16 14 12 0.354 0.393 9
13 7 3 4 5 3 4 7 6 5 6 1 0.254 0.438 12
14 18 17 17 16 16 17 16 16 17 14 17 0.304 0.391 9
15 9 9 7 9 8 7 10 5 7 5 10 0.332 0.467 6
16 1 6 9 10 10 9 1 10 9 9 1 0.361 0.455 15
17 11 16 15 14 13 15 11 13 14 14 10 0.372 0.368 12
18 8 4 6 7 7 6 8 6 6 8 8 0.252 0.469 10
19 10 12 8 6 11 8 8 8 8 6 8 0.358 0.509 11
20 1 5 3 1 4 3 1 2 3 1 1 0.346 0.511 7

at least as efficient as MD3, and three physicians (MD7, MD18, and MD13) are more efficient than
MD2. MD13 and MD6 can serve as the benchmark to follow for two other pairs (MD2 and MD14
or MD3 and MD9, respectively).

The necessary-possible preference relation �N,P
E,S is more dense (see Table A10; note that the truth

of �N,N
E,S implies �N,P

E,S). There are 153 ordered pairs of physicians for whom the necessary relation
holds for at least one complaint group. Interestingly, for some pairs (e.g., MD10, MD18), this
relation is instantiated in both directions. Such observations, along with a high density of �N,P

E,S and
a scarcity of �N,N

E,S , suggest that the performance of physicians is strongly related to the complaint
group and therefore some of them are better in treating specific groups of patients.

A.8. Summary of results derived from the robustness analysis

In this section, we summarize the results derived for each physician with the proposed robustness
analysis framework for a single scenario referring to complaint group G1 and multiple scenarios
concerning groups G1–G3.

In Table A11, we present the ranks of all physicians in the orders imposed by different measures
following the application of robust efficiency analysis framework to group G1. These measures
include extreme and expected distances, efficiency score, and ranks as well as the numbers of other

© 2021 The Authors.
International Transactions in Operational Research © 2021 International Federation of Operational Research Societies.
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physicians which are less (| �N |) or more (| �N |) preferred than a given physician according to
the necessary relation. The rankings are enriched with the differences between extreme distances,
efficiencies, and ranks that indicate the stability of results for each physician.

These results confirm that the efficiency results are stable for some physicians irrespective of the
accounted perspective and considered weight vectors. For example, MD6 is ranked at the top for 9
of 11 considered measures while attaining the second and third positions in the rankings determined
by d∗ and E∗, respectively. Such favorable results are justified by the relatively good performance
of MD6 on all inputs and outputs. Furthermore, MD11 and MD20 also attain the ranks among
the top five MDs according to all measures. On the other extreme, MD2, MD3, MD10, and MD14
are ranked relatively low. For example, MD3 is never ranked better than 17th. Its scores, efficien-
cies, and ranks are stable irrespective of the considered weights with the interval widths equal to
0.306, 0.264, and 2, respectively. This is understandable given its unfavorable performances on all
accounted factors.

Even though the ranks attained by the vast majority of physicians are relatively stable irrespective
of the accounted measure, one can indicate a few examples for which these indications are inconsis-
tent. This is because of their unbalanced input/output profiles, making their performance strongly
dependent on the considered weights and their ranks more prone to fluctuations with the change
in the accounted measure. For example, the widest distance, efficiency, and rank intervals can be
observed for MD1. Its ranks range from the most favorable (see, e.g., d∗ and R∗) through medium
(see, e.g., Ed , EE , and ER) to the least favorable (see, e.g., d∗ and E∗). The great variability of
results can also be noted for MD16. Its rank ranges from first (see, e.g., d∗ and R∗) to tenth (see,
e.g., E∗ and E∗) depending on the selected measure, whereas a difference between extreme efficiency
ranks (R∗ − R∗) is 15.

Analogous results derived from the analysis of three complaint groups are presented in Ta-
ble A12. The considered measures are extreme possible-possible distances to the efficient physician,
efficiency scores, and ranks as well as the numbers of physicians which proved to be worse (| �N,P |)
or better (| �N,P |) than a given physician according to the necessary-possible relation.

The ranks attained by different physicians according to the measures quantifying the results for
multiple scenarios are, in general, less stable than for a single complaint group only. This confirms
that the considered physicians attain more favorable results for complaint groups for which they
have specialized skills while performing worse for other groups. Nevertheless, the conclusions on
the best and worse performing physicians are similar. For example, MD15 attains ranks between
first (see d∗ and R∗) and eighth (see E∗) in the orders imposed by different measures. Furthermore,
when considering the numbers of other physicians who proved to be necessarily-possibly worse
or better than MD15, it is ranked sixth. Also, MD3 attains relatively stable ranks. It reaches the
14th position (i.e., the worst rank shared with six other physicians) in the order imposed by R∗,P,
while being ranked in the bottom four according to all remaining measures. When compared to the
results for group G1, significant changes in the outcomes attained for multiple scenarios considered
jointly can be noted for MD12. For G1, MD12 was ranked outside the top 10 according to all mea-
sures. When considering all groups jointly, this happens for only two measures (see d∗,P and EP

∗ ).
Moreover, for some indicators, MD12 is ranked at the very top (see dP

∗ and RP
∗ ). Such differences

are implied by the relatively poor performance of MD12 for G1 and its favorable evaluation for
other complaint groups.

© 2021 The Authors.
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Table A12
Ranks attained by physicians in the orders imposed by different measures derived from robustness analysis for complaint
groups G1, G2, and G3

MD dP
∗ d∗,P E∗,P EP

∗ RP
∗ R∗,P | �N,P | | �N,P |

1 1 20 16 19 1 14 18 15
2 20 6 20 17 20 14 19 19
3 19 19 17 20 19 14 19 19
4 10 18 2 12 9 14 13 11
5 1 13 13 5 1 4 2 2
6 1 9 6 1 1 1 5 2
7 15 5 14 9 18 6 10 11
8 9 7 7 14 9 4 13 11
9 16 10 11 6 17 6 13 11
10 12 17 18 18 12 14 11 17
11 1 12 12 2 1 14 8 7
12 1 14 8 15 1 6 2 7
13 11 1 9 3 9 1 6 2
14 17 11 16 16 15 12 11 16
15 1 2 4 8 1 6 6 6
16 1 16 1 10 1 14 1 2
17 18 8 15 13 12 6 13 10
18 14 4 19 7 15 12 13 18
19 13 3 10 11 12 3 9 7
20 1 15 3 4 1 6 2 1

© 2021 The Authors.
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Abstract
We consider the problem of measuring the efficiency of decision-making units with 
a ratio-based model. In this perspective, we introduce a framework for robustness 
analysis that admits both interval and ordinal performances on inputs and outputs. 
The proposed methodology exploits the uncertainty related to the imprecise data 
and all feasible input/output weight vectors delimited through linear constraints. 
We offer methods for verifying the robustness of three types of outcomes: efficiency 
scores, efficiency preference relations, and efficiency ranks. On the one hand, we 
formulate mathematical programming models to compute the extreme, necessary, 
and possible results. On the other hand, we incorporate the stochastic analysis driven 
by the Monte Carlo simulations to derive the probability distribution of different 
outcomes. The framework is implemented in R and made available on open-source 
software. Its use is illustrated in two case studies concerning Chinese ports or indus-
trial robots.

Keywords Data Envelopment Analysis · Imprecise performances · Robustness 
analysis · Monte Carlo simulation · Open-source software

1 Introduction

Data Envelopment Analysis (DEA) measures the relative efficiency of Decision 
Making Units (DMUs) (Cooper et al. 2014). The standard Charnes-Cooper-Rhodes 
(CCR) model used in DEA generalizes the single output/input productivity meas-
ure (Farrell 1957) by transforming the characterization of each DMU in terms of 
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multiple desired outputs and multiple input factors (Charnes et  al. 1978). Specifi-
cally, the efficiency is quantified as a ratio between a single virtual output and a 
single virtual input (Salo and Punkka 2011). When evaluating the efficiency of each 
DMU, the weights involved in the definition of efficiency measure are selected to 
identify the most advantageous scenario. This means that an efficiency score of a 
given DMU is maximized subject to both the constraint that all DMUs can have 
scores lesser or equal to the unity and the feasibility of input/output weights. As a 
result, DEA generates relative efficiency measures, which depend on the set of ana-
lyzed DMUs, leading to the identification of the so-called efficient frontier (Charnes 
et al. 1994). The units that lie on the frontier attain the score of one. In contrast, the 
units with a score lesser than one are below the efficient frontier, hence being classi-
fied as inefficient.

The main advantages of DEA derive from its following features (Charnes et al. 
1994). First, DEA conducts a detailed analysis of performance measures for each 
DMU instead of focusing on the population averages. This allows for understanding 
the status of efficiency for individual observations. Moreover, in the case of inef-
ficiency, one could identify its sources and point out the desired modifications of 
inputs and/or outputs for projecting the DMU onto the efficient frontier (see Apa-
ricio et  al. 2007; Chen and Wang 2020; Wu et  al. 2018). Second, DEA does not 
involve any assumption about the functional form, hence not relating the independ-
ent and dependent variables (i.e., inputs and outputs) in any specific way. In turn, it 
evaluates each DMU relative to other DMUs, while not requiring any prior specifi-
cation of weights. Finally, a great advantage of DEA lies in its simplicity and gen-
erality. It captures the efficiency in utilizing the inputs to produce the outputs, all 
expressed in various units, with a single, easily interpretable performance measure.

For the last forty years, many extensions of DEA have been proposed (see 
Cook and Seiford 2009; Emrouznejad and Yang 2018). The traditional DEA mod-
els assumed that the consumed inputs and produced outputs could be precisely 
expressed with numerical values on a ratio scale. However, in many real-world 
problems, this is not possible for a few reasons (see Aparicio et al. 2019; Cooper 
et  al. 1999; Shokouhi et  al. 2010). These reasons include inexact specification of 
inputs and outputs, the uncertainty of data used to compute the consumed inputs 
or desired outputs, subjectivity involved in this process, and high costs in terms of 
time or financial resources needed for conducting the accurate measurements (Cor-
rente et al. 2017). As a result, the measurements of inputs and outputs often remain 
imperfect. This, in turn, requires methodological developments that could handle 
such uncertain or inaccurate evaluations.

In the context of DEA, two types of imperfect inputs and outputs received par-
ticular attention (Liu et  al. 2013). On the one hand, the basic idea to capture the 
uncertainty is using an imprecise evaluation in terms of the interval of possible val-
ues. On the other hand, ordinal assessments can be considered. The latter is helpful 
if only qualitative information is available, some binary features are involved in the 
analysis, or it is possible to obtain the ranking of units in terms of some input or out-
put instead of precise quantitative measurements.

To handle the imprecision of inputs and outputs, Cooper et al. (1999) proposed 
Imprecise DEA (IDEA), where precise performance values were replaced with 
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intervals. This methodology has been further revised and enriched in different ways. 
For example, Kim et al. (1999) accounted for strong and weak ordinal relations as 
well as ratio interval data. Furthermore, Despotis and Smirlis (2002) dealt with 
transforming the interval performances into precise ones, incorporating them into 
a standard DEA model to optimize the computational performance of the problem. 
Moreover, Zhu (2003) developed a linear programming model handling strong ordi-
nal inputs and outputs. Also, Ebrahimi and Khalili (2018) proposed the models—
incorporating preference information—that find the most preferred DMU and rank 
other efficient DMUs. The DEA models handling imprecise data have been success-
fully used in the telecommunication sector (Cooper et al. 2001), machinery industry 
(Kao and Liu 2005), wheat farming (Hadi-Vencheh and Matin 2011), port efficiency 
assessment (Zahran et al. 2020), and healthcare (see Azadi and Saen 2013; Karsak 
and Karadayi 2017).

In the traditional DEA and IDEA methods, only the most favorable input/output 
weight vector is considered when evaluating each DMU’s performance. This may 
be criticized for a few reasons. First, choosing the individual weight vector for each 
DMU makes the comparison of efficiencies questionable due to the non-uniqueness 
of the most advantageous weight vectors and lack of a common basis to analyze the 
attained scores (Lahdelma and Salminen 2006). Second, such an analysis is focused 
on a minimal set of scenarios while ignoring other feasible weight vectors that could 
provide helpful information on the variety of efficiency scores (Salo and Punkka 
2011). Third, the efficient frontier, which forms the basis for evaluating the DMUs, 
requires prior assumptions of the return-to-scale. Besides, it strongly depends on the 
set of considered DMUs (see Zhu 1996; Seiford and Zhu 1998). Fourth, using a 
single efficiency measure that divides the DMUs into efficient and inefficient ones 
offers too limited capabilities for discriminating between the units (see Adler et al. 
2002; Hosseinzadeh Lotfi et  al. 2013). All these drawbacks motivated the devel-
opment of robustness analysis methods, which quantify the stability of efficiency 
results for different feasible weight vectors. Given imprecise inputs and outputs, the 
need to include uncertainties when working out the results is even more evident. 
The robust conclusions should be valid in all or most scenarios (see Kadziński and 
Tervonen 2013; Liang et al. 2020), with a scenario being equivalent to a set of pos-
sible values for data of the problem and the efficiency model parameters.

Some essential methodological advancements oriented toward robustness analy-
sis for IDEA have been proposed over the last two decades. In particular, Despo-
tis and Smirlis (2002) derived the optimistic and pessimistic efficiency scores for 
each DMU. Both are computed with the most favorable weight vectors for a given 
unit while assuming the most and the least advantageous scenarios for the inputs 
and outputs. Based on these results, the units can be divided into three groups: effi-
cient in the most pessimistic scenario, inefficient even in the most optimistic sce-
nario, and an intermediate class including DMUs with unitary optimistic efficiency 
and pessimistic efficiency lesser than one. This classification was further analyzed 
in Jahanshahloo et al. (2004) to consider the “radius of stability”. For each DMU, 
it is defined with a pair of values, � and � , indicating, respectively, a decrease of 
the upper bounds of input and output intervals and an increase of the respective 
lower bounds for which the efficiency class remains unchanged. Furthermore, Kao 
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(2006) proposed mathematical models for computing the optimistic and pessimis-
tic efficiency scores in the presence of both interval and ordinal inputs and outputs. 
A similar aim of deriving an efficiency interval for each DMU—though in differ-
ent settings—was considered in Ebrahimi and Toloo (2020) and Park (2007). Also, 
in this context, Ebrahimi et  al. (2021) and Toloo et  al. (2021) accounted for the 
dual-role factors, which can be interpreted as input and output at the same time. 
In turn, Haghighat and Khorram (2005) proposed non-linear models for deriving 
the maximal and minimal numbers of efficient units when the input and output per-
formances are given as intervals. The Monte Carlo simulation was incorporated 
into the stochastic DEA to derive the distribution of efficiency scores in the setting 
where inputs and outputs were expressed as intervals formed by values gathered in 
different years (Kao and Liu 2009). Dehnokhalaji et  al. (2022) proposed a robust 
optimization framework for performance measurement and cross-efficiency inspired 
ranking of DMUs. An additive value DEA model was considered in Gouveia et al. 
(2013) to construct the efficiency intervals and find the maximal percentage toler-
ance by which one could deteriorate the inputs or outputs of a given DMU so that 
it remains efficient. Finally, Azizi et  al. (2015) proposed a slack-based method to 
find the optimistic and pessimistic efficiency intervals for DMUs for DEA involv-
ing imprecise data. Specifically, two classifications of DMUs into efficient and inef-
ficient units were proposed considering the optimistic and pessimistic settings. In 
addition, the procedures for obtaining an overall interval score as well as construct-
ing a complete ranking of DMUs were introduced.

The most important contribution of this paper consists of proposing a rich 
framework for robustness analysis in the context of imprecise inputs and outputs. 
As opposed to the existing approaches that extend IDEA, our methodology consid-
ers uncertainty related to the interval or ordinal data and all feasible weight vectors 
simultaneously. In particular, we propose tools for analyzing the robustness of three 
types of outcomes: efficiency scores, efficiency preference relations, and efficiency 
ranks.

On the one hand, we derive extreme, robust results using dedicated mathematical 
programming models exploiting all scenarios involving imprecise input/output data 
and feasible weight vectors. We show how to compute the extreme efficiency scores 
and ranks and verify the truth or falsity of the necessary and possible efficiency pref-
erence relations (Kadziński et al. 2017). The efficiency bounds and ranking intervals 
reveal the pessimistic and optimistic performance of each unit (Salo and Punkka 
2011). In turn, the two relations focus on the pairwise comparisons that need to be 
validated for all or at least one feasible scenario (Kadziński et al. 2017).

On the other hand, we implement the stochastic analysis to derive the distribu-
tion of different measures and results (Lahdelma and Salminen 2006). We employ 
the Monte Carlo simulations to analyze a sufficiently large and representative set of 
feasible weight vectors and input/output performances consistent with the imprecise 
information. For this purpose, we apply a suitably adjusted Hit-And-Run algorithm 
(see Ciomek and Kadziński 2021; Tervonen et al. 2013). The outcomes are quanti-
fied through Efficiency Acceptability Interval Indices, Efficiency Rank Acceptability 
Indices, and Pairwise Efficiency Outranking Indices (see Lahdelma and Salminen 
2006; Kadziński et al. 2017). The stochastic indices capture the shares of feasible 
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scenarios that guarantee a given score or rank to a particular DMU or confirm that 
one DMU is at least as good as the other. Also, we estimate the expected efficiency 
scores and ranks for all DMUs. These measures can be the basis for constructing 
a complete ranking of DMUs based on the robust outcomes derived from analyz-
ing feasible weights, inputs, and outputs. From the methodological perspective, the 
proposed methodology can be seen as an extension and adjustment of an integrated 
framework for robustness analysis proposed in Kadziński et al. (2017) to the case of 
imprecise (interval or ordinal) evaluations.

We also present open-source software that implements the proposed framework 
for robustness analysis. The software consists of modules available on the diviz plat-
form (Meyer and Bigaret 2012). These modules accept the specification of linear 
constraints concerning the weights related to inputs and outputs. Moreover, they 
have been designed to admit their combination into complex algorithmic workflows. 
The latter can be employed to share the methodological developments and results of 
case studies among users.

Finally, we illustrate the use of both the framework for robustness analysis and 
software in real-world studies concerning efficiency analysis of Chinese ports (Jiang 
et al. 2021) and industrial robots (Saen 2006). The units are described in terms of 
precise, interval, and ordinal factors. These examples demonstrate the practical use-
fulness of robust results concerning scores, ranks, and pairwise preference relations. 
Also, we emphasize the complementarity of exact and stochastic results. Moreover, 
we demonstrate that both the space of feasible weight vectors as well as imprecise 
input and output performances influence the robustness of attained efficiency results.

The remainder of the paper is organized in the following way. In Sect. 2, we dis-
cuss the proposed methods for robustness analysis within the scope of Imprecise 
Data Envelopment Analysis. In Sect. 3, we present the algorithmic modules imple-
menting the proposed methodological framework on the diviz platform. Section 4 is 
devoted to an illustrative case study concerning the efficiency analysis of Chinese 
ports. The results of the study on industrial robots are reported in the e-Appendix 
(supplementary material available online). Section 5 concludes the paper and out-
lines avenues for future work.

2  Robustness analysis for Imprecise Data Envelopment Analysis

2.1  Notation and basic concepts

The following notation is used in the paper:

• D = {DMU1,… ,DMUK} —a set of considered DMUs, where K is the number 
of DMUs ( K = |D|);

• xm—m-th input, m ∈ {1,… ,M};
• yn—n-th output, n ∈ {1,… ,N};
• PI, II and OI—subsets of precise, interval, and ordinal inputs, respectively;
• PO, IO and OO—subsets of precise, interval, and ordinal outputs, respectively;
• xmo—the value of m-th input consumed by DMUo ∈ D , m ∈ PI ∪ OI;
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• yno—the value of n-th output produced by DMUo ∈ D , n ∈ PO ∪ OO;
• [xmo∗, x

∗
mo
]—an interval value of m-th input of DMUo , m ∈ II;

• [yno∗, y
∗
no
]—an interval value of n-th output of DMUo , n ∈ IO;

• Xmo—the value of vm ⋅ xmo for ordinal inputs, m ∈ OI;
• Yno—the value of un ⋅ yno for ordinal outputs, n ∈ OO;
• v = {v1,… , vM} —a vector of input weights;
• u = {u1,… , uN} —a vector of output weights;
• �, �—values representing the minimal ratios between the successive values of 

ordinal inputs and ordinal outputs, 𝜂, 𝜒 > 1 (in this paper, we set � = � = 1.1);
• Sv = {v = (v1,… , vM)

T ≠ 0 | v ≥ 0,Avv ≤ 0} and S
u
= {u = (u

1
,… , u

N
)T ≠ 0 |

u ≥ 0,A
u
u ≤ 0}—spaces of feasible input and output weights, respectively; Av 

and Au are matrices of coefficients involved in the linear constraints on weights 
derived from the user’s preferences.

To illustrate the notation, let us refer to an example presented in Table 1, which 
is derived from Despotis and Smirlis (2002). The set of DMUs is composed of 
five units, D = {D1,D2,D3,D4,D5} . They consume two inputs—one precise 
( PI = {i1} ) and the other interval ( II = {i2} ), and produce two outputs—one 
precise ( PO = {o1} ) and the other ordinal ( OO = {o2} ). The weights associated 
with the inputs are denoted by v1 and v2 , and the respective weights for the out-
puts are u1 and u2 . When it comes to unit D1 , its precise input is x11 = 100 and 
the interval input is [x21∗, x∗21] = [0.6, 0.7] . The respective outputs are y11 = 2000 
and y21 = 4 . The latter will be represented in the following mathematical mod-
els as Y21 = y21 ⋅ u2 , and the following order Y24 < Y22 < Y25 < Y21 < Y23 will be 
maintained.

In what follows, we discuss the methods for robustness analysis in the con-
text of Imprecise DEA. They can be divided into two subgroups. One of them 
is devoted to the exact analysis using linear programming techniques. In con-
trast, the other aims to estimate some stochastic acceptability indices through the 
Monte Carlo simulations. The analysis is conducted given all feasible efficiency 
scenarios, where each scenario corresponds to a specific, admissible realization 
of both weights and performances on inputs and outputs.

Table 1  Example set of 
Decision Making Units 
involving imprecise data

DMU
o

i
1
 (precise) i

2
 (interval) o

1
 (precise) o

2
 (ordinal)

D
1

100 [0.6, 0.7] 2000 4
D

2
150 [0.8, 0.9] 1000 2

D
3

150 [1.0, 1.0] 1200 5
D

4
200 [0.7, 0.8] 900 1

D
5

200 [1.0, 1.0] 600 3
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2.2  Exact robustness analysis with linear programming

In this section, we discuss how to derive exact robust outcomes using mathematical 
programming. These results capture the extreme cases observed for all feasible effi-
ciency scenarios (u, v, x, y) defined by the sets of admissible weights as well as values 
of inputs and outputs. They concern the following three perspectives: scores, ranks, and 
pairwise preference relations. We refer to the concepts of extreme scores and ranks and 
the necessary and possible preference relations that have been introduced in the litera-
ture. However, the models for their computation that are presented in this section are 
original and specifically adjusted to the context of IDEA.

To conduct a robustness analysis given interval inputs and outputs, we need to con-
sider the most and the least advantageous (i.e., optimistic and pessimistic) scenarios for 
each DMU. On the one hand, the optimistic scenario for DMUo is realized by assuming 
that its inputs are the least possible and its outputs are the greatest admissible by the 
specified intervals. In contrast, for the remaining units, both the inputs and outputs are 
the least advantageous, i.e.:

On the other hand, the pessimistic scenario for DMUo is realized by assuming that 
its imprecise inputs and outputs are replaced with the least favorable values. For the 
remaining DMUs, the minimal inputs and the maximal outputs are considered, i.e.:

When the dataset involves the ordinal factors, the products vm ⋅ xmk or un ⋅ ynk are 
replaced by one variable, respectively, Xmk or Ynk . Additionally, the constraints 
respecting the character of ordinal evaluations need to be included in the model. 
In particular, the constraints imposing a strong ordinal relation should not take an 
additive form, e.g., X2 ≥ X1 + � , where � is a small positive constant. In turn, as the 
original ordinal evaluations xmk and ynk are transformed into variables Xmk or Ynk 
involving multiplication by a common weight ( vm and un ), the ratios of subsequent 
Xmk or Ynk values needs to be greater than one, i.e.:

where 𝜒 , 𝜂 > 1 (Zhu 2003).

(1)xmk =

{
xmk∗, if m = o,

x∗
mk
, otherwise,

(2)ynk =

{
y∗
nk
, if n = o,

ynk∗, otherwise.

(3)xmk =

{
x∗
mk
, if m = o,

xmk∗, otherwise,

(4)ynk =

{
ynk∗, if n = o,

y∗
nk
, otherwise.

(5)
{

� ⋅ Yni ≤ Ynj, (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

� ⋅ Xmi ≤ Xmj, (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,
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Following (Zhu 2003), we consider the efficiency of DMUo defined as a ratio of a 
single virtual output to a single virtual input:

where yno ∈ [yno∗, y
∗
no
] for n ∈ IO and xmo ∈ [xmo∗, x

∗
mo
] for m ∈ II . The virtual out-

put and input aggregate multiple outputs or inputs while ensuring that each relevant 
factor contributes to an overall measure of efficiency. Please note that the contribu-
tions from these factors are dimensionless. This is due to multiplying the precise 
and imprecise performances by the weights and using dedicated components for the 
ordinal factors. Still, their major role is to maintain the desired relationships between 
the efficiencies of various units implied by their input and output values. In fact, the 
above expression ensures that Eo does not deteriorate if one (i) increases the output 
values or decreases the input values in DMUo or (ii) decreases the output values 
or increases the input values in other DMUs. At the same time, this representation 
eliminates the scale transformations (Zhu 2003), reducing the computational burden 
in applications.

2.2.1  Extreme efficiency scores

When it comes to the efficiencies, for each DMUo , we determine the maximal E∗
o
 and 

minimal Eo∗ scores that it can attain for at least one feasible scenario (see Despotis 
and Smirlis 2002; Kadziński et al. 2017; Kao 2006). To find the greatest (optimistic) 
efficiency score for DMUo , the following Linear Programming (LP) model needs to 
be solved:

Model (7) is equivalent to the classical CCR model for DEA with imprecise data. 
It finds the most favorable weight vector for DMUo in its best input/output sce-
nario and the worst possible scenarios for the remaining DMUs. The space of vari-
ables is composed of the following weights: vm for n ∈ PI ∪ II , Xmk for m ∈ OI 
and DMUk ∈ D , un for n ∈ PO ∪ IO and Ynk for n ∈ OO and DMUk ∈ D . It is con-
strained so that the virtual input of DMUo is equal to one ( [E∗ − C1] ), the efficiency 
scores for all DMUs are not greater than one ( [E∗ − C2] and [E∗ − C3] ), the monoto-
nicity relations derived from the analysis of ordinal inputs and outputs are preserved 
( [E∗ − C4] and [E∗ − C5] ), and the constraints on the admissible values of input and 
output weights are satisfied ( [E∗ − C6] ). The last three constraints are present in all 

(6)Eo =

∑
n∈PO unyno +

∑
n∈IO unyno +

∑
n∈OO Yno∑

m∈PI vmxmo +
∑

m∈II vmxmo +
∑

m∈OI Xmo

(7)

Maximize: E∗
o
=

∑
n∈PO

unyno +
∑
n∈IO

uny
∗
no
+

∑
n∈OO

Yno

s.t. [E∗ − C1]
∑

m∈PI

vmxmo +
∑
m∈II

vmxmo∗ +
∑

m∈OI

Xmo = 1,

[E∗ − C2]
∑

n∈PO

unyno +
∑
n∈IO

uny
∗
no
+

∑
n∈OO

Yno ≤ 1,

[E∗ − C3]
∑

n∈PO

unynk +
∑
n∈IO

unynk∗ +
∑

n∈OO

Ynk ≤
∑

m∈PI

vmxmk +
∑
m∈II

vmx
∗
mk

+
∑

m∈OI

Xmk , k = 1,… ,K; k ≠ o,

[E∗ − C4] �Yni ≤ Ynj , (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

[E∗ − C5] �Xmi ≤ Xmj , (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,

[E∗ − C6] (v, u) ∈ (Sv , Su).
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following LP models. The optimal value of E∗
o
 is between zero and one. The DMUs 

with optimal E∗
o
= 1 are considered as efficient.

The minimal (pessimistic) efficiency score for DMUo using the CCR model with 
imprecise information can be derived by solving the following Mixed-Integer Linear 
Programming (MILP) model:

The above model allows for finding the least favorable weight vector for DMUo in 
terms of its efficiency while considering the worst possible scenario for DMUo and 
the best admissible scenarios for the remaining units DMUk , k = 1,… ,K and k ≠ o . 
Under these conditions, we constrain the space of feasible solutions by imposing—
without loss of generality—that the virtual input of DMUo equals one ( [E∗ − C1] ), 
assuming that at least one unit is efficient (its efficiency score must be greater than 
or equal to one; [E∗ − C2]–[E∗ − C5] ), preserving the ordinal factors’ monotonicity 
( [E∗ − C6]–[E∗ − C7] ), and satisfying the pre-defined constraints on the admissible 
values of input and output weights ( [E∗ − C8] ). Apart from the weights already con-
sidered in model (7), we include the binary variables bk ∈ {0, 1} , k = 1,… ,K . The 
optimal value of Eo∗ is between zero and one. Overall, [Eo∗,E

∗
o
] can be deemed as an 

efficiency interval (Salo and Punkka 2011).
Note that C is a large positive constant. Irrespective of which DMUo is con-

sidered, it is sufficient that C > max
DMU

l
,DMU

k
∈D{max{maxm∈PI{xmk∕xml},

max
m∈II{xmk∗∕x

∗
ml
}, if OI ≠ � ∶ �K}} . It is so because to minimize Eo∗ , the 

solver also minimizes Ek for k = 1,… ,K . Since constraint [E∗ − C1] imposes 
∑

m∈PI vmxmo +
∑

m∈II vmx
∗
mo

+
∑

m∈OI Xmo = 1 , then for k = 1,… ,K , C is greater 
than 

∑
m∈PI vmxmk +

∑
m∈II vmxmk∗ +

∑
m∈OI Xmk . Consequently, when binary vari-

able bk equals 0 for k = 1,… ,K , constraint [E∗ − C2] (when k = o ) or constraint 
[E∗ − C3] (when k = 1,… ,K , k ≠ o ) is satisfied for all values of the variables. How-
ever, constraint [E∗ − C4] imposes that at least one bk for k = 1,… ,K is equal to 
one. Then, the respective efficiency Ek is greater or equal to one since the virtual 
output of DMUk is greater or equal to its virtual input.

Illustrative example In Table 2, we present the extreme efficiencies derived for five 
units contained in the illustrative example introduced in Sect. 2.1. They reveal that two 
units ( D1 and D3 ) are efficient, attaining the maximal efficiency score equal to one. The 

(8)

Minimize: Eo∗ =
∑

n∈PO

unyno +
∑
n∈IO

unyno∗ +
∑

n∈OO

Yno

s.t. [E∗ − C1]
∑

m∈PI

vmxmo +
∑
m∈II

vmx
∗
mo

+
∑

m∈OI

Xmo = 1,

[E∗ − C2]
∑

n∈PO

unyno +
∑
n∈IO

unyno∗ +
∑

n∈OO

Yno ≥ 1 − C(1 − bo),

[E∗ − C3]
∑

n∈PO

unynk +
∑
n∈IO

uny
∗
nk
+

∑
n∈OO

Ynk ≥
∑

m∈PI

vmxmk +
∑
m∈II

vmxmk∗ +
∑

m∈OI

Xmk − C(1 − bk), k = 1,… ,K; k ≠ o,

[E∗ − C4]
K∑
k=1

bk ≥ 1,

[E∗ − C5] bk ∈ {0, 1}, k = 1,… ,K,

[E∗ − C6] �Yni ≤ Ynj , (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

[E∗ − C7] �Xmi ≤ Xmj , (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,

[E∗ − C8] (v, u) ∈ (Sv , Su).
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efficiency intervals are relatively wide and span over the range of over 0.6 for all units. 
For example, the minimal efficiencies of D1 and D3 are, respectively, 0.013 and 0.367.

2.2.2  Extreme efficiency ranks

As far as efficiency ranks are concerned, we determine the best R∗
o
 and the worst Ro∗ 

ranks that are attained by DMUo for at least one feasible scenario (see Kadziński et al. 
2012, 2017; Salo and Punkka 2011). Given a fixed input/output weight vector and pre-
cise feasible performances for DMUo , it attains k-th rank if exactly k − 1 other units 
attain higher efficiency scores than DMUo . To find the minimal (i.e., the best) effi-
ciency rank for DMUo , the following MILP model needs to be solved:

The above model sets the efficiency score of DMUo in its most optimistic reali-
zation equal to one ( [R∗ − C1]–[R∗ − C2] ). For the remaining units, we assume 
their pessimistic realizations ( [R∗ − C3] ) and minimize the number of DMUs 
with efficiency scores greater than for DMUo . This is attained by introducing the 
binary variables bk for each DMUk , k = 1,… ,K , and k ≠ o ( [R∗ − C5] ). When 
the efficiency score of DMUk cannot be lower than or equal to one, then bk is 
set to one, and the respective constraint [R∗ − C4] is always satisfied for all pos-
sible variable values. This is implied by the use of a large positive constant C. 
Analogously to the reasoning for model (8), irrespective of which DMUo is con-
sidered, it is sufficient that C > maxDMUl,DMUk∈D{max{maxn∈PO{ynk∕ynl}, 
maxn∈IO{ynk∗∕y

∗
nl
}, if OO ≠ � ∶ �K}} . In turn, if the efficiency score of DMUo is 

greater or equal to the efficiency of DMUk , bk is set to zero. Thus, by minimizing the 

(9)

Minimize: R∗
o
= 1 +

K∑
k=1,k≠o

bk

s.t. [R∗ − C1]
∑

n∈PO

unyno +
∑
n∈IO

uny
∗
no
+

∑
n∈OO

Yno = 1,

[R∗ − C2]
∑

m∈PI

vmxmo +
∑
m∈II

vmxmo∗ +
∑

m∈OI

Xmo = 1,

[R∗ − C3]
∑

n∈PO

unynk +
∑
n∈IO

unynk∗ +
∑

n∈OO

Ynk ≤
∑

m∈PI

vmxmk +
∑
m∈II

vmx
∗
mk

+
∑

m∈OI

Xmk + Cbk , k = 1,… ,K; k ≠ o,

[R∗ − C4] bk ∈ {0, 1}, k = 1,… ,K; k ≠ o,

[R∗ − C5] �Yni ≤ Ynj , (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

[R∗ − C6] �Xmi ≤ Xmj , (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,

[R∗ − C7] (v, u) ∈ (Sv , Su).

Table 2  Exact robust results 
derived with mathematical 
programming for the illustrative 
example

DMU
o

Extreme scores Extreme 
ranks

Robust relations

E
∗
o

E
o∗ R

∗
o

R
o∗ D

1
D

2
D

3
D

4
D

5

D
1

1.000 0.013 1 2 N N P N N
D

2
0.723 0.011 2 5 N P P P

D
3

1.000 0.367 1 4 P P N P N
D

4
0.751 0.010 2 5 P P N P

D
5

0.637 0.012 3 5 P P N



1 3

Exact and stochastic methods for robustness analysis in the… Page 11 of 34    22 

sum of bk , k = 1,… ,K , and k ≠ o , we can obtain the best possible rank of DMUo . 
The optimal value of R∗

o
 is between one and K.

The worst (i.e., the maximal) possible rank of DMUo can be computed with 
the following MILP model:

The above model maximizes the number of DMUs with efficiency scores greater 
or equal to DMUo . Again, we assume that the efficiency of DMUo is equal to one 
( [R∗ − C1]–[R∗ − C2] ). However, at this time, we consider the pessimistic realization 
of DMUo . Then, we introduce the constraints imposing that the efficiencies of the 
remaining DMUs in their optimistic realizations are not lower than one ( [R∗ − C3] ). 
The component C ⋅ (1 − bk) included in the respective constraint implies that the 
latter can be violated. If binary variable bk ( [R∗ − C4] ) is equal to one, constraint 
[R∗ − C3] holds, whereas for bk = 0—it is satisfied for any variables’ values. Note 
that C should be set similarly as for model (8). When maximizing the sum of bk , 
k = 1,… ,K , and k ≠ o , we minimize the number of DMUs for which constraint 
[R∗ − C3] is violated. Thus, the sum of bk increased by one corresponds to the worst 
possible rank of DMUo . The optimal value of Ro∗ is between one and K.

Illustrative example The extreme ranks for the illustrative example introduced 
in Sect. 2.1 are presented in Table 2. The efficient units attain the first rank in 
the best case. Although the minimal efficiency of D1 is worse than for D3 , in the 
worst case its rank can drop only to the second position ( R1∗ = 2 ), whereas D3 
can be ranked even fourth ( R3∗ = 4 ) in the most pessimistic scenario. The inef-
ficient units can be ranked second ( D2 and D4 ) or third ( D5 ) in the best case, 
while all are ranked at the bottom in the least advantageous scenario.

2.2.3  Necessary and possible efficiency preference relations

When it comes to the stability of comparisons observed for pairs of DMUs given 
all feasible scenarios, we consider the necessary ( ≿N

E
 ) and possible ( ≿P

E
 ) efficiency 

preference relations (see Greco et al. 2008; Kadziński et al. 2017). They are defined 
in the following way:

• DMUo is necessarily preferred to DMUl ( DMUo ≿
N
E
DMUl ) if DMUo attains at 

least as good efficiency as DMUl for all feasible scenarios defined by the sets of 
admissible weights, as well as values of inputs and outputs, or, equivalently, if 

(10)

Maximize: Ro∗ = 1 +
K∑

k=1,k≠o

bk

s.t. [R∗ − C1]
∑

n∈PO

unyno +
∑
n∈IO

unyno∗ +
∑

n∈OO

Yno = 1,

[R∗ − C2]
∑

m∈PI

vmxmo +
∑
m∈II

vmx
∗
mo

+
∑

m∈OI

Xmo = 1,

[R∗ − C3]
∑

m∈PI

vmxmk +
∑
m∈II

vmxmk∗ +
∑

m∈OI

Xmk ≤
∑

n∈PO

unynk +
∑
n∈IO

uny
∗
nk
+

∑
n∈OO

Ynk + C(1 − bk), k = 1,… ,K; k ≠ o,

[R∗ − C4] bk ∈ {0, 1}, k = 1,… ,K; k ≠ o,

[R∗ − C5] �Yni ≤ Ynj , (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

[R∗ − C6] �Xmi ≤ Xmj , (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,

[R∗ − C7] (v, u) ∈ (Sv , Su).
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for all feasible weight vectors the efficiency of DMUo in its pessimistic realiza-
tion is not worse than the efficiency of DMUl in its optimistic realization;

• DMUo is possibly preferred to DMUl ( DMUo ≿
P
E
DMUl ) if DMUo attains at least 

as good efficiency as DMUl for at least one feasible scenario defined by the sets 
of admissible weights, as well as values of inputs and outputs, or, equivalently, 
if for at least one feasible weight vector the efficiency of DMUo in its optimistic 
realization is not worse than the efficiency of DMUl in its pessimistic relations.

To verify the truth of the necessary efficiency preference relation DMUo ≿
N
E
DMUl 

for pair (DMUo,DMUl) , we need to solve the following LP model:

The above model finds the minimal efficiency score of DMUo in its pessimistic reali-
zation while assuming that the efficiency of DMUl in its optimistic realization is 
equal to one. If the obtained optimal value of Eo∗ is greater than or equal to one, then 
for all weight vectors ( u, v ), the efficiency of DMUo is not worse than efficiency of 
DMUl , i.e., DMUo ≿

N
E
DMUl . Otherwise, not(DMUo ≿

N
E
DMUl).

The following LP model allows verifying the truth of the possible efficiency pref-
erence relation DMUo ≿

P
E
DMUl for pair (DMUo,DMUl):

The above model computes the maximal efficiency of DMUo in its optimistic reali-
zation while assuming that the efficiency of DMUl in its pessimistic realization is 
equal to one. If the optimal value of E∗

o
 is greater than or equal to one, then there 

exists at least one weight vector (u, v) for which the efficiency of DMUo is not worse 
than efficiency of DMUl , i.e., DMUo ≿

P
E
DMUk . Otherwise, not(DMUo ≿

P
E
DMUl).

Illustrative example The necessary and possible relations for the illustrative exam-
ple are presented in Table 2. Note that the necessary relation is transitive and implies 
the truth of the possible relation. Let us observe that unit D1 is necessarily preferred 
to the three inefficient units ( D2 , D4 , and D5 ), whereas D3 is robustly at least as 
good only when compared to D5 . The efficient units are incomparable in terms of 
the necessary relation while being possibly preferred over each other. The inefficient 
units are not preferred over any other unit for all feasible scenarios. However, they 

(11)

Minimize: Eo∗ =
∑

n∈PO

unyno +
∑
n∈IO

unyno∗ +
∑

n∈OO

Yno

s.t.
∑

m∈PI

vmxmo +
∑
m∈II

vmx
∗
mo

+
∑

m∈OI

Xmo = 1,

∑
n∈PO

unynl +
∑
n∈IO

uny
∗
nl
+

∑
n∈OO

Ynl =
∑

m∈PI

vmxml +
∑
m∈II

vmxml∗ +
∑

m∈OI

Xml ,

�Yni ≤ Ynj , (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

�Xmi ≤ Xmj , (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,

(v, u) ∈ (Sv , Su).

(12)

Maximize: E∗
o
=

∑
n∈PO

unyno +
∑
n∈IO

uny
∗
no

+
∑

n∈OO

Yno

s.t.
∑

m∈PI

vmxmo +
∑
m∈II

vmxmo∗ +
∑

m∈OI

Xmo = 1,

∑
n∈PO

unynl +
∑
n∈IO

unynl∗ +
∑

n∈OO

Ynl =
∑

m∈PI

vmxml +
∑
m∈II

vmx
∗
ml

+
∑

m∈OI

Xml ,

�Yni ≤ Ynj , (i, j) ∈ {(i, j) ∶ yni ≤ ynj}, n ∈ OO,

�Xmi ≤ Xmj , (i, j) ∈ {(i, j) ∶ xmi ≤ xmj}, m ∈ OI,

(v, u) ∈ (Sv , Su).
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are possibly preferred over each other (e.g., D2 ≿
P
E
D4 and D4 ≿

P
E
D2 ). Moreover, D2 

and D4 are at least as good as D3 for at least one feasible scenario, whereas none of 
the inefficient units attains the score of D1 for any feasible setting.

2.3  Stochastic analysis with the Monte Carlo simulation

In this section, we discuss how to derive stochastic outcomes using the Monte Carlo 
simulation. These results capture the share or distribution of feasible efficiency sce-
narios (u, v, x, y) that confirm a given outcome referring to the attained scores or 
ranks, or the truth of pairwise preference relation.

To conduct such a stochastic analysis, we need to sample a representative sub-
set of all feasible efficiency scenarios. This requires the assumption about the prob-
ability distributions of the joint density function of the feasible input/output weight 
vectors and the precise performances within the specified interval values on vari-
ous inputs and outputs (Lahdelma and Salminen 2006). In general, the proposed 
approach can be used with any arbitrarily selected distribution. However, when the 
expert does not impose the parameter distribution, we assume the uniform distribu-
tion of weights and performances (see Kadziński et al. 2017; Lahdelma and Salm-
inen 2001).

To simulate the feasible efficiency scenarios, we need to derive the weights and 
performances from the feasible space. For sampling weights from the uniform dis-
tribution, we use the Hit-And-Run (HAR) algorithm (Tervonen et al. 2013). Since it 
requires the space of sampling to be bounded, we perform normalization of possible 
input/output weights:

When it comes to sampling the performances, a dedicated treatment has been 
designed to deal with the interval and ordinal factors. For the interval inputs and 
outputs, for each DMUo , we randomly select the exact values from the intervals 
[xmo ∗, x

∗
mo
] or [yno ∗, y∗no] using HAR. Regarding dealing with the ordinal factors, we 

adopt the SMAA-O approach (Lahdelma et al. 2003). Specifically, we assume that a 
function simulating some ordinal inputs or outputs is increasing. We assume that the 
exact values corresponding to the ordinal performances are drawn from the [0, 1] 
interval without losing generality. Hence we randomly choose a set of K numbers 
from this range. The obtained values are sorted and considered as a single sample 
of precise performances of DMUs consistent with the order imposed by the original 
ordinal performances (e.g., a unit with the worst ordinal output or the best ordinal 
input is assigned the least precise value).

The samples concerning the weights and the input and output values are put 
together to simulate the feasible efficiency scenarios. For each of them, we com-
pute the efficiencies for all DMUs. The results obtained for all sampled scenarios are 
summarized in stochastic acceptability indices concerning scores, ranks, and pair-
wise relations. Since their values are approximated using the Monte Carlo simulation 

(13)
N∑

n=1
un =

M∑

m=1
vm = 1.
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rather than computed exactly through analytical methods, we consider the estima-
tions of the true indices in practice. However, with a sufficiently large number of 
samples, such values can be estimated up to a pre-defined accuracy (Tervonen and 
Lahdelma 2007).

2.3.1  Distribution of efficiency scores

The Efficiency Acceptability Interval Index EAII(DMUo, bi) is defined as the 
share of feasible scenarios for which the efficiency score of DMUo is contained in 
the sub-interval bi ⊂ [0, 1] , where i = 1,… ,B , and B is the number of efficiency 
sub-intervals considered in the analysis. By default, the sub-intervals are assumed 
to be disjoint and to span over the same widths. Note that for each DMUo ∈ D , ∑B

i=1
EAII(DMUo, bi) = 1 . Moreover, by analyzing the scores obtained by DMUo , 

we may compute an expected efficiency (denoted by EEo ) as an average of efficien-
cies derived for all sampled scenarios. Such efficiency may be used to impose a 
complete ranking on the set of DMUs (Labijak-Kowalska and Kadziński 2021).

Illustrative example In Table  3, we present the estimates of EAIIs computed 
based on 10,000 samples derived with the Monte Carlo simulation for the illus-
trative example introduced in Sect.  2.1. We have selected five buckets ( B = 5 ), 
and hence the considered sub-intervals are [0,  0.2], (0,  2,  0.4], … , (0.8,  1.0]. 
The most probable efficiency ranges for D1 and D2 are, respectively, (0.8,  1.0] 
( EAII(D1, (0.8, 1.0]) = 0.958 ) and (0.2,  0.4] ( EAII(D2, (0.2, 0.4]) = 0.716 ). On the 
other extreme, the estimated probability of D1 attaining an efficiency score lower 
than 0.2 or D2 attaining a score greater than 0.6 is zero. However, the analysis of 
extreme efficiency scores presented in Sect. 2.2.1 reveals that it is possible. None-
theless, when combining this information with the analysis of EAIIs, we know that 
such a scenario is improbable. As far as expected efficiencies are concerned, they 
impose the following ranking on the set of DMUs: D1 ≻ D3 ≻ D2 ≻ D5 ≻ D4 , hence 
allowing discrimination between both efficient and inefficient units.

In the e-Appendix, we present a detailed step-by-step description of calculat-
ing the EAIIs and other stochastic measures for the considered example. To make 
the description self-contained and its size reasonable, we use only ten samples as 
opposed 10,000 samples considered in the main paper.

2.3.2  Efficiency rank acceptability indices

Efficiency Rank Acceptability Index ERAI(DMUo, r) for DMUo ∈ D and a specific 
rank r ∈ {1, 2,… ,K} is defined as the share of feasible scenarios for which DMUo 
is placed at the r-th position in the ranking imposed by the efficiency scores of all 
DMUs in D . Note that for each DMUo ∈ D , 

∑K

r=1
ERAI(DMUo, r) = 1 . These sto-

chastic indices can be used to approximate an expected efficiency rank (denoted by 
ERo ) for DMUo in the following way: ERo =

∑K

r=1
r ⋅ ERAI(DMUo, r) (Ang et  al. 

2021). Similar to the expected efficiencies, the expected efficiency ranks can be used 
to order the units from the best to the worst.
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Illustrative example The rank acceptabilities for the illustrative examples are pre-
sented in Table 3. Based on the derived samples’ analysis, only D1 and D3 can be 
ranked in the first two positions. However, the probability of D1 being ranked at the 
top is higher than for D3 ( ERAI(D1, 1) = 0.83 > ERAI(D3, 1) = 0.17 ). Even though 
the minimal rank for D3 indicated that it could be ranked fourth in the most pessimis-
tic case, the analysis of ERAIs suggests that the scenarios for which it drops out of 
the top two are very unlike. The distribution of ranks for D5 confirms that it is ranked 
fourth for half of the scenarios. Further, the probabilities of attaining the third and 
fifth positions by D5 are equal to, respectively, 34% and 16% . The expected efficiency 
ranks impose the following order on the set of DMUs: D1 ≻ D3 ≻ D2 ≻ D5 ≻ D4 . 
Even though it exploits the ordinal results (i.e., ranks) rather than cardinal ones (i.e., 
efficiencies), this ranking is the same as when considering the expected efficiencies.

2.3.3  Pairwise efficiency outranking indices

The Pairwise Efficiency Outranking Index PEOI(DMUo,DMUl) is defined as 
the share of feasible scenarios for which DMUo is at least as efficient as DMUl . 
Note that for (DMUo,DMUl) ∈ D × D , 0 ≤ PEOI(DMUo,DMUl) ≤ 1 and 
0 ≤ PEOI(DMUo,DMUl) + PEOI(DMUl,DMUo) ≤ 2.

Illustrative example The PEOIs derived for the illustrative example are presented 
in Table 3. Note that when for the pairs for which the necessary relation holds (e.g., 
(D1,D2) and (D3,D5) ), PEOI is equal to one, whereas for the pairs for which the 
possible relation is false (e.g., (D2,D1) and (D5,D1) ), PEOI is zero. The analysis of 
PEOIs is the most informative for pairs that are not related by the necessary relation. 
For example, the share of scenarios for which D1 attains higher efficiency than D3 
is five times greater than the share for which the inverse relation holds. In the same 
spirit, D2 is more efficient than D5 for twice as many scenarios as D5 being more 
favorable than D2 . Having compared D3 with D2 or D4 using the exact robust analy-
sis methods, we know that these pairs are not related by ≿N

E
 . However, PEOIs indi-

cate that the scenarios for which D2 and D4 are strictly better than D3 are extremely 
limited ( PEOI(D2,D3) = 0 and PEOI(D4,D3) = 0).

To demonstrate the impact that joint consideration of variable weights and impre-
cise inputs and outputs has on the obtained robust results, in the e-Appendix, we 
reconsider the illustrative example. Specifically, we analyze five scenarios while 
replacing performances on a single or two imprecise factors with the respective pre-
cise data. For each scenario, we discuss the six types of results. In this way, we 
demonstrate that imprecision of inputs and outputs contributes to the uncertainty of 
efficiency outcomes in the same way as the multiplicity of weights associated with 
these factors.
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3  Implementation on the diviz platform

Diviz is an open-source platform that allows designing and executing algorithmic 
workflows implementing operational research methods (Meyer and Bigaret 2012). 
The software consists of two major components: i) a Java client, which allows users 
to design workflows using existing computational and graphical modules, and ii) 
servers, where the computations are performed and the results are generated. The 
greatest number of contributions on diviz concern Multiple Criteria Decision Analy-
sis (MCDA) (see Cinelli et al. 2022; Greco et al. 2016). All diviz modules take input 
data and produce outputs in XMCDA, a dedicated XML-based format.

3.1  Implemented modules

All methods for robustness analysis in Imprecise DEA have been implemented in 
R and made available on the diviz platform as independent modules (web services). 
Their source code is available at https:// github. com/ alabi jak/ diviz_ DEA/ tree/ master/ 
Impre ciseD EACCR. They can be used individually or combined into complex work-
flows. Each module accepts five input files:

• units containing information about the considered DMUs;
• inputs/outputs listing information on the inputs and outputs and their scales 

(quantitative or qualitative (ordinal));
• performance providing information on the DMUs’ precise performances or, if 

the problem involves interval inputs and outputs, the minimal performances of 
DMUs;

• max performance is an optional file used in case the interval inputs/outputs are 
considered; it defines the DMUs’ maximal performances;

• weights constraints is an optional file containing linear constraints on the weights 
of inputs and outputs, defining the space of feasible weight vectors.

The modules admit the specification of some additional parameters. The most 
important ones are samplesNo indicating the number of samples derived with the 
Monte Carlo simulation realized with the HAR algorithm and tolerance (in %) used 
to convert the precise performances into interval ones. For example, a precise value 
x is transformed into the interval [(1 − tolerance) ⋅ x;(i + tolerance) ⋅ x].

The following modules for robustness analysis in IDEA have been implemented 
on diviz:

• ImpreciseDEA-CCR_efficiencies computes the minimal and maximal efficiencies 
( E∗ and E∗ ) for each DMU using linear programming techniques;

• ImpreciseDEA-CCR_extremeRanks computes the best and the worst efficiency 
ranks ( R∗ and R∗ ) for each DMU using MILP;

• ImpreciseDEA-CCR_preferenceRelations verifies the truth of the necessary and 
possible efficiency preference relations for all pairs of DMUs using linear pro-
gramming;
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• ImpreciseDEA-CCR-SMAA_efficiencies computes the efficiency distribution, the 
extreme efficiency scores observed in the analyzed sample of feasible scenarios, 
and an expected efficiency for each DMU, using the HAR algorithm; it addition-
ally requires specification of the number of buckets as a method parameter;

• ImpreciseDEA-CCR-SMAA_preferenceRelations computes PEOIs for all pairs of 
DMUs using HAR;

• ImpreciseDEA-CCR-SMAA_ranks computes ERAIs for all DMUs and ranks, 
extreme efficiency ranks observed in the analyzed sample of feasible scenarios, 
and an expected rank for each DMU using HAR.

The structures of two exemplary modules, ImpreciseDEA-CCR_efficiencies 
and ImpreciseDEA-CCR-SMAA _efficiencies, are presented in Figs.  1 and 2, 
respectively. They perform computations according to the methods presented in 
Sects. 2.2.1 and 2.3.1, respectively.

The implemented modules can be combined into an algorithmic workflow with 
other available computational or visualization modules. Such a workflow can be 
easily exported and shared with other users. Moreover, the infrastructure of diviz 
allows storing the history of past executions, which is very useful when compar-
ing the results for different settings (e.g., with and without preference information 
specified by the user). The workflow designed to obtain the results for the case 
study discussed in Sect. 4 is graphically presented in Fig. 3.

4  Illustrative case study

To illustrate the practical usefulness of the proposed framework, we performed the 
robustness analysis for two studies concerning 27 industrial robots and 17 Chinese 
ports. The former is based on data derived from Saen (2006), and the detailed results 
are given in the e-Appendix. The latter builds on data from Jiang et  al. (2021), 

Fig. 1  The structure of the diviz module which computes the extreme efficiency scores for each DMU 
using MILP for the Imprecise DEA model
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and the outcomes are reported in this section. The workflows and input data in the 
XMCDA format (ver. 2) for both studies are available at https:// github. com/ alabi jak/ 
diviz_ DEA/ tree/ master/ Impre ciseD EACCR.

The ports are described in terms of two precise inputs (labor population and 
energy consumption), two desirable outputs (cargo throughput—precise and 
employee satisfaction—ordinal), and one undesirable output (water pollutants—
interval). Following (Jiang et al. 2021), the latter factor is treated as an input dur-
ing the analysis. To obtain the same magnitude for all precise and interval factors, 
we used the mean normalization before running the methods (see Sarkis 2007; 
Tomaževič et  al. 2016; Widiarto and Emrouznejad 2015). The performances of 
ports on all inputs and outputs are presented in Table 4.

In what follows, we discuss the results of robustness analysis considering the 
three perspectives: efficiency scores, efficiency ranks, and preference relations. The 
values of stochastic acceptability indices are estimated based on the 10,000 sam-
pled feasible scenarios. To illustrate that the methods can handle linear weight con-
straints, we assess water pollutants as less important factor than the other two inputs, 
i.e., uwp ≤ ulp and uwp ≤ uec , where uwp, ulp, uec are, respectively, weights assigned 
to water pollutants, labor population, and energy consumption. Moreover, we intro-
duce two other constraints preventing the overwhelming role of any input, i.e., 
wlp ≤ wec + wwp and wec ≤ wlp + wwp.

4.1  Efficiency scores

Figure 4 presents the extreme efficiency scores ( E∗ and E∗ ) for all DMUs. Regard-
ing the maximal (optimistic) efficiencies, they indicate six efficient ports (Yingkou, 
Tianjin, Yantai, Ningbo-zhoushan, Fuzhou, and Shantou) with E∗ = 1 . Among the 

Fig. 2  The structure of the diviz module which computes the Efficiency Acceptability Interval Indices, 
observed extreme efficiency scores, and expected efficiency for each DMU using the Imprecise DEA 
model and the Monte Carlo simulation
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inefficient ports, the best efficiency is attained by Fangcheng (0.909) and Zhanjiang 
(0.887). On the other extreme, there are two ports with maximal efficiency scores 
lower than 0.6 (Shanghai (0.539) and Qinhuangdao (0.598)). When analyzing the 
minimal (pessimistic) efficiencies, the most advantageous port is Ningbo-zhoushan 
(0.158). The minimal efficiency scores of all other ports are significantly lower 
(close to zero).

In general, the efficiency intervals are relatively wide. For this reason, analyz-
ing the distribution of efficiency scores is desirable. In Table 5, we present the 
Efficiency Acceptability Interval Indices, while assuming B = 10 sub-intervals 
from [0, 0.1] to (0.9, 1.0]. When it comes to the efficient ports, the greatest EAII 
for the best interval is attained by Tianjin (EAII(Tianjin, (0.9, 1.0]) = 57.3% ) 
and Yantai (EAII(Yantai, (0.9, 1.0]) = 68.3% ). Only three other ports attained 
an efficiency greater than 0.9 for at least one sample, but the respective EAIIs 
are significantly lower ( 16.8% for Shantou and less than 9% for others). Inter-
estingly, Fuzhou—deemed efficient—has not achieved an efficiency score in the 
best interval for any weight sample. Obviously, such scores are feasible (as con-
firmed with the analysis of exact extreme scores), but EAIIs indicate that they 
are improbable.

For some ports, the analysis of EAIIs allows indicating the most probable 
ranges of efficiencies even if the efficiency intervals are relatively wide. For 
example, the efficiency score for Yantai is in the best three buckets for 98.6% 
of feasible scenarios, with the vast majority ( 68.3% ) in the last bucket. In the 
same spirit, the efficiency score of Qinhuangdao is between 0.2 and 0.4 for 
89.8% of feasible scenarios, and there is no sample for which its efficiency is 
greater than 0.5. However, there is also a group of ports with efficiency scores 
strongly dependent on the selected weight and performance vectors. For exam-
ple, for Shantou, EAIIs greater than 16% are attained for the two very different 
intervals, (0.9, 1] and (0.3, 0.4]. Also, for this port and eight buckets represent-
ing efficiency scores between 0.2 and 1.0, EAIIs are greater than zero. Similarly, 
Fuzhou has a positive share of feasible scenarios for nine sub-intervals.

Fig. 3  The diviz workflow used to perform the efficiency analysis for a case study (see Sect. 4)
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The distribution of efficiency scores can be translated into a single, eas-
ily understandable measure, i.e., expected efficiency (see Fig.  4). These scores 
impose a complete order on the set of ports. Yantai is the best, with an expected 
efficiency of 0.930. This means it is either efficient or very close to being effi-
cient for most feasible scenarios. The other two ports in the top three are Tianjin 
(0.877) and Yingkou (0.768). Dalian attains the next highest expected efficiency. 
Even though it is inefficient, it is ranked better in terms of EE than the remaining 
three efficient ports (Ningbo-zhoushan, Fuzhou, and Shantou). The three ports 
with the least expected efficiencies are Shenzhen (0.376), Shanghai (0.334), and 
Qinhuangdao (0.307).

4.2  Efficiency ranks

The extreme efficiency ranks ( R∗ and R∗ ) for all ports are presented in Fig.  5. 
Only the six ports deemed as efficient have the best rank equal to one. Further-
more, the inefficient units with relatively high maximal efficiency scores attain 
the best rank equal to two (see Dalian, Rizhao, Zhanjiang, and Fangcheng). Only 
one additional inefficient port (Lianyungang) is ranked at the podium in the best 
case. Four ports are always ranked outside the top five (see Shanghai, Xiamen, 

Table 4  Input and output values for considered Chinese ports (for employee satisfaction, 1 and 17 indi-
cate, respectively, the worst and the best ordinal performances)

Port Inputs Outputs Undesirable output

Labor population Energy 
consump-
tion

Cargo throughput Employee 
satisfac-
tion

Water pollutants

Dalian 0.961 0.997 1.255 15 [1.137, 1.421]
Yingkou 0.641 1.093 1.012 16 [0.796, 1.023]
Qinhuangdao 1.827 0.406 0.537 9 [0.455, 0.682]
Tianjin 1.022 0.533 1.583 15 [1.251, 1.706]
Yantai 0.208 0.798 0.763 15 [0.569, 0.853]
Qingdao 1.686 1.701 1.438 15 [1.137, 1.706]
Rizhao 0.763 0.830 1.006 9 [0.910, 1.137]
Shanghai 2.524 2.811 1.854 11 [1.706, 2.161]
Lianyungang 0.574 0.721 0.577 9 [0.455, 0.682]
Ningbo-zhoushan 1.895 2.533 2.651 17 [1.990, 2.843]
Fuzhou 0.434 0.465 0.417 6 [0.341, 0.455]
Xiamen 0.980 0.600 0.601 6 [0.398, 0.569]
Shantou 0.601 0.141 0.143 11 [0.284, 0.398]
Shenzhen 0.989 0.444 0.615 1 [0.512, 0.625]
Guangzhou 1.096 1.499 1.502 6 [1.706, 1.990]
Zhanjiang 0.353 0.971 0.736 6 [0.569, 0.682]
Fangcheng 0.447 0.456 0.307 6 [0.341, 0.512]
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Shenzhen, and Guangzhou). The least advantageous among them is Shanghai 
because even in the optimistic scenario, as many as 7 other ports attain higher 
efficiency ( R∗ = 8).

The most preferred ports in terms of the worst efficiency ranks are Yantai 
( R∗ = 7 ) and Yingkou ( R∗ = 11 ). When it comes to other efficient ports, their 
ranks drop to 14-th (for Tianjin), 16-th (for Ningbo-zhoushan and Fuzhou), or 
17-th (for Shantou) positions in the most pessimistic case. Hence the ranks of 
Shantou range between the most extreme possible ones. In general, for 13 out of 
17 ports, the pessimistic rank is lower than 15-th. Among them, six inefficient 
ports (Qinhuangdao, Shanghai, Xiamen, Shenzhen, Guangzhou, and Fangcheng) 
are ranked at the bottom in the least advantageous scenario.

Since the rank intervals for all ports are broad, we have estimated Efficiency 
Rank Acceptability Indices (see Table  6). They reveal the distribution of ranks 
attained by each DMU across the feasible weight and performance vectors. Four 
of six efficient ports attained the top position for at least one feasible scenario. 
For Yantai, this occurs for 58.9% of samples, Tianjin and Shantou are ranked at 
the top for similar shares of scenarios ( 19.6% and 15.3% , respectively), whereas 
for Yingkou, the ERAI for the first position is significantly lesser ( 6.2% ). Regard-
ing the remaining efficient ports, Ningbo-zhoushan attained at most second rank, 
and Fuzhou was at most third for relatively negligible shares of feasible scenarios.

For many ports, it is possible to indicate a single rank or a relatively narrow range 
of ranks attained for the vast majority of feasible scenarios. For example, Yingkou 
is ranked third for more than 60% scenarios, Yantian is ranked in the top three for all 
sampled scenarios, and Dalian is placed between fourth and sixth for more than 85% 
scenarios. Some other ports attain a more extensive range of ranks for a significant 

Fig. 4  Graphical representation of extreme efficiency scores and expected efficiencies for seventeen ports



1 3

Exact and stochastic methods for robustness analysis in the… Page 23 of 34    22 

Ta
bl

e 
5 

 E
ffi

ci
en

cy
 d

ist
rib

ut
io

n 
fo

r c
on

si
de

re
d 

po
rts

 o
bt

ai
ne

d 
w

ith
 th

e 
M

on
te

 C
ar

lo
 si

m
ul

at
io

n

Po
rt

[0
.0

, 0
.1

]
(0

.1
, 0

.2
]

(0
.2

, 0
.3

]
(0

.3
, 0

.4
]

(0
.4

, 0
.5

]
(0

.5
, 0

.6
]

(0
.6

, 0
.7

]
(0

.7
, 0

.8
]

(0
.8

, 0
.9

]
(0

.9
, 1

.0
]

D
al

ia
n

0.
00

0
0.

00
0

0.
00

2
0.

00
7

0.
05

2
0.

15
4

0.
44

3
0.

33
5

0.
00

7
0.

00
0

Y
in

gk
ou

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

1
0.

02
1

0.
22

1
0.

44
7

0.
22

1
0.

08
9

Q
in

hu
an

gd
ao

0.
00

2
0.

04
7

0.
39

0
0.

50
8

0.
05

3
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

Ti
an

jin
0.

00
0

0.
00

0
0.

00
2

0.
00

0
0.

01
5

0.
05

6
0.

09
0

0.
11

3
0.

15
1

0.
57

3
Ya

nt
ai

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

1
0.

00
1

0.
01

2
0.

09
3

0.
21

0
0.

68
3

Q
in

gd
ao

0.
00

0
0.

00
2

0.
03

9
0.

16
8

0.
47

5
0.

30
9

0.
00

7
0.

00
0

0.
00

0
0.

00
0

R
iz

ha
o

0.
00

0
0.

01
2

0.
04

0
0.

08
4

0.
14

0
0.

16
9

0.
42

6
0.

12
7

0.
00

2
0.

00
0

Sh
an

gh
ai

0.
00

4
0.

11
2

0.
20

3
0.

41
1

0.
26

9
0.

00
1

0.
00

0
0.

00
0

0.
00

0
0.

00
0

Li
an

yu
ng

an
g

0.
00

0
0.

00
2

0.
02

6
0.

08
9

0.
26

2
0.

48
3

0.
13

5
0.

00
3

0.
00

0
0.

00
0

N
in

gb
o-

zh
ou

sh
an

0.
00

0
0.

00
0

0.
01

0
0.

06
4

0.
11

5
0.

19
6

0.
44

4
0.

16
3

0.
00

7
0.

00
1

Fu
zh

ou
0.

00
3

0.
01

9
0.

04
0

0.
11

4
0.

22
1

0.
44

6
0.

14
4

0.
01

2
0.

00
1

0.
00

0
X

ia
m

en
0.

01
1

0.
05

0
0.

13
5

0.
24

0
0.

43
6

0.
12

6
0.

00
2

0.
00

0
0.

00
0

0.
00

0
Sh

an
to

u
0.

00
0

0.
00

0
0.

13
9

0.
16

5
0.

13
2

0.
11

8
0.

11
1

0.
08

5
0.

08
2

0.
16

8
Sh

en
zh

en
0.

04
3

0.
09

1
0.

14
4

0.
18

5
0.

35
9

0.
17

5
0.

00
3

0.
00

0
0.

00
0

0.
00

0
G

ua
ng

zh
ou

0.
02

2
0.

08
6

0.
10

7
0.

14
1

0.
16

6
0.

35
1

0.
12

7
0.

00
0

0.
00

0
0.

00
0

Zh
an

jia
ng

0.
00

4
0.

03
3

0.
06

8
0.

11
2

0.
15

5
0.

30
3

0.
25

5
0.

07
0

0.
00

0
0.

00
0

Fa
ng

ch
en

g
0.

00
4

0.
02

6
0.

08
1

0.
35

0
0.

42
9

0.
09

2
0.

01
6

0.
00

2
0.

00
0

0.
00

0



 A. Labijak-Kowalska, M. Kadziński 

1 3

   22  Page 24 of 34

share of feasible scenarios. For example, Shantou has non-zero ERAI for all ranks, 
with the acceptability indices ranging from 1.2% to 18.6% . Furthermore, Rizhao and 
Lianyungang have ERAIs greater than 10% for five consecutive ranks. Also, the anal-
ysis of ERAIs leads to identifying some ranks which are feasible according to the 
exact robustness analysis while being less probable, as confirmed by the stochas-
tic analysis conducted with the Monte Carlo simulation. For example, Qinhuang-
dao could be ranked fifth in the best case, but the probabilities of ranks above 8 are 
already close to zero. In the same spirit, Tianjin could be ranked 14-th in the worst 
case, but the shares of scenarios ranking it worse than 9 are negligible. In general, 
the analysis of ERAIs points out the ports for which the attained ranks are rather sta-
ble, or the ranks’ variability is great. This means that their position strongly depends 
on the particular scenario (weights and performances).

ERAIs can be transformed into expected ranks that allow ordering the ports from 
the best to the worst (see Fig.  5). In particular, for Yantai, ER is equal to 1.438, 
which confirms its superiority over the remaining ports. The following two positions 
are attained by Tianjin (2.827) and Yingkou (2.918). Even though Dalian is ineffi-
cient, its expected rank is better than those attained by the remaining three efficient 
ports. Qinhuangdao, Shanghai, and Shenzhen attain the worst expected ranks. They 
confirm that these three ports are placed at the bottom for most feasible scenarios.

4.3  Preference relations

The third analyzed perspective concerns the stability of efficiency-based pairwise 
preference relations. In Table 7, we present the matrix summarizing the truth of the 
necessary (N) and possible (P) preference relations. First, let us note that the nec-
essary relation is reflexive, which is confirmed with “N” on the main diagonal of 
Table 7. Furthermore, the necessary relation holds for 20 pairs involving different 

Fig. 5  Graphical representation of extreme efficiency ranks and estimated expected ranks (note that the 
closer to the bottom of the figure, the better the ranks)
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ports. This means that for all feasible scenarios, one port attains efficiency at least 
as good as the other port, confirming the robustness of its advantage. For example, 
Tianjin is necessarily preferred to Qingdao, Guangzhou, and Shanghai.

The necessary relation can be presented graphically using the Hasse diagram (see 
Fig. 6). Such a diagram does not represent the truth of relations that can be derived 
from the transitivity. For example, since Dalian is necessarily preferred to Qingdao, 
and Qingdao is necessarily preferred to Shanghai, Dalian is also preferred to Shang-
hai. Note that no other port is necessarily preferred over six efficient ports. However, 
there are also four inefficient (Dalian, Rizhao, Shenzhen, and Fangcheng) for which 
there does not exist any other port confirming its necessary advantage over them.

The port which proves its robust superiority over the greatest number of other 
ports is Yantai. It is necessarily preferred over seven other ports. An interesting 
situation can be observed for Fuzhou and Shantou. Although they are efficient, 
they are not necessarily preferred over any other port. The latter (i.e., no outgo-
ing arc) also holds for seven other ports. Among them, Shanghai and Guangzhou 
are necessarily worse than the most significant number of other ports (6 and 5, 
respectively). The necessary relation graph suggests the improvement paths that 
inefficient ports can follow to improve their efficiency gradually. For example, 
for Shanghai, we can construct the following example paths: Shanghai–Qing-
dao–Dalian or Shanghai–Qingdao–Yingkou. Alternatively, it can directly learn 
from Ningbo-zhoushan.

Regarding the possible preference relation (see Table 7), let us emphasize that 
the necessary relation implies the truth of the possible one. However, the lat-
ter one holds also for pairs that are not related by the necessary preference. For 
example, all efficient ports are incomparable in terms of the necessary relation. 
This means there is at least one feasible scenario for which one port is preferred 
to the other and at least one feasible scenario for which this relation is inverse 
(e.g., Yingkou and Tianjin). Such a situation also occurs for pairs of inefficient 
ports (e.g., Dalian and Rizhao or Qingdao and Guangzhou). When the possible 
relation for a given pair of ports is false (e.g., (Qingdao, Dalian) or (Shanghai, 
Qingdao)), then one port is less efficient than the other for all feasible scenarios.

When the necessary relation is true or the possible relation is false, a pair of ports 
is compared in the same way for all feasible scenarios. However, when the ports 
are incomparable in terms of the necessary relation, it is interesting to analyze the 
shares of feasible scenarios that rank one of the ports at least as good as the other. 
Pairwise Efficiency Outranking Indices capture such shares (see Table 8).

For some pairs, these indices confirm the superiority of one port over the other. 
For example, PEOI(Yingkou, Zhanjiang) = 0.995 and PEOI(Rizhao, Qinhuang-
dao) = 0.999 indicate that one port is at least as efficient as the other for over 99% 
scenarios, and the inverse relation is extremely unlike with PEOIs close to zero. For 
some other pairs, the PEOIs indicate that the shares of scenarios confirming the 
advantage of either port over another are very similar (e.g., PEOI(Shanghai, Qin-
huangdao) = 0.506 and PEOI(Qinhuangdao, Shanghai) = 0.494 or PEOI(Shenzhen, 
Qinhuangdao) = 0.540 and PEOI(Qinhuangdao, Shenzhen) = 0.460 ). For these 
pairs, the indication of a more preferred port strongly depends on the selected 
weights and performance vectors.
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5  Conclusions and future work

We have introduced a rich framework for robustness in the context of Imprecise Data 
Envelopment Analysis. The proposed methods are applicable in the context of three 
major types of uncertainty that occur in real-world decision problems (Pelissari 
et al. 2021). First, we consider ambiguity in the input and output performances that 
could be interpreted differently due to their ordinal or interval character. Second, we 
account for stochasticity by considering discrete and continuous probability distribu-
tions. Third, we deal with partial information on the input and output weights by 
exploiting the space of feasible weights delimited with a set of linear constraints. 
In this way, the proposed approaches for robustness analysis can be applied to real-
world problems for which it is difficult to express the knowledge or collect precise 
data, the variables are unquantifiable, some errors in measurements occur, or the 
users are not able or willing to express their complete preferences (see Dehnokhalaji 
et al. 2022; Pelissari et al. 2021).

When considering the stability of results that can be attained for the pos-
sible performances and weights, we focus on three types of efficiency-based out-
comes: scores, preference relations, and ranks. On the one hand, the mathematical 

Fig. 6  The Hasse diagram representing the necessary efficiency preference relation
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programming models compute the extreme efficiency scores and ranks and verify 
the truth of the necessary and possible preference relations. These outcomes reveal 
each DMU’s performance for the most and the least advantageous scenarios and col-
late the efficiencies of all pairs of DMUs for all or at least one feasible scenario. 
Thus, they offer an exact perspective on the DMUs’ performance. On the other 
hand, we incorporate the stochastic analysis driven by the Monte Carlo simulations 
to derive the probability distribution of different outcomes and expected results. 
These stochastic outcomes complement the exact results derived using mathematical 
programming. They also provide means for analyzing trends or some prevailing sce-
narios and imposing the ranking on the set of DMUs in the line of expected scores 
or ranks. Above all, such various outcomes have not been offered by any previous 
IDEA method.

The practical usefulness of the proposed framework has been illustrated in real-
world case studies concerning the evaluation of Chinese ports (Jiang et al. 2021) and 
industrial robots (Saen 2006). The data sets involved precise, interval, and ordinal 
factors. The results were computed with modules implemented in R and available 
on the diviz platform (Meyer and Bigaret 2012). They incorporate MILP solver and 
advanced sampling techniques.

The main limitations of the proposed framework are three-fold. First, when the 
number of units runs over a few hundred, the linear programs are too big and too 
many, posing a significant problem for contemporary solvers. This is particularly 
true for results such as extreme ranks that are established using binary variables. 
Moreover, for such big data problems, the robust results, such as the ranking induced 
by the necessary preference relation, cannot be presented to the user because of their 
high complexity. Then, it is more beneficial to refer to complete orders of units 
based on expected efficiencies or ranks. Still, let us emphasize that large scale-
applications are less common in DEA. Second, the results of the stochastic analysis 
depend on the assumed distribution of weights and performances within the inter-
vals as well as the hypotheses made when representing the ordinal performances. 
Clearly, the developed framework is applicable with other types of distributions than 
uniform and arbitrary performance ranges from which the ordinal performances 
could be sampled. These choices may affect the values of stochastic acceptabilities. 
Also, whichever assumptions are made, even if the indices can be estimated within 
the acceptable error bound, they are not accurate. Third, we accounted for the stand-
ard imprecision types considered in IDEA, including interval and ordinal perfor-
mances. As proved by a comprehensive review by Pelissari et al. (2021), uncertain 
performances can also be modeled differently. The most popular approaches for this 
purpose include fuzzy numbers, non-uniform probabilistic distributions, evidential 
reasoning, and grey numbers. Their combinations with DEA have gained in popular-
ity in recent years. Hence adopting the framework for robustness analysis to their 
context remains an appealing direction for future research.

We develop the methods introduced in this paper in the following directions. 
First, we adapt them to hierarchical structures of inputs and outputs. In this way, the 
robustness of efficiency outcomes given imprecise performances can be investigated 
at the comprehensive and local levels (Shen et al. 2013). The latter corresponds to a 
more elementary perspective or particular sub-area of DMUs’ functioning. Indeed, 
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the hierarchical structure is helpful for decomposing complex decision problems 
into smaller, manageable sub-problems. This is particularly useful in scenarios 
with high numbers of inputs and outputs, which often happens in medicine, energy, 
banking, and finances. Moreover, we design the Multiple Objective Optimization 
algorithms to determine different scenarios of improvements (i.e., reductions of con-
sumed resources or increases of produced results) required for attaining or maintain-
ing a particular target. These targets refer to many robust results, e.g., being neces-
sarily ranked in the top three or attaining an efficiency score of at least 0.7 for all 
feasible scenarios (Ciomek et al. 2018). Moreover, the proposed framework offers 
flexibility to the Decision Maker, who can indicate which factors should be modi-
fied and to which extent. The obtained solutions reflect the trade-offs between modi-
fications needed on various factors. Their analysis may lead to selecting the most 
preferred solution to be implemented in practice. Finally, we develop the methods 
for robustness analysis in the context of value-based DEA (see Gouveia et al. 2008; 
Labijak-Kowalska et al. 2023). This model is based on concepts from Multiple Cri-
teria Decision Analysis, allowing the incorporation of managerial preferences on 
different levels. In this regard, the uncertainty is related to performances, weights, 
and the shape of value functions for inputs and outputs. However, the output types 
produced by these methods are similar to those discussed in this paper.
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Abstract

We introduce an algorithmic framework for investigating the robustness of efficiency analysis results in the

presence of imprecise information about data and preferences. We employ an additive value efficiency model

accepting ordinal and interval information about performances of Decision Making Units and imprecision

in the specification of input and output weights and the shapes of marginal value functions. We verify

the stability of efficiency measures using a combination of mathematical programming and Monte Carlo

simulations. The results capture various certainty levels, emphasizing the necessary, possible, extreme,

and expected outcomes and the distribution of outcomes in the space of feasible weights, performances,

and marginal functions. The practical usefulness of the proposed framework is demonstrated in a real-

world problem concerning the functioning of Special Economic Zones in Poland. We discuss results that

increase the discrimination power, indicate overall good performances, and provide hints on the required

improvements.

Keywords: Value-based efficiency analysis, Robustness analysis, Imprecision, Special economic zone,

Open-source software in R, Multiple criteria decision analysis

1. Introduction

Operations Research (OR) deals with applying analytical tools, methods, and techniques to study complex

decision problems. A general aim of OR consists of providing managers with a sound basis for decision-

making, i.e., recommendations on the solution of problems concerning a given system’s operations. The

crucial steps of the OR process involve identifying a problem to be solved, constructing a mathematical

model that adequately reflects the real-world situation with its variables, objectives, and constraints, and

employing the model for deriving the solutions.

OR has been extensively used in industry, business, non-profit organizations, and government, sup-

porting the introduction of operational improvements. Under the umbrella of OR, a broad range of

problem-solving sub-areas has been developed, with Data Envelopment Analysis (DEA) and Multiple Cri-

teria Decision Analysis (MCDA) being among the most popular streams. As noted in [5], the primary

aims of DEA and MCDA are different, and the two fields were developed, to a large extent, independently

of each other. On the one hand, DEA is a non-parametric method for estimating a best-practice frontier
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and measuring the relative efficiency of Decision Making Units (DMUs) in converting inputs into outputs.

In this regard, DEA has been focussed on analyzing historical, objective data to control, monitor, and

assess the performance of DMUs within the ex-post evaluation framework. On the other hand, MCDA

offers a diversity of approaches that involve the Decision Makers (DMs) in carrying forward the solution

of ranking, choice, or sorting problems involving multiple, potentially conflicting criteria, reflecting dif-

ferent viewpoints on the quality of decision alternatives. Hence, it has been oriented toward the ex-ante

evaluation of alternatives, incorporating subjectivity in the form of DMs’ preferences.

Even though the background and philosophy underlying DEA and MCDA differ, one can also indicate

significant similarities between the two fields. In particular, they coincide when considering DMUs as

alternatives, inputs as cost criteria (costs), and outputs as gain criteria (benefits) [6]. Moreover, the

models used to measure the efficiency of DMUs in DEA and a distance to the Pareto frontier in MCDA

are equivalent or strongly related [2, 13, 27]. In this perspective, the concepts of efficiency and Pareto

optimality build on the same idea of attaining the most advantageous score for at least one feasible scenario

or set of parameters. These similarities have implied an ever-growing overlap between the two fields in

terms of problems faced and concepts incorporated for decision support and problem structuring. In recent

years, the two fields have learned from each other in what concerns efficiency or preference models, ways

of structuring decision problems, incorporated value judgments or preference information, aims of the

performed analysis, and applied solution methods. Thus, they are more often perceived as complementary

rather than competing methods.

When it comes to the employed models, the traditional way of quantifying efficiency in DEA involves

the ratio of virtual outputs and inputs, i.e., weighted sums of outputs and inputs, respectively. In MCDA,

various families of preference models are used to aggregate the alternatives’ performances on multiple

criteria in line with the DMs’ preferences. The major families of such models – offering intuitiveness and

high explanatory capabilities – include scoring functions, binary relations, and decision rules. Recently

various scoring functions, initially used in MCDA, have been incorporated into DEA methods. The two

examples of such models include a value function and the Choquet integral [21]. On the one hand,

[11] proposed to convert inputs and outputs into value functions aggregated using an additive value model

and select for each DMU the weights minimizing the value difference to the best DMU. On the other

hand, [22] employed the Choquet multiple criteria preference aggregation model to account for interactions

between different inputs or outputs.

As far as structuring the decision problem is concerned, many MCDA methods have incorporated

a hierarchical structure of criteria [3]. It proved to be efficient from both structural and computational

viewpoints, allowing decomposing the considered problems into manageable pieces and analyzing results at

different levels and nodes of the hierarchy. This idea has been recently incorporated into the DEA models

(see, e.g., [26]). Multiple layer models allow for a more detailed analysis, greater discriminating power,

and more realistic weight allocations.

When it comes to measuring the performance of DMUs, DEA models initially did not involve subjective

information about the importance of different inputs and outputs. On the contrary, incorporating value

judgments into the model and deriving recommendations consistent with the DM’s preference information

has always been at the core of MCDA. To constrain the flexibility of weights and prevent some units from

being judged as efficient based on unrealistically extreme weights (e.g., when only a single input or a single

output is assigned a non-zero weight), subjective weight restrictions have also been incorporated in DEA.
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These are usually imprecise, taking the form of, e.g., absolute bounds on a single weight value, admissible

intervals for the ratio between two weights, or linear weight constraints. They may be motivated by the

analysis of market prices, expert opinion, or preferences of the DM controlling the units. For a detailed

description of the role of preference information and various types of judgments applicable in the context

of DEA, see [2, 16]. In fact, some MCDA tools have been explicitly used for restricting weight values of

a DEA model [4].

Apart from investigating the efficiency status, DEA determines the benchmarks for the inefficient

DMUs. In this way, the latter are provided with recommendations on reducing the inputs or increasing

the outputs and, in general, whom to follow to become efficient. MCDA has been traditionally focused on

deriving the outcomes for a decision problem while being less concerned with improving the recommenda-

tion for a given alternative. In this regard, sensitivity analysis has been oriented toward investigating if

the outcomes would change if we applied some other parameter values of the preference model. However,

a number of approaches have been recently proposed to indicate the performance modifications allowing

the attainment of a particular decision target [15, 17, 23]. These methods either minimize the changes

required on different criteria or balance various steps within a stepwise benchmarking framework.

The primary aim of DEA is to divide the DMUs into two groups: efficient and inefficient ones. In

many decision problems, such binary classification is insufficient due to its weak discrimination power.

This is particularly evident for problems involving many DMUs and numerous inputs and outputs when

the units become too specialized. Moreover, the traditional DEA models evaluate each DMU in terms of

the weights, which are the most advantageous for it. Motivated by the MCDA advancements, two different

methodological streams have been developed in DEA. On the one hand, several ranking approaches have

been proposed to order the units from the best to the worst [1, 14]. Some of these methods are based

on a common set of weights, offering a joint criterion for the evaluation of DMUs. On the other hand,

robustness analysis methods have been used to investigate the variability of efficiency outcomes for all

feasible input and output weights [18, 25].

This paper contributes to the cross-fertilization of MCDA and DEA. Specifically, we propose a novel

framework for efficiency analysis that derives from the recent developments in MCDA and creatively

incorporates them into a DEA-based method. The following three features distinguish the introduced

framework.

First, we build on the Value-based Additive DEA [11]. The employed efficiency model converts inputs

and outputs into monotonic criteria [9]. All criteria are associated with marginal value functions, which

are, in turn, aggregated using an additive function into a comprehensive score. In MCDA, such a model

is popular due to a straightforward interpretation of numerical scores and the possibility of meaningful

aggregation of performances expressed on different scales. Despite these favorable features, its application

and development in the context of DEA are still in their infancy compared to, e.g., ratio-based models.

Second, we admit imprecision in the efficiency analysis [28]. On the one hand, we account for the

imprecise evaluations in terms of intervals of possible values or ordinal assessments. Such imprecision

and ill-determination are common in real-world decision problems [10]. Thus we tolerate uncertainty and

availability of qualitative information in addition to precise quantitative measurements. On the other hand,

we consider imprecision in the efficiency model. In particular, the marginal value functions need to fit in

the space delimited by pre-defined extreme shapes, whereas linear inequalities constrain the variability of

input/output weights. In this way, we can handle different curvatures for the individual factors and their
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various impacts on the comprehensive efficiency measure, e.g., with a convex curve indicating that the

same amount of variation is more valued for higher input or output levels, and a concave curve indicating

the opposite.

Third, we propose tools for analyzing the robustness of four types of efficiency results: distance to the

best DMU, scores, preference relations, and ranks [19]. These tools quantify the variability of outcomes that

can be attained for all feasible scenarios founded by the imprecision of input/output performances, marginal

value functions, and weights. For each perspective, we compute extreme, robust outcomes univocally

confirmed by all scenarios, and also stochastic indices, quantifying the probability of a given result in

the space of feasible scenarios. They are computed with mathematical programming and Monte Carlo

simulations, respectively. The proposed methods for robustness analysis are made available in the form of

open-source models implemented in R. Hence the user can adjust the outcomes that are of interest for a

given problem.

We illustrate the introduced framework and software in a real-world study concerning the efficiency of

Special Economic Zones (SEZs) in Poland. SEZ is a designated area where businesses can be run under

preferential conditions. We consider 14 zones that are described in terms of two inputs, including total

area and capital expenditures, and two outputs, including the number of jobs and financial results. The

area and the number of jobs are considered interval factors delimited by the extreme values observed in the

analyzed term. For each input and output, we account for an acceptable range of marginal value functions.

The discussed results demonstrate the practical usefulness of robustness analysis outcomes.

The paper’s remainder is organized in the following way. Section 2 reminds Value-based Additive

DEA and introduces types of imprecision handled by the proposed framework. In Section 3, we discuss

the robust outcomes computed with mathematical programming and Monte Carlo simulation. Section 4

discusses the open-source software implementation in R. In Section 5, we demonstrate the results and

benefits of using robustness analysis in the context of real-world data concerning Polish SEZs. The last

section concludes the paper and outlines avenues for future research.

2. Dealing with Imprecision in Value-based Additive Efficiency Analysis

Let us use the following notation:

• D – a finite set of K DMUs, D = {DMU1, . . . , DMUK},

• I and O – the set of M inputs and N outputs, respectively,

• xq,k – the performance of DMUk on input q ∈ I, and yq,k – the performance of DMUk on output

q ∈ O,

• Q = N + M – a number of all factors relevant for the analysis,

• wq – a weight associated with the q-th factor (input or output); the weights are normalized to sum

up to one, i.e.,
∑Q

q=1wq = 1,

• uq – a marginal value function associated with the q-th factor,

• Sw = {w = (w1, w2, . . . , wq)
T |w ≥ 0, Aww ≤ 0} – a space of feasible weight vectors, where Aw is the

coefficient matrix of user-defined linear weight constrains.
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In what follows, we first remind the Value-based Additive Data Envelopment Analysis (VDEA). Then,

we introduce types of handled imprecise data related to the specification of factors’ weights, units’ per-

formances, and marginal value functions. Finally, we discuss handling such imprecision in exact methods

based on mathematical programming and stochastic approaches incorporating the Monte Carlo simula-

tions.

2.1. Reminder on Value-based Additive Efficiency Analysis

DEA incorporates various models to quantify the efficiency of DMUs. The most common is the ratio-

based model, where the efficiency is expressed as the ratio between the weighted sum of outputs and the

weighted sum of inputs [7]. However, in recent years, other models have also found use in practical studies.

In particular, [11] proposed a value-based additive efficiency measure inspired by Multi-Attribute Value

Theory (MAVT) and the additive DEA model. It associates a monotonic marginal value function uq with

each factor q. The function takes values in the range [0, 1], being non-increasing for inputs q ∈ I (and

for any undesirable outputs) and non-decreasing for (desirable) outputs q ∈ O. Then, the comprehensive

value of DMUo is defined using an additive value function:

Eo =

Q∑

q=1

wquq(DMUo). (1)

To verify the efficiency of DMUo, one needs to minimize its distance to the unit with the greatest com-

prehensive value:

Minimize do

s.t. ∑Q
q=1wquq(DMUk)−∑Q

q=1wquq(DMUo) ≤ do, for k = 1, . . . ,K,

do ≥ 0,∑Q
q=1wq = 1,

wq ≥ 0, q = 1, . . . , Q,

w ∈ Sw.




W





(2)

In the spirit of DEA, this formulation allows DMUo to select the weights that place it as close as possible

to the frontier of efficiency defined by the set of DMUs, the value functions and the weight constraints. If

the optimal value d∗,o equals zero, DMUo is judged efficient, attaining the greatest comprehensive value

among the considered DMUs for at least one feasible weight vector. If d∗,o is greater than zero, DMUo is

inefficient.

2.2. Imprecise Performances and Preferences in Value-based Efficiency Analysis

In the standard VDEA, inputs and outputs are deterministic and the marginal value functions are precisely

specified. However, in real-world decision problems, the performances of the DMUs in some factors (inputs

or outputs) may be uncertain. We consider two types of uncertainty: the performances can be given in the

form of intervals [12] (which might reflect imprecision, hesitation, or variation), or the performances can

be given as a ranking (ordinal performances) where neither the differences nor ratios are known. Moreover,

the users may wish to account for ranges of admissible values for the cardinal factors instead of pre-defined

exact shapes of marginal values. To incorporate such imprecisions into the efficiency model, let us consider

the following notation:
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• II and IO – the sets of imprecise inputs and outputs; II ⊆ I and IO ⊆ O,

• OI and OO – the sets of ordinal inputs and outputs; OI ⊆ I and OO ⊆ O,

• [xq,k∗, x∗q,k] – the interval of possible input values for q ∈ II for DMUk,

• [yq,k∗, y∗q,k] – the interval of possible output values for q ∈ IO for DMUk,

• uq,∗(xq,k) – the lower marginal value assigned to input performance xq,k, and uq,∗(yq,k) – the lower

marginal value assigned to output performance yq,k,

• u∗q(xq,k) – the upper marginal value assigned to input performance xq,k, and u∗q(yq,k) – the upper

marginal value assigned to output performance yq,k,

• Uq,k – the product of weight wq and the performance of DMUk on factor q, i.e., wq · uq(xq,k) or

wq · uq(yq,k).

Example: Let us illustrate the proposed methods while referring to the efficiency analysis of twelve hospitals

described in terms of four inputs (i1–i4) and two outputs (o1–o2). For the sake of this illustration, the data

is modified after [8] by introducing imprecision into the problem definition. We consider three interval

inputs, one ordinal input, and two interval outputs. The inputs are i1 – the number of doctors (interval), i2

– doctors’ cost (ordinal), i3 – the number of nurses (interval), and i4 – nurses’ cost (interval). The outputs

are o1 – the number of inpatients (interval) and o2 – the number of outpatients (interval). The performances

are provided in Table 1. For all imprecise factors, we consider extreme marginal value functions delimiting

the range of admissible values (see Figure 1). In turn, for i2, only the order of performances matters.

Note that the first position means the lowest (best) input value in this case. Also, we restrict the weight

of each factor to the range [0.083, 0.250], hence preventing it from being dominant or negligible. Thus,

the constraint set W for this exaple ensures that wq ≥ 0.083 and wq ≤ 0.250 for each q = 1, 2, . . . , 6, and∑6
q=1wq = 1.

Table 1: Input and output performances for the illustrative example concerning twelve hospitals.

DMU i1 i2 i3 i4 o1 o2
H1 [24, 24] 8th [154, 161] [98, 100] [90, 95] [85, 88]
H2 [17, 19] 2nd [124, 131] [72, 76] [170, 182] [80, 85]
H3 [23, 25] 7th [142, 150] [85, 90] [172, 180] [60, 63]
H4 [45, 51] 9th [170, 178] [135, 148] [120, 140] [48, 50]
H5 [15, 17] 1st [147, 155] [58, 62] [96, 102] [69, 73]
H6 [60, 65] 7th [252, 255] [85, 95] [218, 255] [85, 90]
H7 [35, 42] 8th [232, 235] [98, 100] [190, 200] [83, 88]
H8 [31, 31] 7th [205, 206] [85, 85] [130, 140] [72, 75]
H9 [28, 30] 3rd [231, 244] [72, 76] [195, 215] [105, 110]
H10 [47, 50] 5th [258, 268] [72, 75] [240, 250] [97, 100]
H11 [50, 53] 6th [301, 306] [78, 80] [280, 292] [142, 147]
H12 [35, 38] 4th [213, 250] [60, 65] [250, 255] [113, 120]

2.3. Dealing with Imprecision in Mathematical Programming

In this section, we discuss how imprecise performances and preferences are treated in mathematical pro-

gramming models.
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Figure 1: The extreme marginal values functions for the interval inputs and outputs for illustrative example.

Interval factors. The interval performances are replaced with the precise ones depending on the considered

type of result. When identifying the best possible result for DMUo, we use the most favorable (optimistic)

scenario for this unit and the least favorable scenarios for the remaining ones (SCE = OPT ), i.e.:

xOPT,o
q,k =




xq,k∗, if k = o,

x∗q,k, otherwise,
(3)

yOPT,o
q,k =




y∗q,k, if k = o,

yq,k∗, otherwise.
(4)

For example the most favorable scenario for H1 involves the minimal input performances: x1,1 = 24,

x3,1 = 154, and x4,1 = 98 and the maximal output performances: y1,1 = 95 and y2,1 = 88. For all other

units, we take the maximal inputs (e.g., x1,2 = 19, x3,7 = 235) and minimal outputs (e.g., y1,2 = 170 and

y2,5 = 69). Let πOPT
q,o denote the permutation of units that reorders them according to a non-decreasing

order of their performances (xOPT,o
q,k or yOPT,o

q,k , k = 1, . . . ,K) on factor q in the optimistic scenario for

unit DMUo. Hence πOPT
q,o (k) is the index of the unit with the k-th least performance on factor q when

considering the performances in the optimistic scenario for DMUo. This will be needed to ensure that the

accepted performance variation within the intervals does not contradict this ranking.

When looking for the worst possible outcomes for DMUo, we replace the intervals with the least

favorable (pessimistic) scenario for this unit and the most favorable scenarios for the remaining ones

(SCE = PES), i.e.:

xPES,o
q,k =




x∗q,k, if k = o,

xq,k∗, otherwise,
(5)

yPES,o
q,k =




yq,k∗, if k = o,

y∗q,k, otherwise.
(6)

In the context of H1 from the considered example, we would use the maximal input performances (x1,1 = 24,
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x3,1 = 161, x4,1 = 100) and the minimal output performances (y1,1 = 90 and y2,1 = 85). For all other units,

we take the minimal inputs (e.g., x1,2 = 17 and x3,7 = 232) and the maximal outputs (e.g., y1,2 = 182 and

y2,5 = 73). Let πPES
q,o denote the permutation of units that reorders them according to a non-decreasing

order of their performances (xPES,o
q,k or yPES,o

q,k , k = 1, . . . ,K) on factor q in the pessimistic scenario for

unit DMUo. Hence πPES
q,o (k) is the index of the unit with the k-th least performance on factor q when

considering the performance in the pessimistic scenario for DMUo.

Ordinal factors. For ordinal inputs or outputs, we reproduce the order of performances. For this purpose,

we replace the product wq · uq(DMUk) with a single variable Uq,k. Let πq denote the permutation of

units that reorders them according to a non-decreasing order of their performances on factor q, i.e.,

xq,πq(1), . . . , xq,πq(k), xq,πq(k+1), . . . , xq,πq(K). Then, if xq,πq(k) and xq,πq(k+1) are the same, we set Uq,πq(k) =

Uq,πq(k+1). On the contrary, if xq,πq(k+1) > xq,πq(k), then in the case q ∈ IO, we set Uq,πq(k) ≥ αUq,πq(k+1),

and when q ∈ OO, we set αUq,πq(k) ≤ Uq,πq(k+1), for some α > 1. In addition, we ensure that the values

assigned to the worst performances are positive by comparing them with an arbitrarily small positive

constant ϵ, whereas the values associated with the best performances are not greater than the respective

weight wq. The set of constraints for modeling the ordinal factors is as follows:

for q ∈ OI :

Uq,πq(K) ≥ ϵ, Uq,πq(1) ≤ wq,

Uq,πq(k) ≥ αUq,πq(k+1), for k = 1, . . . ,K − 1, such that xq,πq(k+1) > xq,πq(k),

Uq,πq(k) = Uq,πq(k+1), for k = 1, . . . ,K − 1, such that xq,πq(k+1) = xq,πq(k)




ORDOI(q, πq)

for q ∈ OO :

Uq,πq(1) ≥ ϵ, Uq,πq(K) ≤ wq,

αUq,πq(k) ≤ Uq,πq(k+1), for k = 1, . . . ,K − 1, such that yq,πq(k+1) > yq,πq(k),

Uq,πq(k) = Uq,πq(k+1), for k = 1, . . . ,K − 1, such that yq,πq(k+1) = yq,πq(k).




ORDOO(q, πq)





ORD(OI,OO) (7)

Note that to enforce monotonicity, it would also be possible to incorporate an additive form of the constraint

(e.g., Uq,πq(i) + ϵ ≤ Uq,πq(i+1) when q ∈ OO). Here, we opt for the multiplicative representation as typically

considered in DEA [28]. In the considered example, for input i2, the least performance is attained by H5,

followed by H2 and H9, and the greatest input is consumed by H4. This implies the following constraints

w2 ≥ U2,5, U2,5 ≥ αU2,2, U2,2 ≥ αU2,9, . . ., . . ., U2,1 ≥ αU2,4, U2,4 ≥ ϵ.

Value functions ranges. Having replaced the interval input (output) performances with the precise ones,

we need to ensure that the marginal values uq(xq,k) (uq(yq,k)) are between the extreme admissible regions,

i.e., Uq,k ≥ wquq,∗(xq,k) and Uq,k ≤ wqu
∗
q(xq,k) (Uq,k ≥ wquq,∗(yq,k) and Uq,k ≤ wqu

∗
q(yq,k)), Moreover, we

impose the monotonicity constraints for the marginal values assigned to the performances observed for all

DMUs, similarly as for the ordinal factors. Overall, the constraint set depends on whether we consider the
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optimistic (πSCE
q,o (k) = πOPT

q,o (k)) or pessimistic (πSCE
q,o (k) = πPES

q,o (k)) scenario for DMUo:

for q ∈ II :

Uq,πSCE
q,o (k) ≥ wquq,∗(xq,πSCE

q,o (k)), k = 1, . . .K,

Uq,πSCE
q,o (k) ≤ wqu

∗
q(xq,πSCE

q,o (k)), k = 1, . . .K,

ORDOI(q, πSCE
q,o (k)),




IMP II(q, πSCE

q,o )

for q ∈ IO :

Uq,πSCE
q,o (k) ≥ wquq,∗(yq,πSCE

q,o (k)), k = 1, . . .K,

Uq,πSCE
q,o (k) ≤ wqu

∗
q(yq,πSCE

q,o (k)), k = 1, . . .K,

ORDOO(q, πSCE
q,o (k)).




IMP IO(q, πSCE

q,o )





IMPSCE(II, IO) (8)

For example, when considering interval input i1 and hospital H1 (x1,1 = 24), the respective marginal

value must be between the lower and upper admissible values, u1,∗(24) ≤ u1(24) ≤ u∗1(24). Given the

extreme shapes of marginal value functions, the respective constraint takes the following form: 0.533 ≤
u1(24) ≤ 0.627. When considering the substitute variable U1,1 corresponding to the minimal performance

(24) on the first factor (i1), it translates into: 0.533 · w1 ≤ U1,1 ≤ 0.627 · w1.

When it comes to output o1 and considering DMUo = H1, in the optimistic scenario for H1, the

performances are: 95, 170, 172, 120, 96, 218, 190, 130, 195, 240, 280, and 250. The corresponding

permutation πOPT
q,H1

of units in the non-decreasing order of performances is H1, H5, H4, H8, H2, H3, H7,

H9, H6, H10, H12, and H11. The monotonicity constraints, in this case, take the following form: U5,1 ≥ ϵ,

αU5,1 ≤ U5,5, αU5,5 ≤ U5,4, . . . , αU5,12 ≤ U5,11, and U5,11 ≤ w5.

2.4. Dealing with Imprecision in Stochastic Methods

Another way to conduct the robustness analysis consists of sampling the space of feasible weights, per-

formances, and marginal value functions using Monte Carlo simulation. To conduct the sampling, we

implement a three-stage procedure based on the Hit-And-Run algorithm. In the first step, we generate the

pre-defined number (T ) of weight vectors w(t) from space W. Hence they are non-negative, normalized to

sum to one, and satisfy the constraints specified by users. In the second step, we draw the performance

for the interval inputs and outputs from ranges [xq,o∗, x∗q,o] and [yq,o∗, y∗q,o]. For example, in the illustrative

study, the performance x
(t)
3,2 of hospital H2 for input i3 satisfies the following conditions: x

(t)
3,2 ≥ 124 and

x
(t)
3,2 ≤ 131. In the third step, we sample the marginal values for all factors and units. For the ordinal

factors, the marginal values need to be in the interval [0, 1] and adhere to the monotonicity constraints.

For example, in the illustrative study, the marginal values for i2 need to be consistent with the following

conditions: u
(t)
2,4 ≥ ϵ, αu

(t)
2,4 ≤ u

(i)
2,1, . . . , u

(t)
2,3 = u

(t)
2,6, . . . , u

(t)
2,5 ≤ 1. For the interval factors with pre-defined

admissible ranges of marginal functions, we take the precise performances from the previous point as the

starting point and then draw the respective marginal values from the allowed intervals. For example, when

considering the input performance x
(t)
q,o, the marginal value u

(t)
q,o needs to satisfy the following conditions:

uq,∗(x
(t)
q,o) ≤ u

(t)
q,o ≤ u∗q(x

(t)
q,o). Moreover, we ensure that the generated marginal values are monotonic. For

example, if the performance x
(t)
3,2 drawn for H2 for input i3 was 130, then the marginal value needs to be

between 0.94 (u3,∗(130)) and 0.97 (u∗3(130)). Each derived sample t can be used to compute the compre-

hensive value for each DMUo, which can be interpreted as an absolute efficiency score in relation to a
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perfect DMU having a value of 1 on all value functions:

E(t)
o =

Q∑

q=1

w(t)
q u(t)q,o. (9)

Given T uniformly distributed samples, we can summarize the distribution of various efficiency results.

They fill the gap between the extreme outcomes or the necessary and the possible results.

3. Robustness Analysis for Imprecise Value-based Additive Efficiency Analysis

The proposed framework for robustness analysis comprises two types of methods, exact and stochastic. The

exact methods focus on the extreme results, whereas the stochastic approaches quantify the probability

of results attainable in the space of feasible weights, performances, and value functions. We consider four

viewpoints related to the distances from the best DMU, absolute scores, ranks, and preference relations.

The proposed methods are illustrated with a numerical example considering twelve hospitals.

3.1. Distance to the Best Decision Making Unit

In this section, we focus on the distance do of each DMUo to the best unit. Note that such a distance corre-

sponds to a DEA relative efficiency, i.e., relative to the empirically observed efficient frontier, which could

change if the set of DMUs is modified. To find the best (minimal) distance, the following mathematical

programming model must be solved:

Minimize do

s.t. ∑Q
q=1 Uq,k −

∑Q
q=1 Uq,o ≤ do, for k = 1, . . . ,K,

do ≥ 0,

W, ORD(OI,OO), IMPOPT (II, IO).





(10)

This model minimizes distance do, indicating the maximal difference between comprehensive values of

any DMUk, k = 1, . . . ,K and DMUo subject to the constraints defining the set of feasible weights (W)

and maintaining the specificity of the ordinal (ORD(OI,OO)) and imprecise factors while assuming the

optimistic scenario for DMUo (IMPOPT (II, IO)).

The previous efficiency score is generous for each DMU, as it allows the DMU to be evaluated under the

most favorable weights, performance values, and value functions (subject to the defined constraints). On

the opposite, one can search for the most disadvantageous relative assessment for the DMU, with the least

favorable performances and value functions, and with the weighting vector that penalizes it the most. This

amounts to finding the maximal distance of DMUo to the best DMU, solving the following Mixed-Integer

Linear Programming (MILP) model:

Maximize do

s.t. ∑Q
q=1 Uq,k −

∑Q
q=1 Uq,o ≥ do − C(1− bk), for k = 1, . . . ,K,∑K

k=1 bk ≥ 1,

bk ∈ {0, 1} for k = 1, . . . ,K,

do ≥ 0,

W, ORD(OI,OO), IMPPES(II, IO),





(11)
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where C is a large positive constant (C >> 1). In this case, we maximize the distance do with the

restriction that for at least one unit DMUk, it is equal to the difference between Ek and Eo. To satisfy

this condition, the binary variables bk ∈ {0, 1}, k = 1, . . . ,K, are introduced. If bk is equal to 0, then

C(1 − bk) is equal to C, and the constraint is always satisfied. In turn, when bk is equal to 1, C(1 − bk)

is equal to 0 and the constraint guarantees that do is equal to Ek − Eo. The remaining constraints define

the set of feasible weights (W) and maintain the specificity of the ordinal (ORD(OI,OO)) and imprecise

factors while assuming the pessimistic scenario for DMUo (IMPPES(II, IO)).

Example. For the considered illustrative study, the extreme distances of twelve hospitals to the best one

are presented in Table 2. There are five hospitals (H2, H5, H9, H11, and H12) with the minimal distance

(do∗) equal to 0. They are deemed efficient. According to the minimal distance, the worst hospital is H4

(d4∗ = 0.129). When it comes to the worst (maximal) possible distance to the best hospital, H5 attains

the most favorable score (d∗2 = 0.306), being followed by H2 (d∗2 = 0.343). Hospitals H3 (0.608) and H4

(0.702) are at the ranking’s bottom in this regard.

Table 2: Extreme distances to the best hospital for the twelve hospitals in the illustrative study.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

do,∗ 0.016 0.000 0.012 0.129 0.000 0.015 0.035 0.041 0.000 0.012 0.000 0.000
d∗o 0.582 0.343 0.608 0.702 0.306 0.558 0.590 0.600 0.422 0.459 0.422 0.403

When conducting the stochastic analysis, two distance-related outcomes are of particular interest:

• Distance Acceptability Interval Index (DAII(DMUo, bi)) is the share of feasible scenarios for which

the distance of DMUo to the best unit is in the interval bi ⊆ [0, 1];

• Expected distance (Edo) is the expected value of the distance to the best unit attained by DMUo:

Edo =
∑T

t=1 d
(t)
o /T , where d

(t)
o is the distance to the best DMU attained by DMUo with sample t.

Example. Table 3 provides the distribution of efficiency distances to the best unit and the respective

expected values for the twelve hospitals. For clarity of presentation, we used five buckets with equal widths.

For four hospitals (H2, H5, H9, and H12), the distance to the best unit for each sample is not greater

than 0.2 (DAII(DMUo, [0.0, 0.2]) = 1). This means that for the vast majority of feasible scenarios, their

margin to the most efficient hospital is minor. When comparing these results with the extreme distances,

for each of these hospitals, a distance greater than 0.2 is possible for some scenarios (e.g., d∗H2
= 0.343).

However, the distribution analysis shows that such cases are sporadic. Moreover, DAIIs indicate that

H4 is the only hospital for which the distance to the best unit is likely to be worse than 0.4. This holds

for more than half of the samples (58%). All other hospitals attain distances between 0.0 and 0.4 for all

samples. The expected distances (Ed) can be used to order the hospitals from the best to the worst. In

particular, H5 is ranked at the top with Ed5 = 0.021. It is followed by H12, H2, and H11, whereas H4 is

ranked at the bottom (Ed4 = 0.404).

3.2. Scores

This section considers the comprehensive value scores Eo for DMUo. They might be viewed as absolute

efficiencies, independent of the other DMUs. To find the maximal and minimal scores for DMUo, one
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Table 3: Distribution and expected values of the distance to the best unit for the twelve hospitals in the illustrative study.

DMU [0.0 − 0.2] (0.2 − 0.4] (0.4 − 0.6] (0.6 − 0.8] (0.8 − 1] Edo
H1 0.28 0.72 0.00 0.00 0.00 0.229
H2 1.00 0.00 0.00 0.00 0.00 0.045
H3 0.50 0.50 0.00 0.00 0.00 0.206
H4 0.00 0.42 0.58 0.00 0.00 0.404
H5 1.00 0.00 0.00 0.00 0.00 0.021
H6 0.43 0.57 0.00 0.00 0.00 0.214
H7 0.03 0.97 0.00 0.00 0.00 0.264
H8 0.29 0.71 0.00 0.00 0.00 0.223
H9 1.00 0.00 0.00 0.00 0.00 0.081
H10 0.95 0.05 0.00 0.00 0.00 0.128
H11 0.99 0.01 0.00 0.00 0.00 0.046
H12 1.00 0.00 0.00 0.00 0.00 0.035

needs to solve the following models:

Maximize

Q∑

q=1

Uq,o, s.t. W ∪ ORD(OI,OO) ∪ IMPOPT (II, IO); (12)

Minimize

Q∑

q=1

Uq,o, s.t. W ∪ ORD(OI,OO) ∪ IMPPES(II, IO). (13)

Example. The extreme scores attained by the twelve hospitals in the illustrative study are shown in Table 4.

The best maximal score (E∗
o) is attained by H12 (0.828), followed by H11 (0.815) and H5 (0.808). On the

contrary, the worst maximal score is observed for H4 (0.572). The minimal score is the highest for H11

(0.360) and H12 (0.318). In turn, H4 attains the worst minimal score (0.087).

Table 4: Extreme scores for the twelve hospitals in the illustrative study.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

Eo,∗ 0.203 0.250 0.178 0.087 0.230 0.186 0.173 0.183 0.259 0.250 0.360 0.318
E∗

o 0.707 0.792 0.735 0.572 0.808 0.735 0.701 0.716 0.784 0.771 0.815 0.828

When summarizing the outcomes of the stochastic analysis, we consider the following results:

• (Absolute) Efficiency Acceptability Interval Index (EAII(DMUo, bi)) is the share of feasible scenarios

for which the score of DMUo is in the interval bi ⊆ [0, 1];

• Expected (absolute) efficiency (EEo) is the expected value of score for DMUo, EEo =
∑T

t=1E
(t)
o /T .

Example. The distribution of scores given five buckets with equal widths is provided in Table 5. Hospital

H4 is the only one for which the score falls below 0.2 (EAII(H4, [0.0, 0.2]) = 0.41). For all other hospitals,

the scores for all samples are in the three intermediate intervals (between 0.2 and 0.8). We can discriminate

the hospitals according to their score distribution. For example, the score of H5 is better than 0.6 for most

samples (52%), and it falls for no sample below 0.4. Hospital H7 attains a score in the quite poor range

(0.2, 0.4] for 81% scenarios. The expected scores (EEs) yield the same ranking of hospitals as the expected

distances to the best unit (Eds). In particular, H5 is ranked at the top with EE5 = 0.606, and H4 is

ranked at the bottom (EE4 = 0.223). The two expectation-based rankings are indeed equivalent: on any

12



simulated instance t, if some DMUi has a score above DMUj by a difference of E
(t)
i − E

(t)
j = δ, then

the distance between DMUi and the best DMU under instance t will be less by a difference of δ than the

distance between DMUj and the same best DMU.

Table 5: Distribution of efficiency scores and expected efficiencies for the twelve hospitals in the illustrative study.

DMU [0.0 − 0.2] (0.2 − 0.4] (0.4 − 0.6] (0.6 − 0.8] (0.8 − 1] EEo

H1 0.00 0.53 0.47 0.00 0.00 0.397
H2 0.00 0.00 0.65 0.35 0.00 0.582
H3 0.00 0.33 0.66 0.01 0.00 0.421
H4 0.41 0.59 0.00 0.00 0.00 0.223
H5 0.00 0.00 0.48 0.52 0.00 0.606
H6 0.00 0.43 0.57 0.00 0.00 0.412
H7 0.00 0.81 0.19 0.00 0.00 0.363
H8 0.00 0.50 0.50 0.00 0.00 0.404
H9 0.00 0.00 0.90 0.10 0.00 0.545
H10 0.00 0.01 0.98 0.01 0.00 0.499
H11 0.00 0.00 0.65 0.35 0.00 0.581
H12 0.00 0.00 0.60 0.40 0.00 0.591

3.3. Efficiency Ranks

The efficiency ranks derive from the ordinal comparison between DMUs, hence being more stable than the

cardinal measures of efficiency when the DMU data are modified. To identify the best (minimal) rank for

DMUo, we minimize the number of other DMUs with score greater than the score of DMUo in its most

optimistic scenario:

Minimize 1 +
∑

k=1,...,K; k ̸=o

bk

s.t. ∑Q
q=1 Uq,k −

∑Q
q=1 Uq,o ≤ Cbk, for k = 1, . . . ,K, k ̸= o,

bk ∈ {0, 1}, for k = 1, 2, . . . ,K, k ̸= o,

W, ORD(OI,OO), IMPOPT (II, IO).





(14)

Each binary variable bk attains a value of zero if Ek ≤ Eo. Otherwise, the value of bk is equal to 1, meaning

that DMUk is ranked better than DMUo. Hence the sum of bk, k = 1, ...,K, k ̸= o, increased by one

corresponds to the rank of DMUo.

To find the worst (maximal) rank of DMUo, we maximize the number of other DMUs with scores not

worse than the score of DMUo:

Maximize 1 +
∑

k=1,...,K; k ̸=o

bk

s.t. ∑Q
q=1 Uq,o −

∑Q
q=1 Uq,k ≤ C(1− bk), for k = 1, . . . ,K, k ̸= o,

bk ∈ {0, 1}, for k = 1, 2, . . . ,K, k ̸= o,

W, ORD(OI,OO), IMPPES(II, IO).





(15)

Example. Table 6 provides the extreme ranks for the twelve hospitals. The five previously deemed efficient

hospitals attain the best possible rank of 1. Among the remaining units, H10 is the best with Ro∗ = 2 and

H4 is the worst with Ro∗ = 11. Regarding the worst possible rank (R∗
o), all hospitals are ranked outside the
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top seven for at least one scenario. The best among them is H2 with R∗
o = 8, and three other hospitals are

not ranked outside the top ten (R∗
12 = 9, R∗

5 = R∗
11 = 10). Most DMUs attain at most 11-th rank. There

are only two hospitals (H4 and H6) which, in their pessimistic scenario, are ranked at the very bottom.

Table 6: Extreme efficiency ranks for the twelve hospitals in the illustrative study.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

Ro∗ 3 1 3 11 1 3 3 3 1 2 1 1
R∗

o 11 8 11 12 10 12 11 11 11 11 10 9

The most interesting rank-related stochastic outcomes are defined in the following way:

• Efficiency Rank Acceptability Index (ERAI(DMUo, r)) is the share of feasible scenarios for which

DMUo attains r-th position in the ranking of DMUs;

• Expected rank (ERo) is the estimated expected rank for DMUo computed as follows: ERo =
∑K

k=1 k ·
ERAI(DMUo, k).

Example. Table 7 presents the ERAIs for the twelve hospitals, providing information on the distribu-

tion of efficiency ranks for all feasible scenarios. For example, the possible ranks obtained for H1 with

mathematical programming are in the range [3, 11], while the stochastic analysis indicates the positive

probabilities only for ranks between 7 and 11. This means that H1 can attain ranks between 3 and 6,

but it is improbable. The most common rank for this hospital is 10-th (ERAI(H1, 10) = 0.4). Among

the five efficient hospitals, H5 is ranked at the top for most samples (59%), and H9 is not ranked first for

any sample. ERAIs indicate the subsets of hospitals for which the efficiency ranks are rather stable and

those for which the attained positions strongly depend on the selected weight vector, precise performances,

and marginal value functions. For example, H4 is ranked last for all samples, which confirms its poor

performance. Similarly, H10 attains ranks between 5 and 6, while being placed sixth for 88% samples.

On the contrary, the ranks of H11 are distributed between 1 and 6, with no ERAI greater than 26%,

suggesting that the position of this DMU strongly depends on the considered instance. The analysis of

expected ranks lets us determine a complete ranking of hospitals, with H5 (1.79), H12 (2.49), and H11

(2.97) at the podium, and H4 (12.00) and H7 (10.91) at the bottom.

Table 7: Efficiency rank acceptability indices and expected ranks for the twelve hospitals in the illustrative study.

Rank
DMU 1 2 3 4 5 6 7 8 9 10 11 12 ERo

H1 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.25 0.24 0.40 0.02 0.00 9.01
H2 0.01 0.36 0.18 0.42 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 3.11
H3 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.41 0.12 0.01 0.00 0.00 7.68
H4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 12.00
H5 0.59 0.12 0.22 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.79
H6 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.12 0.14 0.29 0.04 0.00 8.43
H7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.92 0.00 10.91
H8 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.22 0.49 0.23 0.02 0.00 8.97
H9 0.00 0.00 0.08 0.15 0.70 0.07 0.00 0.00 0.00 0.00 0.00 0.00 4.76
H10 0.00 0.00 0.00 0.00 0.12 0.88 0.00 0.00 0.00 0.00 0.00 0.00 5.88
H11 0.26 0.15 0.17 0.24 0.14 0.04 0.00 0.00 0.00 0.00 0.00 0.00 2.97
H12 0.14 0.37 0.35 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.49
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3.4. Preference Relations

When comparing the DMUs pairwise, it is possible to verify two types of preference relations. The possible

one ≿P
E holds for a pair (DMUo, DMUk) if Eo ≥ Ek for at least one feasible scenario. To verify its truth,

we maximize the difference between the efficiencies Eo and Ek under the optimistic scenario for DMUo:

Maximize do,k

s.t. ∑Q
q=1 Uq,o −

∑Q
q=1 Uq,k ≥ do,k,

W, ORD(OI,OO), IMPOPT (II, IO).

}
(16)

If such a difference is greater than or equal to zero, DMUo ≿P
E DMUk. One can note that if this difference

is negative for some DMUk, i.e., if DMUo ≿P
E DMUk does not hold, then DMUo cannot be efficient and

the optimal value of problem (10) will be greater than zero.

In turn, the necessary relation ≿N
E holds for a pair (DMUo, DMUk) if DMUo attains efficiency at

least as good as Ek for all feasible scenarios. To verify its truth, we minimize the difference between the

efficiencies Eo and Ek under the pessimistic scenario for DMUo:

Minimize do,k

s.t. ∑Q
q=1 Uq,o −

∑Q
q=1 Uq,k ≤ do,k,

W, ORD(OI,OO), IMPPES(II, IO).

}
(17)

If such a minimal difference is not lesser than zero, DMUo ≿N
E DMUk.

Example. The necessary and possible preference relations for all pairs of hospitals are presented in Table 8.

To visualize the necessary preference relation, we depict the respective Hasse diagram in Figure 2. Re-

garding the most robust preferences, H2 and H12 are necessarily preferred to the highest number of other

hospitals (4 and 3, respectively), while H4 and H6 are not necessarily preferred to any other hospital.

Hospital H4 is worse than 10 other units independently of the chosen weights, performances, and value

functions.

Table 8: The necessary (N) and possible (P) preference relation for all pairs of hospitals in the illustrative study.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

H1 N P N P P P P P P P P
H2 N N N N P P P N P P P P
H3 P N N P P P P P P P P
H4 N P
H5 P P P N N P P N P P P P
H6 P P P P P N P P P P
H7 P P P N P P N P P P P P
H8 P P N P P N P P P P
H9 P P P N P P P P N P P P
H10 P P P N P P P P P N P
H11 P P P N P N P P P P N P
H12 P P P N P N P P P N P N

The major pair-oriented outcome derived from the stochastic analysis is the Pairwise Efficiency Out-

ranking Index (PEOI(DMUo, DMUk)). It is defined as the share of feasible scenarios for which the
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Figure 2: The Hasse diagram of the necessary efficiency preference relations for the illustrative study.

efficiency of DMUo is not worse than the efficiency of DMUk.

Example. The analysis of PEOIs (see Table 9) is particularly helpful for pairs not related by the necessary

preference. Among them are pairs for which preference in one direction occurs more often than in the

other direction. In particular, PEOI(H10, H3) = 0.99 confirms that H10 attains better efficiency than H3

for the vast majority of scenarios. Similar observation holds for pairs (H8, H7) and (H9, H10). For other

pairs of hospitals, PEOIs are more balanced, making it challenging to indicate a better performer (see,

e.g., (H12, H5) with PEOI(H12, H5) = 0.41 and (H11, H2) with PEOI(H11, H2) = 0.43). Obviously, for

pairs with one hospital being necessarily preferred to the other, PEOIs are equal to one.

Table 9: Pairwise efficiency outranking indices for all pairs of hospitals in the illustrative study.

DMU H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

H1 1.00 0.00 0.18 1.00 0.00 0.37 0.99 0.51 0.00 0.00 0.00 0.00
H2 1.00 1.00 1.00 1.00 0.03 1.00 1.00 1.00 0.92 0.98 0.57 0.40
H3 0.82 0.00 1.00 1.00 0.00 0.70 0.98 0.90 0.00 0.01 0.00 0.00
H4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
H5 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.67 0.59
H6 0.63 0.00 0.30 1.00 0.00 1.00 0.94 0.58 0.00 0.00 0.00 0.00
H7 0.01 0.00 0.02 1.00 0.00 0.06 1.00 0.02 0.00 0.00 0.00 0.00
H8 0.49 0.00 0.10 1.00 0.00 0.42 0.98 1.00 0.00 0.00 0.00 0.00
H9 1.00 0.08 1.00 1.00 0.02 1.00 1.00 1.00 1.00 0.95 0.25 0.04
H10 1.00 0.02 0.99 1.00 0.00 1.00 1.00 1.00 0.05 1.00 0.03 0.00
H11 1.00 0.43 1.00 1.00 0.33 1.00 1.00 1.00 0.75 0.97 1.00 0.31
H12 1.00 0.60 1.00 1.00 0.41 1.00 1.00 1.00 0.96 1.00 0.69 1.00

4. Software Implementation

The methods for robustness analysis in value-based additive efficiency analysis have been implemented

in R. They have been originally designed for use on the diviz platform [20]. However, they can also

be employed as independent programming modules. The source code of these approaches is available

at https://github.com/alabijak/diviz_DEA/tree/master/ImpreciseDEAValueADD. It is divided into

the following components:

16



• ImpreciseDEA-ValueAdditive efficiencies produces extreme efficiency scores and distances to the best

unit for all DMUs;

• ImpreciseDEA-ValueAdditive extremeRanks provides the extreme ranks for each DMU;

• ImpreciseDEA-ValueAdditive preferenceRelations identifies all pairs of DMUs for which the necessary

or possible efficiency preference relation holds;

• ImpreciseDEA-ValueAdditive-SMAA efficiencies implements the Monte Carlo simulation to deter-

mine the efficiency distribution, the expected efficiency scores (EEo), and the extreme efficiencies

attained in the analyzed sample;

• ImpreciseDEA-ValueAdditive-SMAA ranks computed the efficiency rank acceptability indices and

the expected rank for each unit;

• ImpreciseDEA-ValueAdditive-SMAA preferenceRelations calculates the pairwise efficiency outrank-

ing indices for all pairs of DMUs.

The modules mentioned above accept the following input files describing the analyzed problem:

• units: the list of DMUs;

• inputs/outputs: the description of inputs and outputs, containing additional information about the

scales of all factors (quantitative or ordinal) and, optionally, the specification of per-factor marginal

value functions; if a pair of functions are provided, they are considered to be the lower and upper

bounds for the admissible function range, if only one value function is given, it is treated as a precise

value function for a given factor; if no function is provided, we assume it to be linear;

• performance: the lower bounds of the performance intervals assigned to all DMUs and all factors

(they are interpreted as precise performances if the max performance file is not provided);

• max performance (optional): the upper bounds of the performance intervals assigned to all units and

all factors;

• weight constraints (optional): the absolute or relative linear constraints defining the space of feasible

weights.

The modules also process some additional parameters:

• tolerance (by default: 0) allows to construct the interval performances from the precise ones using the

following transformation: [(1− tolerance) ·xq,k; (1 + tolerance) ·xq,k] for inputs and [(1− tolerance) ·
yq,k; (1 + tolerance) · yq,k] for outputs;

• transform to utilities (by default: “Yes”) is the Boolean parameter indicating if the provided perfor-

mances should be transformed using the marginal value functions; if this parameter is set to “No”,

then the input performances should already be given in the form of marginal values;

• function shapes provided (by default: “No”) provides information if the shapes of marginal value

functions are provided in the inputs/outputs file; if not, then linear marginal value functions are used

in calculations;
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• boundaries provided (default: “No”) is the parameter used only if the shapes of marginal value

functions are not provided; it refers to the specification of the extreme performances; if the parameter

is set to “Yes”, then the boundaries are the lower and upper limits of the linear value functions; if it is

set to “No”, the boundaries are automatically derived from the minimal and maximal performances

of DMUs observed for a given factor;

• number of samples (only for simulation-based modules; by default: 100) specifies the number of

samples used in the Monte Carlo simulation;

• number of intervals (only for ImpreciseDEA-ValueAdditive-SMAA efficiencies; by default: 10) is

the number of intervals (buckets) used in the calculation of distance- and score-based acceptability

indices.

5. Case Study

In this section, we present the results of applying the proposed framework to the real-world case study

concerning the evaluation of Special Economic Zones (SEZ) in Poland. SEZ is a dedicated area of the

country’s territory where the business can be run under preferential conditions. The main reasons for

creating such zones are accelerating regions’ development, managing post-industrial property and infras-

tructure, creating new jobs, and attracting foreign investors. In Polish SEZs, the assistance is allocated in

the form of income tax and real property tax exemptions. Specifically, the company does not pay income

taxes for the earnings between the permit’s date and the exhaustion of regional aid or the end of an SEZ’s

operation. Regional aid may also be allocated in the form of a real property tax exemption introduced by

a municipal board, which needs to adopt a relevant resolution. The special economic zones in Poland were

established in 1994, and over a few decades of their existence, they have grown to 20,000 hectares of area

with investments at the level of over 100 billion PLN a year and creating over 200 000 new jobs.

We analyze the performance of fourteen Special Economic Zones listed in Table 10. The relevant data is

computed based on the indicators reported by the Polish Ministry of Entrepreneurship and Technology [24].

In particular, we consider two inputs:

• i1, area (interval): a total area of the SEZ in years 2016–2017 (ha),

• i2, expenditures: the capital expenditures made by investors in a given SEZ at the end of 2017

(millions of PLN),

and two outputs:

• o1, jobs (interval): the number of jobs in years 2016–2017,

• o2, financial result : the financial result of the management companies in 2017 (thousands of PLN).

In the data, the intervals for i1 and o1 reflect variations throughout 2016 and 2017. For each factor, we

elicited extreme marginal value functions from the expert on the functioning of SEZs in Poland (see Figure

3). Moreover, to prevent any factor’s negligible and dominating role, we have restricted the weights of all

input and output value functions to the range [1/6, 1/3]. In what follows, we discuss the results of the

robustness analysis.
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Table 10: The performances of fourteen Special Economic Zones on two inputs and two outputs.

SEZ Short name Area (i1) Expenditures (i2) Jobs (o1) Financial result (o2)

Kamienna Góra KAM [373.83, 540.83] 2557.3 [7347, 7530] 555.1
Katowice KAT [2614.40, 2614.40] 16605.1 [59964, 64481] 17663.5

Kostrzyn-S lubice KOS [1936.90, 2201.25] 7133.4 [31927, 32400] 22984.9
Kraków KRA [866.80, 949.66] 4240.4 [25862, 29580] 1373.0
Legnica LEG [1341.15, 1341.15] 5131.8 [14367, 15294] 7614.5

 Lódź LOD [1416.84, 1754.64] 13318.7 [33401, 36122] 7402.8
Mielec MIE [1643.12, 1723.97] 7838.1 [24815, 34992] 4956.0

Pomorze POM [2246.29, 2246.29] 10481.6 [22921, 24893] 1479.1
S lupsk SLU [910.16, 910.16] 1592.3 [3478, 3941] 761.5

Starachowice STA [664.16, 707.98] 1790.9 [6829, 7260] 701.0
Suwa lki SUW [635.07, 662.95] 2500.1 [7258, 8336] 2734.4

Tarnobrzeg TAR [1868.21, 1868.21] 7470.7 [20740, 23734] 18220.4
Wa lbrzych WAL [3554.96, 3774.55] 22789.5 [48954, 50268] 11862.8

Warmia-Mazury WAR [1364.68, 1390.73] 3124.6 [17643, 20778] 1647.4

5.1. Distances to the best unit and scores

This section presents the distance- and score-based results. In particular, the extreme values of these

measures are presented in Table 11. Eight SEZs (KAM, KOS, KRA, LOD, MIE, SUW, TAR, and WAR)

perform efficiently in their best scenario (d∗,o = 0). The remaining six SEZs attain the minimal distances

to the best unit greater than zero. Among these inefficient zones, there are significant differences between

the results they attain for the most favorable distance values. In particular, STA is very close to being

efficient (d∗,STA = 0.03), whereas WAL is far from efficiency (d∗,WAL = 0.311). The minimum among the

maximal distances to the best zone is attained by KOS (D∗
KOS = 0.064). Hence, this SEZ is nearly efficient

even in its least favorable scenario and it can be deemed as the overall best performer. The second best

zone, according to the maximal distance, is TAR (D∗
TAR = 0.374), whereas the worst maximal distances

are attained by SLU (0.609) and WAL (0.733).

When it comes to the value scores (absolute efficiencies), the zones with the greatest optimistic scores

(E∗
o) are KOS (0.916), KRA (0.765), and TAR (0.740). The worst maximal score is observed for WAL.

This SEZ’s efficiency does not exceed 0.383 even in the most favorable scenario. The minimal possible

score is also the most favorable for KOS (0.678), which confirms that this zone performs well for all feasible

scenarios. Other zones with minimal scores greater than 0.5 are KRA (0.508) and TAR (0.507).

Table 11: Extreme and expected values of distances to the efficient unit and scores for Special Economic Zones.

d∗,o d∗o Edo E∗
o E∗,o EEo

KAM 0.000 0.553 0.264 0.686 0.363 0.520
KAT 0.060 0.546 0.316 0.637 0.349 0.467
KOS 0.000 0.064 0.000 0.916 0.678 0.784
KRA 0.000 0.408 0.158 0.765 0.508 0.626
LEG 0.020 0.524 0.254 0.670 0.384 0.530
LOD 0.000 0.501 0.284 0.712 0.343 0.500
MIE 0.000 0.465 0.246 0.739 0.420 0.537
POM 0.165 0.548 0.343 0.607 0.340 0.440
SLU 0.039 0.609 0.316 0.639 0.307 0.468
STA 0.003 0.560 0.273 0.675 0.356 0.511
SUW 0.000 0.560 0.264 0.680 0.356 0.520
TAR 0.000 0.374 0.200 0.740 0.507 0.583
WAL 0.311 0.733 0.522 0.383 0.150 0.262
WAR 0.000 0.472 0.209 0.715 0.441 0.575

The analysis of extreme values can be enriched with the stochastic distribution of the respective re-
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Figure 3: Admissible function ranges for inputs and outputs in the analyzed data set.

sults. In Table 12, we provide the distance-oriented acceptability indices given ten intervals. They are

estimated based on 10, 000 samples. For KOS, the distance to the best zone is never greater than 0.1

(DAII(KOS, [0.0 − 0.1]) = 1), confirming that it is robustly close to being efficient. Similarly, for KRA,

for more than 75% of weights, performances, and marginal value functions, the distance to the best SEZ

does not exceed 0.2. On the contrary, the worst zone is WAL. For most samples (66%), its distance to the

best zone is greater than 0.5. The stochastic analysis also gives the expected distances to the best SEZ

(see Table 11). The best zones according to this measure (Edo) are KOS (0.000), KRA (0.158), and TAR

(0.200), while the least favorable ones are WAL (0.522) and POM (0.343).

Due to the high correlation between distances and efficiencies, we omit the detailed results for the

distribution of scores. Instead, let us note that KOS attains a score of at least 0.7 for all samples, WAL

attains a score of at most 0.4 for all samples, and the best expected efficiencies are associated with KOS

(0.784), KRA (0.626), and TAR (0.583).

5.2. Efficiency ranks

When it comes to the efficiency ranks, we report the extreme positions, the efficiency rank acceptability

indices, and the expected ranks for all SEZs in Table 13. Naturally, the zones classified as efficient attain

the first rank in their most favorable scenarios. Among the inefficient zones, the best ranks are attained

by KAT and STA (R∗,KAT = R∗,STA = 2). The worst SEZ considering R∗ is WAL, ranked at most ninth.

When considering the worst ranks, only WAL and SLU fall into the last position (R∗ = 14). The best

pessimistic ranks are observed for KOS (6) and KRA (8). However, the efficient zones (LOD, MIE, and

SUW) can be ranked in the second-last position in their least favorable scenario. This indicates that their

ranking strongly depends on the chosen weight vector, precise performances, and marginal value functions.
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Table 12: Distribution of the distances to the best unit for Special Economic Zones.

SEZ [0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1]

KAM 0.003 0.152 0.555 0.277 0.013 0.000 0.000 0.000 0.000 0.000
KAT 0.000 0.002 0.355 0.619 0.024 0.000 0.000 0.000 0.000 0.000
KOS 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
KRA 0.172 0.587 0.241 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LEG 0.000 0.150 0.641 0.208 0.001 0.000 0.000 0.000 0.000 0.000
LOD 0.000 0.046 0.560 0.391 0.003 0.000 0.000 0.000 0.000 0.000
MIE 0.000 0.196 0.658 0.146 0.000 0.000 0.000 0.000 0.000 0.000
POM 0.000 0.000 0.186 0.708 0.106 0.000 0.000 0.000 0.000 0.000
SLU 0.000 0.044 0.352 0.512 0.092 0.000 0.000 0.000 0.000 0.000
STA 0.003 0.128 0.527 0.323 0.019 0.000 0.000 0.000 0.000 0.000
SUW 0.003 0.152 0.559 0.273 0.013 0.000 0.000 0.000 0.000 0.000
TAR 0.002 0.487 0.511 0.000 0.000 0.000 0.000 0.000 0.000 0.000
WAL 0.000 0.000 0.000 0.002 0.338 0.623 0.037 0.000 0.000 0.000
WAR 0.009 0.430 0.519 0.042 0.000 0.000 0.000 0.000 0.000 0.000

Table 13: Extreme and expected ranks and efficiency rank acceptability indices for Special Economic Zones.

Rank
R∗,o R∗

o ERo 1 2 3 4 5 6 7 8 9 10 11 12 13 14

KAM 1 13 7.137 0.000 0.000 0.016 0.054 0.165 0.150 0.173 0.176 0.148 0.101 0.017 0.000 0.000 0.000
KAT 2 13 10.770 0.000 0.000 0.000 0.015 0.025 0.048 0.049 0.052 0.029 0.056 0.205 0.311 0.210 0.000
KOS 1 6 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
KRA 1 8 2.065 0.000 0.935 0.065 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LEG 3 13 6.804 0.000 0.000 0.000 0.010 0.177 0.277 0.167 0.282 0.078 0.009 0.000 0.000 0.000 0.000
LOD 1 13 9.123 0.000 0.000 0.000 0.006 0.039 0.110 0.146 0.057 0.057 0.227 0.316 0.039 0.003 0.000
MIE 1 13 6.662 0.000 0.000 0.014 0.084 0.333 0.143 0.066 0.055 0.197 0.102 0.006 0.000 0.000 0.000
POM 3 13 12.379 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.019 0.013 0.055 0.396 0.517 0.000
SLU 6 14 11.315 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.008 0.078 0.238 0.198 0.205 0.270 0.000
STA 2 12 8.999 0.000 0.000 0.000 0.002 0.006 0.055 0.159 0.166 0.210 0.171 0.182 0.049 0.000 0.000
SUW 1 13 7.409 0.000 0.000 0.003 0.014 0.116 0.183 0.214 0.186 0.181 0.082 0.021 0.000 0.000 0.000
TAR 1 12 3.552 0.000 0.064 0.549 0.283 0.048 0.014 0.020 0.018 0.003 0.001 0.000 0.000 0.000 0.000
WAL 9 14 14.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
WAR 1 12 3.785 0.000 0.001 0.353 0.532 0.091 0.020 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000

The calculated ERAIs allow observing how the ranks are distributed for the feasible scenarios. For

example, even though the exact analysis indicates that KOS can be ranked between first and sixth, it

is ranked at the top for each sample (ERAI(KOS, 1) = 1). Hence even if there are scenarios with five

other SEZs better than KOS, such an outcome is highly improbable. On the contrary, WAL is ranked

last for all samples. The ranks of other SEZs also exhibit high stability. For example, KRA is ranked

second for 93.5% samples, while POM attains positions between 12 and 13 for 91.3% scenarios. However,

there are also some zones for which the ranks are more distributed. In particular, SUW and KAM attain

ranks between 3 and 11, with no ERAI exceeding 21.4% for SUW and 17.3% for KAM. The stochastic

analysis can also be used to rank all SEZs in line with their expected ranks. In this case, KOS (1), KRA

(2.065), and TAR (3.552) prove to be the best, whereas SLU (11.315), POM (12.379), and WAL (14.000)

are ranked at the bottom.

5.3. Preference relations

As far as the preference relations are concerned, Table 14 indicates the pairs of SEZs for which the possi-

ble (P) and necessary (N) relations hold. Also, the necessary preference relation is presented graphically

in Figure 4. Obviously, the eight efficient zones are possibly preferred to all remaining ones. Among the

inefficient ones, KAT and STA are possibly preferred to twelve other SEZs. In turn, WAL performs the

least favorably, being possibly preferred only to five other zones. As for the necessary preference relation,

KOS is robustly preferred to the greatest number (6) of other zones, while POM, SLU, and WAL are not
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necessarily preferred to any other SEZ. The zones which are necessarily worse than the greatest number

of other SEZs are WAL (8) and SLU (5).

Table 14: The necessary (N) and possible (P) efficiency preference relations for all pairs of Special Economic Zones.

KAM KAT KOS KRA LEG LOD MIE POM SLU STA SUW TAR WAL WAR

KAM N P P P P P P P N P P P P P
KAT P N P P P P P P P P P N P
KOS P N N P N P P N N N P P N P
KRA P P P N N P P N N P P P N P
LEG P P N P P P P P P P N P
LOD P P P P P N P P P P P P N P
MIE P P P P P P N P P P P P N P
POM P P P P P N P P P P P P
SLU P P P P P N P P P
STA P P P P P P P N N P P P P
SUW P P P P P P P P N P N P P P
TAR P P P P P P P P P P P N N P
WAL P P P P P N
WAR P P P P P P P P P P P P N N

KAM
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Figure 4: The Hasse diagram of the necessary efficiency preference relation for Special Economic Zones.

The Pairwise Efficiency Outranking Indices (see Table 15) provide detailed insight into the performance

comparison for pairs not related by the necessary preference. For some pairs, one SEZ is better than the

other for the vast majority of scenarios. They include, e.g., (WAR, KAT) and (KRA, MIE), for which

the advantage of the first zone in the ordered pair is very high. In the same spirit, the PEOIs for pairs

involving KOS and all other zones are equal to one. Thus, even if this zone is not necessarily preferred to

all other SEZs, it proved to be at least as good for all samples. However, there are also some pairs of SEZs

with more balanced performances. For example, the stochastic acceptabilities for (KAM, SUW), (STA,

LOD), and (SLU, KAT) are not greater than 60% in any direction.
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Table 15: Paiwise efficiency outranking indices for all pairs of Special Economic Zones.

KAM KAT KOS KRA LEG LOD MIE POM SLU STA SUW TAR WAL WAR

KAM 1.000 0.767 0.000 0.000 0.371 0.647 0.335 0.965 1.000 0.943 0.552 0.062 1.000 0.043
KAT 0.233 1.000 0.000 0.000 0.105 0.157 0.017 0.781 0.485 0.270 0.231 0.000 1.000 0.016
KOS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
KRA 1.000 1.000 0.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 0.915 1.000 0.999
LEG 0.629 0.895 0.000 0.000 1.000 0.773 0.325 1.000 0.995 0.762 0.649 0.025 1.000 0.005
LOD 0.353 0.843 0.000 0.000 0.227 1.000 0.052 0.978 0.663 0.410 0.360 0.004 1.000 0.013
MIE 0.665 0.983 0.000 0.001 0.675 0.948 1.000 1.000 0.947 0.738 0.675 0.039 1.000 0.117
POM 0.035 0.219 0.000 0.000 0.000 0.022 0.000 1.000 0.306 0.055 0.032 0.000 1.000 0.000
SLU 0.000 0.515 0.000 0.000 0.005 0.337 0.053 0.694 1.000 0.000 0.000 0.003 0.998 0.000
STA 0.057 0.730 0.000 0.000 0.238 0.590 0.262 0.945 1.000 1.000 0.066 0.035 1.000 0.007
SUW 0.448 0.769 0.000 0.000 0.351 0.640 0.325 0.968 1.000 0.934 1.000 0.049 1.000 0.022
TAR 0.938 1.000 0.000 0.085 0.975 0.996 0.961 1.000 0.997 0.965 0.951 1.000 1.000 0.661
WAL 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 1.000 0.000
WAR 0.957 0.984 0.000 0.001 0.995 0.987 0.883 1.000 1.000 0.993 0.978 0.339 1.000 1.000

5.4. Practical conclusions derived from the outcomes of robustness analysis

Administrative authorities may use the results of robustness analysis to rank the economic zones, compare

their performances, or find realistic scenarios to improve the inefficient ones. In what follows, we discuss

the major practical conclusions that can be derived from various outcomes.

We can discriminate between the efficient SEZs, attaining d∗,o = 0, based on their worst possible

distances (d∗o) to the best zone. For our problem, there are eight efficient zones. However, three (KAM,

LOD, and SUW) attain distances to the best SEZ greater than 0.5 in their least favorable scenarios.

Hence they can be judged worse than other efficient SEZs. For example, the pessimistic distance of KOS is

vastly lesser (0.064). Such analysis motivates a detailed consideration of efficient zones’ input and output

performances, indicating the ones requiring improvements. For example, the inputs and outputs of SUW

are low (e.g., only SLU has lower expenditures, while the area is lesser only for KAM). Consequently, when

the weights assigned to outputs are high compared to those associated with inputs, the efficiency of SUW

becomes far from the best zone. Therefore, aiming to decrease the maximal distance of SUW to the best

zone, one should focus on improving its financial results and/or jobs without significantly increasing its

resources.

Furthermore, the stochastic results are perfect for indicating the overall good or poor performers. For

example, KOS can be deemed superior to other SEZs as its estimated expected distance to the best zone

is zero. Hence it attains the best results for all sampled scenarios even if the exact outcomes derived

from optimization show that an extreme scenario exists where seven other zones are better. Such a

highly favorable performance of KOS is implied by its significantly high outputs and relatively low inputs.

In particular, its financial result is almost 23 million PLN, compared to 18.2 million for the second SEZ

(WAL) and 7.1 million on average. Moreover, its expenditures (7133.4) are lower than the average (7612.5)

observed in the set of all zones. Analyzing the expected distances or efficiencies allows for determining the

good performers among the inefficient SEZs. In the average case, LEG, judged inefficient, proves better

than three units deemed efficient (KAM, SUW, LOD). This suggests that attaining average performances

on all inputs and outputs is better than performing exceptionally well on one factor and poorly on the

remaining ones.

Similarly, the robustness analysis hints at the stability of SEZs’ performance given the cardinal and

ordinal measures, i.e., efficiencies and ranks. In particular, KOS is robustly ranked first, and KRA is

ranked second for 93.5% scenarios. In the case of KRA, this can be explained by its low inputs (only
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949.66 ha of area at maximum and 4240.4 million of PLN expenditures) and one output which is relatively

good when compared to other SEZs (i.e., at least 25862 jobs compared to 24468 on average). Conversely,

WAL is ranked at the bottom for all samples. Its very high inputs (about twice the average for the area,

and its expenditures are almost three times greater than the average) cannot compensate for outputs being

only slightly higher than the average. The performance of other SEZs is less stable. For example, KAM

is ranked in the range [1, 13], and its ERAIs are positive for all positions between 3 and 11. One of the

underlying reasons is its relatively wide area interval, varying between 373.83 and 540.83.

The pairwise outcomes are beneficial if the analysts know some zones well and want to compare them

with others. For example, if they are familiar with STA, they can note that SLU is always worse and KOS

is robustly better. Also, the necessary preference graph allows for determining the possible improvement

paths for inefficient zones. For example, WAL can choose among multiple such paths (see Figure 4). Some

of them lead directly to TAR or WAR. Others suggest achieving first the efficiency of LEG. Hence the

manager of WAL should notice that all inputs and outputs of WAL are greater than for LEG, but the

difference in inputs is much greater than for outputs. In particular, the expenditures of WAL are much

greater than those of LEG, while its financial result is only slightly better. Consequently, one should aim

at decreasing the expenditures of WAL or significantly increasing its financial results. Having attained the

level of LEG, one should then design ways to reach performances of KOS or KRA.

6. Summary

This paper introduced a novel framework for efficiency analysis, exploiting the multiplicity of relevant

scenarios. The assumed model is an additive value function, aggregating input and output performances.

The framework admits four types of imprecision concerning performances and preferences. In particular, it

accepts interval assessments, ordinal judgments, linear constraints on the factors’ weights, and specification

of acceptable, marginal value functions via the range delimited by the pre-defined extreme shapes.

The proposed computational procedures combine mathematical programming with Monte Carlo simu-

lations to derive various results. They concern four perspectives: the distance to an efficient unit, efficiency

scores, ranks, and pairwise relations. For each of them, we capture different certainty levels referring to

the necessary, possible, extreme, and expected viewpoints, as well as the distribution of outcomes in the

space of feasible weights, performances, and marginal value functions. We demonstrated their usefulness

on a didactic example concerning hospitals and real-world data related to the functioning of fourteen

Special Economic Zones in Poland. We emphasize that the introduced framework increases the discrimi-

nation power, indicates the overall good and bad performers, and verifies the stability of efficiency results,

providing hints on the required improvements and benchmarks to be followed stepwise.

We envisage the following future developments. First, the proposed framework can be extended to

handle the hierarchical structure of inputs and outputs. Then, the preference information can be provided

at different hierarchy levels, and the outputs can be analyzed when accounting for sub-problems, capturing

specific, more consistent perspectives within a complex setting. Second, an additive value model can be

revised to handle interactions between various factors. They can imply bonuses or penalties depending on

whether the simultaneous favorable performances on a subset of inputs and/or outputs are exceptional or

expected. Third, the scientific literature considers other imprecise performances than ordinal and interval.

In particular, it would be possible to account for fuzzy performances or reasoning with evidence. Finally,

it is desired to couple the proposed framework with the techniques for eliciting the shape of marginal value
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functions. In this paper, we used direct elicitation procedures. However, a growing trend in MCDA is to

infer such functions from the user’s holistic judgments, such as pairwise comparisons.
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Abstract: We introduce a novel methodological framework based on additive value-based efficiency
analysis. It considers inputs and outputs organized in a hierarchical structure. Such an approach
allows us to decompose the problem into manageable pieces and determine the analyzed units’
strengths and weaknesses. We provide robust outcomes by analyzing all feasible weight vectors
at different hierarchy levels. The analysis concerns three complementary points of view: distances
to the efficient unit, ranks, and pairwise preference relations. For each of them, we determine the
exact extreme results and the distribution of probabilistic results. We apply the proposed method
to a case study concerning the performance of healthcare systems in sixteen Polish voivodeships
(provinces). We discuss the results based on the entire set of factors (the root of the hierarchy) and
three subcategories. They concern health improvement of inhabitants, efficient financial management,
and consumer satisfaction. Finally, we show the practical conclusions that can be derived from the
hierarchical decomposition of the problem and robustness analysis.

Keywords: data envelopment analysis; value-based efficiency; hierarchical structure; robustness
analysis; healthcare

1. Introduction

Data Envelopment Analysis (DEA) measures the relative efficiency of Decision Making
Units (DMUs) that convert inputs to outputs. It was originally proposed by Charnes et al. [1]
as a nonparametric approach, making no assumptions about the production frontier or the
weights assigned to the various factors relevant to the analysis. To assess the efficiency of
DMUs, they are compared to the best-practice frontier determined by the group of units
with the most favorable input–output performance. The traditional methods divide the
units into efficient ones, i.e., those on the efficient frontier, and inefficient ones, i.e., those
below the frontier. Due to its versatility, DEA has been widely used in various areas such
as management, economics, agriculture, education, healthcare, and logistics [2]. The recent
example applications concerned the assessment of public administration [3] and the urban
rail transit network [4].

Since its first formulation, DEA has been extended in multiple ways [5,6]. For example,
various efficiency models have been introduced to admit static or dynamic analysis or
handle constant or variable returns to scale. In particular, an additive model was formulated
to guarantee that the units it indicates as efficient satisfy this property in Koopman’s
sense [7]. However, this model has also been criticized for assuming equal weights of all
factors, vulnerability to the factors’ scale differences, and nonintuitive interpretation of
the efficiency scores. These drawbacks have motivated the development of an additive
value-based efficiency analysis [8,9], inspired by Multi-Attribute Value Theory (MAVT) [10].
This model transforms the input and output values using the marginal functions. Such
per-criterion components are aggregated into a comprehensive efficiency measure with
an additive value model incorporating weights assigned to various factors. The units that
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attain the greatest comprehensive value for at least one feasible weight vector are deemed
efficient. Such an analysis is insensitive to scale problems due to applying value functions
with a common scale. Moreover, the efficiency scores have an intuitive interpretation
built on the notion of “min–max regret”. Note that the hybrid methods combining ideas
from DEA and Multiple Criteria Decision Analysis (MCDA) have become more and more
popular in recent years (see, e.g., [11,12]).

This paper contributes to the literature concerning an additive value-based efficiency
analysis in a three-fold way. This methodology handles only flat structures of inputs
and outputs considered at the same level, without subcategories [8]. Hence, our first
contribution consists of adjusting it to handle hierarchical structures of factors used to
assess the performance of DMUs. This is useful in real-world decision analysis for a
few reasons. First, it helps to structure inputs and outputs logically and systematically.
The higher-level factors are more general, whereas those at lower hierarchy levels are
more specific. Moreover, when new information becomes available, the hierarchy can be
easily modified or updated, allowing it to handle evolving decision problems. Second, a
hierarchical decomposition of factors allows for the breaking down of complex problems
into manageable, coherent pieces representing different levels of abstraction. By analyzing
the efficiency at various levels of the hierarchy, it is possible to understand the strengths
and weaknesses of DMUs and explain the comprehensive results taking into account their
evolution along the hierarchy. Third, a hierarchical structure of factors makes efficiency
analysis more transparent, flexible, and adaptable. In particular, we support the trade-off
analysis, where weights can be associated with lower and higher-level categories of factors,
and hence, their relative and absolute impact can be controlled more easily. In this regard,
we incorporate the preferences elicited at each hierarchy level into the analysis. These
preferences form the linear weight restrictions between factor categories at the same level.

The benefits of using a hierarchical structure have been explored in MCDA. The
example methods that handle such a decomposition include the Analytical Hierarchy
Process (AHP) [13], the Multiple Criteria Hierarchy Process (MCHP) [14,15], and ELECTRE-
III-H [16]. In the DEA context, the first attempt was made with a two-layer nonlinear
model [17] and its linear counterpart [18]. Then, Ref. [19] proposed a multiple-layer DEA
model (MLDEA) handling an arbitrary number of levels of inputs and outputs. Further,
MLDEA was combined with AHP to consider relative priorities of various factors, mainly
in the scenarios where DEA is used as a mathematical tool for constructing so-called
composite indicators [20,21]. Finally, the latter approach was generalized to the setting
of Network and Fuzzy DEA [22]. The above-mentioned DEA models require inputs and
outputs to be considered in separate hierarchies. We fill this research gap by admitting a
single multiple-layer hierarchical structure containing inputs and outputs. In this way, the
properly defined efficiency can be analyzed in each hierarchy node.

Second, in the proposed framework, we go beyond classifying the DMUs only into
efficient and inefficient, as in the original value-based efficiency analysis [8]. This is attained
by verifying the robustness of efficiency results observable for the entire space of feasible
input and output weights. We focus on three perspectives: distances to the efficient DMU,
ranks, and pairwise preference relations. For each of them, we compute the exact (necessary,
possible, and extreme) outcomes by solving dedicated mathematical programming models.
Moreover, we estimate the distribution of results using Monte Carlo simulations. The
proposed framework is inspired by [23], being adapted to the multiple-level hierarchy
value-based efficiency analysis. The formulations of dedicated procedures and types
of considered results are similar to those considered in [24]. However, we admit the
stakeholders studying the stability of efficiency outcomes in each hierarchy node instead of
forcing them to consider all inputs and outputs simultaneously. In this regard, the main
challenge is adequately handling the indicator weights considered at different hierarchy
levels. We also formulate the properties of the exact efficiency outcomes observed along the
hierarchy tree. Typically, they relate the results observed in all children nodes of some more
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general category to the outcomes obtained in the parent node. Hence, they help understand
the evolution of necessary, impossible, and extreme conclusions.

Third, we apply the proposed framework to a case study concerning healthcare. As
noted in [25], the efficiency of using resources to ensure a decent level of healthcare has
become one of the most critical public policy issues in recent decades. Its assessment
can be conducted from the perspective of the entire system or individual organization
(e.g., hospitals). A detailed review of the applications of efficiency analysis in healthcare
can be found in [26], and a detailed description of the healthcare system in Poland is given
in [25].

We analyzed nine indicators capturing the quality of healthcare systems in sixteen
Polish voivodeships. The indicators were grouped under three main categories: inhabitants’
health improvement, financial management, and consumer satisfaction. We elicited the
preferences in the form of marginal value functions for all inputs and outputs and weight
constraints. We report the results given a comprehensive efficiency index encompassing all
relevant viewpoints and the three subproblems that allow for an understanding of each
voivodeship’s strong and weak points. The paper’s three significant contributions, along
with their essential aspects, are summarized in Figure 1.

I. Value-based efficiency analysis handling hierarchical structures of factors
§ Preferences in the form of weight constraints may be elicited in each hierarchy node
§ Efficiency results can be analyzed in each hierarchy node
§ Inputs and outputs can be handled under the same hierarchy node

M
ai

n
co

nt
ri

bu
tio

ns II. Robustness analysis methods adjusted to hierarchical value-based efficiency analysis
§ All feasible weight vectors respecting the constraints on different levels are exploited
§ Exact and stochastic robust outcomes are computed in each hierarchy node
§ The outcomes concern efficiency distances, ranks, and preference relations
§ Dedicated properties summarize the evolution of exact outcomes along the hierarchy tree

III. Case study concerning the quality of the healthcare system in Poland
§ Sixteen voivodeships are analyzed in terms of nine indicators and three sub-categories
§ Managerial conclusions are drawn from various robust results
§ Cross-category analysis indicates each province’s strong and weak points

Figure 1. Paper’s main contributions.

The paper’s remainder is organized as follows. Section 2 describes an additive value-
based efficiency model. Section 3 defines a hierarchical structure of inputs and outputs,
while Section 4 describes a respective framework for robustness analysis. In Section 5, we
report the outcomes of a case study concerning the efficiency assessment of the healthcare
system in Poland. The last section concludes the paper.

2. Additive Value-Based Efficiency Analysis

Let us consider a set of DMUs D = {D1, . . . , DK}. In value-based analysis, efficiency
Eo of DMUo ∈ D is defined using an additive value model:

Eo =
Q

∑
q=1

wq · uq(DMUo), (1)

where wq is the weight of factor q (i.e., input x ∈ x = {x1, x2, . . . , xm} or output
y ∈ y = {y1, y2, . . . , yn}), such that ∑Q

q=1 wq = 1, and uq is a monotonic marginal value
function for q. It is nondecreasing for outputs and nonincreasing for inputs. To verify if
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DMUo is efficient, we solve the following Linear Programming (LP) model, minimizing
the maximal distance of efficiency of DMUo to any other unit:

Minimize do

s.t.
∑Q

q=1 wquq(DMUk)−∑Q
q=1 wquq(DMUo) ≤ do, for k = 1, . . . , K,

do ≥ 0,
∑Q

q=1 wq = 1,
wq ≥ 0, q = 1, . . . , Q,
w ∈ Sw,





(2)

where Sw is the feasible weight vector space delimited by the linear constraints. The optimal
value of do, denoted by d∗o , represents the minimal distance of DMUo from the efficient
unit. If d∗o = 0, DMUo attains the greatest efficiency for at least one feasible weight vector,
which implies that it is efficient. When d∗o > 0, for all feasible weights, there is at least one
unit with an efficiency greater than Eo, denoting the lack of efficiency of DMUo.

3. A Hierarchical Structure of Inputs and Outputs

The DMUs consume m inputs x and produce n outputs y. To simplify the notation, we
aggregate all inputs and outputs into a single set of factors f = x ∪ y = { f1, f2, . . . , fQ0}.
Set f forms level 0 of the hierarchy. These factors are grouped into Q1 categories of the
first level, named C(1) = {c(1)

1 , c(1)
2 , . . . , c(1)

Q1
}. Analogously, the first-level categories can be

grouped into second-level categories, forming a set C(2) = {c(2)
1 , c(2)

2 , . . . , c(2)
Q2
}, etc. The

entire structure contains L levels. In the last (L-th) level, there is only a single category
(c(L)

1 ), called a root.
From the mathematical viewpoint, the factors and categories form a tree (see Figure 2).

The set of all nodes in the tree (factors and categories) is denoted by N = f ∪ C(1) ∪
C(2) ∪ . . . ∪ C(L). For each node t ∈ N \ {root}, we define its parent p(t) as a category
in which it is directly contained. The set of direct children of category c(l)

i is marked as

ch(c(l)
i ) = {t ∈ N:p(t) = c(l)

i }. The set of indirect children of category c(l)
i contains all

direct children of c(l)
i (ch(c(l)

i )) and their direct and indirect children until reaching the

tree’s leaves. For each category at hierarchy level c(l)
i , we define set A

c(l)
i

as a subset of f

(inputs and outputs), which are the indirect children of c(l)
i . In particular, all factors are

indirect children of the root category, i.e., A
c(L)

1
= f . On the contrary, for an elementary

factor f , A f is a singleton, i.e., A f = { f }, f ∈ f . To maintain the spirit of DEA, for each

category c(l)
i , the respective set of factors (A

c(l)
i

) needs to contain at least one input and one

output, i.e., A
c(l)

i
∩ x 6= ∅ and A

c(l)
i
∩ y 6= ∅, for l = 1, 2, . . . , L, i = 1, 2, . . . , Ql .

Figure 2. A hierarchical structure of inputs and outputs.
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To illustrate the notation used in the paper, we will describe it using a simple hierarchy
of factors in Figure 3. This example involves two inputs (x = {i1, i2}) and two outputs
(y = {o1, o2}). The set of factors f containing all elements from x and y is f = {i1, o1, i2, o2}.
Overall, there are four factors (Q0 = 4), two first-level categories (C1 = {C(1)

1 , C(1)
2 };

Q1 = 2), and one root corresponding to a second-level category (C2 = {C(2)
1 }; Q2 = 1). The

hierarchy contains two levels of categories (L = 2). The parent category for input i1 is C(1)
1

(p(i1) = C(1)
1 ). For C(1)

1 and C(1)
2 , the parent category is C(2)

1 , i.e., p(C(1)
1 ) = p(C(1)

2 ) = C(2)
1 .

The considered sets of factors A
C(k)

i
for example categories are the following: Ai1 = {i1},

A
C(1)

1
= {i1, o1}, A

C(1)
2

= {i2, o2}, and A
C(2)

1
= f = {i1, i2, o1, o2}.

Figure 3. An example hierarchical structure of inputs and outputs.

Given a hierarchy of relevant factors and categories, we assign weight wt to each
node t except the root. Moreover, we admit specifying the linear constraints for these
weights at each hierarchy level. Factors or categories involved in a single constraint must
have a common parent. For example, for the considered hierarchy, the constraint can take
the form wi1 ≤ 2 · wo1 or w

c(1)
1
≥ w

c(1)
2

, as i1 and o1 or C(1)
1 and C(1)

2 have the same parent.

On the contrary, the example constraint wi1 ≤ wi2 is not allowed, because i1 and i2 have
different parents (p(i1) 6= p(i2)). The space of weight vectors that meet these restrictions is
denoted by Sw.

To introduce weight restrictions, we consider additional variables (ŵq), representing
the aggregated weights of elementary factors in the hierarchy. They are defined as the
products of all weights on the path from the analyzed category (c(l)

i ) at the hierarchy level l
to the analyzed factor f :

ŵ
c(l)

i
q = wq · ∏

t=1,...,l−1∧t∈c(l)
i ∧ f∈At

wt. (3)

For factor i1 in the considered example, when taking into account the root category

(C(2)
1 ), the above formula takes the following form ŵ

C(2)
1

i1
= wi1 ·wC(1)

1
, and when considering

category C(1)
1 , it is expressed as follows ŵ

C(1)
1

i1
= wi1 .

We analyze the efficiency of DMUo in each node of the hierarchy. For category c(l)
i ,

such efficiency is defined as follows:

E
c(l)

i
o = ∑

q∈A
c(l)
i

ŵ
c(l)

i
q · uq(DMUo). (4)



Appl. Sci. 2023, 13, 6406 6 of 33

The true weights assigned to each hierarchy category c(l)
i from the set of the indirect

children of the analyzed category c(k)
j are defined as the ratio of the sum of weights of indica-

tors contained in this category and the sum of weights of indicators in the parent category:

w
c(k)

j

c(l)
i

=

∑ f∈A
c(l)
i

ŵ
c(k)

j
f

∑ fp∈A
p(c(l)

i )

ŵ
c(k)

j
fp

. (5)

Note that the value of weight w
c(k)

j

c(l)
i

is always the same, regardless of the consid-

ered category (c(k)
j ), so we replace symbol w

c(k)
j

c(l)
i

with w
c(l)

i
. For example, when consid-

ering the root category (C(2)
1 ), the weight wi1 of indicator i1 in the considered exam-

ple can be calculated as wi1 =
ŵ

C2
1

i1

ŵ
C2

1
i1

+ŵ
C2

1
o1

, whereas the weight w
C(1)

2
of category C(1)

2 is

w
C(1)

2
=

ŵ
C(2)

1
i2

+ŵ
C(2)

1
o2

ŵ
C(2)

1
i1

+ŵ
C(2)

1
o1 +ŵ

C(2)
1

i2
+ŵ

C(2)
1

o2

.

4. Robustness Analysis for Additive Value-Based Efficiency Analysis with a
Hierarchical Structure of Factors

The standard value-based efficiency model verifies if each DMU is efficient. Such
an analysis builds on the weight vector that is the most advantageous for a given DMU,
allowing it to minimize the distance from some efficient DMU. In this section, we introduce
a suite of methods that investigate the robustness of efficiency outcomes given all feasible
weights. They can be divided into two groups. First, the exact approaches use mathemati-
cal programming to find the extreme outcomes for each DMU. In turn, the probabilistic
methods estimate the stochastic acceptability indices based on Monte Carlo simulations, re-
flecting the distributions of possible results. Each group concerns three relevant viewpoints:
distances to the efficient unit, ranks, and pairwise preference relations. In what follows, we
present the approaches that are flexible enough to determine the relevant results in each
hierarchy node.

4.1. Exact Methods

In this section, we present the mathematical programming models that determine
the exact robust results. These include extreme (the most and the least advantageous),
necessary (observable for all feasible weight vectors), and possible (holding for at least one
feasible weight vector) conclusions. Let us first focus on verifying the stability of distances

to the efficient unit. The best (minimal) distance d
c(l)

i∗,o for DMUo considering category c(l)
i

can be computed by solving the following model:

Minimize d
c(l)

i
o

s.t.
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∑q∈A
c(l)
i

ŵ
c(l)

i
q uq(DMUk)−∑q∈A

c(l)
i

ŵ
c(l)

i
q uq(DMUo) ≤ d

c(l)
i

o , for k = 1, . . . , K,

d
c(l)

i
o ≥ 0,

∑q∈A
c(l)
i

ŵ
c(l)

i
q = 1,

ŵq ≥ 0, q ∈ A
c(l)

i
,

wt =
∑ f∈At ŵ

c(l)
i

f

∑ f∈Ap(t)
ŵ

c(l)
i

f

∈ Sw, for t ∈ N \ {root}.





W





(6)

Similarly to the standard efficiency analysis, DMUo with d
c(l)

i∗,o = 0 is deemed efficient,

given category c(l)
i , while d

c(l)
i∗,o > 0 implies inefficiency.

To compute the worst (maximal) distance d
∗,c(l)

i
o for DMUo, given category c(l)

i , we
solve the following Mixed-Integer Linear Programming (MILP) model:

Maximize d
c(l)

i
o

s.t.

∑q∈A
c(l)
i

ŵ
c(l)

i
q uq(DMUk)− d

c(l)
i

o ≥ ∑q∈A
c(l)
i

ŵ
c(l)

i
q uq(DMUo)− C(1− bk), for k = 1, . . . , K,

∑k=1,...,K bk = 1,
bk ∈ {0, 1}, for k = 1, 2, . . . , K,

d
c(l)

i
o ≥ 0,
W ,





(7)

where C is a large positive constant. The above model uses binary variables bk,

k = 1, . . . , K, to ensure that d
c(l)

i
o is equal to the efficiency difference between DMUo and

some DMUk, k = 1, . . . , K, for which bk = 1. Maximizing d
c(l)

i
o guarantees that we obtain

the greatest possible difference observable in the set of feasible weights W . Note that
when bk = 0, the respective constraint is satisfied for all possible variable values; hence,
it is relaxed.

The second perspective concerns the bounds of efficiency ranks attained by DMUo. To

find the best (minimal) rank R
c(l)

i∗,o of DMUo, given category c(l)
i , we minimize the number

of other DMUs with greater efficiencies than E
c(l)

i
o :

Minimize 1 + ∑
k=1,...,K; k 6=o

bk

s.t.

∑q∈A
c(l)
i

ŵ
c(l)

i
q uq(DMUk)−∑q∈A

c(l)
i

ŵ
c(l)

i
q uq(DMUo) ≤ Cbk, for k = 1, . . . , K; k 6= o,

bk ∈ {0, 1}, for k = 1, 2, . . . , K; k 6= o,
W .





(8)

Note that when bk = 0, k = 1, . . . , K, the respective constraint ensures that DMUo is

ranked not worse than DMUk since E
c(l)

i
k ≤ E

c(l)
i

o . When bk = 1, DMUk is ranked better than
DMUo, deteriorating its best rank by one.
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To obtain the worst (maximal) rank R
∗,c(l)

i
o for DMUo, given category c(l)

i , we maximize

the number of DMUs with the efficiencies not worse than E
c(l)

i
o :

Maximize 1 + ∑
k=1,...,K; k 6=o

bk

s.t.

∑q∈A
c(l)
i

ŵ
c(l)

i
q uq(DMUo)−∑q∈A

c(l)
i

ŵ
c(l)

i
q uq(DMUk) ≤ C(1− bk), for k = 1, . . . , K; k 6= o,

bk ∈ {0, 1}, for k = 1, 2, . . . , K; k 6= o,
W .





(9)

Note that when bk = 1, k = 1, . . . , K, the respective constraint ensures that DMUk is

ranked no worse than DMUo since E
c(l)

i
o ≤ E

c(l)
i

k . This deteriorates the worst rank of DMUo
by one. When bk = 0, the respective constraint is satisfied for all variable values; hence,
it relaxed.

The third perspective focuses on the pairwise comparisons between DMUs using
two relations: necessary and possible. Given the uncertainty of selecting a specific weight
vector, the necessary relation can be considered robust. Specifically, DMUo is necessarily

preferred to DMUk, given category c(l)
i (DMUo %

N,c(l)
i

E DMUk), when DMUo is not worse

at level c(l)
i in terms of efficiency than DMUk for all feasible weight vectors. Its truth for

pair (DMUo, DMUk) and category c(l)
i can be verified using the following model:

Minimize d
c(l)

i
o,k , s.t. ∑

q∈A
c(l)
i

ŵ
c(l)

i
q uq(DMUo)− ∑

q∈A
c(l)
i

ŵ
c(l)

i
q uq(DMUk) ≤ d

c(l)
i

o,k andW . (10)

Its optimal solution d
c(l)

i
o,k,∗ is equal to the minimal difference between efficiencies of

DMUo and DMUk observable in the set of feasible weights W , given category c(l)
i . If

d
c(l)

i
o,k,∗ ≥ 0, then for all feasible weights E

c(l)
i

o ≥ E
c(l)

i
k , and hence DMUo %N,c(l)

i
E DMUk.

Otherwise, ¬(DMUo %N,c(l)
i

E DMUk) because there is at least one feasible weight vector,

such that E
c(l)

i
o < E

c(l)
i

k .

Furthermore, DMUo is possibly preferred to DMUk, given category c(l)
i (DMUo %

P,c(l)
i

E

DMUk), when DMUo is not worse at level c(l)
i in terms of efficiency than DMUk for at least

one feasible weight vector. Its truth for pair (DMUo, DMUk) and category c(l)
i is verified

using the following model:

Maximize d
c(l)

i
o,k , s.t. ∑

q∈A
c(l)
i

ŵ
c(l)

i
q uq(DMUo)− ∑

q∈A
c(l)
i

ŵqu
c(l)

i
q (DMUk) ≥ d

c(l)
i

o,k andW . (11)

Its optimal solution d
c(l)

i ,∗
o,k is equal to the maximal difference between efficiencies

of DMUo and DMUk observable in the set of feasible weightsW , given category c(l)
i . If

d
c(l)

i ,∗
o,k ≥ 0, then for at least one feasible weight E

c(l)
i

o ≥ E
c(l)

i
k , and hence, DMUo %

P,c(l)
i

E DMUk.

Otherwise, ¬(DMUo %
P,c(l)

i
E DMUk) because there is no feasible weight vector, such that

E
c(l)

i
o ≥ E

c(l)
i

k .
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The relevant properties of the exact robust results given the hierarchical structure
are presented in Appendix A. The formulations of example mathematical programming
models that support understanding the general formulations are given in Appendix B.

4.2. Simulation-Based Methods

The results determined with mathematical programming are often insufficiently con-
clusive. In particular, the difference between extreme distances or ranks may be significant,
the necessary relation may be poor, and the possible relation may be very rich. If so, it
would be helpful to determine the distribution of results observed for the set of feasible
weight vectors. Unfortunately, such distribution cannot be computed exactly. However,
using Monte Carlo simulations, we can estimate the share of feasible weight space con-
firming a particular outcome. Specifically, we use the hit-And-run algorithm to generate a
predefined number of weight vector samples [27]. We generate weights for all categories
and factors while respecting that the sum of weights of categories or factors with the
same parent must be equal to one. In the example problem, the sum of the weights of
two categories C(1)

1 and C(1)
2 must be equal to one (w

C(1)
1

+ w
C(1)

2
= 1), and the sums of

weights assigned to the elementary indicators in the same category also need to be one
(wi1 + wo1 = 1 and wi2 + wo2 = 1). Moreover, we obey the provided weight constraints
for all hierarchy levels. After generating a predefined number of weight samples, we
compute the efficiencies of all DMUs for each. This lets us calculate the relevant stochastic
acceptability indices estimating the respective shares of feasible weight vectors.

In what follows, when considering category c(l)
i and referring to weight vectors, we

mean the weights assigned to all categories and factors that are direct or indirect children of
c(l)

i in the hierarchy. The most interesting stochastic acceptabilities are defined as follows:

• Distance Acceptability Interval Index (DAIIc(l)
i (DMUo, bi)) for unit DMUo, interval

bi ⊆ [0, 1], and category c(l)
i is the share of feasible weight vectors for which E

c(l)
i

o
belongs to bi. Note that all intervals must be disjoint (bi ∩ bj = ∅, i 6= j), and their sum
must cover the space of possible distances (b1 ∪ b2 ∪ . . . ∪ bz = [0, 1]; z—the number
of intervals).

• Efficiency Rank Acceptability Index (ERAIc(l)
i (DMUo, r)) for unit DMUo and rank r

is the share of feasible weight vectors for which DMUo attains r-th position in the
efficiency ranking of all DMUs given category c(l)

i .

• Pairwise Efficiency Outranking Index (PEOIc(l)
i (DMUo, DMUk)) for pair (DMUo,

DMUk) and category c(l)
i is the share of feasible weight vectors for which DMUo is at

least as efficiency as DMUk at level c(l)
i , i.e., E

c(l)
i

o ≥ E
c(l)

i
k .

Moreover, we compute the expected distance Ed to the efficient unit and expected rank
ER for each DMU [28]. This is performed by averaging the distances or ranks observed
for all samples. Note that by default, we use uniform distribution for weight sampling.
However, the weights can be generated from any predefined distribution, but it is hard to
define as it requires in-depth knowledge about the specific application domain.

In Appendix C, we illustrate the process of computing the stochastic results on a small
sample of weight vectors.

5. Case Study concerning Evaluation of Healthcare System in Poland

This section reports the results of a case study concerning an assessment of the quality
of the healthcare system in Poland. This sector faces the challenge of improving the quality
of provided services. This can be attained by advancing some indicators reflecting both
the system’s functioning and the perception by patients. We consider sixteen voivodeships
(provinces) in Poland as DMUs (see Table 1). These administrative areas govern their
healthcare independently, so it makes sense to highlight their differences using a uniformly
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computed set of indicators. Such an evaluation is critical, given the rapid development of
new technologies and major transformations in the healthcare sector.

Table 1. Values of inputs and outputs related to the healthcare systems in sixteen Polish voivode-
ships [29] (data publicly available at https://www.pwc.pl/pl/publikacje/2019/indeks-sprawnosci-
ochrony-zdrowia-2018.html, accessed on 22 May 2023).

Voivodeship Short Name H1 H2 H3 F1 F2 F3 S1 S2 S3

Zachodniopomorskie ZPM 44.44 4.05 17.6 −1.5 46.1 46.9 19.23 3.55 9.30
Pomorskie POM 45.31 5.36 21.3 0.08 38.9 51.3 27.04 3.82 33.33

Warmińsko−Mazurskie WM 43.34 7.11 15.7 −1.09 44.8 47.8 22.19 3.72 22.73
Podlaskie PDL 37.54 6.93 15.8 2.3 49.4 43.4 19.47 3.61 11.11
Lubuskie LBU 50.21 5.83 18.0 1.9 42.0 51.3 18.32 3.84 13.04

Wielkopolskie WLKP 47.88 4.36 25.7 −0.3 43.4 50.5 15.16 3.69 17.24
Kujawsko−Pomorskie KP 39.90 6.80 15.7 3.8 46.5 41.8 22.36 3.77 33.33

Mazowieckie MAZ 38.59 5.32 16.7 −1.57 47.4 47.8 20.26 3.62 20.56
Lubelskie LBL 45.17 6.74 8.1 0.41 51.8 43.0 13.40 3.77 20.37

Dolnośląskie DSL 45.04 7.66 13.8 −1.77 50.8 43.8 24.55 3.57 17.28
Opolskie OPO 33.71 6.88 10.0 −0.36 44.1 40.9 23.03 3.67 35.71
Łódzkie LDZ 42.00 5.88 6.0 1.02 50.6 47.3 19.90 3.78 15.15
Śląskie SL 40.70 4.54 13.9 −1.63 55.5 39.1 22.02 3.75 16.88

Świętokrzyskie SW 41.14 5.79 7.8 0.17 49.5 47.2 12.44 3.57 29.17
Małopolskie MLP 32.22 5.61 9.1 0.79 43.7 44.3 18.27 3.64 25.84

Podkarpackie PKR 38.73 5.76 1.9 −4.31 48.0 45.8 14.39 3.84 20.51

Following [29], we consider three main categories of factors representing desirable
characteristics in the complex healthcare system. Two areas—health improvement and
financial management—are based on objective indicators and parameters, whereas the
system’s evaluation by patients is, to some extent, subjective. In particular, improving
health is the ultimate aim of the healthcare system. In this regard, it is relevant to consider
the example dimensions of the health status that are affected by how the system is operated,
given the ever-growing needs of patients. Financial management is essential in healthcare,
as this sector experiences the availability of limited resources. Hence, it is vital to assess the
financial situation of medical facilities, the management of infrastructure, and the economic
efficiency of treatments and therapies. Finally, consumer satisfaction is becoming more and
more important in evaluating the healthcare sector. Thus, it is desirable to consider the
quality of services, comfort in using patients’ services, and patient rights.

The hierarchy of inputs and outputs for the case study is presented in Figure 4. Among
the nine factors, there are six outputs (H1, H3, F1, F3, S2, and S3) and three inputs (H2, F2, and
S1). The selected indicators are representative of the three dimensions and the viewpoints
of the most important stakeholders. The indicators in the health improvement category (H)
are representative of the dimensions of preventing diseases (H1), their exacerbation (H2),
and deaths (H3). The factors considered in the financial management category stand for the
financial situation of healthcare units (F1) and infrastructure management (F2 and F3). The
inputs and outputs in the system’s evaluation category (S) represent the waiting time (S1),
official quality system (S2), and patient satisfaction (S3). Moreover, we verified that the
trends that these indicators confirm also represent other factors that could be considered in
the three categories. Note that analysis including over 40 indicators available for assessing
the healthcare system in Poland [29] would not make much sense in the context of DEA, as
the number of inputs and outputs would be too large compared to the number of DMUs.
Typically, such analyses indicate that all or almost all units are efficient, as even the worst
performers tend to specialize in some particular aspects. Hence, we opted for an analysis
with a reduced—though carefully selected—set of indicators. The performances of the
sixteen voivodeships in terms of nine considered factors are given in Table 1.
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Figure 4. A hierarchy of indicators considered in the quality evaluation of healthcare systems.

For all factors, we elicited marginal value functions from experts in the healthcare
system in Poland. They are provided in Figure 5. They are decreasing for inputs and
increasing for outputs. Moreover, they differ in shape. The function is, e.g., close to linear
for H2, convex for F3, concave for F2, and S-shaped for S2. Moreover, we incorporated the
relative and absolute weight constraints. The category of inhabitants’ health improvement
is more important than the two other categories. Hence, we introduced the following
constraints: wH ≥ wF and wH ≥ wS, where wH , wF, and wS are the weights of the three
categories. Finally, we wanted to avoid both the minor and dominating roles of any
individual factor or category in the analysis. Hence, we restricted the weight of each
category to be not less than 0.2 and the weights of second-level elementary factors to the
interval [0.2, 0.5]. In what follows, we discuss the results attained in the root hierarchy level
and for each of the three categories separately.

5.1. Comprehensive Evaluation of the Quality of Healthcare Systems

In this section, we discuss the results of the comprehensive assessment of Polish
voivodeships, taking into account all nine indicators. Figure 6 presents the extreme and
expected distances to the best unit for each analyzed province. Three voivodeships are
efficient: POM, LBU, and WLKP. POM also attains the lowest maximal distance (0.105),
which confirms its most favorable evaluation of the healthcare system for all feasible
weights. Moreover, the distances for POM are the most stable, as it is characterized by the
narrowest range (dI,∗ − dI∗ = 0.105). Among the efficient provinces, WLKP has the worst
pessimistic distance to the best province. However, its expected distance is better than that
of LBU, meaning that for some weight vectors, WLKP performs worse than LBU, but its
efficiency score is closer to the best province on average. The worst provinces in the most
and the least favorable scenarios are DSL (dI∗ = 0.306, dI,∗ = 0.522) and SL (dI∗ = 0.251,
dI,∗ = 0.526). The greatest sensitivity of the distances depending on the selected weight
vector is observed for SW, as the width of its distance interval equals 0.355.

The analysis of extreme distances can be enriched with the distribution of distances
over all feasible weight vectors (see Table 2). The efficient provinces (POM, LBU, and
WLKP) are the only ones whose distances were not greater than 0.1 for some samples.
When considering these three voivodeships, only for LBU, the distance was greater than 0.1
for some marginal share of weights (0.8%). Hence, these provinces are robustly better than
the remaining ones. Among the inefficient units, the most favorable results were attained
by ZPM and KP.
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Figure 5. The marginal value functions associated with the inputs and outputs considered in the
case study.

Figure 6. Extreme and expected distances to the best unit for Polish voivodeships in the comprehen-
sive analysis of the healthcare system.

Some provinces are characterized by rather stable distance values. For example, for
MAZ and WM, for over 95% of weight vectors, the distance is the interval (0.2, 0.3]. On
the contrary, the distance for PKR varies more depending on the chosen weight vector.
In this case, positive DAIIs were observed for all buckets between 0.1 and 0.5 with the
greatest values for the intervals (0.3, 0.4] (DAII(PKR, (0.3, 0.4]) = 65.9%) and [0.2, 0.3]
(DAII(PKR, (0.2, 0.3]) = 29.5%). The complete ranking determined by the expected dis-
tances (see Figure 6) indicates POM (0.009) and WLKP (0.017) as the best units and DSL
(0.408) and OPO (0.409) as the worst.
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Table 2. Distribution of distances to the best unit for Polish voivodeships in the comprehensive
analysis of the healthcare system.

DAII [0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1.0]

ZPM 0 0.523 0.475 0.002 0 0 0 0 0 0
POM 1 0 0 0 0 0 0 0 0 0
WM 0 0.006 0.956 0.038 0 0 0 0 0 0
PDL 0 0 0.006 0.714 0.280 0 0 0 0 0
LBU 0.992 0.008 0 0 0 0 0 0 0 0

WLKP 1 0 0 0 0 0 0 0 0 0
KP 0 0.160 0.798 0.042 0 0 0 0 0 0

MAZ 0 0.001 0.963 0.036 0 0 0 0 0 0
LBL 0 0.074 0.729 0.197 0 0 0 0 0 0
DSL 0 0 0 0.406 0.594 0 0 0 0 0
OPO 0 0 0 0.407 0.587 0.006 0 0 0 0
LDZ 0 0 0.599 0.401 0 0 0 0 0 0
SL 0 0 0.254 0.732 0.014 0 0 0 0 0
SW 0 0.127 0.762 0.111 0 0 0 0 0 0

MLP 0 0 0.307 0.675 0.018 0 0 0 0 0
PKR 0 0.002 0.295 0.659 0.044 0 0 0 0 0

The results of robustness analysis for efficiency ranks are presented in Figure 7 and
Table 3. The three efficient voivodeships attain the first rank in the most favorable scenario.
POM and LBU are ranked third in their worst scenario, while WLKP falls fourth in the
pessimistic case. These units are also the best, given their expected ranks. In this regard,
POM (1.543) is followed by WLKP (1.783) and LBU (2.674). Among the inefficient units,
KP is the most advantageous when considering the most favorable ranks (R∗ = 2). Other
inefficient units ranked relatively high in their best scenario are ZPM, WM, LBL, LDZ,
SW, MLP, and PKR (R∗ = 4). However, all inefficient provinces are ranked low in the
least favorable scenario. The best maximal rank among them is observed for KP and LBL
(R∗ = 12), while five provinces can be ranked at the bottom (PDL, DSL, OPO, SL, and PKR).
Finally, the best expected ranks among inefficient units are attained by ZPM (4.962), KP
(5.878), and SW (6.611), while the worst expected positions are associated with DSL (15.166)
and OPO (15.195).

Figure 7. Extreme and expected ranks for Polish voivodeships in the comprehensive analysis of the
healthcare system.

The analysis of efficiency rank acceptability indices (see Table 3) confirms the superior-
ity of POM over other provinces. It is ranked first for most feasible weight vectors (57.7%),
and it is in the top two for almost 90% of samples. Similarly, WLKP is at least second for
over 84% of samples, though its most frequent position is second rather than first. In turn,
LBU is ranked third for most scenarios (72.4%). Even though the best possible rank for KP
is second, such a position was not observed for any weight vector. The highest for which
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ERAI for KP is positive is fourth (24.8%). However, this place is predominantly occupied
by ZPM, which is ranked in the interval [4, 7] for over 90% of feasible scenarios.

Table 3. Distribution of ranks for Polish voivodeships in the comprehensive analysis of the
healthcare system.

ERAI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ZPM 0 0 0 0.594 0.144 0.095 0.072 0.065 0.028 0.002 0 0 0 0 0 0
POM 0.577 0.303 0.120 0 0 0 0 0 0 0 0 0 0 0 0 0
WM 0 0 0 0.029 0.192 0.210 0.191 0.183 0.103 0.042 0.030 0.020 0 0 0 0
PDL 0 0 0 0 0 0 0 0 0 0.002 0.009 0.072 0.114 0.443 0.288 0.072
LBU 0.050 0.226 0.724 0 0 0 0 0 0 0 0 0 0 0 0 0

WLKP 0.373 0.471 0.156 0 0 0 0 0 0 0 0 0 0 0 0 0
KP 0 0 0 0.248 0.245 0.174 0.162 0.099 0.039 0.023 0.010 0 0 0 0 0

MAZ 0 0 0 0 0.101 0.161 0.215 0.171 0.220 0.096 0.033 0.003 0 0 0 0
LBL 0 0 0 0.033 0.084 0.151 0.149 0.158 0.256 0.104 0.044 0.017 0.004 0 0 0
DSL 0 0 0 0 0 0 0 0 0 0 0.003 0.022 0.042 0.140 0.325 0.468
OPO 0 0 0 0 0 0 0 0 0 0 0.001 0.001 0.017 0.217 0.311 0.453
LDZ 0 0 0 0 0 0.007 0.028 0.069 0.139 0.360 0.278 0.090 0.027 0.002 0 0
SL 0 0 0 0 0.007 0.010 0.028 0.032 0.041 0.120 0.150 0.184 0.335 0.068 0.022 0.003
SW 0 0 0 0.096 0.227 0.190 0.146 0.195 0.098 0.040 0.008 0 0 0 0 0

MLP 0 0 0 0 0 0 0.003 0.018 0.052 0.117 0.248 0.266 0.254 0.033 0.009 0
PKR 0 0 0 0 0 0.002 0.006 0.010 0.024 0.094 0.186 0.325 0.207 0.097 0.045 0.004

Table 4 presents the results of exact robustness analysis from the perspective of pair-
wise comparisons. For clarity of presentation, the necessary relation is also presented
in the form of the Hasse diagram in Figure 8. For efficient provinces (POM, WLKP, and
LBU), no other unit is necessarily preferred to them. As expected, these provinces are
necessarily preferred to the greatest number of other units. POM is robustly better than
all thirteen inefficient provinces, and WLKP and LBU prove their superiority over all
units but KP. Among the inefficient provinces, KP is necessarily preferred to the highest
number (4) of other provinces. Eight voivodeships are not robustly as good as any other
unit. The least favorable among them is DSL, which is not even possibly preferred to eight
other provinces.

Table 4. The necessary (N) and possible (P) efficiency preference relations for pairs of Polish voivode-
ships in the comprehensive analysis of the healthcare system.

Voivodeship ZPM POM WM PDL LBU WLKP KP MAZ LBL DSL OPO LDZ SL SW MLP PKR

ZPM N P P P P P N P P P P P P
POM N N N N P P N N N N N N N N N N
WM P N P P P P N N P P P P P
PDL P P N P P P P P P P P P
LBU N P N N N P P N N N N N N N N N

WLKP N P N N P N P N N N N N N N N N
KP P P N P P N P P N N P N P P P

MAZ P P P P N P P P P P P P P
LBL P P P P P N N P P N P P P
DSL P P N P P P P P
OPO P P P P P N P P P P P
LDZ P P P P P P P P N P P P P
SL P P P P P P P N P P P
SW P P P P P P N P P P N P P

MLP P P P P P P P P P P P N P
PKR P P P P P P P P P P P P N
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Figure 8. The Hasse diagram of the necessary efficiency preference relation in the comprehensive
analysis of the healthcare system.

For pairs of voivodeships that are not related by the necessary preference, it is worth
analyzing the pairwise efficiency outranking indices (see Table 5). For some, one province
proves better for most scenarios (see, e.g., ZPM and PKR with PEOI I(ZPM, PKR) = 99.4%
or MAZ and MLP with PEOI I(MAZ, MLP) = 99.3%). For other pairs, the shares of
feasible scenarios confirming the preference in both directions are more balanced (see,
e.g., MAZ and LBL with PEOI I(MAZ, LBL) = 53.4% and PEOI I(LBL, MAZ) = 46.6%, or
PKR and SL with PEOI I(PKR, SL) = 47.6% and PEOIL(SL, PKR) = 52.4%).

Table 5. Pairwise efficiency outranking indices for pairs of Polish voivodeships in the comprehensive
analysis of the healthcare system.

PEOI ZPM POM WM PDL LBU WLKP KP MAZ LBL DSL OPO LDZ SL SW MLP PKR

ZPM 1 0 0.835 1 0 0 0.690 0.962 0.852 1 1 0.989 1 0.791 1 0.994
POM 1 1 1 1 0.870 0.625 1 1 1 1 1 1 1 1 1 1
WM 0.165 0 1 1 0 0 0.286 0.609 0.630 1 1 0.890 0.918 0.481 0.960 0.967
PDL 0 0 0 1 0 0 0 0 0 0.760 0.748 0.006 0.095 0 0.039 0.146
LBU 1 0.130 1 1 1 0.181 1 1 1 1 1 1 1 1 1 1

WLKP 1 0.375 1 1 0.819 1 1 1 1 1 1 1 1 1 1 1
KP 0.310 0 0.714 1 0 0 1 0.758 0.805 1 1 0.953 0.974 0.651 0.996 0.990

MAZ 0.038 0 0.391 1 0 0 0.242 1 0.534 1 1 0.850 0.981 0.378 0.993 0.958
LBL 0.148 0 0.370 1 0 0 0.195 0.466 1 1 1 0.879 0.909 0.295 0.898 0.988
DSL 0 0 0 0.240 0 0 0 0 0 1 0.487 0.001 0.016 0 0.052 0.061
OPO 0 0 0 0.252 0 0 0 0 0 0.513 1 0.002 0.023 0 0 0.020
LDZ 0.011 0 0.110 0.994 0 0 0.047 0.150 0.121 0.999 0.998 1 0.745 0.051 0.757 0.849
SL 0 0 0.082 0.905 0 0 0.026 0.019 0.091 0.984 0.977 0.255 1 0.049 0.489 0.524
SW 0.209 0 0.519 1 0 0 0.349 0.622 0.705 1 1 0.949 0.951 1 0.997 0.992

MLP 0 0 0.040 0.961 0 0 0.004 0.007 0.102 0.948 1 0.243 0.511 0.003 1 0.568
PKR 0.006 0 0.033 0.854 0 0 0.010 0.042 0.012 0.939 0.980 0.151 0.476 0.008 0.432 1

5.2. The Category of Inhabitants’ Health Improvement

In this section, we focus on the results attained when considering only inputs and
outputs from the inhabitants’ health improvement category. In addition, we emphasize the
differences with respect to the comprehensive level.

Figure 9 presents the extreme and expected distances to the best unit for all considered
voivodeships. WLKP is the only efficient province given this category, so its distance to
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the best unit always equals zero. Hence, POM and LBU lose the status of efficient units.
However, these two voivodeships and ZPM have relatively low distances to the best one:
ZPM (dH ∈ [0.065, 0.146]), POM (dH ∈ [0.130, 0.180]), and LBU (dH ∈ [0.114, 0.246]). In
general, the widths of distance intervals are notably more precise than when considering
all relevant factors jointly. They are also more diverse, encompassing a greater range.
In particular, seven provinces have maximal distances greater than 0.6, with three even
exceeding the threshold of 0.7. At the comprehensive level, this was not observed for
any voivodeship.

Among the inefficient provinces, ZPM can be considered the best, as it has the lowest
distances to the best unit in both optimistic and pessimistic settings. Moreover, its best
expected distance (0.109) is twice lower than at the comprehensive level, letting it overtake
POM and LBU, which were judged efficient in the hierarchy’s root. The other twelve
inefficient provinces are significantly worse. The least favorable among them is OPO, with
the distance to the best unit in its optimistic scenario equal to 0.73 and an expected distance
of 0.754. In the average case, OPO is directly preceded by MLP (0.659) and PKR (0.652).
Note that at the comprehensive level, the worst maximal distances were attained by SL, DSL,
and PDL. They all prove slightly better regarding inhabitants’ health improvement results.

Figure 9. Extreme and expected distances to the best unit for Polish voivodeships when considering
inhabitants’ health improvement level.

Table 6 presents the distribution of distances for all voivodeships when considering the
inhabitants’ health improvement level. The only two provinces for which this distance is
lower than 0.1 are WLKP (100%) and ZPM (33.2%). Such a favorable result was not attained
by ZPM at the comprehensive level for any feasible weight vector. Then, its distance could
drop even above 0.4. For the two units mentioned above, as well as POM and LBU, all
samples confirm distances not higher than 0.2. Furthermore, for all provinces, we can
indicate a single bucket in which the unit’s distance falls for most samples. For example, it
is (0.2, 0.3] for LBU, (0.3, 0.4] for MAZ, and (0.7, 0.8] for OPO. For these three provinces,
the predominating distance buckets at the comprehensive level were better. However, for
other voivodeships, including SW, MLP, and PKR, the most often repeated distance range
worsened when limiting the analysis to the inhabitants’ health improvement level.

The extreme and expected efficiency ranks at the inhabitants’ health improvement
level are provided in Figure 10. WLKP, as the only efficient province, is always ranked
first. Both ZPM and POM are ranked between second and fourth, while for LBU, this range
is slightly wider ([2, 5]). Conversely, only two voivodeships—OPO and PKR—fall to the
bottom ranking at any point, and three others (WM, DSL, and MLP) are ranked fifteenth
in the least favorable scenario. Finally, for DSL and MAZ, the difference between their
extreme ranks is the greatest. For example, DSL is ranked between sixth and fifteenth.
According to the expected ranks, WLKP (ER = 1), ZPM (2.110), POM (3.034), and LBU
(3.860) are the best, and PKR (14.205), MLP (14.339), and OPO (15.990) are the worst.
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Table 6. Distribution of distances to the best unit for Polish voivodeships when considering inhabi-
tants’ health improvement level.

DAII [0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1.0]

ZPM 0.332 0.668 0 0 0 0 0 0 0 0
POM 0 1 0 0 0 0 0 0 0 0
WM 0 0 0 0.055 0.727 0.218 0 0 0 0
PDL 0 0 0 0 0 0.658 0.342 0 0 0
LBU 0 0.713 0.287 0 0 0 0 0 0 0

WLKP 1 0 0 0 0 0 0 0 0 0
KP 0 0 0 0 0.341 0.659 0 0 0 0

MAZ 0 0 0 0.817 0.183 0 0 0 0 0
LBL 0 0 0 0 0.342 0.618 0.040 0 0 0
DSL 0 0 0 0.033 0.510 0.433 0.024 0 0 0
OPO 0 0 0 0 0 0 0 1 0 0
LDZ 0 0 0 0 0.150 0.710 0.140 0 0 0
SL 0 0 0.433 0.567 0 0 0 0 0 0
SW 0 0 0 0 0.256 0.744 0 0 0 0

MLP 0 0 0 0 0 0.088 0.715 0.197 0 0
PKR 0 0 0 0 0 0.125 0.708 0.167 0 0

When compared to the comprehensive level, the greatest improvement in the attained
ranks can be observed for ZPM ([2, 4] rather than [4, 15]) and SL ([4, 5] rather than [7, 16]). On
the contrary, the greatest deterioration of possible positions is noted for OPO ([15, 16] rather
than [8, 16]) and MLP ([11, 16] rather than [4, 15]). For many provinces, including WM, POL,
MAZ, LBL, LDZ, and SW, the ranking intervals got significantly narrower, confirming the
lower diversity of results when limiting the scope of the analysis to health improvement.

Figure 10. Extreme and expected ranks for Polish voivodeships when considering inhabitants’ health
improvement level.

The distribution of efficiency ranks given the inhabitants’ health improvement level
is presented in Table 7. The most stable individual positions were observed for WLKP
(1–100%), SL (5–99.6%), OPO (16–99.0%), and ZPM (2–91.6%). Such high acceptabilities
were not observed at the comprehensive level for any position and unit. In fact, the
greatest share of weights (72.4%) supported the third position of LBU. Returning to the
health improvement category, for some other voivodeships, the vast majority of weights
indicate a pair of ranks (e.g., MLP and PKR are ranked 14th or 15th for 92.3% or 78.3%
samples, respectively). Finally, the ranks of some units are more dependent on the chosen
weight vector. For example, KP attained positions between 8th and 12th, with no ERAI
exceeding 28%. Similarly, SW is ranked within the range [7, 12] with ERAIs not less than
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6.9% and not greater than 31.1%. Still, these outcomes exhibit less diversity than at the
comprehensive level.

Table 7. Distribution of ranks for Polish voivodeships when considering inhabitants’ health improve-
ment level.

ERAI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ZPM 0 0.916 0.058 0.026 0 0 0 0 0 0 0 0 0 0 0 0
POM 0 0.054 0.858 0.088 0 0 0 0 0 0 0 0 0 0 0 0
WM 0 0 0 0 0 0.029 0.705 0.110 0.093 0.063 0 0 0 0 0 0
PDL 0 0 0 0 0 0 0 0 0.003 0.179 0.096 0.075 0.403 0.142 0.102 0
LBU 0 0.030 0.084 0.882 0.004 0 0 0 0 0 0 0 0 0 0 0

WLKP 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
KP 0 0 0 0 0 0 0 0.212 0.272 0.182 0.087 0.247 0 0 0 0

MAZ 0 0 0 0 0 0.932 0.013 0.046 0.009 0 0 0 0 0 0 0
LBL 0 0 0 0 0 0 0.049 0.036 0.294 0.206 0.177 0.176 0.049 0.013 0 0
DSL 0 0 0 0 0 0.039 0.039 0.399 0.201 0.070 0.142 0.064 0.019 0.026 0.001 0
OPO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.010 0.990
LDZ 0 0 0 0 0 0 0 0.120 0.059 0.085 0.159 0.281 0.296 0 0 0
SL 0 0 0 0.004 0.996 0 0 0 0 0 0 0 0 0 0 0
SW 0 0 0 0 0 0 0.194 0.077 0.069 0.215 0.311 0.134 0 0 0 0

MLP 0 0 0 0 0 0 0 0 0 0 0.023 0.011 0.043 0.450 0.473 0
PKR 0 0 0 0 0 0 0 0 0 0 0.005 0.012 0.190 0.369 0.414 0.010

The graph of the necessary relation at the inhabitants’ health improvement level is
shown in Figure 11. The robust conclusions are richer than at the comprehensive level.
For example, the number of pairs of different provinces that are related by the necessary
preference increased from 47 to 85. Moreover, the number of levels in the respective Hasse
diagram increased from 3 to 7.

In particular, WLKP is necessarily preferred to all other provinces, and four other
voivodeships—POM, ZMP, LBU, and SL—proves to be necessarily better than the remain-
ing eleven units. The worst unit is OPO, which is not necessarily preferred to any other
province while being possibly preferred only to PKR. Further, MLP and PKR are necessarily
worse than 10 and 9 other provinces, respectively. Finally, SL benefited the most from
limiting the scope to the health improvement level, because in the hierarchy’s root, it was
not robustly better than any other voivodeship.

The respective PEOIs are given in Table 8. Similarly, as at the comprehensive level,
for some pairs, one unit is significantly better than the other (see, e.g., ZPM and POM with
PEOI(ZPM, POM) = 94.8% or LBU and SL with PEOIH(LBU, SL) = 98.7%). In turn,
other pairs are characterized by more balanced stochastic acceptabilities, indicating an ad-
vantage of either voivodeship (see, e.g., PKR and MLP with PEOIH(PKR, MLP) = 52.2%
or KP and SW with PEOIH(KP, SW) = 52.4%). However, the absolute values of POEIs
for some pairs differ vastly compared to the hierarchy’s root. For example, POM is nec-
essarily better than ZPM at the comprehensive level, but when considering only health
improvement, ZPM attains no worse efficiency for 94.8% of feasible weights.

5.3. The Category of Financial Management

In this section, we discuss the results attained at the level of financial management.
Instead of comparing them to the outcomes at the comprehensive level, we emphasize how
managers can use them to improve the relative efficiency of provinces. Similar improvement
strategies can be designed for other categories or hierarchy nodes.

Figure 12 presents the extreme and expected distances to the best province when
limiting the scope to financial management. The most important result derived from their
analysis is the division of provinces into efficient and inefficient. The minimal distance
equals zero only for two units: POM and LBU. This means that they are the best performers
among the sixteen voivodeships for at least one feasible weight vector. However, LBU
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has slightly better maximal and expected distances to the best province than POM. When
looking at their inputs and outputs within the financial category, they perform equally
well (51.3) on output F3. It is the best value among all provinces. Moreover, the other two
financial factors are greater for LBU, confirming that it transforms more beds (input F2)
into a more significant profit (output F1). These two voivodeships should serve as ultimate
peers for the remaining inefficient units in terms of financial management.

Figure 11. The Hasse diagram of the necessary efficiency preference relation when considering
inhabitants’ health improvement level.

Table 8. Pairwise efficiency outranking indices for pairs of Polish voivodeships when considering
inhabitants’ health improvement level.

PEOI ZPM POM WM PDL LBU WLKP KP MAZ LBL DSL OPO LDZ SL SW MLP PKR

ZPM 1 0.948 1 1 0.973 0 1 1 1 1 1 1 1 1 1 1
POM 0.052 1 1 1 0.897 0 1 1 1 1 1 1 1 1 1 1
WM 0 0 1 1 0 0 0.995 0.070 0.904 0.921 1 0.851 0 0.786 1 1
PDL 0 0 0 1 0 0 0 0 0.240 0.014 1 0.320 0 0.209 0.844 0.767
LBU 0.027 0.103 1 1 1 0 1 1 1 1 1 1 0.987 1 1 1

WLKP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
KP 0 0 0.005 1 0 0 1 0 0.565 0.395 1 0.640 0 0.524 1 0.996

MAZ 0 0 0.930 1 0 0 1 1 0.989 0.939 1 1 0 1 1 1
LBL 0 0 0.096 0.760 0 0 0.435 0.011 1 0.278 1 0.688 0 0.489 0.962 1
DSL 0 0 0.079 0.986 0 0 0.605 0.061 0.722 1 1 0.728 0 0.635 0.942 0.947
OPO 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.015
LDZ 0 0 0.149 0.680 0 0 0.360 0 0.312 0.272 1 1 0 0.011 1 1
SL 0 0 1 1 0.013 0 1 1 1 1 1 1 1 1 1 1
SW 0 0 0.214 0.791 0 0 0.476 0 0.511 0.365 1 0.989 0 1 1 1

MLP 0 0 0 0.156 0 0 0 0 0.038 0.058 1 0 0 0 1 0.478
PKR 0 0 0 0.233 0 0 0.004 0 0 0.053 0.985 0 0 0 0.522 1

Among them, the overall good performers are WLKP (EdF = 0.1689) and MLP
(EdF = 0.2328). They do not optimize one specific input or output, but perform decently
on all indicators. In the optimistic, pessimistic, and expected scenarios, SL attains the least
favorable results with the significantly greatest distances to the best province. In turn, KP
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has the broadest range of distances ([0.140, 0.416]), confirming its performance’s sensitivity
to the selection of particular priorities. This results from an imbalanced performance profile
with a highly favorable value on output F1 and a relatively poor value on output F3. Finally,
when complete order is desired, it can be imposed by the expected distances. In this
case, LBU (EdF = 0.010) and POM (EdF = 0.021) are safely ranked at the top, and DSL
(EdF = 0.509) and SL (EdF = 0.735) are ranked at the bottom.

Figure 12. Extreme and expected distances to the best unit for Polish voivodeships when considering
financial management level.

The distance distribution at the financial management level is presented in Table 9.
For both efficient provinces (POM and LBU), the distance is always within the first bucket
([0.0, 0.1]). Among the inefficient provinces, WLKP confirms its superiority over the remain-
ing units, as for over 99% samples, its distance from the efficient unit is not greater than
0.2. The only two other provinces with positive DAIIs for bucket (0.1, 0.2] are KP (14.2%)
and MLP (4.3%). The greatest stability of distances among inefficient provinces is observed
for ZPM with DAIIF(ZPM, (0.3, 0.4]) = 1. There are only two provinces, PDL and KP, for
which most samples confirm no single distance bucket. Furthermore, KP is the only unit
with positive DAIIs for more than three buckets ((0.1, 0.5]).

Table 9. Distribution of distances to the best unit for Polish voivodeships when considering financial
management level.

DAII [0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1.0]

ZPM 0 0 0 1 0 0 0 0 0 0
POM 1 0 0 0 0 0 0 0 0 0
WM 0 0 0.757 0.243 0 0 0 0 0 0
PDL 0 0 0.475 0.483 0.042 0 0 0 0 0
LBU 1 0 0 0 0 0 0 0 0 0

WLKP 0 0.993 0.007 0 0 0 0 0 0 0
KP 0 0.142 0.453 0.379 0.026 0 0 0 0 0

MAZ 0 0 0 0.857 0.143 0 0 0 0 0
LBL 0 0 0 0.139 0.775 0.086 0 0 0 0
DSL 0 0 0 0 0.312 0.688 0 0 0 0
OPO 0 0 0 0.240 0.708 0.052 0 0 0 0
LDZ 0 0 0.705 0.295 0 0 0 0 0 0
SL 0 0 0 0 0 0 0.220 0.743 0.037 0
SW 0 0 0.366 0.628 0.006 0 0 0 0 0

MLP 0 0.043 0.957 0 0 0 0 0 0 0
PKR 0 0 0 0 0.545 0.455 0 0 0 0

The results of the robustness analysis for efficiency ranks at the financial management
level are presented in Figure 13 (extreme and expected positions) and Table 10 (efficiency
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rank acceptability indices). They provide additional insights into the comparisons of
efficient provinces. Specifically, even if LUB and POM can be ranked first for some weight
vectors, the former is ranked first almost twice as often as the latter. This makes it the
most favorable province regarding financial management, as additionally confirmed by
the expected ranks (ERF(LUB) = 1.377 vs. ERF(POM) = 1.623). The remaining provinces
are at most third in the best case. Again, WLKP proves to be the most advantageous
among them, with ERF(WLKP) = 3.107. Further, KP has the broadest range of efficiency
positions, being ranked between third and eleventh. ERAIs confirm that its ranks are rather
equally distributed between these extreme positions, with the maximal value for the fifth
rank (ERAIF(KP, 5) = 24.8%) and acceptabilities greater than 6% for all ranks within the
range [3, 11]. Such great diversity is a consequence of its extreme performances. In fact,
it is the best among all provinces on F1 while being in the bottom three on F3. Thus, KP
is focused on the profit attained by healthcare institutions rather than on the number of
treated patients. This aspect needs to be improved when aiming for higher ranks.

There are three other provinces with relatively wide possible efficiency rank intervals:
ZPM ([6, 12]), PDL ([5, 11]), and OPO ([9, 15]). Among them, only ZPM attains a single
rank for most samples (ERAIF(ZPM, 10) = 62.4%). Finally, SL is ranked at the bottom
regardless of the weight vector. This is related to its greatest value on input F2, the lowest
value on output F3, and a relatively low value on output F1. Thus, even if the financial
input of SL is the greatest, its outputs are less favorable than for provinces with lesser
financial resources. The complete ranking established with the expected efficiency ranks
aligns with the one based on expected distances, with LBU, POM, WLKP, and MLP being
ranked among the best provinces and SL, DSL, and PKR placed at the bottom.

Figure 13. Extreme and expected ranks for Polish voivodeships when considering financial manage-
ment level.

Figure 14 presents the necessary ranking at the financial management level. POM and
LBU are necessarily preferred to all other provinces, confirming their superiority given
the financial category. The second level includes KP, WLKP, and MLP, and the lowest
one contains PKR, DSL, and SL. They are possibly preferred to 4, 3, and 0 other units,
respectively. Moreover, SL is necessarily worse than all other voivodeships.

The pairwise comparisons are useful for analysts particularly familiar with some
provinces. For example, the authorities of OPO can compare it to other provinces searching
for possible improvements. They can note that OPO is robustly worse than PDL or LBU and
robustly better than SL. Notably, the necessary ranking (see Figure 14) is a good starting
point to find the improvement paths for provinces. OPO has multiple paths to achieve
efficiency. For example, it can take PDL as the first benchmark, follow WLKP, and finally
refer to POM or LBU. An alternative improvement path runs through KP and POM.
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Table 10. Distribution of ranks for Polish voivodeships when considering financial management level.

ERAI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ZPM 0 0 0 0 0 0.011 0.046 0.182 0.062 0.624 0.068 0.007 0 0 0 0
POM 0.377 0.623 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WM 0 0 0 0.048 0.318 0.207 0.089 0.143 0.195 0 0 0 0 0 0 0
PDL 0 0 0 0 0.001 0.206 0.200 0.205 0.133 0.164 0.091 0 0 0 0 0
LBU 0.623 0.377 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WLKP 0 0 0.900 0.093 0.007 0 0 0 0 0 0 0 0 0 0 0
KP 0 0 0.100 0.088 0.248 0.169 0.066 0.077 0.074 0.061 0.117 0 0 0 0 0

MAZ 0 0 0 0 0 0 0 0.003 0.151 0.054 0.563 0.187 0.042 0 0 0
LBL 0 0 0 0 0 0 0 0 0 0.012 0.046 0.379 0.424 0.139 0 0
DSL 0 0 0 0 0 0 0 0 0 0 0 0 0 0.382 0.618 0
OPO 0 0 0 0 0 0 0 0 0.005 0.059 0.114 0.300 0.339 0.092 0.091 0
LDZ 0 0 0 0.100 0.126 0.365 0.332 0.077 0 0 0 0 0 0 0 0
SL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
SW 0 0 0 0 0 0.013 0.267 0.313 0.380 0.026 0.001 0 0 0 0 0

MLP 0 0 0 0.671 0.300 0.029 0 0 0 0 0 0 0 0 0 0
PKR 0 0 0 0 0 0 0 0 0 0 0 0.127 0.195 0.387 0.291 0

Figure 14. The Hasse diagram of the necessary efficiency preference relation when considering
financial management level.

The analysis of PEOIs (see Table 11) is helpful for pairs related by mutual possible pref-
erence. For some, one province attains greater efficiency more often (e.g.,
PEOIF(SW, ZPM) = 91.2%). For other pairs, indicating a better voivodeship is more
challenging, as the shares of weights confirming the advantage of either unit are sim-
ilar. An example of such a pair is LDZ and KP with PEOIF(LDZ, KP) = 48.3% and
PEOIF(KP, LDZ) = 51.7%.
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Table 11. Pairwise efficiency outranking indices for pairs of Polish voivodeships when considering
financial management level.

PEOI ZPM POM WM PDL LBU WLKP KP MAZ LBL DSL OPO LDZ SL SW MLP PKR

ZPM 1 0 0 0.285 0 0 0.244 0.999 0.986 1 0.925 0.012 1 0.088 0 1
POM 1 1 1 1 0.403 1 1 1 1 1 1 1 1 1 1 1
WM 1 0 1 0.661 0 0 0.512 1 1 1 1 0.510 1 0.816 0.083 1
PDL 0.715 0 0.339 1 0 0 0.197 0.800 1 1 1 0.251 1 0.546 0.005 1
LBU 1 0.597 1 1 1 1 1 1 1 1 1 1 1 1 1 1

WLKP 1 0 1 1 0 1 0.920 1 1 1 1 1 1 1 0.996 1
KP 0.756 0 0.488 0.803 0 0.080 1 0.813 1 1 1 0.517 1 0.665 0.172 1

MAZ 0.001 0 0 0.200 0 0 0.187 1 0.932 1 0.809 0 1 0 0 1
LBL 0.014 0 0 0 0 0 0 0.068 1 1 0.480 0 1 0 0 0.752
DSL 0 0 0 0 0 0 0 0 0 1 0.102 0 1 0 0 0.287
OPO 0.075 0 0 0 0 0 0 0.191 0.520 0.898 1 0 1 0.006 0 0.754
LDZ 0.988 0 0.490 0.749 0 0 0.483 1 1 1 1 1 1 1 0.109 1
SL 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
SW 0.912 0 0.184 0.454 0 0 0.335 1 1 1 0.994 0 1 1 0 1

MLP 1 0 0.917 0.995 0 0.004 0.828 1 1 1 1 0.891 1 1 1 1
PKR 0 0 0 0 0 0 0 0 0.248 0.713 0.246 0 1 0 0 1

5.4. The Category of Consumer Satisfaction

In this section, we present the results of provinces’ performance analysis at the level of
consumer satisfaction with the healthcare system. To save space, we refer only to the exact
and expected results without reporting the complete tables with stochastic acceptabilities.

Figure 15 presents the extreme and expected distances when considering the satisfac-
tion of consumers. There are five efficient provinces with dS∗ = 0: POM, KP, LBL, SW, and
PKR. This is the greatest number for any node in the considered hierarchy. Among them,
two provinces, LBL and PKR, have particularly narrow distance intervals, being close to
the efficient units regardless of the weight vector (dS,∗ = 0.081 for LBL and dS,∗ = 0.057
for PKR). They are also the best regarding the expected distance (for PKR—EdS = 0.005
and for LBL—EdS = 0.029). In turn, the maximal (worst) possible distances for SW (0.285)
and POM (0.307) are vastly greater, emphasizing their sensitivity to the selection of a partic-
ular weight vector. Among the inefficient units, the best minimal (optimistic) distance is
achieved by OPO (0.049), and the best maximal (pessimistic) distance is attained by WLKP
(0.312). The three provinces that are the worst considering both minimal and maximal
distance are PDL (dS∗ = 0.454, dS,∗ = 0.556), DSL (dS∗ = 0.449, dS,∗ = 0.623), and ZPM
(dS∗ = 0.513, dS,∗ = 0.670). Their poor performance is also reflected in the bottom ranks
according to the expected distances.

Figure 15. Extreme and expected distances to the best unit for Polish voivodeships when considering
consumer satisfaction level.
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The extreme and expected efficiency ranks in consumer satisfaction are presented in
Figure 16. Among the five efficient provinces, PKR has the narrowest rank interval; in
the least favorable scenario, it is ranked third. On the contrary, even if POM is efficient,
it can drop even to the tenth position, making its performance the least stable among all
voivodeships. LBU is the best inefficient province when it comes to the best rank (RS∗ = 3),
and the best-ranked inefficient units in the pessimistic settings are WM, LBU, and OPO
(RS,∗ = 9). The worst provinces considering both the minimal and maximal ranks are ZPM
([15, 16]), PDL ([14, 15]), and DSL ([14, 16]). Notably, their rank intervals are very narrow.
As far as the expected ranks are concerned, the best province is PKR (1.426), followed by
LBL (2.249) and KP (3.441). On the other extreme, PDL (14.192), DSL (14.988), and ZPM
(15.820) are the least favorable.

Figure 16. Extreme and expected ranks for Polish voivodeships when considering consumer satisfac-
tion level.

The necessary efficiency preference relation is presented as the Hasse diagram in
Figure 17. The provinces form the multiple-level structure, with efficient ones (POM, PKR,
LBL, KP, and SW) at the top. Among them, PKR and LBL are necessarily preferred to
the most significant number of eleven other provinces, while POM proves robustly better
than only six other provinces. Five other voivodeships (WM, LBU, OPO, WLKP, and MLP)
are placed in the second level. All of them are necessarily preferred to four or five other
provinces. Finally, DSL and ZPM are confirmed as the worst provinces, as they are not
necessarily preferred to any other province. In fact, DSL is possibly preferred to only two
other units (ZPM and PDL), while ZPM is at least as efficient for at least one weight vector
only when compared to DSL.

5.5. Complete Efficiency Rankings of Voivodeships

The expected distances (Ed) and ranks (ER) allow for the construction of a complete
ranking of voivodeships. In this section, we compare such orders with the ones obtained
with the most commonly used ranking procedures for DEA, i.e., Cross-efficiency (CE) [30]
and Super-efficiency (SE) [31]. We adapted them to a value-based additive efficiency model
and ran it on each category of indicators.

The rankings generated by all four procedures for the level of inhabitants’ health
improvement are provided in Table 12. To quantify the agreement level of such rankings
for all hierarchy nodes, we used Kendall’s τ coefficient [28,32]. Its values are shown in
Table 13. Note that −1 means the rankings are inverse, whereas 1 denotes a pair of the
same rankings.

All four procedures provide highly correlated rankings. The two methods proposed in
this paper (Ed and ER) offer the most similar orders of provinces. The rankings constructed
with these two procedures are the same for the comprehensive analysis of the healthcare
systems and the customer satisfaction category. For the remaining two categories, Kendall’s
τ coefficient equals 0.97.

The similarity between the rankings based on Ed, ER, and CE is between 0.73 for
the comprehensive analysis and 0.97 for health improvement and financial management
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perspectives. The average measure value is 0.904. When comparing the orders imposed by
SE and the two robustness-based methods, Kendall’s τ is between 0.72 and 0.95 (0.92) for
Ed (ER), with an average value of 0.879 (0.863). Given that the maximal possible value of
Kendall’s τ is 1, the observed similarity levels are very high.

Figure 17. The Hasse diagram of the necessary efficiency preference relation when considering
consumer satisfaction level.

Table 12. The voivodeships’ efficiency rankings imposed by four different measures at the level of
health improvement: expected distance (Ed), expected rank (ER), cross-efficiency (CE), and super-
efficiency (SE).

ZPM POM WM PDL LBU WLKP KP MAZ LBL DSL OPO LDZ SL SW MLP PKR

Ed 0.109 0.152 0.462 0.582 0.179 0.000 0.514 0.372 0.523 0.492 0.754 0.548 0.302 0.526 0.659 0.652
2 3 7 13 4 1 9 6 10 8 16 12 5 11 15 14

ER 2.110 3.034 7.456 12.530 3.860 1.000 9.885 6.132 10.215 9.164 15.990 11.310 4.996 9.774 14.339 14.205
2 3 7 13 4 1 10 6 11 8 16 12 5 9 15 14

CE 0.102 0.155 0.471 0.598 0.178 0.000 0.525 0.378 0.507 0.495 0.760 0.526 0.294 0.509 0.656 0.630
2 3 7 13 4 1 11 6 9 8 16 12 5 10 15 14

SE 0.065 0.130 0.383 0.514 0.114 -0.140 0.458 0.324 0.414 0.374 0.726 0.470 0.233 0.469 0.565 0.560
2 4 8 13 3 1 10 6 9 7 16 12 5 11 15 14

Table 13. Kendall’s τ coefficient for ranking procedures at each hierarchy level.

Comprehensive
Analysis

Inhabitants’ Health
Improvement

Effective Financial
Management

Consumer Satisfaction

Ed ER CE SE Ed ER CE SE Ed ER CE SE Ed ER CE SE

Ed 1.00 1.00 0.73 0.72 1.00 0.97 0.97 0.95 1.00 0.97 0.97 0.95 1.00 1.00 0.95 0.90
ER 1.00 1.00 0.73 0.72 0.97 1.00 0.97 0.92 0.97 1.00 0.97 0.92 1.00 1.00 0.95 0.90
CE 0.73 0.73 1.00 0.85 0.97 0.97 1.00 0.95 0.97 0.97 1.00 0.92 0.95 0.95 1.00 0.92
SE 0.72 0.72 0.85 1.00 0.95 0.92 0.95 1.00 0.95 0.92 0.92 1.00 0.90 0.90 0.92 1.00
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5.6. Discussion

Three provinces, namely POM, WLKP, and LBU, prove to be the best in the compre-
hensive analysis of the healthcare system in Poland. However, the results for the three
subcategories differ. This section discusses the conclusions that can be derived from the
cross-category analysis, indicating various provinces’ strong and weak points. For illus-
trative purposes, we refer to three example voivodeships representing the top (WLKP),
middle (PKR), and bottom (OPO) performers in the hierarchy’s root.

When it comes to WLKP, it proves to be the best at the inhabitants’ health improve-
ment level; it is necessarily preferred by POM and LBU for the financial management level,
and its ranks are between fifth and twelfth, given the consumer satisfaction perspective.
This suggests that despite the decent quality of medical services, there is room for im-
provement in patient satisfaction and financial management. In particular, managers can
conduct some training in soft skills for medical staff to improve consumer assessment of
the healthcare system.

PKR is the best province regarding consumer satisfaction, as confirmed by its favorable
expected distance and rank. However, when considering the comprehensive results and
conclusions drawn for the remaining two categories, it performs poorly. Its expected
rank is greater than 13 for inhabitants’ health improvement and financial management
categories, while in the hierarchy’s root, its average rank is 12.024. Hence, the healthcare
system managers in this province should focus on improvements in medical decisions and
financial management. In turn, other provinces can consider the healthcare system in PKR
as the benchmark of proper communication with the consumers.

Such a cross-category analysis can serve as the basis for designing an improvement
plan for provinces that proved to be relatively bad in the comprehensive analysis. In
particular, the analysis of OPO’s poor performance points to the inhabitants’ health im-
provement category and financial management. It is the worst province for the former
perspective for 99% of weight vectors, and its expected rank is only 12.549 for the latter
category. Hence, managers should first focus on improving inhabitants’ health, due to
the high importance of this category in the analysis. Then, they should design a plan for
advancing financial management.

6. Conclusions

This paper introduce a novel framework for robustness analysis in the context of
additive value-based efficiency analysis with a hierarchical structure. It admits a multiple-
layer organization of relevant factors from the most general to the most detailed ones while
tolerating both inputs and outputs in the same node. We accept the linear weight restrictions
concerning the importance and trade-offs between various factors or subcategories with
the common predecessor in the hierarchy. The results can be considered in each hierarchy
node, letting the analyst view the comprehensive outcomes and draw conclusions for
the subproblems where the relevant factors are limited to concise subsets of inputs and
outputs reflecting a particular perspective. The proposed framework can be used in
the standard efficiency analysis and the decision contexts requiring the consideration of
composite indicators.

We derived the results by considering three perspectives: score-based distances to the
efficient unit, ranks, and pairwise preference relations. For each of them, we proposed a
pair of methods. The first group was based on mathematical programming, offering the
exact, extreme outcomes that can be attained in the set of feasible input/output weights.
The other group was based on Monte Carlo simulations, providing the distribution of
efficiency outcomes through stochastic acceptabilities that estimate the share of the weight
subspaces confirming a given result. These approaches are complementary because the
exact outcomes often need more conclusiveness, whereas the stochastic indices—even if
approximated with high accuracy—may fail to capture some extreme results.

We illustrated the framework’s applicability by assessing the quality of the healthcare
system of sixteen Polish voivodeships. The analysis included nine indicators of different
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natures and concerned four levels. The comprehensive results were based on all relevant
characteristics considered jointly, while the three subproblems captured the perspectives
of inhabitants’ health improvement, financial management, and consumer satisfaction.
We reported three provinces—Pomorskie (POM), Wielkopolskie (WLKP), and Lubuskie
(LBU)—as the most efficient ones. We presented their strong and weak points by referring
to the results in all hierarchy nodes. Moreover, we discussed the practical usefulness of the
robustness analysis in terms of managerial implications.

Author Contributions: A.L.-K.: conceptualization, methodology, software, investigation, data cu-
ration, writing—original draft, visualization; M.K.: conceptualization, methodology, validation,
formal analysis, investigation, writing—original draft, supervision, project administration, funding
acquisition; W.M.: conceptualization, software, visualization, writing—revision. All authors have
read and agreed to the published version of the manuscript.

Funding: Anna Labijak-Kowalska is grateful for the support from the Polish Ministry of Education
and Science (grant no. 0311/SBAD/0735). Miłosz Kadziński acknowledges support from the Polish
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Appendix A. Properties of the Exact Robust Results

This section presents the relevant properties of the exact robust results given the
hierarchical structure. In particular, when the minimal distances in all children nodes of
some more general category are equal to zero, the minimal distance in this category must
also be zero.

Proposition A1. For DMUo ∈ D and category c(l)
i ∈ N \ f , if ∀t ∈ ch(c(l)

i ) : dt∗,o = 0,

then d
c(l)

i∗,o = 0.

Similarly, if the minimal rank of DMUo in all children nodes of some more general
category is 1 (K), then it needs to be ranked first (last) in this category in the best case.

Proposition A2. For DMUo and category c(l)
i ∈ N \ f , if ∀t ∈ ch(c(l)

i ) : Rt∗,o = 1 then

R
c(l)

i∗,o = 1.
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Proposition A3. For DMUo and category c(l)
i inN \ f , if ∀t ∈ ch(c(l)

i ) : Rt∗,o = K, then

R
c(l)

i∗,o = K.

Moreover, if the maximal rank of DMUo in all children nodes of some more general
category is 1, then it needs to be ranked first in this category, even in the worst case.

Proposition A4. For DMUo and category c(l)
i ∈ N \ f , if ∀t ∈ ch(c(l)

i ) : R∗,to = 1, then

R
∗,c(l)

i
o = 1.

When DMUo is necessarily preferred to DMUk in all children nodes of some more
general category, then DMUo must be necessarily preferred to DMUk, given this category.

Proposition A5. For pair (DMUo, DMUk) and category c(l)
i ∈ N \ f , if ∀t ∈ ch(c(l)

i ) :

DMUo %N,t
E DMUk, then DMUo %

N,c(l)
i

E DMUk.

Note that %N,c(l)
i

E is a partial preorder (i.e., transitive and reflexive). When DMUo is
not possibly preferred to DMUk in all children nodes of some more general category, then
DMUo is not possibly preferred to DMUk, given this category.

Proposition A6. For pair (DMUo, DMUk) and category c(l)
i ∈ N \ f , if ∀t ∈ ch(c(l)

i ) :

¬(DMUo %P,t
E DMUk), then ¬(DMUo %

P,c(l)
i

E DMUk).

Moreover, when DMUo is necessarily preferred to DMUk in all children nodes of
some more general category except one node for which it is possibly preferred, then DMUo
needs to be possibly preferred to DMUk, given this category.

Proposition A7. For pair (DMUo, DMUk) and category c(l)
i ∈ N \ f , if ∀t ∈ ch(c(l)

i ) \ a :

DMUo %N,t
E DMUk ∧ DMUo %P,a

E DMUk, then DMUo %
P,c(l)

i
E DMUk.

Note that %P,c(l)
i

E is negatively transitive and strongly complete. Moreover, the truth of

the necessary preference implies the truth of the possible preference (%N,c(l)
i

E ⊆%P,c(l)
i

E ).

Appendix B. Formulations of Example Mathematical Programming Models for
Computing the Exact Robust Results

This section illustrates mathematical programming models for computing the exact
robust results. They support understanding the general formulations presented in Section 4.
We consider a hierarchical structure involving four indicators as presented in Figure 3. The
input and output values of four DMUs and the indicator bounds are shown in Table A1.
For simplicity, we assume that the marginal value functions are linear to make them easily
computable. For example, for DMU1 and input i1, the marginal value is calculated as
ui1 (DMU1) = ui1 (9) = 10−9

10−0 = 0.1. Analogously, for DMU3 and output o2, the value of
marginal function is equal to uo2 (DMU3) = uo2 (6) = 6−5

10−5 = 0.2. Moreover, the following
weight constraints are considered: w

C(1)
1
≥ w

C(1)
1

, w
C(1)

2
≥ 0.1, wi1 ≥ 0.2, and wo2 ≥ 0.6.



Appl. Sci. 2023, 13, 6406 29 of 33

Table A1. Input/output values for DMUs and indicators’ bounds in the illustrative problem.

DMU i1 o1 i2 o2

DMU1 9 5 8 7
DMU2 2 8 5 5
DMU3 5 6 7 6
DMU4 1 2 9 8

min 0 0 5 5
max 10 10 10 10

All formulations concern category C(2)
1 (i.e., the hierarchy’s root). Let us first provide

the model for computing the minimal distance of DMU1 to the best unit:

Minimize d1

s.t.

ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ d1

ŵC(2)
1

i1
ui1 (2) + ŵC(2)

1
o1 uo1 (8) + ŵC(2)

1
i2

ui2 (5) + ŵC(2)
1

o2 uo2 (5)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ d1

ŵC(2)
1

i1
ui1 (5) + ŵC(2)

1
o1 uo1 (6) + ŵC(2)

1
i2

ui2 (7) + ŵC(2)
1

o2 uo2 (6)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ d1

ŵC(2)
1

i1
ui1 (1) + ŵC(2)

1
o1 uo1 (2) + ŵC(2)

1
i2

ui2 (9) + ŵC(2)
1

o2 uo2 (8)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ d1

d1 ≥ 0

ŵC(2)
1

i1
+ ŵC(2)

1
o1 + ŵC(2)

1
i2

+ ŵC(2)
1

o2 = 1

ŵ
C(2)

1
i1

+ŵ
C(2)

1
o1

ŵ
C(2)

1
i1

+ŵ
C(2)

1
o1 +ŵ

C(2)
1

i2
+ŵ

C(2)
1

o2

≥ ŵ
C(2)

1
i2

+ŵ
C(2)

1
o2

ŵ
C(2)

1
i1

+ŵ
C(2)

1
o1 +ŵ

C(2)
1

i2
+ŵ

C(2)
1

o2

ŵ
C(2)

1
i2

+ŵ
C(2)

1
o2

ŵ
C(2)

1
i1

+ŵ
C(2)

1
o1 +ŵ

C(2)
1

i2
+ŵ

C(2)
1

o2

≥ 0.1

ŵ
C(2)

1
i1

ŵ
C(2)

1
i1

+ŵ
C(2)

1
o1

≥ 0.2

ŵ
C(2)

1
o2

ŵ
C(2)

1
i2

+ŵ
C(2)

1
o2

≤ 0.6

ŵC(2)
1

i1
≥ 0, ŵC(2)

1
o1 ≥ 0, ŵC(2)

1
i2
≥ 0, ŵC(2)

1
o2 ≥ 0.





WC(2)
1





(A1)

In the above model, the first four constraints ensure that the optimized distance will
correspond to the greatest distance of DMU1 to other DMU. The fifth constraint ensures

that the distance is non-negative. The constraint set WC(∈)
∞ corresponds to the weight

restrictions. In particular, the first constraint ensures that the sum of weights equals one,
whereas the last guarantees that all weights are non-negative. In turn, to find the maximal
distance of DMU1, we need to solve the following model:

Maximize d1

s.t.
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ŵ
C(2)

1
i1

ui1 (9) + ŵ
C(2)

1
o1 uo1 (5) + ŵ

C(2)
1

i2
ui2 (8) + ŵ

C(2)
1

o2 uo2 (7)− d1 ≥ ŵ
C(2)

1
i1

ui1 (9) + ŵ
C(2)

1
o1 uo1 (5) + ŵ

C(2)
1

i2
ui2 (8) + ŵ

C(2)
1

o2 uo2 (7)− C(1− b1)

ŵ
C(2)

1
i1

ui1 (2) + ŵ
C(2)

1
o1 uo1 (8) + ŵ

C(2)
1

i2
ui2 (5) + ŵ

C(2)
1

o2 uo2 (5)− d1 ≥ ŵ
C(2)

1
i1

ui1 (9) + ŵ
C(2)

1
o1 uo1 (5) + ŵ

C(2)
1

i2
ui2 (8) + ŵ

C(2)
1

o2 uo2 (7)− C(1− b2)

ŵ
C(2)

1
i1

ui1 (5) + ŵ
C(2)

1
o1 uo1 (6) + ŵ

C(2)
1

i2
ui2 (7) + ŵ

C(2)
1

o2 uo2 (6)− d1 ≥ ŵ
C(2)

1
i1

ui1 (9) + ŵ
C(2)

1
o1 uo1 (5) + ŵ

C(2)
1

i2
ui2 (8) + ŵ

C(2)
1

o2 uo2 (7)− C(1− b3)

ŵ
C(2)

1
i1

ui1 (1) + ŵ
C(2)

1
o1 uo1 (2) + ŵ

C(2)
1

i2
ui2 (9) + ŵ

C(2)
1

o2 uo2 (8)− d1 ≥ ŵ
C(2)

1
i1

ui1 (9) + ŵ
C(2)

1
o1 uo1 (5) + ŵ

C(2)
1

i2
ui2 (8) + ŵ

C(2)
1

o2 uo2 (7)− C(1− b4)

b1 + b2 + b3 + b4 = 1
b1, b2, b3, b4 ∈ {0, 1}
d1 ≥ 0,

WC(2)
1





(A2)

The following model allows us to find the minimal (best) efficiency rank for DMU1:

Minimize 1 + b2 + b3 + b4

s.t.

ŵC(2)
1

i1
ui1 (2) + ŵC(2)

1
o1 uo1 (8) + ŵC(2)

1
i2

ui2 (5) + ŵC(2)
1

o2 uo2 (5)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ Cb2

ŵC(2)
1

i1
ui1 (5) + ŵC(2)

1
o1 uo1 (6) + ŵC(2)

1
i2

ui2 (7) + ŵC(2)
1

o2 uo2 (6)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ Cb3

ŵC(2)
1

i1
ui1 (1) + ŵC(2)

1
o1 uo1 (2) + ŵC(2)

1
i2

ui2 (9) + ŵC(2)
1

o2 uo2 (8)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ Cb4

b2, b3, b4 ∈ {0, 1}
WC(2)

1





(A3)

The maximal (worst) efficiency rank for DMU1 can be determined by solving the
following model:

Maximize 1 + b2 + b3 + b4

s.t.

ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)− (ŵC(2)
1

i1
ui1 (2) + ŵC(2)

1
o1 uo1 (8) + ŵC(2)

1
i2

ui2 (5) + ŵC(2)
1

o2 uo2 (5)) ≤ C(1− b2)

ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)− (ŵC(2)
1

i1
ui1 (5) + ŵC(2)

1
o1 uo1 (6) + ŵC(2)

1
i2

ui2 (7) + ŵC(2)
1

o2 uo2 (6)) ≤ C(1− b3)

ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)− (ŵC(2)
1

i1
ui1 (1) + ŵC(2)

1
o1 uo1 (2) + ŵC(2)

1
i2

ui2 (9) + ŵC(2)
1

o2 uo2 (8)) ≤ C(1− b4)

b2, b3, b4 ∈ {0, 1}
WC(2)

1





(A4)

When referring to pairwise preference relations, we consider an ordered pair
(DMU1, DMU2). The truth of the necessary preference relation can be verified by solving
the following model:

Minimize d1,2

s.t.

ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)− (ŵC(2)
1

i1
ui1 (2) + ŵC(2)

1
o1 uo1 (8) + ŵC(2)

1
i2

ui2 (5) + ŵC(2)
1

o2 uo2 (5)) ≤ d1,2

WC(2)
1

}
(A5)

If the minimal distance d1,2 is not lesser than zero, then DMU1 %N,C(2)
1

E DMU2. The
following model allows us to verify the truth of the possible preference relation:

Maximize d1,2

s.t.
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ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)− (ŵC(2)
1

i1
ui1 (2) + ŵC(2)

1
o1 uo1 (8) + ŵC(2)

1
i2

ui2 (5) + ŵC(2)
1

o2 uo2 (5)) ≥ d1,2

WC(2)
1 .

}
(A6)

If the maximal value of d1,2 is greater or equal to zero, then DMU1 %P,C(2)
1

E DMU2.

Appendix C. Computation of Stochastic Acceptability Indices

For illustrative purposes, we present the steps of computing the stochastic acceptability
indices for the exemplary DMUs from Appendix B considering the root category (C(2)

1 ).
Firstly, we use the hit-and-run algorithm to generate the weight samples for all children
of C(2)

1 . Table A2 presents the five example samples. Let us emphasize that to obtain
reliable estimates of stochastic acceptabilities, in practice, one uses a few thousand such
samples. Secondly, we compute a value-based efficiency score for each considered DMU
(see Table A3). Based on the efficiency scores, we determine the distance of each DMUo to
the best one as the difference between the maximal efficiency score obtained by any DMUk
for a given sample and the efficiency score of DMUo. For example, for sample 1 and DMU3,
such distance equals 0.773− 0.542 = 0.231. The efficiency rank of DMUo is equal to the
number of other DMUs, for which the efficiency score is better than that of DMUo (for a
given sample), increased by one. For example, for sample 1, DMU2 and DMU3 attained
an efficiency score greater than DMU4, ranking it 3rd. The distances to the best DMU and
efficiency ranks for all exemplary DMUs and samples are presented in Table A3.

Table A2. Five example weight vectors obtained with Monte Carlo simulation.

Sample 1 2 3 4 5

wi1 0.33 0.52 0.56 0.81 0.7
wo1 0.67 0.48 0.44 0.19 0.3
wi2 0.71 0.53 0.46 0.68 0.46
wo2 0.29 0.47 0.54 0.32 0.54

w
C(1)

1
0.7 0.68 0.75 0.53 0.69

w
C(1)

2
0.3 0.32 0.25 0.47 0.31

Having determined the distances to the best DMU and efficiency ranks, we compute
the stochastic indices. DAII is the share of the weight vectors for which the distance to the
best DMU is within a given bucket. For illustrative purposes, we use only four buckets.
For example, there are four out of five samples for which the distance of DMU4 to the best
unit is in the interval b1 = [0, 0.25], so DAII(DMU4, [0, 0.25]) = 0.8. Similarly, we calculate
ERAIs as the share of samples for which a given DMU is ranked r-th. For example, DMU3
is ranked 2nd only for sample 1, so ERAI(DMU3, 2) = 0.2. Finally, PEOI for an ordered
pair of units is computed as the share of samples for which the first DMU is at least as
efficient as the other. For example, DMU4 is not worse than DMU3 for all samples except
the first one, so PEOI(DMU4, DMU3) = 0.8. The results obtained by individual samples
are averaged, providing the estimates of the expected distances Ed to the best DMU and
expected efficiency ranks ER (see Table A3).
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Table A3. Efficiency scores E, distances d, and ranks R for the considered DMUs obtained with five
sampled weight vectors.

Sample Result DMU1 DMU2 DMU3 DMU4

1
E 0.378 0.773 0.542 0.397
d 0.395 0 0.231 0.377
R 4 1 2 3

2
E 0.327 0.714 0.504 0.508
d 0.387 0 0.209 0.206
R 4 1 3 2

3
E 0.307 0.715 0.504 0.548
d 0.408 0 0.211 0.167
R 4 1 3 2

4
E 0.281 0.744 0.497 0.561
d 0.462 0 0.247 0.183
R 4 1 3 2

5
E 0.276 0.695 0.485 0.605
d 0.419 0 0.210 0.090
R 4 1 3 2

Ed 0.251 0.202 0.304 0.377
ER 4.0 1.0 2.8 2.2
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14. Corrente, S.; Greco, S.; Słowiński, R. Multiple Criteria Hierarchy Process in Robust Ordinal Regression. Decis. Support Syst. 2012,

53, 660–674. [CrossRef]
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Technical Report; PricewaterhouseCoopers: Warsaw, Poland, 2019. (In Polish)

30. Sexton, T.R.; Silkman, R.H.; Hogan, A.J. Data envelopment analysis: Critique and extensions. New Dir. Program Eval. 1986,
1986, 73–105. [CrossRef]

31. Andersen, P.; Petersen, N.C. A procedure for ranking efficient units in data envelopment analysis. Manag. Sci. 1993, 39, 1261–1264.
[CrossRef]

32. Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.





Extended abstract in Polish

Nowe Kierunki w Odpornej
Granicznej Analizie Danych

Wprowadzenie

Graniczna Analiza Danych (ang. Data Envelopment Analysis (DEA)) jest metodą po-
zwalającą na ocenę względniej efektywności jednostek decyzyjnych, które pobierają wiele
nakładów (wejść) i produkują wiele efektów (wyjść). W oryginalnym sformułowaniu me-
tody, efektywność jednostki określana jest jako stosunek pomiędzy wirtualnym efektem
a wirtualnym nakładem, będącymi sumami ważonymi istniejących nakładów i efektów.
Celem metody DEA jest identyfikacja zbioru jednostek, które działają efektywnie. Jest
on uzyskiwany poprzez znalezienie wektora wag skojarzonych z nakładami i efektami, dla
którego badana jednostka osiąga najwyższą wartość miary efektywności.

W Granicznej Analizie Danych wyróżnia się trzy podstawowe modele efektywności:
CCR, BCC oraz model addytywny. Pierwsze dwa są modelami ilorazowymi, w których
rozróżnia się orientację na nakłady i na efekty. Ostatni opiera się na wyznaczaniu od-
ległości L1 badanej jednostki od granicy efektywności. W tym przypadku orientacje na
nakłady i efekty zostały połączone w jeden wspólny model. Choć takie powiązanie obu
orientacji jest często pożądanym efektem, to oryginalne sformułowanie modelu addytyw-
nego posiada klika wad. Po pierwsze, w modelu addytywnym istnieje problem skali, tj.
projekcje jednostek nieefektywnych na granicę efektywności zależą, w znacznym stop-
niu, od zakresów wartości poszczególnych czynników (wejść i wyjść). Po drugie, miara
efektywności w tym modelu nie ma intuicyjnej interpretacji. Rozwiązaniem powyższych
problemów było wprowadzenie nowego modelu efektywności, tj. modelu addytywnego
opartego na funkcjach wartości, (ang. Value-based additive DEA (VDEA)), który czer-
pie inspirację z wieloatrybutowej teorii użyteczności. W tym modelu, wejściom i wyjściom
przypisuje się cząstkowe funkcje wartości, które następnie agregowane są z użyciem funk-
cji addytywnej (sumy ważonej).

Niezależnie od wybranego modelu efektywności, ocena jednostek decyzyjnych oparta
jest zawsze tylko na jednym, najbardziej korzystnym, wektorze wag dla badanej jednostki.
Ponadto, wektory wag uzyskane dla różnych jednostek są różne, co budzi wątpliwości co
do merytorycznej poprawności porównań między nimi. Dodatkowo, klasyczne podejście
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w DEA pozwala tylko na wskazanie jednostek efektywnych, nie dostarczając przy tym
narzędzi pozwalających na ich rozróżnienie.

Opisane powyżej problemy były punktem wyjścia do dalszego rozwoju metodolo-
gii DEA. Po pierwsze, w literaturze zaproponowano wiele metod, które pozwalają na
porównanie jednostek efektywnych między sobą oraz stworzenie pełnego rankingu jed-
nostek decyzyjnych, spośród których najbardziej popularne są super-efektywność oraz
efektywność krzyżowa. Ponadto, wprowadzono możliwość uwzględnienia informacji pre-
ferencyjnej w modelu, co pozwala na ograniczenie przestrzeni dopuszczalnych wektorów
wag. Żadna z powyższych metod nie pozwala jednak na ocenę jednostki z uwzględnieniem
całego dopuszczalnego spektrum wektorów wag. Badania przeprowadzone w ramach ni-
niejszej rozprawy skupiają się na opracowaniu spójnego zestawu metod, pozwalających
na ocenę odporności jednostek decyzyjnych, tj. ich efektywności w oparciu o wszystkie
dopuszczalne wektory wag. W kolejnych rozdziałach zaproponowane rozwiązania zostały
opisane w zwięzłej formie.

1 Metody badania odporności dla Granicznej Analizy
Danych

W niniejszej rozprawie zaproponowany został spójny zestaw metod, które pozwalają na
badanie odporności jednostek decyzyjnych w oparciu o pełen zakres wektorów wag dla
dwóch różnych modeli efektywności: ilorazowego oraz opartego na funkcjach wartości. Za-
proponowane metody można podzielić na dwie grupy, które wzajemnie się uzupełniają.
Pierwsza z nich oparta jest na programowaniu matematycznym i pozwala na wyznacze-
nie skrajnych wartości efektywności, odległości od najlepszej jednostki oraz występowanie
koniecznych i możliwych relacji preferencji dla par jednostek. Druga wykorzystuje symu-
lację Monte Carlo do wyznaczenia indeksów akceptowalności reprezentujących rozkłady
poszczególnych miar lub wyników.

Równoczesna analiza wyników uzyskanych w obu podejściach jest korzystna z kilku
względów. Z jednej strony, metody dokładne pozwalają na precyzyjną ocenę tego, w ja-
kim zakresie znajdują się wartości efektywności dla poszczególnych jednostek z uwzględ-
nieniem wszystkich wektorów wag. Uzyskane zakresy są jednak w wielu przypadkach
bardzo szerokie. Dodatkowo, uzyskane skrajne wartości występują bardzo rzadko, tylko
dla pojedynczych, szczególnych wektorów wag. Podobnie, w wielu problemach relacja
możliwej preferencji występuje dla większości par jednostek decyzyjnych, podczas gdy
konieczna preferencja jest relacją rzadką. Powyższa własność czyni większość par jedno-
stek nieporównywalną. W takich sytuacjach analiza stochastyczna pozwala na uzyskanie
dodatkowej informacji na temat rozkładów badanych miar, tj. wartości miary efektyw-
ności, odległości do najlepszej jednostki, pozycji w rankingu oraz prawdopodobieństwa
preferencji jednej jednostki nad inną. Z drugiej strony, same indeksy akceptowalności
również nie dostarczają wszystkich potrzebnych informacji. Mogą one być wyznaczone
jedynie w sposób przybliżony. W szczególności, szansa, że wylosowany zostanie wektor
wag odpowiadający najwyższej lub najniższej możliwej wartości efektywności dla bada-
nej jednostki jest niewielka. Analogicznie, szacowana wartość indeksu akceptowalności
relacji przewyższania dla pewnej pary jednostek może być równa 1, jednak nie świadczy
to o koniecznej preferencji w obrębie tej pary. Powyższe cechy świadczą o zasadności
zestawienia ze sobą obu typów wyników.
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Aby uzyskać stochastyczne indeksy akceptowalności dla problemów z ilorazowym mo-
delem efektywności zastosowano poniższy algorytm. Jako, że przestrzeń wektorów wag
jest nieograniczona, wprowadzono dodatkowe ograniczenia, które normalizują otrzymane
wektory wag w taki sposób, że suma wag, zarówno dla nakładów jak i dla efektów musi
być równa 1. Następnie, zastosowano algorytm Hit-And-Run, aby uzyskać zbiór próbek
wektorów wag. W niniejszej pracy do próbkowania użyto rozkładu jednorodnego. Bazując
na wygenerowanym zestawie wag obliczone zostają wartości efektywności dla wszystkich
jednostek. W ostatnim etapie otrzymane wartości efektywności zostają podzielone przez
wartość uzyskaną przez najlepszą jednostkę. Taki zabieg zapewnia, że najlepsza jednostka
uzyskuje efektywność równą 1. Uzyskane w taki sposób wartości efektywności pozwalają
na wyznaczenie rozkładów miary efektywności oraz pozycji w rankingu efektywności. Do-
datkowo, estymowane są również prawdopodobieństwa występowania preferencji dla par
jednostek.

Rozważone zostały trzy różne perspektywy oceny efektywności jednostek decyzyj-
nych: wartości miary efektywności (lub ich odległość do najlepszej jednostki), rankingi
jednostek pod względem efektywności oraz ich porównania parami. Poniżej, poszczególne
perspektywy zostały krótko opisane w odniesieniu do modelu ilorazowego.

Wartości miary efektywności

Z punktu widzenia miary efektywności analiza odporności polega na wyznaczeniu skraj-
nych (maksymalnych i minimalnych) wartości miary efektywności dla każdej jednostki.
Maksymalną miarę efektywności dla badanej jednostki można uzyskać rozwiązując orygi-
nalnie zaproponowany w metodzie DEA model programowania liniowego (model CCR).
W niniejszej rozprawie zaproponowany został model mieszanego programowania całkowi-
toliczbowego, który pozwala na znalezienie najmniej korzystnego scenariusza dla badanej
jednostki. W zaproponowanym modelu minimalizowana jest miara efektywności badanej
jednostki z uwzględnieniem ograniczenia, że przynajmniej jedna z jednostek w zbiorze
pozostaje efektywna, tj. osiąga efektywną równą jeden.

Rozkład miary efektywności w dopuszczalnej przestrzeni wektorów wag wyznaczany
jest poprzez oszacowanie indeksów akceptowalności dla przedziałów efektywności (ang.
Efficiency Acceptability Interval Indices (EAIIs)). Indeks ten dla pewnej jednostkiDMUo

oraz przedziału bi definiowany jest jako stosunek liczby wektorów wag, dla których jed-
nostka DMUo osiąga efektywność w przedziale bi do liczby wszystkich dopuszczalnych
wektorów wag. Przedziały bi, i = 1, 2, . . . ,K muszą być rozłączne i pokrywać całą moż-
liwą przestrzeń miary efektywności, tj. ich suma musi być równa przedziałowi [0, 1]. Suma
wartości EAII dla danej jednostki jest zawsze równa jeden.

Dodatkowo, analiza z użyciem symulacji Monte Carlo pozwala na wyznaczenie dodat-
kowych miar opisujących efektywność jednostek, takich jak skrajne wartości efektywności
uzyskane przy pomocy próbkowania oraz oczekiwana wartość efektywności.

Rankingi jednostek pod względem efektywności.

Drugą perspektywą analizy jednostek decyzyjnych jest ocena danej jednostki pod wzglę-
dem pozycji, którą zajmuje w rankingu efektywności. W tej perspektywie wyznaczane
są skrajne pozycje, jakie może osiągać dana jednostka dla jakiegokolwiek dopuszczalnego
wektora wag. W ramach niniejszej pracy zaproponowano modele programowania linio-
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wego pozwalające na wyznaczenie tych skrajnych pozycji. Oba zaproponowane modele
wykorzystują mieszane programowanie całkowitoliczbowe. W obu przypadkach model
opiera się na ustaleniu wartości efektywności badanej jednostki na 1. W przypadku mo-
delu znajdującego najlepszą (minimalną) pozycję danej jednostki minimalizuje się sumę
zmiennych binarnych odpowiadających jednostkom, które równocześnie osiągają efek-
tywność większą od badanej jednostki. Analogicznie, w modelu znajdującym najgorszą
pozycję w rankingu dla danej jednostki, suma zmiennych binarnych odpowiadająca jed-
nostkom nie gorszym niż badana jednostka jest maksymalizowana.

Aby uzyskać rozkład pozycji w rankingu dla badanej jednostki wyznaczone zostały
wartości indeksy akceptowalności dla rankingów efektywności (ang. Efficiency Rank Ac-
ceptability Indices (ERAIs)) zdefiniowane jako udział wektorów wag, dla których badana
jednostka osiąga daną pozycję w rankingu efektywności. Dla każdej jednostki suma war-
tości ERAI dla wszystkich pozycji jest równa 1. Oprócz rozkładu pozycji w rankingach,
dla każdej jednostki wyznaczana jest również wartość oczekiwana pozycji w rankingu
efektywności, jako średnia arytmetyczna pozycji uzyskanych we wszystkich próbkach.

Porównania parami jednostek decyzyjnych.

Ostatnia perspektywa analizy rozważana w ramach niniejszej rozprawy skupia się na
porównaniach parami jednostek decyzyjnych. W tym przypadku zdefiniowano dwie re-
lacje preferencji pomiędzy jednostkami decyzyjnymi. Relacja możliwej preferencji (≿P

E)
dla pary jednostek zachodzi wtedy, gdy istnieje choć jeden dopuszczalny wektor wag, dla
którego pierwsza jednostka osiąga efektywność nie gorszą niż druga. Relacja koniecznej
preferencji (≿N

E ) zachodzi dla pary jednostek, gdy pierwsza z jednostek osiąga efektyw-
ność większą lub równą efektywności drugiej jednostki dla wszystkich dopuszczalnych
wektorów wag.

Aby zweryfikować występowanie relacji możliwej preferencji dla danej pary jednostek
decyzyjnych, zaproponowano model programowania liniowego, w którym maksymalizo-
wana jest wartość efektywności pierwszej jednostki przy założeniu, że efektywność drugiej
z nich jest równa 1. Jeśli otrzymana optymalna efektywność jest większa lub równa 1,
wtedy pierwsza jednostka jest możliwie preferowana nad drugą. Taki sam model, po zmia-
nie kierunku optymalizacji, pozwala na sprawdzenie czy dana jednostka jest koniecznie
preferowana nad inną. Jeśli minimalna efektywność uzyskana w opisywanym modelu jest
nie mniejsza niż 1, wtedy pierwsza jednostka z badanej pary jest koniecznie preferowana
nad drugą.

Ponadto, dla pary jednostek decyzyjnych zdefiniowano indeks akceptowalności dla
relacji przewyższania pod względem efektywności (ang. Pairwise Efficiency Outranking
Index (PEOI)) jako liczbę dopuszczalnych wektorów wag, dla których pierwsza z ba-
danych jednostek osiąga efektywność nie gorszą niż druga w stosunku do wszystkich
wektorów wag.

Metody badania odporności dla modelu addytywnego opartego na
funkcjach wartości.

Opisane powyżej miary mogą zostać zastosowane, w analogiczny sposób, dla problemów,
w których zastosowano model efektywności oparty na funkcjach wartości. Podobnie jak
dla modelu ilorazowego, rozważone zostały trzy perspektywy analizy efektywności jed-
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nostek: wartości miary efektywności, pozycje w rankingach oraz porównania parami jed-
nostek decyzyjnych.

W kontekście modelu opartego o funkcje wartości perspektywa wartości miary efek-
tywności może uwzględniać zarówno bezwzględne wartości efektywności jak i odległość
badanej jednostki od najlepszej. W niniejszej rozprawie rozważono obie te miary. Po
pierwsze, wykorzystano oryginalne sformułowanie modelu VDEA do wyznaczenia naj-
lepszej (minimalnej) odległości badanej jednostki od najlepszej. Następnie, zapropono-
wano model matematyczny pozwalający na wyznaczenie najgorszej możliwej odległości
badanej jednostki od jednostki najlepszej.

Rozważając bezwzględne wartości efektywności w modelu opartym o funkcje warto-
ści, zaproponowano metodę, która pozwala na określenie skrajnych wartości efektywności
dla badanej jednostki. W tym przypadku optymalizowana jest miara efektywności z za-
pewnieniem zachowania zdefiniowanych ograniczeń na wagi nakładów i efektów.

Analiza stochastyczna dla modelu VDEA prowadzona jest w sposób analogiczny do
tej prowadzonej dla modelu ilorazowego, z tą różnicą, że w modelu opartym na funkcjach
wartości suma wszystkich wag, przypisanych do wejść i wyjść musi być równa 1. Po wy-
losowaniu próbek wag wyznaczana jest wartość efektywności dla wszystkich jednostek. Z
uwagi na zastosowanie w rozważanym modelu cząstkowych funkcji wartości oraz norma-
lizacji wag, osiągane wartości efektywności zawierają się zawsze w przedziale [0− 1]. W
opozycji do modelu ilorazowego, dodatkowa normalizacja nie jest potrzebna.

Bazując na otrzymanych wartościach efektywności, estymowane są indeksy akcepto-
walności (EAII, PEOI, ERAI) w sposób analogiczny jak dla modelu ilorazowego. Do-
datkowo, w przypadku modelu VDEA, wyznaczany jest indeks akceptowalności dla prze-
działów odległości do najlepszej jednostki w sposób analogiczny do wyznaczania indeksów
EAII. Ponadto, możliwe jest również oszacowanie wartości oczekiwanej tej odległości dla
każdej jednostki decyzyjnej.

Zależności między wynikami dokładnymi a indeksami akceptowalności.

W rozprawie przedstawione zostały zależności pomiędzy wynikami otrzymanymi przy
użyciu programowania liniowego oraz szacowanymi indeksami akceptowalności. Poniżej
przedstawiono przykładowe z nich. Dla każdej jednostki DMUo:

• jeżeli cały przedział bi leży poza zakresem wyznaczonym przez skrajne wartości
efektywności dla DMUo, to EAII(DMUo, bi) = 0;

• przedział wyznaczony przez skrajne wartości efektywności otrzymane przy po-
mocy próbkowania zawsze zawiera się w przedziale wyznaczonym przez rzeczywiste
skrajne wartości efektywności;

• jeżeli dana jednostka jest koniecznie preferowana nad inną jednostkę to PEOI dla
tej pary jednostek jest zawsze równe 1;

• suma wartości ERAI dla wszystkich pozycji z przedziału wyznaczonego przez skrajne
pozycje musi być równa 1.

Relacje przeciwnie nie są prawdziwe ze względu na losowy charakter wyznaczanych
indeksów akceptowalności. Na przykład, jeśli PEOI uzyskane dla pewnej pary jednostek
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decyzyjnych jest równe 1, nie oznacza, że preferencja dla tej pary występuje dla wszyst-
kich wektorów wag. Oznacza to tylko tyle, że dla każdej wylosowanej próbki jedna z jed-
nostek osiągała efektywność nie gorszą niż druga. Jednak istnieje możliwość, że opisana
preferencja nie zachodzi dla pewnego wektora wag, który nie został wylosowany.

Wpływ przyrostowego definiowania ograniczeń wag na wyniki badania
odporności.

W rozprawie omówiony został także wpływ przyrostowej definicji ograniczeń wag na
wyniki badania odporności. Rozważono sytuację, w której analiza odporności tego sa-
mego zbioru jednostek została przeprowadzona kilkukrotnie, za każdym razem rozsze-
rzając ograniczenia na wagi. W rezultacie przestrzeń możliwych wektorów wag, w ko-
lejnych iteracjach ulegała zawężeniu. W takim przypadku przedziały wyznaczone przez
skrajne wartości efektywności, odległości do najlepszej jednostki oraz pozycje w rankingu
efektywności zawężają się w kolejnych iteracjach. Wartości minimalne są, w kolejnych
iteracjach, nierosnące, podczas gdy wartości maksymalne mogą tylko maleć (lub pozo-
stać niezmienione). Ponadto, relacja koniecznej preferencji, w kolejnych iteracjach, ulega
wzbogaceniu, tj. zbiór par jednostek, dla których ta relacja zachodzi w iteracji t jest
nadzbiorem takiego zbioru dla iteracji t − 1. Odwrotną zależność można zauważyć dla
relacji możliwych preferencji. W kolejnych iteracjach zbiór par jednostek, dla których
zachodzi relacja możliwej preferencji jest coraz mniejszy.

2 Badanie odporności jednostek decyzyjnych dla
problemów z nieprecyzyjnymi danymi

W rzeczywistych problemach zebranie precyzyjnych danych jest często niemożliwe lub
bardzo kosztowne. Z tego powodu, w ramach niniejszej rozprawy, metody badania od-
porności zostały rozszerzone i zaadaptowane do problemów z nieprecyzyjnymi danymi.
Rozważone zostały trzy typy niepewności: wartości wejść i wyjść zdefiniowane w formie
przedziałów, nakłady oraz efekty zdefiniowane na skali porządkowej oraz, dla problemów z
modelem efektywności opartym na funkcjach wartości, dopuszczalne zakresy cząstkowych
funkcji wartości. Wszystkie powyższe typy niepewności zostały uwzględnione zarówno w
metodach opartych o programowanie matematyczne, jak i analizie stochastycznej.

Wmetodach dokładnych poszczególne typy niedokładności zostały uwzględnione w opi-
sany poniżej sposób.

Przedziałowe wartości nakładów i efektów. W problemach programowania ma-
tematycznego przedziałowe wartości wejść i wyjść zostały zastąpione wartościami do-
kładnymi reprezentującymi najbardziej lub najmniej korzystny scenariusz dla badanej
jednostki w zależności od rozważanego typu wyników. Dla modeli identyfikujących najlep-
sze możliwe wyniki dla badanej jednostki (scenariusz optymistyczny) precyzyjne wartości
wejść i wyjść dla badanej jednostki odpowiadają minimalnym wejściom i maksymalnym
wyjściom z podanego przedziału. Dla pozostałych jednostek wartości dokładne równe
są równe maksymalnym wartościom z danego przedziału dla wejść i minimalnym war-
tościom dla wyjść. Analogicznie, w przypadku modeli znajdujących najgorsze możliwe
wartości dla danej jednostki, wartości dokładne reprezentują najmniej korzystny scena-
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riusz, tj. największe nakłady i najmniejsze efekty, dla tej jednostki i najbardziej korzystny
(najmniejsze nakłady i największe efekty) dla pozostałych jednostek.

Czynniki zdefiniowane na skali porządkowej. Dla czynników (nakładów lub efek-
tów) zdefiniowanych na skali porządkowej znana jest jedynie kolejność jednostek na da-
nym kryterium. W modelach matematycznych zapewnione zostało, że zdefiniowana ko-
lejność zostaje zachowana. Aby uniknąć nieliniowości modelu, w modelu ilorazowym,
wprowadzono do modelu dodatkowe zmienne reprezentujące iloczyn wagi danego czyn-
nika porządkowego i jego wartości dla poszczególnych jednostek. Na tak zdefiniowanych
zmiennych nałożono ograniczenia zapewniające ich monotoniczność zgodnie ze zdefi-
niowanym porządkiem. W modelu opartym na funkcjach wartości czynniki porządkowe
uwzględnione zostały w podobny sposób, jednak w tym przypadku zmienna zastępcza
nie reprezentuje iloczynu wagi i oceny jednostki, lecz iloczyn wagi danego czynnika i jego
wartości cząstkowej funkcji. Dodatkowo, w modelu opartym o funkcje wartości, ogra-
niczenia w modelu muszą uwzględniać różny kierunek monotoniczności dla nakładów
i efektów oraz zapewniać, że wartość przypisana dla najgorszej jednostki jest dodatnia
(większa od pewnej małej wartości ϵ). Dla najlepszej jednostki wartość przypisana do
nowo utworzonej zmiennej nie może przekraczać wagi danego czynnika.

Dopuszczalne zakresy cząstkowych funkcji wartości. Dla modelu bazującego na
funkcjach wartości rozważono również trzeci rodzaj niepewności: dopuszczalne zakresy
cząstkowych funkcji wartości. Takie zakresy definiuje się za pomocą dwóch funkcji warto-
ści reprezentujących górną i dolną granicę dopuszczalnego zakresu. Aby uwzględnić tego
typu niepewność w modelach programowania matematycznego ponownie wprowadzono
zmienne zastępcze, podobnie jak dla czynników porządkowych. Jeśli dany nakład lub
efekt jest również zdefiniowany w formie przedziałów, w pierwszej kolejności wartości
przedziałowe muszą zostać zastąpione precyzyjnymi w sposób opisany powyżej. Następ-
nie, konieczne jest zapewnienie, że cząstkowa wartość dla każdej z jednostek mieści się
w zdefiniowanym zakresie funkcji. Dodatkowo, wymuszony został monotoniczny kształt
funkcji wartości, podobnie jak dla czynników porządkowych.

Metody oparte na symulacji Monte Carlo. Aby wyznaczyć indeksy akceptowal-
ności dla metody DEA z nieprecyzyjnymi danymi, procedura próbkowania odbywa się
w kilku etapach. W pierwszej kolejności uruchomiony zostaje algorytm Hit-And-Run,
aby uzyskać określoną liczbę próbek wektorów wag, w taki sam sposób jak dla proble-
mów z precyzyjnymi danymi. Kolejne etapy zależą od typu niepewności oraz modelu
efektywności. W przypadku nakładów i efektów zdefiniowanych w formie przedziałów,
niezależnie od modelu efektywności, generowane są próbki efektywności z przedziałów
zdefiniowanych dla każdej z jednostek. Dla czynników porządkowym zastosowane zostało
podejście SMAA-O. Bez utraty ogólności można założyć, że oceny jednostek dla czyn-
ników porządkowych zawarte są w przedziale [0, 1]. Z tego zakresu wylosowane zostaje
K wartości (K – liczba jednostek). Następnie, wartości te zostają potraktowane jako
precyzyjne oceny poszczególnych jednostek dla badanego czynnika, z uwzględnieniem
podanej kolejności. W przypadku modelu opartego o funkcje wartości ze zdefiniowanym
zakresem dopuszczalnych funkcji, w ostatnim kroku generowane są próbki cząstkowych
wartości dla wszystkich jednostek. Mając dane precyzyjne oceny jednostek, wylosowane
zostają wartości cząstkowych funkcji z przedziału pomiędzy górną a dolną funkcją ogra-
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niczającą dopuszczalny zakres. Dodatkowo, zapewnione zostaje, że cząstkowe wartości
wylosowane w każdej próbce zachowują monotoniczny porządek. Po wygenerowaniu pró-
bek wag, ocen i wartości cząstkowych funkcji, wartość efektywności dla każdej jednostki
obliczona zostaje zgodnie z wybranym modelem. Ostatecznie, wyznaczone zostają in-
deksy akceptowalności w oparciu o te wartości efektywności.

3 Badanie odporności dla problemów z hierarchiczną
strukturą nakładów i efektów

W klasycznym podejściu, struktura nakładów i efektów rozważanych w metodzie DEA
jest płaska. W niniejszej rozprawie rozważono również problemy, w których wejścia i wyj-
ścia zorganizowane zostały w wielopoziomową, hierarchiczną strukturę. Takie podejście
posiada kilka korzyści. Po pierwsze, istnieje możliwość łatwej modyfikacji i aktualizacji
zbioru danych o nowe czynniki. Po drugie, taka struktura pozwala na dekompozycję pro-
blemów na mniejsze składniki, które są łatwiejsze do zarządzania, a wyniki bardziej pre-
cyzyjne. Po trzecie, w hierarchicznej strukturze istnieje możliwość modelowania interakcji
nie tylko pomiędzy pojedynczymi czynnikami, ale także pomiędzy całymi kategoriami.
Ograniczenia na wagi mogą zostać zdefiniowane na każdym poziomie hierarchii.

W ramach niniejszej rozprawy zaproponowano metody pozwalające na otrzymanie
wyników badania odporności dla jednostek decyzyjnych, z użyciem modelu opartego na
funkcjach wartości, dla każdej kategorii w hierarchii czynników. Ponadto, modele ma-
tematyczne pozwalające na wyznaczanie skrajnych odległości od najlepszej jednostki,
pozycji w rankingach oraz weryfikacji występowania koniecznych i możliwych relacji pre-
ferencji zostały zaadaptowane tak, aby uwzględniać możliwość definicji ograniczeń na
wagi na wszystkich poziomach hierarchii.

Dodatkowo, w rozprawie przedstawione zostały zależności pomiędzy odpornymi wy-
nikami dla różnych kategorii. Poniżej przedstawiono przykładowe z nich:

• jeżeli dla wszystkich kategorii, będących bezpośrednimi dziećmi pewnej kategorii
c, minimalna odległość do najlepszej jednostki jest zerowa, to dla kategorii c mini-
malna odległość do najlepszej jednostki również wynosi 0;

• Jeżeli najlepsza pozycja pewnej jednostki w rankingu efektywności dla wszystkich
bezpośrednich podkategorii danej kategorii c jest pierwsza (lub ostatnia) to dla
kategorii c najlepsza pozycja tej jednostki jest również pierwsza (lub ostatnia);

• Jeśli dla danej pary jednostek i kategorii c relacja koniecznej preferencji zachodzi
w każdej podkategorii c to ta relacja musi zachodzić też w kategorii c.

W przypadku metod stochastycznych, estymacja indeksów akceptowalności odbywa
się w sposób podobny do klasycznych problemów, jednak, wygenerowany wektor wag
musi uwzględniać wagi wszystkich nakładów, efektów oraz kategorii na każdym poziomie
rozważanej hierarchii. Dla każdej kategorii suma wag jej podkategorii musi być równa 1.
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4 Metody badania odporności dla oceny efektywności z
uwzględnieniem wielu scenariuszy analizy

W niektórych przypadkach ten sam zbiór jednostek decyzyjnych oceniany jest kilkukrot-
nie, biorąc pod uwagę różne punkty widzenia (scenariusze). Przykładowo, w niniejszej
rozprawie rozważono efektywność lekarzy osobno dla grup pacjentów zgłaszających różne
dolegliwości. W takim przypadku analizę odporności można przeprowadzić na dwóch po-
ziomach. Z jednej strony wyniki badania odporności można przeanalizować dla każdego
scenariusza osobno. Z drugiej strony, w niniejszej rozprawie zaproponowano miary pozwa-
lające na agregację wyników uzyskanych dla poszczególnych scenariuszy. Wprowadzone
miary opierają się na wyznaczeniu koniecznych i możliwych wyników, odpowiadających
wynikom uzyskanym dla, odpowiednio, wszystkich i co najmniej jednego ze scenariuszy.
Przykładowo, bazując na relacjach koniecznej preferencji uzyskanych dla poszczególnych
scenariuszy można zweryfikować występowanie relacji koniecznie koniecznej preferencji
występującej, gdy dla danej pary jednostek relacja koniecznej referencji występuje we
wszystkich scenariuszach. Analogicznie, relacja możliwie koniecznej preferencji wystę-
puje, gdy dla danej pary jednostek konieczna preferencja występuje dla co najmniej jed-
nego scenariusza. Podobne miary można zdefiniować na podstawie możliwej preferencji.
W przypadku przedziałów pozycji w rankingu efektywności można wyznaczyć możliwie
konieczny przedział pozycji jako przecięcie przedziałów pozycji, uzyskanych dla poszcze-
gólnych scenariuszy. Podobnie, możliwie możliwy przedział pozycji zdefiniowany został
jako suma zakresów pozycji dla pojedynczych scenariuszy. Analogiczne miary można za-
proponować dla skrajnych wartości efektywności czy odległości od najlepszej jednostki.

5 Wybór reprezentatywnego wektora wag w oparciu o
wyniki badania odporności

W tradycyjnym podejściu metoda DEA wyznacza, dla każdej jednostki osobny, najbar-
dziej korzystny, wektor wag. Zasadność porównywania jednostek w takim przypadku
budzi wątpliwości z uwagi na brak wspólnej bazy do porównania. Z tego powodu, w nie-
których zastosowaniach, korzystne jest znalezienie jednego, wspólnego, wektora wag dla
wszystkich jednostek. W literaturze zaproponowano wiele takich metod.

W niniejszej rozprawie wprowadzona została nowa procedura wyznaczania wspólnego
wektora wag w oparciu o wyniki badania odporności. Wynikiem zaproponowanej metody
jest jeden, wspólny wektor wag, który możliwie najlepiej reprezentuje wszystkie dopusz-
czalne wektory wag. Konkretnie, jeśli wyniki badania odporności wskazują na wyraźną
preferencję jednej jednostki nad inną, to różnica w wartościach miary efektywności dla
tych jednostek powinna być możliwie największa. Z drugiej strony, dla par jednostek
nieporównywalnych pod względem badanej miary, wartość efektywności po zastosowaniu
uzyskanego wektora wag powinna być możliwie najmniejsza.

W tej rozprawie zaproponowano cztery różne relacje pozwalające na ocenę czy wy-
niki badania odporności wskazują na preferencję jednej jednostki nad drugą. Relacje te
opierają się na, odpowiednio, oczekiwanej wartości efektywności, oczekiwanej pozycji w
rankingu, relacji koniecznej preferencji oraz wartościach indeksu PEOI.

Oba, opisane powyżej, cele mogą zostać osiągnięte poprzez sekwencyjne rozwiązanie
dwóch problemów programowania matematycznego reprezentujących poszczególne cele.
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W pierwszej kolejności maksymalizowana jest najmniejsza z różnic dla par, dla których
zidentyfikowano preferencję. Następnie, minimalizowana jest największa z różnic efektyw-
ności dla nieporównywalnych jednostek (z zachowaniem maksymalnej różnicy uzyskanej
w poprzednim etapie). Wektor wag, uzyskany w optymalnym rozwiązaniu drugiego z mo-
deli najlepiej reprezentuje całe spektrum dopuszczalnych wektorów wag.

6 Wyznaczanie reduktów i konstruktów efektywności

Analiza odporności dla metody DEA została również rozszerzona poprzez wprowadzenie
dwóch nowych pojęć, które ułatwiają generowanie wyjaśnień wyników metody:

• redukt efektywności, dla pewnej efektywnej jednostki decyzyjnej, jest minimalnym
zbiorem nakładów i efektów, które sprawiają, że dana jednostka jest efektywna;

• konstrukt efektywności, dla pewnej nieefektywnej jednostki decyzyjnej, jest naj-
mniejszym możliwym zbiorem jednostek, które powodują jej nieefektywność. Ina-
czej mówiąc, jest to minimalny zbiór jednostek, które musiałyby zostać usunięte ze
zbioru danych, aby badana jednostka została efektywna.

Do wyznaczenia reduktów efektywności zaproponowano przyrostowy algorytm, w któ-
rym sprawdzana jest efektywność badanej jednostki poczynając od najmniejszych (jed-
noelementowych) podzbiorów wejść i wyjść. W przypadku, gdy dla danego zbioru wejść i
wyjść jednostka jest efektywna, wtedy wszystkie nadzbiory tego zbioru nie są brane pod
uwagę w dalszym przeszukiwaniu. Dla każdej jednostki efektywnej można wyznaczyć co
najmniej jeden redukt efektywności.

Dla jednostek nieefektywnych można wyznaczyć konstrukty efektywności. W tym celu
rozwiązuje się ten sam model matematyczny, który pozwala na znalezienie minimalnej
pozycji w rankingu efektywności. Jednostki, dla których zmienne binarne w optymalnym
rozwiązaniu tego modelu przyjmują wartość 1 tworzą jeden z konstruktów efektywno-
ści. Kolejne konstrukty można znaleźć dodając do rozważanego modelu ograniczenie nie
pozwalające na ponowne znalezienie tego samego rozwiązania.

7 Eksperymentalne porównanie metod tworzących pełen
ranking jednostek decyzyjnych

Jak wspomniano wcześniej, klasyczne podejście w metodzie DEA pozwala jedynie na wy-
odrębnienie podzbioru jednostek efektywnych, bez możliwości porównania ich efektyw-
ności. Na przestrzeni ostatnich 50 lat, w literaturze zaproponowano liczne rozszerzenia
pozwalające na konstrukcję pełnego rankingu jednostek decyzyjnych. W tej rozprawie
przeprowadzono przegląd takich metod oraz ich eksperymentalne porównanie. Rozwa-
żone zostało 15 procedur pozwalających na uzyskanie rankingu jednostek decyzyjnych,
spośród których 4 bazują na wynikach badania odporności i zostały oryginalnie zapro-
ponowane w niniejszej pracy.

Metody tworzenia rankingu jednostek decyzyjnych wprowadzone w ramach tej pracy
zostały oparte na wynikach metod badania odporności. Pierwsze dwie z nich porządkują
zestaw jednostek w oparciu o malejące wartości oczekiwane miary efektywności oraz
rosnące wartości oczekiwane pozycji w rankingu efektywności.
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Pozostałe dwie miary tworzą ranking jednostek wykorzystując macierz indeksów PEOI.
Procedura NFS-PEOI czerpie inspirację z miary Net FLow Score wykorzystywanej sze-
roko w MCDA m.in. w metodzie PROMETHEE. W tej metodzie, dla każdej jednostki,
wyznaczany jest jej ogólny przepływ jako różnica przepływu dodatniego i ujemnego. Do-
datni przepływ określa względną siłę danej jednostki (jej przewagę nad innymi jednost-
kami). Analogicznie, ujemny przepływ reprezentuje względną słabość badanej jednostki.
Jednostki z najwyższą wartością ogólnego przepływu uznawane są za najlepsze.

Ostatnia metoda, wprowadzona w tej rozprawie, została nazwana PEV-PEOI i rów-
nież opiera się na macierzy PEOI. W tej procedurze jednostki porządkowane są na pod-
stawie wektora własnego odpowiadającego największej wartości własnej macierzy PEOI.

W niniejszej rozprawie wszystkie rozważone procedury porządkujące zostały opisane
i zilustrowane na małym przykładzie. Następnie zidentyfikowano cechy poszczególnych
metod i przedstawiono je w formie listy wad i zalet każdej z nich. Taka lista może po-
móc w identyfikacji metody najbardziej pasującej do konkretnego problemu. Ostatecznie,
rankingi wygenerowane przez poszczególne metody zostały porównane z wykorzystaniem
pięciu różnych miar zgodności: współczynnika trafień (ang. Hit Ratio (HR)), znormali-
zowanego współczynnik trafień (ang. Normalized Hit Ratio (NHR)), τ Kendalla, miary
różnic rankingów (ang. Rank Difference Measure (RDM)) oraz miary zgodności rankin-
gów (ang. Rank Acceptance Measure (RAM)).

Eksperymenty składały się z dwóch części. W pierwszym etapie procedury zostały
uruchomione dla 960 sztucznie wygenerowanych zbiorów danych z różną liczbą jednostek,
nakładów i efektów. Następnie, uzyskane wyniki zostały porównane z tymi otrzymanymi
dla 10 rzeczywistych zbiorów danych.

Wyniki uzyskane dla wszystkich pięciu miar były spójne, tj. identyfikowały te same
pary metod jako generujących zbieżne rankingi. Spośród rozważanych procedur wyod-
rębniono trzy grupy metod, dla których generowane wyniki są podobne. Zidentyfikowano
również trzy metody, które nie wpisują się w żadną z powyższych grup.

Z przeprowadzonej analizy wyraźnie wynika, że wybór metody wpływa, w istotny
sposób, na otrzymany ranking. Wybierając procedurę generowania rankingu należy wziąć
pod uwagę jej cechy oraz koncepcję, na której bazuje. Dodatkowo, korzystne wydaje się
zestawienie wyników kilku metod, co pozwala na analizę problemu z różnych punktów
widzenia.

8 Zastosowanie zaproponowanych metod do rzeczywistych
problemów

Metodologiczna część niniejszej rozprawy zilustrowana została licznymi zastosowaniami
dla rzeczywistych problemów.

Metody badanie odporności dla modelu ilorazowego zostały zaaplikowane do oceny
efektywności 11 lotnisk w Polsce. Przedstawiono i opisano wyniki badania odporności
w trzech różnych sytuacjach. W pierwszej kolejności rozważono najprostszą sytuację,
w której brano pod uwagę wszystkie lotniska ze zbioru bez zdefiniowanych ograniczeń
na wagi. Następnie wprowadzono dodatkowe ograniczenia na wagi. Na koniec zidentyfi-
kowano i usunięto ze zbioru danych jednostki będące przykładami odstającymi. Analiza
trzech powyższych sytuacji pokazała użyteczność proponowanych metod, wpływ defini-
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cji ograniczeń wag na wyniki analizy oraz stosowalność metod badania odporności do
wykrywania i usuwania jednostek będących przykładami odstającymi.

W kolejnej publikacji przedstawiono zastosowanie proponowanego podejścia do oceny
niezawodności dostaw energii elektrycznej w 140 krajach. Problem został analizowany
z kilku różnych perspektyw. Po pierwsze, zastosowano klasyczny ilorazowy model DEA
do wskazania zbioru krajów efektywnych. W kolejnym etapie zastosowano zapropono-
wane algorytmy wyznaczania reduktów dla krajów efektywnych i kostruktów dla państw
nieefektywnych. Ponadto, dla krajów nieefektywnych, wyznaczono jednostki będące re-
ferencjami (tzw. HCU) oraz poprawki konieczne do osiągnięcia efektywności. Następnie
w pracy przedstawiono i omówiono wyniki metod badania odporności wprowadzonych
w tej rozprawie. Na koniec wskazano i rozważono trzy potencjalne scenariusze rozwoju
dla Japonii i Singapuru. Przeprowadzona analiza pokazała, że połączenie klasycznego
modelu CCR z nowo zaproponowaną analizą odporności tworzy spójną całość i może
zostać zastosowane w wielu dziedzinach.

Zastosowanie zaproponowanych metod z uwzględnieniem modelu opartego o funkcje
wartości zostało zilustrowane na przykładzie analizy efektywności lekarzy z oddziału
ratunkowego szpitala dziecięcego w Ottawie. Analiza została przeprowadzona osobno
dla trzech grup pacjentów skarżących się na różne dolegliwości. W pracy przedstawiono
zarówno szczegółowe wyniki badania odporności dla jednej z tych grup pacjentów jak
i wyniki podejścia agregującego rezultaty uzyskane dla poszczególnych grup pacjentów.
Dodatkowo, w ramach przeprowadzonej analizy, zastosowano algorytm pozwalający na
wybór wektora wag reprezentującego wyniki badania odporności.

Kolejne trzy zastosowania przedstawione w niniejszej rozprawie dotyczyły analizy
efektywności chińskich portów, robotów przemysłowych oraz Specjalnych Stref Ekono-
micznych w Polsce. We wszystkich tych problemach uwzględniono nieprecyzyjne dane.
W przypadku oceny portów i robotów przemysłowych zastosowano model ilorazowy, pod-
czas gry do oceny Specjalnych Stref Ekonomicznych wykorzystano model oparty na funk-
cjach wartości.

Użyteczność zaproponowanych metod w kontekście hierarchicznej struktury nakła-
dów i efektów zilustrowano dla problemu oceny systemów ochrony zdrowia w polskich
województwach. Analiza została przeprowadzona 4 różnych poziomach: poprawa stanu
zdrowia mieszkańców, efektywna gospodarka finansowa, satysfakcja pacjentów oraz ca-
łokształt systemu. W pracy pokazano sensowność analizy dla każdej z kategorii osobno
oraz pokazano w jaki sposób agregacja takich wyników pozwala na identyfikację słabych
i mocnych stron badanych jednostek.

Podsumowanie

Badania przedstawione w niniejszej rozprawie dotyczyły metod analizy odporności dla
Granicznej Analizy Danych uwzględniających cały zakres dopuszczalnych wektorów wag
nakładów i efektów.

Zaproponowane rozwiązanie składa się z dwóch, wzajemnie uzupełniających się grup
metod. Pierwsza z nich pozwala na uzyskanie dokładnych wyników z użyciem programo-
wania matematycznego. Druga polega na zastosowaniu symulacji Monte Carlo do oszaco-
wania indeksów akceptowalności reprezentujących rozkłady badanych miar. W pierwszej
grupie metod wyniki, chociaż dokładne, pokazują tylko wartości skrajne, występujące
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rzadko. Metody stochastyczne dostarczają dodatkowej informacji o tym, jak wartości
miar rozłożone są pomiędzy wartościami skrajnymi.

Efektywność jednostek decyzyjnych oceniona została z trzech różnych punktów wi-
dzenia. Pierwszy z nich dotyczy wartości miary efektywności i pozwala na wyznaczenie
skrajnych wartości tej miary możliwych do osiągnięcia przez daną jednostkę, jej rozkładu
i wartości oczekiwanej. Analogicznie, w perspektywie rankingów efektywności, zapropo-
nowane podejście pozwala wyznaczyć skrajne pozycje poszczególnych jednostek, rozkład
tych pozycji oraz ich wartości oczekiwane. Ostatnią rozważoną perspektywą były porów-
nania parami jednostek. W tym przypadku zaproponowane modele pozwalają na ocenę
występowania relacji koniecznej i możliwej preferencji dla par jednostek decyzyjnych praz
prawdopodobieństwo wystąpienia preferencji jednej jednostki nad inną.

Rozważono dwa różne modele efektywności: ilorazowy, stosowany w klasycznym po-
dejściu, oraz model addytywny oparty o funkcje wartości, w którym wartość efektywności
wyznaczana jest jako ważona suma wartości cząstkowych funkcji zdefiniowanych dla po-
szczególnych nakładów i efektów. Ponadto, dla obu modeli efektywności wprowadzono
rozszerzenia zaproponowanych metod uwzględniające problemy z nieprecyzyjnymi da-
nymi. Rozważono trzy formy niepewności, tj. przedziały wartości nakładów i efektów,
czynniki zdefiniowanych na skali porządkowej oraz dopuszczalne zakresów cząstkowych
funkcji wartości. Modele matematyczne oraz metoda wyznaczania indeksów akceptowal-
ności zostały zaadaptowane tak, aby uwzględniać wszystkie te typy niepewności.

Zaproponowane podejście pozwala również na analizę problemów, w których nakłady
i efekty pogrupowane są w kategorie tworząc wielopoziomową strukturę hierarchiczną.
W tym przypadku, metody badania odporności pozwalają na uzyskanie wyników dla
każdej kategorii osobno. Takie rezultaty dają pozwalają na analizę efektywności działa-
nia jednostek z różnych perspektyw i precyzyjniejsze wyznaczenie obszarów, w których
poszczególne jednostki działają dobrze oraz takich, które wymagają usprawnień. Dodat-
kowo, w niniejszej rozprawie zaproponowano zestaw miar pozwalających na dwuetapową
analizę odporności przypadku, gdy ten sam zestaw jednostek oceniany jest dla różnych
scenariuszy.

Aby uprościć analizę wyników badania odporności, które mogą być trudne do in-
terpretacji zaproponowano metodę pozwalającą na wyznaczenie jednego zestawu wag
nakładów i efektów w taki sposób, aby uzyskane wartości efektywności możliwie najle-
piej reprezentowały odporne wyniki. W tym celu wprowadzono dwuetapową procedurę.
W pierwszym etapie maksymalizowana jest różnica pomiędzy wartościami miary efek-
tywności dla par jednostek, dla których zaobserwowano wyraźną preferencję. W drugim
etapie minimalizuje się różnice efektywności dla par jednostek nieporównywalnych pod
względem rozważanej miary.

Ostatnie rozszerzenie, wprowadzone w ramach tej pracy, ułatwia decydentom wyja-
śnianie wyników metody DEA. W tym celu zdefiniowano pojęcia reduktu i kostruktu
efektywności i zaproponowano algorytmy pozwalające wyznaczyć redukty efektywności
dla jednostek efektywnych i konstrukty dla jednostek nieefektywnych.

W niniejszej rozprawie zaproponowano cztery nowe procedury do tworzenia pełnego
rankingu jednostek decyzyjnych oparte o wyniki badania odporności. Powyższe metody
zostały zestawione i porównane z innymi procedurami, opisanymi w literaturze. Wyniki
analizy wyraźnie pokazały, że wybór metody rankingowej wpływa w znaczny sposób na
uzyskane rezultaty.
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Zaproponowane metody badania odporności dla obu modeli efektywności zostały za-
implementowane i udostępnione w ramach otwarto-źródłowego projektu diviz. Kod źró-
dłowy stworzonych modułów napisany jest w języku R i dostępny pod adresem https:
//github.com/alabijak/diviz_DEA/.

Niniejsza praca ma również charakter praktyczny. Wszystkie metody i rozszerzenia
zostały zastosowane do rzeczywistych problemów dotyczących różnych dziedzin, m.in.
ocena efektywności polskich lotnisk, niezawodności dostaw energii elektrycznej krajów
oraz pracy lekarzy z oddziału ratunkowego szpitala dziecięcego w Ottawie.
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