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Abstract

Systems that assist humans in processing and analyzing information are becoming in-

creasingly popular. Over the years, various areas of artificial intelligence have developed

many tools and techniques for this purpose. In this context, Multiple Criteria Decision

Analysis (MCDA) provides decision support tools that are highly interpretable, ensuring

their recommendations are believable and trustworthy. Nevertheless, to deal with new,

more complex problems, incorporating techniques and inspiration from different fields

may be essential. This dissertation presents MCDA methods that combine ideas from

various AI sub-disciplines. Firstly, there was developed a framework for preference learn-

ing algorithms. It infers the parameters of MCDA-inspired models through interpretable

artificial neural networks. They are suitable for handling vast, inconsistent preference

information. Moreover, incorporating ideas from machine learning, two approaches were

employed for modeling non-monotonic marginal value functions within a preference dis-

aggregation framework. One method allows controlling the complexity and interpretabil-

ity of the inferred model by minimizing the number of changes in monotonicity. The

other elucidates the non-monotonic shape as a combination of non-decreasing and non-

increasing components. Furthermore, following the multi-label classification problem,

an additive value function model was proposed for the newly formulated problem of mul-

tiple interrelated decision sorting. Then, novel exploitation methods of preference and

outranking relations were developed. They analyze the strength and weaknesses of al-

ternatives using algorithms inspired by website scoring. The scores can be enhanced

by the Decision Makers’ holistic judgments in the form of subsets of options considered

comprehensively strong or weak. The practical usefulness of the proposed methods was

demonstrated in real-world problems such as risk management in nanomanufacturing

processes and the evaluation of special economic zones or technological parks.
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Chapter 1

Introduction

Decision problems are situations in which a Decision Maker (DM) needs to decide on

a set of alternatives by considering their performances on a set of criteria. Typically,

no alternative performs best on all criteria since the latter represents different points

of view on the quality of considered options. As a result, there is a set of potentially

best solutions, and it depends only on the DM’s preferences which of them would be

judged the most suitable. It is why the DM needs to provide preference information that

reflects his/her value system. The main aim of intelligent decision support systems is to

incorporate the elements of such a system and suggest a recommendation that would be

consistent with them.

Artificial Intelligence (AI) is a discipline that focuses on creating computer systems

and programs able to simulate the cognitive capabilities of humans as learning, under-

standing, pattern recognition, problem-solving, planning, or decision-making. It covers

many sub-disciplines, including:

• Machine Learning (ML) dealing with algorithms and techniques enabling learning
based on data and making automated predictions. In ML, we can distinguish deep

learning with its primary focus on deep neural networks, which can detect and

process complex patterns in data and perform sophisticated tasks.

• Multi-Criteria Decision Aiding (MCDA) developing methods and tools which can
support the process of decision making while there exist many criteria and alter-

natives to consider.

• Natural Language Processing (NLP) which focuses on advancing techniques and
models for analyzing, understanding, and generating natural language.

• Recommender systems dealing with algorithms and techniques for personalized
recommendations based on a vast set of possible actions. They take into account

preference analysis, behaviors, and characteristics of users.
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• Web mining focussed on extracting, analyzing, and using information from internet
resources like websites, forums, or social media, exploring their structure and users’

behaviors.

Many of these sub-disciplines are tightly connected, and different methods can be

assigned to a few. This dissertation focuses on methods and problems in the intersection

of MCDA with other sub-disciplines of AI.

MCDA methods are inspired by real-world decision-making. They provide recom-

mendations systematically, consistently, and objectively, taking into account only these

features of alternatives that are crucial for the DM due to employing his/her preferences.

The preference information given by DM may be provided directly, e.g., defining the

importance of criteria or model parameters, or indirectly as exemplary decisions made

on a subset of reference alternatives or part of the final solution. Additionally, it may

refer to the nature of criteria, interactions between them, and the direction of preference

of performances on criteria.

We can distinguish three main types of decision problems [37], [7]:

• choice focused on choosing a subset of the most preferred options;

• ranking where alternatives are put in order from the best to the worst;

• sorting (ordinal classification) aiming to assign alternatives to predefined classes
that reflect the DM’s preference level.

Different sub-disciplines of AI solve similar problems. For instance, web mining con-

siders a ranking of websites based on the connections between them. In recommender

systems, one needs to create a ranking of items and suggest a few that are most relevant

for the user. Moreover, in ML, one considers both ranking problems as regression or

object assignment to predefined classes or the subset of the most relevant labels for the

considered item. Multi-label classification problem refers to the issue of making multi-

ple decisions about whether a considered label is relevant or not [106]. Regarding these

different sub-disciplines of AI, preference information is usually given indirectly, the ref-

erence set is considered as a training set and a way of searching for models’ parameters

is called supervised learning.

MCDA and machine learning are two sub-disciplines of artificial intelligence that

support people in decision-making. Both provide tools and techniques for analyzing

different alternatives and recommend to DM solutions relevant to the considered decision

problem. However, these two fields’ main goals, assumptions, methods, and possibilities

differ.

Decision-aiding is based on the dialogue between the DM and an analyst. The for-

mer provides information representing his/her value system and preferences. On these
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premises, the method builds an analytical model and elaborates recommendations. The

latter can be accepted by DM or rejected, leading to reconsidering preference information

and possibly their change. In turn, the analyst’s task is to properly select a method of

acquiring preference information and processing data to ensure that the chosen model

reflects the DM’s mindset and the characteristics of a tackled problem in the best way.

Over the years, several different preference models were proposed to aggregate al-

ternatives’ performances on various criteria. Three main families of methods can be

identified:

• methods based on pairwise comparisons in the form of preference or outranking
relations between alternatives [97];

• scoring methods assessing options in a holistic way using value-utility and distance-
based procedure [10];

• approaches based on sets of “if ... then ...” decision rules [36].

In this doctoral dissertation, we consider only the first two of them. The exemplary

methods using these models are more extensively discussed in Chapter 2.

When it comes to machine learning, it provides techniques for pattern recognition in

data and making correct predictions even for deeply complex problems. These models

process only the data while concluding, and there is typically no need to provide any

additional information regarding the problem or criteria. ML is widely used and can

be applied to nearly any learning task, e.g., in medical diagnosis [56], recommender

systems [86] data analysis, control systems [104], speech and pattern recognition.

Both MCDA and ML may be employed to solve decision problems. However, signifi-

cant differences between them can be highlighted [12], [102], [20]. Firstly, MCDA entirely

focuses on the user, his/her knowledge, and preferences. Solving a problem depends on

the DM’s preferences. Through their exploitation, methods can reveal his/her priorities.

Conversely, ML is mainly directed to models, with the main interest in data mining,

data analysis, and pattern recognition. The fundamental goal of ML is to solve problems

by optimizing one specific feature, e.g., minimizing a loss function. The diverse objec-

tives are manifested by including different models, the size of the problems considered,

techniques employed, and the role of users.

Preference models which are used in MCDA are inspired by actual approaches to

decision-making by humans. The desire to incorporate such aspects leads to the ease of

interpretability and explainability of these methods. It is a particularly essential attribute

since intelligent systems are implemented in various applications (fields). Decision-

making problems appear frequently in security, medicine, or natural environment preser-

vation, where improper decisions may cause significant damage. The possibility of its
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usage mainly depends on the fact that their predictions and recommendations are credible

and trustworthy.

Interpretability of the model states for the ease of understanding the model by humans

and cause of a decision made by the model [79], [80]. It may also signify the degree of

confidence in how people can predict the behavior of algorithms [82]. The feasibility of

the model’s interpretability enables DM to verify if the model takes into account proper

aspects of the problem and if it is coherent with the information and constraints that are

given by DM [7]. The method should explain the specific decision by giving the influence

of each score that characterizes the alternative and the existing dependencies between

criteria or options. Explanations help improve the transparency and interpretability

of the models. Explanations help users, stakeholders, and decision-makers understand

the factors and features that influenced the model’s decision by providing insights into

how a model arrived at a particular prediction. It helps DM better understand his/her

preferences and decisions [12]. Moreover, it delivers justifications and knowledge that

enable DM to take an active role in the decision process. Explanations enhance trust

and confidence in artificial intelligence models. When users can understand and validate

the reasoning behind a decision, they are more likely to trust and accept the model’s

outputs. Explanations also allow users to identify potential biases, errors, or limitations

in the model, promoting more informed decision-making.

In the context of decision support systems, the crucial attribute is simulatability, i.e.,

the ease of correct prediction of algorithm output by DM [82]. It characterizes MCDA

methods as they try to reflect the DM’s reasoning.

It is in opposition to machine learning methods which focus on extracting essential

but, at the same time, some abstract patterns and dependencies in data. This is possi-

ble thanks to approximations of complex, highly non-linear transformations that enable

solving intricate problems. However, it causes that most methods are black-box-type

methods whose interpretability is highly restrained [102]. In this case, both decision

explanation and interpretation may be the general approximation of the inner logic and

influence of the specific criteria [80].

One of the critical features of the model is its efficiency in reproducing preference

information. If the model has low quality of preference information reconstruction, the

correctness of the conclusions obtained from the analysis and interpretation of the model

will be unlikely [82]. Due to this fact, the acquired solution should respect all constraints

given by DM and consider complete preference information. In case of any inconsis-

tencies detection, there should be delivered knowledge which part from the preference

information was not reconstructed.

Gathering preference information in a direct dialogue with DM implied that the tradi-

tional MCDA methods were designed to learn from small data sets [12]. This information

reflects the real value system of DM, thus typically being cohesive. On the contrary, ML
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methods were always adapted to cope with huge training data sets with noise and in-

consistencies [20]. Data is a set of historical decisions made over some time or aggregate

decisions made by many DMs. In order to process them, some advanced statistical and

optimization techniques are used, which help to search a parameters space effectively

to find the best-fitted model. Due to that, these models can scale efficiently with the

increase of alternatives number [102].

Over the years, both MCDA and ML focused on independently developing methods

that address the above problems. Nonetheless, recently there has been a great rise in

collected data and decisions which need to be analyzed automatically and then inter-

preted and justified. It led to development research derived from both disciplines, called

preference learning [29]. Such methods enable simple scaling with increasing prefer-

ence information while simultaneously providing the possibility of model interpretation.

As part of this discipline, some interpretable ML methods were adapted to decision

problems [7], including Rank-SVM [46] or decision trees with monotonicity constraints.

Moreover, some MCDA methods were adapted to cope with a great amount of data. The

main assumptions of preference learning are described in Chapter 3.3.

Currently, for big data, using precise algorithms is associated with a long time of

calculations, which is impractical. It causes the necessity of using heuristics or various

techniques to enable the solution’s scalability with increasing training data. Accord-

ingly, some proposed methods include heuristics using evolutionary algorithms [19], linear

programming models combined with simulated annealing [84], or dedicated metaheuris-

tic [96] to estimate parameters models values.

In the last years, much effort has been made to optimize and reduce the calculation

time of AI models. Great attention was assigned to the artificial neural network (ANN)

models. Usually, to get high accuracy, they require an enormous amount of training

data. However, since they run many similar operations, they can be easily parallelized

and implemented on dedicated processing units such as GPU and TPU, which helps

to reduce the calculation time significantly. Some techniques, like distributed learning,

enable solving problems that do not fit one device. Additionally, many frameworks and

optimization techniques appeared that facilitate the effective learning process of models

for complex and inconsistent problems [15].

Another aspect is that decision-making is often connected not only with scoring in

terms of the quality of each option but also may concern scoring in the context of how

favorably a considered alternative compares to others. Usually, DM does not consider a

precise utility function and rate alternatives compared to others with the usage of some

heuristics. They assume the iterative consideration pairs of options and choose the better

one which goes to the next round. This choice may be executed by the selection of an

alternative that is better on most of the criteria [2], or rejection based on the first cue

that discriminates them starting from the most important criterion [34]. One proposed
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a plethora of MCDA methods in the spirit of pairwise comparisons and exploration of

the relations in the considered pair of alternatives [6], [23], [71], [52]. The examples

of these methods are families of ELECTRE [23] and PROMETHEE [6]. The first one

examines if there is strong enough evidence for the assertion “ai is at least as good or more

preferred to ak” and if there are not vital enough premises against it. The latter focuses

on the degree of preference for one option over the other. The considered relation may

vary depending on the specific method and can refer to the preference of one alternative

over the other, outranking, or indifference. The result from comparison may be a crisp

(binary) value, which says only about the existence of the relation, or valued (fuzzy) with

information about the degree of relation intensity.

Nevertheless, disclosing the relation between all pairs of alternatives is usually not a

decision problem itself but only a step in the decision process. Therefore, the information

given as a pairwise comparison matrix or a preference graph must be exploited to gather

ranking or recommendation of the most preferred options. These techniques may focus

on sorting alternatives in terms of being more preferred and choosing the option that

is preferred most often [5]. The other variant of ranking construction is to consider the

strengths and weaknesses of all options [6] or iteratively with the usage of descending

and ascending distillation procedures [90]. The recommendation of best alternatives may

take an option on the top of the ranking or a set of alternatives that are in the kernel of

an outranking graph [91].

The ranking creation and choice from available options basing on the dependencies

between options also appear in the context of web mining. It can be characterized as

extracting valuable and meaningful information from the World Wide Web. It involves

analyzing large volumes of web data such as web pages, hyperlinks, and user behavior

to discover patterns, trends, and insights that can be used for various purposes. One is

page ranking used by search engines and recommender systems. The goal is to provide

users with the most relevant and helpful information by distinguishing valuable and

trustworthy sites from spam and low-quality pages. For this purpose, a quality score is

used by the users and moderators, and the graph of connections between websites [39].

Also, more valuable pages include links to other valuable ones and rarely to suspicious

websites [85]. It can also be considered as portals, mainly providers of content and pages

that aggregate from many sources and are gates (intermediary), hubs from which it is

possible to go to many other websites [58].

With general development, new challenges and decision problems appear more com-

plex and require tools and methods for their resolution. The advantages and possibilities

of different sub-disciplines of AI were an inspiration for this doctoral dissertation. It con-

siders different research fields, such as ML, deep learning, and web mining. Among the

accomplished works, three papers have been published, and two others have been sub-

mitted for publication. The applicability and usefulness of each proposed method were
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demonstrated on real-world problems (use cases). These works refer to three research

areas:

1. MCDA methods inspired by deep learning

Traditional MCDA methods require directly defining the model’s parameters or

describing a small set of example reference alternatives holistically evaluated by

the DM. In this situation, preference disaggregation is run using mathematical

programming. In case of any inconsistencies in preference information, the main

aim is to reflect the user’s preferences as well as possible. However, if the data set

of reference options is vast and involves many inconsistencies, such an approach

may struggle with reproducing real DM’s value system [70]. Additionally, methods

based on mathematical programming experience scalability issues with an increase

in the size of the reference set.

The second issue is that in some methods, even if the DM provides some indirect

preference information concerning the evaluation of alternatives, (s)he still needs

to define the shape of a function that transforms alternatives scores to partial pref-

erence or outranking degrees.

In the last years, neural network models were learned on training data sets that

were bigger and bigger to learn more detailed and representative features, leading

to better generalization and more accurate prediction. As a result, many sophisti-

cated optimization techniques were proposed based on gradient learning methods,

effectively enabling network weights adjustments to training data. Additionally, in

order to shorten the processing time, they can use parallel and distributed compu-

tational techniques which enable scaling both vertically and horizontally.

In this doctoral dissertation, a general schema of implementation of MCDA-inspired

approaches with the usage of neural networks is proposed. These models solve sort-

ing problems by preference learning from large reference data sets. Moreover, in

the case of methods that use additive aggregation functions and methods which ag-

gregate pairwise comparisons, the proposed solutions let to model any monotonic

shape of these functions. The essential feature is that the proposed architectures

of neural networks enable straightforward interpretation of the model and expla-

nation of a recommended decision. The accuracy and usability of these models

were presented via experiments on the ten benchmark data sets used in preference

learning.

2. MCDA methods inspired by machine learning
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Machine learning methods can explore and approximate very complex transforma-

tions of input data. Thus, traditional MCDA methods focus on monotonic trans-

formations and experience challenges if the direction of preference is unknown.

Hitherto approaches to cope with non-monotonic conversions of criteria values pro-

duce complicated solutions; hence their interpretation is intricate.

It was a motivation for this doctoral dissertation to propose methods of criteria

modeling for which the preference characteristic is limited or unknown a priori:

• an approach which minimizes the complexity of the function by minimizing
the number of monotonicity directions changes for non-monotonic criteria with

defined A-shaped, V-shaped, or any other shape,

• an approach which models non-monotonic criteria as a compound of two
components, non-decreasing and non-increasing, which enables easier inter-

pretability of the model.

The second inspiration from machine learning is multi-label classification problems.

The essence of this issue is that many decisions must be made simultaneously by

assigning to the object each label or not. In the case of decision-making, it is

common that there is a situation when there are many interdependent decisions to

be made or states which decision is more or less adequate to the considered scenario.

Consequently, within this doctoral dissertation, a new type of decision problem is

defined as a sorting problem with many interdependent decisions. We proposed a

suitable method for these challenges and tested it on the risk management problem

during nanomaterials production.

3. MCDA methods inspired by web mining

In web mining methods, the ranking of the quality of websites mainly depends

on the links in the WWW graph. Additionally, the analysis may be extended by

defining whether the website is credible, significantly influencing the final position

in the ranking.

Methods based on pairwise comparisons provide information on the relation type

between alternatives. In order to get the recommendation of the most preferred

options or their ranking, it is necessary to aggregate this information. Current

methods for exploiting such a relation treat all options equally important. An

option that outranks an extremely weak alternative is as important as one that

outranks an alternative noticeably strong. On the other hand, these methods do

not let control of the final results by DM. In most methods, to get other solutions,

the change needs to be introduced at the earlier stage to get a different relation
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graph.

The above observations motivated the creation of two new families of methods

for exploiting preference matrices: PrefRank for weighted preference relation and

ScoreBin for crisp outranking relation. These methods consider dependencies in

the graph, weaknesses and strengths of alternatives, and whether the option is easy

to outrank. The proposed approaches were tested experimentally in terms of their

similarity to other exploitation algorithms. Their application is described in real-

world use cases as the ranking of special economic zones in Poland for PrefRank

and technological parks in Poland for ScoreBin.

The remainder of this doctoral dissertation is organized in the following way. Chap-

ter 2 consists of the principles of decision aiding process and preference modeling. In

particular, it includes the main assumptions and description of selected MCDA meth-

ods considered in this doctoral dissertation. Chapter 3 focuses on chosen techniques

and aspects from other sub-disciplines in AI, especially machine learning, deep learning,

preference learning, and web mining. Chapters 4–6 describe in detail the research areas

considered in this doctoral dissertation by introducing MCDA methods inspired by other

sub-disciplines of AI. Chapter 7 summarizes the research and proposed methods with the

possible directions of future work and scientific research.
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Chapter 2

Multiple Criteria Decision
Analysis

This chapter describes the general characteristics and paradigms of MCDA with chosen

methods considered within this doctoral dissertation.

2.1 General scheme of decision aiding process

We start with listing the major steps in decision aiding process. The first step of each

decision process involves defining a problem and specifying the desired form of the out-

come. At this stage, it is required to define which options are considered by DM, their

essential features, and also their nature and characteristics. Problems can also be divided

by the number of decisions to make. We can distinguish problems with a single decision

and several interdependent decisions.

The next step is choosing a preference model, which states the way alternatives’

performances on criteria are processed and aggregated. In this doctoral dissertation, two

models are considered. The first calculates the comprehensive quality of each alternative

using a value or utility function. This model, along with an exemplary UTADIS method,

is extensively presented in Chapter 2.6. The other examined model focuses on pairwise

comparisons and determines preference or outranking relation for each pair. Preference

relation assumes that if alternative ai is preferred over ak, it means that ai is better

than ak. Outranking relation states that if option ai outranks ak, then ai is at least

as good as ak. PROMETHEE method, which employs preference relation, is described

in Chapter 2.7, whereas the ELECTRE method that incorporates outranking is discussed

in Chapter 2.8.

With a choice of preference model, DM is asked to provide preference information.

It may concern direct values of model parameters. However, there is also the possi-

bility of indirect preference information, e.g., exemplary class assignments or holistic
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score of alternative which is preferred or not. A thorough description of different types

of preference information is given in Chapter 2.4.

Based on the preference information, the methods create the exact instance of the

preference model that needs to reflect the preferences as precisely as possible. In the

case of indirect information, it needs to be firstly disaggregated to the specific model

parameters.

In the case of a method that relies on additive value functions, the obtained model

is used to assign a comprehensive quality score to all available options. However, for

a method that operates on pairwise comparisons, the model offers insights into the re-

lationships between all the alternatives. It also requires additional exploitation of this

outcome to solve the initial problem. The procedures for exploiting valued preference

relations are described in Chapter 2.7, whereas those for dealing with crisp outranking

relations are in Chapter 2.8.

Nonetheless, there can be an infinite number of all possible parameter values compat-

ible with preference information, and selecting one representative model might be chal-

lenging. It calls for robustness analysis, which provides information about a broad

spectrum of all possible solutions given the uncertainty related to the selection of the

compatible preference model instance. The detailed description is in Chapter 2.5.

All the solutions, representative models, and results of robustness analysis are offered

to the DM’s judgment. (S)he needs to check if the results are satisfying and acceptable.

If so, the process of decision-aiding is completed. Otherwise, it is possible to choose

another representative model, or the gathered solution may prompt DM to rethink pref-

erence information by its specification or change. Then the model is constructed once

again, and the process is continued until DM approves the solution.

2.2 Notation

In this doctoral dissertation, the following notation is used:

• A = {a1, a2, . . . , ai, . . . , an} – a finite set of n alternatives;

• AR = {a∗1, a∗2, . . .} ⊆ A – a finite set of reference alternatives, which the DM accepts

to critically judge in a holistic way;

• G = {g1, g2, . . . , gj , . . . , gm} – a finite set of m evaluation criteria, gj : A → R for
all j ∈ J = {1, . . . ,m};

• Xj = {xj ∈ R : gj(ai) = xj , ai ∈ A} – a set of all different performances on gj ,

j ∈ J ;
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• x1j , x
2
j , . . . , x

nj(A)
j – increasingly ordered values ofXj , xkj < xk+1

j , k = 1, 2, . . . , nj(A)−
1, where nj(A) = |Xj | and nj(A) ≤ n;

• C1, C2, . . . , Cp - p pre-defined, preference ordered classes, where Ch+1 is preferred

to Ch, h = 1, . . . , p− 1 (H = {1, . . . , p}).

2.3 General assumptions

In this doctoral dissertation, we make the following assumptions regarding considered

problems and decision-makers.

Firstly, we assume that DM may not have any established preference model or a strict

algorithm for scoring alternatives. Moreover, the decisions made by DM reflects his/her

current preferences. It indicates that the preference information given by DM may not

be consistent [53]. In case of finding any inconsistencies and pointing that to DM, (s)he

can change his/her mind. Therefore, the main task of decision aiding is not to discover

the existing preference model in DM’s mind but to propose one that follows his/her pref-

erences the best [12]. The DM knows which characteristics of the problem are crucial

and which do not influence the decision that is made. It means that all criteria are

complete and without any redundancies. Moreover, many methods assume the inter-

dependence of criteria. The DM may define the direction of preference, which means

that his/her preferences are monotonic on a considered criterion, or (s)he may be unsure

of the nature of the criterion, and it needs to be discovered by model. Usually, two main

types of monotonic criteria are considered: gain (non-decreasing) and cost type (non-

increasing). In addition, DM can specify a criterion as strictly increasing or decreasing.

In some real-world decision scenarios, the assumptions on monotonicity are too simplified

a representation of DM’s preferences, and they can be non-monotonic [88]. Moreover,

scoring each alternative by DM is demanding and time-consuming, making it impossible

to rate all options. Thus models can be used to comprehensively evaluate the options

outside the reference set.

2.4 Preference information

As MCDA methods require the participation of DM in the decision process, the phase

of gathering preference information is one of the most crucial in decision-aiding. The DM

has various possibilities to express his/her preferences. Some may be easier for him/her,

and (s)he can be more confident, but some may cause some difficulties and be more

mentally demanding. Asking for the same preference information in different ways may

lead to different outcomes, which may cause inconsistencies and solutions with lower

quality [53].

13



Some methods assume providing direct preference information as precise model pa-

rameter values concerning, for instance, the importance of criteria, dependencies be-

tween them, or pairwise comparison thresholds. Parameters may have a clear interpre-

tation [17], but it still requires from DM the knowledge of how the method works and

the influence of these parameters on the final solution. Additionally, when DM does

not have a well-defined preference model in mind, it might be for him/her cognitively

demanding [10].

Conversely, the DM may provide preferences in an indirect way as local or holistic

judgments. Such information may be established as an exemplary assignment of alter-

native to class, declaring the relation between pair of options or criteria, or ranking

of subsets of alternatives. Such preferences can be more natural and less demanding for

DM. Including historical decisions made by the DM’s, it becomes easier to gain [10].

The disaggregation paradigm allows us to conclude the model’s parameter values

based on holistic preferences [44]. It focuses on finding an instance of the model which

recreates examples of decisions provided by DM. Such models are called consistent or com-

patible. Usually, to perform preference disaggregation, the methods incorporate mathe-

matical programming [108], evolution algorithm [32], [19], or simulated annealing [84].

2.5 Robustness analysis

Frequently, gathered models are only a single instance in an infinite set of all models

compatible with preference information. It may cause that different sets of parameters

to produce various decisions, considering alternatives from outside the reference set. The

results and analysis, which come from different instances, may vary significantly. In order

to assess the stability of the model, it is essential to perform a robustness analysis. It ver-

ifies a wide spectrum of feasible scenarios and informs DM about potential consequences

of preference information given by himself/herself [37] [47]. In the case of mathematical

programming models, it is possible to run a precise analysis that can check all possible

and necessary relations between alternatives or assignments to classes. Possible relation

(assignment) means that at least one compatible model confirms this decision, whereas

necessary relation (assignment) requires all possible instances to recommend the same

decision. Moreover, stochastic analysis can also be conducted using Monte Carlo simula-

tion, providing information about the distribution of decisions in the space of all coherent

models [100].

2.6 Reminder on UTADIS method

UTADIS is a preference disaggregation approach adjusted for sorting problems. It utilizes

an additive value function to evaluate each alternative by summing the marginal values
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on all criteria to the comprehensive value [54] [94]:

U(ai) =

m∑

j=1

uj(gj(ai)) =

m∑

j=1

uj(ai) ∈ [0, 1], (2.1)

where uj is a marginal value function. In the original approach, all functions are mono-

tonic, where the direction of monotonicity depends directly on the preference provided

by DM. There are distinguished two types of criteria: gain and cost type, which means

that the function needs to be non-decreasing and non-increasing, respectively. These

functions are defined by the set of characteristic points with their marginal values, which

must fulfill the constraints of monotonicity. Marginal values for the remaining values

on the criterion are linear interpolations of the two closest points. The DM can determine

the characteristic points or encompass all possible values on the considered criterion [37].

The comprehensive value is normalized to the interval [0-1] where one is assigned

to the ideal alternative a+, i.e., with the most preferred evaluations on all criteria. It im-

plies that the sum of marginal values for the best scores must equal 1. The comprehensive

value equals 0 for anti-ideal alternative a−, i.e., an option with the worst performances

on all criteria. It leads to the necessity of each value of the marginal value function

to be equal to 0 for the least preferred evaluation.

A value-driven threshold-based sorting procedure is employed to obtain assignments

to classes for all alternatives. It incorporates thresholds th defined on the scale of com-

prehensive values where th−1 states for the lower and th for the upper boundary of class

Ch. The value of the worst threshold equals 0, and each subsequent one is greater than

the previous, where the upper boundary of the best class is above 1. Preference infor-

mation in this method appears as exemplary assignments to classes which are translated

to constraints th−1 ≤ U(a∗i ) < th if the alternative is assigned to class Ch by DM.

This method is modeled as a mathematical programming problem where the goal

is to minimize the number of incorrectly classified alternatives.

2.7 Reminder on PROMETHEE methods

The PROMETHEE method aggregates the results of pairwise comparisons of each alter-

native against all remaining ones into a comprehensive measure of desirability [6]. They

calculate marginal preference degrees πj(ai, ak) constructed on differences in alternatives

evaluation on the specific criteria. DM selects the shape of the marginal preference func-

tion from a set of predefined shapes, with the most typical one illustrated in Figure 2.1.

These functions can reflect the uncertainty of DM, which is why they require defining two

thresholds: indifference qj and preference pj . The indifference threshold states the maxi-

mal difference in scores, which is negligible for DM. In contrast, the preference threshold

means the minimal difference for which DM is sure that one score is better than the

other. All functions are non-decreasing and normalized to the interval [0,1].
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0

Figure 2.1: Typical marginal preference function used in PROMETHEE.

The marginal preference degrees are aggregated using a weighted sum into a compre-

hensive preference degree π(ai, ak). These preference degrees are finally aggregated with

the usage of the Net Flow Score (NFS) procedure to positive S+(ai) and negative S−(ai)

flows [97]. Positive flow states for arguments for the strength of the considered option ai
and is calculated as an average of preference degree ai over other alternatives. Besides,

negative flow reflects the weakness of alternative ai and means how other options are

preferred over ai on average.

These two flows can be employed to create a partial ranking by checking the relation

between each pair of alternatives according to PROMETHEE I procedure. Indifference

appears if both flows are identical. Then, preference shows if one option is better on one

flow and not worse on the other. Finally, incomparability occurs if, accordingly to one

flow, the alternative is better than another, whereas, on the second flow, the relation

is reversed. The appearance of incomparability means that the model has not strong

enough evidence to indicate one option is better than the other, and alternatives are

significantly different.

With the usage of the PROMETHEE II method, it is possible to create a complete

ranking by calculating total flow S(ai) = S+(ai)− S−(ai). In this case, option ai is pre-

ferred over ak if S(ai) > S(ak). Alternatives are indifferent if their total flows are equal.

2.8 Reminder on ELECTRE methods

ELECTRE methods utilize outranking relation as a preference model by pairwise com-

parisons to state the existence of this relation [27] [89]. There can be distinguished as a set

of thresholds reflecting the uncertainty in options evaluation as indifference threshold qj
and preference threshold pj , whose interpretation is similar to PROMETHEE methods.

Moreover, there appears also veto threshold vj , which expresses the minimal performance

difference, which is so critical that it has the power to invalidate the outranking.

Outranking relation is established via the concordance and discordance tests. Con-

cordance test checks if there exists criteria coalition strong enough to support outranking

relation. The concordance index is calculated as a weighted sum of partial concordance

indices determined for each criterion. In turn, the discordance test verifies the strength

of arguments against the outranking. Moreover, this relationship can be considered both
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valued and crisp. The comprehensive concordance and discordances serve as the basis

for computing the outranking credibility. Then, to transform it into a crisp one, it must

be compared against the credibility threshold (cutting level) λ. For obtaining solutions

for ranking or choice problems, it is required to exploit the gathered relation.

2.9 Exploitation methods for valued and crisp relations

Once an outranking or preference relation is constructed, it can be exploited in the

function of choice or ranking problem to provide an adequate recommendation. In what

follows, three state-of-the-art methods serving this purpose are discussed.

Valued relations may be exploited using, e.g., NFS [97] or distillation procedures [90].

Distillation computes the quality of each alternative and iteratively adds them to the

constructed order until considering the entire set. In the downward (upward) distillation,

the ranking is constructed in a top-down (bottom-up) fashion, retaining alternatives with

the greatest (least) quality first. Finally, the two rankings are intersected to obtain a final

ranking, which is a partial preorder.

In the case of binary relation, to gather a ranking of options, it is possible to use

variants of NFS [97] or Qualification Distillation (QD) [90] adjusted to crisp relations.

The other option in the procedure from ELECTRE-Score [25] assigns a score value to each

alternative based on pairwise comparisons with reference alternatives.

Considering choice problems, there are several available methods [2]. Firstly, there

can be recommended alternatives from the top of the ranking. Secondly, according to so-

cial choice theory, one can employ plurality or anti-plurality rule, i.e., choose alternatives

that most often outrank other options or those that least often are outranked by oth-

ers [5]. Thirdly, in the ELECTRE I method, one proposed exploiting an outranking

graph to search for its kernel K ⊆ A as the most preferred subset of alternatives. Kernel

K comprises alternatives not outranked by any other alternative in K. In contrast, the

alternatives outside K must be outranked by at least one alternative in K. If there are

cycles in the graph, they must be eliminated. In this dissertation, each cycle is aggregated

into an auxiliary node that inherits all incoming and outgoing arcs of the alternatives

contained in the cycle.
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Chapter 3

Artificial Intelligence

In this chapter, we describe the main assumptions and concepts of machine learning

methods (Section 3.1), artificial neural networks (Section 3.2), and web mining (Sec-

tion 3.4) in the context of solving decision problems within the scope of this doctoral

dissertation.

3.1 Machine learning

Machine learning is a sub-discipline of artificial intelligence that can learn and en-

hance performance through data analysis. The learning process involves examining vast

amounts of data to identify previously unrecognized patterns, dependencies, and rules

that were not explicitly programmed. As a result, the program can predict new data,

make decisions, and solve problems. During the learning process, algorithms can adapt

their parameters based on the information included in the training data. The greater the

amount of data and the better its representativeness of the problem, the better results

can be achieved.

We can distinguish numerous paradigms of learning, among which are:

• Supervised learning is the technique where an algorithm is learned on examples
from a training set, and each example is treated as a known correct answer. The

method analyzes these examples and tries to find general patterns and rules, which

enable predicting answers for new data.

• Unsupervised learning focuses on data analysis for which no clear answers exist.
The aim is to find hidden patterns, structures, or groups in data, which help to un-

derstand data or find anomalies.

• Reinforcement learning is a paradigm in which a method learns by interacting
with the environment and getting the response as a reward or penalty. These
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algorithms try to find an optimal strategy of actions to maximize rewards and

minimize penalties.

• Active learning is a technique in which an algorithm actively engages with the user
by asking questions about scoring a specific item instead of relying on a pre-existing

training data set.

This doctoral dissertation focuses explicitly on supervised learning, where evaluating

the performance of a trained model is an essential step. This is done using a separate

test set independent of the training data to assess the model’s ability to make accurate

predictions and decisions based on previously unseen data. The ultimate goal of machine

learning is to develop models that can generalize information beyond the scope of their

training data sets.

Due to the wide range of optimization approaches and their complexity, these tech-

niques require a set of hyperparameters that govern the learning process. A subset of data

specifically reserved for validation purposes can be utilized to determine the optimal val-

ues for hyperparameters. This validation data helps evaluate the quality of various model

variants and chooses the best hyperparameter set.

Machine learning can be applied to a wide range of diverse issues, for instance:

• classification, which means assigning objects to predefined classes or categories
based on their features,

• multi-label classification, which enables to assign of one object to multiple classes
(labels) simultaneously,

• label ranking where apart from assigning a set of labels, there is also created their
ranking where position states for adequacy for this object,

• regression which is a prediction of numerical value for the option,

• clustering, i.e., discovering some clusters in data based on the similarities between
objects and assigning them to these groups.

An unquestionable advantage of ML is the possibility of processing large data sets

and extracting knowledge from them. Numerous methods are easily scalable, enabling

the generate results in a short amount of time. However, it is also connected with the

fact that some algorithms require significant training data to achieve high accuracy.

If there is not enough high-quality data, models can be less accurate and more prone

to overfitting. It means they can be too fitted to training data with a small ability

for generalization to new ones. To prevent overfitting, regularization techniques are

employed. It focuses on adding extra constraints or sanctions to the learning process

to enlarge the generalization ability and avoid over-complicating the algorithm.
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ML can discover complicated patterns and dependencies in data, which may be hard

to identify with traditional data analysis methods. They can model highly non-linear

transformations and dependencies between data. It facilitates the discovery of knowl-

edge and a better understanding of problems. However, many methods do not support

a precise definition of data characteristics and relations there. Hence, there is a risk

of learning incorrect conclusions based on accidental correlation in data, leading to erro-

neous predictions and inferences. Moreover, many more complex algorithms are intricate

and challenging to interpret and get a comprehensible and precise prediction explanation.

It impedes the detection of erroneous dependencies learned by the model and disrupts

the possibility of verifying the correctness of the model. All issues mentioned above may

lead to reduced trust and social acceptance of these methods, hence their limited usage.

3.2 Artificial neural networks

Neural networks are machine learning models that may be applied to almost every task

focusing on predicting highly complex output based on well-defined input data. Their

knowledge representation model is a structure consisting of many neurons grouped in lay-

ers. Many architectures define different layers and connection types, which are adjusted

to various problems. The most common are Feed Forward Networks, Convolutional Neu-

ral Networks, and Recurrent Neural Networks.

To capture non-linear dependencies, the output of neurons undergoes a non-linear

transformation through an activation function. The best-known activation functions are:

• Sigmoid and hyperbolic tangent, which map input data to intervals [0,1] and [-1,1],
respectively, using the logistic function,

• Rectified Linear Unit (ReLU), which outputs 0 for negative input values and pre-
serves positive values,

• LeakyReLU is derived from ReLU but introduces a small scaling factor for negative
values.

Neural networks are trained using gradient-based techniques, such as Stochastic Gra-

dient Descent. In this approach, the successive optimization steps aim to minimize the

loss function, gradually adjusting the model’s parameters to approximate the desired out-

put values. The training data is divided into smaller groups known as batches to expedite

the training process and enhance learning stability. Within one step of optimization, the

model generates predictions for all objects included in a single batch. This process

is repeated for all batches until the whole training data set is processed, called an epoch.

When batch includes the whole data set, it is called Batch Gradient Descent, and whereas

the approach when the training data set divides into many batches, it is called Mini Batch

21



Gradient Descent [92]. Many optimization techniques exist, including additional regu-

larization or adaptation of the speed of learning of each parameter or momentum, which

are supposed to make the learning process faster and reduce the influence of overfitting.

The exemplary techniques are Adam[57] and AdamW [72].

In deep learning, other approaches are employed to address overfitting and enhance

model robustness against noise in the data. Techniques such as dropout and data aug-

mentation are utilized for this purpose [107], [93]. The former is a regularization tech-

nique that randomly turns off some neurons during training. It causes the reduction

of dependencies between neurons and forces neural networks to use a wide range of input

data. The latter focuses on creating artificial input data by different transformations

on training data, enlarging the data’s diversity.

Most computations in neural networks involve matrix transformations, particularly

matrix multiplications. Specialized hardware such as GPUs and TPUs excel in perform-

ing fast matrix calculations, thereby reducing the training and prediction time of neural

networks. Furthermore, distributed learning across multiple computing machines is fea-

sible, allowing for efficient scaling of neural networks. This scalability enables training

larger models on extensive datasets, improving model efficiency and accuracy.

3.3 Preference learning

Preference learning is a research area at the intersection of ML and MCDA, which fo-

cuses on model reasoning based on user preferences. In this context, preferences may

be considered a set of constraints or requirements to solve decision problems that can

be violated somewhat, contrary to the MCDA approach [29].

Many machine learning methods only optimize a strictly defined goal. Usually,

in many real-world examples, DM cannot characterize an ideal solution and possess

limited knowledge about possible solutions. It leads to the situation when the expected

goal is impossible to achieve, or the result is unsatisfactory and can be improved [4].

Preference learning provides numerous solutions, including methods of preference acqui-

sition and prediction based on empirical data. They are used in multiple applications like

marketing, recommender systems, computer games, e-commerce, or web browsers [30].

Preference information may come from different sources and be presented, for instance,

as direct feedback from users in the form of like or dislike, the score on the ordinal scale

as stars, or indirectly as clicks in links to usage or ordering a product.

Preference learning advances the concept of supervised learning to learning from

a training set with a known preference. It may also include more general types of informa-

tion like relative preference or information about preferences considering specific object

features. Methods, which are proposed in preference learning, focus mainly on ranking

problems, especially:
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• Object ranking – involves ordering items based on preference using pairwise com-
parisons (a ranking problem in MCDA).

• Instance ranking – in this case, the goal is to assign an alternative to one from a set
of predefined classes ordered by preference. It can be seen as a sorting problem

in MCDA.

• Label ranking – an order of labels that best fits each object is created. This ranking
type focuses on determining the most suitable labels for each object.

Models proposed in preference learning are ease in model interpretability and the

possibility to provide additional preference information, e.g., regarding criteria mono-

tonicity. Preference models can be divided into four main groups. The first group

focuses on models that are based on utility or value functions, which capture the overall

preference of an object or alternative. The second group involves learning the preference

relation between pairs of objects, allowing for direct comparison and ranking. The third

group utilizes local preference aggregation techniques, which consider the preferences

of neighboring objects or alternatives. Finally, the fourth group encompasses model-

based preference learning, where sophisticated models are constructed based on particular

assumptions regarding the preferences relations [30].

Among this area, some interpretable machine learning methods were adapted to de-

cision problems [7], for instance, Rank SVM [46], or decision trees with monotonicity

constraints. Moreover, several MCDA methods were altered to address problems with

a great amount of data. These are Choquet integral [22] to handle interactions between

criteria, model additive value functions [68], or a method that generates a monotone rule

ensemble based on Dominance-based Rough Set Approach [14].

3.4 Web mining

Web mining, a sub-discipline of AI, involves extracting, gathering, discovering, and anal-

ysis of information from various internet sources [8]. It is essential in the context of infor-

mation retrieval on the internet. Web browsers create personalized rankings of adequate

websites based on a query and its context. They score sites in terms of accuracy and

quality of content, reliability of links, the popularity of the website, and its reputation.

It is helpful for users to find the information they need and be sure that the presented

pages are credible, valuable, and connected with their interests.

In web mining, we. can distinguish three major areas:

• web content mining focuses on extracting and analyzing relevant data from websites,
focusing on their content.
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• web structure mining directs to the analysis of connections between web pages rep-
resented as a directed graph where websites correspond to vertices and hyperlinks

to arcs,

• web usage mining involves analyzing user behavior and interactions on the internet,
specifically their interactions with websites.

In this doctoral dissertation, we focus only on web structure mining.

Usually, websites are not independent documents defined only by their content. They

also include connections to other websites as hyperlinks that refer to their subject. The

analysis of websites graph enables one to discover subject groups, identify essential web

pages, analyze social networks, and detect fake or spam pages.

In this context, the most popular approach is PageRank, which states the impor-

tance and popularity of web pages [85]. It enables scoring and ranking pages based

on the quality of links that lead to them. Over the years, the PageRank algorithm

was an essential technique for scoring web pages in the Google browser. The main idea

is that websites with many incoming links from other pages with high rankings are in-

dications that the site is valuable and vital. This concept was employed in numerous

fields, for instance, scoring robot swarms based on individuals [11], the analysis of social

networks [64], or identifying genes connected with some diseases [81]. Different variants

of PageRank are used in network security by spam identification, detrimental pages [62],

or botnets [28]. In particular, one can use the TrustRank algorithm [39], which enables

assigning websites to a set of trusted pages and then propagating information through

the graph of website connections.

The other algorithm of network analysis is HITS which focuses on identifying two

types of websites: hubs and authorities [58]. The algorithm assigns two scores for each

page, exhibiting a mutually reinforcing relationship. The authority score quantifies the

value of the page’s content. A good authority must be linked by many good hubs, being

regarded as a meaningful source for a particular topic. The hub value captures the value

of each page’s links to other sites. A good hub points to many good authorities.

The other algorithm similar to HITS is Salsa [66], which divides pages to hub and

authorities but differs in their identification. This method investigates second-degree

neighborhoods. Pages are considered good hubs if they link to websites with links from

good hubs. Then, pages are good authorities if they are pointed by websites linking

to other good authorities. A random walk on a bipartite graph calculates the quality

of hubs and authorities. One part corresponds to hubs, and the other to authorities.

Each page can belong to both groups. Connections in the graph correspond to links

between pages.

24



Chapter 4

Method inspired by deep learning
and preference learning

Over the last few years, the amount of gathered and processed data increased dramati-

cally. In particular, some data sets include historical records for decision problems with

a large volume of available options and decisions made for them in the past [45]. Ana-

lyzing them in an understandable way and verifying the correctness of the conclusions

is crucial for companies that gather the data. Over the years, MCDA methods have deliv-

ered tools to analyze and support the decision-making process, which is straightforward

in interpretation and delivers credible explanations of their recommendations.

Historically, decision problems involved a relatively small number of reference alter-

natives. It comes from the fact that each piece of preference information from the DM

is created by his/her holistic analysis of the available options [21]. Due to that, traditional

MCDA methods were designed to learn from a small amount of preference information.

Values of model parameters are often established by disaggregation of preference informa-

tion via mathematical programming. The gathered model tries to recreate the DM’s way

of thinking by the best reflection of his/her decisions. Unfortunately, in the case of large

data sets consisting of highly inconsistent preferences in data, models have difficulties

with effective extraction of preference [70].

One of the most significant advantages of machine learning is the possibility of scal-

ability, which enables to analyze large data sets. In particular, deep learning copes well

with discovering model parameters for complicated problems, which include massive and

highly noisy training data. A more precise description of neural networks is available

in Chapter 3.2. These features of ANN were the reason to use them in the context

of decision aiding, which learns from historical decisions or patterns as exemplary op-

tions. Specifically, [73] described the Adaptive Feedforward ANN approach to rank the

set of discrete alternatives using a highly nonlinear value function. Further, [42] used

ELECTRE-based single-layer perceptron to solve multi-criteria classification problems,
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whereas [38] proposed NN-MCDA method consisting of two parts: linear additive value

model and compound nonlinear fully connected deep neural network. The disadvantage

of solutions described in [42] and [38] is the difficulty in interpreting the entire model

or its parts. Additionally, they do not allow the definition of strictly monotonic criteria.

On the other hand, the methods proposed within the scope of preference learning

solve decision problems that are greater in size. They include methods from MCDA

adapted to cope with a large amount of reference data and ML methods modified to learn

monotonic preferences. The detailed description of preference learning is in Chapter 3.3.

The problem of coping with an enormous amount of reference data in MCDA methods

and possibilities offered by deep learning was the motivation to propose several methods

inspired by both disciplines in this doctoral dissertation. In [74], we proposed architec-

tures of neural networks which apply preference learning inspired by highly interpretable

MCDA methods. In particular, we considered methods based on Ordered Weighted Aver-

age (OWA) operator [105], Choquet integral [1], TOPSIS [43], UTADIS, PROMETHEE,

and ELECTRE. The latter three are described in Chapter 2. We propose a model of pref-

erence learning which accustoms deep learning techniques to discover parameter values

of the model from the large set of reference data. These methods address sorting or in-

stance ranking problems, and to accomplish this, each of them assigns a comprehensive

score Sc(ai) to aj ∈ A. This score is then employed in a value-driven threshold-based

sorting procedure (Chapter 2.6). It is worth adding that values of thresholds which sepa-

rate classes, are model parameters adjusted during training. The objective function is the

minimization of average regret for reference alternatives which states the distance from

thresholds delimiting the desired class in case an alternative is misclassified or to zero.

The networks used to derive parameters for the OWA-, Choquet-, and distance-based

models are shallow and contain from one to two linear layers. However, the ANNs pro-

posed for UTADIS, PROMETHEE, and ELECTRE can be categorized as deep learning

models [15] due to their multiple hidden layers and their ability to process various levels

of data (such as criteria, alternatives, pairs of alternatives, and assignments). The net-

work for ANN-ELECTRE involves the greatest number of layers and units among all in-

troduced methods, with one input layer, five hidden layers, and one output layer. Hidden

layers are necessary to capture the complexity of the value- and outranking-based MCDA

methods. All components and units of the proposed architectures are suitably adjusted

so that the proposed models retain constraints on the monotonicity of the criteria. How-

ever, the raw weight values obtained from multiple layers, some of which apply nonlinear

transformations to the data, are not easily interpretable for users. Therefore, we ensure

that users are presented with the final models of ANN-UTADIS, ANN-PROMETHEE,

and ANN-ELECTRE. These models provide a summary of the comprehensive contribu-

tion of individual criteria. They consider the transformations applied by various layers,

the activation functions used for nonlinear processing, and the normalization of scores
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to a more easily interpretable range of alternatives’ scores.

4.1 ANN-UTADIS: Preference learning with UTADIS

and ANN

In this section, the general scheme of the proposed methods is described in reference

to ANN-UTADIS. A detailed description of all remaining methods is available in [74].

ANN-UTADIS extends the UTADIS method, which is a preference disaggregation method

that quantifies a comprehensive quality of each alternative using an additive value func-

tion:

U(ai) =

m∑

j=1

wjuj(gj(ai)), (4.1)

where uj ∈ [0, 1] is a marginal value function and wj is a weight associated with criterion

gj .

To represent marginal value values, it is necessary to define a neural network able

to model any monotonic function. Only a non-decreasing function is considered as the

transformation to non-increasing is conducted by negating the function. One of the basic

features which are on the theoretical foundations of ANN is that the neural network

u(x) with one hidden layer and sigmoidal activation function σ can approximate any

continuous N -dimensional function with accuracy depending on the number of neurons

or components L in the hidden layer [13]:

u(x) =
L∑

k=1

αkσ(y
T
k x+ θk), (4.2)

where αk, θk ∈ R and yk ∈ RN are weights of this network and x ∈ RN is an input

vector. By limiting parameters αk ∈ R≥0 and yk ∈ RN
≥0, function u(x) is monotonic. The

most often used sigmoidal functions are sigmoid and hyperbolic tangent. However, both

of them have the problem of gradient vanishing, which causes troubles while learning

some particular neurons or even totally stops them for specific input values. To mitigate

these difficulties, a function LeakyHardSigmoid is introduced:

LeakyHardSigmoid(x) =





δx, if x < 0,

x, if 0 ≤ x ≤ 1,

δ(x− 1) + 1, if x > 1,

(4.3)

where δ is a slope factor, a very small value in the range [0, 1). This function is not

sigmoidal and cannot approximate level segments of non-decreasing functions. However,

gradually decreasing the slope to zero during training makes it possible to make the

LeakyHardSigmoid function equivalent to HardSigmoid. Neural network u(x) defined
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in Eq. 4.2 for one-dimensional vector x and y with non-negative weights αk and yk and

activation function σ LeakyHardSigmoid is further described as Monotone Block. The

number of components L limits the maximal number of the function u(x) breakpoints;

however, it can be lower if αk = 0.

The architecture of the network used in the ANN-UTADIS method is shown in Fig-

ure 4.1. Initially, input data needs to be scaled to interval [0,1] by using, e.g., min-max

scaling and cost-type criteria need to be transformed to their gain-type counterparts.

Each performance of the alternative is processed by a non-decreasing function inside

Monotone Block. Subsequently, the individual marginal values for each criterion are

combined into a comprehensive value using a linear layer, as shown in Eq. 4.1. This

layer’s weights (wj) are enforced to be positive values to maintain the predetermined

preference directions. Since the output from Monotone Block is not normalized to the

interval [0,1], we perform a min-max scaling of comprehensive scores:

ScANN−UTADIS(ai) =
U(ai)− U(a−)
U(a+)− U(a−)

. (4.4)

Monotonic Block

Monotonic Block

Linear Layer

...
...

Monotonic Block
Normalization

...

Figure 4.1: The neural network architecture employed by the ANN-UTADIS method.

The neural network employed in ANN-UTADIS optimizes various parameters: weights

wj , class thresholds t, and parameters used in each Monotone Block. To make parallel

computations easier, hyperparameter L should be the same for all criteria, enabling oper-

ations on tensors instead of scalars. To summarize, the model of ANN-UTADIS consists

of one input layer, three hidden, and one output layer.

The idea of utilizing a monotone block to model any monotonic function was also

utilized in two other proposed methods, i.e., ANN-PROMETHEE and ANN-ELECTRE.

This transformation was used to discover the shape of the marginal preference function

for PROMETHEE and the shape of marginal concordance and discordance functions for

ELECTRE. It removes the requirement of defining a specific shape of these functions

from the DM and allows for a better fit to data. Additionally, the ANN-ELECTRE

network can directly learn the values of the preference threshold, allowing the functions

that comprise this model to be interpreted.
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Batch Gradient Descent is employed to accelerate the training process and remove

dependence on the order of considered alternatives. If it is impossible, using Mini Batch

Gradient Descent is recommended. Although then the order of processing options may

influence the results, it has an insignificant effect when the size of the batch is large

enough.

The data augmentation technique is utilized to enhance the model’s resistance to noise,

improve its robustness, enhance its ability to generalize, and reduce overfitting. This

is achieved by adding Gaussian noise to the training data, which is diverse in each epoch.

4.2 Illustration of preference models inferred with neural

networks

To present the model and its interpretation, let us consider a two-class classification

problem Employee Rejection / Acceptance (ERA) [40]. This problem focuses on a student

survey that investigates the willingness to hire an employee based on four candidate

features, such as experience and verbal skills. All the criteria in the survey are in the

form of gain type and have been pre-processed to be within the range of 0 to 1. The

models were obtained by training the ANN-UTADIS on 80% randomly chosen reference

alternatives. The model consists of 4 marginal value functions shown in Figure 4.2. The

interpretation of these plots is identical to the original UTADIS method. Among all

criteria, the highest influence on comprehensive value has criterion g3 and the lowest –

criterion g2. It is also easily noticeable that the change in values between 0 and 0.1 for

criterion g2 has a minor impact on comprehensive value. In contrast, even a slight change

in criterion g1 between values 0.8 and 1.0 causes a big difference in comprehensive value.

Additionally, we can see that the influence of criterion g3 is almost linear.

4.3 Computational experiments

To evaluate the effectiveness of the ANN-inspired methods discussed in this doctoral

dissertation, extensive experiments were conducted on nine benchmark data sets sourced

from the UCI repository (http://archive.ics.uci.edu/ml/) and the WEKA soft-

ware [40]. These data sets consist of over hundred to 1700 alternatives evaluated on 4 to 8

criteria, adjusted to the problem of binary sorting. Moreover, these data sets include from

14 thousand to nearly 3 million pairwise comparisons, which are directly reconstructed

by methods like ANN-PROMETHEE and ANN-ELECTRE.

To investigate the level of inconsistency in each data set, we performed the follow-

ing steps. First, we computed the number of pairs of alternatives for which the holistic

scores were coherent with the dominance principle or for which it was violated. More-

over, we checked if indifferent options were classified the same. Finally, we analyzed how
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Figure 4.2: Marginal value functions scaled by criteria weights constructed by ANN-
UTADIS for the ERA dataset.

many criteria in each problem disrupt the preference monotonicity rule by comparing

mean scores in each class. This study showed that all considered data sets consist of in-

consistent preference information. However, the number of inconsistencies in different

problems varied. It made the recreation of preference information for some problems

challenging, whereas it was not demanding for others.

As evaluation measures, we employed three measures: the standard misclassification

rate (0/1 loss), F1, and AUC (Area Under the Curve), which reflects a ranking error,

i.e., the average amount of changes in ranking from comprehensive values to make results

identical. Moreover, we tested three scenarios of solving a stated problem in each data set

which is supposed to quantify how well the models cope with knowledge generalization.

We focused on different training and test set proportions from the whole data set. The

first scenario assumed that the training set was vastly larger than the test (80% to 20%);

in the second one, the sizes of both sets were the same (50% vs. 50%), and in the last

scenario, the training set was significantly smaller than the test set (20% to 80%). To en-

sure a more robust analysis, each experiment was repeated 100 times, and the results

were averaged over all iterations.

To determine the optimal values of hyperparameters, grid search tests were conducted,

evaluating the classification quality across different parameter values. We considered the
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following parameters: learning rate lr, components number in monotonic block L, and

standard deviation ξ in Gaussian noise used for data augmentation. Based on those

experiments, ranges of values for these parameters were established, which allowed for

achieving the highest scores for each data set. Results for AUC for the ERA data set

and model ANN-UTADIS are presented in Figure 4.3. Most of the gathered solutions

were similar, but the best scores are for lr = 0.05, L = 20, and ξ = 0.05.
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Figure 4.3: The AUC value attained for the ANN-UTADIS and different hyperparameter
values for the ERA dataset.

All acquired solutions were confronted with results from other state-of-the-art pref-

erence learning methods. For comparison, we selected models of linear regression [41],

Choquistic regression, kernel logistic regression with the polynomial kernel (KLR-ply)

and Gaussian kernel (KLR-rbf) [99], the MORE algorithm [14], LMT [65], MR-Sort with

Mixed-Integer Program (MIP) [67] and dedicated metaheuristic (META) [96], UTADIS

with predefined characteristic points [108] and with with the characteristic points corre-

sponding to all unique performances (UTADIS-G).

The best scores were achieved for models ANN-UTADIS, ANN-Ch-Uncons. (Choquet

integral model without constraints on the range of weights values), CR, KLR-rbf, and

ANN-PROMETHEE for AUC measure without ANN-PROMETHEE for 0/1 loss and

F1. ANN-PROMETHEE and ANN-ELECTRE achieved higher accuracy on AUC than

0/1 loss because these methods correctly recreated most relations from pairwise compar-

isons. However, they made errors during the classification. Considering different types

of problems, the difficulty of the challenge came from its inconsistency and was also re-

flected in the efficiency of accomplished results by all models. While comparing methods

based on a similar preference model, e.g., ANN-UTADIS was statistically significantly

better (Wilcoxon test) on the test set than methods utilizing mathematical program-

ming, i.e., UTADIS and UTADIS-G. There were several reasons for this. Firstly, the

objective of minimizing the sum of regrets, as done by UTADIS and UTADIS-G, was not

aligned with the perspective captured by AUC. Additionally, implementing a Monotonic
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Block in ANN-UTADIS allowed for more flexible inference of marginal value functions,

enabling the better fitting of characteristic points in the input data. Finally, using data

augmentation in ANN-UTADIS helped prevent overfitting issues that may arise with

UTADIS-G.

4.4 Summary

This part of the thesis introduced interpretable and explainable models of preference

learning. They allow learning from the reference set, with the known preference, and

predict preference for other options. The described learning algorithms enable finding

parameters of the monotonic sorting model with the optimization techniques proposed

for deep learning. As a result, we eliminate the need for arbitrarily determining the values

of meta-parameters, such as the shapes of preference functions or the characteristic points

of marginal value functions. Instead, the method can employ more general per-criterion

(value, preference, concordances, or discordance) functions, allowing greater freedom

in adjusting to the data. Moreover, the proposed approaches can learn from highly incon-

sistent data, which are too large to be processed with traditional approaches effectively.

We presented the possibilities the elaborated approaches offer on examples of learning

from over a thousand alternatives and coping with problems consisting of millions of pair-

wise comparisons. Additionally, the proposed methods have accuracy comparable with

other preference learning methods. The predictive performance is particularly favorable

for ANN-UTADIS, ANN-UTADIS, ANN-Ch-Uncons. and ANN-PROMETHEE models.
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Chapter 5

Methods inspired by machine
learning

5.1 Introduction

The common feature of machine learning methods is the possibility of recreating very

complex transformations of input data to achieve the highest accuracy. These models

are supposed to discover complex patterns in data and employ them for new options

predictions.

In real-world problems, there can exist criteria for which the direction of preference

is equivocal. It is often when a range of most desired values exists, and all below or above

are less favored. For instance, in some medical data, there is an interval of acceptable

values, which states the proper parameter of a physiological feature of the patient. In con-

trast, the scores from outside this range may be evidence of some abnormalities or illness.

On the other hand, there can exist criteria that are fully non-monotonic.

The usage of highly complex transformations to recreate data may be connected with

the problem of overfitting. It means that the model has a low ability for generalization

and, at the same time, a high adjustment to single training observations. As a result,

many regularization techniques exist to constrain the model’s complexity. On the one

hand, they try to force the model to employ only information and transformations which

matter. Moreover, they try to direct the model to more straightforward transformations.

The more complex the model, the more challenging its interpretation.

The existence of non-monotonic criteria in many real-world problems motivated the

works of many researchers. First, some methods use a set of predefined shapes of marginal

value functions [38], [88], [16]. In particular, [88] defines many monotonic criteria, in-

cluding level type, exponential, stepwise, and non-monotonic. Secondly, more general

algorithms aim to handle non-monotonicity in a broader sense without focusing on spe-

cific shapes and limiting the complexity of these functions [33], [18]. The last group
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aims to minimize the complexity of non-monotonic functions. In this context, [59] in-

troduced penalization for non-monotonicity changes using MILP models. On the other

hand, [32] and [70] restrict the variability of the slope shape of the value function to en-

sure the most interpretable sorting model. While this approach allows for modeling any

shape of the function, it also allows for an unlimited number of changes in the direction

of monotonicity.

In decision problems, the complexity of the model influences both the overfitting

and the ease of interpretability. The primary goal is to create a model which recreates

DM’s preferences. The existing methods do not directly define the number of changes

in monotonicity and do not explain non-monotonic functions.

The above observations motivated the development of two approaches to modeling

non-monotonic criteria. In [48], the complexity of the model is defined as the number

of monotonicity changes. A DM who wants the most interpretable model prefers solu-

tions with fewer monotonicity changes in criteria. In turn, [49] introduces non-monotonic

functions, which are decomposed into two monotonic components: non-decreasing and

non-increasing. Despite direct constraints on the complexity of function, a straightfor-

ward interpretation of non-monotonic criteria is enabled by such a solution.

The common problem considered in machine learning is multi-label classification.

It assumes an object is assigned to one class for each label or decision. There exist

many ways to cope with such problems like binary relevance [9], label powerset [101],

or probabilistic classifier chains [9]. Binary relevance focuses on transforming the prob-

lem into multiple classification problems and considering them separately. In this case,

we lose information about dependencies between decisions. The label powerset transforms

a problem into a classification problem of all possible subsets of labels. This technique

requires a large amount of data to represent each class appropriately. It might be highly

challenging for data with a rare combination of labels. Probabilistic classifier chains cre-

ate chains of classifiers so that each classifier predicts a label based on previous classifiers.

The result of running such a classifier depends on the order of considered decisions and

requires multiple considerations of the same problem. The limitations of the existing ap-

proaches inspired the creation of a specialized method for multi-decision sorting problems

proposed in [49].

This section briefly discusses two works, [48] and [49], inspired by ML. Both in-

corporate a threshold-based value-driven sorting procedure to the additive value func-

tion [35], [109]. The remainder of UTADIS methods is shown in Chapter 2.6. The useful-

ness of this research was presented on real-world problems concerning risk management

related to handling nanomaterials in different conditions.
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5.2 Non-monotonic criteria

Minimization of the number of monotonicity changes

This section describes how to model per-criteria preference functions based on partial

information about DM’s preferences. In particular, this information may define the

type of criterion as gain or cost, level-monotonic [88], or one for which the direction

of preference a priori cannot be defined. Moreover, DMs may establish non-monotonic

A- and V-shaped criteria or the criterion with unknown monotonicity constraints that can

take any shape. The plots of exemplary marginal functions are presented in Figure 5.1.

Mixed-Integer Linear Programming (MILP) is used to adjust the non-monotonic charac-

ter of the marginal value functions to the available assignment examples. The complexity

of these functions is controlled by minimizing monotonicity changes for value functions

across all criteria. Each type of preference direction is defined as a set of constraints

on marginal values, assuring the proper shape of function and normalization of criteria.

The model is normalized when an anti-ideal alternative has a comprehensive value equal

to 0, whereas an ideal one has a score equal to 1. It means that the sum of marginal

values assigned to the most preferred performances needs to be 1. These performances

are unknown a priori as their position depends on the shape of marginal value functions.

It is the reason for establishing each criterion’s most and least preferred value.
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Figure 5.1: Example marginal value functions representing different types of requirements
with respect to their monotonicity.

The shape of the gain-type criterion is guaranteed by forcing the non-negative value

of the difference between partial values for consecutive performances uj(xkj ) ≤ uj(x
k+1
j ).
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Then, for the cost-type criterion, the value assigned to each performance cannot be greater

than for the next one uj(xkj ) ≥ uj(x
k+1
j ).

Suppose the DM states a monotonic criterion but does not specify the preference

direction. In that case, it is modeled as a combination of two criteria: non-decreasing and

non-increasing. Moreover, a binary variable is introduced to indicate which components

are considered while setting the value of the other components to zero.

A-type criterion means that the most preferred value is somewhere in between the

extreme performances. Hence it involves a single change in monotonicity from non-

decreasing to non-increasing. The shape of this function is modeled with the use of binary

variables voptj,k connected with the fairs of consecutive scores on criterion x
k−1
j and xkj . The

binary variable voptj,k is equal to one for the first pair for which there is a non-increasing

value. This enables non-decreasing shapes until score xk−1
j and non-increasing after that.

Due to the characteristic of this function, the performance xk−1
j is the most preferred

value, which will be used in the normalization. On the other hand, the least preferred

performances can be only extreme values. An additional binary variable is introduced

to enforce that the marginal value for at least one of them equals zero. Thus either

the highest or the lowest performance is the least preferred. We model the V-type

criterion similarly by requiring that the least preferred performance is somewhere inside

the performance range.

Level-monotonic criteria types are the ones which, until or from some a priori un-

known performance, remain constant. There are four distinguished variants of crite-

ria: increase-level, level-increase, decrease-level, and level-decrease. They are modeled

by joint constraints connected with gain or cost type criteria, with these for A-type

and V-type. For instance, increase-level criteria can be enforced by compiling the re-

quirements for A- and gain-type functions. In this case, binary variables voptj,k indicate the

performance that initiates the level of constant preference. The other considered variants

are as follows:

• level-increase as a combination of gain- and V-type criteria,

• decrease-level as a compilation of V- and cost-type criteria,

• level-decrease combines constraints from cost- and A-type criteria.

Finally, let us consider the criterion for which no a priori information regarding

monotonicity can have any shape. In general, avoiding defining any constraints for

such functions would be possible. However, since the goal is to control the complex-

ity of the inferred marginal value functions, the two sets of binary variables vk,k−1
j,mon−dir

and vk,k−2
j,change−mon is introduced, which captures the number of changes in monotonic-

ity between the neighboring performance sub-intervals. The first set defines if there

is a non-decreasing or non-increasing part between values xkj and x
k−1
j . Then, the second
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one stores information about the change in monotonicity. The value of vk,k−2
j,change−mon

is set to one if there appeared a change in monotonicity direction in the point xk−1
j using

binary variables vk,k−1
j,mon−dir and v

k−1,k−2
j,mon−dir. As for the non-monotonic criterion, any score

can be the least or most preferred, so two more sets of binary variables are used.

The above-discussed constraints modeling the shape of the marginal value function are

combined with the constraints representing the DM’s preference information. They form

the Mixed Integer Programming problem that allows minimizing the number of mono-

tonicity changes in the following way:

Minimize : NM =
∑

j∈GA ∪ GV

nj(A)∑

p=2

voptj,p +
∑

j∈GNON−MON

nj(A)∑

k=3

vk,k−2
j,change−mon, s.t. E

AR
.

The computational complexity of Mixed Integer Programming problems mainly de-

pends on the number of employed variables. The number of continuous and binary

variables required to model proposed types of criteria is shown in Table 5.1. Addition-

ally, other variables essential to model preference information must be included. Their

number may differ for various problems. For sorting problems, we need to incorporate

p continuous variables, which are limiting profiles between classes and |AR| variables
connected with the comprehensive values of reference alternatives.

Table 5.1: The number of continuous and binary variables in the MIP problem depends
on the type of criterion.

Criterion type # continuous variables # binary variable
Gain, cost nj(A) 0
Monotonic non-defined type 3nj(A) + 1 1
A-type, V-type nj(A) + 1 nj(A)
level-type nj(A) nj(A)− 1
non-monotonic with a controlled
number of monotonicity changes

nj(A) + 1 4nj(A)− 3

non-monotonic as a composition
of cost and gain type

3nj(A) + 1 0

Non-monotonicity as the composition of gain-type and cost-type
components

The need for easy interpretability of non-monotonic criteria has driven the introduction

of various approaches to model these criteria. Specifically, the marginal value functions

uj(x
k
j ) of criteria that may exhibit non-monotonic behavior are represented as a sum

of marginal value functions one of a gain-type uj,g(x
k
j ) and the other of a cost-type

uj,c(x
k
j ). In the case of discovering by model the direction of preference, one of the com-

ponents is set to zero, and the criterion becomes monotonic. Otherwise, both components

have positive values, and the criterion can have any non-monotonic shape. However,

there can occur that the marginal value is greater than zero for each characteristic point.
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It is undesirable due to two reasons. Firstly, the comprehensive value of the anti-ideal

alternative is greater than zero in this case. It means that the range of comprehensive

value is reduced, which makes the space of possible solutions smaller. Secondly, the

marginal value function, which has the least preferred value greater than zero, is harder

to interpret. To prevent such a scenario, the marginal value function should be normal-

ized so that at least one value is zero, which can be obtained using additional bias value.

It was defined for each criterion and is subtracted from marginal values and adds the

constraint that each marginal value needs to be greater or equal to zero.

The number of continuous variables required for modeling this type of criterion

is equal to 3nj(A) + 1. When comparing this non-monotonic criterion to the one de-

scribed in the previous section, the main difference is that the non-monotonic criterion,

being a composition of gain- and cost-type criteria, does not require binary variables.

However, there is no possibility to control the complexity of the shape of the function.

5.3 Multi-decision sorting problems

Quite often, multiple decisions must be made for the same alternatives. The problem

of multi-decision sorting focuses on simultaneously assigning alternatives to one of the

predefined classes for many decisions. These classes express the level of quality or risk

using a predefined scale consistent across all decision attributes.

It is necessary to employ separate models for each decision to capture the varying

relevance of specific evaluations and criteria across different decisions. However, inter-

decisional constraints have been introduced to address the interdependencies between

decisions. These constraints reflect the relations between comprehensive values associated

with the same alternative across multiple value functions used to classify that alternative

based on different decision attributes.

It is important to emphasize that the number and interpretation of classes remain

the same across all decision attributes. In this way, the classes specified by the DM

determine the order of labels associated with each reference alternative. When the class

CDs
DM (a∗) assigned to reference alternative a∗ in decision Ds is more preferred than the

class CDt
DM (a∗) in another decisionDt, it indicates that the corresponding labelDs is more

suitable or fitting for that particular alternative. As a result, the comprehensive value

of a∗ associated with Ds should be greater than its corresponding value associated with

Dt:

for all a∗ ∈ AR :

if CDs
DM (a∗) > CDt

DM (a∗) :

UDs(a∗) ≥ UDt(a∗) + ε.





ER(inter −D) (5.1)
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Inconsistent preference information

This part of the dissertation also focussed on dealing with inconsistencies in preference

information regarding the holistic assignment of reference alternatives. The main goal

of optimization is the minimization of several alternatives which are incompatible with

the model. To achieve this, we used binary variables associated with each alternative.

The variable is set to one if an alternative needs to be removed from the reference set.

Then constraints the alternative took part in are always satisfied.

5.4 Results of experiments

Use case description

The practical usefulness of the methods proposed in [48] and [49] is demonstrated in a case

study concerning exposure management related to handling nanomaterials in different

conditions [83]. Nanomaterials are particles between 1 and 100 nanometers in size whose

physicochemical properties differ significantly from those of larger-sized materials com-

posed of the same atoms. Due to these specific properties, nanomaterials are used in many

fields, such as construction, electronics, environmental management, and healthcare. The

production, processing, and use of nanomaterials can involve exposure t health and life

risks. These effects are an object of concern. They are still being studied, and the

safety standards are mainly based on analogous chemical manufacturing processes. Dif-

ferent precautions can be used to minimize the corresponding risks depending on the

specific exposure situation. These precautions can be considered decision attributes,

within which predefined classes have been defined to represent different levels of risk.

In [48], we considered the necessity of using respirators by workers as personal protective

equipment when handling nanomaterials. In turn, in [49], we additionally examined fume

hood, fume hood with HEPA filter as engineering controls, and HEPA vacuum cleaner,

corresponding to the work practices.

The set of alternatives used in experiments is composed of exposure scenarios for ex-

isting and future nanomaterials and manufacturing processes [83]. Each alternative was

evaluated on ten criteria that define the features of nanomaterials like particle size, their

toxicity, airborne capacity, detection limit, and parameters associated with the manufac-

turing process such as exposure limit, quantity, number of employees, engineering controls,

and multiple exposures. The alternatives were scored on the five-point scale, which states

the requirement of each precaution: C1 (required; the least preferred class), C2 (might

be required), C3 (optional), C4 (might be optional), and C5 (not required; the most

preferred class). Preference information shows the assignment of reference alternatives

to one of the predefined classes for each decision attribute.

In what follows, we present the results of experiments conducted using methods pro-
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posed in [48] and [49], including interpretation of gathered models and explanation of cho-

sen decisions.

Results for minimization of the number of monotonicity changes

In [48], we used 30 reference alternatives for the model construction and 21 non-reference

options. We considered the following assumptions regarding criteria types:

• number of employees and engineering controls are non-monotonic,

• particle size is increase-level,

• detection limit is gain-type,

• all remaining criteria are cost-type.

The constructed model involves two changes in monotonicity from non-increasing

to non-decreasing for criterion engineering controls and from non-decreasing to non-

increasing for number of employees. The plots of marginal value functions for these

criteria are presented in Figure 5.2 for the representative model. What is worth noticing

is the shape of these functions. In particular, engineering controls is V-shaped with the

least preferred value Open-NP. Moreover, number of employees is A-shaped with the

most preferred value on 11-50 employees. The criterion particle size is increase-level,

involving constant preference for the range 2-10nm.
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Figure 5.2: Marginal value functions for the exposure management of nanomaterials in
the context of using a respirator.

The influence of each criterion on the recommended class can be estimated by con-

sidering the maximum contribution of each criterion to the comprehensive value (see

Table 5.2). The most significant impact on the comprehensive value can be attributed

to detection limit, duration of exposure and airborne capacity, whereas the lowest impact

is associated withquantity, multiple exposures, and toxicity. Analyzing the differences

in marginal values between specific performances on criteria allows for identifying tran-

sitions that can significantly improve the requirement level of using a respirator. An ex-

ample of such a significant difference is the change in team size from 50-100 employees to
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11-50 employees, which involves a change of 0.1324. On the contrary, the increase in the

team size does not influence the decision that is made.

Table 5.2: The maximal shares of the individual criteria in the comprehensive values (in
%).

Criterion Maximal share
Particle size (nm) (g1) 7.40%
Toxicity (g2) 4.97%
Airborne capacity (g3) 14.55%
Detection limit (g4) 26.83%
Exposure limit (f/cc) (g5) 6.62%
Quantity (Kg) (g6) 2.09%
Engineering controls (g7) 3.57%
Number of employees (g8) 13.24%
Duration of exposure (h) (g9) 17.77%
Multiple exposure (number) (g10) 2.96%

The explanation of the decision is based on describing which features have an impact

on the final decision. It lets the DM understand the whole decision process better. The

impact of the individual criteria on the comprehensive values and the relations between

the latter ones for different decision attributes are demonstrated in Figure 5.3. Each

option has a share of each criterion’s marginal function on the final score. We also provide

limiting profiles for classes. It is easily seen that, e.g., alternative a18 was assigned to the

most preferred class C5 mainly because of the highly preferred score on detection limit

(g4) and duration of exposure(g9).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
comprehensive value

a1

a3

a9

a18

a29

C2

C3

C1

C5

C4

t1 t2 t3 t4
u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

Figure 5.3: Marginal and comprehensive values as well as class assignments for the five
example reference exposure scenarios.
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Robustness analysis for minimization of the number of monotonicity
changes

The constructed marginal value functions are ones from the infinite number of func-

tions compatible with the preference information from the DM and the minimal number

of monotonicity changes. An analysis of possible assignments CP (a) of non-reference al-

ternatives was performed to verify the stability of sorting recommendation. It investigates

if there is at least one compatible instance for which alternative a is assigned to class

Ch. It is computed by transforming an original optimization problem with additional

constraints of assigning alternative a to the considered class Ch.

An additional constraint is set to establish the number of monotonicity changes equal

to those previously found. If such a set of equations is feasible, then a can possibly

be assigned to Ch. Otherwise, a cannot be assigned to Ch with any compatible model

instance. For the proposed model involving non-monotonic criteria, when alternative a

is possibly assigned to class Ch and Ck where h ≥ k+1, then it needs to be assigned to all

classes in-between those mentioned above. This is called the “no jump property” [37].

Given a set of all possible binary vectors V, two situations can occur:

1. v1 = v2 for all v1,v2 ∈ V which means that all criteria have changes in mono-
tonicity, the most and least preferred values are in the same characteristic points.

In this situation, the possible assignment CP (a) of alternative a is an interval with-

out jumps.

2. v1 ̸= v2 for at least one v1,v2 ∈ V states for the situation where criteria have
different shapes or changes of monotonicity are in different characteristic points.

Then, the possible assignment CP (a) of alternative a is a union of intervals where

nothing can be said about the presence or absence of jumps.

As a result of a conducted robustness analysis, three alternatives were necessarily

classified into only one class, and the rest of the options were possibly classified into

intervals of 2 or 3 classes without jumps.

Results for a multi-decision problem

In [49], we conducted experiments using 40 reference alternatives and 5 non-reference

ones. In contrast to the problem solved in [48], apart from number of employees and

engineering controls, also particle size is treated as a non-monotonic criterion. The main

goal of optimization is to minimize the number of alternatives whose desired assignments

to classes is not recreated. As a secondary criterion, we minimize a sum of biases for

non-monotonic criteria. The discovered most optimal model recreates assignments for 37

reference alternatives.
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The marginal value functions for the particle size and four decision attributes are

presented in Figures 5.4. The shapes of these functions are non-monotonic, but they

can be easily decomposed to gain- and cost-type components and bias values 0.10, 0.03,

0.07, 0.04 for respirator, fume hood, fume hood with HEPA filter, HEPA vacuum cleaner

correspondingly. Besides fume hood with HEPA filter, the most preferred is the biggest

size of particles > 1000nm. For decisions respirator, fume hood with HEPA filter, HEPA

vacuum cleaner, the shape of marginal functions has a W shape. It is caused by the

increase in a gain component between sizes 2-10nm, 10-100nm, and 100-500nm and the

decrease in cost component between 10-100nm, 100-500nm, and 500-1000nm. It leads

to high peaks on sizes 0-100nm or 100-500nm. These plots show the complementary

influence of fume hood and fume hood with HEPA filter, as the first one has the least

preferred values for 10-500nm, whereas the second has the most.
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Figure 5.4: Marginal value functions for particle size for four decision attributes.

This complementary influence can also be seen while considering the maximal share

of each criterion in the comprehensive value (Table 5.3). The model should reflect not

only the alternative assignments to classes but also the ranking of the requirements

of each precaution for each alternative. It is the reason why marginal functions focus

on different aspects of scenarios. Criteria with the most significant influence for fume

hood simultaneously have the lowest for fume hood with HEPA filter and the other way

round. The exception is airborne capacity criterion has a high impact on all decisions,

whereas quantity has marginal influence on all but decision D3.

Class assignments for decision respirator with the explanation as marginal and com-

prehensive values for five reference alternatives are presented in Figure 5.5(a). They

show one intra-decision relation, which means that options scored by DM as safer have

a higher comprehensive value than scenarios connected with classes with greater levels

of the requirement of precautions. Considering alternative a2, it was assigned to class C2

as its comprehensive values UD1(a2) appeared between thresholds b1 and b2 which limit

classes C1 from C2 and C2 from C3 respectively. The reason for that was small values

on a few criteria: detection limit (uD1
4 (a2) = 0), quantity (uD1

6 (a2) = 0.0014), duration
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Table 5.3: The maximal shares of the individual criteria in the comprehensive values (in
%) for four decision attributes.

Fume hood with HEPA vacuum
Criterion Respirator (D1) Fume hood (D2) HEPA filter (D3) cleaner (D4)

Particle size (g1) 10.22% 20.6% 7.32% 6.18%
Toxicity (g2) 3.58% 0.79% 12.04% 9.97%

Airborne capacity (g3) 17.5% 18.15% 21.82% 16.44%
Detection limit (g4) 15.27% 0.44% 8.87% 12.58%
Exposure limit (g5) 12.24% 11.91% 9.5% 20.57%

Quantity (g6) 3.56% 0.59% 12.88% 6.09%
Engineering controls (g7) 9.4% 16.26% 5.73% 7.7%
Number of employees (g8) 7.93% 14.65% 4.22% 10.22%
Duration of exposure (g9) 11.66% 14.21% 4.29% 2.58%
Multiple exposure (g10) 8.58% 2.35% 13.28% 7.63%

of exposure (uD1
9 (a2) = 0.0048), and multiple exposures (uD1

10 (a2) = 0.0065). The main

influence on decision was assigned to airborne capacity (uD1
3 (a2) = 0.1750) and number

of employees (uD1
8 (a2) = 0.0793).

(a) (b)

Figure 5.5: Marginal and comprehensive values and class assignments demonstrating (a)
intra-decision relations for five reference exposure scenarios in terms of respirator (D1);
(b) inter-decision relations for the alternative a9 in terms of four decision attributes
(Respirator – D1, Fume hood – D2, Fume hood with HEPA filter – D3, and HEPA
vacuum cleaner – D4).

Figure 5.5(b) illustrates the inter-decision relations and the influence of individual

criteria on the comprehensive values for the example scenario a9. Depending on the deci-

sion, the same option can be scored differently, leading to various classes. Alternative a9
was assigned by the DM to the best class for decision fume hood with HEPA filter (D3),

respirator (D1) and HEPA vacuum cleaner (D4) was optional and fume hood (D2) was re-

quired. It meant that the most suitable decision not to use precaution for this option was

D3 and the least D2. This ranking of precautions was reflected in comprehensive values

for particular decisions UD3 > UD1 , UD4 > UD2 . The comprehensive value of a9 for fume

hood with HEPA filter (D3) came mainly from highly preferred scores on criteria with
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great maximal shares, i.e., airborne capacity, toxicity, multiple exposures, and detection

limit. On the other hand, the relatively small comprehensive value for fume hood came

from the fact that it had less preferred performances on criteria particle size, exposure

limit, duration of exposure, and engineering controls which for this decision had a high

maximal share. It caused that for this decision, option a9 had the lowest comprehensive

value.

5.5 Comparison of the proposed models

The proposed works focus on solving two potentially similar but completely different

problems, i.e., sorting for a single decision [48] or multiple interdependent decisions [49].

In both papers, we presented new approaches to modeling non-monotonic criteria

as mathematical programming problems. In [48], ten criteria were defined, of which

three were non-monotonic. The main aim of the proposed method is to guarantee the

model’s interpretability which is accomplished by favoring lower complexity. This feature

of the model is controlled in two ways. There can be direct constraints on the shape

of the function or minimization of the number of changes in monotonicity directions.

It is obtained using binary variables, which restrain the possible shapes.

On the other hand, in [49], non-monotonic criteria are implemented as the compound

of two components: non-decreasing and non-increasing. It allows us to receive a function

whose interpretation focuses on these two components. There is no need to use binary

variables which control the number of monotonicity changes. However, this results in the

possibility of obtaining complex functions.

Comparison of experiments results

The usefulness of the proposed methods in both papers was tested on the real-world

problem of exposure management of engineered nanomaterials. Although a different set

of alternatives was used and various descriptions of particle size criterion, as well as other

formulations of the problem, there appeared some similarities between obtained models.

Considering decision attribute respirator, it was easily noticeable that in both cases,

maximal shares of the representative model were similar, i.e., airborne capacity, detection

limit and duration of exposure had high values, whereas toxicity, quantity and multiple

exposures had low. Moreover, in the case of plots of marginal functions, both models

pointed to Open-NP as the least preferred for engineering controls and for criterion

number of employees teams with 101-500 employees. In [49], non-monotonic criteria were

more complex, e.g., for number of employees, there were three changes of monotonicity

directions. In turn, in [48], when this number was minimized, there was only one change

for number of employees.
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The differences in obtained models came from different objective functions and addi-

tional constraints between decisions. In [49], besides assigning alternatives to classes, the

model had to recreate a ranking of decision attributes that state which precautions were

least required for the considered scenario. Due to this, the model considered different

aspects connected with various precautions. For all decisions, the essential criterion was

airborne capacity.

The presented plots of marginal value functions are only a single instance from an infi-

nite number of models compatible with preference information. Robustness analysis was

conducted in [48] to analyze the necessary and possible assignments for non-reference

alternatives.
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Chapter 6

Methods inspired by web mining

This chapter presents methods of exploitation of valued preference relation, called Pre-

fRank [75], and crisp outranking relation, called ScoreBin [76]. Methods based on dis-

covering preference relations are one of the most popular in MCDA These relations can

be divided into valued and crisp. Their interpretation may differ, depending on the con-

text [97]. In the case of valued relation, it can signify the degree extent to which users

recognize one option as better than the other [69], percentage share of compatible in-

stances of the model which confirm preference [51]. Moreover, it can signify the strength

or credibility level of the statement ”ai a is at least as good ak” or ”ai is more preferred

to ak” [6], [23], [31]. Then, binary relation may indicate the existence of outranking

relation [26] or strict preference [3].

The set of all relations can be described as a directed graph with alternatives as ver-

tices and the discovered relations as arcs. In real cases, it is relatively rare that an out-

ranking or preference relation points to one option as the best or allows ordering alterna-

tives unambiguously. Hence these relations need to use additional exploitation techniques

to get recommendations of the most preferred options or their ranking. These techniques

are described in Chapter 2.9.

However, these methods can be criticized. When it comes to approaches for creating

ranking, NFS calculates entering and leaving flows by simple weighted aggregation of in-

and out-coming arcs for each alternative. Nevertheless, this method does not consider the

preference graph’s structure. Specifically, when an alternative is preferred to a relatively

good option to the same degree as a relatively worse solution, both instances contribute

equally to the comprehensive strength of the alternative. Similarly, if the alternative

is considered worse than highly favorable or weak options, these instances are equally

significant in terms of the alternative’s overall weakness. As a result, all pairwise compar-

isons are given equal discriminative power, which is solely determined by the preference

index values.

Furthermore, the distillation procedures do not provide explicit and comprehensive
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scores or numerical values for alternatives. This limitation becomes problematic when

a cardinal ranking is desired as the method’s output. Additionally, the distillation process

does not consider the difficulty or ease of outranking other alternatives, which can be rel-

evant in decision-making scenarios. Moreover, using ELECTRE-Score necessitates the

specification of supplementary reference profiles and preference information, enabling the

assignment of precise scores to them. This additional requirement increases the cognitive

demand of the process.

Regarding choice problems, methods based on social choice theory do not consider

relations between alternatives. There might be recommended options that are outranked

by many others. The method of graph kernel from ELECTRE I may recommend rela-

tively weak alternatives. It means that many other alternatives can outrank the option

in kernel unless they are in graph kernel. Additionally, the user has no control over the

number of recommended options. Finally, none of the described techniques allows addi-

tional indirect preference information, influencing the final ranking. The only possibility

is to pass additional information or modification of method parameters during relation

creation.

Therefore, this doctoral dissertation proposes two families of methods PrefRank and

ScoreBin. These methods are inspired by web structure mining, which creates a ranking

based on hyperlinks (Section 3.4).

6.1 PrefRank

This section describes a family of weighted preference relation exploitation methods called

PrefRank presented in [75].

Similarly to the NFS method, these approaches aggregate preference degrees to strengths

S+(ai) and weaknesses S−(ai) of alternative. They can be employed to create a partial

ranking using the procedure known from PROMETHEE I or to establish a complete rank-

ing as in the PROMETHEE II method (see Section 2.7). The main difference between

NFS, PrefRank, and ScoreBin is the calculation of S+(ai) and S−(ai). Correspond-

ingly to NFS, strength and weakness in PrefRank are made as a normalized elementary

strength ϕ+(ai) and weakness ϕ−(ai) to sum up to one:

S+(ai) =
ϕ+(ai)∑n

k=1 ϕ
+(ak)

and S−(ai) =
ϕ−(ai)∑n

k=1 ϕ
−(ak)

. (6.1)

Contrary to NFS, ϕ+(ai), ϕ−(ai) aggregate preference degrees as a weighted sum

instead of a simple sum:

ϕ+(ai) =

n∑

k=1

π(ai, ak) · ω+(ak) and ϕ−(ai) =
n∑

k=1

π(ak, ai) · ω−(ak), (6.2)
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where ω+(ak) and ω−(ak) are weights of alternatives whose interpretation differs for each

PrefRank variant. Different aspects of the relation between alternatives can be considered

by using them. We propose three variants: PrefRank I, II and III, for which inspiration

was derived from methods for website ranking: PageRank, HITS, and Salsa.

PrefRank I

When calculating the strength of each alternative in PrefRank I, it is appreciated to be pre-

ferred to relatively good alternatives rather than bad ones. That is if an alternative

is better than some other option which, in turn, is preferred to a significant degree – over

all or the majority of other solutions, some bonus should be implied. Conversely, if being

preferred to a relatively poor alternative that, on its own, does not prove its superior-

ity over other solutions, the alternative’s strength should not be significantly increased.

On the other hand, when calculating the weakness of each alternative, it is perceived

as a more significant disadvantage to be outranked by relatively weak rather than strong

alternatives. It means that if an alternative is worse than some other option which,

in turn, is strongly outpreferred by many other solutions, this should lead to a significant

penalty. However, proving worse than some strong alternatives revealing no or limited

deficiencies when other options are compared against it should not add much to the

alternative’s weakness. Such effect can be achieved with the following weights:

ω+(ak) = S+(ak) and ω−(ak) = S−(ak). (6.3)

Considering preference relation as a preference graph, the calculation of strengths in Pre-

fRank I is inspired by the PageRank method, which assumes that a website is good

if pointed out by many other good websites. Following this interpretation, strengths can

be explained as the probability of finishing in the considered vertex of the preference

graph using the random walk algorithm. In this context, the preference degree π(ai, ak)

equals the probability of moving from ai to ak. The other interpretation strength in Pre-

fRank I is that they result from an alternative voting system where each option has

a voting strength equal to π(ai, ak).

The calculation of values S+(ai) and S−(ai) is made iteratively, assuming all strengths

and weaknesses are equal in the first step. The process is finished when the differences

between consecutive iterations are negligible.

PrefRank II

The weighting scheme in PrefRank II is inverse to PrefRank I and assumes that a strong

alternative should be heavily preferred over weak solutions. The alternative’s strength

is computed as the weighted sum of preference degrees with weights interpreted as the

weaknesses of solutions it is compared against. On the other hand, a weak alternative

is the one vastly outranked by strong alternatives. Hence the alternative’s weakness
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is computed as the weighted sum of preference degrees with weights interpreted as the

strengths of solutions that are compared with it.

It means that the weights used for strengths and weaknesses calculations are as fol-

lows:

ω+(ak) = S−(ak) and ω−(ak) = S+(ak). (6.4)

PrefRank II is inspired by the HITS method, which distinguishes two roles of websites:

hubs and authorities. In this perspective, a page is a good hub if it points to good

authorities, and it is a good authority when linked by good hubs. In our adaptation, the

alternative’s strength is similar to a hub score, and the weakness is similar to an authority

score.

PrefRank III

PrefRank III extends the idea underlying PageRank I taking into account an overall

difficulty in being preferred to some alternative estimated by analyzing its relations with

all other alternatives. On the one hand, an alternative’s great strength derives from being

highly preferred to the alternatives outranked by other good solutions. It means that

the strength of the option depends proportionally on the strength of the second-degree

neighbor alternatives:

ω+(ak) =
1∑n

i∗=1 π(ai∗, ak)

n∑

l=1

[
π(al, ak)∑n

k∗=1 π(al, ak∗)
S+(al)]. (6.5)

In turn, an option’s high weakness is implied by being vastly outranked by alternatives

that are preferred to other weak solutions:

ω−(ak) =
1∑n

i∗=1 π(ak, ai∗)

n∑

l=1

[
π(ak, al)∑n

k∗=1 π(ak∗, al)
S−(al)]. (6.6)

6.1.1 Measures used for comparing the choice or ranking
recommendations

This section presents measures that count similarities between rankings and recom-

mended alternatives.

The Normalized Hit Ratio (NHR) [50] method checks the compatibility of recommen-

dations of best alternatives and is calculated as Jaccard’s distance between options at the

top of the ranking. Then, Kendall’s τ coefficient [55] measures the similarity of the rela-

tionship between pairs of alternatives. It might be used for the comparison of complete

rankings. It assumes that the distance between inverse preference relations P is two times

greater than between preference and indifference I. Similarly, the Normalized Ranking

Distance (NRD) method compares partial rankings [50]. It presumes that the distance

between incomparability relation R and I is the same as between P and I, whereas the

distance between R and P is 1.5 greater than P to I.
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6.1.2 Experimental comparison between PROMETHEE and
PrefRank

We ran experiments to check the similarities between rankings and recommended al-

ternatives between PrefRank and PROMETHEE. They assumed testing of similarities

of the results for artificially generated problems. We considered data sets consisting

of 4 to 20 (with step 2) alternatives evaluated from 3 to 8 criteria. Then, we determined

a valued preference relation using the PROMETHEE method. For each problem size,

we generated 100 instances with uniformly distributed performances and criteria weights.

The indifference thresholds qj were drawn from the interval between 0% and 20% of the

performance range on a given criterion, whereas the preference thresholds pj were drawn

from the interval delimited by qj and 50% of the performance range.

For the gathered valued preference relations, we created rankings using PrefRank

and PROMETHEE. They were compared with NHR, NRD, and Kendall’s τ , and the

results were averaged among all problem instances. The results showed high similar-

ity in obtained recommendations. The most resembling rankings were obtained for

PROMETHEE and PrefRank III. The most contrasting solutions were observed between

PrefRank I and PrefRank II. The results of experiments for different problem sizes imply

that there was no explicit dependency between the number of alternatives and criteria

and the similarity between methods. However, there can be stated that solutions were

more alike for a smaller number of criteria and a greater number of alternatives, but

there were exceptions to that.

6.1.3 Case study concerning evaluation of special economic zones

As part of this dissertation, the PrefRank methods were used to rank special economic

zones (SEZs) in Poland. These regions offered favorable investment conditions, enhanced

infrastructure, and convenient access to skilled personnel. The goal was to rank 10 SEZs

in Poland: Kamienna Góra (KAM), Kostrzyn-Słubice (KOS), Kraków (KRA), Legnica

(LEG), Łódź (LOD), Mielec (MIE), Pomorze (POM), Słupsk (SLU), Starachowice (STA),

and Tarnobrzeg (TAR). They were characterized based on five criteria: the total area

each SEZ occupies, capital expenditures, the total number of jobs, the number of business

permits and financial results. For this problem, criteria weights were determined following

the Simos-Roy-Figueira (SRF) method[24]. The comprehensive preference degrees were

calculated using the PROMETHEE method. Calculations were made using the Diviz

platforms [77] in which all PrefRank methods were implemented. The obtained complete

rankings were the same for PROMETHEE II and PrefRank III, as well as PrefRank II,

and they were as follows KOS ≻ MIE ≻ TAR ≻ KRA ≻ LOD ≻ LEG ≻ SLU ≻ STA
≻ POM ≻ KAM. The only difference in the complete ranking produced by PrefRank I
was that LEG was preferred to LOD.
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The resulting partial rankings in the form of a Hasse diagram are shown in Figure

6.1. Only PROMETHEE I and PrefRank III rank all options in the same order. All

the techniques agreed on which SEZs were most preferred, i.e., Kostrzyn-Subice, and the

least preferred, i.e., Kamienna Gora, while for PrefRank I, the least preferred was also

Pomorze.

In turn, in the intermediate part of the ranking, we observed significant differences.

Some techniques showed incomparability between pairs of alternatives, while others ex-

hibited preference relationships between them. For example, PrefRank I. KRA was

preferred over TAR, whereas for the remaining approaches, they were indifferent.

(a) PROMETHEE I and
PrefRank III

(b) PrefRank I (c) PrefRank II

Figure 6.1: Incomplete rankings for the problem of ranking Special Economic Zones in
Poland.

6.2 ScoreBin

This section introduces the ScoreBin family of procedures that were proposed as part

of the work of [76]. In contrast to the PrefRank family, these approaches are designed

to exploit crisp outranking relations. These relations are created using the ELECTRE

III method (Section 2.8) defined as:

1(ai, ak) =




1 if σ(ai, ak) ≥ λ and i ̸= k

0 else
(6.7)

where σ(ai, ak) is an outranking credibility value and λ is a cutting level.

As in the PrefRank and NFS approaches, the strength S+(ai) and weakness S−(ai) are

determined for each option. However, their calculation and interpretation are different.
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In particular, there are two main components included in the strengths (weaknesses),

i.e., the part coming from the outranking graph G+(ai) (G−(ai)) and a bonus (penalty)

score b+i (b
−
i ):

S+(ai) = b+i +
G+(ai)

maxak∈AG+(ak)
and S−(ai) = b−i +

G−(ai)
maxak∈AG−(ak)

(6.8)

The component graph is normalized to the range [0,1] so that the alternative with

the highest strength (weakness) in the outranking graph has a score equal to 1. The

strength S+(ai) (weakness S−(ai) ) of option ai is calculated as the sum of the weights

ω+(ak) (ω−(ak)) associated with alternatives ak outranked by ai (alternatives ak that

outranked ai):

G+(ai) =

n∑

k=1

1(ai, ak)ω
+(ak) and G−(ai) =

n∑

k=1

1(ak, ai)ω
−(ak). (6.9)

Therefore, if an alternative does not outrank any other, its graph-based strength

equals zero. Similarly, if an option is not outranked by any other, its graph-based weak-

ness is also zero. Interpretation of ω+(ak) and ω−(ak) is different for each ScoreBin

variant. However, irrespective of their definition, alternatives that do not outrank any

other option have G+(ai) = 0, while alternatives that are not outranked by any other

option have G−(ai) = 0. This means that if ω+(ak) equals zero, then the outranking

of such an option by ai would add anything to the ai strength. Similarly, being outranked

by an option with ω−(ak) would not increase the alternative’s weakness. To ensure the

minimal impact of each option ai ∈ A on the strength or weakness of alternatives it is re-

lated to, a base bonus α+ ∈ (0, 1) or a penalty α− ∈ (0, 1) is included in its score.

Additionally, this method introduces optional preference information that the DM

can provide. It pertains to assigning selected alternatives to the set of strong alterna-

tives A∗
strong ⊆ A or weak alternatives A∗

weak ⊆ A, where one alternative cannot belong

to both sets simultaneously. This additional preference information is taken into account

as a bonus β+ ∈ R≥α+ or penalty β− ∈ R≥α− . The value of β+ directly affects only the

strength of the option, while β− affects its weakness. Given the bonuses and penalties

may serve two purposes, it is possible to consider them under a single variable:

b+i =




β+ if ai ∈ A∗

strong,

α+ else,
and b−i =




β− if ai ∈ A∗

weak,

α− else.
(6.10)

As the maximum value of the graph component is fixed at 1, the specific values

of α and β can be understood as the ratio of the minimum value that an alternative can

receive compared to the graph score obtained by the most preferred option.

The following sections present different variants of the ScoreBin method.
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ScoreBin I

The first variant of ScoreBin increases the strength of ai when it outranks strong alter-

natives (i.e., with high S+(ak)) and increases the weakness of ai when it is outranked

by weak alternatives (i.e., with high S−(ak)). Hence, it assumes the following weights:

ω+(ak) = S+(ak) and ω−(ak) = S−(ak). (6.11)

ScoreBin I draws inspiration from the TrustRank method, which extends the PageRank

algorithm with the concept of trust. Websites that have been recognized as trusted

receive an additional bonus, which is then propagated to other pages linked to them.

The algorithm for determining the strengths and weaknesses is analogous to the method

used in PrefRank, and it involves iteratively calculating these scores.

ScoreBin II

Similarly to PrefRank II, ScoreBin II is inspired by the HITS algorithm. It assumes

that the strength is derived from outranking many weak alternatives, and the weakness

comes from being outranked by numerous strong alternatives. This requires setting the

following weights:

ω+(ak) = S−(ak) and ω−(ak) = S+(ak). (6.12)

ScoreBin III

ScoreBin III considers the difficulty and easiness of outranking alternatives. This means

that, similarly to PrefRank III and Salsa, an option is considered strong if it outranks

an alternative that is also outranked by strong ones. On the other hand, an option

is considered weak if it is outranked by an alternative that outranks many weak ones:

ω+(ak) =

n∑

l=1

1(al, ak) · S+(al) and ω−(ak) =
n∑

l=1

1(ak, al) · S−(al). (6.13)

This idea is similar to the concept behind ScoreBin II, where an alternative is judged

strong if it outranks weak options, which are outranked by many strong alternatives. The

main difference is that ScoreBin II uses weaknesses to calculate strengths and vice versa.

This means that the additional preference information provided by the DM, assigning

an option to A∗
strong, also indirectly affects the weaknesses of others while assigning alter-

natives to A∗
weak influences the strengths of others. On the other hand, ScoreBin III uses

only the strengths of other alternatives to calculate strengths and only the weaknesses

to calculate weaknesses. Therefore, ScoreBin III is similar to ScoreBin I in limiting the

impact of positive (negative) information only to alternatives’ strengths (weaknesses).
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ScoreBin IV

The fourth variant of ScoreBin combines the first and third counterparts. An alternative

is challenging to outrank if few relatively strong options outrank it. On the other hand,

an option is easy to outrank if many relatively weak alternatives outrank it. The more

challenging an alternative is to outrank, the more favorable it is for the quality of the

alternative that does outrank it. The above idea can be implemented using the following

weights:

ω+(ak) =
1∑n

l=1 1(al, ak) · S−(al)
and ω−(ak) =

1∑n
l=1 1(ak, al) · S+(al)

. (6.14)

As in ScoreBin I, ScoreBin IV promotes outranking strong options; however, the addi-

tional preferential information affects the strengths and weaknesses of other alternatives.

For example, if ak ∈ A∗
weak outranks ai, then ai may be considered as less challenging

to outrank. Therefore other options that outrank ai will have their strength reduced.

6.2.1 Measures used for comparing the choice or ranking
recommendations

When comparing ranking similarities, the same measures were used for PrefRank, namely

NHR, NRD, and Kendall’s τ coefficient. In addition, because of the comparisons between

ScoreBin methods and Electre I, the following metrics were used to compare the set

of recommended alternatives and the ranking. The first metric was NHR, which can

also be applied to compare the top-rated set from the ranking with the recommended

alternatives from the kernel of the graph. The second was the average position (AP)

of the set of best options in the complete ranking.

6.2.2 Experimental comparison of results attained by different
methods exploiting a crisp outranking relation

In this section, the results of experiments examining the similarity between the results

obtained from the outranking-based relation exploitation methods, namely ScoreBin I-

IV, NFS, QD, and ELECTRE I, will be presented. The experiment involved generating

artificial problems consisting of 8 to 20 alternatives (with a step size of 2) and varying

evaluation criteria ranging from 3 to 8. The evaluations for these criteria were generated

from a uniform distribution within the range of [0-1]. In addition, to check the similarities

between different densities of outranking relations, four different values of λ and three

different sets of thresholds were tested: low (qj = 0.05, pj = 0.15, vj = 0.25), medium

(qj = 0.15, pj = 0.3, vj = 0.5), and high (qj = 0.25, pj = 0.45, vj = 0.75). During these

experiments, no additional preferential information was simulated, and the value of the

base bonus α = 0.1.
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The experiments revealed that the rankings generated by all the methods were very

similar, with the highest similarity observed between methods based on similar concepts,

such as ScoreBin I and IV, ScoreBin II and III, and NFS and QD. On the other hand, the

most different results were obtained for QD and ScoreBin IV. When considering different

problem sizes, the similarity between rankings decreased as the number of alternatives

and criteria increased. Compared to ScoreBin I-IV, NFS, QD, and ELECTRE I, the

experiments showed relatively low similarity between the graph kernel method and the

other methods, with ScoreBin IV generating the most similar recommendations. The

average position of the options within the kernel for all methods was around 2.7. When

considering all measures, the credibility threshold λ had a negligible impact on the simi-

larity between the rankings. However, for different sets of parameter values for qj , pj , and

vj , it was noticed that the most similar sets of recommended options between ScoreBin

I-IV and NFS and QD were associated with low parameter values. In contrast, compared

to the graph kernel, the similarity was higher for medium parameter values and lower for

high parameter values.

6.2.3 Case study concerning evaluation of technological parks
in Poland

This section presents the outcomes of a case study evaluating technological parks in Poland

[61]. Such parks have created favorable conditions for developing innovative companies,

particularly in the advanced technology sector, by providing access to modern infras-

tructure, scientific knowledge, and financial resources. The objective of our study was

to evaluate eleven anonymous technology parks in Poland, which had been assessed based

on seven criteria: sales costs, park buildings’ surface. park’s localization, total sales, num-

ber of services types, overall evaluation of park’s management and number of completed

projects.

For this problem, criteria weights were determined using the SRF method, and

then an outranking graph was created using the ELECTRE III method (see Figure 6.2

(a)). Next, rankings were created according to ScoreBin I-IV, NFS, and QD methods,

and the kernel of the graph was determined, which in this case contained alternatives:

{a8, a10, a5, a4, a7}. We set the value of the base bonus for ScoreBin as α = 0.1 and

an enhancement bonus/penalty to β = 0.8.

We considered two scenarios for solving this problem: the first was without and the

second with indirect reference information. In the first case, all methods indicated a10

as the best alternative and a9 as the worst. A Hasse diagram showing the partial ranking

for ScoreBin I is shown in Figure 6.2 (b). The resulting rankings for ScoreBin II and III

were identical. Then, the greatest similarity can be observed for rankings obtained with

ScoreBin IV and NFS. On the other hand, the rankings of ScoreBin I and II (III) differed

the most. The average position of the options from the ELECTRE I for all methods was
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(c) ScoreBin I when accounting for in-
direct preference information A∗

good =
{a4} and A∗

bad = {a1, a2}

Figure 6.2: Outranking graph (a), incomplete rankings derived with ScoreBin I without
additional indirect preference information (b) and with it (c) for the problem of assessing
technological parks in Poland.

similar, at about 5.

In contrast, the second scenario contained additional indirect preference information

where the DM judged the option a4 as strong (A∗
strong = {a4}) while the a1 and a2 as weak

(A∗
weak = {a1, a2}). This preferential information influenced the rankings of all Score-

Bin methods. Due to the different ways the preferential information was propagated,

the rankings differed much more than in the previous scenario. In the case of partial

ranking, all methods still considered alternative a10 as the most preferred, but ScoreBin

II-IV methods additionally identify the a4 option as such. Comparing both scenarios,

in the case of ScoreBin I without preferential information (Figure 6.2 (b)), for example,

alternative a5 was preferred over a9. However, after adding additional information (Fig-

ure 6.2 (c)), the preferred direction for this pair changed, which is related to recognizing

alternative a2 as a weak option.

6.2.4 Robustness analysis

ScoreBin methods have two parameters: the minimum alternative contribution α and

strength/weakness enhancement β. The choice of these two values determines the final

result obtained. In order to check the stability of the solution, a robustness analysis

was performed. It checks the possible solutions in the feasible space of these parameters

(A, B). The results of this analysis can be presented in the form of Rank Acceptability

Indices (RAIs), i.e., the share of parameters for which alternative ai was given r-th rank.

To estimate this value, we used Monte Carlo simulation, which samples the values of the

parameters α ∈ [0.005, 1] with a step of 0.005 and β ∈ (α, 1] with a step of 0.005. The
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results of the analysis using RAIs for the preference information A∗
strong = {a4} and

A∗
weak = {a1, a2} for the ScoreBin I method and complete ranking are shown in Table
6.1. Meanwhile, Figure 6.3 shows the obtained ranks of the alternative a2 for different

values of α and β.

From the RAIs table, it can be observed that regardless of the parameter values, a8
always occupied position 4. On the other hand, a2 could be positioned anywhere from 6

to 11, with position 6 being achieved for small values of α and β. In contrast, the worst

position occurred for high values of β and low α when the information about assigning

this alternative to weak options had the most significant influence. Analyzing only the

strengths, a2 consistently held rank 4 because it was not assigned to strong options, nor

was any variant it outranks included in that set.

Table 6.1: Rank Acceptability Indices (in %) and expected ranks ER obtained with
ScoreBin I for technological parks in Poland in the scenario accounting for additional
preference information.

Rank a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

1 - - - 3.6 - - - - - 96.4 -
2 - - 93.0 4.8 - - - - - 2.1 -
3 - - 7.0 91.6 - - - - - 1.4 -
4 - - - - - - - 100.0 - - -
5 0.9 - - - - 83.8 - - - - 16.2
6 30.6 1.3 - - - 15.0 2.3 - - - 50.0
7 20.5 11.6 - - - 1.3 48.3 - 10.9 - 7.5
8 37.6 27.8 - - - - 20.1 - 1.8 - 12.7
9 10.1 50.4 - - 2.5 - 19.2 - 4.0 - 13.7
10 0.3 7.2 - - 78.4 - 8.5 - 5.6 - -
11 - 1.6 - - 19.1 - 1.5 - 77.7 - -
ER 7.26 8.55 2.07 2.88 10.17 5.18 7.87 4.0 10.37 1.05 6.58
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Figure 6.3: Ranks attained by alternative a2 for uniformly distributed values of param-
eters α and β for the problem of assessing technological parks in Poland.

58



6.3 Comparison of PrefRank and ScoreBin methods

This dissertation presents two families of methods for exploiting the weighted preference

relation PrefRank and the binary outranking relation ScoreBin. These families were

inspired by algorithms derived from web mining and scoring websites. Despite similar in-

spirations, the two families of methods are significantly different, and ScoreBin methods

are an extension of the concepts proposed in PrefRank methods. The main difference

is that PrefRank was proposed for a valued relation where we have a numerical score

indicating the degree of preference for each pair of alternatives. On the other hand,

ScoreBin has been proposed for crisp outranking relations in which we can only deter-

mine whether a relation exists. In addition, ScoreBin, compared to PrefRank, extends the

ability to control the final ranking by introducing additional indirect preference informa-

tion. It allows the DM to determine whether an alternative is strong or weak holistically.

This information directly affects the option to which it applies and not directly the others

through the relation present in the outranking graph. These differences influence the way

strengths and weaknesses are determined for the two families. In addition, the ScoreBin

family of methods has been extended over the PrefRank methods with a variant based

on how challenging the option is to be outranked by other alternatives.
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Chapter 7

Summary

This chapter summarizes the research and the realization of the dissertation’s aims and

outlines perspectives for further study. We refer to the three research areas described

in the introduction of this dissertation.

MCDA provides various tools to support DMs in the decision-making process. These

methods focus on solving problems such as ranking options in terms of preferences, se-

lecting the best ones, or sorting them into pre-defined, preference-ordered classes. The

options considered are evaluated on several potentially conflicting criteria. Under such

conditions, an ideal solution typically does not exist. Therefore, eliciting the DM’s pref-

erences is necessary to build the model according to his/her individual value system.

Decision-making problems are becoming increasingly complex due to the increasing

number of options to consider, the variety of types of evaluation criteria, and the incon-

sistencies and uncertainties in the judgments provided by the DM. In addition, the DM

may consider many related decisions simultaneously for the same set of options. More-

over, for each decision made, there should be a rationale indicating why that particular

decision was made and the impact of individual performances on the decision. At the

same time, the decision-making process itself should be easy to interpret by the DM.

This dissertation proposes several MCDA methods addressing these problems that

draw inspiration from various AI fields. Five original papers were prepared as part of the

research, of which, as of the state (May 31, 2023), three have been published, and two

have been submitted for publication. The research was divided into three aims: methods

inspired by deep neural networks, machine learning, and web mining.

In the first research area, eight MCDA methods inspired by deep neural networks

were proposed. They introduced explainable and interpretable preference learning meth-

ods to address the sorting problem. The methods enable the effective reconstruction

of DM’s holistic judgments by learning the method’s parameters from large quantities

of reference data for which real decisions are known. Artificial Neural Networks (ANNs)

are suggested as a computational approach for preference disaggregation. The resulting
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model is modified to permit complex monotonic transformations of evaluations while con-

sidering constraints on the directions of preferences for individual criteria. The presented

techniques allow for a detailed analysis of the model, providing information on the in-

fluence of each criterion or criterion group. Additionally, they enable determining which

performance difference is critical and which is insignificant. These pieces of information

facilitate the straightforward interpretation of the data processing process. The intuitive

threshold-based sorting procedure makes it possible to provide reliable explanations for

allocating an alternative to a specific class. Specifically, approaches based on scores,

distances, and outranking were investigated, incorporating different compensation levels,

including interactions between criteria or curvatures of marginal functions.

The main advantage of the proposed methods is the ability to infer all model param-

eters from the indirect preference information in the form of example class assignments.

In addition, more flexible per-criterion (value, preference, concordance, or discordance)

functions are used, allowing for more accurate alignment with the input data. As a re-

sult, there is no need for the DM to choose the shape of these functions arbitrarily.

Secondly, using deep learning techniques enables learning from large and inconsistent

preference information, which most traditional methods based on Mixed-Integer Linear

Programming would not process within an acceptable time frame. This ability has been

demonstrated on various benchmark problems containing over one thousand alterna-

tives or scenarios that involve comparing several million pairs of options. The predictive

performance of the proposed methods, in particular ANN-UTADIS, ANN-Ch-Uncons.,

and ANN-PROMETHEE, is competitive with other state-of-the-art preference learning

methods.

In the second research area, two problems were addressed: modeling non-monotonic

criteria in additive value function models and dealing with sorting problems with multi-

ple interdependent decisions. Two independent approaches to handling non-monotonic

criteria were proposed. The first approach focused on controlling the complexity of these

functions by minimizing the number of changes in monotonicity. A wide range of criteria

types was explicitly considered, including gain and cost, level-monotonic shapes, mono-

tonic functions without a pre-defined preference direction, A- and V-types where one

part is non-increasing, and the other part is non-decreasing, as well as a function with-

out any monotonicity constraints. In the other approach, the non-monotonic criterion

combines two components of the non-decreasing and non-increasing types. The resulting

marginal function can be of any shape, also providing an understandable justification for

this shape.

On the one hand, the outcome of disaggregation of the DM’s preferences can be a sin-

gle representative instance. Such a model provides unequivocal class assignments, along

with a justification of the impact of each evaluation on the resulting decision. In ad-

dition, it allows for analysis and interpretation of the model by providing information

62



on what values would have to change so that the classification would be different. On the

other hand, an analysis of the robustness of assignments of non-reference alternatives was

performed. It determines the possible and necessary classes in a set of compatible in-

stances of the sorting model. An additional contribution is a method for dealing with

multi-decision sorting. This approach considers interconnected sorting problems using

an additive value function with intra- and inter-decision constraints. The model is built

by disaggregating a subset of sample alternatives classified into a single class on each

decision attribute.

An analysis was performed using the proposed methods for real sorting problems re-

lated to managing exposure to engineered nanomaterials. The first study’s analysis con-

cerned predicting precaution levels for needing a respirator. The representative model

identified the criteria of detection limits, airborne, and duration of exposure as those

with the most significant contribution to the comprehensive value. In contrast, the nano-

material quantity, exposure frequency, and engineering controls had a minor influence.

The second study considers four related precautions that can be used to reduce risk:

a respirator, a fume hood with and without a HEPA filter, and a HEPA vacuum cleaner.

Airborne capacity, detection limit, and exposure limit were attributed to the highest

maximal share in the comprehensive values of alternatives. The marginal value functions

obtained for each decision were similar, particularly for the HEPA filter precautions.

In contrast, they differed significantly for the fume hood with or without the HEPA,

confirming their complementarity.

The last research area was to propose methods for exploiting relations between al-

ternatives that consider dependencies between them. In this dissertation, two families

of methods, called PrefRank and ScoreBin, were proposed for analyzing different types

of relations. They were inspired by both the Net Flow Score method, which considers

option strengths and weaknesses, and the graph analysis algorithms originally proposed

within web structure mining. The PrefRank methods are used to analyze valued pref-

erence relations, while ScoreBin is used for crisp outranking relations. The individual

variants within these two families differ in the weighting scheme implemented when ag-

gregating the results of pairwise comparisons. It allows one to capture different aspects

of the option, such as the difficulty and ease of outranking or preferring each alternative

and whether it is relatively good or bad. Furthermore, ScoreBin includes optional pref-

erence information allowing the DM to specify a subset of strong and weak alternatives.

The proposed methods were compared regarding the similarity of results with other

state-of-the-art relations exploitation techniques such as NFS, Qualification Distillation,

and ELECTRE I on various simulated decision problems. These experiments showed the

greatest similarities between the NFS methods and PrefRank III, ScoreBin II and III, I

and IV, and NFS and QD.

Both groups of methods have been tested in real problems. PrefRank was consid-
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ered in the problem of ranking Special Economic Zones in Poland. All techniques in-

dicated that Kostrzyn and Słubice were the most preferred areas for financial growth

and job creation. ScoreBin methods were demonstrated on the problem of identifying

the best-managed technological parks in Poland, which generated the highest profits and

supported the development of both industry and research.

This dissertation proposes decision-support methods that combine ideas from differ-

ent areas of AI. These studies are significant due to the increasing utilization of intelligent

systems for processing and analyzing ever-larger data sets. In these systems, it is often

necessary to use techniques that can justify their results, and the analysis process itself

is easily interpretable and consistent with the DM’s preferences. Moreover, these solu-

tions must deal with the DM’s uncertainty and handle complex problems considering

non-monotonic preferences over criteria. There are also situations where multiple inter-

dependent decisions must be made for each option. Finally, when considering various

scenarios for selection, recommendations should consider the relationships between alter-

natives and their resulting strengths and weaknesses, as well as how good or weak the

alternative is compared.

The experiments and analysis carried out as part of this dissertation provided evidence

of the methodological contributions. However, it is essential to acknowledge and address

the limitations of these experiments, which will be discussed next.

First, the thesis presents methods for learning preferences from large reference datasets.

The experiments presented prove their usefulness in the context of MCDA where tradi-

tional methods process modestly-sized datasets [103]. In contrast, other areas of ML

process significantly larger datasets. For this reason, it would be valuable to test their

accuracy in reconstructing preferential information for such data volumes.

Furthermore, two methods for modeling non-monotonic criteria have been proposed.

However, the resulting partial functions have not been compared among themselves

or with other state-of-the-art methods. Conducting an analysis comparing criterion com-

plexity, computation time, and overall model quality for these algorithms would allow

discovering which models are better suited for different applications. Still, the method’s

underlying idea and capabilities should be decisive in this aspect. The above discussion

can be a potential direction for future research. In addition, the possibilities offered

by other areas of AI discussed in this work may also be a start for future study. The

following section delves into a discussion of these ideas.

First, as presented in this dissertation, inspiration from different areas of AI can allow

decision-making problems to be solved more efficiently. Therefore, it would be beneficial

to explore the possibility of utilizing techniques and tools from other areas in the context

of decision support. In particular, a technique such as deep transfer learning [98] could

transfer information about user preferences between related problems. Additionally, nat-

ural techniques that could be utilized in decision-making processes are active learning
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methods [87], which would allow for providing DM’s preferences in sequential order, and

the model needs to be updated at each step. Federated learning [60] or blockchain [63]

techniques could find application in group decision-making methods, where consensus

must be reached between different decision-makers.

Another direction for future research is to propose neural preference learning al-

gorithms for other intuitive MCDA approaches. In this context, it would be possible

to explore methods that incorporate other types of criteria or interactions between them

or that use boundary or characteristic class profiles for sorting.

Third, the ANN-based and proposed methods for handling non-monotonicity could

be applied to ranking problems. For this purpose, the preference information would take

the form of pairwise comparisons of alternatives, and there would be no need to determine

a threshold in the sorting procedure.

Furthermore, when considering an approach that controls the complexity of non-

monotonic criteria, extending them to other shapes would be possible. For example,

by incorporating polynomial and spline transformations, whose interpretation is essential

for real-world problems [95].

Ultimately, computing strengths and weaknesses in PrefRank and ScoreBin methods

is carried out similarly. However, it would be possible to simultaneously utilize different

combinations of these methods and aggregate their results by averaging them or by ex-

amining the spaces of consensus and disagreement [78]. Similarly, in the case of methods

inspired by ANN, it is possible to combine multiple architectures into one and aggregate

the results into a comprehensive quality measure. The final decision could be determined

through either majority voting or weighted voting, where the weights are determined

during training.
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[39] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating web spam with

trustrank. In Proceedings of the Thirtieth international conference on Very large

data bases-Volume 30, pages 576–587, 2004.

[40] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The

weka data mining software: an update. ACM SIGKDD explorations newsletter,

11(1):10–18, 2009.

[41] D. W. Hosmer, S. Lemeshow, and R. X. Sturdivant. Applied logistic regression.

Wiley, New York, 2000.

[42] Y.-C. Hu. Bankruptcy prediction using electre-based single-layer perceptron. Neu-

rocomputing, 72(13-15):3150–3157, 2009.

[43] C.-L. Hwang and K. Yoon. Methods for Multiple Attribute Decision Making, pages

58–191. Springer Berlin Heidelberg, Berlin, Heidelberg, 1981.

[44] E. Jacquet-Lagreze and Y. Siskos. Preference disaggregation: 20 years of mcda

experience. European Journal of Operational Research, 130(2):233–245, 2001.

[45] S. Jeble, S. Kumari, and Y. Patil. Role of big data in decision making. Operations

and Supply Chain Management: An International Journal, 11(1):36–44, 2017.

[46] T. Joachims. Optimizing search engines using clickthrough data. In Proceedings

of the eighth ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 133–142, 2002.

[47] M. Kadziński and K. Ciomek. Integrated framework for preference modeling and

robustness analysis for outranking-based multiple criteria sorting with electre and

promethee. Information Sciences, 352:167–187, 2016.

70



[48] M. Kadziński, K. Martyn, M. Cinelli, R. Słowiński, S. Corrente, and S. Greco.

Preference disaggregation for multiple criteria sorting with partial monotonicity

constraints: Application to exposure management of nanomaterials. International

Journal of Approximate Reasoning, 117:60–80, 2020.

[49] M. Kadziński, K. Martyn, M. Cinelli, R. Słowiński, S. Corrente, and S. Greco. Pref-

erence disaggregation method for value-based multi-decision sorting problems with

a real-world application in nanotechnology. Knowledge-Based Systems, 218:106879,

2021.

[50] M. Kadziński and M. Michalski. Scoring procedures for multiple criteria decision

aiding with robust and stochastic ordinal regression. Computers & Operations

Research, 71:54–70, 2016.

[51] M. Kadziński and T. Tervonen. Robust multi-criteria ranking with additive value

models and holistic pair-wise preference statements. European Journal of Opera-

tional Research, 228(1):169–180, 2013.

[52] M. Kadziński and T. Tervonen. Stochastic ordinal regression for multiple criteria

sorting problems. Decision Support Systems, 55(1):55 – 66, 2013.

[53] D. Kahneman. Thinking, fast and slow. Farrar, Straus and Giroux, New York,

2011.

[54] R. L. Keeney and H. Raiffa. Decisions with multiple objectives: preferences and

value trade-offs. Cambridge university press, 1993.

[55] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93,

1938.

[56] S. Khan and T. Yairi. A review on the application of deep learning in system health

management. Mechanical Systems and Signal Processing, 107:241–265, 2018.

[57] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[58] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of

the ACM, 46(5):604–632, 1999.

[59] T. Kliegr. Uta-nm: Explaining stated preferences with additive non-monotonic

utility functions. Preference Learning, page 56, 2009.

[60] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik. Federated opti-
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nonlinear models using the Choquet integral. Machine Learning, 89(1):183–211,

2012.

[100] T. Tervonen and R. Lahdelma. Implementing stochastic multicriteria acceptability

analysis. European Journal of Operational Research, 178(2):500–513, 2007.

[101] G. Tsoumakas and I. Katakis. Multi-label classification: An overview. International

Journal of Data Warehousing and Mining (IJDWM), 3(3):1–13, 2007.

[102] W. Waegeman, B. De Baets, and L. Boullart. Kernel-based learning methods for

preference aggregation. 4OR, 7:169–189, 2009.

[103] J. Wallenius, J. S. Dyer, P. C. Fishburn, R. E. Steuer, S. Zionts, and K. Deb. Multi-

ple criteria decision making, multiattribute utility theory: Recent accomplishments

and what lies ahead. Management science, 54(7):1336–1349, 2008.

[104] M. Waltz and K. Fu. A heuristic approach to reinforcement learning control sys-

tems. IEEE Transactions on Automatic Control, 10(4):390–398, 1965.

[105] R. R. Yager. On ordered weighted averaging aggregation operators in multicriteria

decisionmaking. IEEE Transactions on systems, Man, and Cybernetics, 18(1):183–

190, 1988.

[106] M.-L. Zhang and Z.-H. Zhou. A review on multi-label learning algorithms. IEEE

transactions on knowledge and data engineering, 26(8):1819–1837, 2013.

[107] S. Zheng, Y. Song, T. Leung, and I. Goodfellow. Improving the robustness of deep

neural networks via stability training. In Proceedings of the ieee conference on

computer vision and pattern recognition, pages 4480–4488, 2016.

[108] C. Zopounidis and M. Doumpos. PREFDIS: a multicriteria decision support system

for sorting decision problems. Computers & Operations Research, 27(7-8):779–797,

2000.

[109] C. Zopounidis and M. Doumpos. Multicriteria classification and sorting methods:

A literature review. European Journal of Operational Research, 138(2):229–246,

2002.

75





Publication reprints

77





Publication [P1]

M. Kadziński, K. Martyn, M. Cinelli, R. Słowiński, S. Corrente, and S. Greco. Preference

disaggregation for multiple criteria sorting with partial monotonicity constraints: Appli-

cation to exposure management of nanomaterials. International Journal of Approximate

Reasoning, 117:60–80, 2020,

DOI: 10.1016/j.ijar.2019.11.007.

Number of citations1:

• according to Web of Science: 27

• according to Google Scholar: 31

1as on June 1, 2023

79

https://doi.org/10.1016/j.ijar.2019.11.007 




International Journal of Approximate Reasoning 117 (2020) 60–80

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Preference disaggregation for multiple criteria sorting with 

partial monotonicity constraints: Application to exposure 

management of nanomaterials
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We propose a novel approach to multiple criteria sorting incorporating a threshold-based 
value-driven procedure. The parameters deciding upon the shape of marginal value func-
tions and separating class thresholds are inferred through preference disaggregation from 
the Decision Maker’s incomplete assignment examples and partial requirements on the 
type of (non-)monotonicity for each marginal value function. These types include standard 
monotonic shapes, level-monotonic functions, A- and V-types combining increasing and 
decreasing value trends, and unknown monotonicity constraints. A representative instance 
of the sorting model compatible with the preference information is constructed by solving 
a dedicated Mixed-Integer Linear Programming problem. Its complexity is controlled by 
minimizing the number of changes in monotonicity between all subsequent sub-intervals 
of marginal value functions. The assignments derived using the constructed representative 
model are validated against the outcomes of robustness analysis. The proposed method 
is applied to a real-world problem of exposure management of engineered nanomateri-
als. We develop a model for predicting precaution level while handling nanomaterials in 
certain conditions using a respirator. The model captures interrelations between ten ac-
counted evaluation criteria, including both monotonic and non-monotonic criteria, and the 
recommended class assignment. This makes it suitable for the management of exposure 
scenarios, which have not been directly judged by the experts.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Multiple Criteria Decision Aiding (MCDA) is one of the fastest developing sub-fields of computer science and operational 
research [16]. Its importance derives from offering a diversity of approaches for structuring decision problems involving 
multiple criteria and carrying forward their solution. As the criteria used to represent pertinent viewpoints on the quality 
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of considered alternatives usually do not align to indicate the most preferred alternative, arriving at the problem’s solution 
requires involvement of Decision Maker (DM). (S)he is expected to exchange information with the method in a way ensuring 
that a recommendation constructed in the course of a decision aiding process is feasible and consistent with his/her value 
system [36].

The two major components of decision aiding approaches are responsible for querying the DM for suitable inputs and 
performing the analysis of his/her feedback to produce a recommendation in function of the specific problem to solve [23]. 
When it comes to the required inputs, their characteristics may be two-fold. On the one hand, they may be imposed by 
the context of a particular decision problem, hence referring to the characteristics of criteria, type of performances, or 
specificity of expected results. On the other hand, the inputs may represent the DM’s subjective preferences indicating 
his/her priorities, requirements, and choices that should be respected when deriving the recommendation. Processing such 
diverse information consists in constructing a preference model of the DM in the context of the considered decision problem, 
and exploiting this model to produce numerical and other arguments supporting the recommendation.

Most traditional MCDA methods incorporate complete information about the problem and model parameters. Such in-
formation takes the form of precise performances of alternatives, well-defined preference directions for all criteria, exact 
requirements imposed on the provided outcomes, or exact values of preference model parameters [37]. The assumption on 
availability of such complete information may be questioned on many grounds. When it comes to the model parameters, 
it may not be possible to obtain their reliable exact estimates from the DM due to a misunderstanding of their meaning, 
a prohibitively high cognitive effort related to their elicitation, a lack of DM’s confidence in providing precise inputs, or 
an application of some arbitrary transformation of the incomplete judgments to the complete ones (e.g., converting ordinal 
scales of criteria to cardinal weights). For this reason, the interest in recently developed MCDA approaches has been shifted 
to acquiring partial preference information at an affordable effort [5,37].

The terms of incomplete or partial information can be interpreted in two interrelated ways [13,28]. On the one hand, they 
indicate that the DM’s preferences – usually modeled in form of some constraints – can be satisfied by more than one set 
of parameter values. This implies multiplicity of preference model instances compatible with the DM’s statements [37]. On 
the other hand, incompleteness or partiality of preference information emphasizes that its use may not lead to a univocal 
recommendation [5]. However, the latter can be made robust by eliciting richer (i.e., more complete) information from the 
DM [3].

As far as MCDA methods incorporating partial preference information are concerned, the preference disaggregation ap-
proaches have been prevailing in the recent years [5,21]. They assume that the DM’s preferences have the form of example 
holistic decisions concerning a subset of reference alternatives. Such judgments may come from historical data, from the 
DM’s better knowledge of some alternatives, or can be implied by a relative easiness of performing a comprehensive evalu-
ation of such alternatives [39].

In this paper, we consider multiple criteria sorting problems oriented toward an assignment of alternatives to pre-defined 
and preference ordered decision classes [47]. For this purpose, we use a threshold-based value-driven sorting procedure [14,
46]. It incorporates a preference model composed of an additive value function and thresholds separating the classes on 
a scale of a comprehensive value. The parameter values deciding upon the shape of marginal value functions and sepa-
rating thresholds are inferred indirectly from the assignment examples, which are composed of reference alternatives and 
their desired class assignments [14]. The latter ones should be reproduced in the final recommendation, while addition-
ally delimiting the space of admissible values of preference model parameters and influencing the sorting of non-reference 
alternatives.

The preference disaggregation paradigm has been so far mostly applied in the context of monotone learning data, i.e., 
criteria with well-defined preference directions [14,26]. These include gain and cost criteria, on which one prefers, respec-
tively, greater or lesser performances. However, the recent trend in MCDA (see, e.g., [11,25,34]) – motivated by numerous 
real-world applications – consists in accounting for the non-monotonic criteria [1].

The framework proposed in this paper accounts for a wide spectrum of types of monotonic and non-monotonic marginal 
value functions within a preference disaggregation framework. These types admit specification of partial information con-
cerning the DM’s per-criterion preferences implied by the problem’s peculiarity. In particular, we consider both gain- and 
cost-type criteria as well as preference-ordered attributes for which the direction of monotonicity cannot be specified a 
priori. Furthermore, we account for A- and V-type functions, which combine increasing and decreasing trends in disjoint 
sub-ranges of the performances scale. We also generalize the latter functions to level-monotonic characteristics, which cor-
respond to the shapes assigning the same marginal value to all performances in a certain performance sub-region, but 
adhering to monotonicity constraints in the other region [34]. For example, the level-decrease function assigns the same 
maximal marginal value to a subset of the least performances, while systematically decreasing it from a certain point of 
the performance scale down to zero being associated with the greatest performance. Finally, we also account for the cri-
teria with unknown monotonicity constraints [25], for which the respective marginal functions are allowed to take any 
shape.

Similarly to Kliegr [25], we aim at constructing a model whose complexity is controlled by the number of changes in 
monotonicity between all subsequent sub-intervals of marginal value functions. Minimizing this number, we implement 
the prudence principle in MCDA, while adjusting the model’s complexity to the available incomplete preferences. Hence, 
the lack of complete information about the monotonicity of particular criteria offers different means for ensuring consis-
tency between the DM’s preference information and the model than in traditional MCDA approaches. Indeed, it opposes to 
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both consistency restoration which eliminates the conflicting DM’s statements [30,31] and consistency preservation enforc-
ing compatibility of the new DM’s judgments with the previously elicited statements [2,4]. To adjust the non-monotonic 
character of the marginal value functions to the available assignment examples, we use Mixed-Integer Linear Programming 
(MILP).

The proposed basic model constructs a single additive value function and a vector of precise class thresholds. However, 
when using indirect preference information, there may exist multiple instances of the sorting model that would be com-
patible with it, hence restoring the DM’s assignment examples [14,17,22]. In our case, a set of compatible instances of the 
sorting model is delimited by the minimal number of changes in monotonicity for all marginal value functions. The ap-
plication of such model instances on the set of non-reference alternatives may lead to different assignments [14,26]. From 
the viewpoint of robustness analysis, it is thus advisable to examine how the sorting recommendation changes when the 
complexity of compatible model instances varies within the plausible limits. The results of such an examination take the 
form of possible assignments, which indicate classes to which a given alternative is assigned by at least one instance of 
the compatible sorting model. Such assignments can be interpreted as robust conclusions which are supported by the DM’s 
partial preference information.

The proposed method is applied to a real-world problem of exposure management of Engineered Nanomaterials (ENMs). 
Nowadays, such materials are commonly used in consumer products like cosmetics, clothes and food, which implies that the 
number of workers exposed to such materials is increasing each year [12,27]. The available approaches proposed for control-
ling exposure to nanomaterials include the use of personal protective equipment, administrative and work practices control 
and engineering controls [33]. We develop a model for assessing the suitability of a particular Risk Management Measure 
(RMM) for exposure management during the manufacturing of ENMs. Specifically, we focus on the use of a respirator while 
handling nanomaterials in certain conditions. The input preference information concerns a holistic assessment of a subset 
of exposure scenarios to nanomaterials conducted by a team of experts in view of the recommended level of the selected 
RMM [32]. In addition, ten descriptors are included in the model development. They include seven monotonic criteria of 
either gain- or cost-type, a single level-increase criterion, and two non-monotonic variables. The role of constructed model 
is to capture the interrelations between the evaluation criteria and the recommended level of use of the considered RMM. 
In this way, the model explains the expert judgments, but it can also be used to assess other exposure scenarios to ENMs. 
The obtained recommendation is validated against the outcomes of robustness analysis in view of the plurality of sorting 
model instances compatible with the assignment examples.

The remainder of this paper is organized as follows. In Section 2, we describe the mathematical models underlying the 
proposed method and review the existing preference disaggregation methods that are able to handle non-monotone data. 
Section 3 discusses the results of its application to exposure management of engineered nanomaterials. The last section 
concludes and outlines avenues for future research.

2. Construction of threshold-based value-driven sorting model with partially known monotonicity constraints based on 
the Decision Maker’s assignment examples

Let us use the following notation [23]:

• A = {a1, a2, . . . , ai, . . . , an} – a finite set of n alternatives;

• AR = {a∗, b∗, . . .} ⊆ A – a finite set of reference alternatives, which the DM accepts to critically judge in a holistic way;

• G = {g1, g2, . . . , g j, . . . , gm} – a finite set of m evaluation criteria, g j : A →R for all j ∈ J = {1, . . . , m};

• X j = {x j ∈R : g j(ai) = x j, ai ∈ A} – a set of all different performances on g j , j ∈ J ;

• x1
j , x

2
j , . . . , x

n j(A)

j – increasingly ordered values of X j , xk
j < xk+1

j , k = 1, 2, . . . , n j(A) − 1, where n j(A) = |X j | and n j(A) ≤
n;

• C1, C2, . . . , C p - p pre-defined, preference ordered classes, where Ch+1 is preferred to Ch , h = 1, . . . , p − 1 (H =
{1, . . . , p}).

2.1. Sorting model

To comprehensively assess the quality of alternatives, we use an additive value function defined as follows [24,39]:

U (ai) =
m∑

j=1

u j(g j(ai)) =
m∑

j=1

u j(ai) ∈ [0,1], (1)

where u j is a marginal value associated with criterion g j , j = 1, . . . , m. It is used to evaluate alternatives ai ∈ A from a 
specific point of view. Observe that in Eq. (1) and in the following with the notation u j(a) we mean u j(g j(a)). For all 
criteria, we use general functions with all unique performances corresponding to the characteristic points [14]. Hence, the 
shape of u j(ai) is determined by u j(xk

j), k = 1, 2, . . . , n j(A).
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Fig. 1. Value-driven threshold-based sorting procedure.

To classify the alternatives, we use a value-driven threshold-based sorting procedure in which the boundaries between 
the classes are defined with a vector of thresholds t0, t1, . . . , th, . . . , tp , such that th−1 and th are, respectively, the lower and 
upper bounds on a scale of a comprehensive value for class Ch , h = 1, . . . , p [14,46]. Alternative ai ∈ A is assigned to class 
Ch in case th−1 ≤ U (ai) < th . Such a procedure is presented graphically in Fig. 1. The set of constraints defining the basic 
assumptions of the underlying preference model is as follows:

U (ai) = ∑m
j=1 u j(ai), for all ai ∈ A,

th − th−1 ≥ ε, h = 1, . . . , p,

t0 = 0, tp ≥ 1 + ε,

⎫⎪⎬
⎪⎭

E M O D E L (2)

where ε is an arbitrarily small positive value.
In the following subsections, we discuss constraints that reconstruct the DM’s preference information and define a set of 

compatible value functions. We also present the mathematical models for both selection of a single representative sorting 
model as well as robustness analysis whose results are quantified by means of possible assignments.

2.2. Preference information

The parameters of an assumed sorting model are inferred indirectly from the DM’s assignment examples specifying for 
each reference alternative a∗

i ∈ AR its desired class C DM(a∗
i ) (e.g., alternative a∗

1 should be assigned to class C2, whereas 
alternative a∗

2 should be sorted into class C4) [14,26]. The assignment examples are translated to the following con-
straints:

for all a∗
i ∈ AR :

U (a∗
i ) ≥ tDM(a∗

i )−1,

U (a∗
i ) + ε ≤ tDM(a∗

i ).

⎫⎪⎪⎬
⎪⎪⎭

E A S S−E X (3)

Thus, a comprehensive value of a reference alternative assigned to C DM should be within the bounds associated with this 
class.

2.3. Compatible sorting model instances

In the proposed approach, we consider a wide spectrum of types of monotonic and non-monotonic marginal value 
functions within a preference disaggregation framework. These types include standard monotonic shapes, level-monotonic 
functions, A- and V-types combining increasing and decreasing value trends, and unknown monotonicity constraints.

The existing preference disaggregation methods that are able to handle non-monotone data can be classified into 
different streams. Firstly, one has proposed to use some specific forms of non-monotonicity or pre-defined shapes of non-
monotonic marginal value functions. In this regard, Despotis and Zopounidis [6] and Guo et al. [17] considered the criteria 
with some mid-point corresponding to the most preferred performance, whereas Rezaei [34] accounted for a rich spectrum 
of precisely specified shapes including, e.g., A- or V-type functions. Secondly, some more general algorithms have been de-
vised to avoid dealing solely with some specific form of non-monotonicity. In particular, Doumpos [7] used a differential 
evolution algorithm and Ghaderi et al. [10] introduced a mathematical programming model for constructing non-monotonic 
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functions, while not directly restraining the model’s complexity. The last group of methods aimed at disaggregating holistic 
judgments while not making any assumptions on the shape of marginal value functions, but controlling their complexity. In 
this regard, Kliegr [25] penalized the changes of non-monotonicity in the shape of marginal functions using MILP models, 
whereas Ghaderi et al. [11] and Liu et al. [29] considered minimization of the variation in slope with, respectively, Linear 
Programming (LP) techniques or a quadratic optimization problem.

In what follows, we discuss constraints that define the shape of marginal value functions depending on the desired types 
of (non-)monotonicity, and normalize comprehensive values within the [0, 1] range.

Shape of marginal value functions. For each criterion g j , j = 1, . . . , m, the DM is expected to define the respective re-

quirements on monotonicity of marginal values which are assigned to the respective performances x1
j , x

2
j , . . . , x

n j(A)

j . These 
are implied by the type associated with a given criterion. We consider the following types: gain, cost, monotonic non-
defined, A, V, increase-level, decrease-level, level-increase, level-decrease, and non-monotonic. In what follows, we explain 
their meaning and discuss the respective constraints. Whichever the criterion’s type, we require all marginal values to be 
non-negative:

u j(xk
j) ≥ 0, j = 1, ....,m,k = 1, ...,n j(A).

}
E N O N−N EG

The set of constraints involving E N O N−N EG as well as the constraints related to the type of (non-)monotonicity for all criteria 
will be denoted by E M O N .

• Gain type means that the greater g j(ai), the more preferred alternative ai on criterion g j , thus implying the non-
decreasing trend for the marginal values with the increase in g j(ai) (see Fig. 2a):

u j(xk
j) ≥ u j(xk−1

j ), k = 2, ...,n j(A).
}

E M O N
G AI N

• Cost type implies that the greater g j(ai), the less preferred alternative ai on criterion g j , thus implying the non-
increasing trend for the marginal values with the increase in g j(ai) (see Fig. 2b):

u j(xk
j) ≤ u j(xk−1

j ), k = 2, ...,n j(A).
}

E M O N
C O ST

• Monotonic non-defined type implies that the preference on g j adheres to the monotonicity constraints, but whether it is 
of gain or cost type cannot be specified a priori:

u j(xk
j) = u↑

j (xk
j) + u↓

j (xk
j), k = 1, ...,n j(A),

u↑
j (xk

j) ≥ u↑
j (xk−1

j ), k = 2, ...,n j(A),

u↓
j (xk

j) ≤ u↓
j (xk−1

j ), k = 2, ...,n j(A),

u↑
j (xk

j), u↓
j (xk

j) ≥ 0, k = 1, ...,n j(A),

u↑
j (x

n j(A)

j ) ≤ M · (1 − vmon
j,cost),

u↓
j (x1

j ) ≤ M · vmon
j,cost,

vmon
j,cost ∈ {0,1},

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E M O N
N O N−D E F

where M is an arbitrarily large positive constant. The marginal value function u j is modeled as a sum of values derived 
from the assumption that g j is either of gain (u↑

j ) or cost (u↓
j ) type. However, only one of them can be activated with 

the binary variable vmon
j,cost . Specifically, if vmon

j,cost = 1, g j is of cost type. Then, u↑
j (x

n j(A)

j ) = 0 and, thus, all marginal values 
u↑

j (·) are equal to 0. Otherwise, u↓
j (x1

j ) = 0 and, thus, all marginal values u↓
j (·) are equal to 0. This, in turn, implies that 

g j is of gain type.

When modelling marginal value functions for the criteria of gain, cost, or monotonic non-defined types, we required 
that monotonicity is non-strict. This admits marginal values assigned to a pair of performances xk−1

j and xk
j for k =

2, . . . , n j(A), to be equal. In case the DM would expect the marginal function to be strictly monotonic, the respective 
weak inequalities should be replaced with their strict counterparts involving ε. For example, for gain-type criteria, 
constraint u j(xk

j) ≥ u j(xk−1
j ) contained in E M O N

G AI N should be replaced with u j(xk
j) ≥ u j(xk−1

j ) + ε.

• A-type means that the most preferred performance potentially does not align with any extreme performance, hence 
admitting at most one change of monotonicity from non-decreasing to non-increasing (see Fig. 2c):



M. Kadziński et al. / International Journal of Approximate Reasoning 117 (2020) 60–80 65

Fig. 2. Example marginal value functions representing different types of requirements with respect to their monotonicity.

M · ∑k
p=2 vopt

j,p + u j(xk
j) ≥ u j(xk−1

j ), k = 2, ...,n j(A),

u j(xk
j) ≤ u j(xk−1

j ) + M · (1 − ∑k
p=2 vopt

j,p), k = 2, ...,n j(A).

∑n j(A)

p=2 vopt
j,p ≤ 1,

vopt
j,p ∈ {0,1}, p = 2, ...,n j(A).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

E M O N
A

Note that vopt
j,p is allowed to be 1 for at most one p ∈ {2, . . . , n j(A)}. If vopt

j,p = 1, then the following constraints hold:

u j(xk
j) ≥ u j(xk−1

j ), if p ≥ 3, k = 2, ..., p − 1,

u j(xk
j) ≤ u j(xk−1

j ), k = p, ...,n j(A).

⎫⎬
⎭

Thus, if vopt
j,2 = 1, u j is non-increasing (i.e., g j is of cost type); if vopt

j,p = 1, for 3 ≤ p ≤ n j(A), then u j is of pure A-type, 
whereas vopt

j,p = 0 for p ∈ {2, . . . , n j(A)} implies that u j is non-decreasing (i.e., g j is of gain type).
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• V-type means that the least preferred performance potentially does not align with any of the extreme performances, 
hence admitting at most one change of monotonicity from non-increasing to non-decreasing (see Fig. 2d):

u j(xk
j) ≤ u j(xk−1

j ) + M · ∑k
p=2 vopt

j,p, k = 2, ...,n j(A).

M · (1 − ∑k
p=2 vopt

j,p) + u j(xk
j) ≥ u j(xk−1

j ), k = 2, ...,n j(A),

∑n j(A)

p=2 vopt
j,p ≤ 1,

vopt
j,p ∈ {0,1}, p = 2, ...,n j(A).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

E M O N
V

The role of binary variable vopt
j,p is analogous to the case of A-type function.

• Increase-level type implies that u j is non-decreasing up to a certain (though not indicated a priori) performance and 
then reaches saturation, hence remaining constant from this point up to the greatest performance (see Fig. 2e). This 
type of function can be enforced by putting together the requirements for A- and gain-type functions, i.e.:

E M O N
A , E M O N

G AI N .
}

E M O N
I NC−LE V

• Level-increase type implies that u j is constant up to a certain performance (thus, assigning zero to the respective 
marginal values), and non-decreasing in the range between this point and the greatest performance (see Fig. 2f). This 
type of function can be enforced by putting together the requirements for V- and gain-type functions, i.e.:

E M O N
V , E M O N

G AI N .
}

E M O N
LE V −I NC

• Decrease-level type implies that u j is non-increasing up to a certain performance and then assigns zero to marginal 
values corresponding to all remaining performances (see Fig. 2g), i.e.:

E M O N
V , E M O N

C O ST .
}

E M O N
D EC−LE V

• Level-decrease type implies that u j is constant up to a certain performance (thus, assigning the maximal value to the 
respective marginal values), and non-increasing in the range between this point and the greatest performance (see 
Fig. 2h), i.e.:

E M O N
A , E M O N

C O ST .
}

E M O N
LE V −D EC

• Non-monotonic type means that there is no prior information on the monotonicity of criterion g j (see Fig. 2i). In general, 
it would be possible to avoid defining any constraints for such functions, but since we aim at controlling the complexity 
of the inferred marginal value functions, we will include the following constraint set which captures the number of 
changes in monotonicity between the neighboring performance sub-intervals:

M · (1 − vk,k−1
j,mon−dir) + u j(xk

j) ≥ u j(xk−1
j ), k = 2, ...,n j(A),

u j(xk
j) ≤ u j(xk−1

j ) + M · vk,k−1
j,mon−dir k = 2, ...,n j(A),

vk,k−1
j,mon−dir − vk−1,k−2

j,mon−dir + M · vk,k−2
j,change−mon ≥ 0, k = 3, ...,n j(A),

vk,k−1
j,mon−dir − vk−1,k−2

j,mon−dir − M · vk,k−2
j,change−mon ≤ 0, k = 3, ...,n j(A),

vk,k−1
j,mon−dir ∈ {0,1},k = 2, ...,n j(A),

vk,k−2
j,change−mon ∈ {0,1},k = 3, ...,n j(A).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E M O N
N O N−M O N

If u j(xk
j) ≥ u j(xk−1

j ), then vk,k−1
j,mon−dir = 1 and u j is non-decreasing between characteristic points xk−1

j and xk
j . If u j(xk

j) ≤
u j(xk−1

j ), then vk,k−1
j,mon−dir = 0 and u j is non-increasing between characteristic points xk−1

j and xk
j . If there is a change 

in the monotonicity direction of u j between three characteristic points xk−2
j , xk−1

j , and xk
j (i.e., either vk,k−1

j,mon−dir = 1

and vk−1,k−2
j,mon−dir = 0, or vk,k−1

j,mon−dir = 0 and vk−1,k−2
j,mon−dir = 1), then vk,k−2

j,change−mon = 1. Otherwise (i.e., either vk,k−1
j,mon−dir = 1

and vk−1,k−2
j,mon−dir = 1, or vk,k−1

j,mon−dir = 0 and vk−1,k−2
j,mon−dir = 0), vk,k−2

j,change−mon = 0 and there is no change in the monotonicity 

direction of u j between xk−2
j and xk

j . Thus, the sum of vk,k−2
j,change−mon ∈ {0, 1}, for k = 3, ..., n j(A), represents the number 

of changes in the monotonicity of u j .

Normalization. For the sake of interpretability, an additive value function is normalized to the [0, 1] interval. This is attained 
by means of two types of constraints. On the one hand, the marginal values of the least preferred performances on all 
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criteria need to be zero. In this way, a comprehensive value of an anti-ideal alternative is also equal to zero. On the other 
hand, the marginal values assigned to the most preferred performances on all criteria need to sum up to one, i.e.:

∑m
j=1 ubest

j = 1,
}

E N O RM−1

where ubest
j is the greatest marginal value for criterion g j , j = 1, ..., m. The set of constraints involving E N O RM−1 as well 

as dedicated normalization constraints related to the type of (non-)monotonicity for all criteria will be denoted by E N O RM . 
The respective constraints which allow to identify the least and the most preferred performances which are assigned, re-
spectively, zero and a maximal marginal value are discussed individually for each criterion type:

• For gain, increase-level, and level-increase criteria, the least performance is assigned a marginal value of zero, i.e.:

u j(x1
j ) = 0,

}
E N O RM−0

G AI N

whereas the greatest performance is the most preferred one, i.e.:

u j(x
n j(A)

j ) = ubest
j .

}
E N O RM−1

G AI N

• For cost, decrease-level, and level-decrease criteria, the greatest performance is assigned a marginal value of zero, i.e.:

u j(x
n j(A)

j ) = 0,

}
E N O RM−0

C O ST

whereas the least performance is the most preferred one, i.e.:

u j(x1
j ) = ubest

j .
}

E N O RM−1
C O ST

• For monotonic criteria with non-defined type of monotonicity, the less preferred performance is either the least (if 
vmon

j,cost = 0) or the greatest one (if vmon
j,cost = 1), i.e.:

u↓
j (x

n j(A)

j ) ≤ M · (1 − vmon
j,cost),

u↑
j (x1

j ) ≤ M · vmon
j,cost,

⎫⎬
⎭ E N O RM−0

N O N−D E F

whereas the most preferred performance is either the greatest (i.e., vmon
j,cost = 0) or the least one (if vmon

j,cost = 1), i.e.:

ubest
j − u↓

j (x1
j ) ≥ −M · (1 − vmon

j,cost),

ubest
j − u↓

j (x1
j ) ≤ M · (1 − vmon

j,cost),

ubest
j − u↑

j (x
n j(A)

j ) ≥ −M · vmon
j,cost,

ubest
j − u↑

j (x
n j(A)

j ) ≤ M · vmon
j,cost .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

E N O RM−1
N O N−D E F

• For A-type criteria, the least preferred performance is either x1
j (if v j,norm−0 = 0) or x

n j(A)

j (if v j,norm−0 = 1), i.e.:

u j(x1
j ) ≤ u j(x

n j(A)

j ) + M · v j,norm−0,

M · (1 − v j,norm−0) + u j(x1
j ) + ε ≥ u j(x

n j(A)

j ),

u j(x1
j ) ≤ M · v j,norm−0,

u j(x
n j(A)

j ) ≤ M · (1 − v j,norm−0),

v j,norm−0 ∈ {0,1},

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E N O RM−0
A

whereas the most preferred performance is either xk−1
j (if vopt

j,k = 1 for some k = 2, ..., n j(A)) or x
n j(A)

j (if vopt
j,k = 0 for 

all k = 2, ..., n j(A)), i.e.:

ubest
j − u j(xk−1

j ) ≥ −M · (1 − vopt
j,k ), k = 2, ...,n j(A),

ubest
j − u j(xk−1

j ) ≤ M · (1 − vopt
j,k ), k = 2, ...,n j(A),

ubest
j − u j(x

n j(A)

j ) ≥ −∑n j(A)

k=2 vopt
j,k ,

ubest
j − u j(x

n j(A)

j ) ≤ ∑n j(A)

k=2 vopt
j,k .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

E N O RM−1
A
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• For V-type criteria, the less preferred performance is either xk−1
j (if vopt

j,k = 1 for some k = 2, ..., n j(A)) or x
n j(A)

j (if 
vopt

j,k = 0 for all k = 2, ..., n j(A)):

u j(xk−1
j ) ≤ 1 − vopt

j,k , k = 2, ...,n j(A),

u j(x
n j(A)

j ) ≤ ∑n j(A)

k=2 vopt
j,k ,

⎫⎬
⎭ E N O RM−0

V

whereas the most preferred performance is either x1
j (if v j,norm−1 = 1) or x

n j(A)

j (if v j,norm−0 = 0), i.e.:

u j(x1
j ) ≤ u j(x

n j(A)

j ) + M · v j,norm−1,

M · (1 − v j,norm−1) + u j(x1
j ) ≥ u j(x

n j(A)

j ),

ubest
j − u j(x

n j(A)

j ) ≤ M · v j,norm−1,

ubest
j − u j(x

n j(A)

j ) ≥ −M · v j,norm−1,

ubest
j − u j(x1

j ) ≤ −M · (1 − v j,norm−1),

ubest
j − u j(x1

j ) ≥ M · (1 − v j,norm−1),

v j,norm−1 ∈ {0,1}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E N O RM−0
V

• For non-monotonic criteria u j(xk
j) needs to be equal to 0 for at least one characteristic point xk

j , k = 1, ..., n j(A), such 
that vk

j,norm−0 = 1:

u j(xk
j) − M · (1 − vk

j,norm−0) ≤ 0, k = 1, ...,n j(A),

∑n j(A)

k=1 vk
j,norm−0 ≥ 1, k = 1, ...,n j(A),

vk
j,norm−0 ∈ {0,1}, k = 1, ...,n j(A).

⎫⎪⎪⎬
⎪⎪⎭

E N O RM−0
N O N−M O N

Similarly, the maximal marginal value needs to be assigned to at least one characteristic point xk
j , k = 1, ..., n j(A), such 

that vk
j,norm−1 = 1:

for k = 1, ...,n j(A) :
u j(xk

j) ≥ u j(xi
j) − M · (1 − vk

j,norm−1), i = 1, ...,k − 1,k + 1, ...,n j(A),

ubest
j − u j(xk

j) ≤ M · vk
j,norm−1,

ubest
j − u j(xk

j) ≥ −M · vk
j,norm−1,

∑n j(A)

k=1 vk
j,norm−1 ≥ 1,

vk
j,norm−1 ∈ {0,1}, k = 1, ...,n j(A).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E N O RM−1
N O N−M O N

Overall, a set of sorting model instances (i.e., additive value functions and class thresholds) compatible with the DM’s 
assignment examples and requirements on the (non-)monotonicity of particular criteria can be defined as follows:

E AR = E M O D E L ∪ E A S S−E X ∪ E M O N ∪ E N O RM .

2.4. Sorting recommendation

In this section, we discuss two complementary ways of exploiting a set of compatible sorting model instances. Arbitrary 
selection of a single representative instance leads to precise assignments for all alternatives, whereas robustness analy-
sis reveals all possible sorting recommendations that follow the DM’s preference information and the use of an assumed 
preference model.

2.4.1. Selection of a single representative sorting model
To select a representative sorting model, we minimize the number of changes in monotonicity for all marginal value 

functions u j , j = 1, ..., m, by solving the following optimization problem:

Minimize : N M =
∑

j∈G A ∪ G V

n j(A)∑
p=2

vopt
j,p +

∑
j∈G N O N−M O N

n j(A)∑
k=3

vk,k−2
j,change−mon, s.t. E AR

,
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where G A and G V are subsets of, respectively, A- and V-type criteria admitting at most one change in monotonicity (their 
number is represented by 

∑n j(A)

p=2 vopt
j,p), and G N O N−M O N is a subset of criteria for which no monotonicity requirements have 

been specified (in this case, the number of changes in monotonicity is captured by 
∑n j(A)

k=3 vk,k−2
j,change−mon). Let us denote the 

minimal number of such changes by N M∗ .
Note that the above objective function is applicable only when at least one criterion is of A-, V- or non-monotonic type. 

Otherwise, there are no changes in monotonicity for any marginal value function and hence N M is equal to zero. Then, a 
standard approach to derive a representative sorting model consists in treating ε contained in E AR

as a variable and solving 
the following problem:

Minimize : ε, s.t. E AR
.

2.4.2. Robustness analysis
Solving the problems presented in Section 2.4.1 leads to a selection of some arbitrary marginal value functions and 

class thresholds compatible with the DM’s partial preference information. Its analysis is beneficial in terms of providing 
precise recommendation along with information on the importance of particular criteria, trade-offs between criteria, or 
distribution of class thresholds [15]. However, in view of the incompleteness of DM’s preferences, there exist multiple 
compatible instances of the sorting model whose recommendation for the non-reference alternatives may be different. To 
verify the stability of sorting recommendation, we refer to the concept of possible assignment, which indicates a set of classes 
to which a given alternative can be assigned by at least one compatible instance of the sorting model [14,22]. The validity 
of such an assignment for alternative a ∈ A and class Ch , h = 1, . . . , p, can be verified by considering the following set of 
constraints, which exploits a set of models with the minimal number of changes in monotonicity for all marginal value 
functions:

E AR
,

N M∗ = ∑
j∈G A ∪ G V

∑n j(A)

p=2 vopt
j,p + ∑

j∈G N O N−M O N

∑n j(A)

k=3 vk,k−2
j,change−mon,

U (a) ≥ th−1, U (a) + ε ≤ th.

⎫⎪⎪⎬
⎪⎪⎭

E(a →P Ch)

If E(a →P Ch) is feasible and ε∗ = max ε, s.t. E(a →P Ch) is greater than 0, a can be possibly assigned to Ch . In case 
E(a →P Ch) is infeasible or ε∗ ≤ 0, a cannot be assigned to Ch with any compatible instance of the sorting model. The 
set of all classes to which a can be possibly assigned is denoted by C P (a). In case C P (a) is a singleton, a is assigned to a 
class contained in C P (a) by all compatible instances of the sorting model. Such an assignment can be deemed as robust or 
necessary.

Note that the possible assignment C P (a) for each alternative a ∈ A is a union of intervals, one for each possible type of 
function. However, since such a union cannot be ensured to be an interval on its own, we cannot guarantee “the no jump 
property” for the possible assignments [14]. Therefore, in what follows, all possible assignments are represented as sets of 
classes (e.g., C P (a35) = {C3, C4, C5}) rather than intervals (e.g., C P (a35) = [C3, C5]). In what follows, we provide a detailed 
discussion on “the no jump property” in the context of the method introduced in this paper.

Let us denote by U a set of all possible value functions, by T – a set of all possible thresholds vectors and by V – a 
set of all possible binary vectors. Now, let us denote by P ⊆ U × T × V a set of all triples (U , b, v) satisfying constraints in 
E AR

, that is, all models (value functions, vectors of thresholds, binary vectors) compatible with the preference information 
provided by the DM.

Let us suppose (U1, t1, v1), (U2, t2, v2) ∈ P and that a is assigned to Ch w.r.t. (U1, t1, v1), while a is assigned to Ck w.r.t. 
(U2, t2, v2), with h, k ∈ [1, . . . , p] such that h > k + 1.

We have to distinguish two cases:

1) v1 = v2: in all criteria, the two functions U1 and U2 present the shape and the monotonicity changes exactly in the 
same characteristic points;

2) v1 �= v2: in at least one criterion, the two functions U1 and U2 have a different shape or, they are of the same shape 
but the monotonicity changes in different characteristic points.

Let us prove that for all l ∈]h, k[, there exists (U , b, v) ∈ P such that a is assigned to Cl w.r.t. (U , b, v).

Proposition 1. Let a ∈ A, (U1, t1, v1), (U2, t2, v2) ∈ P and h, k ∈ [1, . . . , p], such that:

1) a is assigned to Ch w.r.t. (U1, t1, v1),
2) a is assigned to Ck w.r.t. (U2, t2, v2),
3) v1 = v2 ,
4) h > k + 1,

then for all l ∈]k, h[ there exists (U , b, v1) ∈ P such that a is assigned to Cl w.r.t. (U , b, v1).
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Proof. The first two hypotheses are equivalent to the following:

t1,h−1 � U1(a) < t1,h and t2,k−1 � U2(a) < t2,k.

Since l ∈]k, h[ and because of the thresholds monotonicity, we have:

U1(a) � t1,h−1 � t1,l > t1,l−1, (4)

and

t2,l > t2,l−1 � t2,k > U2(a). (5)

Let α ∈]0, 1[ and let us define the corresponding convex combinations of t1,l and t1,l−1 on one hand and of t2,l and t2,l−1

on the other hand, that is,

t1αl = αt1,l + (1 − α)t1,l−1

and

t2αl = αt2,l + (1 − α)t2,l−1.

Let us consider the triple (λU1 + (1 − λ) U2, λt1 + (1 − λ) t2,v1) with λ ∈R such that

λU1(a) + (1 − λ) U2(a) = λt1αl + (1 − λ) t2αl

from which

λ = t2αl − U2(a)

(U1(a) − t1αl) + (t2αl − U2(a))
.

Observing that t1αl ∈]t1,l−1, t1,l[ and t2αl ∈]t2,l−1, t2,l[, by Eqs. (4) and (5), we get

U1(a) > t1αl

and

t2αl > U2(a),

from which we get λ ∈]0, 1[. Consequently, since any subset of P containing all the triples (U ,b,v) with v = v for some v
is convex, then (λU1 + (1 − λ) U2, λt1 + (1 − λ) t2,v1) ∈ P .

Observing that:

• the component l − 1 of the vector λt1 + (1 − λ) t2 is λt1,l−1 + (1 − λ) t2,l−1,
• the component l of the vector λt1 + (1 − λ) t2 is λt1,l + (1 − λ) t2,l ,
• λU1(a) + (1 − λ) U2(a) = λt1αl + (1 − λ) t2αl = α

(
λt1,l + (1 − λ)t2,l

) + (1 − α)(λt1,l−1 + (1 − λ)t2,l−1),
• α ∈]0, 1[,

then

λt1,l−1 + (1 − λ) t2,l−1 � λU1(a) + (1 − λ) U2(a) < λt1,l + (1 − λ) t2,l

implying that a is assigned to Cl w.r.t. (λU1 + (1 − λ) U2, λt1 + (1 − λ) t2,v1). �
Corollary 1. If for all (U , t, v) ∈ P , v = v, then for all a ∈ A, C P (a) is an interval of classes without any jump, that is

C P (a) = {CL(a), CL(a)+1, . . . , C R(a)}
where

L(a) = min{h : Ch ∈ C P (a)},
R(a) = max{h : Ch ∈ C P (a)}.

Let us denote by CQ
P (a) the set of possible classes to which a can be assigned by at least one triple (U , t, v) in Q ⊆ P . 

In particular, C P (a) = CP
P (a). The following holds:

Corollary 2. Let P = P1 ∪ P2 ∪ . . . ∪ Pr where, for all i = 1, . . . , r, for all (U , b, v) ∈ Pi , v = vi ; then:
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• CP1
P (a), CP2

P (a), . . . , CPr
P (a), are intervals without jumps and C P (a) = CP1

P (a) ∪ CP2
P (a) ∪ . . . ∪ CPr

P (a),
• if v1 = v2 = . . . = vr , then C P (a) is an interval without jumps.

Since, in general, a union of intervals is not necessarily an interval, if in the previous corollary, vi �= v j for some i, j ∈
{1, . . . , r}, nothing can be said about the presence or absence of jumps in C P (a).

3. Application to exposure management of engineered nanomaterials

Engineered nanomaterials (ENMs) are materials with at least one dimension in the range of 1-100 nanometers, though 
larger ones are usually included in this definition. One distinctive feature of these materials is that their physicochemi-
cal properties are significantly different from materials of larger sizes. This makes them suitable for the development of 
products with enhanced performances in several areas including construction, electronics, environmental management and 
healthcare [35,44,45]. As a result, the number of workers exposed to such materials is rising [12]. Even though ENMs en-
able the development of high performance products, there is a lot discussion and concern about their potential impacts on 
human health and the environment [9]. This motivates the development of risk assessment and management strategies to 
handle the risks that ENMs can cause. Risk assessment is the tool that has been advanced to assess and manage risks of 
ENMs and it is composed of a hazard and an exposure assessment part. In this paper, we focus on the latter and contribute 
to the development of decision support systems to manage exposure to ENMs manufacturing by recommending RMMs 
[42].

3.1. Decision classes, criteria, and alternatives

We present the model for assessing the need of using a risk management measure (i.e., a respirator) by workers exposed 
to nanomaterials during their manufacturing. We incorporate real-world data elaborated by Naidu [32], who developed a 
set of exposure scenarios to ENMs and received expert recommendations on several risk management measures.

Classes. The considered problem is formulated in terms of multiple criteria sorting with five preference ordered classes 
referring to the requirement of precautions: C1 (required; the least preferred class), C2 (might be required), C3 (optional), 
C4 (might be optional), and C5 (not required; the most preferred class).

Criteria. We consider a set of exposure scenarios to ENMs, which are characterized with ten descriptors. These criteria refer 
to the following characteristics of the materials and the exposure conditions:

• Particle size (g1) evaluated on a 6-point ordinal scale. Since most studies suggest that toxicity is higher for smaller 
sizes [41], but does not differ for greater sizes, we assumed an increase-level marginal value function.

• Toxicity (g2; cost type) defined on a 3-point scale (from low through medium to high) determines what type of effect 
the ENM has on human health [8].

• Airborne capacity (g3; cost type) – expressed on 4-point scale from none (preferred) to high (not preferred) – charac-
terizes the capacity of the ENMs to spread in the workplace through the air stream [18].

• Detection limit (g4; gain type), defined on a qualitative 4-point scale (none (not preferred), low, moderate, and good 
(preferred)), relates to the capacity of the exposure assessment tools to identify ENMs.

• Exposure limit (g5; cost type) indicates an assumed level of exposure among five ranges based on asbestos, which is a 
widely accepted reference [32].

• Quantity (g6; cost type) refers to the quantity (in kg) of ENM handled in the scenario (lesser quantities imply smaller 
chance of exposure [19]).

• Number of employees (g7) considers the number of people involved in handling of the ENMs. Due to a lack of clear 
indication how this number affects the exposure management, we consider it as potentially non-monotonic criterion.

• Engineering controls (g8; non-monotonic) indicates the laboratory setting in which the manufacturing tasks are con-
ducted among four possible combinations referring to positive (PP) or negative (NP) pressure as well as open (O) or 
closed (C) system.

• Duration of exposure (g9; cost type) to the nanomaterials during the manufacturing tasks (the shorter the duration, the 
lesser the risk of exposure [19]).

• Multiple exposure (g10; cost type) concerns the frequency of exposure [43] (unknown value is considered as the least 
preferred performance).

In Appendix A, we summarize the characteristics of all criteria as well as the encoding of respective performances. Over-
all, the considered descriptors involve both monotonic and non-monotonic criteria, which justifies an employment of the 
proposed methodological framework.

Alternatives. To demonstrate the framework’s applicability, we consider a set of 51 exposure scenarios (for their perfor-
mances, see Tables 1 and 2). In terms of MCDA, these are interpreted as decision alternatives a1 − a51.
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Table 1
The performances of 30 reference exposure scenarios on ten criteria, their desired class assignments C DM , and comprehensive values U (ai) according to a representative sorting model.

ai g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 C DM U (ai) ai g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 C DM (ai) U (ai)

a1 5 2 0 0 2 4 1 2 3 1 2 0.3859 a16 1 2 1 0 1 4 3 3 5 1 3 0.4007
a2 5 2 3 2 4 1 2 5 5 0 1 0.3101 a17 6 3 3 2 4 4 4 4 2 2 3 0.4181
a3 4 2 2 3 5 3 4 5 5 0 3 0.4617 a18 1 1 3 3 4 5 1 2 2 0 5 0.5523
a4 1 3 3 0 3 1 2 2 4 3 1 0.1228 a19 6 1 0 2 4 1 3 3 4 3 5 0.6550
a5 3 1 1 0 4 5 1 4 1 3 3 0.4617 a20 6 3 1 3 3 1 1 4 5 0 5 0.5531
a6 1 2 1 3 3 5 3 1 3 2 3 0.4617 a21 6 1 0 2 2 2 3 5 4 0 5 0.5523
a7 4 2 0 1 5 5 1 1 5 1 3 0.4007 a22 6 3 1 1 1 4 1 3 1 3 5 0.7404
a8 1 3 0 2 4 3 4 5 3 3 3 0.4007 a23 1 1 1 2 2 3 2 2 1 0 5 0.6411
a9 2 2 3 0 1 3 2 3 5 2 1 0.2936 a24 2 2 3 3 5 1 1 3 3 0 5 0.5523
a10 4 1 3 3 5 4 4 1 3 3 3 0.4617 a25 4 1 2 1 3 5 4 2 4 1 3 0.4617
a11 3 1 1 1 4 4 3 2 5 0 5 0.5523 a26 3 1 3 1 3 3 1 1 5 3 2 0.3249
a12 3 1 2 1 3 1 1 5 1 1 5 0.5653 a27 6 1 3 0 5 3 3 1 2 1 1 0.3101
a13 3 2 1 3 4 4 2 5 4 1 5 0.5523 a28 6 2 2 2 5 4 1 1 1 2 4 0.4765
a14 2 1 0 3 3 2 4 4 5 1 5 0.6524 a29 5 1 0 1 3 5 2 4 2 2 4 0.5375
a15 1 2 3 1 3 2 4 5 1 2 3 0.4007 a30 1 3 2 0 4 4 1 4 3 1 1 0.1394

Table 2
The performances of 21 non-reference exposure scenarios on ten criteria, their representative C(ai) and possible C P (ai) assignments.

ai g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 C(ai) C P (ai) ai g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 C(ai) C P (ai)

a31 1 0 2 2 1 0 3 0 2 2 3 2, 3 a42 4 2 2 1 1 3 3 4 4 3 2 1, 2
a32 3 2 3 1 0 0 3 2 2 0 4 3, 4 a43 2 1 2 1 4 0 1 1 3 2 2 1, 2
a33 1 2 0 1 2 3 2 0 3 0 4 3, 4 a44 2 2 0 0 1 4 3 0 1 0 3 2, 3
a34 3 0 1 2 4 1 1 4 1 3 4 4, 5 a45 4 2 2 3 0 1 2 0 1 3 5 4, 5
a35 5 0 1 0 0 0 3 4 1 0 4 3, 4, 5 a46 2 2 3 3 4 3 0 1 3 2 3 3, 4
a36 5 0 2 2 1 2 0 3 3 1 3 3 a47 2 2 2 1 4 1 0 3 2 0 2 1, 2
a37 5 2 2 1 4 4 1 2 4 0 3 2, 3 a48 2 2 3 0 1 4 3 0 3 1 1 1
a38 0 0 2 3 1 0 2 2 0 0 5 5 a49 0 2 0 1 1 0 0 0 1 2 3 3, 4
a39 4 2 1 3 4 4 2 4 3 2 4 4, 5 a50 0 1 0 0 3 1 3 2 3 1 3 2, 3
a40 4 0 1 0 1 4 3 1 0 2 4 4, 5 a51 5 2 3 1 3 4 2 4 2 1 1 1, 2
a41 4 1 0 2 2 1 0 1 4 0 4 4, 5
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3.2. Preference information

For thirty scenarios (a1 − a30), we consider the expert input in form of class assignments. The respective classes capture 
the recommended precaution level for RMM (see Table 1). Overall, the distribution of classes in the reference judgments 
is as follows: C1 – 5, C2 – 2, C3 – 10, C4 – 2, and C5 – 11. Hence, the use of a respirator has been judged as optional 
(C3) or not required (C5) in the context of the greatest number of exposure scenarios. In addition, for better discrimination 
between the classes the minimal difference between the neighboring thresholds has been assumed to be 0.07.

3.3. Results

3.3.1. Representative sorting model
The expert input has been used to develop a model to recommend a precaution level for workers exposed to nano-

materials. In this way, we account for the interrelations between the ten descriptors of the exposure scenarios and the 
recommended risk management measure. Fig. 3 exhibits the marginal value functions which can constitute a part of the 
representative sorting model. They indicate two changes in the monotonicity, from decreasing to increasing for g7 (engi-
neering controls) and from increasing to decreasing for g8 (number of employees). For all remaining criteria, the shape of 
marginal function adheres to the pre-defined monotonicity constraints. Specifically, for g1 (particle size) – it is increase-
level, for g4 (detection limit) – it is increasing, whereas for the remaining criteria – it is either strictly decreasing or 
non-increasing.

Although all criteria contribute to the comprehensive values, one can observe significant differences in the maxi-
mal shares of respective marginal value functions. Specifically, the greatest maximal shares correspond to detection limit 
(0.2682), duration of exposure (0.1776), and airborne capacity (0.1454). This confirms a substantial impact that these cri-
teria have on the classification. On the contrary, the least maximal shares are noted for quantity (0.0209) and frequency of 
exposure (0.0296), thus indicating their marginal role in deciding upon the sorting of considered scenarios.

When it comes to the variation of marginal values, it also differs vastly from one criterion to another. The greatest 
difference of marginal values can be observed for:

• airborne capacity (g3) when moving from moderate (2) to low (1) capacity of the nanomaterial to spread in the work-
place;

• detection limit (g4) when attaining poor (1) rather than none (0) or good (3) rather than moderate (2) capacity of the 
exposure assessment tool to identify the nanomaterial;

• number of employees (g8) when moving to an intermediate level (11 − 50) from both lower and higher numbers;
• duration of exposure (g9) when reducing the time from less than one hour (3) to less than 15 minutes (2) and further 

to incidental occurrence (1).

These differences indicate the transitions where a high gain in the reduction of precaution level can be attained. On the 
contrary, the least or null differences of marginal values can be observed for particles sizes (g1) greater than 2 nm (2), at 
least moderate (2) toxicity (g2), intermediate (2 − 4) exposure limits (g5), quantities (g6) less than 10 tons (4), number of 
employees (g8) not less than 51 (4), and duration exposure (g9) not less than one minute (3). Consequently, changes of 
performances within these ranges do not influence at all or much the comprehensive values and resulting assignments.

The comprehensive values computed according to a representative value function for the reference exposure scenar-
ios (a1 − a30) are presented in Table 1. They need to be interpreted jointly with the following thresholds which set the 
boundaries for the ranges of comprehensive values judged as typical for particular classes:

t0 = 0, t1 = 0.3175, t2 = 0.3933, t3 = 0.4691, t4 = 0.5449. (6)

For example, all scenarios with comprehensive values not less than 0.3933 and less than 0.4691 are assigned to class C3. 
Clearly, these thresholds were not pre-defined, but rather constructed by the method to reproduce – when coupled with an 
additive value function – all 30 assignment examples.

To support understanding of the employed threshold-based value-driven sorting procedure, Fig. 4 presents five example 
reference alternatives with different assignments along with their marginal values and thresholds separating the classes. 
Firstly, this figure demonstrates to which degree different criteria contribute to the comprehensive values of particular 
alternatives. Secondly, it clarifies that the assignment is derived from attaining a comprehensive value in a particular range. 
Thirdly, it exhibits the differences between the alternatives for which the requirement of precaution is, e.g., obligatory (a9), 
optional (a3), or not needed (a18).

In this perspective, an assignment of alternative a18 to class C5 (U (a18) = 0.5522 ≥ t4 = 0.5449) was largely due to 
its highly preferred performances on g2, g4, g8, and g9. In particular, its best performance with respect to the detection 
limit (g4) contributes already almost half of the comprehensive value needed for the assignment to the most preferred 
class. Furthermore, alternatives a3 and a29 attained high marginal value on a subset of criteria (for a3 – g1, g4, g7, and 
g10; for a29 – g1, g2, g3, g4 and g9), but scored relatively worse on the remaining criteria (including four criteria with 
marginal values equal to zero), which justifies their assignment to the intermediate classes. When it comes to a1 , eight 
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Fig. 3. Marginal value functions for the exposure management of nanomaterials in the context of using a respirator.

criteria contribute to its comprehensive quality with a marginal value greater than zero. However, only for three of them 
(g1, g3, g8), these contributions can be viewed as relatively high. As a result, the comprehensive value of a1 is rather low 
and sufficient only for granting a place in class C2 (t1 = 0.3175 ≤ U (a1) = 0.3858 < t2 = 0.3933). Finally, alternative a9
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Fig. 4. Marginal and comprehensive values as well as class assignments for the five example reference exposure scenarios. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

Fig. 5. Marginal and comprehensive values as well as class assignments for the 21 non-reference exposure scenarios.

attained a marginal value of zero on six criteria (g2, g3, g4, g7, g9, and g10), which implied its assignment to the least 
preferred class C1.

As far as non-reference exposure scenarios (a31 - a51) are concerned, their comprehensive values and class assignments 
are presented in Table 2. The explanation of these assignments is enhanced by Fig. 5, which collates the comprehensive 
values with the class thresholds, while additionally decomposing them into the marginal values. For the 21 non-reference 
alternatives, the distribution of class assignments is as follows: C1 - 2, C2 - 3, C3 - 7, C4 - 7, and C5 - 2. Hence, the 
precaution level of the greatest number of exposure scenarios is judged as optional (C3) or might be optional (C4), whereas 
only a pair of alternatives is assigned to either of extreme classes.

Let us explain the classification for a few selected non-reference exposure scenarios by referring to the contribution of 
particular criteria to their comprehensive values. When it comes to a pair of alternatives (a48 and a51) assigned to C1, they 
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perform relatively well only on the less important criteria, while not attaining any positive marginal values on g2, g3, g4
(only for a48), g6, and g8. This justifies their low comprehensive values and sorting into the least preferred class. When 
compared with a48, a44 is characterized by more advantageous performances on g3 and g9, which is sufficient for attaining 
an intermediate class (C3). As for the two alternatives (a38 and a45) placed in C5, 9 and 7 criteria, respectively, contribute 
to their comprehensive values. However, the main role in exceeding the lower threshold of the most preferred class can be 
attributed to: for a38 – g2, g4, g8, and g9, and for a45 – g1, g4, g5, and g9, on which they reached the maximal values. The 
alternatives assigned to the least preferred classes either lack any contribution from the significant share of criteria (see, 
e.g., a37 – C2 or a39 – C4), or have rather unbalanced performance profiles with significant contribution from some criteria 
and relative poor evaluations on the remaining ones (e.g., a50 – C3 or a32 – C4), or simply attain average performances on 
the vast majority of criteria, hence lacking substantial contribution from the most important descriptors (see, e.g., a36 – C3
or a41 – C4).

3.3.2. Robustness analysis
The recommendation obtained for the non-reference exposure scenarios with the representative instance of the sorting 

model is validated against the outcomes of robustness analysis. The possible assignments obtained through the analysis of 
all compatible instances of the sorting model admitting two changes in monotonicity for all marginal value functions are 
presented in Table 2. These possible assignments are precise only for 3 out of 21 alternatives. Hence, the assignment of a36
to C3, a38 to C5, and a48 to C1 can be judged as robust in view of the incompleteness of the DM’s assignment examples 
and multiplicity of compatible sorting models.

For the remaining non-reference exposure scenarios, the possible assignments are imprecise, thus indicating a hesitation 
with respect to the recommended class. However, for 17 alternatives just two classes are possible, and only for a35 – three 
classes can be recommended depending on the choice of a compatible sorting model. The additional classes contained in 
the possible assignment are more or less preferred than the classes suggested by the representative model for, respectively, 
8 (e.g., a34 and a46) and 11 (e.g., a31 and a45) alternatives.

The analysis of such possible assignments allows to indicate the classes that cannot be viewed as an admissible result, 
because they are not confirmed by any compatible instance of the sorting model. For example, since a34 is possibly assigned 
to C4 or C5, the recommended precaution is surely not required (C1), not might be required (C2), nor optional (C3). Similarly, 
since C P (a51) = {C1, C2}, the following requirements of precautions are excluded: optional (C3), might be optional (C4), and 
not required (C5).

3.4. Discussion

The proposed model could be a first tiered solution to exposure management of nanomaterials, similarly to the step-wise 
strategies proposed for the exposure assessment phase [20,38]. It could be used to provide an initial indication of concern 
regarding specific tasks performed by the workers. In this way, when the proposed model indicates that the assigned class 
is at most C3 (indicating required, potentially required, or optional precaution level), these tasks should be given priority 
and further investigated as they can be seen as “safety warning flags”. Obviously, the less preferred the class, the greater 
attention should be paid to the analysis of a respective task. For such alternatives, the choices of the health managers could 
be directed towards working on the criteria of the model, i.e., characteristics of the materials and the exposure conditions, 
to see whether any of them can be modified to increase a comprehensive value and to trigger a more preferred class. 
The analysis of marginal value functions provides directions on which performance changes offer the greatest gains in this 
regard and which modifications do not lead to significant improvements.

Let us also emphasize that the primary aim of Section 3 was to illustrate the applicability of the proposed method in a 
standard MCDA setting. In this setting, the DM’s preference information is used to construct a preference model compatible 
with the DM’s value system. Such a model is subsequently employed to evaluate the non-reference alternatives that have not 
been directly judged by the DM, in a way that would be acceptable for him/her, being consistent with his/her preferences. 
Thus, in typical MCDA applications the objective truth to be discovered does not exist as the true classification for the 
non-reference alternatives is not known. However, it can be analyzed for the considered study, because the most appropriate 
assignments for the non-reference exposure scenarios have also been determined by the experts. In this regard, for 12 out 
of 21 non-reference scenarios (a36, a37, a38, a42, a44, a45, a46, a47, a48, a49, a50, and a51) the assignments obtained with a 
representative sorting model instance agree with the actual ones. Moreover, for the remaining 9 non-reference scenarios, 
the actual class is contained in the set of possible assignments, hence being confirmed by at least one compatible sorting 
model instance.

4. Conclusions

We proposed a novel approach for multiple criteria sorting incorporating a threshold-based value-driven procedure. The 
parameters of the constructed model deciding upon the shape of marginal value functions and separating class thresholds 
are inferred through disaggregation of the assignment examples provided by the DM. This is attained by solving dedicated 
MILP problems. Apart from accounting for the incomplete preference information, the method allows the DM to specify 
partial requirements on the assumed type of (non-)monotonicity for the individual criteria. Specifically, we considered gain 
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and cost attributes, monotonic functions without a pre-defined preference direction, level-monotonic shapes, A- and V-
types combining increasing and decreasing trends within a single function, and lack of monotonicity constraints. In this 
perspective, to control the complexity and interpretability of the inferred model, we minimized the number of changes in 
monotonicity for all marginal value functions.

The characteristic of the provided results is two-fold. On the one hand, we derive univocal assignments with a represen-
tative instance of the sorting model. The analysis of such a model allows capturing the trade-offs between different criteria, 
assessment of their relative importance, and indication of performance changes that can be viewed as the most advanta-
geous in terms of improving a comprehensive quality. On the other hand, we perform robustness analysis and quantify its 
results by means of possible assignments. They confirm which classes are admissible for a given alternative for at least one 
compatible instance of the sorting model. Moreover, they allow to reject the hypotheses concerning the assignments which 
are not confirmed by any model.

The proposed approach can be seen as a sorting counterpart of the method proposed by Rezaei [34]. However, it does not 
require to pre-define the exact shapes of marginal value functions, tolerating instead partial information on the monotonicity 
constraints. Moreover, it extends the algorithm introduced by Kliegr [25] to a broad family of shapes of marginal functions 
as well as to a robustness analysis which accounts for all compatible instances of the sorting model with the minimal 
possible complexity.

Apart from the methodological advances, the paper contributes to the literature by exhibiting its applicability to analysis 
of a real-world sorting problem. Specifically, we considered the problem of exposure management for engineered nano-
materials, and used expert judgments to develop a model for predicting precaution level while handling nanomaterials in 
certain conditions using a respirator. The model was able to capture the interrelations between ten criteria – including 
monotonic descriptors, a single increase-level criterion, and a pair of non-monotonic attributes – and the recommended 
assignments.

The analysis of a representative instance of the sorting model allowed to identify the criteria that significantly affected 
the recommended sorting. These descriptors involved detection limits, airborne capacity, and duration of exposure. On the 
contrary, quantity of nanomaterial, frequency of exposure, and engineering controls had the least share in the comprehensive 
values of exposure scenarios. The classes were well-separated due to a significant difference between the inferred thresh-
olds. In this way, each class accommodated multiple alternatives with diverse characteristics on the individual criteria that 
considered jointly could be holistically judged as required, optional, or absolutely redundant with respect to the precaution 
level. The case study also demonstrated how the representative and univocal results can be enriched with the outcomes of 
robustness analysis. Specifically, we showed the usefulness of possible assignments for capturing the uncertainty related to 
the recommended classification as a consequence of incompleteness of the DM’s preference information.

The potential extensions of the proposed method and the considered case study are five-fold. Firstly, the practical ap-
plicability of our approach is limited due to a high number of binary variables. In fact, it depends on the numbers of 
criteria and unique performances of alternatives. Hence, a potential revision of the method needs to control the mod-
el’s complexity and impose monotonicity constraints without incorporating binary variables. Secondly, we assumed that 
the model’s complexity can be adjusted to reproduce all assignment examples by increasing the number of changes in 
monotonicity. In case this is not possible, one can apply the standard procedures for eliminating the minimal number of 
assignment examples underlying the inconsistency [30,31]. However, since they are based on MILP and associate a unique 
binary variable with each assignment example, their applicability is also limited to few hundred of holistic judgments. Deal-
ing with larger sets of potentially inconsistent example assignments requires the development of some dedicated heuristic 
approaches.

Furthermore, the family of shapes of marginal value functions can be extended to account for polynomials and splines, 
whose interpretability is desirable in many real-world applications [40]. Moreover, the method can be easily adapted to 
multiple criteria ranking and choice. Instead of incorporating the DM’s assignment examples, it should accept pairwise 
comparisons of reference alternatives.

Finally, motivated by the peculiarity of exposure management of nanomaterials, the method can be enriched to account 
for a few decision attributes simultaneously. In this specific application, they would represent different risk management 
measures [32]. For each classification problem, one should construct a dedicated sorting model reproducing the provided 
assignment examples. However, the individual models should be interrelated to reflect the dependencies between classes 
desired for the same alternative on various decision attributes.
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Table A.3
Encoding of performances on ten criteria used for the management of exposure scenarios to nano-
materials.

g j Criterion Preference Performance Code

g1 Particle size (nm) increase-level < 2 1
2 − 10 2
10 − 100 3
100 − 500 4
500 − 1000 5
> 1000 6

g2 Toxicity cost Low 1
Moderate 2
High 3

g3 Airborne capacity cost None 0
Low 1
Moderate 2
High 3

g4 Detection limit gain None 0
Poor 1
Moderate 2
Good 3

g5 Exposure limit (fiber/cc) cost < 0.1 1
0.1 − 0.2 2
0.2 − 0.5 3
0.5 − 1.0 4
> 1.0 5

g6 Quantity (kg) cost < 1 1
1 − 100 2
100 − 1000 3
1000 − 10000 4
> 10000 5

g7 Engineering controls non-monotonic Open-PP 1
Open-NP 2
Closed 3
Closed-NP 4

g8 Number of employees non-monotonic 1 − 3 1
3 − 10 2
11 − 50 3
51 − 100 4
101 − 500 5

g9 Duration of exposure (h) cost incidental 1
< 0.25 2
< 1 3
1 − 5 4
5 − 8 5

g10 Multiple exposure (number) cost none 0
1 − 3 1
> 3 2
unknown 3
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Appendix A. Encoding of performances for the case study

Table A.3 summarizes the characteristics of ten criteria used for the management of exposure scenarios to nanomaterials 
as well as the encoding of respective performances.
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a b s t r a c t

We consider a problem of multi-decision sorting subject to multiple criteria. In the newly formulated
decision problem, besides performances on multiple criteria, alternatives get evaluations on multiple
interrelated decision attributes involving preference-ordered classes. We propose a dedicated method
for dealing with such a problem, incorporating a threshold-based value-driven sorting procedure.
The Decision Maker (DM) is expected to holistically evaluate a subset of reference alternatives by
indicating the quality or risk level on a pre-defined scale of each decision attribute. Based on these
evaluations, we construct a set of interrelated preference models, one for each decision attribute,
compatible with intra- and inter-decision constraints imposed by such indirect preference information.
We also formulate a new way of dealing with potentially non-monotonic criteria by discovering local
monotonicity changes in different performance scale regions. The marginal value functions for criteria
with unknown monotonicity are represented as a sum of two value functions assuming opposing
preference directions, one non-decreasing and the other non-increasing. This permits to obtain an
aggregated marginal value function with an arbitrary non-monotonic shape. The practical usefulness
of the approach is demonstrated on a case study concerning risk management related to handling (i.e.,
production, use, manipulation, and processing) nanomaterials in different conditions. We analyze the
expert judgments and discuss the inferred preference models, which can be applied to support health
and safety managers in reducing the possible risk associated with the respective exposure scenario.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Multiple Criteria Decision Analysis (MCDA) concerns decision
problems where a set of alternatives are evaluated on a family of
criteria, which represent all relevant, heterogeneous viewpoints
on the quality of alternatives [1,2]. Many such decision problems
fall into the general category of classification, where the alter-
natives need to be assigned to distinct classes [3]. If the classes
are completely ordered, one deals with ordinal classification or,
equivalently, sorting problems [4]. They are considered, e.g., in
the ABC analysis, which is a type of inventory categorization
method where high-, mid-, and low-value alternatives need to
be identified [5], in medical diagnosis, where high-risk patients
need to be distinguished from the low-risk ones [6], in business
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Technology, Piotrowo 2, 60-965 Poznań, Poland.

E-mail address: milosz.kadzinski@cs.put.poznan.pl (M. Kadziński).

failure prediction, where firms are sorted into healthy, uncertain,
and close to bankruptcy [7], or in nanomanufacturing, where
synthesis processes of nanomaterials can be sorted according to
their greenness level [8].

Decision aiding sorting methods aim to provide recommen-
dations to the Decision Maker (DM) regarding the assignment
of alternatives to pre-defined and ordered classes [9]. There are
various approaches serving this purpose though differing with
respect to the underlying assumptions and characteristics of de-
livered results. In particular, various methods expect the DM to
provide different types of preference information through a co-
constructive elicitation process led by a decision analyst. On the
one hand, some methods assume that the DM would directly
specify values for a set of parameters of an assumed sorting
model [10,11]. However, this is a bit unrealistic because (s)he
usually has difficulties with keeping consistency between the
supplied values and the model output [4]. On the other hand,
preference disaggregation procedures have been proposed to pre-
vent such difficulties [12]. They aim at deriving compatible model

https://doi.org/10.1016/j.knosys.2021.106879
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parameters from the analysis of the DM’s comprehensive judg-
ments (assignment examples) concerning a subset of reference
alternatives. This allows generalizing the DM’s policy to an entire
set of alternatives through the use of a suitably parametrized sort-
ing model. Specifically, UTADIS disaggregates the DM’s assign-
ment examples into marginal value functions and class thresholds
separating the consecutive decision classes on a scale of com-
prehensive value [13,14]. This idea was found appealing in such
various fields as finance [15], energy management [16], or stock
portfolio analysis [17].

Motivated by the complexity of real-world sorting problems,
UTADIS has been extended in various ways. First, different pro-
cedures for dealing with inconsistency of assignment examples
with an assumed model have been proposed [14,18]. Second,
a hierarchical classification approach, called MHDIS, has been
introduced in [19]. Third, the Multiple Criteria Hierarchy Pro-
cess has been adapted to UTADIS to allow handling preference
information and deriving recommendations at both comprehen-
sive and intermediate levels of the hierarchy of criteria [20].
Moreover, novel preference modeling procedures have been de-
signed to admit the specification of desired class cardinalities,
assignment-based pairwise comparisons [21], or valued assign-
ment examples [22]. Furthermore, the frameworks for robustness
analysis have been proposed [4,23,24] to exploit infinitely many
instances of the preference model (e.g., value functions and class
thresholds) compatible with the DM’s holistic decisions. While
all approaches mentioned above considered a single DM, [25] in-
troduced a group decision framework, called UTADISGMS-GROUP,
investigating the spaces of agreement and disagreement between
sorting recommendations obtained for different DMs. Some other
recent methodological advancements of the UTADIS method con-
cern the form of an employed value-based model. In this regard,
an additive value function has been extended in [26] to account
for positively and negatively interacting pairs of criteria. The
other stream concerned dealing with the non-monotonicity of
preferences on a per-criterion level. In particular, [27] defined a
broad spectrum of non-monotonic shapes that could be consid-
ered along with the gain- and cost-type criteria. Moreover, [28]
and [29] introduced the models admitting non-monotonicity of
marginal value functions while not restraining their complex-
ity. In turn, [29,30] and [31] minimized, respectively, the varia-
tion in the slope or the number of changes of non-monotonicity
in the shape of marginal value functions to ensure the most
interpretable sorting model.

The contribution of this paper is three-fold. First, we introduce
a new problem of multi-decision sorting in MCDA and propose
a dedicated method for dealing with it. In this problem, each
alternative is evaluated in terms of multiple decision attributes
involving preference-ordered classes. We expect the DM to assign
a subset of reference alternatives to classes of each decision at-
tribute by indicating a quality or risk level on a scale pre-defined
for all decision attributes. A similar setting has been considered
in [32] and [33] in the context of credit rating problems. On
the one hand, [32] adapted the UTADIS method to infer a single
threshold-based value-driven sorting model compatible with the
ratings provided by Moody’s and Standard & Poor’s, hence pro-
viding a precise recommendation based on potentially conflicting
inputs for the same alternative. On the other hand, [33] used the
three credit rating agencies’ recommendations to form an interval
rating that was subsequently used as a potentially imprecise
reference benchmark to be reproduced by the ELECTRE TRI-nC
method [34].

The multi-decision sorting problem and dedicated approach
introduced in this paper are original in the sense of requiring
construction of a set of interrelated preference models, one for
each decision attribute. Such a requirement contrasts with the

inference of a single sorting model that would align with multiple
classifications at the same time [32] or an imprecise assignment
built on multiple ratings for the same alternative [33]. Specifi-
cally, we propose a threshold-based value-driven sorting method.
It involves a set of intra- and inter-decision constraints. The for-
mer ones ensure appropriate relations between comprehensive
values of different alternatives for an individual value function
used to derive the assignments for a single decision attribute. The
latter correspond to the relations between comprehensive values
of the same alternative for multiple value functions employed
for classifying this alternative given various decision attributes.
This makes sense when the classes of various decision attributes
correspond to the same default categories, having the same scope
and interpretation.

This paper’s second contribution derives from presenting the
results of a case study concerning risk management related to
handling nanomaterials in different conditions [35]. The produc-
tion, processing, and use of nanomaterials may lead to health
or life exposure. Depending on the particular exposure scenario,
different types of precautions or safety measures can be used
to counteract the respective risk [36]. Also, some precautions
meet general hazards, whereas others are dedicated to deal with
some specific dangers. Each of the precaution types (e.g., in-
corporation of some personal protective equipment, engineering
controls, or work practices) can be interpreted as a decision at-
tribute with pre-defined preference-ordered classes representing
different levels of risk [37]. When facing hazards that particular
nanomaterials carry with them, some precautions are required,
and others are optional or unnecessary [31]. However, different
precautions are not independent, being defined on the same set
of criteria and related in terms of their interpretation.

There is a need for a method dealing with multiple interrelated
preference-ordered decision attributes to tackle such a problem.
In this regard, MCDA has little to offer. This, in turn, implies
that such complex problems would typically be decomposed into
independent ones. This would allow for modeling intra-decision
dependencies, neglecting the inter-decision relations that could
negatively affect results’ usefulness. Other ideas are solutions de-
rived from multi-label classification, such as label powerset [38]
or probabilistic classifier chains [39]. The label powerset gener-
ates a vast number of classes and requires many examples so
that each class has a sufficient number of its representatives.
The latter is difficult to satisfy for the case study. Probabilistic
classifier chains offer different solutions depending on the order
of the decisions under consideration and require repeated solving
of the same problem. The limitations of the existing approaches
motivated the development of a dedicated multiple criteria sort-
ing method. In the context of the considered case study, the
information coming from the proposed approach will help the
DMs in assessing the risk related to the treatment of nanoma-
terials in different conditions. Specifically, it can be used for
recommending the level of need for the use of specific personal
protective equipment, engineering controls, or work practices.

Our third contribution consists of proposing a new way of
dealing with potentially non-monotonic criteria. Non-monotonic
criteria appear in the MCDA problem when, for some attributes,
neither the univocal preference direction could be specified, nor
the non-monotonic shape of respective marginal value function
could be defined a priori. This happens in our case study. Then,
such a shape needs to be inferred from data describing the
multiple criteria problem and the DM’s holistic judgments. In
particular, the method should verify whether a monotonic rela-
tionship exists, if it is of gain- or cost-type, or if the monotonicity
is not global. The latter scenario could reveal some local positive
or negative relationships in different parts of the investigated
performance scale [40]. To perform this task, we propose a new
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approach that attempts to discover local monotonicity changes
without requiring the DM to fix the preference directions for
all criteria. Specifically, we represent the marginal value func-
tions of potentially non-monotonic criteria as a sum of marginal
value functions assuming opposing preference directions, one
non-decreasing and the other non-increasing. This permits to
obtain an aggregated marginal value function with an arbitrary
non-monotonic shape. However, the two monotonic components
remain easy to interpret.

The remainder of the paper is organized in the following
way. Section 2 is devoted to the new method dealing with
multi-decision sorting problems and handling potentially non-
monotonic criteria. Section 3 illustrates the use of the proposed
method on a didactic instance. In Section 4, we report the results
of a case study concerning the analysis of exposure scenarios
related to the treatment of nanomaterials in various conditions.
The last section concludes and outlines the ideas for a future
work.

2. Notation and problem statement

We use the following notation:

• A = {a1, a2, . . . , ai, . . . , an} – a finite set of n alternatives;
• AR

= {a∗, b∗, . . .} – a finite set of reference alternatives,
which are holistically judged by the DM; we assume that
AR

⊆ A;
• G = {g1, g2, . . . , gj, . . . , gm} – a finite set of m criteria, gj :

A → R for all j ∈ J = {1, 2, . . . ,m};
• Xj = {xj ∈ R : gj(ai) = xj, ai ∈ A} – a set of all different

performances on gj, j ∈ J;
• x1j , x

2
j , . . . , x

nj(A)
j – increasingly ordered values of Xj, xkj <

xk+1
j , k = 1, 2, . . . , nj(A) − 1, where nj(A) = |Xj| and nj(A) ≤

n; consequently, X =
∏m

j=1 Xj is the performance space;
• D = {D1,D2, . . . ,Dl} – a finite set of l decision attributes;
• CDs

1 , CDs
2 , . . . , CDs

p – p pre-defined preference-ordered classes
defined for each decision attribute Ds, s = 1, . . . , l, where
CDs
h+1 is preferred to CDs

h , h = 1, . . . , p − 1; moreover,
H = {1, . . . , p}. Remark that the number of pre-defined
preference-ordered classes for all l decision attributes is the
same and equal to p. Qualitative meaning of class Ch is also
the same for all decision attributes Ds ∈ D.

• bDs
0 , bDs

1 , . . . , bDs
p – thresholds separating the classes on de-

cision attribute Ds, s = 1, . . . , l, such that bDs
h−1 and bDs

h
are, respectively, the lower and upper comprehensive values
admissible for alternatives assigned to CDs

h , h = 1, . . . , p.

In what follows, we discuss the employed preference model
and preference information. We present the mathematical con-
straints that allow dealing with multi-decision sorting problems
while originally handling potentially non-monotonic criteria. The
latter ones are interpreted as criteria with unknown monotonic-
ity. This means that a decision analyst and the DM cannot specify
a preference direction for them, and they admit that such a
direction may not exist. Moreover, they accept that the shapes
of marginal value functions for these criteria will be inferred
through disaggregating the DM’s holistic preferences. The re-
sulting shape will determine if the monotonic relation can be
imposed in the entire performance space of a given criterion, and,
if not, what are the local relationships of monotonicity in different
regions of this space.

2.1. Preference model

For each decision attribute Ds ∈ D, a comprehensive quality
of each alternative ai ∈ A is quantified using an additive value

function defined as the sum of marginal values uDs
j (ai) on all

criteria gj, j = 1, . . . ,m:

UDs (ai) =

m∑
j=1

uDs
j (ai) ∈ [0, 1]. (1)

Alternatives are evaluated in terms of three types of criteria: gain
gj ∈ Gg , cost gj ∈ Gc , and potentially non-monotonic gj ∈ Gn
(Gg∪Gc∪Gn = G). For the gain-type criteria, greater performances
are more preferred than smaller performances. This implies the
following monotonicity and normalization constraints:

uDs
j

(
xkj

)
≥ uDs

j

(
xk−1
j

)
, k = 2, . . . , nj(A), and uDs

j

(
x1j

)
= 0. (2)

Analogously, for the cost-type criteria, smaller performances are
more preferred:

uDs
j

(
xkj

)
≤ uDs

j

(
xk−1
j

)
, k = 2, . . . , nj(A), and uDs

j

(
xn(A)j

)
= 0. (3)

Example marginal value functions for the gain- and cost-type
criteria are presented in Fig. 1. Note that these functions are,
respectively, non-decreasing and non-increasing.

The marginal value function for the potentially non-monotonic
criterion gj ∈ Gn is modeled as the sum of marginal values
derived from the non-decreasing and non-increasing components
contributing to the comprehensive assessment of alternatives
from this particular viewpoint:

uDs
j

(
xkj

)
= uDs

j,nd

(
xkj

)
+ uDs

j,ni

(
xkj

)
, k = 1, . . . , nj(A),

where the monotonicity of uDs
j,nd and uDs

j,ni is modeled in a standard
way:

uDs
j,nd

(
xkj

)
≥ uDs

j,nd

(
xk−1
j

)
, k = 2, . . . , nj(A), and uDs

j,nd

(
x1j

)
= 0, (4)

uDs
j,ni

(
xkj

)
≤ uDs

j,ni

(
xk−1
j

)
, k = 2, . . . , nj(A), and uDs

j,ni

(
xn(A)j

)
= 0. (5)

In case the method discovers that a monotonic relationship exists,
either uDs

j,nd

(
xkj

)
or uDs

j,ni

(
xkj

)
takes non-negative values for k =

1, . . . , nj(A) and the other component is zeroed for all perfor-
mances. Then, the resulting marginal value function uDs

j is also
monotonic. In Figs. 2a and b, we present the examples of such
non-decreasing and non-increasing functions along with the two
components.

When both components uDs
j,nd and uDs

j,ni take some positive val-

ues over the range from x1j to x
nj(A)
j , then any non-monotonic

shape of the marginal value function uDs
j can be obtained. How-

ever, this may yield a comprehensive marginal value function,
which is not equal to zero for the worst performance on the non-
monotonic criterion. Such a situation is undesired because it is
hard to interpret such a model, and, moreover, the scale of values
attained by the comprehensive model gets reduced. To prevent
such a scenario, the marginal value function should be normalized
so that ∃xkj ∈ Xj such that uDs

j

(
xkj

)
= 0. This can be obtained by

subtracting a value of bias tDs
j ≥ 0 from the marginal values of gj,

and adding a constraint that uDs
j

(
xkj

)
should be non-negative for

all performances xkj , k = 1, . . . , nj(A):

uDs
j

(
xkj

)
= uDs

j,nd

(
xkj

)
+ uDs

j,ni

(
xkj

)
− tDs

j , k = 1, . . . , nj(A), (6)

1 ≥ tDs
j ≥ 0, (7)

uDs
j

(
xkj

)
≥ 0, k = 1, . . . , nj(A). (8)

In Figs. 2c–f, we present the two components, a value of bias,
and the resulting non-monotonic functions of different types:
A-, V-, W-, and M-type functions. The elementary components
are monotonic, but the marginal functions which aggregate them
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Fig. 1. Example monotonic marginal value functions.

with a bias are arbitrarily non-monotonic. Such functions can cap-
ture the local relationships of monotonicity that can be positive
in some of the considered performance space and negative in the
other part of the same space. Since in the proposed approach,
these functions are inferred from the assignment examples, their
complexity (i.e., the non-monotonic character, the number of
monotonicity changes, or differences in slopes in various regions
of the performance space) depends on the dependencies ob-
served in the preferences of alternatives and input preference
information.

To assign the alternatives to pre-defined and ordered classes
for decision attribute Ds ∈ D, we will apply a threshold-based
sorting procedure. It derives the assignment of alternative ai ∈ A
from the comparison of UDs (ai) with a set of thresholds bDs

h , h =

0, . . . , p, such that for Ds ∈ D:

bDs
0 = 0, bDs

p−1 ≤ 1 − ε, and bDs
p = 1 + ε, (9)

bDs
h ≥ bDs

h−1 + ε, h = 2, . . . , p − 1, (10)

where ε is an arbitrarily small positive value. In this way, the
values of the worst and the best thresholds are set to, respec-
tively, zero and greater than one. Moreover, there is a difference
between the extreme thresholds delimiting each class so that
it could accommodate some alternatives. Then, ai is assigned to
class CDs

h iff bDs
h−1 ≤ UDs (ai) < bDs

h , i.e., if ai is at least as good
as the respective lower threshold and strictly worse than the
corresponding upper threshold. Such a threshold-based sorting
procedure is illustrated in Fig. 3. Eqs. (1)–(10) form a core compo-
nent of a larger set of linear programming constraints defining a
set of instances of an assumed sorting model that are compatible
with the DM’s preference information. We will refer to it as
EBASE .

2.2. Preference information

We expect the DM to specify the desired assignments for a
subset of reference alternatives a∗

∈ AR
⊆ A on each decision

attribute Ds ∈ D:

a∗
∈ AR

→ CDs
DM (a∗). (11)

Note that the classes provided by the DM for different deci-
sion attributes Ds ∈ D can be different for the same reference
alternative. Such holistic preference information is used in a two-
fold way. On the one hand, we need to reproduce the desired

assignments on each decision attribute, i.e.:

for all a∗
∈ AR

:

v(a∗) ∈ {0, 1},
for all Ds ∈ D :

UDs (a∗) ≥ bDs

CDs
DM (a∗)−1

− v(a∗),

UDs (a∗) + ε ≤ bDs

CDs
DM (a∗)

+ v(a∗).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
ER(intra − D) (12)

In case v(a∗) = 0, UDs (a∗) falls in the range corresponding to class
CDs
DM (a∗), i.e., [bDs

CDs
DM (a∗)−1

, bDs

CDs
DM (a∗)

). Then, the assignment provided

for a∗ on Ds is reproduced. If v(a∗) = 1, the respective constraints
are always satisfied, being relaxed. The binary variables v(a∗),
a∗

∈ AR, will be subsequently used to minimize the prediction
distance of the inferred model from the reference data in case
the sorting model would not be able to align with all assignment
examples.

On the other hand, in line with the specificity of the multi-
decision sorting problem, we will compare the desired assign-
ments for each reference alternative a∗

∈ AR for different pairs
of decision attributes. Let us remind that both the number and
interpretation of classes are the same for all decision attributes.
In this way, the classes specified by the DM determine an order
of labels associated with each reference alternative. If CDs

DM (a∗)
is more preferred than CDt

DM (a∗), this can be interpreted as the
label Ds being more desired for a∗ than label Dt . Consequently,
a comprehensive value of a∗ associated with Ds should be greater
than its respective value associated with Dt , i.e.:

for all a∗
∈ AR

:

if CDs
DM (a∗) > CDt

DM (a∗) :

UDs (a∗) ≥ UDt (a∗) + ε − v(a∗).

⎫⎬⎭ ER(inter − D) (13)

Analogously as in ER(intra − Ds), binary variable v(a∗) implies
that the respective constraints associated with the assignments
of a∗ are either instantiated (when v(a∗) = 0) or relaxed (when
v(a∗) = 1).

2.3. Compatible sorting model

We aim to infer a sorting model that would be compatible
with the provided assignment examples while respecting the as-
sumptions on additivity, monotonicity, and normalization, as well
as intra- and inter-decision constraints. The model is composed of
a set of interrelated additive value functions and vectors of class
thresholds such that a single function is associated with a single
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Fig. 2. Example non-decreasing (uj,nd) and non-increasing (uj,ni) components along with resulting marginal value functions (uj) of different types for the potentially
non-monotonic criteria.

vector of thresholds corresponding to each decision attribute.
We admit that the reference assignments are burdened with
some error, though we would like the model to be compatible
with as many assignments of reference alternatives as possible.
For this purpose, we solve the following Mixed-Integer Linear
Programming (MILP) model:

Minimize fw = (r · l + 1)
∑
a∗∈AR

v(a∗) +

∑
j∈Gn, Ds∈D

tDs
j ,

subject to EBASE
∪ ER(intra − D) ∪ ER(inter − D). (14)

The primary goal of the above objective function fw is to mini-
mize the number of reference alternatives for which the desired
assignments are inconsistent with an assumed preference model,
i.e.,

∑
a∗∈AR v(a∗). The secondary goal is to minimize a sum of

bias values for all decision attributes and all potentially non-
monotonic criteria, i.e.,

∑
j∈Gn, Ds∈D tDs

j . To ensure a lexicographic
optimization of these two targets, we multiply the first compo-
nent by (r · l+1) and the second by 1. Note that (r · l+1) is greater
than a maximal possible sum of all bias values. Based on Eqs. (6)
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Fig. 3. Threshold-based sorting procedure driven by an additive value function aggregating marginal values corresponding to criteria of different types.

and (7), such a sum is constrained by r · l, i.e.:∑
j∈Gn, Ds∈D

tDs
j ≤ r · l, (15)

where r = |Gn| is the number of potentially non-monotonic
criteria, and l is the number of decision attributes. As a result,
the above model always favors a lesser number of reference
alternatives a∗

∈ AR that need to be removed to restore consis-
tency. Specifically, among the models for which such a number
is minimal, we favor the one for which the sum of biases on all
criteria with unknown monotonicity is as small as possible.

3. Illustrative example

In this section, we illustrate the use of the proposed method
on a simple didactic example composed of a pair of scenarios,
denoted as Scenarios 1 and 2. The considered problem involves
ten alternatives, which are evaluated on the following three cri-
teria: g1 of gain type, g2 of cost type, and g3 being potentially
non-monotonic. For the performance matrix, see Table 1. The
alternatives are comprehensively evaluated using two decision
attributes (D1 and D2) with five preference ordered classes C1−C5
such that C5 and C1 are, respectively, the most and the least
preferred ones.

Let us first consider Scenario 1 for which the reference as-
signments are provided in Table 1. For example, a1 is assigned
to C4 on D1 and to C3 on D2, whereas the order of classes for
a5 is inverse. The inferred model is able to reconstruct the as-
signments for eight alternatives (see column v(a∗) (Scenario 1) of
Table 2). The comprehensive judgments for a6 and a10 could not
be reproduced. The assignments of a6 were contradictory with
those of a7. Specifically, a7 is more preferred than a6 on g1 and
g2, while attaining the same performance on g3. However, the
classes of a7 are worse than the respective classes of a6, which
contradicts the dominance principle. Similarly, a10 dominates a1
while being at least as good on all monotonic criteria and having
the same performance on the non-monotonic criterion. However,
the desired class of a10 on D1 is worse than that of a1, while they

Table 1
Performance matrix and the reference assignments considered in the two
scenarios in the illustrative example.
Alternative Criteria Scenario 1 Scenario 2

ai g1 g2 g3 D1 D2 D1 D2

a1 2 1 2 C4 C3 C4 C3
a2 0 2 0 C2 C1 C2 C1
a3 1 3 4 C5 C2 C5 C2
a4 3 2 3 C5 C4 C5 C4
a5 3 3 3 C3 C4 C3 C4
a6 0 4 1 C2 C3 C1 C3
a7 1 3 1 C1 C2 C1 C3
a8 3 0 0 C4 C5 C4 C5
a9 0 3 4 C3 C1 C3 C1
a10 2 0 2 C1 C3 C1 C3

are both assigned to the same class on D2. Also in this case, the
assignments of a10 and a1 could not be reproduced jointly.

The comprehensive values of all ten alternatives and the as-
signments generated with the inferred sorting model are pre-
sented in Table 2. For the separating class thresholds, see Table 3.
Let us first discuss the assignments of reference alternatives
which agree with the one specified by the DM. For example on D1,
a1 is assigned to C4 and a3 is assigned to C5. Not only a3 attains a
greater comprehensive value than a1, but also the comprehensive
values of these alternatives fall in the ranges delimited by the
respective class thresholds (compare Tables 2 and 3). Similarly,
on D2, a1 is assigned to a more preferred class than a3, which is
reflected in the relationship between their comprehensive values
(UD2 (a1) = 0.4762 > UD2 (a3) = 0.2886). However, the inferred
comprehensive values respect also the desired inter-decision re-
lationships. For example, a3 was assigned to C5 on D1 and to C2 on
D2. As a result, its comprehensive value on D1 (UD1 (a3) = 0.6162)
is greater than that on D2 (UD2 (a3) = 0.2886). In the same spirit,
since a8 was assigned to C4 and C5 on, respectively, D1 and D2,
we have UD1 (a8) = 0.6078 < UD2 (a8) = 0.6162. When it comes
to the reference alternatives for which the desired assignments
were not fully reproduced, the resulting class of a6 on D2 and a10

6



M. Kadziński, K. Martyn, M. Cinelli et al. Knowledge-Based Systems 218 (2021) 106879

Table 2
Comprehensive values U(a∗), respective class assignments on decision attributes D1 and D2 , and values of binary variables v(a∗) for the two scenarios in the illustrative
example.
Alternative Scenario 1 Scenario 2

a∗

i UD1 (a∗) UD2 (a∗) D1 D2 v(a∗) UD1 (a∗) UD2 (a∗) D1 D2 v(a∗)

a1 0.4846 0.4762 C4 C3 0 0.1223 0.0057 C1 C2 1
a2 0.2800 0.1402 C2 C1 0 0.1279 0.0001 C2 C1 0
a3 0.6162 0.2886 C5 C2 0 0.5556 0.0056 C5 C2 0
a4 0.6722 0.5408 C5 C4 0 0.5556 0.5001 C5 C4 0
a5 0.4762 0.4846 C3 C4 0 0.4944 0.5000 C3 C4 0
a6 0.0002 0.0002 C1 C1 1 0.0613 0.4444 C1 C3 0
a7 0.1402 0.1486 C1 C2 0 0.1224 0.4500 C1 C3 0
a8 0.6078 0.6162 C4 C5 0 0.5500 0.5556 C4 C5 0
a9 0.4762 0.1402 C3 C1 0 0.4944 0.0001 C3 C1 0
a10 0.6722 0.4763 C5 C3 1 0.1224 0.4444 C1 C3 0

Table 3
The class thresholds for the two scenarios in the illustrative example.
Scenario Decision attribute b1 b2 b3 b4

Scenario 1 D1 0.1445 0.3585 0.4800 0.6100
D2 0.1445 0.3585 0.4800 0.6100

Scenario 2 D1 0.1251 0.1807 0.4972 0.5527
D2 0.0028 0.4416 0.4972 0.5527

on D1 was C1 as compared to, respectively, C2 and C5 in the DM’s
judgments.

The marginal value functions inferred for Scenario 1 are pre-
sented in Fig. 4. The imposed monotonicity constraints are re-
spected for the gain (g1) and cost (g2) criteria and the monotonic
components of g3. The shapes of marginal value functions on the
different decisions are similar. The differences concern slightly
greater marginal value assigned to performance 3 on g1 for D2
and to performances 0–2 on g2 and 3–4 on g3 for D1. The non-
increasing component for g3 was the same for both decision
attributes. The marginal value function’s overall course for g3 took
the V-shape with 1 being the least preferred performance.

As the other scenario (Scenario 2), let us consider slightly
modified desired assignments (see Table 1). When compared to
Scenario 1, the assignments of a7 on D2 and a6 on D1 were
changed to, respectively, C3 and C1. Now, only assignments of
alternative a1 could not be reproduced with an assumed model
(see Table 2, column v(a∗)) for Scenario 2). The comprehensive
values and the respective assignments are presented in Table 2
and the class thresholds are given in Table 3. Similarly as for
Scenario 1, we could observe that the classifications on the two
decision attributes and the relationships between comprehensive
values attained by each alternative on D1 and D2 are preserved.
For example, a2 is assigned to C2 on D1 and to C1 on D2, because
bD

1

2 = 0.1807 > UD1
(a2) = 0.1279 ≥ bD

1

1 = 0.1251, bD
2

1 =

0.0028 > UD2
(a2) = 0.0001, and UD1

(a2) > UD2
(a2). However,

the primary motivation for considering Scenario 2 is to show the
impact of eliminating a bias for a non-monotonic criterion (for the
marginal value functions, see Fig. 5). Indeed, when summing up
the non-decreasing and non-increasing components for g3 for de-
cision D2, all performances would be assigned positive marginal
values. To ensure that the worst performance on g3 (for this
scenario – gD2

3 (a) = 2) was assigned zero, the constructed model
subtracted a bias tD2

3 = 0.4444. In this way, a comprehensive
value of the anti-ideal alternative was also zeroed, while not
affecting the relative comparison of existing alternatives.

To support the comprehension of different types of constraints
defining a set of inter-related sorting models, in Table 4, we
illustrate the use of these constraints in the context of an example
presented in this section. Specifically, for nine different constraint
types, we provide their general form, an example constraint for a

specific decision attribute, alternative, criterion, performance, or
class, and the values assigned in this example constraint to the
variables by the sorting models inferred for Scenario 2.

4. Multi-decision sorting in the context of exposure manage-
ment of nanomaterials

Nanomaterials are particles with a size of several dozen
nanometers and physicochemical properties being significantly
different from the materials of larger sizes composed of the same
atoms [35]. Due to these specific properties, they can improve
the performance of products in several application areas, includ-
ing energy production and storage [41], water treatment [42],
healthcare [43], and food preservation [44], to name a few. The
production of nanomaterials is based on the manipulation of
materials at the nanoscale (1–100 nanometers), which requires
caution and protective measures to guarantee their safe handling.

Since nanotechnology is a relatively new scientific field, all
the potentially harmful effects of individual nanomaterials and
threats resulting from their production and employment are not
yet precisely known [45,46]. The research on this subject is still
ongoing, but the safety standards used in nanomaterials produc-
tion are currently mainly adopted from similar chemical pro-
duction processes [37,47,48]. Nevertheless, the safety of nano-
materials production processes is a pressing issue in the area
of nanotechnology [48,49]. In this perspective, the development
of guidelines for the appropriate selection of precautions for
nanomanufacturing would be a beneficial contribution.

4.1. Problem definition

4.1.1. Criteria
When evaluating nanomanufacturing exposure scenarios,

there are several characteristics of the nanomaterials and operat-
ing conditions that need to be accounted for. In this case study,
we will consider the following ten criteria, which are common
descriptors for this type of scenarios [31,35,48]:

• Particle size (g1) – in general, the smaller the size, the easier
the nanomaterial gets through any filter. Nevertheless, since
nanomaterials have different toxicological profiles according
to their size, it is not yet possible to generalize a monotonic
dependency between size and harmfulness [50].

• Toxicity (g2) determines type of effect the nanomaterial has
on human health [51].

• Airborne capacity (g3) characterizes the engineered nanoma-
terials’ capacity to spread in the workplace through the air
stream. It is scored on 4-point scale from none to high, with
none and high being, respectively, the most and the least
preferred performances [52].
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Fig. 4. Marginal value functions for all criteria and decision D1 and D2 for Scenario 1 of the illustrative example.
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Fig. 5. Marginal value functions for all criteria and decision D1 and D2 for Scenario 2 of the illustrative example.
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Table 4
Example constraints defining two inter-related sorting models for Scenario 2.
Type Constraint

Comprehensive value of an alternative defined using an additive value function
General constraint form UDs (ai) =

∑m
j=1 u

Ds
j (ai)

Example constraint for D2 and a7 UD2 (a7) = uD2
1 (a7) + uD2

2 (a7) + uD2
3 (a7)

Example values assigned to the model variables 0.4500 = 0.0056 + 0.0 + 0.4444

Constraints on a comprehensive value of an alternative
General constraint form 1 ≥ UDs (ai) ≥ 0
Example constraint for D2 and a7 1 ≥ UD2 (a7) ≥ 0
Example values assigned to the model variables 1 ≥ 0.4500 ≥ 0

The least preferred marginal value for a monotonic criterion of a gain-type
General constraint form uDs

j

(
x1j

)
= 0

Example constraint for D1 , g1 , and x11 = 0 uD1
1 (0) = 0

Example values assigned to the model variables 0 = 0

Monotonicity constraint for a gain-type criterion
General constraint form uDs

j (xkj ) ≥ uDs
j (xk−1

j )
Example constraint for D2 , g1 , x31 = 2, and x21 = 1 uD2

1 (2) ≥ uD2
1 (1)

Example values assigned to the model variables 0.3888 ≥ 0.0056

Monotonicity constraint for a cost-type criterion
General constraint form uDs

j (xkj ) ≤ uDs
j (xk−1

j )
Example constraint for D2 , g2 , x22 = 1, and x12 = 0 uD2

2 (1) ≤ uD2
2 (0)

Example values assigned to the model variables 0.0001 ≤ 0.0556

Marginal value for a potentially non-monotonic criterion
General constraint form uDs

j (xkj ) = uDs
j,nd(x

k
j ) + uDs

j,ni(x
k
j ) − tDs

j

Example constraint for D2 , g3 , and x23 = 1 uD2
3 (1) = uD2

3,nd(1) + uD2
3,ni(1) − tD2

3
Example values assigned to the model variables 0.4444 = 0.4445 + 0.4445 − 0.4446

Constraints between the neighboring thresholds separating decision classes
General constraint form bDs

h ≥ bDs
h−1 + ε

Example constraint for D1 and h = 3 bD1
3 ≥ bD1

2 + ε

Example values assigned to the model variables 0.4972 ≥ 0.1807 + 0.0001

Intra-decision constraints imposed by an assignment example
General constraint form UDs (a∗) ≥ bDs

CDs
DM (a∗)−1

− v(a∗)

Example constraint for a5 → CD1
3 UD1 (a5) ≥ bD1

2 − v(a5)
Example values assigned to the model variables 0.4944 ≥ 0.4416 − 0
General constraint form UDs (a∗) + ε ≤ bDs

CDs
DM (a∗)

+ v(a∗)

Example constraint for a5 → CD1
3 UD1 (a5) + ε ≤ bD1

3 + v(a5)
Example values assigned to the model variables 0.4944 + 0.0001 ≤ 0.4972 + 0

Inter-decision constraint imposed by assignment examples
General constraint form UDs (a∗) ≥ UDt (a∗) + ε − v(a∗)
Example constraint for a7 → CD2

3 and a7 → CD1
1 UD2 (a7) ≥ UD1 (a7) + ε − v(a7)

Example values assigned to the model variables 0.4500 ≥ 0.1224 + 0.0001 − 0

• Detection limit (g4) specifies the capacity of the instruments
used for exposure assessment to detect the nanomaterials.
The better the detection limit is, the safer the exposure
scenario is assumed to be [35].

• Exposure limit (g5) indicates the limit of exposure, expressed
on five ranges, for a given exposure scenario. The lower this
limit, the less risk concerning a given exposure is [35].

• Quantity (g6) of a nanomaterial (in kg) handled in a given
scenario. Smaller quantities are preferred as they imply a
smaller chance of exposure [53].

• Engineering controls (g7) is a potentially non-monotonic at-
tribute, specifying a setting in which the nanomanufacturing
tasks are performed. It refers to the combinations of open
(O) or closed (C) system and positive (PP) or negative (NP)
pressure.

• Number of employees (g8) indicates the number of people
required to handle a given exposure scenario. One cannot
define a priori how this attribute is associated with the risk
of an exposure scenario [35].

• Duration of exposure (g9) is negatively associated with the
risk, i.e., the shorter duration is deemed to be less risky [53].

• Multiple exposures (g10) is related to the frequency of expo-
sure (a scenario is safer in case the number of exposures is
lesser) [54].

The measurement units, preference directions, performance
scales, and encoding of performances for all criteria are provided
in Table 5. In general, there are six criteria of cost type, a sin-
gle gain criterion, and three criteria for which the preference
direction is unknown.

4.1.2. Alternatives
The considered set of alternatives is composed of exposure

scenarios for nanomanufacturing generated by the JMP soft-
ware [35]. They correspond to the existing and future types
of nanomaterials and manufacturing processes. To demonstrate
the proposed method’s applicability, we consider a set of 45
exposure scenarios, denoted by a1 − a45. For their performances,
see Tables 6 and 7.

4.1.3. Multi-decision sorting
The alternatives are holistically evaluated in terms of four de-

cision attributes that could be considered individually. However,
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Table 5
A set of criteria considered in the risk management of exposure scenarios for
nanomanufacturing.
gj Criterion Preference Performance Code

g1 Particle size (nm) none

< 2 1
2–10 2
10–100 3
100–500 4
500–1000 5
> 1000 6

g2 Toxicity cost
Low 1
Moderate 2
High 3

g3 Airborne capacity cost

None 0
Low 1
Moderate 2
High 3

g4 Detection limit gain

None 0
Poor 1
Moderate 2
Good 3

g5 Exposure limit (fiber/cc) cost

< 0.1 1
0.1–0.2 2
0.2–0.5 3
0.5–1.0 4
> 1.0 5

g6 Quantity (kg) cost

< 1 1
1–100 2
100–1000 3
1000–10000 4
> 10000 5

g7 Engineering controls none

O-PP 1
O-NP 2
C-PP 3
O-NP 4

g8 Number of employees none

1–3 1
3–10 2
11–50 3
51–100 4
101–500 5

g9 Duration of exposure (h) cost

incidental 1
< 0.25 2
< 1 3
1–5 4
5–8 5

g10 Multiple exposure (number) cost

none 0
1–3 1
> 3 2
unknown 3

the multiplicity of these attributes, the reference to the same
aspect of production, i.e., safety, and the resulting inter-relations
between the examined decisions form the basis for multi-decision
sorting. Specifically, the decision attributes correspond to four
types of precautions that can be used to reduce the risk. They
concern three main aspects of safety: respirator (D1) represents
a personal protective equipment, fume hood (D2) and fume hood
with HEPA filter (D3) stand for the engineering controls, and HEPA
vacuum cleaner (D4) corresponds to the work practices. Let us
note that a respirator is a form of a mask with a filter that protects
against dangerous substances in the air. A fume hood is a type of
ventilation system protecting against harmful gases and toxins.
Finally, High Efficiency Particulate Air (HEPA) filter is a filter that
has a very high capacity of retaining particles in the range of
several micrometers and above, as well as below.

For each precaution type, we make decisions about its re-
quirement during the nanomanufacturing process. The holistic

preference on each decision attribute includes five preference-
ordered classes corresponding to the levels of need for the specific
precaution: required (C1), might be required (C2), optional (C3),
might be optional (C4), and not required (C5). The reasoning on
the decision attributes is the following: if the exposure scenario
is deemed as risky, then a given precaution will be indicated as
required. If it is not, then the expert would indicate no need for
the precaution. A non-risky scenario is preferred to the risky one.

4.2. Preference information

For forty exposure scenarios (a1 − a40), we consider input
provided by the health and safety managers in the form of class
assignments on four decision attributes [35]. The experts were
asked in a survey what precautions should be taken and in what
intensity they should be used given a set of production parame-
ters and features of the nanomaterials based on those presented
in Table 5. For the scenarios deemed as risky and dangerous by
the specialists, a given precaution is required. In the case of safer
scenarios, the requirements are lower, and the necessity of some
precaution types is not required. For the answers of the experts,
see Table 9. The numbers of reference alternatives assigned to
each class for the four decisions are presented in Table 8. The
most common decisions are ‘‘required" (C1), ‘‘optional" (C3) and
‘‘not required" (C5), whereas the least chosen classes in the survey
classes are ‘‘might be required" (C2) and ‘‘might be optional" (C4).

Let us discuss the performances and assignments for the three
example reference alternatives (a26, a5, and a1). Alternative a26
attains very favorable performances on four criteria of cost type
g2, g6, g9 and g10 and the best performance on gain criterion g4.
As a result, the assigned classes for respirator, fume hood with
HEPA filter and HEPA vacuum cleaner are ‘‘not required" and for
fume hood – ‘‘required". Consequently, the most risky evaluation
in terms of fume hood is linked to the performances on g3, g5, and
the potentially non-monotonic criteria. Furthermore, a5 performs
poorly on g2, g3, g4, g5, g9 and g10, which was an important
reason to classify this scenario to C1 (‘‘precaution is required")
for all precaution types. Finally, a1 attains favorable performances
on criteria g2, g3, g4 and g10, while being less advantageous on
criteria g5, g6 and g9. Therefore, its classification for all decisions
is between ‘‘might be required" (C2) and ‘‘optional" (C3).

4.3. Research questions

The research goal consists of understanding under which op-
erational conditions and according to which characteristics of the
nanomaterials, different types of precautions can be required,
might be required, are optional, might be optional, or not be
required. This contribution results in a sorting model capable
of providing decision recommendations on multiple risk man-
agement measures, corresponding to various precautions, for the
same exposure scenario.

We wish to find a set of additive value functions and class
thresholds that will describe the allocation to a particular class
for each decision attribute based on the scenario described in
terms of a set of ten criteria/attributes. Such a preference model
is expected to capture the patterns from experts’ choices. Then,
we will demonstrate that these discovered regularities can be
used to support decision making. Thus, the inferred preference
model involving intra- and inter-decision relations will be used
to classify a set of non-reference exposure scenarios.
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Table 6
Performance matrix of the reference exposure scenarios a1 − a40 (↑ and ↓ indicate gain and cost criteria, respectively; – denotes criteria without a pre-defined
preference direction).

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
– ↓ ↓ ↑ ↓ ↓ – – ↓ ↓ – ↓ ↓ ↑ ↓ ↓ – – ↓ ↓

a1 4 1 0 3 3 4 3 5 4 1 a21 6 1 2 2 2 3 1 4 4 1
a2 5 2 0 0 2 4 1 2 3 1 a22 6 1 3 0 5 3 3 1 2 1
a3 5 2 3 2 4 1 2 5 5 0 a23 4 1 0 3 4 2 1 1 3 2
a4 4 1 3 2 3 4 2 4 3 2 a24 6 3 2 1 5 5 2 3 5 0
a5 1 3 3 0 3 1 2 2 4 3 a25 2 1 2 0 1 4 4 4 2 0
a6 3 1 1 0 4 5 1 4 1 3 a26 1 1 2 3 2 1 3 3 1 0
a7 3 1 1 1 2 3 2 3 3 3 a27 1 1 2 1 1 2 2 2 3 1
a8 4 3 3 1 1 1 4 3 3 0 a28 6 2 2 2 5 4 1 1 1 2
a9 4 2 0 1 5 5 1 1 5 1 a29 5 1 1 3 4 3 1 1 1 1
a10 2 1 3 2 1 5 1 3 4 3 a30 2 3 1 2 5 2 2 1 1 1
a11 2 2 3 0 1 3 2 3 5 2 a31 6 2 2 2 3 3 4 2 2 3
a12 4 2 1 1 1 3 4 1 4 3 a32 6 2 0 0 1 2 2 1 3 0
a13 1 1 3 3 4 5 1 2 2 0 a33 5 1 0 1 3 5 2 4 2 2
a14 6 1 0 2 4 1 3 3 4 3 a34 1 3 1 2 3 3 2 1 4 0
a15 2 3 0 1 3 4 3 1 4 0 a35 6 1 2 3 4 2 2 3 3 2
a16 6 3 1 3 3 1 1 4 5 0 a36 5 3 2 1 2 4 4 5 5 3
a17 6 1 0 2 2 2 3 5 4 0 a37 5 3 2 3 1 2 3 1 2 3
a18 1 1 3 2 1 5 1 5 5 1 a38 4 2 3 3 2 1 2 2 2 1
a19 1 1 1 2 2 3 2 2 1 0 a39 2 1 0 0 5 4 2 5 1 3
a20 6 1 1 0 1 1 4 5 2 0 a40 6 2 1 0 2 4 1 3 4 2

Table 7
Performance matrix of the non-reference exposure scenarios a41 − a45 (↑ and
↓ indicate gain and cost criteria, respectively; – denotes criteria without a
pre-defined preference direction).

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
– ↓ ↓ ↑ ↓ ↓ – – ↓ ↓

a41 5 2 3 2 3 3 3 3 1 2
a42 2 1 0 2 2 2 2 2 2 3
a43 5 1 0 1 0 4 1 1 2 3
a44 0 2 2 0 3 3 0 3 2 1
a45 1 1 2 2 3 4 2 0 4 2

4.4. Results

4.4.1. Marginal value functions
The marginal value functions for the ten criteria and four

decision attributes are presented in Figs. 6 and 7. They pre-
serve the imposed monotonicity constraints. In particular, the
marginal value function u2 for the cost-type criterion toxicity is
non-increasing, i.e., a value assigned to the ‘‘moderate" perfor-
mance is always greater than to the ‘‘high" performance and equal
or lesser (depending on the decision attribute) than the value
corresponding to the ‘‘low" toxicity (see Fig. 6). Similarly, the
marginal value function u4 for the gain-type criterion detection
limit is non-decreasing. It assigns a strictly greater value to ‘‘poor"
than to ‘‘null" performance, and exhibits a stable or a slightly
increasing trend from ‘‘poor" through ‘‘moderate" to ‘‘good" de-
tection limit (see Fig. 6). On the contrary, the marginal value
functions for the criteria with unknown monotonicity exhibit a
non-monotonic trend. For example, the least marginal value on
u1 does not correspond to either of the extreme performances
(see Fig. 6). However, the corresponding non-decreasing and non-
increasing components adhere to the monotonicity constraints.

The impact of each criterion on the recommended decision
can be estimated with the maximal share of each criterion in
the comprehensive value (see Table 10). The greatest shares
correspond to: for respirator – airborne capacity and detection
limit, for fume hood – particle size and airborne capacity, for fume
hood with HEPA filter – airborne capacity, and for HEPA vacuum
cleaner – exposure limit and airborne capacity. The values of bias
for all non-monotonic criteria are given in Table 11. They allowed
normalizing the performance of an anti-ideal alternative to zero,
as described in Section 2.

For the marginal value function u1 for particle size, the greatest
value is assigned to the size greater than 1000 nm for all decisions
but fume hood with HEPA filter, for which the greatest value is
attained for the size of lesser than 2 nm. The function is of ‘‘W"
shape for respirator, fume hood with HEPA filter and HEPA vacuum
cleaner with a significant peak corresponding to sizes of 10 −

100 nm or 100 − 500 nm. Such a shape is implied by the largest
decrease of value for the non-increasing component observed
between sizes 10–100 nm, 100–500 nm, and 500–1000 nm, and
the largest increase of value for the non-decreasing component
observed for sizes between 2–10 nm, 10–100 nm, and 100–
500 nm. For fume hood, the shape of u1 is similar to ‘‘V", and the
zero value is assigned to the intermediate size.

The value function u2 for toxicity indicates a negligible dif-
ference between the low and moderate performances. Such a
difference is slightly greater only for HEPA vacuum cleaner. Intu-
itively, the precautions are less required with low toxicity. This
criterion has a very low impact on the comprehensive value
when considering respirator and fume hood. This means that this
precaution type is needed even with low toxicity.

Airborne capacity has a very significant impact on the alterna-
tives’ assignments. The ‘‘null" performance vastly contributes to
reducing the requirement of a given precaution type. In addition,
for fume hood the value differences between performances ‘‘null"
and ‘‘low" or ‘‘moderate" and ‘‘high" are very marginal or non-
existing. Thus, in this case, only the difference between ‘‘low"
and ‘‘moderate" matters. For the remaining decision attributes,
the difference between ‘‘moderate" and ‘‘high" and ‘‘low" and
‘‘moderate" are huge.

The shapes of marginal value functions for detection limit (u4)
reveal high discrepancy between the decisions, even if they are
similar in terms of a general trend. For fume hood, this criterion
has almost no effect on the comprehensive value, whereas for
respirator – the impact of g4 is significant. The main difference
in terms of a trend is that for fume hood with HEPA filter, the
difference between values assigned to ‘‘poor" and ‘‘moderate" or
‘‘good"’ detection limits is negligible, whereas for the respirator
and HEPA vacuum cleaner it is around 0.025.

Analogously, the slight differences in the shapes of value func-
tions for various decision attributes can be observed for the
exposure limit (u5). For respirator, fume hood with HEPA filter, and
HEPA vacuum cleaner, the greatest value difference is between the
performances of < 0.1 and 0.1−0.2, whereas for fume hood – the
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Fig. 6. Marginal value functions for criteria g1 – g6 for four decision attributes.

Table 8
The number of reference alternatives assigned to a given class on four decision attributes.
Decision Respirator (D1) Fume hood (D2) Fume hood with HEPA vacuum

HEPA filter (D3) cleaner (D4)

‘‘Required" (C1) 8 27 10 6
‘‘Might be required" (C2) 3 3 4 6
‘‘Optional" (C3) 14 5 14 17
‘‘Might be optional" (C4) 3 2 2 2
‘‘Not required" (C5) 12 3 10 9

most significant difference is between the limits of 0.1− 0.2 and
0.2−0.5. In addition, for all types of precautions but HEPA vacuum
cleaner, the marginal value assigned to performances at least 0.2
is close to zero.

The marginal value function for quantity (u6) indicates that
the production of small quantities of nanomaterial is consid-
ered less risky. In contrast, for the mass production above 1kg
— the marginal values are close to zero. The production of a
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Fig. 7. Marginal value functions for criteria g7 – g10 for four decision attributes.

small amount of nanomaterial reduces the chance of exposure.
At higher manufacturing loads, the chances of accidental or un-
desired contact are higher. In the context of fume hood, g6 has
no significant impact on the comprehensive value, and for each
quantity produced, this precaution is required.

The marginal value functions for the engineering controls (u7)
indicate that the closed systems are safer than open ones, par-
ticularly those with the negative pressure. The most desired
configuration depends on the decision attribute. Fume hood is
more required in the closed system, and for the remaining types
of precautions, an open system with negative pressure is the
most needed. The non-decreasing component (und

7 ) is prevailing,
implying high marginal values for the closed systems, whereas

the non-increasing component (uni
7 ) assigns low values to all

possible configurations of the engineering controls.
The marginal functions for the number of employees (u8) re-

veal a slightly different shape for each decision attribute. We
can observe two main peaks corresponding to 3–10 employees
for respirator and HEPA vacuum cleaner or 51–100-employees
for respirator, HEPA vacuum cleaner and fume hood with HEPA
filter. The performances with the least assigned marginal value
are 11–50 employees for respirator, HEPA vacuum cleaner, and
fume hood with HEPA filter or 101–500 employees for respira-
tor, fume hood, and fume hood with HEPA filter. For all deci-
sion attributes, the values assigned to 101–500 employees are
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Table 9
Class assignments provided by the experts for reference alternatives and their comprehensive values for four decision attributes.

i / j C
Dj
DM (ai) UDj (ai) i / j C

Dj
DM (ai) UDj (ai)

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

a1 3 2 2 3 0.4539 0.2134 0.5800 0.5502 a21 3 2 3 3 0.4874 0.3970 0.4894 0.4773
a2 2 1 2 2 0.4039 0.3493 0.4207 0.3707 a22 1 1 1 1 0.3445 0.3742 0.3493 0.2993
a3 1 1 2 2 0.3445 0.0668 0.4207 0.3707 a23 3 1 3 3 0.4607 0.3742 0.4922 0.4773
a4 1 1 1 3 0.2296 0.0835 0.2772 0.3779 a24 3 1 1 1 0.4231 0.3037 0.3476 0.2588
a5 1 1 1 1 0.1954 0.0382 0.1881 0.2330 a25 5 1 5 5 0.5659 0.3742 0.5708 0.5559
a6 3 1 3 3 0.4231 0.3742 0.4312 0.3779 a26 5 1 5 5 0.7060 0.3742 0.7145 0.5559
a7 3 1 3 3 0.4231 0.3742 0.4279 0.3779 a27 5 1 5 5 0.5659 0.1814 0.5708 0.5639
a8 3 1 3 3 0.4874 0.3742 0.4922 0.4773 a28 4 4 4 4 0.5772 0.5255 0.4300 0.3405
a9 3 1 5 3 0.4231 0.3628 0.5708 0.3779 a29 4 4 4 4 0.5551 0.5245 0.5598 0.4845
a10 1 1 1 3 0.3445 0.2464 0.2929 0.3779 a30 3 3 3 2 0.4500 0.5171 0.4417 0.3548
a11 1 1 1 1 0.1639 0.2534 0.2019 0.2420 a31 5 1 3 3 0.6738 0.3742 0.4279 0.4773
a12 5 5 5 5 0.5659 0.5957 0.5877 0.5867 a32 5 5 5 5 0.5659 0.6721 0.5708 0.5559
a13 5 1 3 3 0.5659 0.0783 0.4279 0.4411 a33 4 1 3 3 0.4988 0.2745 0.4574 0.4773
a14 5 3 5 5 0.5659 0.4622 0.5708 0.5559 a34 3 1 3 3 0.4874 0.3742 0.4922 0.4640
a15 3 1 3 3 0.4874 0.3742 0.4922 0.4773 a35 2 1 1 2 0.4159 0.3199 0.3493 0.3707
a16 5 3 5 5 0.5659 0.4619 0.5708 0.5559 a36 2 1 1 2 0.3975 0.2850 0.2609 0.3064
a17 5 3 5 5 0.6526 0.5171 0.5815 0.6206 a37 5 1 3 3 0.6244 0.2875 0.4279 0.4773
a18 3 1 3 3 0.4231 0.1845 0.4442 0.4773 a38 3 1 3 3 0.4589 0.1570 0.4854 0.4114
a19 5 3 5 5 0.7145 0.4794 0.6035 0.5948 a39 1 1 1 1 0.3290 0.3591 0.3493 0.2993
a20 3 2 2 2 0.7145 0.6815 0.7145 0.6801 a40 1 5 1 1 0.3445 0.5957 0.3331 0.2993

Table 10
The maximal shares of the individual criteria in the comprehensive values (in %) for four decision attributes.
Criterion Respirator (D1) Fume hood (D2) Fume hood with HEPA vacuum

HEPA filter (D3) cleaner (D4)

Particle size (g1) 10.22% 20.6% 7.32% 6.18%
Toxicity (g2) 3.58% 0.79% 12.04% 9.97%
Airborne capacity (g3) 17.5% 18.15% 21.82% 16.44%
Detection limit (g4) 15.27% 0.44% 8.87% 12.58%
Exposure limit (g5) 12.24% 11.91% 9.5% 20.57%
Quantity (g6) 3.56% 0.59% 12.88% 6.09%
Engineering controls (g7) 9.4% 16.26% 5.73% 7.7%
Number of employees (g8) 7.93% 14.65% 4.22% 10.22%
Duration of exposure (g9) 11.66% 14.21% 4.29% 2.58%
Multiple exposure (g10) 8.58% 2.35% 13.28% 7.63%

Table 11
Values of bias for each non-monotonic criterion for all decision attributes.
Criterion Respirator (D1) Fume hood (D2) Fume hood with HEPA vacuum

HEPA filter (D3) cleaner (D4)

Particle size (g1) 0.10 0.03 0.07 0.04
Engineering controls (g7) 0.01 0.01 0.01 0.01
Number of employees (g8) 0.09 0.11 0.06 0.11

smaller than those associated with 51–100 employees. The non-
increasing (uni

8 ) and non-decreasing (und
8 ) components explain

why the resulting marginal functions differ across various de-
cisions. For respirator, the non-decreasing component increases
only between 3–10 and 11–50 employees, whereas the functions
for the remaining decisions in this performance area are stable.
In turn, they increase for the number of employees between 1–3
and 3–10 and between 11–50 and 51–100.

The duration of exposure (u9) is particularly important in the
context of respirator and fume hood. When the time exceeds one
hour, there is a greater safety concern, and thus all precautions
are more required. A short duration of exposure can motivate the
reduction of safety requirements.

The analysis of marginal functions for the number of exposures
(u10) indicates that if the exposures are non-existing, the marginal
value is high, hence leading to the assignment to a less risky class
for all decision attributes. In case there is at least one exposure,
the respirator is more required. The precautions involving the
HEPA filter are required when three exposures are exceeded.
In turn, fume hood is equally necessary for all values when the
number of exposures is known, and the marginal functions attain
zero when the value of this criterion cannot be determined.

In general, the marginal value functions for the decision at-
tributes concerning the use of the HEPA filter are similar for
the airborne capacity, detection limit, quantity, engineering con-
trols, duration of exposure, and number of exposures. In turn, the
marginal functions corresponding to the two fume hoods differ
on all criteria. This may suggest that these two precautions are
complementary, and depending on the conditions, one should
choose the fume hood either with the filter or without it. Finally,
the functions for the respirator are more similar to those derived
from the analysis for the HEPA vacuum cleaner and fume hood with
HEPA filter than for the fume hood.

4.4.2. Class assignments for the reference alternatives
The comprehensive values and class assignments for the forty

reference alternatives with respect to the four decision attributes
are provided in Table 9. The constructed model reproduced the
desired assignments for all reference exposure scenarios but a1,
a20, and a28. These alternatives form the minimal subset that
had to be removed to impose the consistency of the experts’
judgments with an assumed preference model. The comparison
of desired and resulting assignments for these three exposure
scenarios is given in Table 12. For example, the inferred model
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Table 12
Class assignments derived with the constructed preference model for the
reference alternatives, not aligning with the ones desired by the experts.

i / j C
Dj
DM (ai) CDj (ai)

1 2 3 4 1 2 3 4

a1 3 2 2 3 3 1 5 4
a20 3 2 2 2 5 5 5 5
a28 4 4 4 4 5 4 3 2

Table 13
Class thresholds separating the five preference-ordered classes for four decision
attributes.

Dj b
Dj
1 b

Dj
2 b

Dj
3 b

Dj
4

D1 0.3480 0.4195 0.4909 0.5624
D2 0.3778 0.4492 0.5207 0.5921
D3 0.3529 0.4243 0.4958 0.5672
D4 0.3028 0.3743 0.4809 0.5524

evaluated alternative a20 as ‘‘not required" (C5) for all decision
classes, while the experts indicated that it should be ‘‘optional"
and ‘‘might be required". This was implied by the most preferred
or nearly the best performances on the monotonic criteria g2, g3,
g5, g6 and g10, as well as the performances on the non-monotonic
criteria g1 and g7 that were assigned the greatest marginal values
according to the constructed model.

The thresholds separating the decision classes on a scale of a
comprehensive value for all decisions are given in Table 13. Let
us remind that the range delimited by these thresholds in which
a comprehensive value of a given alternative falls determines
its assignment to the respective class. For example, UD1 (a2) =

0.4039 is not lesser than bD1
1 = 0.3480 and lesser than bD1

2 =

0.4195, which allows to reproduce the assignment of a2 to C2
provided by the experts. Although these thresholds have similar
values for various decision attributes, we can observe that, e.g., on
D4, they are by 0.04 − 0.07 lower than on D2.

4.4.3. Inter-decision relationships
Let us focus on the inter-decision relationships implied by the

specificity of the considered multi-decision sorting problem. The
impact of the individual criteria on the comprehensive values as
well as the relations between the latter ones for different deci-
sion attributes are demonstrated in Fig. 8 for the four reference
alternatives (a9, a3, a13, and a33).

For example, a9 was assigned to C5 for D3, to C3 for D1 and
D4, and to C1 for D2. This information can be interpreted in
such a way that when considering different types of precautions
in the context of a9, their ranking is the following: fume hood
with HEPA filter (D3), respirator (D1) and HEPA vacuum cleaner
(D4), fume hood (D2). Such a ranking is reflected in the compre-
hensive values on the respective decision attributes: UD3 (a9) >

UD1 (a9),UD4 (a9) > UD2 (a9). The analysis of marginal values
for a9 indicates that, depending on the decision context, the
same performance can yield very different contributions to the
comprehensive values. This, in turn, may result in the extreme as-
signments for various decision attributes (e.g., the most preferred
class on D3 and the least preferred class on D2). The compre-
hensive value of a9 for fume hood with HEPA filter (D3) is equal
to 0.5707. Such a great value is implied mainly by the following
high contributions from the individual criteria: uD3

2 (a9) = 0.1065,
uD3
3 (a9) = 0.1956, uD3

4 (a9) = 0.0767, and uD3
10 (a9) = 0.0928. In

turn, for fume hood, despite a slightly higher value for uD2
8 (a9) =

0.1406, the marginal value of a9 derived from uD2
5 (a9), u

D2
6 (a9), and

uD2
9 (a9) are nearly zero. As a result, comprehensive value is lower

(0.3627) than for other decision attributes.

The desired assignments of a3 were either C2 on D3 and D4
or to C1 on D1 and D2. Consequently, its comprehensive values
on all decision attributes are relatively low, while being slightly
higher for the fume hood with HEPA filter and HEPA vacuum
cleaner than for the respirator or fume hood. The assignments
to classes representing more risky scenarios are mainly due to
the low marginal values from the following criteria: airborne
capacity (u3), exposure limit (u5), engineering controls (u7), number
of employees (u8), and duration of exposure (u9). The differences
in the assignments on D1 and D3 can be explained, e.g., with
respect to toxicity (uD1

2 = 0.0344 and uD3
2 = 0.1065) and quantity

(uD1
6 = 0.0356 and uD3

6 = 0.1155), making the respirator ‘‘re-
quired" with a comprehensive value of 0.3444 and fume hood with
HEPA filter – ‘‘might be required" with a greater comprehensive
value of 0.4207. When it comes to fume hood, a3 attained very
low values on all criteria, making it ‘‘required". In case of HEPA
vacuum cleaner, a higher value justifying an assignment to C2
is implied by the significant contributions from the following
criteria: toxicity, airborne capacity, detection limit, exposure limit,
number of employees, and multiple exposure.

The difference in marginal values assigned to the same per-
formances for various decision attributes as well as the inter-
decision relationships between comprehensive values implied by
the experts’ assignments can be also observed for a13 and a33 (see
Fig. 8). On the one hand, the comprehensive values of a13 range
from 0.0783 for D2 to 0.5659 for D1. On the other hand, the large
differences in marginal values assigned to a33 on various decision
attributes for toxicity, detection limit, number of employees, and
duration of exposure imply that it can be assigned to classes
ranging from C1 for D2 to C4 for D1. As a result, the ranking of
precautions associated with a33 in terms of safety requirements
(starting from the least required) reproduced by the constructed
model is as follows: respirator, fume with HEPA filter and HEPA
vacuum cleaner, fume hood.

4.4.4. Intra-decision relationships
To justify the assignments of alternatives to the respective

classes, in Fig. 9, we demonstrate the comprehensive values of
selected exposure scenarios and class thresholds. For each deci-
sion attribute, we depicted a single alternative assigned to each
class. The comprehensive values of exposure scenarios assigned
to better classes are greater than for the alternatives assigned to
the classes associated with greater risk. For example, the follow-
ing relations between comprehensive values on D1: UD1 (a37) >

UD1 (a33) > UD1 (a7) > UD1 (a2) > UD1 (a4) reflect the expert
judgments. Let us explain a few example assignments in terms
of marginal values attained on the respective criteria and the
comparison of comprehensive values with the class thresholds.

When it comes to the evaluation of a2 in terms of respirator
(D1), it attains the greatest marginal values for airborne capac-
ity (uD1

3 (a2) = 0.1750) and number of employees (uD1
8 (a2) =

0.0793). However, its negligible marginal values derived from
detection limit (uD1

4 (a2) = 0), quantity (uD1
6 (a2) = 0.0014),

duration of exposure (uD1
9 (a2) = 0.0048), and multiple exposure

(uD1
10 (a2) = 0.0065) imply a relatively small comprehensive value.

Since bD1
1 = 0.3480 ≤ UD1 (a2) = 0.4039 < bD1

2 = 0.4195, a2
is assigned to C2 on D1. As far as a4 is concerned, it attained zero
marginal values on a few criteria and very low values on other cri-
teria (uD1

3 (a4) = 0, uD1
5 (a4) = 0.0028, uD1

6 (a4) = 0.0014, uD1
7 (a4) =

0, and uD1
10 (a4) = 0.0014). Therefore, despite high values for

toxicity (uD1
2 (a4) = 0.0358) and detection limit (uD1

4 (a4) = 0.1495),
it is assigned to C1 due to UD1 (a4) = 0.2296 < bD1

4 = 0.3480.
When comparing the assignments of a14 and a40 in terms of

fume hood (D2), these alternatives perform similarly on g1, g2,
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Fig. 8. Marginal and comprehensive values and class assignments demonstrating the inter-decision relationships for four reference exposure scenarios in terms
of four decision attributes (Respirator – D1 , Fume hood – D2 , Fume hood with HEPA filter – D3 , and HEPA vacuum cleaner – D4).

g3, and g8 (e.g., uD2
1 (a14) = 0.1976 and uD2

1 (a40) = 0.1976 or
uD2
2 (a14) = 0.0076 and uD2

2 (a40) = 0.0062). However, the more
advantageous performances of a40 on g5, g7, and g10 imply that
it is assigned to C5 as compared to C3 for a14. Even though a2
attains comparable marginal values to a40 on six criteria (g2, g3,
g4, g5, g6, and g7), it is significantly less preferred on g1 and g8
(e.g., uD2

1 (a2) = 0.0182 < uD2
1 (a40) = 0.1976). As a result, a2 has a

very low comprehensive value (UD2 (a2) = 0.3492), justifying the
assignment to the least preferred class C1.

4.5. Classification of the non-reference alternatives

The model inferred from the analysis of reference alternatives
can be used to classify other exposure scenarios. Thus, we first
used expert knowledge to build a preference model. The latter is
subsequently applied to evaluate other alternatives in a way that
is consistent with the experts’ value system and hence could be
accepted by them. In this way, the proposed method can support
nanomaterials’ exposure management, suggesting the reasons for
concern regarding some nanomanufacturing tasks performed by
the workers [47,55].

For this purpose, let us consider five non-reference alterna-
tives presented in Table 7. Their comprehensive values and the

Table 14
Comprehensive values and class assignments for the non-references alternatives
for the four decision attributes.
ai / Dj CDj (ai) UDj (ai)

1 2 3 4 1 2 3 4

a41 3 2 1 3 0.4701 0.4202 0.2204 0.3781
a42 4 1 3 3 0.5168 0.2631 0.4892 0.4362
a43 5 3 3 5 0.6445 0.5061 0.4890 0.5936
a44 1 1 1 1 0.2470 0.1031 0.3468 0.2763
a45 2 1 2 3 0.3878 0.2019 0.4150 0.3893

respective class assignments are given in Table 14. Since the
comprehensive values attained by these alternatives differ vastly
from one decision attribute to another, the suggested classes
differ too. For example, a42 is assigned to C1 on D2, to C3 on D3
and D4, and to C4 on D1, whereas the classes for a43 range from
C3 on D2 and D3 to C5 on D1 and D4. Note, however, that although
the comprehensive values of a44 differ with respect to various
precaution types, they are all very low, justifying the assignment
to C1 on all decision attributes.

For the five non-reference alternatives, the contribution of
the individual criteria in the comprehensive values, as well as
the assignments derived from the comparison of comprehensive
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Fig. 9. Marginal and comprehensive values and class assignments demonstrating the intra-decision relationships for five reference exposure scenarios in terms of four
decision attributes.

values with class thresholds, are presented in Fig. 10. Let us
justify the assignments obtained for two selected non-reference
exposure scenarios (a43 and a45).

When it comes to a43, it is assigned to C3 on D2 and D3 and
to C5 on D1 and D4. This alternative attains the extreme values
on different criteria. However, it performs relatively well on the
criteria with a significant impact on the classification, i.e., g3, g4
and g5, which justifies its relatively high comprehensive values.
They are slightly lower for fume hood (D2) and fume hood with
HEPA filter (D3) mainly due to either zero (uD2

8 (a43) = 0) or
negligible (uD3

8 (a43) = 0.0027) contribution of the number of
employees (g8). This criterion forms an example of the direction in
which the health managers should work to verify if any of them
can be improved to increase a comprehensive value and justify
the assignment to a less risky class for all decision attributes.

As far as the evaluation of a45 is concerned, it attains high or
moderate marginal values on g2, g3, g4, g7, and g8 when assessed
in terms of D1, D3, and D4. This allows exceeding the lower
threshold of class C2 for these decision attributes. When it comes
to D2, the significant contribution to the overall quality of a45 is
offered only by g8, implying the assignment to the least preferred
class C1. A comprehensive evaluation of a45 as ‘‘optional" given

HEPA vacuum cleaner (D4) is justified mainly by the value added
by quantity (g5). Nevertheless, the indication of class at most C3
for all decision attributes can be perceived as a ‘‘safety warning
flag", suggesting that this exposure scenario should be prioritized.
In general, the greater risk associated with the respective class,
the greater attention should be paid to its further investigation.
The marginal value functions for which the alternative attains
very low values should be analyzed to identify the performance
modifications offering a significant increase of the comprehensive
value.

In the e-Appendix (supplementary material available online),
we compare the method introduced in this paper with the one
we proposed in [31]. We also collate the outcomes obtained
for the case study with both methods. This required a suitable
methodological extension of the approach presented in [31] to
a multi-decision setting considered in this work.

5. Conclusions and future work

We considered and formalized a new problem of multi-
decision sorting in Multiple Criteria Decision Analysis. In this
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Fig. 10. Marginal and comprehensive values for the five non-reference protocols in terms of four decision attributes.

problem, besides performances on multiple criteria, each alterna-
tive gets evaluated in terms of multiple decision attributes involv-
ing pre-defined preference-ordered classes. To solve such a prob-
lem, one needs to construct a set of individual sorting models, one
for each decision attribute. They should reflect both intra-decision
dependencies between the assignments of different alternatives
and inter-decision dependencies between the classes desired for
the same alternative on various decision attributes.

We have proposed a preference disaggregation method for
dealing with the multi-decision sorting. In this approach, the DM
is expected to assign a subset of reference alternatives to a single
class for each decision attribute by indicating the quality or risk
level on the pre-defined scale for all decision attributes. Such
indirect preference information is used to learn a set of inter-
related models composed of an additive value function and class
thresholds separating the decision classes on a comprehensive
value scale. The preference modeling involves intra- and inter-
decision constraints intending to reproduce the assignments of
as many reference alternatives as possible.

The proposed framework has been extended with a novel pro-
posal for dealing with criteria for which the preference direction
cannot be specified a priori. Explicitly, a marginal value function
for each non-monotonic criterion is represented as a sum of

non-decreasing and non-increasing components. In this way, the
resulting marginal function can take any arbitrary shape. Hence
it can represent local monotonicity relationships in different re-
gions of the performance scale. The interpretability of the model
is enhanced by the monotonicity of non-decreasing and non-
increasing components, as well as normalization imposed by the
subtraction of biases, guaranteeing that an anti-ideal alternative
would attain a zero comprehensive value.

The introduction of a new type of multiple criteria problem
and the dedicated methodology have been motivated by the pe-
culiarity of nanomaterials’ exposure management. In this context,
each exposure scenario is described in terms of various character-
istics of a given nanomaterial and working conditions related to
its production. However, it is also evaluated in terms of different
safety measures corresponding to various types of precautions.
Each precaution can be modeled as a decision attribute capturing
the potential level of concern related to a nanomanufacturing
scenario. We have considered four inter-related precautions rep-
resenting personal protective equipment, engineering controls,
and work practices.

The analysis of desired assignments provided by the health
and safety managers for forty exposure scenarios allowed us to
construct four inter-related classification models. These models
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captured some patterns and regularities from experts’ judgments
for risk management in nanomanufacturing. In particular, the
highest maximal share in the comprehensive values of alterna-
tives was attributed to airborne capacity, detection limit, and
exposure limit. Furthermore, the high variability of marginal val-
ues assigned to different performances on the same criterion
indicated the directions for analysis of nanomanufacturing pro-
cesses to reduce the risk level by vastly increasing the marginal
value with a small modification of performance. For example,
we can consider changing the toxicity from high to moderate,
decreasing the airborne capacity from high to moderate or low,
decreasing the exposure limit to less than 0.1 fiber/cc, reducing
the quantity to less than 1kg, or nullifying multiple exposures.
Even though the shapes of marginal value functions related to
various decision attributes were similar for most criteria, some
differences revealed the peculiarities of the risk management
in the context of incorporating the respirator, fume hood with
and without the HEPA filter, or HEPA vacuum cleaner. For ex-
ample, the marginal functions for the precautions involving the
HEPA filter were very similar, which is probably related to the
notable reliance on this type of filter to reduce the potential
concern during the production processes. On the contrary, the
functions for fume hood with or without the HEPA filter were
rather different, confirming their complementarity. We have also
demonstrated that the constructed model can support decision-
making by applying it to the classification of five non-reference
exposure scenarios with unknown risk levels. These sorting mod-
els could thus be used to provide decision recommendations
on multiple risk management measures – corresponding to var-
ious types of precautions – for nanomanufacturing processes,
especially those where there is still high uncertainty in the opera-
tional conditions as well as the physicochemical and toxicological
characteristics of the nanomaterials.

The potential extensions of the proposed method are four-
fold. The motivation for the first development comes from a large
number of constraints imposed by the intra- and inter-decision
relationships and the use of binary variables that are needed to
find the largest subset of reference alternatives for which an as-
sumed model can reproduce the expert judgments. These factors
imply that the proposed method, requiring a mathematical pro-
gramming solver, cannot be applied in problems with thousands
of alternatives and hundreds of decision attributes. An adaptation
to such a setting would require the development of heuristic
algorithms incorporating the machine learning techniques. As
opposed to the proposed framework, they should not attempt to
find an accurate, optimal solution, searching instead for a highly
satisfactory model in an approximate way.

Secondly, the marginal functions for which the monotonic-
ity direction cannot be pre-defined can be modeled differently
without incorporating the non-decreasing and non-increasing
components. In particular, the proposed methodology remains
valid when the functions for potentially non-monotonic criteria
are inferred to minimize either the number of changes in mono-
tonicity [31] (see e-Appendix) or the sum of changes in slopes [30,
56]. Similarly, the framework remains valid with threshold-based
sorting procedures incorporating other preference models to com-
pute alternatives’ scores than an additive value function (e.g., the
Choquet integral [57,58]).

Thirdly, the proposed method can be extended with the ro-
bustness analysis framework [4,23,58]. In this approach, one
should account for all compatible multi-decision sorting mod-
els instead of a single representative one. Then, one should
capture the potential variability of assignments for the non-
reference alternatives given the multiplicity of analyzed models
consistent with the DM’s judgments. Such an approach can be

extended to analyze all maximal subsets of reference alterna-
tives for which the provided assignments are consistent with an
assumed model [59].

Finally, the idea of evaluating each alternative with a set of
inter-related preference models can be adjusted to other problem
types. For example, various value functions can be used to assess
the suitability of a given alternative to be assigned to the groups
of alternatives exhibiting different characteristics and being sim-
ilar in terms of the DM’s preferences. Then, it should be placed
in a group for which the attained comprehensive value is the
greatest. Such an approach could provide a novel way of dealing
with multiple criteria nominal classification [60].
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a b s t r a c t 

We propose preference learning algorithms for inferring the parameters of a threshold-based sorting 

model from large sets of assignment examples. The introduced framework is adjusted to different scores 

originally used in Multiple Criteria Decision Analysis (MCDA). They include Ordered Weighted Average, 

an additive value function, the Choquet integral, a distance from the ideal and anti-ideal alternatives, and 

Net Flow Scores built on the results of outranking-based pairwise comparisons. As a concrete application 

of these models, we use Artificial Neural Networks with up to five hidden layers. Their components and 

architecture are designed to ensure high interpretability, which supports the models’ acceptance by do- 

main experts. To learn the most favorable values of all parameters at once, we use a variant of a gradient 

descent optimization algorithm called AdamW. In this way, we make the MCDA methods suitable for han- 

dling vast, inconsistent information. The extensive experiments on various benchmark problems indicate 

that the introduced algorithms are competitive in predictive accuracy quantified in terms of Area Un- 

der Curve and the 0/1 loss. In this regard, some approaches outperform the state-of-the-art algorithms, 

including generalizations of logistic regression, mathematical programming, rule ensemble and tree in- 

duction algorithms, or dedicated heuristics. 

© 2022 Elsevier B.V. All rights reserved. 

1. Introduction 

The need to process data to conclusions or arguments that sup- 

port more informed and better decision-making is growing each 

year ( Liu, Kadzi ́nski, Liao, & Mao, 2021 ). Consequently, one of the 

main trends in today’s information technology is developing intel- 

ligent decision support systems. Their successful application de- 

pends on the quality of being believable or trustworthy ( Linkov, 

Galaitsi, Trump, Keisler, & Kott, 2020 ). The need to explain the de- 

cisions made by computer systems ( Doshi-Velez & Kim, 2017 ) is 

reflected in the legal regulations of the European Union ( Goodman 

& Flaxman, 2017 ). 

Multiple Criteria Decision Aiding (MCDA) and Machine Learning 

(ML) belong to the most important and fastest developing disci- 

plines within Artificial Intelligence (AI) ( Corrente, Greco, Kadzi ́nski, 

& Słowi ́nski, 2013; Doumpos & Zopounidis, 2011 ). They offer meth- 

ods that support humans in decision-making processes. Within the 

scope of this paper, we focus on multiple criteria sorting ( Alvarez, 

Ishizaka, & Martínez, 2021 ) or instance ranking ( Fürnkranz & 

Hüllermeier, 2011 ) problems. They aim at assigning a set of al- 

ternatives to preference ordered classes, labels, or degrees in the 

∗ Corresponding author. 

E-mail addresses: krzysztof.martyn@cs.put.poznan.pl (K. Martyn), 

milosz.kadzinski@cs.put.poznan.pl (M. Kadzi ́nski) . 

presence of multiple attributes with pre-defined preference direc- 

tions. Moreover, we limit our interest to learning ordered classifi- 

cation models from decision examples. In MCDA, they are treated 

as the DM’s indirect preference information in the form of assign- 

ment examples ( Liu, Liao, Kadzi ́nski, & Słowi ́nski, 2019; Zopounidis 

& Doumpos, 20 0 0 ), whereas in ML – they form a training set in 

the task of supervised learning ( Doumpos & Zopounidis, 2011 ). The 

goal is to find the model for classifying all alternatives, including 

the ones that have not been judged directly by the Decision Maker 

(DM) nor considered in the reference set ( Doumpos & Zopounidis, 

2018 ). 

Even though the paradigm of learning by example is handled 

by both MCDA and ML, there are notable differences between 

these two disciplines ( Corrente et al., 2013; Doumpos & Zopouni- 

dis, 2011; Waegeman, De Baets, & Boullart, 2009 ). On the one 

hand, MCDA is user-oriented. It exploits Decision Makers’ knowl- 

edge or expertise and aims at the DMs to learn about their pref- 

erences and the problem at hand. On the contrary, ML is model- 

oriented, being focussed on data analysis, information extraction, 

and preference discovery. These various aims are, in turn, reflected 

in different forms of incorporated models, the amount of processed 

information, techniques used for arriving at a final result, and the 

role of users. 

The preference models used in MCDA are highly interpretable 

and explainable ( Corrente et al., 2013 ). Their primary role is to en- 
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courage the involvement of the DMs ( Roy, 2010 ) through gaining 

insights on the role of different criteria, the character of alterna- 

tives, and the influence of particular performances on the decision. 

On the contrary, ML has mainly focused on the development of 

non-linear models, offering higher predicting ability and the pos- 

sibility of capturing complex interdependencies ( Corrente et al., 

2013 ). However, this results in limited ability to determine which 

data influences a decision and, consequently, less confidence in the 

model’s employment by the users who need to interpret and un- 

derstand the underlying process ( Waegeman et al., 2009 ). 

The traditional MCDA methods have been designed for learn- 

ing from a small set of decision examples for a subset of ref- 

erence alternatives ( Doumpos & Zopounidis, 2018 ). Typically, the 

translation of assignment examples into compatible values of 

an assumed preference model has been conducted with mathe- 

matical programming techniques that aim at reconstructing the 

DM’s judgments as faithfully as possible. However, when the 

DM’s preference information is rich and highly inconsistent, 

most approaches cannot deal efficiently with preference disag- 

gregation ( Liu et al., 2019 ). Some exceptions that have in-built 

mechanisms for dealing efficiently with large sets of inconsis- 

tent preferences include variants of the Dominance-based Rough 

Set Approach (DRSA) ( Greco, Matarazzo, & Słowi ́nski, 2001 ) and 

UTADIS ( Zopounidis & Doumpos, 20 0 0 ). On the contrary, ML has 

always been focused on dealing with large, inconsistent sets of 

training data ( Doumpos & Zopounidis, 2011 ). These are usually 

composed of historical data, preferences collected over time, or ob- 

servations of past decisions. In ML, some advanced statistical mod- 

els or optimization algorithms are used to exploit the parameters 

space in search of the values that minimize some classification er- 

ror. 

Over the years, MCDA and ML have been developing separately 

while fostering their interests mentioned above. Nonetheless, the 

availability of large data resources as well as the need for both ex- 

plainable models and interpretable decision-making processes have 

motivated the cross-fertilization of the two disciplines. Individu- 

als, companies, organizations, and governments have accumulated 

a vast quantity of data, and its analysis has exceeded the reach of 

human processing capacity. However, it needs to be exploited in a 

way that allows verifying whether a model focuses on the relevant 

aspects, offers arguments and knowledge for decision-making, and 

involves the DM to take part in the process actively. Consequently, 

one has developed the algorithms that scale up well with an in- 

creasing number of assignment examples, at the same time incor- 

porating the intuitive models originally proposed in MCDA ( Cinelli, 

Kadzi ́nski, Miebs, Gonzalez, & Słowi ́nski, 2022 ). 

The research at the crossroads of MCDA and ML is called 

preference learning ( Fürnkranz & Hüllermeier, 2011 ). Within this 

field, some MCDA methods have been adjusted to deal with large 

data, leading to the elaboration of intuitive classification meth- 

ods. In what follows, we list the representative algorithms aimed 

at multiple criteria sorting and instance ranking problems. In 

particular, Chandrasekaran, Ryu, Jacob, & Hong (2005) proposed 

linear programming models based on isotonic separation, and 

Kotłowski & Słowi ́nski (2013) introduced a family of classifiers 

exploiting the class of all monotonic functions, not making any 

additional assumptions about the model apart from the mono- 

tonicity constraints. Then, Tehrani, Cheng, Dembczy ́nski, & Hüller- 

meier (2012) generalized logistic regression to learn the param- 

eters of the Choquet integral, Liu et al. (2021) formulated opti- 

mization models for learning additive value functions augmented 

with components for handling the interactions between criteria, 

whereas Kadzi ́nski & Szczepa ́nski, (2022) proposed a variety of 

methods for learning the parameters of a sorting model with char- 

acteristic class profiles. Furthermore, Dembczy ́nski, Kotłowski, & 

Słowi ́nski (2009) introduced an algorithm based on the variant of 

DRSA for generating a monotonic rule ensemble and Dembczy ́nski, 

Kotłowski, & Słowi ́nski (2006) extended DRSA by considering an 

additive function model resulting from rough approximations. Also, 

a few approaches have been proposed to learn the parameters 

of an outranking-based sorting model used in the ELECTRE TRI- 

B method or its simplified variant called MR-Sort. They include an 

evolutionary algorithm ( Doumpos, Marinakis, Marinaki, & Zopouni- 

dis, 2009 ) or linear programming models combined with simulated 

annealing ( Olteanu & Meyer, 2014 ) or a dedicated metaheuris- 

tic ( Sobrie, Mousseau, & Pirlot, 2019 ). 

This paper proposes to use Artificial Neural Networks (ANNs) 

for preference learning in the context of highly interpretable 

MCDA models. ANNs are versatile learners that can be applied to 

nearly any learning task, where input and output data are well- 

understood, yet the process that relates the input to the output is 

highly complex. Over the last years, ANNs have been successfully 

applied in the context of data analysis, control systems, speech 

and pattern recognition, and computer games. This is mainly due 

to the development of Deep Learning (DL) (i.e., efficient learning 

algorithms for ANNs with multiple hidden layers) that has revo- 

lutionalized the field of AI and its applicability in the context of 

big data ( Deng & Yu, 2014 ). However, the employment of ANNs in 

MCDA has been scarce. In particular, Malakooti & Zhou (1994) used 

an Adaptive Feedforward Adaptive Feedforward ANN to learn the 

utility function based on a set of training patterns in the form 

of alternatives with their associated evaluations by the DM and 

then applied it to rank a discrete set of alternatives. Moreover, 

Hu (2009) proposed a single-layer perceptron for multiple crite- 

ria classification problems based on pairwise comparisons among 

alternatives conducted in the spirit of an ELECTRE-based outrank- 

ing relation. Furthermore, Hanne (1997) suggested the use of ANNs 

as a part of an MCDA network, in which they can be applied 

to standardize and aggregate performances from different criteria 

or even to choose the most relevant method from a pre-defined 

pool of a few approaches. Finally, Guo, Zhang, Liao, Chen, & Zeng 

(2021) proposed the NN-MCDA method that combines an additive 

value model with potentially non-monotonic marginal functions 

and a fully connected deep neural network. 

We introduce the preference learning algorithms that use ANNs 

to infer parameters of the threshold-based sorting procedure from 

large sets of assignment examples. In this procedure, following 

UTADIS ( Zopounidis & Doumpos, 20 0 0 ), the frontiers between 

classes are delimited by the thresholds on a scale of a compre- 

hensive score that reflects the quality of each alternative from 

all relevant viewpoints considered jointly. We adjust the intro- 

duced framework to different types of scores. In particular, we 

consider aggregation of the performances on various criteria us- 

ing OrderedWeighted Average (OWA) operator ( Yager, 1988 ), an 

additive value function initially employed in UTADIS ( Zopounidis 

& Doumpos, 20 0 0 ), and the Choquet integral ( Angilella, Corrente, 

Greco, & Słowi ́nski, 2013 ). These scores are able to capture differ- 

ent compensation levels or interactions between criteria. Moreover, 

we account for a model postulated in TOPSIS that builds on the 

distances of a given alternative from the ideal and anti-ideal op- 

tions ( Hwang & Yoon, 1981 ). Also, we consider the Net Flow Score 

(NFS) procedures that aggregate the results of pairwise compar- 

isons between all alternatives. The comparisons are conducted in 

the spirit of the PROMETHEE ( Brans & De Smet, 2016 ) and ELEC- 

TRE ( Figueira, Greco, Roy, & Słowi ́nski, 2013 ) methods, exploiting 

either preference degrees or the outcomes of concordance and dis- 

cordance tests. 

The ANNs have been originally designed to capture complex 

transformations of inputs (in our case, performances on all criteria) 

to outputs (in our case, class assignments). We have designed their 

architecture and adjusted the characteristics of individual units to 

derive sorting models that are flexible enough to fit the learn- 
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ing data and sufficiently interpretable due to being inspired by 

the MCDA methods. This is in line with the recent trend in ML, 

which postulates making prediction models and their decisions in- 

terpretable ( Molnar, 2020 ). 

When learning the sorting models, we minimize the loss func- 

tion defined as an average of regrets for all reference alterna- 

tives. The choice of ANNs as a computation technique for conduct- 

ing preference disaggregation allowed us to use a variety of tools 

supporting the optimization. In particular, to learn the most fa- 

vorable value parameters, we employ a variant of a gradient de- 

scent optimization algorithm called Adam ( Kingma & Ba, 2014 ). 

The optimization is enhanced with techniques such as data aug- 

mentation to increase the noise resistance, regularization to pre- 

vent model overfitting, and batch optimization to reduce the im- 

pact of the information processing order on the attained results. 

The networks deriving the parameters of the OWA-, Choquet-, and 

distance-based models are shallow. However, the ANNs proposed 

for UTADIS, PROMETHEE, and ELECTRE can be classified as deep 

learning models ( Deng & Yu, 2014 ) due to many hidden layers and 

considering different levels related to the data processing (e.g., cri- 

teria, alternatives, pairs of alternatives, and assignments). Hidden 

layers are required to learn complex models inspired by the value- 

and outranking-based MCDA methods. However, the raw weight 

values of multiple layers, some of which conduct non-linear trans- 

formations of data, are hardly interpretable for the users. There- 

fore, we ensure that users are exhibited only with the final mod- 

els of ANN-UTADIS, ANN-PROMETHEE, and ANN-ELECTRE. These 

models summarize the comprehensive contribution of individual 

criteria, resulting from the transformations conducted by various 

layers, activation performed with non-linear activations functions, 

and normalization to an easily interpretable range of alternatives’ 

scores. 

We conduct a thorough experimental verification of the pro- 

posed algorithms on a set of benchmark sorting problems. Its re- 

sults are quantified in terms of two quality measures for different 

proportions between the sizes of the training and testing sets. The 

multiplicity of proposed methods allows indicating which model 

is most appropriate for a given problem. We also compare the 

obtained results with the performance of the existing preference 

learning approaches. These include the Choquistic ( Tehrani et al., 

2012 ) and logistic ( Hosmer, Lemeshow, & Sturdivant, 20 0 0 ) regres- 

sion, Kernel Logistic Regression (KLR) with polynomial and Gaus- 

sian kernels, rule ensemble (MORE) ( Dembczy ́nski et al., 2009 ) and 

tree induction (LMT) ( Landwehr, Hall, & Frank, 2003 ) algorithms, 

value-based UTADIS model ( Zopounidis & Doumpos, 20 0 0 ), and 

outranking-based methods incorporating mathematical program- 

ming (MIP) ( Leroy, Mousseau, & Pirlot, 2011 ) or a dedicated meta- 

heuristic (META) ( Sobrie et al., 2019 ). 

The remainder of the paper is organized in the following 

way. Section 2 reminds a threshold-based sorting procedure. In 

Section 3 , we discuss the novel preference learning algorithms that 

incorporate different scores for judging a comprehensive quality of 

alternatives. Section 4 provides details of the employed optimiza- 

tion techniques. In Section 5 , we illustrate the use of the proposed 

methods on a selected multiple criteria sorting problem for which 

a large set of assignment examples is available. Section 6 discusses 

the results of computational experiments, comparing the predictive 

capabilities of our ANN-based approaches and the state-of-the-art 

methods. The last section concludes and provides avenues for fu- 

ture research. 

2. Threshold-based score-driven multiple criteria sorting 

The following notation is used in the paper: 

• A = { a 1 , a 2 , . . . , a i , . . . , a n } – a finite set of n alternatives; 

• A 

R = { a ∗
1 
, a ∗

2 
, . . . , a ∗

i 
, . . . } ⊆ A – a finite set of reference alter- 

natives, which the DM accepts to critically judge in a holistic 

way; 
• G = { g 1 , g 2 , . . . , g j , . . . , g m 

} – a finite set of m evaluation cri- 

teria, g j : A → R for all j ∈ J = { 1 , . . . , m } ; 
• X j = { x j ∈ R : g j (a i ) = x j , a i ∈ A } – a set of all different per- 

formances on g j , j ∈ J; as typical in the field of prefer- 

ence learning, we assume that all performances on g j , j = 

1 , . . . , m , are scaled to the [0,1] interval; 

• x 1 
j 
, x 2 

j 
, . . . , x 

n j (A ) 

j 
– increasingly ordered values of X j , x k 

j 
< 

x k +1 
j 

, k = 1 , 2 , . . . , n j (A ) − 1 , where n j (A ) = | X j | and n j (A ) ≤
n ; 

• C 1 , C 2 , . . . , C p – p pre-defined, preference ordered classes, 

where C h +1 is preferred to C h , h = 1 , . . . , p − 1 ( H = 

{ 1 , . . . , p} ). 
We consider the problem of sorting imposed by the use of func- 

tion f : R m → H that maps alternative a i ∈ A evaluated in terms of 

m criteria to one of the decision classes C h , h = { 1 , . . . , p} . To ag- 

gregate performances on multiple criteria, we use a function as- 

signing a comprehensive score Sc(a i ) to a i ∈ A . The maximal score 

is assigned to an ideal alternative a + with the most preferred per- 

formances on all criteria, whereas the minimal score is associated 

with an anti-ideal alternative a −. The range [ Sc(a −) , Sc(a + )] may 

differ depending on the applied method. Moreover, the scale of 

a comprehensive score is divided by a set of class thresholds t h , 

h = 1 , . . . , p − 1 , which delimit the intervals implying an assign- 

ment to particular decision classes ( Köksalan & Özpeynirci, 2009 ): 

Sc(a i ) < t 1 ⇒ a i ∈ C 1 , 

t h −1 ≤ Sc(a i ) < t h ⇒ a i ∈ C h , for h = 2 , . . . , p − 1 , 

Sc(a i ) ≥ t p−1 ⇒ a i ∈ C p . (1) 

To avoid direct specification of the parameter values, we assume 

indirect preference information is available or specified by the DM. 

It has the form of desired class assignments C DM 

(a ∗
i 
) for refer- 

ence alternatives a ∗
i 

∈ A 

R . When constructing or training the sorting 

model, we will disaggregate holistic preferences to respect the ref- 

erence assignments in the following way ( Doumpos & Zopounidis, 

2004 ): 

for all a ∗
i 

∈ A 

R : 
Sc(a ∗

i 
) ≥ t C DM (a ∗

i 
) −1 , if C DM 

(a ∗
i 
) > 1 , 

Sc(a ∗
i 
) + ε ≤ t C DM (a ∗

i 
) , if C DM 

(a ∗
i 
) < p, 

} 

(2) 

where ε is an arbitrarily small positive value. When numerous as- 

signment examples are considered, they might not be reproduced 

simultaneously. Therefore, in the optimization phase, we will con- 

sider the following loss function defined as an average of regrets 

for all reference alternatives: 

Minimize : loss = 

1 

| A 

R | 
∑ 

a ∗
i 
∈ A R 

r egr et(a ∗i ) , (3) 

where r egr et is equal to the distance from thresholds delimiting 

the desired class in case an alternative is misclassified or to zero, 

otherwise: 

r egr et(a ∗i ) = max { t C DM (a ∗
i 
) −1 − Sc(a ∗i ) , Sc(a ∗i ) − t C DM (a ∗

i 
) , 0 } . (4) 

In the following section, we discuss a variety of scoring procedures 

that will be incorporated in the ANN-based preference learning al- 

gorithms. For each of them, the scoring function Sc is defined dif- 

ferently. 
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...
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Linear Layer

Normalization
...

Fig. 1. The architecture of the neural network employed by the ANN-OWA method. 

3. Preference learning with artificial neural networks and 

MCDA-inspired preference models 

In this section, we present the MCDA-inspired approaches that 

learn parameters of the sorting models from large sets of assign- 

ment examples. For this purpose, they apply Artificial Neural Net- 

works. We will discuss a variety of methods that implement dif- 

ferent strategies for deriving the comprehensive scores of alterna- 

tives. Nonetheless, for all of them, the derived model remains eas- 

ily interpretable, and the sorting results are explainable for a hu- 

man DM. 

3.1. ANN-OWA: preference learning with ordered weighted average 

and ANN 

OWA is an aggregation function generalizing other operators 

such as min, max, average, median, or sum ( Yager, 1988 ). It ag- 

gregates performances using a revised weighted sum: 

OWA (a i ) = 

m ∑ 

j=1 

w j sort j (a i ) , (5) 

where sort j (a i ) is the j-th largest performance of alternative a i on 

any criterion and w j is the weight linked with the j-th position in 

sorted performance vector of a i . We assume that w j ∈ R ≥0 . 

ANN-OWA starts with sorting the performances of each alter- 

native in a non-increasing order (see Fig. 1 ). Then, a single linear 

layer aggregates the performances using the OWA operator with 

non-negative weights. Since the value of OWA can be, in general, 

arbitrarily large, to increase interpretability of the results, we apply 

normalization to the [0,1] range by dividing the scores by the sum 

of weights w j : 

Sc AN N −OWA (a i ) = 

∑ m 

j=1 w j sort j (a i ) ∑ m 

j=1 w j 

. (6) 

Such a score is compared against the thresholds t = [ t 1 , t 2 , . . . , t p−1 ] 

to determine the class assignments using Eq. (1) and calculate the 

regret that is considered when optimizing the network parameters, 

i.e., weights w j and thresholds t . 

The last component of the ANN responsible for the compari- 

son of a comprehensive score with class thresholds to derive the 

assignment is the same for all methods presented in the follow- 

ing subsections. Thus, we will not mention it when describing 

these approaches, instead focussing on the computation of scores 

in line with the assumptions of different methods. Nevertheless, 

the thresholds and the underlying sorting procedure will always 

be depicted in the figures representing the architectures of neural 

networks. 

3.2. ANN-Ch: preference learning with the Choquet integral and ANN 

The Choquet integral model is an additive aggregation method, 

dealing with interactions between criteria ( Angilella et al., 2013 ). 

It takes the form of a weighted sum over all subsets of criteria 

T ⊆ G , where the performance for T is the minimum over the per- 

formances on criteria contained in T : 

Ch μ(a i ) = 

∑ 

T ⊆G 

w T · min 

j∈ T 
g j (a i ) , (7) 

where 
∑ 

T ⊆G w T = 1 . We limit the considered interactions to pairs 

of criteria by referring to the 2-additive Möbius transform ( Tehrani 

et al., 2012 ): 

Ch μ, 2 (a i ) = 

m ∑ 

j=1 

w j g j (a i ) + 

∑ 

{ j,l}⊆G 

w { j,l} min (g j (a i ) , g l (a i )) . (8) 

To respect the pre-defined preference directions for all criteria, we 

assume that the weights are non-negative: 

w j ≥ 0 , ∀ j ∈ { 1 , . . . , m } . (9) 

Moreover, we consider the positive and negative interactions, 

though limiting their impact on the attained scores in the follow- 

ing way: 

w { j,l} + w j ≥ 0 , ∀ j ∈ { 1 , . . . , m } , ∀ l ∈ { 1 , . . . , m }\{ j} . (10) 

The variant of the method respecting such constraints will be de- 

noted as ANN-Ch-Constr. In the pre-processing phase, we perform 

the Möbius transform of a 2-order additive measure of the input 

data (see Fig. 2 ). Then, two linear layers are responsible for ag- 

gregating pre-criteria performances using non-negative weights re- 

specting Eq. (9) and interaction components using weights associ- 

ated with pairs of criteria that respect Eq. (10) . Their outputs are 

summed and normalized to the [0,1] range as follows: 

Sc AN N −C h −C onstr. (a i ) = 

Ch μ, 2 (a i ) ∑ m 

j=1 w j + 

∑ 

{ j,l}⊆G w { j,l} 
. (11) 

The parameters optimized by ANN are weights of both linear layers 

( w j and w j,l ) and class thresholds t . 

The other two variants of the Choquet integral-based method 

incorporate different assumptions. The first one, called ANN- 

Ch-Pos. , considers only positive interactions, hence limiting the 

weights for individual criteria and pairs to non-negative values. 

The other variant, called ANN-Ch-Uncons. , does not impose any 

constraints on the weights. Moreover, both variants apply normal- 

ization of scores with the sigmoid function as proposed in Tehrani 

et al. (2012) : 

Sc AN N −Ch −Sig (a i ) = sigmoid(Ch μ, 2 (a i ) + bias ) . (12) 

A diagram showing the network operations for these variants is 

presented in Fig. 3 . First, we perform the Möbius transform. Since 

there are no constraints involving different weights, per-criteria 

performances and interaction components can be aggregated us- 

ing a single linear layer. It performs the calculations defined by 

Eq. (8) and adds a bias value as defined by Eq. (12) . The bias 

allows the sigmoid function to be shifted, and the lack of restric- 

tions on the sum of weights allows for an arbitrary adjustment of 
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Fig. 2. The architecture of the neural network employed by the ANN-Ch-Constr. method. 

...
Möbius transform
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Fig. 3. The architecture of the neural network employed by the ANN-Ch-Pos. and ANN-Ch-Uncons. methods. 

the sigmoid function’s argument scale. In ANN-Ch-Pos. , all weights 

need to be non-negative. The result from the linear layer is pro- 

cessed by a sigmoid activation function. It ensures that the score 

for each alternative is in the [0,1] range. 

3.3. ANN-TOPSIS: preference learning with TOPSIS and ANN 

Technique for Order of Preference by Similarity to Ideal Solu- 

tion (TOPSIS) considers the ideal a + and anti-ideal a − alternatives 

with the following performances on each criterion g j ∈ G ( Hwang 

& Yoon, 1981 ): 

g j (a + ) = max a i ∈ A (g j (a i )) and g j (a −) = min a i ∈ A (g j (a i )) . (13) 

The closer alternative a i ∈ A is to a + and the further it is from a −, 

the more preferred it is. The respective distances can be computed 

as follows: 

d + (a i ) = 

( 

n ∑ 

j=1 

w 

′ 
j y 

+ 
j 
(a i ) 

) 

1 
z 

and d −(a i ) = 

( 

n ∑ 

j=1 

w 

′ 
j y 

−
j 
(a i ) 

) 

1 
z 

, (14) 

where w 

′ 
j 
= | w j | z , w j ∈ R ≥0 is the weight associated with criterion 

g j ∈ G , y + 
j 
(a i ) = | g j (a + ) − g j (a i ) | z and y −

j 
(a i ) = | g j (a i ) − g j (a −) | z , 

for j = 1 , . . . , m . Overall, the comprehensive score for a i is com- 

puted in the following way: 

R (a i ) = 

d −(a i ) 

d −(a i ) + d + (a i ) 
. (15) 

In this paper, we assume z = 1 . Thus w 

′ 
j 

can be interpreted as the 

weight of criterion g j without any additional transformations. 

The architecture of the neural network performing the respec- 

tive calculations for ANN-TOPSIS is presented in Fig. 4 . In the pre- 

processing stage, we compute y + 
j 
(a i ) and y −

j 
(a i ) values for each al- 

ternative a i ∈ A . The linear layer calculates the distances from the 

ideal and anti-ideal alternatives while using non-negative weights 

w 

′ 
j 
. It is followed by aggregation according to Eq. (15) . The param- 

eters subject to optimization are weights w 

′ 
j 

and class thresholds 

t . The neural networks for ANN-OWA, all variants of ANN-Ch, and 

ANN-TOPSIS share the same number of layers, including one input 

layer, one hidden layer, and one output layer responsible for sort- 

ing. 

3.4. Modelling monotonic functions with ANNs 

To construct ANNs suitable for conducting calculations of more 

complex MCDA methods, it is necessary to define a monotonic 

function. It can be seen as transforming per-criteria performances 

or performance differences, maintaining the pre-defined preference 

directions. We consider two monotonic functions: non-decreasing 

and non-increasing for gain- and cost-type criteria, respectively. 

The transformation of a function from non-decreasing to non- 

increasing is conducted by negating the function. We define a 

non-decreasing function as a neural network with a single hidden 

layer and a continuous sigmoidal activation function with positive 

weights. According to Cybenko (1989) , for an arbitrary continuous 

sigmoid function σ , function u ( x ) of vector x ∈ R 

N : 

u ( x ) = 

L ∑ 

k =1 

αk σ (y T k x + θk ) , (16) 

where αk , θk ∈ R and y k ∈ R 

N , can approximate any N-dimensional 

continuous function with precision depending on the number of 

components L . Also, u ( x ) is equivalent to a neural network with a 

single hidden layer ( Cybenko, 1989 ). 

In what follows, we build on the following two observations. 

On the one hand, if F is a family of monotonic functions, then ∑ 

f (x ) ∈ F f (x ) is also a monotonic function. On the other hand, the 

linear transformation α f (x ) + β of a monotonic function f , where 

α ∈ R ≥0 and β ∈ R , is a monotonic function. Assuming αk ∈ R ≥0 , 

y k ∈ R 

N 
≥0 

, θk ∈ R , and σ is a monotonic continuous sigmoidal func- 

tion, then u ( x ) is also a monotonic function. The values of αk , 

y k , and θk will be optimized using an algorithm described in 

Section 4 by iteratively refining parameter values with function 

gradients. The major monotonic continuous sigmoidal functions are 

sigmoid and hard sigmoid functions. However, to avoid a problem 

of gradient vanishing, in the learning process, we will consider the 

non-decreasing monotonic function LeakyHard Sigmoid (see Fig. 5 ): 

Leaky Hard Sigmoid(x ) = 

{ 

δx, i f x < 0 , 

x, i f 0 ≤ x ≤ 1 , 

δ(x − 1) + 1 , i f x > 1 , 

(17) 

where δ is a slope factor, being a very small value in the range 

[0,1). The above function is not a continuous sigmoidal function 

and cannot be used to approximate any non-decreasing mono- 

tonic function. For example, it cannot represent the level segments. 

However, it is possible to decrease the value of a slope during 

training to zero. Then, LeakyHard Sigmoid will be equal to hard sig- 

moid function. We will consider a one-dimensional space of x and 
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Fig. 4. The architecture of the neural network employed by the ANN-TOPSIS method. 

0 1

1

Fig. 5. The LeakyHard Sigmoid function. 

y . Thus, for the sake of simplicity, we assume that: 

u (x ) = 

L ∑ 

k =1 

αk σ (y k x + θk ) , (18) 

where σ is LeakyHard Sigmoid with a slope 0.01, L is the number 

of components of function u , and y k , αk ∈ R ≥0 . Function u (x ) can 

be considered as a line segment function with ends designated by 

the individual components. It changes slope only at the character- 

istic points resulting from the applied σ function. Each component 

has two characteristic points: ( 
−θk 
y k 

, 0) and ( 
−θk +1 

y k 
, αk ) , which are 

projected onto u (x ) . Such a projection from the component func- 

tions on the output model for a single argument x is presented in 

Fig. 6 . Function u (x ) is marked with a solid line resulting from the 

combination of three components marked with dashed lines. The 

transformation conducted by Monotonic Block is general, not im- 

posing the limits on the ranges of its output values. This means 

that, in particular, u j (0) ∈ R and u j (1) ∈ R ≥0 . To ensure that the 

results are interpretable, subsequent normalization to the desired 

range, e.g., [0 , 1] , is needed. 

Function u (x ) , defined by Eq. (18) , can be presented as a neural 

network with a single input value x . This value is copied L times 

and passed as the input to the linear layers, where it is scaled by 

weights y k and shifted by bias θk . Then, the output from the input 

layer is transformed by the LeakyHard Sigmoid function and passed 

to the next linear layer. It must be ensured that the weights in all 

layers are greater than zero to maintain the function’s monotonic- 

ity. The weights αk are initialized with positive values. If during 

training some value falls below ε being an arbitrarily small positive 

value, it is set to ε. In what follows, we will refer to the network 

representing function u (x ) as Monotonic Block (see Fig. 7 ). It will 

be used as a component of the three preference learning methods 

that are presented in the following subsections. 

3.5. ANN-UTADIS: preference learning with UTADIS and ANN 

UTADIS is a preference disaggregation method that quantifies a 

comprehensive quality of each alternative using an additive value 

function ( Zopounidis & Doumpos, 20 0 0 ): 

U(a i ) = 

m ∑ 

j=1 

w j u j (g j (a i )) , (19) 

where u j ∈ [0 , 1] is a marginal value function and w j is a weight 

associated with criterion g j . Function U(a i ) takes values in the [0,1] 

range, delimited by U(a −) = 0 and U(a + ) = 1 for anti-ideal and 

ideal alternatives, respectively. In UTADIS, u j is piecewise linear 

with n j (A ) pre-defined characteristic points x k 
j 

such that: 

u j (x k j ) ≤ u j (x k +1 
j 

) , ∀ k ∈ { 1 , . . . , n j (A ) − 1 } , and ∀ j ∈ { 1 , . . . , m } . 
(20) 

The marginal values between these points are computed using 

linear interpolation. In UTADIS, the marginal values u j (x k 
j 
) in 

the characteristic points and weights w j are determined using 

mathematical programming based on a set of assignment exam- 

ples ( Zopounidis & Doumpos, 20 0 0 ). In turn, we will employ ANN 

for deriving weights and the shape of marginal value functions 

without having to specify characteristic points. In this way, the 

method offers greater flexibility in fitting the learning data. 

The neural network used by ANN-UTADIS is shown in Fig. 8 . 

The performance on each criterion is transformed using Monotonic 
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Fig. 6. Function u (x ) representing the transformation conducted by the Monotonic Block with three ( L = 3 ) components. 

Monotonic Block

LeakyHardSigmoid Linear LayerLinear Layer
Input Output

Fig. 7. The Monotonic Block used in the preference learning algorithms based on ANNs. 

Monotonic Block

Monotonic Block

Linear Layer

...
...

Monotonic Block

Normalization
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Fig. 8. The architecture of the neural network employed by the ANN-UTADIS method. 
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Blocks according to Eq. (18) , adhering to the monotonicity con- 

straint. To use each Monotonic Block , it is required to provide the 

number L of components. It constrains the maximum number of 

breakpoints for the resulting function (note that some components 

may become inactive during optimization, i.e., when αk = 0 ). Then, 

the per-criterion marginal values are aggregated into a comprehen- 

sive value in line with Eq. (19) by a linear layer. Its weights w j are 

constrained to positive values to preserve the pre-defined prefer- 

ence directions. For the sake of normalization, we apply the min- 

max scaling of comprehensive scores: 

Sc ANN-UTADIS (a i ) = 

U(a i ) − U(a −) 

U( a + ) − U(a −) 
. (21) 

The neural network used by ANN-UTADIS optimizes weights 

w j , class thresholds t , and parameters incorporated in the Mono- 

tonic Blocks . In general, a marginal value function for each crite- 

rion may be modeled with a different number L of components. 

However, we will use the same value of L for all criteria, which 

allows for a more straightforward parallelization of calculations 

in Eq. (18) by operations on tenors rather than on individual 

scalars. Overall, the network for ANN-UTADIS involves one input 

layer, three hidden layers, and one output layer. 

3.6. ANN-PROMETHEE: preference learning with PROMETHEE and 

ANN 

The PROMETHEE method aggregates the results of pairwise 

comparisons of each alternative against all remaining ones into 

a comprehensive measure of desirability ( Brans & De Smet, 

2016 ). For each pair (a i , a k ) ∈ A × A and each criterion g j ∈ G , the 

marginal preference degree is computed as follows: 

F j (a i , a k ) = P j 
(
d j (a i , a k ) 

)
, (22) 

where P j is a marginal preference function and d j (a i , a k ) = g j (a i ) −
g j (a k ) is the performance difference. In PROMETHEE, six pre- 

defined types of P j are considered. However, the most commonly 

used is the following: 

F j (a i , a k ) = 

⎧ ⎨ 

⎩ 

0 , if d j (a i , a k ) ≤ q j , 
d j (a i ,a k ) −q j 

p j −q j 
, if 0 < d j (a i , a k ) ≤ p j , 

1 , if d j (a i , a k ) > p j , 

(23) 

where q j is an indifference threshold defining the maximal perfor- 

mance difference that is negligible and p j is a preference thresh- 

old specifying the minimal performance difference justifying a 

strict preference. All preference functions in PROMETHEE are non- 

decreasing. Also, they are normalized so that F j (a i , a k ) = 0 for 

d j (a i , a k ) ≤ 0 and their largest value is one. The function type and 

the respective parameter values for each criterion need to be pro- 

vided by the DM. The outcomes from the individual criteria are 

aggregated into a comprehensive preference index π(a i , a k ) using 

a weighted sum: 

π(a i , a k ) = 

m ∑ 

j=1 

w j F j (a i , a k ) , (24) 

where w j ≥ 0 is a weight associated with criterion g j and ∑ m 

j=1 w j = 1 . As a result, π(a i , a i ) = 0 , a i ∈ A and π(a + , a −) = 

1 , where a + and a − are the ideal and anti-ideal alternatives. 

Such preference degrees are further aggregated into the positive 

NF S + (a i ) and negative NF S −(a i ) flows, using the NFS procedure: 

NF S + (a i ) = 

1 

n − 1 

n ∑ 

k =1 

π(a i , a k ) and 

NF S −(a i ) = 

1 

n − 1 

n ∑ 

k =1 

π(a k , a i ) . (25) 

The arguments in favour and against alternative a i are finally ag- 

gregated into a comprehensive flow: 

NF S(a i ) = NF S + (a i ) − NF S −(a i ) . (26) 

In the proposed ANN-PROMETHEE method, we use monotonic 

marginal preference functions that are automatically adjusted to 

the training data, not requiring the specification of type, weights, 

or comparison thresholds. The architecture of the underlying neu- 

ral network is presented in Fig. 9 . Following the assumptions 

of PROMETHEE, we first compute the performance differences 

d j (a i , a k ) on each criterion. The negative differences are clipped to 

zero via the ReLU function: 

ReLU(x ) = max (x, 0) . (27) 

In this way, the non-positive performance differences will be as- 

signed the same value of the preference index. The values of 

marginal preference functions F j are computed using the Monotonic 

Block which ensures both monotonicity and flexibility of shape ad- 

justment: 

F j (a i , a k ) = u j ( max (d j (a i , a k ) , 0)) . (28) 

The marginal preference degrees are aggregated into a compre- 

hensive preference index using a linear layer with non-negative 

weights. Since weights and parameters of the Monotonic Block are 

not constrained from the top, we normalize the comprehensive in- 

dices as follows: 

πnorm 

(a i , a k ) = 

π(a i , a k ) − π(a −, a −) 

π( a + , a −) − π(a −, a −) 
. (29) 

Then, the outcomes of pairwise comparisons are aggregated over 

all alternatives into positive, negative, and comprehensive flows us- 

ing the Net Flow Score procedure: 

Sc ANN-PROMETHEE (a i ) = NF S + (a i ) − NF S −(a i ) 

= 

1 

n − 1 

[ 

n ∑ 

k =1 

πnorm 

(a i , a k ) − πnorm 

(a k , a i ) 

] 

. 

(30) 

The use of NFS implies that the preference degrees for all pairs 

of alternatives need to be computed in a batch. Moreover, simi- 

lar to the ANN-UTADIS, ANN-PROMETHEE requires specification of 

the number of components for each Monotonic Block . However, it is 

recommended to use the same number L for all such blocks. Over- 

all, the network for ANN-PROMETHEE involves one input layer, four 

hidden layers, and one output layer. 

3.7. ANN-ELECTRE: preference learning with ELECTRE and ANN 

The ELECTRE method compares the alternatives pairwise 

through an outranking relation ( Figueira et al., 2013 ). In what fol- 

lows, we discuss its adaptation for scoring the alternatives based 

on aggregating the sufficiently great outranking credibilities using 

the NFS procedure. We will consider two tests to compute the 

credibility for pair (a i , a k ) ∈ A × A . The concordance test quantifies 

the arguments in favor of a i being at least as good as a k . The 

marginal concordance index for criterion g j is computed as fol- 

lows: 

c j (a i , a k ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 , i f g j (a i ) ≥ g j (a k ) − q j , 
g j (a i )+ p j −g j (a k ) 

p j −q j 
, i f g j (a i ) < g j (a k ) − q j 

and g j (a i ) ≥ g j (a k ) − p j , 
0 , i f g j (a i ) < g j (a k ) − p j , 

(31) 

where q j and p j are, respectively, indifference and preference 

thresholds. Whichever the threshold values, c j (a i , a k ) = 1 for 

g(a i ) ≥ g(a k ) . Moreover, c j (a i , a k ) is a monotonic and piecewise 
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Fig. 9. The architecture of the neural network employed by the ANN-PROMETHEE method. 

linear function. The per-criteria results are aggregated into a com- 

prehensive concordance index C(a i , a k ) using a weighted sum: 

C(a i , a k ) = 

m ∑ 

j=1 

w j c j (a i , a k ) , (32) 

where w j is a weight associated with g j and 

∑ m 

j=1 w j = 1 . Index 

C(a i , a k ) is interpreted as the strength of the coalition of criteria 

supporting the outranking. In turn, the discordance test verifies 

the strength of arguments against the outranking. In particular, a 

marginal discordance index is defined as follows: 

D j (a i , a k ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 , i f g j (a i ) ≤ g j (a k ) − v j , 
g j (a k ) −p j −g j (a i ) 

v j −p j 
, i f g j (a i ) > g j (a k ) − v j 

and g j (a i ) ≤ g j (a k ) − p j , 
0 , i f g j (a i ) > g j (a k ) − p j , 

(33) 

where v j is a veto threshold interpreted as the minimal perfor- 

mance difference im plying a com plete discordance. The thresholds 

need to respect the following constraints: 0 ≤ q j ≤ p j < v j . Note 

that the discordance effect does not to be considered for all g j ∈ G 

because the power to veto against the outranking is usually at- 

tributed only to the most important criteria. We consider the ag- 

gregation of partial discordances into a comprehensive one using 

the following function ( Mousseau & Dias, 2004 ): 

D (a i , a k ) = 1 − max 
j=1 , ... ,m 

D j (a i , a k ) . (34) 

Hence the maximal partial discordance over all criteria decides 

upon the comprehensive strength of arguments against the hy- 

pothesis that a i outranks a k . Finally, the credibility degree is com- 

puted by multiplying the comprehensive concordance and discor- 

dance: 

σ (a i , a k ) = C(a i , a k ) · D (a i , a k ) . (35) 

Thus the greater the arguments in favor and the lesser the argu- 

ments against the outranking, the greater the credibility. To com- 

pute the score for each alternative, we will consider only suffi- 

ciently great credibilities to avoid compensation between marginal 

arguments in favor or against a i being a favorable alternative. 

Specifically, we will consider only σ (a i , a k ) which are at least as 

good as cutting level λ such that 0 . 5 ≤ λ ≤ 1 . Finally, similar to the 

PROMETHEE method, we compute the Net Flow Score for each al- 

ternative a i ∈ A : 

NF S(a i ) = NF S + (a i ) − NF S −(a i ) 

= 

1 

n − 1 

[ 

n ∑ 

k =1 

σNF S (a i , a k ) − σNF S (a k , a i ) 

] 

, (36) 

where σNF S (a i , a k ) = σ (a i , a k ) − λ if σ (a i , a k ) ≥ λ and 

σNF S (a i , a k ) = 0 , otherwise. Note that other realizations of 

σNF S (a i , a k ) would also be possible. However, we opted for a 

variant that keeps the spirit of ELECTRE while being intuitively 

useful in computing comprehensive scores of alternatives via NFS. 

In the proposed ANN-ELECTRE , we avoid direct specification 

of thresholds ( q j , p j and v j ), weights w j , and cutting level λ. In 

turn, the parameters of an outranking-based sorting model are in- 

ferred indirectly using the neural network whose architecture is 

presented in Fig. 10 . In the preprocessing phase, ANN computes 

the performance differences. Then, the calculations are split into 

two parts responsible for conducting the concordance and discor- 

dance tests. These parts share the value of preference thresholds 

p j , j = 1 , . . . , m , to prevent the simultaneous occurrence of con- 

cordance and discordance. These thresholds are optimized when 

training the ANN while ensuring that p j ∈ [0 , 1] . 

In part responsible for the concordance test, the performance 

differences are truncated to positive values by the ReLU function 

(see Eq. (27) ), and their order is reversed by subtracting them 

from one. Since the performances on individual criteria are nor- 

malized in the [0,1] range, after the above transformation, we 

will get one (corresponding to the maximal value of the concor- 

dance index) if g j (a i ) ≥ g j (a k ) , or a value in the [0,1] range, oth- 

erwise. The obtained value is processed by the marginal concor- 

dance function u c 
j 

implemented by Monotonic Block , allowing for 

its monotonic and flexible transformation as depicted in Fig. 11 (a). 

The marginal concordance should be zero if the performance dif- 

ference exceeds the preference threshold p j . This can be attained 

by subtracting the value of u c 
j 

attained for 1 − p j , i.e., u c 
j 
(1 − p j ) 

from u c 
j 
(1 − ReLU(g j (a k ) − g j (a i ))) . The resulting difference should 

be truncated to positive values, e.g., using the ReLU function. How- 

ever, the lack of a gradient for the negative arguments of this func- 

tion makes it difficult to optimize values of preference thresholds 

p j , j = 1 , . . . , m . For this reason, we use the LeakyReLU function in- 

stead which has a non-zero gradient for negative values equal to δ: 

LeakyReLU(x ) = max (x, δx ) , (37) 

where δ is a slope angle for the negative part of the function. It 

should take a small value and can be minimized to zero during 

optimization. The result of these operations is shown in Fig. 11 (b). 

Overall, the marginal concordance index c j (a i , a k ) is computed as 

follows: 

c j (a i , a k ) = LeakyReLU p 

(
u 

c 
j 

(
1 − ReLU(g j (a k ) − g j (a i )) 

)
−u 

c 
j (1 − p j ) 

)
. (38) 

Comprehensive concordance index C(a i , a k ) is calculated using 

Eq. (32) by a linear layer that incorporates criteria weights w j ≥ 0 . 
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Fig. 10. The architecture of the neural network employed by the ANN-ELECTRE method. 

(a) intermediate functions (b) final functions

Fig. 11. The marginal concordance and discordance functions for the ANN-ELECTRE method before (a) and after (b) subtracting the value attained for preference threshold 

p j and after transformation by LeakyReLU with δ = 0 . 01 . 

Finally, values of C(a i , a k ) are normalized to the [0,1] range, using 

the min-max scaling: 

C norm 

(a i , a k ) = 

C(a i , a k ) − C(a −, a + ) 
C( a + , a −) − C(a −, a + ) 

. (39) 

The other part of the ANN-ELECTRE network is responsible for 

conducting the discordance test. It first truncates the performance 

differences to positive values, i.e., these for which g j (a k ) ≥ g j (a i ) . 

Then, the result of such an operation is processed by function u D 
j 

modeled by the Monotonic Block to obtain marginal discordance in- 

dex (see Fig. 11 a). To account for the preference threshold p j and 

reduce the discordances to zero for performance differences be- 

low this threshold, we subtract the value of u D 
j 

attained for p j , i.e., 

u D 
j 
(p j ) , from u D 

j 
(ReLU(g j (a k ) − g j (a i ))) . Finally, the resulting differ- 

ence is processed using the LeakyReLU function (see Fig. 11 b) in 

the following way: 

D j (a i , a k ) = LeakyReLU 

(
u 

D 
j (ReLU(g j (a k ) − g j (a i ))) − u 

D 
j (p j ) 

)
. 

(40) 
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Comprehensive discordance index D (a i , a k ) is computed in line 

with Eq. (34) and normalized to the [0,1] range: 

D norm 

(a i , a k ) = 

D (a i , a k ) − D (a + , a −) 

D ( a −, a + ) − D (a + , a −) 
. (41) 

Overall, the largest value of the marginal discordance is one, which 

allows the method to adjust the test in such a way that the discor- 

dance is not necessarily modeled on all criteria. 

The results from the two parts of ANN responsible for the con- 

cordance and discordance tests are combined into the outranking 

credibility σ (a i , a k ) using Eq. (35) in the form of a multiplication 

layer. To consider only sufficiently great credibilities, we should de- 

crease them by cutting level λ and transform the resulting nega- 

tive values to zero. However, since cutting level λ is a parameter 

learned during training, to allow for its more efficient optimization, 

we decided to transform the negative credibilities to values close 

to zero using the LeakyReLU function with a very small δ equal to 

0.001: 

σNF S (a i , a k ) = LeakyReLU(σ (a i , a k ) − λ) . (42) 

The positive and negative flows as well as comprehensive scores, 

denoted by Sc AN N −E LE CT RE ( a i ) , for all alternatives a i ∈ A are com- 

puted in line with Eq. (36) . 

The hyperparameters of ANN-ELECTRE are the slope values δ
for the LeakyReLU function and the number L of components for 

Monotonic Blocks . Similar to the previously discussed methods, to 

speed up the optimization process, we use the same value of L for 

all criteria in the concordance and discordance parts of the net- 

work. Overall, the network for ANN-ELECTRE involves one input 

layer, five hidden layers, and one output layer. Hence its architec- 

ture involves the greatest number of layers and units among all 

introduced methods. 

4. Optimization 

In this section, we discuss the process of determining pa- 

rameter values for the presented sorting models along with all 

the supporting techniques that accelerate this process. The role 

of optimization is to determine an optimal model highly consis- 

tent with the supplied/available assignment examples. Due to non- 

linear transformations, numerous relationships between values of 

different parameters, and a large number of objects to be scored 

(particularly for methods based on pairwise comparisons), the use 

of contemporary mathematical programming solvers is excluded 

because of their insufficient efficiency. Therefore, to determine the 

values of model parameters, we use the iterative optimization 

methods based on Gradient Descent (GD). There are many differ- 

ent techniques, called optimizers, used in ANN that are based on 

GD. In this paper, we employ AdamW, which is the Adam opti- 

mizer ( Kingma & Ba, 2014 ) with decoupled weight decay regular- 

ization ( Loshchilov & Hutter, 2018 ). 

The AdamW optimizer employs the following hyperparameters 

having a significant impact on the training process, speed, and 

quality of an identified solution: 

• α – a learning rate that affects the size of the parameter cor- 

rection in an optimization step. Too low values imply slow 

learning and the possibility of getting stuck in the local op- 

timum too early, while too high values make it possible to 

omit the optimum and prevent the optimization from con- 

verging. 
• β1 and β2 – momentum factors determining the impact of 

historical improvement of parameters on the current step. 

Momentum is used to speed up and improve the optimiza- 

tion process by drawing conclusions from previous steps to 

determine a more stable optimization direction and less dy- 

namic response to perturbations during training. 

• ε – a small value added to the denominator to stabilize the 

calculations. 
• w τ – a weight decay factor. 

The entire optimization process is presented as Algorithm 1 . 

Algorithm 1 Optimization algorithm using AdamW (adapted after 

Loshchilov & Hutter, 2018 ). 

1: given α ∈ (0 , 1) , β1 = 0 . 9 , β2 = 0 . 999 , ε = 10 −8 , w τ = 0 . 01 , ξ ∈ 

(0 , 1) 

2: initialize epoch number τ ← 0 , parameter vector x τ=0 ∈ R 

n , 

first moment vector m τ=0 ← 0 , second moment vector v τ=0 ← 

0 

3: e v aluations ← g(A 

R ) 

4: input ← P reprocesing(e v aluations ) 

5: repeat 

6: τ ← τ + 1 

7: input noised ← input + N (0 , ξ ) 

8: g τ ← ∇Loss (Sc( x τ−1 , input noised )) 

9: m τ ← β1 m τ−1 + (1 − β1 ) g τ
10: v τ ← β2 v τ−1 + (1 − β2 ) g 

2 
τ

11: ˆ m τ ← m τ / (1 − βτ
1 
) 

12: ˆ v τ ← v τ / (1 − βτ
2 
) 

13: x τ ← x τ−1 − (α ˆ m τ / ( 
√ 

ˆ v τ + ε) + w τ x τ−1 ) 

14: until stopping criterion is met 

First, all parameter values x τ=0 are initialized randomly accord- 

ing to the constraints imposed on specific parameter types. These 

parameters can be, e.g., weights w j , interaction coefficients w { j,l} 
and class thresholds t for the ANN-Ch methods, whereas for ANN- 

ELECTRE – these are αk , y k , θk from each Monotonic Block , weights 

w j , preference thresholds p j , cutting level λ, and class thresholds t . 

At the same time, all auxiliary variables for the optimization pro- 

cess, including an epoch number and moment vectors, are initial- 

ized (see line 2). 

We used two optimization techniques aimed at accelerating op- 

timization. The first one is Batch Gradient Descent (BGD), which 

calculates loss, gradient, and modifications of network parameter 

values at once after processing all alternatives in A 

R (see line 3). 

It speeds up the entire optimization process and makes the final 

model independent from the order of processing the alternatives. 

If it is impossible to use BGD, it is recommended to employ Mini 

Batch Gradient Descent ( Ruder, 2016 ). This technique divides the 

training set into subsets in each epoch and trains this subset at 

once. In this case, the order of processing alternatives may affect 

the final result, but this impact will be negligible with sufficiently 

large batches. 

The other method for reducing processing time is to prepare 

the input data in the preprocessing stage so that only operations 

using network parameters are performed in each epoch (see line 

4). For example, one assumes that the entry gets alternatives with 

performances converted to the 0–1 range via min-max scaling. 

After the input data preprocessing stage, the actual optimiza- 

tion process takes place. It consists of the iterative improvement 

of the model parameters to minimize a comprehensive classifi- 

cation error. To increase the noise resistance, robustness of the 

model, and its generalization capabilities, we used data augmen- 

tation ( Zheng, Song, Leung, & Goodfellow, 2016 ). It is a technique 

mainly used to reduce overfitting ( Shorten & Khoshgoftaar, 2019 ). 

It is about creating new training objects from the transformations 

of the original objects. The basic change is to add noise, e.g., in the 

form of Gaussian noise N (0 , ξ ) , where ξ is the standard deviation, 

being an additional hyperparameter of the optimization process. 

Its application implies a slight change in alternatives performances, 

different in each epoch (see line 7). 
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Table 1 

Values of criteria weights obtained for the ANN-based methods for the illus- 

trative example concerning the ERA dataset. 

Method w 1 w 2 w 3 w 4 

ANN-OWA 0.4257 0.0055 0.2225 0.3464 

ANN-Ch-Constr. 0.0693 0.0433 0.0000 0.0255 

ANN-Ch-Uncons. 0.0030 0.0039 0.0018 −0.0029 

ANN-Ch-Pos. 0.0060 0.0048 0.0021 0.0003 

ANN-TOPSIS 0.5799 0.7987 0.6676 0.5701 

ANN-UTADIS 0.3251 0.1663 0.4217 0.0869 

ANN-PROMETHEE 0.2126 0.4573 0.1591 0.1709 

ANN-ELECTRE (concordance) 0.5139 0.1955 0.2726 0.0180 

ANN-ELECTRE (discordance) 0.3029 0.0000 1.0000 0.2110 

By propagating the input with noise through the successive lay- 

ers of the network in iteration τ with the current parameter values 

x τ−1 , scores Sc are computed for all reference alternatives A 

R . The 

resulting class assignments are compared with the desired ones, 

and the respective loss is computed. Then, the loss is backprop- 

agated across all network layers, leading to gradient vectors g τ
(see line 8). Subsequently, gradient transformation is performed for 

each parameter to improve the optimization process (see lines 9–

12). The AdamW algorithm employs an adaptive learning rate for 

each method parameter, using squared gradients to scale the learn- 

ing rate and moving momentum average. 

Finally, a new parameter value x τ is computed by combin- 

ing the current value with the identified correction. For this pur- 

pose, AdamW considers the previously prepared auxiliary vari- 

ables, learning rate, and weight decay (see line 13). The latter 

parameter controls the model’s regularization, imposing an addi- 

tional optimization goal that prevents the construction of accurate, 

though incorrect, solutions with poor generalization capabilities. 

This may occur in the case of overfitting the model for the train- 

ing data or assigning parameter values that are hard to interpret 

(in the case of ANNs, these are usually prohibitively large values). 

The weight decay mechanism adds a penalty, controlled by w τ , for 

the value of the parameters in each optimization step. 

Processing all alternatives and modifying the parameter values 

is called an epoch. Such a process is performed multiple times un- 

til the stopping condition is met. In our case, it occurs after 200 

training epochs. The final parameter values are those for which the 

model obtained the lowest error for the validation set during opti- 

mization. 

5. Illustration of preference models inferred with neural 

networks 

In this section, we illustrate the preference models inferred 

with the proposed ANN-based methods. We consider a two-class 

problem called ERA (Employee Rejection / Acceptance) ( Hall et al., 

2009 ). It concerns a student survey regarding the willingness to 

hire an employee based on four features of a candidate, such as, 

e.g., experience and verbal skills. All criteria are of gain type and 

have been pre-processed as described in Section 4 . The models 

were obtained by training the methods on 80% randomly chosen 

alternatives. The criteria weights obtained for all methods are pre- 

sented in Table 1 , whereas the interaction coefficients for the ANN- 

Ch algorithms are given in Table 2 . 

ANN-OWA By applying the ANN-OWA method, we obtained a 

model parameterized with the weights shown in Table 1 . They re- 

flect the impact of each position in the sorted performance vector 

on the comprehensive score and assignment of each alternative. 

The highest performance on any criterion has the greatest impact 

on the results (almost 43% ), and the lowest performance is the sec- 

ond most important factor (almost 35% ). In contrast, the second- 

best performance has a negligible impact on the recommended as- 

signment (below 1% ). The two classes considered in the ERA prob- 

lem are separated by threshold t 1 = 0 . 4114 with OWA taking values 

between 0 and 1. 

In what follows, we provide the models derived with different 

variants of the Choquet integral-based algorithms. Unlike in the 

ANN-OWA method, the weights from the linear layer correspond 

to the weights of individual criteria and interaction coefficient for 

pairs of criteria. 

ANN-Ch-Constr Let us first consider the variant in which the cri- 

teria weights need to be positive, interactions can be either posi- 

tive or negative, but the negative interaction coefficients cannot be 

greater than the weights of the criteria involved in a given pair. 

The analysis of weights (see Table 1 ) indicates that the greatest im- 

pact is attributed to the first criterion, whereas the third criterion 

has the least influence on the attained score. The values of the in- 

teraction coefficients are given in Table 2 . All coefficients but w { 1 , 4 } 
are positive. The greatest synergy effect is observed for g 1 and 

g 2 as well as g 3 and g 4 . This means that the simultaneous pres- 

ence of highly preferred performances on these criteria pairs gives 

the alternative a bonus. Note that the weights retain the required 

dependencies and fulfill the constrain defined by Eq. (10) (e.g., 

w 1 + w { 1 , 4 } = 0 . 0693 + −0 . 0255 ≥ 0 ). 

The actual significance of criterion g i in the Choquet integral 

can be represented by the Shapley value ϕ(i ) defined as fol- 

lows ( Angilella et al., 2013 ): 

ϕ(i ) = w i + 

∑ 

{ i,l}⊆G 

w { i,l} 
2 

. (43) 

For the considered model, we obtained the following coefficients: 

ϕ(1) = 0 . 2454 , ϕ(2) = 0 . 3409 , ϕ(3) = 0 . 2148 , and ϕ(4) = 0 . 1989 . 

They indicate that g 1 and g 4 are the most and the least important 

criteria, respectively. In addition, g 3 has a relatively high signifi- 

cance level ϕ(3) despite its zero weight w 3 . However, it is involved 

in multiple interacting pairs of criteria. Finally, the separating class 

threshold is t 1 = 0 . 6117 . 

ANN-Ch-Uncons For the variant of ANN-Ch that considers both 

positive and negative interactions, while allowing for a change in 

the direction of preference for a given criterion, the results are 

quite different. Based on the inferred weights (see Table 1 ), we 

conclude that g 2 and g 3 have, respectively, the greatest and the 

least individual impacts on the attained scores. Moreover, g 4 is 

assigned a negative weight, meaning that preference learning led 

to the inversion of preference direction from gain to cost for this 

criterion. This may indicate possible inconsistencies in the data 

or suggest the need for incorporating additional constraints in 

the model. The interaction coefficients for all pairs of criteria are 

shown in Table 2 . Pair { g 1 , g 2 } has the greatest positive impact on 

the attained score, giving a great bonus to alternatives with high 

performances on both g 1 and g 2 . On the other extreme, w { 1 , 3 } is 

very low, implying that the benefit from the coexistence of high 

values on g 1 and g 3 is marginal. Furthermore, negative interactions 

can be observed for { g 1 , g 4 } and { g 2 , g 4 } . This suggests that it is 

beneficial for alternatives to have a low value on at least one crite- 

rion in these two pairs, which most likely relates to g 4 , whose in- 

dividual weight was already negative. The value of bias is 0.4486, 

serving to shift the sigmoid function and having no direct inter- 

pretation. In this case, the value of a separating class threshold is 

t 1 = 0 . 6117 . 

ANN-Ch-Pos The last variant of ANN-Ch assumed that both indi- 

vidual weights and interaction coefficients need to be positive. This 

excludes, e.g., negating the preference direction of g 4 , as suggested 

by the previous model. The analysis of weights (see Table 1 ) indi- 

cates the g 1 and g 2 are the most important criteria, whereas the 

impact of g 4 is negligible. The crucial role of the first two criteria 

is emphasized by the highest value of the interaction coefficient 

for this pair. On the other extreme, g 3 and g 4 are not interacting, 
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Table 2 

Values of criteria interaction coefficients obtained for the ANN-based methods using the 

Choquet integral for the illustrative example concerning the ERA dataset. 

Method w { 1 , 2 } w { 1 , 3 } w { 1 , 4 } w { 2 , 3 } w { 2 , 4 } w { 3 , 4 } 

ANN-Ch-Constr. 0.2859 0.0919 −0.0255 0.1374 0.1720 0.2003 

ANN-Ch-Uncons. 0.0042 0.0002 −0.0007 0.0022 −0.0021 0.0006 

ANN-Ch-Pos. 0.0043 0.0012 0.0008 0.0030 0.0006 0.0000 

(a) criterion g1 (b) criterion g2

(c) criterion g3 (d) criterion g4

Fig. 12. Marginal value functions scaled by criteria weights constructed by ANN-UTADIS for the ERA dataset. 

meaning that the coexistence of high or low values on these crite- 

ria has no impact on the attained score. The precise value of inter- 

action coefficients are shown in Table 2 . All above weights trans- 

late into the following normalized Shapley values: ϕ(1) = 0 . 3962 , 

ϕ(2) = 0 . 3794 , ϕ(3) = 0 . 1819 , and ϕ(4) = 0 . 0425 . They confirm 

that g 1 and g 2 are the most influential criteria, whereas the role 

of g 4 is negligible. The threshold separating the two considered 

classes on a scale of the Choquet integral is t 1 = 0 . 6173 . 

ANN-TOPSIS TOPSIS investigates the distance of each alterna- 

tive from the ideal and anti-ideal alternatives. For the considered 

problem, the performances of these alternatives are as follows: 

a + = [1 , 1 , 1 , 1] and a − = [0 , 0 , 0 , 0] . Criterion g 2 has the greatest 

impact on the distances, whereas the influence of g 4 is the least 

(see Table 1 ). However, the ratios between the criteria weights are 

much lesser than in the case of the Choquet integral-based models, 

meaning that in TOPSIS, the importances of all criteria are more 

balanced. The threshold separating the less and more preferred 

classes on the considered distance scale from 0 to 1 is t 1 = 0 . 4601 . 

ANN-UTADIS The value-based model inferred by ANN-UTADIS 

consists of marginal value functions for all criteria. Their shapes 

can be visualized based on the characteristic points of the Mono- 

tonic Blocks , weights for the linear layer aggregating marginal val- 

ues, and the normalization constraint for the weights. We used 20 

component functions (neurons in the hidden layer) in each of the 

Monotonic Blocks . Thus the constructed functions can have up to 

40 characteristic points. The plots can be reconstructed by query- 

ing relevant parts of the ANN for the value assigned to artificially 

generated input data. 

The marginal value functions are shown in Fig. 12 . The great- 

est maximal share in the comprehensive value is assigned to g 3 , 

whereas the lowest maximal share corresponds to g 4 (see Table 1 ). 

The marginal function for g 1 reveals minor differences for the per- 

formances ranging from 0.6 to 0.8. In contrast, above 0.8, there is 

a rapid increase in marginal values, indicating a high preference 

for alternatives with the most preferred values on g 1 . For g 2 , the 

marginal values assigned to performances lesser than 0.1 are close 

to zero. Above this level, the function’s shape, similar to the func- 

tion corresponding to g 3 , is nearly linear. In turn, for g 4 , the dif- 

ferences between the marginal values are significant for very low 

or very high performances, whereas the slope is less steep in the 

mid-range. The threshold separating the two classes on a scale of 

a comprehensive value from 0 to 1 is t 1 = 0 . 4909 . 

ANN-PROMETHEE In the PROMETHEE-based method, the param- 

eter values of the network refer to pairwise comparisons of alter- 

natives, providing evidence on how much one of them is preferred 

to the other. In this case, we used 20 component functions in each 

of the Monotonic Blocks and reconstructed the marginal preference 

functions similarly as for ANN-UTADIS. The plots in Fig. 13 are al- 

ready scaled by the criteria weights. 

The weight of g 2 is the greatest, whereas the importance coef- 

ficients of g 3 and g 4 are much lesser (see Table 1 ). For all criteria 

and the non-positive performance differences, pref erence degrees 

are zero. Moreover, a small advantage of one alternative over an- 

other does not imply the preference or the preference degree is 

very marginal. For example, for g 4 – the preference functions starts 

to increase for difference greater than 0.12. Hence this value can be 
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(a) criterion g1 (b) criterion g2

(c) criterion g3 (d) criterion g4

Fig. 13. Marginal preference functions scaled by criteria weights constructed by ANN-PROMETHEE for the ERA dataset. 

interpreted as an indifference threshold. Furthermore, we do not 

observe any level (constant) part above a certain value. Once the 

function starts to increase, this trend is maintained till the very 

end. Hence the preference threshold for all criteria is equal to one. 

The plots show that the greatest increase in the preference degree 

occurs for the largest differences ( > 0 . 75 ), but for g 1 and g 4 , such 

a steep slope is also observed for differences between 0.2 to 0.3. 

The threshold separating the two classes on a Net Flow Score scale 

from −1 to 1 is t 1 = 0 . 

ANN-ELECTRE For the ELECTRE-like method, we analyze the con- 

cordance and discordance functions for each criterion. In this ap- 

proach, 30 components were used in each of the Monotonic Blocks . 

However, as can be seen in Fig. 14 , most of them were deac- 

tivated during training. This led to easily interpretable functions 

with clearly distinguished thresholds for the performance differ- 

ence, implying the maximal value of either concordance or discor- 

dance. 

The marginal concordance and discordance functions presented 

in Fig. 14 were already normalized. Moreover, the concordance 

functions were scaled by the weights (see Table 1 ). For ANN- 

ELECTRE, there is no univocal information on the importance of 

different criteria because the methods assigned different weights 

to the arguments in favor and against the outranking deriving from 

the same criterion. On the one hand, g 1 has the greatest impact in 

terms of supporting the truth of outranking, whereas the concor- 

dance weight of g 4 is the least. On the other hand, g 3 may have a 

very negative impact by strongly supporting discordance in case of 

large performance differences against the outranking. The maximal 

discordance on g 3 is one, hence zeroing the outranking credibility 

in case one alternative is vastly worse than another on this cri- 

terion. Furthermore, the discordance does not occur for g 2 , which 

can be interpreted as the lack of power of this criterion to veto 

against the outranking. 

When it comes to the marginal functions, for performance dif- 

ferences greater or equal to zero, the concordance indices take 

the maximal value of one (if the plot is unscaled) or concordance 

weight assigned to a given criterion (when considering a scaled 

plot as depicted in Fig. 14 ). For all criteria, an indifference thresh- 

old is close to zero. It is also possible to distinguish the preference 

and veto thresholds. When the performance difference exceeds the 

negated preference threshold, the concordance becomes positive, 

whereas if the performance difference is lesser than this thresh- 

old, the discordance occurs (when veto is admitted for a given cri- 

terion). For g 3 , this threshold has a value of 0.2236. In turn, for g 1 , 

there is a large zone with no or very marginal concordance and 

discordance. The concordance becomes positive for marginally neg- 

ative performance differences, whereas the discordance is above 

zero only when one alternative is worse than another by at least 

p 1 = 0 . 5940 . The preference thresholds directly optimized by the 

ANN for g 2 and g 4 are 0.3329 and 0.3354. Finally, when the perfor- 

mance difference is greater than the veto threshold, the maximal 

discordance on a given criterion occurs. The values of this thresh- 

old for g 1 , g 3 , and g 4 are, respectively, around 0.93, 0.38, and 0.61. 

An important parameter inferred by ANN-ELECTRE is the cut- 

ting level λ. It was assigned a very high value of 0.95. This means 

that the arguments supporting the outranking need to be very 

strong, and the arguments against the outranking need to be none 

or negligible to support the inclusion of credibility in the Net Flow 

Score computations performed by the method. The threshold sep- 

arating the rejection and acceptance classes on the scale between 

−1 and 1 is t 1 = 0 . 

6. Computational experiments 

To investigate the performance of the proposed methods, they 

were applied to a set of binary sorting problems (see Table 3 ). The 

datasets come from the UCI repository ( http://archive.ics.uci.edu/ 

ml/ ) and the WEKA software ( Hall et al., 2009 ). The number of 

criteria is between four and eight, whereas the number of alter- 

natives ranges from several dozen to several hundred. In Table 3 , 
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(a) criterion g1 (b) criterion g2

(c) criterion g3 (d) criterion g4

Fig. 14. Marginal concordance and discordance functions constructed by ANN-ELECTRE for the ERA dataset. 

Table 3 

Datasets considered in the experimental evaluation. 

Name Code No. of alternatives No. of criteria No. of pairwise comparisons 

Den Bosch DBS 120 8 14,280 

Computer Processing Units CPU 209 6 43,472 

Breast Cancer BCC 286 7 81,510 

Auto MPG MPG 392 7 153,272 

Employee Selection ESL 488 4 237,656 

Mammographic MMG 961 5 922,560 

Employee Rejection/Acceptance ERA 1000 4 999,000 

Lecturers Evaluation LEV 1000 4 999,000 

Car Evaluation CEV 1728 6 2,984,256 

we include the information on the number of pairwise compar- 

isons that appear as input in outranking-based approaches such as 

ANN-PROMETHEE and ANN-ELECTRE. 

The same set of problems was considered in Tehrani et al. 

(2012) and Sobrie et al. (2019) . For a detailed description of each 

set, see Tehrani et al. (2012) . Some of them (MPG, MMG, and BCC) 

involve nominal attributes that have been transformed into mono- 

tonic criteria according to Tehrani et al. (2012) . This increases the 

difficulty of the preference learning task for such problems as the 

methods respecting the pre-defined preference directions need to 

deal with an arbitrarily imposed order which reduces their flexi- 

bility in fitting the model. 

To quantify the algorithms’ performance, we use two classifica- 

tion quality measures. The first one is a standard misclassification 

error (0/1 loss), referring to the number of alternatives in A 

C ⊆ A 

that the inferred model classifies incorrectly: 

0 / 1 loss = 

1 

| A C | 
∑ 

a i ∈ A C 
CL error (a i ) , (44) 

where: 

CL error (a i ) = 

{
1 , if Sc(a i ) < t C DM (a i ) , or Sc(a i ) ≥ t C DM (a i )+1 , 

0 , otherwise. 
(45) 

The other measure is AUC, which – for a binary classification in- 

volving classes C 1 and C 2 – takes the following form: 

AUC = 

∑ 

a i ∈ A C 1 
∑ 

a j ∈ A C 2 1 [ Sc(a i ) < Sc(a j )] 

| A C 1 || A C 2 | , (46) 

where: 

1 [ Sc(a i ) < Sc(a j )] = 

{
1 , iff Sc(a i ) < Sc(a j ) , 
0 , else . 

(47) 

AUC builds on the number of pairs of alternatives from different 

classes for which the order of classes is reflected in the respec- 

tive scores, i.e., a comprehensive score of a i from the less preferred 

class than the class of a j is lesser than Sc(a j ) . The measure is nor- 

malized by the number of all pairs of alternatives from different 

classes. Thus AUC indicates how many changes in the ranking im- 

posed by the comprehensive scores are needed to obtain an en- 

tirely consistent outcome. 

In the following subsection, we report the experimental results 

for eight algorithms proposed in this paper. We compare them 

against the following state-of-the-art preference learning methods: 

• logistic regression (LR), which is a well-established statisti- 

cal classification method, using the linear model of the in- 

put attributes ( Hosmer et al., 20 0 0 ); while estimating the 
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parameters of the weighted sum model, it optimizes the 

log-likelihood function capturing the probability of observ- 

ing the desired classification for alternatives given the input 

data and the model; 
• Choquistic regression (CR), i.e., a generalization of LR in 

which the Choquet integral is used as the preference 

model ( Tehrani et al., 2012 ); when estimating values of its 

parameter, the algorithm also optimizes the log-likelihood 

function using a sequential quadratic programming approach 

implemented in Matlab; 
• kernel logistic regression with the polynomial kernel (KLR- 

ply) and a degree equal to two so that it models low-level 

interactions of criteria ( Tehrani et al., 2012 ); 
• kernel logistic regression with the Gaussian kernel (KLR-rbf) 

able to capture interactions of higher-order; note that KLR 

methods are extensions of LR that are flexible but not neces- 

sarily monotonic in the sense of preserving pre-defined pref- 

erence directions ( Tehrani et al., 2012 ); 
• the MORE algorithm that learns rule ensembles, adhering to 

monotonicity constraints, in which a single rule is treated as 

a subsidiary base classifier ( Dembczy ́nski et al., 2009 ); rule 

induction is performed by minimizing the sigmoid 0–1 loss 

function; 
• the LMT algorithm that induces tree-structured models con- 

taining logistic regression functions at the leaves ( Landwehr 

et al., 2003 ), while accounting for the least squared misclas- 

sification error; 
• the UTADIS method, which employs linear programming 

provided by the IBM ILOG CPLEX solver ( Sobrie et al., 2019 ) 

to infer a threshold-based value-driven sorting model us- 

ing piecewise linear marginal functions with three seg- 

ments ( Zopounidis & Doumpos, 20 0 0 ); it optimizes a mis- 

classification error defined as an average distance of alterna- 

tives’ comprehensive values from the value ranges delimited 

by the thresholds associated with their desired classes; the 

proposed ANN-based algorithms minimize the same objec- 

tive function; 
• the Mixed-Integer Program (MIP) for learning the param- 

eters of MR-Sort, which is a simplified variant of ELEC- 

TRE TRI-B, using a majority rule and boundary class pro- 

files ( Leroy et al., 2011 ); the model parameters are selected 

by minimizing the 0/1 loss using the IBM ILOG CPLEX solver; 
• the metaheuristic (META) for learning the parameters of MR- 

Sort ( Sobrie et al., 2019 ) which uses evolutionary algorithms 

and mathematical programming to select parameter values 

minimizing the 0/1 loss. 
• UTADIS-G, i.e., UTADIS employing general marginal value 

functions with the characteristic points corresponding to all 

unique performances ( Greco, Mousseau, & Słowi ́nski, 2010 ); 

the optimized objective is the same as for the standard 

UTADIS; the method has been implemented by the authors 

of this paper using the GLPK solver. 

6.1. Estimation of hyperparameter values 

In Section 4 , we discussed the process of optimizing parame- 

ter values taking into account hyperparameters. This section is de- 

voted to estimating the values of these hyperparameters as well as 

other hyperparameters involved in the operations of the proposed 

preference learning algorithms that are needed to train the models 

successfully. 

To find the optimal values, we performed a grid search to verify 

the classification quality for different values. Specifically, we tested 

three hyperparameters: 

• learning rate α ∈ { 0 . 0 01 , 0 . 0 02 , 0 . 0 05 , 0 . 01 , 0 . 02 , 0 . 05 } (in 

addition, for ANN-OWA, all variants of ANN-Ch, and ANN- 

TOPSIS, we considered { 0 . 1 , 0 . 2 , 0 . 5 } ); 
• the number L ∈ { 10 , 20 , 30 } of components used by Mono- 

tonic Block for ANN-UTADIS, ANN-PROMETHEE, and ANN- 

ELECTRE – it is the only parameter whose value needs to 

be provided before training for these methods; 
• standard deviation ξ ∈ { 0 , 0 . 01 , 0 . 02 , 0 . 05 } of Gaussian noise 

used in date augmentation, where 0 means there is no ad- 

ditional noise added to the input data in each optimization 

step. 

The range of a learning rate for ANN-OWA, ANN-Ch, and ANN- 

TOPSIS was extended due to the existing trend in the prelimi- 

nary tests. They indicated that better results could be obtained 

for higher values of α. However, the extended tests revealed that 

this trend was valid only for a specific range of values, and after 

exceeding a certain threshold, the classification outcomes deterio- 

rated. 

In a single test, we considered precise values for each of the 

above hyperparameters. The test was repeated 100 times for three 

sizes of the training and test sets. They correspond to the scenarios 

where (i) the training set is small compared to the test set (20% 

vs. 80%), (ii) both sets are equal in size (50% vs. 50%), and (iii) the 

training set contains a significant number of alternatives compared 

to the test set (80% vs. 20%), which is the most common setting. In 

each run, the allocation of alternatives to the training and test sets 

was performed randomly and independently. The selected values 

of hyperparameters are the ones for which the best average value 

of the performance measure was obtained for the training set in a 

hundredfold experiment described above. 

In the main paper, we present the results obtained for the ERA 

dataset for 80% of training data and the AUC measure (see Fig. 15 ). 

The results for ANN-UTADIS were similar for different hyperparam- 

eter values, ranging from 0.7807 to 0.7935. The highest average 

score was obtained for α = 0 . 02 , L = 20 , and ξ = 0 . 02 . However, 

they cannot be claimed as the best hyperparameter values unan- 

imously. The Student’s T-test with a confidence level of 0.95 in- 

dicated that the AUC mean was statistically indistinguishable for 

7 out of 72 configurations. On the other extreme, the lowest AUC 

value was observed for α = 0 . 001 , L = 10 , and ξ = 0 . 05 . There are 

no strict trends here, however, it can be observed that the results 

for L = 20 and L = 30 are more often better than for L = 10 . 

For ANN-PROMETHEE, we observe a trend indicating that bet- 

ter results are achieved for lesser values of learning rate and stan- 

dard deviation of the noise. The best AUC score (0.7840) is attained 

for α = 0 . 005 , L = 10 , ξ = 0 . 0 , being, however, statistically indistin- 

guishable for 41 out of 72 configurations. In turn, the best results 

for the ANN-ELECTRE are achieved for a learning rate of 0.01 and 

0.02. At the same time, the greater the learning rate and lower 

noise std, the better the results. The number L of components has 

no significant influence on the results. The best combination of pa- 

rameters is α = 0 . 01 , L = 30 , and ξ = 0 . 0 with mean AUC 0.7678 

(we noted 20 other statistically indistinguishable configurations). 

For ANN-Ch-Uncons., we observe the greatest differences in 

classification outcomes among all methods. For different values of 

hyperparameters, AUC ranges between 0.6387 and 0.7872. The best 

outcomes are obtained for learning rates between 0.01 and 0.2. 

The highest average score was obtained for α = 0 . 05 and ξ = 0 . 02 . 

However, no statistically sound difference between means was ob- 

served for the other 13 out of 36 vectors of hyperparameter values. 

Also, for ANN-Ch-Uncons, we did not observe a noticeable impact 

of the input noise on the final results. 

Similar trends occur for the remaining methods, i.e., the value 

of a learning rate for which the best results are obtained is: for 

ANN-Ch-Pos. – between 0.02 and 0.1, for ANN-TOPSIS – between 
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(a) ANN-UTADIS (b) ANN-PROMETHEE (c) ANN-ELECTRE

(d) ANN-Ch-Uncons. (e) ANN-Ch-Pos. (f) ANN-Ch-Constr.

(g) ANN-OWA (h) ANN-TOPSIS

Fig. 15. The AUC value attained for the training set by various methods for different hyperparameter values for the ERA dataset. 

0.05 and 0.2, for ANN-Ch-Constr – it is above 0.1, and for ANN- 

OWA – it is equal to 0.5. The best configurations for these methods 

are: for ANN-Ch-Pos. – α = 0 . 05 and ξ = 0 . 05 , for ANN-TOPSIS –

α = 0 . 1 and ξ = 0 . 02 , for ANN-Ch-Constr – α = 0 . 2 and ξ = 0 . 05 , 

and for ANN-OWA – α = 0 . 5 and ξ = 0 . 05 . 

The above conclusions hold only for the ERA dataset. For some 

other sets, the dependencies differed. The respective figures are 

presented in the e-Appendix (supplementary material available on- 

line). 

6.2. Experimental results in terms of AUC and 0/1 loss 

In this section, we report the experimental results for 17 ap- 

proaches, including eight proposed in this paper. All experiments 

were carried out on a single CPU 2300MHz Intel(R) Xeon(R) E5- 

2650 v3 using Python 3.6 and the Pytorch 1.2.0 library. The training 

times are shown in the e-Appendix. The outcomes for the state-of- 

the-art methods are derived from Tehrani et al. (2012) and Sobrie 

et al. (2019) . 

In Tables 4–6 , we report the mean AUC values for nine bench- 

mark datasets and different proportions of the training and test 

sets. For each approach, we provide the standard deviation, rank 

according to the mean for a given problem, and an average rank 

for all datasets (see the last column). A few missing values in the 

tables for MIP indicate that this approach was not able to find a 

solution within a pre-defined time limit. In what follows, we will 

discuss in detail the results obtained for 80% share of the training 

set (see Table 6 ). Then, we will indicate the major differences for 

the remaining two settings. 

Let us start by discussing the specificity of different datasets. In 

general, the best AUC values were attained for CPU, ESL, DBS, and 

CEV. For example, the mean AUC values for ANN-UTADIS for these 

four datasets were 0.9998, 0.9885, 0.9676, and 0.9410, whereas the 

respective means attained by ANN-ELECTRE were 0.9998, 0.9600, 

0.9893, and 0.8786. Such high-quality scores for CPU or ESL indi- 

cate that the best-performing approaches assigned such compre- 

hensive scores to the alternatives that inversed the original pref- 

erence relation only for a few or several pairs in the testing sets. 

On the other extreme, the least AUC values were observed for BCC 

and ERA. For these problems, ANN-UTADIS attained average val- 

ues equal to 0.7830 and 0.7957, whereas for ANN-ELECTRE – these 

were 0.7497 and 0.7695. This means that the input and output 

orders were not consistent for about 20–25% of pairs in the test 

set. Such differences confirm that the considered datasets posed 
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Table 4 

Classification performance in terms of the mean and standard deviation of AUC for 20% training data and 80% test data. 

Method DBS CPU BCC MPG ESL ERA LEV CEV MMG Avg. rank 

ANN-UTADIS 0 . 9159 ± 0 . 0230 (8) 0 . 9979 ± 0 . 0024 (1) 0 . 7513 ± 0 . 0158 (4) 0 . 8870 ± 0 . 0086 (9) 0 . 9839 ± 0 . 0030 (4) 0 . 7844 ± 0 . 0081 (1) 0 . 8955 ± 0 . 0066 (2) 0 . 9384 ± 0 . 0041 (8) 0 . 8769 ± 0 . 0118 (13) 5.56 

ANN-PROMETHEE 0 . 9289 ± 0 . 0224 (3) 0 . 9918 ± 0 . 0089 (3) 0 . 7524 ± 0 . 0162 (2) 0 . 8750 ± 0 . 0088 (10) 0 . 9840 ± 0 . 0030 (3) 0 . 7801 ± 0 . 0087 (2) 0 . 8923 ± 0 . 0075 (5) 0 . 8919 ± 0 . 0060 (15) 0 . 8869 ± 0 . 0162 (8) 5.67 

ANN-Ch-Uncons. 0 . 9181 ± 0 . 0150 (6) 0 . 9798 ± 0 . 0082 (9) 0 . 7292 ± 0 . 0211 (8) 0 . 9640 ± 0 . 0089 (6) 0 . 9835 ± 0 . 0037 (5) 0 . 7758 ± 0 . 0081 (4) 0 . 8930 ± 0 . 0069 (3) 0 . 9685 ± 0 . 0026 (6) 0 . 8866 ± 0 . 0075 (11) 6.44 

ANN-Ch-Pos. 0 . 9202 ± 0 . 0161 (5) 0 . 9751 ± 0 . 0072 (11) 0 . 7495 ± 0 . 0187 (5) 0 . 7394 ± 0 . 0614 (17) 0 . 9834 ± 0 . 0029 (6) 0 . 7771 ± 0 . 0076 (3) 0 . 8929 ± 0 . 0059 (4) 0 . 9284 ± 0 . 0038 (11) 0 . 8868 ± 0 . 0128 (9) 7.89 

ANN-Ch-Constr 0 . 9164 ± 0 . 0242 (7) 0 . 9806 ± 0 . 0073 (8) 0 . 7515 ± 0 . 0169 (3) 0 . 8451 ± 0 . 0147 (12) 0 . 9848 ± 0 . 0030 (2) 0 . 7721 ± 0 . 0094 (5) 0 . 8918 ± 0 . 0059 (6) 0 . 9344 ± 0 . 0071 (9) 0 . 8920 ± 0 . 0081 (4) 6.22 

ANN-ELECTRE 0 . 9285 ± 0 . 0210 (4) 0 . 9971 ± 0 . 0038 (2) 0 . 7325 ± 0 . 0177 (6) 0 . 8540 ± 0 . 0219 (11) 0 . 9854 ± 0 . 0023 (1) 0 . 7640 ± 0 . 0094 (9) 0 . 8852 ± 0 . 0077 (10) 0 . 8753 ± 0 . 0160 (16) 0 . 8960 ± 0 . 0119 (2) 6.78 

ANN-OWA 0 . 9077 ± 0 . 0161 (10) 0 . 9411 ± 0 . 0110 (17) 0 . 7533 ± 0 . 0180 (1) 0 . 6514 ± 0 . 0159 (18) 0 . 9808 ± 0 . 0029 (7) 0 . 7654 ± 0 . 0074 (8) 0 . 8688 ± 0 . 0064 (14) 0 . 7240 ± 0 . 0070 (17) 0 . 8897 ± 0 . 0057 (5) 10.78 

ANN-TOPSIS 0 . 8919 ± 0 . 0191 (12) 0 . 9130 ± 0 . 0191 (18) 0 . 7243 ± 0 . 0139 (9) 0 . 9533 ± 0 . 0046 (7) 0 . 7806 ± 0 . 0112 (18) 0 . 7369 ± 0 . 0076 (14) 0 . 8137 ± 0 . 0073 (17) 0 . 9655 ± 0 . 0028 (7) 0 . 8527 ± 0 . 0080 (17) 13.22 

CR 0 . 9290 ± 0 . 0322 (2) 0 . 9822 ± 0 . 0121 (5) 0 . 6400 ± 0 . 0641 (18) 0 . 9788 ± 0 . 0160 (1) 0 . 9670 ± 0 . 0074 (12) 0 . 7669 ± 0 . 0334 (6) 0 . 8971 ± 0 . 0098 (1) 0 . 9825 ± 0 . 0080 (3) 0 . 8867 ± 0 . 0123 (10) 6.44 

LR 0 . 8866 ± 0 . 0511 (14) 0 . 9806 ± 0 . 0124 (7) 0 . 6970 ± 0 . 0411 (12) 0 . 9675 ± 0 . 0068 (5) 0 . 9721 ± 0 . 0060 (8) 0 . 7602 ± 0 . 0331 (11) 0 . 8905 ± 0 . 0081 (7) 0 . 9332 ± 0 . 0033 (10) 0 . 8962 ± 0 . 0080 (1) 8.33 

KLR-ply 0 . 9359 ± 0 . 0218 (1) 0 . 9716 ± 0 . 0072 (13) 0 . 6509 ± 0 . 0568 (17) 0 . 9704 ± 0 . 0075 (4) 0 . 9638 ± 0 . 0106 (13) 0 . 7555 ± 0 . 0139 (12) 0 . 8870 ± 0 . 0094 (8) 0 . 9818 ± 0 . 0058 (5) 0 . 8552 ± 0 . 0203 (16) 9.89 

KLR-rbf 0 . 9053 ± 0 . 0433 (11) 0 . 9843 ± 0 . 0116 (4) 0 . 7124 ± 0 . 0290 (11) 0 . 9741 ± 0 . 0055 (3) 0 . 9705 ± 0 . 0099 (9) 0 . 7662 ± 0 . 0098 (7) 0 . 8860 ± 0 . 0128 (9) 0 . 9821 ± 0 . 0076 (4) 0 . 8938 ± 0 . 0121 (3) 6.78 

MORE 0 . 8731 ± 0 . 0481 (16) 0 . 9749 ± 0 . 0235 (12) 0 . 6639 ± 0 . 0567 (15) 0 . 9501 ± 0 . 0263 (8) 0 . 9466 ± 0 . 0484 (17) 0 . 7198 ± 0 . 0329 (17) 0 . 8137 ± 0 . 0621 (18) 0 . 9888 ± 0 . 0063 (2) 0 . 8754 ± 0 . 0274 (14) 13.22 

LMT 0 . 9151 ± 0 . 0228 (9) 0 . 9816 ± 0 . 0113 (6) 0 . 7310 ± 0 . 0675 (7) 0 . 9753 ± 0 . 0092 (2) 0 . 9696 ± 0 . 0086 (11) 0 . 7619 ± 0 . 0160 (10) 0 . 8797 ± 0 . 0182 (11) 0 . 9902 ± 0 . 0042 (1) 0 . 8890 ± 0 . 0259 (6) 7.00 

META 0 . 8761 ± 0 . 0462 (15) 0 . 9531 ± 0 . 0247 (15) 0 . 6810 ± 0 . 0458 (13) 0 . 8337 ± 0 . 0291 (13) 0 . 9569 ± 0 . 0114 (15) 0 . 7256 ± 0 . 0238 (16) 0 . 8530 ± 0 . 0258 (15) 0 . 8968 ± 0 . 0116 (14) 0 . 8828 ± 0 . 0129 (12) 14.22 

MIP 0 . 8637 ± 0 . 0463 (17) 0 . 9497 ± 0 . 0262 (16) 0 . 7155 ± 0 . 0365 (10) 0 . 8215 ± 0 . 0368 (15) 0 . 9510 ± 0 . 0166 (16) 0 . 7182 ± 0 . 0328 (18) 0 . 8424 ± 0 . 0291 (16) - 0 . 8877 ± 0 . 0151 (7) 14.78 

UTADIS 0 . 8886 ± 0 . 0496 (13) 0 . 9789 ± 0 . 0283 (10) 0 . 6650 ± 0 . 0527 (14) 0 . 8162 ± 0 . 0335 (16) 0 . 9704 ± 0 . 0095 (10) 0 . 7409 ± 0 . 0175 (13) 0 . 8707 ± 0 . 0146 (12) 0 . 9235 ± 0 . 0183 (13) 0 . 8650 ± 0 . 0294 (15) 12.89 

UTADIS-G 0 . 8564 ± 0 . 0507 (18) 0 . 9552 ± 0 . 0366 (14) 0 . 6617 ± 0 . 0489 (16) 0 . 8314 ± 0 . 0328 (14) 0 . 9636 ± 0 . 0122 (14) 0 . 7307 ± 0 . 0233 (15) 0 . 8705 ± 0 . 0134 (13) 0 . 9269 ± 0 . 0149 (12) 0 . 8474 ± 0 . 0284 (18) 14.89 

Table 5 

Classification performance in terms of the mean and standard deviation of AUC for 50% training data and 50% test data. 

Method DBS CPU BCC MPG ESL ERA LEV CEV MMG Avg. rank 

ANN-UTADIS 0 . 9399 ± 0 . 0292 (4) 0 . 9991 ± 0 . 0017 (1) 0 . 7632 ± 0 . 0307 (3) 0 . 8911 ± 0 . 0164 (9) 0 . 9859 ± 0 . 0047 (3) 0 . 7880 ± 0 . 0144 (1) 0 . 8996 ± 0 . 0100 (4) 0 . 9395 ± 0 . 0060 (8) 0 . 8815 ± 0 . 0162 (14) 5.22 

ANN-PROMETHEE 0 . 9446 ± 0 . 0266 (2) 0 . 9971 ± 0 . 0044 (3) 0 . 7636 ± 0 . 0336 (2) 0 . 8746 ± 0 . 0180 (10) 0 . 9856 ± 0 . 0042 (4) 0 . 7839 ± 0 . 0136 (2) 0 . 8946 ± 0 . 0131 (8) 0 . 8960 ± 0 . 0099 (14) 0 . 8874 ± 0 . 0168 (11) 6.22 

ANN-Ch-Uncons. 0 . 9301 ± 0 . 0234 (8) 0 . 9890 ± 0 . 0060 (8) 0 . 7517 ± 0 . 0252 (6) 0 . 9713 ± 0 . 0084 (6) 0 . 9855 ± 0 . 0045 (5) 0 . 7823 ± 0 . 0163 (3) 0 . 8974 ± 0 . 0110 (5) 0 . 9707 ± 0 . 0036 (6) 0 . 8923 ± 0 . 0124 (8) 6.11 

ANN-Ch-Pos. 0 . 9303 ± 0 . 0254 (7) 0 . 9821 ± 0 . 0082 (13) 0 . 7560 ± 0 . 0359 (5) 0 . 7538 ± 0 . 0489 (16) 0 . 9844 ± 0 . 0048 (6) 0 . 7816 ± 0 . 0148 (4) 0 . 8963 ± 0 . 0101 (6) 0 . 9302 ± 0 . 0060 (13) 0 . 8878 ± 0 . 0167 (10) 8.89 

ANN-Ch-Constr 0 . 9299 ± 0 . 0299 (9) 0 . 9865 ± 0 . 0056 (11) 0 . 7641 ± 0 . 0314 (1) 0 . 8494 ± 0 . 0224 (12) 0 . 9870 ± 0 . 0039 (1) 0 . 7769 ± 0 . 0138 (5) 0 . 8957 ± 0 . 0105 (7) 0 . 9357 ± 0 . 0088 (10) 0 . 8952 ± 0 . 0113 (7) 7.00 

ANN-ELECTRE 0 . 9416 ± 0 . 0251 (3) 0 . 9988 ± 0 . 0020 (2) 0 . 7318 ± 0 . 0368 (9) 0 . 8536 ± 0 . 0218 (11) 0 . 9864 ± 0 . 0042 (2) 0 . 7652 ± 0 . 0150 (11) 0 . 8869 ± 0 . 0110 (11) 0 . 8751 ± 0 . 0192 (16) 0 . 9019 ± 0 . 0128 (1) 7.33 

ANN-OWA 0 . 9117 ± 0 . 0296 (15) 0 . 9447 ± 0 . 0138 (17) 0 . 7568 ± 0 . 0336 (4) 0 . 6575 ± 0 . 0281 (17) 0 . 9816 ± 0 . 0049 (7) 0 . 7665 ± 0 . 0150 (10) 0 . 8714 ± 0 . 0119 (15) 0 . 7236 ± 0 . 0113 (17) 0 . 8920 ± 0 . 0112 (9) 12.33 

ANN-TOPSIS 0 . 9082 ± 0 . 0284 (16) 0 . 9193 ± 0 . 0176 (18) 0 . 7402 ± 0 . 0293 (7) 0 . 9545 ± 0 . 0097 (8) 0 . 7844 ± 0 . 0262 (18) 0 . 7416 ± 0 . 0171 (14) 0 . 8203 ± 0 . 0125 (17) 0 . 9662 ± 0 . 0033 (7) 0 . 8569 ± 0 . 0119 (16) 13.44 

CR 0 . 9341 ± 0 . 0228 (5) 0 . 9920 ± 0 . 0073 (6) 0 . 6912 ± 0 . 0469 (15) 0 . 9818 ± 0 . 0075 (1) 0 . 9720 ± 0 . 0084 (12) 0 . 7705 ± 0 . 0310 (9) 0 . 9098 ± 0 . 0103 (1) 0 . 9912 ± 0 . 0024 (4) 0 . 9003 ± 0 . 0132 (2) 6.11 

LR 0 . 9191 ± 0 . 0293 (11) 0 . 9914 ± 0 . 0056 (7) 0 . 7184 ± 0 . 0367 (11) 0 . 9803 ± 0 . 0084 (3) 0 . 9764 ± 0 . 0062 (8) 0 . 7633 ± 0 . 0241 (12) 0 . 8935 ± 0 . 0113 (9) 0 . 9362 ± 0 . 0071 (9) 0 . 8972 ± 0 . 0125 (5) 8.33 

KLR-ply 0 . 9492 ± 0 . 0198 (1) 0 . 9771 ± 0 . 0109 (14) 0 . 7001 ± 0 . 0396 (12) 0 . 9776 ± 0 . 0083 (4) 0 . 9726 ± 0 . 0080 (11) 0 . 7740 ± 0 . 0148 (7) 0 . 8999 ± 0 . 0120 (3) 0 . 9950 ± 0 . 0019 (2) 0 . 8962 ± 0 . 0140 (6) 6.67 

KLR-rbf 0 . 9174 ± 0 . 0316 (13) 0 . 9925 ± 0 . 0056 (5) 0 . 7294 ± 0 . 0344 (10) 0 . 9752 ± 0 . 0068 (5) 0 . 9754 ± 0 . 0070 (9) 0 . 7745 ± 0 . 0141 (6) 0 . 9012 ± 0 . 0128 (2) 0 . 9907 ± 0 . 0031 (5) 0 . 8995 ± 0 . 0091 (3) 6.44 

MORE 0 . 9179 ± 0 . 0403 (12) 0 . 9873 ± 0 . 0149 (10) 0 . 6980 ± 0 . 0586 (13) 0 . 9563 ± 0 . 0313 (7) 0 . 9557 ± 0 . 0301 (17) 0 . 7215 ± 0 . 0381 (17) 0 . 8185 ± 0 . 0580 (18) 0 . 9921 ± 0 . 0042 (3) 0 . 8839 ± 0 . 0305 (13) 12.22 

LMT 0 . 9259 ± 0 . 0289 (10) 0 . 9883 ± 0 . 0077 (9) 0 . 7387 ± 0 . 0656 (8) 0 . 9814 ± 0 . 0074 (2) 0 . 9707 ± 0 . 0120 (14) 0 . 7719 ± 0 . 0144 (8) 0 . 8920 ± 0 . 0164 (10) 0 . 9977 ± 0 . 0017 (1) 0 . 8976 ± 0 . 0153 (4) 7.33 

META 0 . 9074 ± 0 . 0366 (17) 0 . 9701 ± 0 . 0140 (15) 0 . 6929 ± 0 . 0398 (14) 0 . 8337 ± 0 . 0231 (14) 0 . 9640 ± 0 . 0099 (15) 0 . 7366 ± 0 . 0233 (16) 0 . 8721 ± 0 . 0147 (14) 0 . 8960 ± 0 . 0073 (15) 0 . 8862 ± 0 . 0138 (12) 14.67 

MIP 0 . 8998 ± 0 . 0336 (18) 0 . 9645 ± 0 . 0194 (16) – – 0 . 9563 ± 0 . 0114 (16) 0 . 7167 ± 0 . 0274 (18) 0 . 8511 ± 0 . 0219 (16) – – 17.33 

UTADIS 0 . 9325 ± 0 . 0345 (6) 0 . 9940 ± 0 . 0131 (4) 0 . 6650 ± 0 . 5270 (16) 0 . 8272 ± 0 . 0243 (15) 0 . 9747 ± 0 . 0116 (10) 0 . 7437 ± 0 . 0211 (13) 0 . 8746 ± 0 . 0137 (12) 0 . 9339 ± 0 . 0138 (11) 0 . 8667 ± 0 . 0385 (15) 11.33 

UTADIS-G 0 . 9117 ± 0 . 0332 (14) 0 . 9830 ± 0 . 0201 (12) 0 . 6571 ± 0 . 0524 (17) 0 . 8456 ± 0 . 0205 (13) 0 . 9714 ± 0 . 0069 (13) 0 . 7388 ± 0 . 0187 (15) 0 . 8738 ± 0 . 0134 (13) 0 . 9329 ± 0 . 0114 (12) 0 . 8439 ± 0 . 0253 (17) 14.00 
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various challenges to the preference learning algorithms. In the e- 

Appendix, we discuss various characteristics that partially explain 

such results. For example, CPU involves six criteria, each with at 

least several different performances, and no single violation of the 

dominance or indistinguishability relation in the desired assign- 

ments. Analogously, the desired assignments for ESL agree with the 

dominance relation for the vast majority of pairs of alternatives, 

and only a tiny share of pairs are inconsistent with the dominance 

or indistinguishability. On the other extreme, the seven criteria for 

BCC involve just a few different performances, and almost 7% of all 

pairs of alternatives assigned to different classes violate the domi- 

nance. 

Also, some datasets differentiated the considered sorting meth- 

ods better than others. The greatest differences between mean AUC 

values were observed for MPG (for CR – 9855 and for ANN-OWA –

6614), CEV (for LMT – 0.9993 and for ANN-OWA – 0.7304), ESL (for 

ANN-ELECTRE – 0.9893 and for ANN-TOPSIS – 0.7911). This con- 

firms that their specificity posed a significantly greater challenge 

to some approaches. On the contrary, the least differences were 

noted for DBS (for ANN-UTADIS – 0.9676 and for META – 0.9019) 

and CPU (for ANN-UTADIS – 0.9998 and for ANN-TOPSIS – 0.9318). 

Still, even for these benchmark problems, it was possible to distin- 

guish the subsets of clearly better- or worse-performing methods. 

The most favorable average ranks implied by the mean AUC 

measures for the nine datasets are attained by: 

• ANN-UTADIS (4.89), which attains the best results for DBS, 

CPU, and ERA, positions in the top four for other three prob- 

lems, and is ranked outside the top ten only for MMG; 
• ANN-Ch-Uncons. (5.00), which is the most advantageous for 

BCC, while never dropping outside the upper half of the 

ranking; note that this method has a competitive advan- 

tage of not having to respect the pre-defined preference di- 

rections, which is particularly useful for datasets such as 

BCC (1st rank), MPG (5th rank), and MMG (7th rank), for 

which some originally nominal attributes have been arbitrar- 

ily transformed to monotonic criteria in Tehrani et al. (2012) ; 
• CR (5.67), which attains the highest mean AUC for MPG, 

LEV, and MMG, while being ninth or lower for four other 

datasets; 
• KLR-rbf (6.11), attaining ranks between second for CEV and 

eleventh for BCC; 
• ANN-PROMETHEE (6.67), ranked in the top four for most 

datasets. 

On the other extreme, the worst average ranks are attained by 

MIP (17.11), META (14.67), UTADIS-G (13.56), ANN-TOPSIS (12.89), 

MORE (12.44), ANN-OWA (12.22), and UTADIS (11.33). Hence, 

only ANN-OWA and ANN-TOPSIS achieved relatively worse results 

among the proposed algorithms. This can be attributed to simple 

preference models employed by these methods. 

Following Tehrani et al., (2012) , we applied the statistical tests 

to verify the significance of the performance differences. The Fried- 

man test allowed us to reject the null hypothesis on all methods 

performing equally for all sizes of the training set and both con- 

sidered measures (AUC and 0/1 loss). The detailed outcomes of a 

post hoc analysis for all pairs of algorithms conducted using the 

Nemenyi and Wilcoxon tests with a confidence level of 90% are 

discussed in the e-Appendix. In what follows, we directly com- 

pare pairwise only the approaches using similar preference mod- 

els. When claiming that some performance difference in terms of 

AUC is significant, this is confirmed by the result of the Nemenyi 

test applied to a subset of algorithms using related models. 

ANN-UTADIS performs significantly better than UTADIS (the 

Wilcoxon test) and UTADIS-G (the Wilcoxon and Nemenyi tests) 

based on mathematical programming. The reasons are as follows. 

First, minimizing the sum of regrets by UTADIS and UTADIS-G does 
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not correspond to the perspective captured by AUC. Also, the use 

of Monotonic Block by ANN-UTADIS gives a chance for inferring 

very flexible marginal value functions with characteristic points 

better fitting the input data. In turn, data augmentation prevents 

the model overfitting that occurs with UTADIS-G. 

When it comes to outranking-based methods, ANN-PROMETHEE 

significantly outperforms MIP and META, which learn the param- 

eters of the MR-Sort model using, respectively, Mixed Integer Pro- 

gramming and a dedicated heuristic. Furthermore, ANN-ELECTRE 

attains significantly better results than MIP. The ANN-based meth- 

ods proposed in this paper use the NFS procedure, threshold-based 

sorting method, and flexible marginal preference, concordance, and 

discordance functions. In turn, the model used in MR-Sort is more 

complex with the boundary profiles whose performances need to 

be determined by the method and concordance functions without 

zones of indifference and weak preference, hence offering lesser 

flexibility. 

The results attained for all algorithms using the Choquet inte- 

gral model (i.e., three variants of ANN-Ch and CR) are very similar 

for DBS, CPU, ESL, LEV, and MMG. For BBC and ERA, CR was worse 

than the ANN-based methods. In turn, ANN-Ch-Constr. and ANN- 

Ch-Pos. were outperformed by CR on MPG and CEV. The variant 

without any constraint on the weights performed better for these 

challenging datasets because it could fit the data even better by 

inversing the pre-defined preference directions via assigning the 

negative weights. Overall, the Nemenyi test confirmed that ANN- 

Ch-Uncons. and CR were significantly better than ANN-Ch-Pos. 

When it comes to logistic regression methods, KLR-ply and KLR- 

rbf perform, on average, better than LR. This is due to the non- 

monotonic KLR methods being able to capture low- (ply) or high- 

level (rbf) interactions. However, according to the Wilcoxon test, 

the statistically significant difference is observed only for KLR-rbf 

and LR. Moreover, the slight advantage of KLR methods is not im- 

plied by admitting non-monotonicity for datasets that originally 

involved nominal criteria (e.g., for MPG and MMG, LR attains better 

results than both KLR-rbf and KLR-ply). 

The observations, rankings, and trends for other proportions of 

the training and test sets (see Tables 4 and 5 ) are very similar 

to the outcomes discussed above for the 80/20 division. However, 

with the decrease in the number of alternatives in the training set, 

the AUC decreases by a few percent for the ANN-based methods. 

For example, ANN-UTADIS attains an average AUC equal to 0.9676, 

0.9399, and 0.9159 for DBS with 80/20, 50/50, and 20/80 shares 

of the training and test sets, whereas the analogous results at- 

tained by ANN-Ch-Constr. for BCC are 0.7865, 0.7641, and 0.7515. 

No or marginal performance deterioration is observed for ANN- 

PROMETHEE and ANN-ELECTRE for datasets with a larger number 

of alternatives, i.e., MPG, ERA, LEV, and CEV. For example, for ANN- 

PROMETHEE and MPG, AUC is 0.8794 for 80% training set, 0.8746 

for 50%, and 0.8750 for 20%. As a result, the average ranks for 

these approaches are slightly better for the least size of training 

data than for more numerous learning sets. In fact, for the 20/80 

division, ANN-PROMETHEE shares the best average rank with ANN- 

UTADIS. In the same spirit, the average ranks for ANN-Ch-Constr., 

ANN-Ch-Pos., and ANN-OWA get slightly better with the decrease 

of the training set’s share. The opposite trend is observed for ANN- 

UTADIS and ANN-Ch-Uncons. The greatest improvement of ranks 

for smaller training data among the state-of-the-art algorithms is 

observed for LR and META. In contrast, the most significant deteri- 

oration is noted for KLR-ply, UTADIS, and UTADIS-G. 

In Tables 7–9 , we report the mean values of 0/1 loss for nine 

benchmark datasets and different proportions of the training and 

test sets. Unlike for AUC, lesser values of 0/1 loss are more favor- 

able. Let us first focus on the results for 80% share of the train- 

ing set (see Table 9 ). They confirm the conclusions derived from 

AUC analysis on the challenge posed by different datasets to the T
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Table 8 

Classification performance in terms of the mean and standard deviation of 0/1 loss for 50% training data and 50% test data. 

Method DBS CPU BCC MPG ESL ERA LEV CEV MMG Avg. rank 

ANN-UTADIS 0 . 1093 ± 0 . 0353 (2) 0 . 0104 ± 0 . 0118 (2) 0 . 2276 ± 0 . 0165 (3) 0 . 1735 ± 0 . 0197 (9) 0 . 0546 ± 0 . 0099 (1) 0 . 2640 ± 0 . 0135 (4) 0 . 1566 ± 0 . 0110 (8) 0 . 1126 ± 0 . 0080 (8) 0 . 1717 ± 0 . 0192 (10) 5.22 

ANN-PROMETHEE 0 . 1210 ± 0 . 0374 (6) 0 . 1381 ± 0 . 0569 (18) 0 . 2709 ± 0 . 0374 (11) 0 . 2031 ± 0 . 0232 (13) 0 . 0812 ± 0 . 0122 (14) 0 . 2900 ± 0 . 0138 (13) 0 . 1768 ± 0 . 0119 (14) 0 . 2273 ± 0 . 0138 (15) 0 . 1812 ± 0 . 0222 (16) 13.33 

ANN-Ch-Uncons. 0 . 1178 ± 0 . 0306 (4) 0 . 0430 ± 0 . 0200 (4) 0 . 2196 ± 0 . 0199 (1) 0 . 0756 ± 0 . 0137 (7) 0 . 0582 ± 0 . 0114 (3) 0 . 2653 ± 0 . 0116 (7) 0 . 1605 ± 0 . 0113 (10) 0 . 0731 ± 0 . 0060 (6) 0 . 1711 ± 0 . 0138 (9) 5.67 

ANN-Ch-Pos. 0 . 1207 ± 0 . 0313 (5) 0 . 0637 ± 0 . 0202 (11) 0 . 2391 ± 0 . 0254 (4) 0 . 2691 ± 0 . 0346 (17) 0 . 0605 ± 0 . 0121 (5) 0 . 2642 ± 0 . 0130 (5) 0 . 1648 ± 0 . 0125 (12) 0 . 1277 ± 0 . 0078 (10) 0 . 1687 ± 0 . 0161 (5) 8.22 

ANN-Ch-Constr 0 . 1032 ± 0 . 0323 (1) 0 . 0562 ± 0 . 0155 (9) 0 . 2201 ± 0 . 0235 (2) 0 . 2015 ± 0 . 0207 (12) 0 . 0559 ± 0 . 0104 (2) 0 . 2673 ± 0 . 0117 (8) 0 . 1639 ± 0 . 0122 (11) 0 . 1187 ± 0 . 0083 (9) 0 . 1596 ± 0 . 0132 (1) 6.11 

ANN-ELECTRE 0 . 1120 ± 0 . 0299 (3) 0 . 0101 ± 0 . 0111 (1) 0 . 3363 ± 0 . 0298 (17) 0 . 2335 ± 0 . 0390 (15) 0 . 0668 ± 0 . 0097 (6) 0 . 3075 ± 0 . 0150 (17) 0 . 1809 ± 0 . 0116 (16) 0 . 2568 ± 0 . 0187 (16) 0 . 1653 ± 0 . 0186 (2) 10.33 

ANN-OWA 0 . 1363 ± 0 . 0311 (8) 0 . 1207 ± 0 . 0230 (16) 0 . 2395 ± 0 . 0216 (5) 0 . 2577 ± 0 . 0175 (16) 0 . 0677 ± 0 . 0112 (7) 0 . 2651 ± 0 . 0119 (6) 0 . 1787 ± 0 . 0104 (15) 0 . 2629 ± 0 . 0065 (17) 0 . 1770 ± 0 . 0124 (14) 11.56 

ANN-TOPSIS 0 . 1480 ± 0 . 0343 (11) 0 . 1374 ± 0 . 0235 (17) 0 . 2453 ± 0 . 0196 (6) 0 . 1020 ± 0 . 0148 (8) 0 . 2678 ± 0 . 0371 (18) 0 . 2871 ± 0 . 0141 (11) 0 . 2246 ± 0 . 0119 (18) 0 . 0880 ± 0 . 0066 (7) 0 . 2093 ± 0 . 0130 (17) 12.56 

CR 0 . 1572 ± 0 . 0416 (14) 0 . 0464 ± 0 . 0281 (5) 0 . 2687 ± 0 . 0282 (10) 0 . 0577 ± 0 . 0251 (1) 0 . 0601 ± 0 . 0126 (4) 0 . 2844 ± 0 . 0306 (9) 0 . 1372 ± 0 . 0125 (1) 0 . 0376 ± 0 . 0059 (4) 0 . 1667 ± 0 . 0144 (3) 5.67 

LR 0 . 1708 ± 0 . 0380 (18) 0 . 0626 ± 0 . 0247 (10) 0 . 2799 ± 0 . 0245 (14) 0 . 0654 ± 0 . 0150 (2) 0 . 0704 ± 0 . 0113 (10) 0 . 2851 ± 0 . 0303 (10) 0 . 1651 ± 0 . 0133 (13) 0 . 1360 ± 0 . 0101 (12) 0 . 1701 ± 0 . 0158 (8) 10.78 

KLR-ply 0 . 1333 ± 0 . 0333 (7) 0 . 0835 ± 0 . 0264 (15) 0 . 2591 ± 0 . 0287 (7) 0 . 0728 ± 0 . 0159 (4) 0 . 1023 ± 0 . 0225 (17) 0 . 2926 ± 0 . 0151 (14) 0 . 1520 ± 0 . 0160 (5) 0 . 0328 ± 0 . 0057 (3) 0 . 1721 ± 0 . 0164 (11) 9.22 

KLR-rbf 0 . 1692 ± 0 . 0382 (17) 0 . 0547 ± 0 . 0233 (7) 0 . 2599 ± 0 . 0301 (8) 0 . 0744 ± 0 . 0151 (5) 0 . 0682 ± 0 . 0121 (8) 0 . 2882 ± 0 . 0142 (12) 0 . 1493 ± 0 . 0165 (4) 0 . 0463 ± 0 . 0086 (5) 0 . 1693 ± 0 . 0130 (7) 8.11 

MORE 0 . 1457 ± 0 . 0413 (9) 0 . 0489 ± 0 . 0226 (6) 0 . 2640 ± 0 . 0288 (9) 0 . 0751 ± 0 . 0178 (6) 0 . 0695 ± 0 . 0139 (9) 0 . 3037 ± 0 . 0180 (16) 0 . 1486 ± 0 . 0157 (3) 0 . 0215 ± 0 . 0053 (2) 0 . 1691 ± 0 . 0140 (6) 7.33 

LMT 0 . 1473 ± 0 . 0406 (10) 0 . 0674 ± 0 . 0243 (13) 0 . 2717 ± 0 . 0295 (12) 0 . 0672 ± 0 . 0164 (3) 0 . 0709 ± 0 . 0135 (11) 0 . 2956 ± 0 . 0148 (15) 0 . 1545 ± 0 . 0142 (6) 0 . 0174 ± 0 . 0069 (1) 0 . 1671 ± 0 . 0167 (4) 8.33 

META 0 . 1623 ± 0 . 0469 (15) 0 . 0675 ± 0 . 0237 (14) 0 . 2750 ± 0 . 0317 (13) 0 . 1781 ± 0 . 0237 (11) 0 . 1004 ± 0 . 0186 (15) 0 . 2056 ± 0 . 0173 (2) 0 . 1592 ± 0 . 0122 (9) 0 . 1483 ± 0 . 0095 (14) 0 . 1732 ± 0 . 0151 (12) 11.67 

MIP 0 . 1627 ± 0 . 0426 (16) 0 . 0640 ± 0 . 0239 (12) – – 0 . 1018 ± 0 . 0155 (16) 0 . 1958 ± 0 . 0137 (1) 0 . 1422 ± 0 . 0154 (2) – – 13.22 

UTADIS 0 . 1480 ± 0 . 0421 (12) 0 . 0230 ± 0 . 0238 (3) 0 . 2854 ± 0 . 0246 (16) 0 . 2090 ± 0 . 0236 (14) 0 . 0783 ± 0 . 0163 (13) 0 . 2342 ± 0 . 0171 (3) 0 . 1556 ± 0 . 0132 (7) 0 . 1324 ± 0 . 0117 (11) 0 . 1758 ± 0 . 0152 (13) 10.22 

UTADIS-G 0 . 1553 ± 0 . 0413 (13) 0 . 0555 ± 0 . 0328 (8) 0 . 2850 ± 0 . 0219 (15) 0 . 1753 ± 0 . 0251 (10) 0 . 0771 ± 0 . 0148 (12) 0 . 3305 ± 0 . 0491 (18) 0 . 1877 ± 0 . 0247 (17) 0 . 1430 ± 0 . 0436 (13) 0 . 1796 ± 0 . 0271 (15) 13.44 

Table 9 

Classification performance in terms of the mean and standard deviation of 0/1 loss for 80% training data and 20% test data. 

Method DBS CPU BCC MPG ESL ERA LEV CEV MMG Avg. rank 

ANN-UTADIS 0 . 0645 ± 0 . 0542 (1) 0 . 0046 ± 0 . 0137 (1) 0 . 2056 ± 0 . 0389 (3) 0 . 1587 ± 0 . 0324 (9) 0 . 0436 ± 0 . 0180 (1) 0 . 2527 ± 0 . 0210 (4) 0 . 1447 ± 0 . 0144 (4) 0 . 1081 ± 0 . 0154 (8) 0 . 1608 ± 0 . 0302 (7) 4.22 

ANN-PROMETHEE 0 . 0932 ± 0 . 0580 (6) 0 . 1080 ± 0 . 0775 (17) 0 . 2656 ± 0 . 0591 (11) 0 . 1949 ± 0 . 0378 (13) 0 . 0757 ± 0 . 0251 (14) 0 . 2814 ± 0 . 0317 (11) 0 . 1706 ± 0 . 0212 (14) 0 . 2234 ± 0 . 0195 (15) 0 . 1691 ± 0 . 0235 (11) 12.44 

ANN-Ch-Uncons. 0 . 0864 ± 0 . 0540 (3) 0 . 0266 ± 0 . 0265 (5) 0 . 1816 ± 0 . 0348 (1) 0 . 0614 ± 0 . 0218 (4) 0 . 0482 ± 0 . 0186 (3) 0 . 2556 ± 0 . 0260 (6) 0 . 1517 ± 0 . 0204 (8) 0 . 0672 ± 0 . 0119 (6) 0 . 1595 ± 0 . 0263 (6) 4.67 

ANN-Ch-Pos. 0 . 0909 ± 0 . 0526 (5) 0 . 0385 ± 0 . 0261 (9) 0 . 2191 ± 0 . 0456 (5) 0 . 2669 ± 0 . 0470 (17) 0 . 0500 ± 0 . 0207 (4) 0 . 2552 ± 0 . 0245 (5) 0 . 1518 ± 0 . 0217 (9) 0 . 1238 ± 0 . 0147 (11) 0 . 1595 ± 0 . 0295 (5) 7.78 

ANN-Ch-Constr 0 . 0673 ± 0 . 0516 (2) 0 . 0380 ± 0 . 0285 (8) 0 . 1909 ± 0 . 0412 (2) 0 . 1853 ± 0 . 0393 (12) 0 . 0455 ± 0 . 0178 (2) 0 . 2587 ± 0 . 0252 (7) 0 . 1538 ± 0 . 0208 (10) 0 . 1124 ± 0 . 0148 (9) 0 . 1486 ± 0 . 0221 (1) 5.89 

ANN-ELECTRE 0 . 0868 ± 0 . 0553 (4) 0 . 0061 ± 0 . 0116 (2) 0 . 3200 ± 0 . 0423 (17) 0 . 2242 ± 0 . 0486 (15) 0 . 0593 ± 0 . 0207 (7) 0 . 3010 ± 0 . 0397 (17) 0 . 1777 ± 0 . 0205 (16) 0 . 2492 ± 0 . 0281 (16) 0 . 1551 ± 0 . 0243 (2) 10.67 

ANN-OWA 0 . 1064 ± 0 . 0604 (7) 0 . 0973 ± 0 . 0433 (16) 0 . 2169 ± 0 . 0399 (4) 0 . 2583 ± 0 . 0426 (16) 0 . 0569 ± 0 . 0216 (6) 0 . 2589 ± 0 . 0249 (8) 0 . 1740 ± 0 . 0250 (15) 0 . 2588 ± 0 . 0144 (17) 0 . 1670 ± 0 . 0239 (10) 11.00 

ANN-TOPSIS 0 . 1076 ± 0 . 0626 (8) 0 . 1180 ± 0 . 0461 (18) 0 . 2224 ± 0 . 0340 (6) 0 . 0890 ± 0 . 0271 (8) 0 . 2469 ± 0 . 0554 (18) 0 . 2789 ± 0 . 0236 (9) 0 . 2172 ± 0 . 0238 (18) 0 . 0814 ± 0 . 0086 (7) 0 . 1987 ± 0 . 0268 (17) 12.11 

CR 0 . 1416 ± 0 . 0681 (13) 0 . 0212 ± 0 . 0301 (4) 0 . 2496 ± 0 . 0485 (7) 0 . 0551 ± 0 . 0160 (1) 0 . 0542 ± 0 . 0218 (5) 0 . 2813 ± 0 . 0280 (10) 0 . 1314 ± 0 . 0176 (1) 0 . 0273 ± 0 . 0089 (4) 0 . 1584 ± 0 . 0251 (3) 5.33 

LR 0 . 1616 ± 0 . 0743 (17) 0 . 0640 ± 0 . 0335 (14) 0 . 2773 ± 0 . 0548 (14) 0 . 0611 ± 0 . 0263 (2) 0 . 0660 ± 0 . 0203 (10) 0 . 2843 ± 0 . 0302 (12) 0 . 1627 ± 0 . 0249 (13) 0 . 1328 ± 0 . 0173 (12) 0 . 1657 ± 0 . 0232 (9) 11.39 

KLR-ply 0 . 1265 ± 0 . 0663 (10) 0 . 0754 ± 0 . 0372 (15) 0 . 2569 ± 0 . 0506 (8) 0 . 0727 ± 0 . 0268 (5) 0 . 0922 ± 0 . 0279 (15) 0 . 2918 ± 0 . 0290 (15) 0 . 1472 ± 0 . 0231 (5) 0 . 0286 ± 0 . 0075 (5) 0 . 1741 ± 0 . 0246 (15) 10.33 

KLR-rbf 0 . 1343 ± 0 . 0672 (12) 0 . 0405 ± 0 . 0284 (10) 0 . 2598 ± 0 . 0529 (10) 0 . 0740 ± 0 . 0284 (7) 0 . 0657 ± 0 . 0229 (9) 0 . 2905 ± 0 . 0312 (13) 0 . 1496 ± 0 . 0233 (7) 0 . 0239 ± 0 . 0066 (3) 0 . 1696 ± 0 . 0271 (12) 9.22 

MORE 0 . 1242 ± 0 . 0609 (9) 0 . 0412 ± 0 . 0299 (11) 0 . 2570 ± 0 . 0463 (9) 0 . 0737 ± 0 . 0269 (6) 0 . 0661 ± 0 . 0219 (11) 0 . 2988 ± 0 . 0276 (16) 0 . 1397 ± 0 . 0214 (3) 0 . 0190 ± 0 . 0070 (2) 0 . 1645 ± 0 . 0235 (8) 8.33 

LMT 0 . 1433 ± 0 . 0667 (14) 0 . 0338 ± 0 . 0352 (6) 0 . 2707 ± 0 . 0554 (13) 0 . 0614 ± 0 . 0251 (3) 0 . 0691 ± 0 . 0228 (12) 0 . 2910 ± 0 . 0290 (14) 0 . 1474 ± 0 . 0232 (6) 0 . 0089 ± 0 . 0047 (1) 0 . 1595 ± 0 . 0283 (4) 8.11 

META 0 . 1592 ± 0 . 0698 (16) 0 . 0640 ± 0 . 0304 (14) 0 . 2677 ± 0 . 0547 (12) 0 . 1686 ± 0 . 0369 (11) 0 . 1001 ± 0 . 0297 (16) 0 . 2031 ± 0 . 0250 (2) 0 . 1616 ± 0 . 0222 (12) 0 . 1506 ± 0 . 0166 (14) 0 . 1698 ± 0 . 0279 (13) 12.17 

MIP 0 . 1480 ± 0 . 0811 (15) 0 . 0598 ± 0 . 0315 (12) – – 0 . 1008 ± 0 . 0247 (17) 0 . 1856 ± 0 . 0260 (1) 0 . 1359 ± 0 . 0185 (2) – – 13.22 

UTADIS 0 . 1280 ± 0 . 0501 (11) 0 . 0152 ± 0 . 0214 (3) 0 . 2913 ± 0 . 0510 (15) 0 . 2080 ± 0 . 0388 (14) 0 . 0744 ± 0 . 0235 (13) 0 . 2356 ± 0 . 0292 (3) 0 . 1572 ± 0 . 0222 (11) 0 . 1336 ± 0 . 0167 (13) 0 . 1734 ± 0 . 0265 (14) 10.78 

UTADIS-G 0 . 1683 ± 0 . 0667 (18) 0 . 0356 ± 0 . 0386 (7) 0 . 3016 ± 0 . 0478 (16) 0 . 1617 ± 0 . 0383 (10) 0 . 0656 ± 0 . 0228 (8) 0 . 3259 ± 0 . 0567 (18) 0 . 1781 ± 0 . 0253 (17) 0 . 1166 ± 0 . 0217 (10) 0 . 1778 ± 0 . 0246 (16) 13.33 

8
0

1
 



K. Martyn and M. Kadzi ́nski European Journal of Operational Research 305 (2023) 781–805 

preference learning algorithm and their ability to differentiate be- 

tween these approaches. For example, the 0/1 loss values attained 

by ANN-UTADIS for CPU, ESL, and DBS are 0.0046, 0.0436, and 

0.0645, indicating the inconsistencies in the suggested assignments 

only for a marginal share of test data. On the other extreme, these 

values for ERA and BCC are 0.2527 and 0.2056, respectively, con- 

firming an incorrect classification for a significant share of alterna- 

tives. When it comes to the differences between average 0/1 losses 

for the best and worst-performing algorithms, they are the least 

for MMG, LEV, and DBS, while being the greatest for CEV, MPG, 

ESL, and BCC. 

The most favorable average ranks implied by the 0/1 loss for 

the nine datasets are attained by: 

• ANN-UTADIS (4.22), which has the least 0/1 loss for DBS, 

CPU, and ESL, while being ranked in the upper half of the 

ranking for all problems; 
• ANN-Ch-Uncons. (4.67), which is at the top for BCC, while 

being ranked in the top six for 8 out of 9 datasets; 
• CR (5.33), which attains the lowest mean of 0/1 loss for LEV 

and MPG, 
• ANN-Ch-Constr. (5.89) ranked first for MMP and second for 

BDS, CPU, and ESL. 

On the other extreme, the worst average ranks are attained 

by UTADIS-G (13.33), MIP (13.22), ANN-PROMETHEE (12.44), META 

(12.17), ANN-TOPSIS (12.11), LR (11.39), ANN-OWA (11.00), UTADIS 

(10.78), and ANN-ELECTRE (10.67). Note that the differences be- 

tween the average ranks for the approaches in the lower half of 

the ranking are lesser than in the case of AUC. 

When it comes to the direct comparison of the approaches us- 

ing similar preference methods in terms of the 0/1 loss, ANN- 

UTADIS performs better than UTADIS for all datasets except ERA 

and better than UTADIS-G for all considered problems; ANN- 

ELECTRE is more advantageous than META only for 4 out of 9 

problems, whereas the algorithms using the Choquet integral at- 

tain similar results for CPU, ESL, LEV, and MMG. Moreover, CR was 

worse than the ANN-Ch methods on DBS and BCC, whereas ANN- 

Ch-Constr. and ANN-Ch-Pos. were underperforming for MPG and 

CEV. On average, the latter approach attained the worst average 

rank among these four methods, most likely due to the least flexi- 

ble model admitting only positive interactions for pairs of criteria. 

With the decrease in the number of alternatives in the train- 

ing set relative to the test set, the 0/1 loss increases for almost all 

methods (see Tables 7 and 8 ). For example, for ANN-UTADIS and 

DBS, its values are equal to 0.0645 for 80% training data, 0.1093 for 

50%, and 0.1460 for 20%. The analogous results attained by ANN- 

Ch-Constr. for BCC are 0.1816, 0.2196, and 0.2406. The least per- 

formance deterioration can be observed for ANN-PROMETHEE and 

ANN-ELECTRE for BCC, MPG, ERA, LEV, and CEV. In particular, for 

PROMETHEE-ANN and BCC, the respective 0/1 losses are 0.2656 for 

80/20, 0.2709 for 50/50, and 0.2659 for 20/80. In general, the av- 

erage ranks for ANN-UTADIS, ANN-Ch-Uncons., and LR get slightly 

worse with the decrease of the training set’s share, whereas the 

ranks for LR, META, and MIP exhibit an inverse trend. In the case 

of META and MIP, this can be explained by the greater efficiency of 

these algorithms when dealing with smaller data sizes. For exam- 

ple, for the 20/80 division, MIP identified the solutions for 8 out of 

9 datasets, whereas for greater training sets, it failed to identify a 

sorting model for the additional three problems. 

The conclusions derived from the analysis of the 0/1 loss 

agree with the ones formulated for AUC. On the one hand, ANN- 

UTADIS, ANN-Ch-Uncons., and CR are the best performing algo- 

rithms, whereas MIP, META, TOPSIS, OWA, UTADIS, and UTADIS- 

G attain the least advantageous results. A noticeable difference 

concerns the performance of ANN-ELECTRE and ANN-PROMETHEE, 

which are among the best approaches in terms of AUC but are 

rated poorly when considering the 0/1 loss. This means that these 

two outranking-based methods correctly reproduce the preference 

relations for the vast majority of pairs of alternatives while making 

more mistakes concerning their classification. It can be explained 

given the nature of these methods and the learning process. ANN- 

ELECTRE and ANN-PROMETHEE incorporate the NFS procedure 

with a score for each alternative derived from pairwise compar- 

isons against all remaining alternatives. However, these scores are 

transformed into assignments by comparing them with the class 

thresholds. It turns out that the threshold inferred for the train- 

ing set might not generalize well for the test set, leading to the 

misclassification of alternatives, which attain scores close to the 

threshold. This is confirmed by Fig. 16 , which indicates that for 

ERA, changing the threshold value for the test set rather than us- 

ing the one inferred from the learning data might improve the 0/1 

loss even by a few percent. 

In the e-Appendix, we report the experimental results for the 

ANN-based algorithms in terms of the F1 score as well as the 

outcomes given different performance measures obtained for the 

training set. 

7. Conclusions and future work 

The availability of data resources helps individuals and groups 

mine helpful information and make better-informed decisions. The 

spectrum of practical problems that emphasize handling large 

quantities of data becomes more extensive. This requires the de- 

velopment of dedicated techniques. In recent years, an often em- 

phasized aspect is that such methods should support both the ex- 

plainability of recommended decisions and the interpretability of 

the entire decision-making process. 

In this paper, we have considered the problem of processing 

data into explainable and interpretable models. This has been done 

in the context of preference learning. It consists of training the 

models on a set of alternatives for which the preferences are 

known/available and predicting the preferences for all other op- 

tions. Specifically, we considered learning the parameters of mono- 

tonic sorting models from large sets of assignment examples. In 

this kind of problem, alternatives need to be assigned to pre- 

defined, preference-ordered classes in the presence of multiple, po- 

tentially conflicting criteria. 

We have advocated the use of intuitive models inspired by 

the development in the field of MCDA. This is consistent with 

the recent trends in Machine Learning ( Rudin, 2019 ). The consid- 

ered models offer measures for (i) quantifying the role of indi- 

vidual criteria and subsets of criteria, (ii) understanding the im- 

pact of particular performances on the decision, (iii) gaining in- 

sights on which performance differences are negligible, significant, 

or critical, and (iv) capturing the strength of criteria coalitions 

sufficient for claiming that one alternative is at least as good as 

another. Moreover, the applied operators offer a mathematically 

sound and elegant manner for aggregating the arguments support- 

ing each alternative’s strengths and weaknesses. Also, the consid- 

ered threshold-based sorting procedure is easily understandable 

and transparent in deriving the assignments by comparing alterna- 

tives’ comprehensive scores with the separating class thresholds. 

As a concrete Machine Learning application of these models, we 

have proposed Artificial Neural Networks as a computation tech- 

nique for conducting preference disaggregation. ANNs have been 

used before for classification in the context of extensive data. 

However, the non-linear models they derived could not be inter- 

preted by human Decision Makers nor accepted by domain experts. 

Thanks to the suitably adjusted components, units, and architec- 

ture, we have made ANNs suitable for learning highly explainable 

models. 
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(a) ANN-PROMETHEE (b) ANN-ELECTRE

Fig. 16. The values of 0/1 loss ( y -axis) for different separating class thresholds ( x -axis) for the ERA problem. 

The main benefits of the proposed preference learning algo- 

rithms are three-fold. First, we infer the parameters of the sort- 

ing models from decision examples, not requiring the Decision 

Maker to specify their values directly. We allow for simultane- 

ous inference of all parameters of the sorting model, such as, e.g., 

criteria weights, concordance and discordance functions, and the 

comparison, veto, credibility, and separating class thresholds. This 

cannot be done efficiently with mathematical programming tech- 

niques that are traditionally applied in MCDA. Also, we avoid an 

arbitrary indication of meta-parameters such as shapes of prefer- 

ence functions or characteristic points of marginal values functions. 

In turn, we apply more general per-criterion (value, preference, 

concordance, or discordance) functions that offer greater flexibil- 

ity in fitting the input data while maintaining the original spirit of 

MCDA. 

Second, we contribute to the stream of making the MCDA 

methods suitable for handling inconsistent preference information 

that is too large to be dealt with by most traditional methods 

within an acceptable time. Sets of alternatives traditionally con- 

sidered in MCDA consist of modestly-sized collections ( Wallenius 

et al., 2008 ) and the development of the algorithms scaling up 

well with the number of alternatives has not been at the core 

of MCDA ( Corrente et al., 2013 ). For example, the basic MCDA al- 

gorithms for dealing with inconsistency in the provided prefer- 

ence information are based on Mixed-Integer Linear Programming 

(MILP). Nonetheless, some existing MCDA and preference learning 

methods are capable of dealing with large inconsistent sets of as- 

signment examples (see, e.g., Chandrasekaran et al., 2005; Dem- 

bczy ́nski et al., 2009; Greco et al., 2001; Kotłowski & Słowi ́nski, 

2013; Manthoulis, Doumpos, Zopounidis, & Galariotis, 2020; Sobrie 

et al., 2019; Tehrani et al., 2012; Zopounidis & Doumpos, 20 0 0 ). 

In this spirit, we demonstrate the feasibility of the proposed ANN- 

based approaches to the collections of over one thousand alterna- 

tives or the problems requiring comparing a few million pairs of 

alternatives. We know that the volume of datasets considered in 

some other sub-fields of ML is far more significant than in our 

experiments. Hence, demonstrating the usability of the proposed 

methods in areas typical for the ML applications remains a subject 

for future research. These include, e.g., finance, medicine, econ- 

omy, and information retrieval, in which even some MCDA meth- 

ods have been already used in the context of data sets with sizes 

exceeding those considered in this paper (e.g., bank failure predic- 

tion ( Manthoulis et al., 2020 ), prognosis for hospice referral ( Gil- 

Herrera et al., 2015 ), and recommender systems in numerous ap- 

plication domains ( Manouselis & Costopoulou, 2007 )). 

Third, the extensive experiments on various benchmark prob- 

lems indicate that the introduced algorithms are competitive in 

terms of predictive accuracy. This is particularly true for the 

three approaches called ANN-UTADIS, ANN-Ch-Uncons., and ANN- 

PROMETHEE. They incorporate preference models in the form 

of an additive value function with generalized marginal func- 

tions, 2-additive Choquet integral admitting significant variability 

of weights, and an outranking relation combined with the Net Flow 

Score procedure. These methods perform well in terms of the AUC 

measure, which focuses on preserving pairwise preference rela- 

tions. In addition, ANN-UTADIS and ANN-Ch-Uncons. score favor- 

ably also on the 0/1 loss, which is directly related to the classifi- 

cation accuracy. On average, the predictions made by these algo- 

rithms were slightly more accurate than the recommendations de- 

livered by the state-of-the-art methods, including logistic regres- 

sion and its generalizations, rule ensemble methods, approaches 

based on mathematical programming, and a dedicated metaheuris- 

tic for an outranking-based classification model. The advantage of 

the ANN-based methods derives from a few factors, including in- 

corporating more general preference functions, efficient optimiza- 

tion methods, and techniques for increasing noise resistance, pre- 

venting overfitting, and reducing the impact of the information 

processing order on the attained results. 

From a broader perspective, the variability of different algo- 

rithms proposed in this paper gives a chance for adjusting the sort- 

ing model to the provided preference information, as postulated 

in Hanne (1997) . In particular, we considered score-, distance-, and 

outranking-based approaches that admit different compensation 

levels, interactions between criteria, or per-criterion risk attitudes 

or curvatures of marginal functions. In MCDA, such factors need to 

be considered when selecting a single method a priori. However, 

in the preference learning context, all presented neural networks 

can be aggregated in a single ANN that would, in the end, activate 

only the part and underlying approach leading to the most advan- 

tageous results that fit the available indirect preferences in the best 

way. 

The directions for future research can be divided into experi- 

mental and methodological. The former ones derive from the lim- 

itations of our study. First, some data sets considered in the ex- 

perimental comparison involve nominal attributes arbitrarily trans- 

formed into monotonic criteria as described in Tehrani et al. 

(2012) . While this increases the difficulty of the preference learn- 

ing task, such an interpretation neglects the original performance 

scales without preference directions. In this perspective, we per- 

ceive the need to further test the preference learning algorithms 

on real-world data with correctly defined criteria and increase 

the variety of publicly available properly designed benchmark data 

sets. Second, when testing the performance of algorithms, we run 

only those originally proposed in this paper. For the remaining 
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methods, we recalled the results reported in the respective works 

(e.g., Sobrie et al., 2019; Tehrani et al., 2012 ) on the same bench- 

mark problems. This could be questioned concerning the optimiza- 

tion of hyperparameters which is an essential component of the 

experimental study. We performed it differently than in Sobrie 

et al. (2019) and Tehrani et al. (2012) . In particular, the perfor- 

mance of some algorithms (e.g., UTADIS) for which the results 

were reported in other works could be improved if their hyper- 

parameters were set more carefully. Given this limitation, we want 

to emphasize the need for adopting proper processes for optimiz- 

ing the hyperparameters of MCDA methods in future studies that 

will focus on performing comparative analyses. In our understand- 

ing, successfully implementing this postulate requires making the 

source code of all so far proposed methods in the preference learn- 

ing stream publicly available. Third, when optimizing the parame- 

ters of the sorting model, one could investigate the impact of other 

misclassification errors than a sum of regrets or different tech- 

niques than AdamW. 

Regarding future research related to the development of other 

methods, we envisage the following four directions. First, we 

will propose neural preference learning algorithms for other 

intuitive MCDA approaches. The most appealing ones include 

the ELECTRE ( Costa, Rui Figueira, Vieira, & Vieira, 2019 ) and 

PROMETHEE ( Pelissari, Oliveira, Amor, & Abackerli, 2019 ) methods 

with boundary or characteristic class profiles and value-based ap- 

proaches admitting interactions between criteria ( Liu et al., 2021 ) 

and non-monotonicity ( Liu et al., 2019 ) of marginal value func- 

tions. Second, it is possible to combine different methods within 

a single neural network and aggregate their results into a com- 

prehensive quality measure. The form of an aggregation operator 

and the weights associated with scores delivered by various ap- 

proaches could be learned during the optimization process ( Hanne, 

1997 ). Third, it would be interesting to verify the impact of using 

an ensemble of models that attained a pre-defined threshold of 

the classification error. In this paper, we only used the model that 

performed the best during learning. However, some other models 

were only slightly worse, and their joint use on the test set could 

increase the robustness of recommended assignments. Finally, an 

appealing idea consists of adjusting the preference learning algo- 

rithms to an online setting ( Sahoo, Pham, Lu, & Hoi, 2018 ). Un- 

like batch learning applied in this paper, it assumes preferences are 

provided in sequential order, and the method needs to update the 

classification model at each step. This would correspond to a com- 

mon MCDA scenario in which the DM provides preferences in suc- 

cessive iterations. 
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Abstract

We propose a family of approaches, called PrefRank, for exploiting a valued preference relation. They are inspired by
the algorithms originally conceived for scoring the websites. The methods derive the strength and weakness of each
alternative by analyzing how favorably it compares with the remaining ones. The introduced variants differ concerning
the implemented weighting schemes when aggregating the out- or in-going preference degrees. We compare the results
computed with the three variants of PrefRank and the state-of-the-art PROMETHEE methods on a broad spectrum
of simulated problems. The similarity in the generated recommendations is quantified in view of the top-ranked
alternatives, incomplete rankings, and complete orders. To demonstrate the methods’ usability, we discuss the results
of two studies concerning the fleet selection problem and the ranking of special economic zones in Poland. The latter
is an original problem aiming to identify the zones that make the best use of their area and funds to provide significant
financial profit and create many businesses or jobs.

Keywords: Multiple criteria decision analysis, Ranking, Valued preference relation, Exploitation procedure, Special
economic zones

1. Introduction

The problem statement determines what type of recommendation is expected by the Decision Maker (DM) facing
a particular decision challenge Cinelli et al. (2020). Choice and ranking belong to the most frequent real-world
problems. The former aims at identifying the most preferred subset of alternatives, usually limited to one or a few
options. The example choice problems concern supplier selection Govindan et al. (2017), engineering design of a
chemical reactor Jaszkiewicz and Słowiński (1994), or siting of a nuclear power plant Keeney and Robilliard (1977). In
turn, ranking is oriented toward ordering a set of alternatives from the best to the worst, using a relative comparison
approach. Typical problems of this kind include ranking study programs or schools Wedlin (2007), ordering reuse
strategies for adaptive heritage Bottero et al. (2019), or prioritizing countries in terms of their advancement in using
information and communication technologies Siskos et al. (2014).

An inherent feature of the above problems is a multiple criteria evaluation of decision alternatives. For example,
the suppliers are judged in terms of several economic, environmental, and social criteria Govindan et al. (2017),
whereas constructing a ranking of study programs requires considering their reputation, quality of the university, and
alumni career progress Wedlin (2007). Since the criteria are usually in conflict, one needs an operational aid to handle
the complexity of real-world decision problems. Multiple Criteria Decision Analysis (MCDA) offers a plethora of
approaches that differ in intuitiveness, properties, assumptions, and context use Cinelli et al. (2022); Watróbski et al.
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(2019). However, the most distinguishing aspect of these methods is the convention they employ for mathematical
aggregation and exploitation of performances, reflecting the quality of alternatives on multiple criteria.

The aggregation methods can be described in view of their formal properties and empirical consequences. Two
major techniques can be distinguished in the context of ranking and choice. On the one hand, some approaches derive
a comprehensive score of each alternative by aggregating its performances using a value-, utility-, or distance-based
procedure Cinelli et al. (2020). On the other hand, one may perform pairwise comparisons and establish a preference
relation in the set of alternatives. Such a relation may be either crisp or valued Szeląg et al. (2014). The former
represents only the presence or absence of preference, whereas the latter allows degrees of membership, indicating how
strongly the relation is established.

Let us focus on a valued preference relation. Its interpretation differs depending on the context use Szeląg et al.
(2014). In particular, it may capture the percentage of voters or stakeholders declaring that one alternative is better
than another Liu et al. (2020). Furthermore, it may reflect the share of feasible instances of the preference model
confirming the preference Kadziński and Tervonen (2013). Alternatively, it may quantify the strength or credibility
of the assertion “a is at least as good or more preferred to b" with the proviso that the relation’s fuzziness may result
from applying multiple criteria and/or uncertain performances in the form of, e.g., fuzzy numbers Brans and De Smet
(2016); Figueira et al. (2016); Geldermann et al. (2000). Ultimately, the quality of each alternative depends on its
relations with all the other alternatives Szeląg et al. (2014). Hence the matrix of a valued relation needs to be exploited
to develop the final recommendation given a ranking or a choice problem statement.

There exist various procedures for exploiting valued preference relations. The most appealing one computes the
entering and leaving flows, which summarize the strength and weakness of each alternative in comparison with all
remaining ones Brans and De Smet (2016). There exist other scoring procedures, which differ in terms of three aspects:
(i) accounting for arguments only in favor or against each alternative, or both of them jointly, (ii) aggregation operator
(min, max, or sum) used to aggregate the results of elementary pairwise comparisons into a comprehensive measure of
desirability, and (iii) iterative application of the choice function to break ties between subsets of alternatives attaining
the same score Szeląg et al. (2014). Furthermore, distillation procedures compute the quality of each alternative
and iteratively add them to the constructed order until considering the entire set Corrente et al. (2017). In the
downward (upward) distillation, the ranking is constructed in a top-down (bottom-up) fashion, retaining alternatives
with the greatest (least) quality first. In Dias and Lamboray (2010), the prudence principle has been extended in the
exploitation model, constructing a ranking that maximizes the weakest support for its implicit pairwise comparison.
Moreover, Leyva-Lopez and Aguilera-Contreras (2005) proposed an evolutionary algorithm that minimizes the number
of alternatives that are ranked higher despite smaller values of an outranking relation when compared to some lower-
ranked alternatives. In some scenarios, a set of valued relations is considered, e.g., graded outranking relations Szeląg
et al. (2014) or the validity of preference, indifference, and incomparability Wang (2001). They can be analyzed
independently or aggregated into a single fuzzy relation over a set of alternatives. Other exploitation procedures can
be found, e.g., in Perny and Roy (1992), Szeląg et al. (2014), and Wang and Li (2018).

In this paper, we focus on a valued preference relation capturing the strength of a coalition of criteria supporting
that one alternative is more preferred to another. Moreover, we consider the Net Flow Rule that derives the strength
and weakness of each alternative by summarizing how strongly it is preferred to other alternatives and the degree to
which other alternatives are preferred to it. Such a setting has been adopted in the PROMETHEE method Brans et al.
(1984). It has been applied to a variety of real-world problems such as, e.g., evaluation of urban regeneration processes,
prioritization of green suppliers, assessment of development scenarios for the power generation sector, or ranking of
enterprises according to their business efficiency level. For a comprehensive review of applications of PROMETHEE,
see Behzadian et al. (2010). Also, the method has been revised in numerous ways to handle more complex decision
scenarios. The most notable extensions concern admitting fuzzy performances and weights Geldermann et al. (2000);
Ziemba (2021), providing visual and interactive decision aiding tools Mareschal and De Smet (2009), tolerating impre-
cise or indirect preferences and conducting robustness analysis Corrente et al. (2014a,b); Kadziński et al. (2012); Lolli
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et al. (2019); Pelissari and Duarte (2022); Ziemba (2021), handling hierarchical structures Arcidiacono et al. (2018),
interactions between criteria Corrente et al. (2014a), and discordance effect Hu and Chen (2011), and addressing
sorting Angilella and Pappalardo (2021); Pelissari and Duarte (2022) or group decision making Macharis et al. (1998).

The numerous practical applications and methodological advancements confirm the status of PROMETHEE as
one of the most important methods in MCDA. Moreover, its aggregation procedure enjoys desirable theoretical
properties Dejaegere et al. (2022). However, intuitively, the computation of entering and leaving flows by simply
aggregating the preference degrees derived from pairwise comparisons with all remaining alternatives can be criticized.
The Net Flow Rule does not consider the preference graph’s structure. In particular, being preferred to a relatively good
alternative to the same degree as to a relatively worse solution adds the same value to the alternative’s comprehensive
strength. In the same spirit, being worse than some highly favorable and clearly disadvantageous options counts
equally to the alternative’s overall weakness. Hence, the results of all pairwise comparisons are assigned the same
discriminative power that is proportional only to the preference index values.

This paper presents a novel family of procedures, called PrefRank, exploiting a value preference relation. When
computing the strength and weakness of each alternative, they account for both the preference degrees when compared
to other alternatives and the relative qualities of these alternatives. In this way, the impact of arguments in favor of
or opposing a given option is differentiated based on the strength and weakness of the alternative it is compared to.
This general idea is implemented differently in three approaches.

First, when computing the strength of each alternative, we appreciate being preferred over relatively good rather
than bad alternatives. In turn, when calculating the weakness, we perceive it as a greater disadvantage to be outranked
by relatively weak rather than strong alternatives. Second, we postulate that a strong alternative should be heavily
preferred over weak solutions. Analogously, a weak option is the one vastly outranked by highly favorable alternatives.
Thirdly, we propose that the alternative’s power is great if it is preferred to alternatives that are outranked by other
good solutions. In turn, the alternative’s flaw is high if it is outranked by solutions that are preferred to other weak
options.

The above ideas are inspired by the algorithms originally conceived for scoring web pages: PageRank Page et al.
(1999), HITS Kleinberg (1999), and SALSA Lempel and Moran (2000). For many years, PageRank served as the
basis for evaluating pages in the Google search engine. It exploits the links between the websites and considers
their qualities to estimate how important the website is. The algorithm promotes these pages, which are linked by
many other important pages. This idea has been subsequently adapted to various science fields ranging from exact
sciences and medicine through monitoring systems, scientometrics, and sociology to sports and robotics Coppola et al.
(2019); Gleich (2015); Kwak et al. (2010). Furthermore, HITS distinguishes two roles each website can play: hub
or authority Kleinberg (1999). The algorithm assigns two scores for each page, exhibiting a mutually reinforcing
relationship. The authority score quantifies the value of the page’s content. A good authority needs to be linked by
many good hubs, being regarded as a meaningful source for a particular topic. The hub value captures the value of
each page’s links to other sites. A good hub points to many good authorities. SALSA is similar to HITS in terms of
computing authorities and hubs scores Lempel and Moran (2000). However, its computational procedure is inspired by
PageRank. It considers a bipartite graph with one set containing hub pages and the other containing authority pages
but admitting each page belongs to both sets. The resulting scores are based on the contributions of second-degree
neighbors, which makes the authority and hub assessments more independent. The proposed methods are used to
derive the strengths and weaknesses of all alternatives, hence associating a pair of numerical values with each option.
They can be combined into a partial or a complete ranking, similarly as in PROMETHEE I and II Brans et al. (1984).

Our second contribution consists of developing open-source software implementing the introduced methods. This
makes them ready for use by a wide spectrum of users. Since the programming module reads input in a dedicated XML
format, called XMCDA Meyer and Bigaret (2012), we also benefit from the flexibility in designing the methodological
flows by combining various MCDA procedures. In particular, the criteria weights needed to establish valued preference
relation can be derived from various methods, including the revised Simos procedure Figueira and Roy (2002), the Best-
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Worst Method Rezaei (2015), Analytical Hierarchy Process Saaty (1990), or surrogate weights de Almeida Filho et al.
(2018). In the same spirit, the comprehensive preference degrees can be derived as initially proposed in PROMETHEE.
However, they can be enriched by considering the reinforced preference effect Roy and Słowiński (2008), interactions
between criteria Figueira et al. (2009), or discordance effect Hu and Chen (2011). In this way, the users can adjust
the components to their needs.

Finally, we illustrate the use of the proposed methods in a study concerning the comprehensive evaluation of
special economic zones. There are fourteen such areas in Poland offering favorable investment conditions. We consider
their performances given five criteria: total area, capital expenditures, number of jobs, business permits, and financial
results. They are aggregated into a comprehensive ranking using the PrefRank procedures. Moreover, we report the
results of an extensive comparison of PrefRank and PROMETHEE. We consider problems with different numbers of
alternatives and criteria and simulated DM’s preferences in the form of preference functions and criteria weights. The
outcomes indicate the similarities between the considered methods in terms of recommending only the most preferred
alternative or the entire ranking.

The remainder of this paper is organized as follows. Section 2 introduces the notations and reminds the PROMETHEE
methods. In Section 3, we discuss the novel scoring methods. Section 4 deals with measures used for comparing the
recommendations obtained with various approaches. In Section 5, we illustrate the use of PrefRank in a real-world
example concerning the prioritization of bus models. Section 6 discusses the results of a comparison between PrefRank
and PROMETHEE. In Section 7, we present the software and demonstrate its use in the evaluation of Polish special
economic zones. The last section concludes the paper.

2. Notation and reminder on PROMETHEE

We consider a finite set A = {a1, · · · , an} of n alternatives evaluated on a family G = {g1, · · · , gm} of m criteria. The
DM aims at ranking the alternatives from the best to the worst according to their performances gj(ai) on gj : A → R,
j ∈ J = {1, . . . ,m}. We assume, without loss of generality, that the larger gj(ai), the more preferred the alternative
ai on gj .

The PROMETHEE methods compare the alternatives pairwise. For each criterion gj ∈ G and each pair (ai, ak) ∈
A×A, the performance difference is translated into the marginal preference index (degree):

πj(ai, ak) = Fj(gj(ai)− gj(ak)) ∈ [0, 1]. (1)

A typical marginal preference function, incorporating a pair of thresholds, is shown in Figure 1. An indifference thresh-
old qj is the maximal performance difference for which a pair of alternatives is indifferent. In contrast, a preference
threshold pj is the minimal performance difference inducing a strict preference of one alternative over another. For
other standard types of preference functions used in PROMETHEE, see Brans and De Smet (2016).

π j(ai ,ak )

1

jq jp

g j (ai )− g j (ak )
0
0

Figure 1: Typical marginal preference function used in PROMETHEE.

The marginal preference degrees are aggregated using a weighted average into a comprehensive preference degree:

π(ai, ak) =

∑m
j=1 wjπj(ai, ak)∑m

j=1 wj
, (2)
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where wj is a weight associated with criterion gj , j ∈ J . Thus computed π(ai, ak) can be interpreted as a valued
preference relation. The greater π(ai, ak), the more significant the support of the family of criteria G to the assertion
that ai is preferred to ak. For each pair of alternatives (ai, ak) ∈ A×A, π(ai, ak) ∈ [0, 1] and 0 ≤ π(ai, ak)+π(ak, ai) ≤
1. Moreover, for each ai ∈ A, π(ai, ai) = 0.

Finally, PROMETHEE computes the positive ϕ+(ai) and negative ϕ−(ai) flows for each ai ∈ A by aggregating
arguments supporting its strength and weakness, respectively:

ϕ+(ai) =
1

n− 1

n∑

k=1

π(ai, ak), (3)

ϕ−(ai) =
1

n− 1

n∑

k=1

π(ak, ai). (4)

The positive flow ϕ+(ai) indicates how much, on average, ai is preferred to other alternatives, while the negative flow
ϕ−(ai) captures how much, on average, other alternatives are preferred to ai. The results of the above aggregations
depend only on the degrees of comprehensive preference. In particular, they do not consider whether the alternatives
over which ai is preferred or those that are preferred to ai are strong or weak. In other words, PROMETHEE neglects
the difficulty or easiness of being preferred to other alternatives. Still, the method employs the positive and negative
flows to impose a complete or partial order on the set of alternatives.

3. PrefRank: a family of scoring methods exploiting valued preference relation

In this section, we present a family of procedures exploiting a valued preference relation π(ai, ak), ai, ak ∈ A, called
PrefRank. They compute the strength S+(ai) and weakness S−(ai) for each alternative ai ∈ A by aggregating the
preference degrees, similarly to the positive and negative flows in PROMETHEE. These factors can be used to rank
the alternatives or aggregated into a comprehensive quality seen as the balance between strength and weakness:

S(ai) = S+(ai)− S−(ai). (5)

However, there are a few notable differences when compared to PROMETHEE. The strengths and weaknesses of
all alternatives in PrefRank are normalized to sum up to one. In other words, there is a unary pool of strength or
weakness to be distributed. From a computational viewpoint, we consider elementary strength ϕ+(ai) and weakness
ϕ−(ai) for each ai ∈ A, which are normalized by the sum of strengths and weaknesses attained by all considered
options:

S+(ai) =
ϕ+(ai)∑n

k=1 ϕ
+(ak)

and S−(ai) =
ϕ−(ai)∑n

k=1 ϕ
−(ak)

. (6)

More importantly, when calculating ϕ+(ai) and ϕ−(ai), we aggregate the preference degrees using weighted sums
rather than a simple sum of preference degrees. At this stage, we refer to the relative qualities of alternatives to
which a given option is compared. Precisely, the impact of arguments in favor of or in opposition to a given option is
differentiated based on the strengths and weaknesses of the alternatives it is compared against, i.e.:

ϕ+(ai) =
n∑

k=1

π(ai, ak) · ω+(ak) and ϕ−(ai) =
n∑

k=1

π(ak, ai) · ω−(ak), (7)

where ω+(ak) and ω−(ak) are weights assigned to each ak ∈ A, expressing the relative difficulty in other alternatives
being preferred to ak and the power of ak in being preferred to other alternatives, respectively. In this way, when
aggregating the arguments from one-against-one comparisons, some preference degrees can be strengthened, while
others can be weakened.
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This general idea is implemented differently in three approaches, varying in how the weights ω+(ak) and ω−(ak)

are computed. In what follows, we discuss the idea underlying the variants of PrefRank, distinguished with Roman
numerals (I, II, and III). We illustrate these approaches on a didactic problem.

3.1. PrefRank I

When calculating the strength of each alternative in PrefRank I, we appreciate being preferred to relatively good
rather than bad alternatives. That is, if an alternative is better than some other option which, in turn, is preferred –
to a significant degree – over all or the majority of other solutions, this should imply some bonus. On the contrary,
being preferred to a relatively poor alternative that, on its own, does not prove its superiority over other solutions,
should not significantly increase the alternative’s strength.

When calculating the weakness of each alternative, we perceive it as a more significant disadvantage to be outranked
by relatively weak rather than strong alternatives. In this interpretation, if an alternative is worse than some other
option which, in turn, is strongly outpreferred by many other solutions, this should lead to a significant penalty.
However, proving worse than some strong alternative revealing no or limited deficiencies when other options are
compared against it should not add much to the alternative’s weakness. These desired effects can be attained by
multiplying the valued outranking relation by the following weights:

ω+(ak) = S+(ak) and ω−(ak) = S−(ak). (8)

Overall, the strength of each alternative depends on the degrees confirming its preference over other alternatives
and the strengths of these options. In turn, its weakness derives from how much other alternatives are preferred to it
and the weaknesses of these solutions.

The interpretation of strengths and weaknesses in PrefRank I can be explained from the perspective of a valued
preference graph in which the nodes correspond to the alternatives and the arcs are associated with out- or in-going
preference degrees. The strength is equivalent to the probability of reaching a given vertex by following a random
walk in a preference graph such that the probability of moving from ai to ak is equal to π(ai, ak). Optionally, S+(ai)

can also be interpreted as a result of an alternative voting system where the voting powers are equal to the preference
degrees. Analogously, the weakness derives from a random walk in a graph with the move’s probability between ai

and ak equal to π(ak, ai). This interpretation is consistent with the one initially proposed in PageRank Page et al.
(1999), where nodes stand for the web pages or documents and the arcs correspond to the links.

Due to the interdependence between the strengths and weaknesses of various alternatives, they are computed using
an iterative method. In the beginning, we assume that they are equal for all alternatives, i.e., S+(ai) = S−(ai) = 1

n .
Then, the computations are conducted as indicated by Eqs. 6, 7, and 8, and repeated with the updated values until the
differences between the strengths and weaknesses in the successive iterations are negligible (i.e., lower than pre-defined
accuracy threshold).

To illustrate the idea underlying PrefRank I, let us consider an example preference matrix for five alternatives
a1 – a5 (see Table 1). The obtained strengths, weaknesses, and qualities are reported in Table 2. It also contains
intermediate (non-normalized) factors. In what follows, we explain the interdependencies between various strengths
and weaknesses while focusing on a1 and a5.

Table 1: Example preference matrix for the problem involving five alternatives.

π(ai, ak) a1 a2 a3 a4 a5
a1 0.0 1.0 1.0 0.0 0.0
a2 0.0 0.0 1.0 0.0 0.0
a3 0.0 0.0 0.0 0.0 1.0
a4 0.0 0.0 0.0 0.0 0.5
a5 0.0 0.0 0.0 0.5 0.0
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The non-normalized strength of a1 is expressed as follows:

ϕ+(a1) = π(a1, a1) · S+(a1) + π(a1, a2) · S+(a2) + π(a1, a3) · S+(a3) + π(a1, a4) · S+(a4) + π(a1, a5) · S+(a5) =

= 0 · S+(a1) + 1 · S+(a2) + 1 · S+(a3) + 0 · S+(a4) + 0 · S+(a5) = S+(a2) + S+(a3) = 0.2 + 0.1 = 0.3.

Hence it derives from the strengths of a2 and a3, which are fully outpreferred by a1. In turn, its non-normalized
weakness ϕ−(a1) is zero because no other alternative is preferred to a1 with a positive degree. Computing the final
strength and weakness of a1 requires normalizing through the sum of strengths and weaknesses of all alternatives:

S+(a1) =
ϕ+(a1)∑n
k=1 ϕ

+(ak)
=

0.3

0.3 + 0.1 + 0.05 + 0.025 + 0.025
= 0.6,

S−(a1) =
ϕ−(a1)∑n
k=1 ϕ

−(ak)
=

0.0

0.0 + 0.0 + 0.0 + 0.25 + 0.25
= 0.0.

As a result, the quality S of a1 is S(a1) = S+(a1)−S−(a1) = 0.6−0.0 = 0.6. When it comes to a5, its non-normalized
strength is ϕ+(a5) = S+(a4) · π(a5, a4) = 0.05 · 0.5 = 0.025. After normalization, it amounts to:

S+(a5) =
ϕ+(a5)∑n
k=1 ϕ

+(ak)
=

0.025

0.3 + 0.1 + 0.05 + 0.025 + 0.025
= 0.05.

In turn, the non-normalized weakness of a5 is:

ϕ−(a5) = π(a1, a5) · S−(a1) + π(a2, a5) · S−(a2) + π(a3, a5) · S−(a3) + π(a4, a5) · S−(a4) + π(a5, a5) · S−(a5) =

= 0 · S−(a1) + 0 · S−(a2) + 1 · S−(a3) + 0.5 · S−(a4) + 0 · S−(a5) = S−(a3) + 0.5 · S−(a4) = 0 + 0.5 · 0.5 = 0.25.

Its normalized counterpart is computed in the following way:

S−(a5) =
ϕ−(a5)∑n
k=1 ϕ

−(ak)
=

0.25

0.0 + 0.0 + 0.0 + 0.25 + 0.25
= 0.5

Finally, the quality of a5 is S(a5) = S+(a5)− S−(a5) = 0.05− 0.5 = −0.45.

Table 2: Strengths, weaknesses, and qualities derived by the three variants of PrefRank for the example problem.

Normalized Non-normalized
Algorithm Value a1 a2 a3 a4 a5 Value a1 a2 a3 a4 a5

PrefRank I
S+ 0.600 0.200 0.100 0.050 0.050 ϕ+ 0.300 0.100 0.050 0.025 0.025
S− 0.000 0.000 0.000 0.500 0.500 ϕ− 0.000 0.000 0.000 0.250 0.250
S 0.600 0.200 0.100 -0.450 -0.450

PrefRank II
S+ 0.618 0.382 0.000 0.000 0.000 ϕ+ 1.000 0.618 0.000 0.000 0.000
S− 0.000 0.382 0.618 0.000 0.000 ϕ− 0.000 0.618 1.000 0.000 0.000
S 0.618 0.000 -0.618 0.000 0.000

PrefRank III
S+ 0.267 0.133 0.267 0.133 0.200 ϕ+ 0.267 0.133 0.267 0.133 0.200
S− 0.000 0.167 0.333 0.250 0.250 ϕ− 0.000 0.167 0.333 0.250 0.250
S 0.267 -0.033 -0.067 -0.117 -0.050

3.2. PrefRank II

The weighting scheme implemented in PrefRank II is inverse with respect to the one adopted in PrefRank I. On the
one hand, a strong alternative should be heavily preferred over weak solutions. Precisely, the alternative’s strength
is computed as the weighted sum of preference degrees with weights interpreted as the weaknesses of solutions it is
compared against. Thus the greater the arguments confirming the advantage of the evaluated alternative and the
weaker the options with which it is confronted, the stronger the alternative. On the other hand, a weak alternative is
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the one vastly outranked by strong alternatives. Hence the alternative’s weakness is computed as the weighted sum
of preference degrees with weights interpreted as the strengths of solutions that are compared with it. As a result,
the weakness increases with the increase in both the in-going preference degrees and the strengths of other solutions.
These effects can be attained by using the following weights:

ω+(ak) = S−(ak) and ω−(ak) = S+(ak). (9)

The above interpretation derives from the HITS algorithm Kleinberg (1999), originally analyzing the links between
web pages. This approach distinguishes two roles each page can play: an authority (an authoritative source of
information) and a hub (a compilation of a broad catalog of information that lead users directly to other authoritative
pages). In this perspective, a page is a good hub if it points to good authorities, and it is a good authority when linked
by good hubs. In our adaptation, the alternative’s strength is similar to a hub score, and the weakness is similar to
an authority score. The computations are conducted using an iterative method according to Eqs. 6, 7, and 9.

Let us illustrate the use of PrefRank II while referring to an example problem introduced in Section 3.1. The
results are presented in Table 2. The non-normalized strength of a1 is expressed as follows:

ϕ+(a1) = π(a1, a1) · S−(a1) + π(a1, a2) · S−(a2) + π(a1, a3) · S−(a3) + π(a1, a4) · S−(a4) + π(a1, a5) · S−(a5) =

= 0 · S−(a1) + 1 · S−(a2) + 1 · S−(a3) + 0 · S−(a4) + 0 · S−(a5) = S−(a2) + S−(a3) = 0.382 + 0.618 = 1.0.

The normalized strength is S+(a1) =
1.0

1.0+0.618+0.0+0.0+0.0 = 0.618. Hence a1 is judged relatively strong because the
alternatives over which it is preferred are relatively weak. In turn, its weakness S−(a1) is zero because no other
alternative is preferred to a1. The quality of a1 is S(a1) = S+(a1)− S−(a1) = 0.618− 0.0 = 0.618.

As far as a5 is concerned, its non-normalized strength is nullified due to the zero weakness of a4 that is the only
alternative to which a5 is preferred with a positive degree, i.e., ϕ+(a5) = π(a5, a4) · S−(a4) = 0.5 · 0 = 0. In turn, the
non-normalized weakness of a5 is:

ϕ−(a5) = π(a1, a5) · S+(a1) + π(a2, a5) · S+(a2) + π(a3, a5) · S+(a3) + π(a4, a5) · S+(a4) + π(a5, a5) · S+(a5) =

= 0 · S+(a1) + 0 · S−(a2) + 1 · S+(a3) + 0.5 · S+(a4) + 0 · S+(a5) = S+(a3) + 0.5 · S+(a4) = 0 + 0.5 · 0 = 0.

Hence a5 is not judged weak because the only alternatives that are preferred over it are not judged strong either.
Consequently, the final quality of a5 is S(a5) = S+(a5)− S−(a5) = 0− 0 = 0.

3.3. PrefRank III

PrefRank III extends the idea underlying PageRank I taking into account an overall difficulty in being preferred to
some alternative estimated by the analysis of its relations with all other alternatives. On the one hand, an alternative’s
great strength derives from being highly preferred to the alternatives which are outranked by other good solutions.
Thus, the strength of ai is defined as a weighted sum of its out-going preference degrees π(ai, ak) with the following
weights:

ω+(ak) =
1∑n

i∗=1 π(ai∗, ak)

n∑

l=1

[
π(al, ak)∑n

k∗=1 π(al, ak∗)
S+(al)]. (10)

The above weight depends on the degrees to which other alternatives are preferred to ak ∈ A and the strengths of these
solutions. On the other hand, an alternative’s high weakness is implied by being vastly outranked by alternatives that
are preferred to other weak solutions. Hence the weakness of ai is a weighted sum of its in-going preference degrees
π(ak, ai) with the following weights:

ω−(ak) =
1∑n

i∗=1 π(ak, ai∗)

n∑

l=1

[
π(ak, al)∑n

k∗=1 π(ak∗, al)
S−(al)]. (11)
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In this case, the weight depends on the degrees with which ak is preferred over other alternatives and the weaknesses
of these solutions.

PrefRank III is inspired by the SALSA algorithm Lempel and Moran (2000), which exploits the information on the
existence of links connecting pairs of pages as well as the number of in- and outgoing links. We adopt this approach
to deal with a valued preference relation. Hence we consider a bipartite graph constructed based on the preference
matrix. The nodes in one part of this graph correspond to the alternatives’ weaknesses, and the nodes in the other
part stand for the alternatives’ strengths. Since each alternative has its strength and weakness, it is represented with
a node in both parts. The preference of ai over ak is modeled with an arc from ai in the strong part to ak in the weak
part. The strengths and weaknesses in PrefRank III are equivalent to the probability of randomly reaching the node
in this bipartite graph representing each alternative’s strong and weak points.

The illustration of the computations conducted by PrefRank III is again based on the example introduced in
Section 3.1 and refers to the results given in Table 2. The non-normalized strength of a1, disregarding the preference
indices equal to zero, is:

ϕ+(a1) = π(a1, a2) · ω+(a2) + π(a1, a3) · ω+(a3) =

= π(a1, a2) ·
1

π(a1, a2)
· π(a1, a2)

π(a1, a2) + π(a1, a3)
· S+(a1)

+ π(a1, a3) ·
1

π(a1, a3) + π(a2, a3)
· [ π(a1, a3)

π(a1, a3) + π(a2, a3)
· S+(a1) +

π(a2, a3)

π(a2, a3)
· S+(a2)] =

= 1 · 1
1
· 1

1 + 1
· 0.267 + 1 · 1

1 + 1
· [ 1

1 + 1
· 0.267 + 1

1
· 0.133] = 0.267.

Since these strengths are already normalized, to sum up to one for all alternatives, ϕ+(a1) = S+(a1). Similarly to
PrefRanks I and II, the weakness for ϕ−(a1) = S−(a1) = 0. Then, the quality of a1 is S(a1) = S+(a1) − S−(a1) =

0.267− 0.0 = 0.267. The strength of a5 is:

ϕ+(a5) = π(a5, a4) · ω+(a4) = π(a5, a4) ·
1

π(a5, a4)
· π(a5, a4)

π(a5, a4) · S+(a5)
=

= 0.5 · 1

0.5
· 0.5
0.5

· 0.2 = 0.5 · 0.4 = 0.2.

In turn, the weakness of a5 is:

ϕ−(a5) = π(a4, a5) · ω−(a4) + π(a3, a5) · ω−(a3) =

= π(a4, a5) ·
1

π(a4, a5)
· π(a4, a5)

π(a3, a5) + π(a4, a5)
· S−(a5)

+ π(a3, a5) ·
1

π(a3, a5)
· π(a3, a5)

π(a3, a5) + π(a4, a5)
· S−(a5) =

= 0.5 · 1

0.5
· 0.5

0.5 + 1
· 0.25 + 1 · 1

1
· 1

0.5 + 1
· 0.25 = 0.25.

The weaknesses of all alternatives are also normalized, and hence ϕ−(a5) = S−(a5). Consequently, the quality of a5
is S(a5) = S+(a5)− S−(a5) = 0.2− 0.25 = −0.05.

The computational procedure used by all variants of PrefRank to derive the strengths and weaknesses of all
alternatives is presented in the e-Appendix (supplementary material available online).

3.4. Ranking construction

A few procedures can be used to construct a ranking of alternatives based on the results of PrefRank. An incomplete
ranking can be established by following the principles of PROMETHEE I and considering the strengths and weaknesses
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separately. The conditions justifying the preference P , indifference I, and incomparability R relations are as follows:

aiPak iff (S+(ai) > S+(ak) and S−(ai) < S−(ak))

or (S+(ai) > S+(ak) and S−(ai) = S−(ak))

or (S+(ai) = S+(ak) and S−(ai) < S−(ak));

aiIak iff (S+(ai) = S+(ak) and S−(ai) = S−(ak));

aiRak otherwise.

Such incomplete rankings obtained for the illustrative problem using PROMETHEE I and the three variants of
PrefRank are provided in Figure 2. In all these rankings, a1 is preferred to the remaining alternatives. However, there
are also some noticeable differences. For example, a4 is preferred to a5 according to PROMETHEE I; the relation is
inverse for PrefRank III, whereas, for PrefRank I and II, a4 and a5 are indifferent.

In turn, a complete ranking can be established, following the assumptions of PROMETHEE II, by analyzing the
comprehensive qualities of alternatives:

aiPak iff S(ai) > S(ak);

aiIak iff S(ai) = S(ak).

Other exploitation procedure is mentioned in the concluding section.

a1

a4 a2

a5 a3

(a) PROMETHEE I

a1

a2

a3

a4 ,a5

(b) PrefRank I

a1

a2 a4 ,a5

a3

(c) PrefRank II

a1

a5 a2 a3

a4

(d) PrefRank III

Figure 2: Incomplete rankings obtained for the illustrative problem according to the strengths and weaknesses computed with different
methods.

4. Measures used for comparing the recommendation

In this section, we discuss measures used for comparing the recommendation derived with a pair of methods M ′ and
M ′′ Kadziński and Michalski (2016). We start with the metrics quantifying the similarity between ranking positions.
The rank (rank(M,ai)) of alternative ai ∈ A according to method M ∈ {M ′,M ′′} is defined as the number of
alternatives that are strictly preferred to ai increased by one. We denote a subset of alternatives that, according to
M , are ranked in the r-the position by:

M(r) = {ai ∈ A : rank(M,ai) = r}, for r = 1, . . . , n. (12)

When considering the rankings produced by M ′ and M ′′ in the context of rank r, the rank agreement measure
RA(M ′,M ′′, r) is defined as the share of alternatives that are assigned r-th rank by both methods as compared to a
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subset of alternatives that are ranked r-th by either method:

RA(M ′,M ′′, r) =
|M ′(r) ∩M ′′(r)|
|M ′(r) ∪M ′′(r)| . (13)

The RA measure builds on Jaccard’s coefficient. Given the first rank (r = 1), RA is called the Normalized Hit Ratio:

NHR(M ′,M ′′) = RA(M ′,M ′′, 1) =
|M ′(1) ∩M ′′(1)|
|M ′(1) ∪M ′′(1)| . (14)

It focuses on the top-ranked alternatives, hence capturing the agreement in the choice recommendation. When NHR

is equal to one, both methods rank the same subset of alternatives at the top, whereas NHR = 0 means these subsets
are disjoint.

Other measures for comparing a pair of rankings are based on pairwise comparisons. They account for the similarity
of relations observed for all pairs of alternatives. Table 3 provides such distances for the four possible relations:
preference P , inverse preference P−, indifference I, and incomparability R Miebs and Kadziński (2021); Roy and
Slowinski (1993). The rank difference measure aggregates such distances over all pairs of different alternatives:

RD(M ′,M ′′) =
n∑

i=1

n∑

k=1,k ̸=i

RD(M ′,M ′′, ai, ak). (15)

For the incomplete rankings, admitting all four relations, we will consider the normalized variant of such a distance:

NRD(M ′,M ′′) =
RD(M ′,M ′′)
2n · (n− 1)

. (16)

It takes values between 0 and 1, where 0 means that the relations observed in the rankings constructed with M ′ and
M ′′ are the same for all pairs of alternatives. We will use NRD to report the similarity between incomplete rankings.

As far as complete orders are concerned, we will refer to Kendall’s τ , which is well established in the literature. Let
us remind that complete rankings do not admit incomparability. Moreover, one assumes that the distance between
preference and inverse preference is twice as great as between preference and indifference. Overall, Kendall’s τ is
defined in the following way by bringing NRD to the [−1, 1] range:

τ(M ′,M ′′) = 1− 2 ·NRD(M ′,M ′′). (17)

The value of 1 means that the two rankings are the same, whereas −1 means that all relations in one ranking are
inverse in the other.

Table 3: The distances RD(M ′,M ′′, ai, ak) between relations observed for pair (ai, ak) in the rankings determined by methods M ′ and
M ′′.

RD(M ′,M ′′, ai, ak) aiP
M′′

ak aiI
M′′

ak aiR
M′′

ak aiP
−,M′′

ak
aiP

M′
ak 0 2 3 4

ai I
M′

ak 2 0 2 2
ai R

M′
ak 3 2 0 3

aiP
−,M′

ak 4 2 3 0

5. Illustrative case study concerning fleet ranking problem

We illustrate the applicability of the methods on a problem of ranking single-stage, single-deck buses by a transport
company Żak (2005). Nine models are considered as decision alternatives evaluated in terms of the following five
criteria:
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• price (g1; to be minimized): a net price of the vehicle (in thousands Euro) in the variant indicated by the
company while assuming that 20 buses of the same type would be purchased;

• exploitation cost (g2; to be minimized): costs of the service, repairs, and fuel (in thousands of PLN per 100, 000

kilometers);

• comfort (g3; to be maximized): a score given on a 0 − 10 scale aggregating many factors affecting the travel’s
comfort (e.g., the luggage capacity or ergonomics of the seats);

• safety (g4; to be maximized): a score given on a 0− 10 scale aggregating many factors affecting the safety and
easiness of driving (e.g., quality of the break and steering system);

• modernity (g5; to be maximized): a score given on a 0 − 10 scale aggregating multiple factors related to the
consistency with current design and technological trends.

The performance matrix is given in Table 4. The parameters needed for comparing the buses pairwise are provided in
Table 5.

Table 4: The performance matrix for the fleet ranking problem.

Code Bus model Price [euro] Exploit. cost [PLN] Comfort [pts] Safety [pts] Modernity [pts]
a1 Autosan A 402 T Cezar (A) 209.0 87.5 7.64 9.04 7.8
a2 Bova FHD 12-370 Futura (B) 231.0 88.0 7.74 8.39 8.8
a3 Ikarus EAG E 98 (I) 207.0 92.0 5.67 4.44 5.6
a4 Jelcz T 120/3 MB (J) 102.0 79.7 2.75 5.23 3.9
a5 Man RH 402 Lion’s Star (M) 239.0 83.4 5.18 7.07 4.8
a6 Mercedes 0.350 RHD (E) 229.0 85.9 6.54 9.52 8.5
a7 Neoplan N 316 SHD Transliner (N) 246.0 84.6 9.17 7.28 9.2
a8 Scania Irizar Century (R) 231.0 94.2 8.94 6.34 9.1
a9 Volvo Droegmoeller B 12–600 (V) 263.0 86.2 6.87 8.32 9.3

Table 5: Criteria weights and comparison thresholds for the fleet ranking problem.

Criterion Weight wj
Indifference
threshold qj

Preference
threshold pj

Price [euro] 9.6 5.0 20.0
Expl. cost [PLN] 8.8 3.0 10.0
Comfort [pts] 3.8 0.3 1.4
Safety [pts] 6.3 0.2 1.0
Modernity [pts] 2.5 0.3 1.8

The comprehensive preference degrees for all pairs of buses are provided in Table 6. For most pairs, the degrees
are positive on either side (e.g., π(a1, a4) = 0.406 and π(a4, a1) = 0.504). Their analysis indicates the buses that
compare quite favorably with all the remaining ones. For example, the minimal preference degrees of a1 and a4 when
collated with any other bus are 0.399 and 0.338, respectively. On the other extreme, some other buses attained less
favorable results. In particular, for a3, the preference degrees range from 0 to 0.358. The matrix of preference degrees
is exploited by the PrefRank and PROMETHEE methods to construct the rankings.

Table 6: Comprehensive preference degrees for the fleet ranking problem.

Bus a1 a2 a3 a4 a5 a6 a7 a8 a9
a1 0.000 0.424 0.467 0.406 0.716 0.399 0.513 0.663 0.494
a2 0.038 0.000 0.447 0.406 0.468 0.100 0.410 0.333 0.373
a3 0.000 0.310 0.000 0.198 0.358 0.310 0.310 0.310 0.310
a4 0.504 0.525 0.743 0.000 0.338 0.439 0.387 0.594 0.452
a5 0.045 0.065 0.430 0.358 0.000 0.000 0.041 0.419 0.310
a6 0.093 0.203 0.473 0.406 0.505 0.000 0.451 0.418 0.513
a7 0.182 0.144 0.585 0.406 0.206 0.144 0.000 0.456 0.370
a8 0.165 0.100 0.406 0.406 0.265 0.139 0.206 0.000 0.432
a9 0.065 0.011 0.498 0.406 0.406 0.030 0.203 0.406 0.000
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The positive, negative, and comprehensive flows for PROMETHEE and the normalized strengths, weaknesses, and
qualities for the three variants of PrefRank are presented in Table 7. In what follows, we focus on explaining the
results attained for the top-ranked alternatives.

The average outgoing comprehensive degree is the greatest for a1, which results in the most advantageous positive
flow ϕ+. The same alternative attains the least average ingoing degree, i.e., the negative flow ϕ−. As a result, it
is ranked at the top by PROMETHEE I and II. It is followed by a6 and a4. The former attains the third highest
positive flow and the second least negative flow. The latter is second according to ϕ+ while attaining only the fifth
best ϕ−. Consequently, a6 and a4 are incomparable according to PROMETHEE I, and a6 is ranked better than a4

by PROMETHEE II. Also, due to its high negative flow, a4 is incomparable with a2 and a7 in the PROMETHEE I
ranking. However, its highly favorable positive flow makes it preferred over these two alternatives in the complete
ranking delivered by PROMETHEE II.

Compared to PROMETHEE, PrefRank I considers the strength of the alternatives over which a given option
is preferred and the weakness of the alternatives which are preferred to a given option. This modifies the relative
comparison for some pairs of alternatives. For example, a4 has higher strength than a1. This derives from its
relatively high preference degrees over other strong alternatives, including a1, a2, and a6. In turn, even though the
average outgoing preference degree is greater for a1 than a4, a1 is preferred – to the greatest extent – to a5, a7, a8,
and a9. These alternatives attain positions in the bottom half of the ranking given their strength, which deteriorates
the strength of a1. When it comes to weakness, a4 has high ingoing preference degrees (over 0.4) when compared
with 6 of 8 remaining alternatives. Among them, a8 and a9 are in the bottom three alternatives in terms of weakness.
On the contrary, the comparison of a1 is unfavorable only against a4, whose weakness is intermediate. However, the
weakest alternatives (a3, a8, and a9) are not or marginally preferred to a1, implying its low weakness.

PrefRank II adopts an inverse weighting scheme when compared to PrefRank I. In this case, the strength is derived
from being highly preferred to alternatives with great weakness, whereas the weakness is implied by comparing highly
unfavorably against alternatives with great strength. Such an interpretation favors a1 against a4. Indeed, a1 is highly
preferred to a3, a5, a7, a8, and a9. These are the five alternatives with the greatest weaknesses, which implies high
S+(a1). At the same time, only one strong alternative (a4) is highly preferred to a1. This guarantees the lowest
weakness of a1 among all alternatives. In turn, a4 is highly preferred to a1, a2, a3, a6, and a8. Among them, only a3

and a8 can be judged as weak, and the remaining three alternatives’ weakness is the least. This prevents the strength
of a4 from attaining a very high level. Yet, numerous alternatives – including the strongest ones – are moderately
preferred to a4. This deteriorates S−(a4), making it higher than weaknesses of a2 and a6. A notable difference in the
PrefRank II ranking compared to the orders imposed by PROMETHEE and PrefRank I is a more favorable comparison
of a9 against a8. It is implied by the greater strength of a9, which comes from its relatively higher preference degrees
when collated with the weakest alternatives (a3, a5, and a8).

PrefRank III builds on the same idea as PrefRank I while accounting for the overall challenge of being preferred
to different alternatives, as revealed by their relations with the remaining alternatives. This additional aspect implies
some noticeable differences between the incomplete rankings derived from these two methods. In particular, a1 is
preferred to a4, a2 is preferred to a7, and a9 is preferred to a5. The underlying reasons are the same, i.e., increased
strength of a1, a2, and a9 due to being more preferred than their counterparts to alternatives that are slightly more
difficult to outrank.

The incomplete and complete rankings obtained with the five methods are presented in Figure 3. Let us first focus
on quantifying the similarity between the rankings admitting incomparability. The top-ranked alternative, according
to PROMETHEE I, PrefRank I, and PrefRank III is a1. As a result, the NHR measure for these methods equals one.
In turn, PrefRank II additionally admits a4 as a top option. Consequently, when compared with the remaining three
methods, its agreement in recommending the most preferred alternative(s) is 0.5.

The incomplete rankings obtained with various methods are very alike. This is confirmed by the low values of Nor-
malized Ranking Distances (see Table 8). The same rankings were constructed by PROMETHEE I and PrefRank III
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Table 7: Results of the four methods for the fleet ranking problem.

Method Result a1 a2 a3 a4 a5 a6 a7 a8 a9

PROMETHEE
ϕ+ 0.510 0.322 0.263 0.498 0.208 0.383 0.312 0.265 0.253
ϕ− 0.136 0.223 0.506 0.374 0.408 0.195 0.315 0.450 0.407
ϕ 0.374 0.099 -0.243 0.123 -0.199 0.188 -0.003 -0.185 -0.154

PrefRank I
S+ 0.163 0.105 0.086 0.165 0.072 0.124 0.107 0.093 0.085
S− 0.051 0.076 0.168 0.125 0.129 0.069 0.100 0.146 0.134
S 0.112 0.029 -0.082 0.040 -0.057 0.055 0.007 -0.053 -0.049

PrefRank II
S+ 0.168 0.112 0.080 0.152 0.076 0.131 0.106 0.085 0.091
S− 0.047 0.080 0.165 0.112 0.138 0.069 0.108 0.150 0.133
S 0.121 0.032 -0.085 0.040 -0.062 0.063 -0.002 -0.065 -0.042

PrefRank III
S+ 0.169 0.107 0.087 0.165 0.069 0.127 0.103 0.088 0.084
S− 0.045 0.074 0.168 0.124 0.135 0.065 0.105 0.149 0.135
S 0.124 0.033 -0.081 0.041 -0.066 0.062 -0.001 -0.061 -0.051

(NRD = 0). Then, highly similar incomplete rankings were obtained with PrefRank II and PROMETHEE I or Pre-
fRank III (NRD = 0.042). They differ only in terms of the relations imposed for a9 and a8 as well as a9 and a3. The
greatest differences are observed for the incomplete rankings derived with PrefRanks I and II (NRD = 0.104). They
concern the following pairs of alternatives: (a1, a4), (a2, a7), (a9, a8), (a9, a5), and (a9, a3). They are incomparable in
the ranking imposed by PrefRank I while being related by the preference according to PrefRank II.

When considering the complete rankings, the similarities are more significant. Specifically, the rankings obtained
with PROMETHE II and PrefRanks I and III are the same (see Table 9). Regarding the ranking obtained with
PrefRank II, it differs with respect to the remaining ones only in terms of placing a5 higher than a8. As a result,
Kendall’s τ is equal to 0.944. Still, all methods recommend the same alternative (a1) at the top. Consequently, the
NHR values for all pairs of approaches based on the complete rankings are equal to one.

Table 8: Normalized Ranking Distances for the incomplete rankings for the fleet selection problem.

Method PROMETHEE I PrefRank I PrefRank II PrefRank III
PROMETHEE I 0.000 0.062 0.042 0.000

PrefRank I 0.062 0.000 0.104 0.062
PrefRank II 0.042 0.104 0.000 0.042

PrefRank III 0.000 0.062 0.042 0.000

Table 9: Kendall’s τ based on the complete rankings obtained for the fleet selection problem.

Method PROMETHEE II PrefRank I PrefRank II PrefRank III
PROMETHEE II 1.000 1.000 0.944 1.000

PrefRank I 1.000 1.000 0.944 1.000
PrefRank II 0.944 0.944 1.000 0.944

PrefRank III 1.000 1.000 0.944 1.000

6. Experimental comparison between PROMETHEE and PrefRank

In this section, we report the results of an experimental comparison between PROMETHEE and the three variants of
PrefRank. This is to investigate the similarity between the choice and rankings recommendations delivered by these
approaches under a broad spectrum of problem characteristics. The considered number of alternatives ranges between
4 and 20 (with a step of two), and the number of criteria is between 3 and 8. For each problem size, we generated 100

instances with uniformly distributed performances and criteria weights. The indifference thresholds qj were drawn
from the interval between 0% and 20% of the performance range on a given criterion, whereas the preference thresholds
pj were drawn from the interval delimited by qj and 50% of the performance range.

Then, we computed the comprehensive preference degrees and exploited them with the variants of PROMETHEE
and PrefRank, leading to either incomplete or complete rankings. Finally, we quantified the similarity between these
results for all pairs of methods given NHR, NRD, and Kendall’s τ . The average results over all problems instances
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Figure 3: Incomplete (a – d) and complete (e – f) rankings derived with the four methods for the fleet selection problem.
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are presented in Tables 10, 11, and 12. More detailed results for various problem sizes are exhibited in the form of
heatmaps (for NHR, see Figure 4, whereas for the remaining two measures, see e-Appendix).

The NHR values are computed based on comparing top alternatives in the complete rankings delivered by each
method. They are very high, ranging between 0.863 for PrefRanks I and II to 1 for PROMETHEE II and PrefRank III.
On the one hand, these results confirm that the applied weighting scheme influences the methods’ outcomes. On the
other hand, the differences are minor. For example, PrefRank I recommends the selection of a different alternative than
PROMETHEE II in about 9% of the considered scenario, whereas when comparing the indications of PROMETHEE II
and PrefRank II, this difference is even slightly lesser. In general, the NHR values increase with lesser alternatives
and more criteria. However, these trends are not strict. In particular, the greatest average NHR values (0.940) for
PrefRanks I and II are observed for problems involving four alternatives and seven criteria. In turn, the least similarity
(0.798) is noted for problems with three criteria and sixteen alternatives.

Table 10: The average NHR values for all considered problem instances and the four methods delivering complete rankings.

Method PROMETHEE II PrefRank I PrefRank II PrefRank III
PROMETHEE II 1.000 0.907 0.922 1.000

PrefRank I 0.907 1.000 0.863 0.907
PrefRank II 0.922 0.863 1.000 0.922

PrefRank III 1.000 0.907 0.922 1.000
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(c) PROMETHEE II and PrefRank III
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(e) PrefRank I and PrefRank III
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Figure 4: Heatmaps of average NHR values based on 100 runs for each problem size.

The analyses of similarities or distances between the complete and incomplete rankings confirm the same conclu-
sions. First, the rankings delivered by PROMETHEE and PrefRank III were the same in all considered scenarios. Let
us note that outside the experiment, we could generate instances for which some slight differences were observed. Nev-
ertheless, such ideal similarity confirms that computing the strength and weakness while accounting for, respectively,
strengths and weaknesses of other alternatives, as well as the difficulty in being preferred to them estimated based on
their comparisons with the remaining options, leads to the orders that are highly similar to those derived with the
original PROMETHEE. When it comes to the remaining pairs of methods, the average Kendall’s τ ranges between
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0.901 for PrefRanks I and II to 0.947 for PrefRank I and PROMETHEE or PrefRank III (see Table 11). The extreme
results are observed for the same pairs of approaches also for NRD (see Table 12). However, in this case, they range
between 0.040 (the least distance) and 0.072 (the greatest distance). Thus, whether you account for the strengths or
weaknesses of other alternatives when computing the results of PrefRank does matter. Still, the differences are not
substantial as all these methods exploit the same matrices of comprehensive preference degrees. Also, the greatest
differences with respect to PROMETHEE are observed for PrefRank I, which computes the strengths (weakness) of
alternatives by analyzing other alternatives’ strengths (weaknesses). Finally, the similarity trends for different num-
bers of alternatives and criteria are not definite. When comparing the rankings, a general conclusion is that greater
similarities and lesser distances are observed for instances with fewer criteria and more alternatives. However, there
are exceptions in this regard (e.g., very high similarities are observed for problems with the least considered number of
alternatives). Moreover, the results differ from one pair of compared methods to another (see the heatmaps presented
in the e-Appendix).

Table 11: The average Kendall’s τ values for all considered problems instances and the four methods delivering complete rankings.

Method PROMETHEE II PrefRank I PrefRank II PrefRank III
PROMETHEE II 1.000 0.937 0.947 1.000

PrefRank I 0.937 1.000 0.901 0.937
PrefRank II 0.947 0.901 1.000 0.947

PrefRank III 1.000 0.937 0.947 1.000

Table 12: The average NRD values for all considered problems instances and the four methods delivering incomplete rankings.

Method PROMETHEE II PrefRank I PrefRank II PrefRank III
PROMETHEE II 0.000 0.046 0.040 0.000

PrefRank I 0.046 0.000 0.072 0.046
PrefRank II 0.040 0.072 0.000 0.040

PrefRank III 0.000 0.046 0.040 0.000

7. Software and case study concerning special economic zones

7.1. Implementation of PrefRank

The methods proposed in this paper were implemented in a single programming module called Outranking-PrefRank.
Its scheme is presented in Figure 5. The module accepts two inputs in the XML format, a set of alternatives and a
matrix of preference degrees. Also, it requires setting the values of four parameters. The most important one is related
to the variant of PrefRank used to compute the results. The remaining three parameters refer to the convergence and
stopping conditions of the iterative computational procedure. In particular, one can specify the maximal number of
iterations. The module provides four types of output in the XML format: the strengths (positive flows), weaknesses
(negative flows), qualities (total flows), and the pairs of alternatives related by the weak preference according to the
separate analysis of strengths and weaknesses (ranking).

The PrefRank module can be combined with others that operate on the standardized input and output in the
XMCDA format (see Figure 6). The matrix of comprehensive preference degrees can be derived with various methods.
In the standard setting, one applies PrometheePreference or one of its variants. All these modules require the specifica-
tion of weights. They can be provided by the user or computed with one of the approaches that have been specifically
designed for computing weights based on the user’s incomplete input. These include the Simos-Roy-Figueira (SRF)
procedure Figueira and Roy (2002), Best-Worst-Method (BWM) Rezaei (2015), surrogate weights de Almeida Filho
et al. (2018), and Analytical Hierarchy Process (AHP) Saaty (1990). The output of PrefRank can be visualized using
either plotAlternativesHasseDiagram in the case of an incomplete ranking or plotAlternativesValuesPreorder in the
case of a complete ranking. Provided by the availability of the diviz platform Meyer and Bigaret (2012), the modules
can be combined using its graphical user interface or outside the software as regular programming components.
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param3: Run averaging if not converge?


param4: Ealier stop if converge?

computation procedure:

(depending on method parameter)


- out1: S+(a) for all a

- out2: S-(a) for all a

- out3: S(a) for all a

- out4 Ranking for all a

in1: alternatives

in2: preferences

out1: positive_flows

out2: negative_flows

out3: total_flows

out4: ranking

Figure 5: The scheme of the PrefRank module.
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Figure 6: Possible connections between the PrefRank module and other related modules.

7.2. A case study concerning the evaluation of special economic zones in Poland

We apply PrefRank to the evaluation of Special Economic Zones in Poland. SEZs are designated areas offering favorable
investment conditions, better infrastructure, and easier access to specialized staff. Moreover, running a business in
SEZ is typically associated with highly advantageous tax regulations and reimbursement of some financial outlays for
innovative projects. Hence such an area attracts investors and creates many businesses and job opportunities. We
aim at ranking 10 SEZs that are located in Poland. They are evaluated in terms of the following five criteria:

• Total area (in ha; to be minimized) that each SEZ occupies; an efficient SEZ should occupy a relatively small
area as larger areas naturally offer space for accommodating a more significant number of companies;

• Capital expenditures (in millions PLN; to be minimized), i.e., a cumulative value indicating how much money
has been invested in a SEZ; a well-prospering SEZ should require a small cash contribution;

• Total number of jobs (to be maximized) in companies run in a given SEZ with a business permit; indeed, the
creation of new jobs is one of the main goals of establishing a SEZ;

• Business permits (to be maximized), i.e., the number of issued business permits in a SEZ;

• Financial result (in millions PLN; to be maximized) is the total income generated by all businesses in a SEZ.
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Table 13: The performances of ten Special Economic Zones in Poland in terms of five criteria.

Full name SEZ Code Total area Capital
expenditures

Number
of jobs

Business
permits

Financial
result

Kamienna Góra KAM 540.8285 2557.3 7530 60 555.1
Kostrzyn-Słubice KOS 2201.2549 7133.4 32400 180 22984.9

Kraków KRA 949.6604 4240.4 29580 189 1373.0
Legnica LEG 1341.1473 5131.8 15294 86 7614.5
Łódź LOD 1754.6376 13318.7 33401 209 7402.8
Mielec MIE 1723.9743 7838.1 34992 268 4956.0

Pomorze POM 2246.2929 10481.6 24893 173 1479.1
Słupsk SLU 910.1585 1592.3 3478 79 761.5

Starachowice STA 707.9814 1790.9 6829 56 701.0
Tarnobrzeg TAR 1868.2066 7470.7 20740 195 18220.4

Table 14: The values of comparison thresholds, ranking of criteria, and weights derived from applying the SRF method for the problem of
ranking Special Economic Zones.

Criterion Indifference
threshold qj

Preference
threshold pj

Criteria
ranks Weight wj

Total area 100 250 1 6.06
Capital expenditures 200 400 7 26.95

Number of jobs 2000 5000 5 20.02
Business permits 5 20 4 16.53
Financial result 50 150 8 30.44

The performances of all SEZs are reported in Table 13.
The preference model parameters are provided in Table 14. For each criterion, we used positive comparison

thresholds. Moreover, we used the SRF method Figueira and Roy (2002) to elicit the criteria weights. The criteria
were ranked from the worst to the best, and some empty cards were inserted between successive criteria, resulting
in the ranks given in the table. Moreover, the ratio Z = 5 between the most and the least important criteria, i.e.,
financial result and total area, was considered. The weights computed with SRF are given in Table 14.

The diviz workflow used to compute the results is presented in Figure 7. Its input consists of two CSV files
that contain the performance matrix and the comparison thresholds. The dedicated modules transform them into
XML objects that other algorithmic components can further process. The third input is an XML file containing the
ranking of criteria required by the SRF procedure. It is exploited by the SRF-weights module to obtain the criteria
weights. The suitably transformed input data are processed by the PROMETHEE-preference module to calculate the
matrix of comprehensive preference degrees. It is shown in Table 15. This matrix is processed by the Outranking-
PrefRank module to compute the strengths, weaknesses, and qualities of all alternatives. These values obtained
for the three variants of PrefRank are presented in Table 16. The rankings (see Figure 8) are visualized using the
plotAlternativesValuesPreorder and plotAlternativesHasseDiagram modules.

The complete rankings for the three methods, including PROMETHE II and PrefRanks II and III, are the same.
The order of SEZs obtained with these approaches is as follows: KOS ≻ MIE ≻ TAR ≻ KRA ≻ LOD ≻ LEG ≻ SLU
≻ STA ≻ POM ≻ KAM. The only difference in the complete ranking produced by PrefRank I is that LEG is preferred
to LOD. Overall, the best-ranked SEZ is KOS, which corresponds to a special economic zone around the cities of
Kostrzyn and Słubice in western Poland. Indeed, its strength is the greatest, and its weakness is the least among all
considered SEZs. This zone is relatively great, generating reasonable expenditures and creating a high number of jobs
and the best financial outcome. As a result, KOS compares positively with eight out of the nine remaining zones.
Only the preference degree of KRA compared to KOS is slightly greater than the inverse preference index. However,
KRA compares poorly against LOD and MIE. As a result, it is ranked only fourth, preceded by MIE and TAR, both
located in south-eastern Poland. On the contrary, KAM – located in south-western Poland – is ranked at the bottom.
It is the least SEZ that generated a small number of jobs and attracted relatively few businesses. Moreover, it attained
the worst financial results.

The differences in the incomplete rankings are more substantial (see Figure 8). Only PROMETHEE I and Pre-
fRank III generated the same partial orders, with KOS being ranked at the top and many incomparabilities among
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zones in the upper half of the ranking. For example, MIE is marginally better than KRA in strength (positive flow) but
slightly worse given weakness (negative flow). The univocal position of KOS as the leading SEZ in Poland is confirmed
by PrefRanks II and III. However, the remaining parts of incomplete rankings generated with these approaches are
different. PrefRank II does not admit incomparability in the top part of the ranking while tolerating such ambiguity
in indicating a more preferred zone for multiple pairs in the lower half of the ranking. It is the only method that
does not rank KAM univocally at the bottom because KAM compares positively with POM in terms of strength. In
turn, PrefRank II leaves many SEZs incomparable in the upper and lower parts of the ranking. In particular, KRA is
incomparable with MIE and TAR. However, similarly to other approaches, it preserves the same division into zones
that perform more and less favorably.

Figure 7: The diviz workflow used to compute the results of PrefRank for the problem of ranking the Special Economic Zones in Poland.

Table 15: The matrix of comprehensive preference degrees for the problem of ranking the Special Economic Zones in Poland.

SEZ KAM KOS KRA LEG LOD MIE POM SLU STA TAR
KAM 0.000 0.330 0.330 0.330 0.330 0.330 0.330 0.197 0.027 0.330
KOS 0.670 0.000 0.359 0.670 0.574 0.574 0.797 0.670 0.670 0.690
KRA 0.670 0.374 0.000 0.695 0.330 0.330 0.630 0.670 0.670 0.530
LEG 0.670 0.330 0.305 0.000 0.634 0.634 0.634 0.527 0.670 0.330
LOD 0.670 0.225 0.592 0.366 0.000 0.305 0.730 0.670 0.670 0.305
MIE 0.670 0.265 0.670 0.366 0.435 0.000 1.000 0.670 0.670 0.383
POM 0.670 0.000 0.171 0.366 0.270 0.000 0.000 0.670 0.670 0.144
SLU 0.729 0.330 0.270 0.330 0.330 0.330 0.330 0.000 0.197 0.330
STA 0.562 0.330 0.326 0.330 0.330 0.330 0.330 0.131 0.000 0.330
TAR 0.670 0.170 0.316 0.670 0.574 0.530 0.800 0.670 0.670 0.000

Table 16: The results obtained for the problem of ranking Special Economic Zones in Poland with four methods.

Method Result KAM KOS KRA LEG LOD MIE POM SLU STA TAR

PROMETHEE
ϕ+ 0.281 0.631 0.544 0.526 0.504 0.570 0.329 0.353 0.333 0.564
ϕ− 0.665 0.262 0.371 0.458 0.423 0.374 0.620 0.542 0.546 0.375
ϕ -0.383 0.369 0.173 0.068 0.081 0.196 -0.291 -0.189 -0.213 0.189

PrefRank I
S+ 0.069 0.136 0.117 0.113 0.105 0.118 0.066 0.080 0.077 0.118
S− 0.145 0.062 0.083 0.099 0.093 0.081 0.128 0.115 0.114 0.082
S -0.075 0.074 0.034 0.014 0.012 0.037 -0.062 -0.035 -0.036 0.037

PrefRank II
S+ 0.051 0.137 0.119 0.112 0.112 0.127 0.077 0.072 0.066 0.126
S− 0.141 0.050 0.077 0.098 0.089 0.079 0.140 0.122 0.125 0.078
S -0.090 0.087 0.041 0.015 0.023 0.048 -0.063 -0.049 -0.059 0.047

PrefRank III
S+ 0.061 0.136 0.117 0.114 0.109 0.123 0.071 0.076 0.072 0.122
S− 0.143 0.056 0.080 0.099 0.091 0.081 0.134 0.117 0.118 0.081
S -0.083 0.080 0.037 0.015 0.017 0.042 -0.063 -0.041 -0.046 0.041
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(a) PROMETHEE I (b) PrefRank I

(c) PrefRank II (d) PrefRank III

Figure 8: Incomplete rankings for the problem of ranking Special Economic Zones in Poland.

8. Summary and future research

In this paper, we proposed a novel family of approaches for exploiting a valued preference relation. It is inspired by both
the Net Flow Rules that compute the strength and weakness of each alternative and algorithms originally conceived
for scoring the websites. We described the three variants of the PrefRank method that evaluate each alternative by
analyzing the preference degrees and the relative qualities of other alternatives. These variants differ concerning the
implemented weighting schemes when aggregating the out- or in-going preference degrees. Nonetheless, each of them
quantifies how strong each alternative is compared to others, how weak it is when confronted with the remaining
ones, and what is the balance between strength and weakness. Finally, these factors are used to construct either an
incomplete or a complete ranking.

We compared the results computed with the three variants of PrefRank and PROMTEHEE on a broad spectrum
of simulated problems. The similarity in the generated recommendations was quantified in view of the top-ranked
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alternatives, incomplete rankings, and complete orders. For all these perspectives, the consistency in the delivered
results was significant. It was the greatest for PROMETHEE and PrefRank III while being the least for PrefRanks I
and II. This confirms that the applied weighting scheme impacts the provided results.

We developed open-source software making the introduced methods available to other users. The module with
the three variants of PrefRank was implemented in Java. Its source code is available at https://bitbucket.org/

Krzysztof_Martyn/prefrank. To demonstrate its usability, we discussed the results of two studies. On the one
hand, we illustrated the differences between various methods on the fleet selection problem. On the other hand, we
considered an original problem of ranking Special Economic Zones in Poland. The task was to identify the zones that
best use their area and funds to provide excellent financial profit and create many businesses or jobs. All methods
identified a zone functioning in Kostrzyn and Słubice as the most preferred.

We envisage the following directions for future research. First, an appealing path consists of using other exploita-
tion procedures for constructing complete or incomplete rankings. In this regard, the most natural proposal is to
use an iterative procedure, which constructs the ranking in a top-bottom fashion. That is, the subset of most pre-
ferred alternatives at the current stage is added to the highest available positions, they are eliminated from further
consideration, and the remaining alternatives are analyzed using the same procedure. The results obtained using
such an approach for the previously considered fleet selection problem are presented in the e-Appendix. Interestingly,
they confirm that the outcomes of PROMETHEE and PrefRank III can differ. Second, the proposed methods can
be applied to preference or outranking matrices constructed with approaches other than PROMETHEE. The most
natural direction involves investigating the use of PrefRank in the context of crisp outranking matrices produced by
ELECTRE as well as results produced at different levels of hierarchically structured criteria Del Vasto-Terrientes et al.
(2015). Third, we plan to consider additional preference information in the form of positive and negative indications of
good or bad alternatives. Such information should influence the outcomes of PrefRank to, e.g., increase the strength
and decrease the weakness of an alternative that is judged good by the DM. Finally, when using the methods from
the same family to a given problem, it would be possible to combine their indications into a compromise one. The
example algorithms applicable for this purpose have been proposed in Miebs and Kadziński (2021).
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PrefRank: a family of multiple criteria decision analysis methods for exploiting
a valued preference relation – eAppendix
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1. Computational procedure used in PrefRank

In this section, we discuss the method used for computing the strengths and weaknesses of different variants of
PrefRank. We focus first on explaining the procedure in the context of deriving the strengths by PrefRank I (see
Algorithm 1). It is inspired by the iterative methods used in the PageRank algorithm. It exploits matrix M of
comprehensive preference degrees. In the beginning, strengths are equally distributed among all n alternatives,
being set to 1

n . Then, the computations are conducted iteratively until the difference between values obtained
in the two successive iterations for any alternative is greater than the predefined threshold thr (we set it to
0.00001) or the maximum number of iterations maxstep has not been reached. In each iteration, the strengths
from the previous iteration are stored, and the new strengths are calculated by multiplying matrix M by the
vector of old strengths. If all strengths are equal to zero in some iteration, we terminate with the results from
the previous iteration. At the end of each iteration, the strengths are normalized, to sum up to one.

Algorithm 1: Computation of the strengths S+ by PrefRank I based on the matrix M of comprehensive
preference degrees.

1 ∀ni=1 S+(ai) =
1
n

2 step = 0

3 do
4 S+

prev = S

5 S+ = MS+

6 if
∑n

j=1 S
+(aj) == 0 then

7 S+ = S+
prev

8 break

9 end

10 ∀ni=1 S+(ai) =
S+(ai)∑n

j=1 S+(aj)

11 step = step+ 1

12 while maxi |S+(ai)− S+
prev(ai)| > thr and step < max step;

It may happen that after reaching the maximum number of iterations maxstep, the results still do not
converge, i.e., the greatest difference between strengths in the last two iterations is greater than the specified
threshold thr. Such a situation may occur in the case of a preference cycle. Then, to terminate the computational
procedure with the correct results, Algorithm 1 is modified to average the results from the previous two iterations
(S =

S+Sprev

2 ).
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+48 61 8771525.
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The computational procedure used by PrefRank to compute the weakness S− is the same with the proviso
that a transpose preference matrix MT is exploited. Similarly, the remaining variants of PrefRank differ only
in terms of matrices they exploit (see Table 1). In particular, PrefRank II computes the strengths based on
MMT . In turn, PrefRank III does the same by analyzing WrW

T
c , where Wr and Wc are obtained by dividing

the preference matrix M by the sum of values in the respective rows or columns, respectively.

Tabela 1: Matrices exploited to compute strengths and weaknesses by different variants of PrefRank.

Method Result Matrix

PrefRank I S+ M
S− MT

PrefRank II S+ MMT

S− MTM

PrefRank III S+ WrWT
c

S− WT
c Wr

2. Detailed similarity results between rankings based on the experimental comparison of four
methods

In this section, we present heatmaps of average Kendall’s τ (see Figure 1) and NRD (see Figure 2) values
based on 100 runs for each problem size. The number of alternatives ranges between 4 and 20, whereas the
number of criteria is between 3 and 8. Six pairs of methods are considered. Kendall’s τ quantifies the similarity
on the scale between −1 (the least similarity) and 1 (the greatest similarity) based on complete rankings. In
turn, NRD operates on the scale between 0 (the least difference) and 1 (the greatest difference) based on
incomplete rankings.
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(e) PrefRank I and PrefRank III
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(f) PrefRank II and PrefRank III

Rysunek 1: Heatmaps of average Kendall’s τ values based on 100 runs for each problem size.
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(f) PrefRank II and PrefRank III

Rysunek 2: Heatmaps of average NRD values based on 100 runs for each problem size.

3. Results obtained for the fleet selection problem with the distillation procedure

An alternative procedure for constructing a complete ranking is inspired by the distillation method proposed
as a part of ELECTRE III. First, we can consider the comprehensive qualities of alternatives to identify the
subset of the most preferred ones at the current stage. Then, they are added to the highest available position
and eliminated from further consideration. The remaining alternatives are analyzed in the same way until the
subset of alternatives to be considered is empty.

In this section, we report the results obtained using such a procedure for the fleet selection problem conside-
red in the main paper. The complete orders based on the four methods are presented in Table 2. They agree in
terms of ranking a1 at the top. Only for PrefRank I, a1 shares the first position with a4. The most interesting
observation with respect to the outcomes described in the main paper consists of the difference in rankings
produced by PROMETHEE II and PrefRank III. Specifically, the former ranks a8 better than a3, whereas the
latter judges these alternatives indifferent. This is because when these two alternatives are the only ones to be
considered, the methods consider positive preference degrees of a3 over a8 and vice versa. However, PROME-
THEE takes into account the difference between these degrees, hence favoring a8 because π(a8, a3) is greater
than π(a3, a8). In turn, PrefRank III considers a dual role of each alternative and applies the normalization of
preference degrees. This leads to the same strengths and weaknesses for both a3 and a8.

Tabela 2: Rankings obtained for the fleet selection problem using the iterative distillation procedure.

Rank PROMETHEE I PrefRank I PrefRank II PrefRank III
1 a1 a1, a4 a1 a1
2 a4, a6 a6 a4, a6 a4, a6
3 a2 a2 a2 a2
4 a7 a7 a7 a7
5 a5, a9 a5, a9 a9 a5, a9
6 a8 a8 a5 a3, a8
7 a3 a3 a8
8 a3
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Abstract

We introduce a suite of multiple criteria methods that exploit a crisp outranking relation in the set of alternatives. For
each option, we analyze the outranked and outranking alternatives to compute its strength, weakness, and comprehen-
sive quality. We propose four variants that differ in weights assigned to outranking or being outranked by particular
alternatives and how to quantify the difficulty or easiness of instantiating such relations. The scores derived from the
analysis of an outranking graph can be enhanced by the Decision Makers’ holistic judgments. They indicate subsets of
alternatives deemed as comprehensively strong or weak. We apply the proposed methods to a case study concerning
the performance of technological parks in Poland. We also compare the results obtained with the novel approaches
with the state-of-the-art ELECTRE methods in an extensive experiment involving simulated decision problems.

Keywords: Multiple criteria decision aiding, Ranking, Choice, Scoring, Outranking relation, Technological parks

1. Introduction

Outranking methods in Multiple Criteria Decision Analysis (MCDA) involve comparing alternatives pairwise with
respect to multiple criteria [20, 37]. Valued (fuzzy) and crisp (binary) outranking relations are different approaches
used to characterize the preference structure in the set of alternatives. The former represents degrees of preference
by assigning a numerical value to each pair [32, 34]. In this way, it provides nuanced and detailed information on the
relationship’s strength, allowing for finer distinctions. In turn, crisp outranking is a binary relation, either present
or absent, without any degree of membership or uncertainty [11, 46]. If one alternative outranks another in overall
performance, it is judged at least as good.

We focus on the exploitation of a crisp outranking relation. This is typically done by outranking-based approaches
from the family of ELECTRE [15]. They assume the crisp relation holds if sufficient arguments support the outranking
and there are no essential reasons to refute the assertion. ELECTRE methods are most helpful in handling decision
problems that involve up to several criteria with heterogenous performance scales, some of them involve qualitative or
ordinal assessments, the knowledge related to the definition of criteria and respective performances is imperfect, and
one wishes to avoid a full compensation effect [17]. Under such an environment, they help Decision Makers (DMs)
make informed choices among different alternatives or rank them from the best to the worst [18].

Let us discuss the most popular choice and ranking techniques that exploit a crisp outranking relation. First,
when dealing with a choice problem, one may select either the alternatives that outrank the greatest number of other
options or are outranked by the least number of other actions [5]. This way of proceeding, implementing the plurality
and anti-plurality rules, is known from the Social Choice Theory (SCT). Second, ELECTRE I identifies a kernel in an
outranking graph as a subset of alternatives satisfying the properties of external and internal stabilities [19, 42]. That
is, the alternatives contained in the kernel do not outrank each other, and those outside the kernel are outranked by
at least one alternative from the kernel. Third, the Net Flow Score (NFS) procedure can be used to determine the
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strength and weakness of each alternative as the number of other options that are outranked by this alternative or
outrank it [44]. These measures can be aggregated into a comprehensive quality measure by subtracting the weakness
from the strength [6]. Alternatively, the rankings based on each option’s strong and weak points can be intersected
to obtain a partial pre-order. Fourth, the rankings can be constructed iteratively using the descending and ascending
distillation procedures [38] originally conceived in ELECTRE III to deal with a valued outranking relation [36]. In
each iteration of this approach, either the best or the worst alternative is added to the order constructed in a top-down
or a bottom-up manner. Then, the procedure is repeated until all alternatives are added to the ranking. Finally,
ELECTRE-Score assigns a score range to each alternative by comparing it against reference alternatives [14]. They
serve as limiting profiles associated with some precise scores derived from applying the deck of cards method.

Each method mentioned above poses some significant challenges in real-world decision aiding. As far as the
approaches inspired by SCT are concerned, they do not consider the relations of recommended alternatives with other
options. As a result, they may fail to indicate the alternatives that are strictly preferred over the selected ones.
Regarding ELECTRE I, the cardinality of a graph kernel cannot be controlled. Hence, even if the DMs want to
select a single best option, they may be left with a greater subset. Moreover, due to the kernel’s definition, it has
some desirable properties considered as a whole; however, the individual alternatives contained in it can be very poor
(e.g., being outranked by many alternatives not contained in the kernel and not outranking any other alternative).
Also, ELECTRE I cannot rank alternatives in the presence of incomparabilities and intransitivesness [48]. As far as
NFS is concerned, it does not differentiate between the quality of alternatives that outrank or are outranked by other
options. In particular, being at least as good as some highly favorable option or inferior action is equally desirable.
Similarly, being outranked by some advantageous alternative or bad option counts the same. Further, the distillation
procedures fail to assign explicit, comprehensive scores or numerical values to alternatives. This is often needed when a
cardinal ranking is expected at the method’s output. Also, the distillation does not consider the difficulty or easiness of
outranking other alternatives. Moreover, ELECTRE-Score requires the specification of additional reference profiles and
preference information that would allow to assign them some precise scores. Doing so, it is more cognitively demanding.
Also, even if it assigns some scores to the alternatives, its operating procedure resembles a sorting method called
ELECTRE Tri-nC that was originally proposed for assigning alternatives to preference-ordered classes rather than
ranking them [2]. Finally, none of the methods mentioned above accepts additional indirect preference information to
impact the ranking construction process once the outranking relation is already established. Consequently, influencing
the quality (strength or weakness) of alternatives can be attained only by modifying the directly provided preference
model parameters.

This paper proposes a suite of methods, ScoreBin, exploiting a crisp outranking relation. They assign a pair
of scores – representing strength and weakness – to each alternative by comparing it with all remaining (existing)
alternatives. Each score is a sum of two components; one derived from the outranking graph and the other based on
the indirect DM’s feedback. These components form the most peculiar aspect of ScoreBin.

The graph component of a given alternative’s score considers which alternatives it outranks and which outrank
it. However, instead of simply summarizing the numbers of such options, the strength and weakness depend on the
strengths and weaknesses of other alternatives, particularly those related to it. This general idea is implemented
differently in the four variants of ScoreBin. In the first variant, we increase the alternative’s strength when the
alternatives it outranks are strong and increase the weakness if the alternatives that outrank it are weak. The second
variant assumes that the alternative’s strength is greater when it outranks many weak alternatives, and its weakness is
more significant when many strong alternatives outrank it. In the remaining two variants, the strength and weakness
of each alternative depend on the options directly related to it as well as the difficulty or easiness characterizing these
options when they outrank others and are outranked by others. In this spirit, the third variant of ScoreBin assumes
an alternative is strong when outranking alternatives that are outranked by other strong alternatives. In turn, it
is weak when being outranked by alternatives that outrank weak alternatives. On the contrary, the fourth variant
supposes an alternative is strong when outranking alternatives that are hard to outrank (i.e., that are outranked by few
alternatives) and it is weak when outranked by alternatives struggling to outrank (i.e., that outranks few alternatives).
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The feedback component aims at adding a bonus to the strength or a penalty to the weakness based on the
DM’s holistic statements. In the context of ranking and choice problems, such judgments typically have the form of
pairwise comparisons [9], rank-related requirements [22], or preference intensities [16]. We introduce a novel form of
comprehensive statements letting the DM indicate that an alternative is considered strong or weak. Such comprehensive
assessments directly influence the strength or weakness of an assessed alternative. However, they also impact the scores
attained by the remaining options indirectly via the graph component. By using this optional component, the DM
may have increased control over the final ranking.

The trade-off between the two components is controlled by some intuitive parameters. Even if we propose their
default values that allow deriving precise scores of alternatives, we enrich the basic framework with robustness anal-
ysis [1]. Specifically, we verify the stability of rankings attained for different parameter values using the Monte Carlo
simulations [45]. The results are quantified with Rank Acceptability Indices estimating the share of possible parameter
values that grant some rank to a given alternative [29].

The introduced methods are applied to a case study concerning the evaluation of technological parks in Poland [28].
These are specialized areas designed to support development, innovation, and research in various technology fields.
They provide infrastructure and services to foster collaboration between business and academia. We analyze eleven
parks evaluated on seven criteria with heterogenous scales and preference directions. These concern sales costs,
buildings’ surface, localization, generated profit, offered services, management assessment, and completed projects.
We discuss the results of the four proposed variants of ScoreBin. We report both the partial rankings based on the
separate consideration of strengths and weaknesses and the complete orders that build on the alternatives’ qualities
defined as the difference between strengths and weaknesses. When discussing the study’s results, we also demonstrate
the impact of indirect preference information on the strength or weakness of selected alternatives on the constructed
rankings.

Our final contribution consists of conducting an extensive computational experiment. It quantifies the similarity
between the recommendations provided by the four variants of ScoreBin and the existing methods over a large spec-
trum of simulated decision problems. The considered state-of-the-art approaches include the graph kernel approach in
line with ELECTRE I [42], the simple NFS procedure referring to the number of outranked and outranking alterna-
tives [44], and the orders established with Qualification Distillation (QD) of a crisp outranking [38]. We focus on the
results relevant to choice and ranking problems. For the former, we treat the top-ranked alternatives by ScoreBin as
recommended for the selection, whereas for the latter, we consider both partial and complete orders. The similarity
measures are Kendall’s τ for complete rankings [26], Rank Difference Measure (RDM) for partial pre-orders [41],
Normalized Hit Ratio (NHR) [24], and average ranks of alternatives contained in the kernel.

The paper’s remainder is organized as follows. Section 2 introduces the notation and reminds the relevant state-
of-the-art ELECTRE methods. In Section 3, we discuss the novel methods from the family of ScoreBin. Section 4
presents the measures used for comparing the recommendations obtained with various approaches. In Section 5, we
illustrate the use of the proposed methods to assess Polish technological parks. Section 6 discusses the results of
comparing the four variants of ScoreBin and three existing methods for exploiting a crisp outranking relation. The
last section concludes the paper.

2. Notation and reminder on state-of-the-art methods exploiting a crisp outranking relation

We consider a finite set A = {a1, · · · , an} of n alternatives evaluated on a family G = {g1, · · · , gm} of m criteria. We
focus on ranking problems, aiming to order alternatives from the most to the least preferred given their performances
gj(ai) on multiple criteria gj : A→ R, j ∈ J = {1, . . . ,m}. Without loss of generality, we consider gain-type criteria,
hence preferring greater performances. The ELECTRE methods use an outranking relation S as the preference
model [37]. When a crisp relation holds for a pair of alternatives aiSak ai is comprehensively judged at least as good
as ak. To verify the truth of S for all pairs of alternatives, ELECTRE refers to various parameters [17].

Weight wj associated with each criterion gj determines its importance coefficients. To account for the uncertainty
of alternatives’ performances, indifference qj and preference pj are associated with gj [40]. The former expresses the
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maximum difference between alternatives’ performances on gj that is negligible, implying indifference. The latter
represents the minimum performance difference on gj that implies the strict preference. Apart from the comparison
thresholds, the veto threshold vj expresses the minimal performance difference on gj , which is so critical that it has
the power to invalidate the outranking [34].

Outranking relation S is established via the concordance and discordance tests. The concordance index C(ai, ak)
reflects the strength of the coalition of criteria supporting S:

C(ai, ak) =
m∑

j=1

wj · cj(ai, ak)/
m∑

j=1

wj , (1)

where cj(ai, ak) is a partial concordance index on gj defined as follows:

cj(ai, ak) =





1 if gj(ak)− gj(ai) ≤ qj ,
gj(ai)−gj(ak)+pj

pj−qj if gj(ak)− gj(ai) > qj and gj(ak)− gj(ai) ≤ pj ,
0 if gj(ak)− gj(ai) > pj .

(2)

The partial discordance index Dj(ai, ak) captures the degree to which gj opposes against aiSak:

Dj(ai, ak) =





1 if gj(ak)− gj(ai) ≥ vj ,
gj(ak)−gj(ai)−pj

vj−pj if gj(ak)− gj(ai) < vj and gj(ak)− gj(ai) ≥ pj ,
0 if gj(ak)− gj(ai) < pj .

(3)

The comprehensive concordance and partial discordances serve as the basis for computing the outranking credibility
σ(ai, ak) [34]. At this stage, only sufficiently strong discordances are considered:

σ(ai, ak) = C(ai, ak)
∏

j∈F

1−Dj(ai, ak)

1− C(ai, ak)
, (4)

where F = {j : Dj(ai, ak) > C(ai, ak)}. Outranking credibility can be interpreted as a valued preference relation. To
transform it into a crisp one, we must compare it against the credibility threshold (cutting level) λ. Relation S can
be represented in the form of an outranking graph where the alternatives are represented as nodes, and an arc from
ai to ak is justified by aiSak. In what follows, we will use the outranking function 1(ai, ak) defined as follows:

1(ai, ak) =




1 if σ(ai, ak) ≥ λ and i 6= k,

0 otherwise.
(5)

Once a crisp outranking relation S is constructed, it can be exploited in the function of choice or ranking problem to
provide an adequate recommendation. In what follows, we discuss three state-of-the-art methods serving this purpose.
These approaches will be compared against the newly introduced ScoreBin methods.

When facing a choice problem, an outranking graph can be exploited to search for its kernel K ⊆ A, as proposed
initially in ELECTRE I [17, 42]. Kernel K consists of alternatives that do not outrank any other alternative in K,
whereas the alternatives outside K need to be outranked by at least one alternative contained in K. If the graph has
cycles, they need to be eliminated. In this paper, we aggregate each cycle to an auxiliary node that inherits all in-
and outgoing arcs of the alternatives contained in the cycle.

In turn, the NFS procedure computes the scores that can be used to order the alternatives from the best to the
worst [44]. First, the strength S+(ai) and weakness S−(ai) of each alternative ai are derived based on the numbers of
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options which, respectively, are outranked by ai and outrank ai:

S+(ai) =

n∑

k=1

1(ai, ak) and S−(ai) =
n∑

k=1

1(ak, ai). (6)

Then, the comprehensive quality is calculated as the difference between strength and weakness:

S(ai) = S+(ai)− S−(ai). (7)

Alternatively, the quality measures mentioned above can be incorporated into the QD [38], inspired by ELEC-
TRE III [36, 38]. The method constructs two complete preorders (descending and ascending). In the descending
distillation, one orders the alternatives from the best to the worst, while in the ascending one, the ranking is con-
structed bottom-up. The distillations proceed iteratively, trying to determine a subset of alternatives with extreme
quality, adding them to the constructed preorder, and eliminating them from further consideration. The ascending
distillation focuses on the alternatives with the greatest quality and adds them to the currently lowest position (hence
above all alternatives that have not been yet added to the ranking). In turn, the descending distillation identifies
the alternatives with the least quality. It adds them to the current highest position (hence below all alternatives
that have not yet been added to the ranking). In the case of a tie, the procedure tries to break it by running the
internal distillation, whose scope is limited only to a subset of alternatives with the same quality score. The algorithm
continues until all alternatives are added to the constructed order. Finally, the two rankings are intersected to obtain
a final ranking, being a partial preorder.

3. ScoreBin: a new family of scoring methods exploiting a crisp outranking relation

This section presents a family of ScoreBin methods that exploit a crisp outranking relation defined by function 1(ai, ak)
for ai, ak ∈ A. Similarly to NFS, the compute the strength S+(ai) and weakness S−(ai) of each alternative ai ∈ A.
They are subsequently combined into a comprehensive quality measure. However, the definition of elementary scores
differs substantially from NFS. Specifically, the strength (weakness) is defined as a sum of a graph-based component
G+(ai) (G−(ai)) and a bonus (penalty) score b+i (b−i ):

S+(ai) = b+i +
G+(ai)

maxak∈AG+(ak)
and S−(ai) = b−i +

G−(ai)
maxak∈AG−(ak)

. (8)

The graph component builds on the outranking graph. To increase its interpretability, it is normalized to the [0, 1]

interval by dividing it through the maximal score attained by some alternative. Hence, an alternative with the greatest
strength or weakness derived from analyzing its relations with the remaining alternatives has this component of the
score equal to one. The graph-based strength of ai is defined as a sum of weights ω+(ak) associated with the options
outranked by ai. In turn, its graph-based weakness is a sum of weights ω−(ak) linked to the options that outrank ai,
i.e.:

G+(ai) =
n∑

k=1

1(ai, ak) · ω+(ak) and G−(ai) =
n∑

k=1

1(ak, ai) · ω−(ak). (9)

The interpretation of weights ω+(ak) and ω−(ak) depends on the specific variant of ScoreBin. However, irrespective
of their definition, alternatives that do not outrank any other option have G+(ai) = 0, while alternatives that are
not outranked by any other option have G−(ai) = 0. If the comprehensive scores involved only the graph-based
components, it might lead to undesirable situations. Precisely, outranking an option with ω+(ak) = 0 would not
add anything to the alternative’s strength, while being outranked by an option with ω−(ak) = 0 would not increase
the alternative’s weakness. To prevent such effects and, in addition, let the methods incorporate additional DM’s
preferences, the comprehensive score involves the other component.

To ensure the minimal impact of each option ai ∈ A on the strength or weakness of alternatives it is related to, we
include a base bonus α+ or a penalty α− in its score. Since they need to be positive, the worst alternative in terms of

5



strength and the best alternative in terms of weakness always have a comprehensive score greater than zero. In this
way, they impact the strengths and weaknesses of the remaining alternatives.

Also, we let the DMs provide indirect preference information. They may specify which alternatives are strong,
being included in A∗strong ⊆ A, and which are weak, being included in A∗weak ⊆ A. No alternative can be simultaneously
included in both sets, i.e., A∗strong ∩ A∗weak = ∅. Such additional information may be incorporated as a bonus β+ or
a penalty β− to the alternative’s strength or weakness, respectively. Given the bonuses and penalties may serve two
purposes, it is possible to consider them under a single variable:

b+i =




β+ if ai ∈ A∗strong,
α+ else,

and b−i =




β− if ai ∈ A∗weak,
α− else,

(10)

where α ∈ (0, 1) is a base bonus (penalty) indicating the alternative’s minimal strength (weakness), hence letting it
influence the scores of remaining options. In turn, β ∈ R≥α is the enhancement value based on the DM’s indirect
preferences.

Note that the positive (negative) feedback directly influences only the strength (weakness) of the alternative
assessed by the DM. However, it might also indirectly change the scores of other options via the outranking graph’s
structure. The values of parameters α and β need to be specified beforehand. The former is a share of the unitary
score attained from the graph-based component by the best alternative. Hence, when α = 0.1, the minimal value some
alternative can obtain would be ten times lesser than the score obtained from the analysis of outranking relation by
the most favorable option. In turn, β is a minimum strength (weakness) value assigned to an alternative judged by
the DM as strong (weak). Overall, the strengths S+(ai) take values from the [α+, 1 + β+] interval when A∗strong 6= ∅,
and [α+, 1 + α+], otherwise. The analogous intervals for weakness S−(ai) are [α−, 1 + β−] and [α−, 1 + α−].

The strengths and weaknesses are computed using an iterative method. First, we assume that they are the same
for all alternatives S+(ai) = S−(ai) = 1

n . Then, in each iteration, they are transformed using Eqs. (8) and (9). The
procedure is repeated until the greatest difference between scores obtained in two consecutive iterations is negligible
(e.g., lower than some predefined threshold).

In the following subsections, we discuss the four variants of ScoreBin. They differ in assumptions in calculating
weights ω+(ai) and ω−(ai). Moreover, we illustrate their use on an example problem involving six alternatives (a1 –
a6) with outranking relation given in Table 1. We first consider the setting without additional preference information,
i.e., A∗strong = A∗weak = ∅. We assume that α+ = α− = 0.1. Intuitively, a5 should be relatively strong because it
outranks three other alternatives while being outranked only by a single option. On the contrary, a6 should be rather
weak as it does not outrank any other alternatives and is outranked by two options.

Table 1: Example outranking function for the problem involving six alternatives.

1(ai, ak) a1 a2 a3 a4 a5 a6
a1 0 0 1 1 1 0
a2 0 0 0 1 0 1
a3 0 0 0 1 0 0
a4 0 0 0 0 0 0
a5 0 1 0 1 0 1
a6 0 0 0 0 0 0

3.1. ScoreBin I

The first variant of ScoreBin increases the strength of ai when it outranks strong alternatives (i.e., with high S+(ak))
and increases the weakness of ai when it is outranked by weak alternatives (i.e., with high S−(ak)). Hence, it assumes
the following weights:

ω+(ak) = S+(ak) and ω−(ak) = S−(ak). (11)

Hence, the strength increases with outranking more alternatives that are strong based on the outranking graph and/or
the DM’s direct feedback. In the same spirit, the weakness is more significant when being outranked by many
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alternatives that are weak based on the outranking relations and/or the DM’s indication of poor options.
The strengths (weaknesses) in ScoreBin I may be interpreted as a result of a weighted voting system, where each

alternative votes for options that outrank it (are outranked by it) with the vote’s strength equal to S+ (S−). We
assume that the minimal value of such strength (weaknesses) is b+ (b−). The method is inspired by TrustRank [21],
which considers a graph formed by the websites (nodes) and links (arcs) between them while assigning an additional
bonus to the sites verified as trusted by an oracle.

The strengths, weaknesses, and qualities of all alternatives obtained with ScoreBin I for the example problem are
given in Table 2. In addition, we report the unnormalized graph-based scores that facilitate the understanding of
computations made by the method. Let us focus on alternatives a5 and a6.

Table 2: Strengths, weaknesses, and qualities derived by the four variants of ScoreBin for the example problem.

Final score Unnormalized graph component
ScoreBin Value a1 a2 a3 a4 a5 a6 Value a1 a2 a3 a4 a5 a6

I
S+ 1.100 (1) 0.311 (3) 0.206 (4) 0.100 (5) 0.640 (2) 0.100 (5) G+ 0.946 0.200 0.100 0.000 0.511 0.000
S− 0.100 (1) 0.345 (4) 0.214 (2) 1.100 (6) 0.214 (2) 0.740 (5) G− 0.000 0.214 0.100 0.874 0.100 0.560
S 1.000 (1) -0.034 (4) -0.009 (3) -1.000 (6) 0.426 (2) -0.640 (5)

II
S+ 0.941 (2) 0.912 (3) 0.606 (4) 0.100 (5) 1.100 (1) 0.100 (5) G+ 1.829 1.765 1.100 0.000 2.174 0.000
S− 0.100 (1) 0.409 (4) 0.364 (2) 1.100 (6) 0.364 (2) 0.665 (5) G− 0.000 1.100 0.941 3.559 0.941 2.012
S 0.841 (1) 0.503 (3) 0.242 (4) -1.000 (6) 0.736 (2) -0.565 (5)

III
S+ 0.901 (3) 0.936 (2) 0.632 (4) 0.100 (5) 1.100 (1) 0.100 (5) G+ 5.372 5.605 3.569 0.000 6.705 0.000
S− 0.100 (1) 0.418 (4) 0.365 (2) 1.100 (6) 0.365 (2) 0.675 (5) G− 0.000 2.193 1.831 6.899 1.831 3.968
S 0.801 (1) 0.518 (3) 0.267 (4) -1.000 (6) 0.735 (2) -0.575 (5)

IV
S+ 1.100 (1) 0.296 (3) 0.172 (4) 0.100 (5) 0.578 (2) 0.100 (5) G+ 21.562 4.225 1.562 0.000 10.298 0.000
S− 0.100 (1) 0.211 (4) 0.165 (2) 1.100 (6) 0.165 (2) 0.486 (5) G− 0.000 2.016 1.176 18.193 1.176 7.016
S 1.000 (1) 0.085 (3) 0.007 (4) -1.000 (6) 0.413 (2) -0.386 (5)

The unnormalized graph-based strength of a5 derives from the strengths of alternatives it outranks, i.e., a2, a4, and
a6:

G+(a5) = 1(a5, a1) · S+(a1) + 1(a5, a2) · S+(a2) + 1(a5, a3) · S+(a3) +

+1(a5, a4) · S+(a4) + 1(a5, a5) · S+(a5) + 1(a5, a6) · S+(a6) =

= 0 · S+(a1) + 1 · S+(a2) + 0 · S+(a3) + 1 · S+(a4) + 0 · S+(a5) + 1 · S+(a6) = 0.311 + 0.1 + 0.1 = 0.511

In turn, the unnormalized graph-based weakness of a5 builds on the weaknesses of alternatives that outrank it, i.e.,
only a1:

G−(a5) = 1(a1, a5) · S−(a1) + 1(a2, a5) · S−(a2) + 1(a3, a5) · S−(a3) +
+1(a4, a5) · S−(a4) + 1(a5, a5) · S−(a5) + 1(a6, a5) · S−(a6) =

= 1 · S−(a1) + 0 · S−(a2) + 0 · S−(a3) + 0 · S−(a4) + 0 · S−(a5) + 0 · S−(a6) = 0.1

Overall, the graph-based strength of a5 is relatively high, whereas the respective weakness is very low. Then, the
scores are normalized by the greatest score attained by some alternative and combined with the bonus or penalty
components:

S+(a5) = b+5 +
G+(a5)

maxak∈AG+(ak)
= 0.1 +

0.511

0.946
= 0.640,

S−(a5) = b−5 +
G−(a5)

maxak∈AG−(ak)
= 0.1 +

0.1

0.874
= 0.214.

The comprehensive quality of alternative a5 is equal to S(a5) = S+(a5)− S−(a5) = 0.640− 0.214 = 0.426.

When it comes to a6, its unnormalized graph-based strength is equal to zero as it does not outrank any other option. As
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a result, the strength S+ of a6 is set to the minimal possible value S+(a6) = 0.1. Then, its unnormalized graph-based
weakness is derived from the weaknesses of a2 and a5 that outrank a6:

G−(a6) = 1(a1, a6) · S−(a1) + 1(a2, a6) · S−(a2) + 1(a3, a6) · S−(a3) +
+1(a4, a6) · S−(a4) + 1(a5, a6) · S−(a5) + 1(a6, a6) · S−(a6) =

= 0 · S−(a1) + 1 · S−(a2) + 0 · S−(a3) + 0 · S−(a4) + 1 · S−(a5) + 0 · S−(a6) = 0.345 + 0.214 = 0.560.

The total weakness of alternative a6 is:

S−(a6) = b+6 +
G−(a6)

maxak∈AG−(ak)
= 0.1 +

0.560

0.874
= 0.740,

and its comprehensive quality is S(a6) = S+(a6)− S−(a6) = 0.1− 0.74 = −0.64.

3.2. ScoreBin II

The second variant of ScoreBin assumes that the strength is derived from outranking many weak alternatives, and the
weakness comes from being outranked by numerous strong alternatives. This requires setting the following weights:

ω+(ak) = S−(ak) and ω−(ak) = S+(ak). (12)

The underlying motivation is that the lack of outranking of weak options should question the strength of an alter-
native, and not being outranked by strong options should decrease its weakness. This idea is inspired by the HITS
algorithm [27], employed for scoring websites based on hyperlinks. It uses the concepts of hubs and authorities to
define the roles of websites. A good authority is linked by many good hubs, whereas a good hub links to many good
authorities. Note that the original HITS method does not account for bonuses or penalties.

The results of ScoreBin II for an example problem are provided in Table 2. The unnormalized graph-based strength
of a5 is:

G+(a5) = 1(a5, a1) · S−(a1) + 1(a5, a2) · S−(a2) + 1(a5, a3) · S−(a3) +
+1(a5, a4) · S−(a4) + 1(a5, a5) · S−(a5) + 1(a5, a6) · S−(a6) =

= 0 · S−(a1) + 1 · S−(a2) + 0 · S−(a3) + 1 · S−(a4) + 0 · S−(a5) + 1 · S−(a6) = 0.409 + 1.1 + 0.665 = 2.174

Alternative a5 is the strongest because it outranks the three weakest options: a4, a6, and a2. Hence it has the highest
possible strength S+:

S+(a5) = b+5 +
G+(a5)

maxak∈AG+(ak)
= 0.1 +

2.174

2.174
= 1.1.

The unnormalized graph-based weakness of a5 is:

G−(a5) = 1(a1, a5) · S+(a1) + 1(a2, a5) · S+(a2) + 1(a3, a5) · S+(a3) +

+1(a4, a5) · S+(a4) + 1(a5, a5) · S+(a5) + 1(a6, a5) · S+(a6) =

= 1 · S+(a1) + 0 · S+(a2) + 0 · S+(a3) + 0 · S+(a4) + 0 · S+(a5) + 0 · S+(a6) = 0.941.

Thus, its total weakness can be computed as follows:

S−(a5) = b−5 +
G−(a5)

maxak∈AG−(ak)
= 0.1 +

0.941

3.559
= 0.364.

The comprehensive quality of a5 is S(a5) = S+(a5)− S−(a5) = 1.1− 0.364 = 0.736. Furthermore, the strength of a6
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is again S+(a6) = 0.1 due to the lack of outranking any other option. In turn, its unnormalized graph-based weakness
is:

G−(a6) = 1(a1, a6) · S+(a1) + 1(a2, a6) · S+(a2) + 1(a3, a6) · S+(a3) +

+1(a4, a6) · S+(a4) + 1(a5, a6) · S+(a5) + 1(a6, a6) · S+(a6) =

= 0 · S+(a1) + 1 · S+(a2) + 0 · S+(a3) + 0 · S+(a4) + 1 · S+(a5) + 0 · S+(a6) = 0.912 + 1.100 = 2.012.

It is the second highest weakness since a6 is outranked by the strongest alternative a5 and the third strongest option
a2. The total weakness of a6 is:

S−(a6) = b−6 +
G−(a6)

maxak∈AG−(ak)
= 0.1 +

2.174

3.559
= 0.665,

and its comprehensive quality is S(a6) = S+(a6)− S−(a6) = 0.1− 0.665 = −0.565.

3.3. ScoreBin III

The third variant of ScoreBin combines and extends the previous two by considering the difficulty and easiness of
outranking alternatives. In this spirit, the strength of an alternative depends on the strengths of options outranking
the same alternatives that are outranked by it. Hence an alternative is judged strong if it outranks alternatives that
are also outranked by other strong alternatives. Analogously, the alternative’s weakness depends on the weakness
of options that are outranked by the same alternatives outranking it. Thus, an alternative is deemed weak if it is
outranked by alternatives that outrank other weak options. Such effects can be accomplished using the following
weights:

ω+(ak) =
n∑

l=1

1(al, ak) · S+(al) and ω−(ak) =
n∑

l=1

1(ak, al) · S−(al). (13)

ScoreBin III is inspired by SALSA [30], which ranks the websites by analyzing the websites it is linked to and the
numbers of in- and outgoing links. In our adaptation, we consider a bipartite graph implied by the outranking relation
with each alternative represented by a node in both parts of the graph. One of its parts stands for the graph-based
strengths, and the other part for the graph-based weaknesses. The arc from node ai in the strength part to node ak
in the weakness part is considered only if aiSak.

The general idea underlying ScoreBin II and III is similar (e.g., an alternative is judged strong if it outranks weak
options, i.e., the ones outranked by many strong alternatives). However, the two methods differ in the influence scope
of indirect preference information, indicating some alternatives as strong or weak. In ScoreBin II, such information
impacts both strengths and weaknesses of other alternatives. ScoreBin III is similar to ScoreBin I in limiting the
impact of positive (negative) information only to the strengths (weaknesses) of alternatives.

The results of ScoreBin III for an example problem are given in Table 2. In addition, Table 3 reports weights
ω+(ak) and ω−(ak) capturing the difficulty of outranking each ak ∈ A. Hence, to increase the strength, it is most
beneficial to outrank a4, a6, and a2, and to decrease the weakness significantly, one should not be outranked by a5,
a1, or a2.

Table 3: Weights ω+(ak) and ω−(ak) for ScoreBin III and IV for the illustrative problem.

ScoreBin Value a1 a2 a3 a4 a5 a6

III ω+ 0.000 1.100 0.901 3.569 0.901 2.036
ω− 1.831 1.775 1.100 0.000 2.193 0.000

IV ω+ - 6.073 10.000 1.562 10.000 2.663
ω− 1.176 5.000 10.000 - 2.016 -

The unnormalized graph-based strength of a5 builds on outranking a2 (only outranked by a5), a4 (also outranked
by a1, a2, and a3), and a6 (also outranked by a2). When neglecting factors 1(ai, ak) = 0, it can be expressed as

9



follows:

G+(a5) = 1(a5, a2) · 1(a5, a2) · S+(a5) +

+1(a5, a4) · [1(a1, a4) · S+(a1) + 1(a2, a4) · S+(a2) + 1(a3, a4) · S+(a3) + 1(a5, a4) · S+(a5)] +

+1(a5, a6) · [1(a2, a6) · S+(a2) + 1(a5, a6) · S+(a5)] =

= 1 · S+(a1) + 2 · S+(a2) + 1 · S+(a3) + 3 · S+(a5) = 0.901 + 2 · 0.936 + 0.632 + 3 · 1.100 = 6.705

Overall, a5 outranks alternatives which are outranked by other strong alternatives, which positively impacts its total
strength:

S+(a5) = b+5 +
G+(a5)

maxak∈AG+(ak)
= 0.1 +

6.705

6.705
= 1.1.

The unnormalized graph-based weakness of a5 derives from being outranked by a1 (which also outranks a3 and a4):

G−(a5) = 1(a1, a5) · [1(a1, a3) · S−(a3) + 1(a1, a4) · S−(a4) + 1(a1, a5) · S−(a5)] =
= 1 · S−(a3) + 1 · S−(a4) + 1 · S−(a5) = 0.365 + 1.1 + 0.365 = 1.83.

Then, the total weakness of a5 is:

S−(a5) = b−5 +
G−(a5)

maxak∈AG−(ak)
= 0.1 +

1.83

6.899
= 0.365,

and its comprehensive quality amounts to S(a5) = S+(a5) − S−(a5) = 1.1 − 0.365 = 0.735. The strength S+ of a6
is again 0.1 since G+(a6) = 0. Its unnormalized graph-based weaknesses derives from being outranked by a2 (that
outranks also a4) and a5 (that outranks also a2 and a4):

G−(a6) = 1(a2, a6) · [1(a2, a6) · S−(a6) + 1(a2, a4) · S−(a4)] +
+1(a5, a6) · [1(a5, a2) · S−(a2) + 1(a5, a4) · S−(a4) + 1(a5, a6) · S−(a6)] =
= 1 · S−(a2) + 2 · S−(a4) + 2 · S−(a6) = 0.418 + 2 · 1.1 + 2 · 0.675 = 3.968.

Then, its total weakness is:

S−(a6) = b+6 +
G−(a6)

maxak∈AG−(ak)
= 0.1 +

3.968

6.899
= 0.675,

and the comprehensive quality amounts to S(a6) = S+(a6)− S−(a6) = 0.1− 0.675 = −0.575.

3.4. ScoreBin IV

The fourth variant of ScoreBin combines the first and third counterparts. An alternative is considered challenging to
outrank if it is outranked by few other strong options, and it is easy to outrank when numerous weak options outrank
it. The more challenging an alternative is to outrank, the more favorable it is for the quality of the alternative that
does outrank it. The above idea is implemented using the following weights:

ω+(ak) =
1∑n

l=1 1(al, ak) · S−(al)
and ω−(ak) =

1∑n
l=1 1(ak, al) · S+(al)

. (14)

Unlike in ScoreBin I, the fourth variant lets additional preferences influence both strengths and weaknesses of other
alternatives. For example, if ak was judged weak, then ai outranked by ak is considered as easier to outrank. Hence
all alternatives which also outrank ai would have lower strengths.

The results for the illustrative problem are provided in Table 2, and the respective weights ω+ and ω− are given in
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Table 3. Some of them (e.g., ω+(a1)) are undefined as no alternative outranks or is outranked by a given alternative.
It is not an issue as this value is not required in the calculation of the strength or weakness of any alternative. For
example, the difficulty of outranking, captured by ω+, is the greatest for a3 and a5. In particular, a5 is outranked
only by a1 which has the lowest weakness:

ω+(a5) =
1

1(a1, a5) · S−(a1)
=

1

0.1
= 10.

The unnormalized graph-based strength of a5 is the second greatest among all alternatives mainly due to outranking
a2, which is relatively difficult to outrank:

G+(a5) = 1(a5, a2) · ω+(a2) + 1(a5, a4) · ω+(a4) + 1(a5, a6) · ω+(a6) = 6.073 + 1.562 + 2.663 = 10.298.

In turn, the contribution of outranking a4 to G+(a5) is rather low because a4 is outranked by many other options,
which supports the easiness of being at least as good as a4. The total strength of alternative a5 is:

S+(a5) = b+5 +
G+(a5)

maxak∈AG+(ak)
= 0.1 +

10.298

21.562
= 0.578.

Then, the weight ω− of a5 equals:

ω−(a5) =
1

1(a5, a2) · S+(a2) + 1(a5, a4) · S+(a4) + 1(a5, a6) · S+(a6)
=

1

0.296 + 0.1 + 0.1
= 2.016.

It is rather low, which speaks in favor of the easiness in outranking a5. The unnormalized graph-based weakness of
a5 is:

G−(a5) = 1(a1, a5) · ω−(a1) = 1.176,

and its total weakness can be computed as follows:

S−(a5) = b−5 +
G−(a5)

maxak∈AG−(ak)
= 0.1 +

1.176

18.193
= 0.165.

It is the second least weakness among all alternatives because a5 is outranked only by a1 whose ω− is the least. The
comprehensive quality of a5 is S(a5) = S+(a5)− S−(a5) = 0.578− 0.165 = 0.413.

When it comes to a6, the difficulty ω+ in outranking it is:

ω+(a6) =
1

1(a2, a6) · S−(a2) + 1(a5, a6) · S−(a5)
=

1

0.211 + 0.165
= 2.663.

It is rather low because a6 is outranked by two other alternatives, including a2, which has the third greatest weakness.
The graph-based weakness of a6 is zero, and hence S+(a6) = 0.1. Weight ω− for a6 is undefined because it does not
outrank any other option. Further, its unnormalized graph-based weakness is:

G−(a5) = 1(a2, a6) · ω−(a2) + 1(a5, a6) · ω−(a5) = 5 + 2.016 = 7.016.

It is the second greatest weakness among all alternatives. This is mainly due to being outranked by a2, which has the
second greatest ω− weight. The total weakness of a6 is:

S−(a6) = b−6 +
G−(a6)

maxak∈AG−(ak)
= 0.1 +

7.016

18.193
= 0.486,

and its comprehensive quality amounts to S(a6) = S+(a6)− S−(a6) = 0.1− 0.486 = 0.386.
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3.5. Ranking construction

The strengths, weaknesses, and qualities can be used to impose an order on the set of alternatives. If a partial
ranking is desired, one should intersect the two complete orders implied by the separate application of strengths and
weaknesses, i.e. [4, 7]:

aiPak (ai is preferred to ak) iff (S+(ai) > S+(ak) and S−(ai) < S−(ak))

or (S+(ai) > S+(ak) and S−(ai) = S−(ak))

or (S+(ai) = S+(ak) and S−(ai) < S−(ak));

aiIak (ai is indifference with ak) iff (S+(ai) = S+(ak) and S−(ai) = S−(ak));

aiRak (ai is incomparable with ak) otherwise.

Thus rankings obtained for the illustrative problem with the ScoreBin variants, QD, and NFS are presented in Figure 1.
In particular, they are the same for QD and NFS, not involving any incomparability. The same orders have also been
obtained for ScoreBin I and IV, where a2 and a3 are incomparable. For ScoreBin II and III, a2 is preferred to a3. The
variants of ScoreBin also differ in the position of a1. For the first and fourth variants, a1 is preferred to all remaining
alternatives; for the second variant, a1 is incomparable with a5, while in ScoreBin III, a1 is additionally incomparable
with a2.

a1

a5

a2

a3

a6

a4

(a) QD and NFS

a1

a5

a2

a6

a3

a4

(b) ScoreBin I and IV

a1

a2 a3

a6

a4

a5

(c) ScoreBin II

a1

a3

a6

a4

a2

a5

(d) ScoreBin III

Figure 1: Partial rankings based on the strengths and weaknesses obtained with different methods for the illustrative problem.

When a complete ranking is desired, one should refer to the qualities of alternatives in the following way [6]:

aiPak (ai is preferred to ak) iff S(ai) > S(ak);

aiIak (ai is indifferent with ak) iff S(ai) = S(ak).

For the illustrative example, the complete rankings for all methods but ScoreBin I are the same: a1 P a5 P a2 P a3 P a6 P a4.
For the first variant of ScoreBin, the ranks of a2 and a3 are inverse.

4. Measures used for comparing the choice or ranking recommendations

This section describes measures for comparing the rankings obtained with a pair of methods M ′ and M ′′. They refer
to function rank(M,ai) which determines the position of alternative ai assigned to it by method M ∈ {M ′,M ′′} [24]:

rank(M,ai) = 1 + |{aj ∈ A\ai : ajPMai}|. (15)

A subset of alternatives ranked r-th by M is defined as follows:

M(r) = {ai ∈ A : rank(M,ai) = r}. (16)
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To compare the subsets ranked r-th by methods M ′ and M ′′, we use the Rank Agreement measure:

RA(M ′,M ′′, r) =
|M ′(r) ∩M ′′(r)|
|M ′(r) ∪M ′′(r)| . (17)

Its particular case, called the Normalized Hit Ratio (NHR), is useful for quantifying the similarity between the choice
recommendations, i.e., the subsets of alternatives ranked at the top [24]:

NHR(M ′,M ′′) = RA(M ′,M ′′, 1) =
|M ′(1) ∩M ′′(1)|
|M ′(1) ∪M ′′(1)| . (18)

It can also be used to compare a subset of top-ranked alternatives by method M with the most preferred subset of
alternatives corresponding to, e.g., graph kernel K, i.e.:

NHR(M,K) =
|M(1) ∩K|
|M(1) ∪K| . (19)

In the same context, we can compute the average position in the ranking established with M of alternatives contained
in the most preferred subset K:

AP (M,K) =

∑
ai∈K rank(M,ai)

|K| . (20)

The remaining two measures serve for comparing a pair of rankings and build on the notion of distances between
relations observed for the same pairs (see Table 4) [33, 41]. The Normalized Ranking Distance (NRD) is applicable
when the two rankings are incomplete [24]:

NRD(M ′,M ′′) =

∑n
i=1

∑n
k=1,k 6=iRD(M ′,M ′′, ai, ak)

2n · (n− 1)
. (21)

It takes value in the [0, 1] interval, where value 0 means the two rankings are the same. When complete rankings need
to be compared, we apply Kendall’s τ that considers only preference and indifference [26]:

τ(M ′,M ′′) = 1− 2 ·NRD(M ′,M ′′). (22)

It takes values in the [−1, 1] interval, where 1 means the two rankings are the same.

Table 4: The distances RD(M ′,M ′′, ai, ak) between relations observed for pair (ai, ak) in the rankings determined by methods
M ′ and M ′′.

RD(M ′,M ′′, ai, ak) aiP
M′′ak aiI

M′′ak aiR
M′′ak aiP

−,M′′ak
aiP

M′ak 0 2 3 4
ai I

M′ ak 2 0 2 2
ai R

M′ ak 3 2 0 3
aiP
−,M′ak 4 2 3 0

5. Evaluation of technological parks in Poland

This section reports the results of a case study concerning an assessment of technological parks in Poland [28].
The parks have been created to offer favorable conditions for the development of innovative businesses, particularly
in the high-tech sector, by providing access to modern infrastructure, scientific expertise, and financial resources.
Technological parks typically provide a range of services to tenant companies, such as research and development
facilities, technology transfer centers, consulting services, and training programs. Over the years, they have successfully
attracted both domestic and foreign investors and contributed significantly to the growth of Poland’s innovation
ecosystem. We aim to rank eleven technological parks in Poland. They are evaluated in terms of the following seven
criteria (see Table 5):
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• Sales costs [mln PLN] (g1; to be minimized): total incurred costs for sales of products and services.

• Park buildings’ surface (g2; to be minimized).

• Park’s localization (g3; to be minimized): a distance from the communication railroads, roads, airports, univer-
sities, and industrial plants.

• Total sales [mln PLN] (g4; to be maximized): profit generated by the park.

• Number of services types (g5; to be maximized) offered by the park.

• Overall evaluation of park’s management (g6; to be maximized), as expressed by the tenants.

• Number of completed projects (g7; to be maximized) realized by the park in partnership with other institutions.

Table 5: The performance matrix for the problem of ranking technological parks in Poland.

Park Sales costs
[mln PLN]

Buildings’
surface

Park’s
localization

Total sales
[mln PLN]

Number
of services

Evaluation of
park’s management

Completed
projects

a1 3.873125 2259.40 17 1.410718 11.07 4.23 2
a2 0.772961 3536.74 24 1.104072 15.12 4.24 2
a3 1.300742 3428.92 23 1.855023 15.00 4.64 2
a4 2.683445 3163.00 25 4.617871 13.11 4.31 2
a5 2.340402 5980.50 24 0.704410 18.00 4.21 3
a6 1.848784 2853.92 22 3.343191 2.94 3.58 3
a7 2.474156 2161.63 19 0.290557 3.99 3.68 1
a8 2.626398 8100.00 23 33.823535 12.96 3.67 18
a9 2.349051 13203.31 21 2.271590 4.18 4.41 1
a10 2.448512 7396.00 21 2.326377 14.04 4.34 4
a11 8.679106 21682.09 25 9.798043 9.70 3.14 4

The criteria weights were derived using the Simos-Roy-Figueira (SRF) method [13, 10] that is often coupled with
outranking methods [43]. It requires ranking the criteria from the least to the most important. In addition, it is
possible to insert blank cards between groups of criteria judged indifferent to increase the preference intensity. This
led to the following raw ranks assigned to particular criteria (the lower the rank, the less important the criterion):
g7 – 1, g6 – 2, g2 – 4, g3 – 6, g5 – 6, g1 – 9, and g4 – 10. Hence, e.g., g3 and g5 are judged indifferent, whereas the
desired difference between the weights assigned to g1 and g5 is three times greater than between g6 and g7. Moreover,
coefficient Z = 7 specified the ratio between weights assigned to the most and the least preferred groups.

The obtained criteria weights and three types of thresholds needed to construct an outranking relation are given
in Table 6. We set the credibility threshold to λ = 0.74. It corresponds to the sum of weights of criteria contained
in the following subset {g1, g2, g4, g5} that has been judged sufficient for validating the outranking. The outranking
function 1(ai, ak) is provided in Table 7. The respective outranking graph is given in Figure 2a). We exploit it using
ELECTRE I, QD, NFS, and the four variants of ScoreBin. The value of the base bonus and penalty for ScoreBin is
set to α = 0.1.

5.1. Scenario without indirect preference information

Let us first discuss the results obtained without any additional preferences of the DM. A graph kernel is composed of
five alternatives: K = {a8, a10, a5, a4, a7}. In particular, it includes two options, a8 and a10, that are not outranked
by any other alternative, and three other options that allow ensuring internal and external stabilities. The strengths,
weaknesses, and comprehensive qualities obtained with NFS and four ScoreBin methods are shown in Table 8. For QD,
we report the ranks in the ascending and descending distillations. The respective rankings are presented in Figures 2
and 3.

The most preferred alternative in the rankings obtained with all methods is a10. Consequently, NHR between all
rankings equals one. Their comparison to the kernel leads to NHR equal to 1/5 as a10 whose selection they recommend
is one of the five alternatives indicated by ELECTRE I. The favorable evaluation of a10 derives from its high strength
implied by outranking four other alternatives, including a relatively strong a2 and three weaker alternatives a2, a9,
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Table 6: Criteria weights and comparison thresholds for the problem of ranking technological parks in Poland.

gj
Indifference
threshold qj

Preference
threshold pj

Veto
threshold vj

Weight wj

g1 0,5 3 25 0.22
g2 200 1000 inf 0.11
g3 0 1 inf 0.16
g4 0,25 1 10 0.25
g5 1 4 10 0.16
g6 0 0 inf 0.06
g7 0 1 2 0.04

Table 7: Outranking function 1(ai, ak) for the problem of ranking technological parks in Poland.

1(ai, ak) a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
a1 0 0 0 0 0 0 1 0 0 0 0
a2 0 0 0 0 1 0 0 0 0 0 0
a3 0 1 0 1 1 0 0 0 1 0 0
a4 1 0 0 0 0 1 0 0 1 0 0
a5 0 0 0 0 0 0 0 0 0 0 0
a6 0 0 0 0 0 0 0 0 1 0 0
a7 0 0 0 0 0 0 0 0 0 0 0
a8 0 0 0 0 0 0 0 0 0 0 1
a9 0 0 0 0 0 0 0 0 0 0 0
a10 0 1 1 0 0 0 0 0 1 0 1
a11 0 0 0 0 0 0 0 0 0 0 0
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a2

a5

a3
a4

a9a6

a8

a11

a10

(a) Outranking graph
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a10

(b) QD
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a2 a7

a5,a11

a9
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a8

a10

(c) NFS (partial)

a1,a6

a2,a7

a5,a11
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a8

a10

(d) NFS (complete)

Figure 2: Outranking graph (a) and rankings obtained with QD (b) and NFS – partial (c) and complete (d) for the problem of
assessing technological parks in Poland.

and a11. Also, its weakness is minimal for all methods because a10 is not outranked by any other option. On the
contrary, the least preferred alternative in all rankings is a9. Such a poor assessment derives from its minimal strength
implied by the lack of outranking any other alternative. Moreover, its weakness is very high because it is outranked
by the three strongest alternatives (a10, a3, and a4) and a moderately ranked option a6.

However, the rankings exhibit some differences in their intermediate parts. We explain them by referring to two
example alternatives, a8 and a2. Alternative a8 outranks only a single option while not being outranked by any other
option. Its minimal weakness puts it high in all partial rankings due to its most favorable position in the order implied
by the alternatives’ weak points. However, its position in the complete rankings is lower, i.e., fourth or fifth. This is
because its strength is relatively low, being derived only from outranking a11. Since the strength of a11 is very low
for ScoreBin I, the strength of a8 is the lowest. It is slightly higher for ScoreBin II because the weakness of a11 is
intermediate. Then, the strength of a8 in ScoreBin III is even greater because a11 is also outranked by a very strong
option a10. Finally, ScoreBin IV assigns a higher strength to a8 because outranking a11 proves beneficial as it is
outranked only by the two options with the least weakness (a8 and a10).

15



a1,a6,a2

a7

a5

a9

a3

a4

a11

a8

a10

(a) I (partial)

a1

a5,a11

a9

a2

a3

a4

a6

a7

a8

a10

(b) II (partial)

a1

a5,a11

a9

a2

a3

a4

a6

a7

a8

a10

(c) III (partial)

a1

a6 a5

a9a7

a11

a2

a3

a4

a8

a10

(d) IV (partial)

a10

a3 a1,a6,a2

a7

a5

a9

a4

a8

a11

(e) I (complete)

a10

a3 a1

a5,a11

a2

a9

a4

a6

a8

a7

(f) II (complete)

a10

a3 a1

a5,a11

a2

a9

a4

a6

a8

a7

(g) III (complete)

a10

a3

a1

a2

a6

a5

a9

a7

a11a4

a8

(h) IV (complete)

Figure 3: Incomplete (a – d) and complete (e – h) rankings derived with the four variants of ScoreBin for the problem of
assessing technological parks in Poland.

As far as a2 is concerned, it is outranked by a3 and a10, and it outranks a5. This makes it ranked in the lower half
for most methods mainly due to its relatively high weakness. It is exceptionally high in ScoreBin II and III. For the
former approach, it is the consequence of being outranked by the two strongest alternatives. In turn, for ScoreBin III,
the high weakness of a2 derives from the high weakness of other alternatives outranked by a3 and a10. In ScoreBin I,
the weakness of a2 is intermediate because even if two other options outrank it, they have very low weaknesses. This
is even more evident for ScoreBin IV because a2 is outranked by the extremely strong alternatives, further decreasing
its weakness.

Table 8: Results of six ranking methods for the problem of assessing technological parks in Poland.

Method Value a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

ScoreBin I
S+ 0.183 (4) 0.183 (4) 0.822 (2) 0.487 (3) 0.100 (8) 0.183 (4) 0.100 (8) 0.183 (4) 0.100 (8) 1.100 (1) 0.100 (8)
S− 0.400 (6) 0.400 (6) 0.200 (3) 0.300 (4) 0.700 (10) 0.400 (6) 0.500 (9) 0.100 (1) 1.100 (11) 0.100 (1) 0.300 (4)
S -0.217 (6) -0.217 (6) 0.622 (2) 0.187 (3) -0.600 (10) -0.217 (6) -0.400 (9) 0.083 (4) -1.000 (11) 1.000 (1) -0.200 (5)

ScoreBin II
S+ 0.152 (7) 0.282 (5) 1.100 (1) 0.722 (3) 0.100 (8) 0.497 (4) 0.100 (8) 0.282 (5) 0.100 (8) 1.100 (1) 0.100 (8)
S− 0.311 (4) 0.743 (10) 0.422 (6) 0.422 (6) 0.504 (8) 0.311 (4) 0.145 (3) 0.100 (1) 1.100 (11) 0.100 (1) 0.504 (8)
S -0.159 (7) -0.461 (10) 0.678 (2) 0.300 (3) -0.404 (8) 0.186 (4) -0.044 (6) 0.182 (5) -1.000 (11) 1.000 (1) -0.404 (8)

ScoreBin III
S+ 0.114 (7) 0.269 (5) 1.100 (1) 0.694 (3) 0.100 (8) 0.523 (4) 0.100 (8) 0.269 (5) 0.100 (8) 1.100 (1) 0.100 (8)
S− 0.304 (4) 0.765 (10) 0.433 (6) 0.433 (6) 0.491 (8) 0.304 (4) 0.114 (3) 0.100 (1) 1.100 (11) 0.100 (1) 0.491 (8)
S -0.190 (7) -0.496 (10) 0.667 (2) 0.262 (3) -0.391 (8) 0.219 (4) -0.013 (6) 0.169 (5) -1.000 (11) 1.000 (1) -0.391 (8)

ScoreBin IV
S+ 0.317 (5) 0.228 (6) 0.795 (2) 0.782 (3) 0.100 (8) 0.176 (7) 0.100 (8) 0.346 (4) 0.100 (8) 1.100 (1) 0.100 (8)
S− 0.227 (6) 0.223 (5) 0.161 (3) 0.162 (4) 0.912 (10) 0.227 (6) 0.850 (8) 0.100 (1) 1.100 (11) 0.100 (1) 0.911 (9)
S 0.090 (5) 0.004 (6) 0.634 (2) 0.620 (3) -0.812 (10) -0.051 (7) -0.750 (8) 0.245 (4) -1.000 (11) 1.000 (1) -0.811 (9)

NFS
S+ 1.000 (4) 1.000 (4) 4.000 (1) 3.000 (3) 0.000 (8) 1.000 (4) 0.000 (8) 1.000 (4) 0.000 (8) 4.000 (1) 0.000 (8)
S− 1.000 (3) 2.000 (8) 1.000 (3) 1.000 (3) 2.000 (8) 1.000 (3) 1.000 (3) 0.000 (1) 4.000 (11) 0.000 (1) 2.000 (8)
S 0.000 (5) -1.000 (7) 3.000 (2) 2.000 (3) -2.000 (9) 0.000 (5) -1.000 (7) 1.000 (4) -4.000 (11) 4.000 (1) -2.000 (9)

QD Desc. (4) (4) (2) (3) (8) (4) (8) (4) (8) (1) (8)
Asc. (5) (8) (3) (4) (9) (6) (6) (1) (11) (1) (9)

Table 9 summarizes the NRD values for the partial rankings constructed by the six methods. For ScoreBin II and
III, the rankings are the same, resulting in NRD = 0. They are the least similar to the partial preorder obtained
with ScoreBin I (NRD = 0.232). The first variant of ScoreBin involves fewer incomparabilities while giving relatively
higher priority to a2 and a11, and relatively lower positions to a5, a6, and a7. Moreover, the partial rankings for
ScoreBin IV and QD are profoundly matching (NRD = 0.055), varying only in terms of relations established for the
following pairs: (a2, a6), (a2, a7), and (a5, a11). Finally, the incomplete rankings for QD and NFS are very similar,
differing only for the relation assigned to the pair (a2, a6).
Kendall’s τ values for the complete rankings constructed by NFS and four ScoreBin variants are given in Table 10.
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Table 9: Normalized Ranking Distances between the partial rankings for the problem of assessing technological parks in Poland.

Method ScoreBin I ScoreBin II ScoreBin III ScoreBin IV NFS QD
ScoreBin I 0.000 0.232 0.232 0.086 0.100 0.109
ScoreBin II 0.232 0.000 0.000 0.209 0.173 0.182
ScoreBin III 0.232 0.000 0.000 0.209 0.173 0.182
ScoreBin IV 0.086 0.209 0.209 0.000 0.064 0.055

NFS 0.100 0.173 0.173 0.064 0.000 0.009
QD 0.109 0.182 0.182 0.055 0.009 0.000

Again, these rankings are the same for ScoreBin II and III. Then, the greatest similarity can be observed for rankings
obtained with ScoreBin IV and NFS (τ = 0.909) that differ in relations assigned to the following pairs: (a1, a6), (a2,
a6), (a2, a7), and (a5, a11). The most distinctive ranking among the four variants was obtained with ScoreBin I. Its
similarity to the rankings of ScoreBin II and III is 0.673, indicating differences in the relations observed for many pairs
involving mainly the alternatives with the intermediate ranks such as a8, a1, a11, and a5.

Table 10: Kendall’s τ based on the complete rankings obtained for the problem of assessing technological parks in Poland.

Method ScoreBin I ScoreBin II ScoreBin III ScoreBin IV NFS
ScoreBin I 1.000 0.673 0.673 0.800 0.782
ScoreBin II 0.673 1.000 1.000 0.727 0.818
ScoreBin III 0.673 1.000 1.000 0.727 0.818
ScoreBin IV 0.800 0.727 0.727 1.000 0.909

NFS 0.782 0.818 0.818 0.909 1.000

Finally, let us consider an average position in the complete rankings of the five alternatives contained in the kernel.
For example, the ranks of these options according to ScoreBin II and III are: a10 – 1, a4 – 3, a8 – 5, a7 – 6, and
a5 – 8. Their average rank is AP = 23/5 = 4.6. It is the best of all methods. The highest value of AP is observed
for ScoreBin I mainly because of very low positions of a7 (9) and a5 (10). In general, such relatively low AP values
confirm the disadvantage of using the graph kernel for indicating the most preferred subset of alternatives under some
decision scenarios. In this case, the kernel contains many alternatives. Even if it includes very strong alternatives,
some others – being incomparable with the strong ones – are weaker, offering arguments for eliminating the remaining
options via outranking them.

Table 11: Average position AP of alternatives contained in the outranking graph kernel based on the complete rankings obtained
for the problem of assessing technological parks in Poland.

Method ScoreBin I ScoreBin II ScoreBin III ScoreBin IV NFS
AP 5.4 4.6 4.6 5.2 4.8

5.2. Scenario with indirect preference information

In this section, we consider the problem of ranking technological parks in Poland with the same crisp outranking
relation. However, we account for additional indirect preference information. We assume that the DM indicated a4
as a strong alternative (A∗strong = {a4}), mainly due to being at least as good as three other options. In addition, a1
and a2 were pointed as weak alternatives (A∗weak = {a1, a2}). For the former, this is due to being outranked by a4,
while for the latter, the claim is motivated by being outranked by a10 and a2. We set the value of an enhancement
bonus/penalty to β = 0.8. We discuss only the results for the four variants of ScoreBin. The scores are provided in
Table 12, and the respective partial and complete are shown in Figure 4.

For ScoreBin I, accounting for additional preferences does not change the upper part of the ranking, with a10 still
being the most preferred alternative, followed by a3, a8, and a4. In fact, indicating a4 as a strong option also increased
the strengths of a3 (directly) and a10 (indirectly). In turn, the negative information increases the impact of the two
alternatives judged as weak (a1 and a2) and those which are outranked by them (a5 and a7). Consequently, these four
options are now all ranked at the very bottom or in the lower ranking half.

When considering the rankings implied by ScoreBin II, a3 and a10 still have the highest graph-based strengths
equal to one. However, the bonus obtained by a4 impacted its total strength, which appeared to be greater than for a3
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and a10. This bonus also implied the increase of weaknesses for a1, a6, and a9 (e.g., a3 became preferred to a6 in the
partial ranking, whereas these two alternatives were incomparable when no additional preferences were considered).
Indicating a1 and a2 as weak options deteriorated their weaknesses. However, it did not significantly impact the
weakness of alternatives outranked by them, as observed for ScoreBin I.

In ScoreBin III, additional reinforcement of a4 increased its strength to the greatest value among alternatives and,
thus, to being ranked at the top in the complete ranking. This statement also indirectly increased the strengths of a6,
a3, and a10 as, similarly to a4, they outrank a9. However, since a3 and a10 have the greatest graph-based strength,
they do not take much advantage of this relation. Pointing out a1 as weak led to increasing its weakness over the
level of a3, a4, a5, and a11. As a result, a3 and a4 are preferred to a1 in both rankings, whereas a5 and a11 prove to
be better than a1 in the complete order and incomparable with it in the partial ranking. In addition, this statement
indirectly increased the weakness a6 because it is outranked by a4, which also outranks a1.

The impact of additional preferences in ScoreBin IV is most visible for the alternatives judged by the DM. Judging
a4 as strong impacts the quality of alternatives that are outranked by the same alternatives as a4. In particular, it led
to a decrease in the weaknesses of a4 from 0.162 to 0.137 and a5 from 0.912 to 0.860. Overall, this guaranteed a4 the
highest place in the complete ranking and being incomparable with a10 at the top of the partial ranking. Declaring a1
as a poor option led to the increase of its weakness from 0.226 to 0.970 and indirectly to the rise of the weakness of a6.
The weakness of a9 was not affected greatly because its graph-based weakness was already the highest (i.e., equal to
one). Moreover, claiming that a2 is poor decreased the difficulty of outranking a5 and then decreased the strengths of
a2 and a3. Overall, both a1 and a2 deteriorated their positions compared to the scenario without indirect preferences.

Table 12: Results of the four variants of ScoreBin for the problem of assessing technological parks in Poland when accounting
for indirect preference information.

ScoreBin Value a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

I
S+ 0.168 (4) 0.168 (4) 1.099 (2) 1.097 (3) 0.100 (8) 0.168 (4) 0.100 (8) 0.168 (4) 0.100 (8) 1.100 (1) 0.100 (8)
S− 1.006 (9) 1.032 (10) 0.182 (3) 0.250 (4) 1.100 (11) 0.306 (6) 0.928 (8) 0.100 (1) 0.790 (7) 0.100 (1) 0.265 (5)
S -0.838 (9) -0.864 (10) 0.917 (2) 0.847 (3) -1.000 (11) -0.138 (5) -0.828 (8) 0.068 (4) -0.690 (7) 1.000 (1) -0.165 (6)

II
S+ 0.142 (7) 0.228 (5) 1.100 (2) 1.675 (1) 0.100 (8) 0.447 (4) 0.100 (8) 0.228 (5) 0.100 (8) 1.100 (2) 0.100 (8)
S− 1.188 (10) 1.309 (11) 0.355 (4) 0.355 (4) 0.407 (6) 0.488 (8) 0.133 (3) 0.100 (1) 1.100 (9) 0.100 (1) 0.407 (6)
S -1.046 (10) -1.081 (11) 0.745 (3) 1.320 (1) -0.307 (7) -0.041 (6) -0.033 (5) 0.128 (4) -1.000 (9) 1.000 (2) -0.307 (7)

III
S+ 0.112 (7) 0.248 (5) 1.100 (2) 1.652 (1) 0.100 (8) 0.589 (4) 0.100 (8) 0.248 (5) 0.100 (8) 1.100 (2) 0.100 (8)
S− 1.035 (9) 1.460 (11) 0.430 (5) 0.430 (5) 0.475 (7) 0.335 (4) 0.111 (3) 0.100 (1) 1.100 (10) 0.100 (1) 0.475 (7)
S -0.923 (9) -1.212 (11) 0.670 (3) 1.222 (1) -0.375 (7) 0.254 (4) -0.011 (6) 0.148 (5) -1.000 (10) 1.000 (2) -0.375 (7)

IV
S+ 0.151 (6) 0.146 (7) 0.695 (3) 1.595 (1) 0.100 (8) 0.173 (5) 0.100 (8) 0.348 (4) 0.100 (8) 1.100 (2) 0.100 (8)
S− 0.970 (10) 0.907 (9) 0.169 (4) 0.137 (3) 0.860 (7) 0.270 (5) 0.823 (6) 0.100 (1) 1.100 (11) 0.100 (1) 0.892 (8)
S -0.819 (10) -0.761 (8) 0.526 (3) 1.458 (1) -0.760 (7) -0.097 (5) -0.723 (6) 0.248 (4) -1.000 (11) 1.000 (2) -0.792 (9)

Let us comment only on the pairs of the most and the least similar recommendations obtained with different
variants of ScoreBin. When it comes to NRD, the greatest similarity (0.068) between the partial ranking is noted
for ScoreBin II and III, while the least consistency is observed for ScoreBin I and III. Then comparing the complete
rankings in terms of Kendall’s τ , the pair of methods leading to the most similar orders (0.891) is the same as for
NRD. In turn, the least similar rankings (0.564) were generated by ScoreBin I and IV. Finally, NHR is equal to one for
the following three pairs of ScoreBin variants: (II, III), (II, IV), and (III, IV), as they indicate both a4 and a10 at the
top. In turn, comparing the top-ranked alternative (a10) by ScoreBin I with the choice-oriented recommendations of
other variants leads to NHR equal to 0.5. The differences are generally more significant than for the recommendations
obtained in the scenario without DM’s additional preference information.

5.3. Robustness analysis

Applying ScoreBin requires setting the parameters of the minimal score influence α and strength/weakness enhance-
ment β. The choice of their values impacts the obtained comprehensive qualities and the ranking. To investigate
the stability of results for various admissible values of α and β in the feasible space (A,B), we need to conduct a
robustness analysis [39]. Its results can be quantified as Rank Acceptability Indexs (RAIs) defined as the share of
feasible parameter values that grant an alternative a given rank [29, 25]:

RAI(a, r) =

∫

(α,β)∈(A,B)

m(α, β, a, r) d(α, β), (23)
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Figure 4: Incomplete (a – d) and complete (e – h) rankings derived with the four variants of ScoreBin for the problem of
assessing technological parks in Poland when accounting for indirect preference information.

where m(α, β, a, r) is the rank membership function:

m(α, β, a, r) =

{
1, if rank(M,a) = r,

0, otherwise.

To estimate RAIs, we may apply the Monte Carlo simulation and compute the ratio of feasible parameters for which
a is ranked r-th [8, 45]. We demonstrate the results of such an analysis for the scenario with indirect preference
information and ScoreBin I. We simulated uniformly distributed values of α ∈ (0.005, 1] with a step 0.005 and β ≥ α.
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Figure 5: Strengths (a), weaknesses (b), and comprehensive qualities (c) of alternative a2 for uniformly distributed values of
parameters α and β for the problem of assessing technological parks in Poland.

The strengths, weaknesses, and comprehensive scores of a2 for different values of α and β are presented in Figure 5.
The respective ranks are illustrated in Figure 6. Since a2 was not directly judged by the DM and did not outrank
any of such alternatives, its strength depends only on α, growing with the increase of α. However, this happens for
the remaining alternatives too, so the fourth rank of a2 is stable across all studied parameter values. However, the
weakness of a2, being outranked by a3 and a10 increases faster with the raise of α than for alternatives outranked by
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Figure 6: Ranks attained by alternative a2 for uniformly distributed values of parameters α and β for the problem of assessing
technological parks in Poland.

only one other option (e.g., a1, a6, a7, and a11). Moreover, a2 was indicated as one of the poor alternatives by the
DM. Hence its weakness increase with the increase of β too. Overall, the weakness rank of a2 is sixth for only 1.3%

samples (with α, β < 0.1). The most common weakness rank of a2 is ninth (49.0%). For large values of β > 0.9 and
large values of α > 0.3, a2 attained the greatest S−. The distribution of qualities and respective ranks for a2 are
illustrated in Figures 5c) and 6c), respectively.

Such distributions can be conveniently summarized with RAIs. For all alternatives, the stochastic acceptabilities
based on the comprehensive quality measures are presented in Table 13. The most common rank of a2 is ninth (50.4%),
followed by eighth (27.8%) and seventh (11.6%). Its expected rank, obtained by averaging the ranks observed for all
samples, is 8.55. The top-ranked options attained the most stable ranks: a10 – 1 for 96.4% (interval [1, 3]), a3 – 2 for
93% (interval [2, 3]), a4 – 3 for 91.6% (interval [1, 3]), and a8 – 4 for 100%. In turn, the least preferred alternative for
most cases (77.7%) was a9. The expected ranking is:

a10 P a3 P a4 P a8 P a6 P a11 P a1 P a7 P a2 P a5 P a9.

Table 13: Rank Acceptability Indices (in %) and expected ranks ER obtained with ScoreBin I for technological parks in Poland
in the scenario accounting for additional preference information.

Rank a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
1 - - - 3.6 - - - - - 96.4 -
2 - - 93.0 4.8 - - - - - 2.1 -
3 - - 7.0 91.6 - - - - - 1.4 -
4 - - - - - - - 100.0 - - -
5 0.9 - - - - 83.8 - - - - 16.2
6 30.6 1.3 - - - 15.0 2.3 - - - 50.0
7 20.5 11.6 - - - 1.3 48.3 - 10.9 - 7.5
8 37.6 27.8 - - - - 20.1 - 1.8 - 12.7
9 10.1 50.4 - - 2.5 - 19.2 - 4.0 - 13.7
10 0.3 7.2 - - 78.4 - 8.5 - 5.6 - -
11 - 1.6 - - 19.1 - 1.5 - 77.7 - -
ER 7.26 8.55 2.07 2.88 10.17 5.18 7.87 4.0 10.37 1.05 6.58

6. Experimental comparison of results attained by different methods exploiting a crisp outranking
relation

This section compares the recommendation attained by the four variants of ScoreBin, Net Flow Score, Qualification
Distillation, and ELECTRE I. We simulated decision problems involving from 8 to 20 alternatives (with a step of 2),
from 3 to 8 criteria, and performances generated from a uniform distribution from the [0, 1] range. To investigate
the results for various densities of the outranking graph, we considered λ ∈ {0.5, 0.6, 0.7, 0.8} and three different sets
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of thresholds: low (qj = 0.05, pj = 0.15, vj = 0.25), medium (qj = 0.15, pj = 0.3, vj = 0.5), and high (qj = 0.25,
pj = 0.45, vj = 0.75). For each problem size and parameter setting, we conducted 100 independent runs. If the
outranking relation was empty, the problem was regenerated. For ScoreBin, we assumed α = 0.1 and did not simulate
indirect preference information.

The similarity of recommendations obtained with ScoreBin and the state-of-the-art methods was quantified using
four measures. The average NRD, NHR, Kendall’s τ , and AP values are reported in Tables 14 – 17. The more
detailed results for various numbers of alternatives and criteria are presented as heatmaps in Figures 7 – 13. The
detailed results revealing the impact of thresholds (qj , pj , vj) and credibility threshold λ are presented in the e-
Appendix (supplementary material available online). The experiments confirm that even if the results provided by
the considered methods are similar, the ranking and choice recommendations they suggest differ.

When considering the differences between partial rankings (see Table 14), the least average NRD values are
observed for ScoreBin II and III (0.006), and the greatest values hold for ScoreBin IV and QD (0.153). The latter two
methods construct the most distinctive rankings because NRD is greater than 0.1 when they are compared with other
approaches. The similarities for pairs of methods based on similar ideas are greater. These include ScoreBin I and IV,
ScoreBin II and II, and NFS and QD. When analyzing the results for various problem sizes (see Figures 7 and 8),
the greater number of alternatives and criteria implies greater NRD values between the partial rankings obtained
with ScoreBin I–III and QD or NFS. For example, the greatest average NRD for ScoreBin I (0.145), ScoreBin II
(0.155), and ScoreBin III (0.160) when compared to QD are observed for 20 alternatives and 6 criteria. In turn, the
least differences are observed for the problems with 6 alternatives and 3 criteria (NRD equal to 0.081, 0.072, and
0.071). For ScoreBin IV and QD, the greatest differences are observed for problems involving from 8 to 12 alternatives
and 3 criteria. When comparing ScoreBin IV and NFS, the greatest differences hold for problems with numerous
alternatives and few criteria.

The trends observed for comparing complete rankings are very similar (see Kendall’s τ values in Figure 9). The
rankings obtained with five methods are highly similar (see Table 15), with the greatest Kendall’s τ values observed
for ScoreBin II and III (0.989) and the least value holding for ScoreBin III and IV (0.8). The rankings obtained
with ScoreBin and NFS for various problem sizes are the most similar for small problems with 6 alternatives and 3

criteria. The values of Kendall’s τ are similar for the remaining sizes. For example, for ScoreBin I and NFS, they
range between 0.893 and 0.921.

When comparing the agreement in indicating the subset of the most preferred alternatives (see Table 16), the
observations on the most and the least similar pairs of methods are the same. However, the absolute similarity values
are lower. For example, ScoreBin IV recommends the same alternatives as other methods in about 60% cases. The
evident exception is formed by ScoreBin II and III, for which the choice-based agreement is close to 99%. When
comparing the top-ranked alternatives with the kernel, we can note substantial differences (NHR between 0.223 and
0.323). This is caused by the kernel’s specific nature, which implies that apart from the evidently favorable alternatives,
it can also contain other options which are outranked by many other alternatives but are needed to satisfy the kernel’s
properties. When considering the results for various problem sizes, the trends for NHR are similar to those for NRD
(see Figures 10 and 11). In particular, the choice-oriented recommendation made by ScoreBin is the most similar
to the one by NFS for small problems with 6 alternatives. For ScoreBin I–III, the NHR values are the greatest
for problems with few criteria, and for ScoreBin IV – for instances involving more criteria. When comparing the
alternatives ranked at the top by ScoreBin with the graph kernel, the NHR values decrease with the more significant
numbers of alternatives and criteria (see Figure 12).

The AP measure quantified the average position of alternatives in the kernel in the ranking generated with a
given method. The average results are presented in Table 17. The least (i.e., the best) value of AP is attained by
ScoreBin IV. However, the differences are not substantial, with the least AP value observed for ScoreBin II equal
to 2.824. Trends visible in Figure 13 confirm that when considering problems with fewer alternatives, the average
position of the options contained in the graph kernel is higher (better). This means that when more alternatives are
involved, the graph kernel tends to include some options that are ranked low by ScoreBin. For ScoreBin I–III, an
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additional trend is observed: with the increase in the number of criteria, AP gets better. For example, for ScoreBin I,
20 alternatives, and 3 criteria, AP is 4.122 but for 8 criteria in drops to 3.497. An opposite trend can be observed for
ScoreBin IV with the respective measure values equal to 3.081 (for 3 criteria) and 3.658 (for 8 criteria).

Table 14: The average NRD values for the partial rankings obtained with the six methods for all considered problem instances.

Method ScoreBin I ScoreBin II ScoreBin III ScoreBin IV QD NFS
ScoreBin I 0.000 0.084 0.089 0.108 0.128 0.059
ScoreBin II 0.084 0.000 0.006 0.148 0.127 0.056
ScoreBin III 0.089 0.006 0.000 0.153 0.130 0.061
ScoreBin IV 0.108 0.148 0.153 0.000 0.156 0.103

QD 0.128 0.127 0.130 0.156 0.000 0.086
NFS 0.059 0.056 0.061 0.103 0.086 0.000

Table 15: The average Kendall’s τ for the complete rankings obtained with the five methods for all considered problem instances.

Method ScoreBin I ScoreBin II ScoreBin III ScoreBin IV NFS
ScoreBin I 1.000 0.873 0.864 0.873 0.908
ScoreBin II 0.873 1.000 0.989 0.810 0.918
ScoreBin III 0.864 0.989 1.000 0.800 0.908
ScoreBin IV 0.873 0.810 0.800 1.000 0.865

NFS 0.908 0.918 0.908 0.865 1.000

Table 16: The average NHR values comparing graph kernel and partial rankings for all considered problem instances.

Method ScoreBin I ScoreBin II ScoreBin III ScoreBin IV QD NFS Kernel
ScoreBin I 1.000 0.824 0.816 0.685 0.714 0.830 0.278
ScoreBin II 0.824 1.000 0.986 0.656 0.735 0.860 0.270
ScoreBin III 0.816 0.986 1.000 0.647 0.730 0.848 0.269
ScoreBin IV 0.685 0.656 0.647 1.000 0.587 0.679 0.323

QD 0.714 0.735 0.730 0.587 1.000 0.836 0.223
NFS 0.830 0.860 0.848 0.679 0.836 1.000 0.254

Kernel 0.278 0.270 0.269 0.323 0.223 0.254 1.000

Table 17: The average AP values comparing the graph kernel with the complete rankings generated by five methods for all
considered problem instances.

Method ScoreBin I ScoreBin II ScoreBin III ScoreBin IV NFS
AP 2.763 2.824 2.823 2.502 2.799
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(d) ScoreBin IV

Figure 7: Normalized Ranking Distance for partial rankings obtained with ScoreBin and QD for different numbers of criteria
and alternatives.
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(d) ScoreBin IV

Figure 8: Normalized Ranking Distance for partial rankings obtained with ScoreBin and NFS for different numbers of criteria
and alternatives.
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(d) ScoreBin IV

Figure 9: Kendall’s τ for complete rankings obtained with ScoreBin and NFS for different numbers of criteria and alternatives.
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(d) ScoreBin IV

Figure 10: Normalized Hit Ratio for the choice-based recommendations derived from the partial rankings obtained with ScoreBin
and QD for different numbers of criteria and alternatives.
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(d) ScoreBin IV

Figure 11: Normalized Hit Ratio for the choice-based recommendations derived from the partial rankings obtained with ScoreBin
and NFS for different numbers of criteria and alternatives.
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(d) ScoreBin IV

Figure 12: Normalized Hit Ratio for the choice-based recommendations derived from the complete rankings obtained with
ScoreBin and graph kernels for different numbers of criteria and alternatives.
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(d) ScoreBin IV

Figure 13: Average position AP of alternatives contained in the kernel in the complete rankings obtained with ScoreBin for
different numbers of criteria and alternatives.

7. Summary

This paper introduced a family of ScoreBin methods for ranking and choice problems. They exploit a crisp outranking
relation to deliver each alternative’s strength, weakness, and comprehensive quality. We defined four method variants
that score alternatives by analyzing which options they outrank and which are preferred to them. Moreover, we
consider the relative easiness or difficulty of outranking each alternative by analyzing its relations with the remaining
options. The four variants differ in the weights they associate with alternatives, defining their contribution to the
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strengths and weaknesses of alternatives they are related to. We enriched ScoreBin to tolerate optional indirect
preference information indicating subsets of strong and weak alternatives according to DM. The method allows the
construction of either a partial preorder based on the separate consideration of strengths and weaknesses or a complete
ranking derived from the analysis of comprehensive qualities.

We applied ScoreBin to asses technological parks in Poland, aiming to indicate parks that are managed efficiently,
bring substantial economic profits, and support innovation development. We identified a10 as the most promising
option and a4 as its backup. We enriched the primary analysis in a two-fold way. On the one hand, we included
indirect preference information, revealing the intuitive changes in the ranking given the DM’s indication of strong and
weak options. On the other hand, we conducted the robustness analysis and quantified the shares of feasible parameter
values that grant each alternative a given position. This way, we created a more robust ranking that is less sensitive
to the selection of specific values for the parameters of the base and enhancement bonuses or penalties.

We compared the recommendations offered by ScoreBin, Net Flow Score, Qualification Distillation, and ELECTRE
I on many simulated decision problems. We quantified the similarity between the partial and complete rankings and
top-ranked alternatives. The results for all measures were consistent. They confirmed the most significant similarity
for ScoreBin II and III, I and IV, and NFS and QD. The most distinctive results among the versions of ScoreBin are
offered by its fourth variant.

The choice of a particular variant of ScoreBin depends on which way of computing the strengths and weakness is the
most appealing for a given problem. Intuitively, we find the logic of ScoreBin I and IV as most relevant for real-world
problems. On the one hand, ScoreBin I assumes that a strong alternative needs to other outrank strong alternatives.
On the other hand, ScoreBin IV is based on the idea that a strong alternative needs to outrank alternatives that are
difficult to outrank.

The most attractive directions for future research are three-fold. First, we may adapt the method to decision
contexts where a crisp preference relation is constructed differently. For example, it may be helpful to infer the
weights of DMs in a group decision problem based on the analysis of relations in the committee [12]. Obviously, the
valued outranking relation that is subsequently binarized may also be established otherwise. In particular, it may
represent the share of feasible parameter values that support the preference for one alternative over another [3, 23]
or the performances of alternatives do not need to be deterministic, hence reflecting some uncertainty [31, 47]. Such
uncertainty can also be related to indirect judgments indicating some alternatives as strong or weak. Second, we
computed the strengths and weaknesses defined consistently. However, it is possible to combine their definitions from
different variants of ScoreBin under the same methodological framework. Clearly, it is also possible to use a few
variants at once and aggregate their results either by averaging them or investigating the spaces of consensus and
disagreement [33]. Third, the essential direction concerns using ScoreBin to support the solution of real-world decision
problems. A crisp outranking relation has already been used as a preference model in such various studies as personnel,
supplier, site, project, or investment portfolio selections [18, 35]. Hence we find applications of such types as the most
promising ones.
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ScoreBin: scoring alternatives based on a crisp outranking relation with
an application to the assessment of Polish technological parks – e-Appendix

Krzysztof Martyna,∗, Magdalena Martyna, Miłosz Kadzińskia

aFaculty of Computing and Telecommunications, Poznan University of Technology, Piotrowo 2, 60-965 Poznań, Poland

1. Detailed similarity results between rankings obtained with ScoreBin and the state-of-the-
art methods

This section presents heatmaps of average NRD, NHR, Kendall’s τ , and AP values based on 100 runs for
each problem size.

1.1. The impact of the credibility threshold and the number of alternatives on the similarity between recom-
mendations

The detailed results for various numbers of alternatives and different values of credibility threshold λ are
in Figures 1– 7. The similarity for partial rankings (NRD) obtained with ScoreBin, QD, and NFS is high.
For example, when taking NFS and QD as the reference, the greatest values are observed for ScoreBin IV
(0.116 and 0.171, respectively). The complete rankings are also very similar, as captured by Kendall’s τ .
The least similarity is observed for ScoreBin IV and QD. When comparing the recommendations of the
most preferred alternatives (NHR), the most similar methods are NFS and ScoreBin I–III, and the least
agreement is observed ScoreBin IV and QD. When considering all measures, the credibility threshold λ has
a negligible impact on the similarity between the rankings. There is a trend across all metrics indicating
that the similarity of rankings decreases with the increase in the number of alternatives.
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(d) ScoreBin IV

Figure 1: Normalized Ranking Distance for partial rankings obtained with ScoreBin and QD for different numbers
of alternatives and values of credibility threshold λ.

∗Corresponding author: Institute of Computing Science, Poznań University of Technology, Piotrowo 2, 60-965 Poznań,
Poland. Tel. +48-61 665 3022.

Email addresses: krzysztof.martyn@cs.put.poznan.pl (Krzysztof Martyn), magdalena.martyn@cs.put.poznan.pl
(Magdalena Martyn), milosz.kadzinski@cs.put.poznan.pl (Miłosz Kadziński)

Preprint submitted to Information Sciences June 4, 2023



6 8 10 12 14 16 18 20
alternatives number

0.
5

0.
6

0.
7

0.
8

0.00

0.05

0.10

0.0

0.2

0.4

0.6

0.8

1.0

(a) ScoreBin I

6 8 10 12 14 16 18 20
alternatives number

0.
5

0.
6

0.
7

0.
8

0.00

0.05

0.10

0.0

0.2

0.4

0.6

0.8

1.0

(b) ScoreBin II

6 8 10 12 14 16 18 20
alternatives number

0.
5

0.
6

0.
7

0.
8

0.00

0.05

0.10

0.0

0.2

0.4

0.6

0.8

1.0
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6 8 10 12 14 16 18 20
alternatives number

0.
5

0.
6

0.
7

0.
8

0.00

0.05

0.10

0.0

0.2

0.4

0.6

0.8

1.0

(d) ScoreBin IV

Figure 2: Normalized Ranking Distance for partial rankings obtained with ScoreBin and NFS for different numbers
of alternatives and values of credibility threshold λ.
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(d) ScoreBin IV

Figure 3: Kendall’s τ for complete rankings obtained with ScoreBin and NFS for different numbers of alternatives
and values of credibility threshold λ.
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(d) ScoreBin IV

Figure 4: Normalized Hit Ratio for the choice-based recommendations derived from the partial rankings obtained
with ScoreBin and QD for different numbers of alternatives and values of credibility threshold λ.
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(d) ScoreBin IV

Figure 5: Normalized Hit Ratio for the choice-based recommendations derived from the partial rankings obtained
with ScoreBin and NFS for different numbers of alternatives and values of credibility threshold λ.
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(d) ScoreBin IV

Figure 6: Normalized Hit Ratio for the choice-based recommendations derived from the complete rankings obtained
with ScoreBin and graph kernels for different numbers of alternatives and values of credibility threshold λ.

1.2. The impact of the criteria thresholds and the number of alternatives on the similarity between recom-
mendations

Heatmaps for different numbers of alternatives and three different sets of thresholds: low (qj = 0.05,
pj = 0.15, vj = 0.25), medium (qj = 0.15, pj = 0.3, vj = 0.5), and high (qj = 0.25, pj = 0.45, vj = 0.75) are2
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(b) ScoreBin II
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(c) ScoreBin III
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(d) ScoreBin IV

Figure 7: Average position AP of alternatives contained in the kernel in the complete rankings obtained with ScoreBin
for different numbers of alternatives and values of credibility threshold λ.

in Figures 8– 14.
When comparing both the similarity between the rankings and the recommended alternatives between

ScoreBin and QD and NFS, the most similar are for low values of thresholds. Additionally, it can be seen
that the biggest difference in NHR is between ScoreBin IV and NFS for high parameter values. When we
consider the suggested options given by the kernel, they are more similar for medium and less similar for
high parameters.
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(d) ScoreBin IV

Figure 8: Normalized Ranking Distance for partial rankings obtained with ScoreBin and QD for different numbers
of alternatives and three different sets of thresholds qj , pj , vj .
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(b) ScoreBin II
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(d) ScoreBin IV

Figure 9: Normalized Ranking Distance for partial rankings obtained with ScoreBin and NFS for different numbers
of alternatives and three different sets of thresholds qj , pj , vj .
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(a) ScoreBin I
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(d) ScoreBin IV

Figure 10: Kendall’s τ for complete rankings obtained with ScoreBin and NFS for different numbers of alternatives
and three different sets of thresholds qj , pj , vj .
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(d) ScoreBin IV

Figure 11: Normalized Hit Ratio for the choice-based recommendations derived from the partial rankings obtained
with ScoreBin and QD for different numbers of alternatives and three different sets of thresholds qj , pj , vj .
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(d) ScoreBin IV

Figure 12: Normalized Hit Ratio for the choice-based recommendations derived from the partial rankings obtained
with ScoreBin and NFS for different numbers of alternatives and three different sets of thresholds qj , pj , vj .
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(a) ScoreBin I
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(b) ScoreBin II
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(c) ScoreBin III
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(d) ScoreBin IV

Figure 13: Normalized Hit Ratio for the choice-based recommendations derived from the complete rankings obtained
with ScoreBin and graph kernels for different numbers of alternatives and three different sets of thresholds qj , pj , vj .
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(b) ScoreBin II
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(c) ScoreBin III
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(d) ScoreBin IV

Figure 14: Average position AP of alternatives contained in the kernel in the complete rankings obtained with
ScoreBin for different numbers of alternatives and three different sets of thresholds qj , pj , vj .
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Extended abstract in Polish

Metody wielokryteriowego wspomagania
decyzji inspirowane innymi

poddyscyplinami sztucznej inteligencji

Wprowadzenie

Problemy decyzyjne uwzględniają różne punkty widzenia na jakość rozważanych wa-

riantów. Te punkty są sformalizowane jako kryteria oceny. W rzeczywistych problemach

zazwyczaj nie istnieje opcja, która posiada najlepsze oceny na wszystkich kryteriach. Pro-

wadzi to do sytuacji, w której istnieje wiele potencjalnie najlepszych rozwiązań i od pre-

ferencji decydenta zależy, które z nich uzna za najbardziej korzystne. Decydent musi

więc wzbogacić przebieg procesu decyzyjnego o informację preferencyjną, która odzwier-

ciedla jego system wartości. Głównym zadaniem inteligentnych systemów wspomagania

decyzji jest wykorzystania takich preferencji w celu wypracowania spójnej rekomendacji

dla danego problemu.

Problemy decyzyjne można podzielić na trzy główne typy: wybór, ranking (porządko-

wanie) oraz sortowanie (klasyfikacja porządkowa). Wybór polega na wskazaniu podzbioru

najbardziej preferowanych opcji. Ranking dotyczy szeregowania wariantów od najlep-

szego do najgorszego. Z kolei sortowanie polega na przypisaniu wariantów do predefinio-

wanych klas, które są uporządkowane pod względem preferencji.

W ramach różnych poddyscyplin sztucznej inteligencji zostało zaproponowanych wiele

narzędzi wspierających użytkowników w przetwarzaniu i analizie danych. W ramach wie-

lokryteriowego wspomagania decyzji (ang. Multi-Criteria Decision Aiding – MCDA) za-

proponowano metody i techniki, które wypracowują wiarygodną rekomendacje w oparciu

o dobrze ugruntowane podstawy matematyczne. Z kolei uczenie maszynowe (ang. Ma-

chine Learning – ML) koncentruje się na rozwijaniu algorytmów uczących się na podsta-
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wie danych. Służą one do wykrywania występujących w nich wzorców oraz predykcji dla

nowych, niewidzianych na etapie uczenia danych. W szczególności modele głębokich sieci

neuronowych są w stanie przetworzyć duże zbiory danych i na ich podstawie rozwiązywać

złożone problemy. Wreszcie metody eksploracji Internetu pozwalają na ocenianie stron

internetowych, bazując na znajdujących się na nich informacjach oraz hiperłączach.

Wielokryteriowe wspomaganie decyzji oraz uczenie maszynowe pozwalają na przeana-

lizowanie różnych opcji i zarekomendowanie decydentowi sposobu rozwiązania problemu

decyzyjnego. Główne cele i założenia tych dyscyplin, a co za tym idzie metody i ich moż-

liwości, różnią się. Po pierwsze, MCDA w pełni skupia się na użytkowniku, jego wiedzy i

preferencjach. Rozwiązanie problemu jest zależne od jego osądów, dotyczących wariantów

oraz dostarczonej informacji preferencyjnej. Przez ich eksploatację podejścia wspomaga-

nia decyzji odkrywają priorytety użytkownika. Z kolei ML jest głównie nastawione na

model, skupiając się na eksploracji danych poprzez ich analizę i odkrywaniu występują-

cych w nich wzorców. Głównym celem uczenia maszynowego jest rozwiązanie problemu,

optymalizującego jakąś cechę rozwiązania, np. w postaci minimalizacji funkcji straty.

Te różne cele mają swoje przełożenie na charakterystyką metod, wielkości rozważanych

problemów oraz udziału decydenta w rozwiązaniu problemów.

Wykorzystywane w MCDA modele preferencji są inspirowane rzeczywistymi sposo-

bami podejmowania decyzji przez ludzi. Z tego względu metody MCDA są łatwo inter-

pretowalne; ich rekomendacje są wyjaśnialne, a proces przetwarzania można uzasadnić.

ML skupia się na nieliniowych modelach, pozwalających na odkrywanie abstrakcyjnych

oraz złożonych wzorców i zależności w danych. Pozwala to na uzyskanie wysokiej sku-

teczności predykcyjnej, ale ogranicza możliwości w analizie wpływu danych wejściowych

na ostateczną decyzję.

Ograniczenia i możliwości różnych obszarów sztucznej inteligencji były motywacją

do przeprowadzenia badań w ramach tej rozprawy doktorskiej. Zaobserwowano, że wy-

korzystanie w metodach MCDA inspiracji z uczenia maszynowego, głębokich sieci neu-

ronowych czy eksploracji zasobów Internetu mogą pozwolić na rozwiązywanie nowych,

bardziej złożonych problemów decyzyjnych. Przeprowadzone badania odbywały się w

trzech obszarach badawczych, które zostały opisane w pięciu publikacjach, z czego na

dzień 31 maja 2023 roku trzy zostały zaakceptowane do druku w międzynarodowych

czasopismach.

Metody wspomagania decyzji inspirowane głębokimi

sieciami neuronowymi

W ciągu ostatnich lat nastąpił znaczący wzrost ilości gromadzonych i przetwarzanych

danych. Dostępne są obszerne zbiory danych, które zawierają zarówno dane historyczne

dotyczące problemów decyzyjnych, jak i informacje o podjętych w przeszłości decyzjach.
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Kluczowym czynnikiem dla przedsiębiorstw gromadzących te dane jest możliwość prze-

analizowania ich w sposób zrozumiały, tj. umożliwiający zweryfikowanie poprawności wy-

ciągniętych wniosków. Od lat metody MCDA dostarczają narzędzi do analizy i wspoma-

gania procesu podejmowania decyzji. Te podejścia są łatwe w interpretacji i zapewniają

wiarygodne wyjaśnienie swoich rekomendacji.

Zdobywanie informacji preferencyjnej w postaci bezpośredniego dialogu z decydentem

powoduje, iż tradycyjne metody MCDA zostały zaprojektowane, aby uczyć się z niewiel-

kich zbiorów danych. Te informacje preferencyjne odzwierciedlają rzeczywisty system

wartości decydenta, który często charakteryzuje się wysoką spójnością. W takiej sytuacji

zazwyczaj preferencje są dezagregowane do wartości parametrów metody za pomocą pro-

gramowania matematycznego. Metody te zawodzą jednak w sytuacjach, gdy informacja

preferencyjna jest bogata i silnie niespójna.

Natomiast głębokie sieci neuronowe od początku miały na celu radzenie sobie z du-

żymi zbiorami danych uczących, obarczonych szumem i niespójnościami. Dużą uwagę

poświęcono tu kwestii optymalizacji procesu treningu oraz zmniejszenia czasu obliczeń.

Do treningu wykorzystywane są zaawansowane techniki statystyczne oraz optymaliza-

cyjne, pozwalające w efektywny sposób przeszukać przestrzeń parametrów w celu znale-

zienia najbardziej pasującego modelu. Większość obliczeń w sieciach neuronowych polega

na operacjach na macierzach, przez co mogą być wykonywane równolegle na dedykowa-

nych układach sprzętowych takich jak jednostki przetwarzania graficznego (GPU) czy

tensorowego (TPU). Natomiast techniki takie jak distributed learning pozwalają na ucze-

nie się na zbiorach danych niemieszczących się na jednej maszynie obliczeniowej.

W ostatnim okresie znacząco wzrósł wolumen kolekcjonowanych danych i decyzji,

które muszą zostać przeanalizowane w sposób automatyczny i zrozumiały dla użytkow-

nika. To spowodowało rozwój badań w obszarze uczenia preferencji, które czerpie z obu

dziedzin. Pozwalają one na łatwe skalowanie wraz z rosnącą liczbą informacji, zapewnia-

jąc przy tym możliwość interpretacji modelu.

W ramach niniejszej rozprawy doktorskiej zaproponowano schemat uczenia się para-

metrów metod na podstawie dużej ilości niespójnych danych referencyjnych. Opracowane

techniki rozwiązują problem sortowania, korzystając z procedury opartej na progach roz-

dzielających klasy. Przedstawiono osiem metod uczenia preferencji w postaci sieci neu-

ronowych, które bazują na wysoce interpretowalnych metodach MCDA. Obejmują one

operator OWA, całkę Choquet, addytywną funkcję wartości, odległość od idealnej i anty-

idealnej opcji oraz, metody bazujące na relacji przewyższania i preferencji istniejącej

pomiędzy parami wariantów.

Przykładowo zaproponowane metody ANN-Ch-Pos., ANN-Ch-Constr. oraz ANN-Ch-

Uncons. bazują na modelu preferencji w postaci całki Choquet. Ta pierwsza dopuszcza

jedynie na pozytywne interakcje między kryteriami oraz dodatnie wagi kryteriów. W

pozostałych dwóch możliwe są zarówno interakcje pozytywne, jak i negatywne. W ANN-
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Ch-Constr są one jednak ograniczone w taki sposób, aby suma współczynnika interakcji

pomiędzy parą kryteriów oraz wagami każdego kryterium z tej pary była nieujemne. Do-

datkowo wagi kryteriów również muszą być dodatnie. Natomiast w ANN-Ch-Uncons. nie

ma ograniczeń na wartości wag oraz współczynników interakcji. Metody te są reprezen-

towane jako sieci neuronowe zawierające od jednej do dwóch warstw liniowych specjalnie

dostosowanych do wyżej wymienionych wymogów metod.

Bardziej skomplikowane architektury zostały zaproponowane choćby dla metod ANN-

UTADIS oraz ANN-PROMETHEE. Ta pierwsza zawiera łącznie pięć warstw, zaś ta

druga – sześć. Warstwy te zostały zaprojektowane w taki sposób, aby móc odtworzyć

dowolny monotoniczny kształt cząstkowych funkcji wartości lub preferencji. Zapropono-

wane architektury przestrzegają ograniczeń na monotoniczność kryteriów, co pozwala

na uzyskiwanie interpretowalnego modelu preferencji. Ponadto, możliwe jest dostarcza-

nie wyjaśnień decyzji oraz informacji o wpływie poszczególnych kryteriów. Opracowane

metody pozwalają uniknąć definiowania hiperparametrów takich jak punkty charaktery-

styczne czy kształt funkcji preferencji. Zamiast tego zastosowano bardziej ogólne funkcje

pozwalające na lepsze dopasowanie się do danych wejściowych, jednocześnie zachowując

oryginalną ideę metod MCDA.

Aby efektywnie przetwarzać duże zbiory danych w akceptowalnym czasie, wyko-

rzystane są algorytmy optymalizacji dedykowane dla uczenia głębokiego. Przykładowo,

w celu przyspieszenia procesu trenowania i uwolnienia go od zależności od kolejności roz-

ważanych wariantów, zastosowano algorytm Batch Gradient Descent. Następnie zastoso-

wano technikę augmentacji danych poprzez dodawanie szumu gaussowskiego do danych

treningowych w każdej epoce uczenia. Dzięki temu uzyskano poprawę odporności modelu

na zakłócenia, jego zdolności do generalizacji oraz redukcję nadmiernego dopasowania

do danych uczących.

Przedstawione metody prezentują w pełni wyjaśnialny model preferencji, co zostało

zilustrowane na przykładzie problemu Employee Rejection / Acceptance. Opracowane

modele pozwalają na określenie roli poszczególnych kryteriów oraz podzbiorów kryte-

riów. Ponadto dostarczają wglądu w to, jak wpływ oceny wariantów na poszczególnych

kryteriach wpływają na ostateczną decyzję. Dodatkowo możemy ocenić, które różnice w

ocenach są pomijalnie małe, a które są znaczące a nawet krytyczne. Następnie modele

umożliwiają określenie, jak silna powinna być koalicja kryteriów, aby można było stwier-

dzić, że jedna opcja jest co najmniej tak dobra jak inna. W ramach tych metod stosowana

jest również łatwa do zrozumienia i przejrzysta procedura sortowania oparta na progach,

która umożliwia klasyfikację, porównując całościowe wyniki wariantów z progami roz-

dzielającymi klasy.

Sprawdzono konkurencyjność rozwiązań zaproponowanych w ramach rozprawy, prze-

prowadzając szereg eksperymentów. Dotyczą one dziewięciu referencyjnych zbiorów da-

nych, które są typowo wykorzystywane w problemach uczenia preferencji. Zbiory te za-
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wierają ponad tysiąc opcji oraz problemy wymagające porównania kilku milionów par

wariantów. Przeprowadzono analizę tych zbiorów w celu oceny spójności informacji pre-

ferencyjnych. Analizy wykazały, że wszystkie badane zbiory danych zawierały niespójne

preferencje, ale liczba tych niespójności znacznie się różniła między różnymi problemami.

W celu dostrojenia wartości hiperparametrów dla zaproponowanych metod sprawdzono

dla każdego rozważanego problemu, jaki jest optymalny ich zestaw za pomocą ekspery-

mentów wykorzystujących technikę grid search.

Do określenia skuteczności algorytmów, użyto dwóch miar jakości klasyfikacji. Pierw-

szą jest standardowy błąd klasyfikacji (błąd zero-jedynkowy (0/1)) odnoszący się do

liczby wariantów, które model sklasyfikował nieprawidłowo. Drugą jest pole pod wykre-

sem krzywej ROC (ang. Area Under Curve – AUC), ujmująca, ile zmian w rankingu,

powstałym na podstawie globalnych ocen, należy dokonać, aby uzyskać w pełni spójne

rozwiązanie.

Dodatkowo, przetestowano trzy różne scenariusze rozwiązywania postawionego pro-

blemu dla każdego ze zbiorów danych, aby ocenić, jak dobrze różne metody radzą sobie

z uogólnianiem wiedzy. Scenariusze te obejmowały niewielką liczbę danych treningowych

w porównaniu do danych testowych, równą wielkość obu zbiorów danych oraz sytuację,

w której zbiór treningowy był znacząco większy od zbioru testowego.

W ramach tych eksperymentów najlepsze wyniki z zaproponowanych metod pod

względem błędu 0/1 zostały osiągnięte dla modeli ANN-UTADIS oraz ANN-Ch-Uncons.

Natomiast dla miary AUC dodatkowo wysoką skuteczność wykazała metoda ANN-PROMETHEE.

Wysoka jakość dla miary AUC wynika z faktu, iż metody bazujące na relacjach preferencji

i przewyższania poprawnie odtwarzają większość relacji między parami wariantów, nato-

miast gorzej sobie radzą w przypadku klasyfikacji. Biorąc pod uwagę trudność problemów,

wynikającą z niespójności informacji preferencyjnej, zaobserwowano, iż wszystkie metody

osiągają niższe skuteczności dla problemów bardziej niespójnych. Przy porównaniu ja-

kości metody UTADIS zaproponowanej w tej pracy doktorskiej z metodami opartymi

na programowaniu matematycznym, zastosowany w tej pracy sposób znajdowania para-

metrów metody wykazuje statystycznie lepszą skuteczność dla danych niereferencyjnych

niż rozwiązania oparte na programowaniu matematycznym. Ponadto, porównano wariant

metody UTADIS zaproponowany w tej pracy z metodami opartymi na programowaniu

matematycznym. Zastosowany w tej rozprawie sposób znajdowania parametrów metody

wykazuje statystycznie lepszą skuteczność dla danych niereferencyjnych niż pozostałe.

Metody wspomagania decyzji inspirowane uczeniem

maszynowym

Wspólną cechą metod uczenia maszynowego jest możliwość odtwarzania bardzo skompli-

kowanych przekształceń danych wejściowych w celu uzyskania jak największej skuteczno-
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ści predykcyjnej. W rzeczywistych sytuacjach mogą istnieć kryteria, dla których nie ma

jednoznacznego kierunku preferencji. Często zdarza się, iż istnieje zakres ocen preferowa-

nych, a te powyżej i poniżej są mniej istotne dla użytkownika. Co więcej, wykorzystanie

wysoce złożonych przekształceń do odwzorowania danych zmniejsza jego interpretowal-

ność i może prowadzić do przeuczenia się modelu. W związku z powyższym, wiele modeli

wykorzystuje techniki regularyzacji, mające na celu ograniczenie złożoności modelu.

Powyższe obserwacje były motywacją do stworzenia dwóch metod modelowania kry-

teriów niemonotonicznych dla potrzeb addytywnej funkcji wartości. Pierwsza z nich kon-

troluje złożoność modelu poprzez minimalizację zmian kierunku monotoniczności. Za-

proponowano różne typy kryteriów monotonicznych takie jak zysk, koszt, kryteria mo-

notoniczne z obszarem wypłaszczenia preferencji, a także kryteria niemonotoniczne A- i

V-kształtne oraz o dowolnym przebiegu. W celu określenia kształtu cząstkowych funk-

cji wartości wykorzystywane są zmienne binarne, które sterują m. in. ich kierunkiem

monotoniczności, normalizacją oraz złożonością. Aby znaleźć parametry modelu, należy

rozwiązać dedykowany problem mieszanego całkowitoliczbowego programowania linio-

wego.

Drugim sposobem modelowania kryteriów niemonotonicznych jest wykorzystania zło-

żenia dwóch komponentów, niemalejącego i nierosnącego. W trakcie optymalizacji moż-

liwe jest wykorzystanie tylko jednego z nich lub ich kombinacji. Pozwala to na zapre-

zentowanie dowolnej funkcji monotonicznej i niemonotonicznej, dostarczając przy tym

wyjaśnienia jej kształtu. Do zamodelowania takiego typu kryterium nie ma potrzeby wy-

korzystywania zmiennych binarnych, co prowadzi do prostszego problemu programowania

liniowego niż w poprzednim sposobie. Jednakże powoduje to możliwość powstawania do-

wolnie skomplikowanych funkcji, jeśli będzie tego wymagała złożoność rozwiązywanego

problemu.

Wynikiem rozwiązania problemu programowania matematycznego jest pojedyncza

reprezentatywna instancja. Taki model dostarcza jednoznacznych przypisań do klas wraz

z uzasadnieniem wpływu każdej oceny na wynikową decyzję. Dodatkowo pozwala on na ana-

lizę i interpretację modelu, dostarczając informacji, jakie wartości musiałyby ulec zmianie

tak, aby klasyfikacja również się zmieniła.

Przypisania uzyskane przy użyciu reprezentatywnego modelu są konfrontowane z wy-

nikami analizy odporności. Pozwala ona sprawdzić, jak zmienia się rekomendacja dla spój-

nych instancji modelu, gdy złożoność modelu jest ograniczona do minimalnej możliwej

wartości. Wyniki tej analizy przyjmują postać możliwych przypisań wariantów nierefe-

rencyjnych do klas. Oznaczają one zbiór klas, do których dany wariant może być przy-

pisany przez co najmniej jedną spójną instancję modelu sortowania. Możliwość takiego

przypisania sprawdza się poprzez rozwiązanie oryginalnego problemu programowania ma-

tematycznego wraz z dodatkowymi ograniczeniami, wymuszającymi minimalną możliwą

złożoność oraz przydziału wariantu do konkretnej klasy przez założoną metodę sorto-
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wania. Jeśli istnieje rozwiązanie dla tak sformułowanego problemu, oznacza to, że dany

wariant może być przypisany do określonej klasy.

W niniejszej rozprawie doktorskiej został przedstawiony także nowy problem sorto-

wania z wieloma powiązanymi ze sobą decyzjami. W tym problemie każdy wariant jest

oceniany pod względem wielu atrybutów decyzyjnych, które obejmują klasy uporządko-

wane według preferencji. Decydent przypisuje zbiór wariantów referencyjnych do klas na

każdym atrybucie decyzyjnym. Klasy te oznaczają poziom jakości lub ryzyka na wcześniej

zdefiniowanej skali dla wszystkich decyzji. Problem ten jest zainspirowany problemami

klasyfikacji wieloetykietowej, polegającymi na przypisaniu do obiektu podzbioru etykiet.

Zaproponowany dla tego problemu sposób rozwiązania polega na zbudowaniu zbioru

powiązanych ze sobą modeli preferencji po jednym dla każdej decyzji. Wykorzystują

one zbiór ograniczeń wewnątrz każdej decyzji oraz ograniczenia łączące modele dla róż-

nych decyzji. Te pierwsze zapewniają odpowiednie relacje pomiędzy wartościami warian-

tów wykorzystywanych do klasyfikacji na pojedynczym atrybucie decyzyjnym. Natomiast

te drugie odpowiadają relacjom między całkowitymi wartościami tego samego wariantu

dla różnych decyzji.

Użyteczność zaproponowanych metod zademonstrowano na przykładzie rzeczywistego

problemu dotyczącego zarządzania ryzykiem podczas produkcji i przetwarzania nanoma-

teriałów. Rozważanymi wariantami były różne scenariusze ekspozycji na nanomateriał,

dla których należało zdecydować, w jakim stopniu jest wymagany dany środek ostrożno-

ści. Zostały wzięte pod uwagę dwa przypadki. W pierwszym z nich skoncentrowano się na

problemie sortowania związanych z noszeniem maski oddechowej, gdzie cząstkowe funkcje

wartości powinny być jak najmniej złożone. Model reprezentatywny wskazał, iż kryteria,

które dotyczą limitów wykrywania nanomateriału, ich zdolności do przenoszenia przez po-

wietrze oraz czas ekspozycji mają na większy udział w użyteczności globalnej wariantów

natomiast kryteria mówiące o ilość nanomateriału, częstotliwość ekspozycji oraz kontroli

inżynieryjnej miały niewielki wpływ na wymagalność maski oddechowej.

W drugim przypadku uwzględniono również decyzje odnośnie używania wyciągu la-

boratoryjnego z oraz bez filtra HEPA oraz używania odkurzacza z filtrem HEPA. W tym

wypadku kryteria niemonotoniczne zostały zaprezentowane jako złożenie monotonicz-

nych składowych. Kryteria mówiące o zdolności do przenoszenia przez powietrze, limitów

wykrywania nanomateriału oraz czasie ekspozycji na niego miały największy wpływ na

klasyfikację. Uzyskane cząstkowe funkcje wartości były podobne dla wszystkich atrybu-

tów decyzyjnych w szczególności dla tych, w których wykorzystywany jest filtr HEPA.

Najbardziej różniły się dla decyzji dotyczących używania wyciągu laboratoryjnego z oraz

bez filtra HEPA potwierdzając ich komplementarność.
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Metody wspomagania decyzji inspirowane eksploracją

zasobów Internetu

Podczas podejmowania decyzji często nie ocenia się każdej z opcji niezależnie, a bierze się

pod uwagę, jak dobra jest ona w zestawieniu z innymi. Zazwyczaj odbywa się to poprzez

porównywania wariantów parami i badanie relacji występujących między nimi, a na-

stępnie zagregowanie tych przesłanek do ostatecznego rozwiązania problemu. W MCDA

powstało wiele metod wykorzystujących tę ideę. W tym kontekście najbardziej popu-

larne są rodziny metod ELECTRE oraz PROMETHEE, bazujące odpowiednio na relacji

przewyższania oraz preferencji.

Relacje te można podzielić na dwie grupy, wartościowaną (rozmytą) oraz binarną.

Zbiór wszystkich relacji pomiędzy wariantami można przedstawić w postaci grafu skie-

rowanego, gdzie wierzchołkami są warianty, a łuki odpowiadają relacjom. W rzeczywi-

stych przypadkach zarówno relację przewyższania, jak i preferencji rzadko bezpośrednio

wskazują jakiś wariant jako najlepszy lub pozwalają na uszeregowanie wariantów w jed-

noznaczny sposób, spełniający własności porządku. Z tego powodu konieczne jest wyko-

rzystanie dodatkowych technik eksploatujących te relacje w celu uzyskania rekomendacji

wariantów najbardziej preferowanych lub rankingu.

Istniejące metody eksploatacji relacji uznają wszystkie warianty za jednakowo istotne

i bycie lepszym niż relatywnie słaby wariant jest uwzględniane w takim samym stopniu

jak przewyższanie wariantu dobrego czy trudnego do przewyższania. Dodatkowo, techniki

te nie pozwalają na kontrolę ich wyniku poprzez zastosowanie pośrednich preferencji.

W tym celu należy dokonać zmian we wcześniejszych etapach wspomagania decyzji.

Te spostrzeżenia były motywacją dla zaproponowania dwóch rodziny metod, Pre-

fRank oraz ScoreBin, służących do analizy różnych typów relacji. Były one inspirowane

zarówno metodą Net Flow Score, która uwzględnia zarówno siły i słabości wariantów

oraz algorytmami analizy grafów, zaproponowanych oryginalnie w ramach eksploracji

zasobów Internetu.

Metody PrefRank służą do analizy wartościowanej (rozmytej) relacji preferencji, zaś

ScoreBin do przetwarza binarnej relacji przewyższania. Poszczególne metody w ramach

obu tych rodzin różnią się schematem ważenia podczas agregacji porównań parami. Po-

zwalają one ująć różne aspekty wariantu takie jak trudność i łatwość w przewyższaniu

lub preferencji grafie. PrefRank I (ScoreBin I) jest inspirowany metodą PageRank (Tru-

stTank) i uznaje wariant za silny, jeżeli jest on preferowany nad (przewyższa) inne silne

opcje. Drugi wariant obu tych rodzin wzoruje się na algorytmie HITS i uznaje, że wariant

jest dobry, jeżeli jest preferowany nad (przewyższa) wiele opcji słabych. W PrefRank III

(ScoreBin III), którego inspiracją jest metoda Salsa, wariant jest silny, jeżeli jest on prefe-

rowany nad (przewyższa) takie opcje, które są gorsze od innych silnych opcji. Ostatecznie

Scorbin IV przyjmuje, że wariant jest dobry, jeżeli przewyższa warianty, które trudno jest

224



przewyższyć.

Dodatkowo rodzina metod ScoreBin uwzględnia opcjonalną informację preferencyjną

pozwalającą na podanie przez decydenta podzbioru wariantów silnych i słabych. Taka

informacja przekłada się na wartość bonusu lub kary wariantu, którego dotyczy oraz

wpływa również na inne warianty poprzez zależności w grafie przewyższania. Oprócz

tego decydent może zdecydować o wielkości minimalnego wpływu, jaki warianty będą

miały na siły i słabości innych wariantów. Wartości tych parametrów wpływają na ran-

king wariantów, pozwalając decydentowi na większą kontrolę nad ostatecznym wynikiem.

Z tego powodu zaproponowano metodę analizy odporności, sprawdzającą możliwe pozy-

cje wariantów w rankingu w zależności od wartości bonusów lub kar. Wykorzystuje ona

symulacje Monte Carlo do określenia procentu instancji, w których wariant był na okre-

ślonej pozycji w rankingu. Dodatkowo analiza ta dostarcza informacji o tym, jakie prze-

działy wartości parametrów powinny zostać wybrane, aby wariant znalazł się na danej

pozycji w rankingu

Zaproponowane metody zostały porównane pod względem podobieństwa zwracanego

przez nie wyniku z innymi metodami eksploatacji relacji takimi jak NFS, ELECTRE I

oraz Qualification Distillation, która bazuje na procedurze destylacji znanej z ELECTRE

III. Analiza ta została wykonana dla różnej wielkości symulowanych problemów. Wy-

niki pokazały, że rankingi w przypadku metod PrefRank oraz NFS są do siebie bardzo

podobne. Natomiast w przypadku metod eksploatacji relacji przewyższania najbardziej

podobne do siebie były metody bazujące na podobnych koncepcjach czyli ScoreBin I

z IV, ScoreBIn II z III oraz NFS z Qualification Distillation. Natomiast rekomendacje

uzyskiwane dla ELECTRE I znacząco różniły się od pozostałych metod.

Obie rodziny metod zostały również przetestowane w rzeczywistych problemach. Pre-

fRank zastosowano do oceny specjalnych stref ekonomicznych w Polsce. Wszystkie wa-

rianty tej metody wskazały, że strefa Kostrzyn i Słubice jest najbardziej preferowana

pod względem wzrostu finansowego i tworzenia nowych miejsc pracy. Metody Score-

Bin zostały zastosowane do identyfikacji najlepiej zarządzanego parku technologicznego

w Polsce, który przynosi największe zyski oraz wspiera rozwój przemysłu, oraz badań.

Podsumowanie

Niniejsza rozprawa doktorska dotyczy nowych metod wielokryteriowego wspomagania de-

cyzji, które są inspirowane innymi poddyscyplinami sztucznej inteligencji. Określono trzy

główne obszary badawcze związane z metodami, łączącymi MCDA z uczeniem maszyno-

wym, głębokimi sieciami neuronowymi oraz eksploracją zasobów Internetu. Efektem tych

badań było powstanie pięciu oryginalnych publikacji. Prace te wykazały, iż wykorzystanie

technik z różnych obszarów może pozwolić na tworzenie nowych metod radzących sobie

z coraz większymi i bardziej złożonymi problemami decyzyjnymi.
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Na główny wkład tej rozprawy składa się kilka elementów. Po pierwsze, zapropo-

nowano algorytmy uczenia preferencji do znajdowania wartości parametrów wybranych

metod MCDA na podstawie dużego wysoce niespójnego zbioru przykładowych decyzji.

Modele te zostały zaimplementowane w formie wysoce interpretowalnych sieci neuro-

nowych, które rozwiązują problem sortowania. Dodatkową zaletą tego rozwiązania jest

to, iż model jest w stanie lepiej dostosować cząstkowe funkcje metod do danych bez

konieczności ich arbitralnego definiowania przez decydenta.

Po drugie, dla modelu preferencji w postaci addytywnej funkcji wartości, przedsta-

wiono dwa nowe sposoby modelowania kryteriów niemonotonicznych o dowolnym kształ-

cie. Pierwszy z nich pozwala na kontrolowanie złożoności funkcji poprzez minimalizację

liczby zmian monotoniczności. Zaproponowano sposób przedstawienia różnych typów kry-

teriów, zarówno monotonicznych, jak i niemonotonicznych w postaci ograniczeń problemu

mieszanego całkowitoliczbowego programowania matematycznego. Natomiast drugi spo-

sób zapewnia interpretowalność funkcji niemonotonicznej poprzez jej rozkład na dwie

monotoniczne składowe. Dzięki temu możliwe jest zamodelowanie dowolnego kształtu

bez ograniczeń na jego złożoność.

Następnie zaproponowano sposób modelowania problemu sortowania z wieloma wza-

jemnie powiązanymi atrybutami decyzyjnymi. Problem ten polega na przypisaniu wa-

riantu do jednej z wcześniej zdefiniowanych klas dla każdego atrybutu decyzyjnego. Za-

proponowany model konstruuje osobne modele sortowania dla każdego atrybutu decyzyj-

nego, uwzględniając zarówno zależności wewnątrz decyzji, jak i między nimi. W rezultacie

pozwala on na dobranie dla każdego wariantu najbardziej adekwatnej kombinacji decyzji.

Kolejnym elementem rozprawy były dwie nowe rodziny eksploatacji (PrefRank oraz

ScoreBin) rozmytej i binarnej relacji preferencji lub przewyższania. Rozwiązują one pro-

blem rankingu oraz wyboru, wyznaczając siły i słabości wariantów. Bazują przy tym

na algorytmach oceniających strony internetowe na podstawie hiperłączy. W ramach

każdej z rodzin zaproponowano kilka wariantów różniących się od siebie wagami, jakie

przypisują alternatywom, definiując ich wkład w mocne i słabe strony opcji, z którymi

są powiązane. Dodatkowo został zaproponowany sposób uwzględnienia holistycznej in-

formacji preferencyjnej dotyczącej tego, czy dana opcja jest uznana za silną lub słabą.

Pozwala to na podwyższenie lub obniżenie jakości wybranego podzbiory wariantów, a

przez ich relacje z pozostałymi wariantami także na wywarcie wpływu na osiągane przez

nie wyniki.

W ramach rozprawy doktorskiej przeprowadzono eksperymenty mające na celu ocenę

jakości zaproponowanych rozwiązań oraz porównanie ich wyników z innymi metodami

powszechnie stosowanymi w rozważanych problemach. W szczególności, konkurencyj-

ność zaproponowanych rozwiązań uczenia preferencji została przetestowana na dziewięciu

zbiorach danych różniących się zarówno liczbą wariantów, jak i ich trudnością. W ramach

eksperymentów wykazano, iż niektóre zaproponowane metody osiągają wyższą skutecz-
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ność predykcji pod względem miary AUC i błędu 0/1 niż zaproponowane wcześniej me-

tody uczenia preferencji.

Następnie użyteczność metod modelowania niemonotonicznych kryteriów zostały przed-

stawione na przykładzie problemu analizy ryzyka podczas produkcji nanomateriałów.

Rozważono ten problem w dwóch scenariuszach rozważając pojedynczą decyzję oraz wiele

atrybutów decyzyjnych. W opinii specjalistów dziedzinowych zaangażowanych w te zasto-

sowania zaproponowane metody pozwoliły na znalezienie satysfakcjonujących rozwiązań.

Wreszcie metody eksploatacji relacji preferencji i przewyższania zostały przetesto-

wane pod względem podobieństwa wyników z innymi metodami eksploatacji. Dodatkowo

przydatność tych metod została zaprezentowana na dwóch rzeczywistych problemach

oceny specjalnych stref ekonomicznych oraz parków technologicznych w Polsce.

Przedstawione w tej rozprawie doktorskiej badania mogą stanowić punkt wyjścia

do potencjalnych przyszłych badań. Po pierwsze, chociaż rozważane problemy były już

znacznej wielkości, obejmujące tysiące wariantów lub miliony porównań parami, w wiele

obszarach uczenia maszynowego rozważa się znacznie większe problemy. Warto byłoby

więc przetestować zaproponowane rozwiązania dla problemów o rozmiarach typowych dla

takich dziedzin zastosowań.

Po drugie, wykorzystanie głębokich sieci neuronowych daje możliwości przetestowa-

nia skuteczności wielu technik zaproponowanych w tymże obszarze. Metody takie jak

transfer learning, active learning, federated learning lub blockchain mogą znaleźć zasto-

sowanie w problemach decyzyjnych, związanych z wieloma powiązanymi decyzjami lub

decyzjami grupowymi. Możliwe jest też opracowanie metod uczenia preferencji z wyko-

rzystaniem sieci neuronowych, bazując na innych metodach MCDA, choćby stosujących

profile charakterystyczne lub graniczne do zdefiniowania klas.

Zarówno metody oparte na sieciach neuronowych, jak i zaproponowane sposoby mo-

delowania kryteriów niemonotonicznych mogłyby być wykorzystane w problemach ran-

kingu. W tym celu informacja preferencyjna przyjmowałaby postać porównań parami

wariantów i nie byłoby konieczności stosowania sortowania opartego na progach. Roz-

ważając modele kontrolujące stopień złożoności kryteriów niemonotonicznych, istnieje

możliwość rozszerzenia ich na transformacje wielomianowe, które są istotne w rzeczywi-

stych problemach.

Wreszcie w metodach PrefRank i ScoreBin obliczanie wartości sił i słabości odbywa

się w podobny sposób. Możliwe jest jednak wykorzystywanie różnych kombinacji tych

metod jednocześnie i zbadanie różnych typów agregowania takich wyników. Podobnie w

przypadku metod inspirowanych sieciami neuronowymi możliwe byłoby połączenie wielu

architektur w jedną i agregowanie wyników do jednego miary jakości. Ostateczne decyzje

mogłyby być podejmowane na podstawie głosowania większościowego lub ważonego, gdzie

wagi byłyby ustalane w trakcie procesu uczenia.
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