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Abstract 

In the face of escalating concerns regarding climate change and environmental sustainability, 
the imperative to monitor and regulate energy consumption has gained paramount 
importance. Buildings, being significant contributors to overall energy usage, warrant focused 
attention, especially when confronting the complexities of heritage protection and assessing 
energy performance through non-destructive ways in existing structures. This research 
endeavors to tackle these challenges through the introduction of an innovative and user-
friendly approach for estimating energy performance in heritage buildings, utilizing readily 
accessible tools: smartphones and data-driven algorithms. By harnessing the computational 
power of smartphones and deploying machine learning algorithms to capture essential 
geometrical attributes, this novel workflow showcases its capacity to accurately estimate a 
building's energy performance. This practical solution eliminates the necessity for costly 
computational resources and specialized expertise, making energy performance assessments 
more accessible and feasible while protecting heritage values. The research findings 
underscore the efficacy of this method as a part of retrofit measures for heritage buildings, 
even when using limited and fundamental geometric data, thereby enhancing the accessibility 
and utility of energy performance evaluations. This workflow holds significant promise for a 
diverse range of stakeholders, including researchers, architects, property owners, and 
government agencies. It empowers them with real-time, precise insights into the energy 
performance of existing structures. Consequently, this research constitutes a pivotal stride 
toward bolstering sustainable energy management practices and furnishes a tangible avenue 
for ameliorating the adverse environmental impact associated with buildings. 
Keywords: Building energy consumption, heritage buildings, data-driven methods, Energy 
Audit, Poland 



Abstrakt 

W obliczu narastających obaw związanych ze zmianami klimatycznymi i zrównoważonym 
rozwojem środowiskowym, konieczność monitorowania i regulowania zużycia energii nabrała 
kluczowego znaczenia. Budynki, będące znaczącym źródłem ogólnego zużycia energii, 
wymagają szczególnej uwagi, zwłaszcza przy konfrontacji z złożonościami ochrony dziedzictwa 
i oceniania wydajności energetycznej w istniejących strukturach w sposób nieniszczący. 
Niniejsze badania mają na celu rozwiązanie tych wyzwań poprzez wprowadzenie 
innowacyjnego i przyjaznego dla użytkownika podejścia do szacowania wydajności 
energetycznej w budynkach zabytkowych, wykorzystując łatwo dostępne narzędzia: smartfony 
i algorytmy oparte na danych. Poprzez wykorzystanie mocy obliczeniowej smartfonów i 
zastosowanie algorytmów uczenia maszynowego do przechwytywania kluczowych atrybutów 
geometrycznych, nowatorski przepływ pracy demonstruje swoją zdolność do dokładnego 
oszacowania wydajności energetycznej budynku. To praktyczne rozwiązanie eliminuje 
potrzebę kosztownych zasobów obliczeniowych i specjalistycznej wiedzy, ułatwiając 
dostępność i wykonalność ocen wydajności energetycznej, jednocześnie chroniąc wartości 
dziedzictwa. Wyniki badań podkreślają skuteczność tej metody jako części działań 
modernizacyjnych w budynkach zabytkowych, nawet przy wykorzystaniu ograniczonych i 
podstawowych danych geometrycznych, zwiększając tym samym dostępność i użyteczność 
ocen wydajności energetycznej. Ten przepływ pracy ma znaczący potencjał dla szerokiego 
spektrum zainteresowanych stron, w tym badaczy, architektów, właścicieli nieruchomości i 
agencji rządowych. Umożliwia im on uzyskanie w czasie rzeczywistym dokładnych informacji 
na temat wydajności energetycznej istniejących struktur. W konsekwencji niniejsze badania 
stanowią kluczowy krok w kierunku wzmocnienia praktyk zarządzania zrównoważoną energią 
i dostarczają namacalnej drogi do zmniejszenia negatywnego wpływu budynków na 
środowisko. 
 
Słowa kluczowe: Zużycie energii w budynkach, budynki zabytkowe, metody oparte na 
danych, Audyt energetyczny, Polska 
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Chapter 1: Research outline 
 



2 
 

1.1. Abstract 

 
This abstract provides an overview of the first chapter of the thesis, outlining the topics covered 
and the objectives of the research. In this chapter, the introduction sets the stage by discussing 
the global challenges of climate change, urban sustainability, and the need for energy efficiency 
in buildings. The Sustainable Development Goals and the European Union's long-term goals for 
reducing greenhouse gas emissions are introduced as driving forces for action. The problem 
statement emphasizes the importance of energy audits in existing buildings and highlights the 
challenges associated with data availability, invasive inspections, financial constraints, complex 
building systems, and the absence of standardized procedures. The goals of the research are then 
presented, focusing on facilitating the energy audit process, exploring improvements within 
traditional methodologies, and proposing a surrogate data-driven method. The research 
questions and hypotheses are outlined to guide the investigation and address the identified 
challenges. Finally, the methodology is briefly described, encompassing literature review, case 
studies, the use of LIDAR technology for 3D modeling, data generation, climate change 
considerations, data-driven model development, and the conclusion of the chapter. Through this 
research, the aim is to contribute to enhanced energy efficiency, streamlined audit procedures, 
and sustainable building retrofitting practices for a more sustainable future. 
 

1.2. Introduction 

 
Addressing today’s global issues including climate change, resource depletion, and growing 
urbanization needs a strong insight about urban sustainability [1]. It describes a city's capacity to 
meet the requirements of present needs and also considering future generations and preserving 
the harmony of economic, social, and environmental concerns [2]. With the increasing average 
earth’s surface temperate as a result of climate change, countries all around the world are trying 
to minimize CO2 emissions and energy use [3]. Thus, the EU has set long-term goals to cut GHG 
emissions by 80-95% compared to 1990 levels by the year 2050 [4]. The urgent need for urban 
infrastructures including energy systems as well as housing has significantly multiplied due to the 
growth of the urban population as the result of economic and industrial development. Together 
with improving life quality, these developments have increased greenhouse gas emissions [5, 6].  
A strong foundation for global collaboration is offered by the Sustainable Development Goals 
(SDGs), which were initially endorsed by the UNGA in 2015 to ensure a sustainable future for the 
planet. The 17 SDGs and the 169 targets that they contain, which make up the core of "Agenda 
2030," provide a course for eradicating extreme poverty, combating injustice and inequality, and 
preserving the environment on Earth [7, 8]. It has been discovered that the future holds promising 
pathways towards achieving better energy access, improved air quality, and enhanced energy 
security without endangering our climate. Through exploring various resource, technology, and 
policy combinations, we have the ability to reach these objectives in innovative ways [9]. We must 
emphasize the development of renewable energy sources and stop relying on fossil fuels in order 
to reduce irreversible environmental damage. This entails a change in the way energy is produced 
away from fossil fuels, as well as attempts to increase energy efficiency and lower demand 
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generally [10-12]. However, coal continues to play a substantial role in Poland's energy industry. 
The Polish government has agreed to speed up the process of phasing out coal and gradually close 
all coal mines by 2049, thanks to pressure from the European Union [13].  As International Energy 
Agency has stated the world's consumption can be broadly categorized into various sectors (See 
figure 1.1) including buildings, transport, industry and other areas such as agriculture, forestry, 
and fishing [14]. The total energy consumption across these sectors amounted to 9.1 Gtoe in 
2019, with their relative contribution to the overall consumption remaining largely stable.  

  
a                                                                                                        b     

Figure 1. 1. a. High global energy consumption sector, b. CO2 emissions by sectors 
Adopted from [15-17] 

The surge in population growth, urban development, towering infrastructure, and improved 
building amenities and conveniences, coupled with the growing preference for indoor lifestyles, 
have collectively contributed to the annual rise in building energy consumption by 1.2% since the 
turn of the century. This upward trajectory has remained persistent, even during challenging 
times like the global economic downturn of 2008 and the ongoing COVID-19 pandemic [18]. 
Forecasts suggest that without robust measures to regulate this trend, energy consumption in 
buildings will continue to escalate, especially in developing nations where it's gaining prominence 
[19]. 
The towering structures that dominate our skylines are notorious culprits when it comes to global 
energy consumption and CO2 emissions, accounting for a staggering one-third and one-quarter 
respectively. Shockingly, in some of the world's most energy-intensive nations, buildings consume 
an even larger percentage of energy, with the EU at 41%, the US at 34% , and Japan at 37% [14]. 
Recognizing their immense impact on the environment, buildings have been thrust into the 
spotlight of climate policies as potential drivers of energy efficiency and renewable energy. 
However, to successfully develop, evaluate, and monitor these policies, access to energy 
information is crucial, not just for the sector as a whole, but for specific building types and energy 
services as well [20]. Apart from their substantial contribution to primary energy consumption 
and greenhouse gas emissions, buildings are expected to play a vital role in promoting energy 
efficiency and renewable energy generation. Upon closer examination of Figure 1, it becomes 
apparent that the majority of greenhouse gas (GHG) emissions for building sector are indirect and 
the environmental impact of buildings varies depending on the emission factors of the energy 
production processes.  
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The building sector presents a vast opportunity for mitigating energy consumption and curbing 
CO2 emissions. Innovative measures such as building envelope enhancements, energy efficiency 
initiatives, and transitioning to renewable fuel sources for both residential and commercial 
buildings can contribute to this cause. It is no wonder that a multitude of national and 
international mandates and regulations have been established to boost the energy efficiency of 
buildings and facilitate the adoption of renewable energy sources.  
Existing buildings account for a large proportion of this consumption. Thus, it is crucial to assess 
and improve the energy efficiency of existing buildings to reduce energy consumption and 
decrease the carbon footprint of the building sector. Existing buildings are often not as energy-
efficient as newer buildings because they may lack modern insulation, efficient heating and 
cooling systems, and energy-efficient appliances. As a result, they consume more energy than 
necessary to maintain a comfortable indoor environment [21]. Retrofitting existing buildings, 
which involves making modifications to improve energy efficiency, is one solution to reduce the 
energy consumption of existing buildings. Retrofitting measures can include the installation of 
energy-efficient lighting, HVAC systems, and insulation, among others. studies have suggested 
that retrofitting existing buildings can lead to significant energy savings [22]. Additionally, it has 
been stated that retrofit measurements can be a cost-effective way to reduce energy 
consumption, with a payback period of less than five years for most measures [23]. The 
importance of retrofitting existing buildings is not limited to reducing energy consumption and 
carbon emissions, but it can also bring improved indoor air quality, reduced maintenance costs, 
increased the value of buildings, and enhanced occupant comfort [24]. The EU energy efficiency 
directive 2012/27/EU recognizes the existing building stock as the most significant potential 
sector for energy savings [25]. To achieve this, policymakers try to formulate strategies to 
encourage cost-effective deep renovations that significantly reduce a building's energy 
consumption. 
To be more precise, fulfilling the ambitious energy and climate goals established by the European 
Union for 2030 and 2050 depends on the decarbonization of the Polish building sector. This is 
essential to achieving the aforementioned objectives as well as preserving the health and 
wellbeing of our communities. Significant economic prospects are also presented by this shift to 
low-carbon building practices, including the growth of the market for sustainable building 
materials in Poland and the creation of new jobs in the renewable energy sector. To draft such 
strategies, it is necessary to analyze the structure and energy consumption of the existing building 
stock. However, due to the lack of comprehensive data sets, it would be a challenging task. The 
identification of certain crucial parameters such as building age, function, or floor area is 
necessary to estimate a building's energy demand. Therefore, every possible strategy in this 
regard requires to estimate the energy performance of individual buildings accurately. Upon 
reviewing the relevant literature and recent studies, certain inadequacies have come to light. 
From the practical perspective the main obstacle is the data collection as in most cases the 
accurate and proper data availability is rare which prevents in-depth analysis of cases.  This gap 
along with other problems in this process that may discourage owners, municipalities, energy 
departments or other involving parties to act effectively to address this issue. This research tries 
to focus on the required data availability challenge and propose a surrogate data-drive method 
which can be useful for all parties involved in this subject. 
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1.3. Problem Statement 

 
The primary source of the global warming phenomenon is thought to be greater atmosphere 
emissions of greenhouse gases, such as carbon dioxide (CO2) [26]. It will take a significant shift in 
how countries' energy systems are now organized to achieve global warming gas (GHG) emission 
reduction goals. Together with decarbonizing the energy source, this also entails drastically 
lowering existing energy usage [27]. As mentioned before, due to the notable share of building 
stock in the total energy consumption globally, improving the energy efficiency of buildings has 
become crucial to cutting back on both fossil fuel usage and gas emissions. By increasing the 
energy performance of buildings in the European Union (EU) by 20%, it is predicted that 60 billion 
euros will be saved annually [28] and a huge step (Blue color in Figure 1.2) towards to fulfil 2020 
and 2030 primary energy consumption targets (38% of the target) 

 
Figure 1. 2. Distance to 2020 and 2030 targets for primary energy consumption 

Adopted from [29] 

 
According to the Multi-annual Financial Framework (MFF) for the years 2014 to 2020, the 
Cohesion Policy budget allocated an astounding €80 billion to Poland over a seven-year period 
(See figure 1.3), making Poland the largest recipient of EU money. However, compared to the 
average of the EU, which is 3.9%, only €2.2 billion (or 2.8%), or 2.6%, has been allocated to 
improving building energy efficiency. The fact that massive amounts of money totaling €27 billion 
have been promised to Poland by international financial organizations (IFIs), such as the EBRD, 
EIB, and the World Bank, just 1.3% of which will go toward building restoration, further 
complicates the situation [30]. A serious problem that requires immediate action is the absence 
of funding for energy-efficient building modifications. 
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Figure 1. 3. Cohesion policy EU allocation funds 2014-2020 

Adopted from [31] 

A significant portion of this fund (more than 27 billion Euro) has been allocated in “Infrastructure 
and Environment” sector. With 33 of the top 50 most polluted cities in Europe (which is 36 
recently, see figure 1.4), Poland has a serious and persistent air pollution problem.  

 
Figure 1. 4. Most polluted cities in Europe 

adopted from [32], *black color shows cities in Poland 

This disturbing reality is largely due to the inefficient energy use of existing structures, especially 
single-family homes, and their antiquated coal-fired boilers. Regrettably, Poland has not yet given 
this activity the proper priority, despite the enormous potential for building renovation to 
alleviate this problem, improve energy security, and foster citizen well-being. It's time for the 
nation to understand the value of sustainable building techniques and take concrete steps toward 
a cleaner, healthier future. An extraordinary yearly expenditure of €5.3 billion would be needed 
to renovate half of Poland's current building portfolio over the course of the next 20 years. This 
would dramatically increase the present restoration pace, which is currently less than 1% of floor 
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area every year, to a healthy 2.5% [33]. Redirecting financing from the European Union and other 
international financial institutions to improve building energy efficiency is necessary to achieve 
this ambitious aim. Furthermore, creative financing methods with higher leverage, such securing 
cash from building owners and other investors, might improve the usage of available funds. 
When considering the limitations of improving the building stock, one aspect to take into account 
is the budget allocated for retrofit measurement. However, alongside financial constraints, there 
are additional challenges associated with retrofit actions. The process of retrofitting existing 
buildings is a complex endeavor that encompasses multiple areas of expertise, including built 
heritage (particularly relevant for historic buildings), energy efficiency, user functionality, material 
science, and more. Integrating the requirements of each of these domains into the retrofitting 
process adds to its inherent difficulty and complexity. One particular aspect of building retrofit 
that demands significant time, labor, and financial resources is the energy audit. Energy audits 
play a crucial role in driving energy retrofitting initiatives for already established structures, which 
often account for a substantial portion of energy consumption within urban areas. These audits 
serve various purposes beyond energy conservation, such as optimizing energy usage, managing 
costs, and addressing the environmental impacts associated with energy consumption. Therefore, 
the challenges inherent in retrofitting existing buildings extend beyond the financial limitations 
of measurement and encompass a wide array of considerations across different disciplines. The 
inclusion of energy audits as a labor-intensive and costly step underscores their importance in 
promoting energy retrofitting efforts and the overall improvement of urban building stocks [34]. 
According to Forbes, the cost associated with conducting a building energy audit at ASHRAE level 
3 (refer to figure 1.5) for retrofit measurements is estimated to be approximately $600 [35]. This 
essential task not only requires a significant financial investment [36] but also demands the 
expertise of professionals who are capable of conducting precise measurements and thorough 
analyses as well as expensive computation resources. It is worth noting that completing such an 
audit can take several weeks to ensure its accuracy and comprehensiveness. From another 
perspective, the success of the energy audit process heavily relies on obtaining high-quality data 
encompassing various details, including material specifications, construction age, foundation 
type, and more [37]. However, for existing buildings, gathering this data can prove to be 
immensely challenging, and in some cases, nearly impossible, particularly when dealing with 
historic structures that may have been poorly documented over time. In such instances, 
conducting inspections becomes necessary, but this poses a critical dilemma, especially when 
dealing with buildings of historical significance. 
Performing inspections to acquire information about the building materials and specific details 
can potentially cause damage or harm to the integrity of these cherished historic structures [38]. 
Consequently, in the case of buildings officially recognized as built heritage, this process is strictly 
prohibited to preserve their historical value and physical integrity. It is clear that conducting a 
building energy audit, specifically at ASHRAE level 3, entails substantial financial implications. 
Furthermore, the challenges associated with obtaining accurate data for existing buildings, 
particularly those with historical significance, highlight the delicate balance between the need for 
comprehensive information and the preservation of cultural heritage. 



8 
 

 
Figure 1. 5. Different levels of Energy audit 

 

1.4. Goals 

 
Therefore, in order to comprehensively address the multifaceted challenges associated with the 
energy audit process for existing buildings and pave the way for effective retrofitting initiatives, 
this research endeavors to achieve the following interconnected goals: 

1. Facilitate the process of energy audit for existing buildings: The challenge here is to 

streamline and simplify the energy audit process, making it more accessible and efficient 

for existing buildings. This involves developing methodologies, guidelines, and tools that 

can guide auditors through the audit process, from data collection to analysis and reporting. 

The goal is to create a standardized and user-friendly approach that reduces the complexity 

and time required for energy audits, ultimately promoting their wider adoption. 

2. Check the applicability and accuracy of data-driven methods: With the advancements in 

data analytics and machine learning, data-driven methods are gaining popularity for energy 

audits. However, their applicability and accuracy for existing buildings need to be 

thoroughly assessed. This challenge involves evaluating the performance of data-driven 

models and algorithms in accurately predicting energy consumption and identifying 

energy-saving opportunities in existing buildings. The goal is to assess the strengths and 

limitations of these methods and provide insights into their practical implementation in 

real-world scenarios. 

3. Propose a surrogate data-driven method for energy audit of existing buildings: This 

challenge focuses on developing a surrogate data-driven method that can overcome the 

limitations and data requirements associated with traditional energy audits. The goal is to 
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explore alternative data sources and develop models that can estimate energy performance 

and identify potential energy-saving measures without the need for extensive data 

collection or invasive inspections. This surrogate method should leverage readily available 

data, such as building characteristics, occupancy patterns, weather data, and utility bills, to 

provide reliable and actionable insights for energy audit purposes. 

 

1.5. Questions and Hypotheses 

 
To achieve the research goals outlined, it is essential to address the following questions, as they 
serve as critical steppingstones toward attaining the desired outcomes (In figure 1.6). By 
answering these questions, the research aims to overcome challenges in energy audit processes, 
explore improvements within traditional methodologies, harness the potential of data-driven 
methods, and leverage technological advancements to offer surrogate approaches for energy 
audits in existing buildings. The insights gained from addressing these questions will pave the way 
for enhanced energy efficiency, streamlined audit procedures, and the promotion of sustainable 
practices in the realm of building retrofitting. 

1. What are the significant challenges and hurdles encountered in the process of conducting 

comprehensive energy audits for existing buildings, considering factors such as limited 

data availability, invasive inspections, financial constraints, complex building systems, and 

the absence of standardized procedures? 

2. In the realm of energy audits for existing buildings, what specific domains within the 

traditional audit process hold potential for improvement and optimization, encompassing 

aspects such as data collection methodologies, analysis techniques, reporting standards, 

and the incorporation of real-time monitoring systems? 

3. To enhance the efficacy and efficiency of energy audits for existing buildings, how can 

data-driven methodologies, leveraging advanced analytics, machine learning algorithms, 

and modeling techniques, contribute to the refinement and streamlining of the audit 

process, enabling accurate predictions of energy consumption patterns, identification of 

energy-saving opportunities, and the customization of recommendations based on diverse 

building characteristics? 

4. By synergistically integrating data-driven techniques with cutting-edge technological 

advancements, such as remote sensing, Internet of Things (IoT) devices, smart metering, 

and building energy modeling, how can a surrogate method for energy audits in existing 

buildings be developed, circumventing the need for invasive inspections and extensive data 

collection, while still ensuring robust energy performance evaluation, anomaly detection, 

and the simulation of retrofit measures? 

In pursuit of addressing the aforementioned questions, this research puts forth several 
hypotheses that will be rigorously tested throughout the investigative process. These hypotheses 
serve as guiding principles, aiming to shed light on specific aspects related to energy audits for 
existing buildings. By subjecting these hypotheses to empirical examination, the research 
endeavors to contribute to the body of knowledge in the field and uncover valuable insights. The 
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outcomes of these hypothesis tests will provide a solid foundation for evidence-based 
conclusions and recommendations, ultimately driving advancements in energy auditing 
methodologies, data-driven approaches, and the development of surrogate methods for efficient 
energy audits in existing buildings. 
For the first cluster of questions: 

• Limited data availability: Gathering accurate and comprehensive data about existing 

buildings, including historical energy consumption, building characteristics, and 

occupancy patterns, can be difficult and time-consuming. 

• Invasive inspections: Inspecting existing buildings to gather detailed information about 

materials, construction, and equipment can be invasive and potentially damaging, 

especially for buildings with historical significance. 

• Cost and resource-intensive: Traditional energy audits often require significant financial 

resources, time, and expertise to conduct comprehensive measurements, analysis, and 

reporting. 

• Complex building systems: Existing buildings may have complex and interconnected 

energy systems, making it challenging to identify energy-saving opportunities and assess 

the performance of individual components. 

• Lack of standardized processes: The absence of standardized guidelines and methodologies 

for energy audits can lead to inconsistency in audit procedures and results. 

For the second cluster: 

• Streamlining data collection: Leveraging digital technologies, automation, and remote 

sensing techniques can simplify and expedite data collection processes, reducing the time 

and effort required to gather essential building and energy consumption data. 

• Enhancing data analysis capabilities: Utilizing advanced data analytics, machine learning 

algorithms, and modeling techniques can enable more accurate and insightful analysis of 

energy performance, identifying specific areas for improvement and providing customized 

recommendations. 

• Incorporating real-time monitoring: Integrating real-time energy monitoring systems can 

provide continuous data on energy usage, allowing for better understanding of patterns and 

enabling proactive energy management strategies. 

• Standardizing audit procedures: Developing standardized guidelines and protocols for 

energy audits can ensure consistency, reliability, and comparability of results across 

different buildings and auditors. 

• Incorporating impacts of climate change: on building performance by considering future 

climate 

 

Finally, for the last cluster: 

• Hypothesis: Using smartphones with technologies such as image processing, computer 

vision, and LIDAR scanners to gather information from building spaces. It is hypothesized 

that utilizing smartphones equipped with advanced technologies like image processing, 
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computer vision, and LIDAR scanners can effectively capture spatial information from 

building spaces. 

• Coupling the information gathered from smartphones with simulation data. It is 

hypothesized that by combining the data obtained from smartphones with simulation data, 

a comprehensive model can be developed that integrates real-life observations with 

simulated scenarios. 

• Calibrating the simulation data with real-life cases. It is hypothesized that by calibrating 

the simulation data with real-life cases, the accuracy and relevance of the model can be 

further enhanced, ensuring its reliability and applicability in practical energy audit 

applications. 

• Mixing all the components together to create a new model that offers accuracy and ease of 

use for non-technical users. It is hypothesized that by integrating smartphones, simulation 

data, and calibration techniques, a novel and user-friendly model can be developed. This 

model is expected to provide improved accuracy in energy audits and be easily accessible 

for non-technical users, simplifying the energy audit process for existing buildings. 

 
Figure 1. 6. goals, questions, and hypothesis of the research 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 2: Methodology 
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2.1. Abstract 

 
The methodology section of this research provides a comprehensive overview and framework of 
the current work in 7 main parts. Initially, the study begins with a foundational background that 
introduces existing technologies and paradigms, setting the stage for the methods used in this 
research. The primary focus is on the detailed process involved in 3D Model Generation, 
employing techniques such as image calibration, 3D point cloud generation, and alternative 
methods for model optimization. Subsequently, the paper delves into the systematic approach 
for Bigdata generation within the realm of architecture and building science. The workflow 
outlined ranges from initial geometry creation to intricate construction details. Special attention 
is given to EAD additions and energy simulation metrics. The section also introduces automation 
techniques that significantly reduce manual input, thereby improving efficiency and reliability. To 
address the pressing issue of climate change, this methodology incorporates it as a critical 
consideration. Data-driven methods are used to provide a scientific basis for design decisions and 
environmental impact assessments. Finally, an integrated workflow is discussed, which aims to 
combine all the aforementioned methodologies into a single, cohesive system for streamlined 
project execution. This approach provides a robust framework for professionals, researchers, and 
policy-makers aiming to create sustainable, efficient, and technologically advanced built 
environments. 
 

 

2.2. Introduction 

 
In order to reach the goals of this research, it is crucial to acknowledge that they lie at the 
intersection of various disciplines and fields, each playing a significant role in addressing the 
challenges and complexities of energy audits for existing buildings. This study aims to contribute 
to the advancement of energy-efficient buildings, sustainable development, artificial intelligence, 
automation in the construction and energy industry, and climate change mitigation. 
By exploring the realm of energy-efficient buildings, this research seeks to uncover innovative 
strategies and technologies that can optimize energy consumption, reduce greenhouse gas 
emissions, and improve the overall sustainability of the built environment. Sustainable 
development principles will guide the investigation, ensuring that the proposed solutions align 
with the economic, social, and environmental dimensions of sustainability. The integration of 
artificial intelligence (AI) and advanced data analytics is another key aspect of this research. By 
harnessing the power of AI algorithms, machine learning techniques, and modeling 
methodologies, the study aims to develop data-driven models that can accurately predict energy 
consumption patterns, identify energy-saving opportunities, and provide customized 
recommendations tailored to the specific characteristics of each building. This intersection of AI 
and energy auditing holds great potential for streamlining processes, enhancing accuracy, and 
enabling more effective decision-making in building retrofit projects. Automation in the 
construction and energy industry is yet another critical area of focus. By leveraging technological 
advancements, such as digital automation, robotics, and smart systems, this research aims to 
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streamline energy audit procedures, data collection processes, and analysis methodologies. 
Automating repetitive tasks and leveraging digital tools can improve efficiency, reduce human 
error, and accelerate the overall energy auditing process. Lastly, climate change considerations 
are woven throughout the research methodology. Given the urgent need to address the impacts 
of climate change, this study will incorporate future climate scenarios and adaptation strategies 
into the analysis. By assessing the resilience and sustainability of proposed retrofit measures 
under different climate conditions, the research aims to contribute to building resilience, 
adaptability, and long-term energy efficiency. 
To achieve the ambitious goals set forth, a sophisticated methodology has been designed. The 
research will progress through a series of interconnected steps, including background research 
and case study analysis, advanced data collection techniques, climate change considerations, 
data-driven modeling, and comprehensive analysis of results. This systematic approach ensures 
a comprehensive investigation, informed decision-making, and the development of practical 
recommendations that can drive positive change in the building sector and contribute to global 
efforts towards a greener and more resilient future. 
By integrating knowledge, methodologies, and expertise from various fields, this research strives 
to push the boundaries of energy auditing practices, promote sustainable retrofitting strategies, 
and foster collaboration among stakeholders in pursuit of a more energy-efficient and 
environmentally conscious built environment. 

 
Figure 2. 1. Research Steps 

 



15 
 

The methodology of this research consists of six main steps, each contributing to the 
comprehensive investigation of energy audits for existing buildings (see Figure 2.1.). 

• The first step involves conducting a background study and comprehensive case analysis to 

establish a solid theoretical foundation and gain insights into current practices, challenges, 

and advancements in the field of energy auditing. This study will provide a comprehensive 

understanding of existing methodologies and highlight areas for improvement. 

• In the second step, LIDAR technology will be employed to create a simplified 3D model 

of the buildings under study. This technology enables precise measurements and captures 

detailed spatial information, allowing for a thorough analysis of building characteristics 

such as geometry, surface area, and volume. 

• The third step focuses on generating a large and diverse dataset, encompassing various 

sources of information such as historical energy consumption data, weather data, occupant 

behavior, and building systems performance. This extensive dataset will serve as the basis 

for analysis and modeling, enabling a comprehensive evaluation of energy performance 

and the identification of potential energy-saving opportunities. 

• The fourth step involves considering the impacts of climate change on building 

performance. Future climate scenarios and potential adaptation strategies will be integrated 

into the analysis, ensuring that the proposed energy retrofit measures are resilient and 

sustainable in the face of changing environmental conditions. 

• In the fifth step, a data-driven model will be developed using advanced analytics, machine 

learning algorithms, and modeling techniques. This model will leverage the generated 

dataset to accurately predict energy consumption patterns, evaluate the effectiveness of 

different retrofit strategies, and provide customized recommendations tailored to the 

specific characteristics of each building. 

• Finally, the research concludes with a comprehensive analysis of the results obtained from 

the data-driven model. The findings will be evaluated, interpreted, and compared with 

existing methodologies and industry standards. The research will culminate in a conclusive 

summary, highlighting the key insights, implications, and recommendations derived from 

the study. 

By following this structured methodology, the research aims to contribute to the advancement of 
energy auditing practices for existing buildings, foster sustainable retrofitting strategies, and pave 
the way for more energy-efficient and environmentally conscious building practices. In the 
following chapter each of these steps will be discussed in detail. 
 
 

2.3. Background Study 

 
Within the initial phase of this research project, an extensive examination was undertaken in the 
realm of building energy analysis. This diligent exploration was pursued with the intention of 
gaining a profound understanding of the capabilities and limitations within this field, thereby 
establishing a comprehensive foundation for further investigation. By undertaking this study, the 
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researcher aimed to acquire a holistic comprehension of the interconnected subjects within this 
discipline, thus facilitating the identification of existing gaps and paving the way for the 
advancement of knowledge within the chosen field of study [39]. This preliminary segment 
encompassed a comprehensive review of the general field of building energy analysis, delving 
into its theoretical underpinnings, methodologies, and practical applications. The primary 
objective was to assess the potential and shortcomings of this area, enabling the researcher to 
form a comprehensive overview of the topic. By meticulously examining the existing literature, 
seminal studies, and innovative approaches within the field, the researcher developed a solid 
foundation upon which the subsequent investigations could be built. 
Conducting such an in-depth study proved instrumental in establishing a strong knowledge base 
and fostering a deeper understanding of the intricacies associated with building energy analysis. 
By meticulously scrutinizing various aspects, including energy consumption patterns, building 
performance evaluations, energy modeling techniques, and sustainability considerations, the 
researcher gained invaluable insights into the subject matter. This comprehensive comprehension 
laid the groundwork for identifying areas of research that required further exploration and 
investigation. 
Moreover, this preliminary examination enabled the researcher to recognize and comprehend 
the existing gaps within the field of building energy analysis. By identifying areas where 
knowledge and understanding were lacking, the researcher could discern the key research 
questions and formulate hypotheses that would contribute to advancing the field. This initial 
exploration not only facilitated the development of a robust research framework but also ensured 
that the subsequent investigations would address critical gaps and provide meaningful 
contributions to the discipline [40]. By embarking on this preliminary journey, the researcher 
positioned themselves strategically to embark on the subsequent stages of the research project. 
Armed with a comprehensive overview of the topic and a keen awareness of the existing 
knowledge gaps, the researcher was well-equipped to design and execute rigorous empirical 
studies and innovative theoretical inquiries. This thorough grounding in the field of building 
energy analysis laid the groundwork for uncovering novel insights, advancing knowledge, and 
making significant contributions to both academia and practical applications within the field [41]. 
A literature review was conducted to gain a comprehensive understanding of the field of building 
energy analysis. The Web of Science was selected as a reliable data source for this review. Through 
a systematic approach, relevant scholarly materials were identified and analyzed. The review 
focused on key aspects of building energy analysis, aiming to identify gaps and contribute to the 
existing knowledge in the field. The selected literature underwent a critical evaluation, ensuring 
the reliability and quality of the findings. The review process helped establish a strong foundation 
for subsequent investigations within the chosen field. 
Using the Reporting Standards for Systematic Evidence Syntheses (ROSES) process, a systematic 
literature review (SLR) was carried out [42]. The ROSES framework was employed to conduct a 
systematic literature review in the field of disaster management. Despite its original focus on 
environment management, the methodology proved suitable due to its consideration of 
complexities and variations in different scenarios and studies. The review process involved three 
steps: identification, screening, and eligibility, ensuring a comprehensive and systematic 
approach to document searching. A quality assessment was also conducted using adapted criteria 
to evaluate the reliability and credibility of the included studies. Overall, the ROSES framework 
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facilitated a transparent and rigorous review process, providing a solid foundation for further 
research in disaster management. Its flexibility in accommodating diverse contexts and the 
inclusion of a quality assessment process enhanced the credibility and validity of the review 
findings. By implementing the ROSES framework, this review contributes to the advancement of 
knowledge in disaster management [43].  
The process within the current project involved several detailed steps (Figure 2.2). It began with 
formulating the main query, which was derived from the project's goals and the researcher's 
initial background study. This initial step yielded a considerable number of works, with over 800 
identified publications within the specified timeframe of 2020 to 2023. The subsequent filtering 
step was performed based on the field of study and the relevance to the specific topic of interest. 
All 832 papers were carefully analyzed during this filtering stage, resulting in a substantial 
reduction in the number of papers to be further examined. Ultimately, 40 papers were selected 
for full reading, representing a more refined and focused set of literature. 
In the final step of filtering, the significance of the topic was taken into consideration. This step 
aimed to ensure that only the most relevant and impactful papers were included in the Data 
Extraction Table (DET) for further synthesis and analysis. Consequently, only 23 papers met the 
criteria and were selected for inclusion in the DET, representing the final set of papers that formed 
the basis for synthesizing the research findings. This multi-step filtering process allowed for a 
systematic and rigorous approach to document selection, ensuring that the most relevant and 
significant papers were included in the analysis. By carefully scrutinizing each stage of filtering, 
the researchers were able to narrow down the initial pool of publications to a final set of 23 
papers that would contribute to the synthesis and generation of the final research outcomes. 
 

 
Figure 2. 2. Literature review workflow 
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2.4. 3D Model Generation of Existing Buildings 

 
In the Architecture, Engineering, Construction, and Facility Management (AEC/FM) industry, 
there is a growing emphasis on existing buildings due to their significant potential for 
performance improvement and positive environmental impact [44]. Various AEC/FM applications 
targeting existing buildings necessitate the use of accurate 3D models that depict the as-built 
conditions of these structures [45]. These models play a crucial role in supporting a wide range 
of activities, including safety and health assessments, space planning, procurement, cost 
estimation, life cycle assessment, sustainability evaluation, performance monitoring, operations 
and maintenance, scheduling, as well as retrofit, refurbishment, and renovation planning. 
By employing precise 3D models, stakeholders in the AEC/FM industry can effectively evaluate 
the current state of existing buildings and make informed decisions about various aspects related 
to their management and optimization. Safety and health assessments can be conducted to 
identify potential risks and ensure compliance with regulations. Space planning activities benefit 
from accurate representations of the building, allowing for efficient utilization and allocation of 
spaces. Procurement decisions can be made more effectively by considering the precise 
conditions of the building. Cost estimation becomes more reliable when based on detailed 3D 
models that capture the actual characteristics of the structure. 
Furthermore, life cycle assessment and sustainability evaluations are enhanced through the 
utilization of 3D models that enable comprehensive analysis of the building's environmental 
impact and performance. Monitoring key performance indicators becomes more efficient by 
integrating the as-is conditions into the assessment process. Operations and maintenance 
activities can be optimized through access to precise 3D models, facilitating effective planning 
and execution. Scheduling tasks and activities are streamlined by leveraging accurate 
representations of the building. Lastly, retrofit, refurbishment, and renovation planning benefit 
from detailed 3D models that allow for better visualization and assessment of potential 
improvements [46]. 
The first method to discuss is using computer vision algorithm to have a Indoor 3D reconstruction: 
The first thing to know is that, this technique can be applied for different input data based on the 
goal of the work. Input source for data can be in the form of image (normal RGB image from 
normal cameras) or point cloud (from 3d scanners). Using image input for create a 3D 
reconstruction of the building may have various steps and methods, the one that we discuss in 
this project which is a standard one that can be used to create the indoor environment of a 
building is as follow (Figure 2.3.): 

 
Figure 2. 3. Image-based 3D reconstruction workflow 

Image Callibration
3D point Cloud 

Generation
3D Model 

Generation
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• The first step in our pipeline is the calibration of the imaging system. This crucial process 

involves estimating various parameters of the cameras, such as focal length, scaling factor, 

and distortion. Additionally, the rotation and translation between the two cameras are 

determined. Accurate calibration is essential for ensuring precise and reliable 3D 

reconstructions. 

• Next, the pipeline moves on to the generation of a 3D point cloud. Multiple views of a 

room are utilized to estimate a set of 3D points representing the spatial layout. This step 

employs a combination of structure-from-motion techniques and multi-view stereo 

methods to reconstruct the 3D environment. By leveraging the information from different 

camera perspectives, a comprehensive and detailed point cloud is created. 

• Building upon the sparse set of 3D points obtained in the previous step, the subsequent 

stage focuses on generating a 3D model of the room. Specifically, this step involves the 

calculation of the room's walls in 3D. By analyzing the available data and leveraging 

geometric principles, the pipeline determines the precise positioning and shape of the walls 

within the reconstructed 3D environment. 

 

2.4.1. Image Calibration 

 
The camera calibration process in computer vision involves defining the physical properties of a 
camera through its intrinsic and extrinsic parameters [47]. Intrinsic parameters primarily describe 
the focal length and optical center of the camera, while extrinsic parameters specify the camera's 
physical location, including rotation and translation, with respect to a reference coordinate 
system. To perform camera calibration, one can utilize software tools such as the camera 
calibration toolbox in Matlab or Python. A common method involves using a checkerboard 
calibration object made from a piece of cardboard. Images of the checkerboard captured by the 
visible band camera are used for calibration. 
By taking a series of images of the checkerboard from different perspectives (such as in Figure 
2.4.), the intrinsic and extrinsic parameters of the visible band camera can be computed. It is 
recommended to capture at least 20 images to ensure accuracy in the calibration process. 
Through the analysis of these images, the software tools can estimate the intrinsic parameters, 
such as the focal length and optical center, as well as the extrinsic parameters, including the 
camera's rotation and translation. This camera calibration process provides a valuable means of 
determining the camera's intrinsic and extrinsic properties, enabling accurate measurements and 
precise positioning in subsequent image-based tasks. By utilizing the appropriate software tools 
and following the calibration procedure using the checkerboard calibration object, researchers 
and practitioners can obtain reliable intrinsic and extrinsic camera parameters for their computer 
vision applications. 
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Figure 2. 4. Checkboard calibration method 

 

2.4.2. 3D Point Cloud Generation 

To generate a high-quality 3D point cloud of the room, relying on the widely-used technique of 
Structure from Motion (SfM) in computer vision is a standard practice [48]. SfM is a powerful 
method that utilizes a set of images captured from different positions, possibly with different 
cameras, to extract 3D information about the environment. The key principle behind SfM is to 
identify overlapping views in the images, where the visual information corresponds to the same 
3D entities in the environment [49]. By analyzing these overlapping views, the positions of the 
cameras and the 3D coordinates of the pixels can be estimated. This allows us to reconstruct the 
spatial layout of the room in 3D. SfM takes advantage of the inherent redundancy in multiple 
images capturing the same scene from different angles. By leveraging the parallax effect and the 
correspondence of visual features across images, SfM can accurately estimate the camera poses 
and triangulate the 3D positions of the observed points. 
By incorporating information from multiple images and exploiting the geometric relationships 
between them, SfM enables the generation of a dense and precise 3D point cloud. This point 
cloud represents the spatial structure of the room, capturing the detailed geometry and spatial 
relationships of objects within the environment. SfM has proven to be a valuable technique in 
various applications, such as 3D reconstruction, augmented reality, and scene understanding. Its 
ability to extract 3D information from a set of images makes it a versatile and powerful tool for 
generating accurate and detailed 3D representations of real-world scenes. 
 
Keypoint Description: In the context of Structure from Motion (SfM), identifying meaningful 
pixels (keypoints) in images is crucial for accurate reconstruction. The Scale-Invariant Feature 
Transform (SIFT) method is employed to locate keypoints by analyzing intensity changes across 
different scales. Pixels with consistent changes are considered useful and are described using 128-
dimensional vectors, summarizing intensity changes around the keypoints.[50].  
Visual Feature Matching: After keypoints are identified and represented as feature vectors in 
each image, the next step involves matching keypoints that correspond to the same 3D points. 
This is achieved by comparing feature vectors across different views and identifying the closest 
matches. A cascaded method is utilized for matching, producing a set of potential matches 
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between features from various views. Subsequently, a post-processing step involving AC-RANSAC 
is applied to eliminate geometrically incorrect matches [51]. 
Structure from Motion (SfM): SfM addresses both reconstructing matching 3D points and 
estimating relative 3D distances and poses between images. The method proposed by Moulon et 
al. is chosen for its robustness and adaptability. It begins with an initial 3D model based on the 
best matching images and progressively incorporates additional images for reconstruction. 
Densification using Multi-View Stereo (MVS): To achieve a dense 3D point cloud necessary for 
accurate reconstruction, the sparse point cloud obtained from SfM is densified using an existing 
multi-view stereo algorithm. This algorithm employs interpolation to densify the given 3D point 
cloud [52]. 
Enhancement through Interaction: Further refinement involves manual interaction. The 
generated 3D point cloud requires adjustments to scale and the selection of planar regions on 
walls, doors, and windows through user input. 
Scale and Pose Adjustment: The 3D point cloud obtained earlier needs correction for scale and 
pose. Three points are selected from captured images, and their actual coordinates are measured 
relative to a known origin point in the room. This information is then used to calculate a similarity 
transformation, correcting scale, orientation, and translation of the 3D point cloud. This process 
involves a non-linear least square optimization method. However, this procedure might introduce 
discrepancies due to challenges in accurately matching pixels to known 3D points, particularly 
with low-resolution images. The imperfections of real rooms, like rounded corners and tilted 
walls, further contribute to the noise in the process. Using this available information, we can 
determine the necessary transformation between the existing model and the target model, 
ensuring accurate scale and orientation alignment. To achieve this, a similarity transformation is 
calculated using the following formula: 
x′ = Ax + t,  (1) 

Here, x ∈ R3 represents a point in the original 3D model, which is devoid of scale or specific 
orientation. A denotes R3×3 orthogonal matrix encompassing rotation and scaling elements. 
Meanwhile, t ∈ R3, signifies translation. The outcome, x', corresponds to the 3D point after it has 
been adjusted for both scale and orientation [53]. This process is executed through a non-linear 
least square optimization technique, ensuring the solution minimizes the mean squares error 
(Σi(xi′ − xi)2/n). 
 

2.4.3. 3D Model Generation 

 
The dense 3D model comprises a collection of points within a three-dimensional space. To 
accurately generate the 3D model, it is necessary to identify and estimate the surfaces as 3D 
planes. Equations for the planes corresponding to different boundary surfaces (walls, floor, and 
ceiling) are computed using points situated within a manually marked rectangular region on the 
images. It's important to ensure that only obstruction-free surface portions are marked to prevent 
misleading plane fitting caused by objects. This allows the algorithm to function effectively even 
in cluttered or obstructed environments. Two methods have been devised to robustly estimate 
the planes corresponding to the 3D point cloud. The first method, "Baseline Plane Estimation 
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from 3D Point Cloud" (BPE), relies on RANSAC and SVD to independently estimate a plane for 
each wall, ceiling, or floor. The second method, "Robust 3D structure estimation with geometric 
constraints" (RSEC), improves upon the first by enhancing the precision of the final model. RSEC 
builds upon BPE and leverages the assumption of the room's rectangular shape. 
The baseline method closely resembles the approach used by Ham and Golparvar-Fard [53] for 
constructing a 3D model from visible band images, while the second method, RSEC, , introduced 
by Gursel Dinoa et al [54] 
Baseline Plane Estimation Method: The BPE method employs least-squares plane fitting with 
RANSAC. As previously mentioned, the user selects a four-corner polygon on each wall where the 
enclosed points are coplanar. These bounded 3D points are then located within the 3D point 
cloud. The algorithm proceeds to fit a plane to each wall for constructing the room's 3D geometric 
model. 
A set of points is randomly chosen from each surface to estimate a plane. The success of the plane 
fit is assessed by calculating the inlier ratio of the model estimation, which measures the 
proportion of points adhering to the estimated model. Inlier determination involves a distance 
threshold method. If the distance between a point and its corresponding estimated plane is below 
a specific threshold (hyperparameter), the point is classified as an inlier. This process is iterated, 
and the geometric model with the highest inlier ratio is retained as the best model. A least-
squares error plane fitting algorithm is adapted for model estimation within the proposed 
pipeline. Given N 3D points, x1, …, xN, with xi ∈ ℝ3 and sampled through RANSAC, they are 
stacked in an N × 3 matrix denoted as X = [x1,x2,…,xN]T, where T represents transpose. As a 
common preprocessing step, the center point of the set is calculated and subtracted from all 
points to shift their center to the origin. Therefore, the new points and also the new 3xN point 
matrix would be as follows: 

𝒙 = ∑ 𝒙𝒊,

𝑵

𝒊=𝟏

 

(2) 

 

x’i=xi-�̅�, 

(3) 

 

X’=[x’1,x’2, …,x’N]T. 

(4) 

 
The general aim of this process of plane fitting is to find an appropriate normal vector n ∈ ℝ3 that 
minimizes the MSE (Mean Squared Error) of 3D points which are expected to be within the wall: 
n* ←arg  min  ∑  𝑵

𝒊=𝟏 |nT Xi|
2 = arg min nT X'T X' n, s. t. ||n||22 =1.  

               n                                                            n 

(5) 

Lagrange multipliers method has been chosen for minimizing the cost function which is as 
folllows: 
J (X′; n, λ) = nTX′TX′n + λ(1 − nTn). (6) 

 
In order to minimize the cost function (J), the derivative of J should be equal to 0: 

𝝏𝑱

𝝏𝒏
 2X’TX’n - 2λn =0, 

 

(7) 

X′TX′n = λn. (8) 
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Where the vector of n ∈ ℝ3 works with eq. (8) and the cost of nTX′TX ′ n should be found to 
eigenvalue: 
nTX′TX′n = λnTn = λ . (9) 

 
As the result, in order to minimize the cost, selection of eigenvector corresponds to the 
minimum eigenvalue: 
n* ← arg min λ . 

              n 

(10) 

The plane equation is then calculated as:  
n* (x – x0) = ax + by + cz + d . (11) 

 
Where n* represents normal vector of the plane, x0 as a fixed point on the plane and x is any 
arbitrary point on the plane. In this way, a,b, and c would be as follows Where nx, ny and nz are 
z,y, and z component of n: 
a = n∗

x,    b = n∗
y,  c = n∗

z,  d = −n∗T x 0, (12) 

 
Robust 3D structure estimation with geometric constraints (RSEC): as proposed by Dino et al 
[54] an improvement to the baseline method, in order to exploit the 3D structure of the room, it 
has been assumed The meeting point of room surfaces forms a precise right angle of 90 degrees, 
and the estimation of planes incorporates this specific constraint. Consequently, within RSEC, the 
calculation of three surface normal vectors, each mutually perpendicular, becomes essential. To 
enforce this constraint, two distinct cost functions are needed for the entire room. It's important 
to note that in contrast to BPE, where each wall is treated separately, these functions account for 
both plane fitting and maintaining the orthogonality of the surfaces. The initial cost function is 
articulated as follows: 
Jfit (X1, X1, … X6, n1,n2,n3) = nT

1 X
T

1 n1 + nT
2 X

T
2 X2 n2 + nT

1 X
T

3 X3 n1 + nT
2 X

T
4 X4 n2 (12) 

                                                     + nT
3 XT

5 X5 n3 + nT
3 XT

6 X6 n3 
And in the simpler version it can be seen as follows: 
Jfit (X1, X1 ,… X6 ; n1 , n2 , n3) = nT

1 An1 + nT
2 Bn2 + nT

3 Cn3 , 

 

(13) 

And in this situation A, B, and C are positive metrics which are symmetric. The second cost 
function defines the orthogonality as follows: 
Jort (N) = ||NTN - I||T2  = tr ((NTN – I) (NTN – I)) , 

 

(14) 

Where finally two cost function will be merged 
J (X1, X1, … X6, ; N, λ)  = Jfit (X1, X1 ,… X6 ;N) + λ Jort (N) (15) 

 
This final cost function will be minimized using “Nelder-Mead” method [55]. In this process 
different values for λ were tested for 200 images from an iPhone 14 pro.  
In order to designate the positions of windows and doors in a three-dimensional space, users pick 
out the corners of these openings within the visible images. In doing so, we operate under the 
assumption that the windows and doors are situated on the same plane as the walls they're a 
part of. Following this selection process, we proceed to determine the precise 3D coordinates for 
each of the chosen corner points. This involves finding the point where a ray, projected from the 
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selected 2D point, intersects with the corresponding plane of the wall. In Figure 2.5 the summary 
of the whole process is shown. 

 
Figure 2. 5. Integrated method of point cloud generation and 3D model construction 

2.4.4. Alternative Method 

 
Within the realm of geosciences, the applications of terrestrial laser-scanning and airborne laser-
scanning techniques (TLS & ALS) extend across diverse scales for conducting topographic land 
surveys [56, 57]. LiDAR stands as a prevalent method, employing laser pulses to measure 
distances based on pulse return times between a transmitting unit and a receiving unit [58]. The 
swift progression of digital processing methods, coupled with the emergence of novel 
technologies in remote sensing, is driving a revolution in the realm of digital twin of our 
surrounding [59].  The advancement of technology in multi-sensor portable devices has 
integrated numerous digital tools into tablets and smartphones. These devices have become 
essential components of an engineer's toolkit, signifying standard equipment. Building upon the 
concept of primary digital mapping, the utilization of smartphones in fieldwork has expanded to 
become a direct alternative to traditional approaches for collecting field data. Upon the 
introduction of novel features by Apple, global attention is invariably captured. In March 2020, 
the unveiling of the new iPad Pro included the incorporation of a LiDAR scanner, a development 
that piqued curiosity regarding the potential utility of this sensor (See Figure 2.6).  
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Figure 2. 6. Progress of evolution of digitally assisted fieldwork of smartphones, based on [60] 

 
Apple announced the integration of a LiDAR scanner into the camera of the iPhone 12 Pro, 
prompting inquiry into the rationale behind embracing a technology with an established history 
spanning decades within the domain of mobile devices and now it continues and developed up 
to the latest version of Apple iPhone 14 pro as the state-of-the-art version of this technology with 
high accuracy. The succinct answer to this query resides in the enhancement of augmented reality 
(AR) experiences. For individuals involved in construction and residential refurbishments, the 
implications are more compelling: the technology facilitates precise, prompt, and realistic 3D 
modeling of indoor spaces. This advancement not only simplifies tasks but also augments 
customer services. A comprehensive exploration of LiDAR room scanning, encompassing its 
applications and advantages, is warranted. The LiDAR sensor, tailored for room scanning, exhibits 
the capability to measure distances to proximate objects within a 5-meter radius. However, its 
intrinsic potential remains dormant unless harnessed in conjunction with dedicated software 
applications like magicplan [61]. The amalgamation of augmented reality (AR) with artificial 
intelligence (AI) within this software engenders automated object detection and categorization. 
Beyond the rudimentary recognition of elements like floors and walls, the software enables 
faithful reproduction of entire spatial geometries. Within this LiDAR framework, a room scan 
entails the capture of data, subsequently identified, and processed by AI. This archival of data 
bears enduring significance, as the information remains perpetually accessible and exploitable. 
Therefore, as an alternative, rapid, and user-friendly approach to creating simplified 3D models 
of indoor spaces leverages the power of lidar sensors in smartphones which has been very 
popular among researchers [60]and there are several studies where this method has been 
implemented for different purposes including but not limited to urban modelling [62], building 
3D modelling [63], drop of liquid [64], wildlife studies [65] and a lot of several areas such as 
engineering (look at Figure 2.6) by search WoS database. As it is depicted in Figure 2.6 it has been 
widely used in various fields especially in remote sensing, geology, computer science and 
engineering. The last field (engineering) has by far highest number of applications for smartphone 
lidars and by taking a deeper look at the following figure, building technology has also been 
mentioned which can be integrated to the engineering sector. 
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Figure 2. 6. Implementation of smartphone LIDAR sensors in different research areas, based on 

WoS 
 
Another important aspect is that the implementation of this method is growing since these days 
more and more cell phone companies are adding LIDAR sensors to their products. 

 
Figure 2. 7. Studies using smartphone LIDAR scanners in recent years, based on WoS 

 
This change is obvious by considering the number of research studies that use this technology in 
recent years which shows a meaningful increase. This innovative method offers a convenient way 
[66] to generate accurate room representations without the need for intricate coding or technical 
expertise. Applications such as Magicplan [61] exemplify the seamless integration of lidar 
technology into everyday devices, transforming the way individuals capture and visualize their 
surroundings. Unlike the traditional computer vision-based methods, which involve intricate 
steps and complex algorithms, the lidar-based technique capitalizes on the inherent simplicity of 
lidar sensors. These sensors emit laser beams that bounce off surfaces and return to the device, 
allowing for the accurate measurement of distances and the creation of precise 3D point clouds. 
This process is quick, efficient, and requires minimal user input, making it an ideal solution for 
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users seeking an intuitive way to model their indoor spaces. One standout feature of this 
approach is its computational efficiency. Lidar sensors provide real-time depth information, which 
significantly reduces the computational load compared to image-based methods. This means that 
the process of generating 3D models becomes almost instantaneous. Users can simply walk 
around the room with their smartphones, and the lidar sensor captures the spatial data necessary 
to create a virtual representation. The generated point cloud offers a foundation for further 
analysis and visualization. 
The workflow is highly smooth and user friendly (Figure 2.8.) which starts with defining the 
project, location, function, and other required details by which the level of details can be 
increased. In the next step the type of field data acquisition must be selected so that in this case 
LIDAR sensor would be the optimum choice. Then, the application will ask to rotate the phone 
and point a stick towards the first corner and other corners in order. After detecting a close shape, 
the application will ask to rotate the phone towards ceiling for height detection. The preliminary 
plan is constructed in this stage which needs more details including opening shape, location, and 
type. One again by pointing camera towards openings they will be automatically detected but the 
type of opening must be confirmed (if it is a door or operable window or a non-operable window). 
It should be noted that in any stage of this 3D model creation including this stage there is a 
possibility for editing, removing, or adding elements. The next two steps are optional for a 
building not only a single space which means users can add each space to a whole to create the 
whole unit. Additionally, furniture can be added to the unit too. Finally, the CAD model can be 
exported to be used for different purposes. 

 
Figure 2. 8. 3D model creation workflows 
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Magicplan and similar applications build upon this lidar-based data by incorporating intelligent 
algorithms that identify edges, corners, and openings in the room. By processing the lidar data, 
these apps can detect the boundaries of the room, calculate its height, and recognize openings 
such as windows and doors. This information is then used to construct a simplified 3D model that 
captures the essential features of space. The beauty of this method lies in its accessibility – 
anyone with a compatible smartphone can use it, regardless of their technical background. 
Moreover, the lidar-based approach eliminates the need for labor-intensive manual 
measurements or complex 3D modeling software. Users can create accurate floor plans and room 
layouts with just a few taps on their screens. The user-friendly interface guides individuals 
through the scanning process, ensuring that the captured data aligns with the physical space. The 
benefits of this method extend beyond its ease of use. The generated 3D models serve various 
purposes, from aiding in interior design and furniture placement to assisting in renovation 
planning. The accuracy of the lidar-based approach ensures that users can make informed 
decisions based on reliable representations of their environments. Additionally, these models can 
be easily shared with architects, contractors, and other professionals, streamlining 
communication and collaboration. 
Therefore, the benefits of this method compared to the previous one can be categorized as 
below: 

- User-friendly interface 

- Low-cost method 

- Fast process 

- Low-computational resource requirement 

- High accuracy 

 

 

2.5. Bigdata Generation 

 
Conventionally, studies focused on optimizing building performance often utilize unchanging 
building shapes, with the parameters for optimization being the physical characteristics of 
materials or the configurations of building systems [67]. While this method is completely valid, it 
may not be applicable when the actual building is not considered. In better words, when talking 
about an archetype of a specific style of architecture or building rather than an actual case study 
the geometry and shape of the buildings within the studied cluster can be slightly or even 
considerably different. In this situation considering similarities is important but differences are 
more critical. In order to consider almost all possible cases within the studied cluster two sets of 
information were needed. 
Firstly, the basic characteristics of the archetype of specific style of buildings that is the focus of 
this project. This archetype is the most frequent style of building in the cluster with the normal 
building components that have been used in similar buildings. Characteristics of the archetype 
can be categorized into the following three items: 

• Spatial configuration: 

Number of bedrooms and other spaces 
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General shape and geometry of the house 

Number of floors 

Shape of each space 

 

• Construction details: 

Normal indoor and outdoor walls 

Number of windows and the type of glazing and frame of windows 

Foundation details 

• Operational details: 

Function of the building 

Schedule of occupancy 

Energy systems 

Operational settings 

 

Secondly, the range of variations for each characteristic is also another important feature that 
helps the inclusion of majority of cases in the cluster. In this way through a deep field study the 
possible range of each feature of the cluster will be identified.  
By having these two sets of information it would be possible to generate the big data for 
parametric analysis. In the process of constructing a model to predict energy consumption, a 
plethora of input parameters are considered. These parameters exhibit intricate interrelations, 
and when combined with variations in building types, lead to considerable disparities in energy 
consumption outcomes. Current methodologies and associated software tools utilized in energy 
simulations often fall short in terms of facilitating seamless data exchange and interoperability 
across various modeling and energy simulation platforms. An up-and-coming technique in the 
realm of energy analysis is parametric analysis [68]. Notwithstanding its potential, it yields 
voluminous numerical datasets, which can be daunting for many design professionals to decipher. 
This is particularly true for architects who are more inclined towards perceiving analysis results 
in more intuitive visual representations, rather than delving into extensive numerical datasets. It 
is worth noting that during the preliminary phases of design conceptualization, architects often 
endeavor to formulate a design that optimally balances heating, cooling, and lighting loads. 
Parametric design can be understood as an approach that grapples with design variables related 
to the geometric properties, particularly from an architectural perspective. It essentially serves 
as a medium to articulate an idea, converting it into tangible actions using certain parameters, 
which, in this context, represent the significant attributes of the design. Such a parametric model, 
when visualized, presents a specific shape derived from a pre-determined set of parameters 
currently in use. These parameters are interconnected through an array of associations, enabling 
designers to revisit and adapt logical definitions whenever there's an alteration in preceding 
parameters at any juncture during the design phase. On a related note, Building Energy Modeling 
(BEM) is employed to project a structure's expected energy consumption and the consequent 
energy savings when juxtaposed with a standard benchmark. This projection aids in affirming a 
project's adherence to local, regional, or national energy standards. The accuracy of BEM hinges 
on Typical Meteorological Year (TMY) data and certain assumptions concerning the operation of 
the building [69]. It's pivotal to recognize that the accuracy of these predictions aligns closely with 
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the underlying assumptions. In this regard, the process of energy process would be as Figure 2.9 
in which the input data will be given to the energy simulation engine to have the building 
performance results. 

  
Figure 2. 9. 3D Energy simulation workflows 

 
According to the field study and the two sets of data it would be possible to generate big data. 
Nevertheless, it is important to mention here that in this case because of two main reasons the 
focus scale of study is a single space rather than a complete house. The main reason is that most 
house or apartment owners in Poland are enthusiastic about having a deep insight about each 
space since it is quite normal there that each space is rented separately. It means that the general 
insight into the house in this case while being useful might not be the exact information that 
building owners are looking for. Another reason is that is that in almost most cases in Poland as 
the case study at least there is one space that has experienced undocumented renovation that 
can compromise the whole Building energy simulation (BES) result of the building. Therefore, the 
focus of this study would be on single spaces of the studied building cluster to be more consistent 
in terms of building characteristics as well as the results. 
 

2.5.1. General Workflow 

 
In this section, we delve into the intricate processes underlying big data generation, elucidating 
its general workflow. This exploration commences by leveraging two distinct sets of information 
derived from a previously mentioned field study - the Archetype and the variation range. The 
nuances and intricacies of these data sets will be unraveled in greater depth as we venture deeper 
into the discussion of this phase. From these foundational data layers emerges what we term the 
"geometry range." This encompasses nearly every conceivable shape and configuration of the 
space under study, all confined within the defined cluster boundaries. For readers seeking a more 
granulated understanding of the cluster's characteristics and significance, a thorough 
examination is reserved for the case study section. 
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Once the geometry range has been meticulously crafted, it paves the way for the incorporation 
of supplementary Energy Application domain (EDA) details. These details span a broad spectrum, 
capturing facets like energy systems, schedules of operation, openings, construction intricacies, 
and so forth. The culmination of this extensive data collation and processing is represented by 
the Input Data File (IDF). This file format is particularly pivotal for its compatibility with energy 
simulation engines, most notably, EnergyPlus. When this IDF file is fed into the energy simulation 
engine, it undergoes a rigorous analysis, subsequently yielding insights into the energy 
performance of the buildings under study. For a visual representation of this process, readers are 
directed to Figure 2.10, which provides a comprehensive overview. 
 

 
Figure 2. 10. General workflow of big data generation 

 
In terms of tools that have been used in this workflow the process of automated bigdata 
generation using geometrical and environmental input begins in Rhino environment using 
Grasshopper plugin. The output in the form of geometry was then used as an input to Ladybug 
tools component to define the space as a thermal zone and then as a living space with defining 
function, schedule and the energy systems in Honeybee plugin. It led to the creation of the IDF 
file which was the input for EnergyPlus energy simulation engine to run the calculation and the 
results were extracted in a CSV file for further analysis (Figure 2.11). 
 

 
Figure 2. 11. Application used in different stages of general workflow 
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2.5.2. Geometry Creation 

 
In this initial part of big data generation, it was very critical to set the archetype and variation in 
a form to include the highest possible rate of buildings in the cluster within the range so the 
results would be representing the behavior of the whole cluster. In this way the most basic 
geometrical feature of a single space. Hence, using features in Figure 2.12 was the beginning of 
the geometry creating in the first step of the workflow. 
 

    
Figure 2.12. upper and lower range of input geometrical range 

The basic geometrical features including height, width, Length, window to wall ratio and rotation 
variables with specific ranges and distance between each step created the whole dataset. Indeed, 
based on the field study for each single room of the cluster house the following range includes 
most cases the following range and steps have been used in this study (Table 2.1.).  

Table 2.1. Variable range and steps 
Variable Min Max Step No. of Variations 

Height 3 4 0.25 5 

Width 3 5 0.5 5 

Length 5 7 0.5 5 

Window to Wall Ration 0.2 0.8 0.2 4 

Rotation 0 300 60 6 

Total Variations 3000 

 
Using these ranges as input created the geometry of the space using shoe-box modelling attitude 
based on Reinhart suggestion [70] which has been proven to be a useful method for comparing 
variations of a building cluster as it can speed up the process and avoid unnecessary calculations. 
Also, there are numerous studies that have validated the applicability of using shoebox modelling 
for BEM and UBEM [70, 71].  
It is important to mention here that window to wall ratio in this study defined as the percentage 
of the total area of the exterior wall and the shape of window is the offset of the wall itself. 

2.5.3. Construction Details 

 
In this stage based on most frequent construction details and materials used in the building 
cluster, required information and measurements were translated in Honeybee material 
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algorithm. In order to do this each layer of material should be defined accurately based on the 
following order in Table 2.2. 

Table 2.2. Variable range and steps 
Variable Description 

Name Name of the material (for future reference and reporting) 

Thickness Thickness of the material layer [m] 

Conductivity Measure of material's ability to conduct heat [W/mK] 

Density Mass of the material per unit volume [kg/m³] 

Specific Heat Amount of heat energy required to raise the temperature of the material by 1°C [J/kg°C] 

Roughness Surface irregularities and texture that affect friction and interaction 

Thermal 
Absorption 

Capacity of a material to soak in and retain thermal energy 

Solar 
Absorption 

Ability of a material to capture solar radiation 

Visual 
Absorption 

Material's propensity to capture or reflect light in the visible spectrum 

 
After defining each material based on these order and using Honeybee Opaque Material 
Component. Cobining these layers, will define the construction details of a specific surface such 
as exterior wall for instance. According to  Figure 2.13. 
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Figure 2.13. creation of different construction details using Honeybee components 
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2.5.4. EAD Additions 

 
Then in order to apply EAD additions, there are two important layers off data that must be added 
to the basic model. Firstly, the energy systems and secondly occupants profile. In order to do it, 
it is vital to have deep enough knowledge about the original and current systems of the studied 
building cluster which are as follows: 

• Heating: Originally most of buildings in the cluster would have been primarily heated with 

coal-fired boilers, with radiators distributing the heat throughout the house. Over the years, 

coal-fired boilers have been largely replaced. Now, it's more common to find gas-fired 

boilers or pellet stoves. Underfloor heating systems might also be present in some homes. 

• Cooling: Typically buildings lacked air conditioning systems, relying on the natural 

cooling provided by window ventilation and thick walls. This condition continues which 

seems a bit stanger as the need for cooling is under a sharp increase in Poland and the 

studied region. 

• Ventilation: These buildings predominantly depended on natural ventilation methods, such 

as opening windows and doors. While many houses continue to use natural ventilation, 

there's an increasing number that have incorporated mechanical ventilation systems, 

particularly in homes that have been upgraded to meet modern insulation standards. 

• Domestic Hot Water (DHW): In original Systems coal-fired boilers were commonly used 

not only for heating but also for supplying hot water. Some homes also had stand-alone 

electric water heaters. Today, the trend leans towards using gas-fired boilers or even solar 

water heaters for DHW, both of which offer improved energy efficiency and a more 

consistent hot water supply. 

More details about this type of buildings and the overview of the whole Polish building stock will 
be given in the case study section. These information coupled with the occupants profile in the 
format of user schedule have been defined to have a complete set of EAD additions (Table 2.3.).  

Table 2.3. User profile variables 
Variable in Honeybee component Description 

_room_or_program Identifies the space type or function (e.g., office or bedroom) 

occupancy_sch_ Indicates when the space is occupied 

activity_sch_ Describes intensity of activities in the space in Watts 

Lighting _sch_ Dictates when lights are on or off 

Electric_equip_sch_ Shows when electric equipment is in use 

Gas_equip_sch_ Represents operation times for gas-powered equipment 

infiltration_sch_ Details air leak schedules into/out of the space 

ventilation_sch_ Indicates mechanical ventilation operation times 

Heating_setpy_sch_ Provides heating temperature setpoints 

Cooling_stp_sch_ Gives cooling temperature setpoints 

 
In energy simulations, it's crucial to recognize that while technologies, materials, and design play 
a significant role, it's ultimately user behavior that often determines the real-world outcomes. 
This means that even with state-of-the-art energy-efficient technologies, user behavior can either 
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augment or undermine the building's intended energy performance [72]. Two identically 
constructed spaces can present starkly different energy profiles solely because of variations in 
user behavior [73]. This could range from how often lights are left on, the temperature 
preferences set on thermostats, or even the frequency of window openings [74]. Such daily 
actions, while seemingly minor, cumulatively dictate a building's energy footprint . 
Hence, the user profile in Honeybee is not just a feature; it's an acknowledgment of the 
paramount importance of user behavior. Without thoroughly accounting for it, our energy models 
and predictions remain notably abstracted from reality. To truly optimize for energy efficiency, it's 
imperative that architects, engineers, and designers deeply integrate an understanding of user 
behavior into their strategies, ensuring that buildings not only resonate with technological 
efficiency but also align seamlessly with the behavioral patterns of their occupants [75]. 

2.5.5. Energy Simulation 

 
In the current phase of our big data generation process, the outcomes derived from the preceding 
steps are consolidated and structured in the format of a Honeybee room. This formatted data is 
then provided as an input to the Honeybee Annual Load Component (Figure 2.14.). Crucially, this 
component leverages the capabilities of the EnergyPlus engine, a sophisticated simulation 
software, to determine the heating, cooling, and lighting loads of the modelled space across an 
entire calendar year. It is worth noting that while the Honeybee Annual Load Component 
possesses the capability to compute loads from various equipment and can also account for 
domestic hot water demand, such computations are not the primary focus of this research. Thus, 
these particular calculations have been excluded from the purview of our study. 

 
Figure 2.14. Honeybee annual load components 

 

2.5.6. Automation 

 
In the context of this research, a meticulous and comprehensive analysis of 300 potential options 
is imperative. Undertaking such an extensive analysis manually would undoubtedly be a daunting 
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task, given its sheer scale and complexity. To circumvent this manual labor and introduce a degree 
of efficiency and automation into the process, we adopted the use of an advanced Grasshopper 
plugin named "Colibri" (Figure 2.15.). Colibri boasts a carefully crafted workflow that aids in 
seamless automation. At the outset, input variables, which are represented by a number slider, 
provide a concise overview of the variable range, highlighting its minimum, maximum, and 
specific increments or steps. These inputs are then channeled into the Colibri Iterator component. 
This Iterator is designed to calculate the total number of iterations, keeping in consideration the 
total items within each range and the cumulative count of impactful variables. 
It's crucial to note that for every iteration, a holistic assessment is conducted. Beyond merely 
analyzing output variables like cooling and heating loads, there's a concerted effort to scrutinize 
both direct and indirect input values. These encompass parameters such as height, width, length, 
rotation, and the window to wall ratio. Furthermore, attributes like relative compactness, surface 
area, volume, and roof area are meticulously documented. Such an expansive approach ensures 
that all pertinent details of one iteration are captured, providing a rich data set for further 
evaluation. To effectively capture and store these outputs, the Colibri Parameters component is 
employed. This dedicated component archives the desired output after each simulation. Bringing 
the process to a close, the Colibri Aggregator consolidates the inputs and outputs, presenting 
them in an organized CSV format. This resultant file, with its depth of information, becomes a 
cornerstone for subsequent analyses, laying the foundation for insightful deductions and 
evaluations. 

 
Figure 2.15. components of Colibri for automation 
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2.6. Climate Change Consideration 

 
Within the ambit of this research, a salient objective has been to assess the ramifications of 
climate change on the performance metrics of buildings. While a comprehensive discourse on 
this subject will be delved into in Chapter 4, the purpose of this section is to proffer a concise 
overview of the workflow that underscores the need and validates the relevance of considering 
climate change effects on architectural edifices. Initially, a sweeping literature review was 
embarked upon to discern the interplay between meteorological variables and building energy 
performance. The nuances and multifaceted dimensions of this relationship, gleaned from an 
extensive body of existing research, are presented in depth in Chapter 4. Such an examination 
was deemed necessary to establish a robust foundational understanding upon which the 
subsequent analyses could be built. Post the literature review, the study ventured into an 
exhaustive simulation-based examination. This was orchestrated with the intent to gauge, with 
empirical precision, the impacts of shifting climatic patterns on the energy consumption metrics 
of buildings. Specifically, the geographic locus for this segment of the study was Poland, with a 
micro-focus on Poznań as a representative case study for this research. The choice of Poznań was 
predicated on its emblematic climatic conditions, making it an apt ground for such an inquiry. 
What adds a layer of depth to this investigation is that it wasn't confined to a singular building 
archetype. On the contrary, the simulation encompassed an array of 16 diverse building 
typologies. By casting such a broad net, the intention was to derive a panoramic view of the 
potential impacts of climate change on various structural categories. This was instrumental in 
establishing a preliminary validation framework. Having acquired insights at this macro level, the 
research then converged its focus onto a specific building cluster, which remains the cynosure of 
this research. Through this phased and tiered approach, the study aims to present a 
comprehensive and nuanced understanding of the subject matter. 
In this regard the methodology of this part can be presented as Figure 2.16. where all three steps 
of this part have been described. 
 

 
Figure 2.16. stages of considering climate change in the study 
 
While the first stage of this process is straightforward in terms of methodology other parts need 
clarification. For this part research, a distinct set of historical data, encapsulated in the form of a 
Typical Meteorological Year (TMY file), was utilized. This particular file was selected due to its 

Literature Review: Impact of Weather Parameters Influenced by Climate 
Change on Household Heating and Cooling Demands of Buildings

Generating Future weather data for Poznan

Impact Assessment of Climate Change on Building Energy Consumption 
in Poznan for Different Building Types

Incorporating Climate Change in Simulation Process
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recency, especially when compared to other TMY files available for various locations throughout 
Poland. For the foundational phase of the study, a weather file sourced from the Ławica Airport 
weather station with the normal data from 2008 to 2018 (Table 2.4.) in Poznan was adopted as 
the primary benchmark for subsequent projections. 

Table 2.4. used data for each month of the weather file. 
Month Representative year Month Representative year 

January 2012 July 2012 

February 2015 August 2011 

March 2018 September 2012 

April 2010 October 2008 

May 2007 November 2012 

June 2016 December 2008 

 
Data for this step was derived from Global Climate Models (GCMs) and subsequently integrated 
into the Climate Change World Weather Generator (CCWorldWeatherGen) tool, a notable 
innovation by the Sustainable Energy Research Group (SERG) at the University of Southampton, 
England. Originally developed by Jentsch [76, 77], this Microsoft® Excel-based tool, known 
formally as the 'Climate Change World Weather Generator' and often referred to as 
CCWorldWeatherGen, harnesses the output data of HadCM3 (a contribution from the Met Office 
Hadley Centre for Climate Science and Services; 2010). The IPCC A2 emission scenario is employed 
to formulate prospective weather files through the application of the morphing method. A 
comprehensive assessment was conducted by Jentsch et al., where 23 GCMs under AR4 and six 
GCMs under AR3 were examined globally. It was determined that the HadCM3, in conjunction 
with the A2 emission scenario, was well-suited for the morphing technique. The A2 emission 
scenario, as outlined by the IPCC AR3, paints a trajectory characterized by an ongoing surge in the 
global population and a regionally focused economic growth. Consequently, the utilization of 
HadCM3, aligned with the A2 emission scenario, for the CCWorldWeatherGen tool that 
incorporates the morphing method, was deemed appropriate. 
The CCWorldWeatherGen tool, due to its inherent capabilities, provides researchers with an 
efficient projection regarding future climatic trajectories [78]. Upon integration of the TMY file 
into the CCWorldWeatherGen, future climatic data for both 2050 and 2080 were generated, 
adhering to the principles of the A2 scenario. The data extracted from GCMs was then introduced 
into the CCWorldWeatherGen, facilitating a statistical downscaling of the baseline and the 
generation of weather data for subsequent scenarios. For the duration of this study, a 
presumption was made that building life cycles endure a minimum of 60 years. This suggests that 
no significant alterations would be observable in building components' performance, especially 
concerning thermal loads, during the entirety of the analysis period. 
The study's progression led to building energy modeling being executed using EnergyPlus 9.0.1. 
The objective here was to simulate the potential consequences of climate change on the thermal 
loads of buildings, with the city of Poznan as the focal point. To ensure an encompassing 
perspective, 16 building prototypes as defined by the ASHRAE standard 90.1 were incorporated 
into the study. These prototypes, derived from the DOE’s Commercial Reference Building Models, 
underwent modifications inspired by the Advanced Energy Design Guide series and the ASHRAE 
90.1 committee. Detailed nuances and modeling methodologies related to these prototypes can 
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be found in the reports released by the Pacific Northwest National Laboratory (PNNL) [79, 80] as 
in Figure 2.17. 

 
Figure 2.17. Building prototypes from the ASHRAE 90.1 standard [81] 

 
Endowed with authentic building characteristics, these 16 prototypes were simulated using both 
current and anticipated weather data to gauge the relative effects of climate change on their 
energy performance metrics. A meticulous detailing of the prototypes' envelope components has 
been documented and is accessible in Table 2.5. 
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Table 2.5. Technical description of the prototype envelope 

Building Type U-value (W/(m2 K)) 

Roof External Wall Glazing 

Window Skylight 

Apartment High-rise (BP1) 0.18 0.31 2.65 - 

Mid-rise (BP2) 0.18 0.31 2.65 - 

Hotel Large (BP4) 0.18 0.45, 0.51 2.65 - 

Small (BP5) 0.18 0.31 2.65 - 

 
Office 

Large (BP6) 0.18 0.51 2.65 - 

Medium (BP7) 0.18 0.31 2.65 - 

Small (BP8) 0.15 0.29 2.65 - 

Medical Hospital (BP3) 0.18 0.45, 0.51 2.65 - 

Outpatient (BP9) 0.18 0.31 2.65 - 

Restaurant Fastfood (BP10) 0.15 0.29 2.65 - 

Sit-down (BP11) 0.15 0.31 2.65 - 

Retail Stand-alone (BP12) 0.18 0.51 2.65 2.96 

Strip-mall (BP13) 0.18 0.31 2.65 - 

Educational Primary School (BP14) 0.18 0.31 2.65 - 

Secondary School (BP15) 0.18 0.31 2.65 2.96 

Warehouse (BP16) 0.21 0.28, 0.47 2.65 2.96 

 
Upon the meticulous execution of energy simulations for each individual prototype, utilizing both 
contemporary and forecasted climate weather files, a detailed comparative analysis was 
conducted. This analysis not only can reveal the influence of climate change on the thermal load 
within architectural structures but also underscored the intricate relationships between building 
characteristics and changing climatic conditions. Shedding light on these nuances, particularly the 
thermal responses of buildings to evolving climatic scenarios, was a pivotal and central objective 
of this comprehensive research document. Through this exploration, deeper insights were 
garnered, contributing significantly to the broader discourse on building resilience and climate 
adaptation. Therefore, the whole process of this step can be presented as in Figure 2.18. 
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Figure 2.18. Workflow of incorporating climate change consideration 

 
Finally, after careful consideration of the potential impacts of climate change on the behavior of 
buildings in terms of energy consumption, the generated weather file was used for the simulation 
and generating the big data. 
 

2.7. Data-driven Methods 

 
The adoption of surrogate data-driven models has been advocated as a solution to the challenge 
posed by very long energy simulation procedures, as noted in the work of Zhao & Magoules [82]. 
In essence, these models encapsulate mathematical relationships that capture the dynamics 
between specific inputs and desired outputs in the system under investigation. These 
relationships are often formulated based on empirical or simulated data that represent the 



43 
 

physical phenomena being studied. For instance, the thermo-physical attributes of construction 
materials coupled with meteorological variables can serve as predictors for indoor environmental 
conditions, an approach that is pursued in the current research endeavor. Models that 
demonstrate a high level of precision act as expedient and accurate substitutes to traditional 
building performance simulation tools, particularly in scenarios that demand substantial 
computational resources [83]. The employment of such surrogate models necessitates a rigorous 
evaluation of both the data's reliability and the legitimacy of the inferred relationships. In the 
context of the present research, an analytical lens is placed on a specific facet of this 
methodology, namely the process of selecting and fine-tuning regression models tailored to a 
given dataset. This entails the deliberate choice of model types, structural configurations, and 
critical parameters that align optimally with the problem scope. While extant literature often 
contrasts linear models with their nonlinear counterparts or evaluates different genres of 
nonlinear models in the domain of building simulation [84], such studies usually concentrate on 
a restricted set of model parameters. The performance of a model in handling a specific dataset 
is fundamentally contingent on the selection of these parameters, a performance metric that 
inherently fluctuates across diverse datasets. Consequently, earlier research has not rendered an 
exhaustive critique of various nonlinear models, nor has it furnished ample guidelines regarding 
model selection criteria. In the present work, it is posited that the act of model selection ought 
to consider a myriad of factors, encompassing predictive accuracy, model intricacy, user-
friendliness, and the stability of the model's predictions. In the current section, a very brief 
description of the workflow of the deployment of the data-driven methods in analyzing the 
generated data in previous steps is presented (Figure 2.19.). 

 
Figure 2.19. Data-driven method deployment workflow 
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The research approach was organized into several key stages to ensure the quality and rigor of 
the study. Initially, an expansive dataset generated in previous phases of the research served as 
the foundational input for data-driven methods, primarily employing Python and associated 
packages. The initial stage was dedicated to Exploratory Data Analysis (EDA), where the normality 
of the data was scrutinized, and outliers were assessed to determine if corrective measures were 
needed. Following the EDA, data pre-processing commenced. During this stage, data 
normalization procedures were executed, and outliers were systematically removed. Additionally, 
clustering techniques were employed, not only to improve the understanding of the data but also 
to introduce new categorical variables that could offer a more nuanced description of energy 
consumption behaviors. Furthermore, a sensitivity analysis was undertaken at this stage to reveal 
the most influential variables and to quantify the magnitude of their impact on energy 
consumption rates. 
After the pre-processing phase, the data was segregated into training, testing, and validation sets. 
These subsets were earmarked for use in various machine learning (ML) models. The next phase 
involved model development; wherein multiple models were calibrated using the training data. 
An initial evaluation was then conducted using the testing data, providing preliminary feedback 
on the performance of each model. This feedback became instrumental in the next stage of model 
tuning. Hyperparameter tuning was executed, followed by the implementation of regularization 
techniques to avoid overfitting. Another round of model evaluation was conducted through cross-
validation, ensuring the robustness of the selected models. 
Lastly, the model boasting the best-tuned hyperparameters was applied to the training dataset. 
Its performance was subsequently assessed using the test dataset. Ultimately, the final predictive 
model was validated using the separate validation dataset. This rigorous process culminated in 
definitive conclusions regarding the applicability and reliability of the data-driven method in the 
context of building energy consumption. 

 

2.8. Integrated Workflow 

 
Upon completion of the aforementioned stages, it became critically important to establish 
seamless connections between each phase of the research to ensure the integrity and 
effectiveness of the overall process. To achieve this, the simplified 3D geometry that was 
extracted from the initial data was imported into the Grasshopper software environment (Figure 
2.20.). Within Grasshopper, a series of computational operations were performed to isolate 
specific architectural and design features from the 3D geometry. These features encompassed a 
range of parameters, including but not limited to, the building's height, length, and width, as well 
as nuanced variables such as the window-to-wall ratio, characteristic length, and relative 
compactness, among others. 
Once these features were accurately extracted, they served as the foundational input variables 
for the machine learning model that had been rigorously trained to predict energy consumption 
rates. The significance of these selected features cannot be overstated, as they represent key 
determinants in the model's ability to generate reliable energy consumption forecasts. 
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It is worth noting that during this integration stage, special attention was given to validation 
procedures. The validation data, which had not been a part of the original training or testing 
datasets, was also subjected to energy consumption simulations. These simulations were 
executed with the explicit aim of comparing the results against those produced by the data-driven 
model. This comparative analysis was undertaken as a crucial step in validating the performance 
of the machine learning model, thereby bolstering the reliability and generalizability of the 
research outcomes. This dual-pronged approach of both simulation and data-driven modeling 
provided a comprehensive and robust validation framework, reinforcing the credibility of the 
model's predictive capabilities. 

 
Figure 2.20. integration part of the workflow 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 3: Research Context 
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3.1. Abstract  

 

This chapter provides a detailed analysis of the energy efficiency of residential buildings in Poland, 
homing in a specific cluster of buildings constructed between 1945-1970 in the Wielkopolski 
region, especially in Poznan. The chapter categorizes buildings into various clusters based on their 
construction years and assesses their energy consumption patterns, revealing the 1945-1970 
cluster as particularly energy-inefficient and therefore a priority for immediate intervention. The 
chapter evaluates various components of building energy consumption, such as building 
envelopes, HVAC systems, Domestic Hot Water (DHW), and potential renewable energy solutions. 
It also exposes Poland's deviation from EU energy consumption norms, particularly the country's 
significant reliance on coal. This situation underscores the urgency for energy-efficient upgrades, 
especially in rural areas with less stringent building codes. Within the specific focus on Poznan's 
1945-1970 building cluster, this chapter discusses their unique architectural and construction 
characteristics, ranging from high-quality bricks to outdated heating solutions. It recommends 
data-driven methodologies like energy audits and machine learning for identifying the most 
impactful and cost-effective retrofit options. The overarching aim of this chapter is to offer 
targeted, actionable recommendations for improving the energy efficiency of this key building 
cluster. These proposed changes aim not only to benefit the individual owners of these buildings 
but also to contribute to broader environmental and economic stability objectives within Poland. 
 
 

3.2. Introduction 
 

 
Poland finds itself at a pivotal juncture, facing significant challenges and opportunities in its 
energy market, which is currently heavily reliant on coal (Figure 3.1.) even for residential heating 
(Figure 3.2.). Amidst increasing pressures from European Union policies to transition towards 
more sustainable energy sources, the country has set an ambitious target to phase out coal and 
shut down all its coal mines by 2049. This decision is particularly notable given that Poland is one 
of the fastest-growing economies in the Euro Zone, with its construction sector expected to 
expand rapidly. According to the European Construction Sector Observatory (ECSO), this sector is 
predicted to grow by 5.4% between 2020 and 2021 [85]. This upward trajectory in the 
construction sector is further substantiated by the data on commissioned apartments, which have 
seen a significant increase from 2014 to 2018. The Polish government has been proactive in 
implementing policies aimed at decarbonizing its energy sector, thereby positioning the country 
on a sustainable growth path. The role of decarbonizing the building sector in Poland is critically 
important in meeting the EU's climate and energy objectives for 2030 and 2050, as buildings in 
Poland account for a substantial 38% of total energy consumption [86] and contribute to 33% of 
energy-related greenhouse gas emissions [87]. 
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Figure 3.1. Fuel share of residential heating in Europe, based on [88] 

 
Figure 3.2. Heating appliances and main sources of pollution in Poland ,based on [86] 

 
The residential sector is particularly worrisome; it depends more on solid fuels than any other EU 
country, contributing to deteriorating ambient air quality and raising concerns over energy 
security [89]. To comply with the European Union's net 55% emission reduction target by 2030, 
Poland must aim for a 20% reduction in energy-related greenhouse gas emissions from buildings 
compared to 2015 levels, a goal far more ambitious than the 7% initially outlined in the National 
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Energy and Climate Plan (NECP) [90]. Between 2008 and 2018, Poland ranked 21st among EU 
nations in terms of energy efficiency of households with an annual rate of energy efficiency 
improvements at 1.13%, it fell below the EU’s average, and even more dramatically behind the 
improvement rates observed in the industrial sectors of Poland [88, 91]. However, there are 
initiatives in place for improving energy efficiency in multifamily buildings, and Poland does have 
an energy efficiency obligation scheme [92]. The residential sector remains the largest cluster of 
residential buildings (Table 3.1) and the highest energy consumer, mainly fueled by single-family 
buildings.  
 
 
 
 
 
 

Table 3.1. Technical description of the prototype envelope, based on [93] 
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6,047.1 5,567.6 5,542.6 5,007.5 535.1 3.3 21.0 479.5 

Urban Areas 2,285.6 2,189.2 2,176.4 1,738.2 438.2 1.8 10.8 96.4 

Rural Areas 3,761.5 3,378.4 3,366.2 3,269.3 96.9 1.4 10.3 383.1 

 
Data from the National Energy Conservation Agency (KAPE), part of the TABULA project, reveals 
that nearly half of Polish households (approximately 5.5 million households) reside in single-
family homes [94]. These homes predominantly rely on coal, biomass, and waste for heating and 
domestic hot water (DHW). The TABULA project offers a typological classification of residential 
buildings in Poland, categorized into single-family houses (SFH), terraced houses (TH), multifamily 
houses (MFH), and apartment blocks. Each category has been further divided into seven types 
based on building traditions and insulation levels [94]. In light of these complexities, this chapter 
aims to provide a detailed snapshot of the current state of energy efficiency in Poland's residential 
building sector as well as the studied cluster, which stands as one of the significant sources of 
pollution and energy consumption. The objective is to assess the energy efficiency landscape in 
this crucial sector, offering insights that could inform both policy and practice. 
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3.3. Financial Supports 

 
The subject of financial factors influencing buildings' energy efficiency in Poland has been 
relatively under-researched, even though it remains a critical determinant for policy formulation 
and investment decisions. While there are a few studies that have delved into this area, their 
scope, focus, and findings are varied, leading to gaps in comprehensive understanding. In 2013, 
the Building Performance Institute Europe (BPIE) led one of the earliest initiatives to examine 
Poland’s approach to cost-optimality in building energy efficiency [95]. The study revealed a 
considerable discrepancy between Poland’s U-values and those suggested by the European 
Union’s cost-optimal methodology [96]. The incongruence indicates that Poland's energy 
standards, particularly for gas and coal, are less stringent than what the EU recommends. This 
discovery raises questions about the effectiveness and adequacy of Poland's current regulatory 
framework concerning building energy efficiency. 
In another study conducted by Basinska et al. in 2015 [97], the authors explored the optimal 
energy requirements for residential buildings in Poland over a span of 30 years. The research was 
rooted in Polish energy standards [98] and applied a comprehensive global cost calculation 
method. The study incorporated 28 technical variations that spanned envelope, HVAC systems, 
and economic facets of energy sources and pricing. Despite its thoroughness, the study stopped 
short of ranking energy-efficient measures by their payback time or overall cost-effectiveness. 
Additionally, it did not align itself with the EU's cost-optimality framework [98], but relied instead 
on Poland's 2008 energy efficiency regulations. A further contribution to this area was the 2016 
BPIE status report [93], which provided a robust account of existing financing mechanisms for 
building energy performance improvements in Poland. This study reviewed operational funding 
schemes like the Thermo-modernization Fund, RY'S Fund, the Clean Air Fund (2018–2029), and 
others including KAWKA and SMEs-focused programs. It also examined the role of the National 
Fund for Environmental Protection and Water Management (NFEP&WM) in this context. The 
study assessed the effectiveness of current renovation technologies in Poland and evaluated 
them against three proposed renovation scenarios. 
In 2019, Firląg [99] embarked on an in-depth study examining the cost-effectiveness of energy 
performance in single-family residences. The central objective of this research was to develop 
guidelines for Plus Energy Buildings (PEB) specifically tailored to the Polish housing landscape. 
Utilizing Poland's 2015 energy efficiency standards as a foundation [98], the study explored 
multiple avenues for boosting energy efficiency and incorporating renewable energy solutions in 
various building subsystems. These subsystems included thermal insulation components, 
ventilation infrastructure, and heating systems. The research offered pivotal insights and 
suggestions for new regulations slated to be introduced in 2021. These forthcoming rules specify 
that the annual demand for non-renewable primary energy (which encompasses heating, 
ventilation, cooling, domestic hot water provisioning, and lighting) should not exceed 70 kWh/m2 
per annum. Nonetheless, the study fell short in defining the cost-optimal benchmarks explicitly 
considered in Polish energy efficiency laws. 
Fast-forwarding to 2020, Adamczyk et al. [100] investigated the economic implications of 
medium-level Thermo-Modernization initiatives for single-family houses. Their research 
unambiguously confirmed the absence of substantial financial gains for homeowners who opt for 
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medium-level thermal upgrades. Especially when contrasted with conventional coal, biomass, 
and waste boilers, the elevated initial costs of efficient alternatives, such as natural gas and fuel 
oil boilers, inhibit any meaningful economic benefits for substantial renovations. Similarly, 
Golabeska [101] conducted an economic assessment to determine the expenses associated with 
constructing and maintaining a Passive House (PH)-certified dwelling. The results showed that 
despite higher initial costs relative to traditional construction, the economic viability of PH-
certified homes becomes apparent only when operational costs are considered over a long-term 
horizon exceeding 30 years. 
Supplementing these insights, Ksiezopolski et al. [91] carried out a study in 2020 focused on the 
potential for both energy and financial savings achievable through the renovation of rural single-
family homes in Poland. Their research emphasized the implementation of various energy 
conservation strategies, such as enhancing the building's thermal envelope and transitioning from 
coal-based boilers to cleaner alternatives like gas, electric, and heat pump/Photovoltaic (PV) 
systems. The study concluded that, under the Polish Prosumer support mechanism, heat pumps 
powered by PV installations emerged as the most economically efficient heating solution for 
single-family homes. However, without the availability of green subsidies or other financial 
incentives, these systems remained economically unfeasible. Intriguingly, none of these two more 
recent studies [91, 101] adhered to the European Union's prescribed cost-optimality 
methodology, thereby marking a deviation from a standardized European approach to such 
analyses. 
The existing research has successfully integrated the assumptions related to green subsidies and 
financial support funding into the evaluations of cost-effectiveness in the context of Poland's 
energy landscape. However, these studies exhibit limitations concerning the representation of 
national architectural archetypes. Ideally, the selection should have been founded on a thorough 
characterization of Poland's building typology [94]. Additionally, the studies fell short in aligning 
their future renovation or new construction scenarios with upcoming energy efficiency 
regulations and the requirements set forth by the Energy Performance of Buildings Directive 
(EPBD) concerning nearly and net-zero energy buildings. 
Consequently, Poland has yet to fully adopt the European Union's cost-optimal methodology, 
which aims to standardize the determination of energy-efficient measures in building 
construction and renovation [102]. Only a handful of studies have scrutinized the role that 
subsidies play in influencing the adoption of energy-efficient measures in both newly constructed 
and renovated residential settings [91]. 
 
 

3.4. Energy Sources 

 
In Poland, non-renewable energy sources such as hard coal and natural gas continue to be the 
prevailing options for energy, particularly in the heating sector [103]. Over 40% of Polish 
households rely on district heating systems [86]. A detailed breakdown of energy consumption 
patterns in these households is provided in Table 3.2 [103]. As illustrated by the data, hard coal 
remains the principal fuel source for district heating, even though its usage dropped marginally 
from 86.7% in 2011 to 81.6% in 2017. When it comes to meeting the energy needs for space and 
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water heating, coal still constitutes a significant 39% of the total energy share, as shown in Fig. 
3.3. 
 

Table 3.2. Energy Use by Source and Purpose in Polish Households for 2018, based on [103] 
Energy 

community 
Unit of 

Measure 
Total Space 

Heating 
Water 

Heating 
Cooking Lighting + 

Electrical 
Appliances 

Electricity GWh 29284 1305 2118 3168 22693 
 TJ 105422 4698 7625 11405 81695 
Heat TJ 157000 107250 49750 X X 
Natural gas TJ (GCV) 165679 88532 43892 33255 X 
Solid fuels Thousands tons 10430 9365 935 130 X 
 TJ103 t 267440 240132 23975 3333 X 

Petroleum products Thousands tons 580 90 34 456 X 
 TJ103 t 26440 3930 1534 20976 X 
Of Which:       

LPG Thousands tons 500 20 24 24 X 
 TJ103 t 23000 920 1104 20976 X 
Heating Oil Thousands tons 80 70 10 X X 
 TJ103 t 3440 3010 430 X X 

Energy from 
renewable sources 

TJ 112675 98676 11784 2215 X 

Of Which: 

Solar energy TJ 2129 106 2023 X X 
Solid biofuels 
excluding charcoal 

TJ 108015 96800 9000 2215 X 

Geothermal energy 
and ambient heat 

TJ 2531 1770 761 X X 

Energy sources in 
total 

TJ 834656 543218 138560 71184 81695 
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a.  b.  

Figure 3.2. a. Structure of households energy consumption by various energy commodities, b. hare of 
energy sources used for heat demand in the residential sector 

 
A study examining the current state of Poland's heating market revealed that the existing energy 
infrastructure is antiquated [104]. This outdated system is plagued by inefficiencies in energy 
production and elevated levels of pollutant emissions. Accordingly, there is an immediate 
necessity for modernization efforts, which should encompass a thorough evaluation of 
transmission losses. Furthermore, an improvement in the efficiency of district heating systems 
could be achieved by better matching the heat capacity demanded by users [104]. On a more 
positive note, there has been a discernible shift toward renewable energy adoption in Poland's 
district heating systems in recent years. Investments in the maintenance and development of 
local heat sources and distribution networks tailored for residential structures are currently 
underway [105]. At the individual building level, a study by Krawczyk in 2016 [29] examined 
natural gas usage in a renovated Polish household for heating purposes. The research offered 
recommendations for energy conservation that align with the Polish energy efficiency regulations 
of 2015, which set the primary energy consumption factor at 120 kWh/m2 per year. 
Even more intriguingly, a study by Ksiezopolski et al. in 2020 investigated the potential of 
transitioning from coal to cleaner energy sources for heating [91]. Specifically, the study probed 
the impacts of replacing traditional coal boilers with alternatives powered by gas, electricity, and 
heat pump/Photovoltaic (PV) systems. The research also explored the feasibility of incorporating 
zero-emission heat sources, such as PV/heat pump installations, especially in rural areas of 
Poland. According to the data presented in Table 3.3, the conversion factors for calculating 
primary energy from solid fuels in Poland are notably low. These factors are dictated by the 
Regulation of the Minister of Infrastructure and Development as of March 18, 2015, which 
outlines the methodology for determining a building's energy performance. The study highlights 
that, in the absence of financial incentives, transitioning away from coal in residential settings 
would not be economically feasible. Existing research, although limited, has begun to tackle the 
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issue of reducing carbon emissions through heat generation for buildings and substituting 
conventional energy sources with renewable and other non-conventional alternatives. 

Table 3.3. Non-Renewable Primary Energy Input Factors for Energy Carrier, based on [106] 
No. Method of supplying a building or part 

of a building in energy 
Energy carrier type or energy type coefficient of 

expenditure 

1 Local energy production in the building Fuel oil 1.10 
2  Natural gas  
3  Hard coal  

4 District heating from cogeneration Hard coal or natural gas 0.80 
5  Biomass, biogas 0.15 

6 District heating from a local heating Hard coal 1.30 
7 plant Natural gas or fuel oil 1.20 

8 Electrical grid system Electricity 3.00 

9 Local renewable energy sources Solar energy 0.00 
10  Wind energy  
11  Geothermal energy  
12  Biomass 0.20 
13  Biogas 0.50 

 
Poland's domestic energy landscape presents a rather paradoxical situation. While the use of local 
coal in electricity production and domestic coal mining are on the decline, the demand for 
imported coal remains elevated. A study by Zieleniec et al. [107] revealed that Poland imported 
10 million tons of hard coal last year from countries like Russia, Chile, Colombia, the USA, and 
Kazakhstan. Concurrently, the role of gas in Poland's energy portfolio is growing; its share touched 
nearly 9% in 2018, mostly met through imports. Electricity generation from coal is dwindling, 
electricity imports are on the rise, and renewable energy is playing an increasingly significant role. 
Despite these shifts, the country's greenhouse gas emissions remain stagnant, registering over 
412 million tons of CO2 equivalents in 2018, including close to 150 million tons solely from the 
power sector. European Union policies have the potential to steer Poland's governmental 
strategies toward enhanced energy efficiency and reduced CO2 emissions. A study that analyzed 
the European Union Emissions Trading Systems' impact on Poland’s conventional energy sector 
from 2008 to 2020, and projected up to 2050 [108], concluded that gas-fueled combined heat 
and power units might be less adversely impacted by EU regulations compared to hard coal-fired 
plants, which could become unprofitable post-2020. Nevertheless, the study emphasizes that 
Poland can't sidestep substantial decarbonization efforts in its power sector to align with post-
Paris climate goals. 
The Polish government has responded with its own strategic roadmap, known as the 2030 Natural 
Environment Policy (PEP2030) [32]. This plan aims to enhance air quality through various 
measures such as the modernization of district heating networks and the replacement of 
outdated stoves and boilers. Public awareness and sentiment regarding energy efficiency and 
conservation are also evolving, as highlighted in another study [33]. Motivations for energy 
savings are shifting from purely financial considerations to broader concerns like environmental 
degradation, air quality, and climate change. Although the public tends to focus more on 
electricity conservation rather than heating, the PEP2030 aims to encourage the use of electricity 
as a source of heat. 
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3.5. Policies and Regulations 
 
The history of energy efficiency regulations in Poland has a long trajectory, starting from the post-
World War II era. Initial formal guidelines focusing on permissible heat losses were put in place 
as early as 1957, denoted by the heat transfer coefficient [109]. Figure 3.3 illustrates the 
significant evolution in Poland's heat transfer requirements, which were ahead of the curve in 
comparison to many European countries. Notably, Poland updated its heat transfer requirements 
for walls in 1964, pre-dating the 1972 oil crisis. Subsequent updates in 1974 and 1982 [110] were 
influenced by the energy challenges arising from the oil crisis [111]. According to research by 
Wojcik in 2018, the energy usage in standard Polish buildings ranged from 240-380 kWh/m2 up 
to the year 1985. A series of progressive reductions were then mandated: 160–200 kWh/m2 
between 1991–1992, further reduced to 120–160 kWh/m2 from 1993–1997, and since 1998 the 
energy usage has been capped at 90–120 kWh/m2 [112]. 

 
Figure 3.3. Requirements for the heat transfer coefficient U for walls in force in Poland, based 

on [113] 
In an institutional development, the Polish Energy Conservation Agency (KAPE) was established 
in 1994, as a specialized body under the Ministry of Building Industry, Industry and Trade, and 
Environmental Protection [114]. KAPE played a pivotal role in formalizing Poland's climatic zoning, 
dividing the nation into five distinct climate zones as depicted in Figure 3.4. A ministerial 
committee came into existence in 1996, tasked with pinpointing the challenges and opportunities 
in building energy efficiency and the incorporation of Renewable Energy Systems (RES). 
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Figure 3.4. Climate zones in Poland, based on [106] 

The Construction Law, initially enacted on July 7, 1994, underwent amendments to align with 
energy efficiency goals. With Poland becoming a member of the European Union in 2004, the 
European Parliament's Energy Performance of Buildings Directive (EPBD) was adopted by Poland 
in 2009. Since then, Energy Performance Certificates (EPCs) have become mandatory for new 
constructions and for buildings that are being sold or rented. These certificates are calculated 
based on the EN 13790 standard  and express a building's energy efficiency through the primary 
energy use intensity indicator [98]. 
 

3.6. Building Envelope and Technologies 

 
Poland's building energy conservation policies have seen a considerable transformation over the 
past two decades, both in terms of material science and methodology. A 2015 study by Zyczynska 
et al. tracked the progression of the U-value in building envelope components from 1974 to 2021, 
highlighting the increasingly stringent regulations [111]. Another study in 2017 by Wojcik et al. 
specifically dealt with the challenges and solutions for renovating buildings with historical facades 
[115]. They explored the effectiveness of Autoclaved Aerated Concrete (AAC) as an internal 
insulation material, particularly for its proficiency in managing heat and moisture. 
Grygierek et al. in 2018 offered a detailed methodology to optimally select envelope parameters 
specifically for single-family houses featuring natural ventilation [116]. The study honed in on 
cost-effective solutions for building envelopes, including various types of insulation and 
airtightness techniques. However, it did not delve into nearly Zero-Energy Building (nZEB) targets 
or advanced envelope technologies. A subsequent 2018 study by Weglarz et al. compared the 
energy and carbon footprint of three distinct construction technologies: conventional 
construction, wooden frame building, and straw-bale construction, across a 40-year life cycle 
[117]. Interestingly, despite having higher energy consumption during its operational phase, the 
straw-bale technology emerged as the most ecologically sound option. The 2019 study by 
Kisilewicz et al. offered an intriguing take on active insulation systems as potential substitutes for 
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traditional passive insulation methods [118]. Using a concrete layer in the external wall 
embedded with a refrigerant-circulating pipe system, the study found that heat losses could be 
reduced by an average of 63%. While effective for both new and existing constructions, the system 
needs to be deactivated during the summer to permit natural cooling of the external walls. 
Despite these advancements in energy efficiency research and thermo-modernization projects, 
the actual quality of most newly constructed and retrofitted energy-efficient building envelopes 
in Poland leaves much to be desired [119, 120]. Insights from experts and the observations show 
systemic issues like thermal bridges that lead to heat loss due to inconsistencies in the thermal 
envelope. These often arise from elements like windows, doors, structural beams, wall ties, pipes, 
cables, and cantilevers that interrupt the insulation layer [121]. Notably, the most prevalent 
building envelope construction systems are the External Thermal Insulation Construction Systems 
(ETICS) in walls and steel sheet roofs. While ETICS have certain advantages, issues related to their 
placement and insulation thickness have led to what is known as 'pseudo insulation' [122]. 
Additionally, the practice of ensuring envelope airtightness through blower door tests remains 
disappointingly rare.  
 
Conversely, the growth rate of energy-efficient HVAC (Heating, Ventilation, and Air Conditioning) 
system sales in Poland has been sluggish, although discernible. Boilers remain a staple in the 
nation's residential architecture, as indicated in Figure 3.5. Over the last decade, gas boilers have 
gained prominence over their solid fuel counterparts, and there has been a modest uptick in the 
sales of electric boilers as well. Figure 3.5 offers a snapshot of the heating system market, which 
is primarily dominated by district heating in Poland. As of 2019, the country boasted 412 district 
heating systems with a combined capacity of 54.912 MWth [123]. An article delved into the 
anticipated future of Poland's district heating network in the context of evolving European 
policies [124]. It suggested that, although the long-term outlook points towards a decline in 
energy demand from these systems due to more stringent European regulations, the short-term 
prospects indicate an expansion and modernization of the existing infrastructure. Such 
modernization efforts will likely include a shift in fuel types, and technologies like biomass 
combustion and cogeneration are being considered, although they present their own sets of 
challenges. 
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Figure 3.5. Sales of boilers and heat pumps without AC, based on [125] 

 
When it comes to Domestic Hot Water (DHW) consumption, the field remains relatively under-
researched in Poland [126]. According to a study by Bertelsen et al., the average household in 
Poland consumes approximately 2600 kWh/year for DHW [88]. Chmielewska conducted a 
comprehensive study spanning two years that examined 626 apartments to quantify DHW energy 
usage in multi-apartment complexes [127]. Cholewa et al. took a longer view, studying nine 
multifamily buildings over a 20-year period to identify ways to minimize energy consumption in 
older DHW systems [128]. The research discovered that a significant portion of energy wastage 
in existing structures, ranging between 56.7% and 70.5%, could be attributed to heat losses in the 
DHW systems. This highlights an urgent need for renovation strategies focused on improving the 
efficiency of hot water delivery systems in older buildings. Heat pumps are experiencing a surge 
in popularity in Poland, particularly for Domestic Hot Water (DHW) applications and less so for 
space heating [129]. Sales of heat pumps have nearly quintupled from 2011 to 2020, as indicated 
in Figure 3.4 Due to more stringent regulations regarding heat transfer coefficients and Energy 
Performance (EP) values in the Polish Energy Performance of Buildings (EPB) standards, there is 
an increasing demand for smaller, more efficient heating devices, thus fueling the growth of the 
heat pump market. A study conducted in 2014 by Flaga-Maryanczyk et al. empirically tested a 
ground-source heat exchanger in Passive House (PH)-certified single-family homes [78]. The study 
confirmed that such heat exchangers, when coupled with mechanical ventilation systems, 
effectively mitigated outdoor temperature variations, a critical factor during harsh winter months. 
The integration of Photovoltaic (PV) panels with heat pump systems has been explored as a 
potential avenue for enhanced energy efficiency. Romanska-Zapala et al. (2017) investigated this 
combination specifically for low-energy single-family homes in Poland during the winter season 
[130]. They found that the energy gains from utilizing a PV system in the winter were minimal due 
to low levels of solar irradiation. Their study indicated that even when equipped with batteries, 
the energy saved through a PV system was only 175 kWh of primary energy compared to a system 
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without batteries. However, the study also emphasized that a more accurate picture of energy 
savings could only be obtained by analyzing data across an entire year. Furthermore, a pipe 
ground-air heat exchanger (GAHE) has been investigated for its potential to work alongside an air 
handling unit to provide summer cooling. The study found that a GAHE could pre-condition the 
incoming air, either pre-heating or pre-cooling it, thereby reducing overall energy consumption. 
Optimizing such a system would require the ability to selectively source fresh air based on varying 
conditions and room-specific requirements. 
In summary, recent trends in HVAC and renewable energy system sales demonstrate a marked 
increase in the adoption of heat pumps and solar collectors. Information provided by a 
representative of the Polish Ministry responsible for construction on October 6, 2021, at the 20th 
Thermomodernization Forum indicated that the residual energy requirements to be met through 
renewable energy in residential construction are approximately 50 kWh/m2 per year [131]. This 
trend may be further boosted by the introduction of dynamic electricity pricing schemes in Poland 
[132]. The development of grid flexibility and dynamic pricing models for prosumers is an area 
that requires further attention [133]. Figure 3.6 presents the percentage changes in the adoption 
of different heating devices and solar panels in Poland between the years 2011 and 2020. 

 
Figure 3.6. Variation of heating devices and solar panels sales in Poland 

 
 

3.7. Building Clusters 

 
To enhance the reliability and generalizability of the research findings, this study narrows its focus 
to a single cluster of buildings located in a specific region within Poland. By adopting such a 
targeted approach, the research aims to minimize the number of variables that could introduce 
high levels of uncertainty into the results. This strategy is predicated on the belief that a more 
nuanced and accurate understanding of a specific building cluster will yield more reliable data 
that can then be more confidently generalized to similar contexts. Understanding the existing 
landscape of buildings in Poland is a critical initial step in this endeavor. Before selecting the 
building cluster to focus on, a comprehensive survey of various clusters is necessary to gain a 
detailed understanding of each. This involves considering various factors, such as the number of 
buildings within each cluster, their architectural designs, age, usage patterns, and, most 
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importantly, their current energy consumption levels or, put more precisely, their potential for 
energy savings. Identifying the clusters with the highest number of buildings and the greatest 
potential for energy savings is of particular importance. The goal is to prioritize clusters that not 
only represent a substantial proportion of the built environment but also have significant room 
for improvement in energy efficiency. By meticulously studying one such high-priority cluster, the 
research aims to derive insights that are both deep and widely applicable, thus increasing the 
value and impact of the study. In the context of this analysis, our initial focus will be on Poland's 
Building sector, then residential sector, examining the unique characteristics that distinguish each 
sub-group within this domain.  
 

Table 3.4. Energy demand of Polish housing stock up to 2010, based on [93] 
Year of 

Construction 
Buildings Dwellings Primary energy Final (delivered) energy 

Thousands % Mln. % kWh/(m2a) kWh/(m2a) 

Before 1918 413.30 7.71 1.21 9.01 >350 >300 

1918-1944 828.20 15.55 1.54 11.46 300-350 260-300 

1945-1970 1,367.50 25.50 3.71 27.62 250-300 220-260 

1971-1978 676.50 12.61 2.16 16.08 210-250 190-220 

1979-1988 763.50 14.24 2.20 16.38 160-210 140-190 

1989-2002 698.40 13.02 1.52 11.31 140-180 125-160 

2003-2010 616.02 11.48 1.09 8.14 100-150 90-120 

Total 5,363.42 100.0 13.43 100.0   

 
As it is depicted in Table 3.4 in terms of the number of buildings 1945-1970 cluster is by far 
dominant in building stock in Poland with more than 1.3 million cases and has roughly 1/3 of 
Polish population. Considering the number of buildings this cluster is followed by 1918-1944 with 
more than 800 thousand cases, but the number of dwellers is almost 10% which shows that they 
are mainly unoccupied or occupied by a small portion of people in Poland. On the contrary, 1971-
1978 cluster and 1979-1988 cluster they have around 1.3 million cases combined with around 32 
% of dwellings in Poland. To be more precise, if we multiply the median of Primary energy for 
each cluster by the number of buildings that each cluster has, we can define a hyper-parameter 
that can show the total energy use intensity like variable that shows the impact of each cluster 
on the primary energy use in Poland energy sector if we consider a fix area for each house to rule 
out the area in this case (Figure 3.7). 
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Figure 3.7. the impact of each cluster on the primary energy use in Poland energy sector 

Based on figure 3.6 the dominancy of impacts of 1945-1970 building cluster on the total energy 
stock in Poland is quite obvious and by improving this cluster probably a significant impact on the 
total energy stock of Poland can be expected. Subsequently, we will zero in on a specific cluster 
that warrants our attention. Based on a comprehensive study from 2013 concerning energy 
efficiency in the country, it was found that an alarming 72% of single-family homes in Poland are 
categorized as having either low or very low energy standards [134]. Concurrently, coal is the 
primary energy source for 70% of these single-family residences (Table 3.5). This translates to 
around 3.5 million coal-fired boilers in active use, collectively responsible for the consumption of 
over 9 million tons of coal every year. Adding another layer of concern, approximately 28.8% of 
these boilers have been operational for more than a decade. Furthermore, a considerable number 
of these installations—around 3 million—are based on manually-fed boilers. This is a significantly 
outdated technology, notorious for contributing to high levels of air pollution. 
When it comes to household energy consumption patterns in Poland, the data reveals a striking 
divergence from the rest of the European Union member states. Specifically, Poland holds the 
dubious distinction of having the highest per capita coal consumption across the EU. To put this 
in perspective, the amount of coal consumed per resident in Poland is a staggering ten times the 
average recorded across the other 27 EU countries (Table 3.6). For a more granular 
understanding, Table 3.5 lays out the types of energy carriers used in Polish households. As 
corroborated by earlier discussions, coal is overwhelmingly the dominant energy source, 
highlighting a critical area in need of transformation to align Poland more closely with broader 
European energy sustainability objectives. 
 
 
 
 
 

12%

23%

32%

13%

12%
1% 7%

Before 1918 1918-1944 1945-1970 1971-1978 1979-1988 1989-2002 2003-2010



62 
 

Table 3.5. Energy consumption in households in Poland, based on [93] 
Energy carrier Units of 

Masure 
 Household 

consumption 
National share of energy 
carrier usage in households 

Original units PJ % 

Total   821.3 100.0  

Electricity TWh 28 101.9 12.41 19.1 

District heat PJ  180.0 21.92 53.9 

Natural gas PJ  141.4 17.22 22.7 

LPG* thousand t 500 23.7 2.88 20.5 

Heating oil thousand t 87 3.8 0.46 9.6 

Hard coal thousand t 9,200 243.8 29.69 12.2 

Lignite thousand t 450 3.6 0.44 0.7 

Coke thousand t 450 5.3 0.65 6.5 

Fuel wood PJ  116.9 14.23 58.0 

Solar energy PJ  0.4 0.05 69.3 

Geothermal energy** PJ  0.5 0.06 77.1 

* Consumption for household purposes only (excluding fuels consumed by cars) 
**Households use geothermal energy obtained indirectly from a heating company network 

 
Table 3.6. Energy consumption in households in Europe, based on [93] 

Country Energy Consumption in 
Households 

Share of Households in 
National Energy Consumption 

TJ GJ/inhabitant % 

Latvia 55,166 27 31 

Denmark 182,957 33 23 

Hungary 231,140 23 22 

Lithuania 63,950 21 22 

Romania 329,067 16 22 

Ireland 114,360 25 20 

Greece 228,082 21 20 

Austria 269,813 32 20 

Poland 795,745 21 19 

UK 1,500,500 24 18 

Italy 1,311,299 22 18 

Germany 2,216,246 27 17 

Slovenia 49,106 24 16 

Estonia 39,203 29 15 

Finland 211,224 39 14 

Sweden 291,259 31 14 

France 1,546,935 24 14 

Czech Republic 246,700 23 14 

Spain 679,154 15 13 

Belgium 310,040 28 12 

Netherlands 408,220 24 12 

Slovakia 88,814 16 12 

Cyprus 12,877 15 12 
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Bulgaria 99,649 14 12 

Portugal 116,659 11 12 

Luxembourg 17,867 34 9 

Malta 3,051 7 6 

 
It is very important to know the purpose of energy consumption in households to see which area 
has the potential for energy saving (Table 3.7). Also by focusing on changes during recent years 
on different areas it would be possible to understand which area used to be low but for some 
reasons (maybe behavior changes) the figure may experience changes (Figure 3.8).  

Table 3.7. Final energy consumption in households in Poland in 2022, based on [93] 
Purpose of use GWh % 

Total 341788 100 

HVAC 228900 66.97134 

DHW 51688 15.12282 

Cooking 23000 6.729318 

Lighting 4700 1.375121 

Electrical appliances 33500 9.801397 

 

 
Figure 3.8. changes in household resource consumption in Poland in recent years, based on [93] 
 
The data previously mentioned clearly indicates a pressing need for energy-efficient upgrades 
across Poland's residential buildings. This is largely attributable to historically lax energy 
performance standards, which in many instances still persist today. The situation is particularly 
dire in the realm of single-family residences situated in rural areas. As illustrated by Table 3.8, a 
significant proportion of both single-family and multi-family dwellings either lack insulation 
altogether or are only partially insulated, exacerbating the demand for energy. 
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Table 3.8. Standard of buildings based on the criterion of thermal insulation, based on [93] 
Efficiency level of the 

building 
Number of buildings Building characteristics 

Thousands % of total 

Very high standard 45 1.2 • Modernised/modern installation 

• Wall insulation minimum 15 cm 

• Roof insulation 

• Energy efficient, triple glazed windows 

High standard 335 6.7 • Modernised/modern installation 

• Wall insulation minimum 11 cm 

• Roof insulation 

• Double glazed windows 

Average standard 1000 20.1 • Modernised/modern installation 

• Wall insulation 8-10 cm 

• Roof insulation 

• Double glazed windows 

Low standard 1700 34 • Buildings with wall insulation layer thinner than 8 cm 

Very low standard 1900 38 • Uninsulated buildings 

 
 
In the context of existing residential structures, the ideal metrics for demand concerning non-
renewable primary energy and final energy for functions like heating, ventilation, and Domestic 
Hot Water (DHW) heating are as follows: 

• Existing buildings, built after 1970: 

30-45 kWh/(m2year); 

• Older buildings, built before 1970: 

45-70 kWh/(m2year); 

Taking into account the share of RES, EP could be reduced to 50-75 kWh/(m2year). 

 
Addressing these inefficiencies is of the utmost importance not just for environmental 
sustainability but also for economic stability. Inefficient energy use translates into higher utility 
bills for residents and a greater overall consumption of non-renewable energy sources. The 
widespread lack of insulation and other energy-saving measures presents both a challenge and 
an opportunity. It's a challenge because retrofitting existing buildings is often more complex and 
costly than incorporating energy-efficient designs from the outset. Yet, it's an opportunity for 
creating jobs, stimulating the construction industry, and adopting newer, cleaner technologies. 
Thus, there is an imperative to revise building codes, incentivize energy-efficient renovations, and 
foster public awareness about the financial and ecological benefits of energy-efficient buildings. 
This would not only reduce the country’s carbon footprint but also alleviate some of the energy 
burdens on Polish households, particularly those in rural areas where energy inefficiencies are 
most pronounced. Finally, considering the number of cases and retrofitted portion of each luster 
(Table 3.9) the focus cluster (1945-1970) has more than 1 million cases that need energy retrofit. 
 
 
 



65 
 

Table 3.9. Thermo-modernization statistics of different building clusters in Poland 
Year of 

Construction 
Buildings Percent of stock that 

has been 
thermo-modernized 

No. of building that has 
not been 

thermo-modernized 
Thousands 

Thousands 
 

Before 1918 413.30 7% 384.36 

1918-1944 828.20 7% 770.22 

1945-1970 1,367.50 11% 1,217.07 

1971-1978 676.50 16% 568.26 

1979-1988 763.50 15% 648.975 

1989-2002 698.40 10% 628.56 

After 2002 616.02 New buildings constructed under prevailing obligatory 
after 2008 energy performance standards Total 5,363.42 

 
That is why it is better to focus in this group to have more information about it especially in the 
studied region. The building cluster in Wielkopolska region, particularly in Poznan, were 
commonly built between the early 1950s and late 1960s. Typically constructed in place of older 
farm buildings, these structures often integrate features or foundations from previous 
constructions. Building usually occurred in two phases: initial construction involved the basement 
and ground floor, temporarily capped with a makeshift roof. The second phase included adding 
an upper floor and finalizing the structure with a hipped roof featuring a short ridge. A small 
dormer often appeared on one side of the roof, which would later be subject to expansion and 
renovations. Quality has been a hallmark of these houses; Local brickyards supplied solid, high-
quality bricks for both external and internal walls. A unique feature of these buildings was the use 
of an inverted three-layer wall system for the outer walls, consisting of cement-lime plaster, a 
masonry wall, an air void, and a pressure brick wall, finished with internal cement-lime plaster. 
Ground floors often featured concrete flooring that would be retrofitted later with modern 
insulation solutions. The ceiling structure usually relied on flat brick ceilings laid on steel I-beams, 
without thermal insulation. 
 

  
Figure 3.9. Street and panoramic view of a case at Mickiewicza Street, Poznan 
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Distinctive features of this architectural style are readily apparent in various aspects of the 
house's design. One of the most notable is the proportions of the house's volume. These 
proportions create a specific aesthetic balance, often influenced by regional architectural trends 
and local landscapes. Another defining characteristic is the window composition. The layout, size, 
and type of windows are thoughtfully integrated into the overall design. They serve not just as 
openings for natural light but also as essential elements that complete the architectural narrative 
of the house. Furthermore, the roof's geometry is an important feature that adds to the 
uniqueness of this style. Typically, two different types of roofs are associated with this 
architectural form. Each type has its own set of characteristics that contribute to the visual appeal 
and functionality of the house. These key elements—ranging from the proportions of the 
structure to the design of the windows and the geometry of the roof—come together to define 
this specific type of house. These choices often take into account local climate conditions, 
available building materials, and cultural preferences, resulting in a design that is both practical 
and aesthetically pleasing, as well as representative of its locality (Figure 3.9,10, 11, 12). 
 

  
Figure 3.10. Flat roof case (the most frequent case) 

 
Stairs within these homes were generally constructed from reinforced concrete leading to the 
basement and the first floor, with wooden structures often employed for stairs between upper 
levels. Thermal insulation, typically in the form of mineral wool, was common in the roof 
structure. Roofs were commonly covered with ceramic plain tiles arranged in a lace pattern. 
Dormers were often a mix of steel and wooden structures, featuring zinc-steel sheet flashings. 
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Figure 3.11. Archetype plan for the cluster 

 

 
Figure 3.12. Archetype section and construction details for the cluster 
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Vestibules were often later additions to these homes, built with a wooden frame and insulated 
with thick mineral wool. The roofing material for these vestibules usually matched the primary 
roof, but was flat and based on wooden rafters. Joinery of the era often employed wooden doors 
and casement windows. Over time, it is common for these to be replaced with modern 
equivalents, such as PVC glazed doors and tilt-and-turn windows. Originally, heating solutions 
included tiled stoves that were later converted to gas or coal stoves placed in the basement. By 
the 21st century, many of these homes have been updated to feature more contemporary heating 
solutions like central fireplaces. 
 

3.8. Conclusion 

 
Following an extensive analysis of Poland's building inventory, particularly within the residential 
sector, our focus narrowed to a particular group of buildings in Wielkopolski, Poznan. Our 
collected data indicates that this specific cluster is the most commonly encountered example 
requiring immediate attention for energy retrofits. Undertaking energy audits for these buildings 
represents a significant stride in enhancing their energy efficiency. The overarching objective of 
this project is to streamline this retrofitting process through the utilization of data-driven 
methodologies. Key features that make this cluster stand out for immediate action include 
specific architectural traits and energy usage patterns that deviate from modern efficiency norms. 
The concentration of these buildings in a particular geographical locale adds an additional layer 
of urgency, as it magnifies the environmental impact of their inefficiencies. Therefore, energy 
audits, which would serve as comprehensive assessments of energy use and potential savings, 
are of paramount importance for these buildings. Not only would audits identify areas in need of 
improvement, but they could also pave the way for cost-effective solutions that could be 
universally applied to similar structures in the region. The ultimate goal of this initiative is to 
facilitate the transformation of these energy-inefficient buildings into models of sustainability. By 
applying data-driven methods, such as machine learning algorithms to predict energy use, or 
statistical analysis to identify the most impactful retrofit options, we aim to expedite and simplify 
the retrofit process. This will not only benefit the individual building owners through decreased 
energy costs, but it will also contribute to broader environmental sustainability goals. 
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4.1. Abstract 

 
This chapter investigates the localized impact of climate change on building energy consumption, 
specifically focusing on heating and cooling energy demands in Poznan, Poland. As climate change 
poses a significant threat to global energy sustainability, it becomes imperative to scrutinize how 
it might alter energy consumption patterns. Notably, the impact of climate change on building 
energy consumption varies depending on geographical and climatic conditions. Utilizing statistical 
downscaling methods, this chapter generates future weather data for the years 2050 and 2080 in 
Poznan, based on the HadCM3 and A2 greenhouse gas (GHG) scenario. This data serves as the 
foundation for simulating energy demands in 16 building prototypes, according to the ASHRAE 
90.1 standard. 
 
Our analysis reveals an average increase in cooling load by 135% and a decrease in heating load 
by 40% by the year 2080. While the total thermal load of buildings is currently decreasing due to 
a higher share of heating load, the chapter posits that if no mitigative steps are taken, the 
increasing cooling demand could lead to a surge in both thermal loads and associated GHG 
emissions. These findings provide valuable insights for urban planners, policymakers, and building 
engineers who are engaged in designing sustainable, climate-resilient buildings. It suggests the 
critical need for preemptive strategies to control increasing cooling demands, thereby 
contributing to broader environmental sustainability goals. 
 
 

4.2. Introduction 

 
The surge in urban population, fueled by economic and industrial advancements, has placed un-
precedented demands on urban infrastructures, including energy systems and housing [135]. 
These infrastructural developments, while elevating quality of life, have also led to elevated levels 
of greenhouse gas emissions. The consequential impacts of these emissions, such as shifting 
weather patterns, extreme climatic conditions, and global warming, are well-established [136]. 
According to the Fifth Assessment Report by the IPCC (AR5), these climatic disruptions are 
anticipated to elevate global mean surface temperatures by approximately 2.5 – 4.5 °C by the 
century's end [137]. Importantly, these external climatic factors are instrumental in determining 
the energy consumption patterns of buildings [138]. Buildings account for a staggering 67% of 
global energy demand and contribute significantly to total GHG emissions [139]. Specifically, in 
the E.U. and the U.S., buildings accounted for up to 40% of energy demand in 2019 [140, 141]. 
Furthermore, a concerning trend has emerged: total energy-related CO2 emissions from the 
building sector, which had plateaued between 2013 and 2016, spiked to an all-time high of 10 
GtCO2 in 2019 [142]. This uptick has prompted a multidisciplinary response from scholars across 
various fields aiming to address the energy and emissions crisis in the building sector [143]. 
However, climate change has far-reaching impacts that extend beyond the scope of energy and 
emissions. Its ripple effects touch upon various facets of urban living, such as public health, water 
resource management, economic stability, and political governance [144]. Consequently, 
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adapting to the changing climate stands as one of the most pressing challenges of our times, 
prompting numerous international initiatives aimed at exploring sustainable solutions [145]. 
Recent scholarship has categorized the impacts of climate change on the building sector into 
three core aspects: HVAC systems, heating and cooling demand, and peak power demand [146]. 
To scrutinize these categories, building performance simulations (BPS) have proven invaluable. 
These simulations provide a holistic view of a building's energy consumption over its lifecycle and 
have revealed the significance of thermal loads, particularly in heating and cooling systems [147]. 
The thermal behavior of a building is primarily governed by three elements: the physics of the 
building itself, the microclimate of the surrounding environment, and the required internal 
thermal comfort levels [148]. Given the pronounced influence of weather variables on energy 
consumption, strategic management of heating and cooling demand alone can significantly 
optimize a building's energy efficiency [149]. Within the context of the European Union (Figure 
4.1), a decline in energy consumption, particularly in thermal load, has been observed since 2008 
[93]. However, this decline is not uniform across countries, as evidenced by the average annual 
energy consumption per square meter, which ranged from 55 kWh/m2 in Malta to 300 kWh/m2 
in Romania as of 2013 [150]. Even among countries with similar climates, there are noteworthy 
differences—for example, Sweden's average consumption is 18% lower than that of Finland [151]. 
Thus, it is critical to conduct country-specific analyses that consider both current and projected 
climatic conditions to comprehensively understand and address the impacts of climate change on 
building energy consumption [152]. 

 
Figure 4.1. Annual energy consumption of buildings per m2 on average, based on [147] 

 
Poland stands as a notable case study in the European Union, ranking among the top five 
countries in terms of energy consumption per square meter in buildings, exceeding 200 
kWh/m2/yr [148]. Despite its high consumption, the country has shown a remarkable 
improvement in energy efficiency over recent years. Specifically, Poland has managed to cut its 
energy intensity by at least 50%, owing in large part to initiatives like the Thermo-modernization 
and Rehabilitation Fund program. Nevertheless, coal remains the dominant energy source in 



72 
 

Poland, constituting a significant obstacle in reducing greenhouse gas (GHG) emissions and 
furthering the energy efficiency of the building sector. In response, the draft energy policy of 
Poland has strategically prioritized the reduction of GHG emissions while enhancing building 
sector efficiency (Figure 4.2). The "Polish National Strategy for Adaptation to Climate Change (SPA 
2020)" was developed to set a clear agenda for sectors most susceptible to climate-induced 
changes, including the building industry. In 2019, the building sector emerged as the highest 
energy-consuming sector in Poland, accounting for nearly one-third of the nation's total energy 
consumption [149]. To break it down further, residential buildings were responsible for 29% of 
Poland's Total Final Consumption (TFC) in 2014, while commercial buildings contributed roughly 
17%. Alarmingly, these sectors also accounted for approximately 18% of CO2 emissions since 
1990, indicating a severe need for sector-specific mitigation strategies. What's more, according 
to a 2016 survey by The Buildings Performance Institute Europe (BPIE), nearly three-quarters of 
Poland's buildings were evaluated as having either low or deficient energy efficiency standards 
[93]. This prevalence of subpar efficiency levels places Poland in a particularly precarious position 
vis-à-vis climate change. 
Given the high energy consumption rates and existing inefficiencies, the impact of climate change 
on Poland’s building sector becomes an issue of paramount importance. Climate-induced 
changes can exacerbate already strained energy demands and further contribute to GHG 
emissions. For these reasons, an impact assessment focusing on climate change's role in shaping 
Poland's building sector is not only vital but also timely. 

 
Figure 4.2. Poland’s energy consumption by sectors, based on [150] 

 
Poland has been progressively leaning towards enhancing energy efficiency across various 
sectors, and the building industry stands as a pivotal arena for such improvements. Despite this 
positive trajectory, the sector is hampered by limitations such as insufficient and unreliable data 
related to energy use, which could potentially allow loopholes and circumventions within the 
system [93]. Recognizing the urgency of this challenge, a robust national coalition spearheaded 
by the 'Build Desk' initiative has been established. The goal of this coalition is to bridge the data 
gaps by undertaking comprehensive regional studies that scrutinize energy consumption patterns 
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in the building sector. Among the cities spotlighted for such studies is Poznan, a metropolis that 
holds a significant place in Poland's energy landscape. Not only is Poznan one of Poland's oldest 
cities, but it also ranks as the fifth-largest city in the country with a population exceeding 534,813 
as of the 2019 census [151]. Its prominence is further underscored by its rapid urban growth, 
which naturally leads to escalating demands on its energy infrastructure (Figure 4.3). 

 
Figure 4.3. Share of Polish region in the building sector, based on [150] 

 
Poznan serves as a microcosm that reflects broader national trends and challenges. The city's 
accelerating urban development and its importance in Poland's energy matrix make it a critical 
candidate for detailed energy consumption analyses. These comprehensive studies are 
anticipated to yield valuable insights that can inform policy adjustments and inspire energy-
efficient solutions, not just for Poznan but for Poland as a whole. Moreover, the data generated 
could serve as a template for similar endeavors in other cities or even countries grappling with 
the complexities of energy efficiency in the building sector. In alignment with the E.U.'s ambitious 
Clean Energy Package objectives, Poznan has been actively participating in an EU-Horizon 2020 
initiative titled "Energy Island Communities for Energy Transition." This groundbreaking project, 
with a generous funding pool of €6,694,000, aims to seamlessly integrate and demonstrate 
scalable solutions that can substantially elevate energy efficiency across sectors. One of the focal 
points of this initiative is the "Warta Campus in Poznan," earmarked as an 'energy island' for 
exhaustive study [153]. 
However, despite these ongoing efforts, there remains an acute need for a detailed examination 
of the energy performance within various sectors, most notably the building industry. This 
analysis becomes particularly relevant when taking into account both current climatic conditions 
and future variables, which notably include the pressing issue of climate change (see Table 4.1). 
According to the Köppen climate classification, Poznan falls under the 'Cfb' climate zone, 
characterized by temperate oceanic climate conditions. In this zone, temperatures remain 
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moderate year-round, with the coldest month averaging above 0°C or −3°C, and at least four 
months registering average temperatures above 10°C [153]. 
 

Table 4.1. A short description of the research case study. 
Country City Latitude Longitude Time zone KGC 

Poland Poznan 52.42N 16.83E 1.00 Cfb 

Population Elevation Weather Data 
Heating 

DB 99.6% 
Cooling 
DB 0.4% 

Cooling 
0.4% MCWB 

533,830 302 (m) 
2004–2018 

(TMY) 
− 14.27 °C 29.77 °C 19.22 °C 

 
Given the significant role that buildings play in Poland's overall energy consumption—and in 
Poznan, in particular—this study intends to serve as a timely response to this analytical gap. It 
aspires to critically evaluate the impact of climate change on the thermal load within Poznan's 
building sector, a subject of heightened relevance in the context of the E.U.'s overarching energy-
efficient research program. By doing so, this chapter aims to offer valuable insights that can guide 
policymakers, researchers, and practitioners in crafting resilient, adaptive strategies that can 
mitigate the negative implications of climate change on building energy consumption patterns. 
 

4.3. Climate and Building Performance 

 
It has been proven that the environment type and climatic conditions affect several aspects of 
energy consumption of buildings. This impact can be categorized into the following three groups: 

• HVAC system (Heating, ventilation, and air conditioning) 

• Heating and cooling demand 

• Power peak demand [11] 

 

4.3.1. HVAC system 

Today, the prevailing architectural philosophy in the European Union leans towards leveraging 
natural ventilation systems over electrical cooling devices like air conditioners in building designs. 
This approach aims to minimize environmental impact. However, as summers continue to heat 
up, posing an increased likelihood of extreme temperature spikes, a gradual but noticeable surge 
in HVAC-related energy consumption is becoming evident [154]. One key indicator of this shift 
comes from predictions around the future energy demands in Athens. Projections indicate that 
by the year 2080, the energy required for air conditioning in the months of July and August could 
escalate by a staggering 30% [155]. Such data underpins the limitations of natural ventilation in 
an era of climate unpredictability. The United Kingdom serves as another poignant example. As 
of now, nearly 40% of large buildings are equipped with air conditioning systems, a significant 
increase compared to just 10% in 1994 [156]. Notably, the majority of buildings constructed 
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before 1990 were designed with natural ventilation in mind, a clear signal of how thermal 
management strategies are evolving [157].  
As average and extreme temperatures rise, buildings are becoming both uncomfortable and 
costly to maintain in terms of thermal regulation. This situation creates an imperative need for 
retrofitting existing mechanical systems, such as ventilation. Enhanced HVAC technologies are 
becoming indispensable for mitigating increased humidity and the heat gain of outdoor air during 
hot summers. Complicating matters is the finding that the efficacy of HVAC systems exhibits a 
strong negative correlation with rising wet and dry bulb temperatures (WBT and DBT). This implies 
that as WBT/DBT values climb, the operational efficiency of these systems degrades [158]. As a 
consequence, buildings—particularly in warmer regions experiencing rising WBT/DBT—will likely 
witness a significant uptick in energy consumption dedicated to HVAC systems. 
 

4.3.2. Heating and cooling demand 

One of the most immediate and palpable impacts of climate change on building energy 
consumption manifests in the rising rates of both cooling and heating energy. This surge is 
principally driven by an increasingly felt need for thermal comfort within buildings, particularly 
during sweltering summers and freezing winters [159, 160]. Research indicates that global 
temperature increases over recent years have led to more uncomfortable summers but milder 
winters [161]. The changes in energy requirements for heating and cooling are generally 
attributed to fluctuations in 'degree-days,' a meteorological indicator used to evaluate energy 
demand for thermal comfort [162]. This variable is profoundly influenced by the geographical 
location under study, creating diverse impact scenarios across regions. Studies have discussed the 
possible consequences of climate change on cooling and heating loads—critical determinants of 
a building's energy consumption profile—often leveraging the degree-day approach for their 
analyses [163-165]. 
A consensus emerging from computational studies suggests a notable decline in heating energy 
requirements paired with a significant uptick in cooling energy demands [166, 167]. More 
precisely, these investigations have found that the rate of decline in heating energy requirements 
is likely to outstrip the falling rates of heating degree-days. On the flip side, cooling energy 
requirements are projected to see a substantial increase. To quantify, estimates suggest a 
staggering 2100% increase in cooling energy demands from 1975 to 2085, according to cooling 
degree-day metrics. This body of research essentially corroborates earlier studies, collectively 
emphasizing a future with reduced heating and increased cooling needs in buildings. Geographic 
and climatic nuances mean that hot countries like Mexico are expected to experience higher 
energy demands predominantly in the summer and spring seasons. Conversely, colder nations 
like Canada and Norway are likely to see diminished energy demands during winter. For countries 
with moderate climates, such as Italy, the increased cooling energy demands in summers are 
expected to be offset by lower heating energy needs in winters and springs [163]. 
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4.3.3. Power peak demand 

Research addressing the implications of climate change on power peak demand within buildings 
offers a mixed yet eye-opening landscape. The prevailing trend, as underscored by numerous 
studies, is a notable decrease in the heating energy requirements juxtaposed with a discernible 
uptick in the cooling energy demands [168]. This is not an inconsequential development; it speaks 
to broader shifts in energy consumption patterns that may well reshape our understanding of 
sustainable building design and management. There exists a divergence of academic opinion on 
whether the burgeoning demands for cooling will effectively neutralize the reductions in heating 
requirements. Some researchers posit that the two trends will reach an equilibrium, thus leaving 
overall power consumption relatively unchanged [169]. Others, however, are less sanguine, 
speculating that cooling demands could completely overshadow heating demands, potentially 
leading to an energy crisis in the power sector. 
It's crucial to appreciate the complexity of these trends. Climate change's influence on building 
energy consumption isn't just a simple equation of rising temperatures and cooling demands. 
Various external variables such as different climate change scenarios, building designs, and 
construction materials also contribute to the equation. For instance, research conducted by 
Huang's team suggests that colder areas may actually experience a drastic reduction in energy 
demands due to milder winters [170]. Moreover, although conventional wisdom might suggest 
that lighting and plug loads are the primary energy guzzlers in buildings, the evidence points 
otherwise. Cooling loads are emerging as a significant—if not the most significant—contributor 
to power consumption in buildings. This trend is not just a passing phase; projections indicate 
that the demand for cooling could surge by over half in the next century [144]. 
 

4.4. Building Energy Consumption Projection 

 
The prediction of energy demand, particularly focusing on thermal load, has become a 
cornerstone of research endeavors aiming for sustainability through the optimization of energy 
consumption [171-178]. This critical knowledge aids in the integrated management of building 
systems and services [179]. One of the most intricate areas within this research landscape is the 
evaluation and projection of climate change’s impacts on building energy consumption, 
specifically thermal load. A range of studies have addressed this topic, revealing often conflicting 
findings and insights. For instance, Rosenthal et al. were among the pioneering scholars who 
posited that global warming might not universally lead to increased energy usage, particularly in 
colder regions [180]. They estimated that a 1.0°C global temperature rise by the end of 2010 could 
result in the U.S. saving over $5.5 billion (1991 USD) in reduced energy costs. This hypothesis 
diverges from earlier studies that projected a net increase in U.S. energy consumption due to 
climate change [181]. 
In the European context, Nik in 2006 forecasted a significant decline in heating load but a 
substantial rise in cooling load in Stockholm by the end of the 21st century, based on various 
uncertainty factors [182]. Christenson and colleagues arrived at similar conclusions for 
Switzerland up until 2085 [167]. Likewise, Hosseini et al. predicted for Montreal a downward 
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trend in heating load and an upward trajectory in cooling load between 2020 and 2080, focusing 
their study on a one-story commercial building [183]. Taking a broader view, Cellura analyzed 
various scenarios across 15 cities in southern Europe and concluded that thermal load in buildings 
would generally increase, driven by a relative decline in heating demand and a surge in cooling 
demand [184]. Employing an array of general circulation models (GCMs) through the morphing 
method, Cellura projected an increase in thermal load ranging between 50–119% for the study 
areas. Crawley suggests that in regions where heating is the dominant thermal load, the overall 
load is likely to decrease in a warming climate [185]. This observation is further bolstered by 
Triana, Lamberts, and Sassi, who, focusing on the performance of social housing in Sao Paulo and 
Salvador, argue that an uptick in cooling consumption will consequently drive up the thermal load 
[186]. Contrarily, a host of other scholars maintain that a variety of factors could lead to a net 
increase in thermal load in numerous scenarios [187, 188]. Zooming in on specific geographical 
case studies, Shen examined the impact of climate change on annual energy use for both 
residential and office buildings across four U.S. cities for the years 2040–2069. According to the 
IPCC SRES A2 scenario for greenhouse gas emissions, Shen found a somewhat paradoxical 
outcome: an overall increase in energy consumption for residential buildings, but a decrease for 
office buildings [189]. 
In more recent research, Moazami, Nik, and their team have made critical advancements by 
generating future weather data for Geneva. Their findings underscore the importance of 
accounting for extreme weather conditions to enhance the reliability of future climate 
projections. They found a notable increase—around 20%—in cooling load compared to under 
standard conditions [135]. Similarly, Berardi and Jafarpur [137] utilized statistical downscaling 
methods to project future energy consumption in Toronto by 2070, based on the Köppen-Geiger 
climate classification for the Dfb zone [190]. Their projections suggest that while heating needs 
might slightly decline, a sharp increase in cooling demands could be anticipated. Adding to this 
body of work, Velashjerdi Farahani et al. aimed to quantify the effects of employing different 
passive measures to mitigate overheating risks in both old and new apartments in southern 
Finland. Using generated future weather data under two separate scenarios targeting the year 
2050, they offered valuable insights into adaptive measures for thermal load management [191]. 
 

4.5. Weather Data 

 
Typical Meteorological Year (TMY) files serve as one of the most widely utilized types of weather 
data for gauging a building's energy efficiency and corresponding emissions. These files are 
comprehensive data sets, featuring 8,760 hourly values that detail an array of climatic 
parameters, providing a representative snapshot of weather for a given location over a year [191]. 
These parameters are crucial in the simulation models that predict energy usage in buildings and 
thus have broad applications in research and real-world scenarios. The methodology for 
generating TMY files can vary, but the Finkelstein-Schafer (FS) statistics method is often the choice 
for many researchers and practitioners. Developed by Hall et al., the FS method has gained wide 
acclaim for its robustness and applicability, becoming a standard tool in the field [192]. This 
method requires the amalgamation of weather data over a considerable time frame to ensure 
that the generated TMY files offer a 'typical' weather profile for the location in question. As an 
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example, Petrakis et al. formulated TMY files for Nicosia, Cyprus, by synthesizing seven years of 
weather data [193]. 
It's worth mentioning that TMY is not the only type of meteorological file available. There are 
other types, such as Typical Reference Year (TRY) and Design Summer Year (DSY). These variants 
are also generated, analyzed, and adapted through a multitude of approaches to create 
specialized weather datasets for specific applications [194, 195]. However, the critical backbone 
for generating any of these meteorological files is the availability of a comprehensive historical 
dataset. This archive acts as the source material from which each month is meticulously chosen 
to represent that month's typical weather conditions over multiple years. The richness and 
completeness of this historical data are vital to the reliability and credibility of the resulting TMY 
files, or any other types of meteorological files for that matter. 
 

4.6. Climate Models and Projection 

 
When it comes to predicting the future climate conditions that will impact building performance, 
General Circulation Models (GCMs) have been a mainstay in the realm of research. However, they 
have a significant limitation for this specific application; they typically provide daily or monthly 
data, which falls short of the hourly data requirements for building performance simulations 
(BPSs) [196]. Recognizing the intricacies and uncertainties in climate modeling, some researchers 
have opted for a multifaceted approach. In a notable example, Berardi and Jafarpur employed a 
combination of models in their recent study. They used Hadley Regional Model 3 (HRM3) 
alongside Hadley Climate Model 3 (HadCM3) for dynamical downscaling of future climate data. 
This was an expansion of their earlier work where they had used HadCM3 for statistical 
downscaling, signifying a comprehensive methodology for climate projections [197]. Country-
specific models and collaborations further enrich climate projection studies. For instance, the 
Polish-Norwegian CHASE-PL project offers a specialized glimpse into Poland's future climatic 
conditions. The project's approach involved downscaling GCM projections using an ensemble of 
nine Regional Climate Models (RCMs) derived from the EURO-CORDEX initiative. The findings 
were alarming but vital: under moderate scenarios, mean annual temperatures in Poland could 
rise by 1-2°C within this century. Under more extreme scenarios, this figure could soar to 4°C 
[198-202]. 
Researchers have a variety of tools at their disposal to integrate the impacts of climate change 
into weather data. These can broadly be classified into two categories [203]. The first leans heavily 
on historical weather data, encompassing techniques like the imposed offset method, 
extrapolating statistical method, and the stochastic weather model. The second category pivots 
towards the use of numeric climate models, such as downscaling GCMs to produce localized 
future weather data using RCMs. Downscaling itself can be executed via two avenues: statistical 
and dynamic. Dynamic downscaling is computationally demanding, employing regional-scale 
forces in conjunction with lateral boundary conditions to formulate more localized RCMs. 
Statistical downscaling has gained prominence in the field of climate modeling for building design 
due to its comparatively low computational intensity. This approach involves two key steps: first, 
establishing a statistical relationship between large-scale and local climate variables; second, 
utilizing this pre-established relationship for simulating local climate conditions [204]. Stephen 
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Belcher, in 2005, further advanced the domain by introducing a specialized form of statistical 
downscaling known as "morphing" [205]. The "morphing" method was proposed as a more 
practical alternative to dynamic downscaling for building design projects, which often cannot 
afford the computational expenses associated with the latter. Dynamic downscaling provides fine-
scale detail but at a high computational cost, making it less feasible for practical applications. 
Conversely, another method called stochastic weather generation, while computationally 
inexpensive, has its shortcomings too. It relies heavily on large datasets for training, and even 
then, the generated weather series may lack meteorological consistency [206, 207]. 
Statistical downscaling, and more recently, morphing, have risen in prominence for their 
efficiency and speed of calculation. Unlike dynamic downscaling, which often necessitates 
specialized requirements for data, such as precise representation of topography and mesoscale 
processes, morphing has fewer data constraints [76, 208-212]. This makes it particularly 
appealing for those who are operating within the limitations of available computational resources 
or tight project timelines. Scholars like Nik have continued to employ other methodologies, such 
as Regional Climate Models (RCMs), for dynamic downscaling, especially when the need for a 
more detailed topographical and mesoscale representation is essential [182]. However, the 
general trend suggests a shift towards statistical downscaling techniques like morphing, as it 
offers a balance between accuracy and computational efficiency. 
 

4.7. Impact Assessment 

 
The present section initiates with an exposition of the results obtained from weather projections, 
followed by a comparison of these projections with existing conditions in Poznan. This provides a 
foundational understanding of the likely future climate trends affecting the region. Subsequently, 
these weather datasets are used to construct a prototype for assessing the impact of climate 
change on thermal load in buildings. The comparative analysis between current and projected 
weather data, spanning the next 30 and 60 years, reveals specific trends in great detail. This study 
incorporates 13 pivotal variables that include a spectrum of meteorological and radiative factors: 
dry bulb temperature, dew point temperature, relative humidity, direct normal radiation, global 
horizontal radiation, diffuse horizontal radiation, horizontal infrared radiation, direct normal 
illuminance, global horizontal illuminance, diffuse horizontal illuminance, ground temperature, 
total sky cover, and atmospheric pressure. The forecasted future weather conditions point toward 
a significantly warmer climate in Poznan, coupled with increased levels of direct illuminance and 
radiation, as well as decreased humidity and cloud cover (as summarized in Table 4.2). To put the 
numerical data into perspective, temperature-related variables are anticipated to rise by an 
average of 4°C over the specified time frame. In parallel, variables related to radiation and 
illuminance are projected to increase by around 14.3 Wh/m2 and 463 lux, respectively. 
However, the scenario is not uniform across all variables. For instance, while there's a 
considerable reduction in total sky cover, with a decline by nearly 15%, the change in atmospheric 
pressure is negligible. To further elucidate, the most substantial increment was observed in direct 
normal illuminance, surging by about one-third. On the flip side, atmospheric pressure registered 
the most negligible change. In contrast, total sky cover exhibited the most significant reduction, 
dropping by 13%, while diffuse horizontal illuminance saw the least decrease, less than 1%. 
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Table 4.2. Relative changes of weather parameters for 2050 and 2080 compared to 2020. 
Weather Parameters Absolute 

Value 
Relative Changes 
compare to 2020 

2020 2050 2080 

Dew point temperature (°C) 4.2 6.0 7.2 

Average ground temperature (°C)  8.0 10.8 12.6 

Dry bulb temperature (°C) 8.2 10.9 12.6 

Direct normal radiation (Wh/m2) 59.1 81.3 86.4 

Diffuse horizontal radiation (Wh/m2) 75.9 72.5 71.4 

Global horizontal radiation (Wh/m2) 109.7 113.0 115.7 

Horizontal infrared radiation (Wh/m2) 303.0 322.1 331.5 

Direct normal illuminance (lux) 7015 7385 7875 

Diffuse horizontal illuminance (lux) 8578.5 8609.7 8527.7 

Global horizontal illuminance (lux) 12,157 12,434 12,739 

Atmospheric pressure (Pa) 101,325 101,272 102,249 

Relative humidity (%) 78.1 74.6 72.7 

Total sky cover (0–10) 4.5 4.2 4.3 

 
The subsequent phase in evaluating the influence of climate change on buildings focuses on 
scrutinizing the energy consumption, specifically the heating and cooling energy use intensity 
(EUI), as well as the thermal load for an array of 16 building prototypes. Post-simulation, the data 
for heating and cooling EUI were visually represented through scatterplot graphs. Trendlines were 
then plotted for each prototype, providing an interpretive lens into the changes in heating and 
cooling demands over the study period. 
For heating EUI, the data presented a pronounced decline across the different building 
prototypes, boasting an average reduction of more than 41 kWh/m2 (as depicted in Figure 4.4 a). 
To quantify, the baseline average heating load in 2020 stood at approximately 114 kWh/m2. 
Projections for the years 2050 and 2080 indicated reductions to 87 kWh/m2 and 72 kWh/m2, 
respectively, translating into decreases of about 25% and 40%. Delving deeper into specific 
prototypes, the heating load for the fast-food restaurant building (BP10) exhibited a substantial 
reduction, plummeting by 324 kWh/m2. Conversely, the large office building (BP06) registered 
only a modest decline, amounting to around 6 kWh/m2. On a broader scale, while the average 
change in heating load for the building prototypes hovered around a 40% reduction, the steepest 
decline was observed in the small office building (BP08) at approximately 57%, whereas the 
hospital building (BP03) had the least reduction at about 13%. 
Turning our attention to cooling EUI, an unequivocal upward trajectory was observed, evidenced 
by an average increase of 13 kWh/m2 (refer to Figure 4.4 b). To put it in numbers, the average 
cooling load in the baseline year of 2020 was roughly 13 kWh/m2. This escalated to 1.5 and 2 
times the original value for the years 2050 and 2080, respectively. Amongst all building 
performance simulations (BPS), the fast-food restaurant building (BP10) recorded the most 
dramatic surge in cooling load, rising by 46 kWh/m2. In contrast, the cooling load in the 
warehouse building (BP16) increased marginally by just 0.7 kWh/m2. On an average scale, the 
prototypes exhibited a 135% escalation in cooling load. The warehouse building (BP16) outpaced 
others with a massive 371% uptick, while the large office building (BP06) registered the lowest 
growth rate at 20%. 
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(a) 

 

(b) 

Figure 4.4. Heating EUI (a) and cooling EUI (b) in building prototypes from 2020 to 2080; the 
numbers demonstrate relative changes of values for 2080 compared to 2020. 

 
The comparison of heating and cooling loads between the years 2020 and 2080 presents 
noteworthy differences. While a decline in heating load was observed across all cases, an increase 
in cooling load was inevitable. One key observation is the rate of change: although the absolute 
average change for cooling load was lesser at 13 kWh/m2 compared to over 41 kWh/m2 for the 
heating load, the percentages of these changes reveal another aspect of the story. The cooling 
load increased by approximately 135%, contrasting with a 40% decrease in heating load. This data 
highlights a more accelerated rate of increase in cooling needs compared to the relatively modest 
decrease in heating requirements for the region of Poznan over the study period. Delving into 
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specific building prototypes, the most significant relative change in heating load was observed in 
the small office building (BP08) with a decrease of around 60% or approximately 10 kWh/m2. 
Conversely, the highest relative change in cooling load was found in the warehouse building 
(BP16), with an impressive 372% increase, albeit the absolute figure of this change was the lowest 
at just 0.7 kWh/m2. 
On the flip side, the hospital building (BP03) had the lowest relative decrease in heating load at 
13%, and the large office building (BP06) displayed the lowest relative increase in cooling load at 
58%. These findings imply that, due to the ongoing trend of global warming, cooling demands are 
anticipated to rise at a faster pace than the declining needs for heating. Importantly, while heating 
load has historically been the dominant factor in overall thermal load, the increasing rate of 
cooling load suggests a future shift in this paradigm. In essence, the share of cooling load in overall 
thermal load, though currently marginal, is poised to become significantly more relevant as the 
years progress. 
 

4.8. Discussion 

 
The need for reliable data is paramount for accurate scenario projections, especially in the context 
of the built environment where precise energy metrics are crucial. However, the limitations in 
data availability can impede the robustness of such studies. For instance, in the case of Poznan, 
only the HadCM3 climate model and IPCC A2 emission scenario were available for climate 
projections. This underscores the significance of having multiple datasets and climate models to 
improve the accuracy of findings. When comparing the relative rates of change in heating and 
cooling demand, it is crucial to consider their initial magnitudes. Although the relative rate of 
cooling demand change was about three times that of the heating load, its share in the total 
thermal load of 2020 was negligible. Thus, this significant rate of change does not translate into 
a drastic alteration in the overall thermal load pattern. The study found that most building 
prototypes (BPs) saw a slight decline in thermal loads, with an average decrease of approximately 
28 kWh/m2. 
Breaking down the rates, the average rate of thermal load change was a decrease of around 20%. 
The minimum change rate was a 1% increase in the outpatient healthcare building (BP09), 
whereas the most significant decrease was observed in the warehouse building (BP16) at more 
than 50%. This highlights that despite the rise in cooling load, its impact on the overall thermal 
load remains marginal in most cases. For example, in buildings like the large hotel (BP04) and the 
outpatient healthcare building (BP09), the decrease in heating load was less sharp compared to 
other cases where thermal load increased (Figure 4.5). 
Looking forward to the year 2080, the study predicts an average thermal load of around 98 
kWh/m2, marking a decrease of more than 22% from the 2020 average of approximately 127 
kWh/m2. The smallest decrease was recorded for the secondary school building (BP15) at 1.3 
kWh/m2, while the largest decrease was in the fast-food restaurant building (BP10) at 188 
kWh/m2. 
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Figure 4.5. Change in the thermal load of building prototypes in 2020–2080  
 
Even though cooling loads are on the rise, their impact on the overall thermal load remains less 
significant compared to heating loads across most building prototypes (BPs). A closer examination 
of the data (as indicated in Figure 4.6) reveals that in 25% of the studied prototypes (BP05, BP06, 
BP08, and BP15), the contributions of cooling and heating loads by the year 2080 are expected to 
reverse when compared to another group of the same size (BP01, BP02, BP03, and BP16). 
This finding points to a nuanced yet meaningful trend: the more balanced the initial contributions 
of heating and cooling loads, the higher the likelihood for these contributions to switch 
predominance by 2080. In other words, for building prototypes where heating and cooling loads 
are closely matched, a reversal in their respective contributions to the overall thermal load is 
more likely to occur in the future. 
Therefore, while heating loads currently dominate the thermal balance, the trend suggests a 
gradual and selective shift towards cooling loads becoming more impactful in certain building 
prototypes. This shift emphasizes the need for more adaptable building designs and energy 
management strategies that can account for these evolving thermal load dynamics. 
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Figure 4.6. The share of thermal load of building prototypes in 2020, 2050, and 2080. 

 
Therefore, considering the earlier discussions, it can be concluded that, in general, climate change 
heavily changed the energy performance of all building prototypes through increasing cooling 
and decreasing heating load. In this sense, as the contribution of cooling was more petite than 
heating in most cases, the total thermal load of most cases was reduced due to the decreased 
heating load. Furthermore, in one quarter of cases, the cooling increment altered heating and 
cooling contributions in thermal load. Finally, whenever increased heating load was reported, the 
total thermal load showed an upward trend in the study period. 

 

4.9. Conclusion 
 

As we navigate a time when the building sector accounts for a critical portion of global energy 
consumption, the need to understand the impacts of climate change on building energy 
performance is more crucial than ever. This chapter focused on these impacts for the city of 
Poznan in Poland. Utilizing future weather data, generated through the HadCM3 climate model 
and factoring in the IPCC SRES A2 greenhouse gas scenario, a picture of the city's energy future 
emerged. According to the projections, a significant uptick in average temperature in Poznan over 
the next 60 years is likely, potentially shifting the city's climate zone. Current dominant heating 
loads are expected to see a decline by about 40% by 2080, while the initially negligible cooling 
loads will sharply rise by around 135%. 
In 25% of the building prototypes studied, this shift resulted in a change in the primary 
contributor to total thermal load from heating to cooling. In contrast, the majority of cases will 
still see heating as the major contributor, albeit with a reduced total thermal load. These insights 
suggest that future building projects in Poznan should prioritize energy-efficient cooling systems 
to counterbalance the increased greenhouse gas emissions that would otherwise occur. 
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One limitation of the study is its reliance on a single climate model, HadCM3, under the A2 
emission scenario. Future research should diversify the climate models and scenarios employed 
to ensure broader applicability of the findings. As climate change continues to alter 
environmental variables, the resiliency of our buildings must be front and center in planning and 
policy decisions. For cities like Poznan, or others with similar climatic conditions, preparations 
must be made for a future where cooling requirements will assume a more significant role. 
Consequently, methods to reduce cooling loads could serve as a critical strategy in reducing a 
building's carbon footprint, thereby helping to curb the vicious cycle of climate change. 
In summary, the insights from this chapter offer a valuable framework for architects, engineers, 
policymakers, and other stakeholders tasked with shaping our urban environments. They also 
underscore the need for future research that includes more comprehensive studies covering 
major cities across Poland, thereby providing a richer database for informed decision-making at 
a national level. 
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5.1. Abstract 

 
This chapter provides a comprehensive review of machine learning algorithms commonly 
employed in the domain of building energy consumption prediction. A selection of methods 
ranging from traditional statistical models like Multiple Linear Regression (MLR) to more 
advanced machine learning techniques such as Artificial Neural Networks (ANNs), Support Vector 
Machines (SVMs), Random Forests (RF), and Extreme Gradient Boosting (XGB) are discussed. Each 
algorithm is explored in detail, offering insights into its underlying mechanics, advantages, and 
limitations. Case studies and real-world applications are presented for each method to highlight 
their empirical performance and suitability for various scenarios, including short-term and long-
term forecasting, as well as high-dimensional and noisy data environments. Although the 
selection of the optimal algorithm is recognized as a complex task—dependent on myriad factors 
like data availability, feature dimensionality, and specific project requirements—the chapter aims 
to provide an initial layer of filtration for decision-making. By comprehending the foundational 
principles and capabilities of these algorithms, readers are guided in aligning algorithmic choices 
with specific challenges and requirements. The chapter serves as an essential resource for 
researchers, practitioners, and policy-makers in the field, providing the foundational knowledge 
required for informed selection among various machine learning options for predicting building 
energy consumption. 
 

5.2. Introduction 

 
Greenhouse gas emissions, predominantly carbon dioxide (CO2), are identified as the main 
instigators of global warming. Various studies highlight the building sector as a significant 
contributor to these emissions, accounting for 46% in the UK [213], 40% in the USA, and 27% in 
Australia [214]. Consequently, enhancing the energy efficiency of buildings has become a priority, 
not only to curb emissions but also to reduce fossil fuel consumption. For context, a 20% 
improvement in the energy performance of European Union (EU) buildings could lead to an 
estimated annual saving of 60 billion Euros [215]. To effectively mitigate the impacts of 
greenhouse gas emissions, substantial changes are required in various areas. These include shifts 
in human behavior related to energy consumption and the production of environmentally friendly 
products [216]. Within this multifaceted landscape, two strategies stand out as particularly 
impactful: the development of new, energy-efficient buildings and the optimization of energy 
usage in existing structures. 
The cornerstone of enhancing building energy consumption lies in accurate and reliable 
measurement. Building energy assessment methods serve this purpose well, offering decision-
makers a comparative Energy Performance Indicator (EPI) or Energy Use Intensity (EUI) [217, 218]. 
These indices generally represent the energy consumed by a building over a specified period, 
normalized by its floor area, and expressed as kWh/m2/period. 
The evaluation of energy use in buildings can be categorized into four primary techniques: 
engineering calculations, simulation-based benchmarking, statistical modeling, and Machine 
Learning (ML). Engineering approaches utilize the principles of physics to estimate energy 
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consumption either for entire buildings or specific subsystems. These techniques often employ 
advanced mathematical models and building dynamics to provide highly accurate estimations of 
energy use, taking into account various internal and external factors such as climate conditions, 
construction materials, and HVAC systems. On the other hand, simulation-based methods use 
specialized software and computer models to replicate building performance under set 
conditions. These simulations are versatile and can be applied to diverse aspects like lighting and 
HVAC design. With the availability of historical building energy data, top-down methods using 
statistical modeling have gained traction. These techniques often employ regression analyses to 
create what are known as data-driven surrogate models, leveraging existing data instead of 
intricate system details. ML, a subset of artificial intelligence, offers a unique approach to learning 
from data through algorithmic processes. Given its foundational ties to computational statistics, 
ML can also be viewed as a specialized form of statistical modeling. 
Simulation-based approach enables architects and engineers to evaluate how a building's form, 
materials, and systems will influence its thermal efficiency before it's even built. The traditional 
approach to finding the best design through simulation involves a manual, iterative process that 
can be labor-intensive, thereby limiting the range of design alternatives. 
 
This constraint is addressed by using optimization techniques, capable of evaluating thousands of 
possibilities [219]. While this reduces the need for specialized human labor, it can be 
computationally taxing and time-consuming. To circumvent this, surrogate or data-driven models 
have been suggested as a solution [220]. These models establish mathematical connections 
between input variables and desired outputs, such as thermal properties of materials and 
weather conditions to predict indoor climates. When adequately precise, these models can offer 
quick and accurate alternatives to traditional simulation tools during a resource-intensive design 
process [221]. 
The use of surrogate models comes with its own set of considerations, primarily concerning data 
accuracy and the validity of the derived relationships. This paper delves into an overlooked 
aspect: the selection and tuning of appropriate regression models for specific datasets. Existing 
literature on the use of surrogate models in building simulations commonly focuses on comparing 
linear models to non-linear ones, usually optimizing only a limited number of model parameters 
[26]. We argue that model selection should not solely be based on predictive accuracy but also 
take into account factors like model complexity, user-friendliness, and prediction consistency. 
This study concentrates on regression algorithms aimed at linking specific building features with 
corresponding performance indicators, such as geometric-based features (height, width, window 
to wall ration, Etc.) with the energy needed for heating. Generally, regression methods are 
categorized into either supervised or unsupervised learning. In supervised learning, where the 
target outcome is predefined, the model aims to map input features (X) to one or more output 
variables (Y), mirroring the behavior of the real system under study. Unsupervised learning, in 
contrast, doesn't have a specified 'output' to predict and often employs techniques like clustering 
to categorize data based on inherent similarities. In the context of this study, a dataset that 
originates from a physics-based simulator has been used, making this endeavor a supervised 
learning task. This simulator serves as the benchmark for evaluating the performance of various 
predictive models.  
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Attention of this work primarily is directed towards nonlinear regression models. In such models, 
inputs can't be linearized even after applying transformations. For instance, although a 
polynomial model can be transformed into a linear model using squared or cubed inputs, the 
same is not possible for a Random Forest (RF) regression model. The utility of machine learning 
(ML) models in the realm of building analysis was initially demonstrated by Kalogirou, Neocleous, 
and Schizas in 1997 [222], who estimated heating loads based on building envelope 
characteristics and the set temperature. Subsequent research has consistently shown that 
nonlinear models outperform linear ones in predicting both simulated and real-world data. To 
give a comprehensive understanding, we provide a literature review categorized by the specific 
type of model employed in each study. 
 

5.3. ML algorithms 

 
Machine learning algorithms that are commonly used for predictive modeling encompass a wide 
variety of approaches, such as Long Short-Term Memory networks (LSTM), Artificial Neural 
Networks (ANN), and Back Propagation Neural Networks (BPNN). Additionally, Multilayer 
Perceptrons (MLP) are often used for tasks that require complex function approximation. On the 
statistical front, methods like Support Vector Regression (SVR) and Multiple Linear Regression 
(MLR) offer robust ways to model relationships in data. For classification tasks, Support Vector 
Machines (SVM) are a popular choice due to their effectiveness in high-dimensional spaces. 
Ensemble methods like Random Forests (RF) and Extreme Gradient Boosting (XGB) are also 
frequently deployed for both classification and regression problems, as they combine multiple 
weak learners to create a more robust model. 
 

5.3.1. LSTM 

Long Short-Term Memory networks (LSTM) represent a specialized type of Recurrent Neural 
Networks (RNN) that are particularly effective in addressing issues like vanishing and exploding 
gradients, especially during the training of long data sequences. The architecture of Long Short-
Term Memory (LSTM) is composed of a singular yet critical component known as the memory 
unit or LSTM unit (Figure 5.1). This unit itself is an ensemble of four distinct feedforward neural 
networks, each having an input layer and an output layer. In every one of these neural networks, 
each input neuron is directly connected to all the output neurons, resulting in four layers that are 
fully connected within the LSTM unit. Out of these four neural networks, three serve the 
specialized function of information selection and management. These are known as the forget 
gate, input gate, and output gate. These gates handle three essential memory operations: purging 
information from memory (via the forget gate), adding new data into memory (through the input 
gate), and utilizing the stored information for computations (by means of the output gate).The 
remaining fourth neural network within the LSTM unit is referred to as the candidate memory. 
This network is tasked with generating new candidate data that could potentially be added to the 
memory unit. 
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Figure 5.1. Architecture of LSTM unit, based on [223] 

 
LSTMs have the edge over traditional RNNs when handling long sequences. For instance, Sendra-
Arranz and Gutierrez [224] employed LSTM networks to forecast the daily energy usage of HVAC 
systems. Similarly, Pittí et al. [225] designed an LSTM-based model for predicting the daily 
consumption of a heat pump located at the Teatro Real in Spain. In a more intricate application, 
Rosemary et al. [226] employed an encoder-decoder LSTM model to carry out hourly and day-
ahead predictions for residential high-voltage alternating current use and solar power generation, 
integrating load history and meteorological variables. Wang et al. [227] used LSTMs for predicting 
various parameters like electricity consumption, lighting loads, occupancy rates, and internal heat 
gains in double-office buildings across the United States. Jogunola et al. [228] utilized 
Convolutional Neural Networks (CNN) for feature extraction and then employed LSTMs to 
forecast energy consumption in diverse building types. Das et al. [229] took it a step further by 
developing a bidirectional LSTM (Bi-LSTM) model to offer one-day and one-week electricity 
consumption forecasts. Ullah et al. [230] experimented with multiple variants of LSTM, including 
Bi-LSTM and multilayer LSTM (M-LSTM), to predict home energy usage. Li et al. [231] combined 
K-means clustering with LSTM to predict energy loads at the granularity of individual building 
floors. In a hybrid approach, Kim and Cho [232] merged CNN with LSTM to capitalize on both 
spatial and temporal features for accurate residential energy consumption prediction. He and 
Tsang [233] introduced a novel hybrid model, coupling improved fully integrated empirical modal 
decomposition with adaptive noise (iCEEMDAN) and LSTM, for precise short-term load 
forecasting in educational institutions. Ijaz et al. [234] employed convolutional LSTM for spatial 
feature extraction and Bi-LSTM for sequence learning, thereby minimizing energy consumption 
prediction errors.  
Chalapathy et al. [235] demonstrated an LSTM-based Recurrent Neural Network with multiple-
input multiple-output (RNN-MIMO) architecture that excelled in both one-hour and one-day 
multi-step prediction scenarios across various settings like office buildings, hospitals, and 
shopping malls. Compared to existing shallow machine learning models like SVR and Extreme 
Gradient Boosting (XGB), this RNN-MIMO model showed a 33% increase in average accuracy. 
However, Salah et al. [236] noted that poor performance in LSTM prediction could result from 
improperly set hyperparameters or anomalies in energy consumption data. To address this, they 
used two evolutionary metaheuristics, namely the genetic algorithm (GA) and particle swarm 
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optimization (PSO), to fine-tune the LSTM model's performance for power load prediction, 
outperforming traditional models like SVR, Random Forest (RF), ANN, and manually-tuned LSTM 
configurations. 
 

5.3.2. Artificial Neural Network 

Neural networks are widely recognized as leading machine learning techniques in the domain of 
building energy prediction. They are particularly adept at modeling complex, non-linear systems. 
With the application of specialized methods, Artificial Neural Networks (ANNs) can achieve a level 
of immunity to noise and faults, making them effective at learning essential patterns in building 
systems [237]. The conceptual foundation of ANNs is derived from neurobiology. A variety of ANN 
architectures have been developed for diverse applications, such as Feed Forward Networks 
(FFN), Radial Basis Function Networks (RBFN), and Recurrent Neural Networks (RNN). These 
networks typically comprise multiple layers (at least two) of neurons connected by activation 
functions. Common activation functions utilized in these networks include linear, sigmoid, and 
hard-limit functions [238]. A neural network is typically structured with three main layers. The 
first of these is the input layer, which comprises input neurons responsible for forwarding data to 
the next layer, known as the hidden layer. Within the hidden layer, calculations are performed on 
the received input data, and the results are then sent to the output layer. Components of the 
hidden layer include weights, activation functions, and cost functions (Figure 5.2). 

 
Figure 5.2. Common architecture of ANN, based on [239] 

The term 'weight' refers to the numerical values that define the connections between neurons. 
These weights play a crucial role in determining the network's learning capabilities. As the 
artificial neural network undergoes the learning process, these weights between neurons are 
dynamically adjusted. Artificial Neural Networks (ANNs) have shown promising results in a variety 
of intricate tasks that require high temporal resolution, particularly in forecasting short-term 
heating loads within buildings [31]. For instance, Yaser et al. [240] leveraged ANNs for forecasting 
the daily energy consumption associated with a laboratory fan coil system. In a different setting, 
Byeongmo et al. [241] introduced an ANN-based control strategy for managing the climate in a 
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Double-Skin Facade (DSF) office building situated in a humid, hot environment, achieving a cost 
savings of 4.5%. Muralitharan et al. [242] optimized an ANN using Genetic Algorithms (GA) and 
Particle Swarm Optimization (PSO) to automatically adjust its hyperparameters. 
Beyond standard ANNs, specialized variants like Multilayer Perceptrons (MLP), Back Propagation 
(BP) neural networks, Elman neural networks, and Echo State Networks (ESN) have also been 
explored. Andrew et al. [243] employed an MLP network to optimize energy usage in HVAC 
systems while maintaining a comfortable thermal environment, even with fluctuating occupancy 
levels. Mitali et al. [244] utilized a BP neural network to make predictions about residential HVAC 
energy consumption. Ruiz et al. [245] developed a methodology based on the Elman neural 
network to enhance energy efficiency in university buildings without sacrificing comfort or health. 
All these cases and applications show the strength of ANN in general for the specific case that this 
research is looking for. 
 

5.3.3. Support Vector Machine 

Support Vector Machines (SVMs) have gained considerable recognition for their effectiveness in 
solving classification problems, where the aim is to categorize data into distinct classes. While 
they are primarily known for this role, their application extends into regression analysis as well, 
albeit less commonly. In the context of regression, these models go by the name of Support Vector 
Regression (SVR). SVR models aim to predict continuous outcomes as opposed to discrete classes, 
and they share many of the same foundational principles with their classification counterparts. 
Despite being less documented, SVRs are gaining traction for their ability to handle complex, high-
dimensional data in predictive modeling. 
SVR seeks to minimize prediction error by identifying the optimal hyperplane and narrowing the 
gap between predicted and observed values. In the equation provided, reducing the value of 'w' 
is equivalent to maximizing the margin, as illustrated in Fig. 5.3. 

 
Figure 5.3. Architecture of support Vector Regressor, based on [245] 

 
In the realm of Building Energy Consumption Prediction (BECP), both Support Vector Machine 
(SVM) and Support Vector Regression (SVR) rely on nonlinear mapping techniques. These map 
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input data into a high-dimensional space to execute linear regression, ultimately achieving a 
nonlinear regression effect on the original input data. For example, Zhong et al. employed SVR to 
forecast the cooling load in a large office structure located in Tianjin [246]. Similarly, Li et al. [247] 
created a moment-to-moment building cooling load predictive model, which was based on SVM 
and Back Propagation (BP) algorithms. They applied this model to an office building in Guangzhou, 
finding that SVM outperformed BP in terms of prediction accuracy. Ding et al. [248] fashioned 
both GA-SVR and GA-WD-SVR models to predict the cooling load in office buildings at varying 
time scales. They found that GA-SVR was superior for next-day cooling load predictions, while GA-
WD-SVR excelled in one-hour cooling load forecasting. Paudel et al. [249] used SVM to estimate 
the thermal loads in a low-energy building, demonstrating that the model was more accurate 
when relying on relevant data (RMSE = 3.4) compared to using all available data (RMSE = 7.1). 
Seyedzadeh et al. [84] conducted a comparative analysis of multiple algorithms including SVM, 
Random Forest (RF), Recurrent Neural Networks (RNN), and Extreme Gradient Boosting (XGB) for 
predicting the cooling and heating loads in both commercial and residential structures. They 
concluded that SVM was the most effective choice for relatively straightforward datasets. To 
further fine-tune prediction accuracy, Zhao and Liu [250] first applied wavelet transform (WT) for 
noise reduction on historical energy data. They then utilized low-correlation features for Partial 
Least Squares (PLS) predictions and high-correlation features for SVM-based predictions, which 
significantly improved predictive accuracy. Finally, Ngo et al. [251] introduced an innovative time 
series wolf-inspired optimization SVR model (WIO-SVR) designed for predicting energy 
consumption across multiple buildings. 
 

5.3.4. Random Forest 

A Random Forest is essentially a collection of decision trees, constructed in a specific manner that 
introduces randomness into the process. Each tree within the ensemble is generated from a 
unique subset of rows and, for each node within the tree, a distinct set of features is chosen for 
making the split. Every tree in the ensemble contributes its own individual prediction. These 
multiple predictions are subsequently averaged to arrive at a single, consolidated output (Figure 
5.4).The practice of averaging the predictions from multiple trees enhances the performance of a 
Random Forest over that of a single Decision Tree. This approach not only improves the model's 
overall accuracy but also minimizes the likelihood of overfitting the data. In the context of 
Random Forest Regressor, the final prediction is essentially an aggregate, calculated as the 
average of the individual predictions generated by each of the trees within the forest. 

 
Figure 5.4. Conceptual framework of random forest 
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One of the key advantages of RF is its ability to automatically conduct feature selection, 
identifying interactions between various variables without requiring manual feature selection. 
Additionally, it can maintain high levels of predictive accuracy even when some features are 
missing. In applied research, Wang et al. [252] utilized the RF model to forecast hourly electricity 
consumption in two educational buildings in Florida. Seyedzadeha et al. [253] employed RF to 
predict the cooling and heating loads in a range of residential and commercial structures. Further, 
Rana et al. [254] used a specialized version of RF, referred to as a divided number regression 
forest, to predict the cooling load for a large retail shopping center and an office building in 
Australia over a one-month period. Ahmad et al. [255] took a multi-model approach, 
incorporating a binomial decision tree, tight regression Gaussian process model, stepwise 
Gaussian process regression, and generalized linear regression models to forecast electricity 
consumption on a monthly, quarterly, and annual basis. 
 

5.3.5. Extreme Gradient Boosting  

Extreme Gradient Boosting (XGB) is an advanced implementation of gradient-boosted decision 
trees specifically engineered for speed and high performance. One of its major strengths is its 
ability to effectively handle nonlinear relationships in data without requiring substantial fine-
tuning [256]. For example, João et al. [257] introduced a hyperparametric adaptive model based 
on the Jaya algorithm and utilized XGB to accurately predict energy consumption patterns in 
residential structures. Similarly, Lu et al. [258] leveraged the capabilities of XGB to forecast the 
energy requirements of a water tower. They chose XGB particularly for its prowess in refining 
predictions by smoothing out raw data that showed significant fluctuations. Furthermore, Feng 
et al. [259] employed XGB to estimate cooling loads in three different homes located in the United 
States, each subjected to varying climatic conditions—hot, humid, cold, and dry. Therefore, it is 
fair to say that  XGB has proven to be a versatile and powerful tool for diverse applications, 
particularly in scenarios demanding rapid and accurate predictions. 
 

5.3.6. LGBM Regressor 

The LightGBM (LGBM) algorithm serves as a sophisticated learning framework that capitalizes on 
tree-based learning algorithms. Designed with an emphasis on efficiency and distributed 
computing, LightGBM brings several advantages to the table. Among these are rapid training 
speeds, heightened efficiency, minimal memory consumption, and impressive prediction 
accuracy. Moreover, it comes with built-in support for parallel computations, making it 
particularly well-suited for handling large-scale data management tasks [260]. One of the 
distinguishing features that sets LightGBM apart from its counterpart, XGBoost (XGB), is its 
utilization of a histogram-based learning algorithm. This specific approach not only accelerates 
the model training process but also significantly reduces the memory footprint required. The 
histogram-based technique allows LightGBM to construct compressed histograms, which in turn, 
speeds up both training and prediction, while concurrently reducing memory consumption [261]. 
In recent times, the LightGBM algorithm has found applicability in various studies across different 
domains. It has been adopted for prediction tasks in diverse fields, showcasing its versatility and 
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effectiveness [262, 263]. Whether employed in predictive analytics, classification tasks, or other 
machine learning applications, LightGBM consistently proves its mettle as a robust and scalable 
solution. 
 

5.3.7. Multiple Linear Regression 

Multiple Linear Regression (MLR) serves as a mathematical framework for quantifying the linear 
relationships between input variables and energy consumption in buildings [264]. This approach 
has been employed in a variety of settings to predict energy usage effectively. For instance, Fumo 
and Biswas applied linear regression models to forecast the energy consumption of HVAC systems 
in residential buildings at different time scales. Their study revealed that a quadratic regression 
model produced superior outcomes for short-term (1-hour) predictions, but did not maintain this 
advantage for longer periods (1-day) [265]. Similarly, Fan and Ding [266] used a specialized form 
of MLR known as Multiple Nonlinear Regression (MNR) to estimate the hourly cooling load of a 
large library. This approach adapted the basic principles of MLR to a more complex nonlinear 
context, thereby enhancing its predictive capabilities. Furthermore, Chen et al. [267] tackled the 
issue of weak generalizability in models trained on limited data samples by introducing a PB-MLR 
(Pattern-based Multiple Linear Regression) model. Their innovative model was designed to 
predict the cooling load of office buildings with greater accuracy over a time-wise scale. Overall, 
MLR and its various adaptations provide a robust and versatile toolset for predicting energy 
consumption, with the flexibility to address both linear and nonlinear scenarios. 
 

5.4. Conclusion 

 

In this chapter, a comprehensive range of machine learning algorithms has been explored, each 
with its prominence in the domain of building energy consumption prediction. The spectrum 
spans from traditional approaches like Multiple Linear Regression (MLR) to more advanced, 
computationally intensive algorithms such as Artificial Neural Networks (ANNs) and Extreme 
Gradient Boosting (XGB). With each algorithm offering its unique set of advantages, complexities, 
and limitations, the vast array of options is indicative of the differential suitability these 
algorithms present for various datasets and prediction challenges. The intricacies inherent in 
building energy systems—affected by a multitude of variables, from occupancy patterns to 
external climatic conditions—suggest that a one-size-fits-all solution is elusive. Consequently, the 
task of selecting the most appropriate algorithm from among this wide array is far from trivial. 
The optimal choice can vary based on myriad factors, including data availability, feature 
dimensionality, the need for model interpretability, and the desired prediction accuracy. 
Furthermore, the unique characteristics and patterns embedded in each dataset can often make 
some algorithms more attuned to capturing them than others. Amidst this complexity, the 
insights derived from this chapter become instrumental. While it is recognized that the optimal 
algorithmic choice will likely differ across datasets, an understanding of the foundational 
principles, capabilities, and limitations of these algorithms can provide an initial layer of filtration 
in the decision-making process. Knowledge of the core mechanics of each algorithm aids in 
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aligning algorithmic choices with the specific requirements of a project. For instance, if high 
temporal resolution is sought, it might be inferred that ANNs or XGB could be preferable. 
Conversely, for scenarios where interpretability holds precedence, simpler algorithms like MLR 
could be deemed more fitting. 
Furthermore, the studies and applications presented for each algorithm in this chapter offer 
insights into their empirical performance. These real-world applications can be viewed as 
benchmarks, shedding light on potential performance metrics of each algorithm under analogous 
conditions or similar application domains. 
In conclusion, while further steps, such as cross-validation or hyperparameter tuning, might be 
required in the quest to select the best-suited algorithm, the foundational knowledge provided 
in this chapter serves as an essential backdrop. This foundational understanding offers invaluable 
guidance in navigating the plethora of machine learning algorithms available for building energy 
consumption prediction. Such knowledge underscores the importance of informed decisions, 
thereby facilitating the effective and nuanced utilization of these potent computational tools. 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 6: Results 
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6.1. Abstract 

 
This chapter delves into the comprehensive process of deploying and fine-tuning machine 
learning models for a specific application, emphasizing the optimization of Artificial Neural 
Network (ANN) as the optimum model. Initially, a thorough exploratory data analysis is 
conducted, encapsulating aspects like statistical inference, inter-relationships among variables, 
distribution normality, input/output relationships, and the impact of categorical variables. 
Subsequent sections address the deployment of various machine learning models, including 
LightGBM Regressor, Random Forest, and Support Vector Machine, culminating in the 
deployment and fine-tuning of ANN. Methodical model tuning is performed to enhance 
performance metrics, with a particular focus on the mitigation of overfitting through input 
normalization and model regularization. The chapter concludes with an evaluation of the final 
models, highlighting the efficacy of the final ANN model through a real-life case study involving 
3D reconstruction and energy usage intensity (EUI) simulation. Comparative analysis validates 
that the final model shows a significant performance improvement over the base model, 
substantiating its potential for delivering more reliable results in similar applications. 
 
 

6.2. Exploratory Data Analysis 

 
In this section, the findings from the Exploratory Data Analysis (EDA) of the generated dataset are 
presented. For a comprehensive understanding of the dataset, it is advised to examine both the 
structure or "shape" of the data as well as the mathematical characteristics of each individual 
variable. These mathematical aspects serve essentially as statistical inferences, providing a robust 
framework that can accurately model and describe the behavior and distribution of the dataset. 
When the dimensions of the dataset are considered, it is notable that it consists of 3,000 rows of 
data. Each row is comprised of 11 distinct columns, representing various features or variables. 
These columns are labeled as follows: W for Width; L for Length; H for Height; WWR, which stands 
for Window to Wall Ratio; R representing Rotation; RC indicating Relative Compactness; RA for 
Roof Area; V for Volume; CL representing Characteristic Length; GA for Glazing Area; and EUI, 
which indicates Energy Use Intensity (Figure 6.1).  
 

 
Figure 6.1. view from the generated dataset 
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6.2.1. Statistical Inference 

By considering both the number of variables and their respective value ranges, a refined 
understanding of the dataset can be developed. This, in turn, sets the stage for more targeted 
analysis and the potential construction of predictive models. Initially, as per standard data science 
workflows, the presence of null values in the dataset should be scrutinized. However, given that 
this dataset is the output of simulation-based data generation, no null values are present. To 
ensure the data quality, this absence of null values has been confirmed through checks. 
Subsequently, the focus shifts to the statistical inferences associated with each variable. For the 
purposes of this research, the statistical metrics examined include the number of observations, 
the mean, standard deviation, minimum value, first quartile, second quartile (or median), third 
quartile, and maximum value, as detailed in Table 6.1. 

Table 6.1. Description of the dataset 
 W L H WWR R RC RA V CL GA EUI 

Count 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 

Mean 4.00 6.00 3.50 0.50 150.00 0.94 24.00 84.00 0.70 7.00 86.54 

Std 0.71 0.71 0.35 0.22 102.49 0.01 5.12 19.92 0.06 3.50 14.06 

Min 3.00 5.00 3.00 0.20 0.00 0.91 15.00 45.00 0.58 1.80 60.13 

25% 3.50 5.5 3.25 0.35 60.00 0.93 20.00 68.25 0.66 3.86 75.19 

50% 4.00 6.00 3.50 0.50 150.00 0.94 24.00 82.50 0.70 6.75 85.24 

75% 4.50 6.50 3.75 0.65 240.00 0.95 27.50 97.50 0.74 9.60 96.02 

Max 5.00 7.00 4.00 0.80 300.00 0.97 35.00 140.00 0.84 16.00 131.87 

In the subsequent phase, a recommendation has been made to decrease the data's 
dimensionality by eliminating extraneous variables. While certain attributes in the analysis may 
initially appear crucial, their behavior might closely mirror that of other parameters. 
Consequently, such attributes could be deemed redundant and safely disregarded in the context 
of machine learning predictions. 
 

6.2.2. Inter-relationship 

To comprehend the interrelationships among the variables, the utilization of a correlation matrix 
is highly advisable. This tool is valuable not only for assessing statistical correlations but also for 
providing a visual means to easily grasp the behavior of each attribute. This visual insight allows 
for effortless comparisons between different variables, enhancing the overall understanding of 
the dataset's characteristics (Fig 6.1). 
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Figure 6.1. correlation matrix of the variables 

In the study, several key insights are derived that merit consideration for future analyses. 
Specifically, a notable degree of similarity is observed between the variables Glazing Area (GA) 
and Window-to-Wall Ratio (WWR), which exhibit an 89% resemblance. Given this substantial 
overlap, the removal of one of these variables from future analyses is recommended to minimize 
redundancy. An even higher similarity rate of 98% is observed between Characteristic Length (CL) 
and Volume (V), thereby making an even stronger case for the elimination of one of these 
variables to enhance the model's efficiency. 
From another perspective, the importance of closely examining both input features and output 
labels in the context of machine learning algorithms is emphasized. Understanding the effect of 
each input feature on the output label is considered critical for the construction of effective 
predictive models. Features and labels are not mere data points; rather, they are identified as 
playing pivotal roles in determining the algorithm's predictive accuracy and reliability. The focus 
of the research is on assessing the impact of various geometric-based features on Energy Use 
Intensity (EUI), which serves as the output label for this study. These features are categorized into 
two levels: The first level includes basic geometrical dimensions such as Length (L), Width (W), 
Height (H), Ratio (R), and Window-to-Wall Ratio (WWR). The second level comprises more 
complex variables like Relative Compactness (RC), Roof Area (RA), Volume (V), Characteristic 
Length (CL), and Glazing Area (GA), which are derived from the primary geometric attributes. This 
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can also be seen with more details, scatter plot will show not only the similarity in the behavior 
for each pair of variables, but also the type of relationship (Figure 6.2). 

 
Figure 6.2. scatter plot show of pair variables 

 

6.3.3. Distribution, normality 

Nonetheless, for a more nuanced understanding of the data, examining the distribution of each 
variable is advisable. Such scrutiny is particularly crucial for conducting normality checks, as data 
that does not conform to a normal distribution can pose challenges in the machine learning 
process.  Distribution of the level 2 features as well as output can provide more information about 
the skewness of the data. 
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a. Distribution of Relative compactness 

 
b. Distribution of Volume 

 
c. Distribution of Characteristic length 
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d. Distribution of EUI 

Figure 6.3. Distribution of level 2 inputs and output 

 
Upon closely examining Figure 6.3, it becomes evident that nearly all the variables investigated in 
prior stages exhibit skewness, with the exception of Characteristic Length (Figure 6.4). This 
observation is not trivial; it holds significant implications for the implementation of machine 
learning algorithms aimed at making predictions. Skewed data can introduce elements of 
uncertainty and inaccuracy, thereby potentially compromising the robustness of predictive 
models. Therefore, it is recommended to account for this aspect of data distribution when 
designing and deploying machine learning algorithms. 
 

Normality check 
Visual test Shapiro-Wilk Test  
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Figure 6.4. Input normality check 

 
 

6.3.4. Input/Output relationship 

In the subsequent phase, to better understand the influence exerted by each input variable on 
the output variable, which in this case is Energy Use Intensity (EUI), a preliminary visual analysis 
is undertaken. Utilizing scatter-plot graphs paired with fitted linear regression lines, a 
foundational understanding of the relationships between each input variable and the EUI output 
can be gleaned. This graphical approach serves as an effective way to visually capture and assess 
the interactions between the variables, providing initial insights that may guide further in-depth 
analysis (Figure 6.5). 

 
Figure 6.5. Input/output relationship 
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Beyond simple visual analysis, the Pearson correlation coefficient serves as a powerful statistical 
tool to quantify the relationships between the features and the targeted output, in this case, 
Energy Use Intensity (EUI). According to Figures 6.6 and 6.7, it becomes abundantly clear that the 
Window to Wall Ratio (WWR) has the most pronounced and positive correlation with EUI. This 
implies that an increase in the window area is associated with higher energy consumption, a 
conclusion that intuitively makes sense. Glazing Area (GA) as expected exhibits a behavior largely 
similar to that of WWR, as observed in Figure 6.2. This similarity in behavior suggests that 
incorporating both WWR and GA into machine learning models might be redundant. Therefore, 
only one of these variables may be necessary for effective model deployment. Following WWR 
and GA, Relative Compactness (RC) emerges as having the next strongest positive correlation with 
EUI. This further illuminates the variables that are pivotal in shaping energy usage patterns. 
Additionally, when examining the interrelationships among Characteristic Length (CL), Volume 
(V), and Roof Area (RA), it becomes evident from Figure 6.7 that these variables exhibit highly 
similar behaviors. Consequently, choosing just one of these variables for inclusion in the machine 
learning model would likely suffice, as incorporating all would not provide additional unique 
information. 

 
Figure 6.6. Input/output correlation coefficient 

 
Figure 6.7. Inter-relationship of a subset of features 
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6.3.5. Categorical additions 

To assess whether the generated dataset can serve as an accurate representation of the broader 
population in the context of building clusters, an additional categorical variable has been 
introduced. This variable serves to categorize the Energy Use Intensity (EUI) into five distinct 
levels: 'Very Low,' 'Low,' 'Medium,' 'High,' and 'Very High' (Table 6.2). By doing so, it becomes 
possible to more effectively evaluate the data's coverage and its ability to encapsulate the range 
of EUI rates that may be encountered in the overall population. This categorization allows for a 
nuanced interpretation of the data, enabling stakeholders to better understand the spectrum of 
energy use across different building configurations. It can also provide valuable insights into how 
representative the dataset is of various energy usage scenarios, which is crucial for ensuring that 
any subsequent analyses or predictive models developed are both robust and generalizable. 
 

Table 6.2. categorical values description  
EUI Rate Count Mean Std Min 25% 50% 75% Max 

Very Low 691.00 69.37 3.36 60.13 67.18 69.78 72.15 74.46 

Low 1065.00 81.54 4.10 74.48 77.97 81.52 85.06 88.80 

Medium 842.00 95.23 4.05 88.83 91.63 94.89 98.65 103.16 

High 337.00 108.85 3.91 103.18 105.48 108.17 111.74 117.27 

Very High 65.00 122.82 4.02 117.73 119.62 121.98 124.94 131.87 

 
Upon closer examination of this newly introduced categorical data, along with the distribution of 
cases across each category, it is noteworthy that more than half of the instances fall within the 
'Low' and 'Very Low' categories. This distribution could be seen as favorable when considering 
the intra-group conditions, as illustrated in Figure 6.8. However, relying solely on these categories 
may not provide a fully accurate understanding of the energy consumption levels within this 
specific building cluster. To obtain a more precise insight into the energy consumption patterns, 
alternative approaches or supplementary metrics may be warranted. The goal is to ensure that 
the understanding of energy usage within this cluster is both comprehensive and nuanced, 
allowing for more effective future analyses or interventions. Thus, while the initial categorization 
serves as a helpful starting point, additional methods should be explored for a more accurate 
assessment of the cluster's energy consumption levels. 

 
Figure 6.8. EUI categorical values count 
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To further refine the analysis, the dataset has been evaluated against the legally acceptable 
Energy Use Intensity (EUI) standards as determined by the Polish government, which were 
introduced in Chapter 3. According to these standards, an EUI rate higher than 70 kWh/m2y is 
deemed unacceptable. Consequently, an additional categorical variable has been generated to 
assess the compliance of each case within the dataset in accordance with Polish regulations. The 
findings reveal that only 11% of the cases in the dataset meet the acceptable EUI rate as per Polish 
governmental standards. Intriguingly, this percentage aligns precisely with the proportion of 
acceptable cases within the broader population of building clusters in Poland, as shown in Figure 
6.9. This alignment suggests that the simulation-based dataset serves as a reliable representative 
of the building cluster under study, especially in the context of compliance with Polish regulations. 
Therefore, the dataset not only helps in understanding the nuances of EUI rates but also validates 
its own representativeness by closely mirroring the compliance rates observed in the wider 
population. This adds a layer of credibility to the dataset, affirming its utility as a tool for further 
research and analysis in line with Polish energy consumption regulations. 

 
Figure 6.9. Status of cases categorized by being acceptable by Polish Ministry of Energy 

In a parallel vein, an examination of the impacts exerted by individual variables on the Energy Use 
Intensity (EUI) rate and its compliance with Polish government standards offers further insights, 
as illustrated in Figure 6.10. When it comes to the Window to Wall Ratio (WWR), it is observed 
that only values of 0.2 and 0.4 meet the acceptable EUI criteria set forth by Polish regulations. 
Conversely, a WWR of 0.8 is associated with a "Very High" EUI rating, making it unacceptable 
according to these standards. For the variable of Relative Compactness (RC), which is a continuous 
variable, the resulting graphs take on different shapes but convey a similar thematic message. 
Specifically, higher values of RC are linked to increased EUI rates, further complicating the quest 
for compliance with Polish regulations. Height (H) exhibits behavior similar to that of RC, in that 
greater height correlates with elevated EUI levels. In contrast, variables such as Characteristic 
Length (CL), Rotation (R), and Volume (V) appear to have negligible impact on EUI rates according 
to the analyzed data. 
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a. WWR and government category b. WWR and EUI rate 

  
c. RC and government category d. RC and EUI rate 

  
e. CL and government category f. CL and EUI rate 



109 
 

  
g. H and government category h. H and EUI rate 

  
i. R and government category j. R and EUI rate 

  
k. V and government category l. V and EUI rate 

 

Figure 6.10. Features and governmental categories/EUI rate 
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6.4. ML Deployment 

 
Upon completing the data exploration phase and gaining insights into how various input variables 
affect Energy Use Intensity (EUI) as the output variable, the next logical step involves deploying a 
range of basic machine learning models. The goal is to compare their performance metrics, 
thereby gaining preliminary insights into which model holds the most promise as a potential final 
choice for more rigorous analysis. In the initial modeling phase, all 10 features were included in 
the various models tested. While it may appear redundant to include all 10, especially given that 
some have been observed to exert a negligible impact on EUI, this approach serves a specific 
purpose. By incorporating all features, the complexity of the question being posed to the model 
is fully maintained. In this way, the initial analysis can serve as a baseline for further refinement 
and feature selection. For this stage, a comprehensive testing strategy was employed using the 
lazy regressor, which facilitated the evaluation of almost all available regression algorithms. 
According to the results presented in Table 6.3, several models exhibited an R2-score exceeding 
0.90. This suggests that these high-performing models are strong candidates for more detailed 
analyses in subsequent stages of the research process. 
 

Table 6.3. Top 10 basic regression model comparison 
Model R-Suqared RMSE MSE MAE Time Taken 

LGBM Regressor  0.99 0.53 0.28 0.40 0.18 

SVR 0.99 1.40 1.97 0.85 0.43 

ANN 0.97 2.29 5.28 1.34 0.85 

Random Forest Regressor 0.92 3.89 15.20 2.98 0.64 

Elastic Net 0.86 5.33 18.85 3.10 0.01 

Gamma Regressor 0.82 6.04 19.75 3.35 0.01 

Tweedie Regressor 0.81 6.09 19.90 4.10 0.01 

LarsCV 0.81 6.10 21.06 4.49 0.02 

MLP Regressor 0.78 6.70 22.00 5.03 1.90 

Orthogonal Matching Pursuit 0.63   8.62 23.08 6.80 0.01 

 
To attain a nuanced and thorough evaluation of how well the selected basic machine learning 
algorithms are performing on the dataset, a carefully designed investigative approach was 
implemented. Specifically, the top four algorithms (Table 6.3), which initially demonstrated the 
most promising performance metrics, were singled out for a more exhaustive analysis. One of the 
key elements of this analysis involved the creation of residual graphs, a valuable tool for visually 
scrutinizing the effectiveness of each model. In these residual graphs, the X-axis represents the 
actual output values from the dataset, while the Y-axis displays the corresponding predicted 
values produced by the model. By plotting these axes against each other, the residual differences 
between the actual and predicted values can be visualized. This graphical representation allows 
for a more granular examination of each model's performance, providing insights that go beyond 
what traditional numerical metrics can offer. In an ideal scenario, all the data points in the residual 
graph would closely align with a 45-degree diagonal line running through the graph. Such a 
pattern would indicate that the model is unbiased and has accurately captured the underlying 
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data patterns. This would also suggest that the model is neither underfitting nor overfitting the 
data, thus representing a well-balanced predictive tool. Importantly, these residual graphs have 
been generated before the implementation of any optimization techniques or hyperparameter 
tuning on any of the models. These 'pre-tuned' visualizations provide an initial, unfiltered view of 
each model's strengths and weaknesses. This crucial, baseline performance data is illustrated 
comprehensively in Figure 6.11, serving as a cornerstone for subsequent evaluations and 
optimizations.  

 
a. LGBM Regressor 

 
b. Support Vector Machine 
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c. ANN 

 
d. Random Forest 

Figure 6.11. residual analysis of selected model with all input features 
It's worth noting an additional, highly practical dimension to this approach. In real-world 
scenarios, acquiring comprehensive data sets about existing building clusters is often fraught with 
challenges. Whether due to bureaucratic hurdles, proprietary restrictions, or logistical 
constraints, complete data may not be readily available. This makes the scalability and efficiency 
of machine learning models especially crucial from a practical standpoint. By rigorously testing 
these models using only a narrow set of variables, namely Relative Compactness (RC) and 
Window to Wall Ratio (WWR), the research aims to address this very issue. Should the models 
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prove effective at predicting Energy Use Intensity (EUI) using just these two inputs, the 
implications would be significant and far-reaching. It would mean that reliable predictions could 
be made even in scenarios where only minimal information is accessible. In other words, this 
would open the door to more agile, efficient, and pragmatic energy assessments of buildings, 
bypassing the need for extensive and sometimes impractical data collection efforts. 
This focused evaluation, therefore, not only serves to scrutinize the models' theoretical 
robustness and scalability but also has the potential to significantly impact their real-world 
applicability. If successful, this approach would provide a powerful tool that could be deployed in 
a variety of settings, contributing to both academic research and practical solutions for energy 
management. Such an advancement would be particularly advantageous for policy makers, urban 
planners, and sustainability experts who often operate under constraints of limited data. It could 
potentially revolutionize how Energy Use Intensity is predicted and managed, thereby making a 
substantive contribution to the field.  
The findings from the exercise of employing merely RC (Relative Compactness) and WWR 
(Window to Wall Ratio) as the lone input variables to estimate EUI (Energy Use Intensity) are 
detailed in Table 6.4. A notable change in the performance metrics is evident when comparing 
these outcomes to previous models that utilized a broader set of features. Specifically, the 
maximum R2-score experienced a reduction, dropping from an impressive 0.99 to a lower value 
of 0.87. Concurrently, the Root Mean Square Error (RMSE) demonstrated an increase, escalating 
from a previous low of 0.53 to a more elevated figure of 4.86. Such alterations in the performance 
metrics were, in fact, anticipated, given the reduction in the number of utilized features from 10 
to a mere 2. This made the task of predicting EUI significantly more challenging than in the initial 
models, where a comprehensive feature set was used. The increased difficulty is reflected in the 
diminished R2-score and the heightened RMSE, underscoring the complexities of accurately 
predicting EUI with a restricted set of variables. 

Table 6.4. Top 10 basic regression model comparison with RC and WWR 
Model R-Suqared RMSE MSE MAE Time Taken 

LGBM Regressor  0.87 4.86 24.02 3.88 0.13 

Random Forest Regressor 0.87 5.09 25.91 3.94 0.16 

SVR 0.86 5.24 27.47 3.92 0.44 

ANN 0.84 5.61 31.52 4.24 1.20 

Gaussian Process Regressor 0.83 5.70 28.36 4.02 0.46 

K Neighbors Regressor 0.83 5.75 28.57 4.10 0.02 

Poisson Regressor 0.82 5.82 29.46 4.16 0.01 

LarsCV 0.82 5.85 31.53 4.23 0.01 

Bayesian Ridge 0.82 5.90 31.56 4.27 0.01 

SGD Regressor 0.82 5.93 31.60 4.30 0.01 

 
In a manner analogous to the previous scenario involving all features, residual analysis was once 
more employed to shed light on the performance of the model pre-tuning, this time focusing 
solely on RC (Relative Compactness) and WWR (Window to Wall Ratio) as the input features (Fig. 
6.12). This subsequent analysis corroborated the observed decline in the model's overall accuracy 
and performance. However, it is worth highlighting that the magnitude of this decline was not 
excessively steep, especially when one considers the substantial reduction in the number of 
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contributing features. This somewhat restrained downturn in performance metrics implies that 
the model's scalability remains relatively robust, even when the feature set is drastically curtailed. 
Furthermore, it offers an encouraging indicator that, post-tuning, there exists a high likelihood of 
achieving results that are more or less commensurate with those obtained using a more extensive 
set of features. Therefore, this suggests that the models are promisingly adaptable and could yield 
reliable predictions even when operating on a limited set of variables. 

 
a. LGBM Regressor 

 
b. Support Vector Machine 
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c. ANN 

 
d. Random Forest 

Figure 6.12. residual analysis of selected model with all input features 
Before embarking on the model-tuning phase, it's advantageous to gain a more nuanced 
understanding of how the dimensionality reduction from 10 to just 2 input features affects the 
model's performance. To facilitate this, a visual comparison of the residuals for each model 
configuration—with 10 features as opposed to just 2—is recommended (Fig 6.13). By juxtaposing 
the residuals in this manner, one can easily discern the extent to which the model's predictive 
ability is impacted by the reduced number of variables. This step serves not only as a preliminary 



116 
 

evaluation but also as a foundation for subsequent tuning processes, by highlighting the areas 
where improvement is needed and establishing a baseline against which the effectiveness of later 
adjustments can be measured. 

 
a. R2-Score 

 
b. RMSE 
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c. MSE 

 
d. MAE 

Figure 6.13. Comparison of ML models with full and subset of input features 
 
As can be observed from the comparative analysis, the performance degradation was least severe 
for the Random Forest algorithm, while Support Vector Regression (SVR) and Light Gradient 
Boosting Machine Regression (LGBMR) experienced the most significant declines in efficacy. 
Interestingly, Artificial Neural Networks (ANN) exhibited moderate variations in performance 
metrics such as R-squared score and error rates. In light of this, ANN emerges as a balanced 
choice, offering a relatively stable level of accuracy and error minimization irrespective of whether 
all features are considered or only a subset of two. This makes ANN a potentially optimal choice 
for modeling, given its demonstrated resilience to the loss of feature dimensions, and could serve 
as a benchmark for future comparative studies. 
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6.5. Model Tuning 

 
In the first round of model deployment, which utilized all available features, an R-squared score 
of 0.99 was achieved, indicating a near-perfect fit of the model to the data. Given this high level 
of accuracy, there's minimal room for improvement when it comes to reducing errors or further 
boosting the R-squared score. As a result, the primary focus pivots towards the more challenging 
but practical scenario of deploying the model using only two key input features. Opting to proceed 
with just two features serves a dual purpose. First, it tests the model's capability to still produce 
reasonably accurate predictions with far fewer variables, which can be critical for real-world 
applications where obtaining comprehensive data may be difficult or costly. Second, focusing on 
a model with fewer features naturally requires fewer computational resources, making it more 
scalable and easier to implement in various settings. 
The overarching goal becomes to approximate, as closely as possible, the high level of 
performance achieved in the initial deployment with all features. In this way, the effort 
concentrates on maximizing the efficacy of a more streamlined and computationally efficient 
model. If this goal can be accomplished, it will affirm the model's robustness and versatility, 
thereby making it an especially valuable tool for real-world applications where data limitations 
often exist. In this part each of selected model were subjected to model tunning one by one as 
follows: 
 
 

6.5.3. LightGBM Regressor 

Fine-tuning a machine learning model like the LightGBM Regressor involves adjusting a series of 
hyperparameters to optimize the model's performance. In the case of the LightGBM Regressor, 
key hyperparameters include 'n_estimators', 'learning_rate', and 'max_depth'. These parameters 
can have a substantial impact on the predictive power, speed, and generalizability of the model. 
Below is a breakdown of each hyperparameter and the ranges that will be considered in the 
tuning process: 

• n_estimators: [50, 100, 200, 300, 400] 

This hyperparameter controls the number of boosting rounds or trees to be built during the 

LightGBM training process. The idea is to find a trade-off between model performance 

and computational efficiency. Too many trees can lead to overfitting, whereas too few 

might result in underperformance. 

 

• learning_rate: [0.1, 0.01, 0.001, 0.0001, 0.00001] 

The learning rate or "shrinkage" is a factor by which to scale the contribution of each tree 

as it is added to the model. A high learning rate could allow the model to learn quickly but 

may risk overshooting the optimal solution. On the other hand, a low learning rate will 

make the model learn slowly, potentially requiring many trees to achieve good 

performance, but it's often more precise. 

 

• max_depth: [5, 10, 20, 30, 40] 
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This parameter sets the maximum depth of each decision tree used in the boosting process. 

A deeper tree captures more complexity but is also more likely to overfit, especially when 

the depth is too high. A shallower tree might not capture the underlying patterns in the data 

well but is computationally less expensive. 

The tuning process involves running the model through a combination of these hyperparameter 
values, typically using techniques like grid search or random search to systematically explore the 
hyperparameter space. By doing so, we aim to identify the combination that yields the best 
performance based on a chosen evaluation metric, such as R-squared or Root Mean Square Error 
(RMSE). After the optimal set of hyperparameters has been identified, the model can be retrained 
using these settings, ideally improving both its predictive accuracy and computational efficiency. 
This fine-tuned model is then more likely to perform well on unseen data, making it a valuable 
tool for various practical applications. Final selection of hyper-parameters are as follows: 
'learning_rate': 0.1, 'max_depth': 5, 'n_estimators': 300. With the aforementioned fine-tuned 
hyper-parameters, the performance of the model improved (Table 6.5, Fig. 6.14). 
 

Table 6.5. Performance of fine-tuned  LightGBM Regressor 
Model R2-Score RSME MSE MAE 

Basic LightGBM Regressor 0.87 4.86 24.02 3.88 

Fine-tuned LightGBM Regressor 0.88 4.82 23.27 3.87 

 

  
a. Fine-tuned LightGBM Regressor b. Basic LightGBM Regressor 

 

Figure 6.14. Fine-tuned and basic LightGBM Regressor performance 

 
The performance of the model has evidently improved following the fine-tuning process, which 
is an encouraging development. However, it's important to note that the magnitude of these 
improvements is not uniformly significant across all evaluation metrics. This underscores the 
importance of considering multiple performance indicators when assessing the true efficacy of 
model optimization. While fine-tuning may have moved the needle in a favorable direction, the 
incremental gains in some metrics might not be dramatic enough to suggest a transformational 
change in the model's predictive power. The subtle improvements post-tuning could result from 
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the model already being relatively well-calibrated before the optimization process. Alternatively, 
it could indicate that we are approaching the limits of what can be achieved with this particular 
algorithm and dataset. Therefore, while any improvement is generally a positive outcome, it's 
crucial to weigh these gains against the computational cost and complexity involved in the fine-
tuning process. 
 

6.5.4. Random Forest 

In this section, we delve into the results obtained from fine-tuning the Random Forest model. For 
the purpose of optimization, the hyperparameters considered are 'n_estimators' with values [50, 
100, 500, 1000, 2000] and 'max_depth' with values [2, 3, 5, 7, 9]. Upon completion of the fine-
tuning process, the optimal hyperparameters emerged as 'max_depth': 5 and 'n_estimators': 100 
(Table 6.6, Fig. 6.15). However, it's worth noting that, akin to the experience with fine-tuning the 
LightGBM Regressor, the degree of improvement in the Random Forest model's performance did 
not meet our initial expectations for significance. The results, while improved, have not 
undergone a dramatic transformation, which might lead one to question the real-world impact of 
these incremental gains. 
The lack of significant improvement after fine-tuning might suggest that the original model was 
already reasonably well-calibrated or that we have reached the limit of what this algorithm can 
deliver with the available data. As with the LightGBM Regressor, these marginal gains need to be 
carefully assessed in the context of computational expense and the complexity introduced by the 
tuning process. 
 

Table 6.6. Performance of fine-tuned random forest  
Model R2-Score RSME MSE MAE 

Basic random forest 0.87 5.09 25.91 3.94 

Fine-tuned random forest 0.87 5.08 25.85 3.93 

 

  
a. Fine-tuned random forest b. Basic random forest 

 
Figure 6.15. Fine-tuned and basic random forest performance 
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6.5.5. Support Vector Machine 

 
In this part, we delve into the results of the fine-tuning process applied to the Support Vector 
Machine (SVM) regression model. The hyperparameters targeted for optimization were 'C', with 
potential values in the set [0.1, 1, 10, 100]; 'gamma', with options among [0.1, 1, 10, 100]; and 
'epsilon', with candidates [0.01, 0.1, 1]. After conducting the hyperparameter search, the optimal 
configuration for the model was identified as C=100, epsilon=1, and gamma=1. Each of these 
hyperparameters plays a pivotal role in the SVM model's performance. The 'C' parameter acts as 
a regularization term and controls the trade-off between a low error rate on the training set and 
a simplified model to prevent overfitting. A higher 'C' value tends to generate a more intricate 
model at the risk of overfitting. 'Gamma' serves to influence the reach of individual training 
instances, affecting the shape of the hyperplane. A high 'gamma' value can make the model more 
complex, but it also increases the risk of overfitting. Lastly, 'epsilon' determines the acceptable 
range within which deviations between predicted and actual values are allowed without incurring 
any penalty. 
Upon fine-tuning, the performance metrics displayed marginal changes. The R2 score remained 
constant, showing that the model's explanatory power did not improve. The RMSE (Root Mean 
Square Error) showed a modest reduction from 5.24 to 5.17. Similarly, the MSE (Mean Square 
Error) experienced a minor decrease from 27.47 to 26.82. The MAE (Mean Absolute Error) also 
fell from 3.92 to 3.90 (Table 6.7 and Fig 6.16). While these changes indicate some improvement, 
the level of enhancement was not particularly significant. This outcome aligns with the 
experience from fine-tuning other algorithms like Random Forest and LightGBM Regressor. 
Although the model was fine-tuned, the improvements were marginal and did not substantially 
elevate the model's overall performance. 

Table 6.7. Performance of fine-tuned SVM  
Model R2-Score RSME MSE MAE 

Basic random forest 0.86 5.24 27.47 3.92 

Fine-tuned random forest 0.86 5.17 26.82 3.90 

 

  
a. Fine-tuned SVM b. Basic SVM 

Figure 6.16. Fine-tuned and basic SVM performance 
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6.5.6. ANN 

In this section, we explore the intricate procedure of fine-tuning the Artificial Neural Network 
(ANN) model. It's crucial to note that the tuning process of an ANN model can be broadly divided 
into two major components: architectural refinement and hyperparameter optimization. Both of 
these aspects play pivotal roles in enhancing the model's performance and should be 
systematically addressed to achieve optimal results. The first stage in the tuning process involves 
improving the architecture of the neural network. Architectural refinement essentially entails 
modifying the network's structure, including aspects like the number of layers, the number of 
neurons in each layer, and the types of activation functions used. These changes can significantly 
influence the model's capacity to capture complex relationships in the data and thus can 
drastically affect the overall performance. Once an effective architecture is established, the 
second stage involves hyperparameter optimization. This could involve tuning parameters such 
as the learning rate, batch size, and the choice of optimization algorithm, among others. The aim 
here is to fine-tune these variables to enable faster and more stable convergence during training, 
thereby enhancing the model's predictive accuracy. In ANN model in order to improve the 
architecture and then hyper-parameters one variables should be used as the metric for 
optimization and according to the other models’ results in this context MAE sounds an 
appropriate metric since the range of MAE variation for tuned model is very specific between 
3.87 and 3.93. Therefore, from now on only this meter and its graph will be used for evaluating 
the model. Through 4 stages of architecture improvement, the number of layers and neurons in 
each layer process of model optimization was conducted.  Considering Fig. 6.17. 

 
a. Base architecture with 2 hidden layer and one neuron in each layer 

 
b. 2nd architecture with 2 hidden layers with 10 and 1 neurons 
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c. 3rd architecture with 2 hidden layers with 16 and 8 neurons 

 
d. 4th architecture with 4 hidden layers 32,32,16,8 neurons 

Figure 6.17. Architecture improvement of deployed ANN algorithm 
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In the process of refining our model, the primary focus was on improving the Mean Absolute Error 
(MAE) metric. As previously discussed, we were able to reduce the MAE from an initial value of 
4.24 down to 3.90, marking a notable enhancement in the model's performance (Table 6.8). 
While MAE served as the cornerstone for our optimization efforts, other performance metrics 
also exhibited slight improvements, though their significance was relatively negligible in 
comparison. By achieving a lower MAE, the model has become more accurate in its predictions, 
thereby increasing its utility and reliability. It's worth mentioning that even though the other 
metrics showed only modest gains, they still contribute to a more robust and trustworthy model. 
Therefore, while the MAE was the focal point of our improvement strategy, the subtle 
improvements in other metrics should not be entirely discounted. 
 

Table 6.8. ANN architecture improvement  
Model R2-Score RMSE MSE MAE 

Based ANN Model 0.84 5.61 31.52 4.24 

2nd architecture 0.84 5.32 30.65 4.20 

3rd architecture 0.85 5.26 29.53 4.01 

4th architecture 0.85 5.17 27.37 3.90 

 
The initial architecture of the model was improved before attention was turned to 
hyperparameter tuning to enhance performance further. Various optimizer algorithms and 
learning rates were tested rigorously to identify the most effective combination. Upon 
determining the optimal settings, focus was shifted to addressing the issue of overfitting, a 
common concern in machine learning models. To mitigate this issue, two key strategies were 
employed: input normalization and model regularization. A learning rate of 0.004 was selected 
for the final model, and the Adam optimizer was utilized. Adam is known for dynamically adjusting 
the learning rate during training, offering faster convergence and reducing the sensitivity to the 
initial learning rate setting.  
To counteract overfitting, two dropout layers with an intensity of 0.03 were incorporated, 
positioned strategically at the first and third hidden layers of the neural network. Dropout layers 
function by randomly setting a fraction of input units to zero during each training iteration, thus 
enhancing the model's ability to generalize to unseen data. This technique led to the random 
deactivation of about 3% of the neurons in these layers during each training iteration. In addition, 
the Standard Scaler was utilized to normalize the input data. This step is crucial as it ensures that 
all input features are on the same scale, thereby improving the learning efficacy of the model. By 
employing these techniques—the Adam optimizer for efficient and adaptive learning, dropout 
layers for robust generalization, and Standard Scaler for feature normalization—a more accurate, 
robust, and well-adapted model was achieved. Overall, this comprehensive approach to 
hyperparameter tuning and regularization led to the construction of a significantly more robust 
and accurate model (Table 6.9). 

Table 6.9. ANN model improvement  
Model R2-Score RMSE MSE MAE 

Final ANN Architecture 0.85 5.17 27.37 3.90 

Final fine-tuned model  0.88 4.20 24.47 3.70 
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In the final assessment of the model, the test and train losses were compared to evaluate the 
presence of any overfitting prior to the introduction of regularization techniques. Upon 
examination of Figure 6.18. a, a slight disparity between the test and train loss was observed. 
Although this difference was marginal, it indicated an opportunity for further refinement. 
Subsequently, the incorporation of dropout layers led to a convergence of test and train loss 
values, bringing them closer together. This improved state is visibly captured in Figure 6.16. b, 
confirming the efficacy of the regularization measures in mitigating overfitting. 
 

  
a. Before dropout regularization b. After dropout regularization 

Figure 6.18. Impact of regularization on the performance of the final model 

 
 

6.6. Final Model Testing 

 
To evaluate the efficacy of the final model and the overall workflow, a real-life case study was 
conducted. The studied case was a room in a house in at Mickiewicza Street in Poznan. A 3D 
reconstruction of a room was generated through the proposed workflow, employing lidar-based 
software known as Magic Plan on an iPhone 14 Pro. The resulting 3D representation of the room 
is depicted in Figure 6.19, serving as a practical test of the model's performance and the 
workflow's applicability. 
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Figure 6.19. steps of 3D reconstruction of a room 

 
Subsequently, the generated 3D model was augmented with scheduling and material 
information, along with details of the HVAC system, to produce an IDF file. This IDF file was then 
used as input for the EnergyPlus software, paired with the appropriate weather file, to simulate 
the Energy Use Intensity (EUI) of the room. The simulation yielded an EUI value of 81.34 KWh/m2 

y. This simulated EUI served as the baseline or "actual" value for further evaluations. When the 
Window-to-Wall Ratio (WWR) and the Roof Construction (RC) variables were input into the 
selected, fine-tuned machine learning algorithm, a predicted EUI value was generated for 
comparative analysis.  
To gain deeper insights into the performance of various Artificial Neural Network (ANN) models, 
all were subjected to the same validation stage, the results of which are presented in Table 6.10. 
It is evident from the data that the final model's performance surpasses that of the base model 
substantially. Moreover, the absence of overfitting in the final model suggests that it could 
potentially deliver superior and more reliable performance on similar validation datasets. 
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Table 6.10. comparative analysis of actual value and predicted one with different models. 

Model Actual Value Predicted value 

Base ANN model 81.34 4.25 

1st Architecture 81.34 17.69 

2nd Architecture 81.34 58.65 

3rd Architecture 81.34 41.53 

4th Architecture 81.34 92.89 

Tuned model 81.34 87.06 

Final model 81.34 84.97 

 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 7: Conclusion 
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7.1. Motivation & Significance 

The growing urgency to combat climate change has rendered optimizing energy consumption in 
buildings a priority for global sustainable development. Buildings account for a significant portion 
of global energy use and are therefore pivotal in the ongoing battle against environmental 
degradation. Furthermore, the optimization of energy consumption doesn't only have 
environmental benefits; it also offers an economic advantage and can make living conditions more 
resilient against extreme weather events, which are becoming more frequent due to climate 
change. Energy optimization in buildings serves as a dual-purpose mechanism, not just mitigating 
the negative impacts of climate change but also preparing structures to withstand the very 
outcomes of global warming. For instance, buildings optimized for energy consumption can 
maintain temperature more efficiently, reducing the need for excessive heating or cooling. This is 
increasingly crucial as extreme weather patterns become more unpredictable, necessitating 
indoor environments that can maintain comfort and safety with minimum energy expenditure. 
Therefore, having an optimized energy consumption figure can pave the way for a future that is 
not just sustainable, but also resilient in the face of environmental challenges. 
Achieving a net-zero future—a scenario where human activities emit no more carbon than the 
Earth can naturally absorb—is intrinsically tied to understanding and enhancing the energy 
performance of buildings. The traditional method to gain such insights has been through 
simulation-based energy audits. These audits are exhaustive studies that measure a building's 
energy usage and recommend changes to make it more efficient. However, while effective, this 
method has its drawbacks. It is a time-consuming process, often requiring specialized equipment 
and expertise. This makes it expensive and labor-intensive, restricting its scalability and 
widespread adoption. Given the urgent need to accelerate progress, these limitations underscore 
the necessity for alternative solutions that can deliver accurate insights into a building's energy 
performance without the burdens of a traditional audit. The drawbacks of simulation-based 
energy audits signal the importance of developing other methods, which can facilitate a faster, 
more cost-effective evaluation of building energy performance. This is where machine learning 
models, particularly optimized Artificial Neural Networks (ANNs), offer promising alternatives. 
These models can rapidly analyze multiple parameters that influence a building's energy 
consumption, delivering results that are just as accurate as traditional methods but in a fraction 
of the time and at a fraction of the cost. 
Therefore, the application of machine learning in understanding building energy consumption 
isn't merely an academic exercise but a practical necessity, one that holds the key to unlocking a 
more sustainable, resilient future. By making the process of energy audit more efficient, 
economical, and accessible, machine learning models serve as invaluable tools in the global push 
toward a net-zero and climate-resilient future. 
 

7.2. Robustness and innovation 

 
To confront the urgent challenges related to building energy optimization and its impact on 
climate change, this thesis introduces a groundbreaking workflow as an alternative to traditional 
simulation-based energy audits. Utilizing contemporary technology, the methodology employs a 
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LiDAR-based application on smartphones to create 3D models of rooms or entire buildings. These 
3D models serve as a foundation for extracting specific geometrical features that, in turn, become 
inputs for data-driven algorithms designed to estimate a building's energy performance. The core 
innovation of this work lies in its simplicity and efficiency. With only two geometrical-based 
features extracted from the 3D model, the proposed algorithm can offer a surprisingly accurate 
estimate of a building's future energy performance, even under the complex variables introduced 
by climate change. This offers a rapid, cost-effective, and scalable means to predict how a building 
will fare in terms of energy consumption in both current and future climatic conditions. 
Importantly, the level of uncertainty in these estimates decreases when considering present-day 
conditions, further solidifying the method's reliability and potential for widespread application. 
The significance of this approach is multi-faceted. For one, it circumvents the laborious, time-
consuming, and costly process associated with traditional energy audits. By doing so, it 
democratizes access to vital information that could expedite efforts to make buildings more 
energy-efficient and climate-resilient. The use of smartphone technology for data collection is 
particularly noteworthy, as it makes the workflow highly accessible. With smartphones being 
ubiquitous, the data acquisition stage becomes not just cheaper but also much quicker. Another 
remarkable aspect is the algorithm's ability to make accurate predictions with minimal input, 
minimizing the complexity traditionally associated with such audits. The geometrical-based 
features act as a streamlined yet effective set of variables that can predict a complex outcome—
energy performance—thereby simplifying the usually intricate process of data collection and 
analysis. This makes the methodology ideal for quick assessments, perhaps even in settings where 
detailed, traditional audits are not feasible due to resource constraints. 
Furthermore, the workflow is designed to be adaptable to future climate scenarios, a feature that 
is increasingly important as the impacts of climate change become more pronounced. The ability 
to assess a building's future energy performance under different climate conditions not only 
makes the model forward-looking but also invaluable for long-term planning. It serves as a tool 
for architects, urban planners, and policy-makers to make data-driven decisions that are not just 
responsive to current energy needs but are also sustainable in the long run. 
 

7.3. Results 
 

The results of this research provide compelling evidence of both the challenges and opportunities 
in using machine learning to predict building energy performance. Initial analysis of the generated 
dataset revealed that only 11% of cases fell within the acceptable range of Energy Use Intensity 
(EUI) as defined by the Polish Ministry of Energy. This serves to highlight the immense scope for 
improvement in energy consumption patterns in buildings, underscoring the critical need for 
advanced predictive models. Upon deploying various machine learning algorithms on the 
complete feature set, an array of algorithms displayed an R-squared score of 0.99. While this may 
seem promising, it is important to note that these results were achieved under the assumption 
that construction details remain constant across the dataset. Given that this is seldom the case in 
real-world scenarios, the high R-squared score, in this case, may not be fully generalizable. 
In contrast, when algorithms were tested with just two input features, the R-squared score dipped 
to approximately 0.84. However, this apparent limitation was viewed as an opportunity: the lower 
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score indicated a higher room for improvement and optimization, a potential that was thoroughly 
explored in subsequent stages of the research. The selection of Artificial Neural Networks (ANN) 
as the algorithm of choice emerged from a careful analysis of both training and test loss metrics. 
While ANNs initially yielded an R-squared score of 0.84, similar to other algorithms when 
restricted to just two features, further architectural improvements and hyperparameter tuning 
significantly improved this figure. The final architecture, fortified with an optimal combination of 
dropout layers and learning rates, achieved an impressive R-squared score of 0.88. In the context 
of only two feature inputs and the complexity of energy performance modeling, this result can 
be deemed as highly satisfactory.  
This accomplishment is particularly noteworthy given that the algorithm was able to make fairly 
accurate energy performance predictions based solely on two geometric features extracted from 
3D models generated using LiDAR technology. The efficiency of this approach not only offers a 
faster and cost-effective alternative to traditional simulation-based energy audits but also opens 
the door to scalable applications. This means that the method could feasibly be applied to a broad 
range of buildings with varying structural complexities and energy use patterns, offering a 
universally applicable tool for enhancing energy efficiency on a wider scale. 
The strength and generalizability of the research were further validated through a rigorous real-
life case study. In this practical scenario, a building's Energy Use Intensity (EUI) was first calculated 
using traditional simulation-based analysis as a baseline for comparative purposes. The data-
driven model, designed and refined in this study, was then applied to forecast the building's EUI. 
Impressively, the model displayed a high degree of accuracy, closely mirroring the actual EUI value 
generated from simulation-based methods. This validation serves multiple purposes. Not only 
does it substantiate the model's reliability, but it also underscores its practical applicability and 
scalability. The fact that such a close match could be achieved using only two geometric features 
from the model bolsters its robustness. It essentially proves that the model doesn't require an 
exhaustive list of variables to make accurate predictions, emphasizing its efficiency and scalability. 
The real-world validation not only endorses the reliability of the model but also adds credence to 
its practical applicability across different scenarios. Given that the model could reach such a high 
level of approximation in a complex, real-world environment, it suggests that it could be 
effectively applied on a much larger scale. The empirical success in this case study adds a layer of 
confidence, showing that this data-driven approach can serve as a rapid and accurate alternative 
to traditional, more laborious simulation-based methods. The successful validation ultimately 
accentuates the transformative potential of the research. In a world where rapid and accurate 
evaluation of building energy performance is crucial for addressing the adverse impacts of climate 
change, the methodological innovations presented in this study represent a meaningful 
contribution. By demonstrating its robustness and scalability through real-world validation, the 
model has shown that it can be a cornerstone for future building energy assessments. This 
efficient, scalable, and empirically validated tool is not just an academic endeavor; it's a real-world 
solution to a pressing global challenge. 
 

7.4. Implementations 

The implementation of this research offers various practical applications that can significantly 
impact the field of building energy performance assessment. One of the most immediate uses of 
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this work is for building owners considering renovations or energy audits. Traditionally, gaining 
insights into a building's energy performance requires a comprehensive, and often costly, energy 
audit. However, the data-driven model developed in this research provides a quicker, more 
accessible initial assessment. This is particularly valuable for building owners who may need to 
understand how their building's energy usage compares to local or even national regulations 
before embarking on more intensive audits or renovations. In the academic sphere, the workflow 
presents a robust framework that can be reproduced by other researchers in different 
geographical regions. While the study itself was limited to a cluster of residential buildings in 
Poland, the methodology is designed in such a way that it can be adapted to different building 
types and climates. This scalability enhances the research's value, opening avenues for further 
validation and refinement of the model across diverse settings. 
Moreover, the developed model could be integrated into governmental plans for monitoring the 
energy performance of existing buildings or even for the energy certification of new 
constructions. Traditional methods for such monitoring or certification often require substantial 
financial and time resources. The model offers a cost-effective, yet reliable, alternative that can 
streamline these processes, thereby accelerating the move towards more sustainable building 
practices. Another promising avenue for the implementation of this research is its potential 
incorporation into the emerging field of digital twins for cities. Digital twins are virtual replicas of 
physical systems, and they are increasingly being used for various forms of urban planning and 
management. The model developed in this research can add a semantic layer to these digital 
twins, providing real-time or predictive insights into the energy performance of buildings. This 
added layer of information can significantly enrich the capabilities of digital twins, making them 
more comprehensive tools for urban sustainability planning. 
The results of this work have shown its potential, with a relatively high degree of accuracy in 
predicting energy performance based on limited input features. During validation with a real-life 
case study, the model demonstrated its robustness and further confirmed its potential for 
scalability. These outcomes not only underscore the research's immediate practical applications 
but also establish it as a strong foundation for future work in the field. 
 

7.5. Limitations 
 

One of the primary limitations of this research stems from computational constraints, which 
restricted the scope of testing to a single cluster of residential buildings in Poland. While the 
model demonstrated promising results within this localized setting, the question remains as to 
how effectively it can be generalized to different types of buildings, or even different geographical 
locations with varying climate conditions. The computational limitations essentially constrain the 
model's capacity for wider validation, and by extension, its immediate applicability on a broader 
scale. 
Another significant limitation is the model's simplification of building construction details and 
energy systems. The study was conducted based on a single archetype that represents the cluster 
of residential buildings. This approach inherently glosses over the potential variations in 
construction materials, insulation levels, HVAC systems, and other factors that could significantly 
influence a building's energy performance. While this simplification made the problem more 



133 
 

tractable given the available resources, it raises questions about the model's capability to 
accurately predict energy performance in settings where these variables differ. 
The third major limitation is the consideration of only one climate change scenario. Climate 
change is a complex phenomenon with multiple possible trajectories, each influenced by a variety 
of factors such as greenhouse gas emissions, technological advancements, and global policies. By 
focusing on just one climate change scenario, the study narrows its applicability. Real-world 
conditions could differ substantially, leading to divergent energy performance outcomes that the 
current model might not accurately predict. 
Each of these limitations, whether they pertain to the scope of testing, the simplification of 
variables, or the narrow focus on a single climate change scenario, presents challenges for the 
generalizability and scalability of the model. While the research provides valuable insights and a 
promising framework for building energy performance assessment, these limitations suggest 
avenues for future work. Extending the model to incorporate more variables and scenarios, and 
testing it across broader contexts, would be essential steps for enhancing its robustness and 
reliability. 

 

7.6. Future works 
 

Future work could focus on several key areas to further refine and expand the utility of the 
developed model. One of the most critical aspects is increasing its scalability by incorporating 
more variables such as different building types, materials, and varying weather conditions. The 
current model was developed and tested on a specific cluster of residential buildings in Poland. 
While it showed robustness and predictive accuracy within that context, its generalizability to 
other building types and climatic conditions remains an open question. By broadening the dataset 
to include these variables, the model could become a more universally applicable tool for 
predicting building energy performance. Another promising avenue for future research is the 
development of parallel models that consider various renovation measures and their potential 
impacts on energy performance. These could be designed to provide building owners or 
policymakers with more actionable insights. For example, a parallel model could predict how 
different types of insulation or HVAC systems might affect a building's energy usage. These 
predictions could be made not only for current conditions but also for future climates based on 
different climate change scenarios. This would offer a multi-dimensional view that could 
significantly aid in long-term planning and decision-making processes for both building 
renovations and new constructions. 
Furthermore, the integration of the model into digital twin systems for cities could be examined 
more thoroughly. While the current study suggests this as a potential application, detailed 
research would be needed to understand how best to implement this and what the potential 
benefits and drawbacks might be. 
Also, it should be noted that the execution of these suggested future works would require 
significant computational resources. Complex models that take into account diverse building 
types, materials, and climatic conditions would necessitate more powerful computing capabilities 
for data processing, model training, and validation. Furthermore, to improve the generalizability 
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and reliability of the model, accurate and comprehensive data about the building stock in various 
regions would be crucial. Collecting such data might involve large-scale surveys, satellite imagery 
analysis, or partnerships with governmental and private institutions that have access to relevant 
databases. 
The quality of data fed into the model is as crucial as the computational power, given that machine 
learning models are heavily dependent on the data they are trained on. Poor or inaccurate data 
can severely limit the effectiveness and reliability of the model, making the need for high-quality 
data gathering paramount. Therefore, while expanding the scale and scope of the model holds 
considerable promise for making it a universally applicable tool, it also implies a significant 
commitment in terms of computational resources and data quality. Overall, the successful 
realization of these future work suggestions would necessitate a multidisciplinary approach, 
bringing together expertise in computing, data science, architecture, urban planning, and climate 
science. 
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