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A B S T R A C T

In the following dissertation, the theoretical and experimental results
on the problem of modeling uncertainties in the system control within
the Active Disturbance Rejection Control paradigm are presented. The
considered concept proposes that, in the presence of unmodeled dy-
namics or unmeasurable external disturbances, it is possible to employ
the Extended State Observer algorithm to online estimate a difference
between the controlled plant and its assumed nominal model. It is
advocated that this measure of uncertainty of the dynamics of the
plant can be then used in the control law to effectively compensate for
the unknown dynamics and achieve high performance without the
perfect knowledge of the system.

Various examples from both academia and industry have proven
the quality of such an approach. Yet, its premises are based on the
assumption of a specific form of the model uncertainties and distur-
bances affecting the plant, which is often not satisfied in practice. In
this work, the performance and robustness of the Active Disturbance
Rejection Control in the presence of unmodeled dynamics which may
not conform to this nominal structure are discussed. Namely, the
model of the dynamics subject to the uncertainty of both input gain
and assumed drift term is considered and the performance of the
discussed control scheme is analyzed through the Lyapunov approach.
To further extend the insights into the problem of Active Disturbance
Rejection Control performance in the presence of modeling uncertain-
ties, a series of individual and specific scenarios is also discussed,
covering a wider range of control tasks which may not be consistent
with the characteristics assumed in the earlier analysis.

As the possible methods of increasing the robustness of the con-
sidered control schemes to the presence of modeling uncertainties
the recently proposed novel Parameter Identifying Extended State
Observer and Parameter Identifying Disturbance Rejection Control are
discussed. These algorithms stem from the Extended State Observer
and Active Disturbance Rejection Control approaches but incorpo-
rate the adaptive terms employing the gradient adaptation law to
online identify the model of the plant and fine tune the controller to
best fit the dynamics of the real object. The applicability and stability
conditions of the proposed approaches are discussed, and their us-
ability is verified by extensive simulation and experimental testing. It
is demonstrated that the introduction of the adaptive identification
of the dynamics of the plant within the Active Disturbance Rejection
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Control algorithms can significantly improve their performance by
ensuring asymptotic convergence of all errors in the system.

In this thesis, particular attention is given to the application of
the Active Disturbance Rejection Control and Parameter Identifying
Disturbance Rejection Control approaches to robotic manipulators
and autonomous mobile robots. The experimental validation of the
discussed schemes is performed mainly using a robotic telescope
mount designed and constructed by a team that includes the author of
this work, and a mobile hovercraft robot adapted for scientific research
solely by the author of this dissertation. The structure and design of
these devices are also given in this paper in the scope corresponding
to the involvement of the author.
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S T R E S Z C Z E N I E

W niniejszej rozprawie przedstawiono teoretyczne i eksperymentalne
wyniki badań nad problemem niepewności modelowania w systemach
sterowania opartych o paradygmat Aktywnej Kompensacji Zaburzeń
(ang. Active Disturbance Rejection Control, ADRC). W ramach tego
paradygmatu wnioskuje się, iż w obecności niemodelowanej dynamiki
lub niemierzalnych zewnętrznych zaburzeń, możliwe jest zastosowa-
nie Obserwatora Stanu Rozszerzonego (ang. Extended State Observer,
ESO) by w czasie rzeczywistym estymować różnicę pomiędzy dy-
namiką sterowanego obiektu, a przyjętym modelem nominalnym.
Proponuje się, by tak uzyskany wskaźnik niepewności modelu wy-
korzystać następnie w projekcie prawa sterowania w celu efektywnej
kompensacji nieznanej dynamiki obiektu i uzyskania wysokiej jakości
sterowania mimo braku dokładnej znajomości układu.

Różnorodne przykłady zastosowania, zarówno w warunkach akade-
mickich jak i przemysłowych, wykazały wysoką skuteczność takiego
rozwiązania. Teoretyczne podstawy tej metody oparte są jednak na
założeniu pewnego modelu niepewności i zaburzeń oddziałowujących
na układ, które często nie jest spełnione w warunkach praktycznych.
W niniejszej pracy, przedstawiono wyniki badań nad skutecznością i
odpornością sterowania z Aktywną Kompensacją Zaburzeń w obec-
ności niemodelowanej dynamiki nie spełniającej tego założenia. W
szczególności, rozważono układy dynamiczne z niepewnością w torze
wejścia oraz dryfu i, wykorzystując podejście Lyapunova, zbadano
właściwości układów sterowania opartych o metodę Aktywnej Kom-
pensacji Zaburzeń. By poszerzyć zakres uzyskanych wyników na
temat właściwości sterowania z Aktywną Kompensacją Zaburzeń w
obecności niepewności modelowania, przedstawiono i zbadano także
zestaw wybranych problemów z zakresu sterowania, nie objętych
przez wcześniejszą analizę.

Jako potencjalną metodę zwiększenia skuteczności rozważanej me-
tody w obliczu niepewności modelowania, w pracy przedstawiono
także niedawno zaproponowane techniki Obserwatora Stanu Rozsze-
rzonego z Identyfikacją Parametryczną (ang. Parameter Identifying
Extended State Observer, PIESO) oraz Sterowania z Kompensacją Za-
burzeń z Identyfikacją Parametryczną (ang. Parameter Identifying
Disturbance Rejection Control, PIDRC). Algorytmy te zaproponoawne
zostały w oparciu o struktury Obserwatora Stanu Rozszerzonego oraz
Sterowania z Aktywną Kompensacją Zaburzeń i wzbogacone o ad-
aptacyjne składniki wykorzystujące gradientowe prawa adaptacji w
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celu identyfikacji modelu zaburzenia w czasie rzeczywistym i do-
pasowania struktury sterownika do rzeczywistej dynamiki obiektu.
W pracy przedstawiono warunki stabilności i stosowalności zapro-
ponowanych metod, a ich skuteczność w problemach praktycznych
została zweryfikowana przez wyczerujące badania symulacyjne i eks-
perymentalne. Wykazano, że wprowadzenie składnika adaptacyjnego
w celu identyfikacji dynamiki rzeczywistego obiektu pozwala zna-
cząco zwiększyć skuteczność metod Aktywnej Kompensacji Zaburzeń
i uzyskać asymptotyczną zbieżność wszystkich błędów w układzie
regulacji.

W niniejszej rozprawie szczególną uwagę poświęcono zastosowa-
niom techniki Aktywnej Kompensacji Zaburzeń i Kompensacji Za-
burzeń z Identyfikacją Parametryczną do sterowania robotycznymi
manipulatorami oraz autonomicznymi robotami mobilnymi. Ekspe-
rymentalne badania rozważanych metod przeprowadzono w istotnej
części z wykorzystaniem zrobotyzowanego montażu teleskopu astro-
nomicznego zaprojektowanego i wykonanego przez zespół badawczy
którego członkiem był autor tej rozprawy, oraz mobilnego zrobotyzo-
wanego poduszkowca przygotowanego do celów badawczych przez
autora tej rozprawy. Struktura obu tych narzędzi również została
krótko omówiona w zakresie odpowiadającym zaangażowaniu autora
tej rozprawy.
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1
I N T R O D U C T I O N

It may happen, however, that the characteristics demanded of the equalizer cannot be
prescribed in advance, either because the characteristics of the associated apparatus

are not known with sufficient precision, or because they vary with time.

— H. W. Bode, 1938 [31]

The hereby presented dissertation summarizes the research carried
out by the author throughout the five years of his doctoral studies
at the Poznan University of Technology. This work has been fully
devoted to the problems of automatic control and has started as an
investigation into the general problem of robustness of the Active
Disturbance Rejection Control (ADRC) and Extended State Observer
(ESO) to the modeling uncertainties which do not conform to the com-
monly accepted assumptions on the structure of the controlled system.
The initial years of the doctoral studies have thus been focused on the
search for different types of disruptive dynamics commonly occurring
in the practical tasks in the field of automatic control and robotics,
and analysis of their influence on the performance of the algorithms
based on the ADRC scheme. These efforts are covered in the first half
of this thesis. The findings of these studies have led the author to the
formulation of the novel adaptive Parameter Identifying Extended
State Observer (PIESO) and Parameter Identifying Disturbance Re-
jection Control (PIDRC) schemes combining the merits of the ADRC
approach and indirect identification algorithms. Development, analy-
sis, and validation of these new estimation, identification, and control
approaches are presented in the second part of this dissertation.

In this chapter, the wide background of the conducted research is
portrayed. Namely, the general problem of modeling uncertainties in
the automatic control is defined, and some solutions to this issue as
reported in the literature are recalled and shortly presented. In the fur-
ther sections of this chapter, the scope, contribution, and structure of
this work are precisely defined and the list of embraced nomenclature
choices is formulated for a future reference.

1.1 parametric uncertainty in dynamic systems

Automatic control can be defined as a deliberate influence, governed
by an autonomous controller device, on the evolution of a process
[133]. How to design and implement such a controller apparatus
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2 introduction

has been a subject of interest since at least the 18th century and
the invention of a centrifugal governor by J. Watt. Nonetheless, the
rigorous studies of the principles of automatic control have not been
carried out until 1868 when J. C. Maxwell published a seminar paper
describing the dynamics of the different types of governors [193],
setting a cornerstone for a use of mathematical models of the process,
in form of sets of differential equations, for development and analysis
of control techniques. Such an approach has become the standard
scientific methodology in the field of automatic control, establishing a
foundation for the development of a model-based control paradigm.

The embracement of the model-based approach imposes on the
designer the obligation to create and develop the mathematical de-
scription of the plant in order to design and implement the control
algorithm. Unfortunately, obtaining a precise and accurate model of
the physical systems is an exercise that may be time-consuming, expen-
sive, and often even impossible to perform. These difficulties may be
caused by unknown physical properties of the system, changes in envi-
ronmental working conditions, or unexpected external forces affecting
the plant, and may severely hinder the process of system modeling.
As a result, the mathematical model of the system dynamics used in
the design and synthesis of the control algorithm often deviates from
the real behavior exhibited by the plant. The uncertainties affecting the
dynamic systems can be categorized by taking into account various
aspects of their presence.

1. On basis of the extent of possessed knowledge about the model
of the system [30]

• parametric uncertainty – the dynamics of the real plant are
properly modeled by the assumed equations, save for the
incorrectly chosen values of constant parameters,

• structural uncertainty – the structure of the assumed model
does not describe the real behavior of the plant with a
required accuracy for any choice of constants.

2. On basis of the dependence of uncertainty on certain variables

• input uncertainty – the unknown effects can be expressed
as a function of the input variable,

• drift uncertainty – the plant uncertainty depends on the
time or momentary state of the system and is not directly
dependent on the control variable.

3. On basis of the possibility to directly decouple the uncertain
dynamics [20, 51]
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• matched uncertainty – the uncertainty is present in the same
path as the input variable and could be easily compensated
for had it be known,

• unmatched uncertainty – the unknown dynamics affect
the paths which are not directly controlled by the input
variables.

4. On basis of the expected properties of the uncertain dynamics

• bounded uncertainty – the unmodeled dynamics or their
norm satisfy some algebraic bounds under some predefined
conditions,

• unbounded uncertainty – the disturbance present in the
system may grow to arbitrarily large values at some states
of the plant.

5. On basis of the predictability of the unknown dynamics [60]

• deterministic uncertainty – the system uncertainty can be
expressed as some deterministic functions and could be
predicted had this function be known,

• stochastic uncertainty – the system is affected by the un-
certainty that cannot be predicted except for some of its
statistical properties.

Moreover, various uncertainties not easily conforming to the proposed
classification can arise in the control systems, including unmodeled
time-delays [139, 310] or incorrectly assumed order of the plant [75,
128]. The proposed division of the modeling uncertainties is not an
exhaustive one and other classes of disturbances could be denoted
depending on the specific context of the considered system. In this
work, only the systems burdened by the deterministic disturbances
satisfying some boundedness properties are considered. Special con-
sideration is given to a class of systems with matched parametric
uncertainties applying to both input and drift. Some attention is also
paid to specific scenarios featuring structural uncertainties concerning
a drift term, an input path, and an unknown degree of the system. In
the latter parts of this dissertation, a new control solution is proposed
to overcome the problem of matched parametric uncertainties of the
drift part of the dynamics.

The problem of modeling uncertainty is of extreme importance in
both mobile and manipulation robotics due to the growing range
of applications of the robotic systems and tasks they are expected
to handle. According to the International Federation of Robotics, in
2020 alone almost 400 thousand new units of industrial robots were
introduced worldwide which increased the global stack of such de-
vices by ten percent. In the same year, over 19 million new service
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robots, corresponding mainly to mobile robots of various types, were
manufactured [307, 308]. Development of the methods of reliable con-
trol of these devices, even in the presence of imperfect modeling or
disturbances, is thus a crucial task for modern robotics. Uncertainties
in such systems may be caused by the changes in an unpredictable
environment where the robot operates, especially in the presence of
people or other devices moving in the same space, imperfection of
the employed sensors, the performance of which is limited by noise
and quantization, low accuracy of used actuators which are subject to
wear and tear, or conscious choices on algorithmic approximations of
both control schemes and mathematical models [284]. The evolution
of scientific interest in these problems is visualized in Fig. 1.1.
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Figure 1.1: Search results of the IEEE Xplore database for papers published
in each year with terms robot and either manipulator or mobile
containing also words robust or uncertain. In the last decades,
almost half of the papers on mobile and manipulator robotics
acknowledge also the problems of uncertainty and robustness.

At the basic level, the modeling of the robotic system consists of
a description of its kinematics and dynamics, both of which can be
affected by modeling uncertainties [289]. The kinematics of the ma-
nipulators are usually described using a model derived from a set of
constant parameters unambiguously defining the relations between
the positions of the joints of the robot. These representations, like the
Denavit-Hartenberg model, the Sheth-Uicker model, or the so-called
Unified method, require the designer to perform precise measure-
ments of the physical dimensions of the robot. While the required
measurements differ in each representation, typically the lengths and
twists of the links, as well as offsets along the axes of rotation, or some
quantities derived from these, are necessary to successfully generate
the model of a robot [264]. The imperfection of any of these measure-
ments, or change of these parameters e. g. due to bending of loaded
links, may be a source of some modeling uncertainty. In the context
of mobile robotics, the kinematic model describes the relationship
between the local velocities and control variables of the robot with
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its movements in the global coordinate system. Modeling errors can
arise, if the model does not account for e. g. the slip of the wheels [146,
261], operation in uneven terrain [39] or if the dimensions of the robot,
including a wheelbase or wheel radius, are not perfectly known [55].
The description of the dynamics of the robotic systems may contain
the influence of friction effects in joints and motors, which may vary
with mileage and temperature change [33, 263], or centrifugal forces,
depending on the mass and inertia of the elements of the robot [213,
295]. The flexibility of the manipulator robots [45, 351] or wheel slip of
the mobile robots [306] can also be perceived as a source of dynamic
uncertainties. Moreover, even if the obtained nominal model accurately
describes the dynamics of the plant, the robotic systems are subject
to wearing and aging leading to a deterioration of the performance
of the robot itself and thus to changes in its dynamics. In this context,
the means to alleviate the impact of the appearing uncertainties on
the performance of the system are vital to ensure the reliability and
fault-free operation of the plant [1, 6]. Some common examples of
modeling uncertainties in the standard control plants are given in [3].
Other instances of the robotic systems subject to certain uncertainties
and disturbances are given in Fig. 1.2.

(a) Robotic manipulators (b) Swimming robot

Factory Automation by KUKA Roboter GmbH, public domain
Robot Fish by Kuba Bożanowski, CC BY 2.0

Figure 1.2: Robotic systems subject to disturbances and modeling uncertain-
ties. Unknown properties of the load or environment may strongly
impact the performance of the system.

No matter the type and source of the uncertainty that affects the
system, in the presence of a difference between the mathematical
description and the behavior of the real plant two kinds of problems
arise that require special attention [348]:

• analysis problem – how to determine whether a given controller
guarantees a satisfactory performance in the presence of certain
classes of disturbances, noises, and uncertainties,
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• synthesis problem – how to design a controller guaranteeing
satisfactory performance in the presence of certain classes of
disturbances, noises, and uncertainties.

While the two are distinct in their scope of interest, both ultimately
consider the same question of whether it is possible to efficiently
control the real system without explicit knowledge about parts of its
dynamic model. The controller able to perform these tasks is said to
be robust to the chosen class of uncertainties. The detailed reports on
the history of early research on the robustness of control schemes have
been published in [57, 58, 251] and are recalled here in brief.

The earliest results on the robustness of the control schemes have
considered only the linear systems and propounded the frequency-
domain stability margin criteria to evaluate the robustness of linear
systems to uncertain gain and phase shift of the plant [32, 211]. These
allow the designer to investigate the admissible uncertainty of gain
and phase shift of the linear system for which the control scheme
remains asymptotically stable. The later developments in the field of
robustness analysis have come chiefly in the form of the small-gain the-
orem [105, 331] and analysis based on the Lyapunov second method
[89, 92, 200] with both approaches being applicable to linear and
nonlinear systems. The small-gain theorem considers the uncertain
dynamic system as a set of interconnected subsystems with external
inputs and says that to maintain the stability of the whole, the high
gains of one subsystem have to be compensated for by the small gains
of the other. From the formulation of the small-gain theorem, one
can directly derive the proposition to use the high-gain feedback to
overcome the parametric and structural uncertainties in nonlinear sys-
tems. The standard approach to the uncertain system analysis using a
Lyapunov method is to seek a function that meets the conditions of
Lyapunov second method for the undisturbed system, and then in-
vestigate its evolution in the presence of uncertainties satisfying some
expected properties, e. g. being expressed by Lipschitz or bounded
functions. From such an inquiry, one can establish some feasible set
of uncertainties for which the system stability is maintained. Other
means of robust system analysis include the singular perturbation
method investigating the systems subject to small deviations of the
evolution of state variables [140], approaches based on H∞ theory
treating the uncertain model as a simplified linear system with pa-
rameters varying in time [349], or passivity theorem assuming the
uncertainty of the plant can be expressed as a positive-real transfer
function [93]. A comprehensive overview and more details on these
and other methods of robust stability analysis can be found in the
recent review papers [127, 234] or modern textbooks on robust and
nonlinear control [137, 302] and references therein.
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Importantly, due to the character of the uncertainty, which is in
its nature unknown, the methods of stability analysis of uncertain or
disturbed systems are inherently conservative, and obtained results are
often based on some predictions of the worst-case scenario possible for
the considered class of modeling errors. There is thus a constant need
for new studies investigating both more specific and more general
types of uncertainties, to obtain either less conservative results or
the results applicable to wider classes of the dynamic systems. In
this work, the robustness and stability of the investigated control
methods are established mainly through the Lyapunov-based analysis
of the uncertainties which are expected to satisfy specific boundedness
conditions. As auxiliary tools, the standard methods of analysis of
linear systems are employed whenever they fit the character of the
studied systems.

1.2 control solutions

To answer the problem of the modeling uncertainties in dynamic
systems, a wide range of control algorithms characterized by high
robustness to unmodeled dynamics has been considered throughout
the years. The earliest results on the robust control schemes in robotics
have been summarized in [2, 197, 252], while a wide review of modern
robust control schemes has been recently presented in [244]. The
authors of these papers have outlined multiple approaches proposed
to cope with the lack of precise knowledge of the system dynamics.

The most basic and classic approach often employed by control
practitioners consists of the standard PID controller, which is de facto
default solution in many practical situations, tuned to achieve a satis-
fying performance in the presence of some modeling uncertainty. Such
tuning is often either derived from some roughly identified model of
the system in the model-based approach or is iteratively obtained in
an attempt to optimize some criterion function based on the input-
output data in the model-free procedure [4, 34, 271]. Tuning schemes
have been proposed to answer the specific requirements, including
guarantee of chosen gain and phase margins in linear system [157] or
compensation of time-delays [214, 262]. Despite high scientific interest
in the robustification of the PID controllers, studies show that in prac-
tical applications only about a quarter of employed PID controllers
offer satisfactory performance [212]. Other publications contest also
the claimed robustness of this well-known algorithm [296].

Classic algorithms designed specifically to deal with the problem of
modeling uncertainty include robust H∞ controllers, algorithms em-
ploying a notion of passivity, or the sliding mode control (SMC). H∞
algorithms, nominally designed for the linear systems, have initially
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been proposed as an answer to problems of optimal control and only
later evolved into a method of robust control [59]. To this end, a sensi-
tivity function, corresponding to a transfer function of the disturbance,
is incorporated into the cost function which is then optimized, what
results in a proposition of a suitable control law [87, 290]. Recently, the
application of this approach to systems with nonlinearities [106, 123]
or time-delays [312] has also been presented. The use of the passivity
theorem to design the robust controllers rely on the notion that a
passive system can be easily stabilized by the control law which is
itself independent of the model of the plant, even if only a weak form
of passivity is exhibited by the system [132]. Thus, multiple control
algorithms seeking to ensure the passivity of the uncertain systems
have been proposed in the literature [136, 278]. The notion that the
robustness can be ensured by the use of the controller independent of
the model of the system is also used in the SMC method, where the
control law is designed to force the states of the system to slide along
a predefined trajectory in the phase space and does not depend on the
dynamics of the plant [292]. This control law is then enhanced with
terms responsible for the transition of the state of the plant from the
initial condition to this sliding trajectory. The sliding mode controllers,
characterized by their high robustness to system uncertainties and
external disturbances, fast dynamic response, and intuitive implemen-
tation, became one of the standard solutions in the field of automatic
control [141]. Multiple variants of this method have been proposed
to improve its efficiency or widen its applicability [18, 77], including
the Terminal SMC aimed at increasing a convergence speed [327], the
Integral SMC eliminating the reaching phase and enforcing sliding
movement in an entire response of the plant [221], and High Order
SMC [260, 293] or SMC with an exponential reaching law [65], both
seeking to limit a chattering effect caused by standard SMC approach.

The advances in the field of robust control have led also to the
formulation of new algorithms, designed to offer satisfactory perfor-
mance in the presence of unmodeled dynamics, in form of solutions
employing the Disturbance Observers (DOB). These approaches pro-
pose the use of some kind of an observer able to online estimate the
momentary impact of the system uncertainty. The disturbance can
be then compensated for by the control law, thus separating the con-
trol of a nominal system, which can be performed with any suitable
non-robust controller, and robust elimination of disturbing dynamics.
In its standard form, the DOB scheme is designed for disturbed or
uncertain linear systems and consists of a linear observer constructed
based on a nominal model of the plant and some filtering transfer
functions chosen by the designer [163, 259]. These results have later
been extended to the class of nonlinear systems by replacing the linear
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filters used in the observer design with some nonlinear dynamics [17].
Other advances in the design of DOB control include the High Order
DOB offering better performance at a cost of reduced robustness [254]
or Finite Time DOB proposed to achieve the disturbance compensa-
tion in the finite time horizon [160]. The methods of Uncertainty and
Disturbance Estimator (UDE) [321], Generalized Proportional Integral
Observer (GPIO) [191, 309], Unknown Input Observer (UIO) [95] or
Active Disturbance Rejection Control (ADRC) [314, 326] may also be
perceived as custom solutions within the general DOB pattern. Specifi-
cally, significant scientific interest has been in recent years given to the
ADRC scheme, which estimates the disturbance affecting the plant by
the means of Extended State Observer (ESO) and treats the uncertain
dynamics as separate state variables describing the evolution of the
system.

A different approach to the problem of system uncertainty is repre-
sented by the adaptive control schemes which, historically, have been
developed as a branch of solutions independent of other robust con-
trol algorithms [153]. In opposition to the robust approaches, which
primarily seek to reduce the influence of the unknown dynamics on
the performance of the closed loop, the adaptive controllers are de-
signed to online adapt their parameters and structure to produce a
controller suitable for the real dynamics of the system. That is, had
the dynamics of the plant been known, the non-adaptive controller
could be designed with the same parameters as the ones generated
by the adaptive scheme. Wide overviews of the historical results in
this field have been published in [13, 256] and recently in [8]. Two
distinct approaches to the adaptive control have been established in
the literature. The indirect control attempts first to identify the model
of the plant, and only then use it to synthesize the controller in form
of some suitable non-adaptive algorithm. Alternatively, the only goal
of the adaptation in the direct control is to find the controller suitable
for the real system, without seeking for the real model of the plant
[119, 208]. The classic solutions belonging to the group of indirect
control include the parameter identification through the family of
algorithms based on the Least Square Error approach [170, 246] which
modifies the parameters of the controller in order to minimize the
cost function defined as a square of the modeling error, or a class
of algorithms employing the Gradient Method which changes the
parameter values in the direction of the steepest descent of the identi-
fication error [124, 188]. Among the indirect adaptive control schemes,
the greatest interest has been given to the Model Reference Adaptive
Control (MRAC), designed to automatically tune the controller to
guarantee that resulting closed loop dynamics correspond to some
predefined reference dynamic [334]. Regardless of the chosen solution,
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the adaptive algorithms are commonly characterized by the persis-
tency of excitation (PE) condition, requiring the evolution of the plant
to be rich enough to enable the proper adaptation of the controller
[205]. A significant number of the existing schemes are also designed
under the assumption, that the considered plant is characterized by
the strictly positive-real (SPR) transfer function which enables param-
eter identification on the basis of the output feedback only [155]. The
modern advances in the field of adaptive control are often focused on
the applications to the nonlinear systems [14], employment of multiple
models of the plant in the controller design [7, 207] or attempts to
weaken the PE condition [198, 222].

Both in the fields of robust and adaptive control, growing interest
has been lately given to solutions based on machine learning, includ-
ing fuzzy controllers or algorithms employing neural networks. The
surveys and tutorials on these methods can be found in [161, 168, 237,
297] with some insights on the future of such approaches discussed in
[280]. The focus of this dissertation, however, is limited to the formal
methods of control and attention is paid to the deterministic descrip-
tion of the systems. The methods involving machine learning are thus
beyond the interest of this dissertation and are not discussed here
in more detail. Scientific interest in the rest of the presented control
solutions is visualized in Fig. 1.3. In this work, the main emphasis
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Figure 1.3: Search results of the IEEE Xplore database for papers published
each year with terms corresponding to the chosen type of con-
troller. In years of late, the number of papers published on DOB
and ADRC schemes has rapidly increased.

is placed on the ADRC method and its recent modifications. In the
second part of this dissertation, the methods of adaptive control are
also recalled, and new solutions based on the combination of both
ADRC and adaptive schemes are presented.
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1.3 range and contribution

In this work, the results on the robustness and applicability of the
ADRC in the presence of the modeling uncertainties are discussed.
Namely, the stability and robustness of the ADRC control scheme are
analyzed for the dynamic system with single input and single output
which is burdened by parametric uncertainties. Uncertainties applying
to both input gain and drift terms are studied under assumptions
which are less restrictive than the ones commonly accepted in the
literature. It is shown that the ADRC scheme ensures a convergence
of the tracking and estimation errors to some boundary of the origin
for a wide class of uncertain systems. In the presence of input gain
uncertainty or state-dependent disturbances, this convergence is only
achieved under sufficiently high tuning gains. Furthermore, from
the presented analysis a conclusion is drawn that, in some cases,
the performance of the ADRC controller may be improved by an
increase in the modeling uncertainty. This notion is further studied
with respect to the parametric uncertainty of the input gain, and it
is shown that for the ADRC scheme designed in the tracking error
domain, the performance of the closed-loop system is indeed improved
if the nominal parameters are consciously chosen to differ from the
dynamics of the real plant. Following the presented analysis, the series
of experimental, simulation, and theoretical results are presented to
further investigate the specific forms of the modeling uncertainties. It is
shown that the ADRC is robust to some extent of various disturbances
including unmodeled actuator dynamics, friction phenomenon, and
harmonic disturbances. Simultaneously, it is emphasized that the
quality of control increases if the proper model of these effects is
included in the controller design.

In the second part of this work, the advantage is taken of the afore-
mentioned results and a new control algorithm is proposed to cope
with parametric uncertainties in the paradigm of the ADRC. To this
end, a system with a disturbance modeled by a function linear in
unknown parameters is considered, and an identification scheme is
designed combining the ESO observer and gradient descent adapta-
tion law. It is shown that this new observer guarantees asymptotic
convergence of identification and estimation errors. The proposed
algorithm is then employed in the design of a control law ensuring the
convergence of tracking errors to the origin in the task of trajectory
tracking. The effectiveness of this approach is validated in simulation
and experiments on mobile and manipulator robots.

Lastly, this work presents also the results of engineering works un-
dertaken by the author during his doctoral studies. In this context, the
design, construction, and software implementation of the laboratory-



12 introduction

scale hovercraft system is presented. This device has been constructed
on the basis of a commercially available off-the-shelf hovercraft model
and modified to better fit the purpose of scientific research and ex-
periments. Recent advances in the development of the astronomic
telescope mounts in the SkyLab laboratory are also covered in the
finishing sections of this work in the range corresponding to the in-
volvement of the author. The author has been engaged mainly in the
design and implementation of the distributed communication scheme
of the telescope control system, as well as the development and tuning
of the control algorithms. Both of these devices have been vital to the
studies presented in this dissertation and the results of experiments
performed with these systems are presented throughout this work.

The contributions and findings presented in this work may be
summarized as follows:

1. Detailed stability analysis of the ADRC scheme in the presence
of the modeling uncertainties.

2. Establishment of the idea of ADRC tuning by the means of
conscious input gain underestimation.

3. Experimental validation of the ADRC for real uncertain systems.

4. Proposition of adaptive ESO observer able to identify the param-
eters of the plant and ensure asymptotic convergence.

5. Proposition of adaptive ADRC controller guaranteeing asymp-
totic tracking.

6. Formulation of theorems and analytical proofs of certain proper-
ties of the proposed methods.

7. Development and implementation of laboratory tools for re-
search in automatic control.

1.4 structure of the thesis

The structure of this dissertation is as follows. In Chapter 2 the analysis
of the ADRC robustness is presented. To this end, Section 2.1 recalls
the background of the ADRC control and the fundamental results
available in the literature. The history of this approach is recalled to
show the foundation and rise of a new paradigm in control theory.
The review of the most important findings in the development of this
method is presented with special attention given to the publications on
stability and robustness. Some publications on the possible directions
of development of the ADRC scheme are also presented and a picture
of the future of this paradigm is thus painted. Section 2.2 presents the
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results of the research of the author on the stability of the ADRC in
the general scenario of uncertain systems. A detailed investigation on
the basis of the Lyapunov approach is shown and a series of theorems
are formulated stating the stability properties of the ADRC method
in the presence of different types of uncertainties and disturbances.
The studies focused on the impact of the input gain uncertainty on
the stability and performance of the ADRC system are reported in
Section 2.3. By the means of numerical studies, the stability regions
are formulated in terms of the extent of input gain uncertainty and
feasible choices of the tuning variables. Furthermore, the influence
of the incorrectly estimated input gain on the disturbance rejection
ability is studied in detail. In Section 2.4 and its subsections, the
studies of the author on the performance of the ADRC in the presence
of specific types of uncertainties are presented. Namely, the problems
of unmodeled dynamics of the input path, ignored disturbance in
form of friction phenomenon, and harmonic disturbance are discussed
in the context of the ADRC control. Thus, the opening chapter of this
work is devoted to the analysis and discussion of the impact of the
modeling uncertainties on the established ADRC schemes.

Chapter 3 presents a novel Parameter Identifying Extended State
Observer (PIESO) and Parameter Identifying Disturbance Rejection
Control (PIDRC) algorithms. To better establish their position among
other control schemes, in Section 3.1 a wide literature review on
adaptive control is carried out. Mainly, the literature on parameter
identification, the persistence of excitation, and adaptive control stabil-
ity are discussed in detail. The recent progresses in the analysis of the
stability of adaptive systems utilizing the Lyapunov’s direct method
are also highlighted as a cornerstone for the examination of the new
methods to be proposed. Section 3.2 introduces the PIESO identifica-
tion method, describing its development on the basis of ADRC control.
The two variants of the PIESO algorithm are derived for the system,
depending on the extent of the available knowledge of the system.
For both cases, the stability analysis is performed and convergence is
proved through the use of Lyapunov functions. Results of simulation
studies on PIESO approach are also presented for a wide range of
dynamic systems. Beside the structures nominally conforming to the
assumptions made during the design of the methods, some additional
models are considered, including the two mass system and dynamics
disturbed by a harmonic function of unknown frequency, to highlight
the wide applicability of the proposed method. Section 3.3 builds
upon the preceding content and presents the results on closed-loop
PIDRC control. Both variants of PIESO observer are incorporated into
corresponding control schemes, with some additional design freedoms
incorporated, resulting in a total of three various PIDRC propositions.
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Once again, the stability is proven by the Lyapunov approach with the
global asymptotic and local exponential convergence of the tracking,
estimation, and identification errors being established, and the effi-
ciency of the method is confirmed by extensive simulations. To further
validate the effectiveness and performance of the new algorithms, the
results of experimental studies are presented in Section 3.4. Two appli-
cations from the field of robotics are considered, with the experiments
conducted on the differentially driven mobile robot and the hovercraft
system.

Chapter 4 contains the reports on the engineering works on the
laboratory-scale mobile hovercraft system and robotic astronomic
telescope. Works carried out by the author are presented and their
importance for scientific research is highlighted. In Section 4.1 the me-
chanical and electrical structures of the considered hovercraft system
are presented. Furthermore, a discussion is made on the communi-
cation scheme designed to facilitate the control of the system and
execution of scientific experiments. Mathematical modeling of the
hovercraft system is also presented. Development of the robotic astro-
nomic mount is presented in Section 4.2, with special attention given
to the design and implementation of the control and communication
schemes. Some remarks on the general features and performance of
this instrument are also given in this section.

The dissertation is summarized in Chapter 5. All of the presented
results are once again recalled in brief and the most important findings
are emphasized. Furthermore, some plans for future research are
highlighted, both on the classic ADRC approach and novel PIESO and
PIDRC methods.

1.5 nomenclature

Throughout this work, certain choices concerning the notation and
symbol use are made to ensure the uniformity of the mathemati-
cal expressions across the work. The chosen nomenclature is, unless
explicitly stated otherwise, as follows:

1. R represents a set of real numbers, with R+ standing for a set of
only positive real numbers and R− being a set of negative real
numbers. N stand for the set of natural numbers.

2. Cκ is a class of κ-differentiable functions, i. e. functions with at
least κ continuous derivatives.

3. All matrices are denoted with bold uppercase letters, while vec-
tors are denoted with bold lowercase letters, e. g. A,b,β. The
elements of the matrices and vectors are denoted with lower-
case regular letters and subscripts indicating the position of the
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element within a matrix, e. g. a2,1,b3,β4. The same notation
applies to matrix-valued functions, e. g. f(t), f1(t).

4. Terms Iκ and 0κ with κ ∈ N stand for the identity and zero
matrix of size κ× κ. Moreover, 0κ1×κ2 stand for the zero matrix
of size κ1 × κ2 with κ1, κ2 ∈N.

5. The following matrices are defined for any constant κ > 2 ∈N:

Aκ =

[
0κ−1×1 Iκ−1
0 01×κ−1

]
∈ Rκ×κ, bκ =

[
0κ−1×1
1

]
∈ Rκ,

cκ =

[
1

0κ−1×1

]
∈ Rκ, dκ =

0κ−2×11

0

 ∈ Rκ.

6. The hat accent is used to denote the estimate of a variable, e. g.
x̂. The tilde accent represents an error between the variable and
its expected value, e. g. x̃. The bar accent denotes some scaling,
applied either to the original variable, its error, or some other
derived quantity, e. g. x̄. The starred variables, e. g. x∗, are used
to denote some other modifications of the original quantity.

7. Euclidean norm of vector h is denoted by
∥∥h∥∥. For matrix H,

induced euclidean norm is denoted by
∥∥H∥∥.

8. For any constant matrix or vector H, constant hM =
∥∥H∥∥ ∈ R+

is denoted. For bounded varying vector or matrix H(x), constant
hM >

∥∥H(x)
∥∥ ∈ R+ for any x is defined. For any constant

square matrix H, constant hm = λmin(H) ∈ R is also denoted
with λmin(H) being the eigenvalue of H with the smallest real
part. These constants can be defined with respect to the original
variable, its error, or some other derived quantity denoted with
an accent.

9. A scaling matrix is defined for any constants κ ∈N,ω ∈ R+ as
Φκ(ω) = diag(ωκ−1,ωκ−2, . . . , 1) ∈ Rκ×κ.

10. The extraction matrix is defined for any constant κ ∈N as Λκ =[
Iκ 0κ×1

]
∈ Rκ×κ+1 Notably ΛκAκ+1 = AκΛκ + bκbTκ+1,

Λκcκ+1 = cκ, Λκdκ+1 = bκ and Λκbκ+1 = 0.

11. For most of the time-varying variables the time argument is
presented only in the first appearances of the variable in the
text. The argument is omitted for brevity in the succeeding
appearances, e. g. x(t) and x.

12. The custom piecewise exponentiation operator is defined as
ωκ1|κ2 = max(ωκ1 ,ωκ2). for any constants ω, κ1, κ2 ∈ R.





2
A C T I V E D I S T U R B A N C E R E J E C T I O N C O N T R O L

There is no way of assuming away intractable conditions in the real world.

— G. Leitmann, 1994 [159]

In this chapter, the research on the problem of robustness of the
Active Disturbance Rejection Control (ADRC) is presented. At first,
the history of the ADRC is recalled in brief, from its creation by J. Han
to the rise of scientific interest and its establishment as a new design
paradigm. Particular attention is given to its robustness to unmodeled
dynamics present in the system. A wide review of literature results
on this problem is given as an introduction to the presentation of
new results obtained by the author. The theoretical considerations are
followed by extensive simulation and experimental studies.

2.1 background and earlier results

The foundations of the ADRC control lie in the general ideas of
the disturbance observer control, yet its initial evolution is hard to
precisely track due to the language barriers and political situation of
the end of the 20th century. Some highlights on its history are given in
recent papers pointing at the inspiration of the ADRC in the invariance
principle which was proposed in early 19th century by J. V. Poncelet
and has later gained significant interest in the Soviet Union [83, 286].
The idea of Poncelet states that if the matching disturbances acting
upon the system can be measured, then this measure can be also
used in the control signal to compensate for the presence of these
disturbances [239]. To visualize this notion, one may consider a simple
first-order dynamic system in the form of

ẋ = u+ d(t), (2.1)

where x ∈ R is a state of the system, u ∈ R is an input variable, and
d(t) ∈ R represents some unknown, possibly time-varying, distur-
bance impacting the plant. Clearly, if d(t) is known or measurable, the
control signal can be chosen as

u = v− d(t), (2.2)

with v ∈ R being some new control input of a system free of dis-
turbances. By applying (2.2) to nominal system (2.1), the invariance

17
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principle is invoked in practice, the disturbance is compensated for,
and a controller can be designed by considering only the dynamics

ẋ = v. (2.3)

This idealistic premise encounters its limitation if the disturbance does
not appear in the same path as a control signal, i. e. the matching
condition is not satisfied, or it is not available for direct measurement.
As the disturbance may be understood as any phenomenon impacting
the plant which is not modeled by the available mathematical descrip-
tion of the system, its measurability is seldom ensured in real-life
scenarios.

Starting in the early 1970s, this constraint was treated as an incen-
tive for the development of various control algorithms employing
observers able to online estimate the momentary impact of distur-
bance affecting the plant. The earliest propositions in this field are
represented by the papers on the Unknown Input Observer (UIO)
published in 1971 [129] and the original Disturbance Observer (DOB)
first developed in 1987 [291]. These notions resulted also in the idea of
the Extended State Observer (ESO) which is an essential component
of the ADRC control scheme. The first manuscripts by J. Han on this
control algorithm were published in Chinese in the 1990s [97–100].
The method was probably presented to the Western scientific com-
munity for the first time in the year 1998 in the papers by groups of
G. Feng [69] and Z. G. Hou [110] and followed by a presentation by
Han himself at 14th IFAC World Congress in the year 1999 [101]. At
the same time, a strikingly similar idea was independently reported
by L. Praly and Z. P. Jiang in [238]. Soon other results presenting the
possible applications of the ADRC have been reported in English [109,
333]. These early years of scientific interest in the ADRC are often for-
gotten, and it is commonly reported, that it had been presented in the
West for the first time in 2001 in [84] by J. Han and his collaborators –
Z. Gao and Y. Huang. In the year 2003 the simplified linear version of
the ADRC controller was proposed which sparked a further increase
of interest in the method [80]. The initial period of the intensified
research on the ADRC has been oriented mostly on the applicability
of the scheme to new practical problems. Numerous papers have been
published on the use of this control algorithm in tasks of drive control
[70, 283], mobile robotics [250, 273], naval ships cruise control [46, 249],
power plant process control [112, 138], and many others.

The growing interest in the ADRC method combined with the high
performance of this control scheme offered despite the lack of precise
analytical background has led to the announcement of the rise of a
new paradigm in the control theory in 2006 [81]. Two major points are
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brought forward by this new archetype. First, any uncertainty of the
system can be perceived as a disturbance affecting the nominal model
which can be freely defined by the designer. Second, only a minimum
degree of knowledge about the system is required for a successful
controller design and any lack of familiarity with the dynamics of
the plant can be counterbalanced by a properly designed algorithm.
The ADRC paradigm thus strives to find a balance between control
based on the mathematical model of the system and the empirical
measurements of the momentary error in the closed loop.

Remark. The point of view proposed by the ADRC paradigm is also em-
braced in this dissertation and the term disturbance may represent external
disturbances, unmodeled dynamics, or any other modeling uncertainties.

It was not until the second half of the 2000s that the focus of the
researchers was redirected to the problem of stability and theoretical
analysis of the foundations of the ADRC algorithm. Although some
stability results for specific applications and controller structures were
published as soon as in 2001 [114, 115], probably the first results on
the systematic analytical approach to the question of convergence of
the general ADRC were presented in 2006 by Z. Gao in [81] where
Lyapunov function was proposed for linear ESO affected by bounded
disturbance and was used to draw conclusions about the closed-loop
stability of the linear ADRC. In the next year, G. Tian and Z. Gao used
a frequency domain approach in [285], and the group of Q. Zheng
gave more detailed results by once again using the Lyapunov method
in [347]. This was followed in 2008 by L. B. Freidovich and H. K. Khalil
who presented an analysis of closed-loop performance viewed as a
singularly perturbed system [74]. Others have followed suit starting
a period of analytical studies to the ADRC control. The published
results on the stability of the ADRC scheme include an analysis of the
performance of both single-input single-output [242] and multi-input
multi-output [344] system, with respect to the chosen tuning of the
controller [335] or the order of the system [5]. A better understanding
of the theoretical foundations of ADRC made it possible to estab-
lish notions of equivalence between certain structures of the ADRC
and other means of disturbance attenuation, including the equivalence
with the GPIO and DOB observers [247], controllers based on a flatness
property [266], PID controller [164] and integral observers employing
the SMC approach [270]. Moreover, the explicit conditions of appli-
cability of the ADRC have been formulated regarding the structure
of the controlled system [210] or degree of feasible uncertainty [43,
319]. Advances in the analysis of ADRC have led also to the formu-
lation of new variants of the controller able to tune its parameters
in an adaptive manner [56, 220] or estimate the feedforward signal
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of the time-varying reference trajectory [196, 336]. Simultaneously to
these progresses, numerous tutorial papers have been published in
international journals to further acquaint the global community with
the ideas of the ADRC [41, 79, 82, 102]. The timeline visualizing the
rise and development of the ADRC approach is presented in Fig. 2.1.

1970

1980

1990

2000

2010

2020

Invariance
principle

before adrc
Development of various control

schemes based on the disturbance
observers, including UIO and DOB

development period
Initial development confined
to the Chinese community

application period
Application-oriented research, develop-
ment driven by experimental results

analytical period
Research based on analytical results,
theoretical studies of the controller

1971 First result on UIO

1987 First publication on DOB

1996 First result on ADRC

1998 ADRC presented in the West

2003 Linear ADRC proposed

2006 Stability analysis published

Figure 2.1: The timeline of ADRC development, current research is focused
mainly on the results derived from a theoretical understanding
of the method.

The cornerstone of control schemes built upon the DOB approach,
and in particular upon the ADRC paradigm, is the notion that the
fundamental difficulty in the application of the invariance principle –
the unmeasurability of the disturbance dynamics – can be overcome
by means of some observer structure able to recover the information
about the disturbance from measurements of the available input-
output data. If such an estimation is possible, the control law akin
to (2.2) can be designed on the basis of the estimate produced by the
observer. A schematic view of general control scheme consistent with
this approach is given in Fig. 2.2. The ADRC method gives a specific
structure compliant with this notion to answer the question of how
to synthesize the observer to effectively estimate both the disturbance
and the state of the system.
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Figure 2.2: The simplified graphical illustration of the general DOB or ADRC
approach. The disturbance is understood as any deviation from
the nominal model.

Following the first English paper of J. Han on the ADRC [101],
consider the system similar to (2.1) given by

ẋ = Anx+bn (bu+ d(t, x)) ,

y = cTnx,
(2.4)

where x =
[
x1 . . . xn

]T ∈ Rn is the state of the system, y ∈ R is
the measurable output, u ∈ R is the control variable, and d(t, x) ∈ R

stands for the unknown disturbance affecting the plant. Parameter
b ∈ R \ {0} represents the input gain of the system. Constant matrices
An,bn and cn are as defined in Section 1.5. It is of major importance
to note, that the specific form of disturbance d(t, x) is not declared
here, and it can represent both external factors impacting the plant
and internal uncertainties. Namely, disturbance d(t, x) represents any
components by which the real plant differs from the undisturbed
nominal system. This disturbing term is thus denoted as total dis-
turbance which is to be overcome by the properly designed control
algorithm. According to the ADRC methodology, the nominal system
can be rewritten by employing the notion of an extended state. Let
z =

[
z1 . . . zm

]T ∈ Rm represent the extended state of the system
and be defined as z =

[
xT δ

]T with m = n+ 1 and δ being a new
representation of the total disturbance affecting the system. The dis-
tinction between d(t, x) as a physical phenomenon affecting the real
system and δ as a conceptual total disturbance is made here to increase
the unambiguity of the notation. The system dynamics expressed in
terms of extended state z takes the form of

ẋ = Anx+bn (bu+ δ) ,

δ̇ =
d

dt
d(t, x),

y = cTnx,

(2.5)
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or equivalently can be expressed in compact matrix notation as

ż = Amz+dmbu+bm
d

dt
d(t,Λnz),

y = cTmz
(2.6)

with the constant matrix dm and the extraction matrix Λn as defined
in Section 1.5. Notably, while (2.4) and (2.6) define two distinct dy-
namic systems, these representations both describe the same physical
plant, if the proper initial conditions are chosen for the extended sys-
tem. Thus the equality x = Λnz is satisfied. Due to such reformulation
of the system dynamics, the problem of disturbance measurement can
be perceived as one of the state estimation. As the system expressed by
(2.6) is inherently observable, a suitable estimation algorithm can be
designed [41]. In the original development of the ADRC scheme, the
following Nonlinear Extended State Observer (Nonlinear ESO, NESO)
has been proposed to estimate the extended state of the system,

˙̂z = Amẑ+dmbu+φ(y− cTmẑ), (2.7)

where ẑ =
[
ẑ1 . . . ẑm

]T ∈ Rm is the estimate of the extended state
and φ(·) =

[
φ1(·) . . . φm(·)

]T ∈ Rm is a nonlinear vector-valued
function with elements given as

φi(e) =

{
lieβ

αi−1
i |e| 6 βi,

li |e|
αi sgn(e) |e| > βi

(2.8)

with αi,βi, li ∈ R for i ∈ {1, . . . ,m} being the tuning parameters the
choice of which is given to the designer. The term y − cTmẑ is the
estimation error calculated on the basis of the measurable output of
the system. In order to achieve the efficient stabilization of system
(2.4), the following nonlinear feedback set-point controller has been
proposed to accompany the nonlinear observer,

u =

∑n
i=1φci(xri − ẑi) − ẑm

b
(2.9)

with φci(·) defined analogously to φi(·) of the observer and xr =[
xr1 . . . xrn

]T ∈ Rn being a constant set-point to be achieved by
the state of the plant. The control law in such a form consists of two
fundamental terms. At first, the state error feedback term is used to
drive the system in the direction of the desired reference state. While
the feedback is here formulated on the basis of the state estimate, this
may be replaced with real state values if the state of the system is
measurable. The second part, being a crucial component of the ADRC
scheme, is an estimate of the total disturbance and is supposed to
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compensate for the presence of uncertainties in the system. The distur-
bance decoupling performed on the basis of the disturbance estimate
can be perceived as a tool of indirect linearization [187]. In the perfect
case, the system after the disturbance compensation behaves like the
nominal linear system. The nonlinear ADRC discussed here presents
certain difficulties with theoretical analysis of stability and dynamic
properties and can be deemed cumbersome in implementation – in
particular, the definition of nonlinear functions φ(·) requires a condi-
tional operations, the use of a discontinuous signum operation is often
problematic in the presence of measurement noise, and proper tuning
of αi,βi, and li for the observer and controller requires a choice of
a total of 3m+ 3n parameters what is time-consuming and prone to
cause the stability issues.

To overcome the drawbacks of the original nonlinear ESO, the
simplified Linear Extended State Observer (Linear ESO, LESO) has
been proposed in the literature and gained significant attention. The
schemes derived from this simplified method are the main focus of
this dissertation. The comparison of scientific interest of the linear
and nonlinear variants of the ESO observer is given in Fig. 2.3 The
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Figure 2.3: Search results of the IEEE Xplore database for papers published
each year on nonlinear extended state observer or NESO and linear
extended state observer or LESO. Increased interest in the simplified
linear scheme is visible, although many papers do not explicitly
state the type of employed ESO (cf. number of papers on ADRC
in Fig. 1.3)

linear ESO algorithm abandons troublesome φ(·) functions in favor
of simple constant gain coefficients. Due to such a change, the LESO
takes the form of a classic Luenberger observer designed for a system
(2.6) by ignoring the unknown disturbing dynamics, and is given by

˙̂z = Amẑ+dmbu+ l
(
y− cTmẑ

)
, (2.10)

where l =
[
l1 . . . lm

]T ∈ Rm+ are the constant positive observer
gains chosen to ensure the desired dynamics of the state estimates.
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Following the linear structure of the observer, the control law itself is
reformulated as

u =
kT (xr −Λnẑ) −bTmẑ

b
(2.11)

with k =
[
k1 . . . kn

]T ∈ Rn+ being constant feedback gains.
In contrast to the sophisticated NESO tuning, the LESO is charac-

terized by only n of controller gains and m of observer gains. The
tuning process is further simplified by the application of bandwidth
parametrization, consisting of the controller and observer gains chosen
on the basis of the standard root-locus procedure. The method, initially
employed in [80], takes advantage of the notion that the observer is
designed on basis of a hypothetical undisturbed system. The choice
of the parameters of the controller is thus done on the basis of the
dynamics of simple linear system. Consider the system in form of (2.6)
and denote the estimation error between the output of observer (2.10)
and the state of the plant as z̃ = z− ẑ. The dynamics of the estimation
error are considered by ignoring the disturbance and are thus given as

˙̃z
∣∣∣
d=0

=
(
Am − lcTm

)
z̃, (2.12)

what is stable if the real parts of the roots of the characteristic equation
of the resultant matrix are negative. Observer tuning in the form of

li = l̄iω
i
o, i ∈ {1,m}, (2.13)

ensures the satisfaction of this condition if the elements of the observer
gain vector l̄ =

[
l̄1 . . . l̄m

]T ∈ Rm+ are chosen as coefficients of a
Hurwitz polynomial. The positive parameter ωo ∈ R+ determines
the observer bandwidth. Similarly, stabilization error can be considered
by ignoring the estimation errors. The dynamics of the control errors
x̃ = xr − x are then given by

˙̃x
∣∣∣
z̃=0

=
(
An −bnkT

)
x̃. (2.14)

The choice of controller gains as

ki = k̄iω
n+1−i
c , i ∈ {1,n}, (2.15)

with elements of k̄ =
[
k̄1 . . . k̄n

]T ∈ Rn+ chosen as coefficients of a
Hurwitz polynomial, guarantees that all roots of the resultant matrix
in (2.14) are Hurwitz and thus the system is stable. The constant
parameter ωc ∈ R+ defines a controller bandwidth and is a new tuning
variable. In practical scenarios the scaled gains l̄ and k̄ are often chosen
to ensure that the eigenvalues of the matrices in (2.12) and (2.14) are
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located in −ωo and −ωc respectively. Such a decision leads to the
choice of scaled gains on the basis of the order of the system only, with
values of tuning parameters as given in Tab. 2.1. Under such a tuning

n m l̄ k̄

1 2
[
2 1

]T [
1
]T

2 3
[
3 3 1

]T [
1 2

]T
3 4

[
4 6 4 1

]T [
1 3 3

]T
4 5

[
5 10 10 5 1

]T [
1 4 6 4

]T
5 6

[
6 15 20 15 6 1

]T [
1 5 10 10 5

]T
Table 2.1: Values of l̄ and k̄ under the common bandwidth parametrization

for chosen orders of dynamic systems.

bandwidths ωo,ωc remain the only parameters to be chosen by the
designer and can be easily set on the basis of an intuitive expectation
that an increase of bandwidths corresponds to faster convergence at
the cost of stronger noise amplification and potential stability issues
in discrete digital implementations.

In order to further expand the scope of applicability of the ADRC
method, the problem of tracking of the time-varying trajectory can
be considered instead of the simple set-point stabilization. While
this improvement can be incorporated into both linear and nonlinear
ADRC, only the linear approach is discussed here. Specifically, for
system (2.4), the observer given by (2.10) is employed without any
modifications, but the control law is reformulated as

u =
kT (xr −Λnẑ) +bTnẋr −b

T
mẑ

b
. (2.16)

This control law differs from (2.11) by the presence of the feedforward
signal, enabling the system to successfully track the time-varying
reference trajectory. Such a combination of the LESO and control
law with feedback, feedforward and disturbance compensation term
constitues a basis for majority of further considerations of this work.
Fig. 2.4 presents the graphical interpretation of the linear control
scheme given by (2.4), (2.10) and (2.16). The performance of the linear
ADRC controller is illustrated by a simulation example.

Simulation 2.1. Consider the second order n = 2 system with b = 1

and subject to a time varying disturbance expressed by d = sin(4t). The
problem of tracking of the reference trajectory in the form of xr(t) =[

sin(2t) 2 cos(2t)
]T is investiaged and the LARDC controller as given

by (2.10) and (2.16) is designed to control the plant. The tuning gains
of the algorithm are chosen according to (2.13), (2.15) and Tab. 2.1 with
ωo = 100,ωc = 1. The response of the system is shown in Fig. 2.5 where
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Figure 2.4: The detailed graphical illustration of the linear ADRC controller.
Increased order of the observer and the disturbance compensation
scheme are visible.

the evolution of the state of the plant and the estimates produced by the
observer, as well as tracking and estimation error, are presented. For compari-
son, the tracking errors produced by the standard state feedback algorithm
without disturbance estimation (i. e. with ωo = 0, ẑm = 0, and the state
measurements instead of estimates used in the control law) are also presented.
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Figure 2.5: Time responses of the second order system under the linear
ADRC controller. Results of the simulation without disturbance
estimation are shown by transparent plots of x and x̃.

One can notice the correct estimation of both state variables and
disturbance term, as well as efficient trajectory tracking thanks to
the disturbance compensation. Simultaneously, it is clear that the
conventional ADRC algorithm does not offer asymptotic stability of
the system in the presence of disturbances and only convergence of
the errors to some boundaries is achieved in the considered scenario.
Nonetheless, a significant improvement of the control quality in com-
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parison with the standard approach without disturbance rejection is
offered by the scheme employing the ESO observer.

One of the significant modifications of the ADRC scheme has
been developed by applying the ESO observer to the closed-loop
error dynamics, instead of the nominal dynamics of the plant. This
error-domain ADRC (EADRC) has been proposed independently by
M. M. Michałek in [196] and H. Zheng in [336], and has since been a
subject of active research [156, 182, 184]. Consider once again system
(2.4) with the task of tracking of xr(t) reference trajectory. Without any
specific choice of the control law, the dynamics of the control errors
x̃ = xr − x are given as

˙̃x = Ax̃−bn (bu− ẋrn + d(t, xr − x̃)) , (2.17)

what, in its general structure, resembles the nominal system (2.4) dis-
turbed additionally by derivative of the reference trajectory. Thus, the
idea to apply the ADRC scheme to this resultant dynamics arises intu-
itively. To this end, the extended state is defined as z =

[
x̃T δ

]T ∈
Rm with dynamics

ż = Amz−dmbu−bm
d

dt
(d(t, xr −Λnz) − ẋrn) (2.18)

and the linear extended state observer designed in the error domain
takes the form of

˙̂z = Amẑ−dmbu+ l
(
cTnx̃− c

T
mẑ
)

. (2.19)

The structure of the error domain ESO is the same as the standard
ESO and, due to the embraced definition of tracking error x̃, differs
in the sign of input gain only. The previously discussed tuning and
stability conditions are thus directly applicable also to this modified
scheme. The control law is proposed on the basis of the error estimates
as

u =
kTΛnẑ+bTmẑ

b
. (2.20)

The graphical interpretation of the EADRC approach is given in
Fig. 2.6. Importantly, the EADRC control law (2.20) does not nec-
essarily include explicit feedforward term which constitutes part of
the standard ADRC controller. This term is considered here as a part
of the total disturbance and is actively estimated by the ESO observer.
Thus, the application of the ADRC scheme in the error domain alle-
viates the need for analytical calculation of the higher derivatives of
the reference trajectory which may increase the applicability of this
algorithm in practical scenarios.
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Figure 2.6: The detailed graphical illustration of the error-domain EADRC
controller. The estimates are generated on the basis of control
error measurement.

Simulation 2.2. The practical illustration of the performance offered by the
EADRC scheme is given in Fig. 2.7 where the results of simulations akin to
these of Sim. 2.1 are given.
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Figure 2.7: Time responses of the second order system under the linear
EADRC controller. Results of the simulation without disturbance
estimation are shown by transparent plots of x and x̃.

It can be noted that due to the inclusion of the reference trajectory
derivative in the disturbance signal the estimate of this term is signifi-
cantly greater than in the standard ADRC approach as given in Fig. 2.5.
In the consequence, the disturbance estimation quality is decreased in
comparison with the conventional ADRC controller. Nonetheless, the
resultant tracking errors are smaller than in the case of classic state
feedback control. This increase in performance in comparison with the
algorithm devoid of disturbance estimation could be further enhanced
by the choice of greater controller and observer bandwidths. Thus the
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EADRC scheme proves its usefulness if the derivative of the reference
trajectory is not available.

No matter the choice of the precise form of ESO observer, the
control law, or the tuning of the parameters, both (2.7) and (2.10) are
designed by omitting the unknown disturbing term d

dtd(·). Thus, the
observer is inherently ill-formed, and the presence of any non-constant
disturbance inevitably deteriorates its performance. The ability of the
standard ESO to perfectly estimate the constant disturbances, and
thus compensate for their presence in the ADRC scheme, has been
observed and analyzed already at the early stages of research on these
methods [114]. The systematic studies on the impact of different types
of uncertainties on the convergence and performance of the ESO and
ADRC algorithms were started in 2007 with [285], where the authors
used the frequency response analysis to prove the high robustness
of the controller to the system uncertainties. It was shown that the
stability margins are almost invariant to the changes in the parameters
of the plant if high gains are used in the employed ESO.

The major advance in the understanding of the ADRC method
has been done in [347] which was further extended in [346]. The au-
thors considered linear ADRC structure with bandwidth parametrized
gains, and analyzed the convergence of the estimation and tracking
errors by employing the Lyapunov methods. It was shown that if the
structure of the system is perfectly known the errors converge to the
origin, while the presence of unknown disturbance characterized by
boundedness of its derivative leads to convergence to the boundary of
the origin only. These results were obtained under the conditions that
ωo andωc have to be chosen greater than some predefined thresholds.
Using a singular perturbation approach these results have been at first
confirmed [350] and then significantly extended in [74] by showing,
that such a convergence of the errors to the boundary of the origin can
also be achieved if the input gain b is not precisely given and is only
known to be greater than some minimum value. The feasible class
of disturbances for which convergence to the neighborhood of the
origin is guaranteed has been expanded to include the bounded dis-
turbances with unbounded derivatives in [322]. The analytical results
were further validated by simulation of the system with disturbances
in form of a square wave for which the satisfactory performance of
the controller was achieved.

Results established for the linear ESO have been later also confirmed
valid for the custom proposition of the nonlinear observer in [91]. At-
tention has been also given to the systems with an unknown degree,
and it has been shown that the ADRC offers satisfactory performance
even if the relative degree of the SISO system is not known [337–339].
The analysis in the frequency domain was employed under the as-
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sumption that the upper bound of the uncertain relative degree is
known. The same approach has been employed in [316] to confirm the
robustness of the ADRC method. The stability of ADRC has been also
analyzed for multi-input multi-output systems. The conditions on the
stability of the MIMO systems with linear ADRC have been presented
at first in [315] and further investigated in [318]. The applicability of
the nonlinear ADRC to the MIMO systems has been studied in [90].
The results on the control of the MIMO plants of unknown orders
have been presented in [340] on the basis of the analysis akin to the
one employed earlier for the SISO systems. In [317] the performance
of ADRC in the presence of uncertainties with unbounded derivatives
and unknown input gain has been further studied. It was proved that
the convergence to the origin is maintained if the discontinuities of
the disturbance are all of the first kind. Moreover, the conditions on
the range of feasible input gain uncertainty were strongly weakened
in comparison with earlier studies. Multiple studies confirming the
earlier results have also been reported in the literature. In [64] the
studies on the convergence of nonlinear ADRC applied to the undis-
turbed plant with nonlinearities have been presented and convergence
to some stable surface in the phase-space was proved. A reformula-
tion of the closed-loop system into a perturbed Lurie model has been
presented in [243] and Lyapunov-based analysis with the use of the
Sylvester equation has been shown in [5]. In [258] the analysis by
the singular perturbation method has been revisited, and in [320] the
studies based on the linear system theory have been reported.

The stability and a peaking phenomenon present in the ADRC
have been studied in the context of nonlinear systems in [345]. It was
shown that the use of time-varying gains may successfully attenuate
the peaking of the estimates. In the paper [42], the conditions of ap-
plicability and stability of the ADRC for the systems with unmatched
and unobservable uncertainties have been given and discussed. It was
shown that the ESO can be successfully employed to transform some
class of individually unmatched and unobservable disturbances into a
single, combined total disturbance satisfying a matching and observ-
ability conditions, and thus enabling the output regulation through
the ADRC controller. A further weakening of the assumptions on the
form of disturbances has been achieved in [48] where the disturbance
with derivative which is unbounded, but Lipschitz was studied on the
example of the simplified first-order system. In [300] the impact of
the input uncertainty on the closed-loop system has been studied in
more detail, while in [44] the necessary and sufficient conditions of
the input gain uncertainty for the open-loop estimation with ESO have
been established in place of earlier conservative results. The surveys
on the studies on stability analysis of the ADRC have been published
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first in the year 2014 [116] and then in 2017 [71]. A summary of studies
on the problem of stability, performance, and applicability of the ESO
and ADRC is presented in Tab. 2.2.

Study Subject method Analysis Input gain

[114] NESO Lyapunov, SSR known
[285] LADRC frequency known
[5, 346, 347] LADRC Lyapunov known
[74] LADRC s. perturbation approx.
[350] LADRC s. perturbation known
[322] LESO integration known
[337–339] LADRC frequency approx.
[91] NESO Lyapunov known
[315, 318] LADRC Lyapunov approx.

[90, 344] NADRC
s. perturbation,
Lyapunov approx.

[317] LADRC no proof approx.
[316] LADRC frequency approx.
[64] NADRC Lyapunov known
[345] NADRC s. perturbation approx.
[42] LADRC no proof approx.
[243] NADRC Lyapunov approx.
[258] LADRC s. perturbation known
[340] LADRC frequency approx.
[48] LADRC Lyapunov known
[44] LESO integration approx.
[300] LADRC Lyapunov approx.
[71, 116] Review papers

Table 2.2: Survey of publications on the stability of ADRC. Types of the con-
sidered method, employed analysis tools, and assumed knowledge
about the system are given.

The general conclusions about the stability of the ADRC systems
can be drawn from the aforementioned studies. It has been shown
that the ADRC schemes with both linear and nonlinear structure, as
given by (2.7)–(2.9) and (2.10)–(2.16), offer asymptotic convergence
only if the total disturbance is either constant or vanishes with time.
The asymptotic convergence can be extended to some other classes
of disturbances (e. g. linear or polynomial) by further extending the
state of the system. In the general case, only the convergence of the
errors to some neighborhood of the origin can be ensured. The most
conservative results assume that the total derivative of the disturbance
has to be bounded by some constant values in order to achieve such a
performance. More detailed studies have shown that the convergence
of the errors to the neighborhood can be also guaranteed if the dis-
turbance has discontinuities of the first type or depends linearly on
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certain variables in the system. One of the most important notions
given by the analytical studies of the ADRC is that in the presence
of the unknown disturbances, the neighborhood to which the errors
converge can be made arbitrarily small by the increase of the observer
and controller bandwidths. Thus, even if the asymptotic stability is
not achieved, the satisfactory performance of the system can be accom-
plished in practical scenarios. Moreover, research has confirmed the
earlier observations that the performance of the ADRC is not signifi-
cantly deteriorated even if the input gain of the system is unknown.
The precise range of feasible input gain uncertainty, for which the sys-
tem can be stabilized by a choice of high enough observer bandwidth,
has been recently established. It has been furthermore shown that both
linear and nonlinear algorithms exhibit similar stability properties,
and these properties apply to both SISO and MIMO systems under
certain conditions.

2.2 stability of a class of uncertain systems

Due to its robustness to modeling uncertainties, external disturbances,
and changes in the parameters of the system, the ADRC method has
been recently employed in the growing number of problems in the
field of robotics. Numerous publications have reported successful
applications of this control paradigm to the manipulator robots [167,
240, 287], including systems as sophisticated as flexible manipulators
[68, 117], soft continuum robots [103], or even wearable robots [103].
Other publications highlight the effectiveness of the ADRC in the tasks
of mobile robotics [40, 179, 265]. A wide review of the recent results
on the applicability of the ADRC to the tasks of robotics has also been
published in [67].

With the thriving interest in the applications of the ADRC in robotics,
there also arises the need for a detailed theoretical analysis of the sta-
bility and performance of the controller, tailored for the characteristics
of the robotic systems. In this section, some results on this topic are
presented. Namely, by the means of Lyapunov analysis, the robustness
of the ADRC scheme applied to the system corresponding to the dy-
namics subject to parametric uncertainties is investigated. To this end,
the analysis presented in [225] is extended and reformulated in more
detail. Due to the employment of the original form of the state exten-
sion proposed recently by the author, the unified analysis is presented
for the SISO system with and without uncertainties. On the basis of
this study, a series of theorems is formulated to unveil the impact of
different forms of uncertainties on the stability of the ADRC control
scheme. Importantly, the conducted investigation does not require
any assumptions on the behavior of the system or the disturbances
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(such as boundedness of the trajectories or disturbances) which are
commonly accepted in the studies presented in the literature. In their
stead, only the assumptions on the reference trajectory and the general
properties (such as satisfaction of the Lipschitz property) of the dis-
turbances are considered. Thus the analysis presented in this chapter
is based on assumptions which are significantly easier to verify and
have stronger practical foundations. The stability conditions of the
closed-loop system are formulated on the basis of the parametrized
observer and controller gains and the feasible range of the input gain
uncertainty. The theoretical analysis is performed for the systems of
the arbitrary order which further increases its applicability in various
practical scenarios.

Consider the dynamic system

ẋ1 = x2,
...

ẋn = bu+ψ(t, x)θ+ d(t, x),

y = x1,

(2.21)

where x =
[
x1 . . . xn

]T ∈ Rn corresponds to the state of the sys-
tem, u ∈ R is a control input, and b ∈ R \ {0},θ =

[
θ1 . . . θk

]T ∈
Rk are constant unknown parameters of the system. Terms ψ(t, x) =[
ψ1(t, x) . . . ψk(t, x)

]
∈ R1×k and d(t, x) ∈ R stand for the fully

known and unknown dynamics, correspondingly. The output of the
system is denoted by y ∈ R. A system in such a form may, for example,
represent the robotic manipulator with a single degree of freedom
controlled on the level of torques (for n = 2) or motor voltages (for
n = 3).

Assumption 2.1. Let ψ(t, x) and d(t, x) be Lipschitz, i. e. let

‖ψ(t, xa) −ψ(t, xb)‖ 6 ψL ‖xa − xb‖ ,

‖ψ(ta, x) −ψ(tb, x)‖ 6 ψL ‖ta − tb‖ ,

‖d(t, xa) − d(t, xb)‖ 6 dL ‖xa − xb‖ ,

‖d(ta, x) − d(tb, x)‖ 6 dL ‖ta − tb‖ ,

(2.22)

for some constant ψL,dL ∈ R+ and any xa, xb ∈ Rn and ta, tb ∈ R.

Corollary 2.1. For any Lipschitz function f(x) satisfying

‖f(xa) − f(xb)‖ 6 fL ‖xa − xb‖ (2.23)
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for some positive constant fL ∈ R+ and any xa, xb, the inequality∥∥∥∥ ∂∂xf(x)
∥∥∥∥ 6 fL (2.24)

is also satisfied for any x.

The extended state z =
[
xT δ

]T =
[
z1 . . . zm

]T ∈ Rm, with
m = n+ 1, for system (2.21) can be defined as

ż1 = z2,
...

żn = b̂u+ψ(t,Λnz)θ−ψ(t, xr)
(
θ− θ̂

)
+ zm,

żm =
d

dt

((
b− b̂

)
u+ψ(t, xr)

(
θ− θ̂

)
+ d(t,Λnz)

)
,

(2.25)

which incorporates the impact of the drift parameter estimation er-
ror within the total disturbance. On the basis of the dynamics of
the extended system, the ESO which employs only the available or
measurable signals can be easily formulated in its standard form as

˙̂z1 = ẑ2 + l1 (z1 − ẑ1) ,
...
˙̂zn = b̂u+ψ(t,Λnẑ)θ̂+ ẑm + ln (z1 − ẑ1) ,
˙̂zm = lm (z1 − ẑ1) ,

(2.26)

where ẑ =
[
x̂T δ̂

]T =
[
ẑ1 . . . ẑm

]T ∈ Rm is the estimate of the
extended state. Equations (2.21), (2.25) and (2.26) can be rewritten in
an equivalent compact form as

ẋ = Anx+bn (bu+ψ(t, x)θ+ d(t, x)) ,

ż = Amz+dm

(
b̂u+ψ(t,Λnz)θ−ψ(t, xr)

(
θ− θ̂

))
+bm

d

dt
δ,

˙̂z = Amẑ+dm
(
b̂u+ψ(t,Λnẑ)θ̂

)
+ lcTm (z− ẑ) ,

(2.27)

with

δ =
(
b− b̂

)
u+ψ(t, xr)

(
θ− θ̂

)
+ d(t,Λnz). (2.28)

Such formulation of the extended state seems unorthodox but is a
valid solution for the analysis of the system with modeling uncertain-
ties. Specifically, in the presence of modeling uncertainty, the model
description introduced here allows one to assume, that even if the
estimation error vanishes, the dynamics of the plant are still disturbed
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by the uncertainty of the drift term due to the tracking errors. Thus
the proposed form of the extended state imposes a stronger separation
between the tracking and estimation errors and the ESO is expected
to accommodate only the former, while the task of compensating for
the latter is laid on the controller only. Importantly, if the term θ is
known then the extended state in form of (2.25) is simplified to the
form suitable for the analysis of the undisturbed systems. Moreover,
such an approach is vital to the analysis presented in the later sections
of this work and is thus employed here for clarity.

Remark 2.1. The extended state may be defined differently than (2.27) to
facilitate the analysis of various aspects of the closed-loop system dynamics,
e. g. ability of the observer to estimate the disturbance or the ability of control
law to compensate for the transient estimation errors. In particular, one may
consider the system given by

ż = Amz+dm

(
b̂u+ψ(t,Λnz)θ̂

)
+bm

d

dt
δ,

δ =
(
b− b̂

)
u+ψ(t,Λnz)

(
θ− θ̂

)
+ d(Λnz),

(2.29)

which simplifies the forthcoming analysis, but does not yield such a clear
separation of the tracking and estimation errors. Alternatively, the state
extension of

ż = Amz+dm

(
b̂u+ψ(t,Λnẑ)θ̂

)
+bm

d

dt
δ,

δ =
(
b− b̂

)
u−ψ(t,Λnẑ)θ̂+ψ(t,Λnz)θ+ d(Λnz)

(2.30)

or

ż = Amz+dm

(
b̂u+ψ(t,Λnẑ)θ̂+

(
b

b̂
− 1

)
bTm (z− ẑ)

)
+bm

d

dt
δ,

δ =
(
b− b̂

)
u−ψ(t,Λnẑ)θ̂+ψ(t,Λnz)θ

+ d(Λnz) −

(
b

b̂
− 1

)
bTm (z− ẑ)

(2.31)

may be considered. These are designed to accommodate, within the total dis-
turbance, for the state estimation error impacting the evaluation of the known
ψ term. Importantly, for the extended systems defined in such ways, even in
the presence of the nonzero estimation errors, the control law fully decouples
the dynamics of the nominal plant in the latter case and omits only the impact
of the disturbance estimation in the former. Thus, in these approaches, the
total disturbances are expected to partially or fully accommodate for the effects
directly caused by the imperfect estimation of this disturbance. Some results
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obtained through the analysis using the latter dynamics are presented in
[225]. Notably, all of these representations correspond to the same dynamics
of the underlying physical system and yield the same observer design.

By taking advantage of the state and disturbance estimates produced
by the observer, the control law is proposed in the form of standard
ADRC control enhanced by the estimated value of the partially known
dynamics

u =
1

b̂

(
v− δ̂−ψ(t,Λnẑ)θ̂

)
, (2.32)

with v ∈ R being a new input, which can be used to define some
internal control law designed to cope with a specific control task.
Here, the inner control law is designed as

v = kT (xr − x̂) + x
(n)
r (2.33)

and consists of the state feedback evaluated on the state estimate and
feedforward generated on the basis of the derivative of the reference
trajectory which is defined as

xr =
[
xr1 . . . xrn

]T =
[
x
(0)
r (t) . . . x

(n−1)
r (t)

]T ∈ Rn,

(2.34)

with xr(t) ∈ R being some function of time chosen freely by the
designer. The internal control law v can be defined differently depend-
ing on the availability of the state measurements. In (2.33) the most
restrictive variant of the controller is assumed, and the control law is
synthesized fully on the basis of the state estimates. Importantly, by
solving (2.28) and (2.32) for u, the control law can be expressed as

u =
1

b

(
v+

(
δ− δ̂

)
−ψ(t, xr)

(
θ− θ̂

)
−ψ(t,Λnẑ) − d(t,Λnz)

)
,

(2.35)

what visualizes that the control law defined on the basis of the esti-
mated input gain value corresponds to the control law for the nominal
system incorporating the estimation error dynamics. Thus, as the es-
timation progresses and δ− δ̂ ≈ 0, the input gain uncertainty may
be correctly compensated for due to the total disturbance estimation.
Hence, if the estimation errors are small enough, the obtained control
law becomes almost indistinguishable from the controller designed
with a full knowledge of the input gain parameter. In conclusion, even
in the presence of the input gain uncertainty, the ADRC does not
require the designer to manually compensate for the unknown input
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gain, for example by scaling the controller gains or the feedforward
signal, as the disturbance rejection should drive the control signal
close to the form suitable for the true value of the input gain. The
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ψ(t,Λnẑ)b̂ θ̂

u
y

xn x1

t

−

t
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Figure 2.8: The detailed graphical illustration of the considered ADRC con-
troller. The state-dependent disturbance and drift dynamics, as
well as employed estimates of drift parameters and input gain,
are visible.

detailed scheme of the considered control system is given in Fig. 2.8.

Assumption 2.2. Let the reference trajectory belong to the class Cm, i. e. let
derivative x(m)

r exist and be continuous.

Assumption 2.3. Let the reference trajectory be chosen such that its deriva-
tive is bounded, i. e.

‖ẋr(t)‖ 6 xM (2.36)

for some constant xM ∈ R+ and any t.

Denote the tracking errors x̃ = xr − x =
[
x̃1 . . . x̃n

]T and esti-
mation errors z̃ = z− ẑ =

[
z̃1 . . . z̃m

]T . By taking advantage of
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(2.32) and analytically calculating the time derivative of u, the error
dynamics can be then derived directly from (2.27) as

˙̃z = Hz̃+dm

(
ψ(t,Λnz)θ−ψ(t, xr)

(
θ− θ̂

)
−ψ(t,Λnẑ)θ̂

)
+bm

(
ψ̇(t, xr)

(
θ− θ̂

)
−

(
b

b̂
− 1

)(
ψ̇(t,Λnẑ)θ̂− v̇

)
+ ḋ(t,Λnz)

)
,

˙̃x = Gx̃−Wz̃+bn

(
ψ(t, xr)

(
θ− θ̂

)
+ψ(t,Λnẑ)θ̂

−ψ(t,Λnz)θ
)

,

(2.37)

with H = Am −
(
Im +

(
b
b̂
− 1
)
bmbTm

)
lcTm, G = An − bnkT and

W = bnkTΛn +bnbTm. The term v is as in (2.33). The time derivative
of the internal control law can be obtained analytically from (2.33) in
the form of

v̇ = kTGx̃+ kT (ΛnH−W) z̃+ x
(m)
r . (2.38)

Furthermore, denoting d = d(t,Λnz) and ψ = ψ(t,Λnz), ψ̂ =

ψ(t,Λnẑ), ψr = ψ(t, xr), the time derivatives of the known and
unknown drift terms present in (2.37) are expressed by

˙̂ψ =
∂ψ̂

∂ (Λnẑ)

((
ΛnlcTm −GΛn

)
z̃−Gx̃+ ẋr

)
+
∂ψ̂

∂t
,

ḋ =
∂d

∂ (Λnz)

(
Wz̃−Gx̃+ ẋr +bn

(
ψθ−ψr

(
θ− θ̂

)
− ψ̂θ̂

))
+
∂d

∂t
.

(2.39)

The detailed deriviations of these expressions are given in Appendix A.1.
The precise form of matrices H,G,W are given by

H =



−l1 1 0 · · · 0
−l2 0 1

. . . 0
...

...
. . . . . .

...

−ln 0 0
. . . 1

−b
b̂
lm 0 0 · · · 0


, G =


0 1 · · · 0
...

...
. . .

...

0 0
. . . 1

−k1 −k2 · · · −kn

 ,
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W =


0 0 · · · 0 0
...

...
...

...
0 0 · · · 0 0

k1 k2 · · · kn 1

 . (2.40)

MatricesH andG are respectively the state matrices of the undisturbed
estimation and control errors dynamics, while matrix W corresponds
to the influence of the state estimation errors on the control law.

Remark 2.2. Importantly, matrix W is associated with the use of state esti-
mates in the control law to formulate the feedback signal. If the measurability
of at least part of the state vector can be ensured in a considered specific
scenario then the control law may be formulated on the basis of the measured
state variables. Matrix W is then strongly simplified. In the extreme case of
measurability of entire state x, matrix W is reduced to bmbTm and becomes
independent of the choice of gains k. The significance of such a change is
discussed in more detail in further parts of this dissertation.

To facilitate the study of the closed-loop system stability, consider
the choice of the tuning parameters according to the bandwidth
parametrization as given in Section 2.1. Let thus the elements of
l,k be chosen as

li = l̄iω
i
o, i ∈ {1,m},

kj = k̄jω
n+1−j
c , j ∈ {1,n},

(2.41)

with ωo,ωc ∈ R+ being new tuning parameters of the algorithm
and l̄ =

[
l̄1 . . . l̄m

]T ∈ Rm+ and k̄ =
[
k̄1 . . . k̄n

]T ∈ Rn+ being
constant parameters chosen to detemine the dynamic properties of
the observer and controller. Introduce also an auxiliary scaling of the
estimation and tracking errors in the form of

z̄i = ω
m−i
o z̃i, i ∈ {1,m},

x̄j = ω
n−j
c x̃j, j ∈ {1,n}.

(2.42)

The proposed tuning choice and error scaling may be expressed in a
matrix form as

l = ωmo Φ
−1
o l̄,

k = ωcΦck̄,

z̄ =Φoz̃,

x̄ =Φcx̃.

(2.43)

where Φo = Φm(ωo) and Φc = Φn(ωc) are the scaling operators
defined as Φκ(ω) = diag(ωκ−1,ωκ−2, . . . , 1) ∈ Rκ×κ as given in
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Section 1.5. The dynamics of these new scaled errors are derived from
(2.37) as

˙̄z = ωoH̄z̄+ωodm

(
ψ(t,Λnz)θ−ψ(t, xr)

(
θ− θ̂

)
−ψ(t,Λnẑ)θ̂

)
+bm

(
ψ̇(t, xr)

(
θ− θ̂

)
−

(
b

b̂
− 1

)(
ψ̇(t,Λnẑ)θ̂− v̇

)
+ ḋ(t,Λnz)

)
,

˙̄x = ωcḠx̄−
(
bnk̄

TωcΦcΛnΦ
−1
o +bnbTm

)
z̄

+bn

(
ψ(t, xr)

(
θ− θ̂

)
+ψ(t,Λnẑ)θ̂−ψ(t,Λnz)θ

)
,

(2.44)

The time derivative of the internal control law is transformed by
substituting (2.43) into (2.38) what yields

v̇ = ωck̄
T

(
ωoΦcΛnΦ

−1
o H̄−bnk̄

TωcΦcΛnΦ
−1
o

−bnbTm

)
z̄+ω2ck̄

T Ḡx̄+ x
(m)
r .

(2.45)

The derivatives of the drift and disturbance dynamics expressed in
terms of the new scaled state variables take the form of

˙̂ψ =
∂ψ̂

∂ (Λnẑ)

(
ΛnωoΦ

−1
o l̄c

T
n −AnΛnΦ

−1
o

+bnk̄
TωcΦcΛnΦ

−1
o z̄

+ωc

(
bnk̄

T −AnΦ
−1
c ω−1

c

)
x̄+ ẋr

)
+
∂ψ̂

∂t
,

ḋ =
∂d

∂ (Λnz)

(
ωc

(
bnk̄

T −AnΦ
−1
c ω−1

c

)
x̄

+bn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

+ ẋr +bn

(
ψθ−ψr

(
θ− θ̂

)
− ψ̂θ̂

))
+
∂d

∂t
.

(2.46)
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Due to the embracement of the bandwidth parametrization, scaled
matrices H̄, Ḡ are independent of the choice of the observer and
controller bandwidths and are given by

H̄ =



−l̄1 1 0 · · · 0
−l̄2 0 1

. . . 0
...

...
. . . . . .

...

−l̄n 0 0
. . . 1

−b
b̂
l̄m 0 0 · · · 0


, Ḡ =


0 1 · · · 0
...

...
. . .

...

0 0
. . . 1

−k̄1 −k̄2 · · · −k̄n

 .

(2.47)

Importantly, as matrix H̄ explicitly depends on the values of b and b̂
the choice of tuning gains l̄ has to consider this dependence. Thus, the
feasible choice of the observer gains directly depends on the unknown
error of the input gain estimation. This is a crucial limitation imposed
on the applicability of the ADRC by the presence of the modeling
uncertainties. Consider now the tuning of the controller and observer
such that the following is satisfied.

Assumption 2.4. Let the scaled observer and controller gains l̄, k̄ be chosen
such that matrices H̄ and Ḡ are Hurwitz.

Following [178], if Assumption 2.4 is satisfied then there exist pos-
itive definite matrices P ∈ Rm×m and R ∈ Rn×n satisfying the
Lyapunov equations H̄TP+ PH̄ = −Im and ḠTR+RḠ = −In. The
investigation into the stability properties of the considered control
scheme can be performed on the basis of the following function of the
scaled tracking and estimation errors

V2(z̄, x̄) =
1

2
z̄TPz̄+

1

2
c0x̄TRx̄, (2.48)

with c0 ∈ R+ being some positive constant. Due to the positive
definiteness of matrices P,R implied by Assumption 2.4, the proposed
function satisfies

V2(z̄, x̄) >
1

2
pm ‖z̄‖2 + c0

1

2
rm ‖x̄‖2 , (2.49)

with pm = λmin(P) ∈ R+ and rm = λmin(R) ∈ R+, where λmin(·)
stands for the smallest eigenvalue of a matrix. Thus V2(z̄, x̄) > 0 for
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any nonzero z̄, x̄ with V2(z̄, x̄) = 0 only for z̄, x̄ equal zero. The time
derivative of (2.48) along the trajectories of the system is given by

V̇2(z̄, x̄) = −
1

2
ωoz̄T z̄+ωoz̄TPdm

(
ψθ−ψr

(
θ− θ̂

)
− ψ̂θ̂

)
+ z̄TPbm

((
b

b̂
− 1

)
v̇+ ψ̇r

(
θ− θ̂

)
−

(
b

b̂
− 1

)
˙̂ψθ̂

+ ḋ

)
−
1

2
c0ωcx̄T x̄− c0x̄TRbn

(
k̄TωcΦcΛnΦ

−1
o

+bTm

)
z̄+ c0x̄TRbn

(
ψr

(
θ− θ̂

)
+ ψ̂θ̂−ψθ

)
,

(2.50)

with ψ = ψ(t,Λnz), ψ̂ = ψ(t,Λnẑ) and ψr = ψ(t, xr) denoted for
brevity. By substituting v̇ from (2.45), expanding ˙̂ψ and ḋ as in (2.46),
and finally adding and subtrackting term ψθ̂ to take advantage of the
Lipschitz property of ψ, the explicit form of V̇2(z̄, x̄) can be written as

V̇2 = −
1

2
ωoz̄T z̄+ωoz̄TPdm

(
(ψ−ψr)

(
θ− θ̂

)
+
(
ψ− ψ̂

)
θ̂
)

+ z̄TPbm

((
∂ψr
∂xr

ẋr +
∂ψr
∂t

)(
θ− θ̂

)
+

(
b

b̂
− 1

)(
x
(m)
r

−
∂ψ̂

∂x̂

(
ωc

(
bnk̄

T −AnΦ
−1
c ω−1

c

)
x̄+

(
ΛnωoΦ

−1
o l̄c

T
m

−AnΛnΦ
−1
o +bnk̄

TωcΦcΛnΦ
−1
o

)
z̄+ ẋr

)
θ̂−

∂ψ̂

∂t
θ̂

+ω2ck̄
T Ḡx̄+ωck̄

T
(
ωoΦcΛnΦ

−1
o H̄−bnbm

−bnk̄
TωcΦcΛnΦ

−1
o

)
z̄

)
+
∂d

∂x

(
bn

(
k̄TωcΦcΛnΦ

−1
o

+bTm

)
z̄+ωc

(
bnk̄

T −AnΦ
−1
c ω−1

c

)
x̄+ ẋr

+bn

(
(ψ−ψr)

(
θ− θ̂

)
+
(
ψ− ψ̂

)
θ̂
))

+
∂d

∂t

)
−
1

2
c0ωcx̄T x̄+ c0x̄TRbn

(
(ψr −ψ)

(
θ− θ̂

)
+
(
ψ̂−ψ

)
θ̂−

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

)
.

(2.51)

The derivative of V2(z̄, x̄) expressed as in (2.51) unveils some impor-
tant stability properties of the uncertain disturbed systems working
under the ADRC principle. The major notions are as follows.
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1. The major influence of the input gain uncertainty is clearly
visible due to the presence of the term

z̄TPbm

(
b

b̂
− 1

)(
ω2ck̄

T Ḡx̄+ωck̄
T
(
ωoΦcΛnΦ

−1
o H̄

−bnbm −bnk̄
TωcΦcΛnΦ

−1
o

)
z̄+ x

(m)
r −

∂ψ̂

∂t
θ̂

−
∂ψ̂

∂x̂

(
ωc

(
bnk̄

T −AnΦ
−1
c ω−1

c

)
x̄+

(
ΛnωoΦ

−1
o l̄c

T
m

−AnΛnΦ
−1
o +bnk̄

TωcΦcΛnΦ
−1
o

)
z̄+ ẋr

)
θ̂

)
.

While the preliminary impact of b̂ was already established by
Assumption 2.4, from (2.51) it can be stated that the estimation
error of parameter b amplifies the effects of ψ function estima-
tion and of the higher derivatives of the reference trajectory on
the convergence of the system. Specifically, the term b

b̂
− 1 is

nonzero if the input gain is not perfectly known. In this aspect,
the input gain uncertainty negatively impacts the performance
of the controller and leads to the growth of the neighborhood to
which the errors converge. The presence of multiple expressions
quadratic in the tracking and estimation errors shows also that
the uncertainty of the input gain may disturb the basic stability
properties of the plant and the convergence to any neighborhood
may not be guaranteed even if Assumption 2.4 is satisfied.

2. The impact of the uncertainty of θ parameters can be seen mainly
in the presence of the term

z̄TPbm

((
∂ψr
∂xr

ẋr +
∂ψr
∂t

)(
θ− θ̂

))
.

and

ωoz̄TPdm

(
(ψ−ψr)

(
θ− θ̂

)
+
(
ψ− ψ̂

)
θ̂
)

,

c0x̄TRbn

(
(ψr −ψ)

(
θ− θ̂

)
+
(
ψ̂−ψ

)
θ̂

)
,

z̄THbm

(
∂d

∂x

(
(ψ−ψr)

(
θ− θ̂

)
+
(
ψ− ψ̂

)
θ̂
))

,

The first of the recalled terms stands for the direct influence of
θ uncertainty on the regressor dynamics and affects the bound-
edness property of the errors. Specifically, the modeling error
present in this term affects the system in the same manner as
the unmodeled disturbances d. The latter of these represent the
indirect impact of parametric uncertainty on the evolution of the
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system, exhibited as the state of the plant deviates from the nom-
inal trajectories of the undisturbed system. Due to the explicit
presence of tracking and estimation errors and Lipschitzness
property of ψ function, these directly disturb the stability of
the closed-loop dynamics. Notably, the separation between the
impact of the tracking and estimation errors is visible here. It can
be concluded that such an impact of the parametric uncertainty
is exhibited only when the plant is not on the reference trajectory.
Had the tracking errors been reduced, the system would evolve
as if it were indeed charactertized by the assumed values of the
parameters. Importantly, some of these are further amplified by
the choice of observer bandwidth.

3. The dynamics of the system represented as either modeled term
ψ or unmodeled d are scaled by both P and the term b

b̂
− 1.

Specifically, the term

z̄TPbm

(
∂d

∂x

(
ωc

(
bnk̄

T −AnΦ
−1
c ω−1

c

)
x̄

+bn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄+ ẋr

+bn

(
(ψ−ψr)

(
θ− θ̂

)
+
(
ψ− ψ̂

)
θ̂
))

+
∂d

∂t

)
,

as well as the expressions

ωoz̄TPdm

(
(ψ−ψr)

(
θ− θ̂

)
+
(
ψ− ψ̂

)
θ̂
)

,

z̄TPbm

((
∂ψr
∂xr

ẋr +
∂ψr
∂t

)(
θ− θ̂

))
and

z̄TPbm

(
b

b̂
− 1

)(
∂ψ̂

∂x̂

((
ΛnωoΦ

−1
o l̄c

T
m −AnΛnΦ

−1
o

+bnk̄
TωcΦcΛnΦ

−1
o

)
z̄+ωc

(
bnk̄

T −AnΦ
−1
c ω−1

c

)
x̄

+ ẋr

)
θ̂+

∂ψ̂

∂t
θ̂

)
,

may deteriorate the performance of the algorithm. The last one is
scaled by both P and b

b̂
− 1, while the remaining expressions are

affected by P only. Imporantly, the expressions scaled by b
b̂
− 1

depend directly on ψ but do not contain unmodeled disturbance
d. While both P and b

b̂
− 1 are the functions of the estimate of the

input gain, the norm of the former grows quickly in the presence
of the input gain underestimation, while the characteristics of
the latter are more ambiguous. It may be thus advised to forfeit
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the term ψ in the design of the observer to avoid deterioration of
the tracking quality if the input gain of the system is unknown.

4. Due to the presence of the expression satisfying Lipschitz con-
dition, the inclusion of ψ in the design of the observer also
generates quadratic-like terms in the derivative of V(z̄, x̄) func-
tion. Specifically, the terms

ωoz̄TPdm

(
(ψ−ψr)

(
θ− θ̂

)
+
(
ψ− ψ̂

)
θ̂
)

,

c0x̄TRbn

(
(ψr −ψ)

(
θ− θ̂

)
+
(
ψ̂−ψ

)
θ̂

)
,

z̄TPbm

(
∂d

∂x

(
(ψ−ψr)

(
θ− θ̂

)
+
(
ψ− ψ̂

)
θ̂
))

are upper bounded by some quadratic functions of the norms of
x̄ and z̄. Notably, all of these are dependent on the characteristics
of ψ and do not fully vanish even if the parameters of the
system are prefectly known. Thus the incorporation of the known
dynamics of the model in the synthesis of the ADRC controller
does not alleviate the limitations on the choice of bandwidths
ωo,ωc imposed by the presence of the state-dependent drift.
This property is caused by the dependence of ψ on the estimate
of the state which induces a requirement for sufficiently high
speed of the state estimation.

5. The presence of ψ and d depending on the state of the sys-
tem introduces the expressions scaled by both the observer and
controller bandwidths. Specifically, the expression

z̄TPbm

(
b

b̂
− 1

)(
ωck̄

T
(
ωoΦcΛnΦ

−1
o H̄

−bnk̄
TωcΦcΛnΦ

−1
o

)
z̄−

∂ψ̂

∂x̂
bnk̄

TωcΦcΛnΦ
−1
o z̄θ̂

)
and the term

z̄TPbm
∂d

∂x
bnk̄

TωcΦcΛnΦ
−1
o z̄

grow with the increase of ωc and shrink with the increase of
ωo. This leads to the significant dependence of feasible observer
bandwidths on the chosen controller bandwidth. Thus, with
the increase of ωc, higher choice of ωo is also required. Such
phenomenon is absent if ψ and d are independent of the state
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of the system. While the same property is also exhibited by the
term

c0x̄TRbnk̄
TωcΦcΛnΦ

−1
o z̄,

it can be attenuated by proper choice of c0 constant.

To facilitate the further studies of the stability of the closed-loop sys-
tem and simplify the upcoming analysis, denote the custom piecewise
exponentiation operator

ωκ1|κ2 = max(ωκ1 ,ωκ2). (2.52)

Notably, the operator is monotonic in its argument ω if κ1 and κ2 are
of the same sign. If κ1 or κ2 is equal 0, the result of the operator is
equal 1 in some range and monotonic in the remaining domain. The
norms of some expressions from (2.51) can be expressed in terms of
this operator. Specifically,

∥∥∥ωcΦcΛnΦ−1
o

∥∥∥ =

(
ωc

ωo

)n|1
,

∥∥∥ωoΦcΛnΦ−1
o

∥∥∥ =

(
ωc

ωo

)n−1|0
,

(2.53)

and ∥∥∥ΛnΦ−1
o

∥∥∥ = ω
−n|−1
o ,

∥∥∥Φ−1
c ω−1

c

∥∥∥ = ω
−n|−1
c ,∥∥∥ωoΛnΦ−1

o

∥∥∥ = ω
−n+1|0
c ,

∥∥∥Φ−1
c

∥∥∥ = ω
−n+1|0
c .

(2.54)

Notably, the bounds of the expressions in (2.53) increase with the
growth of ωc and decrease with the growth of ωo. The bounds
of the remaining expressions in (2.54) are nonincreasing with the
growth of their respective bandwidths. To further simplify the nota-
tion denote also b̄ =

∥∥b
b̂
− 1
∥∥ ∈ R+, θ̄ =

∥∥θ− θ̂
∥∥ ∈ R+, as well as

θM = max(
∥∥θ∥∥,

∥∥θ̂∥∥) ∈ R+.
The structure of V̇2(z̄, x̄) obtained in (2.51) enables the formulation

of the several notions tailored for different scenarios of the ADRC im-
plementation. A selection of such results is presented in the following
theorems. At first, the application of the discussed control scheme to
the system with perfect knowledge of the input gain and the drift
terms independent of the state of the plant or to some constant value
is considered. Multiple results on the stability of such systems have
been already established in the literature and are here independently
obtained on the basis of the uniform framework proposed for the
stability analysis.
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Theorem 2.1. For system (2.21) with ψ = const or ψ = ψ(t) and con-
stant disturbances, d = const, observer (2.26) and control law (2.32)–(2.33)
designed without any modeling uncertainty (i. e. b̂ = b, θ̂ = θ), guarantee
the global exponential asymptotic convergence of errors z̄, x̄ to the origin
under the tuning proposed by Assumption 2.4 for any choice of ωo,ωc.

Proof. Under the conditions stated in Theorem 2.1, the derivative of V2(z̄, x̄)
takes the form of

V̇2

∣∣∣ψ=ψ(t)
d=const
b̂=b
θ̂=θ

= −
ωo

2
z̄T z̄−

ωc

2
c0x̄T x̄

− c0x̄TRbn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

(2.55)

and satisfies inequality

V̇2 6 −
ωo

2
‖z̄‖2 − ωc

2
c0 ‖x̄‖2

+ c0 ‖x̄‖ rM
(
kM

(
ωc

ωo

)n|1
+ 1

)
‖z̄‖ ,

(2.56)

with rM =
∥∥R∥∥ ∈ R+ and kM =

∥∥k̄∥∥ ∈ R+. The obtained inequality is
further expressed as

V̇2 6 −
1

2

ωo − c0
ε
r2M

(
kM

(
ωc

ωo

)n|1
+ 1

)2 ‖z̄‖2
− c0

1

2
(ωc − ε) ‖x̄‖2

(2.57)

for any positive constant ε ∈ R+. For any choice of ωo and ωc bandwidths,
the negativity of the second term can be guaranteed by setting ε small enough.
Then, choosing c0 small enough ensures also the negativity of the first term.
Function V2(z̄, x̄) thus satisfies the conditions of the Lyapunov function.

Remark. The conclusion formulated for the case of system disturbed by a
constant disturbance only fully satisfies the separation principle and thus
the design and tuning of the observer and control law can be considered as
separated issues. This property does not hold in some of the subsequent cases.

Theorem 2.2. For system (2.21) with state-dependent known term ψ =

ψ(t, x) satisfying Assumption 2.1 and constant disturbances, d = const,
observer (2.26) and control law (2.32)–(2.33) designed without any modeling
uncertainty (i. e. b̂ = b, θ̂ = θ), guarantee the global exponential asymp-
totic convergence of errors z̄, x̄ to the origin under the tuning proposed by
Assumption 2.4 for ωo,ωc chosen high enough.
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Proof. Under the conditions stated in Theorem 2.2, the time derivative of
V2(z̄, x̄) takes the form of

V̇2

∣∣∣ψ=ψ(t,x)
d=const
b̂=b
θ̂=θ

= −
1

2
ωoz̄T z̄+ωoz̄TPdm

((
ψ− ψ̂

)
θ̂
)

−
1

2
c0ωcx̄T x̄− c0x̄TRbn

((
k̄TωcΦcΛnΦ

−1
o

+bTm

)
z̄−

(
ψ̂−ψ

)
θ̂

)
(2.58)

and satisfies inequality

V̇2 6 −
ωo

2
‖z̄‖2 +ωo ‖z̄‖pMψL

∥∥∥ΛnΦ−1
o z̄

∥∥∥ θM
−
ωc

2
c0 ‖x̄‖2 + c0 ‖x̄‖ rM

(
kM

(
ωc

ωo

)n|1
+ 1

)
‖z̄‖

+ c0 ‖x̄‖ rMψL
∥∥∥ΛnΦ−1

o z̄
∥∥∥ θM,

(2.59)

where pM =
∥∥P∥∥ ∈ R+. The obtained inequality is further expressed as

V̇2 6 −
1

2

(
ωo − 2pMψLω

−n+1|0
c θM

−
1

ε1
c0rM

(
kM

(
ωc

ωo

)n|1
+ 1

)2
−
1

ε2
c0rMψL

(
ω

−n|−1
o

)2
θM

)
‖z̄‖2

−
1

2
c0

(
ωc − ε1rM − ε2rMψLθM

)
‖x̄‖2

(2.60)

for any positive constants ε1, ε2 ∈ R+. The negativity of
∥∥x̄∥∥2 coefficient

can be ensured by the choice of ωc high enough or ε1, ε2 small enough.
Settingωo high enough with c0 small enough guarantees then the negativity
of the coefficient of

∥∥z̄∥∥2. Function V2(z̄, x̄) thus satisfies the conditions of
the Lyapunov function.

Theorem 2.3. For system (2.21) with ψ = const or ψ = ψ(t) and time-
varying disturbance d = d(t) satisfying Assumption 2.1, observer (2.26)
and control law (2.32)–(2.33) designed without any modeling uncertainty
(i. e. b̂ = b, θ̂ = θ), guarantee the global convergence of errors z̄, x̄ to some
neighborhood of the origin under the tuning proposed by Assumption 2.4 for
any choice of ωo,ωc.
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Proof. Under the conditions stated in Theorem 2.3, the derivative of V2(z̄, x̄)
takes the form of

V̇2

∣∣∣ψ=ψ(t)
d=d(t)

b̂=b
θ̂=θ

= −
ωo

2
z̄T z̄+ z̄TPbm

∂d

∂t
−
ωc

2
c0x̄T x̄

− c0x̄TRbn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

(2.61)

and satisfies inequality

V̇2 6 −
ωo

2
‖z̄‖2 + pMdL ‖z̄‖−

ωc

2
c0 ‖x̄‖2

+ c0rM

(
kM

(
ωc

ωo

)n|1
+ 1

)
‖x̄‖ ‖z̄‖ ,

(2.62)

which can be further expressed as

V̇2 6 −
1

2

ωo − c0
ε
r2M

(
kM

(
ωc

ωo

)n|1
+ 1

)2 ‖z̄‖2
− c0

1

2
(ωc − ε) ‖x̄‖2 + pMdL ‖z̄‖

(2.63)

for any positive constant ε ∈ R+. For any choice of ωo and ωc bandwidths,
the negativity of the second term can be guaranteed by setting ε small enough.
Then, choosing c0 small enough ensures also the negativity of the first term.

Define the concatenated errors in the system as ξ =
[
x̄T z̄T

]T ∈ Rn+m.
Expression (2.61) is reformulated in the terms of ξ as

V̇2

∣∣∣ψ=ψ(t)
d=d(t)

b̂=b
θ̂=θ

= −
1

2
ξTNξ+

[
0n×1 bTmP

∂d
∂t

]
ξ, (2.64)

where

N =

[
ωcc0In n2,2

nT2,2 ωoIm

]
∈ Rn+m×n+m (2.65)

with n2,2 = −c0Rbn
(
k̄TωcΦcΛnΦ

−1
o − bTm

)
. Matrix N is positive

definite if aforestated conditions are satisfied. Derivative (2.64) thus satisfies

V̇2 6 −
1

2
nm ‖ξ‖2 + pMdL ‖ξ‖ (2.66)

with nm = λmin(N), where λmin(·) stand for smallest eigenvalue of a matrix.
The neighborhood of the origin to which errors ξ converge is thus defined by

‖ξ‖ 6 2pMdLn−1
m . (2.67)

Notably, n−1
m can be made arbitrarily small by increase of ωc and ωo.
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Remark. Evaluation of final error bounds is omitted in the subsequent proofs
but could be trivially conducted following the approach presented here.

Theorem 2.4. For system (2.21) with ψ = const or ψ = ψ(t) and time-
varying, state-dependent disturbance d = d(t, x) satisfying Assumption 2.1,
observer (2.26) and control law (2.32)–(2.33) designed with input gain per-
fectly known (i. e. b̂ = b), guarantee the global convergence of errors z̄, x̄ to
some neighborhood of the origin under the tuning proposed by Assumption 2.4
for ωo,ωc chosen high enough.

Proof. Under the conditions stated in Theorem 2.4, the derivative of V2(z̄, x̄)
takes the form of

V̇2

∣∣∣ψ=ψ(t)
d=d(t,x)
b̂=b
θ̂=θ

= −
ωo

2
z̄T z̄+ z̄TPbm

(
∂d

∂x

(
ωc

(
bnk̄

T

−AnΦ
−1
c ω−1

c

)
x̄+bn

(
k̄TωcΦcΛnΦ

−1
o

+bTmΦ
−1
o

)
z̄+ ẋr

)
+
∂d

∂t

)
−
ωc

2
c0x̄T x̄

− c0x̄TRbn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

(2.68)

and satisfies inequality

V̇2 6 −
ωo

2
‖z̄‖2 + pMdLωc

(
kM +ω

−n|−1
c

)
‖x̄‖ ‖z̄‖

+ pMdL

(
kM

(
ωc

ωo

)n|1
+ω

−n|−1
o

)
‖z̄‖2

+ pMdLxM ‖z̄‖+ pMdL ‖z̄‖−
ωc

2
c0 ‖x̄‖2

+ c0rM

(
kM

(
ωc

ωo

)n|1
+ 1

)
‖x̄‖ ‖z̄‖ ,

(2.69)

which can be further expressed as

V̇2 6 −
1

2

(
ωo − 2pMdL

(
kM

(
ωc

ωo

)n|1
+ω

−n|−1
o

)

−
1

ε2
c0rM

(
kM

(
ωc

ωo

)n|1
+ 1

)2
−
1

ε1
ω2cpMdL

(
kM

+ω
−n|−1
c

)2)
‖z̄‖2 − 1

2

(
ωcc0 − ε1pMdL − ε2c0rM

)
‖x̄‖2

+ pMdL (xM + 1) ‖z̄‖
(2.70)

for any positive constant ε1, ε2 ∈ R+. The negativity of
∥∥x̄∥∥2 coefficient

can be ensured by the choice of ωc high enough and then ωo high enough
guarantees the negativity of the coefficient of

∥∥z̄∥∥2. Function V2(z̄, x̄) thus
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satisfies the conditions of the Lyapunov function for errors x̄, z̄ large enough
what implies the ultimate boundedness of the errors.

Theorem 2.5. For system (2.21) with state-dependent and time-varying
known term ψ = ψ(t, x) and disturbance d = d(t, x) satisfying Assump-
tion 2.1 , observer (2.26) and control law (2.32)–(2.33) designed with pa-
rameters of the model perfectly known (i. e. b̂ = b, θ̂ = θ), guarantee the
global convergence of errors z̄, x̄ to some neighborhood of the origin under
the tuning proposed by Assumption 2.4 for ωo,ωc chosen high enough.

Proof. Under the conditions stated in Theorem 2.5, the derivative of V2(z̄, x̄)
takes the form of

V̇2

∣∣∣ψ=ψ(t,x)
d=d(t,x)
b̂=b
θ̂=θ

= −
1

2
ωoz̄T z̄+ωoz̄TPdm

(
ψ− ψ̂

)
θ̂

+ z̄TPbm

(
∂d

∂x

(
ωc

(
bnk̄

T −AnΦ
−1
c ω−1

c

)
x̄

+bn

(
k̄TωcΦcΛnΦ

−1
o +bTmΦ

−1
o

)
z̄+ ẋr

+bn

(
ψ− ψ̂

)
θ̂

)
+
∂d

∂t

)
−
1

2
c0ωcx̄T x̄

+ c0x̄TRbn

(
−
(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

+
(
ψ̂−ψ

)
θ̂

)
(2.71)

and satisfies inequality

V̇2 6 −
1

2
ωo ‖z̄‖2 +ωo ‖z̄‖pMψL

∥∥∥ΛnΦ−1
o z̄

∥∥∥ θM
+ ‖z̄‖pMdL

(
ωc

(
kM +ω

−n|−1
c

)
‖x̄‖+

(
kM

(
ωc

ωo

)n|1
+ 1

)
‖z̄‖+ xM +ψL

∥∥∥ΛnΦ−1
o z̄

∥∥∥ θM + 1

)
−
1

2
c0ωc ‖x̄‖2

+ c0 ‖x̄‖ rM
((

kM

(
ωc

ωo

)n|1
+ 1

)
‖z̄‖

+ψL

∥∥∥ΛnΦ−1
o z̄

∥∥∥ θM),

(2.72)
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which can be further expressed as

V̇2 6 −
1

2

(
ωo − 2ω

−n+1|0
c pMψLθM − 2pMdLψLω

−n|−1
o θM

− 2pMdL

(
kM

(
ωc

ωo

)n|1
+ 1

)
−
1

ε1
ω2cpMdL

(
kM

+ω
−n|−1
c

)2
−
1

ε2
c0rM

(
kM

(
ωc

ωo

)n|1
+ 1

)2
−
1

ε3
c0rMψL

(
ω

−n|−1
o

)2
θM

)
‖z̄‖2 − 1

2

(
c0ωc − ε1pMdL

− ε2c0rM − ε3c0rMψLθM

)
‖x̄‖2 + pMdL (xM + 1) ‖z̄‖

(2.73)

for any positive constant ε1, ε2, ε3 ∈ R+. The negativity of
∥∥x̄∥∥2 coefficient

can be ensured by the choice of ωc high enough or setting ε1, ε2, ε3 small
enough. The choice of ωo high enough guarantees then the negativity of
the coefficient of

∥∥z̄∥∥2. Function V2(z̄, x̄) thus satisfies the conditions of the
Lyapunov function for errors x̄, z̄ large enough what implies the ultimate
boundedness of the errors.

The aforementioned theorems are in line with the results presented
in the earlier literature on the subject of the stability of the ADRC
schemes. The applicability of these results may be further extended by
considering the systems with the modeling uncertainties, i. e. b̂ 6= b
and θ̂ 6= θ.

Theorem 2.6. For system (2.21) withψ = const,d = const, observer (2.26)
and control law (2.32)–(2.33) designed with only the input gain uncertainty
(i. e. b̂ 6= b, θ̂ = θ), guarantee the global convergence of errors z̄, x̄ to some
neighborhood of the origin under the tuning proposed by Assumption 2.4 for
ωo,ωc chosen high enough.

Proof. Under the conditions stated in Theorem 2.6, the derivative of V2(z̄, x̄)
takes the form of

V̇2

∣∣∣ψ=const
d=const
b̂6=b
θ̂=θ

= −
ωo

2
z̄T z̄− c0x̄TRbn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

−
ωc

2
c0x̄T x̄+ z̄TPbm

(
b

b̂
− 1

)(
ω2ck̄

T Ḡx̄+ x
(m)
r

+ωck̄
T
(
ωoΦcΛnΦ

−1
o H̄−bnk̄

TωcΦcΛnΦ
−1
o

−bnbm

)
z̄

)
(2.74)
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and satisfies inequality

V̇2 6 −
ωo

2
‖z̄‖2 + c0rM

(
kM

(
ωc

ωo

)n|1
+ 1

)
‖x̄‖ ‖z̄‖

−
ωc

2
c0 ‖x̄‖2 +ω2cb̄pMkMgM ‖z̄‖ ‖x̄‖

+ b̄pMxM ‖z̄‖+ωcb̄pMkM
((

ωc

ωo

)n−1|0
hM

+ kM

(
ωc

ωo

)n|1
+ 1

)
‖z̄‖2 ,

(2.75)

where hM =
∥∥H̄∥∥ ∈ R+ and gM =

∥∥Ḡ∥∥ ∈ R+. Moreover, a constant
measure of the input gain deviation is as defined earlier b̄ =

∥∥bb̂−1 − 1∥∥.
Notably, this term is bounded for any feasible choice of b̂. The above boundary
can be expressed as

V̇2 6 −
1

2

(
ωo − 2ωcb̄pMkM

((
ωc

ωo

)n−1|0
hM

+ kM

(
ωc

ωo

)n|1
+ 1

)
−
1

ε1
ω4cb̄pMkMgM

−
1

ε2
c0rM

(
kM

(
ωc

ωo

)n|1
+ 1

)2)
‖z̄‖2 − 1

2

(
ωcc0

− ε1b̄pMkMgM − ε2c0rM

)
‖x̄‖2 + b̄pMxM ‖z̄‖

(2.76)

for any positive constants ε1, ε2 ∈ R+. For any choice of c0 the coefficient
of
∥∥x̄∥∥2 can be made negative by setting ε1, ε2 small enough or ωc high

enough. Then the negativity of the coefficient of
∥∥z̄∥∥2 is ensured by choosing

ωo high enough. Function V2(z̄, x̄) satisfies conditions of the Lyapunov
function for errors x̄, z̄ large enough and b̂ chosen to satisfy Assumption 2.4,
guaranteeing the ultimate boundedness of the errors.

Remark. In the general case presented in the theorem, only the convergence
to some neighborhood of the origin can be ensured. Analysis of the proof
unveils that if the reference trajectory is chosen such that x(m)

r is equal
to 0 or vanishes with time, the term b̄pMxM

∥∥z̄∥∥ in (2.76) also vanishes.
The asymptotic convergence to the origin can thus be ensured by proper
choice of bandwidths. In other cases, the ultimate boundedness is ensured and
the bound depends on the chosen bandwidths, reference trajectory, and the
extent of input gain uncertainty. Such a possbility to achieve the asymptotic
convergence is lost if some time-varying model of the known dynamics is
included in the observer design as shown by Theorem 2.7

Theorem 2.7. For system (2.21) with ψ = ψ(t),d = const, observer (2.26)
and control law (2.32)–(2.33) designed with only input gain uncertainty
(i. e. b̂ 6= b, θ̂ = θ), guarantee the global convergence of errors z̄, x̄ to some
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neighborhood of the origin under the tuning proposed by Assumption 2.4 for
ωo,ωc chosen high enough.

Proof. Under the conditions stated in Theorem 2.7, the derivative of V2(z̄, x̄)
takes the form of

V̇2

∣∣∣ψ=ψ(t)
d=const
b̂6=b
θ̂=θ

= −
ωo

2
z̄T z̄− c0x̄TRbn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

−
ωc

2
c0x̄T x̄+ z̄TPbm

(
b

b̂
− 1

)(
ω2ck̄

T Ḡx̄−
∂ψ

∂t
θ̂

+ x
(m)
r +ωck̄

T
(
ωoΦcΛnΦ

−1
o H̄−bnbm

−bnk̄
TωcΦcΛnΦ

−1
o

)
z̄

)
(2.77)

and satisfies inequality

V̇2 6 −
ωo

2
‖z̄‖2 + c0rM

(
kM

(
ωc

ωo

)n|1
+ 1

)
‖x̄‖ ‖z̄‖

−
ωc

2
c0 ‖x̄‖2 +ω2cb̄pMkMgM ‖z̄‖ ‖x̄‖

+ b̄pMψLθM ‖z̄‖+ωcb̄pMkM
((

ωc

ωo

)n−1|0
hM

+ kM

(
ωc

ωo

)n|1
+ 1

)
‖z̄‖2 + b̄pMxM ‖z̄‖ .

(2.78)

The above boundary can be expressed as

V̇2 6 −
1

2

(
ωo − 2ωcb̄pMkM

((
ωc

ωo

)n−1|0
hM

+ kM

(
ωc

ωo

)n|1
+ 1

)
−
1

ε2
c0rM

(
kM

(
ωc

ωo

)n|1
+ 1

)2
−
1

ε1
ω4cb̄pMkMgM

)
‖z̄‖2 − 1

2

(
ωcc0 − ε1b̄pMkMgM

− ε2c0rM

)
‖x̄‖2 + b̄pM (xM +ψLθM) ‖z̄‖

(2.79)

for any positive constants ε1, ε2 ∈ R+. For any choice of c0 the coefficient
of
∥∥x̄∥∥2 can be made negative by setting ε1, ε2 small enough or ωc high

enough. Then the negativity of the coefficient of
∥∥z̄∥∥2 is ensured by choosing

ωo high enough. Function V2(z̄, x̄) satisfies conditions of the Lyapunov
function for errors x̄, z̄ large enough and b̂ chosen to satisfy Assumption 2.4,
guaranteeing the ultimate boundedness of the errors.

Theorem 2.8. For system (2.21) with ψ = ψ(t, x),d = const, observer
(2.26) and control law (2.32)–(2.33) designed with only parameter uncer-
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tainty (i. e. b̂ = b, θ̂ 6= θ), guarantee the global convergence of errors z̄, x̄ to
some neighborhood of the origin under the tuning proposed by Assumption 2.4
for ωo,ωc chosen high enough.

Proof. Under the conditions stated in Theorem 2.8, the derivative of V2(z̄, x̄)
takes the form of

V̇2

∣∣∣ψ=ψ(t,x)
d=const
b̂=b
θ̂ 6=θ

= −
1

2
ωoz̄T z̄+ωoz̄TPdm

(
(ψ−ψr)

(
θ− θ̂

)
+
(
ψ− ψ̂

)
θ̂

)
−
1

2
c0ωcx̄T x̄+ z̄TPbm

((∂ψr
∂xr

ẋr

+
∂ψr
∂t

)(
θ− θ̂

))
+ c0x̄TRbn

((
ψ̂−ψ

)
θ̂

+ (ψr −ψ)
(
θ− θ̂

)
−
(
k̄TωcΦcΛnΦ

−1
o

+bTm

)
z̄

)
(2.80)

and satisfies inequality

V̇2 6 −
1

2
ωo ‖z̄‖2 +ωo ‖z̄‖pM

(
ψL

∥∥∥ΛnΦ−1
o z̄

∥∥∥ θM
+ψL

∥∥∥Φ−1
c x̄

∥∥∥ θ̄)+ ‖z̄‖pMψL (xM + 1) θ̄−
1

2
c0ωc ‖x̄‖2

+ c0 ‖x̄‖ rM
((

kM

(
ωc

ωo

)n|1
+ 1

)
‖z̄‖+ψL

∥∥∥Φ−1
c x̄

∥∥∥ θ̄
+ψL

∥∥∥ΛnΦ−1
o z̄

∥∥∥ θM).

(2.81)

By assigning c0 = ωo the above boundary can be expressed as

V̇2 6 −
1

2

(
ωo

(
1− ε1pMψLω

−n+1|0
c θ̄

− ε2rM

(
kM

(
ωc

ωo

)n|1
+ 1

)2
− ε3rMψL

(
ω

−n|−1
o

)2
θM

)
− 2pMψLω

−n+1|0
c θM

)
‖z̄‖2 − 1

2
ωo

(
ωc

−
1

ε1
pMψLω

−n+1|0
c θ̄−

1

ε2
rM −

1

ε3
rMψLθM

− 2rMψLω
−n+1|0
c θ̄

)
‖x̄‖2 + pMψL (xM + 1) θ̄ ‖z̄‖

(2.82)

for any positive constants ε1, ε2, ε3 ∈ R+. At first, the positiveness of the
coefficient associated with ωo can be achieved by setting ε1, ε2, ε3 small
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enough and ensuring that ωo > ωc. The negativeness of the coefficient
of
∥∥x̄∥∥2 can be reached by setting ωc high enough and choice of ωo high

enough ensures the negativeness of the coefficient of
∥∥z̄∥∥2. Function V2(z̄, x̄)

thus satisfies conditions of the Lyapunov function for errors x̄, z̄ large enough,
guaranteeing the ultimate boundedness of the errors.

Theorem 2.9. For system (2.21) with ψ = ψ(t, x),d = d(t, x), observer
(2.26) and control law (2.32)–(2.33) designed with the parameter and input
gain uncertainty (i. e. b̂ 6= b, θ̂ 6= θ), guarantee the global convergence of
errors z̄, x̄ to some neighborhood of the origin under the tuning proposed by
Assumption 2.4 for ωo,ωc chosen high enough.

Proof. Under the conditions stated in Theorem 2.9, the derivative of V2(z̄, x̄)
takes the form given by (2.51) and satisfies inequality

V̇2 6 −
1

2
ωo ‖z̄‖2 +ωo ‖z̄‖pMψL

(∥∥∥ΛnΦ−1
o z̄

∥∥∥ θM
+
∥∥∥Φ−1

c x̄
∥∥∥ θ̄)+ ‖z̄‖pM

(
ψL (xM + 1) θ̄

+ b̄

(
ωckM

((
ωc

ωo

)n−1|0
hM + kM

(
ωc

ωo

)n|1
+ 1

)
‖z̄‖

+ω2ckMgM ‖x̄‖+ψL
(
xM +

(
ω

−n+1|0
c lM +ω

−n|−1
o

+ kM

(
ωc

ωo

)n|1)
‖z̄‖+ωc

(
kM +ω

−n|−1
c

)
‖x̄‖

)
θM

+ψLθM + xM

))
+ ‖z̄‖pM

(
dL

(
ωc

(
kM +ω

−n|−1
c

)
‖x̄‖

+

(
kM

(
ωc

ωo

)n|1
+ 1

)
‖z̄‖+ xM +

(
ψL

∥∥∥Φ−1
c x̄

∥∥∥ θ̄
+ψL

∥∥∥ΛnΦ−1
o z̄

∥∥∥ θM))+ dL

)
−
1

2
c0ωc ‖x̄‖2

+ c0 ‖x̄‖ rM
((

kM

(
ωc

ωo

)n|1
+ 1

)
‖z̄‖

+ψL

∥∥∥Φ−1
c x̄

∥∥∥ θ̄+ψL ∥∥∥ΛnΦ−1
o z̄

∥∥∥ θM),

(2.83)
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where lM =
∥∥l̄∥∥ ∈ R+. By assigning c0 = ωo the above boundary can be

expressed as

V̇2 6 −
1

2

(
ωo

(
1− ε1pMψLθ̄− ε2rMψL

(
ω

−n|−1
o

)2
θM

− ε3rM

(
kM

(
ωc

ωo

)n|1
+ 1

)2)
−ω4cpMb̄kMgM

− 2ωcpMb̄kM

((
ωc

ωo

)n−1|0
hM + kM

(
ωc

ωo

)n|1
+ 1

)

− 2pMψLθM

(
b̄

(
ω

−n+1|0
c lM +ω

−n|−1
o + kM

(
ωc

ωo

)n|1)

+ dLω
−n|−1
o +ω

−n+1|0
c

)
− 2pMdL

(
kM

(
ωc

ωo

)n|1
+ 1

)

−ω2cpM
(
b̄ψLθM + dL

) (
kM +ω

−n|−1
c

)2
− dLpMψLθ̄

)
‖z̄‖2 − 1

2

(
ωo

(
ωc −

1

ε1
pMψLθ̄

(
ω

−n+1|0
c

)2
−
1

ε2
rMψLθM −

1

ε3
rM − 2rMψLω

−n+1|0
c θ̄

)
− pMb̄kMgM

− pMb̄ψLθM − pMdL − dLpMψL

(
ω

−n+1|0
c

)2
θ̄

)
‖x̄‖2

+ pM

(
(ψLxM +ψL) θ̄+ b̄ (ψLxMθM +ψLθM + xM)

+ dLxM + dL

)
‖z̄‖

(2.84)

for any positive constants ε1, ε2, ε3 ∈ R+. At first, the positiveness of the
coefficient associated withωo

∥∥z̄∥∥2 can be achieved by setting ε1, ε2, ε3 small
enough and ensuring that ωo > ωc. The negativeness of the coefficient of∥∥x̄∥∥2 can be reached by settingωc high enough and choice ofωo high enough
ensures the negativeness of the coefficient of

∥∥z̄∥∥2. Function V2(z̄, x̄) thus
satisfies conditions of the Lyapunov function for errors x̄, z̄ large enough and
b̂ chosen to satisfy Assumption 2.4, guaranteeing the ultimate boundedness
of the errors.

The presented theorems unveil a wide range of behaviors exhibited
by the systems working under the ADRC controllers. It is presented
that in the nominal case of the simple system without any varying
disturbances the asymptotic convergence is guaranteed for any choice
of the observer and controller bandwidths. In line with the results
presented in the literature, it is shown that in the presence of unknown
varying disturbances only the ultimate boundedness of the errors is
ensured and additional requirements on the choice of bandwidths are
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imposed if the disturbance directly depends on the state of the plant.
The incorporation of the known terms of the plant dynamics in the
observer and controller design enables successful compensation and
recovery of the asymptotic stability, but the limitations of the choice
of the tuning variables are also imposed if the modeled dynamics are
expressed as a function of the state of the system. The uncertainties
present in the considered system further erode the performance of
the controller. The parametric uncertainty of the varying drift of the
plant used in the observer design makes it impossible to achieve the
asymptotic convergence of the errors and strengthens the limitations
imposed on the choice of the tuning parameters requiring an increase
of the observer and controller bandwidths. In the presence of the
input gain uncertainty, an asymptotic convergence can be ensured
by an increase of the bandwidths only in the most basic scenario
of a system free of any known or unknown varying disturbances if
the reference trajectory satisfies certain conditions. In other cases, the
unknown input gain bolsters the negative effects of the structure of
the system increasing the size of the ultimate bound of the system and
requirements for the choice of the higher values of the tuning variables.
Regardless of the considered scenario, Assumption 2.4 remains the fun-
damental requirement for the presented stability analysis and unveils
the direct dependence of the feasible observer tuning values on the
extent of the input gain uncertainty. This assumption, together with
Theorem 2.6, is in line with the results presented in the manuscript
by the group of S. Chen [44] where the stability of matrix H̄ is stated
as the necessary and sufficient condition for the existence of ωo high
enough to stabilize the closed-loop dynamics. Here, similar results
are independently developed on the basis of the straightforward Lya-
punov analysis. The performance of the ADRC controller in different
scenarios is summarized in Tab. 2.3 where the results which can be
obtained by the analysis of (2.51) are presented.

2.3 impact of the input gain uncertainty

The analysis presented in Section 2.2 unveiled some major properties
of the ADRC control scheme working in the presence of the modeling
uncertainties. Specifically, the satisfaction of Hurwitz condition by
matrix H̄ according to Assumption 2.4 is used as a cornerstone for the
stability analysis. Further study of the dynamics of the closed-loop
system showed that this property is not a sufficient condition for the
stability of the system, as in the presence of the uncertainty of the in-
put gain of the plant, additional requirements are imposed concerning
the choice of the tuning variables, as given by Theorem 2.6. Due to
the presence of matrix P in (2.51), the input gain uncertainty affects
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b̂ = b
θ̂ = θ

b̂ 6= b
θ̂ = θ

b̂ = b
θ̂ 6= θ

b̂ 6= b
θ̂ 6= θ

ψ = const,d = const asymp.,
any ω

bound*.,
high ω

asymp.,
any ω

bound*.,
high ω

ψ = ψ(t),d = const asymp.,
any ω

bound.,
high ω

bound.,
high ω

bound.,
high ω

ψ = ψ(t, x),d = const asymp.,
high ω

bound.,
high ω

bound.,
high ω

bound.,
high ω

ψ = const,d = d(t) bound.,
any ω

bound.,
high ω

bound.,
any ω

bound.,
high ω

ψ = ψ(t),d = d(t) bound.,
any ω

bound.,
high ω

bound.,
high ω

bound.,
high ω

ψ = ψ(t, x),d = d(t) bound.,
high ω

bound.,
high ω

bound.,
high ω

bound.,
high ω

ψ = const,d = d(t, x) bound.,
high ω

bound.,
high ω

bound.,
high ω

bound.,
high ω

ψ = ψ(t),d = d(t, x) bound.,
high ω

bound.,
high ω

bound.,
high ω

bound.,
high ω

ψ = ψ(t, x),d = d(t, x) bound.,
high ω

bound.,
high ω

bound.,
high ω

bound.,
high ω

* depending on the chosen reference trajectory, possible asymptotic convergence

Table 2.3: Performance of the ADRC control and required bandwidths in
different scenarios. Cases covered by the theorems explicitly pre-
sented in this work are given in color. All uncovered scenarios can
be seen as special cases of the discussed examples.

also the ability of the controller to compensate for the unmodeled
disturbances. The term P is derived by the Lyapunov equation directly
from H̄ which in turn depends explicitly on the ratio between the
real value of the input gain of the plant and its estimated approxima-
tion. The relation between P and H̄ is a nonlinear one, and thus the
exact impact of the modeling uncertainty on the performance of the
controller is not immediately clear from the analysis of (2.51). These
observations suggest the need for a more detailed study aimed at
finding the feasible range of the observer and controller gains, as well
as their impact on the overall performance of the algorithm, for the
systems subject to input gain uncertainty.

In this section, some results on this problem are presented on the
basis of the findings reported in [228, 233]. Namely, the dynamics of
the tracking and estimation errors as given by (2.37) are recalled and
investigated in more detail. The explicit form of the error dynamics
is given for various propositions of the internal control law v and,
on their basis, the numerical studies are conducted to explicitly de-
termine the stability conditions of the closed-loop system depending
on the extent of uncertainty and the chosen tuning of the algorithm.
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Numerical simulations are also employed to investigate the impact of
the input gain uncertainty on the rejection of the disturbance by the
ADRC controller. It is found that the underestimation of the input gain
of the plant introduces more strict requirements concerning the choice
of the tuning bandwidths but simultaneously may lead to an increase
in the performance of the system. This improvement is significantly
more considerable if the controller is designed in the error domain
according to (2.17)–(2.20). Moreover, it is shown that the need for the
choice of higher gains imposed by the presence of the input gain
uncertainty can be alleviated if at least some of the state variables are
measurable. As a result of this phenomenon, the stability of H̄ is not
the necessary condition for the stability of the closed-loop system if
the entire state of the system is available for measurement.

While the main focus of this section considers only the problem of
static uncertainty in the input path, some results on the stability of
the ADRC scheme in the presence of unmodelled dynamics governing
the input of the plant are also given on the basis of [226, 227]. It is
shown that if the degree of the plant is higher than assumed during
the controller synthesis and the input path is governed by some stable
dynamics, the overall closed loop system maintains the stability if
the input path dynamics are fast enough. This general conclusion is
formulated through the analytical investigation. Additional numerical
studies supporting this result unveil also that the increase of input
phase lag rapidly hinders the stabilization of the system and strongly
limits the feasible choice of the controller bandwidth.

2.3.1 Stability of the system

Consider the system discussed in Section 2.2 and assume, to facilitate
further analysis, that ψ(t, x) = 0 and d(t, x) = d(t), what yields

ẋ = Anx+bn (bu+ d(t)) , (2.85)

where x ∈ Rn is the state of the plant, b ∈ R \ {0} is the control input
and d(t) ∈ R is some unknown disturbance affecting the system.
Recall the state extension (2.25) and (2.28) in the form of

ż = Amz+dmb̂u+bm
d

dt
δ,

δ =
(
b− b̂

)
u+ d(t)

(2.86)
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with z ∈ Rm being extended state, where m = n+ 1, and δ ∈ R being
the total disturbance in the system. For such a system, observer (2.26)
is given by

˙̂z = Amẑ+dmb̂u+ lcTm (z− ẑ) (2.87)

with ẑ ∈ Rm being the extended state estimate. The control law in the
form of (2.32) and (2.33) is designed as

u =
1

b̂

(
v− δ̂

)
,

v = kT (xr − x̂) + x
(n)
r .

(2.88)

Note, that some of the state variables of the plant may be measurable
and different forms of the internal control law v may thus be designed.
To consider this issue, define the auxiliary mixed extended state vec-
tor z∗η ∈ Rm consisting of the combination of η measurable states
variables and estimates of the remaining signals, with η being some
nonnegative constant integer representing the number of measurable
states available for control law design.

Remark 2.3. Even though the degree of measurability η can be equal to 0,
the observer design requires at least one state variable to be measurable. Yet,
constant η refers only to the number of state variables directly included in
the control law and not to their factual measurability and thus the observer
can be succesfully synthesized even if η = 0.

The explicit form of this auxiliary vector is given by

z∗η = (Im −Πm,η) z+Πm,ηẑ (2.89)

with the mixing matrix defined as Πm,η = diag(0η, Im−η) ∈ Rm×m

for any constant nonnegative integer η satisfying η 6 m − 1. By
taking advantage of this notation the internal control law incorporating
measurable state variables in the feedback loop is redesigned as

vη = kT
(
xr −Λnz

∗
η

)
+ x

(n)
r . (2.90)

Note that the control law considered in Section 2.2 and given by (2.33)
is a specific case of the more general controller (2.90) obtained by
setting η = 0. The studies of this section are thus wider in scope
than previous investigations. Simultaneously, one can observe that∥∥Π∥∥ 6 1 and thus the analytical solutions given in the preceding
section are conservatively valid also for the system considered here,
as introduction of Π does not invalidate the Lyapunov analysis of
the stability of the closed-loop system. By employing the control law
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based on the mixed extended state vector, the error dynamic, originally
given by (2.37), take the generalized form of

˙̃z = Hz̃+bm

((
b

b̂
− 1

)
v̇+ ḋ

)
,

˙̃x = Gx̃−WΠm,ηz̃.

(2.91)

The change in the dynamics of the tracking error introduced by the use
of mixed extended state is consistent with predictions of Remark 2.2.
The dynamics of the inner control law, expressed in terms of the
tracking and estimation errors, are given as

v̇η = kTGx̃+ kT (ΛnΠm,ηH−WΠm,η) z̃+ x
(m)
r . (2.92)

Consider the concatenated errors ξ consisting of both tracking and
estimation errors and defined as ξ =

[
z̃T x̃T

]T ∈ Rm+n. By substi-
tuting (2.92) into (2.91) the dynamics of ξ are expressed in the compact
form of

ξ̇ = Nξ+
[
bTm 0Tn×1

]T (ḋ+(b
b̂
− 1

)
x
(m)
r

)
, (2.93)

where N ∈ Rm+n×m+n is a constant matrix dependent on the choice
of gains k and l, uncertainty of the input gain b and the degree of
measurability η, and is given as

N =

[
H+ b̃bmkT (ΛnΠm,ηH−WΠm,η) b̃bmkTG

−WΠm,η G

]
(2.94)

with b̃ = b
b̂
− 1. The term b̄ is defined as in Section 2.2 and thus

satisfies b̄ =
∥∥b̃∥∥. The dynamics given above have the form of a simple

disturbed linear system and its stability can be concluded on the basis
of matrix N. Despite the straightforward form of this equation, a
direct analytical formulation of stability conditions for the system of
arbitrary order is a nontrivial task due to the dependency of matrix N
on k, l, b̂, and η. The explicit solution to this problem has not yet been
found.

In this chapter numerical analysis is employed to unveil some prop-
erties of matrix N for the system of chosen order. To this end, the
second order (n = 2) system in the form of (2.85) is considered as
the commonly investigated exemplary dynamics. By denoting β̃ = b

b̂
,



2.3 impact of the input gain uncertainty 63

the exact forms of matrix N for different choices of η ∈ {0, 1, 2} are
obtained as follows,

N
∣∣∣n=2
η=0

=


−l1 1 0

−l2 0 1

n3,1 b̃
(
k1 − k

2
2

)
0

0 0 0

−k1 −k2 −1

b̃bmkTG

G

,

N
∣∣∣n=2
η=1

=


−l1 1 0

−l2 0 1

−β̃l3 − b̃k2l2 −b̃k22 0

0 0 0

0 −k2 −1

b̃bmkTG

G

,

N
∣∣∣n=2
η=2

=


−l1 1 0

−l2 0 1

−β̃l3 0 −b̃k2

0 0 0

0 0 −1

b̃bmkTG

G



(2.95)

with

n3,1 = −β̃l3 − b̃ (k2 (k1 + l2) + k1l1) ,

b̃bmkTG =

 0 0

0 0

−b̃k1k2 b̃
(
k1 − k

2
2

)
 , G =

[
0 1

−k1 −k2

]
.

(2.96)

In order to investigate the impact of the modeling uncertainty on the
stability and convergence of the closed-loop system working under
the ADRC controller, numerical evaluation of the Hurwitz criterion for
each variant of N matrix can be considered. To enable such analysis
some parametrization of the observer and controller gain is required
and thus the tuning proposed in Tab. 2.1 is embraced here, leading to
the tuning variables chosen as

l =
[
3ωo 3ω2o ω3o

]T , k =
[
ω2c 2ωc

]T . (2.97)

For such a choice of tuning variables matrix H̄ takes the form of

H̄ =

−3 1 0

−3 0 1

−β̃ 0 0

 (2.98)

and is stable for any β̃ ∈ (0, 9). The presented representation of the
dynamics of the system is an alternative to (2.37) which used (2.47) as
a starting point for the stability analysis. The stability conditions of
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matrix H̄ can be compared with the stability of entire N to investigate
whether Assumption 2.4 is necessary for the convergence of the ADRC
system. The results of the numerical evaluation of the stability of
matrix N are given in Fig. 2.9 as a function of ωo,ωc and β̃.
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Figure 2.9: Borders of stability regions of N for different values of η parame-
ter. Stable regions correspond to the areas above the surface.

Produced results show that for η = 0 and η = 1 the stability of H̄
is indeed the necessary condition for the stability of the system for
a wide range of tuning bandwidths. Yet, the numerical evaluation of
the stability conditions of N matrices reveals that for small values of
the observer bandwidth the stability of the closed-loop system can
be achieved even if matrix H̄ is not itself stable, what has not been
noticed and reported in [44] or other earlier papers. Nonetheless, for
any greater value of ωo the system is not stabilizable for β̃ > 9. An
increase of the modeling uncertainty β̃ enforces also the choice of
higher ωo to maintain the stability of the closed-loop system, what is
in line with the results presented in the literature. In accordance with
the notions made on the basis of (2.51), higher choices of the observer
bandwidth are also necessary to stabilize the system if the higher
values of ωc are chosen. The introduction of a single measurable state
variable does not significantly change the character of the stability
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conditions of the plant, save for a slight increase in the range of
observer bandwidths feasible to stabilize the system in the presence
of significant input gain uncertainty. Only once the entire state vector
is available for the control law design and the observer is used only to
produce the estimate of the total disturbance acting upon the plant,
the dynamics of the plant undergo a fundamental change. In such a
case, the stability of H̄ is no longer an important condition for the
stability of the closed-loop system and the convergence of the errors
can be ensured even in the presence of significantly greater modeling
uncertainties. Despite multiple attempts (search up to β̃ = 104), no
ultimate value of β̃ for which it would be impossible to ensure the
stability of the system was found. Moreover, once a certain threshold
is crossed by the value of β̃ its further increase does not lead to
higher requirements concerning the choice of ωo and ωc but instead
increases the range of feasible bandwidth choices.

Further insights into the stability properties of N matrix can be
provided by the analysis of the explicit forms of the Routh-Hurwitz
table RH associated with this matrix and expressed as follows,

RH
∣∣∣
n=2

=



1 ρ2,1 ρ3,1

ρ1,2 ρ2,2 ρ3,2

ρ1,3ρ
−1
1,2 ρ2,3 0

ρ1,4ρ
−1
1,3 ρ2,4 0

ρ1,5ρ
−1
1,4 0 0

ρ1,6 0 0


. (2.99)

By embracing the tuning given by (2.97), the exact values of the
elements of RH table can be derived independently for each of the
matrices from (2.95). The elements for matrix N with η = 0 are

ρ1,2 = 3ωo + 2ωc,

ρ1,3 =
(
9− β̃

)
ω3o + 6

(
4− β̃

)
ω2oωc + 3

(
5− β̃

)
ωoω

2
c − 2ω

3
c,

ρ1,4 =
(
9− β̃

)
β̃ω6o + 12

(
5− β̃

)
β̃ω5oωc

+ 6
(
23− 7β̃

)
β̃ω4oω

2
c + 2

(
61− 18β̃

)
β̃ω3oω

3
c

+ 9
(
5− β̃

)
β̃ω2oωc + 6β̃ωoω

5
c,
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ρ1,5 = − β̃ω3oω
2
c (3ωo + 2ωc)

(
3ω2o + 6ωoωc +ω

2
c

)2
− β̃3ω4oωc (2ωo + 3ωc)

(
ω2o + 6ωoωc + 3ω

2
c

)2
+ 2β̃2ω3oωc

(
9ω6o + 75ω

5
oωc + 243ω

4
oω

2
c + 358ω

3
oω

3
c

+ 243ω2oω
4
c + 75ωoω

5
c + 9ω

6
c

)
,

ρ1,6 = β̃ω
3
oω

2
c,

(2.100)

and

ρ2,1 = 3β̃ω
2
o + 6ωoωc + 4ω

2
c − 3β̃ω
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The inclusion of some measurable state variables in the control law
significantly simplifies the Routh-Hurwitz table. Assuming η = 1

leads to the terms of the table given as
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as well as
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Finally, assigning η = 2 and designing a control law on the basis of
the fully measurable state of the plant yields
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with
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Some further conclusions, compatible with the results of numerical
calculations, can be drawn by analysis of the elements of RH tables
given by (2.100)–(2.105). The extensive presence of the terms in form
of the polynomials of input gain estimation error β̃ can be noticed,
especially of the first order terms given by

(
ρ0 − β̃

)
where ρ0 is some

positive constant. Clearly, such terms work toward the destabilization
of the system once the input gain estimate is chosen such that β̃ > ρ0.
The presence of multiple such expressions in the Routh-Hurwitz
tables of the systems with η = 0 and η = 1 is associated with the
destabilization of these systems in the presence of significant modeling
uncertainties as shown in Fig. 2.9. In contrast, in RH table for η = 2

such term appears only once with ρ0 = 9. Such a change is also
coherent with numerical results which showed that the system with
a measurable state is stable for almost any β̃ < 9. The terms ρ1,5 for
all variants of the system suggest that the dynamics may not be stable
for very small values of β̃ and certain choices of the controller and
observer bandwidths which is also coherent with the results of the
numerical evaluations.

In order to generalize and confirm the notions made on the basis
of the second order system, the numerical evaluation of the stability
of the third order system is presented in Fig. 2.10. For the purposes
of this investigation, the tuning and parametrization as proposed in
Tab. 2.1 is once again employed. Under such a tuning matrix H̄ takes
the form of

H̄
∣∣∣
n=3

=


−4 1 0 0

−6 0 1 0

−4 0 0 1

−β̃ 0 0 0

 , (2.106)

which is Hurwitz for any input gain uncertainty satisfying β̃ ∈ (0, 5).
The numerical evaluation of the stability of the system is conducted in
the same manner as for the second-order plant. The results presented
in the plots confirm the notions made in this section on the basis of
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Figure 2.10: Borders of stability regions of N for the third order system and
different values of η parameter.

the second-order system. Namely, it is possible to stabilize the system
for the small values of the observer bandwidth even with the unstable
matrix H̄. Nonetheless, if not all state variables are available for the
control law design the stability of H̄ stands as a crucial precondition
for an easy stabilization of the closed-loop system in a wider range
of observer and controller tuning values. The inclusion of a fully
measurable state in the control law causes the system to undergo a
fundamental change in its stability properties and the convergence of
the errors may be guaranteed for arbitrarily uncertain plants by proper
choice of the bandwidths of the algorithm. Notably, the Lyapunov
analysis of Section 2.2 is not applicable if such a tuning is embraced, as
it is based on the assumption of stability of H̄ matrix. The numerical
trials performed for the system of the third order shows also some
difficulties to stabilize the system in the presence of very small values
of β̃. These notions significantly extend the results presented hitherto
in the literature and can be summarized by the following conjectures.

Conjecture 2.1. For system (2.21) with ψ = 0,d = 0, observer (2.26) and
control law (2.32)–(2.33) under the tuning given by (2.13)–(2.15) and with
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η < n the closed-loop system can be stabilized for β̃ such that Assumption 2.4
is satisfied by choice ofωo high enough. For some other values of β̃ the system
may be stabilizable by choice of ωo small enough.

Conjecture 2.2. For system (2.21) with ψ = 0,d = 0, observer (2.26) and
control law (2.32)–(2.33) under the tuning given by (2.13)–(2.15) and with
η = n the closed-loop system can be stabilized for β̃ such that Assumption 2.4
is satisfied for any choice of ωo. For all other values of β̃ the system is
stabilizable by choice of ωc high enough.

2.3.2 Performance and disturbance attenuation

While the presented analysis answers some questions concerning the
impact of the input gain uncertainty on the stability of the closed-loop
system working under the ADRC paradigm, further investigation has
to be carried out in order to investigate how the modeling uncertainty
influences the performance of the closed-loop system in terms of
convergence speed and disturbance rejection. Some insights into these
properties are here obtained on the basis of the numerical simulations
of the response of the closed-loop system.

Simulation 2.3. Series of simulations are performed for the nominal second-
order (n = 2) system with dynamics corresponding to (2.91) and no external
disturbances affecting the plant (i. e. d = 0). The real input gain of the system
is set to b = 1. The controller and observer tuning are chosen according
to (2.97) for coherence with the earlier results and the reference trajectory
to be tracked by the system is chosen as a simple sine wave function given
by xr(t) = sin(2t). Each simulation is carried out for a different value of
the input gain estimate b̂ and measurability parameter η. The quality factor
E(β̃) is then calculated for each run as

E(β̃) =
1

t1 − t0

∫t1
t0

‖xr − x‖dt, (2.107)

where t0 = 20 s, t1 = 40 s stand for the initial and final time instants
of the integration chosen to eliminate the influence of transient states on
the evaluation of the controller performance. The resulting values of E(β̃)
obtained in the simulations are given in Fig. 2.11.

The plots confirm the existence of some feasible range of input
gain uncertainty outside of which the system does not maintain its
stability, as indicated by the rapid growth of calculated E(β̃) factor
for simulations with β̃ larger than some threshold value. As shown
already by Fig. 2.9, this limiting value grows with an increase of ωo
and decrease of ωc, and converges toward the value of 9 if not all
state variables are available for measurement. It is also visible that if
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Figure 2.11: Values of the performance criterion E(β̃) for the undisturbed
system with various measurability degrees. Gains are chosen as
ωc = 1 in the left plots and ωo = 100 in the right plots.

state x of the plant is directly employed in the control formula this
threshold grows significantly, especially in trials with the increased
controller bandwidth ωc, which is also in line with the earlier numer-
ical results. Noteworthy, the simulations performed with η = 0 and
η = 1 provided results that are visually identical and no significant
difference in the response of the plant can be noted. This property
would be possibly lost had some state variables used in the control
law be burdened by measurement noise. The products of the simu-
lations unveil also the impact of the input gain uncertainty on the
overall performance of the system. It is shown that, in accordance with
intuitive notions, the highest performance of the ADRC controller
in the system without any disturbances is achieved with the input
gain perfectly known and deviations from its nominal value lead to a
decrease in the tracking quality. Importantly, the deterioration of the
performance of the controller is significantly greater if the input gain
used for the controller synthesis is overestimated, leading to β̃ < 1,
than if this parameter is underestimated, which corresponds to β̃ > 1.
In the latter case, the performance decrease seems to be limited by
some boundary and further increase of β̃ does not apparently lead
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to the accelerated increase of E(β̃) criterion up until the destabilizing
boundary is reached. On the contrary, the accumulated value of E(β̃)
factor rapidly grows with the increase of input gain overestimation.
This observation may lead to a conclusion that if the input gain is not
perfectly known, the choice of the smaller values of its estimate, and
thus greater β̃ may be advisable in practical scenarios. This proposi-
tion is formulated here only on the basis of the results obtained for
the undisturbed double integrator system, and further research into
the impact of the input gain uncertainty on the ability of the controller
to estimate and reject disturbances affecting the system is required in
order to generalize this notion.

From the dynamics given by (2.51) it can be noted that majority of
disturbing terms are scaled by the solution P of the Lyapunov equation
which varies with the change of unknown term β̃ present in H̄ matrix.
The analytical solution of the Lyapunov equation H̄TP+PH̄ = −Im
can be obtained by taking advantage of the Kronecker product [107].
P is given by properly reshaping the solution of the equation

vec(P) = −
(
Im ⊗ H̄T + H̄T ⊗ Im

)−1
vec(Im), (2.108)

where ⊗ is the Kronecker product operator and vec(·) stands for the
operation of matrix vectorization. For the second order system the
explicit form of the solution of the Lyapunov equation takes the form
of

P
∣∣∣
n=2

=


p1,1 −12

1+12ω2o+3β̃ω
4
o

2(β̃−9)ω3o
−12 p2,2 −12
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4
o

2(β̃−9)ω3o
−12 p3,3

 (2.109)
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(2.110)

Due to the dependence of (2.51) on P, some general conclusions about
the ability of the controller to suppress the impact of disturbances can
be drawn from the numerical analysis of the norm of this matrix in the
function of the observer bandwidth and the input gain uncertainty. The
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derivative of function V2(z̄, x̄) as given by (2.51) contains numerous
terms scaled by P matrix. More specifically, the expression

z̄TPbm

((
∂ψr
∂xr
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accommodate majority of the dynamic effect impacting the evolution
of the closed-loop system and is scaled by Pbm what stands for the
last column P matrix only. Since, in the practical scenarios, the extent
of the disturbance estimation errors is commonly significantly greater
than that of the state estimation errors (see Fig. 2.5), the last element of
this column, equal to bTmPbm, is expected to have a predominant role
in shaping the evolution of the system. Differences in the character
of the state and disturbance estimations have also been highlighted
by the earlier finding of this section. In Fig. 2.12 the norms of both
Pbm and bTmPbm are shown for different values of ωo and β̃. The
values are presented only in the range in which H̄ maintains stability,
as the analytical studies presented in the previous sections have no
meaningful interpretation outside of this domain.

The presented results show that while the norm of Pbm increases
with the growth of β̃ term, the interpretation of the properties of
the term bTmPbm is less straightforward and its norm grows as β̃
approaches both 0 and 9. Importantly, none of these expressions has a
minimum at β̃ = 1 which corresponds to the perfect knowledge of the
input gain of the plant. Thus, it may be expected that in some scenarios
the choice of input gain estimate according to its real value may not
lead to the best disturbance rejection capabilities. Yet the properties
of P matrix alone cannot serve as a sole basis of conclusions on the
disturbance rejection capabilities of the algorithm in the presence of
the input gain uncertainties, as its performance inherently depends
also on the character of N matrix as shown by simulations in Fig. 2.11.
It is thus justified to seek to establish some notions on this problem on



74 active disturbance rejection control

0
3

6
300

600
β̃

ωo

2

4

6

·103

0 3 6
0

2,000

4,000

6,000

β̃

ωo = 100

ωo = 300

ωo = 500

(a) Norm of Pbm

0
3

6
300

600
β̃

ωo

2

4

6

·10−2

0 3 6
0

0.02

0.04

0.06

β̃

ωo = 100

ωo = 300

ωo = 500

(b) Norm of bTmPbm

Figure 2.12: Norms of the solution of the Lyapunov equation

the basis of numerical simulations of the responses of the disturbed
system.

Simulation 2.4. The system with dynamics (2.91) and various forms of
disturbances affecting the plant is considered. The conditions of the trials
are chosen as in Sim. 2.3 with real input gain fixed as b = 1 and value of
performance criterion E(β̃) calculated for each run with different values of b̂.
The algorithm is tuned with bandwidths ωo = 100,ωc = 1. The following
scenarios are considered to investigate the performance of the ADRC controller
for uncertain disturbed systems:

1. state independent disturbance d = σ sin(4t),

2. state dependent disturbance d = σ
(
x1 + x2

)
,

where parameter σ is a scaling factor varying across the simulations. The
results of these trials for varying degrees of measurability η are given in
Fig. 2.13.

The plots show an important, yet counterintuitive, notion that the
growth of β̃ factor leads to an increase in the disturbance rejection
abilities of the ADRC algorithm. For the disturbances large enough
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Figure 2.13: Values of the performance criterion E(β̃) for the disturbed sys-
tem. State-independent disturbance in the left plots, and state-
dependent disturbance in the right plots.

this positive influence visibly overcomes the decrease of performance
observed in Fig. 2.11 and the overall performance of the disturbed sys-
tem increases with the input gain underestimation. This phenomenon
is observed for both considered types of disturbances regardless of the
chosen degree of measurability and is valid up to the threshold value
of β̃ for which the system loses its stability according to the results
of Fig. 2.9. Moreover, the scenario employing the disturbance being
a function of the plant state shows also its impact on this stability
threshold. According to (2.51) one may expect that in the presence
of state-dependent disturbance the exact form of N differs from the
one given in (2.94) due to the presence of terms derived from the
dynamics of the disturbance. Thus, not only the performance but also
the stability region is affected by the presence of the state-dependent
disturbance acting upon the plant. Specifically, it can be noticed that
the non-dissipative disturbance employed in the second scenario leads
to the decrease of this stable region which shrinks with an increase of
σ despite unchanged ωo,ωc parameters. The proper behavior of the
system is thus not always achieved for the values of β̃ which stabilized
the undisturbed plants in the earlier trials.
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The presented numerical results seem to imply that in the presence
of significant disturbances affecting the plant the conscious choice
of the input gain estimate which is substantially smaller than the
nominal value of this parameter in the plant my positively affect the
performance of the closed-loop system. This phenomenon may be
partially caused by the indirect scaling of lm by β̃ as shown in (2.47),
yet is not limited to this reason, as explicitly shown by (2.95) where
the impact of the modeling uncertainty on the other elements of the
dynamics of the system is highlighted. The following notions can thus
be stated.

Conjecture 2.3. For system (2.21) with ψ = 0,d = 0, observer (2.26) and
control law (2.32)–(2.33) the best quality of reference trajectory tracking in
terms of E(β̃) criterion is achieved for b̂ = b.

Conjecture 2.4. For system (2.21) with ψ = 0,d = d(t, x), observer (2.26)
and control law (2.32)–(2.33) the quality of the reference trajectory tracking
can be improved in terms of E(β̃) criterion by setting b̂ < b if the extent of
the disturbing term d(t, x) is large enough.

Remark 2.4. While the aforestated conjectures assume a lack of any known
dynamics of the plant (i. e. ψ = 0), the results can be trivially extended
to the systems with some parts of the dynamics known. In such a case, for
the purposes of the proposed conjectures, the impact of the drift parameters
uncertainty may be lumped with disturbance d as shown in Section 2.2. The
same holds for subsequent conjectures.

While the majority of published research focuses on the investiga-
tion of the ADRC performance under an assumption that the input
gain estimate at least roughly corresponds to its correct value, the
first notion that it may be chosen differently to improve the efficiency
of the controller was suggested already in 2010 in [341]. The authors
noticed that the increase in this estimate enlarges the stability mar-
gins of the system and thus the greater values of the observer and
controller bandwidths may be applied decreasing produced tracking
and estimation errors. A similar approach was later employed in [47]
leading to the proposition of the tuning which included the choice of
b̂ in order to satisfy some predefined required setting time. The con-
clusions presented in these papers are not contradictory to the finding
of this thesis, but no proposition concerning a conscious decrease of
the input gain estimate was put forth there and was, according to the
best knowledge of the author, for the first time proposed by the author
of this dissertation.

The proposed tuning of the input gain estimate is valid only for the
system in which, under an assumption of perfect knowledge of input
gain value, the disturbances scaled only by Pbm are not outweighed



2.3 impact of the input gain uncertainty 77

by thosed scaled also by β̃− 1, as Fig. 2.11 and 2.13 showed that the
change of β̃ caused no improvement of in the control quality for the
undisturbed plant and only moderate improvement in the weakly
disturbed plant. For the standard ADRC this implies that the impact
of the nonzero external disturbances d should outweigh the derivative
x
(m)
r of the reference trajectory. Alternatively, the EADRC algorithm

designed in the error domain and presented in Section 2.1 always
satisfies this condition, regardless of the specific structure of the term
d and xr. It is thus justified to extend the earlier studies to incorporate
the EADRC control scheme and separately investigate its performance
in the presence of the input gain uncertainties. To this end, consider
the plant working under the EARDC control as given by (2.17)–(2.20).
In order to follow the procedure employed at the beginning of this
section and incorporate the input gain uncertainty and mixing matrix
Π into the EADRC design, the extended state is defined in the error
domain as z =

[
x̃T δ

]T with the dynamics rewritten from (2.18) as

ż = Amz−db̂u−bm
d

dt

((
b− b̂

)
u− x

(n)
r + d

)
(2.111)

and the observer designed as

˙̂z = Amẑ−dmb̂u+ l
(
cTnx̃− c

T
mẑ
)

. (2.112)

The control law is then rewritten from (2.20) in the form of

u =
1

b̂

(
v+bTmẑ

)
(2.113)

with the internal control law employing possibly measurable states of
the plant expressed by

vη = kTΛnz
∗
η (2.114)

and auxiliary vector z∗ defined in the error domain as

z∗η = (Im −Πm,η) z+Πm,ηẑ. (2.115)

The error dynamics, analogous to (2.91), of the EADRC control algo-
rithm are then obtained as

˙̃z = Hz̃−bm

((
b

b̂
− 1

)
v̇− x

(m)
r + ḋ

)
,

˙̃x = Gx̃+WΠm,ηz̃.
(2.116)
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By substituting v̇ into these equations, the dynamics of the concate-
nated errors ξ for the EADRC scheme are expressed by

ξ̇ = Nξ+
[
bTm 0Tn×1

]T (ḋ− x(m)
r

)
(2.117)

with

N =

[
H+ b̃bmkT (ΛnΠm,ηH−WΠm,η) −b̃bmkTG

WΠm,η G

]
.

(2.118)

Due to the embraced error definition, the obtained matrix N differs
from its counterpart associated with ADRC control by the signs of
elements on its antidiagonal. Such matrices are bound to have the same
eigenvalues and thus the stability properties established earlier for
the standard form of the algorithm hold also for the variant designed
in the error domain. The major difference between the presented
expressions and the forms obtained for standard ADRC in (2.93) and
(2.94) can be nonetheless noticed. Namely, the dynamics of ξ errors
for the EADRC controller do not contain the term

(
β̃− 1

)
x
(m)
r which

is replaced by the expression x(m)
r only. Such a change has a twofold

impact on the analysis of the system. Firstly, it is clear that even if the
input gain parameter is perfectly known, it is not possible to eliminate
the influence of the reference trajectory on the performance of the
system working under the EADRC controller, which is achievable with
the standard form of the algorithm. The lack of this property limits
however the undesired sensitivity of the EADRC to the input gain
uncertainty, as the growth of β̃ factor, does not lead to a surge in the
disturbance affecting the closed loop system. Both of these notions
may be perceived as reasons to consider the proposed input gain
underestimation as a tuning method for the EADRC systems. In order
to investigate these properties, the numerical simulations conducted
in Sim. 2.4 for the standard ADRC controller are repeated here for the
EADRC algorithm synthesized in the error domain.

Simulation 2.5. Consider the scenario given by Sim. 2.4 with EADRC
controller employed. The conditions of the simulation remain unchanged and
thus the second order system (n = 2) is considered with a real value of input
gain chosen as b = 1, tuning gains set to ωo = 100,ωc = 1 and with the
disturbing terms d in the forms of either d = σ sin(4t) or d = σ

(
x1 + x2

)
.

The results of the simulations for various values of parameter σ are given in
Fig. 2.14.

The obtained results show that due to the lack of scaling of x(m)
r

term in the dynamics of the errors in the EADRC scheme, the perfor-
mance criterion E(β̃) does not reach its minimum value for β̃ = 1 and,
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Figure 2.14: Values of the performance criterion E(β̃) for the disturbed
EADRC system. State-independent disturbance in the left plots,
and state-dependent disturbance in the right plots.

in all considered scenarios, monotonically decrease with the growth of
input gain underestimation up to the threshold value destabilizing the
system. Importantly, the additional simulations performed with the
trajectories characterized by significantly smaller values of x(m)

r also
confirm this notion which thus arises as a property possibly indepen-
dent of the chosen trajectory or the type of disturbance. Specifically, if
x
(m)
r = 0 then the asymptotic convergence is achieved for any feasible

choice of b̂, what corresponds to the special case of Theorem 2.6. The
proposed method of input gain tuning thus seems to be well-suited for
the application to the plants controlled under the EADRC algorithm.
The plots moreover show that the general conclusions concerning the
stability of the entire system drawn on the basis of the simulations of
the ADRC system hold also for the EADRC algorithm.

Conjecture 2.5. For system (2.21) with ψ = 0,d = d(t, x), observer
(2.112) and control law (2.113)–(2.114) the quality of the reference trajectory
tracking can be improved in terms of E(β̃) criterion by setting b̂ < b for a
wide class of disturbances and reference trajectories.
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In order to further verify the obtained results, the experimental
trials are performed considering different choices of the input gain
estimate value.

Experiment 2.1. The robotic astronomic telescope device with a mirror of
diameter 0.5m, which is described in detail in Section 4.2, is employed. The
plant is modeled as a second-order dynamic system (n = 2), and the EADRC
controller is synthesized and tuned with ωo = 140,ωc = 10. The task of
trajectory tracking is considered with the reference trajectory expressed by

xr = 2 · 7.268 · 10−rv
(
1

6
π

)−1

sin(
1

6
πt) rad/s, (2.119)

where rv ∈ {2, 5} stands for the factor affecting the maximum velocity of
the axis of the telescope and varies across performed trials. The choice of
higher values of rv corresponds to the slower desired movement of the mount.
Although the presented analytical and numerical results imply that the choice
of the reference trajectory does not impact the overall performance properties
of the system, it has been observed that the character of the disturbance
affecting the telescope device varies with the changes in the velocity of the
axes of the mount. Namely, for the slow trajectories, the disturbances seem
to be characterized mainly by the friction force in the presliding regime that
significantly impacts the response of the plant. Conversely, faster movement
of the axis allows the friction to enter the sliding regime in which the impact
of the friction on the motion of the telescope is strongly limited. The change of
the reference trajectory is thus used here to indirectly influence the attributes
of the disturbing dynamics. For each choice of velocities of the trajectory,
separate trials are performed for different choices of η factor. In order to
enable choice of η = 2, a separate observer with constant tuning is employed
to estimate the velocity of the axis. In line with the outputs of the earlier
simulation, the experimental results obtained for η = 0 and η = 1 proved
to be visually identical and are thus merged in the presented figures. The
modified performance criterion E1(β̃) based only on the output of the system
and expressed by

E1(β̃) =
1

t1 − t0

∫t1
t0

‖xr1 − x1‖dt (2.120)

is then calculated from the results of the experimental trials and presented in
Fig. 2.15. The assumed value of b̂ instead of β̃ is displayed due to the fact
that the real value of b is not certainly known in the experimental setup.

The results of the experiments are roughly in line with the outcomes
of the earlier simulations. Namely, it is shown that, in some limited
range, the decrease of the input gain estimate improves the overall
performance of the system in all considered scenarios. For the larger
extents of input gain underestimation the errors in the system rapidly
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Figure 2.15: Values of the performance criterion E1(β̃) for the experimental
EADRC system. Each dot represents the individual experiment.
Full range of experiment on the left side, close-up view on the
right.

grows (approximately tenfold increase at b̂ ≈ 1/150 for η ∈ {0, 1} and
at b̂ ≈ 1/210 for η = 2) what possibly correspond to the theoretical
stability limitation as proposed in the Conjecture 2.1. Moreover, the
experimental trials confirm that the inclusion of the entire measurable
state in the control law design significantly extends the resultant
stability region enabling the choice of smaller values of input gain
estimate. It has to be nonetheless admitted that the improvement
of the performance of the closed-loop system achieved here by the
application of the proposed input gain tuning method is comparable
with the results achievable with the standard increase of the observer
and controller bandwidth. Thus the offered method should be possibly
seen rather as a technique of selecting the input gain parameter if
its real value is not known in order to avoid deterioration of the
performance of the system, than as a way of improving the quality of
work of the plant if the true value of the input gain is available.

2.3.3 Input path dynamics

Section 2.3 considered so far only the problems of the static uncertainty
present in the input path of the system. Specifically, the problem of
the unknown value of a single constant input gain parameter and its
influence on the stability and performance of the closed-loop system
was investigated. In the analysis of some of the practical scenarios,
such a simplification is insufficient, and a more detailed study of the
input path uncertainty is necessary. Certain plants encountered in
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such situations belong to the class of systems with additional stable
dynamics present in the input path. If the specific form of these
dynamics is unknown, the controller is often designed by assuming a
static definition of the input path and synthesizing the algorithm for
such a simplified model. The problem of stability of the closed-loop
formed by embracing such an approach arises and requires thorough
investigation.

Consider once again the system as presented in Section 2.2 with
ψ(t, x) = 0 and d(t, x) = d(t) expressed by

ẋ = Anx+bn (bu+ d(t)) . (2.121)

Assume moreover that the value of the input gain b is perfectly known,
but the input signal u is not directly available for control purposes
and is instead governed by the first order inertial dynamics given by

u̇ = T−1b (−u+ u∗) , (2.122)

where Tb ∈ R+ is a positive time constant of the input dynamics.
Signal u∗ ∈ R is a new input of the entire system and can be freely
used by the designer to control the plant. Importantly, dynamics (2.122)
are inherently stable for any positive value of Tb and thus u always
converges toward the value assigned by u∗.

Assuming that both the value of the time constant and the general
structure of the input gain dynamics are unknown, the observer and
control law may be designed by omitting dynamics (2.122) and treating
u∗ as the actual input of the plant. Under such an interpretation the
state extension can be defined in a standard form of

ż = Amz+dmbu+bmḋ (2.123)

with the extended state observer designed as

˙̂z = Amẑ+bmbu∗ + lcTm (z− ẑ) . (2.124)

The control law can be synthesized according to the ADRC paradigm,
but applied to the available input, yielding

u∗ = b−1
(
kT (xr −Λnẑ) −bTmẑ+ x

(n)
r

)
. (2.125)

The order of the state observer is thus equal to the order of the entire
plant consisting of the nth order nominal system and additional first-
order input gain dynamics. Importantly, the interpretations of the
appended states are different in both systems. The schematic structure
of the considered system is shown in Fig. 2.16.
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Figure 2.16: The detailed graphical illustration of the system with uncertain
input dynamics. Increased order of the plant is visible.

Remark 2.5. Similarly to the notions of Remark 2.1, the alternative state
extension in the form of

ż = Amz+dmbu
∗ +bm

(
ḋ+ b (u̇− u̇∗)

)
could also be considered in the analysis of the given problem, emphasizing the
expectation that the observer may successfully compensate for the unknown
dynamics of the input path. The results obtained by the author under this
approach are more conservative than the ones presented in the main body of
the thesis and are thus not given here in more detail.

In order to investigate the properties of systems with uncertain
input dynamics, define the tracking, estimation, and input errors as

x̃ = xr − x, z̃ = z− ẑ, ũ = u∗ − u. (2.126)

The dynamics of these errors are given by

˙̃x = Gx̃−Wz̃+bnbũ,
˙̃z = Hz̃−dmbũ+bmḋ,
˙̃u = u̇∗ − T−1b ũ

(2.127)

with matrices G,H,W defined as in Section 2.2. The derivative of the
nominal control signal is obtained analytically from (2.125) as

u̇∗ = b−1
(
kTGx̃+

(
bTnWH− kTW

)
z̃+ x

(m)
r

)
. (2.128)
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To further facilitate the study of the closed-loop system the tuning
as proposed by (2.41) and state parametrization (2.42) are employed.
Thus, the dynamics of the scaled errors are given by

˙̄x = ωcḠx̄−bn
(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄+bnbũ,

˙̄z = ωoH̄z̄−ωodmbũ+bmḋ
(2.129)

with Ḡ, H̄ being once again defined as in Section 2.2. Moreover, the
control law derivative is expressed in terms of scaled errors as

u̇∗ = b−1
(
k̄Tω2cḠx̄−ωck̄

Tbn

(
k̄TωcΦcΛnΦ

−1
o

)
z̄

+
(
k̄TωcΦcΛnΦ

−1
o +bTmH̄

)
z̄+ x

(m)
r

)
.

(2.130)

Further analysis of the properties of the system is performed in a
twofold manner. Namely, an analytical investigation on the basis of the
Lyapunov approach is carried out to obtain some general conclusions
valid for a wide class of dynamic systems of arbitrary degree and
parameter values. Then, numerical studies are performed to produce
more detailed notions applicable to the specific forms of the considered
system.

Consider first the following theorem formulated on the basis of
analytical investigation.

Theorem 2.10. For system (2.21) with ψ = 0,d = d(t), and the input
governed by (2.122), observer (2.124) and control law (2.125) ensure the
global convergence of the tracking and estimation errors to some neighborhood
of the origin if ωo,ωc are chosen high enough and time constant Tb is
simultaneously small enough.

Proof. Let the scalar-valued function be given as

V2.10(x̄, z̄, ũ) =
1

2
z̄TPz̄+

1

2
x̄TRx̄+

1

2
ũT ũ. (2.131)
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The time derivative of function V2.10(x̄, z̄, ũ) is analytically calculated as

V̇2.10(x̄, z̄, ũ) = −ωo
1

2
z̄T z̄−ωoz̄TPdmbũ+ z̄TPbmḋ

−ωc
1

2
x̄T x̄− x̄TR

(
bnk̄

TωcΦcΛnΦ
−1
o

+bnbTm

)
z̄+ x̄TRbnbũ− T−1b ũT ũ

+ω2cũ
Tb−1k̄T Ḡx̄+ ũTb−1x

(m)
r

+ ũTb−1
((
k̄T −ωck̄

Tbnk̄
T
)
ωcΦcΛnΦ

−1
o

+bTmH̄−ωck̄
TbnbTm

)
z̄.

(2.132)

Under the assumptions of the lipshitzness of the disturbance as given in
Section 2.2 the bound on V̇2.10(x̄, z̄, ũ) may be imposed and is given as

V̇2.10 6 −ωo
1

2
‖z̄‖2 +ωopMbM ‖z̄‖ ‖ũ‖+ pMdL ‖z̄‖

−ωc
1

2
‖x̄‖2 + rM

(
kM

(
ωc

ωo

)n|1
+ 1

)
‖x̄‖ ‖z̄‖

+ rMbM ‖x̄‖ ‖ũ‖− T−1b ‖ũ‖2 +ω2cb−1M kMgM ‖x̄‖ ‖ũ‖

+ b−1M xM ‖ũ‖+ b−1M
((
kM +ωck

2
M

)(ωc
ωo

)n|1
+ hM +ωckM

)
‖z̄‖ ‖ũ‖ ,

(2.133)

where bM =
∥∥b∥∥. By taking advantage of Young’s inequality, it can be

established that the above satisfies also the following relation.

V̇2.10 6 −
1

2

(
ωo − rM

(
kM

(
ωc

ωo

)n|1
+ 1

)
− pMbM

− b−1M

((
kM +ωck

2
M

)(ωc
ωo

)n|1
+ hM

+ωckM

))
‖z̄‖2 − 1

2

(
ωc − rM

(
kM

(
ωc

ωo

)n|1
+ 1

)
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− rMbM − b−1M kMgM

)
‖x̄‖2 − 1

2

(
2T−1b − rMbM

−ω2opMbM −ω4cb
−1
M kMgM − b−1M

(
hM +ωckM

)
+
(
kM +ωck

2
M

)(ωc
ωo

)n|1)
‖ũ‖2 + pMdL ‖z̄‖

+ b−1M xM ‖ũ‖ .
(2.134)

The negativeness of the two first terms can easily be ensured by choosing
ωc, and then ωo, high enough. Simultaneously, increasing these parameters
disrupts the structure of the term associated with

∥∥ũ∥∥2. Thus, once the
bandwidths of the controller and observer are set sufficiently high, the time
constant of the input gain dynamics is required to be small enough to enable
the stabilization of the system. If these conditions are satisfied the convergence
of the errors to some neighborhood of the origin, defined by the terms associated
with

∥∥ũ∥∥ and
∥∥z̄∥∥, is ensured.

The results produced by the Lyapunov method apply to the entire
class of the systems described by (2.21), but are inherently strongly
conservative. In order to gain further insights into the stability proper-
ties of the systems with uncertain input gain dynamics, the numerical
analysis of a specific form of the plant is considered. To this end,
recall the error dynamics as defined by (2.129) and define the vector of
concatenated errors in the form of ξu =

[
x̃T z̃T ũ

]T . The dynamics
of these errors are expressed by

ξ̇u = Nuξu +
[
bTn+m 0

]T ḋ+b2mb−1x(m)
r (2.135)

with matrix Nu ∈ R2m×2m having the form of

Nu =

 G −W bnb

0m×n H −dmb

b−1kTG b−1
(
bTnWH− kTW

)
−T−1b

 (2.136)

and depending directly on k, l,b and Tb parameters. Importantly,
it can be shown that the sign of the eigenvalues of this matrix is
invariant to the changes of b parameter. The stability of matrix Nu
can be investigated through Hurwitz criterion to establish precise
conclusions concerning the convergence of errors ξu. To this end
consider the second order system (n = 2) with the tuning chosen
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according to Tab. 2.1 and (2.97). Matrix Nu for the second-order
system is expressed by

Nu

∣∣∣
n=2

=



0 1 0 0 0 0

−k1 −k2 −k1 −k2 −1 b

0 0 −l1 1 0 0

0 0 −l2 0 1 −b

0 0 −l3 0 0 0
−k1k2
b

k1−k
2
2

b n6,3 −
k22−k1
b 0 − 1

Tb


(2.137)

with

n6,3 =
−l3 − k1k2 − k1l1 − k2l2

b
. (2.138)

The numerical evaluation of the stability of matrix Nu in function of
ωo,ωc, Tb is given in Fig. 2.17.
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Figure 2.17: Border of stability region of Nu. The stable region is below
and to the left of the surface. Plots in different ranges of ωo
parameter are presented.

The numerical results presented in the plots are consistent with
the conclusions drawn on the basis of the analytical investigation. It
is shown in the figure, that there exists some region in which the
system maintains stability despite the presence of some dynamics in
the input path. As the time constant Tb approaches zero, this region
grows what corresponds to the plant becoming closer to the nominal
system without any input path dynamics. Conversely, as the value of
Tb grows, the region of stability rapidly shrinks. The graph shows that
if the large values of ωo are chosen, further changes in this bandwidth
do not significantly impact the stability of the system. The bandwidth
of the observer is commonly chosen significantly greater than that of
the controller and its abilities to impact the stability of the system are
thus limited according to the presented results. Hence, in the presence
of the dynamics in the input path, the tuning limitation is formulated
mainly concerninig the choice of the controller bandwidthωc. Notably,
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the stability conditions of Nu are more strict than these of the system
controlled by the conventional state feedback control with the same
tuning. In the system with input dynamics, the ESO itself imposes
stability limitations as a tradeoff for the offered disturbance rejection
capabilities.

To further investigate the performance of the ADRC controller in
the presence of the input gain dynamics, the series of numerical
simulations are performed for the system as discussed in this section.

Simulation 2.6. The second order system with d = 0 is considered. The
task of tracking of time-varying trajectory given by xr(t) = sin(2t) is
investigated. The input gain of the plant is chosen as b = 1 and the values of
ωo and ωc vary in each experiment. The quality factor E(Tb) as given by
(2.107) is calculated for each run and presented in the plots. The results of
the simulations are given in Fig. 2.18
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Figure 2.18: Values of the performance criterion E(Tb) for the system with
input dynamics.

The presented simulations are once again in line with the analytical
results. Moreover, several properties of the ADRC algorithm working
in the presence of input dynamics are unveiled. It can be seen that
while the increase of the controller bandwidth ωc leads to destabi-
lization of the system for higher values of time constant of the input
dynamics, it simultaneously weakens the impact of the input dynam-
ics on the performance of the controller enforcing small values of
performance criterion in the entire range of stable work. The results
of simulations show also, that the changes of ωo have no significant
impact on either the stability or the performance of the controller
in the discussed situation. This notion highlights the inability of the
ESO to estimate the impact of the input dynamics which leads to the
lack of compensation improvement with the increase in the observer
bandwidth.

The presented analytical and numerical investigation into the prop-
erties of the ADRC scheme in the presence of the input path dynamics
answers some questions not previously solved in the literature. The
problem of the unknown degree of the plant has been previously stud-
ied only for the case of the real degree of the plant being smaller than
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the one assumed during the controller synthesis. In works [337–339] it
was shown that the ADRC controller can ensure the stability of such a
system. According to the best knowledge of the author, no results have
been so far published on the applicability of the ADRC to plants with
a degree higher than assumed. The presented results are thus the first
to show that in the presence of additional stable dynamics in the input
path, the ADRC with fixed values of tuning parameters offers the
convergence of the errors only for a narrow range of values of input
path time constants. It is moreover shown that this range shrinks with
the increase of controller bandwidth and the disturbance estimation
capabilities of the ESO are insufficient to successfully compensate for
the presence of such unknown input dynamics.

2.4 performance in practical scenarios

The increasing interest in the ADRC scheme among practitioners in-
evitably leads also to an increase in the variety of perturbed and
uncertain systems to which the algorithm is applied. Thus, there is
a requirement for scientific investigation of the performance of the
ADRC approach for various specific types of disturbances. While the
results presented in the previous sections highlight numerous aspects
of the ADRC approach in the general scenarios satisfying specific
predefined conditions, a more detailed study of the chosen systems
encountered in engineering practice is necessary. To this end, this
chapter presents the results of implementation and application of the
ADRC controller to some types of practical problems. Namely, at first,
the problem of friction compensation is studied and the results are
presented concerning the performance of the ADRC controller in the
task of trajectory tracking in the presence of resistive forces. With a
view to this, the results presented in [236] are recalled in parts material
to the subject of this work. In the second part of this section, the focus
is placed on the problem of harmonic disturbance attenuation. The
results of the application of the ADRC to a system subject to such a
disturbance are given. Moreover, the recently proposed structure of
the algorithm more suitable for such tasks is recalled and compared
with the standard approach in terms of performance and robustness.
These are given on the basis of results shown in [180] where the exten-
sive study of this problem is presented. All of the experiments of this
section are carried out using the robotic astronomic telescope mount
described in more detail in Section 4.2. The results presented here
are strongly focused on the practical aspects of the ADRC algorithm
and based on the experimental studies of the author. Analytical con-
siderations are omitted here and only some basic descriptions of the
discussed systems are given.
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2.4.1 Friction compensation

Friction compensation is one of the major concerns in the design
of control algorithms for mechanical systems. Several models of the
friction effects have been proposed in the literature and tested in
practical solutions [33, 113, 215]. Multiple results on the identification
of the friction effect have also been presented [23, 96, 294]. Yet, due to
the sophisticated character of this phenomenon, obtaining its suitable
model with proper parameter values in advance is a difficult and time-
consuming process. Significant interest is thus given to the methods
of adaptive friction compensation [158, 298, 324]. These allow the
designer to omit the demanding identification of the disturbing forces
and achieve the satisfying performance of the algorithm due to its
ability to online estimate the feasible values of the parameters of
the model. An alternative approach to the friction compensation is
represented by the solutions employing the ADRC controller to cope
with uncertainties in the friction model or complete lack of such a
model [27, 50, 283].

The problem of friction compensation is of special importance in the
field of astronomic observations [165, 279]. Modern robotic astronomic
telescope mounts are subject to high requirements concerning the
quality of motion in a wide range of velocities. In order to enable
conducting observations of celestial objects, the mounts are required
to exhibit high precision of tracking in extremely low velocities. Simul-
taneously, the devices are expected to be capable of performing fast
changes of working point and quick reconfiguration of the mount at
high velocities to shorten the delay between the observations. Such
working conditions imply the necessity to cope with the presence
of friction effect in different operation regimes. The common use of
the direct drive schemes further increase the needs for a robust fric-
tion compensation. Consider the simple model of a single axis of the
robotic telescope mount given by

ẋ = Anx+bn (bu+ψ) , (2.139)

where n = 2, x =
[
ϕ ω

]T ∈ R2 represents the orientation and
rotational velocity of the mount axis, b = 1

J stands for the input gain
with J ∈ R+ being the inertia coefficient of the axis, and ψ = −bdf
with df being a disturbing friction force affecting the plant. While the
presence of other disturbing effects is expected in the plant, it is here
assumed that the friction is a predominant force impacting the system.
The control signal u takes the form of the torque exerted by the motor.

Two basic modes of the friction force df are distinguished – pres-
liding and sliding regime, exhibited during the slow and fast types



2.4 performance in practical scenarios 91

of motion, correspondingly. The behavior of the friction force in the
sliding regime may be described by the well-known static model as a
function of the velocity of the axis [10]. Such a model takes the form
of

df = σ2ω+ sgn(ω)s(ω),

s(ω) = Fc + (Fs − Fc) exp(−
∣∣∣∣ωVs

∣∣∣∣δ), (2.140)

where σ2 ∈ R+ is a viscous force coefficient, Fs ∈ R+ and Fc ∈ R+

stand for static and Coloumb friction coefficients, Vs ∈ R+ is a Stribeck
velocity and δ ∈ R+ is a shape factor. Notably, for very small velocities
the exponential term is approximately equal to one and s(ω) ≈ Fs
which significantly simplifies the static model and makes it unsuitable
for modeling the friction effect in the regime of slow movements.
The extension of this static description is given by dynamic Dahl
and LuGre models which take into account the characteristics of the
friction force in the presliding regime when the external force is too
small to break the static friction force [52, 53]. The latter of these is
modeled by

df = σ0z+ σ1ż+ σ2ω,

ż = ω− σ0
|ω|

s(ω)
z,

(2.141)

where s(ω) is given as in (2.140), while σ0 ∈ R+ and σ1 ∈ R+ are
micro-stiffness and micro-damping coefficients responsible for the
modeling of small deformations of the contact surfaces. Notably, in a
steady state with ż = 0, the dynamic model (2.141) is simplified to the
static form expressed by (2.140).

Assuming that the constant parameters of the friction models are
roughly known, the controller characterized by inbuild friction com-
pensation can be designed according to the ADRC paradigm and
procedures presented in Sections 2.1 and 2.2. To this end, the method
and procedure of identification of these parameters given in [236]
are employed. As a result of the presented approach, the set of pa-
rameters is obtained describing the character of friction force in the
vertical axis of the mount bearing an astronomic telescope of diameter
0.5m. Namely, the micro-stiffness and micro-damping coefficients are
found to be equal σ0 ≈ 9.8 · 104Nm/rad and σ1 ≈ 521.4Nms/rad.
The coefficients of viscous force and both static and Coloumb friction
are given as σ2 ≈ 32.8Nms/rad and Fc ≈ 2.3Nm, Fs ≈ 3.3Nm.
Finally, the Stribeck velocity and shape factor are identified as Vs ≈
4.1 · 10−2 rad/s and δ ≈ 2. Moreover, it is assumed that the moment
of inertia of the axis is roughly equal J ≈ 30 kgm2.
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Simulation 2.7. The simulation study of the behavior of plant (2.139) in
the presence of the friction modeled by full dynamic system (2.141) is carried
out. To this end, a problem of slowly varying trajectory tracking is considered,
with the reference trajectory chosen according to (2.34) with xr(t) given by

xr(t) = 5 · 7.268 · 10−5
(
2

5
π

)−1

sin(
2

5
πt) rad/s. (2.142)

In Fig. 2.19 the response of the numerical system is presented for the scenario
with the controller without any kind of disturbance compensation (i. e. ωo =

0, ẑm = 0, and with state measurements instead of estimates used in the
control law), with the controller bandwidth chosen as ωc = 15. Fig. 2.20
presents the results of the simulation with the conventional ADRC controller
designed without any knowledge about the model of the disturbance (i. e.
ψ = 0 in the observer design). The controller bandwidth is set to ωc = 15
and the observer is tuned withωo = 220. In the plot real value of disturbance
df and the trajectory of −Jẑ3, which corresponds to the estimate of the friction
force produced by the obsever, are given.
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Figure 2.19: Time responses of simulated telescope axis in the presence of
LuGre friction model. Results obtained for the controller with-
out any disturbance compensation. Reference state shown in
transparent plots.

The results obtained for the controller without disturbance atten-
uation highlight the significant impact of the friction force on the
performance of the plant. It can be seen that the conventional con-
troller exhibits the strongly limited capability to compensate for the
resistive force working against the movement of the axis and trajectory
tracking is hardly possible. The inclusion of the disturbance rejection
according to the ADRC paradigm strongly improves the performance
of the system. The tracking errors are reduced and the significant
errors are present only in the moments of movement reversals. Simul-
taneously, the character of the friction force is changed and almost
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Figure 2.20: Time responses of simulated telescope axis in the presence of
LuGre friction model. Results obtained for the ADRC controller
without explicit disturbance model.

discontinuous terms become the dominant part of the dynamics of
this phenomenon. The final simulations are performed taking into con-
sideration the full control algorithm which includes the explicit model
of the friction incorporated in the observer and controller design.

Simulation 2.8. The settings as in Sim. 2.7 are considered with the controller
incorporating a friction model. Both the standard static model of the friction
and the dynamic LuGre model corresponding to the actual model used to
simulate the plant, are considered. To this end, the models are calculated using
the estimate of the state of the plant, and dynamics of z displacement variable
in the LuGre model are simulated online without any direct measurement of
its value. Importantly, the dynamics given by (2.141) are stable ones, and
thus the simulation error of z state tends to converge to the origin in the
steady state. The results of these simulations are given in Fig. 2.21 and
Fig. 2.22, where the results obtained with static and dynamic models are
presented.

The presented plots show the differences in the impact of the in-
corporation of the discussed friction models in the controller design.
Namely, it is shown that the inclusion of the static model, which is a
common approach among practitioners, may not lead to an increase in
the tracking quality in the simulation environment. Despite the use of
identified parameters of the physical phenomenon, the static function
is unable to successfully approximate the behavior of the dynamic
model. On contrary, the full LuGre model successfully copes with
the undesired disturbances. The tracking errors and the disturbance
estimate are strongly reduced in the entire time horizon of the simula-
tion, despite employing the state estimates as a basis of the friction
model evaluation and lack of direct measurement of z displacement.
This property is caused by the character of the displacement dynamics
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−Jẑ3

Figure 2.21: Time responses of simulated telescope axis in the presence of
LuGre friction model. Results obtained for the ADRC controller
with static disturbance model evaluated on the estimated state.
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Figure 2.22: Time responses of simulated telescope axis in the presence of
LuGre friction model. Results obtained for the ADRC controller
with dynamic disturbance model evaluated on the estimated
state.

in (2.141) which, for any constant ω, has a form of stable linear dy-
namics. Thus, for the slowly-varying enough trajectories, both real z
and its computed estimate converge to the same configuration despite
unknown initial displacement. Vanishing of the estimated signal −Jẑ3
shows that the incorporated model succesfully describes the distur-
bances acting upon the system and thus the observer is not burdened
with its estimation. Additional trials unveiled the high robustness of
such an approach to the parametric uncertainties of the model – of all
the parameters, only the changes of Fs seem to visibly deteriorate the
performance of the algorithm. Similarly, the robustness to the decrease
of observer bandwidth has been noted with results for ωo = 50 being
visually identical to these obtained with a nominal value of ωo = 220.
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The numerical results imply the usefulness of the ADRC scheme
and the dynamic friction model in the task of friction compensation.
Experimental trials are performed to further investigate this issue.
Additionally, to study the impact of the tracking and estimation errors
on the modeling of the friction phenomenon, two versions of the con-
troller are considered. Specifically, unmeasurable ω variable necessary
to evaluate (2.140) and (2.141) is substituted with either estimated
value produced by the observer or the reference state xr2(t).

Experiment 2.2. The ADRC controller with static and dynamic friction
models is implemented in the main control unit of the telescope mount. The
constant parameters are chosen according to the results presented in [236].
The tuning of the observer and controller, as well as the reference trajectory,
are chosen as in Sim. 2.8 and remain unchanged. The results of the experiment
conducted with the standard ADRC controller without the friction model are
presented in Fig. 2.23. The outcomes of employing the static model evaluated
using the estimated state and the reference velocity are given in Fig. 2.24
and Fig. 2.25 correspondingly. Finally, Fig. 2.26 and Fig. 2.27 present the
products of trials with dynamic LuGre model generated on the basis of the
estimated state and the reference velocity, respectively. In all plots, the initial
moments of experiments are omitted and only the performance in the steady
state is considered for evaluation.
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Figure 2.23: Time responses of telescope axis in the experiment. Results
obtained for the standard ADRC controller without explicit
disturbance model.

The experimental results confirm the effectiveness of the combina-
tion of the ADRC algorithm with an explicitly given model of the
disturbance in the task of friction compensation in the mechanical
system. It is shown that the inclusion of the dynamic model success-
fully limits the impact of the friction phenomenon in the experimental
setting. As the included model is used to compensate for the friction
dynamics, the estimate of the total disturbances is also significantly
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Figure 2.24: Time responses of telescope axis in the experiment. Results
obtained for the ADRC controller with static disturbance model
evaluated on the estimated state.
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Figure 2.25: Time responses of telescope axis in the experiment. Results
obtained for the ADRC controller with static disturbance model
evaluated on the reference state.

decreased in the scenarios employing the explicit model. It can also be
noted, that the evolution of the disturbance df modeled by the LuGre
model and shown in Fig. 2.26 and 2.27 strongly resembles the esti-
mate −Jẑ3 produced in the first trial. While the trials performed using
the dynamic model result in a visible improvement in the tracking
quality, the static model does not offer a significant increase in the
tracking quality. This notion is in line with the outcomes of the simula-
tions. Notably, the static compensation in the scenario with the model
evaluated on the evaluated trajectory offers slight improvement of
control, quantified by a decrease of E1 criterion by approximately 13%
in comparison with the standard ADRC approach. On the contrary,
the use of a static model calculated using estimated state leads to a
significant decrease of tracking quality and an increase of E1 factor
by over 50%. Such an effect is attributed to the high sensitivity of the
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−Jẑ3

Figure 2.26: Time responses of telescope axis in the experiment. Results
obtained for the ADRC controller with dynamic disturbance
model evaluated on the estimated state.
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Figure 2.27: Time responses of telescope axis in the experiment. Results
obtained for the ADRC controller with dynamic disturbance
model evaluated on the reference state.

static discontinuous model to the estimation errors and measurement
noises. While the performance of the controller with dynamic model
evaluated on the estimated state is also slightly worse than that with
the model generated using reference signals, both approaches result
in improvement in the control quality, resulting in a decrease of E1 by
73% and 80% respectively. This notion implies the higher robustness of
the dynamic friction model to the measurement noises and estimation
errors. Regardless of these differences in performance increase offered
by specific friction models, the outcome of the experiment highlights
the effectiveness of the inclusion of explicit disturbance dynamics
equations in the ADRC controller design and synthesis.
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2.4.2 Harmonic disturbance compensation

The presence of harmonic and oscillatory disturbances affecting the
dynamic systems is a problem commonly encountered in practical sce-
narios. Different kinds of disturbing vibration forces are encountered
in the tasks associated with suspension systems [342, 343], flexible
manipulators [135, 199] or elastic gantry cranes [88]. Moreover, simi-
lar kinds of uncertainties are commonly observed in other practical
dynamic systems due to the manufacturing imperfection or inherent
characteristics of the employed components, e. g. possible eccentricity
of the rotor of electric motor [36] or ripple torque of brushless motors
[24, 78, 169].

In the field of automated astronomic observations, the oscillating
disturbances are often caused by vibrations induced in the mechanical
structure of the mount and the presence of the torque ripple in the
employed motors. The high stiffness of the telescope mount construc-
tion and use of a gearless connection between the motors and the
telescope, combined with expectations of limited internal clearances,
may amplify the impact of the high-frequency oscillations in the struc-
ture of the device. Although such phenomenons are often of negligible
importance in other engineering tasks, the extremely high precision
requirements of the celestial observations enforces the designer to
consider the impact of these forces on the performance of the system.
To this end, a model of a single axis of the robotic telescope mount is
investigated and described as

ẋ = Anx+bn (bu+ψ) (2.143)

with n = 2. The terms x and b are as discussed in Section 2.4.1. The
disturbing term is here denoted as ψ = −bdh where dh represents
some harmonic disturbance. Once again the assumption is made
that dh is a dominant disturbing force in the plant. This is ensured
in the experimental scenario by employing the additional control
outer control loop, designed according to the results of Section 2.4.1,
for friction compensation. In the paper [180] the comparison of the
performance of several methods based on the error-domain ADRC in
the task of harmonic disturbance rejection is presented. In order to
design an algorithm in the form of the EADRC method, the nominal
tracking error is defined as x̃ = xr − x with dynamics

˙̃x = Anx̃−bn
(
bu+ψ− x

(n)
r

)
. (2.144)

Regardless of the source of the harmonic disturbance in the considered
system, in its most general form, such disturbances may be modeled
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as a static sine function or a response of a dynamic oscillating system.
The simplest description of such a phenomenon is given by

dh = ah sin(2πfht) (2.145)

with ah ∈ R and fh ∈ R+ being the amplitude and frequency of
the harmonic function. Following the approach outlined in [275] an
internal model is incorporated [73] and function (2.145) is equivalently
presented by in the form of an unforced oscillator system without
dumping expressed as

d̈h + (2πfh)
2 dh = 0. (2.146)

Taking derivative of (2.146) the dynamics

d
(3)
h + (2πfh)

2 ḋh = 0 (2.147)

is obtained. This notion allows one to rewrite the nominal closed-
loop system (2.143) including the additional states representing the
dynamics of the harmonic disturbance. The dynamics of the plant
thus take the form of

q̇ = An+3q−
[
bTn 0T3×1

]T (u− x
(n)
r

)
−bn+3 (2πfh)

2 dTn+3q,

(2.148)

where q =
[
x̃T dh ḋh d̈h

]T ∈ Rn+3. Due to such a redefinition of
the state of the system, the problem of the identification of amplitude
ah is transformed into the problem of state q estimation.

For such a system three algorithms can be proposed on the basis
of the ADRC defined in the error domain. At first, if frequency fh is
known in advance, a standard observer can be designed for a system
in the form of (2.148) by taking z = q. Such an approach has been
proposed in the state-domain in [275] under the name of Resonant
ESO (RESO, not to be confused with Reduced ESO), and [181] in the
domain of the tracking error. The corresponding observer is given by

˙̂z =
(
An+3 −bn+3 (2πfh)

2 dTn+3

)
ẑ

−
[
bTn 0T3×1

]Tu+ lcTn+3 (z− ẑ) ,

(2.149)

with the vector of gains l of suitable order. Alternatively, if the fre-
quency of the harmonic disturbance is unknown, the term

(
2πfh

)2
dTn+3q

in (2.148) can be considered a part of unmeasurable total disturbance
and be omitted in the observer design. A new observer is then de-
signed and expected to estimate the momentary value of the total
disturbance corresponding to the state of the oscillatory system gener-
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ating the sinusoidal disturbance affecting the plant. Such an alternative
observer design takes then the form of the 5th order ESO given by

˙̂z = An+3ẑ−
[
bTn 0T3×1

]Tu+ lcTn+3 (z− ẑ) (2.150)

with z = q. Finally, the standard 3rd order EADRC algorithm can be
designed for the nominal system (2.143) by defining δ = dh. In such a
case, the observer is given by

˙̂z = An+1ẑ−bn+1u+ lcTn+1 (z− ẑ) (2.151)

with the extended state defined in the error-domain in a standard
manner as z =

[
x̃T δ

]T ∈ Rn+1. For all of the variants, the control
law is designed as an ordinary EADRC controller with disturbance
compensation on the basis of the disturbance estimate expressed by

u = b−1
(
kT x̂+ ẑn+1

)
. (2.152)

The initial studies of the considered approaches are conducted in
simulation to investigate the performance of the algorithm in nominal
scenarios.

Simulation 2.9. Model (2.143) is implemented with the harmonic distur-
bances as observed in the real telescope mount during the preliminary experi-
ments and characterized by fh = 7.46Hz. The unknown amplidute of this
phenomenon is approximated as ah = 0.6m/s2 and J = 30 kgm2. In all the
trials the reference trajectory is chosen according to (2.142) and the algorithm
is tuned with ωc = 2,ωo = 100. For the sake of comparison, the first trial
is performed for the controller without any disturbance compensation (i. e.
ωo = 0, ẑn+1 = 0, and with state measurements instead of estimates used in
the control law) and its results are presented in Fig. 2.28 where the evolution
of the state and control signals, together with the tracking errors and its
spectrum, is given.

It can be seen that the controller missing the disturbance rejection
capabilities is unable to correctly compensate for the lack of explicit
feedforward signal and the presence of harmonic disturbances. The
significant oscillations of the state of the plant are present in the output
of the simulation, despite its attempted attenuation signified by the
presence of the oscillations also in the control signal. Simultaneously,
the tracking errors remain relatively high throughout the entire sim-
ulation due to the inability of the algorithm to successfully track the
time-varying trajectory.

Simulation 2.10. Simulations with settings as Sim. 2.9 and different
EADRC control schemes are conducted. The results of the simulations em-
ploying the 3rd order ESO as given by (2.151), 5th order ESO given by
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Figure 2.28: Time responses of simulated telescope axis in the presence of
harmonic disturbance. The results obtained for the controller
without any disturbance compensation. Reference state is shown
in transparent plots.

(2.150) and RESO in the form of (2.149) are given in Fig. 2.29, 2.30 and
2.31, correspondingly.
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Figure 2.29: Time responses of simulated telescope axis in the presence of
harmonic disturbance. Results obtained for the ADRC controller
with 3rd order ESO.

Some properties of the three algorithms can be noticed on the basis
of the presented plots. The overall quality of the control is significantly
improved in every case due to the disturbance rejection capabilities
displayed by all of the considered methods. Specifically, the employ-
ment of the standard 3rd order ESO resulted in the decrease of E1
performance factor by over 67% in comparison with results obtained
without disturbance compensation. It is shown that an increase in the
order of the observer between the 3rd and the 5th order ESO results
in the substantial reduction of the impact of the low-frequency distur-
bance caused by the varying of the reference trajectory. This effect is
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Figure 2.30: Time responses of simulated telescope axis in the presence of
harmonic disturbance. Results obtained for the ADRC controller
with 5th order ESO.

caused by the fact that the ESO in its standard form is designed on the
basis of an assumption that the disturbance is modeled by the function
with certain derivatives equal zero. Thus it is inherently better suited
for the compensation of low-frequency signals. Simultaneously, the
impact of this change on the rejection of the high-frequency harmonic
disturbances is limited, and only a twofold decrease in the spectral
amplitude is observed. The overall control quality in the scenario
employing the 5th order ESO as measured by E1 criterion is improved
by over 81% as compared with the first trial without disturbance
compensation. The inclusion of the explicit model of the harmonic dis-
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Figure 2.31: Time responses of simulated telescope axis in the presence of
harmonic disturbance. Results obtained for the ADRC controller
with RESO.

turbance tuned with the proper frequency of the oscillating function
significantly changes the properties of the algorithm. The capabilities
of the observer to estimate the disturbances of the given frequency
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are highly improved at a cost of deterioration in the compensation of
other signals. The employment of the RESO allows thus successful
compensation of the harmonic disturbance, signified by the almost ab-
solute reduction of its spectral amplitude. As a result, the performance
criterion in a steady state is decreased by over 99% in comparison with
the nominal scenario. Nonetheless, the compensation of the effect of
the varying trajectory is limited in this scenario, and the choice of dif-
ferent xr(t) function may impact the scale of the achieved performance
improvement.

In order to validate the simulational results in the practical scenarios,
a series of experimental trials is conducted.

Experiment 2.3. Three controllers based on the 3rd order ESO, 5th order
ESO, and RESO are implemented in the driver of the robotic mount of
the telescope and tested in the task of trajectory tracking. To emphasize the
presence of the harmonic disturbances in the system, an additional sinusoidal
input signal is generated in the control input of the system and an outer
loop controller with a friction model is employed to alleviate the impact
of the friction phenomenon. The reference trajectory, disturbance model,
and controller gains are chosen as in the Sim. 2.9 and 2.10. The observer
bandwidth is set to ωo = 80 in the trials employing the 5th order ESO
and the RESO algorithms, and to ωo = 140 in the run with standard 3rd
order ESO. This tuning method is embraced to ensure a comparable value
of E1 in tests with 3rd and 5th order ESO. Due to the dominant character
of the harmonic disturbance in the considered system, a similar value of
the performance criterion can not be achieved in the scenario employing the
RESO controller and the bandwidth in this trial is set equal to the one chosen
for a 5th order ESO. The results of the experiments with 3rd order and 5th
order ESO, as well as with RESO algorithm, are given in Fig. 2.32, 2.33 and
2.34, respectively.

The results obtained in the two initial trials bear a strong resem-
blance due to chosen tuning method aimed at obtaining similar quality
of control. The use of the observer of higher order allows a choice
of lower tuning gains without a decrease in the resultant tracking
precision. Simultaneously, such a choice seems to increase to impact of
the high-frequency harmonic disturbance which cannot be effectively
reduced due to the limited bandwidth of the observer. This effect
is also visible in the plot of the error spectrum, as the amplitude of
the high-frequency errors is increased in comparison with the dis-
turbance caused by the low-frequency trajectory. A slight increase in
the high-frequency modes in the control signal can also be noticed.
Incorporation of the explicit model of the disturbance according to
(2.149) in the experimental setting results in a significant attenuation
of the high-frequency disturbance. The resultant tracking quality is
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Figure 2.32: Time responses of telescope axis and the error spectrum in the
experiment. Results obtained for the ADRC controller with 3rd
order ESO.
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Figure 2.33: Time responses of telescope axis in the experiment. Results
obtained for the ADRC controller with 5th order ESO.

thus significantly enhanced, which corresponds to a decrease of E1
criterion by over 52% in comparison with results obtained for 3rd and
5th order conventional ESOs. The experimental trials do not confirm
the superiority of the standard ESO in the task of low-frequency dis-
turbance compensation, as observed in the simulations, in practical
situations. As emphasized by the spectrum plots, the RESO employed
in the experimental settings of the robotic telescope mount offers not
only improved rejection of the disturbance of the prescribed frequency,
but also improved attenuation of all disturbances affecting the plant.
Such a result is obtained despite the lack of changes in the tuning of
the algorithm between the runs employing the 5th order ESO and the
RESO method. The exact reason for such a difference between the im-
provement due to the RESO employment observed in the simulation
and experiment is not yet sufficiently explained and investigated.
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Figure 2.34: Time responses of telescope axis in the experiment. Results
obtained for the ADRC controller with RESO.

The presented results of the use of the ADRC controllers in the
experimental settings highlight some important properties of the con-
troller. Namely, the algorithms capable of active disturbance rejection
show significantly higher performance than standard methods devoid
of such possibilities. Both in the task of friction compensation and
the harmonic disturbance attenuation, the ADRC algorithm offered
a substantial increase in the tracking precision in comparison with
preliminary simulations performed using simple state feedback con-
trollers. While the use of a standard ADRC method proved to improve
the control quality in the considered scenarios, in both cases it was
shown that proper modifications of the controller enabled the further
enhancement of the performance of the system. This notion unveils the
high customizability of the discussed algorithm, allowing the designer
to tailor the method to better suit specific practical problems.





3
PA R A M E T E R I D E N T I F Y I N G A D R C

In the ultimate analysis, an adaptive system is merely a complex feedback system.

— K. Narendra, 1991 [203]

In this chapter, the studies of the problem of incorporating adaptive
control schemes into the Active Disturbance Rejection framework are
presented. To this end, a brief history of adaptive control is recalled
and some standard solutions in this field are shortly presented. A sur-
vey of results presented in the literature is conducted and discussed.
Then, a novel Parameter Identifying Extended State Observer and
Parameter Identifying Disturbance Rejection Control algorithms are
introduced. The underlying motivation and interpretation are given,
and a detailed analytical study of their theoretical properties is con-
ducted. Finally, the performance and applicability of the proposed
methods are studied on the basis of simulations and experimental
trials.

3.1 adaptive control

Adaptive control is intuitively defined as a class of methods that
adjust their parameters on the basis of their observed performance
[61]. Such a definition, based on the biological concept of the ability of
organisms to adjust to changes in their environment, constitutes one
of the earliest attempts to draw a clear distinction between adaptive
control and other control approaches. Yet, as the idea of an algorithm
which is able to respond to unpredicted changes in working conditions
is indeed also a cornerstone of the entire field of automatic control,
numerous other definitions have been proposed to better describe the
essence of adaptive control. An exhausting review of the historically
proposed terminologies has been presented in [76], where general
notions on the adaptivity in a wide range of scientific problems were
discussed. The early definitions by G. Sommerhof and W. Ashby [12,
272] emphasized that the adaptive system evolves toward a specific
direction and this evolution is a dynamic process taking place over
a period of time. Alternatively, R. Raible stressed in [245] that the
operation of the adjustments of the adaptive system should be a result
of conscious search for a suitable configuration of the controller. Such
a definition collided with a common understanding of an adaptive
system, as it excludes a wide class of contollers that incorporate certain
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identification schemes. In contrast to this, in the paper [328] L. Zadeh
extended the notion of adaptive control to almost all control schemes,
by making a claim that any system ensuring a satisfying performance
in certain scenarios is adaptive with respect to these scenarios. The
ambiguity of the definitions of adaptive control has led J. Truxal to
state that the general adaptive system is considered to be adaptive
only by those, who are aware of the underlying assumed nominal
structure of the plant. The designer unfamiliar with the original system
perceives the same controller as merely sophisticated conventional
algorithm. The adaptivity of the controller can thus be seen as a
subjective matter depending only on the intentions of the designer
[288]. Despite the lack of a conclusive definition of adaptive control,
the field has attracted growing attention throughout the years. In
Fig. 3.1 the number of papers published on the subject in the last
decades is given.
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Figure 3.1: Search results of the IEEE Xplore database for papers published
each year on adaptive control. A temporary decrease of interest in
early 2010s, followed by revival of the field, is visible

The difficulty in precisely defining the borders of the field of adap-
tive control strongly reflects the development of this approach in its
early days. The beginnings of the adaptive control approach have been
presented in [11, 277] where surveys of the earliest results in this area
are given. Notably, as noticed by K. S. Narendra in [203], these first
reviews contain also controllers which are no longer considered to be
adaptive according to modern standards. Nonetheless, the roots of
later solutions can be found in the algorithms recalled in these works.
In the papers [203, 204] the later evolution of this field is presented,
with the findings up to the 1990s being described. A similar record
of the history of adaptive control is given in [120] and recently in [8].
Based on these, the most significant results are recalled here in brief.

The early 1950s can be seen as the beginning of modern adaptive
control when the rising interest in the problems of design of autopilot
algorithms for airplanes and spacecrafts sparked research on con-
trollers able to adjust their properties to the changing environment.
Due to the variations in the working conditions, the dynamics of the
considered plants cannot be modeled in advance and some uncertainty
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has to be inherently assumed during the synthesis of the controller.
To illustrate this problem, consider a simple dynamic system given by

ẋ = u+ψ(t)θ, (3.1)

where x ∈ R is a state of the system, u ∈ R in an input variable,ψ(t) ∈
R1×k represent some known structure of the system, and term θ ∈ Rk

stands for unknown parameters of the system, possibly depending
on the slowly changing working conditions. The general problem of
the adaptive control is to ensure that x tracks a desired reference
trajectory xr(t) ∈ R despite the presence of unknown parameters
θ. The major result of the 1950s was a proposition of the so-called
MIT rule introduced in 1958 by a group of H. P. Whitaker in work
[303]. The method attempt to identify the parameters of the system
according to a simple gradient adaptation law in the form of

d

dt
θ̂ = −γ

d

dθ̂

(
x̃2
)

, (3.2)

where γ ∈ R+ is an positive adaptation gain, θ̂ ∈ Rk is an estimate
of unknown parameters θ, and x̃ = xr − x ∈ R is a tracking error
achieved by employing a controller in which estimate θ̂ is directly
used. As gradient d

dθ̂
x̃2 cannot be explicitly calculated if the real

parameters θ are unknown, the MIT rule proposes to approximate the
momentary value of this unknown gradient by some other measurable
quantity [188].

The MIT rule belongs to the class of sensitivity methods, which
employs the knowledge accumulated during system operation to
calculate or estimate the gradient of some performance criterion and
use it to appropriately adjust the values of parameter estimates. The
sensitivity methods, together with the perturbance methods, for which
the adaptation laws are based on the observation of the effects of some
variations of the parameter estimates consciously introduced into the
control loop, constituted one of the major direction of early research
in the field of adaptive control. Within these approaches, two major
methods ultimately arose – the Model Reference Adaptive Control
(MRAC) and the Self Tuning Regulators (STR). The MRAC method,
initially proposed by I. D. Landau in [152], defines the control problem
as a task of forcing the considered system to track the output of some
predefined reference model. Thus, the control law is proposed and
the adaptation laws are defined to identify the set of parameters of
the controller ensuring that the behavior of the system is consistent
with the desired reference model. Alternatively, R. E. Kalman in [134]
proposed the STR method, which employs the adaptive scheme as
an extension of the conventional control law. The problem is thus
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formed as one of the trajectory tracking or setpoint stabilization, and
the adaptation law is formulated to identify the real dynamics of the
system and on their basis update the parameters of the controller.
The MRAC and STR approaches thus represent two distinct modes of
adaptive control – the direct, or implicit, mode in which the adaptation
law is employed to find the suitable values of the parameters of the
controller, and the indirect, or explicit, mode in which the adaptive
scheme is used to identify the dynamics of the controlled plant and
the parameters of the controller are separately updated to suit the
identified model. The conceptual schemes of the direct and indirect
adaptive control modes are given in Fig. 3.2 and Fig. 3.3. Numerous
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controller parameters

Controller Nominal
Plant

Adaptation
Law

desired
value

control
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Figure 3.2: The simplified graphical illustration of the general direct adaptive
control approach. The adaptation law directly adjusts the param-
eters of the controller.
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Figure 3.3: The simplified graphical illustration of the general indirect adap-
tive control approach. The adaptation law identifies the model of
the plant used to tune the controller.

propositions of MRAC and STR methods working in both direct and
indirect modes have been since proposed in the literature, leading to
a blurring of the clean threshold between these two approaches.

The initially proposed adaptive schemes lacked proven stability
conditions and attempts have been undertaken to analytically study
the behavior of the adaptive systems. In the 1960s the strictly positive
real (SPR) condition, as well as the persistency of the excitation (PE)
condition, were formulated. The former, proposed by B. Shackloth and
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R. L. Butchart in [257] and by P. Parks in [223], employs the properties
of the passive systems to state that the adaptive scheme is stable if
certain matrices describing the dynamics of the system are strictly
positive real. The persistency of excitation condition, introduced by
K. Åström and T. Bohlin in [16], tied the stability of the adaptive system
and the ability to correctly estimate real parameters of the plant to the
requirement that certain signals in the system are rich enough. Namely,
the system in the form of (3.1) is said to be persistently excited, and
thus the identification of its parameters is possible, if

∫t+TPE

t

ψT (τ)ψ(τ)dτ > µIk (3.3)

for some constant positive values TPE and µ and any time instant t. If
regressor ψ(t) depends on the state of the plant then the PE condition
can be ensured by the proper choice of the input signal. Yet, it has
been soon found that even if these conditions are satisfied, the adap-
tive systems are prone to instability in the presence of unmodeled
dynamics, excessive initial errors, or time-varying parameters of the
plant. To cope with these phenomena various modifications of the
adaptation laws were proposed in the late 1970s and 1980s. The use
of a projection operator to confine the parameter estimates to some
predefine set containing also the unknown values of the real parame-
ters was proposed by B. Edgart in [62], as well as by G. Kreisselmeier
and K. S. Narendra in [149]. While such an approach requires cer-
tain knowledge about the real parameters of the system, it effectively
prevents the drift of the parameters in the presence of unmodeled
disturbance. Alternatively, in [62] B. Edgart proposed also the use
of conditional updating, nowadays known as the dead zone, which
disables the adaptation law if the tracking error is sufficiently small.
Thus the impact of small modeling uncertainties can be suppressed.
The analysis of the stability of a system working in such a regime
was presented in [253]. Another method was proposed by P. Ioannou
and P. Kokotovic in [121] who incorporated a leakage term into the
adaptation law to create the artificial drift of the parameters away
from the regions of instability. Both leakage term and dead zone result
in improved stability of the system at a cost of the inability to achieve
the asymptotic convergence of the errors.

In the later years, the studies of the stability properties of the adap-
tive control scheme continued and led to the establishment of multiple
new results. In the year 1986, in work [35] the persistency of excitation
of linear systems was shown to be tied to the spectral measure of
the control signal. Numerous attempts to weaken the PE condition
have been presented in the literature, including the works defining
relaxed conditions for certain classes of dynamic systems or types of
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stability [174, 222] or proposing new adaptation algorithms capable of
operating with milder persistency assumptions [142, 198, 248]. These
methods are commonly designed to take advantage of the presence
of persistent excitation only in some specified intervals during the
operation of the system. Thanks to the acquisition of the data from
the past time instants the convergence of the estimates can be guar-
anteed in these schemes even if the PE condition is not satisfied in
the entire horizon of operation. Yet, such modifications are often sen-
sitive to measurement noise and external disturbance affecting the
plant in the moments of data acquisition. A better understanding of
the properties of the adaptive controllers led also to more detailed
investigations of different types of stability and the extension of these
works to nonlinear systems. Specifically, the conditions for both ex-
ponential and uniform stability have been studied for nonlinear or
linear time-varying adaptive systems with results presented in [86,
172, 173]. Throughout the most of development of adaptive control,
the stability of such systems has been studied by employing a com-
bination of converse Lyapunov theorems, conclusions drawn from
Barbalăt lemma [19] and the SPR condition, as no unified approach
to the design of the Lyapunov functions for adaptive systems have
been found to prove the asymptotic convergence of both control and
identification errors. A solution to this problem has been presented by
the group of F. Mazenc in 2009 in the book [195] on the basis of their
results from [194] published in 2003. Recently, this new approach has
been used by a group of A. Loria in [171] and strict functions have
been proposed to prove the exponential convergence of tracking and
estimation errors in the MRAC scheme if the PE condition is satisfied.

Simultaneously to the works on the stability of the adaptive control
schemes, the design of adaptive observers able to estimate the state
of the system despite the presence of unknown parameters has been
investigated. One of the first propositions of such an observer was
formulated by R. Carroll and D. Lindorff in 1973 in the paper [38].
Thanks to the proper redefinition of the state matrix of the system
and the introduction of additional virtual control signals into the ob-
server design the problem of estimation of both state and unknown
parameters of the plant has been solved. The subsequent propositions
of adaptive observer algorithms presented in [176, 177] and [148] en-
hanced this initial design by overcoming the need for the inclusion
of custom auxiliary input signals. While the initial study of adaptive
observers has been focused on linear systems only, the later research
extended their applicability to certain classes of nonlinear plants. In
1988 in work [22] G. Bastin and M. R. Gevers proposed the stable
adaptive observer for nonlinear systems which can be represented in a
specific observable form. The conditions for the existence of the trans-
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formation into such an observable form have been then formulated
by R. Marino in [190]. A different structure of the adaptive observer
has been also given by the group of G. Besançon in [29] and the group
of R. Ortega in [216]. In the work [189] the robustness of the observer
to the unmodelled dynamics has been guaranteed by employing the
parameter projection to confine them to some predefined set. Some
attempts to formulate the unified theory of the adaptive observers for
nonlinear systems have been presented in [28, 49].

Over half of a century of development of adaptive control methods
resulted in the appearance of multiple approaches outside of the
mainstream of this field. Among these, advances in the subjects of
pattern recognition [304] and reinforcement learning [281] have been
made. In recent years, a growing interest in the methods of adaptive
control based on machine learning can be noticed [130, 131, 166]. While
these problems are outside of the scope of interest of this dissertation
and are not described here in more detail, some insights on the latest
advances in these fields can be found in recent papers [26, 85]. In
Fig. 3.4 the timeline of selected results in the mainstream development
of the adaptive control methods is presented.

1960

1970

1980

1990

2000

2010

2020

initial developement
First results on adaptive control until its
vulnerability to instability has been found

stable systems
Investigations on stability prop-

erties of adaptive systems

robust systems
Studies focused on the methods of enhanc-
ing the robustness of adaptive systems

modern research
Maturity of the field. Fragmented re-

search without a single dominant focus

1958 MIT rule and STR methods

1965 First results on SPR
and PE conditions

1973 Adaptive observer proposed

1979 MRAC method

1988 Adaptive observer
for nonlinear systems

2003 First strict Lyapunov
function by Mazenc

2019 Lyapunov function
for MRAC control

Figure 3.4: The timeline of adaptive control development. Research periods
according to divisions presented in the literature.



114 parameter identifying adrc

In order to introduce the cornerstone ideas of adaptive control
one can recall some standard algorithms as presented in numerous
textbooks on the subject [15, 122, 150, 206, 255]. To this end, consider
the dynamic system in the canonical controllable form given by

ẋ =
(
An +bnθT

)
x+bnbu, (3.4)

where x ∈ Rn is a state of the system, u ∈ R is an input signal,
b ∈ R \ {0} stand for the input gain and θ ∈ Rn is a vector of un-
known parameters. Matrices An and bn are as denoted in Section 1.5.
Notably, such a system is consistent with hitherto discussed (2.21)
with ψ(t, x) = xT . The standard MRAC algorithm can be employed to
solve the problem of closed-loop control of plant (3.4). To simplify the
analysis, assume that the general structure of the plant and the input
gain b are known. The reference model can be defined as

q̇ =
(
An +bnθTr

)
q+bnbv, (3.5)

where q =
[
q1 . . . qn

]T ∈ Rn stands for a state of the reference
model and θr ∈ Rn is a vector of parameters chosen by the designer to
guarantee the stability of the reference system and ensure its desired
dynamics. Signal v is some new control input of the reference system
which can be chosen to satisfy the needs of the designer. Within the
MRAC approach, the controller is designed in such a way, that the state
of the nominal plant (3.4) asymptotically converges to the reference
state (3.5). Thus, the control law is proposed in the form of

u = φx+ v, (3.6)

where φ ∈ R1×n is a matrix of adjustable coefficients. Defining the
tracking error as q̃ = q− x, the adaptation law is designed to ensure
that q̃ converges to the origin for any initial conditions of φ, and is
given by

φ̇ = ΓbTnPq̃x
T , (3.7)

where Γ ∈ Rn×n is a positive definite matrix of adaptation gains
and P ∈ Rn×n is a positive definite matrix satisfying the Lyapunov
equation

(
ATn + θrbTn

)TP+ P
(
An + bnθTr

)
= −Q with Q ∈ Rn×n

being some arbitrarily chosen positive definite matrix. The adaptation
law thus directly adjusts the parameter of the control law in the explicit
adaptation scheme. Estimates θ̂ ∈ Rk of the true parameters of the
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system can be obtained due to the notion, that in the steady state the
nominal plant follows the reference system if(

An +bnθT
)
+bnbφ =

(
An +bnθTr

)
. (3.8)

By substituting the unknown parameters with their estimated values
it follows that the estimate θ̂ ∈ Rn of the plant parameters is obtained
as

θ̂ = θr − bφ, (3.9)

what allows recovery of the parameter estimates from the adjustable
elements of φ and the parameters of the designed reference system.
The graphical illustration of the MRAC approach as presented here is
given in Fig. 3.5.
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Figure 3.5: The graphical illustration of the MRAC adaptive control method.

Simulation 3.1. The numerical simulation of the system working within
the MRAC approach is conducted to illustrate the performance of the method.
To this end, a third-order system (n = 3) is considered with b = 1. The
unknown parameters of the plant are chosen as θ =

[
−1 3 3

]T and the
reference model is designed with θr =

[
−1 −3 −3

]T which yields the
stable state matrix of (3.5) with eigenvalues located at λ = −1. The reference
input is designed as v = −θTr xr + x

(n)
r with reference trajectory xr(t)

designed as in (2.34) with xr(t) = sin(2π10 t) +
1
2 sin(2π3 t). Such a choice of

reference input guarantees that the state q of the reference model follows the
desired reference trajectory. The MRAC algorithm is designed according to
(3.6) and (3.7) with Q = In and Γ = 0.8In. The initial conditions are all
set to zero. The results of the simulation are given in Fig. 3.6.

The plots show that successful identification and control are achieved
by the MRAC algorithm. The tracking errors converge to the origin
and the estimated parameters evolve toward the values of their real
counterparts. Notably, even though the initial value of θ̂1 is chosen cor-
rectly due to the setting θr1 = θ1 and φ(0) = 01×n, the estimate drifts
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Figure 3.6: Time responses of the third order system under the MRAC con-
troller.

away from this value in the first stage of the simulation. Nonetheless,
in the limit the estimate returns to its starting value. The stability
analysis of the MRAC method is presented in many textbooks on
adaptive control with various approaches employed. The study using
a strict Lyapunov function has been recently published in [171].

An alternative approach can be also embraced if only the task of
parameter identification is considered. In such a situation a standard
gradient algorithm, which is also a basis of the MIT rule, can be
considered if the derivative of the state is available for measurement
or can be otherwise obtained. Namely, consider the dynamics of the
last state variable xn of system (3.4) which are expressed by

ẋn = xTθ+ bu. (3.10)

If the entire state of the plant is available, estimate q of ẋn can be
calculated as

q = xT θ̂+ bu. (3.11)

It is clear, that if the plant parameters are known and θ̂ = θ, then
ẋn = q at any time instant. Else, the estimation error q̃ can be defined
as

q̃ = ẋn − q = xT
(
θ− θ̂

)
. (3.12)

By attempting to minimize the expression q̃2 the following adaptation
law can be proposed to adjust the values of the parameter estimates

˙̂θ = −
1

2
Γ
d

dθ̂
q̃2 = ΓxxT

(
θ− θ̂

)
= Γxq̃ (3.13)

in a manner similar to (3.7).
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Simulation 3.2. The third order plant with b = 1 and θ =
[
−1 3 3

]T
is considered. A nonadaptive feedback controller is incorporated into the
simulation to generate a control law that ensures that the state of the plant
follows the reference trajectory xr(t) as given in Sim. 3.1. The adaptation
gain is chosen as Γ = 0.05In The simulation results of the employment of
the presented gradient scheme are given in Fig. 3.7.
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Figure 3.7: Time responses of the third order system under the gradient
identification scheme.

The presented results show that the gradient method is capable of
successful identification of the parameters of the plant if the derivatives
of the state are available for measurement. Several methods enabling
the application of the gradient adaptation if this condition is not
satisfied have also been presented in the literature, e. g. [255]. Notably,
the gradient identification based on the measurable derivative of the
state displays a comparable convergence to the MRAC method despite
the significantly lower adaptation gains employed.

Similarly to the MRAC method, numerous proofs of the stability of
the gradient approach have been published in the literature. Lately,
in paper [231] the author of this dissertation has presented a new
study based on the Lyapunov approach and the results of the group of
A. Loria presented in [171]. This analysis is recalled here as a basis for
the investigations presented in the later parts of this work. To this end,
consider first the following assumptions imposed on the evolution of
the state of the plant.

Assumption 3.1. Let the evolution of the plant be such, that

‖x(t)‖ 6 xM (3.14)

for any time instant t ∈ R and some positive constant xM ∈ R+.

Assumption 3.2. Let the evolution of the plant be such, that

∫t+TPE

t

x(τ)xT (τ)dτ > µIn (3.15)

for any time instant t ∈ R and some positive constants µ, TPE ∈ R+.

Assumption 3.2 is essential here and constitutes the necessary condi-
tions for the successful identification of the parameters of the plant. It
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requires system (3.10) to satisfy the persistency of excitation condition
as formulated by (3.3). On the contrary, Assumption 3.1 is introduced
due to the embraced analysis method and could be omitted if different
approach is chosen. Consider also the following corollary formulated
on the basis of [171, 194] that establishes some properties of the sys-
tems satisfying the assumptions given above.

Corollary 3.1. If Assumptions 3.1 and 3.2 hold, then there exists matrix

M(t, x) =
∫∞

t

et−τx(τ)xT (τ)dτ ∈ Rn×n (3.16)

satisfying

µe−TPE ‖v‖2 6 vTMv 6 x2M ‖v‖2 (3.17)

for any vector v ∈ Rn. The time derivative of matrix M(t, x) is given as

d

dt
M(t, x) =M(t, x) − x(t)xT (t). (3.18)

Corollary 3.1 states that if the system satisfies the PE condition then
some persistently excited matrix can be defined in the form of an
integral accumulating the temporary effects of the system excitation.
Notably, due to the PE condition, this matrix is ensured to be positive
definite. Moreover, if the state of the plant is bounded, this integral is
also bounded for any time instant. By taking advantage of this notion,
the following stability properties of the system can be concluded.

Lemma 3.1. If Assumptions 3.1 and 3.2 hold, then the identification law
(3.13) guarantees global exponential convergence of the parameter estimates
θ̂ to the real parameters θ of plant (3.10) if the adaptation gains are chosen
small enough.

Proof. Define the parameter identification error θ̃ = θ− θ̂ and compute the
error dynamics to obtain

˙̃θ = −ΓxxT θ̃. (3.19)

Recall Corollary 3.1 and consider a scalar function

VL3.1(θ̃) =
1

2
θ̃
T
Γ−1θ̃− θ̃

T
M(t, x)θ̃. (3.20)

Under Assumptions 3.1 and 3.2 function VL3.1(θ̃) satisfies

VL3.1(θ̃) >

(
1

2
γ−1M − x2M

)∥∥θ̃∥∥2 , (3.21)
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where γM =
∥∥Γ∥∥ ∈ R+. Function VL3.1(θ̃) is thus positive for any choice

of adaptation gains satisfying γM < 1
2x
2
M. Calculating its time derivative

yields

V̇L3.1 = −θ̃
T
xxT θ̃+ 2θ̃

T
MΓxxT θ̃− θ̃

T
Mθ̃+ θ̃

T
xxT θ̃ (3.22)

with the arguments of M(t, x) omitted for brevity. This is rewritten as

V̇L3.1 = θ̃
T (
2MΓxxT −M

)
θ̃. (3.23)

Thus, the following bound of V̇L3.1 is established

V̇L3.1 6
(
2γMx

4
M − µe−TPE

) ∥∥θ̃∥∥2 . (3.24)

Hence, V̇L3.1(θ̃) is negative definite if γM < 1
2x

−4
M µe−TPE . Thus VL3.1(θ̃)

is strictly positive definite with strictly negative definite derivative which
proves a global exponential convergence of θ̃ to the origin.

While Lemma 3.1 is more restrictive than the theorems given in the
literature (as some limitation on the choice of Γ is imposed, which
is not necessary according to other theoretical results) and its proof
closely follows the path of [171], according to the author’s best knowl-
edge, it has not been given in the literature in this form before [231]
and is a cornerstone of the analysis conducted in further parts of this
paper.

3.2 parameter identifying eso

The methods of adaptive control aim to actively obtain some infor-
mation on the uncertain dynamics of the plant and incorporate it
into the control scheme, leading to improvement in the control qual-
ity. Similarly, the ADRC paradigm postulates the control input to be
computed based on online estimation of the disturbance affecting the
uncertain plant. Thus, a notion of a certain connection between the
ADRC approach and adaptive control schemes arises intuitively. In
the 2010s this idea gained the interest of the scientific community and
sparked the research on methods of combining the merits of ADRC
and adaptive schemes. Initially, these efforts have been focused on the
methods of direct adaptation able to adjust the controller parameters
on the basis of the performance of the closed-loop system. Apparently,
one of the first results on this problem was published in 2009 in the
work [56] by Q. Dong and Q. Li. The authors employed the fuzzy
algorithm to online tune the nonlinear ADRC controller. Other results
on this subject include [313] where the adaptive scheme is employed
to increase the robustness of the ADRC method to the measurement
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noise or [241] with tuning adaptation used to enhance the flexibility
of the linear ADRC approach.

Possibly the first notion of employing the combination of the ADRC
method and indirect adaptive scheme was made in 2009 by S. Li and
Z. Liu in work [162] where an additional disturbance observer is in-
corporated into the control algorithm to online estimate the input gain
of the plant. The method was verified by the experimental control of a
permanent-magnet motor, but no analytical study of the stability of
the system was given. In the work [325] the switching functions were
used in an adaptation law for a specific case of adaptive control of
DC motors. The authors proposed the use of a projection operator to
ensure the boundedness of the parameter estimates in the presence
of the peaking phenomenon. Recently, a similar method has been
employed in [54] to solve the control task for electro-hydraulic ser-
vomechanisms. In both works, only the convergence of the tracking
errors and parameter estimation errors to some boundary of the origin
was proved. The use of extremum seeking optimization scheme has
been presented in [185, 186] where it was used to seek for the value of
input gain estimate minimizing a certain cost function. The algorithm
was designed in the discrete domain and only an empirical evaluation
of its performance was given. Importantly, in all of these methods, the
identification and adaptation schemes have been designed on the basis
of the tracking error and the disturbance estimate produced by the
ESO has not been directly incorporated into the adaptation procedure.
Possibly the first method employing the estimated disturbance in the
adaptation scheme was proposed in 2012 by C. Huang and L. Guo
in the paper [111]. The authors took advantage of the disturbance
estimate in the gradient adaptation scheme, but the ESO itself was not
adaptively adjusted and thus only a convergence to some boundary
of the origin was established. Additionally, only the input gain of the
plant was identified in the proposed solution, which was also a case
in the recent [299], where the sign projection of the gradient of some
cost function is used to extract the input gain estimate from the total
disturbance estimated by the observer. The adaptation procedure was
extended to a larger set of parameters in [126], but the structure of
the ESO was still not adaptive and asymptotic convergence was not
achieved. An alternative approach based on the least squares algorithm
has been proposed in [175, 219] which also led to the boundedness of
the tracking and identification errors only. In the recent work [183] the
results concerning the design of the RESO algorithm as presented in
[181, 275] and Section 2.4.2 have been extended and adaptation scheme
has been incorporated to identify the frequency of the disturbance in
the specific case of a system with harmonic disturbance.
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The novel solution to the problem of adaptive control within the
ADRC paradigm has been recently proposed by the author of this dis-
sertation in [231] and [232]. In these papers, new Parameter Identifying
Extended State Observer (PIESO) and Parameter Identifying Distur-
bance Rejection Control (PIDRC) methods were proposed to enable
the identification of the parameters of the plant and incorporate them
into the control scheme, respectively. The proposed approach is based
on the notion, that if the nominal model of the plant is represented
in a specific form, the total disturbance in the ADRC scheme can be
perceived as a measure of the modeling error. Thus, the output of the
disturbance observer can be used directly in the gradient adaptation
law to online identify the parameters of the plant, which in turn leads
to a decrease in the modeling error constituting the only disturbance
affecting the plant. As the result, the amplitude of the total disturbance
continuously decreases and the performance of the entire closed-loop
system is improved. The asymptotic convergence of the tracking, es-
timation, and identification errors can then be proved under certain
conditions and assumptions. The applicability of the methods in the
practical scenarios was verified in [229, 230]. A detailed description
and study of these methods are given in this and subsequent sections.

Consider first the problem of the state estimation and parameter
identification of the dynamic system in the presence of parametric
uncertainty of the dynamics of the plant. Specificaly, let the dynamic
system in the following form be defined,

ẋ = Anx+bn (bu+ψ(t, x)θ) ,

y = cTnx,
(3.25)

where x =
[
x1 . . . xn

]T ∈ Rn is a state of the plant, b ∈ R is
an input gain, u ∈ R represents a control input, and y ∈ R stand
for the output. The term ψ(t, x) =

[
ψ1(t, x) . . . ψk(t, x)

]
∈ R1×k

stands for some dynamics of the plant with a known structure and
θ =

[
θ1 . . . θk

]T ∈ Rk represents unknown constant parameters.
Matrices An,bn and cn are as given in Section 1.5.

Remark 3.1. Notably, the input gain of the considered plant is defined as
b ∈ R and thus b = 0 is a feasible choice of this parameter. If the real value
of the input gain is unknown, parameter b may be assumed equal to zero
and the actual input gain may be included in unknown vector θ with control
signal u incorporated into known regressor ψ(t, x).

The following assumptions are made concerning the dynamics of
the plant.
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Assumption 3.3. Let ψ(t, x) be Lipschitz with respect to its second argu-
ment, i. e. let

‖ψ(t, xa) −ψ(t, xb)‖ 6 ψL ‖xa − xb‖ (3.26)

for some constant ψL ∈ R+ and any xa, xb ∈ Rn.

Assumption 3.4. Let the system evolve in such a way that

max(‖ψ(t, x)‖ ,
∥∥∥∥ ddtψ(t, x)

∥∥∥∥) 6 ψM (3.27)

for some constant ψM ∈ R+ and any t.

Assumption 3.5. Let the system evolve in such a way that regressor ψ(t, x)
satisfies

∫t+TPE

t

ψT (τ, x(τ))ψ(τ, x(τ))dτ > µIk (3.28)

for some constants µ, TPE ∈ R+ and all t > 0.

Corollary 3.2. If Assumptions 3.4 and 3.5 hold, then there exists matrix

M(t, x) =
∫∞

t

et−τψT (τ, x(τ))ψ(τ, x(τ))dτ ∈ Rk×k (3.29)

satisfying

µe−TPE ‖v‖2 6 vTMv 6 ψ2M ‖v‖2 (3.30)

for any vector v ∈ Rk. The time derivative of matrix M(t, x) is given as

d

dt
M(t, x) =M(t, x) −ψT (t, x(t))ψ(t, x(t)). (3.31)

The presented assumptions come from the combination of the prop-
erties of the ADRC and adaptive algorithms. Assumption 3.3 is rem-
iniscent of Assumption 2.1 and requires the regressor of the plant
to change slowly enough. This feature ensures that some bound on
the system dynamics can be imposed in the presence of the transient
estimation errors. Assumptions 3.4 and 3.5 are the generalizations of
Assumption 3.1 and 3.2 as used in the analysis of the gradient method
identification. Similarly, Corollary 3.2 generalizes the notions of Corol-
lary 3.1 and introduces the definition of the persistently excited matrix
for the general linearly parametrized system. Notably, while these
assumptions impose some restrictions on the evolution of the state of
the plant, they can be easily verified and satisfied by a proper design
of the experiment, as only the tasks of identification and estimation,
and not of control, are considered here. To facilitate the design of the
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proposed PIESO observer two distinct cases are considered. Namely,
the separate scenarios of a plant with the regressor dependent on time
only, and thus denoted as ψ(t), and of the system with regressor given
by ψ(t, x) and explicitly depending on both time and momentary state
of the plant, are discussed in detail.

3.2.1 State independent regressor

Consider a simplified version of the nominal system (3.25) given by

ẋ = Anx+bn (bu+ψ(t)θ) (3.32)

with regressor ψ(t) =
[
ψ1(t) . . . ψk(t)

]
∈ R1×k being a function

of time only. Such a definition of the system implies that the exact
value of ψ(t) is known at any time instant and can be explicitly used
in the design of the controller and identification procedure. In order
to estimate the state and the parameters of the system, the following
extended dynamics are considered

ẋ = Anx+bn

(
bu+ψ(t)θ̂+ δ

)
,

δ̇ =
d

dt

(
ψ(t)

(
θ− θ̂

))
,

(3.33)

where θ̂ =
[
θ̂1 . . . θ̂k

]T ∈ Rk stands for some estimate of parame-
ters θ, and δ = ψ(t)

(
θ− θ̂

)
∈ R is the total disturbance correspond-

ing to the modeling error due to the imperfect parameter estimation.
Clearly, if θ̂ = θ, then δ = 0 for any time instant. On the contrary,
if the value of θ is not known, then δ directly corresponds to the
modeling error which can serve as a basis of the adaptation law remi-
niscent of (3.12). Model (3.33) can be used to synthesize the adaptive
PIESO algorithm. By introducing the extended state in the form of
z =

[
xT δ

]T =
[
z1 . . . zm

]T ∈ Rm with m = n+ 1, dynamics
(3.33) are expressed as

ż = Amz+dm

(
bu+ψ(t)θ̂

)
+bm

d

dt

(
ψ(t)

(
θ− θ̂

))
. (3.34)

For the system formulated in such a way, the PIESO is proposed as

˙̂z = Amẑ+dm
(
bu+ψ(t)θ̂

)
+ l (z1 − ẑ1) (3.35)

with the parameter adaptation law given by

˙̂θ = ΓψT (t)ẑm, (3.36)
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where ẑ =
[
ẑ1 . . . ẑm

]T ∈ Rm is the extended state estimate,
l =

[
l1 . . . lm

]
∈ Rm+ are positive observer gains chosen to ensure

the stability of the observer and Γ ∈ Rk×k is a positive definite matrix
of adaptation gains. The detailed scheme of the considered system
and algorithm is given in Fig. 3.8.

Plant

Extended State Observer

Adaptation Law

θ̂

b
∫ … ∫

ψ(t)θ

∫

l1

…

…

∫

ln

∫

lm

ψ(t)b θ̂

Γ

ΓψT (t)ẑm
∫

u xn

y

x1

t

−

ẑ1ẑn

t

ẑm

t

Figure 3.8: The detailed graphical illustration of the considered PIESO ob-
server with regressor independent of state. The adaptation law
extending the conventional ESO is visible.

Denote the estimation and identification errors in the forms of
z̃ = z− ẑ and θ̃ = θ− θ̂. Applying the proposed PIESO observer
given by (3.35) and (3.36) to the considered dynamic plant expressed
by (3.34) yields the error dynamics

˙̃z = Hz̃+bmψ̇(t)θ̃+bmψ(t)Γ
(
ψT (t)bTmz̃−ψ

T (t)ψ(t)θ̃
)

,
˙̃θ = −ΓψT (t)ψ(t)θ̃+ ΓψT (t)bTmz̃,

(3.37)

where H = Am − lcTm with cm as defined in Section 1.5. To facilitate
further analysis, consider the tuning parameters of the PIESO observer
chosen according to the bandwidth parametrization presented in
Section 2.1. Namely, let l gains be taken as

li = l̄iω
i
o, i ∈ {1,m}, (3.38)
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where ωo ∈ R+ is a new positive tuning parameter. Define also scaled
estimation errors z̄ as in Section 2.2 by denoting

z̄i = ω
m−i
o z̃i, i ∈ {1,m}. (3.39)

Equivalently, these scalings can be expressed as

l = ωmo Φ
−1
o l̄, z̄ =Φoz̃, (3.40)

with Φo = diag(ωm−1
o ,ωm−2

o , . . . , 1) ∈ Rm×m being a scaling opera-
tor dependent on the chosen bandwidth ωo. Employing these scaled
errors yields the closed-loop system dynamics of the form

˙̃z = ωoH̄z̄+bmψ̇(t)θ̃+bmψ(t)Γ
(
ψT (t)bTmz̄−ψ

T (t)ψ(t)θ̃
)

,
˙̃θ = −ΓψT (t)ψ(t)θ̃+ ΓψT (t)bTmz̄

(3.41)

with H̄ = Am − l̄cTm and explicitly given by

H̄ =



−l̄1 1 0 · · · 0
−l̄2 0 1

. . . 0
...

...
. . . . . .

...

−l̄n 0 0
. . . 1

−l̄m 0 0 · · · 0


. (3.42)

The following assumption is made concerning the choice of tuning
parameters of the observer.

Assumption 3.6. Let the scaled observer gains l̄ be chosen such that matrix
H̄ is Hurwitz.

The satisfaction of Assumption 3.6 implies that there exists a pos-
itive definite matrix P ∈ Rm×m such that H̄TP+ PH̄ = −Im. The
properties of the proposed PIESO observer are summarized by the
following theorem.

Theorem 3.1. For system (3.32) satisfying Assumptions 3.3, 3.4 and 3.5,
observer (3.35) with adaptation law (3.36) guarantees a global exponential
convergence of errors z̃ and θ̃ to the origin under the tuning proposed by
Assumption 3.6 for ωo chosen high enough and Γ chosen with a norm small
enough.

Proof. Recalling Assumptions 3.4 and 3.5 with Corollary 3.2, the following
function can be considered for the system with the time-dependent regressor

V3.1(z̄, θ̃) =
1

2
z̄TPz̄+ θ̃

T

(
1

2
Γ−1 −M(t)

)
θ̃. (3.43)



126 parameter identifying adrc

Clearly, function V3.1(z̄, θ̃) satisfies

V3.1(z̄, θ̃) >
1

2
pm ‖z̄‖2 +

(
1

2
γ−1M −ψ2M

)∥∥θ̃∥∥2 (3.44)

with pm = λmin(P) ∈ R+ where λmin(·) stand for the smallest eigenvalue of
a matrix. Function V3.1(z̄, θ̃) is thus positive for any choice of Γ satisfying
γM < 1

2ψ
−2
M . The time derivative of V3.1(z̄, θ̃) is given by

V̇3.1 = z̄T
(
PbmψΓψTbTm −

1

2
ωo

)
z̄+ θ̃

T (
2MΓψTψ−M

)
θ̃

+ z̄
(
Pbmψ̇−PbmψΓψTψ+bmψ− 2bmψΓM

)
θ̃

(3.45)

with arguments of ψ(t) and M(t) omitted for brevity. By taking advantage
of the Young’s inequality, it is concluded that the following is satisfied,

V̇3.1 6
1

2

(
−ωo + 2pMψ

2
MγM +

1

ε

(
pMψM +ψM + γMpMψ

3
M

+ 2γMψ
3
M

)2)
‖z̄‖2 +

(ε
2
+ 2ψ4MγM − µe−TPE

)∥∥θ̃∥∥2
(3.46)

for any ε ∈ R+ with pM =
∥∥P∥∥ ∈ R+. By choosing Γ such that γM <

1
2ψ

−4
M µe−TPE and setting ε > 1

2

(
µe−TPE − 2ψ4MγM

)−1 the negativity of
the second term is guaranteed. Negative definiteness of entire V̇3.1(z̄, θ̃) is
then ensured by choosing ωo high enough.

While Theorem 3.1 states that to ensure the stability of the system
the adaptation gains Γ have to be chosen smaller than some specific
threshold value dependent on the dynamics of ψ(t), this proof closely
follows that of Lemma 3.1 which is known to be overly conservative.
Thus, it seems justified to believe that this limitation on Γ may be
alleviated with a better-suited proof. If this is the case, it could be
expected that only a requirement concerning the value ofωo would be
formulated depending on the characteristics of ψ̇(t). The evaluation
of the performance and applicability of the proposed scheme is done
in a numerical simulation.

Simulation 3.3. Consider a third-order plant with dynamics as given
by (3.32) with n = 3, b = 1, ψ =

[
cos(3t) sin3(t) 1

]
and θ =[

−1 3 3
]T . The adaptive PIESO observer is designed according to (3.35)

and (3.36) with Γ = 0.2I3 and ωo = 100. Similarily to Sim. 3.7, the control
signal is generated using an additional nonadaptive controller. Notably, in
the case of a system with a regressor independent of the state, the choice of
control signal does not impact the process of parameter identification. Zero
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initial conditions are chosen for the state, estimates, and identified parameters.
The results of the simulation are given in Fig. 3.9.
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Figure 3.9: Time responses of the third order system with time-dependent
regressor under the proposed PIESO observer. Results of conven-
tional ESO with Γ = 03 shown in transparent plots of z̃ and z̄.

The conducted trial shows the effectiveness of the proposed ap-
proach in the task of state estimation and parameter identification.
The parameter estimates converge to the correct values which reduces
the total disturbance to zero asyptotically. The resultant asymptotic
convergence of the state estimation errors, not achievable in the case
of the standard ESO algorithm, is shown. Moreover, the eigenvalues of
M(t) and evolution of function V3.1(z̄, θ̃) with its derivative are also
given to support the earlier theoretical analysis. It is confirmed that
function V3.1(z̄, θ̃) satisfies the conditions of the Lyapunov approach
in the considered scenario and the properties of M(t) are consistent
with the expected characteristics.

Simulation 3.4. Consider the settings as in Sim. 3.3. In Fig. 3.10 the results
of simulation with different values of Γ are given for comparison.

The change in the parameter identification speed due to differently
chosen adaptation gain is visible. Notably, the relation between the
value of adaptation gain and the convergence rate is not a straight-
forward one, and an increase in the adaptation gain does not always
lead to improvement in the identification performance. As discussed
in [205], this is a general property of the adaptation schemes with
parameter adaptation law in the form reminiscent of (3.19), which is
also a case in the PIESO approach. Thus, there exists some Γ with a
finite norm guaranteeing the highest convergence speed [217].
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Figure 3.10: Time responses of the third order system with time-dependent
regressor under the proposed PIESO observer with different
adaptation gains.

3.2.2 State dependent regressor

The algorithm proposed in Section 3.2.1 offers a simple and intuitive
solution to the problem of simultaneous estimation of the state and
parameters of the system. Yet, its applicability is limited only to the
systems with exactly known regressor which can be evaluated without
taking into account the state of the plant. despite lack of measurabil-
ity of the state of the plant. Such systems are rarely featured in the
practical considerations, as the majority of real-life applications are
characterized by functions explicitly dependent on the state of the
plant. To overcome this limitation, an enhanced algorithm is formu-
lated for a wider class of dynamic systems. To this end, consider once
again the system given by (3.25) with regressor explicitly depending
on both time and the state of the plant, and expressed by

ẋ = Anx+bn (bu+ψ(t, x)θ) . (3.47)

Note that (3.47) becomes a standard linear time-invariant system
commonly considered in the literature on parameter identification and
discussed in Section 3.1 if ψ(t, x) = xT . Thus, the proposed observer
can be applied to the LTI system if its state x remains bounded during
the evolution to ensure that Assumption 3.4 holds. By denoting the
extended state z =

[
xT δ

]T ∈ Rm, the dynamics of the system are
expressed as

ẋ = Anx+bn

(
bu+ψ(t, x)θ̂+ δ

)
,

δ̇ =
d

dt

(
ψ(t, x)

(
θ− θ̂

))
,

(3.48)
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where θ̂ ∈ Rk denotes some estimate of the unknown parameters
and δ = ψ(t, x)

(
θ− θ̂

)
∈ R is a total disturbance corresponding to

the modeling error. Note, that the total disturbance is here defined
using plant state x, which is in general unknown and unavailable for
measurement. The dynamics of the extended state are given by

ż = Amz+dm

(
bu+ψ(t,Λnz)θ̂

)
+bm

d

dt

(
ψ(t,Λnz)

(
θ− θ̂

))
,

(3.49)

where Λnz = x as defined in Section 1.5. The adaptive PIESO for such
a system is proposed as

˙̂z = Amẑ+dm
(
bu+ψ(t,Λnẑ)θ̂

)
+ l (z1 − ẑ1) , (3.50)

which does not require knowledge of state x to evaluate the momen-
tary value of the regressor. The parameter adaptation law is formulated
as

˙̂θ = Proj(τ, θ̂,Θ), τ = ΓψT (t,Λnẑ)ẑm, (3.51)

where τ ∈ Rk is an internal adaptation law. The term Proj(τ, θ̂,Θ)

stands for a projection operator [150, 154, 325] which satisfies

θ̃
T
Γ−1

(
Proj(τ, θ̂,Θ) − τ

)
> 0 (3.52)

and θ̂ ∈ Θ, with Θ being some predefined convex set chosen to
contain the real values of θ. Throughout the rest of this dissertation,
the second and third arguments of Proj(τ, θ̂,Θ) will be omitted for
brevity.

Remark 3.2. Numerous propositions of Proj(τ, θ̂,Θ) operator are given
in literature [323], with one of the most common choices being elementwise
operator defined as

Proji(τ, θ̂,Θ) =





0 τi > 0∧ θ̂i > ϑi,

0 τi < 0∧ θ̂i 6 −ϑi,

τi otherwise

(3.53)

with a convex set defined as Θ = {θ : θi ∈ (−ϑi, ϑi), i = 1, . . . ,k},
ϑi ∈ R+ for i ∈ {1, . . . ,k} being some positive constants and adaptation
gains chosen as Γ = diag(γ1, . . . ,γk). Yet, the analysis presented further
does not assume any specific choice of Proj(τ, θ̂,Θ) operator.
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Corollary 3.3. It follows from (3.52) and the definition of the projection
operator, that there exists a constant θM ∈ R+ such that

max(
∥∥∥θ− θ̂

∥∥∥ ,
∥∥∥θ̂∥∥∥) 6 θM (3.54)

for any t. Thus, it also holds that
∥∥θ − θ̂

∥∥2 6
∥∥θ − θ̂

∥∥θM. Moreover,∥∥Proj(τ, θ̂,Θ)
∥∥ 6

∥∥τ∥∥ for any τ.

Remark 3.3. Note that bound θM imposed on the identification error
∥∥θ−

θ̂
∥∥ according to Corollary 3.3 holds even if θ̂(0) /∈Θ. In such a case, bound
θM does not come directly from the definition of set Θ but accomodates also
the initial errors of the elements of θ̂ outside of the set Θ which are not
allowed to grow larger due to the action of the projection operator. Thus, the
estimation error remains bounded and further analysis holds in full.

The incorporation of the projection operator in the proposed scheme
is crucial, due to the possible impact of the transient state estimation
errors on the dynamics of the parameter estimates. Thus, it is used to
disable the adaptation if the temporary estimation errors cause the
drift of the parameter estimates. Once the quality of the regressor
evaluation is recovered in the steady state, the adaptation is restarted
and proper operation of the algorithm is allowed to proceed. The
graphical scheme of the proposed algorithm in the case of a system
with regressor being a function of the state of the plant is given in
Fig. 3.11.

In order to investigate the stability and performance of the consid-
ered scheme define the estimation and identification errors z̃ = z− ẑ,
θ̃ = θ− θ̂ with the dynamics expressed as

˙̃z = Hz̃+dm (ψ(t,Λnz) −ψ(t,Λnẑ)) θ̂+bmψ̇(t,Λnz)θ̃

−bmψ(t,Λnz)Proj(τ),
˙̃θ = −Proj(τ),

τ = Γ

((
ψT (t,Λnẑ) −ψT (t,Λnz)

)
+ψT (t,Λnz)

)(
ψ(t,Λnz)θ̃− z̃m

)
,

(3.55)
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Figure 3.11: The detailed graphical illustration of the considered PIESO ob-
server with regressor dependent on the state. The adaptation
law with the projection operator is visible.

where H = Am − lcT . Recalling the scaled observer gains l̄, such that
l = ωmo Φ

−1
o l̄, and the scaled estimation errors z̄ =Φoz̃, the dynamics

of the closed-loop system take the form of

˙̄z = ωoH̄z̄+ωodm (ψ(t,Λnz) −ψ(t,Λnẑ)) θ̂

+bmψ̇(t,Λnz)θ̃−bmψ(t,Λnz)Proj(τ),
˙̃θ = −Proj(τ),

τ = Γ

((
ψT (t,Λnẑ) −ψT (t,Λnz)

)
+ψT (t,Λnz)

)(
ψ(t,Λnz)θ̃− z̄m

)
,

(3.56)

with H̄ = Am − l̄cT . By taking advantage of Assumption 3.6, the
properties of the PIESO observer designed for the plant with regressor
being a function of time and state are summarized by the following
theorem.

Theorem 3.2. For system (3.47) satisfying Assumptions 3.3, 3.4 and 3.5,
observer (3.50) with adaptation law (3.51) guarantees a global asymptotic
convergence of errors z̃ and θ̃ to the origin under the tuning proposed by
Assumption 3.6 for ωo chosen high enough and Γ chosen with a norm small
enough.
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Proof. The stability of the analysis of the proposed method is conducted in
two distinct steps. First, under the notion of the boundedness of identifica-
tion errors guaranteed by the projection operator, the boundedness of state
estimates is established. Next, this notion is used to conclude an asymp-
totic convergence of both identification and estimation errors to the origin.
Consider the auxiliary function V∗3.2(z̄) given by

V∗3.2(z̄) =
1

2
z̄TPz̄+

1

2
θ̃
T
Γ−1θ̃− z̄TPbmψ(t,Λnz)θ̃, (3.57)

which satisfies

V∗3.2(z̄) >
1

2
(pm − εpMψM) ‖z̄‖2 + 1

2

(
γ−1M −

1

ε
pMψM

)∥∥θ̃∥∥2
(3.58)

for any ε ∈ R+. Function V∗3.2(z̄) is positive for the choice of Γ satisfying
γM < ε

(
pMψ

2
M

)−1 with ε < pm
(
pMψM

)−1. The time derivative of this
function along the trajectories of the system is given by

V̇∗3.2 = −
1

2
ωoz̄T z̄+ωoz̄TPdm

(
ψ− ψ̂

)
θ̂− θ̃

T
Γ−1 Proj(τ)

−ωoθ̃
T
ψTbTmPH̄z̄−ωoθ̃

T
ψTbTmPdm

(
ψ− ψ̂

)
θ̂

− θ̃
T
ψTbTmPbmψ̇θ̃+ θ̃

T
ψTbTmPbmψProj(τ),

(3.59)

where ψ = ψ(t,Λnz), and ψ̂ = ψ(t,Λnẑ) are denoted for brevity. By
adding and subtrackting θ̃TΓ−1 Proj(τ), recalling Corollary 3.2 and as-
sumptions imposed on the system, the following bound is imposed on this
derivative,

V̇∗3.2 6

(
−
1

2
ωo +ω

−n+1|0
c pMψLθM +ω

−n|−1
o

(
θMψL

+ θMψ
2
MpMγMψL

))
‖z̄‖2 + θM

(
ψ3MpMγM

+ψM +ωoψMpMhM +ω
−n+1|0
c θMψMpMψL

+ω
−n|−1
o θM

(
ψ3MpMγMψL +ψLψM

))
‖z̄‖

+ θ2M

(
ψ2MpM +ψ4MpMγM

)
,

(3.60)

where hM =
∥∥H̄∥∥ ∈ R+ and ωκ1|κ2 is a piecewise exponentiation opera-

tor as defined in Section 1.5 and by equation (2.52). Terms ω−n+1|0
c and

ω
−n|−1
o are thus nonincreasing in ωo. Hence, there exists ωo high enough

to ensure negativeness of V̇∗3.2(z̄) for
∥∥z̄∥∥ large enough. As a result, the

convergence of z̄ to some boundary of the origin is achieved and it can be
concluded that there exist zM, Tz ∈ R+ such, that

∥∥z̄∥∥ 6 zM for any t > Tz.
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Importantly, while the precise value of zM depends on the chosen value of
ωo, by denoting

vM =

(
−
1

2
ωo +ω

−n+1|0
c pMψLθM +ω

−n|−1
o

(
θMψL

+ θMψ
2
MpMγMψL

))
‖z̄‖2 + θM

(
ψ3MpMγM

+ψM +ωoψMpMhM +ω
−n+1|0
c θMψMpMψL

+ω
−n|−1
o θM

(
ψ3MpMγMψL +ψLψM

))
‖z̄‖

+ θ2M

(
ψ2MpM +ψ4MpMγM

)
,

(3.61)

and thus

V̇∗3.2 6 vM, (3.62)

it can be shown that

lim
ωo→∞

vM = −
1

2
ωo ‖z̄‖2 +ωoθMψMpMhM ‖z̄‖ . (3.63)

It follows that

lim
ωo→∞

zM = 2θMψMpMhM (3.64)

and zM remains bounded with increase of ωo. Notably, function (3.57) does
not employ matrixM(t,Λnz) and thus the formulated conclusions hold also
if Assumption 3.5 is not satisfied.

Having established the notion of boundedness of z̄, the convergence of the
errors for t > Tz can be investigated. To this end, consider the function

V3.2(z̄, θ̃) =
1

2
z̄TPz̄+ θ̃

T

(
1

2
Γ−1 −M(t,Λnz)

)
θ̃, (3.65)

which satisfies the bound expressed as

V3.2(z̄, θ̃) >
1

2
pm ‖z̄‖2 +

(
1

2
γ−1M −ψ2M

)∥∥θ̃∥∥2 . (3.66)

Function V3.2(z̄, θ̃) is hence positive definite for any choice of Γ such that
γM < 1

2ψ
−2
M . The time derivative of this function is given by

V̇3.2 = −
1

2
ωoz̄T z̄+ωoz̄TPdm

(
ψ− ψ̂

)
θ̂+ z̄TPbmψ̇θ̃

− z̄TPbmψProj(τ) − θ̃TΓ−1 Proj(τ) + 2θ̃TMProj(τ)

− θ̃
T
Mθ̃+ θ̃

T
ψTψθ̃.

(3.67)
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By adding and subtracting the term θ̃
T
Γ−1τ, and recalling Corollary 3.3,

Assumption 3.4 and (3.52), it is inferred that

V̇3.2 6

(
−
1

2
ωo + pψ

2
MγM +ω

−n+1|0
c pMψLθM

+ω
−n|−1
o

(
pMψ

2
MψLγMθM + pMψMψLγMzM

+ θMψL + 2θMψ
2
MψLγM

)
+
1

2ε

(
pMψM + pMγMψ

3
M

+ 2ψ3Mγ+ω
−n|−1
o θMψL

(
2ψ3MγM +ψM

)
+ψM

)2)
‖z̄‖2 +

(
−µe−TPE + 2γMψ

4
M +

ε

2

)∥∥θ̃∥∥2
(3.68)

for any ε ∈ R+. By setting Γ such that γM < µe−TPEψ−4
M and choosing

ε small enough with ωo high enough the entire expression is made neg-
ative definite. The intermediate calculations are presented in more detail
in Appendix A.2. On the basis of V3.2(z̄, θ̃) it is concluded that once the
estimation errors converge below some arbitrary threshold zM, further expo-
nential convergence of the estimation and identification errors to the origin is
guaranteed.

The stability analysis of the proposed method in the presented
form has a straightforward interpretation. As the adaptation law is
formulated on the basis of the state and disturbance estimates, in the
first stage it is ensured that for any initial values these converge to
some neighborhood of their true values if ωo is chosen high enough.
The second part ensures that due to this boundedness property, the
adaptation law is able to successfully drive all errors to the origin.
Thus, the presented analysis shows that the proposed adaptation
scheme does not disrupt the well-known property of boundedness of
errors in the ESO observer, and additionally improves the performance
of the algorithm. In order to evaluate the practical efficiency of the
PIESO observer in the system with the regressor being a function of
the state of the plant, a numerical simulation is conducted.

Simulation 3.5. Consider a linear time-invariant plant of the third or-
der with the dynamics expressed by (3.47) with b = 1 and ψ = xT and
θ =

[
−1 3 3

]T . Note that such a system is conforming with the plant
employed in the simulations of the MRAC scheme and gradient identification
in Section 3.1. The adaptive PIESO observer is designed according to (3.50)
and (3.51) with ωo = 100, Γ = 0.05I3. The projection operator in the form
given in Remark 3.2 is employed with ϑi = 100 for i ∈ {1, 2, 3}. Importantly,
the boundary imposed by the projection operator is here chosen significantly
greater than the real values of the parameters of the plant, to visualize that
only a very limited knowledge about the system dynamics is necessary to
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design the PIESO observer. Once again the additional nonadaptive controller
is incorporated into the system to ensure that the state of the plant follows
the reference trajectory given by (2.34) with xr(t) = sin(2π10 t) +

1
2 sin(2π3 t).

The zero initial conditions for all variables are chosen. The results of the
simulation are given in Fig. 3.12.
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Figure 3.12: Time responses of the third order system with state-dependent
regressor under the proposed PIESO observer. Results of con-
ventional ESO with Γ = 03 shown in transparent plots of z̃ and
z̄.

The obtained results resemble the outcomes of Sim. 3.3 where a
case of a system with regressor independent of the state was inves-
tigated. The convergence of the estimation errors to the origin, as
well as parameter estimates to their nominal values, is visible on the
plots. Notably, the evolution of the disturbance estimate and parame-
ter estimates are reminiscent of the results of gradient identification
presented in Section 3.1 as the adaptive scheme of PIESO is based on
the underlying gradient approach. Thus, the relatively high speed of
identification, as compared with the MRAC method, is maintained
in the proposed observer. The evolution of function V3.2(z̄, θ̃) con-
firms the results of the analytical investigation. The auxiliary function
V∗3.2(z̄) is omitted in the plots as during the trials it was observed that
it serves its purposes only in some extreme cases of very large initial
estimation errors. In all other cases, function V3.2(z̄, θ̃) satisfies the
conditions of Lyapunov function on its own throughout the entire
simulation horizon.

Notably, the plots given in Fig. 3.12 does not show the impact of
the projection operator, as the estimation errors are small enough to
avoid the drift of the parameter estimates. To explicitly visualize the
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effect of the incorporation of the projection operator, the simulation
is repeated with different initial values of the state estimates to trig-
ger the appearance of the peaking phenomenon and generate larger
identification errors in the first time instants.

Simulation 3.6. Consider the settings as in Sim. 3.5 with initial val-
ues of state estimates changed. Namely, the initial conditions are set as
ẑ(0) =

[
10 10 10 10

]T , θ̂(0) =
[
0 0 0

]T and the projection limit
is changed to ϑi = 10 for i ∈ (1, 2, 3). The results of the simulation are
presented in Fig. 3.13.
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ẑ4

0 25 50 75

0

5

10

t [s]

θ̂1

θ̂2

θ̂3

Figure 3.13: Time responses of the third order system with state-dependent
regressor and significant initial estimation errors under the pro-
posed PIESO observer.

The initial increase in the disturbance estimate and the momentary
growth of the parameter estimates are visible. Due to the action of
the projection operator, the boundedness of the parameter estimates is
guaranteed what results in the boundedness of the entire total distur-
bance. This allows the PIESO to efficiently estimate the disturbance
despite the presence of the peaking effect and enables it to successfully
drive all the errors to the origin.

3.2.3 Alternative systems

The adaptive PIESO observer as proposed in Sections 3.2.1 and 3.2.2 is
nominally designed for systems expressed by (3.25). Nonetheless, the
algorithm is applicable also to several classes of dynamic systems not
directly conforming to this model. Specifically, the considered method
can be successfully employed to estimate the state and parameters of
the disturbed systems with disturbances which can be incorporated
into the structure of (3.25) or nonlinear plants transformable into the
form of (3.25) by the means of a state transformation. In this section,
two specific cases of such systems are discussed and a tutorial on the
applicability of the PIESO observer in these scenarios is given. Namely,
the plant with harmonic disturbance reminiscent of that considered
in Section 2.4.2 and the two–mass–spring flexible mechanical system
are presented. In both cases, a significant parametric uncertainty is
assumed. For each of the plants, a suitable transformation that brings
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the system to the form feasible for PIESO application is given and the
observer synthesis is performed. The performance of the algorithm in
these scenarios is validated by the means of numerical simulations.

Consider the plant with harmonic disturbance as discussed in Sec-
tion 2.4.2 with dynamics given by

ẋ = Anx+bn (bu+ d) (3.69)

with the disturbing term d = −bdh where dh represents the harmonic
disturbance expressed by

dh = ah sin(2πfht), (3.70)

with ah ∈ R and fh ∈ R+ being the amplitude and frequency of the
harmonic function. Following the approach presented in [275] where
internal model principle has been employed, the term dh is equiva-
lently expressed as a response of the unforced dynamic oscillatory
system in the form of

d̈h + (2πfh)
2 dh = 0. (3.71)

The time derivative of the dynamics of this disturbance is given as

d
(3)
h + (2πfh)

2 ḋh = 0. (3.72)

By taking advantage of such a reformulation of disturbance dh, the
dynamics of the entire plant are rewritten as

q̇ = An+3q+
[
bTn 0T3×1

]Tu−bn+3 (2πfh)
2 dn+3q (3.73)

with q =
[
xT dh ḋh d̈h

]T ∈ Rn+3. Notably it can be further
expressed as

q̇ = An+3q+
[
bTn 0T3×1

]Tu+bn+3ψ(q)θ (3.74)

with ψ(q) = dn+3q and θ = −
(
2πfh

)2 what closely resembles the
nominal system (3.25) and allows application of the PIESO observer
to estimate the state and unknown parameter of the system.

The solution to this problem has been initially proposed in [183]. The
modification of the Resonant ESO observer formulated in [181, 275]
and presented in Section 2.4.2 has been proposed by incorporating an
adaptive frequency estimator [108, 255] to online identify the frequency
of oscillations on the basis of total disturbance estimate produced
by ESO. Here an alternative approach to this task is given by taking
advantage of the proposed PIESO observer following the results shown
in [231]. Treating q as a nominal state of the transformed system, the
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state extension is defined as z =
[
qT δ

]T ∈ Rm with m = n+ 4 and
dynamics given by

ż = Amz+
[
bTn 0T4×1

]Tu+dmψ(Λn+3z)θ̂

+bm
d

dt

(
ψ(Λn+3z)

(
θ− θ̂

))
.

(3.75)

The adaptive observer for the considered system is formulated as

˙̂z = Amẑ+
[
bTn 0T4×1

]Tu+dmψ(Λn+3ẑ)θ̂. (3.76)

Due to the explicit dependence of the regressor on the extended state
z, the adaptation law is formulated according to (3.51) as

˙̂θ = Proj(τ, θ̂,Θ), τ = ΓψT (Λn+3ẑ)ẑm. (3.77)

Since the considered plant is relatively simple, the internal adaptation
rule τ can be explicitly expressed as τ = −γẑmẑm−2 where γ ∈ R+ is
a scalar positive adaptation gain.

Simulation 3.7. The algorithm is implemented according to the presented ap-
proach and the performance of the method is validated in simulation. Namely,
a second order plant consistent with the one discussed in Section 2.4.2 is
considered, with n = 2, b = 1

30 , fh = 7.46 and ah = 0.6. The observer is
tuned with ωo = 50 and the adaptation gain is set to γ = 10. For the sake
of the experiment, an additional nonadaptive controller is incorporated into
the system to generate the control signal u. The results of the simulation are
given in Fig. 3.14.
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Figure 3.14: Time responses of the second order system with harmonic dis-
turbance under the proposed PIESO observer.

It can be seen that the proposed adaptation method successfully
identifies the unknown parameter of the plant, with the parameter
estimate converging to the value of θ̂ ≈ −

(
2πfh

)2 ≈ −2199.6, which
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results also in the vanishing of the state estimation errors z̃ and
the estimate ẑ6 of the total disturbance affecting the plant. Due to
the choice of high adaptation gain γ, fast and efficient identification
is achieved. Moreover, the estimate ẑ3 of the harmonic disturbance
converges to the expected form of the sine wave of amplitude equal to
bah = 0.02 as the estimation progresses. The presented results show
that under the proposed PIESO observer the state, parameters, and
disturbance estimation is achieved despite the unknown amplitude
and frequency of the harmonic disturbance affecting the plant.

The application of the proposed PIESO algorithm is also possible for
a class of dynamic systems transformable into the nominal structure
(3.25) by a static state transformation. As an example, a simple two–
mass–spring system can be considered [305]. Such a plant consists of
two masses connected by a flexible spring, with the input signals in the
form of two forces acting upon the objects. The schematic view of the
considered system is given in Fig. 3.15 where forces F1, F2 ∈ R are the
controllable inputs of the system. Taking into account characteristics

m1 m2

k

ξ1
F1 ξ2

F2

Figure 3.15: The schematic view of the two–mass–spring system.

of some compliant mechanical systems, it is usually assumed that the
output of the system is represented by the position of only one of the
masses and only one of the input forces is directly available for control.
The considered plant is thus an underactuated fourth-order dynamic
system with a single input and a single output. In the forthcoming
analysis, it is assumed that the position of the first mass, denoted by
ξ1, is a measurable output of the system.

The general dynamics of the two–mass–spring system are expressed
by

m1v̇1 = k (ξ2 − ξ1) + F1,

m1v̇2 = k (ξ1 − ξ2) + F2,

y = ξ1,

(3.78)

where ξ1, ξ2 ∈ R and v1, v2 ∈ R are positions and velocities of two
masses, m1,m2 ∈ R+ are masses of each of the connected objects and
k ∈ R+ is a stiffness coefficient of the spring. By defining the state of
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the system as x =
[
ξ1 v1 ξ2 v2

]T ∈ Rn with n = 4, the following
state–space representation is obtained

ẋ1 = x2,

ẋ2 =
k

m1
(x3 − x1) +

1

m1
F1,

ẋ3 = x4,

ẋ4 =
k

m2
(x1 − x3) +

1

m2
F2.

(3.79)

The dynamics of the system in such a form are not suitable for a
direct application of the PIESO observer. In order to transform the
system into a feasible form, the static state transformation q = T (x) is
proposed on the basis of [274, 282] in the form of

q1 = x1, q2 = x2,

q3 =
k

m1
(x3 − x1) ,

q4 =
k

m2
(x4 − x2) ,

(3.80)

with the inverse transformation given by

x1 = q1, x2 = q2,

x3 = q1 +
m1
k
q3,

x4 = q2 +
m1
k
q4.

(3.81)

Application of the considered transformation to the dynamics of the
nominal system (3.79) yields

q̇1 = q2,

q̇2 = q3 +
1

m1
F1,

q̇3 = q4,

q̇4 = −k

(
1

m1
+

1

m2

)
q3 −

k

m21
F1 +

k

m1m2
F2.

(3.82)

The transformed dynamics are rewritten in the compact form resem-
bling (3.25) as

q̇ = Anq+
1

m1

[
bT2 0T2×1

]TF1 +bnψ(t,q)θ (3.83)

with ψ(t,q) =
[
q3 F1 F2

]
and the new vector of transformed

parameters given by θ =
[
−k
(
1
m1

+ 1
m2

)
− k
m2
1

k
m1m2

]T .
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The specific properties of the algorithm depends directly on the
availability of the system inputs. It can be noted that the inverse trans-
formation x = T−1(q) given by (3.81), which enables the recovery of
the original state coordinates x from the transformed state q, requires
knowledge of the term m1

k only. It also follows from (3.83) that if
the control input F1 is used, then the knowledge of m1 parameter is
necessary to synthesize the observer and recover the estimates of the
original state of the system. Alternatively, if F2 is considered as an
input of the plant, then the observer can be synthesized without any
known parameter, but the structure of ψ(t, x) enables the identifica-
tion of only two lumped parameters of the system and at least one of
the nominal parameters of the plant has to be nonetheless known in
advance in order to recover the state estimates of the original plant.
Finally, if both control inputs are available and measurable, the re-
gressor makes it possible to successfully identify of all three lumped
parameters. However, the synthesis of the observer itself still requires
the knowledge of m1 parameter present in the input path of F1 force,
and thus the redundancy in the design of the system appears. The
design of the observer and the adaptation law is here given in its most
general form, assuming that both F1 and F2 are available for control.
The synthesis of the algorithm for chosen simplified scenarios with
only one input signal avaiable follows trivially and is omitted here.

On the basis of (3.83) the extended state can be designed as z =[
qT δ

]T ∈ Rm, with m = n+ 1. The dynamics of the extended state
are given as

ż = Amz+
1

m1

[
bT2 0T3×1

]
F1 +dmψ(t,Λnz)θ̂

+bm
d

dt

(
ψ(t,Λnz)

(
θ− θ̂

))
,

(3.84)

what is reminiscent of (3.49). According to the established approach
to the PIESO design, an adaptive observer is proposed in the form of

˙̂z = Amẑ+
1

m1

[
bT2 0T3×1

]
F1 +dmψ(t,Λnẑ)θ̂+ l (z1 − ẑ1)

(3.85)

with adaptation law designed as

˙̂θ = Proj(τ, θ̂,Θ), τ = ΓψT (t,Λnẑ)ẑm. (3.86)

The requirement of knowledge of m1 parameter is clearly visible
in equation (3.85), where it is required to properly synthesize the
observer. Forces F1 and F2 are here treated as a part of regressor
ψ(t,Λnz) and are used in the identification procedure.
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Simulation 3.8. The simulation results of the application of the discussed
scheme to two–mass–spring system in three different scenarios are obtained.

1. Only F1 is available for control and chosen as F1 = 1
2 sin(12t). The

observer is tuned with Γ = 1.5I.

2. Only F2 is available for control and chosen as F2 = 1
2 sin(12t). The

observer is tuned with Γ = 1.5I.

3. Both F1 and F2 available for control and chosen as F1 = 1
2 sin(12t),

F2 =
1
2 sin2(12t) to ensure satisfaction of PE condition. The observer

is tuned with Γ = 3I.

In all cases the observer bandwidth is set to ωo = 50, nominal parameters
of the plant are chosen as m1 = 1 kg, m2 = 1.5 kg, k = 0.1N/m, and
parameter m1 is assumed to be known. In the first and second scenarios,
only parameters m2 and k are identified. The third scenario enables the
identification of three parameters of the linearized system and thus all three
coefficients of the nominal system are also estimated. The produced results are
given in Fig. 3.16–3.18. In each trial the observer is designed according to
(3.85)–(3.86), the estimates of transformed state q and lumped parameters θ
are obtained, and then the values of the nominal parameters k,m1,m2 and
the original state x of the plant are recovered according to (3.81) and (3.83).
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Figure 3.16: Time responses of the two-mass-system with only F1 available.

In the plots the error of the transformed state estimation z̃ = z− ẑ,
the nominal state estimation x̃ = x− T (Λnẑ), the parameter identifi-
cation θ̃ = θ− θ̂, and the estimates of the physical coefficients of the
nominal system m̂1, m̂2, k̂ are given. It can be seen, that in all cases
the estimation and identification errors converge to the origin, and
the estimates of the physical parameters converge toward their real
values. Notably, if only one control input is available the number of
identified parameters is limited and only two of them can be success-
fully estimated. Moreover, from the definition of parameter vector θ
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Figure 3.17: Time responses of the two-mass-system with only F2 available.
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Figure 3.18: Time responses of the two-mass-system with both F1 and F2
available.

in (3.83) it may be noted that

m1 = −
θ1

θ3 − θ2
,

m2 =
θ1θ2

θ23 − θ2θ3
,

k = −
θ21θ2

(θ3 − θ2)
2

.

(3.87)

The values of physical parameters of the nominal system thus cannot
be recovered for some combinations of the momentary values of the
identified parameters θ̂ for which denominators of expressions in
(3.87) approaches zero. While the employed approach ensures that
the parameter estimates converge to their correct values, these un-
feasible values of the parameters may be reached in the transient
states and the recovery of the nominal parameters and state of the
nominal system may be impossible in such time instants. Due to this
phenomenon, the presented scheme may not be suitable for use in
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real-time tasks. To mitigate this effect the use of a differently defined
projection operator may be considered to disable adaptation if the
parameters approach some of the unfeasible values. The numerical
trials presented in Fig. 3.16–3.18 are given here as a proof of concept
and thus such modifications are not incorporated into the observa-
tion method. The initial conditions of the parameter estimates were
instead carefully chosen to ensure the flawless recovery of the physical
parameters of the plant.

3.3 parameter identifying drc

The PIESO observer proposed in the preceding section constituted
a tailored solution to the problem of state estimation and parameter
identification of the systems with unknown parameters. Nonetheless,
in the practical scenarios, the problem of adaptive control in the
presence of parametric uncertainty is often considered and the means
of application of the proposed methods to the task of closed-loop
control are thus required. To this end, a new adaptive ADRC scheme
named Parameter Identifying Disturbance Rejection Control (PIDRC)
is designed by combining the PIESO observer with a conventional
ADRC control law enhanced by the disturbance model evaluated using
the identified parameters of the plant. Due to the proven capability of
the algorithm to asymplotically estimate the disturbance impacting
the plant, the performance of such a controller is ultimately improved
and the asymptotic convergence of the estimation, identification, and
tracking errors is achieved.

In order to facilitate the controller design, consider the nominal
system as given by (3.25) and expressed by

ẋ = Anx+bn (bu+ψ(t, x)θ) ,

y = cTnx,
(3.88)

where x =
[
x1 . . . xn

]T ∈ Rn represents a state of the plant,
b ∈ R \ {0} is a known input gain, u ∈ R stands for a control input,
and y ∈ R represent the output of the plant. The term ψ(t, x) =[
ψ1(t, x) . . . ψk(t, x)

]
∈ R1×k represents some dynamics of the

plant with a known structure and θ =
[
θ1 . . . θk

]T ∈ Rk are
unknown constant parameters of the system. Matrices An,bn and cn
are as given in Section 1.5. Reminiscent of the procedure of Section 2.2,
the problem of simultaneous state estimation, parameter identification
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and tracking reference trajectory xr(t) by state x of the plant is defined,
with

xr =
[
xr1 . . . xrn

]T =
[
x
(0)
r (t) . . . x

(n−1)
r (t)

]T ∈ Rn,

(3.89)

where xr(t) ∈ R is some function of time chosen freely by the designer.
The application of PIESO observer requires the nominal plant to
satisfy some assumptions, defined on the basis of the character of
the regressor and state of the plant as Assumption 3.3–3.5. If the
problem of closed-loop control is considered, the satisfaction of some
of them cannot be verified in advance, as the evolution of the state
of the system is initially unknown. Thus, following the approach of
Section 2.2, the set of similar assumptions is defined on the basis of
the reference trajectory. Namely, assume that the nominal plant is such
that Assumption 3.3 holds and the reference trajectory satisfies what
follows.

Assumption 3.7. Let reference trajectory xr(t) be such that

max(‖ψ(t, xr)‖ ,
∥∥∥∥ ddtψ(t, xr)

∥∥∥∥) 6 ψM (3.90)

for some constant ψM ∈ R+ and any t > 0.

Assumption 3.8. Let the reference trajectory xr(t) be such that regressor
ψ(t, xr) evaluated on the reference trajectory satisfies

∫t+TPE

t

ψT (τ, xr(τ))ψ(τ, xr(τ))dτ > µIk (3.91)

for some constants µ, TPE ∈ R+ and all t > 0.

Corollary 3.4. If Assumptions 3.7 and 3.8 hold, then there exists matrix

M(t, xr) =
∫∞

t

et−τψT (τ, xr(τ))ψ(τ, xr(τ))dτ ∈ Rk×k (3.92)

satisfying

µe−TPE ‖v‖2 6 vTMv 6 ψ2M ‖v‖2 (3.93)

for any vector v ∈ Rk. The time derivative of matrix M(t, xr) is given as

d

dt
M(t, xr) =M(t, xr) −ψT (t, xr(t))ψ(t, xr(t)). (3.94)

Reminiscent of the approach embraced in the PIESO design, multi-
ple variants of the controller are proposed depending on the specific
characteristics of the plant or properties of the system. Namely, the
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simple solution similar to that of Section 3.2.1 is presented for the
systems with regressor being a known function of time only. For the
more sophisticated systems with disturbance directly depending on
the state of the system, two distinct methods are proposed, with the
regressor evaluated either on the estimated state or reference trajectory.
For each of the proposed approaches, a suitable stability analysis is
presented and validation is conducted through simulation trials.

3.3.1 State independent regressor

In order to introduce the fundamental principles of the PIDRC design,
the simplified system with regressor independent of the state of the
plant is first considered. The dynamics of such a system are expressed
by

ẋ = Anx+bn (bu+ψ(t)θ) , (3.95)

where ψ(t) =
[
ψ1(t) . . . ψk(t)

]
∈ R1×k is a function of time only.

By treating the modeling uncertainty as a separate state variable, the
dynamics of the plant are rewritten as

ẋ = Anx+bn

(
bu+ψ(t)θ̂+ δ

)
,

δ̇ =
d

dt

(
ψ(t)

(
θ− θ̂

))
,

(3.96)

where δ = ψ(t)
(
θ− θ̂

)
∈ R is a total disturbance in the system and

θ̂ ∈ Rk stands for an estimate of the unknown parameters θ of the
nominal plant. The state extension of such a system is intuitively
achieved by defining z =

[
xT δ

]T =
[
z1 . . . zm

]T ∈ Rm, where
m = n+ 1, with the dynamics given by

ż = Amz+dm

(
bu+ψ(t)θ̂

)
+bm

d

dt

(
ψ(t)

(
θ− θ̂

))
. (3.97)

Following the procedure presented in the previous sections, the PIESO
observer for this system is designed as

˙̂z = Amẑ+dm
(
bu+ψ(t)θ̂

)
+ l (z1 − ẑ1) (3.98)

with the parameter adaptation law given by

˙̂θ = ΓψT (t)ẑm, (3.99)

where ẑ =
[
ẑ1 . . . ẑm

]T ∈ Rm stands for the estimates of the
extended state z, l =

[
l1 . . . lk

]T ∈ Rk+ defines the observer gains
and Γ ∈ Rk×k is a positive definite matrix of adaptation gains. To
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enable the algorithm to drive the state of the plant along the desired
reference trajectory, the estimated model of the plant is incorporated
into the standard ADRC controller given by (2.32). Namely, the control
law is proposed as

u = b−1
(
v−ψ(t)θ̂− ẑm

)
(3.100)

with the internal control law v designed as

v = kT (xr −Λnẑ) + x
(n)
r . (3.101)

The controller is here designed in accordance with the general princi-
ple of the proposed adaptive ADRC scheme. In the initial time instants,
the estimate of the total disturbance is a major factor of the control law,
as the quality of the estimated model of the plant may be insufficient
to ensure the proper operation of the plant. As the adaptation pro-
gresses, the total disturbance is expected to vanish and the dynamics
of the plant evaluated using the identified parameters are instead used
to compensate for the impact of the nominal modeling uncertainty.
The control law (3.100) thus ultimately converges to the form suitable
for a conventional non-adaptive feedback controller. The graphical
visualization if the proposed control scheme is presented in Fig. 3.19.

Plant

Extended State Observer

Control law

Adaptation Law

θ̂

. . .
k1

kn

1
b b

∫ … ∫

ψ(t)θ

∫

l1

…

…

∫

ln

∫

lm

ψ(t)b θ̂

Γ

ΓψT (t)ẑm
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ẋrn

xr1

xrn

v

ẑ1
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Figure 3.19: The detailed graphical illustration of the considered PIDRC
controller with regressor dependent on the state.
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Following the analysis approach presented in the previous sections,
denote the tracking, estimation, and identification errors as x̃ = xr − x,
z̃ = z− ẑ, and θ̃ = θ− θ̂, respectively. The dynamics of these errors
under the proposed control scheme are given by

˙̃x = Gx̃−Wz̃,
˙̃z = Hz̃+bmψ̇(t)θ̃+bmψ(t)Γ

(
ψT (t)bTmz̃−ψ

T (t)ψ(t)θ̃
)

,
˙̃θ = −ΓψT (t)ψ(t)θ̃+ ΓψT (t)bTmz̃,

(3.102)

where G = An −bnkT , H = Am − lcTm and W = bnkTΛn +bnbTm.
By applying the standard bandwidth parametrization of the controller
and observer gains, as given in Section 2.1, the algorithm is tuned
with

li = l̄iω
i
o, i ∈ {1,m},

kj = k̄jω
n+1−j
c , j ∈ {1,n}

(3.103)

withωc,ωo ∈ R+ being the bandwidths of the controller and observer.
The scaled tracking and estimation errors are then formulated as

z̄i = ω
m−i
o z̃i, i ∈ {1,m},

x̄j = ω
n−j
c x̃j, j ∈ {1,n},

(3.104)

which is equivalent to

l = ωmo Φ
−1
o l̄, k = ωcΦck̄,

z̄ =Φoz̃, x̄ =Φcx̃
(3.105)

with the scaling matrices Φo = diag(ωm−1
o ,ωm−2

o , . . . , 1) ∈ Rm×m

andΦc = diag(ωn−1c ,ωn−2c , . . . , 1) ∈ Rn×n being expressed in terms
of the chosen bandwidths ωo,ωc. Substituting (3.102) to (3.105) yields
the dynamics of the scaled errors given by

˙̄x = ωcḠx̄−bn
(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄,

˙̄z = ωoH̄z̄+bmψ̇(t)θ̃+bmψ(t)Γ
(
ψT (t)bTmz̄−ψ

T (t)ψ(t)θ̃
)

,
˙̃θ = −ΓψT (t)ψ(t)θ̃+ ΓψT (t)bTmz̄

(3.106)
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with Ḡ = An −bnk̄
T , H̄ = Am − l̄cTm, and explicitly given by

H̄ =



−l̄1 1 0 · · · 0
−l̄2 0 1

. . . 0
...

...
. . . . . .

...

−l̄n 0 0
. . . 1

−l̄m 0 0 · · · 0


, Ḡ =


0 1 · · · 0
...

...
. . .

...

0 0
. . . 1

−k̄1 −k̄2 · · · −k̄n

 .

(3.107)

Assumption 3.9. Let the scaled control and observer gains k̄, l̄ be chosen
such that matrices Ḡ, H̄ are Hurwitz.

If Assumption 3.9 is satisfied then there exist positive definite ma-
trices R ∈ Rn×n and P ∈ Rm×m such that ḠTR+ RḠ = −In and
H̄TP+PH̄ = −Im. By taking advantage of this notion, the properties
of the presented PIDRC controller are expressed by the following
theorem.

Theorem 3.3. For system (3.95) satisfying Assumptions 3.3, 3.7 and 3.8, the
control law (3.100) with observer (3.98) and adaptation law (3.99) guarantees
a global exponential convergence of errors x̃, z̃ and θ̃ to the origin under the
tuning proposed by Assumption 3.9 for ωo and ωc chosen high enough and
Γ chosen with a norm small enough.

Proof. Following the footsteps of the PIESO analysis, recall Assumptions 3.7
and 3.8 with Corollary 3.4 and consider the following function

V3.3(x̄, z̄, θ̃) =
1

2
x̄TRx̄+

1

2
z̄TPz̄+ θ̃

T

(
1

2
Γ−1 −M(t)

)
θ̃,

(3.108)

which satisfies the inequality

V3.3(x̄, z̄, θ̃) >
1

2
rm ‖x̄‖2 +

1

2
pm ‖z̄‖2 +

(
1

2
γ−1M −ψ2M

)∥∥θ̃∥∥2
(3.109)

with rm = λmin(R) ∈ R+ and γM =
∥∥Γ∥∥ ∈ R+. The considered function

is thus positive definite for any adaptation gains Γ satisfying γM < 1
2ψ

−2
M .
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The time derivative of function V3.3 along the trajectories of the system is
given by

V̇3.3 = −
1

2
ωcx̄T x̄− x̄TRbn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

+ z̄T
(
−
1

2
ωo +PbmψΓψTbTm

)
z̄+ θ̃

T
(
2MΓψTψ

−M
)
θ̃+ z̄T

(
bmψ− 2bmψΓM−PbmψΓψTψ

+Pbmψ̇
)
θ̃

(3.110)

with arguments ofψ(t) andM(t) omitted for brevity. By taking advantage of
properties ofM(t) matrix and invoking the Young’s inequality, the following
bound of V̇3.3(x̄, z̄, θ̃) can be defined,

V̇3.3 6
1

2

(
−ωc + rM

(
kM

(
ωc

ωo

)n|1
+ 1

))
‖x̄‖2 +

(
− µe−TPE

+ 2ψ4MγM +
1

2
ε

)∥∥θ̃∥∥2 + 1
2

(
−ωo + 2pMψ

2
MγM

+ rM

(
kM

(
ωc

ωo

)n|1
+ 1

)
+
1

ε

(
ψM + 2ψ3MγM

+ pMψ
3
MγM + pMψM

)2)
‖z̄‖2

(3.111)

for any ε ∈ R+ with rM =
∥∥R∥∥ ∈ R+, kM =

∥∥k̄∥∥ ∈ R+ and pM =∥∥P∥∥ ∈ R+. By choosing ωc > rM
(
kM
(
ωc
ωo

)n|1
+ 1
)
, γM < 1

2µe
−TPEψ−4

M

and ε < 1
2

(
µe−TPE − 2ψ4MγM

)
, the entire expression is made negative

definite for ωo chosen high enough. Function V3.3(x̄, z̄, θ̃) thus satisfies
the conditions of Lyapunov theorem and its existence implies the asymptotic
convergence of the tracking, estimation and identification errors to the origin.

The stability analysis presented here relies strongly on the earlier
results obtained for the PIESO observer, yielding similar conclusions
concerning the proper tuning of the controller. It is shown that if the
bandwidths of the controller and observer are set high enough, prefer-
ably with ωo significantly larger than ωc to suppress the impact of
transient state estimation errors on the control law, and the adaptation
gain is chosen small enough, the stability of the closed-loop system is
ensured and all errors converge to the origin despite initial modeling
uncertainty present in the system. To better evaluate the performance
of the proposed solution a numerical simulation is conducted.

Simulation 3.9. The third order system with dynamics conforming to
(3.95) and n = 3,b = 1,ψ =

[
cos(3t) sin3(t) 1

]
, as well as θ =
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[
−1 3 3

]T , is considered. The PIDRC control scheme is designed for such
a system following (3.98)–(3.100) with Γ = 0.2I3, ωo = 100 and ωc =

1. The reference trajectory is chosen as (3.89) with xr(t) = sin( 210πt) +
1
2 sin(23πt). While the choice of a reference trajectory does not impact the
ability of the observer to estimate the parameters of the plant, in the closed-loop
control scheme it directly impacts the tracking procedure and state estimation.
The results of the conducted simulation are given in Fig. 3.20. The choice of
ωc = 1 implies that scaled tracking errors x̄ = x̃ and are thus omitted in the
plots.
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Figure 3.20: Time responses of the third order system with time-dependent
regressor under the proposed PIDRC controller. Results of con-
ventional ADRC with Γ = 03 shown in transparent plots of x̃, z̃
and z̄.

The presented results confirm the findings of the theoretical analysis.
Convergence of the tracking, estimation, and identification errors to the
origin is visible. Similarily, the vanishing of the total disturbance can
be observed, which indicates the correct progress of the identification
procedure. Eigenvalues of M(t) and the evolution of V3.3(x̄, z̄, θ̃) are
also shown to further reinforce the analytical results. Notably, due
to the character of the regressor, the identification of the parameters
is here independent of the tracking of the reference trajectory, and
the evolution of the parameters is the same as in shown in Fig. 3.9. It
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follows that the speed of the adaptation of the PIDRC controller can
also be adjusted by a proper choice of Γ matrix, as demonstrated in
Fig. 3.10.

3.3.2 Adaptation based on the reference state

As is the case with the task of parameter identification using PIESO
observer, in the problem of closed-loop trajectory tracking, the PIDRC
controller in the proposed form utilizing the regressor expressed as a
function of time only is not suitable for application in the majority of
practical scenarios. The need for a controller in a more universal form,
applicable to a general system given by (3.88), thus arises. Recall the
considered nominal system given by (3.88) as

ẋ = Anx+bn (bu+ψ(t, x)θ) . (3.112)

Following the approach embraced in the analysis of Section 2.2, the
dynamics of the systems are reformulated to incorporate the reference
trajectory and isolate the impacts of the tracking and estimation error
as

ẋ = Anx+bn

(
bu+ (ψ(t,Λnz) −ψ(t, xr))

(
θ− θ̂

)
+ψ(t,Λnz)θ̂+ δ

)
,

δ̇ =
d

dt

(
ψ(t, xr)

(
θ− θ̂

))
,

(3.113)

where δ = ψ(t, xr)
(
θ − θ̂

)
is the total disturbance of the system

with ψ being a function of state. The dynamics of the extended state
z =

[
xT δ

]T ∈ Rm take the form of

ż = Amz+dm

(
bu+ (ψ(t,Λnz) −ψ(t, xr))

(
θ− θ̂

)
+ψ(t,Λnz)θ̂

)
+bm

d

dt

(
ψ(t, xr)

(
θ− θ̂

))
.

(3.114)

In order to synthesize the observer and the controller for such a
system some evaluation of the unknown state of the plant is necessary
to calculate the momentary value of the regressor. The proposed
standalone PIESO designed for the identification task utilizes the state
estimate produced by the observer to solve this issue. Alternatively,
as the task of closed-loop control is considered here, the reference
trajectory may be employed by taking advantage of the expectation
that state of the plant indeed converges to this reference signal. Thus,
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two distinct solutions to the problem of PIDRC design in the presence
of regressor being a function of state arise.

Consider first the approach employing the reference trajectory to
synthesize the observer and controller. Incorporation of the reference
signal into the PIESO observer designed for a system with state-
dependent regressor yields

˙̂z = Amẑ+dm
(
bu+ψ(t, xr)θ̂

)
+ l (z1 − ẑ1) (3.115)

with ẑ =
[
ẑ1 . . . ẑm

]T ∈ Rm being the state estimate produced
by the observer. Notably, the observer in the proposed form can be
synthesized and implemented on the basis of available and known
signals. The parameter adaptation law is then proposed as

˙̂θ = Proj(τ, θ̂,Θ), τ = ΓψT (t, xr)ẑm, (3.116)

where Proj(·) satisfies (3.52) and thus Remarks 3.2 and 3.3, as well
as Corollary 3.3, still hold. Finally, the control law is synthesized by
taking advantage of the regressor evaluated on the reference trajectory
and takes the form of

u = b−1
(
v−ψ(t, xr)θ̂− ẑm

)
(3.117)

with

v = kT (xr −Λnẑ) + x
(n)
r . (3.118)

The graphical illustration of the considered method is presented in
Fig. 3.21.

The application of the PIDRC method in the presented form to the
system with the regressor being a function of the state of the plant
leads to the dynamics of tracking, estimation, and identification errors
in the form of

˙̃x = Gx̃−Wz̃−bn (ψ(t,Λnz) −ψ(t, xr))θ,

˙̃z = Hz̃+dm (ψ(t,Λnz) −ψ(t, xr))θ+bm

(
ψ̇(t, xr)θ̃

−ψ(t, xr)Proj(τ)
)

,

˙̃θ = −Proj(τ),

τ = ΓψT (t, xr)ψ(t, xr)θ̃− ΓψT (t, xr)bTmz̃.

(3.119)
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Figure 3.21: The detailed graphical illustration of the considered PIDRC
controller with regressor dependent on the state and algorithm
synthesized on the basis of the reference trajectory.

Embracing the tuning method of bandwidth parametrization given
by (3.103) and recalling the definition of the scaled tracking and
estimation errors in the form of (3.104) yields

˙̄x = ωcḠx̄−bn
(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄−bn

(
ψ(t,Λnz)

−ψ(t, xr)
)
θ,

˙̄z = ωoH̄z̄+ωodm (ψ(t,Λnz) −ψ(t, xr))θ+bm

(
ψ̇(t, xr)θ̃

−ψ(t, xr)Proj(τ)
)

,

˙̄θ = −Proj(τ),

τ = ΓψT (t, xr)ψ(t, xr)θ̃− ΓψT (t, xr)bTmz̄.
(3.120)

with Ḡ and H̄ as given by (3.107). The following theorem summarizes
the properties of the proposed solution.

Theorem 3.4. For system (3.112) satisfying Assumptions 3.3, 3.7 and 3.8,
the control law (3.117) with observer (3.115) and adaptation law (3.116)
guarantees a global exponential convergence of errors x̃, z̃ and θ̃ to the origin
under the tuning proposed by Assumption 3.9 for ωo and ωc chosen high
enough and Γ chosen with a norm small enough.



3.3 parameter identifying drc 155

Proof. Consider the function given by

V3.4(x̄, z̄, θ̃) =
1

2
ωox̄TRx̄+

1

2
z̄TPz̄+ θ̃

T

(
1

2
Γ−1 −M(t, xr)

)
θ̃.

(3.121)

Function in such a form satisfies

V3.4(x̄, z̄, θ̃) >
1

2
ωorm ‖x̄‖2 +

1

2
pm ‖z̄‖2 +

(
1

2
γ−1M −ψ2M

)∥∥θ̃∥∥2
(3.122)

and is thus positive definite for any Γ satisfying γM < 1
2ψ

−2
M . By taking

advantage of the dynamics of the scaled errors (3.120), the time derivative of
V3.4(x̄, z̄, θ̃) is obtained as

V̇3.4 = −
1

2
ωcωox̄T x̄−ωox̄TRbn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

−ωox̄TRbn (ψ−ψr)θ−
1

2
ωoz̄T z̄

+ωoz̄TPdm (ψ−ψr)θ+ z̄TPbm
(
ψ̇rθ̃−ψr Proj(τ)

)
− θ̃

T
Γ−1 Proj(τ) + 2θ̃TMProj(τ) − θ̃TMθ̃+ θ̃

T
ψTrψrθ̃

(3.123)

with ψ = ψ(t,Λnz) and ψr = ψ(t, xr) denoted for brevity. By adding and
subtracting the term θ̃Γ−1τ and recalling (3.52) the following inequality is
established,

V̇3.4 6

(
−
1

2
ωo

(
1− ε1

(
rMkM

(
ωc

ωo

)n|1
+ rM

+ω
−n+1|0
c pMψLθM

))
+ pMγMψ

2
M +

1

2ε2

(
pMψM

+ pMγMψ
3
M + 2ψ3MγM +ψM

)2)
‖z̄‖2 +ωo

(
−
1

2
ωc

+ω
−n+1|0
c rMψLθM +

1

2ε1

(
rM

(
kM

(
ωc

ωo

)n|1
+ 1

)

+ω
−n+1|0
c pMψLθM

))
‖x̄‖2 +

(
− µe−TPE + 2ψ4MγM

+
1

2
ε2

)∥∥θ̃∥∥2
(3.124)

for any ε1, ε2 ∈ R+. More details of the presented calculations are given
in Appendix A.2. Derivative V̇3.4(x̄, z̄, θ̃) is negative definite if Γ is chosen
to satisfy γM < 1

2µe
−TPEψ−4

M , setting ε2 < 1
2

(
µe−TPE − 2ψ4MγM

)
and ε1

small enough, and finally tuning ωc and ωo high enough. Thus positive



156 parameter identifying adrc

definite V3.4(x̄, z̄, θ̃) with negative definite derivative implies the convergence
of all errors to the origin.

The presented analysis consists of a single Lyapunov function used
as a basis for the proof of the error convergence in the closed-loop
system. Despite the presence of the regressor in the form of function
of the state of the plant, the use of two separate functions, as in
Theorem 3.2, is not necessary. The proposition of the PIDRC controller
based on the reference trajectory is thus of significant importance
from the theoretical perspective, as the complete proof of stability is
obtained using the standard Lyapunov approach and the exponential
converge of the errors is established. This notion justifies a separate
proposition of two distinct synthesis methods of the PIESO controller
for the plants with a state-dependent regressor. The performance of
the considered approach is validated in simulation.

Simulation 3.10. Consider a third-order system in the form of (3.112). The
investigated plant is characterized by b = 1,ψ = xT and θ =

[
−1 3 3

]T .
The PIDRC controller is designed with according to (3.115)–(3.117) with
Γ = 0.05I3, ωo = 100 and ωc = 1. The projection operator is designed
as in Remark 3.2 with ϑi = 100 for i ∈ {1, 2, 3}. The reference trajectory
is chosen as (3.89) with xr(t) = sin(2π10 t) +

1
2 sin(23πt). The results of the

simulation are given in Fig. 3.22.

The presented results are in line with the conclusions of Theo-
rem 3.4. The convergence of all errors to the origin is visible and
proper identification of the unknown parameters is performed. Evolu-
tion of V3.4(x̄, z̄, θ̃) and its derivative also conform to the expectations
formed on the basis of the results of analytical investigations. Similar-
ily, as in Fig. 3.12, the choice of projection operator does not impact
the results of the simulation, as the transient values of θ̂ are within
bounds imposed by the projection operator throughout the entire
simulation. Had the initial errors or character of the system been dif-
ferent, the projection operator would suppress the exceeding growth
of the parameters estimates as shown for the case of PIESO observer
in Fig. 3.13.

3.3.3 Adaptation based on the estimated state

The controller in the form proposed in the previous section is designed
with the adaptation procedure based on the reference trajectory. Thus,
its operation is dependent on the capability of the conventional ADRC
incorporated into the controller to drive the state of the system close
enough to the reference trajectory where the adaptation law becomes
suitable for a real system. Alternatively, the focus may be given only
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Figure 3.22: Time responses of the third order system with state-dependent
regressor under the proposed PIDRC controller designed on the
basis of the reference trajectory. Results of conventional ADRC
with Γ = 03 shown in transparent plots of x̃, z̃ and z̄.

to the abilities of the ESO observer and the adaptation law can be de-
signed employing the estimates of the system. Thus, the performance
of ESO in producing the estimates close enough to the real state of
the plant becomes crucial in the operation of the algorithm. To this
end, by taking into consideration the nominal system (3.112) with an
extended state (3.114), the observer is designed incorporating the state
estimates as a basis of the regressor evaluation as

˙̂z = Amẑ+dm
(
bu+ψ(t,Λnẑ)θ̂

)
+ l (z1 − ẑ1) (3.125)

with ẑ =
[
ẑ1 . . . ẑm

]T ∈ Rm being the state estimate produced
by the observer. By taking advantage of this approach, the parameter
adaptation law is synthesized as

˙̂θ = Proj(τ, θ̂,Θ), τ = ΓψT (t,Λnẑ)ẑm (3.126)
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with Proj(·) satisfying (3.52) and Remarks 3.2 and 3.3. The control law
is formulated in the same manner, as

u = b−1
(
v−ψ(t,Λnẑ)θ̂− ẑm

)
(3.127)

with

v = kT (xr −Λnẑ) + x
(n)
r . (3.128)

The graphical illustration of the considered method is presented in
Fig. 3.23.
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Figure 3.23: The detailed graphical illustration of the considered PIDRC
controller with regressor dependent on the state.

The closed-loop system with the proposed PIDRC controller de-
signed on the basis of the state estimates is characterized by the track-
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ing, estimation, and adaptation errors with the dynamics expressed
by

˙̃x = Gx̃−Wz̃−bn
(
(ψ(t,Λnz) −ψ(t, xr)) θ̃

+ (ψ(t,Λnz) −ψ(t,Λnẑ)) θ̂
)

,

˙̃z = Hz̃+dm
(
(ψ(t,Λnz) −ψ(t, xr)) θ̃+

(
ψ(t,Λnz)

−ψ(t,Λnẑ)
)
θ̂
)
+bm

(
ψ̇(t, xr)θ̃−ψ(t, xr)Proj(τ)

)
,

˙̃θ = −Proj(τ),

τ = Γ

((
ψT (t,Λnẑ) −ψT (t,Λnz)

)
+
(
ψT (t,Λnz) −ψT (t, xr)

)
+ψT (t, xr)

)(
ψ(t, xr)θ̃−bTmz̃

)
.

(3.129)

Embracing the tuning method of bandwidth parametrization given
by (3.103) and recalling the definition of the scaled tracking and
estimation errors in the form of (3.104) yields

˙̄x = ωcḠx̄−bn
(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄−bn

((
ψ(t,Λnz)

−ψ(t, xr)
)
θ̃+ (ψ(t,Λnz) −ψ(t,Λnẑ)) θ̂

)
,

˙̄z = ωoH̄z̄+ωodm

(
(ψ(t,Λnz) −ψ(t, xr)) θ̃+

(
ψ(t,Λnz)

−ψ(t,Λnẑ)
)
θ̂

)
+bm

(
ψ̇(t, xr)θ̃−ψ(t, xr)Proj(τ)

)
,

˙̃θ = −Proj(τ),

τ = Γ

((
ψT (t,Λnẑ) −ψT (t,Λnz)

)
+
(
ψT (t,Λnz) −ψT (t, xr)

)
+ψT (t, xr)

)(
ψ(t, xr)θ̃−bTmz̄

)
(3.130)

with Ḡ and H̄ as given by (3.107). The following theorem summarizes
the properties of the proposed solution.

Theorem 3.5. For system (3.112) satisfying Assumptions 3.3, 3.7 and 3.8,
the control law (3.127) with observer (3.125) and adaptation law (3.126)
guarantees a global asymptotic convergence of errors x̃, z̃ and θ̃ to the origin
under the tuning proposed by Assumption 3.9 for ωo and ωc chosen high
enough and Γ chosen with a norm small enough.

Proof. Similarily to the approach employed in the analysis of Theorem 3.2
on the PIESO observer synthesized on the basis of the state estimate, proof
of the considered theorem is carried in two distinct steps. Initially, taking
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advantage of the properties of the projection operator, the boundedness of the
tracking and estimation errors is established. Then, this notion is embraced to
proof the convergence of all errors to the origin. Consider first the auxiliary
function

V∗3.5(x̄, z̄) =
1

2
ωox̄TRx̄+

1

2
z̄TPz̄+

1

2
θ̃
T
Γ−1θ̃

− z̄TPbmψ(t, xr)θ̃,

(3.131)

which satisfies

V∗3.5(x̄, z̄) >
1

2
ωorm ‖x̄‖2 +

1

2
(pm − ε (pMψM)) ‖z̄‖2

+
1

2

(
γ−1M −

1

ε
pMψM

)∥∥θ̃∥∥2
(3.132)

for any ε ∈ R+. Thus, V∗3.5(x̄, z̄) is positive for any choice of Γ satisfying
γM < ε

(
pMψ

2
M

)−1 with ε < pm
(
pMψM

)−1. The time derivative of
V∗3.5(x̄, z̄) takes the form of

V̇∗3.5 = −
1

2
ωcωox̄T x̄−ωox̄TRbn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

−ωox̄TRbn

(
(ψ−ψr) θ̃+

(
ψ− ψ̂

)
θ̂
)
−
1

2
ωoz̄T z̄

+ωoz̄TPdm

(
(ψ−ψr) θ̃+

(
ψ− ψ̂

)
θ̂
)

− θ̃
T
Γ−1 Proj(τ) −ωoθ̃

T
ψTrb

T
mPH̄z̄

−ωoθ̃
T
ψTrb

T
mPdm

(
(ψ−ψr) θ̃+

(
ψ− ψ̂

)
θ̂
)

− θ̃
T
ψTrb

T
mPbm

(
ψ̇rθ̃−ψr Proj(τ)

)
(3.133)

and satisfies

V̇∗3.5 6 ωo

(
−
1

2
ωc + rMψLθMω

−n+1|0
c +

1

2ε

(
rMkM

(
ωc

ωo

)n|1
+ rM + pMψLθMω

−n+1|0
c

))
‖x̄‖2

+

(
−
1

2
ωo

(
1− ε

(
rMkM

(
ωc

ωo

)n|1
+ rM

+ pMψLθMω
−n+1|0
c

))
+ω

−n+1|0
c pMψLθM

+ω
−n|−1
o

(
θMψL + θMpMγMψ

2
MψL

))
‖z̄‖2
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+

(
ω

−n+1|0
c rMψLθM +ω

−n+1|0
c

(
θMpMγMψLψ

2
M

+ θMψL

))
‖x̄‖ ‖z̄‖+

(
ωoθMψMpMhM + θMpMγMψ

3
M

+ θMψM +ω
−n+1|0
o θ2MψMpMψL +ω

−n|−1
o

(
θ2MψLψM

+ pMγMψLψ
3
Mθ

2
M

))
‖z̄‖+ω−n+1|0

c

(
ωoθ

2
MψMpMψL

+ θ2MψLψM + pMγMψLψ
3
Mθ

2
M

)
‖x̄‖+ pMγMψ4Mθ2M

(3.134)

for any ε ∈ R+ with hM =
∥∥H̄∥∥ ∈ R+. By setting ε,ωc and finally

ωo high enough, this expression is made negative definite for
∥∥x̄∥∥ and

∥∥z̄∥∥
large enough. It is inferred, that x̄ and z̄ converge to some neighborhood
of the origin, and there exist some constants xM, zM, Txz ∈ R+, such that∥∥x̄∥∥ 6 xM and

∥∥z̄∥∥ 6 zM for any t > Txz. Similarily as in the proof of
Theorem 3.2, it can be shown that xM and zM remain bounded with the
growth of ωo and ωc and thus the proper tuning of the algorithm is not
hindered.

By taking advantage of the established notion of the boundedness of the
tracking and estimation errors, the convergence of all errors in the considered
system can be proved. To this end, consider the function in the form of

V3.5(x̄, z̄, θ̃) =
1

2
ωox̄TRx̄+

1

2
z̄TPz̄+ θ̃

T

(
1

2
Γ−1 −M(t, xr)

)
θ̃.

(3.135)

The proposed function satisfies

V3.5(x̄, z̄, θ̃) >
1

2
ωorm ‖x̄‖2 +

1

2
pm ‖z̄‖2 +

(
1

2
γ−1M −ψ2M

)∥∥θ̃∥∥2
(3.136)

and is positive definite for any Γ satisfying γM < 1
2ψ

−2
M . Calculation of the

time derivative of this function yields

V̇3.5 = −
1

2
ωcωox̄T x̄−ωox̄TRbn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

−ωox̄TRbn

(
(ψ−ψr) θ̃+

(
ψ− ψ̂

)
θ̂
)
−
1

2
ωoz̄T z̄

+ωoz̄TPdm

(
(ψ−ψr) θ̃+

(
ψ− ψ̂

)
θ̂
)
+ z̄TPbm

(
ψ̇rθ̃

−ψr Proj(τ)
)
− θ̃

T
Γ−1 Proj(τ) − θ̃TMθ̃

− 2θ̃
T
MProj(τ) + θ̃TψTrψrθ̃.

(3.137)
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This can be further transformed by adding and subtracting the term θ̃Γ−1τ
and recalling the property given by (3.52) to obtain

V̇3.5 6

(
ωo

(
−
1

2
ωc +ω

−n+1|0
c θMrMψL +

1

2ε1

(
rM

+ rMkM

(
ωc

ωo

)n|1
+ω

−n+1|0
c pMθMψL

))
+
1

2
θM

(
ω

−n+1|0
c rMψL +ω

−n+1|0
c

(
pMγMψLψ

2
M

+ψL + 2ψ
2
MγMψL

))
+

1

2ε2

(
ω

−n+1|0
c

(
θMψLψM

+ 2θMγMψ
3
MψL

))
2

)
‖x̄‖2 +

(
1

2
ωo

(
− 1+ ε1

(
rM

+ rMkM

(
ωc

ωo

)n|1
+ω

−n+1|0
c pMθMψL

))
+ω

−n+1|0
c pMθMψL +ω

−n+1|0
c xMpMγMψMψL

+ω
−n|−1
o

(
pMγMψLψ

2
MθM + zMpMγMψMψL

+ θMψL + 2θMψ
2
MγMψL

)
+ pMγMψ

2
M

+
1

2

(
ω

−n+1|0
c θMrMψL +ω

−n+1|0
c

(
pMγMψLψ

2
MθM

+ θMψL + 2θMψ
2
MγMψL

))
+

1

2ε3

(
pMγMψ

3
M

+ pMψM +ψM + 2γMψ
3
M +ω

−n|−1
o

(
θMψMψL

+ 2θMγMψ
3
MψL

))2)
‖z̄‖2 +

(
− µe−TPE + 2γMψ

4
M

+
1

2
ε2 +

1

2
ε3

)∥∥θ̃∥∥2
(3.138)

for any ε1, ε2, ε3 ∈ R+. More detailed calculations are shown in Ap-
pendix A.2. The first terms of the expressions associated with squares of∥∥x̄∥∥ and

∥∥z̄∥∥ are negative for ε1 and ratio of ωc and ωo small enough with
ωc high enough. The coefficient of the square of

∥∥θ̃∥∥ is negative for ε2, ε3
and Γ small enough. Finally, the negative definiteness of the entire function
is guaranteed by choosing ωo high enough. Thus, the errors in the system
exponentially converge to the origin once the tracking and estimation errors
reach the neighborhood of the origin which is ensured by the earlier analysis.

In order to verify the characteristics of the proposed PIDRC con-
troller designed on the basis of the state estimates, the numerical
simulation is conducted.

Simulation 3.11. The third order system is considered with the dynamics
given by (3.112) and b = 1,ψ = xT ,θ =

[
−1 3 3

]T . The controller is
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synthesized according to (3.125)–(3.127) and tuned with Γ = 0.05I3,ωo =

100,ωc = 1. The projection operator is incorporated according to Remark 3.2
with ϑi = 100 for i ∈ {1, 2, 3}. The reference trajectory to be tracked is
chosen as (3.89) with xr(t) = sin(2π10 t) +

1
2 sin(2π3 t). The obtained results

are given in Fig. 3.24.

0 25 50 75

−1

0

1

t [s]

x̃1

x̃2

x̃3

0 25 50 75

−10

0

10

t [s]

u

0 25 50 75
−4
−2
0
2
4

t [s]

z̃1

z̃2

z̃3

z̃4

0 25 50 75
−4

−2

0

t [s]

z̄1
z̄2
z̄3
z̄4

0 25 50 75

−5

0

5

t [s]

ẑ4
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Figure 3.24: Time responses of the third order system with state-dependent
regressor under the proposed PIDRC controller designed on
the basis of state estimates. Results of conventional ADRC with
Γ = 03 shown in transparent plots of x̃, z̃ and z̄.

The results of the simulation show the effectiveness of the proposed
control scheme in the task of reference trajectory tracking in the
presence of parametric uncertainty of the plant. The convergence of the
tracking, estimation, and identification errors to the origin is achieved,
with the evolution of the signals resembling that presented in Fig. 3.22.
Importantly, this similarity is not guaranteed in all cases and the
advised choice of the controller based either on the reference trajectory
or estimated state depends on the properties of the considered system.
In the plots only the evolution of V3.2(x̄, z̄, θ̃) is given, as the analysis
of the auxiliary function V∗3.2(x̄, z̄) appears to be required only in some
specific cases of exceedingly large transient estimation and tracking
error, which is not a case in the considered scenario.
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3.4 experimental validation

The PIESO and PIDRC algorithms proposed in the proceeding section
constitute a novel solution to the problem of adaptive control and
state estimation in the presence of parametric uncertainty of the plant.
Thanks to their straightforward interpretation and intuitive design
they may be easily applied to a wide variety of practical problems.
Yet, presented analysis and numerical trials on simplified systems
unveiled only the theoretical properties of these methods and rigorous
experimental verification of their performance in real-life scenarios is
necessary. To this end, the application of the considered algorithms to
two distinct mobile robotic systems is studied. At first, the results of
the identification of the dynamic model of the hovercraft platform are
presented on the basis of findings reported in [229]. It is shown that
the proposed PIESO observer is capable of successful identification of
the entire set of parameters of the strongly underactuated dynamic
system. In the second part of this section, the series of experiments on
both identification and adaptive control of the two-wheeled mobile
robot is presented following the results of [230]. Notably, both exam-
ples discussed in this section do not strictly conform to the nominal
structure of the system considered in Section 3.2 and 3.3, and thus the
presented results unveil some flexibility of the proposed algorithms
as highlighted already in Section 3.2.3.

3.4.1 Identification of the hovercraft system

The hovercraft is a type of mobile vehicle utilizing an air cushion
to reduce the friction between the vehicle and the ground, and the
propeller providing the thrusting force. Such systems are inherently
characterized by high inertia of movement and are highly underactu-
ated as the direction and magnitude of the thrust generated by the
propeller are usually the only control signals of the device. Some of
the earliest results on the automated control of hovercraft vehicles
have been reported in [66, 235] and considered the problem of position
stabilization only. These solutions either required full knowledge of
the dynamics of the system or assumed a simplified model without
any parameters, thus limiting the performance of the controller. In
the papers [267–269] the advantage has been taken of the property of
the differential flatness to solve the problem of the trajectory tracking
of the discussed plant. Solutions employing the traversal functions
were also reported in [25, 94, 202]. Many of these methods refer to
the simplified model of the hovercraft which may hinder their appli-
cation in real-life scenarios. Recently, attempts to lift this limitation
by incorporating parameter identification schemes into the control
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algorithms have been made. The solution employing the Kalman filter
used to online estimate the parameters of the plant and combined
with the input-output decoupling algorithm was presented in [37].
The assumption was made that the velocities of the platform are mea-
surable and the hovercraft was modeled as a first-order system with
parametric uncertainty. The control schemes with incorporated adap-
tation algorithms have also been reported in [125, 311] with the focus
given mainly to the identification of the friction effect. Following the
ADRC paradigm, the controllers utilizing the extended state observer
to estimate the impact of the unmodeled dynamics without explicit
identification of the model of the vehicle have been proposed in [201,
301].

An alternative solution to the problem of the control of the hover-
craft can be proposed by utilizing the PIESO observer to estimate the
parameters of the system and subsequently employ them in one of the
nonadaptive model-based controllers suitable for the dynamics of the
hovercraft system. Such an application of the adaptive observer in the
task of parameter identification is covered in this section. To this end,
consider the experimental testbed consisting of the remotely controlled
hovercraft model. The discussed vehicle employs two separate pro-
pellers to generate lift and thrust forces, with the latter coupled with a
simple rudder used to control the direction of the vehicle movement.
The detailed description of the considered plant is given in Section 4.1
and the schematic view of the system is shown in Fig. 3.25. Consider
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Figure 3.25: Scheme of the kinematics of the hovercraft robot

the dynamics of the hovercraft system expressed by the following
non-affine system,

q̇ = R(ϕ)x,

ẋ = −Dx+b(u1)u2 + c(x)
(3.139)
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with the rotation matrix R(ϕ) ∈ R3×3 is given by

R(ϕ) =

cos(ϕ) − sin(ϕ) 0

sin(ϕ) − cos(ϕ) 0

0 0 1

 (3.140)

and used to transform the velocities of the hovercraft between the body
frame and the inertial frame. The term q =

[
x y ϕ

]T ∈ R3 corre-
sponds to the position and orientation of the hovercraft in the inertial
frame, x =

[
v w r

]T ∈ R3 stands for the linear and angular velocity
of the platform in the local coordinate system, and u =

[
u1 u2

]T ∈
R2 are input signals representing the orientation of the rudder and
the control signal of the propeller correspondingly. Damping matrix
D = diag(σvm , σwm , σrJ ) ∈ R3×3 represents the friction forces and aero-
dynamic drag impacting the moving hovercraft with σv,σw,σr ∈ R+

being the damping coefficients in each direction of the local coordi-
nate system and m, J ∈ R+ standing for the mass and inertia of the
robot. The term b =

[
b
m cos(u1) b

m sin(u1) −bJ a sin(u1)
]T ∈ R3

describes the input gains in each of degrees of freedom with re-
spect to the orientation of the rudder and b ∈ R+ representing the
scaling between the input signal u2 and the thrusting force gener-
ated by the propeller. Constant a ∈ R+ is a distance between the
propeller and the center of the mass of the hovercraft. Moreover,
c(x) =

[
wr −vr 0

]T ∈ R3 stands for the nonlinear couplings due
to the centifugal effects.

The problem of the parameter identification of system (3.139) is
considered under an assumption that all of the physical parameters,
namely σv,σw,σr,m, J,a and b, are unknown, but the local velocities
x of the system are available for direct measurement. In order to
design the adaptive PIESO observer, the dynamics of the system are
rewritten following the footsteps of [37] to obtain

ẋ = Ψ(u, x)θ+ c(x) (3.141)

with Ψ(u, x) ∈ R3×5 being new regressor of the system and θ ∈ R5

standing for the lumped parameters of the plant. Specifically, taking
advantage of dynamics (3.139), expressions Ψ(u, x) and θ are given as

Ψ(u, x) =

−v 0 0 cos(u1)u2 0

0 −w 0 sin(u1)u2 0

0 0 −r 0 − sin(u1)u2

 (3.142)

and

θ =
[
σv
m

σw
m

σr
J

b
m

ab
J

]T
. (3.143)
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The system expressed by (3.141) can be interpreted as the composi-
tion of three distinct first-order systems governing movement in each
degree of freedom coupled by the impact of c(x) matrix. Notably, the
dimension of θ is lower than the number of unknown physical pa-
rameters and thus only the estimation of the accumulated parameters
is considered and the recovery of the full set of coefficients of the
nominal system is not possible. Parameters m and a are nonetheless
relatively easy to measure in practical scenarios and an advantage may
be taken of this notion to calculate the values of physical parameters
on the basis of produced estimates.

In order to design a suitable PIESO observer, the dynamics of the
system are further transformed into

ẋ = Ψ(u, x)θ̂+ c(x) + δ,

δ̇ =
d

dt

(
Ψ(u, x)

(
θ− θ̂

))
,

(3.144)

where θ̂ ∈ R5 is the estimate of the unknown parameters and δ =

Ψ(u)
(
θ− θ̂

)
∈ R3 is the total disturbance in each degree of freedom.

Importantly, as the velocities of the platform and the control signals
are assumed to be known or measurable, the terms Ψ(u) and c(x) are
known and can be evaluated at any time instant. The design procedure
for the system with the regressor being the function of time is thus
followed. Namely, extended state is defined as z =

[
xT δT

]T ∈ R6

and the adaptive observer is designed in the form of

˙̂x = Ψ(u)θ̂+ c(x) + δ̂+ l1 (x− x̂) ,
˙̂δ = l2 (x− x̂)

(3.145)

with ẑ =
[
x̂T δ̂

T ]T ∈ R6 being an estimate of the extended state of

the system and l =
[
l1 l2

]T ∈ R2+ representing gains of the observer.
The dependence of Ψ(u, x) on x is ommited in the observer definition
and subsequent analysis, as the hovercraft velocities are assumed to
be measurable and thus do not impact the identification procedure.
The structure of the observer may also be viewed as a combination
of three separate observers designed for each degree of freedom. The
adaptation law for the parameter estimation is synthesized as

˙̂θ = ΓΨT (u)δ̂ (3.146)

with adaptation gains chosed for simplicity as Γ = γI5 ∈ R5×5+ , where
γ ∈ R+ is some positive gain coefficient.

Remark 3.4. Notably, the structure of regressor Ψ(u) leads to inherent
redundancy of the identifier, as parameter θ4 is identified through both the
first and the second element of the total disturbance δ. In some practical
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scenarios, it may be advised to modify the adaptation law and employ only
one of these signals. Such a procedure may improve the performance of the
algorithm, e. g. when the velocity measurement of one of the axes is expected
to be of lower quality. Nonetheless, in the experiments presented here, the
conventional form of the PIESO as given by (3.145) and (3.146) is employed.

To verify the feasibility of the proposed PIESO observer for the hov-
ercraft system with three degrees of freedom, a numerical simulation
is first conducted.

Simulation 3.12. Consider the system with dynamics given by (3.139) with
the physical parameters chosen as σv = 0.5 kg/s,σw = 0.6 kgm2/s,σr =
0.7 kg/s,m = 1 kg, J = 2 kgm2,a = 0.5m and b = 1 to yield

θ =
[
0.5 0.6 0.35 1 0.25

]T . (3.147)

The PIESO observer is implemented according to the presented approach
and is tuned with l =

[
20 100

]T and γ = 10. The control signals of the
robot are chosen as u =

[
sin(0.01πt) 0.6 sin(0.03πt)

]T . The results of the
simulation are given in Fig. 3.26.
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Figure 3.26: Time responses of simulation of the hovercraft identification
using PIESO observer.

The trajectories of the extended state estimation errors, the dis-
turbance estimates, the control signals, and the parameter estimates
are presented. It is shown that both the estimation errors and the
disturbance estimates itself converge to the origin as the simulation
progresses. The convergence of the parameter estimates to their nom-
inal values, as given by (3.147), is also visible. Notably, despite the
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simplicity of the chosen control signals all of the parameters are cor-
rectly identified and their real values are recovered. Due to the low
frequency of the employed control inputs only moderate level of sys-
tem excitation is achieved and the adaptation procedure is relatively
slow in spite of the high values of the chosen adaptation gains. The
higher speed of the adaptation can be obtained by choosing the control
signals of the higher frequencies. Moreover, the use of control signals
with a greater number of distinct frequencies, e. g. in the form of a
sum of multiple sine waves, tends to lead to smoother trajectories of
the parameter and disturbance estimates, which may have significant
importance in some of the practical scenarios.

Following the presented numerical trials, the experimental evalua-
tion of the proposed algorithm is conducted.

Experiment 3.1. The experiment with a laboratory-scale hovercraft model
is conducted and the identification procedure is carried out. Due to the
character of the robot, the control signals are generated live during the
experiment by the operator through the keyboard input. It is thus ensured
that the movement of the robot is rich enough to satisfy the PE condition
while simultaneously collisions with any external obstacles are avoided in
the limited space of the laboratory. Throughout the trial, the velocities of the
robot are measured according to the method outlined in Section 4.1 making
it possible to implement the identification algorithm in the form given by
(3.145) and (3.146). The results of the experiment are illustrated in Fig. 3.27.
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Figure 3.27: Time responses of the experiment of the hovercraft identification
using PIESO observer.

The presented plots show that the parameter estimates of the system
converge to the neighborhood of some constant values in the real-life
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scenario. Namely, the parameters in the final time instant take the
values of

θ̂ ≈
[
0.2289 0.6751 0.8333 0.6543 1.6287

]T . (3.148)

Notably, the presented plots unveil the presence of significant noise in
the measured velocities of the robot which were obtained numerically
from the position measurements of the motion capture system. In the
result, the estimates of the total disturbance do not converge to the
origin in the considered trial but are characterized by the presence of
some nonzero noise disturbing the estimated values. The successful
identification of the parameters is nonetheless achieved. Although
the true parameters of the system are unknown, some preliminary
investigations imply that bm = θ4 ≈ 0.7 and σv

m = θ1 ≈ 0.48. It can be
noted that the PIESO observer produced a very similar value of the
parameter associated with the input gain. The quality of the friction
force estimation is significantly lower, which may be explained by the
differences between the effects of the real friction phenomenon im-
pacting the vehicle and the strongly simplified model of the damping
forces assumed in the observer synthesis. Moreover, the real hovercraft
robot is subject to numerous external disturbances affecting the quality
of obtained parameter estimates.

In order to verify the correctness of the obtained results, an ad-
ditional trial is performed and its results are compared with the
simulations of dynamics (3.139) with parameters (3.148).

Simulation 3.13. Several time instants are chosen from the experimental
data and the measured configurations of the robot are employed as the initial
conditions in the simulations of the hovercraft model. The input signals in
the simulation are also consistent with those from the experimental trial. In
Fig. 3.28 the comparison of trajectories on

(
X, Y

)
plane obtained from the

experiment and simulation is given.

The similarity of the overall character of the movement in simulation
and experiment is shown. Although the trajectories of the experimental
hovercraft and its numerical counterpart tend to diverge in all cases
due to the open loop integration in the simulated model, the quality of
identification may be deemed good enough in the short time horizon.
Specifically, the distance traversed in both cases is roughly the same
in all trials which signifies the correctness of the input gain of the
propeller estimation. More significant differences are observed in the
rotational movement of the platform, as the simulated hovercraft tend
to display higher rotational inertia. This effect may be associated with
a lower quality of the identification of damping forces which limit the
free rotations of the real vehicle.
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Figure 3.28: Comparison of simulation and experiment with the hovercraft
robot. The arrows show the momentary orientation of the robot.
Each plot covers 10 s of experiment and simulation.

Further verification of the obtained results is performed by re-
peating the identification procedure with a different approach em-
braced. To this end, an alternative identification scheme designed on
the basis of the Kalman filter and presented initially in [37] is em-
ployed. The same data as used in PIESO identification is used and
new parameter estimates are generated. The Kalman filter is tuned
empirically with covariance matrices chosen as R = I3 · 10−2 and
Q = diag(I3 · 10−2, I5 · 10−4). The evolution of the state and param-
eter estimates is given in Fig. 3.29. The similarity of the character of
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Figure 3.29: Time responses of the experiment of the hovercraft identification
using Kalman filter.

the evolution of the parameter estimates in the results of the PIESO
observer and Kalman filter approaches is visible. Specifically, the iden-
tification performed with a Kalman filter results in the final estimates
given by

θ̂Kalman ≈
[
0.2002 0.6536 1.0657 0.6268 1.9845

]T . (3.149)
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Both methods thus result in similar values of the parameter estimates
and the efficiency of the proposed method is confirmed. The difference
between the methods is more clearly visible in the parameters associ-
ated with the rotational movement of the hovercraft. This is a result
of the fact that the hovercraft is an underactuated system and thus it
is inherently characterized by higher difficulty in the identification of
parameters associated with certain degrees of freedom.

3.4.2 Identification of the wheeled mobile robot

The exhaustive experimental validation of the proposed scheme is
conducted employing a two-wheeled mobile MTracker 3 robot. The
considered vehicle is equipped with a low-level TI TMS 320F28335

microcontroller and wireless CC2500 radio module. The control algo-
rithms are implemented in the onboard controller which is responsible
for the generation of control signals to track the desired reference
velocities defined using the remote PC computer. The PWM signals
produced by the microcontroller are fed into H-bridges driving two DC
motors, coupled with 14 : 1 planetary gearheads and pulse encoders
with 512 pulses per turn, enabling measurement of the momentary
velocities of the wheels of the robot. Additionally, a 12-bit A/C con-
verter is installed to measure the currents of each motor [145, 332].
The photo of the employed robot is given in Fig. 3.30

Figure 3.30: Photo of the MTracker 3 robot used in the experiments.

The kinematics of the considered robot are consistent with the
unicycle kinematics given by

q̇ = R(ϕ)x (3.150)

with q =
[
x y ϕ

]T ∈ R3 being the coordinates of the robot in
the inertial frame and x =

[
v r

]T ∈ R2 representing the linear and
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rotation velocities of the robot in a local coordinate system. Matrix
R(ϕ) ∈ R3×2 is given by

R(ϕ) =

cos(ϕ) 0

sin(ϕ) 0

0 1

 . (3.151)

The schematic view of the robot with such kinematics is presented in
Fig. 3.31.
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Figure 3.31: Scheme of the kinematics of the unicycle robot

Velocities x are directly dependent on the velocities of each wheel
of the mobile robot and, under an assumption of lack of wheel slip
during the motion of the robot, are expressed as

x = T−1ρω, (3.152)

whereω =
[
ωR ωL

]T ∈ R2 are velocities of the right and left wheel
of the robot, ρ ∈ R+ is the wheel radius, and matrix T ∈ R2×2 is
given by

T =

[
1 1

2a

1 −12a

]
, (3.153)

where a ∈ R+ is the distance between the two wheels. The dynamics
of the platform are considered taking into account movements on the
2D plane only. It is assumed that the center of the mass of the robot
is placed on its axis of symmetry but does not lie on the axis of the
wheels of the robot. Such an offset of the center of mass is caused by
the position of the onboard battery which is installed behind the axis
of the wheels in the MTracker 3 robot. The dynamics of the platform
are thus expressed by

Mẋ+C(x)x = F (3.154)
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with mass matrix M ∈ R2×2 and Coriollis matrix C(x) ∈ R2×2 given
by

M =

[
m 0

0 J+ma2x

]
, C(x) =

[
0 −maxr

maxr 0

]
, (3.155)

where ax ∈ R is an offset of the center of mass from the axis of the
wheels. Moreover, F =

[
Fv Fr

]T ∈ R2 are the driving forces acting
upon the robot in the linear and rotational degrees of freedom. These
are generated by the motors coupled with the wheels of the robot and
derived as

F = TTFω (3.156)

with Fω =
[
FR FL

]T ∈ R2 being forces produced by the motors in
the point of contact of the wheels with the ground. Finally, forces Fω
are given by

Fω = ρ−1 (buω − σω− σfsgn(ω) − Jωω̇) , (3.157)

where σ ∈ R+ is a coefficient of lumped viscous friction and elec-
tromagnetic induction, σf ∈ R+ stand for a coefficient of Coloumb
friction, and Jω ∈ R+ represent the inertia of the wheel, gearhead
and the motor with respect to the axis of rotation. The term sgn(·)
stand for the element-wise signum operator. The terms b ∈ R+ and
uω =

[
uR uL

]T ∈ R2 are the input gain coefficient and control
signals of the motors driving the right and left wheel correspondingly.
By considering the geometrical properties of the robot, the control
inputs of the system are transformed as

u = ρ−1TTuω (3.158)

with u =
[
uv ur

]T ∈ R2 standing for the new virtual control signals
in each of degrees of freedom. While only uω are realizable at the
level of the actuators, the transformed inputs u enable formulation of
the dynamics of the robot in a more refined form.

Taking advantage of the presented properties of the considered
robot, the substitution of (3.157) and (3.152) into (3.156) yields

F = TTρ−1
(
buω − σTρ−1x− σfsgn(Tx) − JωTρ−1ẋ

)
. (3.159)

Further substitution of this expression into (3.154), together with
recalling of (3.158), produces

ẋ = M̄
−1
(
bu−

σ

ρ2
TTTx−

σf
ρ
TT sgn(Tx) −C(x)x

)
(3.160)
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with M̄ = M + JωTTTρ
−2 = diag(m̄, J̄) ∈ R2×2 and m̄ = m +

2
ρ2
Jω, J̄ = J +ma2x +

a2

ρ2
Jω. As parameters ρ and a correspond to

the easily measurable physical dimensions of the robot, it can be
assumed that they are known, and dynamics (3.160) are thus linear
in all unknown parameters. The proposed PIESO and PIDRC algo-
rithms are applicable as viable solution to the problems of parameter
identification and adaptive control of such a system.

In order to employ the PIESO observer in the parameter identifica-
tion scheme, dynamics (3.160) are rewritten by taking advantage of
the diagonal structure of matrix M̄ as

ẋ = Ψ(x,u)θ (3.161)

with

θ =
[
b
m̄

σ
m̄

σf
m̄

max
m̄

b
J̄

σ
J̄

σf
J̄

max
J̄

]T ∈ R8 (3.162)

and regressor ψ(x,u) ∈ R2×8 given by

Ψ(x,u) =

[
u1 − 2

ρ2
v ψ1,3(x) r2 0 0 0 0

0 0 0 0 u2 − a2

2ρ2
r ψ2,7(x) −rv

]
(3.163)

with elements ψ1,3(x) and ψ2,7(x) given by ψ1,3(x) = −1ρ

(
sgn(v+

a
2 r) + sgn(v− a

2 r)
)

and ψ2,7(x) = − a
2ρ

(
sgn(v+ a

2 r) − sgn(v− a
2 r)
)

.
Notably, the obtained formula of parametrized dynamics of the plant
may be interpreted as a combination of two dynamic systems re-
sembling (3.25) and (3.141). To facilitate the design of the adaptive
observer, the dynamics are further rewritten as

ẋ = Ψ(x,u)θ̂+ δ,

δ̇ =
d

dt

(
Ψ(x,u)

(
θ− θ̂

)) (3.164)

with θ̂ ∈ R8 standing for the estimate of the parameters of the robot
and δ = Ψ(x,u)

(
θ − θ̂

)
∈ R2 representing the total disturbance

affecting the linear and rotational movements of the robot. Although
both x and u are measurable in the considered scenario, the more
general scheme for regressor dependent on unmeasurable state is
employed here to better investigate the properties of the discussed
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methods. The adaptive observer is thus synthesized on the basis state
extension z =

[
xT δT

]T ∈ R6 as

˙̂x = Ψ(x̂,u)θ̂+ δ̂+ l1 (x− x̂) ,
˙̂δ = l2 (x− x̂) ,

(3.165)

where ẑ =
[
x̂T δ̂

T ]T ∈ R6 is the estimate of the extended state of

the system and l =
[
l1 l2

]T ∈ R2+ are the positive observer gains.
The parameter adaptation is conducted through

˙̂θ = Proj(ΓΨT (x̂,u)δ̂) (3.166)

with adaptation gains chosen as Γ = diag(γ1, . . . ,γ8) ∈ R8×8 and the
projection operator defined as in Remark 3.2.

The preliminary verification of the considered scheme is conducted
through simulational studies of the system.

Simulation 3.14. The kinematics and dynamics of the mobile robot are im-
plemented according to (3.150), (3.160), (3.156) and (3.157). The parameters
corresponding to the dimensions of the robot are chosen as a = 0.148m,
ρ = 0.025m, m = 1.25 kg according to the roughly known properties of
the real robot. Remaining parameters are chosen as b = 0.097Nm/A, J =
0.03 kgm2, Jω = 10−4 kgm2, ax = −0.1m, σ = 4 · 10−4Nm2 s/rad,
and σf = 0.01Nm. The accumulated parameters θ take thus a form of

θ ≈
[
0.0618 2.5478 · 10−4 0.0064 −0.0796

2.1085 0.0087 0.2174 −2.7171
]T

.

(3.167)

An additional non-adaptive controller is designed for the velocities of the
wheels with the reference signal given as ωr =

[
ωr(t, 0) ωr(t, 0.05t)

]T
with

ωr(t,φ) = 12 sin(0.6t+φ) + 3 sin(1.2t+φ)

+ 2.4 sin(3t+φ) + 2.4 sin(4.2t+φ).

(3.168)

For such a system the adaptive PIESO is implemented according to (3.165)
and (3.166) with observer and adaptation gains tuned empirically as l =[
40 400

]T and Γ = diag(5 ·10−2, 5 ·10−6, 5 ·10−4, 5 ·10−2, 2.5 ·10−2, 5 ·
10−4, 5 · 10−3, 1). The boundary imposed by the projection parameter is cho-
sen as ϑi = 100 for i ∈ {1, . . . , 8}. The results of the simulation are given in
Fig. 3.32.

The obtained results are consistent with the earlier conclusions.
Namely, the convergence of the disturbance estimates to the origin,
as well as the evolution of the parameters of the system toward their
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Figure 3.32: Time responses of the simulation of the unicycle robot identifica-
tion using PIESO observer.

correct values, is seen. A significant improvement in the quality of the
state estimation is also observed despite the presence of coupling be-
tween the dynamics of the systems representing linear and rotational
movements of the vehicle. The correct estimation of the parameters of
the system is achieved and their final values correspond to the param-
eters derived from the physical properties of the modeled plant. The
existence of a constant ratio between the parameters of both subsys-
tems is also visible here. Specifically, according to the parametrization
given in (3.161) it holds that

J̄

m̄
=
θ1
θ5

=
θ2
θ6

=
θ3
θ7

=
θ4
θ8

. (3.169)

The presented relation can be later used to verify the results of the
experimental trials.

Following the numerical trial, the experimental verification of the
considered algorithm is conducted.

Experiment 3.2. The experiment with mobile MTracker 3 robot is conducted.
All settings of the experiments are the same as in Sim. 3.14, including
the control signals, structure of the observer, and employed estimates of
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dimensions a and ρ of the robot. Only the tuning of the adaptation law is
chosen differently and is given by Γ = diag(5 · 10−4, 1 · 10−6, 2.5 · 10−4, 5 ·
10−4, 2.5 · 10−1, 1 · 10−4, 4 · 10−2, 1). The results of the experimental run
are given in Fig. 3.32.

0 5 10 15
−5

0

5

t [min]

x1

x2

0 5 10 15
−0.5

0

0.5

t [min]

z̃1

z̃2

0 5 10 15
−20

0

t [min]

δ̂1

δ̂2

0 5 10 15
−40

−20

0

20

40

t [min]

u1

u2

0 5 10 15

0

2

4

6

·10−2

t [min]

θ̂1 10 · θ̂2

θ̂3 θ̂4

0 5 10 15

0

10

t [min]

θ̂5 10 · θ̂6

θ̂7 θ̂8

Figure 3.33: Time responses of the experiment of the unicycle robot identifi-
cation using PIESO observer.

The presented plots confirm the usefulness of the considered scheme
in the practical scenario of identification of dynamic parameters of the
wheeled robot. Specifically, all of the parameter estimates converge
toward some constant values with roughly the same ratios between
the corresponding parameters in both dynamic subsystems. The final
values of the obtained parameter estimates are given by

θ̂ ≈
[
0.0606 8.59 · 10−4 0.0184 −0.0087

16.1363 0.1759 4.8587 −2.7931
]T

.

(3.170)

The ratio of J̄m̄ is approximately calculated as θ̂1
θ̂5
≈ 0.0038, θ̂2

θ̂6
≈ 0.0049,

θ̂3
θ̂7
≈ 0.0038, θ̂4

θ̂8
≈ 0.0031. The similarity of the values calculated on

the basis of each pair of corresponding parameters implies the effec-
tiveness of the conducted identification procedure. Resembling the
results of the experimental identification of the hovercraft system, the
state and disturbance estimates are heavily noised due to the charac-
ter of the experimental setup, but a diminishing of the disturbance
estimate with identification progress is observed. Notably, the state of
the system constitutes a measurable output of the plant, and thus the
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resultant quality of the state estimation is not of crucial importance in
the conducted experiment.

Further verification of the obtained parameters is conducted by a
method similar to one employed in Section 3.4.1.

Simulation 3.15. The experimental measurements of the robot are compared
with the trajectories produced by the simulation of the system modeled with
the parameters equal (3.170). The initial conditions in each simulation are
set equal to configuration of the real robot at chosen time instants and
control signals recorded during the experiments are used to calculate the
movements of the modeled robot. The results of such a comparison, in the
form of trajectories on

(
X, Y

)
plane, are given in Fig. 3.34.
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Figure 3.34: Comparison of simulation and experiment with MTracker 3

robot. Each plot covers 5 s of experiment and simulation.

The presented plots show a similarity between the trajectories of
the real and simulated robot modeled on the basis of the identified
parameters. Despite the presence of some errors in the recovery of the
movements of the robot, the general character of the movements is
correctly maintained implying that the obtained parameters roughly
correspond to the real properties of the robot.

3.4.3 Adaptive control of the wheeled mobile robot

The adaptive PIDRC controller for the considered wheeled mobile
robot can be designed by taking advantage of the transformed dynam-
ics of the system as derived in the previous section. The discussed
control scheme is thus applied to the problem of wheels velocity
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control in the presence of dynamic uncertainties. Various structures
of such controllers are commonly employed in the design of mo-
bile robots to separate the low-level task of drive control from the
higher-level problems of trajectory tracking, path planning, or obstacle
avoidance.

In order to design the PIDRC controller for the MTracker 3 robot,
dynamics (3.161) are further transformed into the form reminiscent of
(3.88) by removing the control signals from the regressor of the plant
and assuming that the input gains are known in advance. Thus, the
dynamics of the robot are rewritten as

ẋ = Bu+Ψ(x)θ, (3.171)

where B = diag( bm̄ , b
J̄
) ∈ R2×2 and Ψ(x) ∈ R2×6 are the input gain

matrix and the reduced regressor of the system. Matrix Ψ(x) is ex-
pressed by

Ψ(x) =

[
− 2
ρ2
v ψ1,2(x) r2 0 0 0

0 0 0 − a2

2ρ2
r ψ2,5(x) −rv

]
(3.172)

with elements ψ1,2(x) and ψ2,5(x) given by ψ1,2(x) = −1ρ

(
sgn(v+

a
2 r) + sgn(v− a

2 r)
)

and ψ2,5(x) = − a
2ρ

(
sgn(v+ a

2 r) − sgn(v− a
2 r)
)

analogously to (3.161). The reduced parameter vector takes the form
of

θ =
[
σ
m̄

σf
m̄

max
m̄

σ
J̄

σf
J̄

max
J̄

]T ∈ R6. (3.173)

Once again, the parametrized system is interpretable as two intercon-
nected dynamic systems corresponding to each degree of freedom of
the robot. The PIDRC controller is then independently designed for
each subsystem. Following the method presented in Section 3.3, the
parametrized system is extended to incorporate the modeling error as
a disturbance variable, yielding

ẋ = Bu+Ψ(x) −Ψ(xr)
(
θ− θ̂

)
+Ψ(x)θ̂+ δ,

δ̇ =
d

dt

(
Ψ(xr)

(
θ− θ̂

)) (3.174)

with z =
[
xT δT

]T ∈ R4 being the extended state of the system and
θ̂ ∈ R6 standing for the estimate of the parameters of the plant. The
term xr stand for the reference trajectories of the linear and rotational
velocities of the robot. The control algorithm is synthesized in two
versions, employing both the reference trajectory and the estimated
state of the plant as the basis of the regressor evaluation.
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In order to design the PIDRC algorithm on the basis of the reference
trajectory, the adaptive observer is synthesized for the extended system
(3.174) as

˙̂x = Bu+Ψ(xr)θ̂+ δ̂+ l1 (x− x̂) ,
˙̂δ = l2 (x− x̂)

(3.175)

with ẑ =
[
x̂T δ̂

T ]T ∈ R4 being the estimate of the extended state and

l =
[
l1 l2

]T ∈ R2+ standing for the gains of the adaptive observer.
The adaptation law is synthesized as

˙̂θ = Proj(τ, θ̂,Θ), τ = ΓΨT (xr)δ̂ (3.176)

with the projection operator as given in Remark 3.2 and adaptation
gains Γ = diag(γ1, . . . ,γ6) ∈ R6×6. The control laws for each degree
of freedom of the robot are given by

u = B−1
(
k (xr − x̂) + ẋr −Ψ(xr)θ̂− δ̂

)
, (3.177)

where k ∈ R+ is a positive controller gain.
Alternatively, the PIDRC controller employing the state estimates

to evaluate the regressor is also designed. To this end, the observer is
defined on the basis of (3.174) as

˙̂x = Bu+Ψ(x̂)θ̂+ δ̂+ l1 (x− x̂) ,
˙̂δ = l2 (x− x̂)

(3.178)

with the adaptation law taking the form of

˙̂θ = Proj(τ, θ̂,Θ), τ = ΓΨT (x̂)δ̂. (3.179)

Finally, the control law is synthesized as

u = B−1
(
k (xr − x̂) + ẋr −Ψ(x̂)θ̂− δ̂

)
. (3.180)

Both algorithms are thus designed under the assumption of measura-
bility of the state of the system, but this measurable state is not directly
used in the regressor evaluation or the control law design.

The initial verification of the designed controller is conducted by
making use of the numerical simulation of the system with parameters
given by (3.167).

Simulation 3.16. Two controllers are implemented according to (3.175)–
(3.177) and (3.178)–(3.180). In both cases the reference signals are chosen
by making use of property (3.152) as xr = T−1ρωr with the reference
wheels velocity given by ωr =

[
ωr(t, 0) ωr(t, 0.05t)

]T with ωr(t,φ)
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as expressed by (3.168). Both controllers are tuned with k = 1 and the
parameters of the observer are the same as in the test of the PIESO observer
and are given by l =

[
40 400

]T and Γ = diag(5 · 10−6, 5 · 10−4, 5 ·
10−2, 5 · 10−4, 5 · 10−3, 1). The projection operator is implemented with
ϑi = 100 for i ∈ {1, . . . , 6}. The results of the simulations are given in
Fig. 3.35 for the reference-based controller and in Fig. 3.36 for the controller
synthesized using the state estimates.

0 100 200 300 400

−5

0

5

·10−2

t [s]

x̃1

x̃2

0 100 200 300 400
−20

0

20

t [s]

u1

u2

0 100 200 300 400

−5

0

5

t [s]

x1

x2

0 100 200 300 400
−2

−1

0

1

2
·10−3

t [s]

z̃1

z̃2

0 100 200 300 400

−1

0

1

t [s]

z̃3

z̃4

0 100 200 300 400
−2

−1

0

1

t [s]

δ̂1

δ̂2

0 100 200 300 400

0

2

4

6

·10−3

t [s]

θ̂1

θ̂2

θ̂3
100

0 100 200 300 400

0

0.1

0.2

t [s]

θ̂4

θ̂5

θ̂6
100

Figure 3.35: Time responses of the simulation of the unicycle robot adap-
tive control using PIDRC controller synthesized on the basis
of reference state. The results obtained for conventional ADRC
controller are given in transparent plots of x̃ and z̃.

The strong similarity between results produced with both methods is
visible. In both cases, a significant improvement of the tracking quality
in comparison with conventional nonadaptive ADRC is achieved and
the convergence of the parameter estimates toward their correct values
is shown. The tracking performance is increased and a significant
improvement in the state estimation is achieved. In the plots, the
vanishing of the total disturbance and its estimate due to the progress
of the adaptation procedure is also visible. Notably, the character of
the evolution of the signals in both cases is strongly similar, implying
that they can be used interchangeably in many practical scenarios.
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Figure 3.36: Time responses of the simulation of the unicycle robot adap-
tive control using PIDRC controller synthesized on the basis of
estimated state. The results obtained for conventional ADRC
controller given in transparent plots of x̃ and z̃.

Moreover, as the same tuning is employed in the task of the closed-
loop adaptive control and the open-loop parameter identification, the
considered method is shown to be easily tuned and deployed.

Further validation of the PIDRC approach to the task of adaptive
control is carried out by the practical experiment.

Experiment 3.3. The algorithms are implemented in the low-level controller
unit of the MTracker 3 robot. The controller thus generates the input signals
for the motors of the wheels and takes advantage of the measured velocities of
the robot. The control signals for each motor are calculated from the linear
and rotational controls produced by the controller according to (3.158). In
the experiments the controller gain is chosen as k = 7.5 and the observer
is tuned with l =

[
5 6.25

]T . The adaptation gains are chosen as γ =

diag(4 · 10−8, 1 · 10−6, 2 · 10−4, 2 · 10−5, 2 · 10−4, 1) in the scenario with
the estimate-based approach, and γ = diag(4 · 10−8, 2 · 10−6, 2 · 10−4, 2 ·
10−5, 4 · 10−4, 2). Some of the parameters are thus finely tuned to ensure
satisfactory performance in both scenarios. In the synthesis of the controller,
the input gains of the system are chosen as B = diag(0.06, 13.85) according
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to the best known estimates of these parameters at the time of experiment. The
results of the experiment are given in Fig. 3.37 and Fig. 3.38 for the algorithm
synthesized using the reference and estimated trajectory, correspondingly.
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Figure 3.37: Time responses of the experiment of the unicycle robot adaptive
control using PIDRC algorithm synthesized on the basis of the
reference state.

The results of the experiments are in line with the output of the
numerical simulations. The estimates of the unknown parameters
converge to some constant values and the tracking error decrease due
to the adaptive action. The final values of the obtained parameter
estimates are given by

θ̂ =
[
0.0022 0.0027 −0.0134 0.4910 0.4880 −15.1318

]T
(3.181)

in the experiment employing the controller based on the reference
trajectory and

θ̂ =
[
0.0023 0.0048 −0.0144 0.4863 0.6304 −25.1758

]T
(3.182)

in the experiment with the controller utilizing the estimated state.
The obtained parameter estimates thus differ from (3.170) – not only
due to the different definition of θ which does not include the input
gains, but also due to different values obtained of the corresponding
parameters. Noticeably, the control signals generated by the adap-
tive PIDRC controller differ from these produced by the nonadaptive
control law used in the experiments shown in Fig. 3.33 despite the
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Figure 3.38: Time responses of the experiment of the unicycle robot adaptive
control using PIDRC algorithm synthesized on the basis of the
estimated state.

same reference trajectory employed in all trials. Thus, the degree
of excitation differs between the trials and the quality of identifica-
tion may not be maintained. Moreover, the values of the input gains
assumed in the controller synthesis are not consistent with these ob-
tained through the PIESO experimental trial, as these were not yet
known at the time of the PIDRC experiment. In order to evaluate the
quality of the identified parameters, the ratio of J̄

m̄ is calculated as
θ̂1
θ̂4
≈ 0.0045, θ̂2

θ̂5
≈ 0.0056, θ̂3

θ̂6
≈ 0.0009 for the results produced by the

reference-based PIDRC and θ̂1
θ̂4
≈ 0.0047, θ̂2

θ̂5
≈ 0.0076, θ̂3

θ̂6
≈ 0.0006 for

the algorithm based on the estimated state. It can be concluded that
the overall quality of parameters estimation is decreased, especially in
terms of the identification of θ3 and θ6, in the considered experiments
in comparison with the results obtained during experimental valida-
tion of the PIESO algorithm. Nonetheless, the identified parameters
enable successful improvement of the tracking quality in comparison
with the nonadaptive ADRC algorithm.

The results of the experimental validations of the PIESO and PIDRC
algorithms presented in this section confirm that the proposed meth-
ods can be successfully applied to the problems of parameter iden-
tification and adaptive control in practical scenarios. Application of
the proposed schemes to two distinct systems, corresponding to the
dynamics of the underactuated hovercraft and the wheeled mobile
robot, is presented. In both cases, the procedure of the parameter iden-
tification is conducted by taking advantage of the PIESO observer and
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the problem of adaptive control of the wheeled robot is solved through
the PIDRC controller. It is shown that the identification of the plant
parameters is achieved with a satisfactory quality despite the presence
of the measurement noised and unmodeled dynamics inherent to the
real systems. The experiments with the wheeled robot shown also that
the tracking quality achieved with the PIDRC controller is significantly
improved in comparison with the nonadaptive ADRC method.
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T E S T B E D S Y S T E M S

Perhaps the facts, or data, are more convincing than mere articulation of ideas.

— J. Han, 2009 [102]

Throughout the research concluded by this dissertation, multiple
testbed systems have been used to investigate the considered prob-
lems and verify proposed solutions and theorems. Specifically, the
astronomic telescope mount has been used to investigate the impact of
the input gain uncertainty on the performance of the ADRC schemes,
and the hovercraft and wheeled mobile robot have been employed to
verify the applicability of the proposed PIESO and PIDRC methods in
practical scenarios. The author of this dissertation has been directly in-
volved in the development of the two formers of these. In this chapter,
some details on the structure and construction of these systems are
given.

4.1 hovercraft system

The custom hovercraft system has been employed to investigate the
properties of PIESO and PIDRC algorithms in experimental settings.
The considered device is based on the remote Mk. 1 Sirius 600 hov-
ercraft model produced by Palaform Ltd [218] modified to better fit
the needs of scientific research. The standard model consists of the
vacuum-formed hull made of 1mm thick high-impact polystyrene
and a rubber skirt used to form an air cushion beneath the vehicle.
The model has the dimensions of 60 cm length by 30 cm width and
20 cm height. The vehicle is equipped with a two-bladed propeller
made of resin polymer with a diameter of 17.8 cm providing thrusting
force and a smaller propeller of diameter 10.2 cm generating a lifting
force. The propellers of the hovercraft are mounted on two brushless
motors delivered with electronic speed controllers (ESC). A motor
with a single-direction controller is employed to drive the lift propeller
and bi-directional motor is used as a source of thrust force. The use of
a controller able to drive the thrust motor in both directions, together
with a properly shaped propeller, enables the hovercraft to move both
forward and backward. The direction of movement is moreover con-
trolled by the incorporated rudder placed behind the thrusting fan and
consisting of two polystyrene plates rotating around the vertical pivots
mounted parallelly to the plane of the propeller and perpendicularly

187
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to the ground. The orientation of the rudder is controlled by a single
modeling micro servo with 180° range of motion. In order to power
all of the motors, a three-cell lithium-ion polymer battery with the
output voltage of 11.1V is recommended. The standard assembly of
the Sirius 600 hovercraft employs a modeling four-channel radio re-
ceiver coupled with a manual remote controller to generate the control
signals for the rudder servo and speed controllers of the lift and thrust
motors. The assembled model with motors, radio receiver, and battery
pack has a total weight of approximately 1 kg and achieves maximum
velocities of 4m/s on water and up to 5.5m/s on flat solid surfaces.

For the purposes of the experimental research, the hovercraft has
been modified to enable the implementation of the control and identifi-
cation algorithms and acquiring of the experimental data. Specifically,
the control of the hovercraft was adjusted to enable the generation of
the control signals on the remote PC computer using the Matlab soft-
ware [192]. Wireless communication through the Wi-Fi protocol was
thus incorporated. To this end, the suggested radio receiver is replaced
with ESP32-DEVKITC-32D module based on the ESP32-WROOM-32D
microcontroller unit (MCU) capable of Wi-Fi networking [63] and
compatible with Arduino core [9]. The module is powered directly
from the speed controller of one of the motors by taking advantage of
the battery eliminator circuit (BEC) providing a constant voltage of 5V
and thanks to the voltage stabilizer incorporated into ESP32 module
allowing input voltage up to 12V . The direct control of the motors of
the hovercraft is carried out through the PWM outputs of the MCU by
taking advantage of the ESP32Servo library [104]. Three independent
PWM channels are used to produce the control signals for the rudder
servo and speed controllers of the lift and thrust propeller motors. The
wiring diagram of the onboard electronics is given in Fig. 4.1.

Dedicated custom software is deployed on the ESP32 microcon-
troller. At the startup of the system, the arming procedure of the ESC
is performed by issuing a series of specific PWM signals to each of
the controllers to ensure their proper initialization. The rudder servo
is restored to the default position. In order to enable the wireless
control of the robot, the Wi-Fi protocol is enabled. The MCU works as
a Wi-Fi access point (AP) hosting its own network with a predefined
SSID identifier and hardcoded password. Alternatively, the controller
can be switched into non-AP mode and automatically connect to the
given network on the launch of the system. Usage of the robot in the
laboratory environment is thus strongly simplified and the device
can be made available for experiments immediately after startup. The
onboard button is configured to allow emergency stop of the motors.
Once the configuration procedure is completed, the hovercraft enters
the operation mode and awaits control commands from the exter-
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Figure 4.1: Scheme of the wiring of the onboard electronics of the hovercraft

nal source. The input signals of the system are defined as messages
containing three 32-bit floating point numbers corresponding to the
desired settings of the ESC of the motors and the servo of the rudder.
The ESC control signals are initially scaled in the range from −1 to 1
to confine the most used controls within this set. Nonetheless, inputs
of other values are accepted by lift and thrust motors resulting in
higher speeds of the propellers. The control input of the rudder servo
is scaled to correspond to the position of the rudder in the range of
−12π to 1

2π.
The control software is developed in the Matlab environment to

enable easy prototyping and testing of control solutions. The custom
class is implemented to facilitate the operation of the system. Dis-
tinct member functions are incorporated to establish the connection
between the PC computer and the hovercraft MCU unit. Moreover, a
separate class is proposed enabling direct reading of the measurement
data of the hovercraft from the OptiTrack vision system [209]. To this
end, a set of markers is mounted on the body of the hovercraft, and
the geometric properties of the vehicle are defined in the OptiTrack
environment. The combination of wireless communication with the
robot and data acquisition based on the vision system results in a
robust system suitable for experimental research. The entire system
is capable of operating with the frequency of the main control and
measurement loop equal to approximately 50Hz. The photo of the
modified hovercraft with the custom control unit and motion capture
markers is given in Fig. 4.2.
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Customized Sirius hovercraft, own photo

Figure 4.2: Photo of the customized Mk. 1 Sirius 600 hovercraft.

The dynamics and kinematics of the hovercraft system can be mod-
eled according to [37] in the form presented in Section 3.4.1 as

q̇ = R(ϕ)x,

ẋ = Ψ(u)θ+ c(x),
(4.1)

where q =
[
x y ϕ

]T ∈ R3 is the position and orientation of the
system in the global coordinate system, and x =

[
v w r

]T ∈ R3

stands for the linear and angular velocity of the platform in the local
frame. The terms R(ϕ) ∈ R3×3, Ψ(u) ∈ R3×5 and c(x) ∈ R3 are given
by

R(ϕ) =

cos(ϕ) − sin(ϕ) 0

sin(ϕ) − cos(ϕ) 0

0 0 1

 , c(x) =

wr−vr

0

 ,

Ψ(u, x) =

−v 0 0 cos(u1)u2 0

0 −w 0 sin(u1)u2 0

0 0 −r 0 − sin(u1)u2

 ,

(4.2)

and

θ =
[
σv
m

σw
m

σr
J

b
m

ab
J

]T
(4.3)

with m ∈ R+ standing for the mass of the hovercraft, J ∈ R+ repre-
senting the inertia of the vehicle, σv,σw,σr ∈ R+ being coefficients
of friction forces and aerodynamic drag in each degree of freedom.
The term a ∈ R stand for the offset of the propeller from the center of
mass and b stand for some ratio between the input of the ESC of the
thrust motor and the force generated by the rotating propeller. Signals
u1 ∈ (−12π, 12π) and u2 ∈ R represent the orientation of the rudder
and the control signal of the thrust propeller. The input of the lift
motor is omitted in this representation and is assumed to be constant.
The dynamic parameters are thus indirectly dependent on the chosen
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speed of the lift propeller. Throughout all of the experiments presented
within this work, the lift motor is set to the constant input of ulift = 1.5
corresponding to the PWM signal of pulses with the width of 1.75ms.
According to the identification procedure and results presented in
Section 3.4.1, the remaining parameters of the robot are given by

θ̂ ≈
[
0.2289 0.6751 0.8333 0.6543 1.6287

]T (4.4)

under the assumption of the constant lift motor speed.
In order to visualize some of the basic dynamics properties of the

robot, a series of short experiments are conducted and the measured
data is acquired.

Experiment 4.1. The hovercraft mobile robot is employed in the series of
basic illustratory experiments. Firstly, short positive and negative pulses
are issued to the thrusting propeller with the rudded fixed in the default
position. Then, forward pulses are issued to the thrusting propeller with
varying orientation of the rudder. The results are given in Fig. 4.3.

The presented trajectories of the robot unveil certain dynamic char-
acteristics of the system. The high inertia of the vehicle in linear
movement is visible with the nonzero velocity of the robot lasting
significantly long after the vanishing of the thrust input signal. The
presence of some disturbing force generating sideway and rotational
movements is also visible. This force is caused by the imperfect assem-
bly of the skirt of the hovercraft and can be mitigated by the choice
of a smaller lift input signal. The lack of symmetry of the thrusting
propeller is also shown by the plots, as linear velocities of similar
magnitudes are achieved by strongly differing positive and negative
input signals. Simultaneously, the efficiency of the rudder as the mean
of changing the orientation and direction of movement of the robot is
visible and changes in the orientation of the hovercraft corresponding
to the momentary position of the rudder are achieved.

4.2 astronomic telescope mount

The research summarized in the first part of this dissertation has been
mainly conducted using the robotic astronomic telescope mounts de-
veloped by a research team at Poznan University of Technology. The
advances in the development of this equipment have been reported
in [143, 151] and recently in [21, 147]. The device consists of an altaz-
imuth robotic mount capable of carrying the astronomic telescopes
with diameters of 0.5m or a collection of smaller observation tools.
The exemplary configuration of the considered system is given in
Fig. 4.4. Two axes of the mount are directly driven by independent
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Figure 4.3: Results of the basic hovercraft experiments

permanent magnet synchronous motors (PMSM) coupled with high-
precision encoders enabling measurement of the momentary position
of the telescope. The control signals for the motors are generated by a
microcontroller implementing the main control loop and basic safety
procedures. The dynamics of a single mechanical axis are vaguely
modeled as

ẋ = A2x+b2

(
1

J
u+ d(t, x)

)
, (4.5)

where x =
[
ϕ ω

]T ∈ R2 is a state with ϕ,ω ∈ R being the momen-
tary orientation and rotational velocity of the axis. The term d(t, x)
accumulates all disturbing phenomenons including friction forces,
coupling between the axes, or the force of the gravitation in the case
of the horizontal axis. Review of some effects represented by d(t, x) is
given in Section 2.4. The term u ∈ R is the control variable of the plant
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Robotic telescope mount, own photo

Figure 4.4: Photo of the exemplary configuration of the developed telescope
mount.

corresponding to the desired torque to be produced by the motor of
the axis.

The control of the developed system is based on the modular compo-
sition of computing units with varying tasks and capabilities. Namely,
the low-level control of the system is realized using a STM32H743ZI2
microcontroller unit (MCU) [276], while the high-level communication
with the user is made available by Raspberry Pi 4 microcomputer host-
ing Linux operating system and capable of Ethernet communication
[72] which serves as a mediator between the user and the controller of
the telescope. The algorithm implemented in the MCU incorporates
separated current and position control loops, designed using PI and
ADRC methods correspondingly, both working with a frequency of
10 kHz. Thanks to the cascade approach of the control of the system
the current loop ensures that the motors provide desired torque to
each axis. The position loop is designed under such an assumption
in the form of the ADRC controller. A combination of the measure-
ments conducted by taking advantage of high-resolution encoders
with disturbance rejection capabilities of the ADRC scheme ensures
high precision of operation despite significant friction forces affecting
the axes in slow movements necessary during the astronomic observa-
tions. Extension of the employed controllers by various compensation
modules has been considered, including a friction compensation mod-
ule or ripple torque compensation, as well as the inclusion of fractional
feedback exponents into the controller and observer schemes.

In order to provide the reference trajectory for the control algorithms,
the trajectory generator module is implemented. Specifically, the sam-
pled trajectory supplied by the user of the system is interpolated to
obtain the desired signal with sufficient frequency. The interpolation
algorithm is designed on the basis of 6th order polynomials used to
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recover the sampled signal of frequency 1Hz. Thus, the generated
trajectory is guaranteed to be at least twice differentiable with values
of position and velocity conforming to the samples defined by the user
and the acceleration calculated to ensure its continuity at any time
instant. Each segment of the recovered trajectory is calculated using
information about the reference position in four consecutive samples
and velocity in two samples, as well as the acceleration of the previ-
ously generated segment. Additionally, to ensure a smooth transition
of the telescope from its initial configuration to the desired trajectory,
a transient path is generated at the beginning of each observation.

To facilitate the delivery of sampled trajectory from the client-side
PC computer and other data exchange with the controller of the plant,
a custom communication protocol has been devised. In the early
versions of the system, a prototype scheme resembling the Modbus
protocol has been employed. This approach enabled the exchange
of predefined commands to read or write data to the controller or
trigger the execution of certain functions implemented locally on
the MCU. The communication scheme has been later replaced by a
more sophisticated proposition named AST Communication Module
(ASTCom) implemented in the form of a programming library [224].
The considered package provides an interface for fast serialization
and data exchange between multiple devices taking advantage of
the WebSocket protocol. The serialization itself is performed using
a custom format similar to the well-known MessagePack standard
enhanced with several extensions to accommodate features of the
proposed scheme. Mainly, the possibility to dynamically configure the
set of exchanged data at run-time is introduced.

The basis of the ASTCom library design is the system of variable
and class registration, which allows the library to discover each and
every desired variable declared in the code of the telescope controller.
To this end, a conceptual ASTVariable is defined as any variable
or class that can be serialized by the ASTCom library. Serialization
procedures for multiple basic types (e. g. integer, float, string, array,
etc.) are predefined by the library itself. Moreover, ASTVariable can
also represent a function with an arbitrary signature. In order to
enable serialization of custom-defined classes, the special macro is
declared which, when included in the class definition, declares a set of
functions used to serialize and deserialize all variables of the chosen
class. The types of variables and the proper way of their processing are
discovered automatically by the library. Thus, once a class is defined,
a call to a single function automatically serializes the entire content
of its object, including any member objects that were implemented
taking advantage of the aforementioned macro. A globally accessible
Collection class is then defined, which can be called to recursively scan
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and register any object of the ASTVariable type. During this process,
information about the name, type, and address of data in physical
memory and addresses of serializing and deserializing functions of
the object is stored in the memory of the Collection singleton. Thanks
to the recursiveness of this operation, it is sufficient to register only
the top-level object, provided that all member objects are also of the
ASTVariable type. Thus, if any change in the structure of the software
is made, there is no requirement for any additional modifications
outside the affected classes, as their proper registration is automatically
ensured by the top-level class. It is of major significance that all of
these operations are performed either at compile time or on the device
startup and do not slow down its further operations. Once the initial
registration of objects is performed, the current state of any signal in
the telescope can be easily obtained by invoking the Collection object
with the name and type of the required variable.

In order to make use of the proposed approach, two separate mod-
ules are implemented – the Endpoint module, to be employed on the
board of the telescope, and the Client module, run in each of the client
applications. Both modules are derived from the single Interface class.
These two are then used to establish communication between various
devices in the ASTCom network. To this end, a series of hard-coded
ASTCommands is defined and used to exchange basic commands be-
tween devices. These are in nature similar to functions of the Modbus
protocol and are first used to establish a formal connection between
the nodes, during which version compatibility is verified and access
rights are granted through password verification. Each connection
is represented by both parties by a separate Connection class object,
which stores all information necessary to carry on the communication.
Notably, multiple Client devices can be simultaneously connected to a
single Endpoint and their number can be limited by the Endpoint to
reduce the performance impact. Once the connection is defined, the
Client uses proper ASTCommands to query the Endpoint device and
request it to define new ASTMessages – virtual structures consisting
of several ASTVariables with a unique ID number assigned. Once the
Endpoint receives such a request, it queries the Collection for desired
entries and copies pointers to serialization functions. Hence, once the
ASTMessage is defined in the Endpoint, it is directly available for use,
and no additional overhead is created beside a brief configuration
of the messages, which can be done before the proper start of oper-
ation of the telescope system. On the Client side, the newly defined
ASTMessage is also bound to a chosen locally defined variable of the
same type. It is noteworthy that as the serialization procedures of the
basic types are hard-coded into the library, the Client device is not
required to have counterparts of the defined data in its source code, as
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they can always be built in the runtime from objects of basic types. On
both sides, defined ASTMessages are stored in the MessageRegister
class object, with a notion that the Endpoint defines a single register
used by all connections, while the Clients assign separate storage for
each connection. The process of ASTMessage definition can be seen
as the creation of a bond between the local and remote variables on
two devices. In the case of an ASTMessage containing ASTVariables
representing the function, the bond is made between the function on
one device and variables used as its arguments on the other. Such mes-
sages containing references to a function can be transferred only in one
direction, as arguments can only be written to functions. A graphical
scheme showing an example of this binding is given in Fig. 4.5.

Endpoint’s memory Message register Client’s memory

class AxisController

double desiredPosition;

double refPosition;

void setPositionTask(int);

void reset();

class ServoController

int pos;

float tau;

ID 1026

ID 1027

ID 1028

double var1;

double var2;

int var3;

void fun(int);

float var4;

Figure 4.5: Example of variable binding in ASTCom. Function reset() is
called without any argument and the remote variable int pos is
used to invoke a local callback function. Variables float tau and
float var4 can be transferred in both directions.

Two modes of data exchange are supported by the ASTCom li-
brary – the private channel communication used to transfer data
between two devices and the stream channel used by the Endpoint
to broadcast large amounts of data to all connected clients. All of
the aforementioned ASTCommands are also sent through the private
channel. Importantly, the ASTCom library does not define the precise
transport layer of the channels, and thus the communication can be
carried out using several media, including Websocket, TCP/IP, or SPI
communication with both channels supported by a single connec-
tion or separated between two independent routes, e.g. two separate
Websocket connections. The Client can request to exchange the data
through one of these communication channels. In the case of the
private channel, the Client requests a single exchange of data of a
chosen ASTMessage in the desired direction – the data can be both
read from or written to the telescope. Once the command is carried
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out, the values of the bound variables are identical on both devices.
If the considered ASTMessage contains ASTVariables representing
the function, it is remotely invoked, which can be used to control the
behavior of the telescope controller.

While the private channel is designed mainly to control the telescope
by the user or the supervisor, the stream channel is intended for the
constant acquisition of information about the state of the device. To
this end, the Client may request the Endpoint to start recording chosen
ASTMessages with a desired frequency. Currently, on the considered
setup of the telescope controller, the recording with a frequency up
to 10 kHz is possible. The Endpoint executes such a command, by
cyclically serializing the value of requested variables into a local
predefined buffer. Once a certain volume of data is acquired, the data
is flushed and sent to all connected Clients, which receive the packets
containing the amassed record of the state of the telescope in the
previous time instants. Importantly, Clients may bind the received data
to some custom callback functions and this way process each sample
of data separately upon arrival. Thus, a significant amount of data can
be exchanged between devices to allow constant monitoring of the
telescope performance. The proposed approach was first implemented
in C++ code, as this is the language of the main controller of the
telescope. To enable support of various client applications, the Client
class with all necessary dependencies was later ported into JavaScript
(using LLVM/Clang-based Emscripten compiler [329, 330]), pure C
and C# (using p/invoke feature).

The practical performance of the developed robotic telescope mount
is illustrated by the following experiments.

Experiment 4.2. The automatic robotic telescope mount is employed in
the series of experimental trials. At first, the problem of tracking an object
in geostationary orbit, corresponding to the set-point stabilization of the
telescope, is considered. Then, the task of sidereal object tracking, representing
the problem of tracking the slowly varying trajectory, is investigated. Finally,
tracking of a fast artificial satellite in the low Earth orbit is studied. The
results of all trials are given in Fig. 4.6.

The results of the experiments show some basic properties of the
considered system. Specifically, the high precision of the controller in
the tasks of set-point stabilization and trajectory tracking is visible.
It can be noted, that the horizontal axis is characterized by higher
tracking precision in comparison with the vertical axis of the mount.
This difference is caused by significantly greater mass and inertia of
the vertical axis, as well as the presence of noticeably stronger friction
effects affecting rotations of the vertical axis. While the quality of
tracking slightly decreases with an increase in the reference velocity,
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Figure 4.6: Results of the telescope experiments. Input torques and tracking
errors in vertical and horizontal axes of the mount are given.

errors smaller than a single arcsecond are nonetheless achieved in
every scenario. Simultaneously, the high efficiency of the measurement
and data acquisition system is shown by the presented plots with a
high density and precision of the acquired data.



5
S U M M A RY

We strongly believe that non-trivial theory supported by good experimental work
may add a new value to robot control.

— K. Kozłowski, 2017 [144]

In the hereby submitted dissertation, the results of research on the
problem of modeling uncertainties in the control schemes designed
within the Active Disturbance Rejection Paradigm have been conferred.
The presented considerations have been divided into two distinct
research directions.

In the first part of the work, covered mainly by Chapter 2, the
properties of the existing ADRC control schemes have been reported.
Specifically, in Section 2.2 a detailed analytical investigation into the
impact of the presence of the parametric uncertainties has been pre-
sented. Through a novel reformulation of the dynamics of the plant,
a uniform analysis for different types of modeling errors has been
achieved. On the basis of obtained results, a series of theorems out-
lining the stability properties of the closed-loop systems under the
ADRC control have been formulated highlighting a gradual growth
of the stability requirements with an increase in the complexity of
the system and extent of present uncertainty. In Section 2.3, by taking
advantage of the numerical calculations, the presented results have
been extended to cover the problem of input gain uncertainty in more
detail. It has been shown that the modeling error of the constant input
gain may in some cases violate the theoretical boundaries defined in
the literature without loss of stability. Especially, it has been found,
that the theoretical stability conditions of the uncertain systems under
the ADRC control are imposed mainly by the requirement of the state
estimation and not of the disturbance rejection. Thus, it has been
shown that if the state of the system is known, the ADRC can be
successfully applied to the systems subject to relatively significant
uncertainty of the input gain. It has also been shown that the ADRC
is not capable of compensating for the disturbances caused by the
presence of certain cascade dynamics due to which the order of the
system is higher than assumed during the synthesis of the algorithm.
As a summary of these considerations, in Section 2.4 results of the
application of the ADRC control to some practical problems have been
presented and discussed.

In Chapter 3, which constitutes the second part of this work, the
solution to some of the issues associated with the presence of model-
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ing uncertainties has been proposed. Namely, in Section 3.2 the new
PIESO identification scheme for the dynamic systems with unknown
constant parameters has been formulated on the basis of the ADRC
method. It has been shown that the proper redefinition of the dy-
namics of the plant enables online estimation of the modeling error
which can be subsequently employed in the adaptation method. By
taking advantage of this new approach, the adaptive controller called
PIDRC has been proposed in Section 3.3. Through a detailed analysis,
it has been proved that under certain assumptions these novel tools
guarantee asymptotic convergence of the estimation, identification,
and tracking errors in the systems for which only a convergence to
the neighborhood of the origin is ensured by the conventional ADRC
control. The numerical simulations employing both of the proposed
schemes have been reported as a verification of the theoretical results.
In Section 3.4, the results of experimental trials taking advantage of
the considered methods have been reported. Specifically, the solutions
to the problems of identification of the hovercraft system and adap-
tive control of the wheeled mobile robot, have been presented. The
obtained results confirmed the effectiveness and usefulness of the
devised methods in practical applications.

The studies reported in this dissertation constitute a starting point
for further research. New results may be obtained in both directions
discussed in Chapters 2 and 3. Concerning the stability properties
of the established ADRC methods, the analytical confirmation of the
conjectures stated on the basis of numerical or experimental trials
awaits to be formulated. Specifically, analytical studies of the feasible
range of the input gain uncertainty can be conducted. New methods
of performance improvement or model-free control may also be con-
sidered following the notion, that an increase in input gain modeling
error in the EADRC does not necessarily imply a decrease in the effec-
tiveness of the controller. The methods of PIESO and PIDRC presented
in this work are formulated only in their basic and standard forms.
Thus, numerous improvements in their structures can be considered
in future research. Most notably, the means of ensuring the stability
of the adaptive systems without the use of the projection operator
may be investigated. The problem of input gain identification in the
closed-loop scheme is also to be studied. Finally, various approaches
to improvement of the overall performance of the presented methods
can be considered. The proposed algorithms are at their core based on
the well-known and standard methods of adaptive control and thus
new extensions of these methods may possibly be easily transferable
also to more general problems.



A P P E N D I X

a.1 drift terms and control signal derivatives

Recall the error dynamics (2.37) featuring the terms ψ̇(t,Λnẑ), ḋ(t, x)
and v̇. By embracing the notation ψ̂ = ψ(t,Λnẑ),d = d(t,Λnz), and
taking advantage of the chain rule, the terms ψ̇(t,Λnẑ), ḋ(t, x) are
rewritten as

˙̂ψ =
∂ψ̂

∂ (Λnẑ)
Λn ˙̂z+

∂ψ̂

∂t
,

ḋ =
∂d

∂ (Λnz)
Λnż+

∂d

∂t
.

(A.1)

By recalling explicit formula of ˙̂z as given by (2.27), the first expression
of (A.1) is expressed by

˙̂ψ =
∂ψ̂

∂ (Λnẑ)
Λn

(
Amẑ+dm

(
b̂u+ψ(t,Λnẑ)θ̂

)
+ lcTm (z− ẑ)

)
+
∂ψ̂

∂t
.

(A.2)

Substituting the control signal from (2.32) yields

˙̂ψ =
∂ψ̂

∂ (Λnẑ)
Λn

(
Amẑ+dmv−dmδ̂+ lcTm (z− ẑ)

)
+
∂ψ̂

∂t
.

(A.3)

Further substituting v from (2.33) yields

˙̂ψ =
∂ψ̂

∂ (Λnẑ)
Λn

(
Amẑ+dmkT (xr −Λnẑ) +dmx

(n)
r

−dmδ̂+ lcTm (z− ẑ)

)
+
∂ψ̂

∂t
.

(A.4)

By rewriting δ̂ = bTmẑ and ẑ = z− z̃ the following is obtained,

˙̂ψ =
∂ψ̂

∂ (Λnẑ)
Λn

(
Amz+dmkT (xr − x+Λnz̃) +dmx

(n)
r

−dmbTmz+
(
dmbTm −Am + lcTm

)
z̃

)
+
∂ψ̂

∂t
.

(A.5)
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By noticing that ΛnAm = AnΛn + bnbTm and Λndm = bn the
expression given in (A.5) is rewritten as

˙̂ψ =
∂ψ̂

∂ (Λnẑ)

(
AnΛnz+bnkT (x̃+Λnz̃) +bnx

(n)
r

+
(
−AnΛn +ΛnlcTm

)
z̃

)
+
∂ψ̂

∂t
.

(A.6)

Adding and subtrackting expression Anxr and recalling on the basis
of (2.34) that ẋr = Anxr +bnx

(n)
r yields

˙̂ψ =
∂ψ̂

∂ (Λnẑ)

((
−An +bnkT

)
x̃+ ẋr

+
(
bnkTΛn −AnΛn +ΛnlcTm

)
z̃

)
+
∂ψ̂

∂t
.

(A.7)

At last, recalling G = An −bnkT the final form of

˙̂ψ =
∂ψ̂

∂ (Λnẑ)

((
ΛnlcTm −GΛn

)
z̃−Gx̃+ ẋr

)
+
∂ψ̂

∂t
. (A.8)

is obtained, which is consistent with the expression given in (2.39).
The explicit form of d(t,Λnz) is obtained by substituting ż from

(2.27) into (A.1). Such a substitution yields

ḋ =
∂d

∂ (Λnz)
Λn

(
Amz+dm

(
b̂u+ψ(t,Λnz)θ

−ψ(t, xr)
(
θ− θ̂

))
+bm

d

dt
δ

)
+
∂d

∂t
.

(A.9)

Substituting u from (2.32) leads to

ḋ =
∂d

∂ (Λnz)
Λn

(
Amz+dm

(
v− δ̂−ψ(t,Λnẑ)θ̂

+ψ(t,Λnz)θ−ψ(t, xr)
(
θ− θ̂

))
+bm

d

dt
δ

)
+
∂d

∂t
.

(A.10)

Substituting v as given by (2.33) yields

ḋ =
∂d

∂ (Λnz)
Λn

(
Amz+dm

(
kT (xr −Λnẑ) + x

(n)
r − δ̂

−ψ(t,Λnẑ)θ̂+ψ(t,Λnz)θ−ψ(t, xr)
(
θ− θ̂

))
+bm

d

dt
δ

)
+
∂d

∂t
.

(A.11)
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Further rewriting δ̂ = bTmẑ and ẑ = z− z̃ gives

ḋ =
∂d

∂ (Λnz)
Λn

(
Amz+dm

(
kT (xr −Λnz+Λnz̃) + x

(n)
r

−bTmz+b
T
mz̃−ψ(t,Λnẑ)θ̂+ψ(t,Λnz)θ

−ψ(t, xr)
(
θ− θ̂

))
+bm

d

dt
δ

)
+
∂d

∂t
.

(A.12)

Recalling that ΛnAm = AnΛn +bnbTm,Λndm = bn, and moreover
Λnbm = 0n, yields

ḋ =
∂d

∂ (Λnz)

(
AnΛnz+bnkT (xr − x+Λnz̃) +bnx

(n)
r

+bnbTmz̃+bn

(
−ψ(t,Λnẑ)θ̂+ψ(t,Λnz)θ

−ψ(t, xr)
(
θ− θ̂

)))
+
∂d

∂t
.

(A.13)

Once again adding and subtrackting Anxr and noticing that ẋr =

Anxr +bnx
(n)
r enables to express (A.13) as

ḋ =
∂d

∂ (Λnz)

((
−An +bnkT

)
x̃+ ẋr +

(
bnkTΛn +bnbTm

)
z̃

bn

(
ψ(t,Λnz)θ−ψ(t, xr)

(
θ− θ̂

)
−ψ(t,Λnẑ)θ̂

))
+
∂d

∂t
.

(A.14)

Finally, recalling G = An −bnkT and W = bnkTΛn +bnbTm yields

ḋ =
∂d

∂ (Λnz)

(
Wz̃−Gx̃+ ẋr +bn

(
ψ(t,Λnz)θ

−ψ(t, xr)
(
θ− θ̂

)
−ψ(t,Λnẑ)θ̂

))
+
∂d

∂t

(A.15)

what corresponds to the expression in (2.39).
In order to obtain an explicit formula of v̇ consider first the term v

and, by recalling that ẑ = z− z̃ rewrite it on the basis of (2.33) as

v = kT (x̃+Λnz̃) + x
(n)
r . (A.16)

The derivative of this expression is thus given by

v̇ = kT ˙̃x+ kTΛn ˙̃z+ x(m)
r . (A.17)
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Substituting ˙̃x and ˙̃z from (2.37) yields

v̇ = kT
(
Gx̃−Wz̃+bn

(
ψ(t, xr)

(
θ− θ̂

)
+ψ(t,Λnẑ)θ̂

−ψ(t,Λnz)θ
))

+ kTΛn

(
Hz̃+dm

(
ψ(t,Λnz)θ

−ψ(t, xr)
(
θ− θ̂

)
−ψ(t,Λnẑ)θ̂

)
+bm

(
ψ̇(t, xr)

(
θ− θ̂

)
−

(
b

b̂
− 1

)(
ψ̇(t,Λnẑ)θ̂− v̇

)
+ ḋ(t,Λnz)

))
+ x

(m)
r .

(A.18)

By taking advantage of the notion that Λndm = bn and Λnbm = 0n,
this is simplified to

v̇ = kT
(
Gx̃−Wz̃+bn

(
ψ(t, xr)

(
θ− θ̂

)
+ψ(t,Λnẑ)θ̂

−ψ(t,Λnz)θ
))

+ kT
(
ΛnHz̃+bn

(
ψ(t,Λnz)θ

−ψ(t, xr)
(
θ− θ̂

)
−ψ(t,Λnẑ)θ̂

))
+ x

(m)
r .

(A.19)

The terms multiplied by kTbn reduce themselves and thus the expres-
sion

v̇ = kTGx̃+ kT (ΛnH−W) z̃+ x
(m)
r (A.20)

is obtained and corresponds to (2.38).

a.2 lyapunov function derivatives for pieso and pidrc

Consider stability analysis of the PIESO scheme designed for the
system with the regressor being a function of time and state of the
system and presented in Section 3.2.2. Recall the auxiliary function
(3.57) given by

V∗3.2(z̄) =
1

2
z̄TPz̄+

1

2
θ̃
T
Γ−1θ̃− z̄TPbmψ(t,Λnz)θ̃. (A.21)

The derivative of this function is analytically calculated as

V̇∗3.2(z̄) = z̄
TP ˙̄z+ θ̃TΓ−1 ˙̃θ− θ̃

T
ψTbTmP ˙̄z− z̄TPbmψ̇θ̃

− z̄TPbmψ()̇θ̃

(A.22)
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with ψ = ψ(t,Λnz) denoted for brevity. Substituting ˙̄z and ˙̃θ from
(3.56) yields

V̇∗3.2 = ωoz̄
TPH̄z̄+ωoz̄TPdm

(
ψ− ψ̂

)
θ̂+ z̄TPbmψ̇θ̃

− z̄TPbmψProj(τ) − θ̃TΓ−1 Proj(τ) −ωoθ̃
T
ψTbTmPH̄z̄

−ωoθ̃
T
ψTbTmPdm

(
ψ− ψ̂

)
θ̂− θ̃

T
ψTbTmPbmψ̇θ̃

+ θ̃
T
ψTbTmPbmψProj(τ) − z̄TPbmψ̇θ̃

+ z̄TPbmψProj(τ)
(A.23)

with ψ̂ = ψ(t,Λnẑ). The terms z̄TPbmψ̇θ̃ and z̄TPbmψProj(τ) are
reduced in the obtained expression. This is a crucial observation, as
the latter of these do not yield the quadratic upper bound and thus
its reduction is necessary to ensure the negativeness of the entire
expression. By adding and subtracting θ̃TΓ−1τ, and substituting τ
from (3.56) the following is obtained,

V̇∗3.2 = −
1

2
ωoz̄T z̄+ωoz̄TPdm

(
ψ− ψ̂

)
θ̂− θ̃

T
Γ−1

(
Proj(τ)

− τ
)
− θ̃

T
(
ψ̂
T
−ψT

)
ψθ̃− θ̃

T
ψTψθ̃+ θ̃

T
(
ψ̂
T

−ψT
)
bTmz̄+ θ̃

T
ψTbTmz̄−ωoθ̃

T
ψTbTmPH̄z̄

−ωoθ̃
T
ψTbTmPdm

(
ψ− ψ̂

)
θ̂− θ̃

T
ψTbTmPbmψ̇θ̃

+ θ̃
T
ψTbTmPbmψProj(τ).

(A.24)

Recalling the properties of the projection operator given by (3.52) and
Corollary 3.3 enables to establish the upper bound of (A.24) as

V̇∗3.2 6 −
1

2
ωo ‖z̄‖2 +ωo ‖z̄‖pM

∥∥∥ψ− ψ̂
∥∥∥ θM

+
∥∥∥ψ̂−ψ

∥∥∥ψMθ2M + θM

∥∥∥ψ̂−ψ
∥∥∥ ‖z̄‖+ θMψM ‖z̄‖

+ωoθMψMpMhM ‖z̄‖+ωoθMψMpM
∥∥∥ψ− ψ̂

∥∥∥ θM
+ θ2Mψ

2
MpM + θMψMpMψM ‖Proj(τ)‖ .

(A.25)

The Lipschitz property of the regressor established by Assumption 3.3
implies that∥∥∥ψ̂−ψ

∥∥∥ 6 ‖x̂− x‖ψL = ‖Λnz̃‖ψL =
∥∥∥ΛnΦ−1

o z̄
∥∥∥ψL

6
∥∥∥ΛnΦ−1

o

∥∥∥ ‖z̄‖ψL.
(A.26)
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Moreover, recalling τ from (3.56),

‖Proj(τ)‖ 6 γM
∥∥∥ψ̂−ψ

∥∥∥ψM ∥∥θ̃∥∥+ γMψ2M ∥∥θ̃∥∥
+ γM

∥∥∥ψ̂−ψ
∥∥∥ ‖z̄‖+ γMψM ‖z̄‖ .

(A.27)

By taking advantage of these properties, the bound of V̇∗3.2 is expressed
as

V̇∗3.2 6 −
1

2
ωo ‖z̄‖2 +ωopM

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖2ψLθM
+
∥∥∥ΛnΦ−1

o

∥∥∥ ‖z̄‖ψLψMθ2M + θM

∥∥∥ΛnΦ−1
o

∥∥∥ψL ‖z̄‖2
+ θMψM ‖z̄‖+ωoθMψMpMhM ‖z̄‖

+ωoθ
2
MψMpM

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖ψL + θ2Mψ2MpM
+ θ2Mψ

3
MpMγM

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖ψL + θ2Mψ4MpMγM
+ θMψ

2
MpMγM

∥∥∥ΛnΦ−1
o

∥∥∥ψL ‖z̄‖2
+ θMψ

3
MpMγM ‖z̄‖ .

(A.28)

Importantly,
∥∥ΛnΦ−1

o

∥∥ = ω
−n|−1
o andωo

∥∥ΛnΦ−1
o

∥∥ = ω
−n+1|0
o , and

are thus nonincreasing in ωo. Grouping the terms yields

V̇∗3.2 6

(
−
1

2
ωo +ω

−n+1|0
c pMψLθM +ω

−n|−1
o

(
θMψL

+ θMψ
2
MpMγMψL

))
‖z̄‖2 + θM

(
ψ3MpMγM

+ψM +ωoψMpMhM +ω
−n+1|0
c θMψMpMψL

+ω
−n|−1
o θM

(
ψ3MpMγMψL +ψLψM

))
‖z̄‖

+ θ2M

(
ψ2MpM +ψ4MpMγM

)
,

(A.29)

what is consistent with the results presented in (3.60).
Consider the function established in (3.65) and given by

V3.2(z̄, θ̃) =
1

2
z̄TPz̄+ θ̃

T

(
1

2
Γ−1 −M(t,Λnz)

)
θ̃. (A.30)

Its time derivative along the trajectories of the system takes the form
of

V̇3.2(z̄, θ̃) = z̄TP ˙̄z+ θ̃TΓ−1 ˙̃θ− θ̃
T
Ṁθ̃− 2θ̃

T
M ˙̃θ. (A.31)



A.2 lyapunov function derivatives for pieso and pidrc 207

Substituting ˙̄z, ˙̃θ from (3.56) and Ṁ given by Corollary 3.2 yields

V̇3.2 = ωoz̄TPH̄z̄+ωoz̄TPdm

(
ψ− ψ̂

)
θ̂+ z̄TPbmψ̇θ̃

− z̄TPbmψProj(τ) − θ̃TΓ−1 Proj(τ) − θ̃TMθ̃

− θ̃
T
ψTψθ̃+ 2θ̃

T
MProj(τ).

(A.32)

Adding and subtracting θ̃TΓ−1τ, and substituting τ from (3.56) gives

V̇3.2 = −
1

2
ωoz̄T z̄+ωoz̄TPdm

(
ψ− ψ̂

)
θ̂+ z̄TPbmψ̇θ̃

− z̄TPbmψProj(τ) − θ̃TΓ−1 (Proj(τ) − τ)

− θ̃
T
(
ψ̂
T
−ψT

)
ψθ̃− θ̃

T
ψTψθ̃+ θ̃

T
(
ψ̂
T
−ψT

)
bTmz̄

+ θ̃
T
ψTbTmz̄− θ̃

T
Mθ̃− θ̃

T
ψTψθ̃+ 2θ̃

T
MProj(τ).

(A.33)

The terms θ̃TψTψθ̃ reduce each other and by recalling Corollary 3.3
it follows that

V̇3.2 6 −
1

2
ωo ‖z̄‖2 +ωo ‖z̄‖pM

∥∥∥ψ− ψ̂
∥∥∥ θM + ‖z̄‖pMψM

∥∥θ̃∥∥
+ ‖z̄‖pMψM ‖Proj(τ)‖+

∥∥θ̃∥∥ ∥∥∥ψ̂−ψ
∥∥∥ψMθM

+ θM

∥∥∥ψ̂−ψ
∥∥∥ ‖z̄‖+ ∥∥θ̃∥∥ψM ‖z̄‖− µe−TPE

∥∥θ̃∥∥2
+ 2

∥∥θ̃∥∥ψ2M ‖Proj(τ)‖ .
(A.34)

By recalling the norm of the projected adaptation law and the Lipschitz
property of the regressor, it follows that

V̇3.2 6 −
1

2
ωo ‖z̄‖2 +ωopM

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖2ψLθM
+ ‖z̄‖pMψM

∥∥θ̃∥∥+ pMψ2MγM ∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖2ψLθM
+ ‖z̄‖pMγMψ3M

∥∥θ̃∥∥+ γMpMψM ∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖3ψL
+ pMψ

2
MγM ‖z̄‖2 +

∥∥θ̃∥∥ ∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖ψLψMθM
+ θM

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖2ψL + ∥∥θ̃∥∥ψM ‖z̄‖− µe−TPE
∥∥θ̃∥∥2

+ 2θMψ
3
MγM

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖ψL ∥∥θ̃∥∥+ 2ψ4MγM ∥∥θ̃∥∥2
+ 2γMθMψ

2
M

∥∥∥ΛnΦ−1
o

∥∥∥ψL ‖z̄‖2 + 2 ∥∥θ̃∥∥ψ3MγM ‖z̄‖ .

(A.35)

Recall
∥∥ΛnΦ−1

o

∥∥ = ω
−n|−1
o and ωo

∥∥ΛnΦ−1
o

∥∥ = ω
−n+1|0
o . Consider

also that
∥∥z̄∥∥ 6 zM, as implied by the analysis of the auxiliary func-
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tion, enables the establishment of the quadratic bound of the term
γMpMψM

∥∥ΛnΦ−1
o

∥∥∥∥z̄∥∥3ψL. Grouping the expressions then yields

V̇3.2 6

(
−
1

2
ωo + pMψ

2
MγM + pMω

−n+1|0
o ψLθM

+ω
−n|−1
o

(
pMψ

2
MγMψLθM + γMpMψMzMψL

+ θMψL + 2γMθMψ
2
MψL

))
‖z̄‖2 +

(
pMγMψ

3
M

+ pMψM +ψM + 2ψ3MγM +ω
−n|−1
o

(
2θMψ

3
MγMψL

+ψLψMθM

))∥∥θ̃∥∥ ‖z̄‖+(− µe−TPE + 2ψ4MγM

)∥∥θ̃∥∥2 .

(A.36)

Invoking the Young’s inequality gives

V̇3.2 6

(
−
1

2
ωo + pψ

2
MγM +ω

−n+1|0
c pMψLθM

+ω
−n|−1
o

(
pMψ

2
MψLγMθM + pMψMψLγMzM

+ θMψL + 2θMψ
2
MψLγM

)
+
1

2ε

(
pMψM + pMγMψ

3
M

+ 2ψ3Mγ+ω
−n|−1
o θMψL

(
2ψ3MγM +ψM

)
+ψM

)2)
‖z̄‖2 +

(
−µe−TPE + 2γMψ

4
M +

ε

2

)∥∥θ̃∥∥2
(A.37)

for any ε ∈ R+, what is consistent with (3.68).
In order to investigate the derivation of the Lyapunov function for

the reference-based PIDRC scheme as presented in Section 3.3.2, recall
function (3.121) expressed by

V3.4(x̄, z̄, θ̃) =
1

2
ωox̄TRx̄+

1

2
z̄TPz̄+ θ̃

T

(
1

2
Γ−1 −M(t, xr)

)
θ̃.

(A.38)

The derivative of the function is given by

V̇3.4(x̄, z̄, θ̃) = ωox̄TR ˙̄x+ z̄TP ˙̄z+ θ̃TΓ−1 ˙̃θ− θ̃
T
Ṁθ̃− 2θ̃

T
M ˙̃θ.
(A.39)
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Substituting ˙̄x, ˙̄z and ˙̃θ from (3.120), as well as Ṁ from Corollary 3.4
yields

V̇3.4 = ωcωox̄TRḠx̄−ωox̄TRbn

(
k̄TΦcωcΛnΦ

−1
o +bTm

)
z̄

−ωox̄TRbn (ψ−ψr)θ+ωoz̄TPH̄z̄+ωoz̄TPdm

(
ψ

−ψr

)
θ+ z̄TPbmψ̇rθ̃− z̄TPbmψr Proj(τ)

− θ̃
T
Γ−1 Proj(τ) − θ̃TMθ̃+ θ̃

T
ψTrψrθ̃+ 2θ̃

T
MProj(τ)

(A.40)

with ψr = ψ(t, xr) denoted for brevity. By adding and subtracting
θ̃
T
Γ−1τ, and substituting τ from (3.120), it follows that

V̇3.4 = −
1

2
ωcωox̄T x̄−ωox̄TRbn

(
k̄TΦcωcΛnΦ

−1
o +bTm

)
z̄

−ωox̄TRbn (ψ−ψr)θ−
1

2
ωoz̄T z̄+ωoz̄TPdm

(
ψ

−ψr

)
θ+ z̄TPbmψ̇rθ̃− z̄TPbmψr Proj(τ)

− θ̃
T
Γ−1 (Proj(τ) − τ) − θ̃TψTrψrθ̃+ θ̃

T
ψTrb

T
mz̄

− θ̃
T
Mθ̃+ θ̃

T
ψTrψrθ̃+ 2θ̃

T
MProj(τ).

(A.41)

The terms θ̃TψTrψrθ̃ reduce each other. By recalling the properties of
the projection operator given by (3.52) and Corollary 3.3 yields

V̇3.4 6 −
1

2
ωcωo ‖x̄‖2 +ωo ‖x̄‖

(
rMkM

∥∥∥ΦcωcΛnΦ−1
o

∥∥∥
+ rM

)
‖z̄‖+ωo ‖x̄‖ rM ‖ψ−ψr‖ θM −

1

2
ωo ‖z̄‖2

+ωo ‖z̄‖pM ‖ψ−ψr‖ θM + ‖z̄‖pMψM
∥∥θ̃∥∥

+ ‖z̄‖pMψM Proj(τ) +
∥∥θ̃∥∥ψM ‖z̄‖− µe−TPE

∥∥θ̃∥∥2
+ 2

∥∥θ̃∥∥ψ2M ‖Proj(τ)‖ .
(A.42)

Once again recalling τ from (3.120) implies

‖Proj(τ)‖ 6 γMψ2M
∥∥θ̃∥∥+ γMψM ‖z̄‖ . (A.43)

Moreover, due to the Lipschitz property of the regressor

‖ψ−ψr‖ 6 ‖x− xr‖ψL = ‖x̃‖ψL 6
∥∥∥Φ−1

c

∥∥∥ ‖x̄‖ψL. (A.44)
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It follows that

V̇3.4 6 −
1

2
ωcωo ‖x̄‖2 +ωo ‖x̄‖

(
rMkM

∥∥∥ΦcωcΛnΦ−1
o

∥∥∥
+ rM

)
‖z̄‖+ωo ‖x̄‖2 rM

∥∥∥Φ−1
c

∥∥∥ψLθM −
1

2
ωo ‖z̄‖2

+ωo ‖z̄‖pM
∥∥∥Φ−1

c

∥∥∥ ‖x̄‖ψLθM + ‖z̄‖pMψM
∥∥θ̃∥∥

+ ‖z̄‖pMψMγMψ2M
∥∥θ̃∥∥+ pMψ2MγM ‖z̄‖2

+
∥∥θ̃∥∥ψM ‖z̄‖− µe−TPE

∥∥θ̃∥∥2 + 2ψ4MγM ∥∥θ̃∥∥2
+ 2

∥∥θ̃∥∥ψ2MγMψM ‖z̄‖ .
(A.45)

Notably,
∥∥Φ−1

c

∥∥ = ω
−n+1|0
c and

∥∥ΦcωcΛnΦ−1
o

∥∥ =
(
ωc
ωo

)n|1. These
terms are thus nonincreasing in ωc and in the ratio ωc

ωo
correspond-

ingly. Grouping of the terms yields

V̇3.4 6

(
−
1

2
ωo + pMψ

2
MγM

)
‖z̄‖2 +ωo

(
−
1

2
ωc

+ rMω
−n+1|0
c ψLθM

)
‖x̄‖2 +ωo

(
rMkM

(
ωc

ωo

)n|1
+ rM + pMω

−n+1|0
c ψLθM

)
‖z̄‖ ‖x̄‖+

(
+ pMψM

+ pMγMψ
3
M +ψM + 2ψ3MγM

)
‖z̄‖

∥∥θ̃∥∥
+
(
−µe−TPE + 2ψ4MγM

) ∥∥θ̃∥∥2 .
(A.46)

The following expression corresponding to (3.124) is obtained for any
ε1, ε2 ∈ R+ by invoking the Young’s inequality,

V̇3.4 6

(
−
1

2
ωo

(
1− ε1

(
rMkM

(
ωc

ωo

)n|1
+ rM

+ω
−n+1|0
c pMψLθM

))
+ pMγMψ

2
M +

1

2ε2

(
pMψM

+ pMγMψ
3
M + 2ψ3MγM +ψM

)2)
‖z̄‖2 +ωo

(
−
1

2
ωc

+ω
−n+1|0
c rMψLθM +

1

2ε1

(
rM

(
kM

(
ωc

ωo

)n|1
+ 1

)

+ω
−n+1|0
c pMψLθM

))
‖x̄‖2 +

(
− µe−TPE + 2ψ4MγM

+
1

2
ε2

)∥∥θ̃∥∥2 .

(A.47)
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At last, consider the analysis presented in Section 3.3.3 to investi-
gate the properties of PIDRC controller designed on the basis of the
estimated state. Recall the auxiliary function (3.131) and given by

V∗3.5(x̄, z̄) =
1

2
ωox̄TRx̄+

1

2
z̄TPz̄+

1

2
θ̃
T
Γ−1θ̃

− z̄TPbmψ(t, xr)θ̃.

(A.48)

The time derivative of this function takes the form of

V̇∗3.5(x̄, z̄) = ωox̄TR ˙̄x+ z̄TP ˙̄z+ θ̃TΓ−1 ˙̃θ− z̄TPbmψ(t, xr) ˙̃θ

− z̄TPbmψ̇(t, xr)θ̃− θ̃
T
ψTrb

T
mP ˙̄z.

(A.49)

Substituting ˙̄z, ˙̄x and ˙̃θ from (3.130) yields

V̇∗3.5 = ωcωox̄
TRḠx̄−ωox̄TRbn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

−ωox̄TRbn (ψ−ψr) θ̃−ωox̄TRbn

(
ψ− ψ̂

)
θ̂

+ωoz̄TPH̄z̄+ωoz̄TPdm (ψ−ψr) θ̃+ωoz̄TPdm

(
ψ

− ψ̂
)
θ̂+ z̄TPbmψ̇rθ̃− z̄TPbmψr Proj(τ)

− θ̃
T
Γ−1 Proj(τ) + z̄TPbmψr Proj(τ) − z̄TPbmψ̇rθ̃

−ωoθ̃
T
ψTrb

T
mPH̄z̄−ωoθ̃

T
ψTrb

T
mPdm (ψ−ψr) θ̃

−ωoθ̃
T
ψTrb

T
mPdm

(
ψ− ψ̂

)
θ̂− θ̃

T
ψTrbmPb

T
mψ̇rθ̃

+ θ̃
T
ψTrbmPb

T
mψr Proj(τ).
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The terms z̄TPbmψr Proj(τ) and z̄TPbmψ̇rθ̃ are reduced in the ob-
tained formula. Adding and subtracting term θ̃

T
Γ−1τ, and substitut-

ing τ from (3.130) yields

V̇∗3.5 = −
1

2
ωcωox̄T x̄−ωox̄TRbn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

−ωox̄TRbn (ψ−ψr) θ̃−ωox̄TRbn

(
ψ− ψ̂

)
θ̂

−
1

2
ωoz̄T z̄+ωoz̄TPdm (ψ−ψr) θ̃+ωoz̄TPdm

(
ψ

− ψ̂
)
θ̂− θ̃

T
Γ−1 (Proj(τ) − τ) − θ̃T

(
ψ̂
T
−ψT

)
ψrθ̃

+ θ̃
T
(
ψ̂
T
−ψT

)
bTmz̄− θ̃

T (
ψT −ψTr

)
ψrθ̃

+ θ̃
T (
ψT −ψTr

)
bTmz̄− θ̃

T
ψTrψrθ̃+ θ̃

T
ψTrb

T
mz̄

−ωoθ̃
T
ψTrb

T
mPH̄z̄−ωoθ̃

T
ψTrb

T
mPdm (ψ−ψr) θ̃

−ωoθ̃
T
ψTrb

T
mPdm

(
ψ− ψ̂

)
θ̂− θ̃

T
ψTrbmPb

T
mψ̇rθ̃

+ θ̃
T
ψTrbmPb

T
mψr Proj(τ).

(A.51)

Recalling the properties of the projection operator and boundedness
of the parameter estimates and identification errors gives

V̇∗3.5 6 −
1

2
ωcωo ‖x̄‖2 +ωo ‖x̄‖

(
rMkM

∥∥∥ωcΦcΛnΦ−1
o

∥∥∥
+ rM

)
‖z̄‖+ωo ‖x̄‖ rM ‖ψ−ψr‖ θM

+ωo ‖x̄‖ rM
∥∥∥ψ− ψ̂

∥∥∥ θM −
1

2
ωo ‖z̄‖2

+ωo ‖z̄‖pM ‖ψ−ψr‖ θM +ωo ‖z̄‖pM
∥∥∥ψ− ψ̂

∥∥∥ θM
+
∥∥∥ψ̂−ψ

∥∥∥ψMθ2M + θM

∥∥∥ψ̂−ψ
∥∥∥ ‖z̄‖

+ ‖ψ−ψr‖ψMθ2M + θM ‖ψ−ψr‖ ‖z̄‖
+ θMψM ‖z̄‖+ωoθMψMpMhM ‖z̄‖

+ωoψMpM ‖ψ−ψr‖ θ2M +ωoψMpM

∥∥∥ψ− ψ̂
∥∥∥ θ2M

+ θ2Mψ
2
MpM + θMψ

2
MpM ‖Proj(τ)‖ .

(A.52)

By taking advantage of the explicit formula of τ, it is concluded that

‖Proj(τ)‖ 6 γM
∥∥∥ψ̂−ψ

∥∥∥ψM ∥∥θ̃∥∥+ γM ∥∥∥ψ̂−ψ
∥∥∥ ‖z̄‖

+ γM ‖ψ−ψr‖ψM
∥∥θ̃∥∥+ γM ‖ψ−ψr‖ ‖z̄‖

+ γMψ
2
M

∥∥θ̃∥∥+ γMψM ‖z̄‖ .
(A.53)
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It follows also from the Lipschitz property of the regressor that

‖ψ−ψr‖ 6 ‖x− xr‖ψL = ‖x̃‖ψL 6
∥∥∥Φ−1

c

∥∥∥ ‖x̄‖ψL,∥∥∥ψ̂−ψ
∥∥∥ 6 ‖x̂− x‖ψL = ‖Λnz̃‖ψL 6

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖ψL.

(A.54)

Embracing these notions yields

V̇∗3.5 6 −
1

2
ωcωo ‖x̄‖2 +ωo ‖x̄‖

(
rMkM

∥∥∥ωcΦcΛnΦ−1
o

∥∥∥
+ rM

)
‖z̄‖+ωorM

∥∥∥Φ−1
c

∥∥∥ ‖x̄‖2ψLθM
+ωo ‖x̄‖ rM

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖ψLθM −
1

2
ωo ‖z̄‖2

+ωo ‖z̄‖pM
∥∥∥Φ−1

c

∥∥∥ ‖x̄‖ψLθM
+ωopM

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖2ψLθM
+
∥∥∥ΛnΦ−1

o

∥∥∥ ‖z̄‖ψLψMθ2M + θM

∥∥∥ΛnΦ−1
o

∥∥∥ψL ‖z̄‖2
+
∥∥∥Φ−1

c

∥∥∥ ‖x̄‖ψLψMθ2M + θM

∥∥∥Φ−1
c

∥∥∥ ‖x̄‖ψL ‖z̄‖
+ θMψM ‖z̄‖+ωoθMψMpMhM ‖z̄‖

+ωoψMpM

∥∥∥Φ−1
c

∥∥∥ ‖x̄‖ψLθ2M
+ωoψMpM

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖ψLθ2M + θ2Mψ
2
MpM

+ θ2Mψ
3
MpMγM

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖ψL
+ θMψ

2
MpMγM

∥∥∥ΛnΦ−1
o

∥∥∥ψL ‖z̄‖2
+ θ2Mψ

3
MpMγM

∥∥∥Φ−1
c

∥∥∥ ‖x̄‖ψL
+ θMψ

2
MpMγM

∥∥∥Φ−1
c

∥∥∥ ‖x̄‖ψL ‖z̄‖+ θ2Mψ4MpMγM
+ θMψ

3
MpMγM ‖z̄‖ .

(A.55)
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Taking advantage of the notion that
∥∥Φ−1

c

∥∥ = ω
−n+1|0
c ,

∥∥ΦcωcΛnΦ−1
o

∥∥ =(
ωc
ωo

)n|1,
∥∥ΛnΦ−1

o

∥∥ = ω
−n|−1
o and ωo

∥∥ΛnΦ−1
o

∥∥ = ω
−n+1|0
o the

bound of V̇∗3.5(x̄, z̄) is reformulated by grouping the suitable terms as

V̇∗3.5 6 ωo

(
−
1

2
ωc + rMω

−n+1|0
c ψLθM

)
‖x̄‖2 +

(
−
1

2
ωo

+ pMω
−n+1|0
o ψLθM + θMω

−n|−1
o ψL

+ θMψ
2
MpMγMω

−n|−1
o ψL

)
‖z̄‖2

+

(
ωo

(
rMkM

(
ωc

ωo

)n|1
+ rM + pMω

−n+1|0
c ψLθM

)
+ rMω

−n+1|0
o ψLθM + θMω

−n+1|0
c ψL

+ θMψ
2
MpMγMω

−n+1|0
c ψL

)
‖z̄‖ ‖x̄‖

+

(
ω

−n|−1
o ψLψMθ

2
M + θMψM +ωoθMψMpMhM

+ψMpMω
−n+1|0
o ψLθ

2
M + θ2Mψ

3
MpMγMω

−n|−1
o ψL

+ θMψ
3
MpMγM

)
‖z̄‖+

(
ω

−n+1|0
c ψLψMθ

2
M

+ωoψMpMω
−n+1|0
c ψLθ

2
M

+ θ2Mψ
3
MpMγMω

−n+1|0
c ψL

)
‖x̄‖+ θ2Mψ4MpMγM

+ θ2Mψ
2
MpM.

(A.56)



A.2 lyapunov function derivatives for pieso and pidrc 215

Finally, invoking the Young’s inequality yields

V̇∗3.5 6 ωo

(
−
1

2
ωc + rMψLθMω

−n+1|0
c +

1

2ε

(
rMkM

(
ωc

ωo

)n|1
+ rM + pMψLθMω

−n+1|0
c

))
‖x̄‖2

+

(
−
1

2
ωo

(
1− ε

(
rMkM

(
ωc

ωo

)n|1
+ rM

+ pMψLθMω
−n+1|0
c

))
+ω

−n+1|0
c pMψLθM

+ω
−n|−1
o

(
θMψL + θMpMγMψ

2
MψL

))
‖z̄‖2

+

(
ω

−n+1|0
c rMψLθM +ω

−n+1|0
c

(
θMpMγMψLψ

2
M

+ θMψL

))
‖x̄‖ ‖z̄‖+

(
ωoθMψMpMhM + θMpMγMψ

3
M

+ θMψM +ω
−n+1|0
o θ2MψMpMψL +ω

−n|−1
o

(
θ2MψLψM

+ pMγMψLψ
3
Mθ

2
M

))
‖z̄‖+ω−n+1|0

c

(
ωoθ

2
MψMpMψL

+ θ2MψLψM + pMγMψLψ
3
Mθ

2
M

)
‖x̄‖+ pMγMψ4Mθ2M

(A.57)

what corresponds to the formula of (3.134) and enabled concluding
about the boundedness of the tracking and estimation errors.

Consider the function given by (3.135) in the form of

V3.5(x̄, z̄, θ̃) =
1

2
ωox̄TRx̄+

1

2
z̄TPz̄+ θ̃

T

(
1

2
Γ−1 −M(t, xr)

)
θ̃.

(A.58)

The derivative along the trajectories of the system is expressed by

V̇3.5(x̄, z̄, θ̃) = ωox̄TR ˙̄x+ z̄TP ˙̄z+ θ̃TΓ−1 ˙̃θ− θ̃
T
Ṁθ̃

− 2θ̃
T
M ˙̃θ.

(A.59)
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Substituting ˙̄x, ˙̄z, ˙̃θ from (3.130) and Ṁ from Corollary 3.4 yields

V̇3.5 = ωcωox̄TRḠx̄−ωox̄TRbn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

−ωox̄TRbn (ψ−ψr) θ̃−ωox̄TRbn

(
ψ− ψ̂

)
θ̂

+ωoz̄TPH̄z̄+ωoz̄TPdm (ψ−ψr) θ̃

+ωoz̄TPdm

(
ψ− ψ̂

)
θ̂+ z̄TPbmψ̇rθ̃

− z̄TPbmψr Proj(τ) − θ̃TΓ−1 Proj(τ) − θ̃TMθ̃

+ θ̃
T
ψTrψrθ̃+ 2θ̃

T
MProj(τ).

(A.60)

By adding and subtracting the term θ̃
T
Γ−1τ, and then substituting τ

from (3.130) leads to

V̇3.5 = −
1

2
ωcωox̄T x̄−ωox̄TRbn

(
k̄TωcΦcΛnΦ

−1
o +bTm

)
z̄

−ωox̄TRbn (ψ−ψr) θ̃−ωox̄TRbn

(
ψ− ψ̂

)
θ̂

−
1

2
ωoz̄T z̄+ωoz̄TPdm (ψ−ψr) θ̃

+ωoz̄TPdm

(
ψ− ψ̂

)
θ̂+ z̄TPbmψ̇rθ̃

− z̄TPbmψr Proj(τ) − θ̃TΓ−1 (Proj(τ) − τ)

− θ̃
T
(
ψ̂
T
−ψT

)
ψrθ̃+ θ̃

T
(
ψ̂
T
−ψT

)
bTmz̄

− θ̃
T (
ψT −ψTr

)
ψrθ̃+ θ̃

T (
ψT −ψTr

)
bTmz̄

− θ̃
T
ψTrψrθ̃+ θ̃

T
ψTrbmz̄− θ̃

T
Mθ̃+ θ̃

T
ψTrψrθ̃

+ 2θ̃
T
MProj(τ).

(A.61)
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The terms θ̃TψTrψrθ̃ reduce each other. Recalling the characteristics
of the projection operator and the boundedness of the identification
errors yields

V̇3.5 6 −
1

2
ωcωo ‖x̄‖2 +ωo ‖x̄‖

(
rMkM

∥∥∥ωcΦcΛnΦ−1
o

∥∥∥
+ rM

)
‖z̄‖+ωo ‖x̄‖ rM ‖ψ−ψr‖ θM

+ωo ‖x̄‖ rM
∥∥∥ψ− ψ̂

∥∥∥ θM −
1

2
ωo ‖z̄‖2

+ωo ‖z̄‖pM ‖ψ−ψr‖ θM +ωo ‖z̄‖pM
∥∥∥ψ− ψ̂

∥∥∥ θM
+ ‖z̄‖pMψM

∥∥θ̃∥∥+ ‖z̄‖pMψM ‖Proj(τ)‖

+
∥∥θ̃∥∥ ∥∥∥ψ̂−ψ

∥∥∥ψMθM + θM

∥∥∥ψ̂−ψ
∥∥∥ ‖z̄‖

+
∥∥θ̃∥∥ ‖ψ−ψr‖ψMθM + θM ‖ψ−ψr‖ ‖z̄‖

+
∥∥θ̃∥∥ψM ‖z̄‖− µe−TPE

∥∥θ̃∥∥2
+ 2

∥∥θ̃∥∥ψ2M ‖Proj(τ)‖ .
(A.62)
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By recalling the explicit formula of
∥∥Proj(τ)

∥∥ and taking advantage of
the Lipschitz property of the regressor, it is concluded that

V̇3.5 6 −
1

2
ωcωo ‖x̄‖2 +ωo ‖x̄‖

(
rMkM

∥∥∥ωcΦcΛnΦ−1
o

∥∥∥
+ rM

)
‖z̄‖+ωorM

∥∥∥Φ−1
c

∥∥∥ ‖x̄‖2ψLθM
+ωo ‖x̄‖ rM

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖ψLθM −
1

2
ωo ‖z̄‖2

+ωo ‖z̄‖pM
∥∥∥Φ−1

c

∥∥∥ ‖x̄‖ψLθM
+ωopM

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖2ψLθM
+ ‖z̄‖pMψM

∥∥θ̃∥∥+ pMψ2MγM ∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖2ψLθM
+ pMψMγM

∥∥∥ΛnΦ−1
o

∥∥∥ψL ‖z̄‖3
+ ‖z̄‖pMψ2MγM

∥∥∥Φ−1
c

∥∥∥ ‖x̄‖ψLθM
+ ‖z̄‖2 pMψMγM

∥∥∥Φ−1
c

∥∥∥ ‖x̄‖ψL + ‖z̄‖pMγMψ3M ∥∥θ̃∥∥
+ pMψ

2
MγM ‖z̄‖2 +

∥∥θ̃∥∥ ∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖ψLψMθM
+ θM

∥∥∥ΛnΦ−1
o

∥∥∥ψL ‖z̄‖2 + ∥∥θ̃∥∥ ∥∥∥Φ−1
c

∥∥∥ ‖x̄‖ψLψMθM
+ θM

∥∥∥Φ−1
c

∥∥∥ ‖x̄‖ψL ‖z̄‖+ ∥∥θ̃∥∥ψM ‖z̄‖− µe−TPE
∥∥θ̃∥∥2

+ 2θMψ
3
MγM

∥∥∥ΛnΦ−1
o

∥∥∥ ‖z̄‖ψL ∥∥θ̃∥∥
+ 2θMψ

2
MγM

∥∥∥ΛnΦ−1
o

∥∥∥ψL ‖z̄‖2
+ 2θMψ

3
MγM

∥∥∥Φ−1
c

∥∥∥ ‖x̄‖ψL ∥∥θ̃∥∥
+ 2θMψ

2
MγM

∥∥∥Φ−1
c

∥∥∥ ‖x̄‖ψL ‖z̄‖
+ 2ψ4MγM

∥∥θ̃∥∥2 + 2 ∥∥θ̃∥∥ψ3MγM ‖z̄‖ .
(A.63)

An advantage is now taken for the notion that
∥∥z̄∥∥ 6 zM and

∥∥x̄∥∥ 6

xM to establish quadratic bounds on the terms pMψMγM
∥∥ΛnΦ−1

o

∥∥ψL∥∥z̄∥∥3
and

∥∥z̄∥∥2pMψMγM∥∥Φ−1
c

∥∥∥∥x̄∥∥ψL. Moreover, the norms of the scal-
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ing matrices are expressed in terms of conditional exponentiation
operators and the terms are grouped accordingly to obtain

V̇3.5 6

(
−
1

2
ωcωo +ωorMω

−n+1|0
c ψLθM

)
‖x̄‖2 +

(
−
1

2
ωo

+ pMω
−n+1|0
o ψLθM + pMψ

2
MγMω

−n|−1
o ψLθM

+ pMψMγMω
−n|−1
o ψLzM + pMψMγMω

−n+1|0
c xMψL

+ pMψ
2
MγM + θMω

−n|−1
o ψL

+ 2θMψ
2
MγMω

−n|−1
o ψL

)
‖z̄‖2 +

(
ωo

(
rMkM

ωc

ωo

n|1

+ rM + pMω
−n+1|0
c ψLθM

)
+ rMω

−n+1|0
o ψLθM

+ pMψ
2
MγMω

−n+1|0
c ψLθM + θMω

−n+1|0
c ψL

+ 2θMψ
2
MγMω

−n+1|0
c ψL

)
‖z̄‖ ‖x̄‖+

(
pMψM

+ pMγMψ
3
M +ω

−n|−1
o ψLψMθM +ψM

+ 2θMψ
3
MγMω

−n|−1
o ψL + 2ψ

3
MγM

)
‖z̄‖

∥∥θ̃∥∥
+ω

−n+1|0
c

(
ψLψMθM + 2θMψ

3
MγMψL

)∥∥θ̃∥∥ ‖x̄‖
+

(
− µe−TPE + 2ψ4MγM

)∥∥θ̃∥∥2 .

(A.64)
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At last, invoking the Young’s inequality yields

V̇3.5 6

(
ωo

(
−
1

2
ωc +ω

−n+1|0
c θMrMψL +

1

2ε1

(
rM

+ rMkM

(
ωc

ωo

)n|1
+ω

−n+1|0
c pMθMψL

))
+
1

2
θM

(
ω

−n+1|0
c rMψL +ω

−n+1|0
c

(
pMγMψLψ

2
M

+ψL + 2ψ
2
MγMψL

))
+

1

2ε2

(
ω

−n+1|0
c

(
θMψLψM

+ 2θMγMψ
3
MψL

))
2

)
‖x̄‖2 +

(
1

2
ωo

(
− 1+ ε1

(
rM

+ rMkM

(
ωc

ωo

)n|1
+ω

−n+1|0
c pMθMψL

))
+ω

−n+1|0
c pMθMψL +ω

−n+1|0
c xMpMγMψMψL

+ω
−n|−1
o

(
pMγMψLψ

2
MθM + zMpMγMψMψL

+ θMψL + 2θMψ
2
MγMψL

)
+ pMγMψ

2
M

+
1

2

(
ω

−n+1|0
c θMrMψL +ω

−n+1|0
c

(
pMγMψLψ

2
MθM

+ θMψL + 2θMψ
2
MγMψL

))
+

1

2ε3

(
pMγMψ

3
M

+ pMψM +ψM + 2γMψ
3
M +ω

−n|−1
o

(
θMψMψL

+ 2θMγMψ
3
MψL

))2)
‖z̄‖2 +

(
− µe−TPE + 2γMψ

4
M

+
1

2
ε2 +

1

2
ε3

)∥∥θ̃∥∥2
(A.65)

for any ε1, ε2, ε3 ∈ R+ what is consistent with the results of (3.138).
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