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Abstract 

The rapid evolution of wireless communication techniques presents considerable 

challenges arising from the demanding nature of the physical medium and the complexities 

of these techniques. Interference and multipath-induced fading exemplify the dominant 

issues in wireless communications.  

Over the years, metaheuristics, such as Evolutionary Algorithms (EAs), have attracted 

increasing interest of scientists as a tool for solving many complex optimization problems. 

The EAs consist in a guided random search, independent of the details of the optimization 

problem to be solved. They model a rudimentary form of memory to archive the best 

solutions encountered. Therefore, they provide reasonable solutions under all conditions. 

One of the most widely used metaheuristics is Genetic Algorithm (GA), which has gained 

the attention as an optimization framework in the field of wireless communication systems. 

This dissertation discusses the use of GA for Multi-User Detection (MUD) purposes 

in a Multi-User Multiple-Input Multiple-Output (MU-MIMO) scenario, in which the 

receiver is equipped with a few antennas and individual users transmit their signals 

concurrently in the same bandwidth. 

To converge, GA applies several operators, such as selection, crossover, and mutation, 

to a set of temporal solutions. They are controlled by some parameters, the optimal values 

of which are obtained empirically as part of the work. With the aim of enhancing the GA 

convergence the search begins with some known good solutions rather than a random set, 

i.e., the use of a Zero-Forcing (ZF) detector is used in the initial processing phase. The 

joined ZF-GA detector manages to outperform the original ZF reference in terms of Bit 

Error Rate (BER) vs. Signal-to-Noise Ratio (SNR).  

The author contributes a new detection approach to generate the initial GA population, 

which conceptually evokes the Successive Interference Cancellation (SIC) procedure: an 

initialization scheme uses the ZF outcome with respect to the strongest signal as a reference 

set of solutions to create new individuals, thereby giving an initial direction to a good 

search region. This novel directed initialization improves the performance of the 

GA-driven MU-MIMO detector at no extra computational cost in comparison to the first 

ZF-GA solution. 



 
 

The second scope of this dissertation is the use of GA as a learning mechanism to 

improve the performance of an adaptive channel equalizer. A novel Uni-Cycle Genetic 

Algorithm (UCGA) is designed with the aim of working in real time. The proposed solution 

has the advantage of requiring only one generation per signalling interval, which reduces 

computational costs, significantly, when compared to other GA-driven channel equalizers. 

This approach can outperform conventional solutions in terms of convergence speed and 

channel tracking reliability. This makes the proposed solution attractive for future wireless 

systems. 

 

 



 
 

Streszczenie 

Błyskawiczny rozwój łączności bezprzewodowej stwarza istotne problemy wynikające 

z kłopotliwej natury medium transmisyjnego, jak i stopnia skomplikowania samych 

technik transmisji. Interferencja sygnałów i zaniki, których przyczyną jest transmisja 

wielodrogowa, stanowią dominujące przeszkody w zapewnieniu niezawodnej łączności 

bezprzewodowej. 

Na przestrzeni lat metaheurystyki, takie jak algorytmy ewolucyjne, cieszyły się 

rosnącym  zainteresowaniem naukowców, którzy widzieli w nich metodę rozwiązywania 

wielu skomplikowanych problemów optymalizacyjnych. Algorytmy ewolucyjne mają 

charakter wspomaganego przeszukiwania losowego, niezależnie od szczegółów problemu. 

Wykorzystują przy tym prostą formę pamięci do przechowywania znalezionych dotąd 

najlepszych rozwiązań. Są w stanie dostarczyć rozwiązań o akceptowalnej jakości (choć 

niekoniecznie faktycznie optymalnych), niezależnie od warunków danego zagadnienia. 

Jednym z najbardziej popularnych przykładów metaheurystyk jest algorytm genetyczny. 

Zyskał on uznanie jako algorytm optymalizacyjny w dziedzinie systemów łączności 

bezprzewodowej. 

Niniejsza praca dotyczy zastosowania algorytmu genetycznego do detekcji sygnałów 

w systemie łączności bezprzewodowej typu Multi-User MIMO (MU-MIMO), w którym 

odbiornik wyposażony jest w wiele anten, a poszczególni użytkownicy nadają swoje 

sygnały jednocześnie w tym samym pasmie.  

Dla utrzymania postępu w swoim działaniu, algorytm genetyczny realizuje względem 

zbioru aktualnie rozpatrywanych rozwiązań swoiste operacje, jak selekcja, krzyżowanie 

i mutacja. Parametry tych operacji zostały w pracy dobrane empirycznie. Dla poprawy 

szybkości, z jaką algorytm genetyczny znajduje pożądane rozwiązanie, zamiast całkowicie 

losowej inicjalizacji do populacji początkowej wprowadzany jest wynik działania prostego 

detektora typu ZF (Zero Forcing). Powstały w ten sposób detektor ZF-GA przewyższa 

zwykły detektor ZF pod względem wartości bitowej stopy błędu (BER) w danych 

warunkach stosunku sygnału do szumu.  

W niniejszej pracy autor przedstawia alternatywną metodą inicjalizacji populacji 

algorytmu genetycznego, która pod względem koncepcji wywodzi się z kręgu metod 

sukcesywnej redukcji interferencji: wszystkie osobniki populacji początkowej reprezentują 



 
 

wynik działania detektora ZF, ale tylko dla najsilniejszego sygnału. Taka inicjalizacja 

nadaje wyraźny kierunek działania algorytmu genetycznego – w stronę obszaru, w którym 

leżą pożądane rozwiązania problemu optymalizacyjnego. Jest to rozwiązanie, które 

poprawia działanie detektora w systemie MU-MIMO bez wzrostu nakładów 

obliczeniowych względem poprzedniej propozycji autora, tj. detektora GA-ZF. 

Dalsza część pracy została poświęcona wykorzystaniu algorytmu genetycznego jako 

narzędzia do adaptacji korektora kanału radiowego. Zaproponowane z myślą o działaniu 

w czasie rzeczywistym rozwiązanie, w którym na dany odstęp modulacji przypada tylko 

jedno pokolenie algorytmu genetycznego, pozwala znacznie ograniczyć nakłady 

obliczeniowe względem innych korektorów kanału wspomaganych algorytmem 

genetycznym. Przedstawiony sposób sterowania korektorem zapewnia szybką zbieżność 

i dobre śledzenie stanu kanału w porównaniu z rozwiązaniami znanymi z literatury – jest 

zatem obiecującym rozwiązaniem pod kątem możliwych zastosowań w przyszłych 

systemach łączności bezprzewodowej.    
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1 
Chapter 1: Introduction 

Chapter 1  

1.1 Overview of Genetic Algorithm Applications 

In the 1960s, Holland was the first to refer to the GA concept [Hol75]. Since then, GAs 

have developed rapidly due to an increased interest in this area [Gol89, GD91, GB89]. In 

the framework of optimization and machine learning, Goldberg further developed GAs. He 

examined the operating principles, structure and implementation of a classifier system, as 

well as one type of Genetic-Based Machine Learning (GBML) [Gol89]. Davahli et al. 

suggested in [DSA20] the hybridization of GA and Grey-Wolf optimizer (GWO) for the 

Internet of things (IoT) intrusion detection system to decrease the dimensionality of the 

massive wireless network traffic. Search-based GAs have demonstrated notable 

performance in a wide range of global search and optimization problems, including neural 

networks [Gre93, AH94], adaptive processes [Vos99], besides many different optimization 

problems that traditional search engines can't solve [Gol89, GC00]. 

In the context of wireless communications, the first known study of GA application in 

MUD was presented by Juntti et al. in 1997 [JSL97]. Wang et al. proposed a detector for 

multi-user communications based on Maximum-Likelihood (ML) decision and utilizing 

GA for detection [WLA98]. In [RCA16], a modified real-coded GA (RGA) has been 

employed to find the optimal configuration of the base stations by optimizing the power 

consumption. The application of GA in finding the optimal location assignment for mesh 

routers was presented in [OEB16]. A novel spectrum sharing method in Wi-Fi/WiMAX 

integrated networks based on GA was proposed in [KNK14]. Cheng and Yang in [CY10] 

proposed to utilize GA to solve the dynamic shortest path (SP) problem in mobile ad hoc 

networks (MANET). GAs were also applied to Space-Time Block Coding (STBC) aided 

MUD scenarios [DC03], beamforming MIMO detection problems [WAC04], and Spatial 

Division Multiple Access (SDMA) based MIMO OFDM systems [MAG07, HK06], 

revealing their full potential in wireless communication systems. 

1.2 Motivation 

Wireless communication is a crucial aspect of the telecommunications industry. Together 

with its applications and underlying technologies, it is among the most active areas of 
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technology development due to the increment in demand for wireless connectivity and the 

success of the fourth-generation (4G) digital wireless standard. Developing MUD 

techniques is one of the most considerable current approaches as the end users’ demands 

have been growing. Complexity is the main challenge associated with multi-user detection 

and can take two forms: computational and informational complexity. The number of 

resources required to perform a particular receiver algorithm is referred to as the 

computational complexity. Informational complexity refers to the amount of knowledge a 

receiver requires to process the received signals effectively [Che13]. The optimal ML 

MUD, typically, consists in an exhaustive search, which imposes computational costs 

increasing exponentially with the number of simultaneous users, thereby making its 

implementation unfeasible in high-user-load scenarios [Ver98, VPE01]. 

Several suboptimal nonlinear MUDs have been proposed in the literature, such as the 

MUDs that utilize the SIC technique [VPE01] or parallel interference cancellation (PIC) 

[Che13, JH07] that require iterative algorithms to reduce the impact of the interfering 

signals during each detection stage.  

As the wireless market continues to grow, which brings a higher number of users and 

higher capacity demands, dealing with the wireless channel fading and multipath effects is 

becoming a more and more challenging task. Channel equalization is essential for reliable 

communication. A desirable equalizer should be capable of achieving high performance 

while maintaining low computational costs. The high computational complexity of ML 

MUD was the reason for which the researchers focused their attention on suboptimal 

receivers with lower complexity, such as linear and non-linear equalizers; the research 

objective is to reach the balance between performance and complexity metrics in hardware 

and theoretical development [MAG07, CW98]. 

GAs have been applied for optimization of a wide variety of parameters in wireless 

networks for many reasons. GA is a powerful search engine, capable of solving 

optimization problems with large search spaces. It can adapt to unknown environments, 

which is crucial in wireless networks, where the uptime decisions must be made 

automatically [MQA16]. 

Different approaches to the MUD and adaptive equalizer based on a computationally 

efficient GA are the topics of this thesis. 
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1.3 Thesis and Main Goals  

The thesis of the dissertation is as follows:  

The use of genetic algorithms can diminish the rate of erroneous MU-MIMO detector's 

decisions on transmitted symbols and boost the convergence of wireless channel equalizer.  

Based on the above-stated thesis, the research focuses on two issues, namely: 

• Improving the ZF-GA MUD performance by mitigating the error propagation effect. 

In [KK18, Kha17] the author of the thesis has proposed an original GA-aided solution 

to the MUD problem, in which one individual of the initial population represents the 

result outputted by a simple ZF detector. In the dissertation, he revisits that concept. 

The new strategy bases on the Successive Interference Cancellation (SIC) idea. An 

employed ZF detector assesses the reliability of signals transmitted by individual 

stations to give an initial direction to a good search region when the optimization 

algorithm starts.  

• Boosting the convergence and tracking capability of the adaptive equalizer 

performance. Slow convergence and complexity are the major disadvantages of Least 

Mean Square (LMS) and Recursive Least Square (RLS) algorithms, respectively. A 

novel UCGA is proposed as a learning tool to optimize the coefficients of the adaptive 

linear equalizer. In the proposed GA scheme, the individual represents the estimated 

equalizer coefficients. The algorithm is optimized for working on a real-time basis. To 

meet such needs, it considers only one population generation per one signalling 

interval, which has not been practiced, yet. 

 

1.4 Thesis Organization 

This thesis is organized in six chapters: 

• Chapter 2 briefly presents basic optimization concepts and introduces EAs and their 

features. Moreover, the basic operators and terminology used in evolutionary 

algorithms are also discussed. The chapter focuses on the topic of genetic search, 
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and introduces various operators involved with GA. In the last part of the chapter, 

it is explained how the GA can find the global minimum.  

• Chapter 3 provides an overview of MUD techniques. The author demonstrates how 

GA can be applied in the case of MIMO MUD. Furthermore, some simulation 

results are presented to display the performance of the reference GA-based 

solutions, including his own ZF-GA MUD proposal. 

• In Chapter 4, SIC fundamentals are presented. In its main part, the chapter brings a 

re-designed method to generate the initial GA population. BER measurements are 

investigated to examine the performance of improved SIC-Inspired GA-ZF 

MU-MIMO detector compared with the ZF benchmark. 

• Chapter 5 gives details of a novel approach to an adaptive equalizer, i.e., the so-

called UCGA. The performance of the investigated system is evaluated with some 

experimental results. 

• Chapter 6 concludes the work and suggests some interesting future research 

directions. 
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Metaheuristics have become the basis of many studies on optimization over the past few 

years. Almost all of these metaheuristics are independent of the details of the optimization 

problem being solved and, therefore, can be applied to address a wide variety of 

optimization problems. Randomness is used as the basis for a metaheuristic search, but past 

knowledge is also included to guide the search. One of the most well-known metaheuristics 

is GA. Their optimization procedure was inspired by the biological phenomenon of 

evolution [Lev06]. 

GAs are the earliest set of methods exemplifying the implementation of evolutionary 

techniques. They operate on a population of possible solutions and simulate the Darwinian 

theory of survival of the fittest among individuals of successive generations for solving a 

problem [SD08, Mir19]. 

This chapter gives a brief introduction to optimization concepts. Also, it shortly 

discusses the EAs. Afterwards, the chapter moves on to GA. The basic operators involved 

in GA and the various terminologies are discussed in this chapter. It ends with an example 

of how the GA can find the global minimum. 

2.1 Optimization  

Optimization involves defining the alternative solutions of achieving a designated 

objective and then selecting the one that accomplishes the objective most efficiently, 

subject to definite constraints; this means the value of an objective function is minimized 

or maximized by determining the adequate solution [ZTB09].  

An optimization problem is a search problem that can be solved by identifying a 

specific object in a space of alternative solutions, which is generally large. It can be 

concluded that the problem-solving process can be considered as a search among a 

combination of options to locate the best choice [ES03, SD08]. Optimization problems in 

most cases have three main components. The first one is the objective function. The second 

component is a set of variables whose values can be manipulated to optimize the formalized 
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optimization goal. Constraints are the third component of the optimization problem that 

limit the values of these variables [CLV07].  

2.1.1 Single-Objective Optimization 

The author assumes that the considered optimization problems are single-objective 

problems. Generally, the single-objective problem comprises an objective function 𝑓(𝐱) 

that needs to be optimized (minimized or maximized) subject to a number of constraints, 

where 𝐱 = (𝑥1, … , 𝑥𝑘), 𝐱 ∈Ω  is denoted as a k-dimensional decision variable vector or 

solution, Ω contains all feasible solutions. The solution that provides the optimum value 

of the objective function in comparison to all potential solutions in the search space (the 

group of all feasible solutions in which the required solution exists) is called global 

optimum [CLV07]. All the optimization problems covered in this thesis involve finding 

the global minimum. In general, the global minimum of a single-objective problem can be 

expressed as: 

 𝑓(𝐱𝑚𝑖𝑛) ≤ 𝑓(𝐱)  ∶ ∀𝐱 ∈Ω, (2.1) 

where 𝐱𝑚𝑖𝑛 is the global minimum solution and 𝑓 refers to the objective function. The 

objective function is called the cost function when the purpose is to minimize a function, 

and it is called the fitness function in the case of maximizing the function [SD08]. 

2.1.2 Optimization Algorithms and Evolution  

Optimization algorithms are computational processes that compare different possible 

solutions to find the best one [KW19]. Optimization algorithms can be grouped according 

to many different ways. In general, they are classified into three categories: (a) enumerative 

based (b) deterministic (c) random (stochastic) [Vik16, KD21]. Figure 2.1 demonstrates 

the classification of the optimization algorithms [Yan10]. 

Enumerative search procedures can be applied to find solutions for various problems. 

The main advantage of this strategy lies in its computational simplicity because each 

possible solution is evaluated sequentially within a finite search space. This technique is 

inefficient with a large search space due to time consuming and, as such, not practical 

[CLV07]. By contrast, deterministic algorithms attempt to find acceptable solutions in 
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reasonable time by using the knowledge of problem domain. Deterministic algorithms 

follow a specified action chain. Thus, the objective function, given a particular input, can 

have the same results and follows the same computation steps [Özk18]. Hill-Climbing, as 

an example, is a deterministic algorithm, and whenever the program is run, the algorithm 

follows the same path when the starting point is the same [Yan10]. Gradient-Based 

algorithms are also deterministic algorithms; they use the functions values and their 

derivatives. Their effectiveness is reduced when there is some discontinuity in the objective 

function [CLV07, Yan10].  

 

Figure 2. 1 Optimization algorithms classification [Yan10] 

Stochastic methods were developed as alternative approaches for solving high-

dimensional, discontinuous, multimodal problems [CLV07]. Stochastic algorithms are 

classified as heuristic or metaheuristic even though the difference is inconsiderable. The 

heuristic approach seeks a rapid solution with an acceptable level of accuracy; thus, the 

heuristic algorithms are usually utilized when exact solutions are computationally 

complicated and the approximate solutions are adequate [Yan10]. In general, metaheuristic 

algorithms perform better than simple heuristic algorithms. They are usually defined as a 

top-level strategy of the heuristic algorithms. Figure 2.2 describes the basic principle of 
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metaheuristic algorithms. They create a set of new feasible solutions from the current ones 

using definite creation operators [Lev06]. The literature contains many applications of 

metaheuristics for telecommunications problems; e.g., Kim et al. [KCK00] proposed 

employing a simulated annealing algorithm to allocate nominal channels to the cells of a 

cellular system. In [ACM03], Amaldi et al. proposed two randomized greedy methods and 

a tabu search algorithm for locating the Universal Mobile Telecommunications Service 

(UMTS) base stations to minimize installation costs. Ganame et al. introduced in [GYG19] 

an implementation of a metaheuristic algorithm based on swarm intelligence to minimize 

the number of 5G network base stations and optimize their positions at millimeter wave 

(mmWave) frequencies while meeting user data rates requirement. 

 

Figure 2. 2 Metaheuristic algorithm basic principle [Lev06] 

Metaheuristic algorithms can be grouped into two general groups, i.e., population-

based algorithms and trajectory-based algorithms. Population-based algorithm is a generic 

term for EAs that simulate the natural evolutionary procedures. Selection and 

randomization are the main features of any metaheuristic algorithm. Selection of the best 

solutions assures the convergence to the optimality, while randomization increases the 

diversity of the solutions and, at the same time, prevents the algorithm from being trapped 

in local optima [Yan10]. Figure 2.3 shows a basic scheme for solving optimization 

problems using EA. 
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Figure 2. 3 Basic scheme of solving optimization problems using EA [OGS05] 

A fitness function assigns a measure of quality to each candidate solution in the 

population associated with the problem under consideration, this value is the quantitative 

knowledge the algorithm depends on to guide the search [Hol92]. A new set of 

approximations is iteratively produced by the process of selecting solutions according to 

their level of fitness in the problem domain and developing them together using operators 

acquired from natural genetics (Subsequent sections bring details). This process leads to 

the evolution of the population in a sense that the current solutions are better suited to their 

environment than that they were created from, just as in natural adaptation [SD08].  

2.2 Evolutionary Algorithms 

Darwinian principles were first applied to automated problem-solving in the 1940s, long 

before computers became widely available [Fog98]. The evolutionary search was 

introduced by Turing in 1948, and by 1962, Bremermann had actually conducted computer 

experiments on optimization through evolution [ES03]. Three different applications of the 

fundamental concept of evolution were created in different locations during the 1960s. 

Evolutionary programming was first developed in the USA by Fogel, Owens, and Walsh 

[FOW65, FOW66], but Holland referred to his approach as a genetic algorithm [Jon75, 

Hol73, Hol92]. In Germany, Rechenberg and Schwefel developed evolutionary strategies 

[Rec73, Sch95]. These areas had been developed separately for about 15 years till the 
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1990s when they were found to be different representations of one technology known as 

Evolutionary Computing (EC) (with the exception for the genetic programming that 

developed in the early 1990s [BNK98, Koz94]). The algorithms involved in EC are referred 

to as EAs [Vik16]. 

There are different EC paradigms based on how the EA components are implemented 

[Eng07, ES03]: 

a) GA that simulates genetic evolution. 

b) Genetic Programming (GP). It is similar to GA except for the individuals 

represented as trees of objects, including programming language commands. 

c) Evolutionary Programming (EP). It refers to phenotypic evolution not the genetic 

model, i.e., the simulation of adaptive behaviour in evolution. 

d) Evolution Strategies (ES). It considers both genotypic and phenotypic evolution 

and is based on the notion of the evolution of evolution. Individuals are represented 

by their genetic materials and a set of strategy parameters that determine the 

behaviour of individuals in their environments. 

EAs handle a population of individuals (possible solutions). The initial step of an EA 

is the representation or mapping all possible solutions onto chromosomes. It is similar to 

creating a link between the problem-solving space, where evolution takes place, and the 

original problem context. A chromosome, which is essentially an abstract representation, 

is used to describe each solution [ES03]. An objective function is applied as a fitness 

measure [ZYC19]. In order to explain the concept of evolutionary cycle, the author refers 

to Figure 2.4 as a reference. Some of the better candidates are chosen to seed the next 

generation based on their fitness values, and then recombination (so-called crossover) and 

mutation are applied to them [CLV07, ES03]. Offspring is created by applying these 

operators to the selected candidates. After that, these offspring take part in the evolution 

process and compete with the old candidates for a place in the subsequent generation based 

on their fitness. This procedure is repeated until a suitable solution, i.e., candidate with 

desired quality, is found [ES03]. 
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The strategy of EAs shows that to solve optimization problems, EAs simply need the 

solutions to be represented and evaluated in order to complete the search, despite the fact 

that problem structural information may be missing. EAs, in particular, can be used without 

objective function gradient information; all that is required is the fitness of a solution to be 

evaluated. Hence, EAs can be considered general-purpose optimization algorithms 

[ZYC19]. 

  

Figure 2. 4 General scheme of evolutionary cycle 
 

2.3 Genetic Algorithms 

This section presents the genetic algorithm and its operation as an evolutionary tool. GA is 

the earliest well-known method exemplifying the implementation of evolutionary 

techniques. It is an iterative procedure that simulate the natural evolution process by using 

operators (selection, crossover, and mutation) according to some probabilistic rules 

[Gen96]. It was first introduced by Fraser, followed by Bremermann and Reed. The 

substantial work was accomplished by Holland, who generalized GAs [Eng07, Hol75].  

GA was found a valuable technique for solving optimization problems. To solve a 

problem, GA operates on a population of possible solutions and simulate the Darwinian 

theory of survival of the fittest among individuals of successive generations [Mir19]. It 

enables a population to evolve to a condition that minimizes the cost function under defined 

selection methods and can find the best solution from a large candidate set [SD08].  

GA, based on the individuals' representation, can be classified into Binary GA and 

Continuous (so-called real-coded) GA. Both strategies follow the same procedures to 
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minimize the cost and find the optimal solution. Binary GA represents the candidate 

solutions as an encoded binary string, while the other represents them by floating-point 

numbers [HH04].  

2.3.1 Genetic Algorithm Terminology 

In this section, the author explains the fundamental terminology required to comprehend 

GA. 

2.3.1.1 Population and Generation 

GA is a population-based procedure. Population is a set of candidate solutions, so-

called individuals, at a particular generation. The individual in the actual real-world 

solution space refers to the feasible solution and is referred to as a phenotype. Meanwhile, 

in the computing space, where the evolution takes place, the solutions are represented in a 

form that can be easily processed by a computing system, and the individual is known as 

genotype [SD08, MQA16]. 

Individuals are encoded as chromosomes, i.e., strings of a specific length, such that 

their values are uniquely re-represented in the phenotypic domain. One or more 

chromosomes form a genotype [MQA16].  

Each chromosome symbolizes a string of a specific length that contains a part of an 

individual's genetic information. This information refers to the variables of the 

optimization problem.  The chromosome is composed of genes which represent the 

variables to be optimized and take a particular value (allele) [ES03]. These elements are 

pictured in Figure 2.5; in the presented case, the genotype consists of only one 

chromosome. 

The population size remains invariant during the search. It can affect the efficiency of 

GA significantly. GA can perform poorly when the population size is relatively small. A 

large population is, in fact, beneficial. (With a large population size, the search space is 

easier to explore.) However, it needs more processing cost, time, and memory [Gre86, 

Gol89]. 
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Figure 2. 5  GA basic terminology 

At each cycle (iteration), GA applies a set of rules to the existing population to cause 

its evolution. A generation is a term referring to each iteration of a GA, while the number 

of generations specifies the number of iterations that GA will perform. The average 

distance between individuals in a population is referred to as diversity. If the average 

distance is considerable, a population has high diversity as shown in Figure 2.6. Besides 

increasing the computational capacity of the GA, diversity also allows it to search a broader 

region of the space [Abr07]. 

 

Figure 2. 6 The population on the left has a high level of diversity, whereas the 

population on the right has a low level of diversity 
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2.3.1.2 Objective Function and Fitness 

It is necessary to have some criteria to evaluate a certain solution in order to know how 

"good" it is. These criteria are expressed as an objective function, a computable function 

of the decision variables. Objective function provides a fitness measure that is used in 

determining the relative performance of the individuals in the problem domain and 

considered as the basis of the selection operator [Eng07, Sim13]. It is important to 

understand that the fitness of a possible solution (individual) is defined as the value of an 

objective function given for its phenotype, i.e., the chromosome has to be decoded first, 

and then the objective function has to be assessed. The fitness indicates how close to the 

optimal solution the given chromosome is. When it comes to a minimization problem, the 

chromosome with the lowest numerical value of the related objective function will be the 

fitter in the population [KD21, Abr07].  

2.3.1.3 Parents and Children 

The GA selects fitter individuals from the current population, known as parents, and uses 

them to produce offspring (children) for the subsequent generation [SD08]. 

2.3.2 Genetic Algorithm Procedures 

The GA process is summarized in the following steps [SD08, ES03]: 

1. The method starts by generating a random initial population. 

2. Next, the algorithm generates a series of new populations by performing the 

following steps: 

(a) Each individual of the current population is scored by calculating its fitness 

value. 

(b) The algorithm selects parents according to their fitness. 

(c) Some individuals in the current population are selected as elite. These 

individuals are allowed to pass their traits to the new generation population. 

(d) The GA applies crossover and mutation operators to produce children. 

(e) The existing population is replaced by the newly generated offspring to form 

the next generation population. 
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3. Once the stopping criterion is met, the algorithm stops.  

Figure 2.7 depicts a flowchart of the GA subsequent steps. 

 

Figure 2. 7 GA flowchart 

2.3.3 Encoding (Representation) and Decoding 

Encoding (often referred to as Representation) is a procedure of representing the candidate 

solution [SD08]. It describes the transformation from the solution space (phenotype space) 

to the computation space (genotype space), while Decoding involves the mapping from 
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genotype to phenotype [ES03]. The phenotype space and the genotype space can be 

extremely different. It is necessary to comprehend that the entire evolutionary search 

(selection, recombination, and mutation) takes place within the genotype level, whereas 

individuals are evaluated at the phenotype level. So, encoding or mapping between the 

phenotype and the genotype spaces is needed [GD91].    

Encoding approach can be completed using bits, real or integer numbers. For example, 

given an optimization problem with integer solutions, which represent the set of 

phenotypes, one may choose to define the candidate solutions by their binary code. For 

illustration, the number 75 is perceived as a phenotype, and 0100 1011 is seen as a genotype 

expressing it.  

In this section, some of the most generally utilized representations are presented. 

• Binary String Representation. This is one of the most often used representations in GA. 

Each chromosome is expressed by a binary string (0s and 1s) as in Figure 2.8. It is 

possible for each bit in the string to represent some characteristics of the solution. 

Therefore, every bit string is a solution, but not always the optimal one. More bits can 

be used to increase the precision of a binary representation, but this will slow down the 

algorithm [JM91]. 

Figure 2. 8 Binary representation 
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• Real and Integer Representation. Real values are usually the best way to represent a 

solution to a problem when the variables, to be represented as genes, come from a 

continuous distribution. With this type of representation, every chromosome is a string 

of a real values as illustrated in Figure 2.9. The precision of these real values on a 

computer is limited by the implementation, therefore they will be referred to as 

floating-point numbers, which is a form used in computers to approximate real numbers 

[SD08, ES03]. 

Figure 2. 9 Chromosome with real representation 

Compared to binary representation, floating-point representation requires less storage 

since a single floating-point number describes the variable instead of a few integers. GA 

with floating-point basis is inherently faster than that with binary basis because the 

chromosomes do not need to be decoded prior to the evaluation of the cost function 

[HH04]. 

With integer representation, the chromosome is represented by a string of integer value 

[SD08] as in Figure 2.10. 

 

Figure 2. 10 Chromosome with integer representation 

2.3.4 Initial Population 

After deciding the representation, generating an initial population is the first step when 

using GA to solve an optimization problem. GA initialization has a considerable impact on 

its performance. It is usually initialized with a random population. This is the simplest and 

often used technique of initialization [Eng07]. However, there may be cases when the 

population is initialized with some known solutions using a kind of heuristic to seed the 

initial population. In such cases, the population’s mean fitness is high, initially, which may 

boost the algorithm in finding effective solutions faster. Initializing GA with existing 
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solutions can also lead the search to the parts in the search space that contain good solutions 

[SD08]. 

2.3.5 Creating the Next Generation 

At each iteration, GA creates a new set of approximations by selecting individuals, as 

parents, according to their level of fitness to create the children for the next generation. 

Three types of children are created by the GA [SD08, Abr07]: 

a) Crossover children are generated by merging genes from two parents’ 

chromosomes in the current iteration and producing a new child. 

b) Mutation children are generated by applying some random changes to the genes of 

a single individual. 

c) Elite children. The children described as elite are individuals with the highest 

fitness values in the current generation. Their genes are passed down generation 

after generation. 

An example for clarification; assuming the population size is 100, the number of elite 

children is 10, and the crossover fraction is 0.9. The offspring structure in the next 

generation will be: 

a) 10 Elite Children. 

b) 81 crossover children (crossover fraction (0.9) * the number of individuals other 

than elite children (90)). 

c) The remaining 9 individuals are mutation children. 

2.3.5.1 Selection 

Selection is the process of selecting individuals from the current generation to be parents 

for reproducing. It seeks to identify and maintain fitter individuals within the population.  

GA is driven by the selection operator, which guides its search to promising regions within 

the search space. Selection operates at chromosome level and recurs in two places in the 

evolutionary cycle: parent selection stage and the replacement (survivor selection) stage 

[LL12, SD08]. 
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A. Parent Selection 

Parent selection (so-called mate selection) is the process of identifying individuals 

based on their quality and selecting the better ones to become parents that mate and 

recombine to produce offspring for the subsequent generation [SD08]. In GA, this 

mechanism is probabilistic, which means that the fitter individuals have a better chance to 

become parents than the individuals with low “quality”. Selection operator is fitness-

dependent. Generally, there are three categories of selection procedures: fitness-

proportionate selection, ordinal-based selection, and threshold-based. Other schemes are 

grouped under these headings [ES03]. The classification of parent selection methods is 

shown in Figure 2.11 and described as follows: 

 

Figure 2. 11 Parent selection methods 

• Fitness-proportionate selection. It is one of the most often used methods for parent 

selection. With this method, the individual’s probability of becoming a parent is 

proportionate to its fitness value relative to the fitness of the other individuals in 

the population. Thus, fitter individuals have a higher chance to be selected for 

reproduction [GD91]. There are several approaches to implementing fitness-

proportionate selection, such as Roulette Wheel Selection and Stochastic Selection. 
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• Ordinal-based selection. It first sorts the individuals in accordance with the 

objective values and then ranks them. According to its own rank, each individual is 

then given a selection probability [Whi89, Bak85]. 

• Threshold or Truncation-based Selection. This method sorts the individuals based 

on their fitness, selects a portion 𝜑 of the fittest individuals, and then replicates it 

(1/𝜑) times. Only those that are above a certain threshold are decided as parents 

[GD91]. 

The author aims to explain the principles of Roulette-Wheel method in the subsequent 

paragraph. 

Roulette-Wheel selection is a conventional GA selection approach inspired by real-

world roulette wheels. It is a stochastic selection approach in which an individual's 

selection probability 𝑃𝑟𝑙 is proportional to its fitness. The roulette selection concept is 

based on a linear search through a roulette wheel with a number of slices measured in 

accordance with the fitness values of the individuals, The number of slices corresponds to 

the number of individuals in the population [SD08]. Each individual is given a slice of the 

roulette wheel, the size of which is proportional to the individual's fitness. This wheel is 

spun 𝑝 times, where 𝑝 is the total number of individuals in the population. Each time the 

wheel spins, the individual under a fixed point on the wheel circumference is chosen to 

become a parent for the next generation [GD91]. The selection probability 𝑃𝑟𝑙 of individual 

l, in a population with 𝑝 individuals, is expressed as the individual's raw fitness value 𝑓𝑥𝑙
 

relative to other individuals in the population: 

 𝑃𝑟𝑙 =
𝑓𝑥𝑙

∑ 𝑓𝑥𝑖

𝑝
𝑖=1

 . (2.2) 

The probability distribution 𝑃𝑑 = {𝑃𝑟1, … , 𝑃𝑟𝑝} is then simply used to select the 

parents for recombination [LL12]. 
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Figure 2. 12 Roulette-Wheel selection 

For illustration, refer to Figure 2.12, where a fitter individual (A) occupies more space 

on the wheel and has a higher probability of being chosen. 

B. Replacement (Survivor Selection) 

Replacement, comparable to parent selection, is used to characterize the individuals 

based on their quality but is utilized in a different phase of the evolutionary cycle. This 

mechanism comes after the creation of the offspring; the author preferred to introduce 

Replacement in this section to preserve context [SD08, ES03].  

The size of the population is almost always constant, so Replacement defines which 

of the current individuals should be replaced by newly generated offspring to form the next 

generation population using a specific replacement scheme. Replacement procedures are 

typically based on the fitness values; higher-quality individuals are preferred, while the 

concept of age is also frequently applied. Survivor selection is often deterministic, in 

contrast to the parent selection, which is often stochastic [Bak85].  

In general, Replacement can be implemented using two methods, Fitness-Based 

method and Age-Biased strategy [SD08]. Figure 2.13 demonstrates the classification of the 

replacement method. 
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Figure 2. 13 Replacement method classification 

 

The children obtained by means of Fitness-Based selection method replace the 

population's least fit members. Figure 2.14 shows an example. Individuals with less fitness 

(individuals 2 and 5) were replaced by the created offspring. It is worth mentioning that 

when the individuals have the same fitness value (individuals 4 and 5), the choice of which 

individual should be removed from the population is arbitrary. 

 

Figure 2. 14  Fitness-Based replacement method 
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In Age-Biased selection, individuals' fitness is not taken into account. Each individual 

is allowed to reproduce for finite generations before being kicked out, regardless of how 

fit they are. For illustration, in Figure 2.15, the number of generations an individual has 

been in the population is referred to as individual age. Individuals (3 and 5) are the oldest 

in the population; this is the reason for their replacement [SD08]. 

In order for evolution to occur, some EAs apply the Elitism strategy, which means the 

current fittest chromosomes are allowed to reproduce their traits to the population in the 

next generation. This approach improves convergence rate, i.e., the number of generations 

required by the GA to obtain a population including the fittest individuals [HH04].   

 

Figure 2. 15 Age-Biased replacement method 

2.3.5.2 Crossover 

The process of creating a child from two parent solutions is known as crossover or 

recombination. This operator is equivalent to the biological crossover. It combines two 

parent genotypes to produce one or two child genotypes depending on a stochastic process. 

Selection process, described above, does not, actually, create new individuals. Instead, it 

leads the population to get enhanced with better individuals; therefore, crossover is applied 

with the hope that it produces more suitable offspring [SD08].  
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There are different forms of crossover operators depending on the type of 

representation used, e.g., single-point crossover, two-point and multi-point crossover are 

generally used for binary representations. These methods start with two parents and 

produce two children, although they are expanded to include many parents [EKK95]. The 

simplest method to implement a crossover can be summarized in three steps: 

1. Two individuals with desirable characteristics are selected.  

2. One or more positions are chosen at random as crossover points over the string 

length. 

3. Alleles after the crossover point are swapped in each individual. The produced 

offspring merges both of those characteristics. 

 Figure 2.16 exemplifies a single-point crossover in a binary GA. Assume there are 

two 𝑘 − bit vector solutions: 𝐱(1) = (𝑥1
(1)

, … , 𝑥𝑘
(1)

) and 𝐱(2) = (𝑥1
(2)

, … , 𝑥𝑘
(2)

). The gene 

𝑔𝑐𝑟 ∈ {1, … , 𝑘 − 1} was selected randomly as the crossover point along the length of the 

mated individuals. The two individuals exchange all of their bits after the 𝑔𝑐𝑟 position: 

 

 �̌�(1) = (𝑥1
(1)

, … , 𝑥𝑔𝑐𝑟

(1)
, 𝑥𝑔𝑐𝑟+1

(2)
, … , 𝑥𝑘

(2)
), 

(2.3) 
 �̌�(2) = (𝑥1

(2)
, … , 𝑥𝑔𝑐𝑟

(2)
, 𝑥𝑔𝑐𝑟+1

(1)
, … , 𝑥𝑘

(1)
). 

 

 

Figure 2. 16 Single-point crossover 
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Works [Eng07, ES03] provide a comprehensive review of standard forms of crossover 

used for binary representations. 

With the floating-point representation of the chromosome structure, there are three 

options for crossover [ES03]: 

a) Employing the same methods as for bit-strings and split floats, accordingly. That 

time, the allele is one floating-point value rather than one bit. This type of crossover 

operator, in the case of floating-point representations, is referred to as discrete 

crossover. Assume that child �̌� is created from parents 𝐱(1) and 𝐱(2). Then the allele 

value of gene 𝑖 is given by �̌�𝑖 = 𝑥𝑖
(1)

 or 𝑥𝑖
(2)

 with equal probability. 

b) Setting each allele in the offspring for a value lying between the parents’ alleles on 

respective gene positions. As a result, crossover can create a new gene material. 

Operators of this type are known as arithmetic or intermediate crossover. 

c) Using operators known as blend crossover. The operator of this type creates, in 

each gene position of the offspring, a new allele with a value close to that of one of 

the parents. It may be lower or higher than the reference. The created offspring has 

a new gene material. 

In the subsequent part, the author aims to discuss the fundamentals of Intermediate 

Crossover method as it has been used during the simulation experiments, reported in the 

further part of the thesis. The said method generates new offspring by a random weighted 

average of the parents. The following rule governs the production of offspring 

 �̌�𝑖
(1)

= 𝑥𝑖
(1)

+ 𝜔𝑖(𝑥𝑖
(2)

− 𝑥𝑖
(1)

)       𝑖 ∈ (1, … , 𝑘), (2.4) 

where 𝜔𝑖 is a scaling factor selected at random in the interval, [𝐵𝐿 , 𝐵𝑈] ⊆ ℝ, typically [-

0.25, 1.25]. 𝐱(1) and 𝐱(2) are the parent individuals with 𝑘 genes. According to (2.6), each 

gene in the offspring is the consequence of merging the genes of the parents with a scaling 

factor 𝜔𝑖, set individually per each pair of parent genes [Abr07]. 
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Crossover Probability 

By definition, crossover probability 𝑝𝑥 is a parameter that specifies the percentage of 

the next generation individuals, other than elite individuals, that are produced by crossover. 

In a 100% crossover probability case, all offspring, other than elite individuals, are created 

by crossover. In turn, when 𝑝𝑥 = 0%, the new population will be formed only by 

generating copies of chromosomes from the old population, but – thanks to mutation - the 

new population is not the same as the previous one [SD08, Eng07, ES03]. These extremes 

of 𝑝𝑥 are not an effective improvement strategy. A different setting for 𝑝𝑥 can yield the 

best result [Abr07]. 

2.3.5.3 Mutation 

Mutation is a small random change in the chromosome that results in a different solution, 

i.e., it uses simply one parent and produces one child by involving some type of randomized 

change to the genotype. Mutation is used to keep the GA from being trapped in the local 

minimum and is applied to preserve diversity in the population. Mutation is rare in biology, 

and it is also rare in most GA implementations. It is applied with a low probability 𝑝𝑚 

[Gol89]. When the mutation probability is set too high, the GA behaves like a random 

search, which isn't the best way to find the best solution. However, if the mutation 

probability is too low, inbreeding and evolutionary dead-ends occur, which prevent the GA 

from finding a solid solution [Sim13]. 

It is worth mentioning that mutation operator is representation-dependent. For 

instance, flipping a bit can be used as a mutation operator when genotypes are bit-strings, 

as shown in Figure 2.17. One offspring chromosome is created by flipping a bit at a 

randomly selected position in the parent chromosome. 

 

Figure 2. 17 Bitwise mutation for binary representation 
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When a floating-point representation is used, mutation means random allele value 

changes of all genes (within a definite range). In terms of the probability distribution from 

which the new gene values are drawn, there are two types of mutation: uniform and 

nonuniform (Gaussian) mutation [ES03]. 

a) Uniform Mutation. With this operator, the allele value is drawn uniformly randomly 

from a single interval [𝐵𝐿 , 𝐵𝑈]. 

b) Non-uniform Mutation. This is performed by adding a random number from a 

Gaussian distribution, with zero mean and user-specified standard deviation, to the 

current gene value. 

Below, the author presents a general explanation of Gaussian mutation as it was used 

during the experiments.  

With Gaussian approach [ES03, Abr07], each element of the parent vector is given a 

random zero-mean number derived from a Gaussian distribution. At each successive 

generation, the mutation amount, which is proportional to the distribution’s standard 

deviation, often decreases. Scale and Shrink parameters allow for controlling the average 

amount of mutation applied to a parent in each generation. The standard deviation of the 

mutation in the first generation is defined by a Scale multiplied by the initial population 

range. The Shrink parameter describes the reduction in standard deviation over successive 

generations. Standard deviation shrinks linearly throughout generations, with its last value 

equal to (1 - Shrink) times its value at the initial generation. The standard deviation of the 

random number added to the chromosomes in generation 𝑙 > 1 is 

 
𝜎𝑙 = 𝜎𝑙−1 ∙ (1 − 𝑠ℎ𝑟𝑖𝑛𝑘 ∙

𝑙

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
). (2.5) 

The standard deviation is constant when the Shrink parameter is set to 0. When the 

Shrink parameter is set to 1, the standard deviation reduces linearly to zero as the last 

generation approaches. 
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Mutation Probability 

This probability demonstrates how frequently mutations occur on various parts of 

chromosomes. In the absence of mutations, offspring are produced directly after crossover 

(or immediately copied) without any alteration. 100% mutation probability changes the 

entire chromosome, 0% mutation probability does not [Abr07, ES03]. 

2.3.6 Termination 

When it comes to deciding when a GA run terminates, the termination condition is crucial. 

For this purpose, the following options are frequently used [SD08]: 

1. The algorithm stops when the determined number of generations has been reached. 

2. The procedures end when the maximally allowed time elapses. 

3. The algorithm terminates if the objective function does not improve for several 

successive generations (Stall generation) or during an interval of time equal to 

Stall time limit. 

2.4 Example of How Genetic Algorithm Works 

Rastrigin function is frequently used to assess the GA performance since its multiple local 

minima make finding the global minimum difficult for typical gradient-based methods. 

This section includes an example that describes how to find the minimum of this function 

using MATLAB GA solver.  

On k-dimensional domain, Rastrigin function is expressed as 

 𝑓𝑅𝑎𝑠(𝐳) = 𝐴 ∙ 𝑘 + ∑ [𝑧𝑙
2 − 𝐴 cos 2𝜋𝑧𝑙]𝑘

𝑙=1 ,  (2.6) 

where k refers to the number of independent variables,  𝑧𝑙 ∈ [−5.12,  5.12], ∀𝑙  and 𝐴 =

10. This function has many local minima. However, it has one global minimum at 𝑧 = 0 

where 𝑓𝑅𝑎𝑠(𝐳) = 0. At any local minimum, the value of 𝑓𝑅𝑎𝑠(𝐳) > 0 and it increases as the 

distance from the origin grows. Rastrigin function is illustrated in Figure 2.18 in its two-

dimensional form. 
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(a) 

 

       (b)  

Figure 2. 18 Rastrigin function: (a) Contour plot shows the alternating maxima and 

minima, (b) Function value increases as the distance from the origin increases 
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The author assumes two independent variables, thus Rastrigin function can be written 

as 

 𝑓𝑅𝑎𝑠(𝑧) = 20 + 𝑧1
2 + 𝑧2

2 − 10(cos 2𝜋𝑧1 + cos 2𝜋𝑧2).   (2.7) 

Table 2.1 presents the settings of the GA parameters used for the simulation 

experiment. 

Table 2. 1 GA parameters 

Parameter Value 

Population Size 200 

Number of generations 50 

Selection function Roulette wheel 

Creation function Uniform 

Crossover function Intermediate 

Crossover probability 0.8 

Mutation function Gaussian 

Elite count 10 

Initial Range [-5,5] 

After running the GA solver, the obtained objective function value is 0, which is the 

actual minimum; the final point is [1.13e-09, -1.73e-09], very close to the actual optimal 

solution. The small discrepancies result from data representation rounding. In the following 

paragraphs, let us follow the GA routine step by step.  

Initial Population 

As illustrated in Figure 2.19, the algorithm starts by generating a random initial 

population. There are 200 individuals in the initial population. They are located between -

5 and 5, because the initial range was set to [-5, 5]. 

Next Generations 

Figure 2.20 shows the individuals of generation 10, 30, and 50. With an increase in 

the generation number, the individuals in the population get closer to each other, 

approaching the global minimum point, simultaneously. 
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Figure 2. 19 Initial population 

 

Figure 2. 20  Individuals’ convergence at further generations 



32 
Chapter 2: Genetic Algorithm 

2.5 Summary 

The details of a simple GA have been presented in this chapter. GAs work on populations 

of possible solutions. To create a new population, selection (reproduction), crossover, and 

mutation are applied. These operators make the algorithm converge over successive 

generations towards the global (or near-global) optimum. Using Rastrigin function as an 

example to assess the GA performance has helped illustrate the algorithm's details and 

robustness. 

In general, there are some key differences between GAs and conventional optimization 

techniques [SD08]. They can be summarized as follows: 

a) At each generation, GA creates a number of solutions rather than a single one, as 

for almost all the classical algorithms. 

b) Evaluation of GA is based on fitness functions instead of derivatives. Thus, they 

can be used to solve any continuous or discrete optimization problem. 

c) In GAs, transition operations are probabilistic, whereas, in traditional continuous 

optimization methods, transition operations are deterministic. 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
Chapter 3: GA-Based MU-MIMO Detector 

Chapter 3  

Interference mitigation is one of the most crucial aspects of developing multi-user 

communications systems. It is the case of contemporary wireless networks, such as mobile 

cellular networks, since obtaining high spectral efficiency necessitates aggressive 

frequency reuse [TV05]. In this chapter, interference is understood as signals originating 

from other users (or, more broadly, transmitted data) connected to the same system, i.e., 

Multiple Access Interference (MAI). One of the receiver design strategies for recovering 

the desired signal(s) from interference and noise is MUD (also known as joint detection). 

MUD technique can be used to demodulate digital information sent concurrently by several 

desired users, sharing a multiple access channel [BLM12]. The essential issue connected 

with MUD techniques is their complexity despite their superior performance [Che13]. 

Maximum-Likelihood (ML) MUDs can reach the best performance as a result of 

exhaustive search, which entails computational complexity increasing exponentially with 

number of concurrent users increases [JH07]. For illustration, assuming 𝑁𝑇 = 8 transmit 

stations, 16-QAM modulation (𝑁𝐵 = 4 bits per modulation period), and one symbol per 

modulation period, the total number of considered transmitted signals samples’ variations 

would reach (2𝑁𝐵)𝑁𝑇 ≈ 4.3 ∙ 109. 

In [KK18, Kha17] the author considered the use of GA for MUD purposes. With the 

aid of an evolutionary optimization strategy, represented by the GA, the computation 

complexity has been reduced with a comparable BER performance. This solution will be 

discussed in this chapter and considered a benchmark for the recently developed approach 

(described in Chapter 4).   

There are different GA-related contributions in the literature, demonstrating the 

significant interest of many research communities in both the theory and applications of 

GAs, with regard to MUD methods, a hybrid approach is suggested in [EH00] by Ergun 

and Hacioglu that combines GAs with multistage MUD in the context of a Code Division 

Multiple Access (CDMA) system. Ng et al. presented in [NYH02] a Turbo Trellis Coded 

Modulation-assisted GA-aided reduced complexity MUD (TTCM-GA-MUD) that can 

provide a considerable coding gain without any bandwidth expansion while maintaining 

low complexity in comparison to the optimal MUD. Du and Chan have invoked GA for 
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sub-optimal detection in STBC aided MUD systems [DC05]. In [UKC15], Island Genetic 

Algorithm (IGA) has shown attractive BER when applied to Multicarrier Code Division 

Multiple Access (MC-CDMA) receiver to find out the weight vectors. A Redundancy-

Saving strategy for the GA-MUD (RSGA-MUD) was proposed in [THL10]; that method 

is based on the cost statistics of GA solutions in a synchronous Direct-Sequence Code 

Division Multiple Access (DS-CDMA) system. 

The current chapter provides an overview of MUD techniques, including the use of 

multiple antennas at both ends (transmitter and receiver), generally known as MIMO. This 

chapter also discusses how GA is applied in the case of MIMO MUD. Several simulation 

results are presented to give a better understanding of the system's performance. 

3.1 Introduction to MIMO system 

There are several challenges facing wireless system designers, such as the limited radio 

frequency spectrum availability and complex space-time-variable wireless environments. 

Furthermore, higher data rates, better quality of service, higher network capacity, and 

higher number of users per spectrum unit per area unit, are in demand. Recent years have 

seen the emergence of MIMO systems as the most promising technology for these 

measures [BO13, IEE12, IEE12]. It has received a lot of attention since the pioneering 

works [FG98] and [Tel99]. 

MIMO system, as the term implies, uses multiple antennas at both the transmitting and 

receiving ends. A core concept of MIMO is that it combines signals sampled in a spatial 

domain at both ends in such a way that it creates multiple parallel spatial data channels 

(thereby increasing the data rate) and/or adds diversity, i.e., the method for minimizing the 

impact of fading resulted from multipath propagation [Wes01], to enhance communication 

quality (BER) [JH07, BCC07].  
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Figure 3. 1 General schematic representation of a MIMO system utilizing n 

transmit antennas and m receiver antennas [JH07] 

The major benefits of MIMO systems over single-input single-output (SISO) systems 

can be summarized as follows [RC98, PGN04]: 

• Both the system capacity and spectral efficiency increase significantly. 

• The enhanced diversity dramatically reduces the impacts of fading. 

Figure 3.1 shows a schematic of the generic MIMO system. The MIMO channel can 

be described by the transfer function, which is a matrix  

𝐻 = [

ℎ11 ⋯ ℎ1𝑗

⋮ ⋱ ⋮
ℎ𝑖1 ⋯ ℎ𝑖𝑗

], 

where the number of rows equals to the number of receiving antennas i, and the number of 

columns equals to the number of transmitting antennas j. A single matrix element hij 

represents the fading coefficient (random channel gain) affecting the symbol transmitted 

from the 𝑗th transmit antenna to the 𝑖th receive antenna. 

Work [PGN04] provides a comprehensive review of MIMO techniques, including 

performance limits, channel models, etc. Single-User MIMO (or multi-antenna MIMO) 

and Multi-User MIMO (MU-MIMO) are two forms of the MIMO system. In the case of 

Single-User MIMO (SU-MIMO) system, only one device can transmit its data stream and 

another device can receive it in a given time [LLF11]. In recent years, many SU-MIMO 

techniques have been developed and ratified in standards, e.g., 802.11n. In general, if not 
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taking into account cross-domain techniques (such as space-time or space-frequency 

coding), the data stream can be spatially encoded (Vertical Bell Labs layered Space-Time (V-

BLAST) [WFG98], index modulation [MWW19], etc.) or spatially multiplexed (the data 

stream is divided into substreams, transmitted concurrently by individual antennas).  

In contrast to SU-MIMO, MU-MIMO approach allows simultaneous transmissions 

between multiple users and a base station, where the spatial dimension is exploited to serve 

many users in parallel. It is important to note that each form has its advantages and 

disadvantages, summarized as follows [BCC07]: 

• SU-MIMO increases the data rate for a single user, while the use of MU-MIMO 

increases capacity. 

• SU-MIMO ensures a higher throughput in the case of a low SNR. Under a high 

signal-to-noise ratio, MU-MIMO offers higher throughput. 

• The key advantage of SU-MIMO is interference reduction. Multiplexing gain is the 

key feature of MU-MIMO. 

3.2 Multi-User Detection 

MUD, in brief, refers to the mode in which a single receiver jointly detects multiple 

simultaneous transmissions, as depicted in Figure 3.2 [JH07]. 

The MUD method is often a set of algorithms combined to easily detect the incoming 

multi-user symbols, i.e., a series of symbols transmitted by individual users, concurrently. 

One of the most challenging aspects of designing multi-user systems is reducing 

interference resulting from multi-user data stream simultaneously arriving at the receiver 

[BCC07].  

Note the difference between multi-user detection and interference suppression. The 

primary distinction is that a multi-user detector attempts to recover multiple transmitted 

symbols, whereas interference suppression implies that the receiver is only interested in 

one signal among the received superposition of the transmitted signals [BCC07, Lou91]. 
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Figure 3. 2 Schematic of general MU-MIMO communication system 

This chapter provides an overview of the most popular techniques for estimating the 

transmitted multi-symbol based on the received multi-symbol. As demonstrated in Figure 

3.3, the detection schemes can be divided into Maximum Likelihood (ML), linear, and 

nonlinear methods [JH07]. The linear MUDs, such as ZF or Minimum Mean Square Error 

(MMSE), is characterized by a low level of complexity at the cost of limited performance. 

Different suboptimal nonlinear MUDs have also been proposed in the literature, some of 

which are based on PIC or SIC methods. They require iterative algorithms in order to 

eliminate the influence of the interfering users during each detection stage [Che13, JH07]. 

The ML MUD scheme can achieve the best performance, but it imposes a 

computational complexity that increases exponentially with the number of users served 

simultaneously [APA15].  

 

Figure 3. 3 Different type of MUD receivers [JH07] 
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3.3 Optimal MUD Method 

The optimal detector makes the decision on the transmitted multi-symbol in each signalling 

interval according to the result of the correlation between the observed signal r and (𝐇 ∙ 𝐬𝑖), 

where 𝐬𝑖 is a hypothetical multi-symbol for 𝑖 = 1,2 … 𝑏, and 𝑏 is the number of possible 

solutions. 𝑏 = 2𝑁𝑇𝑁𝐵, where 𝑁𝑇 is number of transmitting users and 𝑁𝐵 is number of bits 

per modulated symbol [APA15]. 

3.3.1  Maximum Likelihood (ML) Detection 

ML detection is a high-performance method used as a benchmark for BER performance. 

From the perspective of minimizing the likelihood of error, this is the optimal detector. It 

is a search algorithm that compares all potentials solutions and finds the one exhibiting the 

best cost function value [Tad11, BCC07]. The maximum likelihood detector solves the 

following problem: 

�̇�𝑀𝐿 = arg min𝐬∈𝜂𝑁𝑇 ‖𝐫 − 𝐇�̌�‖2,                          (3.1) 

where �̇�𝑀𝐿 is the receiver estimate, 𝐇 ∈ ℂ𝑁𝑅×𝑁𝑇 is the channel matrix, ‖𝐫 − 𝐇𝐬‖𝟐 refers to 

the ML metric, and 𝜂 indicates a set of potentially transmitted multi-symbols. It is assumed 

that H is known, i.e., has already been estimated by the receiver, regardless of the specific 

channel matrix structure given by the scenario under consideration. 

ML manifests very high accuracy compared to other detection methods presented in 

this chapter. However, its computational complexity rises exponentially as modulation 

order and/or the number of transmit antennas increases because of the necessity to test all 

possibilities. To minimize computational complexity, suboptimal linear receivers 

comprising channel inverse matrix computations, such as ZF and MMSE detectors, could 

be employed. [APA15]. 

 

3.4 Linear MUD Methods 

In linear detection methods, the transmitted signals are treated as interference, except for 

the required signal sent from the target antenna. Thus, to detect the required signal from 
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the target transmit antenna, signals emitted by other antennas should be cancelled or 

attenuated, at least. [CKY10].  

To achieve the estimates of all the required signals, transmitted simultaneously 

through several antennas, the impact of the channel is reversed by a weighting matrix W 

such that [SK15]: 

�̇� = 𝑾𝒓,                                                              (3.2) 

where �̇� is the estimate of the transmitted multi-symbol, while r is the received signal. The 

interpretation of (3.2) is that a linear combination of the received multi-symbols determines 

the detection of each symbol. The complexity of linear detectors is equivalent to that of 

inverting a matrix of dimensions (𝑁𝑅 × 𝑁𝑇).  

The ZF and MMSE algorithms, described below, are the standard linear detection 

methods [CKY10]. 

3.4.1 Zero-Forcing Linear Detection 

ZF is considered one of the simplest algorithms available. It is an Inverse Channel 

Detection (ICD) method, which comprises a multiplication of the received multi-symbol 

by the channel matrix inverse to obtain the estimate of the transmitted multi-symbol. ZF 

technique directly uses the pseudo-inverse of the channel matrix in the role of the filtering 

matrix [SOZ10] 

𝑾𝑍𝐹 = (𝑯𝐻𝑯)−1𝑯𝐻,                                              (3.3) 

where (∙)𝐻 represents the Hermitian transposition. ZF solution requires only the channel 

state information (the channel gain matrix) and has a low computational payload. The 

disadvantage of the ZF scheme is that it suffers from noise amplification, resulting in 

suboptimal performance. As a result, the ZF algorithm is excellent for noiseless channels 

because it successfully reduces all Inter-Symbol Interference (ISI), but it might be useless 

for noisy channels as it increases the noise experienced by the receiver without attempting 

to compensate for it [APA15].  
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3.4.2 Minimum Mean Square Error 

By utilizing MMSE criterion, the linear detection can be enhanced, as it minimizes the 

combined error caused by noise and interference, resulting in the following filtering matrix 

[SOZ10]: 

𝑾𝑀𝑀𝑆𝐸 = (𝑯𝐻𝑯 + 𝜎2𝑰)−1𝑯𝐻,                                         (3.4) 

where 𝑰 is the identity matrix and 𝜎2 is the Additive White Gaussian Noise (AWGN) 

variance. At a low SNR, the MMSE detector outperforms ZF; however, at high SNR, the 

MMSE detector approaches the ZF [CKY10]. 

3.5 MIMO Multi-user Detection Problem Formulation 

The considered system is a four-user (𝑁𝑈𝑠𝑒𝑟 = 4) uplink communication system with one 

transmit antenna for each user (𝑁𝑇 = 𝑁𝑈𝑠𝑒𝑟). All the users are supposed to be synchronous 

and mutually independent. For each user, the uncoded bit-stream is mapped into QPSK, 

16-QAM, or 64-QAM symbols before being transmitted. The signals from all users reach 

the receive antennas (𝑁𝑅 = 4) through an uncorrelated MIMO flat-fading Rayleigh 

channel, represented by the channel matrix 𝐇 = [ℎ𝑖𝑗]
𝑁𝑅𝑁𝑇

, as shown in Figure 3.4. The 

channel matrix’s elements ℎ𝑖𝑗 are i.i.d. complex Gaussian random variables with zero mean 

and standard deviation of 1. The author assumed that 𝐇 is estimated ideally at the receiver 

side (�̌� = 𝐇). 

At a given modulation period, a vector 𝐫 represents the symbols received through all 

the receive antennas and is represented as: 

 𝐫 = 𝐇𝐬 + 𝐯, (3.5) 

𝐬 = [𝑠𝑖]𝑁𝑇,1: 𝑠𝑖 ∈ 𝜂, ∀𝑖, where  𝜂 is the signal constellation set, is a multi-symbol 

transmitted by 𝑁𝑇 users, simultaneously, while 𝐯 = [𝑣𝑖]𝑁𝑅,1 is a vector of complex AWGN 

samples. The MUD task is to retrieve a multi-symbol estimate �̇�, in which 

  �̇� = arg 𝑚𝑖𝑛𝐬 ‖𝐫 − �̌�𝐬‖
2
.                               (3.6) 
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All feasible candidate multi-symbols 𝐬 = [�̌�𝑖]𝑁𝑇,1: �̌�𝑖 ∈ 𝜂, ∀𝑖, are included in the 

search space. If �̇� = 𝐬, the MUD succeeds.  

 

Figure 3. 4 MU MIMO system model [KK18, Kha17] 

 

3.6 Application of GA in MIMO Multi-user Detection 

3.6.1 Basic GA-based MUD 

Every individual in the GA-based MUD from [KK18, Kha17] represents a potential multi-

symbol 𝐬 = (�̌�1 … �̌�𝑁𝑇
). The employed representation is binary encoding. Let 2𝑁𝐵 be the 

modulation order. Then, QPSK, 16-QAM, or 64-QAM symbols can be mapped with 𝑁𝐵-

bit-long labels �̌�𝑖 ≝ 𝛽(�̃�𝑖) following a specific labelling scheme 𝛽 (Gray map is used 

hereinafter). Therefore, in the considered optimization problem, the chromosome could 

simply be created as a concatenation �̌� = (�̌�1 … �̌�𝑁𝑇
) of the labels, assigned to the symbols 

transmitted simultaneously by all users. It is important to note that the chromosome length 

is determined both by the number of users and the modulation order. For the 16-QAM 

instance, as illustrated in Figure 3.5, each label contains 4 bits, and there are 𝑁𝑇 = 4 users. 

As a result, the entire length of the chromosome is 16 bits. 

It is worth noting that the GA's search space is of discrete type, i.e., it has a discrete 

number of candidate solutions. It corresponds with the fact that the permissible 

constellation point positions are strictly limited. As a result, there is no discretization loss 

when GA is used. 



42 
Chapter 3: GA-Based MU-MIMO Detector 

 

Figure 3. 5 Chromosome representing a candidate multi-symbol for which �̌�𝟏 =

(𝟏𝟏𝟎𝟏),  �̌�𝟐 = (𝟎𝟎𝟎𝟏),  �̌�𝟑 = (𝟏𝟎𝟏𝟎),  �̌�𝟒 = (𝟏𝟏𝟏𝟎) [KK18, Kha17] 

The search procedure of the GA algorithm follows the flowchart shown in Figure 2.7. 

Table 3.1 summarizes the settings of the GA parameters used for the simulation 

experiment. The subsequent steps of the algorithm are briefly described below. 

Table 3. 1 GA Parameters [KK18, Kha17] 

Parameter Symbol Value 

Population Size 𝑝 50 

Generation    G 500 

Crossover Probability 𝑝𝑥 0.95 

Crossover Function  Single-point 

Mutation Function  Uniform 

Mutation Probability 𝑝𝑚 0.005 

Selection function  Roulette Wheel 

Elite count 𝜗 2 

 

Population Initialization: All initial chromosomes are created randomly. The 

population size 𝑝 has a significant impact on the algorithm's ability to find the optimal 

solution, a high number yields a better solution but slows the convergence [Abr07]. In the 

considered scenario, the number of individuals in the population (population size) is 

specified to be 50 (it is a moderate value). 

Fitness Evaluation: The optimum ML-based decision metric serves as the objective 

function for evaluating each individual's fitness and is expressed as: 

𝑓(𝐬) = ‖𝐫 − �̌�𝐬‖
2
.                                  (3.7) 

The chromosome with the lowest objective function value is the best in the generation. 

Beginning from the second iteration of the GA algorithm, the individuals with the worst 
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chances of surviving in the current population will die, maintaining the population size 

through subsequent iterations. This way, the survivors can serve as the parents for the next 

step. 

Selection: The roulette wheel selection rule [SD08, Sim13] is used. According to that 

approach, each individual has a chance of being selected, but the selection probability is 

proportional to the individual's fitness. The selection probability of the lth individual is 

given by eq. (2.2). It is equal to the individual's raw fitness value relative to other 

individuals in the population. A small number (elite count, 𝜗 = 2) of the fittest individuals 

are copied into the next generations. Ultimately, elitism ensures that the quality of 

individuals gained by the GA does not deteriorate with generations. 

Crossover: Single-point crossover operator is used for binary string representations 

(refer to Section 2.4.4). It means that the offspring are created by swapping segments of 

genes between the parents, instead of single genes. Here, the crossover point is selected 

randomly. The part of the new population that crossover produces is assumed to be 95% 

of the old population (Crossover Probability 𝑝𝑥 = 95%).  

Mutation: For binary representations, the uniform (random) mutation is used, where 

bit positions of the children’s chromosome are selected randomly, and the corresponding 

bit value is flipped (0 to 1 or vice versa). Not every child undergoes mutation. Instead, it 

should be a small percent of the newborns [Sim13, Abr07]. In [KK18, Kha17] it was 

assumed to be 0.5% (Mutation Probability 𝑝𝑚 = 0.005). 

Ending Criteria: In the basic GA-MUD setup, considered in [KK18, Kha17], the 

stopping criterion was set in terms of the maximum number of generations (iterations) the 

GA performs – it was assumed to be 500.  

3.6.1.1 Simulation results  

Some simulation results from [KK18, Kha17] are presented in this section to demonstrate 

the performance of the analyzed reference system. For that purpose, BER vs. SNR 

measurements are considered. The performance of the GA-based MUD is studied with 

respect to the modulation order (64-QAM, 16-QAM, and QPSK) and compared to the ZF 

benchmark; this is illustrated in Figure 3.6. The results show that the 64-QAM system with  
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a. 64-QAM modulation 

 

b. 16-QAM modulation 

 

c. QPSK modulation 

Figure 3. 6 BER vs SNR for the compared MUDs: basic GA and reference ZF 

[KK18, Kha17] 
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GA MUD performs poorly, i.e., error floor at ca. 2 ⋅ 10−2 BER level appears, and GA MUD 

is inferior to the ZF reference at high SNR. 

Although the error floor for 16-QAM is reasonable (around 2.5 ⋅ 10−3), GA is still 

considerably outperformed by ZF. Moreover, the GA performance while using QPSK 

modulation is comparable to that of ZF. The basic GA MUD, in conclusion, is appropriate 

only for systems transmitting low-order modulations’ signals. 

3.6.2 ZF-GA MUD  

3.6.2.1 Description 

For the sake of preventing an inefficient, completely random search, it is helpful to provide 

the GA-based MUD with an initial estimate of the transmitted multi-symbols. For low-cost 

design, the output vector of a simple detector may be included in the GA's initial 

population. The receiver side of such a novel approach, contributed in [KK18, Kha17], 

utilizes a ZF detector to generate a seed individual (chromosome) for the following GA 

operations. Thus, some information about the received signal is included in the initial 

population. As shown in Figure 3.7, the ZF detector determines the multi-symbol estimate 

�̇�ZF, and the corresponding chromosome �̇�ZF represents the seed individual of the initial 

population. Except for the seed, all the individuals in the initial population are created at 

random, as for the basic setup, detailed in section 3.6.1. 

The ZF-based signal estimate is obtained as a linear combination of the signals 

received by different antennas, altered by the ZF array weight matrix 𝐖ZF as follows: 

�̇�ZF = arg min
𝐬

‖𝐬 − 𝐖ZF𝐫‖2,                                  (3.8) 

where 𝐖ZF = (�̌�𝐻�̌�)
−1

�̌�𝐻, and 𝐖ZF�̌� gives the identity matrix.  

The cost of introducing ZF into the GA-MUD technique is the time and resources 

required to acquire the seed chromosome, which is expected to be minor in comparison to 

the benefits it provides. 
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Figure 3. 7  ZF-GA MUD block diagram [KK18, Kha17] 

 

3.6.2.2 Simulation results  

This section describes the attainable performance of the concatenated ZF-GA MUD system 

proposed by the author of the thesis in [KK18, Kha17]. Table 3.1 summarizes the methods 

and parameters employed in the GA-based MUD module. The simulation results were 

obtained using (64-QAM, 16-QAM, and QPSK) schemes, assuming that 𝐇 is perfectly 

known. As can be seen from Figure 3.8, ZF-GA MUD (refer to ZF-GA lines, taking into 

consideration the results drawn in section 3.6.1.1) promises a decent SNR gain over both 

the basic GA MUD and regular ZF detector. For QPSK modulation (refer to Figure 3.8 a), 

the gain is really impressive (ca. 11 dB at 10−3 BER level). The ZF-GA MUD approach 

is also robust in the case of 16-QAM – when the GA begins its operation from a better 

initial population, a 7 dB gain over a regular ZF detector is observed at the BER level of 

10−3. For 64-QAM, ZF-GA MUD still exhibits some gain (about 3 dB) over the regular 

ZF MUD at the BER level of 10−3.  

The optimized performance of ZF-GA MUD is achieved at a higher computational 

complexity than that of the original ZF detector. The complexity of the ZF-GA MUD 

requires a maximum of (p × G) metric evaluation. The complexity of the plain ZF 

algorithm is connected with the computation of pseudo-inverse matrix 𝐖𝐙𝐅. The number 

of real multiplications for ZF is 𝒪(𝑁𝑅
3) + 𝒪(𝑁𝑅

2𝑁𝑇) + 𝒪(𝑁𝑅𝑁𝑇
2). The number of real 

additions is also 𝒪(𝑁𝑅
3) + 𝒪(𝑁𝑅

2𝑁𝑇) + 𝒪(𝑁𝑅𝑁𝑇
2), where 𝒪(⋅) denotes the Big O [LXN13]. 

For the concatenated ZF-GA routine, the ZF complexity can be ignored since it is used for  



47 
Chapter 3: GA-Based MU-MIMO Detector 

 

a. QPSK modulation 

 

b. 16-QAM modulation 

 

c. 64-QAM modulation 

Figure 3. 8 BER vs SNR for the compared MUDs: basic GA, reference ZF, and the 

proposed GA-ZF [KK18, Kha17]
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providing a single initial solution for the GA’s initial population and imposes 

a significantly lower complexity than that of the GA-driven part.  

For GA, if the maximum number of generations is used as a termination criterion (as 

in the considered case), then each generation of the population contains a certain number 

of individuals; thus, the complexity of GA MUD is proportional to the product of the 

population size and the number of generations passed, and it reflects the number of times 

the fitness function calculation is launched. 

 

3.7 Summary 

In [KK18, Kha17], the performance of GA-based MIMO MUD was investigated. For 

a low-order modulation scenario, the GA-based detector performs reasonably good. In the 

instance of 64-QAM modulation, the GA appears to fail. ZF detection was proposed as an 

initial processing phase to boost insufficient GA convergence. The proposed combined 

ZF-GA MIMO MUD managed to outperform the plain ZF reference in terms of SNR, 

especially for QPSK modulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
Chapter 4: SIC Driven GA MU MIMO Detector 

 

Chapter 4  

IC is an attractive solution to the MUD problem [ZH14]. It has become an important aspect 

that aims to minimize the interference caused by multiple users sharing the same network 

by demodulating and/or decoding the desired signal and then using this signal, along with 

channel estimates, to cancel received interference from the received signal [HTD18]. In 

wireless networks, numerous IC and mitigation strategies have been suggested. This 

chapter will pay special attention to SIC as a promising technique to improve the efficiency 

of wireless networks with relatively low additional complexity. 

As reported in Chapter 3, the use of GA in the scenario of a 4x4 MIMO system 

(4 transmit stations, each with 1 antenna and one receiver, equipped with 4 antennas) is 

inferior to the simple ZF detector for 16-QAM modulation. However, GA offers 

a significant SNR gain when used together with ZF detector, rather than alone.  

In [KK20], the author re-visited the solution to the MUD problem based on the use of 

the GA. Namely, an alternative population initialization method has been proposed for the 

combined ZF-GA detector. The concept's strength comes from the principle of SIC. It is 

described in the forthcoming sections. 

The current chapter presents an overview of SIC fundamentals. This chapter also 

discusses a re-designed method to generate the initial GA population, which improves the 

performance at no extra computational cost compared to the previous proposal discussed 

in Chapter 3. Simulation results, published earlier in [KK20], are recalled in this chapter to 

provide the reader with a comprehensive understanding of the system under investigation. 

4.1 Successive Interference Cancellation, The Idea and its Drawback 

MAI can be efficiently eliminated by involving IC techniques [PFL00]. In wireless 

communication networks, IC can be achieved in several approaches. To separate the 

received signals, the majority of IC methods employ differences in the characteristics of 

the desired signal and that of the interfering signal. These differences can be exploited 

in terms of bandwidth, modulation type, amplitude, or power level [BJ09, CS03]. 

Techniques for cancelling interference are commonly divided into SIC and PIC [KH99]. 
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SIC is a widely used physical layer technology that allows the receiver to receive two or 

more signals concurrently [SSC10].  

The basic principle of SIC is the sequential decoding of information from different 

users. The decoded users' interference is eliminated from the entire received signal before 

decoding the signals of other users. It results in a modified received vector with less 

interference [WQK14].  

The general drawbacks of SIC-type detectors are: 

1) The problem of error-propagation, in which one erroneous detection case imposes an 

adverse effect on reliability of subsequent detection tasks [EZ15]. 

A solution to this problem consists in pre-ordering the signals that need to be detected 

according to their reliabilities, such that the more reliable signals are detected before 

the less reliable ones. Based on the estimated data bits, the impact of the most reliable 

signal is removed from the mixture of all signals arriving at the receiver antennas. After 

that, the second most reliable signal undergoes the same procedure, and so on [Yan09].  

Wolniansky et al. introduced in [WFG98] a technique of ranking symbols known as 

V-BLAST, which improves the performance of the SIC detector using Signal-to-

Interference-plus-Noise Ratio (SINR) values as the measure of reliabilities. V-BLAST 

has a low complexity yet achieves a lower MAI than their linear counterparts.  

The literature presents a significant amount of research that introduced methods of 

ranking symbols based on certain reliability measures. Most of these approaches count 

on ZF or MMSE detectors, e.g., Foschini et al. in [Fos96, GFV99] first examined the 

ZF-based SIC detector designed for Spatial Division Multiplexing (SDM) MIMO 

systems. In [Yan09], a multistage MS-MMSE detector for MIMO systems is presented 

with two low-complexity reliability measurement schemes, namely the Type-L and 

Type-A schemes. The Type-L method uses both the SINR values and the magnitudes 

of the MMSE detector's decision variables for reliability measurement, whereas 

Type-A relies only on the magnitudes of the MMSE detector's decision variables to 

measure the reliabilities. In [EZ15], a low complexity SIC technique, based on a 

Quadratic Programming detector (QP-SIC), is proposed. This method uses MMSE 

estimation in both symbol ordering and IC processes. The decision-driven detection 

algorithm, however, suffers from error propagation and performance degradation. 
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2) Another (obvious) disadvantage of a SIC is the need to demodulate, decode and re-

encode all interfering signals [SSC10]. 

4.2 Basic SIC Detector 

Figure 4.1 demonstrates the principle of SIC in the wireless communication system with N 

users. Assuming that the signal reliability criterion can be assessed from the respective 

channel gain, all users are ranked by their signal strength, and data detection priority is 

given to the strongest received signal, then to the next strongest signal and so on [SSC10]. 

This method entails decoding the signal of the strongest user first, recovering it, and then 

subtracting it from the whole combined signal to decode the signals of other users, 

sequentially. It is possible to remove a large part of the total interference once the users' 

signals are detected. The weakest user will have a significant drop in MAI, which will 

support its detection. [And05]. 

 

Figure 4. 1 Basic SIC scheme 

4.3 The Application of the SIC Concept with GA-MUD 

In this section, the author describes a novel SIC-inspired strategy to enhance the GA 

convergence and the performance of the GA-driven MU-MIMO introduced in Chapter 3. 
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ZF detector's decision variables are exploited to measure the reliability, thus prioritizing 

the received signals. 

4.3.1 MU-MIMO Model 

The author considers the MU-MIMO system, which has been previously described in 

Section 3.5, as a part of the proposed method. It is an uplink system with 𝑁𝑇 independent 

transmit stations equipped with a single antenna each. The multi-symbol is transmitted 

through an uncorrelated MIMO Rayleigh flat-fading channel 𝐇 = [ℎ𝑖𝑗]
𝑁𝑅𝑁𝑇

, assuming the 

ideal estimation of 𝐇 at the receiver side. 

 The signals received through all the receive antennas at a given modulation period can 

be represented as previously by eq. (3.5). The role of the multi-user detector is to recover 

a multi-symbol estimate �̇� using the optimum ML-based decision metric, as already 

mentioned in the previous analysis – refer to eq. (3.6).    

4.3.2 Chromosomes Encoding and Fitness Function 

The chromosome encoding and the formulation of an efficient fitness function are crucial 

for the efficiency and convergence of the GA [MQA16]. The employed chromosome 

representation is a binary encoding.  

The author refers to Figure 3.5 as a reference. Considering the case of 𝑁𝑇 = 4 transmit 

stations and 16-QAM signalling, the chromosome �̌� is described as a concatenation of 4 

labels, each having 4 bits. These labels are assigned to candidate data symbols 𝐬𝑖 that 

originate from different Tx stations. The labels are assumed to be mapped onto the symbols 

using the standard Gray labeling map. 

The fitness value, given in eq. (3.7), is the distance from a candidate multi-symbol 𝐬 =

[�̌�1 … �̌�𝑁𝑇
]

𝑇
: �̌�𝑖 ∈ 𝜂, ∀𝑖, to the received symbol 𝐫, taking into account the estimated channel 

state �̌�. 

4.3.3 GA-MUD Initialization 

GA convergence is significantly impacted by its initialization. The initial population of the 

vast majority of GA applications is created at random. Having many various individuals, 

the optimization process starts at different locations in the search space, ensuring that it is 
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less likely to become trapped at one location, thus minimizing the risk of getting stuck at a 

local optimum [OSY11, YHL13]. However, it is clear from the previous study (Chapter 3), 

that employing random initialization with the GA-MUD problem might prevent the 

algorithm from achieving any significant convergence, regardless of other GA settings. So, 

in the previous work, it was proposed to inject one individual that represents the ZF 

solution into the initial population. This "superior" individual has incomparably better 

fitness than any other, making it very likely to be chosen as the parent in many crossover 

operations. As a result, the search concentrates a promising region. 

4.3.4 The novel SIC-inspired GA-MUD 

Taking into account advantageous results of injecting the “superior” ZF individual onto the 

initial population, reported in the previous chapter, the author has been looking for another, 

even more beneficial strategy for GA initialization. In the new contribution, a method based 

on the SIC paradigm is studied. 

According to the new proposal, ZF detector still plays a significant role in indicating 

an appropriate search region in the initial stage. The ZF-based multi-symbol candidate 

�̇�𝑍𝐹 = [�̇�𝑍𝐹,1 … �̇�𝑍𝐹,𝑁𝑇
]

𝑇
, used for GA initialization, is obtained as a linear combination of 

the signals received by different antennas, transformed by the ZF weighting matrix 𝐖ZF as 

follows: 

 �̇�ZF = 𝐖ZF𝐫, (4.1) 

where 𝐖ZF = (�̌�𝐻�̌�)
−1

�̌�𝐻, and 𝐖ZF�̌� gives the identity matrix.  

The ZF outcome is processed in a quite different way than in the case of the previous 

contribution. Namely, reliability measures of the ZF decisions per every transmit station, 

(�̇�𝑍𝐹,1, … , �̇�𝑍𝐹,𝑁𝑇
), are assessed rather than creating a single "superior" individual in the 

initial population. The assessment criterion for the 𝑖th transmit station is the sum of gains 

of the sub-channels  

 

𝑃𝑖 = ∑|ℎ𝑗𝑖|
2

   ;     𝑖 ∈ [1, 𝑁𝑇]

𝑁𝑅

𝑗=1

 (4.2) 
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Without the loss of generality, assume that 𝑃𝑖′  is the maximum. In such case, the 

transmit station 𝑖′ is selected and the ZF decision �̇�𝑍𝐹,𝑖′ is demapped onto the binary vector 

�̇�𝑍𝐹,𝑖′ = 𝛽−1(�̇�𝑍𝐹,𝑖′). The last is passed to the GA machine, as shown in Figure 4.2, where 

it is placed in appropriate (the 𝑖′ th) section of all chromosomes in the initial population. 

The remaining bits for all the individuals are generated randomly. An exemplary initial 

population consisting of 𝑝 individuals, given 𝑖′ = 3 is shown in Figure 4.3. 

 

Figure 4. 2 SIC-inspired GA-MUD block diagram 

 

Figure 4. 3  Initial population in the case of 16-QAM modulation, 𝒊′ = 𝟑, and 

�̇�𝒁𝑭,𝒊′ = (𝟏𝟏𝟎𝟎) 
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Figure 4.4 illustrates the proposed GA cycle. The decision rule of the GA is to find the 

estimated transmitted symbol vector that minimizes 𝑓(𝐬) in eq. (3.7). 

 

Figure 4. 4  GA machine cycle 

4.4 Simulations  

4.4.1 Assumptions 

To evaluate the performance of the proposed SIC-inspired GA MUD, the simulation 

experiment is conducted. There are 𝑁𝑇 = 4 transmit stations, transmitting their 16-QAM 

signals over the uncorrelated (4×4) MIMO Rayleigh fading channel. It is assumed that the 

channel state is ideally estimated, so �̌� = 𝐇. At the receiver, the ZF detector is used at the 

first stage, and its decision related to the most reliable transmitted symbol is passed to the 

GA in the way described in Sec. 4.3.4. GA steps and settings are concisely specified below. 

Fitness Evaluation takes into account the fitness measure given in eq. (3.7). The lowest 

objective function value corresponds with the fittest chromosome in the generation. 
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Starting from the second generation of the GA algorithm, the worst individuals in the 

current population are discarded (replacement step) to keep constant population size over 

the evolutionary processes. The survivors can become the parents of the next generation. 

Selection: In the current work, the roulette wheel selection rule, detailed in Sec. 2.3.5.1, is 

utilized. With this method, all individuals have a chance to be selected with a probability 

proportional to their fitness [KK18, Kha17, LL12]. The selection probability of the lth 

individual is given by 

 𝑃𝑟𝑙 = 𝑓𝑙/ ∑ 𝑓𝑖    𝑝
𝑖=1 , (4.3) 

where 𝑝 is the population size. A small number (elite count, 𝜗 = 2) of the fittest individuals 

are guaranteed to be alive among the individuals of the next generation. Elitism ensures 

that the individual quality gained by the GA will not decrease from one generation to the 

next. 

Crossover: In this work, the single-point crossover method is applied (refer to Section 

2.3.5.2). The part of the new population that crossover produces is assumed to be 80% of 

the old population (Crossover Probability 𝑝𝑥 = 80%). To prevent the GA from converging 

to a local optimum, some random changes are applied to the genes of the individuals by 

means of the mutation step (refer to Section 2.3.5.3). The mutation rate, 𝑝𝑚, is assumed 

to be 10%. The elite individuals avoid mutation of their genes. 

Stopping Criterion: Every GA needs a mechanism to brake the iterative process judging 

by some features of the current population. In the current work, the GA stops if there has 

been no improvement in the best fitness value for a specific number of generations (𝑁𝑆), 

called stall generations. If the stopping criterion is met, the individual with the best fitness 

ever is returned as the final solution. 

Settings of the above-mentioned parameters applied to the simulation experiment are 

listed in Table 4.1 for better clarity. They have been carefully chosen after several 

preliminary runs. 
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The choice of the population size 𝑝 = 2000 and the number of stall generations 𝑁𝑆 =

20 is a compromise between the accomplished performance and the computational 

complexity. 

Table 4. 1 GA Parameters 

Parameter Symbol Value 

Population Size 𝑝 2000 

Number of stall generation 𝑁𝑠 20 

Crossover Probability 𝑝𝑥 0.8 

Crossover Function  Single-point 

Mutation Function  Uniform 

Mutation Probability 𝑝𝑚 0.1 

Selection function  Roulette Wheel 

Elite count 𝜗 2 

 

4.4.2 Simulation Results 

The proposed system is evaluated in terms of BER vs. SNR performance in the case of 

16-QAM modulation. It is compared with the following solutions: 

• Regular ZF detector, which makes final decisions on all users’ data in just one step, 

• Simple GA, where all individuals in the initial population are generated randomly, 

• ZF-aided GA from the previous chapter, wherein one of the initial population’s 

individuals is the outcome of the ZF detector. 

The results are presented in Figure 4.5. From the plot it is clear that the basic GA with 

the initial population generated randomly (the line with circles) is inferior to the simple ZF 

(diamond marks) at higher SNRs, and its error floor lies at ca. 3 ∙ 10−3 BER. The solution 

proposed in the previous study (represented by the line with stars) brings a significant 

improvement: the gain of about 7 dB over ZF at the level of 10−3 can be observed, but the 

curve is going to merge or cross the one for ZF near SNR of 35 dB.  

The novel approach contributed in the current chapter, represented by the line with 

squares, offers another 5 dB gain at the level of 10−3 BER (in total it gives 12 dB over ZF). 

What can be also read from the plot, the novel approach is the first to cross the 10−4 level. 
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As a final remark, it must be pointed out that the proposed strategy does not invoke any 

regular iterative IC routine. In fact, it detects all the users' signals simultaneously, which 

mitigates possible error propagation effects, observable in the consecutive SIC detection 

stages. GA could estimate the global optimum for the specific scenario under consideration 

due to its ability to maintain the best solutions in each generation and use them to improve 

other solutions. Thanks to that, generation by generation the entire population becomes 

closer to the optimal solution. 

 

Figure 4. 5 BER vs SNR for the compared multi-user detectors 

4.4.3 Computational Complexity 

The computational complexity of GA increases linearly with 𝑝, 𝐺, 𝑁𝑇, and exponentially 

with the number of bits transmitted per one station per one modulation period 𝑁𝐵 (𝐺 is the 

number of populations actually considered in a given algorithm run, it may vary depending 

on the convergence of the optimization process). To put that in perspective, the 

computational complexity of ML optimal detector increases exponentially with both the 

number of users 𝑁𝑇 and 𝑁𝐵 [Jal04, YHL13]. 
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 Obviously, the cost of the GA procedure is increased by the ZF routine from the 

initialization step. When compared to the solution from the previous chapter, the 

computational payload of the novel SIC-inspired approach is slightly reduced due to the 

fact that all individuals in the initial population share the same fraction of genes (�̇�𝑍𝐹,𝑖′). 

As a consequence, the number of products to be computed for the initial population is 

(𝑁𝑇 − 1)/ 𝑁𝑇 times the original number. 

4.5 Summary 

In this chapter, the performance of GA-driven MIMO multi-user detector has been 

improved. A new method for population initialization has been proposed. It resembles the 

SIC approach, where the most believable signal is detected and decoded first. On the 

ground of the GA, the ZF detector is used, and the ZF-based decision related to the most 

reliable signal is reflected in the chromosome of all individuals in the initial population. 

Respective part of the chromosome, �̇�𝑍𝐹,𝑖′, is unlikely susceptible to crossover due to the 

fact that all of the individuals in the initial population share exactly the same genes on the 

ZF-decided positions. Obviously, it might appear that the ZF decision related to the most 

reliable signal is wrong. In such cases, the algorithm can still converge thanks to mutation. 

Nevertheless, in the light of the presented results, it is worth favouring the initial ZF 

decision to a higher extent than proposed in the previous chapter.  
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Chapter 5  

Adaptation refers to a set of procedures followed by the filter to adjust its parameters 

(coefficients) according to the input data [Bor13]. Adaptive equalizers, being a form of the 

adaptive filter, find extensive application in different communication systems. In a 

communication system transmitting over a wireless channel, the adaptive equalizer is 

employed to mitigate the detrimental impact of multipath transmission on received signal 

quality [VR12].  

One of the aspects that characterize the adaptive equalizer is adaptation or learning 

algorithm, which describes how the coefficients are adjusted from one time instant to the 

next. LMS and RLS exemplify two of the most well-known adaptation algorithms, used to 

adjust the adaptive equalizer coefficients. The key benefit of LMS over RLS is the 

computational simplicity at the expense of slow convergence [KNM11]. (Algorithm 

convergence refers to the number of iterations or adaptation cycles necessary for the 

algorithm to reach the optimum solution, exhibiting the least Mean Square Error (MSE) 

[Sim14]). 

A couple of years ago, evolutionary algorithms, such as the GA, attracted the interest 

of researchers as an optimization framework in the field of wireless communication 

systems [MQA16, JH07]. In the context of the equalization technique, Humaidi et al. 

[HIA19] provided an integrated learning algorithm by hybridizing the GA with the 

standard LMS; the algorithm can tune both Finite Impulse Response (FIR) and Infinite 

Impulse Response (IIR) filters. The GA-based equalizer for a wireless communication 

system has been introduced in [BZG10], where GA is integrated with a RAKE receiver to 

overcome ISI caused by the frequency selective nature of Ultra-Wideband (UWB) channels 

for high data rate transmission. Merabti contributed in [MM14] a new procedure to 

equalize nonlinear channels using GA. The proposed Volterra Decision Feedback Genetic 

Algorithm (VDFGA) estimates the so called Volterra kernels to obtain the inverse of the 

channel response. In [YG10], GA was utilized to improve the weights of neural network, 

used in a blind equalization task. GA was also utilized to estimate the coefficients of high-

order IIR filters by applying a time-frequency fitness function [MP11]. Chen et al. [CW98] 

combined a small population size GA, known as micro-GA with the Viterbi algorithm, to 
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conduct jointly the data estimation and channel estimation. The channel equalizer from 

[CW98], however, requires periodic injections of training sequences for re-tuning since it 

does not allow channel tracking.  

Although the GA has been known for years, this method should not be dismissed. On 

the contrary, the author believes it is still worth developing and improving. Because of its 

search strategy, GA can navigate broadly through search spaces and quickly reach the 

globally optimal solution to the optimization problem [ES03]. 

This chapter presents details of a different, computationally efficient approach to an 

adaptive equalizer so-called UCGA. The novelty of the current contribution is the 

dependence of a single algorithm time-step (Generation), which reduces the computational 

cost of the GA. The simulation results that have been presented by the author in [KK21, 

KK22] are addressed in this chapter to display a reasonable performance gain of UCGA 

over RLS and LMS for most of the wireless channel models under consideration.  

5.1 Equalization Technique  

ISI is one of the factors that affect the data transmission performance in wireless 

communication. This phenomenon occurs because of the physical properties of the 

transmission medium, which causes the transmitted signal to reach the receiver via multiple 

paths with different path delays [Wes09, PSB12]. These delayed echoes are the reason for 

time dispersion observed in the transmitted signal. As a result, the channel responses to 

subsequent symbols overlap. 

It is possible to solve the ISI problem by designing a receiver that employs a means of 

compensating or reducing the ISI. The general approach is the application of channel 

equalization. Thus, the term equalization refers to any signal processing operation that 

mitigates ISI in time-dispersive channels [Hay13, Pro01]. 

A channel equalizer is a filter that attempts to match the propagation channel response, 

in which 

ℎ(𝑡) ∗ ℎ𝑒𝑞(𝑡) = 𝛿(𝑡), (5.1) 

where ℎ(𝑡), ℎ𝑒𝑞(𝑡) is the impulse response of the channel and the equalizer, respectively. 

Figure 5.1 shows the channel and equalizer general scheme. 
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Figure 5. 1 Basic idea of equalization 

5.2 Equalizer Structures and Algorithms Classification  

The classification of equalization structures is shown in Figure 5.2. It is possible to perform 

channel equalization using linear or nonlinear approaches. Among linear receivers, 

equalizers based on FIR transversal filters are of great importance and they are 

implemented employing symbol-spaced or fractionally spaced taps [Wes09]. The linear 

equalizer employing a lattice filter has also received a lot of attention in the literature. 

Although more complicated than the transversal filter, the latter enables fast convergence 

of the adaptation algorithm. Despite this, FIR equalizers are the most common because of 

their implementation simplicity [Wes09, Pro01]. 

 

 

Figure 5. 2 Classification of the equalization structures 

 

Nonlinear receivers are utilized for channels characterized by the occurrence of deep 

notches. Decision Feedback Equalizer (DFE) is the most basic type of a nonlinear receiver 

in which the ISI in the currently estimated symbols is suppressed basing on the previous 

decisions [BP79]. The Maximum Likelihood Sequence Estimation (MLSE) equalizer is 
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optimum, but its computational complexity increases exponentially with the span of ISI. It 

usually uses the Viterbi algorithm to detect an entire sequence of data symbols [Pro01, 

For72]. If ISI is caused by a long channel impulse response, the MLSE equalizer becomes 

impractical due to excessive computational complexity. Thus, several suboptimal 

structures and approaches, such as the M algorithm [AM84], Delayed Decision Feedback 

Sequence Estimation (DDFSE) [HH89], and Reduced State Sequence Estimation (RSSE) 

[EQ88], are suggested as an alternative. 

The ability to perform initial adaptation and track channel characteristics in time is the 

key feature of all equalization structures. In order to attain the initial adaptation, an 

optimization criterion has to be specified. One criterion, resulting in ZF equalizer, was the 

minimization of the maximum value of ISI. Minimization of the mean square error, which 

leads to the MSE equalizer, is the most common adaptation criterion; it assumes 

minimization of the squared error signal at the equalizer output [Wes09]. The Least 

Squares (LS) error minimization is the criterion utilized in the fastest adaptation algorithms 

[Pro01]. 

In typical equalizers, the adaptation process takes place in two phases. A training data 

sequence, known to the receiver, is transmitted in the first phase. This sequence is used by 

the adaptation algorithm to adjust the equalizer coefficients. This mode of operation is 

called training mode. Having achieved the equalizer parameters exhibiting a sufficiently 

low error probability, the second adaptation phase starts, in which the equalizer operates in 

the decision-directed mode [Wes09, Hay13]. 

5.3 Linear Equalizers 

In a channel with ISI, the computational complexity of the MLSE grows exponentially 

with the length of the channel time dispersion. Assuming the symbol alphabet size is γ 

and there are 𝐼𝑠 interfering symbols, the Viterbi algorithm computes γ𝐼𝑠+1 metrics for each 

new symbol received. It is prohibitively expensive for most channels of practical interest 

[Pro01].  

In this section, the author describes a suboptimum channel equalization approach to 

compensate for the ISI. This technique utilizes a linear transversal filter. The computational 

complexity of this filter structure is a linear function of the channel dispersion length. 
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In channels with unknown frequency response but time-invariant, the channel 

characteristics might be measured and then used to adjust the equalizer parameters. Once 

tuned, the parameters remain unchanged during the data transmission. Such an equalizer is 

known as a preset equalizer. In contrast, adaptive equalizers update their parameters 

periodically during data transmission, allowing them to track a slowly time-varying 

channel response [PSB12]. 

A system that employs a linear filter as a channel equalizer is shown in Figure 5.3., 

The design characteristics of a linear equalizer from a frequency domain viewpoint have 

been considered by Proakis (refer to [Pro01] for details). From there, one might find out 

that the desired condition for zero ISI in a non-ideal channel frequency response is: 

𝐻𝑇(𝑓)𝐻𝑐(𝑓)𝐻𝑅(𝑓)𝐻𝑒𝑞(𝑓) = 𝑆𝑟𝑐(𝑓), (5.2) 

where 𝑆𝑟𝑐(𝑓) refers to the desired raised-cosine spectral characteristic. By design 

𝐻𝑇(𝑓)𝐻𝑅(𝑓) = 𝑆𝑟𝑐(𝑓), so the equalizer's frequency response, ideally compensating for 

channel distortion, is: 

𝐻𝑒𝑞(𝑓) =  
1

|𝐻𝑐(𝑓)|
𝑒−𝑗𝜃𝑐(𝑓), (5.3) 

where |𝐻𝑐(𝑓)| and 𝜃𝑐(𝑓) refer to amplitude and phase components of the channel 

frequency response, while 1/|𝐻𝑐(𝑓)|  and 𝜃𝑒𝑞 = −𝜃𝑐(𝑓) are the equalizer amplitude and 

phase response. It can be said that the equalizer acts as an inverse channel filter, totally 

eliminating ISI. This equalizer is called a zero-forcing equalizer since it forces the ISI to 

be zero at sampling instant 𝑡 = 𝑛𝑇 for (𝑛 = 0,1, … ). 

ZF equalizer has the drawback, which consists in ignoring additive noise. Thus, its use 

may lead to a significant increase in noise. This is obvious by noting that the equalizer 

compensates for the weak amplitude frequency channel response by setting a large gain in 

that frequency range. This significantly increases the noise in that frequency range. 
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Figure 5. 3 An equalization system block diagram 

On the basis of the literature studies, it can be concluded that the linear equalizer is 

ineffective for compensating inter-symbol interference on channels with spectral nulls, 

which may occur in radio transmission. The channel spectral nulls often cause a significant 

noise amplification at the equalizer output. The interested reader is referred to [Pro01, 

AB93, DMM74] for details. 

5.3.1 Adaptive Linear Equalizer 

Throughout the development of the equalization methods, it is implicitly assumed that the 

receiver is aware of the channel characteristics. However, in most communication systems, 

the channel characteristics are very often unknown or time-variant. Thus, it is worthwhile 

making the equalizer adaptive so that its parameters are periodically updated to compensate 

for the distorting channel characteristics; thus, it can track the changes of channel 

characteristics in time [Wes09, AO15]. LMS and RLS represent two basic adaptation 

algorithms, which can be used for optimizing the coefficients of an adaptive equalizer 

[Hay14, KNM11]. 

Linear filters with adjustable coefficients, illustrated in Figure 5.4, are the most 

common channel equalizers used in practice [Wes09]. Its input is the sequence 𝐫 that can 

be expressed as 

𝑟(𝑛) = ∑  𝜒(𝑙)

𝑙

∙ 𝑠(𝑛 − 𝑙) + 𝑣(𝑛), (5.4) 

where {𝜒} is a set of tap coefficients of an equivalent discrete-time transversal filter that 

models the channel, s refers to the transmitted symbols, and 𝒗 is a sequence of white 

Gaussian noise samples.  
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The equalizer output �̂� at the nth signalling interval depends of the input signal 

samples r and the 2L+1 coefficients of the equalizer 𝐜(𝑛) as per equation 

�̂�(𝑛) =  ∑ 𝑐𝑙(𝑛)

𝐿

𝑙=−𝐿

∙ 𝑟(𝑛 − 𝑙). (5.5) 

Several studies have been conducted on the criteria for optimizing the filter 

coefficients [Hay13]. In digital communication systems, the average probability of error is 

the most meaningful measure of performance. Thus, choosing the coefficients that reduce 

this performance measure is desirable. The probability of error is a nonlinear function of 

𝐜(𝑛). This makes the probability of error an inefficient performance indicator for 

optimizing the tap weight coefficients of an equalizer [Bor13, Pro01]. 

It has been widely found that two criteria can be used to optimize the coefficients of 

an equalizer. One is the mean-square-error criterion, while the other is the peak distortion 

criterion [Hay14]. 

 

Figure 5. 4 Basic structure of linear adaptive equalizer 

Basically, peak distortion refers to worst-case inter-symbol interference at the 

equalizer's output. The peak distortion criterion involves minimization of the performance 

index. MSE criterion involves adjusting the tap weight coefficients of the equalizer to 

minimize the mean square error [Luc65, Pro01, Wes09]   
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휀(𝑛) = 𝑠(𝑛) − �̂�(𝑛). (5.6) 

For complex-valued information symbols, the MSE performance index, 𝐼𝑀𝑆𝐸 , is 

defined as 

𝐼𝑀𝑆𝐸(𝑛) = 𝐸|휀(𝑛)|2 = 𝐸|𝑠(𝑛) − �̂�(𝑛)|2. (5.7) 

The solution of 𝐼𝑀𝑆𝐸  with respect to the equalizer coefficient 𝑐(𝑛) = [𝑐−𝐿(𝑛),

⋯ , 𝑐𝐿(𝑛)]𝑇 leads to a set of linear equations that may be expressed in the general matrix 

form (see [Wes09] for details): 

𝜦𝐜𝑜𝑝𝑡 = 𝜓. (5.8) 

It results in the Wiener-Hopf equation that gives the optimum equalizer coefficient, 

where 𝜦 denotes the (2𝐿 + 1) × (2𝐿 + 1) Hermitian matrix, c is the column vector of  

2𝐿 + 1 equalizer coefficients, and 𝜓 is a column vector of channel filter coefficients in 

2𝐿 + 1 dimensions. Thus, the solution for the optimum coefficients involves inverting the 

matrix 𝜦: 

𝐜𝑜𝑝𝑡 = 𝜦−1𝜓. (5.9) 

  

5.3.1.1 Least Mean Square Algorithm 

For practical equalizer implementations, an efficient method of achieving the optimum 

coefficients and the minimum MSE is usually obtained through an iterative procedure, so 

that the inverse of matrix 𝜦 in eq. (5.9) is not explicitly calculated [Wes09, PSB12]. The 

steepest descent method is the simplest iterative procedure, in which one starts by randomly 

selecting the coefficient vector, e.g., 𝐜0. As such, the coefficient vector 𝐜0 corresponds to 

a point on the criterion function that is being optimized. With the MSE criterion, the initial 

guess 𝐜0 corresponds to a point on the quadratic MSE surface in the space of coefficients. 

The gradient vector 𝑔𝑟 is computed at this point. Using the computed gradient vector, each 

tap weight is adjusted in the direction opposite to its gradient component. The changes in 
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tap weight are proportional to gradient component size. Accordingly, successive values of 

the coefficient vector c can be obtained by applying the relation [PSB12] 

𝐜(𝑛 + 1) = 𝐜(𝑛) −α𝒈𝒓(𝑛)      𝑛 = 1,2, ⋯ , (5.10) 

where α is a positive number representing the step-size parameter for the iterative 

procedure, small enough to assure convergence of the iterative procedure. It is difficult to 

determine the optimum tap weights using the steepest descent method due to the lack of 

knowledge about the gradient vector 𝑔𝑟, which is dependent on both 𝜦 and 𝜓 [Pro01]. It 

may be possible to overcome this difficulty by using estimates of the gradient vector. Thus, 

the algorithm for adjusting tap weight coefficients can be expressed as: 

�̂�(𝑛 + 1) = �̂�(𝑛) −α�̂�𝒓(𝑛), (5.11) 

in which �̂�𝒓 represents an estimate of gradient vector 𝒈𝒓 and the estimate of the coefficients 

vector is denoted by �̂�. A gradient vector estimates �̂�𝒓 in the nth iteration is calculated as 

follows (see Proakis et al. [PSB12] for details) 

�̂�𝒓(𝑛) = −휀(𝑛) ∙ 𝑟∗(𝑛). (5.12) 

The adaptive algorithm for optimizing the tap coefficients (based on the MSE 

criterion) can be obtained by substituting (5.12) into (5.11) 

�̂�(𝑛 + 1) = �̂�(𝑛) +α휀(𝑛) ∙ 𝑟∗(𝑛). (5.13) 

This algorithm is called a stochastic gradient algorithm because it uses an estimate of 

the gradient vector, also known as the LMS algorithm. The essentials of LMS algorithm 

are described by Widrow (see [Wid66] for details). The computational simplicity is one of 

the LMS algorithm's main advantages. However, slow convergence is a trade-off for this 

simplicity. This algorithm has only one adjustable parameter, Λ, which controls the 

convergence rate. This fundamental limitation causes the convergence rate to be slow 

[Pro01].   
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5.3.1.2 Recursive Least-Squares Algorithm 

In order to achieve faster convergence, it is required to create more complex algorithms 

that take into account additional parameters [Pro01]. Applying the Least Squares 

adaptation criterion can lead to a fast initial equalizer convergence. The coefficients of a 

linear equalizer are selected to minimize the cost function [Wes09] 

휀𝐿𝑆(𝑛) = ∑Γ𝑛−𝑙

𝑛

𝑙=0

|𝐜(𝑛)𝑇𝐫(𝑙) − 𝑠(𝑙)|2, (5.14) 

Γ𝑛−𝑙 (Γ ≤ 1) is a weighting factor applied to follow changes in the channel 

characteristics. For each time instant n, the algorithm minimizes the weighted summed 

squared error by calculating the current coefficient vector from the initial moment up to 

moment n. The calculation of (5.14) leads to the equation: 

𝐜(𝑛) = 𝐜(𝑛 − 1) + 𝜙−1(𝑛)𝐫(𝑛)휀(𝑛), (5.15) 

where 𝜙 is the autocorrelation matrix. The algorithm expressed by (5.15) is named the RLS 

direct form or Kalman algorithm [God74]. Proakis [Pro01] provides the complex version 

of this algorithm. 

Kalman algorithm has two disadvantages, despite its superior convergence 

performance. The first is its complexity. Second, it is sensitive to roundoff noise 

accumulated as a result of the recursive computations. This may lead to algorithm 

instability [Pro01]. 

5.4 System Model 

In this section, the author presents a different approach to adaptive equalizer based on a 

computationally efficient uni-cycle GA. In this proposal, the GA operates on sets of 

coefficients encoded as a string of real variables. The novelty of the current contribution is 

the dependence of a single algorithm time-step (Generation), hence the name UCGA, 

which reduces the computational cost of the GA. Equalizer decisions upon the data 
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symbols are made on a symbol-by-symbol basis; it does not involve any interaction with a 

decoder, contrary to the procedure in [CW98]. 

The performance of the proposed UCGA is evaluated using a computer-based 

simulation experiment. The GA solver, which is part of the MATLAB packet, was 

employed during the study. Figure 5.5 presents a block diagram of the considered system. 

The developed equalizer receives the samples of Binary Phase-Shift Keying (BPSK) 

modulated signal, transmitted over a time-varying Rayleigh fading channel. A transversal 

filter, i.e., an adaptive linear equalizer, processes the resultant channel output 𝐫 to provide 

estimates (denoted by �̂�) of the transmitted symbols. In detail, the estimate of the nth 

symbol of a data frame is defined as 

�̂�(𝑛) = ∑ 𝑐𝑙(𝑛) ∙ 𝑟 (𝑛 + 𝑙 − ⌊
𝐿

2
⌋) ,

𝐿

𝑙=1

 (5.16) 

where L is the equalizer length and the complex-valued numbers 𝑐1(𝑛) ⋯ 𝑐𝐿(𝑛), i.e., the 

elements of vector 𝐜(𝑛) from Fig. 5.5 represent the tap coefficients of the equalizer in 

respective signalling interval. 

 

Figure 5. 5 Adaptive equalizer block diagram 

The adaptation is performed by observing the error, i.e., the difference between the 

desired sequence elements and the equalizer output. The error volume controls the direction 

of the coefficients adjustment from one iteration to the next in order to approach the 

optimum set of values. The Mean Square Error criterion serves as the basis for the 
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optimization procedure that the adaptive algorithm uses to update the coefficient values 

[Hay13]; thus, the error signal is defined as: 

휀(𝑛) = |𝜌(𝑛) − �̂�(𝑛)|2. (5.17) 

During a training phase, a training sequence �̃� is transmitted. The sequence is known 

in advance at the receiver side (𝜌(𝑛) = �̃�(𝑛)), so that the signal received in the training 

phase can be taken as a reference. The optimization criterion for the adaptive equalizer is 

to minimize the error given by eq. (5.17) according to the MSE criterion. In other words, 

the equalizer looks for the best vector 𝐜(𝑛) of filter taps in the nth signalling interval. 

Once the training phase is completed, the adaptive equalizer begins to operate using 

the decision-directed rule. The decision unit regenerates the signal outputted by the filter, 

so that it becomes an ideal BPSK symbol, i.e., 

𝜌(𝑛) = �̇�(𝑛) = arg min𝑠∈{−1,+1} |𝑠 − �̂�(𝑛)|2. (5.18) 

Thanks to the reference samples provided by the decision unit, the adaptive equalizer 

can track the channel statistical variations without wasting the bandwidth for passing any 

midamble over the channel. However, the equalizer might fail if the decision is made in 

favour of a BPSK symbol opposite to the actually transmitted symbol. 

5.4.1 Uni-Cycle Genetic Algorithm  

The classical GA has been designed to address optimization problems that do not evolve 

over time [SD08, Abr07]. The population structure continuously evolves through the 

application of different GA operators, the individuals with the least fit chromosomes die, 

the newborns constitute a new generation; some random mutations are also applied to the 

chromosomes to introduce some minor random changes. Each new generation advances 

the algorithm toward the optimal (fixed) solution. 

In the case of channel equalizer task, the role of the equalizer is to continuously track 

the current channel state, so there is no one fixed optimization goal. Conceptually, it is 

achievable to consider several GA generations to seek a solution (the channel taps or, 

equivalently, the decision on one transmitted symbol) that is optimal for a single signalling 
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interval and then start from scratch to consider the next signalling interval. Such a solution 

has been presented in [CW98]. 

In the proposed UCGA strategy, only one generation per one signalling interval is 

assumed to limit the computational payload. The population results from one signalling 

interval is considered to be the initial population for the next UCGA instance, associated 

with the next signalling interval, and so on, as shown in Figure 5.6. 

 

Figure 5. 6 UCGA framework. The GA operators are the base for the transition 

from one iteration to the next 

Since the channel evolution is rather slow, it can be considered as if the global 

optimum was fixed over a few successive signalling intervals, which allows for UCGA 

convergence. Obviously, the algorithm cannot identify the exact optimum, which is 

slinking, but a rough estimation of the channel coefficients is often adequate to compensate 

for the channel effect effectively. The cycle of the UCGA operations provides the 

opportunity to adapt the current set of suggested solutions to the evolving channel state. 

The implementation details of the UCGA are as follows: 

• Problem Representation 

In the proposed GA scheme, the chromosomes reflect the equalizer coefficients to be 

optimized. They are represented as vectors of real numbers. The data type used during the 

experiment is floating-point [SD08]. It is worth noting that, in general, one individual may 

include more than one chromosome; in the current system, the individual is determined by 

exactly one chromosome. 



73 
Chapter 5: Adaptation Mechanism for Wireless Channel Equalizer 

In detail, the chromosome represents both real and imaginary parts of the candidate 

coefficients: 

�̂�(𝑛) = [�̂�1
ℜ ⋯ �̂�𝐿

ℜ �̂�1
ℑ ⋯ �̂�𝐿

ℑ], (5.19) 

where �̂�𝑙
ℜ, �̂�𝑙

ℑ ∈ ℝ define the candidate coefficient �̂�𝑙 of the lth equalizer tap (or more 

precisely, its real and imaginary part, respectively). 

•  Initialization 

The UCGA initialization is performed in the first signalling interval. Two strategies 

have been considered. The first approach assumes that all the chromosomes are generated 

randomly. The values of the real or imaginary components are constrained to the range 

between -1 and 1. The second strategy assumes random generation of all chromosomes, as 

above, with the exception of the first individual, for which �̂�⌊𝐿/2⌋
ℜ = 1, �̂�𝑙≠⌊𝐿/2⌋

ℜ = 0 and 

�̂�𝑙=1⋯𝐿
ℑ = 0. Such settings would be ideal for a single-path transmission, but the author 

anticipates they enhance GA convergence even in the case of a multipath Rayleigh fading 

channel.  

 Immediately after receiving the initial sample from the channel, the equalizer starts 

adjusting the equalizer taps. 

• Fitness Evaluation 

In every nth iteration (signalling interval), the UCGA population, Ω(𝑛), comprises  

𝑝 individuals. As mentioned in Section 5.4, the optimization criterion for the proposed 

scheme is based on minimizing the mean-square value of the error signal, given by eq. 

(5.17), the MSE criterion. Consequently, to evaluate the fitness of a given individual, 

represented by chromosome �̂�, in iteration n, the following cost function is used 

𝐽�̂�(𝑛) = |𝜌(𝑛) − ∑ �̂�𝑙(𝑛) ∙ 𝑟(𝑛 + 𝑙 − ⌊𝐿/2⌋)

𝐿

𝑙=1

|

2

, (5.20) 

where �̂�𝑙(𝑛) = �̂�𝑙
ℜ + 𝑗�̂�𝑙

ℑ. Let us denote the chromosome exhibiting the best fitness in 

iteration n as 
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�̂�𝑏𝑒𝑠𝑡(𝑛) = arg min�̂� 𝐽�̂�(𝑛). (5.21) 

In every nth iteration, the UCGA searches for the minimum estimation error 

𝐽𝑚𝑖𝑛(𝑛) = min�̂�∈Ω(𝑛)(𝐽�̂�(𝑛)) (5.22) 

across the entire population Ω(𝑛) to obtain a reference fitness value for comparisons 

between individual chromosomes. The chromosome with the best fitness is selected as the 

outcome of the algorithm in the given iteration; starting from the 2nd iteration, the worst 

chromosomes are replaced with newborns, resulting from genetic operations like selection, 

crossover, and mutation. 

• Selection 

In the current work, the chromosome selection is based on a roulette wheel selection 

method, i.e., the probability that a given individual becomes a parent is proportional to its 

fitness, as detailed in Section (2.3.5.1). Accordingly, the selection probability in the nth 

iteration for an individual with chromosome �̂� can be expressed as: 

𝑃𝑟�̂�(𝑛) =
𝐽�̂�(𝑛)

∑ 𝐽�̂�(𝑛)�̂�∈Ω(𝑛)
 . (5.23) 

The elite strategy is employed to avoid the loss of the best genetic material. According 

to it, some high-ranked individuals, in terms of fitness value, co-exist with the offspring 

generation. 

• Crossover and Mutation 

The intermediate crossover is utilized for the UCGA model to combine genes from 

two parents’ chromosomes in the current iteration and form a new child, or individual, for 

the next iteration. 

A random complex zero-mean Gaussian number 𝜛 is added to the chromosome value 

throughout the mutation operation. After some preliminary experiments, the standard 

deviation of 𝜛 has been set to an appropriate value, specified in Table 5.1. Thanks to the 

mutation, which brings some random changes to the chromosomes, the UCGA is unlikely 
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to stick at one of the local optima. It must be noted that elite individuals and crossover 

children are not subject to the mutation procedure. 

Table 5. 1 GA settings 

Parameter         Value 

Population Size 200 

Number of Generations 1 

Crossover Type Intermediate 

Crossover Probability 0.85 

Mutation Method Gaussian 

Std. Deviation of Mutation Probability 0.06 

Selection Method Roulette Wheel 

Elite count 72 

 

5.5 Results 

To evaluate the performance of the proposed UCGA-based Adaptive Equalizer 

(UCGA-AE), the measures of the following characteristics are taken: BER against SNR 

and MSE vs iteration number. Afterwards, they are compared with the reference results 

obtained by means of the LMS-based Adaptive Equalizer (LMS-AE) and RLS-based 

Adaptive Equalizer (RLS-AE). The UCGA initialization is also investigated. To ensure 

comparison fairness, the same channel conditions are considered for the proposed and 

reference methods, including the same random generator seed when simulating the channel 

performance. 

5.5.1 Simulation Scenarios  

Two simple but realistic GSM propagation models with 6 and 12 delay taps, respectively, 

accurate for an urban area, are considered [TS17]. The power delay profiles of such 

channels are presented in Table 5.2 and Table 5.3, respectively. In order to get a wider 

scope of the UCGA-AE capabilities, a 6-tap hilly-terrain model, characterized by the power 

delay profile from Table 5.4, is also taken into account. The sampling rate of 1.5 MHz is 

assumed. Respective sample time of ca. 0.67 µs, compared with all power delay profiles, 

guarantees a selective kind of fading for every considered channel profile. The impact of 
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the Doppler effect on the equalizer performance is studied for every channel model; 

numerous Doppler shift values are assumed one by one: 𝑓𝑑= 0, 3, 15, 50, 200 Hz. 

Table 5. 2 Typical urban area 6-Tap channel power delay profile 

Tap number Relative time (µs) Value 

1 0.0 -3.0 

2 0.2 0.0 

3 0.5 -2.0 

4 1.6 -6.0 

5 2.3 -8.0 

6 5.0 -10.0 

 
Table 5. 3 Typical urban area 12-Tap channel power delay profile 

Tap number Relative time (µs) Value 

1 0.0 -4.0 

2 0.1 -3.0 

3 0.3 0.0 

4 0.5 -2.6 

5 0.8 -3.0 

6 1.1 -5.0 

7 1.3 -7.0 

8 1.7 -5.0 

9 2.3 -6.5 

10 3.1 -8.6 

11 3.2 -11.0 

12 5.0 -10.0 

 
 

Table 5. 4 Typical hilly terrain 6-Tap channel power delay profile 

Tap number Relative time (µs) Value 

1 0.0 0.0 

2 0.1 -1.5 

3 0.3 -4.5 

4 0.5 -7.5 

5 15.0 -8.0 

6 17.2 -17.7 

 

The receiver in any real communication system is not capable of predicting exact 

channel parameters, e.g., time dispersion. Hence, the number of equalizer taps is assumed 

to be 15 for the UCGA-AE, LMS-AE and the RLS-AE, regardless of the considered 
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channel model. To ensure the accuracy of the results, the data frame contains 100,000 

uncoded BPSK symbols, from which 500 initial symbols belong to the training sequence.  

Table 5.1 presents the most important settings of the MATLAB GA solver used to 

evaluate the performance of UCGA-AE. Regarding the reference LMS and RLS 

algorithms, some preliminary tests have been carried out to find the most accurate value of 

the forgetting factor. The forgetting factor of LMS-AE was set to 0.045 and 0.95 in the 

case of RLS-AE. 

 

5.5.2 Simulation Results 

The performance results for the adaptive equalizers to be compared are presented in this 

section. Fig. 5.7 and Fig. 5.8 give the performance results of UCGA, LMS, and RLS for 

6-tap urban channel model. The performance results of the compared equalizers in the case 

of 12-tap urban channel model are shown in Fig. 5.9 and Fig. 5.10, while the results for 6-

tap hilly-terrain channel model are illustrated in Fig. 5.11 and Fig. 5.12, respectively. Each 

time, a variety of Doppler shift (𝑓𝑑) values are considered. The measure points at the SNR 

scale are distributed every 5 dB, which, in the author’s opinion, is enough to display the 

trend and the curves’ locations to each other (beware that the markers do not represent data 

points). The 95% confidence intervals are presented at data points to prove accuracy of the 

simulation outcomes; they are obtained according to the method presented in [JBS92]. 

In general, for all channel models and most Doppler shifts, the UCGA-AE (solid lines 

in Figures 5.7, 5.8, 5.9, 5.10, 5.11, and 5.12) is superior to both the LMS-AE and the RLS-

AE (dashed lines).  
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Figure 5. 7 BER vs SNR performance for the considered adaptive equalizers: GA 

and LMS under different Doppler shifts (𝒇𝒅 = 0, 3, 15, 50, and 200 Hz) over a typical 

urban area 6-tap channel 

 

 

Figure 5. 8 BER vs SNR performance for the considered adaptive equalizers: GA 

and RLS under different Doppler shifts (𝒇𝒅= 0, 3, 15, 50, and 200 Hz) over a typical 

urban area 6-tap channel 
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Figure 5. 9 BER vs SNR performance for the considered adaptive equalizers: GA 

and LMS under different Doppler shifts (𝒇𝒅 = 0, 3, 15, 50, and 200 Hz) over a typical 

urban area 12-tap channel 

 

 

Figure 5. 10  BER vs SNR performance for the considered adaptive equalizers: GA 

and RLS under different Doppler shifts (𝒇𝒅 = 0, 3, 15, 50, and 200 Hz) over a typical 

urban area 12-tap channel 
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Figure 5. 11 BER vs SNR performance for the considered adaptive equalizers: GA 

and LMS under different Doppler shifts (𝒇𝒅 = 0, 3, 15, 50, and 200 Hz) over a typical 

hilly-terrain 6-tap channel 

 

 

Figure 5. 12 BER vs SNR performance for the considered adaptive equalizers: GA 

and RLS under different Doppler shifts (𝑓𝑑 = 0, 3, 15, 50, and 200 Hz) over a typical 

hilly-terrain 6-tap channel 
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In detail, having assumed 𝑓𝑑 = 0 Hz, one can observe a 6 dB SNR gain of the UCGA-

AE over the LMS-AE at 10−3 BER level, in Figure 5.7. Note the overlapping GA, 𝑓𝑑 = 0 

Hz and GA, 𝑓𝑑 = 3 Hz curves. In the case of 12-tap channel model, refer to Figure 5.9, the 

gain of ca. 3 dB is spotted, instead. In the case of 6-tap hilly-terrain channel, Figure 5.11, 

it is as much as 5 dB. For 𝑓𝑑 = 3 Hz, the reference LMS-AE system experiences a slow 

decline with increasing SNR over any considered channel (in the case of UCGA-AE it is 

much more significant). For any higher 𝑓𝑑, LMS-AE fails at all, regardless of considered 

channel model. It must be noted that the results display poor performance for both UCGA-

AE and LMS-AE with 𝑓𝑑 = 200 Hz. Additionally, the proposed UCGA-AE cannot cope 

with the 6-tap hilly-terrain channel model when 𝑓𝑑 = 50 Hz. 

In comparison with RLS-AE, a particularly high SNR gain (as much as 17 dB) can be 

observed at 10-3 BER level with either 6-tap or 12-tap urban channel models, if one assumes 

𝑓𝑑 = 3 Hz (refer to Figures 5.8 and 5.10; note the overlapping curves for UCGA, 𝑓𝑑 = 0 Hz 

and UCGA, 𝑓𝑑 = 3 Hz). Equally remarkable is that with a 6-tap hilly-terrain channel, Figure 

5.12, RLS-AE curves decline much slower with increasing SNR, in comparison with 

respective UCGA-AE curves. A weak point of the UCGA-AE is its performance with 𝑓𝑑  = 

200 Hz. Moreover, the efficiency of the proposed UCGA-AE is not satisfactory if the 

transmission runs over the hilly-terrain 6-tap channel exhibiting a 50 Hz Doppler shift. 

For both comparisons, the presented 95% confidence intervals become notably wide 

at high SNRs as the number of observed errors is quite low in relation with the estimated 

BER level. It makes the results below 10−4 quite worthless. 

Figures 5.13, 5.14, 5.15, and 5.16 compare different population initialization methods, 

mentioned in the previous Section. One is fully random initialization, in which all 

chromosomes in the initial population in the 1st signalling interval are generated randomly, 

and single-1 initialization is the second method. The typical urban area 6-tap channel model 

was employed in this part of the experiment. From all presented figures it can be seen that 

the single-1 initialization brings some gain over fully random initialization, i.e., the UCGA-

AE is capable of achieving a given BER level at a reasonably lower SNR. 
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Figure 5. 13 Comparison of different population initialization methods: fully-

random initialization and single-1 initialization; assumed typical urban area 6-tap 

channel model with a specific Doppler shift: 𝒇𝒅 = 0 Hz 

 

 

Figure 5. 14 Comparison of different population initialization methods: fully-

random initialization and single-1 initialization; assumed typical urban area 6-tap 

channel model with a specific Doppler shift: 𝒇𝒅 = 3 Hz 
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Figure 5. 15 Comparison of different population initialization methods: fully-

random initialization and single-1 initialization; assumed typical urban area 6-tap 

channel model with a specific Doppler shift: 𝒇𝒅 = 15 Hz 

 

 

Figure 5. 16 Comparison of different population initialization methods: fully-

random initialization and single-1 initialization; assumed typical urban area 6-tap 

channel model with specific Doppler shifts: 𝒇𝒅 = 50 Hz (red curves) and 𝒇𝒅 = 200 Hz 

(blue curves) 
 



84 
Chapter 5: Adaptation Mechanism for Wireless Channel Equalizer 

The training-phase convergence of UCGA-AE, LMS-AE and RLS-AE is also studied 

for the same channel model, i.e., the curves in Figures 5.17, 5.18, and 5.19 represent the 

MSE vs iteration number, given SNR = 35 dB and 𝑓𝑑 = 0 Hz for the considered 

transmission of a single data frame. More reliable data regarding the training phase 

convergence are presented in the form of a box plot [Doc22] for every 20th iteration 

(signalling interval). The box plots, shown in Figures 5.20 and 5.21 deliver MSE statistics 

based on the results collected in 500 trial runs (in every trial run, only the training sequence 

is transmitted). The red lines on the boxes represent the expected values of the median in 

the considered iteration, the notches delimit 95% confidence intervals of the median. The 

bottom and the top boxes’ ends have the meaning of the 1st and the 3rd MSE quartile, 

respectively. The whiskers, set to be 1.5 times the interquartile range, cover as much as ca. 

99.3% (“almost all”) entries. The remaining outliers are shown by (+) markers. 

Judging by the presented plots, it must be pointed out that UCGA converges faster 

than both LMS and RLS as its starting point of the MSE vs iteration curve is placed 

significantly lower (ca. 10-4 in comparison with 100 for both LMS and RLS). The average 

steady-state MSE exhibited by UCGA (ca. 10-6) is unattainable for the LMS (ca. 10-2) and 

the RLS (ca. 10-1). 

 

 

Figure 5. 17 Convergence characteristics of UCGA at SNR = 35 dB, 𝒇𝒅 = 0 Hz in the 

case of typical urban area 6-tap channel 
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Figure 5. 18 Convergence characteristics of the LMS at SNR = 35 dB, 𝒇𝒅 = 0 Hz in 

the case of typical urban area 6-tap channel 

 

 

Figure 5. 19 Convergence characteristics of the RLS at SNR = 35 dB, 𝒇𝒅 = 0 Hz in 

the case of typical urban area 6-tap channel 
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Figure 5. 20 Box plots of convergence characteristics of UCGA at SNR = 35 dB, 𝒇𝒅 = 

0 Hz in the case of typical urban area 6-tap channel 

 

 

Figure 5. 21 Box plots of convergence characteristics of the RLS at SNR = 35 dB, 𝒇𝒅 

= 0 Hz in the case of typical urban area 6-tap channel 
 



87 
Chapter 5: Adaptation Mechanism for Wireless Channel Equalizer 

Figures 5.22 and 5.23 illustrate the tracking capability of UCGA and LMS for the 

time-varying channel. The transmitted BPSK symbols are subject to Doppler shift effect, 

𝑓𝑑 = 3 Hz in the case of the 6-tap urban propagation model. 

Fig. 5.22 proves the UCGA ability to track the channel state for a long period of time 

without any training sequence in the middle of the frame. Meanwhile, the LMS algorithm 

does not exhibit the capability to track the channel variations over time, i.e., the MSE 

begins to increase as soon as the training phase (500 samples) has finished, as presented in 

Fig. 5.23. 

The crucial UCGA assumption that just one GA generation is considered per one 

signalling interval has a substantial impact on the computational complexity of the GA. 

This approach makes the cost of the learning part linearly proportional to the population 

size. Regarding the filtering part, in order to calculate �̂� according to (5.16), given 𝐿 filter 

taps, the system requires 𝐿 multiplications and 𝐿 − 1 additions. 

 

Figure 5. 22 MSE vs iteration of UCGA at SNR = 35 dB and 𝒇𝒅 = 3 Hz in the case of 

6-tap urban propagation model 
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Figure 5. 23 MSE vs iteration of the LMS at SNR = 35 dB and 𝒇𝒅 = 3 Hz in the case 

of 6-tap urban propagation model 

5.6 Summary  

GA is a powerful tool for solving many optimization problems. The UCGA technique 

enables channel tracking, which has been verified in several simulation experiments, 

reported in this chapter. In the majority of the considered simulation setups, the UCGA-AE 

remarkably outperforms the reference RLS-AE and LMS-AE. As a consequence, the 

UCGA can be considered a robust channel equalizer engine for future wireless systems, 

including 6G telecommunications. As for any problem solved by means of the GA, it is 

crucial to properly set the solver parameters and initialize the population. It has been 

verified experimentally that the single-1 initialization gives faster UCGA convergence than 

the random assignment of initial values to all chromosomes. 
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Chapter 6 

6.1 Conclusions 

In this thesis, the GA-aided applications in the wireless network have been investigated, 

namely MU-MIMO Detection and Adaptive Linear Equalization.  

The GA-based MU-MIMO detector exhibits an outstanding performance for low order 

modulation scenario but in comparison with ZF performance, it imposes a higher 

computational complexity, proportional to the population size and/or the number of 

generations.  

As an evolutionary algorithm, GA can try to find the optimal solution starting from 

scratch. However, the author observed that loading a single well-fitted seed individual into 

the initial population brings faster convergence and better optimization result in general. 

At the first attempt, he proposed to run the simple ZF MUD before launching GA to obtain 

the seed individual. The resultant combined ZF-GA strategy appeared to outperform both 

pure ZF reference and basic GA-driven MUD in terms of BER, especially for low-order 

modulations.  

The current author’s contribution is a new population initialization method that 

resembles the SIC approach. In brief, it consists in retaining the ZF detector’s decision with 

respect to the most reliable out of all interfering signals. The novel approach exhibits the 

ability to improve the performance of GA-driven MIMO multi-user detector at no cost in 

comparison with the previously considered ZF-GA MUD.  

A different GA application, considered in the thesis, is the problem of wireless channel 

equalization. Several simulation experiments have proven that the proposed UCGA-driven 

channel equalizer is able to converge quickly and track the channel state, significantly 

outperforming the benchmarks: RLS-AE and LMS-AE. The UCGA may, therefore, be 

considered as a reliable channel equalization engine for the next wireless systems. 

Taking into account the above conclusions, the author believes that the dissertation 

thesis has been proven, i.e., the performance of the GA-based MU MIMO detector has 

been significantly enhanced at no extra computational cost through the application of a 

new GA initialization technique based on the SIC approach. Besides, the performance of 
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an adaptive channel equalizer has been improved by employing a low-cost GA-driven 

adaptation engine that boosts the convergence rate and improves the channel tracking 

ability. 

 

6.2 Future and unsolved problems 

On the basis of the solutions discussed throughout this thesis, some important advantages 

of the GAs for wireless communications were illustrated. There are numerous ways in 

which GA can be further improved. For instance, taking into account that attaining a small 

BER improvement at the cost of much higher effort is impractical, the population size can 

be adapted as per requirement, thereby accelerating search and saving computation time, 

which makes the algorithm faster.  

The use of higher-order modulations, such as QPSK, 16-QAM, 64-QAM, etc., could 

also be considered in the future in the context of UCGA channel equalizer. Chromosome 

representation is another item worth particular interest – fixed point representation of 

equalizer taps is beneficial since fixed-point arithmetic can be easily implemented on 

popular logic structures, such as Field-Programmable Gate Arrays (FPGAs), or 

microprocessors, as opposed to floating-point operations. 

Some other interesting topics are also worth further studying, for example, the MUD 

problem with a higher number of users transmitting their signal concurrently.  

Another interesting aspect would be the test of other evolutionary strategies, e.g., Ant 

Colony Optimization (ACO) [DBS06], Particle Swarm Optimization (PSO) [EK95], in the 

same context. 
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