Politechnika Poznańska

Wydział Inżynierii Lądowej i Transportu

Instytut Inżynierii Lądowej

Zakład Budowy Mostów i Dróg Kolejowych

ROZPRAWA DOKTORSKA

mgr inż. Marek Copija

Wpływ wybranych czynników na nośność i trwałość Zintegrowanych obiektów inżynierskich

Promotor: dr hab. inż. Arkadiusz Madaj, prof. Politechniki Poznańskiej

POZNAŃ 2022

Streszczenie
Abstract7
1. WSTĘP
1.1 Definicje
1.2 Podstawowe oznaczenia
1.3 Przeglad piśmiennictwa
1.4 Cele i zakres pracy
2. WPROWADZENIE – CECHY SZCZEGÓLNE ZINTEGROWANYCH I PÓŁ-ZINTEGROWANYCH
OBIEKTÓW INŻYNIERSKICH
2.1 Cechy szczególne Zintegrowanych i Pół-zintegrowanych objektów inżynierskich 16
2.2 Analiza dopuszczalnych długości Zintegrowanych i Pół-zintegrowanych obiektów
inżynierskich
2.3 Podsumowanie 23
3. ANALIZA PROPOZYCII NAUKOWYCH I BADAŃ OKREŚLAJACYCH ZACHOWANIE SIE
ZASYPKI ZA PODPORAMI SKRAINYMI OBIFKTÓW ZINTEGROWANYCH/PÓŁ
ZINTEGROWANYCH
3.1 Wsten 24
3.2 Analiza badań określających zachowania się zasynki za podporami skrajnymi
objektów Zintegrowanych/Pół-zintegrowanych
3.3 Podsumowanie analizy badań określających zachowanie się zasynki za podporami
skrainymi Zintegrowanych/Pół-zintegrowanych objektów inżynierskich 31
4. ANALIZA SPOSOBÓW SZACOWANIA OBCIAŻENIA PARCIEM GRUNTU OBIEKTÓW
ZINTEGROWANYCH I PÓŁ-ZINTEGROWANYCH
4.1 Wnrowadzenie 32
4.2 Podstawy teoretyczne do wyznaczania obciążenia parciem gruptu 32
4.3 Podstawy obliczania obciażenia parciem gruntu 39
4.3 1 Analiza wartości współczynników parcia gruntu jako wstep do wyznaczania
wartości obciażenia narciem gruntu obiektów Zintegrowanych i Pół-zintegrowanych 40
4.4 Metody określania obciażenia parciem gruntu obiektów Zintegrowanych i Pół-
zintegrowanych
4.5 Spostrzeżenia dotyczące obliczeniowych wartości cieżaru gruntu i betonu 46
4.6 Podsumowanie analiz propozycji przyjmowania obcjążenia parciem gruntu objektów
Zintegrowanych i Pół-zintegrowanych 47
5. CHARAKTERYSTYKA USZKODZEŃ ZINTEGROWANYCH I PÓŁ-ZINTEGROWANYCH
OBIFKTÓW INŻYNIERSKICH
5.1 Wprowadzenie 49
5.2 Analiza uszkodzeń wybranych objektów Zintegrowanych i Klasycznych
wybudowanych w Polsce przed 1989 r
5.3 Analiza uszkodzeń wybranych objektów Pół-zintegrowanych i Klasycznych
wybudowanych w Polsce w latach 2003-2004
5.4 Analiza uszkodzeń Zintegrowanych i Pół-zintegrowanych obiektów inżynierskich –
doświadczenia zagraniczne
5.5 Podsumowanie analizy uszkodzeń obiektów Zintegrowanych i Pół-zintegrowanych 58
6. ANALIZA ROZWIĄZAŃ POŁĄCZEŃ OBIEKTÓW ZINTEGROWANYCH I PÓŁ-
ZINTEGROWANYCH Z NASYPEM DROGOWYM (DOJAZDEM)
6.1 Wprowadzenie
6.2 Przeglad rozwiazań połaczeń Zintegrowanych i Pół-zintegrowanych obiektów
inżynierskich z nasypem drogowym (doiazdem)
6.3 Podsumowanie analizy rozwiazań połaczeń Zintegrowanych/Pół-zintegrowanych
obiektów inżynierskich z nasypem drogowym (dojazdem)

/.	PRZEGLĄD METOD OKREŚLANIA SZYBKOŚCI KOROZJI PROFILI STALOWYCH
W PO	DŁOŻU GRUNTOWYM64
7.1	Wprowadzenie
7.2	Metody określania szybkości zjawisk korozyjnych w podłożu gruntowym64
7.3	Podsumowanie metod określania szybkości zjawisk korozyjnych profili stalowych
w p	odłożu gruntowym
8.	ANALIZA MOŻLIWOŚCI STOSOWANIA PROFILI STALOWYCH W PODPORACH
OBIEK	TÓW ZINTEGROWANYCH/PÓŁ-ZINTEGROWANYCH Z UWAGI NA ICH KOROZJĘ
W PO	DŁOŻU GRUNTOWYM66
8.1	Wstęp
8.2	Założenia i opis obliczeń
8.3	Szczegółowe wyniki analizy możliwości stosowania profili stalowych po 100 latach
od ro	ozpoczęcia procesu korozji
8.4	Podsumowanie rozważan analitycznych możliwości stosowania profili stalowych
w p	odporach z uwagi na ich korozję w gruncie
9. CIEŻAI	ANALIZA UBIEKTUW ZINTEGRUWANYCH (RAMUWYCH) PUDDANYCH UBCIĄZENIU
9.1	W stęp
9.2	Założenia do obliczen - obiekty jednoprzęsłowe
9.5	Opis obliczeli
9.4	Ocena możliwości stosowania wyników analizy jednoprzesłowych objektów
7.5 Zint	egrowanych o długości 10-40 m poddanych obciażeniu cieżarem własnym konstrukcji
i zn	nianami temperatur. dla objektów dłuższych niż 40 m jak i objektów wieloprzesłowych
1 211	82
9.6	Podsumowanie wyników analizy obiektów Zintegrowanych (ramowych) poddanych
obci	
	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10.	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAI	ążeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAI WŁASI	 ążeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAL WŁAS 10.1	 ążeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAU WŁAS 10.1 10.2	 ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAL WŁAS 10.1 10.2 10.3	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAI WŁAS 10.1 10.2 10.3 10.4	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAL WŁAS 10.1 10.2 10.3 10.4 10.5	ażeniu ciężarem własnym konstrukcji i zmianami temperatury87ANALIZA ZINTEGROWANYCH OBIEKTÓW (RAMOWYCH) O PODPORACHDOWIONYCH NA PROFILACH STALOWYCH PODDANYCH OBCIĄŻENIU CIĘŻAREMNYM KONSTRUKCJI I ZMIANAMI TEMPERATURY89Wstęp89Założenia do obliczeń91Opis obliczeń97Omówienie wyników analizy dla przypadków szczególnych97Podsumowanie badań analitycznych Zintegrowanych obiektów ramowych poddanych
10. POSAL WŁAS 10.1 10.2 10.3 10.4 10.5 obci	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAL WŁAS 10.1 10.2 10.3 10.4 10.5 obci posa	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAL WŁAS 10.1 10.2 10.3 10.4 10.5 obci posa 11.	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAL WŁASI 10.1 10.2 10.3 10.4 10.5 obci posa 11. CIĘŻAI	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAL WŁASI 10.1 10.2 10.3 10.4 10.5 obci posa 11. CIĘŻAI 11.1	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAL WŁASI 10.1 10.2 10.3 10.4 10.5 obci posa 11. CIĘŻAI 11.1 11.2	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAI WŁASI 10.1 10.2 10.3 10.4 10.5 obci posa 11. CIĘŻAI 11.1 11.2 11. 11.2 11.	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAL WŁASE 10.1 10.2 10.3 10.4 10.5 obci posa 11. CIĘŻAL 11.1 11.2 11. 11.2 11.1 11.2	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAI WŁASI 10.1 10.2 10.3 10.4 10.5 obci posa 11. CIĘŻAI 11.1 11.2 11 11 11 11 11	ażeniu ciężarem własnym konstrukcji i zmianami temperatury 87 ANALIZA ZINTEGROWANYCH OBIEKTÓW (RAMOWYCH) O PODPORACH DOWIONYCH NA PROFILACH STALOWYCH PODDANYCH OBCIĄŻENIU CIĘŻAREM NYM KONSTRUKCJI I ZMIANAMI TEMPERATURY 89 Wstęp 89 Założenia do obliczeń 91 Opis obliczeń 97 Omówienie wyników analizy dla przypadków szczególnych 97 Podsumowanie badań analitycznych Zintegrowanych obiektów ramowych poddanych 42 ażeniu ciężarem własnym konstrukcji i zmianami temperatury o podporach 109 ANALIZA OBIEKTÓW ZINTEGROWANYCH (RAMOWYCH) PODDANYCH OBCIĄŻENIU 111 Wprowadzenie 111 Założenia do obliczeń – ramowe obiekty jednoprzęsłowe 112 .2.1 Wyznaczenie obciążenia parciem gruntu według wytycznych [118] 114 .2.2 Wyznaczenie obciążenia parciem gruntu według wytycznych [22] 115 .2.3 Wyznaczenie obciążenia parciem gruntu według wytycznych [22] 115
10. POSAI WŁASI 10.1 10.2 10.3 10.4 10.5 obci posa 11. CIĘŻAI 11.1 11.2 11 11 11 11 11 11 11 11	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAL WŁASI 10.1 10.2 10.3 10.4 10.5 obci posa 11. CIĘŻAI 11.1 11.2 11 11 11 11 11 11 11 11 11 1	ażeniu ciężarem własnym konstrukcji i zmianami temperatury 87 ANALIZA ZINTEGROWANYCH OBIEKTÓW (RAMOWYCH) O PODPORACH OOWIONYCH NA PROFILACH STALOWYCH PODDANYCH OBCIĄŻENIU CIĘŻAREM NYM KONSTRUKCII I ZMIANAMI TEMPERATURY 89 Wstęp 89 Założenia do obliczeń 91 Opis obliczeń 97 Omówienie wyników analizy dla przypadków szczególnych 97 Podsumowanie badań analitycznych Zintegrowanych obiektów ramowych poddanych 97 Podsumowanie badań analitycznych Zintegrowanych obiektów ramowych poddanych 109 ANALIZA OBIEKTÓW ZINTEGROWANYCH (RAMOWYCH) PODDANYCH OBCIĄŻENIU 111 Własnym KONSTRUKCJI i PARCIEM GRUNTU 111 Wprowadzenie 111 Założenia do obliczeń – ramowe obiekty jednoprzęsłowe 112 .2.1 Wyznaczenie obciążenia parciem gruntu według wytycznych [118] 114 .2.2 Wyznaczenie obciążenia parciem gruntu według wytycznych [22] 115 .2.3 Wyznaczenie obciążenia parciem gruntu według wytycznych [22] 115 .2.4 Opis obliczeń 115 .2.5 Omówienie wyników analizy Zintegrowanych, jednoprzęsłowych obiektów 115
10. POSAI WŁASI 10.1 10.2 10.3 10.4 10.5 obci posa 11. CIĘŻAI 11.1 11.2 11 11 11 11 11 11 11 11 11 1	ążeniu ciężarem własnym konstrukcji i zmianami temperatury 87 ANALIZA ZINTEGROWANYCH OBIEKTÓW (RAMOWYCH) O PODPORACH DOWIONYCH NA PROFILACH STALOWYCH PODDANYCH OBCIĄŻENIU CIĘŻAREM NYM KONSTRUKCJI I ZMIANAMI TEMPERATURY 89 Wstęp 91 Opis obliczeń 97 Omówienie wyników analizy dla przypadków szczególnych 97 Podsumowanie badań analitycznych Zintegrowanych obiektów ramowych poddanych ążeniu ciężarem własnym konstrukcji i zmianami temperatury o podporach dowionych na profilach stalowych 109 ANALIZA OBIEKTÓW ZINTEGROWANYCH (RAMOWYCH) PODDANYCH OBCIĄŻENIU REM WŁASNYM KONSTRUKCJI i PARCIEM GRUNTU 111 Wprowadzenie 111 Założenia do obliczeń – ramowe obiekty jednoprzęsłowe 112 .2.1 Wyznaczenie obciążenia parciem gruntu według wytycznych [118] 114 .2.2 Wyznaczenie obciążenia parciem gruntu według wytycznych [22] 115 .2.3 Wyznaczenie obciążenia parciem gruntu według wytycznych [22] 115 .2.4 Opis obliczeń 115 .2.5 Omówienie wyników analizy Zintegrowanych, jednoprzęsłowych obiektów mowych poddanych obciążeniu parciem gruntu - konstrukcje betonowe towe/helkow
10. POSAL WŁASI 10.1 10.2 10.3 10.4 10.5 obci posa 11. CIĘŻAI 11.1 11.2 11 11 11 11 11 11 11 11 11 1	ażeniu ciężarem własnym konstrukcji i zmianami temperatury
10. POSAI WŁASI 10.1 10.2 10.3 10.4 10.5 obci posa 11. CIĘŻAI 11.1 11.2 11 11 11 11 11 11 11 11 11 1	aženiu ciężarem własnym konstrukcji i zmianami temperatury

Spis	treści	

11.3 Omówienie wyników analizy obiektów Zintegrowanych ramowych poddanych
obciążeniu parciem gruntu w przypadku zwiększania sztywności podpór 138
11.4 Ocena możliwości stosowania wyników analizy obciążenia parciem gruntu
jednoprzęsłowych, ramowych obiektów Zintegrowanych o długości 10-40 metrów
dla obiektów dłuższych niż 40 m jak i obiektów wieloprzesłowych
11.5 Podsumowanie wyników analizy Zintegrowanych objektów ramowych poddanych
obciażeniu parciem gruntu 1/3
12 DOLACZENIE OBJEKTU ZINTECOOWANECO : DÓL ZINTECOOWANECO Z DDOCA
12. POŁĄCZENIE OBIEKTU ZINTEGROWANEGU I POŁ-ZINTEGROWANEGU Z DRUGĄ
(NASYPEM) – PROPOZYCJA ROZWIĄZANIA PROJEKTOWEGO145
12.1 Wstęp i opis podstaw do propozycji kształtowania połączenia obiektu Zintegrowanego
i Pół-zintegrowanego z drogą (nasypem)145
12.2 Propozycja rozwiązania połączenia obiektu Zintegrowanego/Pół-zintegrowanego
z drogą (nasypem)146
12.3 Granica zastosowania połączenia obiektu Zintegrowanego/Pół-zintegrowanego
z droga (nasypem)
12.4 Propozycia wyznaczania długości płyty przejściowej - objekty Zintegrowane 149
12.5 Propozycja wyznaczania długości płyty przejściowej obiekty Zintegrowane 150
12.5 Tropozycja wyznaczania długości płyty przejsciowej - obiekty roi-zintegrowane. 150
12.0 Flopozycja wyznaczania uługości zolojenia słatką w walstwach nawielzenin
astatiowej
13. PODSUMOWANIE
14. ZAŁĄCZNIKI154
14.1 Wybrane cechy obiektów Zintegrowanych, Pół-zintegrowanych i Klasycznych
wybudowanych w Polsce przed 1989 r154
14.2 Przykłady uszkodzeń i ich ewidencji z lat 2002-2019 obiektów Zintegrowanych
wybudowanych w Polsce przed 1989 r158
14.3 Przykłady uszkodzeń i ich ewidencji z lat 2002-2019 dla obiektów Klasycznych
wybudowanych w Polsce przed 1989 r
14.4 Przykłady uszkodzeń i ich ewidencji dla obiektów Pół-zintegrowanych
wybudowanych w Polsce w latach 2003-2004
14.5 Przykłady uszkodzeń i ich ewidencij z lat 2002-2019 dla objektów Klasycznych 168
14.6 Onis Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 169
14.7 Opis uszkodzeń wiaduktów drogowych WD88 i WD101
14.7 Opis uszkouzen wiaduktów drógowych w Door w D101
14.8 Fizykład Krytenow, schematow decyzyjnych dla wykonywania pryt przejsciowych
oraz minimalnego wskaznika zagęszczenia zasypki I_s
14.8.1 Przegląd rozwiązan połączenia obiektu Zintegrowanego z drogą (nasypem) 1/4
14.8.2 Przykłady połączen obiektów Zintegrowanych/Poł-zintegrowanych z drogą
(nasypem)
14.9 Dane do analiz opisanych w Rozdziale 8
14.10 Dane do analiz opisanych w Rozdziale 9
14.10.1 Legenda
14.10.2 Lista analizowanych obiektów Zintegrowanych, jednoprzęsłowych (ramowych)
poddanych obciążeniu ciężarem własnym konstrukcji i obciążeniu zmianami temperatury
14.10.3 Wyniki obliczeń obiektów Zintegrowanych, jednoprzesłowych (ramowych)
poddanych obciażeniu cieżarem własnym konstrukcji i zmianami temperatury
14.10.4 Wykresy momentów zginających objektów Zintegrowanych, jednoprzesłowych
(ramowych) poddanych obciażeniu cieżarem własnym konstrukcji i zmianami
temperatury 108
14 10 5 Materiały do analizy wartości momentów zginających od obciażenia zmianami
temperatury dla objektów Zintegrowanych jednoprzesłowych (romowych) 212
14 11 Dane do analiz onisanych w Pozdziala 10
14.11 Date to analiz opisaliyeli w Kozuziale 10
14.11.1 Legenua

14.11.2 Lista analizowanych schematów obiektów Zintegrowanych, jednoprzęsłowych
(ramowych) poddanych obciążeniu ciężarem własnym konstrukcji i zmianami temperatury
o podporach posadowionych na profilach stalowych
14.11.3 Wyniki obliczeń obiektów Zintegrowanych, jednoprzęsłowych (ramowych)
o podporach posadowionych na profilach stalowych
14.12 Dane do analiz opisanych w Rozdziale 11
14.12.1 Legenda
14.12.2 Lista analizowanych schematów obiektów Zintegrowanych, jednoprzęsłowych
(ramowych) poddanych obciążeniu ciężarem własnym konstrukcji i parciem gruntu
14.12.3 Wyniki obliczeń obciążenia parciem gruntu dla podpór, materiały bazowe
i szczegółowe wyniki dla obiektów Zintegrowanych, jednoprzesłowych (ramowych) -
konstrukcje betonowe płytowe/belkowe
14.12.4 Wyniki obliczeń obciążenia parciem gruntu dla podpór, materiały bazowe
i szczegółowe wyniki dla obiektów Zintegrowanych – konstrukcje zespolone na belkach
stalowych
Spis Rysunków
Spis Tabel
BIBLIOGRAFIA 309

Wpływ wybranych czynników na nośność i trwałość Zintegrowanych obiektów inżynierskich <u>Streszczenie</u>

Przedmiotem pracy jest analiza założeń naukowych do projektowania oraz przegląd doświadczeń z użytkowania obiektów Zintegrowanych w celu wyodrębnienia aspektów mających kluczowe znaczenie dla nośności i trwałości obiektu jako całości. Same obiekty Zintegrowane są stosowane od kilkudziesięciu lat i można zaobserwować w ostatnich latach powrót do ich stosowania. Niemniej z uwagi na skrajne opinie dotyczące problemów w ich projektowaniu, wykonawstwie i utrzymaniu, uznano za zasadne dokonanie szerokiego przeglądu literatury jak i doświadczeń z ich eksploatacji. Dokonany przegląd pozwolił potwierdzić, iż obiekty Zintegrowane wykazują mniej usterek niż tzw. obiekty Klasyczne tj. z łożyskami i/lub urządzeniami dylatacyjnymi. Udowodniono ponadto, iż formułowanie ograniczeń stosowania obiektów Zintegrowanych jedynie poprzez pryzmat ich dopuszczalnej długości nie wyklucza możliwości powstania, nawet w standardowych konstrukcjach i pomimo dobrze opisanych podstaw do przyjmowania obciążeń zmianami temperatury, stanów awaryjnych czy też uszkodzeń. Celem ograniczenia wpływu błędów projektowych i wykonawczych sformułowano zalecenia dla kształtowania poszczególnych elementów obiektów Zintegrowanych. Wskazano dla wybranych elementów podpór, na konieczność zwiększenia wartości obciążeń od zmian temperatury. W pracy przeanalizowano również wpływ różnych propozycji szacowania obciążenia parciem gruntu obiektów Zintegrowanych. Wykazano, iż proponowane propozycje szacowania obciążenia parciem gruntu z jednej strony mogą być powodem zmniejszenia trwałości konstrukcji a nawet katastrofy budowlanej, z drugiej zaś strony prowadzić do znacznego przeszacowywania sił wewnętrznych. Z tego też względu wskazano na konieczność określenia jednoznacznych wytycznych co do sposobu przyjmowania obciążenia parciem gruntu obiektów Zintegrowanych. Zaproponowano również sposób określania, w zależności od tzw. "referencyjnego ilorazu odniesienia", wysokości podpór powyżej których należy podchodzić ze szczególną uwagą do problemów związanych z określaniem obciążenia parciem gruntu dla obiektów Zintegrowanych. Sformułowano również zalecenia kształtowania poszczególnych elementów obiektów Zintegrowanych celem minimalizacji wpływu potencjalnych błędów projektowych i wykonawczych na nośność i trwałość konstrukcji. Dodatkowo, na bazie przeglądu wyników badań i doświadczeń własnych autora z 20 letniej obserwacji obiektów zaproponowano sposób kształtowania połączenia obiektów Zintegrowanych/Pół-zintegrowanych z drogą (nasypem).

6

Influence of selected factors on the load capacity and durability of Integral Bridges

<u>Abstract</u>

The subject of the diploma is the analysis of scientific assumptions for design and a review of experiences from the use of Integral Bridges, which are of key importance for the bearing capacity and durability of the object as a whole. Integral Bridges themselves have been used for several decades and a return to their use can be observed in recent years. However, due to the extreme opinions regarding problems in their design, execution and maintenance, it was considered justified to make a broad review of the literature as well as experience from their exploitation. The review allowed to confirm, that Integral Bridges show fewer defects than the so-called Classic objects, i.e., with bearings and/or expansion joint devices. It has also been proven that formulating restrictions on the use of Integral Bridges only through the prism of their permissible length does not exclude the possibility of creation, even in standard constructions and despite well-described grounds for accepting loads of temperature changes, emergency conditions or damage. To reduce the impact of design and execution errors, recommendations for the shaping of individual elements of Integral Bridges were formulated. The need to increase the value of loads from temperature changes was indicated for selected elements of supports. The paper also analyzed the impact of various proposals for estimating the ground pressure load of Integral Bridges. It has been shown that the proposed proposals for estimating the load of soil pressure, on one hand, may be a reason for reducing the durability of the structure and even a construction catastrophe, and on the other hand, they may be the reason for a significant overestimation value of internal forces. For this reason, it was pointed out that it was necessary to define unambiguous guidelines on how to adapt the ground pressure load of Integral Bridges. A method of determining, depending on the so-called "reference point", the height of supports above which particular attention should be paid to problems related to determining the soil load for Integral Bridges has been proposed as well. Recommendations were also formulated for the shaping of individual elements of Integral Bridges to minimize the impact of potential design and execution errors on the load-bearing capacity and durability of the structure. In addition, based on a review of the results of research and the author's own experience from 20 years of observation of bridges, the connection of Integral / Semi-integral bridges with the road (embankment) was proposed.

1. WSTĘP

1.1 Definicje

Klasyczny, Konwencjonalny - obiekt inżynierski, w którym zmiany długości są przejmowane przez urządzenia dylatacyjne i łożyska.

Pół-zintegrowany, *Pół-integralny*, *Semi-rigid* – obiekt inżynierski, który posiada cechy pośrednie pomiędzy obiektem Klasycznym a obiektem Zintegrowanym.

Przewieszka – element Zintegrowanego/Pół-zintegrowanego obiektu inżynierskiego na końcu przęsła spełniający rolę ścianki czołowej i oparcia dla płyty przejściowej (Rys. 12.1). *Zintegrowany, Integralny* - obiekt inżynierski, którego cechą szczególną jest trwałe połączenie podpór i przęsła (brak łożysk i urządzeń dylatacyjnych).

1.2 Podstawowe oznaczenia

• duże litery łacińskie

Α	– pole powierzchni profilu stalowego [cm ²].
A_{I}	– pole powierzchni Profilu 1 [cm ²],
A_2	– pole powierzchni Profilu 2 [cm ²],
, A	– pole powierzchni profilu stalowego po 100 latach użytkowania [cm ²],
CW	– ciężar własny konstrukcji [^{kN} / _m],
D	– szerokość pala [m],
D_{Kmaks}	– maksymalny dodatek korozyjny wg [120] i [121], [µm],
$D_{K\acute{s}r}$	– średni dodatek korozyjny wg [120] i [121], [μm],
D _{Kśr1}	– średni dodatek korozyjny wg [123] i [16], [μm],
D_o	– szerokość obliczeniowa pala, na którą działa opór boczny gruntu [m],
Ε	– wypadkowa parcia gruntu $\left[\frac{kN}{m}\right]$,
E_a	– wypadkowa granicznego czynnego parcia gruntu $\left[\frac{kN}{m}\right]$,
E_{oi}	– moduł odkształcenia gruntu [kPa],
E_o	– wypadkowa spoczynkowego parcia gruntu [^{kN} _m],
E_p	– wypadkowa odporu granicznego gruntu [^{kN} / _m],
E_{I}	– wypadkowa pośredniego parcia gruntu [^{kN} / _m],
E_{II}	– wypadkowa odporu pośredniego gruntu [^{kN} _m],
$F_x(0a)$	 wartość sił wewnętrznych po osi "x" w punkcie "0a", [kN],
$F_{x}(0,5a)$	 wartość sił wewnętrznych po osi "x" w punkcie "0,5a", [kN],
$F_x(a)$	 wartość sił wewnętrznych po osi "x" w punkcie "a", [kN],
$F_x(16p)$	 wartość sił wewnętrznych po osi "x" w punkcie "16p", [kN],
Fy(16p)	 wartość sił wewnętrznych po osi "y" w punkcie "16p", [kN],
Fz(0a)	 wartość sił wewnętrznych po osi "z" w punkcie "0a", [kN],
$F_{z}(0,5a)$	 wartość sił wewnętrznych po osi "z" w punkcie "0,5a", [kN],
$F_z(a)$	 wartość sił wewnętrznych po osi "z" w punkcie "a", [kN],
G	 – ciężar profilu stalowego na metr długości [kg/m],
Ġ	 – ciężar profilu stalowego na metr długości po 100 latach użytkowania [kg/m],
Gs	– grubość podpór [m],
Н	– wysokość podpór [m],

$H_{ m i}$	– wysokość podpór obiektu jednoprzęsłowego dla danej długości przęsła przy założonej wartości
	odniesienia [m],
H_{RED}	– zredukowana wysokość podpór skrajnych obiektu wieloprzęsłowego przy założonej wartości
	odniesienia [m],
Hn	– wysokość podpory (skrajnej) wraz z grubością płyty przejściowej i warstw nawierzchni.
	W przypadku obiektów istniejących/remontowanych - głębokość wymiany nasypu pod płytą
	przejściową wraz z grubością płyty przejściowej i warstw nawierzchni, [m],
I_s	– wskaźnik zagęszczenia gruntu niespoistego [-],
I_1	– niezmiennik liniowy tensora naprężenia [-],
I_2	– niezmiennik kwadratowy tensora naprężenia [-],
I_3	– niezmiennik sześcienny tensora naprężenia [-],
J_x	– moment bezwładności przęsła [m ⁴],
J_{xl}	– moment bezwładności Profilu 1 [cm ⁴],
J_{x2}	– moment bezwładności Profilu 2 [cm ⁺],
$J_x 5$	– pięciokrotnie zwiększony moment bezwładności przęsła w stosunku do J_x [m ⁺],
J_1^0	– niezmiennik liniowy tensora odkształcenia [-],
J_1^0	– niezmiennik kwadratowy tensora odkształcenia [-],
J_3°	– niezmiennik szescienny tensora odkształcenia [-],
K V	– ogolny wspołczynnik parcia gruntu [-],
K _a V	– wspołczynnik czynnego parcia gruntu [-],
$\mathbf{\Lambda}_{a M}$	– wspołczynnik czynnego parcia gruntu wg teorii Coulomba-Monra [-],
\mathbf{K}_{aR}	- wspołczynnik czynnego parcia gruniu wg teorii Kankina [-],
Ka.const	– staty wspołczynnik czynnego parcia gruniu [-],
$\Lambda_{a.min}$	- minimainy wsporczynnik czynnego parcia gruntu [-],
K _{maks}	– stata maksymainego dodatku korozyjnego [µm],
Λ_0 V	- współczynnik spoczynkowego parcia gruntu [-],
Λ ₀ ang V	- wspołczynnik spoczynkowego parcia gruntu wg [10], [-],
$\mathbf{\Lambda}_{o.const}$	- staty wspołczynnik spoczynkowego parcia gruntu [-],
Λ _{o Kal}	- współczynnik spoczynkowego parcia gruntu wg [118], [-],
$\mathbf{K}_{O SZW}$	- współczynnik spoczynkowego parcia gruntu []
K K	- współczynnik biernego parcia gruntu wg [10] [1]
K M	– współczynnik biernego parcia gruntu wg teorii Coulomba-Mohra [-]
K_{pM}	– współczynnik biernego parcia gruntu wg teorii Coulomba-Monta [-],
Кр к К	– stały współczynnik biernego parcia gruntu [-]
K _{p.const}	– współczynnik biernego parcia gruntu wg [22] [_]
K in	– stała dodatku korozvinego średniego wg [120] i [121] [um]
K _{sr}	– stała dodatku korozyjnego średniego wa [123] [16] [um]
K_{p}^{*}	– współczynnik pośredniego parcia gruntu dla podpór Zintegrowanych obiektów ramowych
II K	wo [10] [-]
K^*	– współczynnik pośredniego parcia gruntu [-].
K^*	– współczynnik pośredniego parcia gruntu wg [10] dla podpór ściankowych [-].
K^*_{wsn}	– współczynnik pośredniego parcia gruntu dla przeseł z Przewieszka [-].
K^*_{wsp}	– współczynnik pośredniego parcia gruntu wg [10] dla przeseł z Przewieszka [-].
$K^*_{wsp. szw}$	– współczynnik pośredniego parcia gruntu wg [22] dla przeseł z Przewieszka [-].
K _r	– sztywność podpory spreżystej [kN/m].
Kri	– moduł oporu bocznego pala [kPa].
L	– długość konstrukcji [m].
L_{ob}	– długość wieloprzesłowego obiektu inżynierskiego [m].
L_{nn}	– długość płyty przejściowej [m],
L _{pp-Zin}	– długość płyty przejściowej dla obiektów Zintegrowanych [m],
L_{pp-Wsp}	– długość płyty przejściowej dla obiektów Pół-zintegrowanych [m].
Lsas	– długość przesła sasiedniego [m].
L _{sd}	– długość zbrojenia siatką warstwy dolnej nawierzchni asfaltowej. [m].

L_{sg}	 – długość zbrojenia siatką warstwy górnej nawierzchni asfaltowej, [m], 					
L_{skr}	– długość przęsła skrajnego Zintegrowanego obiektu wieloprzęsłowego [m],					
Lzast-skr	- długość zastępcza przęsła skrajnego Zintegrowanego obiektu wieloprzęsłowego [m],					
L _{sty}	– długość przęsła stycznego [m],					
L_t	– długość teoretyczna obiektu inżynierskiego [m],					
$L_{zast-sqs}$	 – długość zastępcza przęsła sąsiedniego Zintegrowanego obiektu wieloprzęsłowego [m], 					
$M_{wsp.ang}$	- moment zginający od obciążenia parciem gruntu na Przewieszce dla wytycznych [10], [kNm],					
$M_{wsp.szw}$	- moment zginający od obciążenia parciem gruntu na Przewieszce dla wytycznych [10], [kNm],					
$M_{prz.I}$	- moment przęsłowy dla układu jednoprzęsłowego [kNm],					
M(0a)	 wartość momentu zginającego w punkcie "0a", [kNm], 					
M(0,5a)	 wartość momentu zginającego w punkcie "0,5a", [kNm], 					
M(a)	 wartość momentu zginającego w punkcie "a", [kNm], 					
M(0,5L)	 wartość momentu zginającego w punkcie "0,5L", [kNm], 					
M(16p)	 wartość momentu zginającego w punkcie "16p", [kNm], 					
M_{zg}	 – ogólny moment zginający w podporze od obciążenia parciem gruntu [kNm], 					
OCG	– obciążenie ciężarem gruntu [^{kN} _m],					
OT	– obciążenie zmianą temperatury [°C],					
O_n	– spodziewane osiadanie nasypu [m],					
O_n	– spodziewane osiadanie nasypu [m],					
O_p	– spodziewane osiadanie podpór [m],					
R_1	 średni rozstaw osiowy pali prostopadły do kierunku działania obciążenia [m], 					
R_2	 średni rozstaw osiowy pali w kierunku działania obciążenia [m], 					
S_n	– współczynnik technologiczny wykonywania pali [-],					
U	– obwód profilu stalowego [m]					
U ,	– obwód profilu stalowego po 100 latach użytkowania [m],					
W_y	- wskaznik wytrzymałości profilu po 100 latach uzytkowania [cm ³],					
W_y	– wskaznik wytrzymałości profilu [cm ²],					
Wy V	- wskaznik wytrzymałości prolitu po 100 latach użytkowania [cm ²],					
Λ T^A	- aksiator naprežeń $\left[\frac{kN}{k}\right]$					
ITD	$= \operatorname{deviator}_{\operatorname{narrežen}} \left[\frac{kN}{k} \right]$					
]1 T()	$= \operatorname{dewinder} \operatorname{hapt}(\operatorname{zer} [_{m^2}])$					
I°	- tensor odkształcen [-],					
I°_{A} TO	- tensor kunsty odkształcenia [-],					
	- dewiator odksztatemia [-],					
T^{o}	$-$ tensor naprężeń [$\frac{1}{m^2}$],					
Z_{so}	– zasięg strefy osiadania [m],					
• ma	łe litery łacińskie					
ai	– rozstaw pomiędzy podporami sprężystymi [m],					
b	– szerokość przekroju przęsła [m],					
С	$- \operatorname{spójność gruntu } \left[\frac{\kappa v}{m^2}\right],$					
<i>c</i> ₁	 współczynnik korekcyjny wg [10] przy obliczaniu obciążenia parciem gruntu [-], 					
е	– jednostkowe obciążenie parciem gruntu [^{kN} _{m²}],					
• duž	że litery greckie					
Δ	 przemieszczenie poziome góry podpory lub Przewieszki [m], 					
$\Delta e_{szw.}$	– dodatkowe obciążenie parciem gruntu wg [22], $\left[\frac{kN}{m^2}\right]$,					
$\Delta e_{wsp.szw}$	– dodatkowe obciążenie parciem gruntu wg [22] Przewieszki $\left[\frac{kN}{m^2}\right]$,					
ΔT	– różnica temperatury od temperatury montażu [°C],					
∆ T-	– różnica temperatury (zmniejszenie) od temperatury montażu [°C],					
∆T+	– różnica temperatury (wzrost) od temperatury montażu [°C],					
$\Sigma(L_{sqs} + L_{sty})$	$_{v}$) – suma długości przęsła stycznego, przęseł sąsiednich od umownego punktu rozszerzania się					

	Zintegrowanego obiektu wieloprzęsłowego [m].
$\Sigma(L_{skr} + L_s)$	$L_{sas} + L_{sty}$) – suma długości przęsła stycznego, przęseł sąsiednich, przęsła skrajnego od umownego
	punktu rozszerzania się Zintegrowanego obiektu wieloprzęsłowego [m].
Ω	– współczynnik ogólny określający wpływ schematu statycznego podpory na wartość momentu
	zginającego od obciążenia parciem gruntu [-],
• m	ala litary grackia
• 111	
e_a	- jednostkowe graniczne czynne parcie gruntu $\left[\frac{1}{m^2}\right]$,
<i>e</i> _{angR}	– jednostkowe pośrednie parcie gruntu wg [10] dla podpór Zintegrowanych obiektów ramowych $\left[\frac{kN}{m^2}\right]$,
e_o	– jednostkowe spoczynkowe parcie gruntu $\left[\frac{kN}{m^2}\right]$,
$e_{o ang}$	– jednostkowe spoczynkowe parcie gruntu wg [10], $\left[\frac{kN}{m^2}\right]$,
e_p	– jednostkowy odpór graniczny gruntu $\left[\frac{kN}{m^2}\right]$,
e _{szw.}	– jednostkowe pośrednie parcie gruntu wg [22] dla podpór Zintegrowanych obiektów ramowych $\left[\frac{kN}{m^2}\right]$,
$e_{wsp.ang}$	– jednostkowe pośrednie parcie gruntu wg [10] dla przęseł z Przewieszką [$\frac{kN}{m_2}$],
$e_{wsp.szw}$	– jednostkowe pośrednie parcie gruntu wg [22] dla przęseł z Przewieszką $\left[\frac{kN}{m^2}\right]$,
e_{I}	– jednostkowe pośrednie parcie gruntu $\left[\frac{kN}{m^2}\right]$,
e_{II}	– jednostkowy odpór pośredni gruntu $\left[\frac{kn}{m^2}\right]$,
h	– wysokość przekroju przęsła [m],
h_{wsp}	– wysokość Przewieszki [m],
k	– stała materiałowa [-],
n	– współczynnik korozyjny [-],
n_1	 – współczynnik modułu oporu bocznego pala [-],
n_2	– współczynnik modułu oporu bocznego pala [-],
q	– ciężar własny konstrukcji $\left[\frac{\kappa N}{m}\right]$,
SZ.	– oznaczenie ściany sztywnej [-],
t	– zakładana trwałość konstrukcji [lata],
t_{f}	– grubość pasa profilu stalowego [mm],
t_f	– grubość pasa profilu stalowego po 100 latach użytkowania [mm],
t_w	- grubosc srodnika profilu stalowego [mm],
t_w	– grubose srodnika profilu stalowego po 100 latach uzytkowania [mm],
Upav.edg	– podružne przemieszczenia nawierzchni [mm],
w pav	– poprzeczne przemieszczenia nawierzenin [mm], – zmienna długości płyty dla doświadczeń Muttoniego [m]
7	– głebokość wyznaczania obciażenia parciem gruntu [m]
~ a	– współczynnik rozszerzalności linowej stali i betonu $\left[\frac{1}{4\pi}\right]$,
$\alpha_{Lpp-Zin}$	– współczynnik do określania długości płyty przejściowej dla obiektów Zintegrowanych [-],
γ	– ciężar gruntu [$\frac{kN}{m^3}$],
Yang	$-$ ciężar gruntu wg [10], [$\frac{kN}{m^3}$],
YKal	$-$ ciężar gruntu wg [118], [$\frac{kN}{m^3}$],
Yszw	$-$ ciężar gruntu wg [22], [$\frac{kN}{m^3}$],
β	 kąt nachylenia ściany oporowej do pionu [°],
β_p	– współczynnik zależny od ilości pali w szeregu [-],
ε	– odkształcenie [-],
\mathcal{E}_{O}	 jednostkowe odkształcenie objętościowe [-],
\mathcal{E}_{ST}	– odkształcenie średnie [-],

$\mathcal{E}_{11}, \mathcal{E}_{21}$	– składowe tensora odkształceń [-],
δ	– kąt tarcia gruntu o ścianę [°],
$\delta_{\mathrm{i}j}$	– delta Kroneckera,
К	– kąt obrotu ściany [°],
\mathcal{K}_l	 współczynnik uwzględniający przestrzenność reakcji gruntu [-],
$ ho_a$	- przemieszczenie konstrukcji dla wypadkowej granicznego czynnego parcia gruntu [m],
$ ho_p$	 przemieszczenie konstrukcji dla wypadkowej odporu granicznego gruntu [m],
$ ho_{\mathrm{I}}$	 przemieszczenie konstrukcji dla wypadkowej pośredniego parcia gruntu [m],
$ ho_{ m II}$	 przemieszczenie konstrukcji dla wypadkowej odporu pośredniego gruntu [m],
σ_{nc}	– naprężenia niszczące przy ścinaniu [^{kN}],
σ_{nr}	– naprężenia niszczące przy rozciąganiu [$\frac{kN}{m^2}$],
T śr	– naprężenia średnie tensora naprężeń $\left[\frac{kN}{m^2}\right]$,
$\sigma_1, \sigma_2, \sigma_3$	– składowe tensora naprężeń na kierunkach głównych $\left[\frac{kN}{m^2}\right]$,
$\sigma_{ m ii}$	– naprężenia normalne tensora naprężeń $\left[\frac{kN}{m^2}\right]$,
$\sigma_{\mathrm{i}j}$	– naprężenia styczne tensora naprężeń $\left[\frac{kN}{m^2}\right]$,
τ	– naprężenia styczne [^{kN} _{m²}],
ϕ	 kąt tarcia wewnętrznego gruntu [°],
ϕN	– kąt nachylenia naziomu do poziomu [º],
ϕ_{ι}	 współczynnik wpływu obciążeń długotrwałych lub wielokrotnie powtarzalnych [-].

1.3 Przegląd piśmiennictwa

W trakcie prowadzenia procesu projektowego zaobserwowano, iż proponowane w literaturze sposoby kształtowania obiektów Zintegrowanych i Pół-zintegrowanych opierają się przede wszystkim na doświadczeniach inżynierskich. Dotyczy to w szczególności określania możliwości stosowania obiektów Zintegrowanych i Pół-zintegrowanych, bez wyraźnych podstaw naukowych, jedynie poprzez kryterium ich maksymalnej długości [13], [10], [22], [30], [31], [33], [34], [35], [29], [15]. Według tworzących te zalecenia kryterium długości wydaje się jedynym remedium na wszelkie negatywne skutki zaobserwowane podczas eksploatacji obiektów Zintegrowanych.

Proces konstruowania obiektów Zintegrowanych i Pół-zintegrowanych jest zagadnieniem opartym na wielu kryteriach. Dlatego też określanie wymagań dla obiektów Zintegrowanych i Pół-zintegrowanych wyłącznie poprzez parametr długości, ograniczanie stosowania obiektów Zintegrowanych i Pół-zintegrowanych jedynie dla wybranych klas dróg, proponowanie przyjmowania maksymalnego obciążenia parciem gruntu dla podpór, prowadzi z jednej strony do "sztucznego" zmniejszania możliwości zastosowania obiektów Zintegrowanych/Pół-zintegrowanych zaś z drugiej strony do niepotrzebnego zwiększania kosztów robót budowlanych i wpływu na środowisko.

Główny problem naukowy w analizie obiektów Zintegrowanych i Pół-zintegrowanych polega na właściwym opisie oddziaływań konstrukcji na styku z otaczającym ośrodkiem gruntowym (Rozdział 3) i sformułowaniu podstaw do określenia obciążenia parciem gruntu (Rozdział 4). W przeciwieństwie do obiektów Klasycznych, gdzie obciążenie parciem gruntu jest z reguły niezmienne w czasie, a zmiany długości przęsła są niwelowane przez urządzenia dylatacyjne i łożyska, w obiektach Zintegrowanych i Pół-zintegrowanych następują ciągłe zmiany wartości obciążenia parciem gruntu. Obciążenie parciem gruntu zmienia się bowiem w wyniku wydłużania/skracania konstrukcji, jako skutek przede wszystkim odziaływania temperatury. Właściwe określenie współpracy ośrodka gruntowego z konstrukcją ma ponadto znaczenie w analizie problemów (Rozdział 6) związanych z połączeniem konstrukcji obiektu z drogą (nasypem).

Zauważono również, że dostępne w literaturze [5], [9], [96], [97] opisy uszkodzeń obiektów Zintegrowanych/Pół-zintegrowanych nie zawierają analiz opisujących potencjalne błędy w konstruowaniu obiektów. Nieliczne opisywane w literaturze badania np. Springmana [36], Englanda [54] czy też Muttoniego [38] prezentują wyniki badań pod kątem jednego

parametru tj. np. zasięgu osiadań zasypki lub uszkodzeń nawierzchni z uwagi na długość płyt przejściowych.

Dokonany przegląd piśmiennictwa pozwolił ponadto na określenie podstaw naukowych dla propozycji wyznaczania obciążenia parciem gruntu obiektów Zintegrowanych i Pół-zintegrowanych. Do najbardziej znanych propozycji należą prace Springmana [36], Hoppe [55], [56], Horvatha [65] czy też Englanda [54], którzy to podają własne propozycje opisu obciążenia parciem gruntu. Z drugiej strony np. Kerokoski [58] proponuje, bez względu na rodzaj podpory i jej przemieszczenia, przyjmowanie obciążenia parciem biernym jako właściwego dla obiektów będących przedmiotem niniejszej pracy.

Niemniej również dla aspektu obciążenia parciem gruntu nie natrafiono na opisy, w których określano wpływ poszczególnych propozycji naukowych modelowania obciążenia parciem gruntu na wartości sił wewnętrznych w konstrukcji. Brak ponadto w literaturze analiz wpływu zmiany sztywności podpór/przęseł obiektów Zintegrowanych na wartości sił wewnętrznych od obciążenia zmianami temperatury czy też obciążenia parciem gruntu.

Mając na uwadze powyższe, uzasadnionym jest podjęcie próby określenia uniwersalnych zaleceń do konstruowania obiektów Zintegrowanych i Pół-zintegrowanych a niezależnych od konkretnych wartości obciążeń parcia gruntu prezentowanych w poszczególnych normach i wytycznych. Poszukiwane zalecenia powinny w szczególności uwzględniać różne podejścia do wyznaczania obciążenia parciem gruntu obiektów Zintegrowanych.

Odrębnym aspektem pracy jest próba stworzenia na bazie opracowań naukowych, badań, przeglądu literatury jak i doświadczeń własnych autora propozycji do konstruowania połączeń obiektów Zintegrowanych i Pół-zintegrowanych z drogą (nasypem).

14

1.4 Cele i zakres pracy

Zakres pracy:

- I. Analiza zmian temperatury przyjmowanych w wytycznych projektowania pod kątem dopuszczalnych długości Zintegrowanych/Pół-zintegrowanych obiektów inżynierskich.
- II. Przegląd uszkodzeń Zintegrowanych/Pół-zintegrowanych i Klasycznych obiektów inżynierskich.
- III. Przegląd stosowanych rozwiązań połączenia Zintegrowanych/Pół-zintegrowanych obiektów inżynierskich z drogą (nasypem).
- IV. Sformułowanie wytycznych doboru profili stalowych w przypadku konstruowania z nich oparcia dla podpór Zintegrowanych obiektów inżynierskich.
- V. Analiza sposobów określania obciążenia parciem gruntu i ich wpływu na wartości sił wewnętrznych w Zintegrowanych obiektach inżynierskich.
- VI. Sformułowanie wytycznych i opracowanie propozycji kształtowania połączenia Zintegrowanych/Pół-zintegrowanych obiektów inżynierskich z drogą (nasypem).

Przeprowadzenie powyżej opisanego zakresu prac ma pozwolić na osiągnięcie następujących celów:

- Potwierdzenie lub zaprzeczenie możliwości określania stosowania
 Zintegrowanych/Pół-zintegrowanych obiektów inżynierskich jedynie przez pryzmat ich dopuszczalnej długości.
- II. Ustalenie wpływu obciążenia zmianami temperatury i metod szacowania obciążenia parciem gruntu na wartości sił wewnętrznych w Zintegrowanych obiektach inżynierskich.
- III. Określenie wytycznych kształtowania podpór/przęseł Zintegrowanych obiektów inżynierskich celem zmniejszenia możliwości wystąpienia stanów granicznych nośności z uwagi na obciążenia zmianami temperatury i obciążenia parciem gruntu.
- IV. Zaproponowanie propozycji kształtowania połączenia obiektów Zintegrowanych/Półzintegrowanych z drogą (nasypem) celem zwiększenia trwałości obiektów inżynierskich i wydłużenia okresów międzyremontowych.

2. WPROWADZENIE – CECHY SZCZEGÓLNE ZINTEGROWANYCH I PÓŁ-ZINTEGROWANYCH OBIEKTÓW INŻYNIERSKICH

2.1 Cechy szczególne Zintegrowanych i Pół-zintegrowanych obiektów inżynierskich

Zintegrowane i Pół-zintegrowane obiekty inżynierskie znajdują coraz szersze zastosowanie [1], [2], [3], [4] z uwagi na ich zalety. Do najczęściej wskazywanych zalet należą [5], [6], [7], [8], [9]:

- a. Zmniejszenie zużycia materiałów z uwagi na m.in. niższe wysokości konstrukcyjne obiektów a tym samym, niższe nasypy i powiązane z tym długości włączeń w istniejący układ drogowy. Niższe wysokości konstrukcyjne przęseł wynikają ze znacznego zmniejszenia sił wewnętrznych i ugięć w obiekcie Zintegrowanym/Pół-zintegrowanym w porównaniu do wartości sił wewnętrznych i ugięć występujących w konstrukcjach o schemacie belki wolnopodpartej.
- b. Eliminacja lub zmniejszenie ilości łożysk w konstrukcji.
- c. Eliminacja urządzeń dylatacyjnych.
- d. Prostsze a więc i szybsze, w stosunku do obiektów z urządzeniami dylatacyjnymi i łożyskami, wykonawstwo.
- e. Dłuższy czas pomiędzy remontami obiektów.
- f. Krótszy czas remontów.

Wymienione w punktach od a. do f. zalety przyczyniają się, w porównaniu do Klasycznych obiektów inżynierskich (Rys. 2.1 i Rys. 2.2) do zmniejszenia kosztów budowy oraz utrzymania.

Rys. 2.1 Schemat Klasycznego obiektu inżynierskiego

Rys. 2.2 Klasyczny obiekt inżynierski (wiadukt WD94 autostrada A2 – odcinek Komorniki – Nowy Tomyśl)

Celem zobrazowania szerokiej możliwości kształtowania obiektów Zintegrowanych i Półzintegrowanych zaprezentowano na Rys. 2.3 najczęściej występujące schematy podpór skrajnych [10].

- a) & b) obiekty Zintegrowane ramowe,
- c) obiekt Zintegrowany z podporą skrajną opartą na profilach stalowych tzw. "typ amerykański",
- d) obiekt Zintegrowany z podporą skrajną posadowioną na skarpie bez ławy fundamentowej,
- e) obiekt Pół-zintegrowany z płytą czołową (Przewieszką) wprowadzoną w nasyp,
- f) obiekt Zintegrowany z płytą czołową (Przewieszką) wprowadzoną w nasyp.

Rys. 2.3 Przykłady kształtowania podpór skrajnych Zintegrowanych i Pół-zintegrowanych obiektów inżynierskich [10]

Zaprezentowane na Rys. 2.3 przykładowe rozwiązania podpór stanowią bazę do konstruowania obiektów Zintegrowanych i Pół-zintegrowanych zarówno jedno jak i wieloprzęsłowych. Wśród nich możemy wyróżnić:

a. obiekty Zintegrowane z podporami skrajnymi osadzonymi w nasypie i przęsłami opartymi na podatnych podporach słupowych (Rys. 2.4 i Rys. 2.5).

Rys. 2.4 Most Zintegrowany z podporami skrajnymi osadzonymi w nasypie i przęsłami opartymi na podatnych, słupowych podporach.

 b. obiekty Pół-zintegrowane z podporami skrajnymi osadzonymi w nasypie i przęsłami opartymi na łożyskach umiejscowionych na masywnych podporach pośrednich (Rys. 2.6).

Rys. 2.6 Schemat mostu Pół-zintegrowanego z podporami skrajnymi osadzonymi w nasypie i przęsłami opartymi na łożyskach umiejscowionych na masywnych podporach pośrednich

c. obiekty Pół-zintegrowane z przęsłami opartymi na łożyskach umiejscowionych na podporach i z Przewieszkami [11], [12] wprowadzonymi w nasyp (Rys. 2.7 i Rys. 2.8)

Rys. 2.7 Schemat wiaduktu Pół-zintegrowanego z przęsłami opartymi na łożyskach umiejscowionych na podporach i Przewieszkami wprowadzonymi w nasyp

Rys. 2.8 Wiadukt Pół-zintegrowany z przęsłami opartymi na łożyskach umiejscowionych na podporach i Przewieszkami wprowadzonymi w nasyp (autostrada A2 – odcinek Komorniki – Nowy Tomyśl)

d. obiekty Pół-zintegrowane z Przewieszkami wprowadzonymi w nasyp, sztywnym połączeniem przęseł z masywnymi podporami pośrednimi, podporami skrajnymi wykonanymi w postaci "wiotkiej" ściany i wykształtowanym połączeniem przegubowym na połączeniu przęsła i podpór (Rys. 2.9).

Rys. 2.9 Schemat obiektu Pół-zintegrowanego z Przewieszkami wprowadzonymi w nasyp, sztywnym połączeniem przęseł z masywnymi podporami pośrednimi, podporami skrajnymi wykonanymi w postaci "wiotkiej" ściany i wykształtowanym połączeniem przegubowym na połączeniu przęsła i podpór [13]

Należy zwrócić uwagę, iż ze względu na trudność opisu pracy obiektów, wynikającą w szczególności z problemu związanego z określeniem obciążenia parciem gruntu, formułuje się ograniczenia możliwości stosowania obiektów Zintegrowanych/Pół-zintegrowanych jedynie poprzez wartość dopuszczalnej ich długości. Aspekt ten omówiono szerzej w Rozdziale 2.2.

2.2 Analiza dopuszczalnych długości Zintegrowanych i Pół-zintegrowanych obiektów inżynierskich

Najczęściej opisuje się możliwość stosowania obiektów Zintegrowanych i Półzintegrowanych poprzez ich dopuszczalną długość. Zalecana w wytycznych [10], [13], [14], [15], [22] długość jest podawana przez pryzmat negatywnych doświadczeń ze stosowania konkretnych rozwiązań połączenia konstrukcji obiektów z drogą (nasypem). Niekiedy dopuszczalna długość konstrukcji jest uzależniana od materiału, z jakiego wykonano przęsła (beton, stal) lub sposobu wykonania przęsła tj. betonowanego na terenie budowy lub wykonanego jako prefabrykat (Tabela 2.1). Dopuszczalne długości przęseł zawierają się w zakresie od 18,3 metrów do ponad 100 metrów, zaś całkowita długość obiektów Zintegrowanych/Pół-zintegrowanych dochodzi do kilkuset metrów.

	Dopuszczalna długość [m]			Najdłuższy wykonany obiekt [m]			
Kraj (Stan)	Dźwigary betonowe		stalowe	Dźwigary betonowe		stalowe	
	Betonowane	Prefab.	Zespolone	Betonowane	Prefab.	Zespolone	
Georgia [13]	-	-	91,5	125,1	-	91,5	
Illinois [13]	114,4	114,4	-	36,6	91,5	61	
Iowa [13]	152,5	152,5	83,9	41,2	152,5		
Kansas [13]	152,5	152,5	91,5	177,6	126,4	89,1	
Kalifornia [72]	50,9	50,9	31,1	122	-	136,8	
Kentucky [13]	122	122	122	31,7	122	318,4	
Kolorado [13]	152,5	183	91,5	290,4	339,2	57,3	
Main [13]	150	150	90	29,3	45,8	-	
Maryland [13]	-	18,3	-	-	15,9	-	
Nevada [13]	122	122	76,3	84,2	33,6	77,8	
Nowy Jork [13]	140	140	140	-	68,3	93,3	
Oklahoma [13]	-	122	91,5	-	91,5	-	
Dakota Płd. [13]	213,5	213,5	106,8	106,8	209,2	112,9	
Dakota Płn. [13]	48,8	122	122	48,8	122	122	
Szwecja [22]	60	60	40				
(temp32°C)	00	00	40	-	-	-	
Szwecja [22]	00	00	60	120	120	00	
(temp12°C)	90	90	00	120	120	90	
Tennessee [14]	244	244	130,8	189,1	358,4	175,4	
Vermont [13]	-	-	24,4	-	-	24,4	
Vancouver [13]	-	152,5	91,5	-	235,5	97,6	
Waszyngton [13]	61	106,8	-	61	183	-	
Wielka Brytania	60	60	60				
[10], [15] ^{a,b}	00	00	00	-	-	-	
Wyoming [13]	100	130	100	99	127	100	
Maksimum [m]	Brak granic	Brak granic	Brak granic	290,4	358,4	318,4	
Minimum [m]	48,8	18,3	24,4	29,3	15,9	24,4	
Średnia	115,0	118,9	85,5	99,6	135,4	109,8	

Tabela 2.1. Przykłady dopuszczalnych długości przęseł i wykonanych obiektów Zintegrowanych/Półzintegrowanych

Na uwagę zasługują wybudowane w Stanach Zjednoczonych Ameryki Północnej, obiekty o długości 358,4 m (obiekt zespolony o prefabrykowanych dźwigarach betonowych Rys. 2.10), 290,4 m (obiekt o dźwigarach betonowych monolitycznych) i 318,4 m (obiekt zespolony o dźwigarach stalowych). <u>Nie spotkano</u> warunków ograniczających możliwość projektowania obiektów Zintegrowanych/Pół-zintegrowanych w zależności od kategorii drogi czy też wysokości podpór.

Rys. 2.10. Najdłuższy obiekt Pół-zintegrowany na świecie - Tennessee [14]

^a Obiekty o długości do 60 m i kącie skrzyżowania do 30° <u>muszą</u> być wykonywane jako Zintegrowane

^b Obiekty o długości powyżej 60 m i kącie skrzyżowania powyżej 30° mogą być wykonywane jako Zintegrowane

Mając na uwadze duży przedział dopuszczalnych długości przęseł Zintegrowanych/Półzintegrowanych (Tabela 2.1) przenalizowano również zakres temperatur (Tabela 2.2) przyjmowanych podczas procesu projektowania obiektów inżynierskich. Przeprowadzona analiza ma na celu próbę znalezienia powiązań pomiędzy temperaturą przyjmowaną do obliczeń konstrukcji Zintegrowanych/Pół-zintegrowanych a ich dopuszczalną długością.

		Konstrukcje betonowe (płytowe)					
Wytyczne, kraj, stan	Uwagi	Temperatura [°C]					
	C	Montażu	Maks.	Min.	∆ T-	ΔT +	
AASHTO [16]	Klimat zimny	10	29	-15	25	19	
	<i>L</i> < 914 m	10	32	-12	22	22	
Arizona [17]	$L > 914 \text{ i} \le 1829 \text{ m}$	10	29	-9	19	19	
	<i>L</i> > 1829 m	10	27	-7	17	17	
Floryda [18]		21	35	7	14	14	
Iowa [19]		10	38	-18	28	28	
Kalifornia [72]	Pustynia oraz niektóre góry	10	32	-12	22	22	
Kamorina [72]	Wybrzeże, Los Angeles	10	27	-7	17	17	
Nebraska [20]		10	35	-15	25	25	
Polska [21]	Elementy \leq 0,6 m	10	30	-15	25	20	
Samooin [22]	(strefa temp. –32°C)	10	25	-12	22	15	
Szwecja [22]	(strefa temp. –12°C)	10	25	-32	42	15	
Vermont [23] [,] c		7	32	-18	25	25	
Zachodnia Wirginia [113] [,] d		7	27	-18	25	20	
	10	30	-13	23	19		
	21	38	-32	42	28		
	Minimalna	7	25	-7	14	14	

Tabela 2.2. Wartości temperatur przyjmowane do obliczeń konstrukcji inżynierskich

Rys. 2.11 Zakresy temperatur przyjmowanych do obliczeń konstrukcji inżynierskich

^c Przyjęto temperaturę montażu +7 ^oC

^d Przyjęto temperaturę montażu +4 °C

Przeprowadzenie analizy pozwoliło na stwierdzenie, iż temperatury przyjmowane do obliczeń konstrukcji inżynierskich, w tym obiektów Zintegrowanych/Pół-zintegrowanych, zawierają się pomiędzy (Tabela 2.2 i Rys. 2.11),:

a) -32°C a -7°C, średnio -13°C, dla temperatur minimalnych.

b) +25°C a +38°C, średnio 30°C, dla temperatur maksymalnych.

Dodatkowo amplituda temperatur:

- a) ΔT + zawiera się pomiędzy 14°C a 28°C, zaś średnia wynosi 19°C.
- b) ΔT zawiera się pomiędzy 14°C a 42°C, zaś średnia wynosi 23°C.

Przeprowadzenie analizy <u>nie pozwoliło</u> na powiązanie temperatur przyjmowanych do obliczeń obiektów Zintegrowanych/Pół-zintegrowanych z ich dopuszczalną długością. Jest to kolejny dowód, iż określanie możliwości stosowania obiektów Zintegrowanych i Pół-zintegrowanych jedynie poprzez ich dopuszczalną długość, **nie można** uznać za właściwe.

Należy wskazać, iż w literaturze [24], [25], [26], [27], [28] opisywano propozycje uwzględniania w formułowaniu wytycznych dotyczących obciążenia temperaturą, m.in.:

- a) położenia geograficznego konstrukcji,
- b) cech geometrycznych i koloru elementów konstrukcji,
- c) przejrzystości powietrza.

Porównując wytyczne zagraniczne (Tabela 2.1) jak i zakresy temperatury (Tabela 2.2) na jakie projektowane są obiekty Zintegrowane/Pół-zintegrowane należy zwrócić uwagę na warunki możliwości ich stosowania w Polsce. Szczegółowe warunki znajdujemy w [29], gdzie ich stosowanie ogranicza się do:

- Obiektów z podporami osadzonymi w nasypie do dróg klasy G, Z, L lub D.
- Obiektów z podporami ściankowymi do rozpiętości przęsła ≤ 20 m, przy wysokości nasypu do 5 metrów i dróg klasy GP, G, Z, L lub D.
- Obiektów z przęsłami wspornikowymi wprowadzonymi w nasyp do dróg klasy Z, L i D.

Dodatkowo warunki [29] są często modyfikowane w procedurach przetargowych poprzez wprowadzanie dodatkowych obostrzeń np.:

"…Nie dopuszcza się stosowania przęseł zawieszonych jak i konstrukcji wstęgowych.
 Wyklucza się również obiekty Zintegrowane, z wyjątkiem jednoprzęsłowych ramowych, o długości do 10 m…" [30].

- "...Wyklucza się również obiekty Zintegrowane betonowe o długości większej niż 60 m i Zintegrowane stalowe o długości > 40 m..." [31], [32].
- "…Obiekty mostowe Zintegrowane powinny mieć długość mniejszą lub równą 50 metrów…" [33], [34], [35].

Jak opisano także w Polsce długość obiektów Zintegrowanych to kryterium ich stosowania. Bezsprzecznym jest, iż tak opisywane warunki stosowania powodują niepotrzebne utrudnienia w możliwości projektowania w Polsce Zintegrowanych czy też Pół-zintegrowanych obiektów inżynierskich. Dlatego też w Rozdziałach 3 i 4 dokonano analizy założeń teoretycznych, wyników badań dotyczących obciążenia parciem gruntu i zachowania się zasypki za podporami skrajnymi jako bazy do właściwego projektowania obiektów Zintegrowanych/Pół-zintegrowanych.

2.3 Podsumowanie

Przeprowadzenie analizy <u>nie pozwoliło</u> na powiązanie temperatur eksploatacji konstrukcji Zintegrowanych/Pół-zintegrowanych z zalecaną (maksymalną) długością ich stosowania. Kilku czy kilkunastostopniowe różnice temperatur przyjmowanych do obliczeń nie tłumaczą kilkukrotnych różnic w długościach zalecanych/wykonywanych konstrukcji. Dodatkowo określanie możliwości stosowania konstrukcji Zintegrowanych/Pół-zintegrowanych jedynie poprzez ich dopuszczalną długość nie bierze pod uwagę m.in.:

- a) Wpływu różnych sztywności przęsła (przęseł) jak i podpór na wartości sił wewnętrznych od oddziałujących na konstrukcję obciążeń.
- b) Wpływu przemieszczeń konstrukcji na zmianę obciążenia parciem gruntu.
- c) Sposobu ukształtowania połączenia obiektu inżynierskiego z drogą (nasypem) pod kątem dopuszczalnych przemieszczeń obiektów inżynierskich.
- d) Faktycznej temperatury montażu na wartości sił wewnętrznych i przemieszczeń konstrukcji.

Mając na uwadze powyższe należy stwierdzić, iż parametr długości obiektu inżynierskiego Zintegrowanych/Pół-zintegrowanych obiektów inżynierskich, może być traktowany jedynie jako **wskazówka** nie zaś bezwzględnie obowiązująca wytyczna.

W dalszej części pracy analizie poddano zagadnienia od a) do d) celem sformułowania dalszych wytycznych konstruowania obiektów Zintegrowanych/Poł-zintegrowanych.

3. ANALIZA PROPOZYCJI NAUKOWYCH I BADAŃ OKREŚLAJĄCYCH ZACHOWANIE SIĘ ZASYPKI ZA PODPORAMI SKRAJNYMI OBIEKTÓW ZINTEGROWANYCH/PÓŁ-ZINTEGROWANYCH

3.1 Wstęp

W niniejszym Rozdziale dokonano analizy propozycji naukowych i badań opisujących zachowanie się zasypki za podporami skrajnymi Zintegrowanych/Pół-zintegrowanych obiektów oraz wpływ zachowania się zasypki na stan nawierzchni na dojeździe do obiektu.

3.2 Analiza badań określających zachowania się zasypki za podporami skrajnymi obiektów Zintegrowanych/Pół-zintegrowanych

Analizie poddano prace Springmana [36] w których badano zachowanie się zasypek wykonanych za podporami skrajnymi. Wskaźnik zagęszczenia zasypek *I*_s wynosił od 35% do 95%. Przeprowadzone badania wykazały powstawanie bezpośrednio za podporą skrajną osiadania zasypki. Zasięg osiadania zasypki jest zależny od stopnia zagęszczenia zasypki, wartości obrotu ściany podpory i jej sztywności. Analiza badań pozwoliła na stwierdzenie, iż w przypadku zastosowania niezagęszczonej zasypki (*I*_s = 35%, Rys. 3.1) zachodzi osiadanie strefy przyobiektowej na długości do 1,2 wysokości podpory skrajnej. Dodatkowo należy zauważyć, iż:

- a. Zwiększenie zakresu przemieszczeń podpór skrajnych wpływa na zwiększenie zasięgu odziaływania.
- b. Zasięg odziaływania osiadania zasypki dla najczęściej stosowanych wartości jej zagęszczenia dochodzi do ~0,38 wysokości podpory skrajnej.
- c. Zasięg odziaływania osiadania zasypki w przypadku jej niewłaściwego zagęszczenia dochodzi do ~1,2 wysokości podpory skrajnej. Wiedza ta może tłumaczyć występowanie uszkodzeń nawierzchni w znacznej odległości od podpory skrajnej tylko np. po jednej stronie obiektu.
- d. Zastosowanie I_s równego 95% powoduje BRAK wzrostu zasięgu osiadania zasypki po przekroczeniu kąta obrotu ściany skrajnej wynoszącego ~0,56°.
- Zwiększenie I_s z 80% do 95% powoduje (w zależności od kąta obrotu ściany skrajnej) zmniejszenie zasięgu strefy osiadania zasypki od ~15% (0,23/0,2) do ~85% (0,66/0,38).

Rys. 3.1 Zasięg strefy osiadania zasypki w zależności od wartości I_s oraz kąta obrotu ściany κ [36]

gdzie:

Z_{so} – zasięg strefy osiadania [m],
I_s - stopień zagęszczenia w danym przypadku 35%, 85%, 95%,
H - wysokość podpór skrajnych [m],
sz. - ściana sztywna.

Dreier [37] zaproponował określanie zasięgu odziaływania podpory skrajnej obiektu Zintegrowanego na nasyp wg (3.1):

$$Z_{so} = \frac{H}{\tan(45^{\circ} + \frac{\phi}{2})}$$
(3.1)

gdzie:

 ϕ – kąt tarcia wewnętrznego zasypki [°].

Analizując badania Englanda [54] przy zastosowaniu zasypek o wskaźniku zagęszczenia *Is* wynoszącym 90%-95%, można wskazać (Rys. 3.2), iż:

- A. potwierdzono zaobserwowane w praktyce zjawisko występowania (ewentualnych) uszkodzeń nawierzchni kilka tygodni po oddaniu obiektu do użytkowania,
- B. osiadanie zasypki występuje przede wszystkim na długości ~370 mm od podpór skrajnych,
- C. niewielkie "wybrzuszenie" zasypki występuje w odległości ~300 mm od podpór skrajnych.

Rys. 3.2 Osiadanie zasypki w zależności od cyklów przemieszczeń konstrukcji [54]

W ramach pracy analizie poddano również wyniki Muttoniego [38], który przeprowadził badania zachowania się płyt przejściowych (długości 4 m) i nawierzchni (długości 8 m) poddanych przemieszczeniom. Płyty przejściowe wykonano o nachyleniu 10% i 20% a następnie na nich ułożono asfaltowe warstwy nawierzchni. Płyty przejściowe poddawano przemieszczeniom wymuszonym celem symulacji pracy konstrukcji w przypadku jej skrócenia (tzw. faza "wyciągania z gruntu") i wydłużenia (tzw. faza "przesunięcia w stronę gruntu").

Analiza wyników badań w przypadku przemieszczeń płyty przejściowej o wartości od 0 do 77 mm dla fazy "wyciągania z gruntu" pozwala zauważyć m.in., iż:

- A. spękanie nawierzchni występowało w okolicach końca płyt przejściowych (3,5-4,5 metra od jej zamocowania tj. +/- 0,5 metra od końca płyt przejściowych).
 Na tym odcinku potwierdzono też powstawanie "wybrzuszenia",
- B. spękanie nawierzchni podczas badania płyty przejściowej wykonanej z nachyleniem 10% (Rys. 3.3) nastąpiło przy wartości przemieszczenia podłużnego = 35 mm,

Rys. 3.3 Widok spękań nawierzchni przy przemieszczeniu płyty przejściowej równym 35 mm [38]

c. spękanie nawierzchni podczas badania płyty przejściowej wykonanej z nachyleniem
 20% (Rys. 3.4) nastąpiło przy wartości przemieszczenia podłużnego = 60 mm,

Rys. 3.4 Widok spękań nawierzchni przy przemieszczeniu płyty przejściowej równym 60 mm [38]

D. zwiększenie nachylenia płyty przejściowej z 10% do 20% spowodowało wzrost wartości przemieszczenia podłużnego, przy którym następowało zarysowanie nawierzchni z 35 na 60 mm i zmniejszenie jej pionowego przemieszczenia z 13,8 mm na 9,8 mm.

Analizując odkształcenia nawierzchni, na płycie przejściowej wykonanej z nachyleniem 20%, w przypadku jej "wyciągania z gruntu" można zauważyć, iż:

- A. Dla przemieszczeń pionowych w_{pav} (Rys. 3.5, *TST1*, przemieszczenia pionowe):
 - a. na odcinku 1,0-2,4 m (25%-60% długości płyty przejściowej) były
 one minimalne i wynosiły ~2 mm,
 - b. na odcinku 2,4-6,0 m (60%-150% długości płyty przejściowej) następowała liniowa zmiana odziaływania. Należy dodać, iż na odcinku 3,0-4,7 m (75%-118% długości płyty przejściowej) następowała szybka zmiana odziaływania,
 - c. na odcinku 6,0-8,0 m (150%-200% długości płyty przejściowej) wynosiły one
 ~0 mm,
 - d. nie przekraczały one 3 mm (przy przemieszczeniach podłużnych płyt przejściowych w przedziale 0-60 mm),
 - e. maksymalna ich wartość była równa -9,8 mm (przy przemieszczeniu podłużnym płyty przejściowej równym 77 mm),
 - f. przy przemieszczeniu podłużnym płyt przejściowych równym 77 mm były one o ~230% większe od wartości przemieszczenia pionowego przy przemieszczeniu płyt przejściowych o 60 mm (iloraz 77/60 to wzrost wartości przemieszczeń o ~28%),

- g. spękanie nawierzchni nastąpiło przy przemieszczeniu podłużnym płyt
 przejściowych wynoszącym 60 mm.
- B. Dla przemieszczeń podłużnych *u*_{pav.edg} (Rys. 3.5, *TST1*, przemieszczenia podłużne):
 - a. na odcinku 0,0-1,0 m (0%-25% dł. płyty przejściowej) przemieszczenia były minimalne tj. miały wartość do ~2 mm,
 - b. na odcinku 1,0-7,0 m (25%-175% długości płyty przejściowej) następowała liniowa zmiana odziaływania. Należy dodać, iż na odcinku 2,0-4,5 metra (50%-~115% długości płyty przejściowej) następowała szybka zmiana odziaływania,
 - c. na odcinku 7,0-8,0 m (175-200% długości płyty przejściowej) następowała
 liniowa zmiana odziaływania wynosząca od 2,0 mm do 0,0 mm.

Rys. 3.5 Przemieszczenia pionowe *w_{pav i}* poziome *u_{pav.edg}* nawierzchni w fazie "wyciągania z gruntu" płyty przejściowej o nachyleniu 20% [38]

Analizując odkształcenia nawierzchni, na płycie przejściowej wykonanej z nachyleniem 10%, w przypadku jej "wyciągania z gruntu" można zauważyć, iż:

- C. Dla przemieszczeń pionowych *w*_{pav} (Rys. 3.6, *TST2*, przemieszczenia pionowe):
 - a. na odcinku 1,0-6,2 m (25%-155% dł. płyty przejściowej) następowała liniowa zmiana odziaływania. Należy jednak dodać, iż na odcinku 3,8-4,7 m (95%-118% długości płyty przejściowej) następowała szybka zmiana odziaływania,
 - b. na odcinku 6,2-8,0 m (155%-200% długości płyty przejściowej) wartość odziaływania wynosiła ~0 mm,

- c. przemieszczenia poziome przy przemieszczeniach podłużnych płyt przejściowych w przedziale 0-20 mm nie przekraczały 3,5 mm,
- d. maksymalne poziome przemieszczenie nawierzchni było równe -13,8 mm przy przemieszczeniu podłużnym płyt przejściowych o wartości 77 mm,
- e. zwiększenie przemieszczenia podłużnego o 100% (z 20 mm na 40 mm) spowodowało zwiększenie wartości przemieszczenia poziomego o ~180%,
- f. spękanie nawierzchni nastąpiło przy przemieszczeniu podłużnym płyt przejściowych równym **35** mm.
- D. Dla przemieszczeń podłużnych *u_{pav.edg}* (Rys.3.6, *TST2*, przemieszczenia podłużne):
 - a. na odcinku 0-3,0 m (75% dł. płyty przejściowej) przemieszczenia były minimalne tj. wynosiły ~2 mm,
 - b. na odcinku 3,0-5,9 m (75%-148% dł. płyty przejściowej) następowała liniowa zmiana odziaływania. Należy jednak dodać, iż na odcinku 3,0-4,0 m (75%-100% długości płyty przejściowej) następowała szybka zmiana odziaływania,
 - c. na odcinku 5,9-8,0 m (148%-200% dł. płyty przejściowej) wartość odziaływania wynosiła ~0 mm.

Rys. 3.6 Przemieszczenia pionowe *w_{pav i}* poziome *u_{pav.edg}* nawierzchni w fazie "wyciągania z gruntu" płyty przejściowej o nachyleniu 10% [38]

Dalsza analiza wyników badań przemieszczeń płyt przejściowych w fazie "przesunięcie w stronę gruntu" pozwala zauważyć m.in.:

A. <u>brak</u> spękania nawierzchni na całym badanym odcinku, zarówno dla płyty przejściowej wykonanej z nachyleniem 20% jak i wykonanej z nachyleniem 10%,

- B. występowanie "wybrzuszeń" zależnych od kierunku przemieszczeń płyty przejściowej a umiejscowionych w okolicach jej końca. Należy jednak dodać, iż "wypiętrzenie" nawierzchni byłoby <u>minimalizowane</u> poprzez ruch pojazdów,
- C. odkształcenie nawierzchni płyty przejściowej wykonanej z nachyleniem 20% (Rys.
 3.7, *TST1*, przemieszczenia pionowe) wynosiło 47%-50% wartości przemieszczenia podłużnego.

Rys. 3.7 Pionowe *w_{pav i}* poziome *u_{pav.edg}* przemieszczenia nawierzchni w fazie "przemieszczenie w stronę gruntu" płyty przejściowej o nachyleniu 20% [38]

 D. odkształcenie nawierzchni płyty przejściowej wykonanej z nachyleniem 10% (Rys. 3.8, *TST2*, przemieszczenia podłużne) wynosiło 57%-113% wartości przemieszczenia podłużnego.

Rys. 3.8 Pionowe *w_{pav i}* poziome *u_{pav.edg}* przemieszczenia nawierzchni w fazie "przemieszczenie w stronę gruntu" płyty przejściowej o nachyleniu 10% [38]

- E. zwiększenie nachylenia płyty przejściowej z 10% do 20% spowodowało znaczne zmniejszenie tj. o 54% (wartość 10,4 mm do 22,5 mm dla przemieszczenia podłużnego = 20 mm) "wybrzuszenia" nawierzchni (Rys. 3.7, *TST1*, przemieszczenia pionowe i Rys. 3.8, *TST2*, przemieszczenia podłużne),
- F. odkształcenia poziome nawierzchni były liniowe a ich maksymalna wartość występowała pomiędzy 4,25-4,75 metra od zamocowania płyt przejściowych w konstrukcji tj. 0,25-0,75 metra od końca płyt przejściowych. Wartość odkształceń poziomych nawierzchni była równa ~0 mm w odległości ~7,5 metra od zamocowania płyty przejściowej w konstrukcji tj. ~3,5 metra od jej końca (Rys. 3.7, *TST1,* przemieszczenia pionowe i Rys. 3.8, *TST2,* przemieszczenia pionowe).
- G. odkształcenia podłużne nawierzchni były liniowe a ich wartość była równa ~2,0 mm w odległości ~7,5 metra od zamocowania płyty przejściowej w konstrukcji tj. ~3,5 metra od jej końca (Rys. 3.7, *TST1*, przemieszczenia poziome i Rys. 3.8, *TST2*, przemieszczenia poziome).

3.3 Podsumowanie analizy badań określających zachowanie się zasypki za podporami skrajnymi Zintegrowanych/Pół-zintegrowanych obiektów inżynierskich

Przeprowadzenie analizy pozwoliło na powiązanie wartości zagęszczenia zasypki z zasięgiem uszkodzeń występujących w nawierzchni na dojeździe do obiektu. Wykazano, iż <u>zwiększenie zagęszczenia zasypki</u> powoduje <u>zmniejszenie odziaływania</u> przemieszczeń podpór skrajnych na nawierzchnię na dojeździe do obiektu, a tym samym redukuje uszkodzenia nawierzchni. Ustalono, iż największe osiadanie zasypki ma miejsce w strefie przypodporowej i występuje, zwiększając swoją wartość, od początku badania/użytkowania konstrukcji. Badania potwierdziły możliwość powstawania uszkodzeń nawierzchni na dojeździe do obiektów już w początkowym okresie użytkowania konstrukcji.

Przeprowadzona analiza badań wykazała konieczność <u>zmniejszania wysokości podpór</u> <u>skrajnych</u> celem ograniczenia zasięgu odziaływania przemieszczeń konstrukcji na zasypkę. Ograniczanie wysokości podpór skrajnych powinno redukować uszkodzenia nawierzchni na dojazdach do obiektów Zintegrowanych/Pół-zintegrowanych.

4. ANALIZA SPOSOBÓW SZACOWANIA OBCIĄŻENIA PARCIEM GRUNTU OBIEKTÓW ZINTEGROWANYCH i PÓŁ-ZINTEGROWANYCH

4.1 Wprowadzenie

Przy rozpatrywaniu obciążenia parciem gruntu obiektów Zintegrowanych/Półzintegrowanych należy mieć na uwadze, iż może ono znacznie zmieniać swoją wartość, tj. od wartości równej obciążeniu parciem czynnym e_a poprzez spoczynkowe e_a , pośrednie e_{11} aż do parcia biernego e_p włącznie. Powoduje to, iż bezwzględna wartość obciążenia parciem gruntu, pomiędzy parciem minimalnym (czynnym) a maksymalnym (biernym), może różnić się <u>wielokrotnie</u>. Wynika (Rys. 4.1) to m.in. z:

- a. przemieszczania się konstrukcji "od" jak i "w stronę gruntu",
- b. zmiany wartości obciążenia parciem gruntu w wyniku cyklicznych ruchów konstrukcji,
- c. zmiany punktu zaczepienia wypadkowej obciążenia parciem gruntu w wyniku różnych schematów przemieszczeń podpór.

Rys. 4.1 Przykład określania stanów parcia gruntu

4.2 Podstawy teoretyczne do wyznaczania obciążenia parciem gruntu

Obciążenia parciem gruntu wyznaczymy opisując tensor naprężeń T^{σ} wg (4.1):

$$T^{\sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$
(4.1)

gdzie:

 T^{σ} – tensor naprężeń $\left[\frac{\mathrm{kN}}{\mathrm{m}^2}\right]$,

- σ_{ii} naprężenia normalne tensora naprężeń $\left[\frac{kN}{m^2}\right]$,
- $\sigma_{ij}-$ naprężenia styczne tensora naprężeń $[\frac{kN}{m^2}].$

Dokonując odpowiednich przekształceń, otrzymujemy T^{σ} wg (4.2) i (4.3), w którym wartość naprężeń $\sigma_{ij} = 0$ (gdzie i $\neq j$) a naprężenia σ_{ii} są naprężeniami głównymi:

$$T^{\sigma} = \delta_{ij} \sigma_i (\text{gdzie i}, j = 1, 2, 3), \text{tj.}$$

$$(4.2)$$

$$T^{\sigma} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}$$
(4.3)

gdzie:

 δ_{ij} – delta Kroneckera (δ_{ij} = 1 dla i = j; δ_{ij} = 0 dla i \neq j).

Wartości $\delta_{ij} \sigma_i$ uzyskujemy z rozwiązania równania sekularnego (4.4):

$$\sigma^3 - I_1 \sigma^2 + I_2 \sigma - I_3 = 0 \tag{4.4}$$

gdzie:

I₁ – niezmiennik liniowy tensora naprężenia [-],

 I_2 – niezmiennik kwadratowy tensora naprężenia [-],

I3 – niezmiennik sześcienny tensora naprężenia [-].

Parametrami równania Laplace'a (4.4) są niezmienniki tensora naprężenia, które możemy przedstawić dla I_1 (4.5), dla I_2 (4.6) i dla I_3 (4.7) jako:

$$I_1 = \sigma_{11} = \sigma_{11} + \sigma_{22} + \sigma_{33} \tag{4.5}$$

$$I_{2} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} + \begin{bmatrix} \sigma_{11} & \sigma_{23} \\ \sigma_{31} & \sigma_{33} \end{bmatrix} + \begin{bmatrix} \sigma_{22} & \sigma_{23} \\ \sigma_{32} & \sigma_{33} \end{bmatrix} = \sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11} - \sigma_{12}^{2} - \sigma_{23}^{2} -$$

$$I_{3} = [\sigma_{1j}] = \sigma_{11} \sigma_{22} \sigma_{33} + 2 \sigma_{12} \sigma_{23} \sigma_{31} - \sigma_{11} \sigma^{2} \sigma_{23} - \sigma_{22} \sigma^{2} \sigma_{31} - \sigma_{33} \sigma^{2} \sigma_{12}$$
(4.7)

Przedstawiające naprężenia średnie σ_{sr} (4.8):

$$\sigma_{\acute{s}r} = \frac{\sigma_{11} + \sigma_{22} + \sigma_{33}}{3} \tag{4.8}$$

gdzie:

 σ_{sr} – naprężenie średnie równe w rozpatrywanym punkcie $\left[\frac{kN}{m^2}\right]$,

możemy zapisać tensor naprężeń $T^{\sigma}(4.9)$ jako sumę Aksjatora T^{A} i Dewiatora T^{D} :

$$T^{\sigma} = T^{A} + T^{D} = \begin{bmatrix} \sigma_{\hat{s}r} & 0 & 0\\ 0 & \sigma_{\hat{s}r} & 0\\ 0 & 0 & \sigma_{\hat{s}r} \end{bmatrix} + \begin{bmatrix} \sigma_{11} - \sigma_{\hat{s}r} & \sigma_{12} & \sigma_{13}\\ \sigma_{21} & \sigma_{11} - \sigma_{\hat{s}r} & \sigma_{23}\\ \sigma_{31} & \sigma_{32} & \sigma_{33} - \sigma_{\hat{s}r} \end{bmatrix}$$
(4.9)

gdzie:

 T^{A} – aksjator naprężeń [$\frac{kN}{m^{2}}$], T^{D} – dewiator naprężeń [$\frac{kN}{m^{2}}$].

Rys. 4.2 Tensor naprężenia T^{σ} i jego składowe Aksjator T^{A} i Dewiator T^{D}

Podobne zależności jak dla tensora naprężeń T^{σ} (4.9) możemy wyprowadzić dla tensora odkształcenia T^{O} (4.10) tj.:

$$T^{O} = \begin{bmatrix} \mathcal{E}_{11} & \mathcal{E}_{12} & \mathcal{E}_{13} \\ \mathcal{E}_{21} & \mathcal{E}_{22} & \mathcal{E}_{23} \\ \mathcal{E}_{31} & \mathcal{E}_{32} & \mathcal{E}_{33} \end{bmatrix}$$
(4.10)

gdzie:

T^O – tensor odkształceń [-],

 ε_{ii} – składowe tensora odkształceń [-].

Wiedząc, iż równanie sekularne odkształceń (4.11) ma postać:

$$\varepsilon^{3} - J_{1}^{0} \varepsilon^{2} + J_{2}^{0} \varepsilon - J_{3}^{0} = 0$$
(4.11)

gdzie:

 J_1^{O} - niezmiennik liniowy tensora odkształcenia [-],

J2⁰- niezmiennik kwadratowy tensora odkształcenia [-],

J₃⁰- niezmiennik sześcienny tensora odkształcenia [-],

oraz zapisując niezmienniki tensora odkształceń dla J_1^O (4.12), dla J_2^O (4.13) i dla J_3^O (4.14) otrzymujemy:

$$J_1^{O} = \mathcal{E}_{\$r} \tag{4.12}$$

$$J_2^{\ 0} = \varepsilon_{11} \, \varepsilon_{22} + \varepsilon_{22} \, \varepsilon_{33} + \varepsilon_{33} \, \varepsilon_{11} \tag{4.13}$$

$$J_3^O = \det[\mathcal{E}_{ij}] = \mathcal{E}_{11} \, \mathcal{E}_{22} \, \mathcal{E}_{33} \tag{4.14}$$

Znając, iż średnie odkształcenie Eśr (4.15) wynosi:

$$\varepsilon_{sr} = \frac{\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}}{3} \tag{4.15}$$

gdzie:

 ε_{sr} – odkształcenie średnie [-],

możemy tensor odkształcenia T^{O} (4.16) przedstawić jako sumę tensora kulistego odkształcenia T^{O}_{A} i dewiatora odkształcenia T^{O}_{D} :

$$T^{O} = T^{O}{}_{A} + T^{O}{}_{D} = \begin{bmatrix} \mathcal{E}_{\$r} & 0 & 0\\ 0 & \mathcal{E}_{\$r} & 0\\ 0 & 0 & \mathcal{E}_{\$r} \end{bmatrix} + \begin{bmatrix} \mathcal{E}_{11} - \mathcal{E}_{\$r} & \mathcal{E}_{12} & \mathcal{E}_{13}\\ \mathcal{E}_{21} & \mathcal{E}_{11} - \mathcal{E}_{\$r} & \mathcal{E}_{23}\\ \mathcal{E}_{31} & \mathcal{E}_{32} & \mathcal{E}_{33} - \mathcal{E}_{\$r} \end{bmatrix}$$
(4.16)

gdzie:

 T^{O}_{A} – tensor kulisty odkształcenia [-], T^{O}_{D} – dewiator odkształcenia [-].

Związki pomiędzy naprężeniem a odkształceniem (4.1)-(4.16) są wykorzystywane do opisu problematyki obciążenia i odkształcenia w mechanice gruntów [39], warunków granicznych dla ośrodków rozdrobnionych [40] czy też hipotez wytrzymałościowych.

Najczęściej stosowaną hipotezą stanowiąca podstawę do obliczania wartości parcia gruntu jest hipoteza największego naprężenia stycznego (Coulomba-Mohra, Coulomba-Treski), która uzależnia zniszczenie materiału od wartości największego naprężenia stycznego (Rys. 4.3).

Rys. 4.3 Hipoteza Coulomba-Mohra - prezentacja dla oporu gruntu na ścinanie [41]

Hipoteza największego naprężenia normalnego (Rankina, Lame) umiejscawia z kolei naprężenia niszczące pomiędzy naprężeniami niszczącymi dla rozciągania i ściskania. Dla przestrzennego stanu naprężenia otrzymujemy:

$$\sigma_{nc} \le \sigma_{11} \le \sigma_{nr} \tag{4.17}$$

$$\sigma_{nc} \le \sigma_{22} \le \sigma_{nr} \tag{4.18}$$

$$\sigma_{nc} \le \sigma_{33} \le \sigma_{nr} \tag{4.19}$$

gdzie:

 σ_{nc} – naprężenia niszczące przy ściskaniu [$\frac{kN}{m^2}$],

 σ_{nr} – naprężenia niszczące przy rozciąganiu [$\frac{kN}{m^2}$].

Czyniąc założenia za [42], iż:

- grunt za ścianą jest ośrodkiem jednorodnym, pozbawionym spójności, izotropowym w obszarze objętym, co najmniej powierzchnią odłamu,
- stan graniczny występuje na powierzchni zniszczenia klina odłamu powstającego podczas ruchu ściany od gruntu lub w kierunku gruntu,

 część gruntu wywierająca parcie na ścianę oporową oddzielona jest od pozostałego gruntu oraz przyjmując oznaczenia jak na Rys 4.4:

Rys. 4.4 Schemat działania sił przy wyznaczaniu obciążenia parciem gruntu wg teorii Coulomba

gdzie:

 β – kąt nachylenia ściany oporowej do pionu [°],

 δ – kąt tarcia gruntu o ścianę [°],

 ϕN - kąt nachylenia naziomu do poziomu [°],

otrzymujemy równania Coulomba-Mohra na współczynniki czynnego parcia gruntu (4.20)

i biernego parcia gruntu (4.21):

$$K_{aM} = \frac{\cos^2(\phi - \beta)}{\cos^2\beta * \cos(\delta + \beta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) * \sin(\phi - \varepsilon)}{\cos(\delta + \beta) * \cos(\varepsilon - \beta)}}\right]^2}$$
(4.20)

$$K_{p M} = \frac{\cos^2(\phi + \beta)}{\cos^2\beta * \cos(\beta - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) * \sin(\phi + \varepsilon)}{\cos(\beta - \delta) * \cos(\varepsilon - \beta)}}\right]^2}$$
(4.21)

gdzie:

 K_{aM} – współczynnik czynnego parcia gruntu wg teorii Coulomba-Mohra [-],

 K_{pM} – współczynnik biernego parcia gruntu wg teorii Coulomba-Mohra [-].

Czyniąc kolejne założenie o braku tarcia pomiędzy gruntem a ścianą otrzymujemy równania na współczynniki czynnego parcia gruntu (4.22) i biernego parcia gruntu (4.23) według teorii Rankina^e, tj.:

$$K_{aR} = \cos \varepsilon \left[\frac{\sin \varepsilon - \sqrt{\left[\cos^2 \varepsilon - \cos^2 \phi\right]}}{\sin \varepsilon + \sqrt{\left[\cos^2 \varepsilon - \cos^2 \phi\right]}} \right]$$
(4.22)

$$K_{pR} = \cos \varepsilon \left[\frac{\sin \varepsilon + \sqrt{\left[\cos^2 \varepsilon - \cos^2 \phi\right]}}{\sin \varepsilon - \sqrt{\left[\cos^2 \varepsilon - \cos^2 \phi\right]}} \right]$$
(4.23)

gdzie:

 K_{aR} – współczynnik czynnego parcia gruntu wg teorii Rankina [-],

 K_{pR} – współczynnik biernego parcia gruntu wg teorii Rankina [-].

^e teoria Rankina opisuje stan naprężenia w gruncie w momencie osiągnięcia w nim stanu plastyczności
Zakładając brak nachylenia górnej powierzchni nasypu oraz pomijając wpływ tarcia o powierzchnię ściany otrzymujemy przypadek szczególny, w którym współczynnik K_{aM} (4.20) = K_{aR} (4.22), a K_{pM} (4.21) = K_{pR} (4.23), czyli:

$$K_{aM} = K_{aR} = \frac{1 - \sin\phi}{1 + \sin\phi} = \tan^2 \left[45 - \frac{\phi}{2} \right]$$
(4.24)

$$K_{pM} = K_{pR} = \frac{1 + \sin\phi}{1 - \sin\phi} = \tan^2 \left[45 + \frac{\phi}{2} \right]$$
(4.25)

Należy wskazać, iż metoda Coulomba daje poprawne wyniki, gdy parcie gruntu obliczane jest dla nieodkształcalnej ściany, której obrót następuje wokół osi znajdującej się w podstawie ściany. Jednakże kąt nachylenia tylnej powierzchnia ściany czy też nachylenie naziomu ϕN nie powinien przekraczać 30°.

Metodą zakładającą kołowo-walcowe powierzchnie poślizgu przy obliczaniu obciążenia parciem gruntu jest metoda Felleniusa. Metoda ta daje prawidłowe wyniki dla gruntów o spójności $c \neq 0$, ale bez tarcia wewnętrznego ϕ . W przypadku tarcia wewnętrznego $\phi \neq 0$ koniecznym jest przyjmowanie założeń mających znaczny wpływ na otrzymany wynik obciążenia parciem gruntu. Dlatego też metoda ta jest obecnie rzadko stosowana a nazwisko Felleniusa jest bardziej kojarzone z metodą określania stateczności zboczy.

Rendulič [43] zaproponował obliczanie obciążenia parciem gruntu przy założeniu walcowych powierzchni poślizgu. Metoda umożliwia uwzględnienie spójności $c \neq 0$ i tarcia wewnętrznego ϕ . Rendulič wykazał, iż w przypadku obrotu wokół dolnej krawędzi nieodkształcalnej ściany, wypadkowa parcia jak i odporu gruntu znajduje się na 1/3 wysokości podpory. Natomiast, gdy oś obrotu znajduje się na różnych wysokościach ściany, wypadkowa parcia gruntu może znajdować się w przedziale 0,33-0,63 wysokości ściany, zaś wypadkowa odporu na 0,13-0,33 wysokości ściany (Rys. 4.5).

Rys. 4.5 Wysokość zaczepienia wypadkowej siły parcia lub odporu w zależności od położenia osi obrotu ściany/podpory [43]

Przykładem metod opartych na teorii plastyczności jest metoda Caquota-Kerisela [44], Jamesa-Bransby [45] czy też Sokołowskiego [43]. Metoda Caquota-Kerisela zakłada eliptyczne zaś Jamesa-Bransby logarytmiczne powierzchnie poślizgu oraz obrót nieodkształcalnej ściany wokół punktu umiejscowionego w jej dolnej podstawie (lub niżej). Uzupełnieniem metody Caquota-Kerisela jest zastosowana w BS 8002 [46] metoda Kerisela-Absi, w której to współczynniki parcia czynnego K_a i biernego K_p pobierane są z bazy danych. Metoda Sokołowskiego zakłada łukowe powierzchnie poślizgu i umożliwia obliczanie obciążenia parciem gruntów jednorodnych, uwarstwionych, sypkich i spoistych ścian nieodkształcalnych.

Należy dodać, iż opisane powyżej hipotezy/metody stanowią bazę do wyznaczania wartości obciążenia parciem gruntu uwzględniających m.in.:

- a. podatność podpory [47], [48], [49],
- b. charakter przesunięcia/obrotu ściany [50], [51],
- c. zmienność cech gruntu [52],
- d. prędkość odkształcenia [53].

Jak ważne jest właściwe oszacowanie charakteru przesunięcia/obrotu ściany i jak może ono wpływać na szacowanie obciążenia parciem gruntu i położenie jego wypadkowej zaprezentowano na Rys. 4.6.

Rys. 4.6 Schematy obciążenia parciem gruntu i położenia jego wypadkowej w zależności od punktu obrotu/przesunięcia ściany nieodkształcalnej [51].

Bezsprzecznym jest, iż w przypadku przemieszczenia podpory (ściany) wokół osi innej niż umiejscowionej w jej podstawie następuje zmniejszenie wartości obciążenia parciem gruntu u podstawy ściany. Biorąc jednak pod uwagę zmianę położenia wypadkowej parcia gruntu jak i wartość samej wypadkowej, wartość momentu wywracającego może przekraczać o ponad 100% wartość założoną na etapie projektowania. O tym jak wystąpienie takiego stanu jest niebezpieczne dla nośności/stateczności obiektu nie trzeba raczej nikogo przekonywać. Podsumowując należy wskazać, iż pomimo istnienia wielu hipotez, modeli (ważnych dla np. ścian oporowych) nie uwzględniają one założeń wynikających ze specyfiki obiektów Zintegrowanych. Metody Coulomba, Rankina, Caquota-Kerisela, Kerisela-Absi, Jamesa-Bransby, Sokołowskiego umożliwiają obliczenie obciążenia parciem gruntu lecz dla konkretnej, z reguły maksymalnej, wartości przemieszczenia/obrotu podpory. Metody te jednak nie podają propozycji szacowania wartości obciążenia parciem gruntu z uwagi na zmiany właściwości zasypki przypodporowej wynikłe z cyklicznych ruchów konstrukcji (skrócenie/wydłużenie). Tym samym opieranie obliczeń obciążenia parciem gruntu na założeniach w/w metod może powodować jego nieokreślone przeszacowanie (w przypadku przyjęcia parcia biernego) lub niedoszacowanie (w przypadku przyjęcia parcia czynnego).

Mając na uwadze powyższe zasadnym stał się dalszy przegląd metod szacowania wartości obciążenia parciem gruntu dedykowanych dla obiektów Zintegrowanych/Pół-zintegrowanych. Przegląd taki został przeprowadzony w Rozdziale 4.4.

4.3 Podstawy obliczania obciążenia parciem gruntu

Podstawowe równanie do obliczania obciążenia parciem gruntu ma postać (4.26):

$$e = K * \gamma * H \tag{4.26}$$

gdzie:

e – jednostkowe obciążenie parciem gruntu [$\frac{kN}{m^2}$],

K – ogólny współczynnik parcia gruntu (czynnego, spoczynkowego, pośredniego, biernego), [-],

 γ – jednostkowe obciążenie parciem gruntu [$\frac{kN}{m^3}$].

Analiza (4.26) wskazuje, iż na obliczeniową wartość obciążenia parciem gruntu wpływ ma współczynnik parcia gruntu *K* (Rozdział 4.3.1), ciężar objętościowy gruntu γ (Tabela 4.3) a zwłaszcza wysokość *H* podpory skrajnej. Określenie "zwłaszcza" wynika z tego, iż w ogólnych wzorach na wartość momentu zginającego pochodzącego od obciążenia parciem gruntu wysokość podpory występuje w postaci czynnika do potęgi trzeciej (4.27).

$$M_{zg} = \Omega * K * \gamma * H^3 \tag{4.27}$$

gdzie:

Mzg - ogólny moment zginający w podporze od obciążenia parciem gruntu [kNm],

 Ω - współczynnik ogólny określający wpływ schematu statycznego podpory na wartość momentu zginającego od obciążenia parciem gruntu [-].

Należy w tym miejscu przypomnieć, iż zgodnie z ustaleniami z Rozdziału 3 wzrost wysokości podpór (skrajnych) wpływa negatywnie na charakter i zasięg uszkodzeń występujących w nawierzchni na dojeździe do obiektów Zintegrowanych/Pół-zintegrowanych.

4.3.1 Analiza wartości współczynników parcia gruntu, jako wstęp do wyznaczania wartości obciążenia parciem gruntu obiektów Zintegrowanych i Pół-zintegrowanych

Jednym ze składowych (4.26) jest współczynnik K, którego wartość dla obiektów Półzintegrowanych, niekiedy również dla Zintegrowanych, może się zawierać pomiędzy wartością minimalną tj. K_a (współczynnik parcia czynnego), poprzez K_o (współczynnik parcia spoczynkowego), aż do wartości maksymalnej tj. K_{ρ} (współczynnik parcia biernego). Pomimo, iż opisane w Rozdziale 4.2 metody szacowania obciążenia parciem gruntu nie oddają w pełni specyfiki obiektów Zintegrowanych/Pół-zintegrowanych, to same wartości współczynników są składnikami obiektów wzorów wyznaczanie obciążenia na parciem gruntu Zintegrowanych/Pół-zintegrowanych. Dodatkowo w przypadku, gdy kąt tarcia gruntu o ścianę δ = 0, współczynniki parcia czynnego K_a wyznaczone według trzech najbardziej znanych metod tj. Coulomba, Rankina, Caquota-Kerisela są sobie równe. W przypadku zaś, gdy kąt tarcia gruntu o ścianę δ > 0, współczynnik parcia czynnego K_a wyznaczony według metody Rankina jest większy niż porównywalne ze sobą wartości Ka wyznaczone wg metody Coulomba czy też Caquota-Kerisela. Co ciekawe wraz ze wzrostem kąta tarcia wewnętrznego δ następuje zbliżanie się wartości współczynnika Ka wyznaczonych według teorii Coulomba i Caquota-Kerisela.

Współczynniki parcia biernego K_{ρ} , podobnie jak dla K_{α} , w przypadku, gdy kąt tarcia gruntu o ścianę $\delta = 0$, wyznaczone według trzech metod: Coulomba, Rankina, Caquota-Kerisela są sobie równe. W przypadku zaś, gdy kąt tarcia gruntu o ścianę $\delta > 0$, współczynnik parcia biernego K_{ρ} wyznaczony według metody Rankina jest mniejszy niż wyznaczony wg metody Coulomba. Dlatego też współczynniki parcia biernego wyznaczone wg metody Rankina nie są zalecane do stosowania z uwagi na niebezpieczeństwo niedoszacowania obciążenia parciem gruntu. Z drugiej zaś strony w przypadku, gdy kąt tarcia wewnętrznego gruntu $\phi > 40^{\circ}$ i kąt tarcia gruntu o ścianę $\delta = \phi$, współczynniki parcia biernego wyznaczone wg metody Coulomba są niewspółmiernie wysokie. Dlatego też gdy $\phi > 40^{\circ}$ a $\delta = \phi$ współczynniki parcia biernego wyznaczone wg metody Coulomba nie są zalecane do stosowania z uwagi na niebezpieczeństwo przeszacowania nośności gruntu lub zmniejszenie ekonomiki konstrukcji. Za bezpieczną granicę stosowalności metody Coulomba do wyznaczania współczynnika parcia biernego, proponuje się uznawać miejsce, gdy kąt tarcia wewnętrznego $\delta \le 50\%$ od wartości kąta tarcia gruntu o ścianę ϕ . Proponowany punkt jest granicą umowną, kiedy to wartości K_p wyznaczone wg metody Caquota-Kerisela i Coulomba są zbliżone.

Przeprowadzenie analizy pozwoliło również na wyodrębnienie następujących sposobów (Tabela 4.1) określania współczynnika *K* tj.:

- a) wartość współczynnika K wyznacza się na podstawie cech gruntu bez podania wartości minimalnej - dotyczy części wytycznych dla K_a lub K_o;
- b) wartość współczynnika K wyznacza się na podstawie cech gruntu z podaniem wartości minimalnej - dotyczy części wytycznych dla K_a;
- c) wartość współczynnika *K* przyjmuje się jako stałą dla danego rodzaju gruntu dotyczy części wytycznych dla *K*_a; *K*_p;
- d) wartość współczynnika wyznacza się na podstawie cech gruntu bez podania wartości minimalnej - dotyczy części wytycznych dla K_a; K_o; K_p.

Kraj (Stan)	Uwagi	<i>K</i> _{<i>a</i>} [-]	$K_{a.min}$ [-]	K _{a.const} [-]	$K_o[-]$	$K_{o.const}[-]$	$K_p[-]$	$K_{p.const}[-]$
England [54]							2,4-6,1	
Hoppe [55], [56]							6,2-11,9	
Illinois [100]			0,300					
Iowa [19]			0,299					
Kalifornia [118]f		0,260 ^f			0,412 ^f			
Main [2]	Piasek			0,274				
Iviani [∠]	Żwir			0,254				
Missouri [19]			0,375				3,85 ^f	
Dolska [74]	Żwiry i pospółki	0,198g			0,656 ^g		5,04 ^g	
ruiska [74]	Piaski	0,260 ^f			0,630 ^f		3,85 ^f	
	Żwir			0,24		0,38		4,20
Szwecja [22]	Tłuczeń			0,29		0,46		3,39
	Piasek			0,27		0,43		3,70
Springman [36]h								6,50
Vermont [23]				0,283				
Maksimum		0,260	0,375	0,290			11,9	6,50
Minimum		0,260	0,299	0,240			2,4	3,39
Maksimum		0,375		0,460		11,9		
Minimum		0,240		0,380		2,4		
Iloraz w % Maks. / Min dla współ.		56,3%		21,1%		395,8%		
Iloraz w % Maks. / Min wartości		tj. 11,9 / 0,24 = 4 958%						

Tabela 4.1. Przykładowe wartości współczynników parcia gruntu

gdzie:

Ka.const – stały współczynnik czynnego parcia gruntu [-],

- Ka.min minimalny współczynnik czynnego parcia gruntu [-],
- Ko.const stały współczynnik spoczynkowego parcia gruntu [-],

*K*_{*p.const*} – stały współczynnik biernego parcia gruntu [-].

^f przy założeniu kąta tarcia wewnętrznego 36°

^g przy założeniu kąta tarcia wewnętrznego 42°

^h wyniki badań 1<*K*_{*p*}<5; zalecane 6,5

Przeprowadzona analiza umożliwiła wykazanie (Tabela 4.1) <u>bardzo znaczących</u> różnic pomiędzy wartościami maksymalnymi i minimalnymi, w szacowaniu wartości współczynnika *K*, dochodzących dla:

- a. współczynnika parcia czynnego K_a do ~ 56%,
- b. współczynnika parcia spoczynkowego K_o do ~ 21%,
- c. współczynnika parcia biernego K_p do ~ <u>396</u>%.

Jednocześnie należy podnieść, iż najmniejszą zmienność wykazuje współczynnik K_o , zaś największą zmienność współczynnik K_p . Należy zwłaszcza podkreślić, iż stosunek wartości maksymalnego współczynnika (parcie bierne - K_p) do współczynnika minimalnego (parcie czynne K_a) może różnić się blisko **50** krotnie.

Uzyskane w niniejszym Rozdziele informacje potwierdzają <u>konieczność</u> wypracowania metod kształtowania obiektów Zintegrowanych/Pół-zintegrowanych w sposób minimalizujący niepewność oszacowania obciążenia parciem gruntu.

Dokonany przegląd literatury pozwolił co prawda na określenie wartości współczynników K_a , K_o , K_p lecz nie spotkano analiz obrazujących wpływ wysokości podpory, wzajemnych powiązań sztywności przęsła/podpór na wartość obciążenia parciem gruntu dla obiektów Zintegrowanych.

4.4 Metody określania obciążenia parciem gruntu obiektów Zintegrowanych i Półzintegrowanych

Specyfika obciążenia parciem gruntu obiektów Zintegrowanych/Pół-zintegrowanych polega na zmianie wartości jego obciążenia w zależności od przemieszczeń podpór/Przewieszek (Rys. 12.1). Przy przeglądzie metod określania obciążenia parciem gruntu obiektów Zintegrowanych należy odnotować propozycje [10], [57] dotyczące pomijania obciążenia parciem czynnym gruntu dla obiektów Zintegrowanych czy też wskazywania wartości współczynnika parcia gruntu K = 1 w przypadku niskich ścian konstrukcji. Z drugiej zaś strony w literaturze spotyka się zalecenia przyjmowania trójkątnego wykresu naprężeń i współczynnika K jako równego K_p [58]. Niemniej najczęściej stosowane propozycje dotyczące szacowania zmian wartości obciążenia parciem gruntu pomiędzy parciem spoczynkowym a biernym w wyniku przemieszczeń konstrukcji bazują na badaniach Springmana [36]. Badania te wykazały szybki przyrost wartości obciążenia parciem gruntu podczas początkowych cyklów przemieszczeń konstrukcji.

Również na podstawie badań Springmana [36] zaproponowano w [10] obliczanie wartości obciążenia parciem gruntu podpór Zintegrowanych obiektów ramowych wg (4.28):

$$K_R^* = (\Delta / 0.05H)^{0.4} K_{p \, ang} \tag{4.28}$$

gdzie:

 $K_{p ang}$ – współczynnik biernego parcia gruntu wg [10], [-],

 K_R^* – współczynnik pośredniego parcia gruntu dla podpór Zintegrowanych obiektów ramowych wg [10], $\geq 0.6 \text{ i} \geq K_{p \text{ ang}}/3$, [-],

 Δ – przemieszczenie poziome góry podpory [m].

Rys. 4.7 Wykres "kopertowego" obciążenia parciem gruntu na podpory Zintegrowanych obiektów ramowych [10]

Opierając się na (4.27) możemy obliczyć wartość parcia pośredniego jak i parcia spoczynkowego gruntu wg (4.29) i (4.30):

$$e_{angR} = \gamma_{ang} H K_R^* = H \gamma_{ang} \left(\Delta / 0.05H \right)^{0.4} K_{p ang}$$

$$\tag{4.29}$$

$$e_{o \ ang} = \gamma_{ang} \ H \ K_{o \ ang} \tag{4.30}$$

gdzie:

 e_{angR} – jednostkowe pośrednie parcie gruntu wg [10] dla podpór Zintegrowanych obiektów ramowych $[\frac{kN}{m^2}]$,

 $e_{o ang}$ – jednostkowe spoczynkowe parcie gruntu wg [10], [$\frac{kN}{m^2}$], $K_{o ang}$ – współczynnik spoczynkowego parcia gruntu wg [10], [-],

 γ_{ang} – ciężar gruntu wg [10], [$\frac{kN}{m^3}$].

Dla przęseł z Przewieszką (Rys. 12.1) wprowadzonych w nasyp norma [10] proponuje obliczanie współczynnika parcia pośredniego wg (4.31):

$$K^*_{wsp.ang} = K_{o ang} + (\Delta / 0.025H)^{0.4} K_{p ang}$$
(4.31)

gdzie:

 $K^*_{wsp.ang}$ – współczynnik pośredniego parcia gruntu wg [10] dla przęseł z Przewieszką [-].

England [54] dla podpór obiektów Zintegrowanych utwierdzonych w gruncie zaproponował sposób, przyjęty następnie m.in. w [10], obliczania współczynnika parcia pośredniego wg (4.32):

$$K^*_{sc} = K_{o \ ang} + (\Delta / 0.03H)^{0.6} K_{p \ ang}$$
(4.32)

gdzie: K_{sc}^* – współczynnik pośredniego parcia gruntu wg [10] dla podpór utwierdzonych w gruncie [-].

Rys. 4.8 Wykres "kopertowego" obciążenia parciem gruntu dla utwierdzonych w gruncie podpór obiektu Zintegrowanego [10]

England [54] podniósł ponadto, iż jeśli sposób odwzorowania naprężeń (wykres kopertowy) można uznać za prawidłowy to przyjmowanie współczynnika parcia pośredniego na poziomie co najmniej 33% wartości *K*_{p ang} jest bardzo zachowawcze.

Z kolei wytyczne [22] zakładają liniową zmianę obciążenia pośredniego parciem gruntu Zintegrowanych obiektów ramowych według (4.33), (4.34) i Rys. 4.9, tj.:

$$e_{szw.} = K_{o\ szw} * z * \gamma + \varDelta e_{szw.}$$

$$\tag{4.33}$$

$$\Delta e_{szw.} = 600 * \gamma_{szw} * z * \Delta / H \tag{4.34}$$

gdzie:

 $e_{s_{ZW.}}$ – jednostkowe pośrednie parcie gruntu wg [22] dla Zintegrowanych obiektów ramowych [$\frac{kN}{m^2}$],

Ko szw – współczynnik spoczynkowego parcia gruntu wg [22], [-],

 $\Delta e_{s_{ZW}}$ – dodatkowe obciążenie parciem gruntu wg [22], [$\frac{kN}{m^2}$],

z – głębokość wyznaczania obciążenia parciem gruntu [m].

Rys. 4.9 Prezentacja położenia wypadkowych obciążenia parciem gruntu wg [22]

Dla przęseł z Przewieszką (Rys. 12.1) wprowadzonych w nasyp wytyczne [22] zakładają liniową zmianę obciążenia parciem gruntu zaś jego wartość polecają obliczać wg (4.35)-(4.39):

$$e_{wsp.szw} = K^*_{wsp.szw} z \gamma_{szw} + \Delta e_{wsp.szw}$$

$$\tag{4.35}$$

$$\Delta e_{wsp.szw} = 600 \ \gamma_{szw} \ z \ \Delta / h_{wsp} \tag{4.36}$$

gdzie:

 $e_{wsp \cdot szw}$ – jednostkowe pośrednie parcie gruntu dla przęseł z Przewieszką wg [22], $\left[\frac{kN}{m^2}\right]$,

*h*_{wsp} – wysokość przewieszki [m],

 $K^*_{wsp.szw}$ – współczynnik pośredniego parcia gruntu dla przęseł z Przewieszką wg [22], [-],

K_{p szw.} – współczynnik biernego parcia gruntu wg [22], [-],

a.
$$K^*_{wsp.szw} = K_{o\ szw}$$
; gdy $\Delta = 0$ (4.37)

b.
$$K^*_{wsp.szw} = K_{o\ szw} + c_1 \, \varDelta \frac{200}{h_{wsp}} \left(K_{p\ szw} - K_{o\ szw} \right) \quad ; \text{gdy } 0 < \varDelta < h_{wsp} \, / \, 200$$
 (4.38)

c.
$$K^*_{wsp.szw} = K_{o\ szw} + c_1 (K_{p\ szw.} - K_{o\ szw})$$
; gdy $\Delta \ge h_{wsp}/200$ (4.39)

gdzie:

- c1 współczynnik korekcyjny wg [22] równy:
- 1 w przypadku niekorzystnego odziaływania obciążenia parciem gruntu [-],
- 0,5 w przypadku korzystnego odziaływania obciążenia parciem gruntu (np. podpory pośrednie), [-],

 $\Delta e_{wsp.szw}$ – dodatkowe obciążenie parciem gruntu wg wytycznych [22] dla przęseł z Przewieszką [$\frac{kN}{m^2}$].

Eurokod 7 [59] proponuje obliczanie współczynnika pośredniego obciążenia parcia gruntu przy założeniu, iż 50% wartości współczynnika uzyskuje się przy ~20% przemieszczeniu konstrukcji wymaganym do uzyskania obciążenia parciem biernym.

Rys. 4.10 Przemieszczenie konstrukcji konieczne do wywołania biernego parcia gruntu według [59] (linia B) oraz wytycznych [60] (linia A)

Podejście to podważono w wytycznych [60]. Podstawą do takiego stwierdzenia były prace Hamblego [61], w których oszacowano przesunięcie ⊿ konieczne do wywołania obciążenia parciem biernym gruntu konstrukcji na poziomie niższym o kilkadziesiąt % (Rys. 4.10) niż założono w [59]. Eurokod 7 [59] dopuszcza "…liniowe wyznaczanie efektywnego czynnego parcia gruntu pomiędzy stanem spoczynku i stanem granicznym…". Taki sposób obliczania parcia gruntu dla obiektów Zintegrowanych został potwierdzony m.in. w pracach Diclei [62], [63].

Należy jednak zwrócić uwagę na problemy związane z wyznaczaniem obciążenia parciem gruntu wg [59], opisane w [64] a dotyczące przeszacowania, zwłaszcza dla gruntów spoistych, wartości biernego parcia gruntu. Kształtowanie się "kopertowego" wykresu naprężeń w gruncie potwierdził Horvath [65] który udowodnił również (na bazie badań), iż po 4 cyklach przemieszczania się konstrukcji współczynnik pośredniego parcia gruntu K^* wzrasta o ~80%. Dodatkowo Kerokoski [57] wniósł o zwiększenie wartości współczynnika K_p do wartości 10 przy przemieszczeniu równym 1% *H* oraz przedstawił propozycję stosowania minimalnej wartości $K^* \ge K_p/3$. Kerokoski [57] potwierdził również kształtowanie się "kopertowego" wykresu obciążenia parciem gruntu dla Zintegrowanych obiektów inżynierskich.

4.5 Spostrzeżenia dotyczące obliczeniowych wartości ciężaru gruntu i betonu

Przy rozpatrywaniu obciążeń działających na konstrukcje inżynierskie jak i adaptacji zagranicznych rozwiązań konstrukcyjnych, należy pamiętać o różnicach dotyczących przyjmowania ciężaru betonu i gruntu. Dokonany przegląd pozwolił na uzyskanie wiedzy o wymiernych różnicach w przyjmowaniu ciężarów dochodzącychⁱ, w przypadku ciężaru betonu do 14,4% (Tabela 4.2) a gruntu do 29,4% (Tabela 4.3). Należy wskazać, iż różnice wartości ciężarów betonu i gruntu są znacznie powyżej liczbowych wartości z wytycznych [66]^j dopuszczających 5% przekroczenie naprężeń w konstrukcji czy też opinii z [67] o braku konieczności weryfikacji wymiarów konstrukcji w przypadku różnicy pomiędzy wymiarami wstępnymi i końcowymi ≤ 5%.

Kraj (Stan)	Ciężar betonu [^{kN} / _{m³}]
Illinois [68]	23,6
Missouri [69]	23,6
Polska [21]	27,0
Polska [70]	25,0
Szwecja [22]	24,0
Waszyngton [71]	25,1
Minimalne	23,6
Maksymalne	27,0
Różnica w % Maks. / Min.	14,4%

Tabela 4.2. Przykładowe wartości ciężaru betonu występujące w wytycznych

¹ w porównaniu do wartości minimalnych

^J punkt 2.8

Kraj (Stan)	Rodzaj gruntu	Ciężar gruntu $\gamma \left[\frac{kN}{m^3}\right]$	
Illinois [100]k		18,8	
Kalifornia [72]		18,9	
Maine [2]	piasek zagęszczony	20,4	
	żwir z dokopu	21,2	
Missouri [73]		18,9	
Polska [74]l	Żwiry i pospółki (mało wilgotne)	18,5	
	Piaski grube i średnie – mało wilgotne	18,0	
	Żwiry i piasek (składowany luzem)	17,5	
Ohio [107]m		18,9	
Szwecja [22]	Żwir	19,0	
	Tłuczeń	17,0	
	Piasek	18,0	
Vermont [23]		22,0	
	Maksimum	22,0	
	Minimum	17,0	
	Różnica w % Maks. / Min.	29,4%	

Tabela 4.3. Przykładowe wartości ciężaru gruntu występujące w wytycznych

4.6 Podsumowanie analiz propozycji przyjmowania obciążenia parciem gruntu obiektów Zintegrowanych i Pół-zintegrowanych

Podsumowując należy wskazać, iż pomimo istnienia wielu hipotez, modeli właściwych dla np. ścian oporowych, <u>nie można</u> ich wprost zastosować do obliczania obciążenia parciem gruntu dla obiektów Zintegrowanych/Pół-zintegrowanych. Metody Coulomba, Rankina, Caquota-Kerisela, Kerisela-Absi, Jamesa-Bransby, Sokołowskiego stosowane do szacowania obciążenia parciem gruntu, umożliwiają obliczenie obciążenia parciem gruntu dla konkretnej, z reguły maksymalnej, wartości przemieszczenia/obrotu podpory. Opisywane metody nie uwzględniają jednak zmiany wartości jak i położenia wypadkowej parcia gruntu z uwagi na zmiany właściwości zasypki wynikłe z cyklicznych ruchów podpór/konstrukcji.

Dopiero propozycje Springmana [36], Englanda [54] umożliwiły lepsze szacowanie wartości obciążenia parciem gruntu obiektów Zintegrowanych/Pół-zintegrowanych, co czyni je bazą do bezpiecznego, trwałego i ekonomicznego projektowania.

Analiza propozycji przyjmowania obciążenia parciem gruntu obiektów Zintegrowanych i Półzintegrowanych pozwoliła również na wskazanie, iż na wartość obciążenia parciem gruntu wpływ ma przede wszystkim wysokość podpór, dalej wartość współczynnika *K* a na końcu zmienność, dochodząca do 29,4% ⁿw przyjmowaniu ciężaru gruntu.

^k zalecenie dla wszystkich gruntów w przypadku braku szczegółowych danych ¹ przyjęto wartości średnie

^m zalecenie dla wszystkich gruntów w przypadku braku szczegółowych danych

ⁿ w porównaniu do wartości minimalnych

Udowodniono, iż stosunek współczynnika *K* pomiędzy wartościami maksymalnymi i minimalnymi, dochodzi dla:

- a. *K_a* do ~ 56%.
- b. *K*_o do ~ 21%.
- c. *K_p* do ~ **396**%.

Wykazano również, iż stosunek współczynnika parcia biernego K_p do wartości współczynnika parcia czynnego K_a może różnić się nawet **50** krotnie, co ma bardzo istotne znaczenie w projektowaniu obiektów Zintegrowanych.

Wobec znacznych rozpiętości w szacowaniu obciążenia parciem gruntu koniecznym jest dalsza analiza wpływu parametrów podpór/przęsła tj. wzajemnych relacji sztywności, na wartości sił wewnętrznych od obciążenia parciem gruntu. Analiza taka została przeprowadzona w Rozdziale 11.

5. CHARAKTERYSTYKA USZKODZEŃ ZINTEGROWANYCH i PÓŁ-ZINTEGROWANYCH OBIEKTÓW INŻYNIERSKICH

5.1 Wprowadzenie

W Rozdziale przeanalizowano uszkodzenia Zintegrowanych i Pół-zintegrowanych obiektów inżynierskich, które były projektowane i wykonywane na przestrzeni kilkudziesięciu lat. Przegląd uszkodzeń ma pozwolić na wskazanie miejsc newralgicznych z punktu widzenia nośności (bezpieczeństwa) i trwałości poszczególnych elementów obiektów.

5.2 Analiza uszkodzeń wybranych obiektów Zintegrowanych i Klasycznych wybudowanych w Polsce przed 1989 r.

Na autostradzie A2 pomiędzy Wrześnią (węzeł Września) a Koninem (węzeł Modła) wybudowano w latach 1975-1989 kilkadziesiąt obiektów inżynierskich (Tabela 14.1, Rys. 14.1, Rys. 14.2) wg systemu norm mającego swój początek w latach pięćdziesiątych aż do lat osiemdziesiątych XX wieku tj. m.in.: norm [75], [76], [77], [78], [79], [80], [81], [74]. Wartości obciążeń działających na konstrukcję określano wg normy PN-66/B-02015 [82] lub normy PN-85/S-10030 [21].

Wśród opisywanych obiektów można wydzielić:

- a) 4 obiekty Klasyczne (dalej "KL") o numeracji WA38KL, WA39KL, WD66KL, WD77KL
 tj. wiadukty autostradowe, wiadukty autostradowe.
- b) 27 obiektów Zintegrowanych (wiadukty drogowe, mosty autostradowe, przejazdy gospodarcze) o numeracji: WD41, MA42, WD43, WD45, WD46, WD47, WD49, WD51, MA52, WD53, WD55, WD56, MA57, WD58, WD59, WD60, WD61, WD62, WD63, WD64, PG67, WD69, WD70, PG71, WD72, WD74, WD75.

Przeprowadzone w roku 1996 [83] (po 7-19 latach użytkowania obiektów) i 2001 (po 12-26 latach użytkowania obiektów) przeglądy [84] opisywały m.in. następujące uszkodzenia obiektów:

- 1. Spękania poprzeczne jezdni w nawierzchni na końcach obiektu (Rys. 5.1).
- 2. Zacieki na wspornikach podchodnikowych.
- 3. Skorodowane gzymsy.
- 4. Uszkodzenia otuliny zbrojenia podpór.
- 5. Rysy i zawilgocenia w strefie przypodporowej słupów.
- 6. Lokalne zawilgocenia płyty i przecieki między belkami.

- 7. Odsłonięte strzemiona belek.
- 8. Zarysowania oczepu.
- 9. Zawilgocenia oczepu.
- 10. Zawilgocenia słupów.
- 11. Uszkodzenia otuliny prętów na wspornikach.
- 12. Zarysowania na połączeniu skrzydełek i podpór skrajnych.
- 13. Nieszczelności bitumicznych przykryć dylatacyjnych lub urządzeń dylatacyjnych.

Na podstawie analizy uszkodzeń (Tabela 14.2, Rys. 5.1, od Rys. 14.1 do Rys. 14.5) można stwierdzić, iż ogólne uszkodzenia obiektów Zintegrowanych były **takie same** jak Klasycznych. Należy zaznaczyć, iż na obiektach nie zostały wykonane płyty przejściowe. Charakterystycznym uszkodzeniem, które możemy przypisać obiektom Zintegrowanym było prostopadłe zarysowanie (uskok) w nawierzchni w okolicach końców obiektu (Rys. 5.1). Brak właściwej reakcji utrzymaniowej na powstałe uszkodzenie powodował degradację przyległego rejonu nawierzchni a niekiedy wymywanie nasypu. Analiza uszkodzeń **nie** wykazała zależności tego uszkodzenia (zarysowania) od rodzaju posadowienia podpór (pośrednie, bezpośrednie).

Rys. 5.1 Przykład uszkodzenia obiektów inżynierskich na odcinku autostrady A2 Września – Konin (spękania poprzeczne nawierzchni) [83]

Opisywane obiekty zostały poddane w roku 2001 modernizacji celem spełniania warunków Umowy Koncesyjnej pomiędzy Skarbem Państwa a Koncesjonariuszem. Uszkodzenia obiektów po modernizacji były przedmiotem odrębnej analizy na bazie dokumentów udostępnionych przez Autostradę Wielkopolską jak i przeglądów własnych autora z lat 2001-2019 (Załączniki 14.2. i 14.3). W wyniku analizy wyodrębniono następujące, mające związek z konstrukcją, uszkodzenia obiektów:

 Spękania nawierzchni na dojazdach do obiektów/spękania asfaltu (w rejonie skrzydełek).

- 2. Spękania na dojazdach do obiektów (poza rejonem skrzydełek).
- 3. Deformacje bitumicznych przykryć dylatacyjnych i/lub "wyciąganie" masy bitumicznej.
- 4. Nieszczelności bitumicznych przykryć dylatacyjnych/urządzeń dylatacyjnych.
- 5. Zacieki i przebarwienia na belkach podporęczowych i gzymsach związane z nieszczelnościami bitumicznych przykryć dylatacyjnych lub urządzeń dylatacyjnych.
- 6. Zarysowania na połączeniu podpór skrajnych i skrzydełek.
- 7. Zarysowania oraz wykwity na skrzydełkach.
- 8. Degradacje spoinowań krawężników w okolicach podpór skrajnych.

Zwraca się uwagę, iż problemy z bitumicznymi przykryciami dylatacyjnym, urządzeniami dylatacyjnymi czy też spękaniami w nawierzchni na dojazdach występowały w **znacznie większym stopniu** na obiektach Klasycznych (pomimo braku widocznych oznak osiadania nasypów) niż Zintegrowanych (Tabela 5.1, Tabela 5.2)

Należy dodatkowo zauważyć, iż w przypadku obiektów MA52, MA57, PG67, PG71 tj. znacznie krótszych i o ~**1-3** metrów niższych niż pozostałe, uszkodzenia nawierzchni jak i bitumicznych przykryć dylatacyjnych <u>nie nastąpiły</u> lub były <u>minimalne</u>.

Tabela 5.1. Porównanie skali problemów związanych z uszkodzeniami remontowanych obiektów Zintegrowanych i Klasycznych w obrębie bitumicznych przykryć dylatacyjnych/urządzeń dylatacyjnych na dojeździe do obiektu

Ilość obiektów Zintegrowanych z problemami w [%]					
Brak	Mały	Średni	Duży		
11%	63%	26%	0%		
Ilość obiektów Klasycznych z problemami w [%]					
Brak	Mały	Średni	Duży		
0%	0%	25%	75%		

Tabela 5.2. Porównanie propagacji problemów związanych z uszkodzeniami remontowanych obiektów Klasycznych i Zintegrowanych w obrębie bitumicznych przykryć dylatacyjnych/urządzeń dylatacyjnych na dojeździe do obiektu

Ilość obiektów Zintegrowanych z propagacją uszkodzeń w [%]					
Brak	Mała	Średnia	Duża		
7%	52%	26%	15%		
Ilość obiektów Klasycznych z propagacją uszkodzeń w [%]					
Brak	Mała	Średnia	Duża		
0%	0%	20%	80%		

Legenda:

Typ "problemów" lub "propagacji" - Małe/a; Średnie/a; Duży/a,

Pod pojęciem "problemy" rozumie się przecieki lub uszkodzenia przykryć bitumicznych, urządzeń dylatacyjnych lub nawierzchni na dojeździe do obiektu.

5.3 Analiza uszkodzeń wybranych obiektów Pół-zintegrowanych i Klasycznych wybudowanych w Polsce w latach 2003-2004

Na autostradzie A2 pomiędzy węzłem Września a węzłem Nowy Tomyśl wybudowano w latach 2003-2004 kilkadziesiąt obiektów zaprojektowanych wg systemu norm/wytycznych mającego swój początek w latach osiemdziesiątych XX wieku aż do roku 2001 tj. m.in. [85], [86], [87], [66], [88], [89], [90]. Wartości obciążeń działających na konstrukcję określano wg normy PN-85/S-10030 [21]. Wśród obiektów [91] można wydzielić:

- a) 39 obiektów Klasycznych (wiadukty drogowe, mosty autostradowe, wiadukty autostradowe) o numeracji: WD24KL, WD25KL, WD26KL, WD27KL, WD28KL, WD29KL, WD30KL, WD31KL, WD32KL, WD33KL, WD34KL, WA35KL, WD35aKL, WD36KL, WA73KL, MA74KL, WD75KL, WD76KL, WD78KL, WA79KL, WD80KL, WD81KL, WD82KL, WD83KL, WD84KL, MA85KL, WD86KL, MA87KL, MA89KL, WD90KL, WD91KL, WD92KL, WD93KL, WD94KL, WA98KL, WD99KL, WD100KL, WD103KL, WD105KL.
- b) 2 obiekty Pół-zintegrowane (wiadukty drogowe) o numeracji: WD88 [12], WD101 [11].

Szczegółową analizę uszkodzeń przeprowadzono dla dwóch nowych, Pół-zintegrowanych wiaduktów drogowych WD101 i WD88 (Załącznik 14.6).

Rys. 5.2 Wiadukt drogowy Pół-zintegrowany WD101 - widok z boku

Rys. 5.3 Wiadukt drogowy Pół-zintegrowany WD101 – widok przekroju poprzecznego

W trakcie przeglądu dokonanego wiosną roku 2005 [92], niespełna pół roku od oddania do eksploatacji, zaobserwowano m.in. następujące uszkodzenia wiaduktów drogowych WD101 [11] i WD88 [12] (Załącznik 14.7):

a) Spękania w nawierzchni na dojazdach (Rys. 5.4).

Tego typu uszkodzenie jest niezależne od typu obiektu inżynierskiego. Przyczyn tego uszkodzenia należy upatrywać w niewłaściwym zagęszczeniu warstw nasypu czy też w braku należytego wzmocnienia podłoża pod nasypem drogowym.

Rys. 5.4 Spękanie w nawierzchni na dojazdach do wiaduktu drogowego Pół-zintegrowanego WD101

 b) Pęknięcia materiału uszczelniającego na połączeniach krawężników bezpośrednio za bitumicznymi przykryciami dylatacyjnymi.

W trakcie przeglądu dokonanego wiosną roku 2007 [93], [94] tj. po dwóch i pół roku od oddania do eksploatacji zaobserwowano następujące (ważniejsze) uszkodzenia (Załącznik 14.7) Pół-zintegrowanych wiaduktów drogowych WD101 i WD88:

- a) Spękania w nawierzchni na dojazdach. Należy dodać, iż <u>nie zauważono</u> propagacji uszkodzenia.
- b) Pęknięcia materiału uszczelniającego na połączeniach krawężników bezpośrednio za bitumicznymi przykryciami dylatacyjnymi. Należy dodać, iż w ciągu dwóch lat nastąpiło jedynie <u>minimalne</u> zwiększenie uszkodzenia.
- c) Miejscowe wypłukania zasypek i szczeliny na granicy skarpy i skrzydełek na wiadukcie Półzintegrowanym WD101. Pomimo identycznych rozwiązań konstrukcyjnych, obciążeń jak i podobnych cech geometrycznych na obiekcie WD88 tego typu uszkodzenia <u>nie</u> wystąpiły.
- d) Szczeliny pomiędzy obrukowaniem stożka a ścianką zapleczną.

Wszystkie obiekty, zarówno Klasyczne jak i Pół-zintegrowane, zostały poddane dodatkowej analizie, na bazie dokumentów udostępnionych przez Autostradę Wielkopolską i przeglądów własnych autora z lat 2001-2019 (Załączniki 14.4 i 14.5), pod kątem

charakterystycznych uszkodzeń. W wyniku analizy wyodrębniono następujące, mające związek z konstrukcją, uszkodzenia obiektów:

- 1. Przecieki przykryć bitumicznych lub urządzeń dylatacyjnych.
- 2. Uszkodzenia przykryć bitumicznych lub urządzeń dylatacyjnych.
- 3. Spękania lub zarysowania nawierzchni na dojeździe do obiektu (Rys 5.5).
- 4. Osiadania nasypów.
- 5. Zarysowania podpór (częściej skrajnych), skrzydełek.
- 6. Zarysowania wsporników płyty pomostowej.
- 7. Przecieki przez podpory skrajne (skrzydełka).
- 8. Zarysowania/odspojenia otuliny na podporach lub płycie pomostowej.
- Spękania na połączeniu krawężnika i chodnika (szczeliny pomiędzy krawężnikami Rys 5.5).
- 10. Zarysowania gzymsów.
- 11. Zarysowania ciosów łożyskowych.

Charakterystycznym uszkodzeniem, które możemy przypisać obiektom Pół-zintegrowanym było prostopadłe spękanie nawierzchni umiejscowione w okolicach końców skrzydełek/płyty przejściowej czy też szczeliny na połączeniach krawężników (Rys. 5.5).

Problem związany ze spękaniem nawierzchni na dojeździe wystąpił tam gdzie zaobserwowano osiadanie nasypów, tj. dla obiektu WD101. Przykład obiektów WD88 i WD101 jest dowodem, iż w przypadku właściwego wykonania nasypu możliwym jest znaczne zredukowanie uszkodzeń nawierzchni. Dotyczy to w szczególności wnikliwego rozeznania konieczności wykonania wzmocnienia podłoża pod nasypem (zwłaszcza w klinie odłamu) czy też wykonania nasypu z wyprzedzeniem kilku tygodni/miesięcy przed wykonaniem wierzchnich warstw nawierzchni.

Rys. 5.5 Przykłady uszkodzenia wiaduktu Pół-zintegrowanego WD88

Przeprowadzenie analizy pozwoliło na przedstawienie skali uszkodzeń w obrębie bitumicznych przykryć dylatacyjnych/urządzeń dylatacyjnych czy też spękań nawierzchni na dojazdach do obiektów Klasycznych jak i Pół-zintegrowanych (Tabela 5.3).

Ilość obiektów Pół-zintegrowanych z problemami w [%]					
Brak	Mały	Średni	Duży		
0%	50 %	50 %	0%		
Ilość obiektów Klasycznych z problemami w [%]					
Brak	Mała	Średnia	Duża		
7%	25%	34%	34%		

Tabela 5.3. Porównanie skali problemów związanych z uszkodzeniami obiektów Pół-zintegrowanych i Klasycznych w obrębie bitumicznych przykryć dylatacyjnych/urządzeń dylatacyjnych na dojeździe do obiektu inżynierskiego (tylko wiadukty drogowe)

5.4 Analiza uszkodzeń Zintegrowanych i Pół-zintegrowanych obiektów inżynierskich – doświadczenia zagraniczne

Celem porównania doświadczeń ze stosowania Zintegrowanych/Pół-zintegrowanych obiektów inżynierskich w Polsce dokonano również analizy uszkodzeń obiektów wykonanych poza granicami kraju. Do charakterystycznych, najczęściej wskazywanych uszkodzeń możemy zaliczyć:

a) Uszkodzenia na połączeniu konstrukcji obiektu i nawierzchni drogi:

Występują na połączeniu konstrukcji obiektu i nawierzchni drogi (Rys. 5.6) z powodu cyklicznych ruchów konstrukcji, powodując charakterystyczny stukot przy przejeździe pojazdów. Przedmiotowe uszkodzenia są widoczne/odczuwalne zwłaszcza w zimie, zaś w lecie następuje najczęściej samoistne ich zamknięcie [95].

Rys. 5.6 Przykłady szczelin powstałych na połączeniu konstrukcji obiektu Zintegrowanego i nawierzchni drogi [95]

b) Zarysowania barier:

W rozwiązaniu stosowanym w Stanach Zjednoczonych Ameryki Północnej występują pęknięcia i zarysowania barier betonowych (Rys. 5.7). Spowodowane jest to ujemnym momentem zginającym nad podporami, na które to bariery nie zostały zaprojektowane.

Woda oraz sól penetrują powstałe pęknięcia i przyczyniają się do spadku trwałości tego elementu.

Rys. 5.7 Zarysowania barier nad podporą skrajną Zintegrowanych obiektów inżynierskich [95]

c) Pęknięcia naroży i krawężników (Rys. 5.8).

W rejonie podpór skrajnych z uwagi na małą lub całkowity brak szczeliny z powodu przemieszczeń konstrukcji następuje spękanie krawężników.

Rys. 5.8 Pęknięcia naroży i krawężników w okolicach końców Zintegrowanych i Pół-zintegrowanych obiektów inżynierskich [95]

d) Zarysowania skrzydełek i belek podłożyskowych (Rys. 5.9).

Najbardziej prawdopodobnym powodem występowania uszkodzenia są błędy związane z niedoszacowaniem obciążeń (parciem gruntu, zmian temperatury) czy też niewłaściwym rozmieszczenia zbrojenia.

Rys. 5.9 Zarysowania skrzydełek i belek podłożyskowych Zintegrowanych i Pół-zintegrowanych obiektów inżynierskich [95]

e) Spękania pali żelbetowych stanowiących oparcie podpór (Rys. 5.10).

Jest to jedno z **najbardziej niebezpiecznych** uszkodzeń. Jego lokalizacja (pod powierzchnią terenu) praktycznie uniemożliwia jego odkrycie podczas rutynowego przeglądu. Zaprezentowane uszkodzenia wystąpiły na głębokości ~90 i ~140 cm od miejsca zakotwienia w podporach skrajnych. Najbardziej prawdopodobnym powodem uszkodzenia są błędy związane z niedoszacowaniem obciążeń (np. od zmian temperatury, parciem gruntu) czy też niewłaściwym rozmieszczeniem zbrojenia. Z tego też powodu niektóre wytyczne [96], [97] **nie zalecają** stosowania pali żelbetowych przy budowie obiektów Zintegrowanych.

Rys. 5.10 Zarysowania pali żelbetowych stanowiących oparcie podpór skrajnych Zintegrowanego obiektu inżynierskiego [97]

Oprócz wyżej wspomnianych uszkodzeń raportowano spękania nawierzchni w rejonie skrzydełek czy też osiadanie nasypu.

5.5 Podsumowanie analizy uszkodzeń obiektów Zintegrowanych i Pół-zintegrowanych

Przeprowadzona analiza uszkodzeń obiektów Zintegrowanych i Pół-zintegrowanych pozwoliła na stwierdzenie, że ich uszkodzenia **nie zależą** od okresu, w jakim były projektowane, lecz wynikają z błędów popełnionych zwłaszcza na etapie projektowania i realizacji. Błędy na etapie projektowania dotyczą przede wszystkim niewłaściwych założeń dotyczących modelowania obciążenia parciem gruntu, współpracy ośrodka gruntowego na styku z podporami skrajnymi, obciążenia temperaturą a w tym przyjęcia tzw. "temperatury montażu" konstrukcji.

Najbardziej charakterystycznym uszkodzeniem, które to nie powinno być utożsamiane z obiektem, lecz z nawierzchnią, jest poprzeczne zarysowanie, rzadziej zarysowania, występujące w nawierzchni drogi w rejonie klina odłamu. W pracy wykazano, iż tego typu uszkodzenia występują również w obiektach Klasycznych, a ich pojawienie się może być również spowodowane zbyt szybkim (tj. w ciągu kilku dni/tygodni) wykonaniem nasypu czy też warstw nawierzchni. Nie stwierdzono zależności pomiędzy stosowanym rodzajem materiału na zasypki (piasek, żwir, tłuczeń) a uszkodzeniami nawierzchni. Potwierdzono, iż uszkodzenia obiektów Zintegrowanych i Pół-zintegrowanych powstają zwłaszcza w początkowej fazie ich użytkowania.

Dodatkowo stwierdzono występowanie innych uszkodzeń wpływających na trwałość konstrukcji (zarysowania belek podłożyskowych, skrzydełek) oraz **bezpieczeństwo**. Do tych ostatnich możemy zaliczyć zarysowania pali żelbetowych stosowanych jako oparcie podpór (zwłaszcza skrajnych) w obiektach Zintegrowanych.

Mając na uwadze powyższe <u>nie można potwierdzić</u> możliwości warunkowania stosowania obiektów Zintegrowanych i Pół-zintegrowanych <u>wyłącznie poprzez parametr ich długości</u>, jako środka "zaradczego" przed występowaniem uszkodzeń i sytuacji w których może nastąpić przekroczenie stanów granicznych nośności.

6. ANALIZA ROZWIĄZAŃ POŁĄCZEŃ OBIEKTÓW ZINTEGROWANYCH i PÓŁ-ZINTEGROWANYCH Z NASYPEM DROGOWYM (DOJAZDEM)

6.1 Wprowadzenie

Dokonana w Rozdziale 5 analiza uszkodzeń obiektów inżynierskich wskazuje problem spekania poprzecznego występującego na połączeniu obiektu na Zintegrowanego/Pół-zintegrowanego z nasypem (dojazdem). Pomimo podobnych odczuć użytkownika (nierówność, hałas) jak przy przejeździe przez urządzenie dylatacyjne, to właśnie ten rodzaj uszkodzeń jest wskazywany, jako powód braku możliwości zastosowania Zintegrowanego/Pół-zintegrowanego obiektu inżynierskiego. Przegląd stosowanych metod kształtowania połączenia obiektów z nasypem drogowym, ma pozwolić na ustalenie czynników wpływających na powstanie uszkodzeń czy też poprawiających współpracę obiektów z otaczającym ośrodkiem gruntowym a w konsekwencji umożliwić sformułowanie wytycznych do zwiększenia trwałości połączenia obiektu Zintegrowanego/Półzintegrowanego z nasypem drogowym (dojazdem).

6.2 Przegląd rozwiązań połączeń Zintegrowanych i Pół-zintegrowanych obiektów inżynierskich z nasypem drogowym (dojazdem)

Analiza połączeń obiektów Zintegrowanych i Pół-zintegrowanych z nasypem drogowym [98], [99], [100], [101], [102], [103], [104], [105], [106], [107], [108], [109], [110], [111], [112], [113] pozwala na przedstawienie propozycji ich podziału ze względu na:

- 1. Zastosowanie płyty przejściowej:
- z płytą przejściową,
- bez płyty przejściowej.
- 2. Sposób umiejscowienia płyty przejściowej:
- pod warstwami nawierzchniowymi,
- w poziomie nawierzchni drogowej.
- 3. Zastosowanie płyty przejściowej oraz belki podwalinowej tzw. "płyty śpiącej":
- z belką podwalinową,
- bez belki podwalinowej.
- 4. Sposób oparcia płyty przejściowej:
- zamocowaną w podporach lub płycie nośnej i ułożoną bezpośrednio na podbudowie,
- zamocowaną w podporach lub płycie nośnej i opartą na belce podwalinowej.

- 5. Sposób oparcia belki podwalinowej:
- bezpośrednio na gruncie lub podbudowie,
- na palach.
- Sposób umiejscowienia szczeliny dylatacyjnej/bitumicznego przykrycia dylatacyjnego/urządzenia dylatacyjnego w nawierzchni^o:
- w miejscu połączenia konstrukcji obiektu i płyty przejściowej,
- w miejscu połączenia konstrukcji płyt/y przejściowej i nawierzchni.
- Ukształtowanie szczeliny dylatacyjnej/bitumicznego przykrycia dylatacyjnego/urządzenia dylatacyjnego:
- Skośne,
- proste.

Omówione poniżej rozwiązania połączenia obiektów Zintegrowanych i Półzintegrowanych z nasypem drogowym pokazują wybrane zasady w nich stosowane. Szerszy opis wymagań czy też stosowanych rozwiązań opisano w ZAŁĄCZNIKU 14.8.

Wytyczne [114] przedstawiają przykładowe połączenia (Rys. 6.1 i Rys. 6.2) w przypadku występowania nawierzchni bitumicznej/betonowej z zastosowaniem bitumicznego przykrycia dylatacyjnego.

1–płyta przejściowa, 2–podbudowa sztywna, 3–nawierzchnia jezdni, 4–przekładka podatna – warstwa piasku min. 5 cm , 5-izolacja wodoszczelna, 6–zabezpieczenie antykorozyjne płyty przejściowej, 8-bolec kotwiący, 10– tuleja okrągła obejmująca bolec kotwiący, 11 – zagęszczony grunt nasypu, 12 – płyta korkowa lub styropianowa, 14–przekładka z dwóch warstw papy na włókninie – bez klejenia do elementów konstrukcji i między sobą

Rys. 6.1 Szczegół połączenia obiektu Pół-zintegrowanego z nawierzchnią wykonaną na podbudowie sztywnej [114]

^o rozwiązanie stosowane w Stanach Zjednoczonych Ameryki Północnej, gdzie płyta przejściowa jest częścią nawierzchni betonowej.

2a–podbudowa podatna, 7-masa zalewowa trwale plastyczna, 9-powłoka z PVC o grubości min. 0,5 mm, 13–warstwa wyrównawcza (B15), pozostałe opisy wg Rys. 6.1

Rys. 6.2 Szczegół połączenia obiektu Pół-zintegrowanego z nawierzchnią wykonaną na podbudowie podatnej [114]

Należy zwrócić uwagę na dużą wrażliwość połączenia na nieszczelność bitumicznego przykrycia dylatacyjnego, zwłaszcza w przypadku zastosowania przekładki podatnej z piasku (Rys. 6.1) czy też uszkodzenia krawędzi podbudowy powodowane odkształcalnością płyty korkowej, styropianowej lub papy na włókninie. Objawem niewłaściwej pracy tego elementu są uszkodzenia bitumicznego przykrycia dylatacyjnego i pojawienie się charakterystycznego uskoku.

Przykład połączenia w którym umieszcza się płyty przejściowe [115] w poziomie nawierzchni (Rys. 6.3). Rozwiązanie jest stosowane w przypadku wykonywania nawierzchni betonowych i zakłada umieszczenie w płycie przejściowej dylatacji zależnej od przemieszczeń obiektu inżynierskiego.

Rys. 6.3 Szczegół płyty przejściowej - nawierzchnia betonowa [115]

Dla obiektu Pół-zintegrowanego o długości 33,5 metra zaproponowano [116] zastosowanie na ścianie czołowej 38 centymetrowej, osłoniętej geotekstyliami, warstwy styropianu. Warstwy nawierzchni o grubości ~ 50 cm wykonano, bez płyty przejściowej, na odpowiednio ukształtowanej wnęce nad ścianką zapleczną. W rozwiązaniu należy zwrócić uwagę na jego wady (Rys. 6.4), tj. m.in.:

- możliwość przecieków wody na styku nawierzchni i płyty pomostu a dalej wymywania zasypki inżynierskiej spod nawierzchni,
- utrudnienie/zblokowanie możliwości przesuwu ścianki zaplecznej w przypadku zniszczenia łożyska,
- ewentualne niedokładności wykonawcze ścianki zaplecznej na podporach skrajnych (brak szczeliny) mogą spowodować jej oparcie na podporze, co prowadzić może do zarysowania ścianki zaplecznej jak i podpór. Dodatkowo może dojść do znaczącej zmiany charakteru obciążenia (mimośród).

Rys. 6.4 Szczegół połączenia Pół-zintegrowanego obiektu inżynierskiego z dojazdem [116]

Przy analizie rozwiązań połączenia obiektów inżynierskich z nawierzchnią (dojazdem) odrębnie rozpatrywaną sprawą jest konieczność stosowania płyty przejściowej jak i jej długość. Długość płyty przejściowej podawana jest arbitralnie i wynosi od 4,5 m, poprzez np. 6,1 m [117] do 9 metrów [118]. W innych przypadkach ustala się ją w zależności od spodziewanych przemieszczeń podpór (Tabela 14.6), ich wysokości, klasy drogi, natężenia ruchu czy też spodziewanej różnicy osiadań pomiędzy podporą skrajną a nasypem [119]. Kolejnym czynnikiem branym przy konstruowaniu połączenia obiektu z nawierzchnią drogi jest wartość zagęszczenia warstw nasypu *I*_s wahająca się od 0,90 do 1,00 (Tabela 14.7).

Należy w tym miejscu przypomnieć, iż zgodnie z ustaleniami z Rozdziału 3.3 zwiększenie zagęszczenia zasypki powoduje zmniejszenie odziaływania przemieszczeń podpór skrajnych na nawierzchnię na dojeździe do obiektu, a tym samym redukuje uszkodzenia nawierzchni. Wartym odnotowania jest również wydawanie, celem pomocy w wyborze typu połączenia z drogą, tzw. schematów decyzyjnych (Rys. 14.36).

6.3 Podsumowanie analizy rozwiązań połączeń Zintegrowanych/Pół-zintegrowanych obiektów inżynierskich z nasypem drogowym (dojazdem)

Przegląd stosowanych rozwiązań połączeń obiektów Zintegrowanych/Pół-zintegrowanych z nasypem drogowym (dojazdem) uwidocznił różnorodne podejście do tego zagadnienia. Niestety większość propozycji połączeń pomija specyfikę pracy obiektów Zintegrowanych/Półzintegrowanych a przez to ewentualna możliwość stosowania ogólnodostępnych rozwiązań jest ograniczona do obiektów o kilkumilimetrowych przemieszczeniach konstrukcji. Nie spotkano również wytycznych kształtowania połączeń uwzględniających zachowanie się zasypki i nawierzchni pod obciążeniem cyklicznym, charakterystyki podpór skrajnych czy też rozróżniania sposobu kształtowania połączenia obiektów nowych i remontowanych z nasypem (dojazdem).

Przeprowadzony przegląd połączeń obiektów Zintegrowanych/Pół-Zintegrowanych z nasypem drogowym w powiązaniu z wynikami badań dotyczącymi zachowania się zasypki za podporami skrajnymi (Rozdział 3), wiedzy dotyczącej specyfiki obciążenia parciem gruntu obiektów Zintegrowanych (Rozdział 4) jak i obserwacjami z przeglądów (Rozdział 5), wskazuje na konieczność opracowania rozwiązania poprawiającego trwałość połączenia, zmniejszającego koszt budowy, utrzymania obiektu jak i też minimalizującego negatywne odczucia (tj. uskoki, spękania w nawierzchni) użytkowników.

7. PRZEGLĄD METOD OKREŚLANIA SZYBKOŚCI KOROZJI PROFILI STALOWYCH w PODŁOŻU GRUNTOWYM

7.1 Wprowadzenie

Niniejszy Rozdział opisuje metody określania korozji przy projektowaniu podpór obiektów Zintegrowanych/Pół-zintegrowanych opartych na profilach stalowych zagłębionych w podłożu gruntowym. Uzyskana wiedza zostanie wykorzystana w Rozdziale 8 przy analizie możliwości stosowania profili stalowych, jako elementów podpór obiektów Zintegrowanych/Półzintegrowanych. Faktem jest, iż wraz z utratą grubości profili stalowych zmniejszają się cechy określające nośność, a w szczególności: powierzchnia pola przekroju profilu stalowego, jego moment bezwładności i wskaźnik wytrzymałości.

7.2 Metody określania szybkości zjawisk korozyjnych w podłożu gruntowym

Mając na uwadze zakładaną trwałość obiektu inżynierskiego dokonano przeglądu metod określania szybkości korozji profili stalowych zabudowywanych w podłożu gruntowym. Opisywana w literaturze szybkość korozji elementów stalowych w podłożu gruntowym, zależy m.in. od:

- oporności gruntu,
- zagęszczenia gruntu,
- wilgotności gruntu,
- zawartości chlorków i/lub siarczanów w gruncie,
- wartości pH gruntu,

Elias [120] i Beckham [121] proponują obliczać dodatek korozyjny na podstawie (7.1) i (7.2):

$$D_{Ksr} = K_{sr} * t^n / 1000 \tag{7.1}$$

$$D_{Kmaks} = K_{maks} * t^n / 1000 \tag{7.2}$$

gdzie:

D_{Kmaks} - maksymalny dodatek korozyjny wg [120] i [121], [mm],

D_{Kśr} – średni dodatek korozyjny wg [120] i [121], [mm],

Kmaks- stała dodatku korozyjnego maksymalnego, 50 dla stali ocynkowanej i 80 bez powłoki [µm],

 K_{sr} – stała dodatku korozyjnego średniego, 25 dla stali ocynkowanej i 40 bez powłoki [µm],

n – współczynnik korozyjny = 0,65 dla stali ocynkowanej i 0,80 bez powłoki [-],

 $t-{\sf zakładana}$ trwałość konstrukcji [lata].

Rowińska [122] zaproponowała modyfikację równań (7.1) i (7.2) w następujący sposób:

a. stała K_{maks} = K_{śr} = 22,5 dla środowiska nieagresywnego,

- b. stała $K_{maks} = K_{sr} = 40,0$ dla środowiska agresywnego,
- c. *n* = 0,67 dla środowiska nieagresywnego,
- d. n = 0,80 dla środowiska agresywnego.

Wytyczne [16], [123] podają zaś następujące wielkości ubytków:

- Powłoki cynkowej przez pierwsze dwa lata 15 [μm/rok], w trzecim i dalszych latach 4 [μm/rok].
- Stali 12 [µm/rok].

Tym samym dodatek korozyjny D_{Ksr1} proponuje się obliczać na podstawie (7.3):

$$D_{K\dot{s}rl} = K_{\dot{s}rl} * t \tag{7.3}$$

gdzie:

 $D_{K\acute{s}rl}$ – średni dodatek korozyjny wg [123], [16], [mm],

 $K_{\acute{s}rl}$ – stała dodatku korozyjnego średniego wg [123] i [16] wynosząca 12 [µm].

Identyczne zalecenia można odnaleźć w [124]. Norma [125] zaleca przyjmowanie ubytku konstrukcji stalowej na poziomie 15 μm/rok (grunt suchy) i 20 μm/rok (grunt nawodniony), zaś norma [126] kwalifikuje ubytek konstrukcji stalowej w zależności od wartości pH, zawartości chlorków oraz stanu gruntu (suchy, wilgotny) na poziomie 10-300 μm/rok.

7.3 Podsumowanie metod określania szybkości zjawisk korozyjnych profili stalowych w podłożu gruntowym

Dokonany przegląd metod określania szybkości korozji pozwolił na ustalenie metod określania utraty grubości profili stalowych zabudowywanych w gruncie na przestrzeni założonej trwałości fundamentów obiektu.

Należy jednak wskazać na wątpliwości, co do rodzaju środowiska, które mogą występować w przypadku wykorzystania istniejących nasypów. W tych przypadkach koniecznym jest wykonanie dodatkowych badań określających stopień agresywności podłoża gruntowego nie tylko wobec betonu, lecz i <u>stali</u>.

8. ANALIZA MOŻLIWOŚCI STOSOWANIA PROFILI STALOWYCH w PODPORACH OBIEKTÓW ZINTEGROWANYCH/PÓŁ-ZINTEGROWANYCH z UWAGI NA ICH KOROZJĘ w PODŁOŻU GRUNTOWYM

8.1 Wstęp

Mając na uwadze wyniki rozważań z Rozdziału 6 łączących uszkodzenia obiektów Zintegrowanych/Pół-zintegrowanych m.in. z wysokością podpór skrajnych, dokonano analizy możliwości zastosowania ogólnie dostępnych profili stalowych z uwagi na warunki korozyjne panujące w gruncie. Jednym bowiem ze sposobów ograniczania wysokości podpór skrajnych jest projektowanie obiektów w postaci tzw. "schematu amerykańskiego". Projektowanie obiektów wg "schematu amerykańskiego" {Rys. 2.3 punkt c) i e} pozwala na zmniejszenie wysokości podpory skrajnej a w przypadku konieczności wymiany obiektu umożliwia również wykorzystanie istniejącego nasypu. Wykorzystanie istniejącego nasypu zmniejsza jego osiadania a tym samym minimalizuje prawdopodobieństwo uszkodzeń nawierzchni.

Analiza jest wykonywana celem potwierdzenia/zaprzeczenia możliwości stosowania ogólnie dostępnych profili stalowych jako elementów nośnych podpór obiektów Zintegrowanych/Pół-zintegrowanych z uwagi na ich korozję w gruncie. Asumptem do sprawdzenia możliwości stosowania profili stalowych jest opisana w podrozdziale 5.4 sprawa odkrytych spękań pali żelbetowych oraz własne jednostkowe, negatywne doświadczenia autora ze stosowania łączonych prefabrykowanych pali betonowych wynikłe z błędów popełnionych podczas ich wbijania. Faktem jest ponadto, iż nawet w przypadku przekroczenia nośności profile stalowe nie doznają (w pewnych granicach) zarysowania (spękania) zmniejszającego ich trwałość, co jest kolejnym przyczynkiem do sprawdzenia możliwości ich stosowania.

8.2 Założenia i opis obliczeń

Analizie poddano 3 grupy produktów tj. profile HEA, HEB, HEM.

Jako kryterium główne przyjęto powiązanie zdolności profilu stalowego do przenoszenia odziaływań na podłoże gruntowe z jego obwodem (tarcie po pobocznicy). Pomocniczo rozważano aspekt nośności przekroju, który powiązano z powierzchnią pola przekroju profilu stalowego i wskaźnikiem jego wytrzymałości. Dlatego też wyznaczono ilość potrzebnych kilogramów stali na uzyskanie jednostki obwodu, pola powierzchni i wskaźnika wytrzymałości.

Sprawdzono również grubość półki i środnika po upływie założonego czasu użytkowania konstrukcji.

Na marginesie należy dodać, iż istnieje bezpośrednie powiązanie ciężaru profili stalowych z kosztem robót budowlanych.

Rozważano następujące, ogólnie dostępne profile:

- a) Dwuteowniki szerokostopowe HEA (300, 360, 400, 450, 500).
- b) Dwuteowniki szerokostopowe HEB (300, 360, 400, 450, 500).
- c) Dwuteowniki szerokostopowe HEM (300, 360, 400, 450, 500).

Analizę wykonano przy założeniu korozji (dla jednej strony profilu) wg (8.1) [16], [123] wynoszącej 12 [µm/rok] tj.:

$$D_{K\acute{s}rl} = K_{\acute{s}rl} * t = 12 * 100 \text{ lat} = 1,2 \text{ mm}$$
(8.1)

Szczegółowe wyniki analiz profili stalowych zawiera Załącznik 14.9.

8.3 Szczegółowe wyniki analizy możliwości stosowania profili stalowych po 100 latach od rozpoczęcia procesu korozji

Przeprowadzenie analizy (Tabela 14.8) pozwala na stwierdzenie, iż:

- A. Wszystkie profile stalowe mogą być zastosowane z punktu widzenia minimalnych grubości środników i półek po 100 latach od rozpoczęcia procesu korozji. Jednak w przypadku np. 150 lat użytkowania obiektu lub gorszych (od typowych) pod względem korozji warunków gruntowych profile stalowe typu HEA i mniejsze od typu 360 profile HEB mogą rodzić wątpliwości, ze względu na minimalne grubości środników, co do możliwości ich zastosowania.
- B. Zmniejszenie pola przekroju A', po 100 latach od rozpoczęcia procesu korozji, jest <u>największe</u> dla profili typu HEA (Rys. 8.1) i zawiera się w granicach od -22,28% (HEA300) do -15,12% (HEA500).
- C. Zmiana pola przekroju A[´] jest <u>najmniejsza</u>, po 100 latach od rozpoczęcia procesu korozji, dla profili typu HEM (Rys. 8.1) i zawiera się w granicach od -8,18% (HEM500) do -7,83% (HEM300).

Rys. 8.1 Zmniejszenie A' dla profili stalowych po 100 latach od rozpoczęcia procesu korozji

- D. Ilość jednostek wskaźnika wytrzymałości przekroju W_y' uzyskanych z 1 kg profilu, po 100 latach od rozpoczęcia procesu korozji, jest <u>najmniejsza</u> dla profili typu HEA (Rys. 8.2) i zawiera się w granicach od 3,87 cm³ (HEA300) do 3,97 cm³ (HEA 360).
- E. Ilość jednostek wskaźnika wytrzymałości przekroju W_y uzyskanych z 1 kg profilu, po 100 latach od rozpoczęcia procesu korozji, jest <u>największa</u>dla profili typu HEM (Rys. 8.2) i zawiera się w granicach od 4,27 cm³ (HEM500) do 4,84 cm³ (HEM300).

Rys. 8.2 Ilość W_y z 1 kg profili stalowych po 100 latach od rozpoczęcia procesu korozji

- F. Ilość kg potrzebnych na 1 m² obwodu profilu, po 100 latach od rozpoczęcia procesu korozji, jest <u>największe</u> dla profili HEM (Rys. 8.3) i zawiera się w granicach od 124,4 kg (HEM500) do 130,8 kg (HEM300).
- G. Ilość kg potrzebnych na 1 m² obwodu profilu, po 100 latach od rozpoczęcia procesu korozji, jest <u>najmniejsza</u> dla profili HEA (Rys. 8.3) i zawiera się w granicach od 51,94 kg (HEA300) do 73,81 kg (HEA500).

Celem otrzymania porównywalnego, z profilami stalowymi typu HEA, wskaźnika obwodu z danej ilości kg profilu stalowego dla profili HEB powinno się uzyskać wskaźnik W_y '/ G wynoszący od 4,69 do 5,07 [cm³/kg], zaś do profili HEM wskaźnik W_y '/G

musiałby wynosić od 5,66 do 8,04 [cm³/kg]. Oczywistym jest (Tabela 14.8 kolumna ostatnia $W_{y'}/G$), iż wartości te są o wiele niższe. Wynoszą one od 4,03 do 4,18 [cm³/kg] dla profili typu HEB i od 4,27 do 4,84 [cm³/kg] dla profili typu HEM.

Rys. 8.3 Ilość kg stali na 1 m² obwodu dla profili stalowych po 100 latach od rozpoczęcia procesu korozji

8.4 Podsumowanie rozważań analitycznych możliwości stosowania profili stalowych w podporach z uwagi na ich korozję w gruncie

Analiza potwierdziła możliwość stosowania ogólnie dostępnych profili stalowych jako oparcie dla podpór obiektów Zintegrowanych. Wynika to z potwierdzenia spełnienia warunku minimalnych grubości środników i półek po 100 latach od rozpoczęcia procesu korozji. Biorąc ponadto pod uwagę, iż grubość środników/półek profili po 100 latach użytkowania jest znacznie większa niż minimalna, dłuższe okresy użytkowania konstrukcji np. 150 lat nie stanowią problemu dla większości z dostępnych profili stalowych. Niemniej dla niektórych profili w gorszych (od typowych) pod względem korozji warunkach gruntowych profile stalowe typu HEA i HEB mogą rodzić wątpliwości co do możliwości ich zastosowania. W przypadku więc dużych programów inwestycyjnych warto rozważyć uruchomienie produkcji profili stalowych o identycznych grubościach półek i środników.

Wyniki analizy pozwoliły również na wykazanie, że profile HEM pozwalają na uzyskanie <u>największej</u> ilości jednostek wskaźnika wytrzymałości przekroju po 100 latach użytkowania. Następne zaś w kolejności (tj. pod kątem uzyskania jednostek wskaźnika wytrzymałości z kilograma profilu) to profile typu HEB, zaś najmniejsze wartości ilości jednostek wskaźnika wytrzymałości przekroju z kilograma profilu uzyskuje się dla profili HEA.

Zmiana pola przekroju A[′], po 100 latach użytkowania, jest najmniejsza dla profili HEM, potem dla profili HEB, zaś największe zmniejszenia pola przekroju zachodzi dla profili HEA.

Niemniej to ilość kg stali potrzebnych na uzyskanie 1 m² obwodu profilu decyduje o najlepszej przydatności. Ilość ta, po 100 latach użytkowania, jest najmniejsza dla profili HEA, potem dla profili HEB, zaś największe zużycie materiału zachodzi dla profili HEM.

Dlatego też, pomimo tzw. "pierwszego wrażenia" o tym, iż to profile HEM są najlepsze (największa ilość wskaźnika wytrzymałości przekroju jak i najmniejsza utrata pola powierzchni przekroju po 100 latach użytkowania), proponuje się stosowanie profili HEA jako **bazowych**. W następnej kolejności proponuje się stosowanie profili HEB, a na samym końcu profili HEM.

9. ANALIZA OBIEKTÓW ZINTEGROWANYCH (RAMOWYCH) PODDANYCH OBCIĄŻENIU CIĘŻAREM WŁASNYM KONSTRUKCJI i ZMIANAMI TEMPERATUR

9.1 Wstęp

Niniejszy Rozdział zawiera analizę powiązań wartości sił wewnętrznych wywołanych obciążeniem od ciężaru własnego konstrukcji i od zmian temperatury w zależności od długości przęsła, wysokości podpór i schematu statycznego konstrukcji.

Analizy dokonano odrębnie dla obciążenia ciężarem własnym konstrukcji jak i obciążenia zmianą temperatur.

W szczególności analizowano wpływ:

- 1. zmiany sposobu podparcia (tj. z podpór sztywno-zamocowanych na podpory przegubowo-nieprzesuwne),
- 2. zmiany momentu bezwładności przęsła przy stałej sztywności podpór,
- zmiany wysokości podpór i momentu bezwładności przęsła przy stałej sztywności podpór,
- 4. zmiany sztywności podpór jak i zmiany momentu bezwładności przęsła,

na wartości sił wewnętrznych w konstrukcji.

Rozpiętości przęseł równe 10; 20; 30; 40 metrów przyjęto jako najczęściej spotykane przy konstruowaniu obiektów inżynierskich.

I tak obiekty inżynierskie o rozpiętości przęseł do 10 metrów są stosowane np. przy budowie dróg dojazdowych, lokalnych czy też zbiorczych. Obiekty inżynierskie o długości przęseł 20 metrów są stosowane np. nad drogami głównymi, głównymi przyspieszonymi lub dwutorowymi liniami kolejowymi. Obiekty o długościach przęseł 30 i 40 metrów są stosowane nad drogami ekspresowymi, autostradami przy rezygnacji z podpór w pasie rozdziału jak i przeprowadzaniu dróg nad wielotorowymi liniami kolejowymi.

Wysokości przęseł tj. 0,6 m dla długości przęsła = 10 m, 1,0 m dla długości przęsła = 20 m, 1,25 m dla długości przęsła = 30 m, 1,5 m dla długości przęsła = 40 m przyjęto z doświadczeń własnych autora lub rozwiązań katalogowych [127].

Grubości podpór 0,6 i 1,5 metra przyjęto jako graniczne, minimalne i maksymalne reprezentatywne dla obiektów inżynierskich.

Wysokości 2, 5, 8 metrów dla podpór przyjęto jako reprezentatywne dla obiektów inżynierskich. Wysokość 2 metry przyjęto dla przypadku konstruowania podpory w nasypie,

wysokość 5 metrów reprezentuje wysokość obiektu inżynierskiego przy najczęściej spotykanej skrajni 4,5 metra, zaś 8 metrowa wysokość podpory może występować np. w przypadku konstruowania obiektów o podwyższonej skrajni.

Założone rozpiętości obiektów jednoprzęsłowych i grubości podpór są zbliżone do wartości opisanych w [128].

Ciężar jednostkowy betonu przyjęto równy 25,0 $\frac{kN}{m^3}$ z zakresu 23,6-27,0 $\frac{kN}{m^3}$ (Tabela 4.2). Zakres 23,6-27,0 $\frac{kN}{m^3}$ ustalono w wyniku przeglądu wytycznych przyjmowanych do obliczeń ciężaru betonu.

Moment bezwładności J_x obrazuje przęsło w postaci sprężonej płyty pełnej (dla rozpiętości 10 i 20 metrów) i przęsła wykonanego w postaci sprężonych dźwigarów dla przęseł o długościach 30 i 40 metrów.

Przęsła o momencie bezwładności J_x5 (tj. momencie bezwładności pięć razy większym od momentu bezwładności równego J_x) sprawdzono celem uzyskania informacji jak zwiększenie momentu bezwładności przęsła wpływa na zmianę sił wewnętrznych.

Zakres zmian temperatury pracy przęsła ⊿*T*, od temperatury montażu, przyjęto jako równą 25°C. Zakres ustalono w oparciu o wyniki przeglądu wytycznych pod kątem wartości temperatur przyjmowanych do obliczeń konstrukcji inżynierskich (Tabela 2.2).

Analizowano podpory przegubowo-nieprzesuwne i sztywno-zamocowane w fundamentach. Przykładowe wykonanie podpór przegubowo-nieprzesuwnych zaprezentowano na Rys. 9.1 i Rys. 9.2.

Rys. 9.1 Przykłady podpór przegubowo-nieprzesuwnych [129]

Rys. 9.2 Schemat podpory przegubowo-nieprzesuwnej z przekładką z elastomeru

Szczegółowe informacje/wyniki obliczeń na podstawie których opracowano wnioski przedstawiono w Rozdziale 9.2 oraz w Załącznikach 14.10.1 - 14.10.5.

9.2 Założenia do obliczeń - obiekty jednoprzęsłowe

Obliczenia wykonano przy następujących założeniach:

- a) Wysokość podpór H = 2; 5; 8 m; jest zmienna dla wszystkich rozpatrywanych długości przęsła L.
- b) Grubość podpór *Gs* przyjęto równe 0,6 m lub 1,5 m dla wszystkich rozpatrywanych długości przęsła *L* oraz wysokości podpór *H*.
- c) Rozpiętość przęsła *L* = 10; 20; 30; 40 m.
- d) Wysokość konstrukcyjna przęsła h jest zmienna w zależności od rozpiętości przęsła
 - L i wynosi, dla:
 - a. h = 0,6 m (dla L = 10 m);
 - b. h = 1,0 m (dla L = 20 m);
 - c. h = 1,25 m (dla L = 30 m);
 - d. h = 1,5 m (dla L = 40 m).
- e) Moment bezwładności przęsła był obliczany dla dwóch jego wartości oznaczanych jako
 - J_x i $J_x 5$ zależnych od wysokości konstrukcyjnej przęsła i wynosi:
 - a. $J_x = 0,018 \text{ m}^4 \text{ i } J_x 5 = 0,09 \text{ m}^4 \text{ przy } h = 0,6 \text{ m};$
 - b. $J_x = 0,083 \text{ m}^4$; $J_x 5 = 0,417 \text{ m}^4 \text{ przy } h = 1,0 \text{ m}$;
 - c. $J_x = 0,163 \text{ m}^4$; $J_x 5 = 0,814 \text{ m}^4 \text{ przy } h = 1,25 \text{ m}$;
 - d. $J_x = 0,281 \text{ m}^4$; $J_x 5 = 1,406 \text{ m}^4 \text{ przy } h = 1,5 \text{ m}$.
- f) Moment bezwładności podpór jest zależny od ich grubości i wynosi, przy:
 - a. $Gs = 0,6 \text{ m}; J_x = 0,018 \text{ m}^4;$
 - b. $Gs = 1,5 \text{ m}; J_x = 0,281 \text{ m}^4;$

- g) Ciężar przęsła i podpór przyjęto jako 25,0 $\frac{kN}{m^3}$. Celem otrzymania wartości ciężaru własnego na 1 mb konstrukcji dokonano obliczeń w zależności od wysokości przęsła lub grubości podpór. Otrzymujemy więc dla:
 - a. *h* lub *Gs* = 0,6 m; ciężar własny konstrukcji wynosi 25,0 $\frac{kN}{m^3}$ * 0,6 m * 1,0 m = 15,0 $\frac{kN}{m}$;
 - b. h = 1,0 m; ciężar własny konstrukcji wynosi 25,0 $\frac{kN}{m^3}$ * 1,0 m * 1,0 m = 25,0 $\frac{kN}{m}$;
 - c. h = 1,25 m; ciężar własny konstrukcji wynosi 25,0 $\frac{kN}{m^3}$ * 1,25 m * 1,0 m = 31,25 $\frac{kN}{m}$;
 - d. *h* lub *Gs* = 1,5 m; ciężar własny konstrukcji wynosi 25,0 $\frac{kN}{m^3}$ * 1,5 m * 1,0 m = 37,5 $\frac{kN}{m}$.

h) ΔT – zakres zmian temperatury pracy przęsła od temperatury montażu, przyjęto 25°C. Schematy analizowanych konstrukcji przedstawiono od Rys. 9.3 do Rys. 9.6.

Zmienne H = 2; 5; 8 m Gs = 0,6; 1,5 m	Stale <i>L</i> = 10 m <i>h</i> = 0,6 m Zmienne <i>Jx, Jx5</i>	<i>∆T</i> = 25°C	
Rodzaj podpory			777

Rys. 9.3 Schemat Zintegrowanych konstrukcji ramowych o stałych L = 10 m, h = 0.6 m, ($\Delta T = 25^{\circ}$ C) i zmiennych *H*, *Gs*, *J_x*, *J_x*5 oraz podporach przegubowo-nieprzesuwnych lub sztywno-zamocowanych

Zmienne H = 2; 5; 8 m Gs = 0,6; 1,5 m	Stałe L = 20 m h = 1,0 m Zmienne Jx, Jx5	⊿T=25°C		
Rodzaj podpory			77	7

Rys. 9.4 Schemat Zintegrowanych konstrukcji ramowych o stałych L = 20 m, h = 1,0 m, ($\Delta T = 25^{\circ}$ C) i zmiennych *H*, *Gs*, *J_x*, *J_x*5 oraz podporach przegubowo-nieprzesuwnych lub sztywno-zamocowanych

Zmienne H = 2; 5; 8 m Gs = 0,6; 1,5 m	Stałe <i>L</i> = 30 m <i>h</i> = 1,25 m Zmienne <i>Jx, Jx5</i>	<i>∆T</i> = 25°C	
Rodzaj podpory			777

Rys. 9.5 Schemat Zintegrowanych konstrukcji ramowych o stałych L = 30 m, h = 1,25 m, ($\Delta T = 25^{\circ}$ C) i zmiennych *H*, *Gs*, *J_x*, *J_x*5 oraz podporach przegubowo-nieprzesuwnych lub sztywno-zamocowanych

Zmienne H = 2; 5; 8 m Gs = 0,6; 1,5 m	Stałe L = 40 m h = 1,5 m Zmienne Jx, Jx5	⊿T=25°C	
Rodzaj podpory			777

Rys. 9.6 Schemat Zintegrowanych konstrukcji ramowych o stałych L = 40 m, h = 1,5 m, ($\Delta T = 25^{\circ}$ C) i zmiennych *H*, *Gs*, *J_{x5}* oraz podporach przegubowo-nieprzesuwnych lub sztywno-zamocowanych

9.3 Opis obliczeń

Wartość sił wewnętrznych obliczono Metodą Elementów Skończonych w następujących punktach charakterystycznych (Rys 9.7):

- a. Punkt "0a" (podpora):
 - i. Wartość momentu zginającego oznaczono jako *M(Oa)*, [kNm].
- b. Punkt "a" (narożnik/węzeł):
 - i. Wartość momentu zginającego oznaczono jako *M(a)*, [kNm].
- c. Punkt "0,5L" (środek przęsła):
 - i. Wartość momentu zginającego oznaczono jako M(0,5L), [kNm].

Rys. 9.7 Miejsca analizy sił wewnętrznych

9.4 Omówienie wyników analizy przypadków szczególnych

Przeprowadzenie analizy pozwoliło na sformułowanie następujących wniosków:

A. Wprowadzenie podpór przegubowo-nieprzesuwnych dla podpór o najmniejszej analizowanej sztywności (tj. przy Gs = 0,6 m) w przypadku obciążenia ciężarem własnym konstrukcji powoduje:

- Zmniejszenie wartości *M(a)* od -16,76% do -2,18% dla przęsła *J_x* i od -22,62% do -6,13% dla przęsła *J_x5*, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami sztywno-zamocowanymi.
- Zwiększenie *M(0,5L)* od 3,23% do 7,86% dla przęsła *J_x* i od 1,84% do 6,97% dla przęsła *J_x5*, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami sztywno-zamocowanymi.

Z oczywistych względów wartości *M(0a)* są równe zero.

Należy podnieść niewielkie zmiany wartości *M(0,5L)* i dużą możliwość zmniejszenia momentów zginających w punkcie "a". Tym samym <u>zasadnym</u> jest stosowanie podpór przegubowo-nieprzesuwnych.

- B. Zastosowanie podpór przegubowo-nieprzesuwnych dla podpór o najmniejszej analizowanej sztywności (tj. przy Gs = 0,6 m) w przypadku obciążenia zmianami temperatur ($\Delta T = 25^{\circ}$ C) powoduje:
 - Zmniejszenie wartości *M(a)* i *M(0,5L)* od -61,73% do -31,05% dla przęsła *J_x* i od -48,34% do -34,71% dla przęsła *J_x5*, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami sztywnozamocowanymi.

Z oczywistych względów wartości *M(0a)* są równe zero.

Należy w tym przypadku podkreślić dużą możliwość regulacji wartości momentów zginających zarówno w punkcie "a" jak i "0,5*L*". Tym samym <u>zasadnym</u> jest stosowanie podpór przegubowo-nieprzesuwnych.

- C. Wprowadzenie podpór przegubowo-nieprzesuwnych wraz ze zwiększeniem sztywności podpór o około 15,6 raza (tj. przy Gs = 1,5 m) w przypadku obciążenia ciężarem własnym konstrukcji powoduje:
 - Zmniejszenie wartości *M(a)* od –2,62% do -0,06% dla przęsła J_x i od -0,30% do 8,87% dla przęsła J_x5, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami sztywno-zamocowanymi i *Gs* = 0,6 m.
 - Zwiększenie *M(0,5L)* od 0,12% do 3,98% dla przęsła J_x i od 0,49% do 6,86% dla przęsła o J_x5, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami sztywno-zamocowanymi i *Gs* = 0,6 m.

Z oczywistych względów wartości *M(0a)* są równe zero.

Mała zmienność momentów zginających jest dowodem na **brak** zasadności zwiększania sztywności (grubości) podpór.

- D. Zwiększenie wysokości podpór o 400% (tj. przy zmianie z 2 metrów na 8 metrów)
 dla podpór o minimalnej analizowanej sztywności (tj. przy *Gs* = 0,6 m) w przypadku obciążenia ciężarem własnym konstrukcji, powoduje:
 - I. Przy podporach sztywno-zamocowanych:
 - 1. Zwiększenie M(0,5L) od 30,19% do 37,10% dla przęsła J_x i od 14,71% do 34,63% dla przęsła J_x5 , w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości H = 2 m.
 - Zmniejszenie wartości *M(a)* od -5,46% do -23,36% dla przęsła J_x i od 48,53% do -37,61% dla przęsła J_x5, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości *H* = 2 m.
 - Zmniejszenie wartości *M(Oa)* od -42,10% do -20,35% dla przęsła J_x i od 61,14% do -47,43% dla przęsła o J_x5, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości *H* = 2 m.
 - II. Przy podporach przegubowo-nieprzesuwnych:
 - 1. Zwiększenie M(0,5L) od 36,03% do 40,77% dla przęsła J_x i od 13,96% do 34,40% dla przęsła J_x5 , w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości H = 2 m.
 - Zmniejszenie wartości *M(a)* od -49,20% do -25,62% dla przęsła J_x i od 66,42% do -53,54% dla przęsła o J_x5, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości *H* = 2 m.

Wnioski z analizy, z uwagi na wzrost wartości *M(0,5L)* jak i ~4 krotny wzrost zużycia materiału na podpory, stawiają <u>pod znakiem zapytania</u> zasadność zwiększania wysokości podpór dla podpór o minimalnej (analizowanej) sztywności.

E. Zwiększenie wysokości podpór o 400% (tj. przy zmianie z 2 metrów na 8 metrów) wraz ze zwiększeniem ich sztywności o około 15,6 raza (tj. przy *Gs* = 1,5 m) w przypadku obciążenia ciężarem własnym konstrukcji powoduje:

- I. Przy podporach sztywno-zamocowanych:
 - 1. Zmianę wartości M(0,5L): od zwiększenia 2,10% do 5,64% dla przęsła J_x i od zmniejszenia od -15,17% do zwiększenia o 12,08% dla przęsła o J_x5 , w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości H = 2 m i Gs = 0,6 m.
 - Zmniejszenie wartości *M(a)* od 1,10% do 3,39% dla przęsła J_x i jego zwiększenie od 8,95% do 126,04% dla przęsła o J_x5, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości *H* = 2 m i *Gs* = 0,6 m.
- II. Przy podporach przegubowo-nieprzesuwnych:
 - Zmianę wartości *M(0,5L)* od zwiększenia od 3,43% do 7,95% dla przęsła J_x i od zmniejszenia do -14,11% do zwiększenia o 16,32% dla przęsła o J_x5, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości *H* = 2 m i *Gs* = 0,6 m.
 - Zmniejszenie wartości *M(a)* od 1,80% do 4,93% dla przęsła *J_x* i jego zmiany od zmniejszenia do -16,67% do zwiększenia o 11,35% dla przęsła *J_x5*, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości *H* = 2 m i *Gs* = 0,6 m.

Biorąc pod uwagę ~sześciokrotne zwiększenie materiału na podpory <u>watpliwa</u> jest zasadność zwiększania wysokości i sztywności (grubości) podpór.

- F. Zwiększenie wysokości podpór o 400% (tj. przy zmianie z 2 metrów na 8 metrów), dla podpór o minimalnej analizowanej sztywności (tj. przy *Gs* = 0,6 m) w przypadku obciążenia zmianą temperatur (ΔT = 25°C), powoduje:
 - I. Przy podporach sztywno-zamocowanych:
 - 1. Zmniejszenie wartości M(0,5L) od -84,25% do -78,98% dla przęsła J_x i od 89,43% do -86,13% dla przęsła o J_x5 , w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości H = 2 m i Gs = 0,6 m.
 - Zmniejszenie wartości *M(a)* od -92,12% do -90,88% dla przęsła J_x i od 91,33% do -91,04% dla przęsła o J_x5, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości *H* = 2 m i *Gs* = 0,6 m.

- II. Przy podporach przegubowo-nieprzesuwnych (poza zmniejszeniem *M(Oa)* do wartości zero):
 - Zmniejszenie wartości *M(a)* i *M(0,5L)* od -87,30% do -81,41% dla przęsła J_x i od -91,60% do -88,39% dla przęsła o J_x5 w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości *H* = 2 m i *Gs* = 0,6 m.

Biorąc pod uwagę ~czterokrotne zwiększenie materiału na podpory <u>wątpliwa</u> jest zasadność zwiększania wysokości podpór.

- G. Zwiększenie wysokości podpór o 400% (tj. przy zmianie z 2 metrów na 8 metrów) wraz ze zwiększeniem ich sztywności o około 15,6 raza (tj. przy *Gs* = 1,5 m) w przypadku obciążenia zmianą temperatur (ΔT = 25°C) powoduje:
 - I. przy podporach sztywno-zamocowanych:
 - Zmniejszenie wartości *M(0,5L)* od -54,16% do -43,14% dla przęsła J_x i od 55,97% do -48,36% dla przęsła o J_x5, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości H = 2 m i *Gs* = 0,6 m.
 - 2. Zmniejszenie wartości M(a) od -83,75% do -88,11% dla przęsła J_x i od -87,01% do -79,35% dla przęsła o J_x5 , w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości H = 2 m i Gs = 0,6 m.
 - II. przy podporach przegubowo-nieprzesuwnych (poza zmniejszeniem *M(Oa)* do wartości zero):
 - Zmniejszenie wartości *M(a)* i *M(0,5L)* od -76,23% do -75,46% dla przęsła J_x i od -79,17% do -76,98% dla przęsła J_x5, w porównaniu do wartości momentów zginających dla schematów bazowych tj. z podporami o wysokości H = 2 m i Gs = 0,6 m.

Należy zawróć uwagę, iż zmniejszenie wartości momentów zginających dla podpór przy zwiększonej o 400% wysokości i zwiększeniu sztywności o ~15,6 raza (tj. zmianie grubości podpór *Gs* z 0,6 m na 1,5 m) wynosi od -88,11% do -43,14% dla przęsła J_x i od -87,01% do - 48,36% dla przęsła J_x5 . Dla podpór o minimalnej analizowanej sztywności (tj. przy *Gs* = 0,6 m) zmniejszenie wartości momentów zginających dla podpór o zwiększonej o 400% wysokości jest większe, i wynosi od -92,12% do -78,98% dla przęsła J_x i od -91,33% do -86,13% dla przęsła J_x5 . Dlatego też biorąc dodatkowo pod uwagę ~sześciokrotne zwiększenie materiału na podpory wątpliwa jest zasadność łącznego zwiększania wysokości podpór i ich sztywności (grubości).

Jednak jednym z <u>najważniejszych</u> wniosków z analizy jest zobrazowanie poziomów momentów zginających od obciążenia zmianami temperatury w odniesieniu do momentów zginających od obciążenia ciężarem własnym konstrukcji.

Wykazano (od Rys. 14.69 do Rys. 14.78), iż **najbardziej wrażliwym** miejscem na niewłaściwe oszacowanie obciążenia od zmian temperatury jest punkt "0a"^p, potem punkt "a" i dalej punkt "0,5L". Wniosek ten może tłumaczyć <u>spękania</u> pali (Rys. 5.10) wynikające z <u>niedoszacowania</u> obciążenia od zmian temperatury.

Wykazano również, iż wrażliwość konstrukcji na niewłaściwe oszacowanie obciążenia od zmian temperatury <u>zmniejsza</u> się wraz ze wzrostem długości przęsła, wysokości podpór i ich zdolności do odkształceń.

Natomiast wrażliwość konstrukcji na niewłaściwe oszacowanie obciążenia od zmian temperatury <u>zwiększa</u> się w przypadku wzrostu sztywności podpór czy też przęsła (Rys. 9.8 i od Rys. 14.69 do Rys. 14.81).

Rys. 9.8 Procentowy stosunek wartości momentów zginających w punkcie "0a" dla obiektów Zintegrowanych (jednoprzęsłowych) o rozpiętości przęsła 10-40 metrów od obciążenia temperaturą ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji przy H = 8 m

^p w przypadku podpór sztywno-zamocowanych

Największe zmniejszenie wrażliwości obiektu Zintegrowanego na niewłaściwe oszacowanie obciążenia zmianami temperatur, uzyskuje się w przypadku zwiększenia wysokości podpór w zakresie od 2 do 5 m (np. Rys. 14.71 dla L = 40 m, tj. zmiany wartości od 782% na 360% czy też 158% na 35%) niż w zakresie 5-8 m (np. Rys. 14.71 dla L = 40 m, tj. zmiany wartości od 360% na 148% czy też 35% na 19%).

Przeprowadzenie analizy pozwoliło też na wykazanie braku podstaw do zwiększania wymaganej ze względu na skrajnię wysokości podpór z punktu widzenia regulacji wartości momentów zginających w konstrukcji.

Brak podstaw do zwiększania wysokości podpór dotyczy zwłaszcza punktów:

- a. "a" dla konstrukcji o momencie bezwładności J_x;
- b. "0,5L" dla przęseł dłuższych niż 20 m (np. Rys. 14.78 dla przęsła o L = 40 m,
 tj. zmiany wartości z 3% na 1% czy też 4% na 1%).

Zestawiając wyniki analizy dla jednoczesnego działania obciążeń pochodzących od ciężaru własnego konstrukcji i zmian temperatury (przy $\Delta T = 25^{\circ}$ C) możemy zaobserwować, iż:

- 1. Najmniejsza wartość M(0,5L) występuje dla schematów, w których występują niskie podpory sztywno-zamocowane o maksymalnej sztywności (H = 2 m; Gs = 1,5 m). Należy jednak zaznaczyć, iż w rozwiązaniu tym generowane są duże wartości momentów zginających w punkcie "0a". Ponadto zwiększenie sztywności podpór o około 15,6 raza (z Gs = 0,6 m na Gs = 1,5 m) powoduje zwiększenie M(a) od 440,06% do 3402,58% (dla przęsła o J_x5) i od 37,87% do 184,82% (dla przęsła J_x).
- Najmniejsza wartość *M(a)* występuje dla schematów, w których występują wysokie podpory przegubowo-nieprzesuwne o maksymalnej analizowanej wysokości (*H* = 8 m) i minimalnej analizowanej sztywności (*Gs* = 0,6 m).
- 3. Najmniejsza wartość *M(Oa)* (wartość "zero") z przyczyn oczywistych występuje dla schematu z podporami przegubowo-nieprzesuwnymi zamocowanymi w fundamencie. Należy podnieść, znaczne zmniejszenie wpływu obciążeń od zmian temperatury, dla schematów z podporami sztywno-zamocowanymi, na wartość momentów zginających w punkcie "Oa" w przypadku:
 - a. zmniejszenia sztywności podpór i/lub,
 - b. zwiększenia wysokości podpór.
- Zmniejszenie wartości momentów zginających (tj. w odniesieniu dla schematów bazowych w których podpory mają wysokość 2 m) w punkcie "0a" w przypadku zwiększenia wysokości podpór o 400%, wynosi:

- I. od 88,1% do 91,7% dla przęsła J_x i od 82,6% do 86,1% dla przęsła J_x5 przy minimalnej analizowanej sztywności podpór tj. przy Gs = 0,6 m.
- II. od 86,4% do 94,9% dla przęsła J_x i od 81,0% do 94,2% dla przęsła J_x5 przy maksymalnej analizowanej sztywności podpór tj. przy Gs = 1,5 m.

Można zauważyć większe korzyści z ewentualnego zwiększania wysokości podpór w przypadku stosowania przęseł o momencie bezwładności J_x (zmniejszenie wartości momentów zginających następuje w przedziale 86,4%-94,9%) niż przęseł o momencie bezwładności J_x5 (zmniejszenie wartości momentów zginających następuje w przedziale 81,0%-94,2%).

Wadą jednak tego rozwiązania jest ~czterokrotne zwiększenie ilości materiału na wykonanie podpór z uwagi na wzrost o 400% wysokości podpór.

- 5. W przypadku zmniejszenia sztywności o 93,6% dla podpór sztywno-zamocowanych (tj. przy *Gs* = 0,6 m, zamiast *Gs* = 1,5 m), zmniejszenie wartości momentów zginających w punkcie "0a" wynosi od 76,0% do 93,5 dla przęsła *J_x* i od 44,4% do 89,7% dla przęsła *J_x5*. Tutaj również można zauważyć większe korzyści ze zmniejszania sztywności (grubości) podpór w przypadku stosowania przęseł o momencie bezwładności *J_x* (zmniejszenie wartości momentów zginających następuje w przedziale 76,0%-93,5%) niż przęseł o momencie bezwładności *J_x5* (zmniejszenie wartości momentów zginających następuje w przedziale 76,0%-93,5%) niż przęseł o momencie bezwładności *J_x5* (zmniejszenie wartości momentów zginających następuje w przedziale 44,4%-89,7%). Dodatkową zaletą tego rozwiązania jest ~60% zmniejszenie ilości materiału potrzebnego na wykonanie podpór.
- 9.5 Ocena możliwości stosowania wyników analizy jednoprzęsłowych obiektów Zintegrowanych o długości 10-40 m, poddanych obciążeniu ciężarem własnym konstrukcji i zmianami temperatur, dla obiektów dłuższych niż 40 m jak i obiektów wieloprzęsłowych

W wyniku przeprowadzenia analizy dla obiektów jednoprzęsłowych wykazano m.in. znaczne <u>zmniejszanie</u> się stosunku wartości momentów zginających pochodzących od obciążenia zmianami temperatury w odniesieniu do momentów zginających od obciążenia ciężarem własnym konstrukcji w przypadku <u>zwiększania</u> się długości przęsła. Zmniejszenie to dotyczy wszystkich analizowanych miejsc tj. punktów "0a"; "a"; "0,5*L*".

Powstaje jednak pytanie czy wnioski z analizy obiektów Zintegrowanych jednoprzęsłowych można zastosowywać dla obiektów dłuższych niż 40 metrów jak i wieloprzęsłowych?

82

Dlatego też **przyjmując założenie**, iż cechy przęseł obiektów wieloprzęsłowych (tj. moment bezwładności, ciężar jednostkowy) są podobne jak dla obiektów ramowych, jednoprzęsłowych możliwym wydaje się zastosowanie wyników analizy obiektów o długości 10-40 m do analizy obiektów dłuższych niż 40 m jak i wieloprzęsłowych.

Wiedząc bowiem, iż udział obciążenia od zmian temperatury w stosunku do obciążenia ciężarem własnym konstrukcji maleje wraz ze zwiększaniem się długości przęsła można z <u>całkowitą</u> pewnością wysnuć wniosek, iż dla Zintegrowanych <u>obiektów jednoprzęsłowych</u> dłuższych niż 40 metrów niebezpieczeństwo niewłaściwego oszacowania obciążenia od zmian temperatury <u>maleje</u> wraz ze wzrostem długości przęsła.

Natomiast szczególnej uwadze należy poddać wieloprzęsłowe obiekty Zintegrowane, a zwłaszcza przęsła jak i podpory skrajne, w których dochodzi do skumulowania się skutków odkształceń konstrukcji wynikających ze zmian obciążenia temperaturą. Dlatego też w dalszej części podrozdziału przenalizowano przypadki szczególne w zależności od położenia przęsła/podpory. Analizowano przypadki w odniesieniu do położenia przęsła/podpór do tzw. umownego punktu (np. podpory w pasie rozdziału – Rys. 9.9) rozszerzania się konstrukcji tj.:

- A. podpory i przęsła styczne,
- B. podpory i przęsła sąsiednie,
- C. podpory i przęsła skrajne.

Rys. 9.9 Schemat przyjmowania podpór przęseł/podpór stycznych, podpór przęseł/podpór sąsiednich, podpór przęseł/podpór skrajnych, umownego punktu rozszerzania się konstrukcji i punktów "0a"; "a"; "0,5L"

Analizę oparto również na wnioskach z Rozdziału 9.4 mówiących, iż <u>największe</u> zmniejszenie wrażliwości konstrukcji Zintegrowanej na niewłaściwe oszacowanie obciążenia zmianami temperatur, uzyskuje się w przypadku zwiększenia wysokości podpór w zakresie od 2 do 5 metrów.

Należy wskazać, iż wartości sił wewnętrznych dla przęseł dłuższych niż 40 metrów są symulacją dokonaną na bazie wykonanych obliczeń dla konstrukcji o długościach 10-40 metrów.

Ad. A podpory i przęsła styczne

Podpory i przęsła styczne do tzw. umownego punktu początku rozszerzania się konstrukcji proponuje się traktować jak jednoprzęsłowy Zintegrowany obiekt ramowy.

Dodatkowo wiedząc, iż z uwagi na wymaganą skrajnię wysokość podpory jest zbliżona do wysokości 5 metrów lub większa możemy stwierdzić, iż dla sztywnego połączenia podpór z przęsłem o momencie bezwładności *J_x* punktem, w którym należy dokonać szczegółowej analizy jest punkt "Oa" i to dla wszystkich praktycznie stosowanych długości przęseł (Rys. 9.10). Również punkt "a" należy poddać analizie, chociaż prawdopodobieństwo wystąpienia niebezpiecznych przekroczeń wartości momentów zginających jest kilkadziesiąt procent niższe niż dla punktu "Oa". Punkt "O,5L" można uważać za punkt w którym <u>nie powinno</u> dochodzić do niebezpiecznych przekroczeń wartości momentów zginających.

Rys. 9.10 Procentowy stosunek wartości momentów zginających w punkcie "0a" dla obiektów Zintegrowanych (wieloprzęsłowych) o rozpiętości przęsła 10-70 metrów od obciążenia temperaturą ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji

Odmiennie przedstawia się sytuacja w przypadku sztywnego połączenia podpór z przęsłem obiektu Zintegrowanego o momencie bezwładności J_x5 . W tym przypadku punktami, w których należy dokonać szczegółowej analizy jest punkt "0a", punkt "a" dla wszystkich długości przęseł jak i punkt "0,5L" dla rozpiętości przęseł zbliżonych lub mniejszych niż 10 metrów.

Ad. B podpory i przęsła sąsiednie,

Podpory i przęsła sąsiednie do tzw. umownego punktu początku rozszerzania się konstrukcji proponuje się traktować jak jednoprzęsłowy Zintegrowany obiekt ramowy lecz o tzw. zastępczej długości przęsła sąsiedniego *L_{zast-sqs}* (9.1):

$$L_{zast-sqs} = L_{sqs} * \left[\frac{L_{sqs}}{\Sigma(L_{sqs} + L_{sty})} \right]$$
(9.1)

gdzie:

L_{sqs} – długość przęsła sąsiedniego Zintegrowanego obiektu wieloprzęsłowego [m],

L_{sty} – długość przęsła stycznego Zintegrowanego obiektu wieloprzęsłowego [m],

 $L_{zast-sqs}$ – długość zastępcza przęsła sąsiedniego Zintegrowanego obiektu wieloprzęsłowego [m], $\Sigma(L_{sqs} + L_{sty})$ – suma długości przęsła stycznego, przęseł sąsiednich od umownego punktu rozszerzania się Zintegrowanego obiektu wieloprzęsłowego [m]. Dodatkowo wiedząc, iż z uwagi na wymaganą skrajnię wysokość podpory jest co najmniej zbliżona do 5 metrów lub większa możemy stwierdzić, iż dla sztywnego połączenia podpór z przęsłem o momencie bezwładności *J*_x punktem, w którym należy dokonać szczegółowej analizy jest punkt "Oa" i to dla wszystkich praktycznie stosowanych długości przęseł. Również punkt "a" należy poddać analizie lecz w tym wypadku prawdopodobieństwo wystąpienia niebezpiecznych przekroczeń wartości momentów zginających jest kilkadziesiąt procent niższe niż dla punktu "Oa". Punkt "O,5L" można uważać za punkt w którym <u>nie powinno</u> dochodzić do niebezpiecznych przekroczeń wartości momentów zginających.

Dla przęseł o momencie bezwładności J_x5 należy dokonać szczegółowej analizy dla punktu "0a", punktu "a" dla wszystkich długości przęseł a dla punktu "0,5L" w przypadku rozpiętości przęseł krótszych niż 11 metrów.

Ad. C podpory i przęsła skrajne.

Podpory i przęsła skrajne do tzw. umownego punktu początku rozszerzania się konstrukcji proponuje się traktować jak jednoprzęsłowy Zintegrowany obiekt ramowy lecz o tzw. zastępczej długości przęsła skrajnego *L_{zast-skr}* (9.2):

$$L_{zast-skr} = L_{skr} * \left[\frac{L_{skr}}{\Sigma(L_{skr} + L_{sqs} + L_{sty})} \right]$$
(9.2)

gdzie:

 L_{skr} – długość przęsła skrajnego Zintegrowanego obiektu wieloprzęsłowego [m], $L_{zast-skr}$ – długość zastępcza przęsła skrajnego Zintegrowanego obiektu wieloprzęsłowego [m], $\Sigma(L_{skr} + L_{sąs} + L_{sty})$ – suma długości przęsła stycznego, przęseł sąsiednich, przęsła skrajnego od umownego punktu rozszerzania się Zintegrowanego obiektu wieloprzęsłowego [m].

Dla przęseł skrajnych należy rozważyć dwa przypadki wysokości podpór.

Pierwszy z przypadków dotyczy podpór niskich o wysokości 2 metrów (tj. najniższych analizowanych w pracy) posadowionych w nasypie. W tym przypadku zarówno dla przęseł o momencie bezwładności J_x oraz J_x5 należy dokonać szczegółowej analizy dla punktu "0a", punktu "a" i punktu "0,5L". Należy jednak zaznaczyć, iż prawdopodobieństwo niewłaściwego oszacowania wartości momentów zginających w punkcie "0a" jest nawet <u>kilkadziesiąt</u>razy większe niż w punktach "a" czy też "0,5L".

Drugi przypadek podpór dotyczy podpór o wysokości zbliżonej do wysokości wymaganej skrajni tj. o wysokości podpory ~ 5 m lub większej.

W przypadku sztywnego połączenia podpór z przęsłem obiektu Zintegrowanego o momencie bezwładności J_x punktem, w którym należy dokonać szczegółowej analizy jest punkt "0a" i to dla wszystkich stosowanych długości przęseł. Również punkt "a" należy poddać analizie chociaż prawdopodobieństwo wystąpienia niebezpiecznych przekroczeń wartości momentów zginających jest kilkadziesiąt procent niższe niż dla punktu "Oa". Punkt "O,5L" można uważać za punkt w którym <u>nie powinno</u> dochodzić do niebezpiecznych przekroczeń wartości momentów zginających.

Natomiast dla przęseł o momencie bezwładności J_x5 należy dokonać szczegółowej analizy dla punktu "0a", punktu "a" a w punkcie "0,5L" dla przęseł skrajnych o rozpiętości ~10 metrów.

Mając na uwadze powyższe można stwierdzić, iż spotykane schematy statyczne konstrukcji o podporach skrajnych sztywno-zamocowanych w fundamentach i podporach sztywno połączonych z konstrukcją przęsła, przy jednoczesnym stosowaniu łożysk przesuwnych na podporach pośrednich, należy uznać za **niezalecane** dla obiektów Zintegrowanych (Rys. 9.11 i Rys. 9.12). Zabieg ten zmniejsza bowiem oddziaływania na podpory pośrednie, lecz przenosi skumulowane skutki odkształceń przęsła, m.in. od zmian temperatury, na podpory sąsiednie a zwłaszcza podpory skrajne. Powoduje to znaczne zagrożenie zmniejszenia trwałości i nośności konstrukcji w przypadku niedoszacowania obciążenia od zmian temperatur.

Połączenie żysko przesuwne Łożysko stałe sztvwne

Rys. 9.11 Schemat Pół-zintegrowanego wiaduktu z przęsłami opartymi na łożyskach umiejscowionych na podporach pośrednich i sztywnym połączeniu masywnych podpór skrajnych z przęsłem (<u>schemat niezalecany</u>)

Rys. 9.12 Schemat mostu Zintegrowanego z podporami skrajnymi masywnymi i przęsłami opartymi na podporach pośrednich na łożyskach umożliwiającymi przesuw (<u>schemat niezalecany</u>)

9.6 Podsumowanie wyników analizy obiektów Zintegrowanych (ramowych) poddanych obciążeniu ciężarem własnym konstrukcji i zmianami temperatury

Przeprowadzenie analizy pozwoliło na wykazanie, iż przy kształtowaniu obiektów Zintegrowanych bardzo ważnym jest uwzględnianie powiązań pomiędzy wartościami *M(0a)*, *M(a)*, *M(0,5L)* przy rozpatrywaniu obciążeń od zmiany temperatury. Wykazano, iż <u>szczególnie</u> <u>niebezpieczne</u> jest niedoszacowanie obciążeń od zmian temperatur w przypadku niskich i masywnych podpór sztywno-zamocowanych w fundamentach. Dotyczy to zwłaszcza wartości momentu zginającego w punkcie "0a". Udowodniono ponadto, iż wrażliwość konstrukcji na niewłaściwe oszacowanie obciążenia od zmian temperatury zmniejsza się wraz ze wzrostem długości przęsła, smukłości podpór, zaś zwiększa się w przypadku wzrostu sztywności podpór.

Celem minimalizacji skutków niewłaściwego oszacowania obciążenia od zmian temperatury w obiektach Zintegrowanych proponuje się:

- A. projektowanie podpór jako przegubowo-nieprzesuwnych zamiast sztywnozamocowanych lub o charakterystyce do nich zbliżonych tj. np. podpór przegubowonieprzesuwnych opartych na profilach stalowych tzw. "typ amerykański" {Rys.
 2.3 punkt c)}. Jest to szczególnie zalecane w przypadku stosowania niskich podpór (w analizowanych przypadkach przy H = 2 m),
- B. projektowanie podpór o jak najmniejszej sztywności (grubości),
- C. projektowanie niskich podpór (zmniejszenie kosztu robót budowlanych),
- D. w przypadku konieczności stosowania podpory sztywno-zamocowanej stosowanie podpory o wysokości ~>5 metrów.
- E. zwiększenie ⊿*T* o 10-15°C przy wyznaczaniu wartości sił wewnętrznych dla podpór sztywno-zamocowanych w punktach "0a" i "a". Propozycja zwiększenia *ΔT* o wartość 15°C dotyczy obiektów Zintegrowanych jednoprzęsłowych o przęsłach krótszych niż < 20 m jak i wszystkich obiektów wieloprzęsłowych. W pozostałych przypadkach proponuje się zwiększenie *ΔT* o 10 °C.

Propozycja zwiększenia ⊿*T*- wynika z niepewności co do temperatury otoczenia podczas betonowania przęsła i możliwych <u>znacznych</u> dodatkowych odkształceniach, <u>koniecznych</u> do uwzględnienia przy projektowaniu wcześniej wykonywanych elementów konstrukcji. Należy wskazać, iż jest to wymóg podobny jaki odnajdujemy dla określania temperatur przy przyjmowaniu łożysk i dylatacji w Eurokodzie PN-EN 1991-1-5 [130]. Odrębnie warto wskazać, iż największe zmniejszenie wrażliwości konstrukcji Zintegrowanej na niewłaściwe oszacowanie

obciążenia zmianami temperatury, uzyskuje się w przypadku zwiększenia wysokości podpór w zakresie od 2 do 5 m. Zależność ta dotyczy zwłaszcza momentów zginających w punktach "Oa" oraz "a". Wykazano brak podstaw do zwiększania wysokości podpór z punktu widzenia wartości sił wewnętrznych w punkcie "a" jak również wartości momentów przęsłowych (punkt "0,5L") zwłaszcza dla przęseł dłuższych niż 20 m. Należy bardzo wyraźnie zaznaczyć, iż <u>niewłaściwe oszacowanie zmian temperatury</u> występujących podczas wykonywania konstrukcji Zintegrowanej jak i brak stosowania odpowiednich zabiegów technologicznych może być powodem <u>znacznego obniżenia trwałości</u> konstrukcji (zarysowania) lub **wręcz katastrofy budowlanej**.

Opisane w punktach A-E zalecenia będą weryfikowane w dalszej części pracy z uwagi na specyfikę obciążenia gruntu obiektów Zintegrowanych.

10. ANALIZA ZINTEGROWANYCH OBIEKTÓW (RAMOWYCH) o PODPORACH POSADOWIONYCH NA PROFILACH STALOWYCH PODDANYCH OBCIĄŻENIU CIĘŻAREM WŁASNYM KONSTRUKCJI i ZMIANAMI TEMPERATURY

10.1 Wstęp

Niniejszy Rozdział zawiera wnioski z analizy powiązań wartości sił wewnętrznych wywołanych obciążeniem od ciężaru własnego konstrukcji i od zmian temperatury dla popularnego w Stanach Zjednoczonych Ameryki Północnej tzw. "schematu amerykańskiego" {Rys. 2.3 punkt c)}. Cechą szczególną tego schematu jest oparcie podpór (skrajnych) na profilach stalowych. Celem analizy jest w szczególności zebranie danych o zależnościach/powiązaniach pomiędzy siłami wewnętrznymi w konstrukcjach dla danej długości przęsła *L* i jego wysokości *h*.

Analizy dokonano odrębnie dla obciążenia ciężarem własnym konstrukcji jak i zmianą temperatury.

W szczególności analizowano wpływ:

A. wprowadzenia przegubu w podporach,

- B. bazowego i zmniejszonego o 50% modułu oporu bocznego pala jako symulacji pogorszenia się warunków gruntowych,
- C. łącznego wprowadzenia przegubu w podporach i zmniejszenia modułu oporu bocznego pali jako symulacji pogorszenia się warunków gruntowych,
- D. zmiany momentu bezwładności przęsła,

na wartości sił wewnętrznych w konstrukcji.

Rozpiętości przęseł równe 10; 20; 30; 40 metrów przyjęto wg opisu z Rozdziału 9.1.

Grubość podpór 0,6 m przyjęto na podstawie wyników analizy z Rozdziału 9 wskazujących na brak znaczących korzyści ze zwiększania sztywności (grubości) podpór.

Wysokość podpory *H* = 2 metry przyjęto na podstawie wyników analizy z Rozdziałów 6 i 9 zalecających ograniczanie wysokości podpór m.in. z uwagi na zmniejszenie uszkodzeń nawierzchni na dojazdach do obiektów jak i na brak znaczących korzyści ze zwiększania wysokości podpór.

Analizowano dwa typy profili stalowych celem uzyskania informacji jak zmiana cech profili stalowych wpływa na rozkład sił wewnętrznych w konstrukcji.

89

Dla części przypadków ukształtowano przegub w odległości 1,0 m od miejsca zamocowania profilu stalowego (Rys. 10.2). Wielkość 1,0 m jest wartością przykładową, pochodzącą z zaleceń zwartych w literaturze, które zalecają zamocowanie profili stalowych w podporze (skrajnej) na głębokość co najmniej 60 cm.

Rys. 10.1 Schemat podpór w przypadku zastosowania Profilu 2 (z lewej) i Profilu 1 (z prawej)

Rys. 10.2 Schemat podpór w przypadku węzła sztywnego (z lewej) jak i z możliwością obrotu (z prawej) w wyniku ukształtowania przegubu

Ciężar jednostkowy betonu przyjęto 25,0 $\frac{kN}{m^3}$ wg opisu z Rozdziału 9.1.

Moment bezwładności J_x obrazuje przęsło w postaci sprężonej płyty pełnej (dla rozpiętości 10 i 20 metrów) i przęsła wykonanego w postaci sprężonych dźwigarów dla przęseł o długościach 30 i 40 metrów. Przęsła o momencie bezwładności J_x5 (tj. momencie bezwładności pięć razy większym od momentu bezwładności równego J_x) sprawdzono celem uzyskania informacji jak zwiększenie momentu bezwładności przęsła wpływa na zmianę sił wewnętrznych.

Zakres zmian temperatury pracy przęsła ⊿*T*, od temperatury montażu, przyjęto 25°C Zakres ustalono w oparciu o wyniki przeglądu wytycznych pod kątem wartości temperatur przyjmowanych do obliczeń konstrukcji inżynierskich (Tabela 2.2).

Moduł oporu bocznego pala K_{xi} obliczono metodą Koseckiego [131] dla dwóch przypadków obliczeniowych. W przypadku pierwszym analizowano konstrukcje o module oporu bocznego pala bez redukcji, zaś w przypadku drugim zmniejszono moduł oporu bocznego pala o 50% jako symulację odkrycia odmiennych (gorszych) warunków gruntowych.

Długość profili stalowych równą 16 metrów i rozstawie 1,5 metra przyjęto na podstawie analizy wykonanych projektów obiektów Zintegrowanych i Pół/zintegrowanych.

Szczegółowe informacje/wyniki obliczeń na podstawie których opracowano wnioski przedstawiono w Rozdziale 10.2 oraz w Załączniku 14.11.

10.2 Założenia do obliczeń

Obliczenia wykonano przy następujących założeniach:

- a) Wysokość podpór H = 2 m, jest stała dla rozpatrywanych długości przęsła L.
- b) Grubość podpór Gs = 0,6 m, jest stała dla rozpatrywanych długości przęsła L.
- c) Rozpiętość przęsła *L* = 10; 20; 30; 40 m.
- d) Wysokość konstrukcyjna przęsła *h* jest zmienna w zależności od rozpiętości przęsła *L* i wynosi, dla:
 - a. *h* = 0,6 m (dla *L* = 10 m);
 - b. *h* = 1,0 m (dla *L* = 20 m);
 - c. *h* = 1,25 m (dla *L* = 30 m);
 - d. h = 1,5 m (dla L = 40 m).

- e) Moment bezwładności przęsła był obliczany dla dwóch jego wartości oznaczanych jako
 - J_x i J_x5 zależnych od wysokości konstrukcyjnej przęsła i wynosi:
 - a. $J_x = 0,018 \text{ m}^4 \text{ i } J_x 5 = 0,09 \text{ m}^4 \text{ przy } h = 0,6 \text{ m};$
 - b. $J_x = 0,083 \text{ m}^4$; $J_x 5 = 0,417 \text{ m}^4 \text{ przy } h = 1,0 \text{ m}$;
 - c. $J_x = 0,163 \text{ m}^4$; $J_x 5 = 0,814 \text{ m}^4 \text{ przy } h = 1,25 \text{ m}$;
 - d. $J_x = 0,281 \text{ m}^4$; $J_x 5 = 1,406 \text{ m}^4 \text{ przy } h = 1,5 \text{ m}$.
- f) Moment bezwładności podpór jest stały i wynosi, przy:
 - a. $Gs = 0,6 \text{ m}; J_x = 0,018 \text{ m}^4;$
- g) Ciężar przęsła i podpór przyjęto jako 25,0 $\frac{kN}{m^3}$. Celem otrzymania wartości ciężaru własnego na 1 mb konstrukcji dokonano obliczeń w zależności od wysokości przęsła lub grubości podpór. Otrzymujemy więc dla:
 - a. *h* lub Gs = 0,6 m; ciężar własny konstrukcji wynosi 25,0 $\frac{kN}{m^3}$ * 0,6 m * 1,0 m = 15,0 $\frac{kN}{m}$;
 - b. h = 1,0 m; ciężar własny konstrukcji wynosi 25,0 $\frac{kN}{m^3}$ * 1,0 m * 1,0 m = 25,0 $\frac{kN}{m}$;
 - c. h = 1,25 m; ciężar własny konstrukcji wynosi 25,0 $\frac{kN}{m^3}$ * 1,25 m * 1,0 m = 31,25 $\frac{kN}{m}$;
 - d. h = 1,5 m; ciężar własny konstrukcji wynosi 25,0 $\frac{kN}{m^3}$ * 1,5 m * 1,0 m = 37,5 $\frac{kN}{m}$.
- h) ΔT zakres zmian temperatury pracy przęsła od temperatury montażu, przyjęto 25°C.
- i) Profile stalowe o długości 16 m, szerokości równej 0,3 m, rozstawie 1,5 metra i następujących charakterystykach:
 - a) Profil 1:
 - i. $A_1 = 78,1 \text{ cm}^2$;
 - ii. $J_{x1} = 2003 \text{ cm}^4$;

gdzie:

 A_I – pole powierzchni Profilu 1 [cm²], J_{xI} – moment bezwładności Profilu 1 [cm⁴].

- b) Profil 2:
 - i. A₂ = 238,6 cm², tj. A₂ > o ~306% od Profilu 1;
 - ii. $J_{x2} = 12\ 620\ \text{cm}^3$, tj. $J_{x2} > 0\ ^630\%$ od Profilu 1.

gdzie:

 A_2 – pole powierzchni Profilu 2 [cm²], J_{x2} – moment bezwładności Profilu 2 [cm⁴]. H. Moduł oporu bocznego pala K_{xi} [131], umożliwiający oszacowanie podatności poszczególnych warstw podłoża gruntowego, obliczono wg (10.1):

$$K_{xi} = n_1 n_2 S_n \kappa_i \phi_i E_{oi} D_o \tag{10.1}$$

gdzie:

Eoi – moduł odkształcenia gruntu [kPa],

 K_{xi} – moduł odkształcenia gruntu [kPa],

n₁ – współczynnik modułu oporu bocznego pala [-],

n2 – współczynnik modułu oporu bocznego pala [-],

 S_n – współczynnik technologiczny wykonywania pali [-], równy 1,1 tj. jak dla pali prefabrykowanych wbijanych w grunty niespoiste,

 κ_i – współczynnik uwzględniający przestrzenność reakcji gruntu [-], równy 1,4 tj. jak dla pali prostokątnych/dwuteowych,

 ϕ_t – współczynnik wpływu obciążeń długotrwałych lub wielokrotnie powtarzalnych [-], równy 0,65 tj. jak dla gruntów niespoistych zagęszczonych o I_D >0,67.

$$n_1 = \frac{R_1}{D_0} \le 1 \tag{10.2}$$

gdzie:

Do - szerokość obliczeniowa pala, na którą działa opór boczny gruntu [m],

 R_I – średni rozstaw osiowy pali, prostopadły do kierunku działania obciążenia [m] = 1,5 m.

$$1,5 D + 0,5 (dla D < 1,0 m)$$
 (10.3)

gdzie:

D – szerokość pala (profilu stalowego) [m].

Podstawiając wartości opisane w (10.3) tj. 0,3 m otrzymujemy:

$$D_o = 1,5 * 0,3 + 0,5 = 0,95 \text{ m}$$
(10.4)

Podstawiając wartość z (10.4) tj. 0,95 m do (10.2) otrzymujemy:

$$n_1 = \frac{1,50}{0,95} = 1,58 \le 1,0$$
; dlatego w obliczeniach wstawiana jest wartość 1,0. (10.5)

Następnie wg (10.6) wyliczamy wartość n₂:

$$n_2 = \beta_p + \frac{(1 - \beta_p) (R_2 - D)}{1.8 D_0} \le 1.0$$
(10.6)

$$n_2 = 1,0 + \frac{(1-1)*(0-0,3)}{1,8*0,95} = 1,0 \le 1,0$$
; dlatego w obliczeniach wstawiana jest wartość 1,0; (10.7)

gdzie:

R2 – średni rozstaw osiowy pali w kierunku działania obciążenia; równy 0,0 m, z uwagi na jeden rząd pali,

 β_p – współczynnik zależny od ilości pali w szeregu w kierunku działania siły [-], równy 1,0 tj. jak przy jednym szeregu pali.

I. Sztywność podpory sprężystej K_x [131] obliczono na podstawie (10.8):

$$K_x = a_i K_{xi} \tag{10.8}$$

gdzie:

ai – rozstaw pomiędzy podporami sprężystymi [m],

Dla podpór w warstwach powierzchniowych (3,75 m – tj. 16 podpór) obliczono dla rozstawu $a_i = 0,25$ m,

na pozostałej części profili stalowych obliczano dla rozstawu $a_i = 0,5 \text{ m},$

K_x – sztywność podpory sprężystej [kN/m].

Schematy analizowanych konstrukcji Zintegrowanych przedstawiono od Rys. 10.3 do Rys. 10.10, opisy schematów w Rozdziale 14.11.2, zaś szczegółowe informacje/wyniki obliczeń na podstawie których opracowano wnioski przedstawiono w Rozdziale 14.11.3.

Rys. 10.3 Schemat Zintegrowanych konstrukcji o stałych L = 10 m, h = 0.6 m, H = 2.0 m, Gs = 0.6 m ($\Delta T = 25^{\circ}$ C) i zmiennych $J_{xy} J_x 5$ oraz K_{xi}

Rys. 10.6 Schemat Zintegrowanych konstrukcji o stałych L = 20 m, h = 1,0 m, H = 2,0 m, Gs = 0,6 m, ($\Delta T = 25^{\circ}$ C), przegubie w podporach i zmiennych J_x , J_x 5 oraz K_{xi}

Rys. 10.7 Schemat Zintegrowanych konstrukcji o stałych L = 30 m, h = 1,25 m, H = 2,0 m, Gs = 0,6 m, ($\Delta T = 25^{\circ}$ C) i zmiennych J_x , J_x5 oraz K_{xi}

Rys. 10.8 Schemat Zintegrowanych konstrukcji o stałych L = 30 m, h = 1,25 m, H = 2,0 m, Gs = 0,6 m, ($\Delta T = 25^{\circ}$ C), przegubie w podporach i zmiennych J_x , J_x5 oraz K_{xi}

Rys. 10.9 Schemat Zintegrowanych konstrukcji o stałych L = 40 m, h = 1,5 m, H = 2,0 m, Gs = 0,6 m, ($\Delta T = 25^{\circ}$ C) i zmiennych J_x , J_x5 oraz K_{xi}

10.3 Opis obliczeń

Wartość sił wewnętrznych obliczono Metodą Elementów Skończonych w następujących punktach charakterystycznych (Rys. 10.11):

- a. "16p" (miejsce zamocowania profilu stalowego w podporach):
 - i. Wartość momentu zginającego oznaczono jako M(16p), [kNm].
 - ii. Wartość sił wewnętrznych po osi "x" oznaczono jako $F_x(16p)$, [kN].
 - iii. Wartość sił wewnętrznych po osi "y" oznaczono jako $F_y(16p)$, [kN].
- b. "a" (narożnik/węzeł):
 - i. Wartość momentu zginającego oznaczono jako *M(a)*, [kNm].
- c. "0,5L" (środek przęsła):

Rys. 10.11 Miejsca analizy sił wewnętrznych dla obiektów Zintegrowanych o podporach opartych na profilach stalowych w przypadku węzła sztywnego (z lewej) jak i z możliwością obrotu (z prawej) w wyniku ukształtowania przegubu

10.4 Omówienie wyników analizy dla przypadków szczególnych

Przeprowadzenie analizy, pozwoliło stwierdzić, iż dla:

- I. Obciążenia od ciężaru własnego konstrukcji:
 - a. Zastosowanie Profili 1, powoduje zmniejszenie wartości M(a) [od 14,89% do 28,56% dla przęsła o J_x i od 30,65% do 38,16% dla przęsła o J_x5] oraz zwiększenie M(0,5L) [od 11,86% do 15,10% dla przęsła o J_x i od 3,80% do 10,46% dla przęsła o J_x5]. Zachodzi ponadto zmniejszenie wartości $F_x(16p)$ [do 15,55% dla przęsła o J_x i do 26,89% dla przęsła o J_x5] i wartości M(16p) [od 47,89% do 56,31% dla przęsła o J_x i od 57,55% do 62,18% dla przęsła o J_x5]. Schematami odniesienia są schematy w których zastosowano Profile 2 (tj. o ~3,06 raza większym momencie bezwładności w stosunku do Profili 1).

- b. Zmniejszenie wartości K_{xi} o 50% i zastosowanie Profili 1, powoduje zmniejszenie wartości M(a) [od 21,46% do 37,12% dla przęsła o J_x i od 39,25% do 46,40% dla przęsła o J_x5] oraz zwiększenie M(0,5L) [od 13,39% do 19,88% dla przęsła o J_x i od 3,91% do 11,55% dla przęsła o J_x5]. Zachodzi ponadto zmniejszenie wartości $F_x(16p)$ [od 1,70% do 21,22% dla przęsła o J_x i od 23,95% do 32,85% dla przęsła o J_x5] i wartości M(16p) [od 51,35% do 61,08% dla przęsła o J_x i od 62,38% do 66,83% dla przęsła o J_x5]. Schematami odniesienia są schematy w których zastosowano Profile 2 (tj. o ~3,06 raza większym momencie bezwładności w stosunku do Profili 1) a moduł oporu bocznego pali K_{xi} jest 2 razy większy.
- c. Zastosowanie Profili 1 przy ukształtowanym przegubie (umożliwiającym obrót Rys. 10.2) w ścianie podpór, powoduje zmniejszenie wartości M(a) [od 37,13% do 74,13% dla przęsła o J_x i od 74,47% do 74,92% dla przęsła o J_x5] oraz zwiększenie wartości M(0,5L) [od 0,44% do 7,91% dla przęsła o J_x i od 0,44% do 1,71% dla przęsła o J_x5]. Zachodzi ponadto zmniejszenie wartości $F_x(16p)$ [od 37,14% do 74,03% dla przęsła o J_x i od 83,05% do 83,33% dla przęsła o J_x5] oraz wartości M(16p) [od 37,13% do 74,03% dla przęsła o J_x i od 74,47% do 74,92% dla przęsła o J_x5]. Schematami odniesienia są schematy w których zastosowano Profile 2 (tj. o ~3,06 raza większym momencie bezwładności w stosunku do Profili 1) oraz nie ukształtowano przegubu w połowie wysokości podpór.
- d. Zastosowanie Profili 1 przy ukształtowanym przegubie (umożliwiającym obrót Rys. 10.2) i zmniejszenie K_{xi} o 50%, powoduje zmniejszenie wartości M(a)[od 71,37% do 72,99% dla przęsła o J_x i od 73,01% do 73,45% dla przęsła o J_x5] oraz zwiększenie wartości M(0,5L) [od 1,45% do 5,40% dla przesła o J_x i od 0,29% do 1,14% dla przęsła o J_x 5]. Zachodzi ponadto zmniejszenie wartości F_x(16p) [od 79,60% do 79,72% dla przęsła o J_x i od 79,76% do 80,08% dla przęsła o J_x5] i wartości M(16p) [od 71,37% do 72,99% dla przęsła o J_x i od 73,01% do 73,45% dla przęsła o J_x5]. Schematami odniesienia są schematy w których zastosowano Profile 2 (tj. o ~3,06 raza większym momencie bezwładności stosunku do Profili 1), oraz W nie ukształtowano przegubu w połowie wysokości podpór a moduł oporu bocznego pali *K_{xi}* jest 2 razy większy.

- II. Obciążenia zmianami temperatury (przy $\Delta T = 25^{\circ}$ C):
 - a. Zastosowanie Profili 1 powoduje zmniejszenie wartości M(a) [do 10,96% dla przęsła o J_x i do 22,92% dla przęsła o J_x5] i zwiększenie wartości M(0,5L) [do 10,96% dla przęsła o J_x i do 22,92% dla przęsła o J_x5]. Zachodzi ponadto zmniejszenie wartości $F_x(16p)$ [do 34,28% dla przęsła o J_x i do 27,76% dla przęsła o J_x5] i wartości M(16p) [do 72,66% dla przęsła o J_x i do 14,14% dla przęsła o J_x5]. Schematami odniesienia są schematy w których zastosowano Profile 2 (tj. o ~3,06 raza większym momencie bezwładności w stosunku do Profili 1).
 - b. Zmniejszenie K_{xi} o 50% i zastosowanie Profili 1 powoduje zmniejszenie wartości M(a) [do 17,69% dla przęsła o J_x i do 29,84% dla przęsła o J_x5] i wartości M(0,5L) [do o 17,69% dla przęsła o J_x i do 29,84% dla przęsła o J_x5]. Zachodzi ponadto zmniejszenie wartości $F_x(16p)$ [do 30,14% dla przęsła o J_x i do 30,57% dla przęsła o J_x5] i wartości M(16p) [do 23,59% dla przęsła o J_x i do 36,84% dla przęsła o J_x5]. Schematami odniesienia są schematy w których zastosowano Profile 2 (tj. o ~3,06 raza większym momencie bezwładności w stosunku do Profili 1) a moduł oporu bocznego pali K_{xi} jest 2 razy większy.
 - c. Zastosowanie Profili 1 wraz z ukształtowaniem przegubu w ścianie podpór, powoduje zmniejszenie M(a) [od 71,96% do 74,27% dla przęsła o J_x i od 74,45% do 74,90% dla przęsła o J_x5] oraz zwiększenie M(0,5L) [od 71,98% do 74,27% dla przęsła o J_x i od 74,45% do 74,90% dla przęsła o J_x5]. Zachodzi ponadto zmniejszenie wartości $F_x(16p)$ [od 81,46% do 82,91% dla przęsła o J_x i od 83,09% do 83,35% dla przęsła o J_x5] oraz wartości M(16p) [od 71,98% do 74,27% dla przęsła o J_x i od 74,45% do 74,90% dla przęsła o J_x5]. Schematami odniesienia są schematy w których zastosowano Profile 2 (tj. o ~3,06 raza większym momencie bezwładności w stosunku do Profili 1) oraz nie ukształtowano przegubu w połowie wysokości podpór.
 - d. Zastosowanie Profili o ~3,06 raza mniejszym momencie bezwładności wraz z ukształtowaniem przegubu w ścianie podpór wraz ze zmniejszeniem K_{xi} o 50%, powoduje zmniejszenie wartości M(a) [od 71,35% do 72,97% dla przęsła o J_x i od 73,21% do 73,47% dla przęsła o J_x5] oraz zwiększenie wartości M(0,5L)[od 71,35% do 72,97% dla przęsła o J_x i od 73,47% do 73,47% dla przęsła o J_x5]. Zachodzi ponadto zmniejszenie wartości $F_x(16p)$ [od 78,48% do 79,71% dla przęsła o J_x i od 79,88% do 80,08% dla przęsła o J_x5] oraz wartości M(16p)

[od 71,35% do 72,97% dla przęsła o J_x i od 73,21% do 73,47% dla przęsła o J_x5]. Schematami odniesienia są schematy w których zastosowano Profile 2 (tj. o ~3,06 raza większym momencie bezwładności w stosunku do Profili 1), oraz nie ukształtowano przegubu w połowie wysokości podpór a moduł oporu bocznego pali K_{xi} jest 2 razy większy.

Biorąc pod uwagę jako schematy bazowe [1 - Rama oparta na Profilach 1, moment bezwładności zwiększono 5-krotnie tj. J_x5 , wysokość podpór 2 m (grubość podpór 0,6 m) - tylko obciążenie ciężarem własnym konstrukcji] należy zauważyć:

- 1. Wartość *F_x(16p)* stanowi 72,06%-75,79% (wartości sił wewnętrznych w schematach 2), 4,26%-5,24% (wartości sił wewnętrznych w schematach 3), 3,59%-4,46% (wartości sił wewnętrznych w schematach 4), 122,12%-136,78% (wartości sił wewnętrznych w schematach 9), 99,65%-107,31% (wartości sił wewnętrznych w schematach 10), 25,54%-30,94% (wartości sił wewnętrznych w schematach 11), 18,01%- 22,03% (wartości sił wewnętrznych w schematach 12), 242,83%-374,27% (wartości sił wewnętrznych w schematach 17), 207,17%-288,23% (wartości sił wewnętrznych w schematach 18), 21,09%-25,35% (wartości sił wewnętrznych w schematach 19), 17,84%- 21,59% (wartości sił wewnętrznych w schematach 20), 241,61%-443,16% (wartości sił wewnętrznych w schematach 25), 210,75%- 365,86% (wartości sił wewnętrznych w schematach 26), 33,56%-136,36% (wartości sił wewnętrznych w schematach 27), 87,98%-100,70% (wartości sił wewnętrznych w schematach 28) wartości sił wewnętrznych w schemacie bazowym A.
- 2. Wartość M(16p) stanowi 86,91%-91,49% (wartości momentów zginających w schematach 2), 11,09%-13,72% (wartości momentów zginających w schematach 3), 7,98-9,91% (wartości momentów zginających w schematach 4), 235,58%-236,41% (wartości momentów zginających schematach 9), W 243,20%-261,99% (wartości momentów zginających w schematach 10), 44,23%-53,75% (wartości momentów schematach zginających 11), w 30,04%- 36,72% (wartości momentów zginających schematach 12), w 242,95%- 374,25% (wartości momentów zginających w schematach 17), 250,19%-347,61% (wartości momentów zginających w schematach 18), 55,00%- 66,20% (wartości momentów zginających schematach 19), w

39,62%-48,16% (wartości momentów zginających w schematach 20), 466,20%-856,67% (wartości momentów zginających w schematach 25), 514,23%-893,24% (wartości momentów zginających w schematach 26), 87,48%-236,72% (wartości momentów zginających w schematach 27), 146,68%- 168,23% (wartości momentów zginających w schematach 28) wartości momentów zginających w schemacie bazowym A.

- 3. Wartość M(a) stanowi 74,43%-78,29% (wartości momentów zginających w schematach 2), 2,63%-3,25% (wartości momentów zginających w schematach 3), 1,89-2,35% (wartości momentów zginających w schematach 4), 144,20%-161,70% (wartości momentów zginających w schematach 9), 128,88%-138,87% (wartości momentów zginających w schematach 10), 10,50%-12,74% (wartości momentów zginających w schematach 11), 7,13%-8,70% (wartości momentów zginających w schematach 12), 242,91%-374,26% (wartości momentów zginających w schematach 17), 214,06%-297,71% (wartości momentów zginających w schematach 18), 13,05%-15,69% (wartości momentów zginających w schematach 19), 9,40%-11,41% (wartości momentów zginających schematach 20), 285,40%-523,91% (wartości momentów zginających w w schematach 25), 272,57%-473,46% (wartości momentów zginających w 26), 20,76%-56,10% (wartości momentów zginających w schematach 27), 34,81%-39,87% (wartości momentów zginających w schematach 28) wartości momentów zginających w schemacie bazowym A.
- 4. Wartość M(0,5L) stanowi 101,52%-104,65% (wartości momentów zginających schematach 2), 105,78%-120,72% (wartości momentów zginających w schematach 3), 105,82%-120,92% (wartości momentów zginających w schematach 4), 90,53%-96,34% (wartości momentów zginających w w schematach 9), 93,81%-97,69% (wartości momentów zginających w schematach 10), 105,31%-118,69% (wartości momentów zginających w schematach 11), 105,51%-119,56% (wartości momentów zginających w schematach 12), (wartości momentów 69,39%-83,73% zginających schematach 17), w 75,57%- 88,27% (wartości momentów schematach 18), zginających w 105,16%-118,06% (wartości momentów zginających w schematach 19), 105,37%- 118,98% (wartości momentów schematach 20), zginających w 60,29%-74,86% (wartości momentów zginających schematach 25), w

63,04%-77,85% (wartości momentów zginających w schematach 26), 103,72%-109,40% (wartości momentów zginających w schematach 27), 103,87%-112,88% (wartości momentów zginających w schematach 28) wartości momentów zginających w schemacie bazowym A.

Rozpatrując jednoczesne działanie obciążenia pochodzącego od ciężaru własnego konstrukcji i zmian temperatury (przy $\Delta T = 25^{\circ}$ C) i przęsła o momencie bezwładności J_{x5} możemy zauważyć, iż:

- Wartość F_x(16p) z sumy wartości sił ze schematów 1 i 5 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości sił ze schematów bazowych 9 i 13 (tj. przy zastosowaniu Profili 2) stanowi od 72,74% do 77,01%.
- Wartość *M(16p)* z sumy wartości momentów zginających ze schematów 1 i 5 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości momentów zginających schematów bazowych 9 i 13 (tj. przy zastosowaniu Profili 2) stanowi od 47,51% do 74,75%.
- Wartość *M(a)* z sumy wartości momentów zginających ze schematów 1 i 5 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 9 i 13 (tj. przy zastosowaniu Profili 1) stanowi od 67,43% do 79,48%.
- Wartość *M(0,5L)* z sumy wartości momentów zginających ze schematów 1 i 5 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 9 i 13 (tj. przy zastosowaniu Profili 2) stanowi od 102,10% do 102,53%.
- Wartość F_x(16p) z sumy wartości sił ze schematów 2 i 6 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości sił schematów bazowych 10 i 14 (tj. przy zastosowaniu Profili 2) stanowi od 68,08% do 74,16%.
- Wartość *M(16p)* z sumy wartości momentów zginających ze schematów 2 i 6 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 10 i 14 (tj. przy zastosowaniu Profili 2) stanowi od 39,78% do 57,33%.
- Wartość *M(a)* z sumy wartości momentów zginających ze schematów 2 i 6 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 10 i 14 (tj. przy zastosowaniu Profili 2) stanowi od 59,28% do 71,45%.

- Wartość *M(0,5L)* z sumy wartości momentów zginających ze schematów 2 i 6 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości momentów zginających schematów 10 i 14 (tj. przy zastosowaniu Profili 2) stanowi od 102,34% do 102,73%.
- Wartość F_x(16p) z sumy wartości sił ze schematów 3 i 7 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy wartości sił ze schematów bazowych 11 i 15 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 16,66% do 16,92%.
- 10. Wartość *M(16p)* z sumy wartości momentów zginających ze schematów 3 i 7 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 11 i 15 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 25,09% do 25,55%.
- 11. Wartość *M(a)* z sumy wartości momentów zginających ze schematów 3 i 7 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy wartości momentów zginających schematów 11 i 15 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 25,09% do 25,55%.
- 12. Wartość *M(0,5L)* z sumy wartości momentów zginających ze schematów 3 i 7 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 11 i 15 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 94,09% do 99,61%.
- 13. Wartość F_x(16p) z sumy wartości sił ze schematów 4 i 8 (tj. przy zastosowaniu Profili
 1 i przegubu w podporach) w odniesieniu do sumy wartości sił ze schematów
 bazowych 12 i 16 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi
 od 19,92% do 20,14%.
- 14. Wartość *M(16p)* z sumy wartości momentów zginających ze schematów 4 i 8 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 12 i 16 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 26,54% do 26,82%.
- 15. Wartość *M(a)* z sumy wartości momentów zginających ze schematów 4 i 8 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 12 i 16 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 26,54% do 26,82%.
- 16. Wartość *M*(*0,5L*) z sumy wartości momentów zginających ze schematów 4 i 8 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy wartości

momentów zginających schematów 12 i 16 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) stanowi od 95,92% do 99,74%.

Rozpatrując jednoczesne działanie obciążenia pochodzącego od ciężaru własnego konstrukcji i zmian temperatury (przy $\Delta T = 25^{\circ}$ C) i przęsła o momencie bezwładności J_x możemy zauważyć, iż:

- Wartość F_x(16p) z sumy wartości sił ze schematów 17 i 21 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości sił ze schematów bazowych 25 i 29 (tj. przy zastosowaniu Profili 2) stanowi od 83,08% do 87,40%.
- Wartość *M(16p)* z sumy wartości momentów zginających ze schematów 17 i 21 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 25 i 29 (tj. przy zastosowaniu Profili 2) stanowi od 46,52% do 52,96%.
- Wartość *M(a)* z sumy wartości momentów zginających ze schematów 17 i 21 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 25 i 29 (tj. przy zastosowaniu Profili 2) stanowi od 73,26% do 89,88%.
- Wartość *M(0,5L)* z sumy wartości momentów zginających ze schematów 17 i 21 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 25 i 29 (tj. przy zastosowaniu Profili 2) stanowi od 110,81% do 112,98%.
- Wartość F_x(16p) z sumy wartości sił ze schematów 18 i 22 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości sił ze schematów bazowych 26 i 30 (tj. przy zastosowaniu Profili 2) stanowi od 78,13% do 88,32%.
- Wartość *M(16p)* z sumy wartości momentów zginających ze schematów 18 i 22 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 26 i 30 (tj. przy zastosowaniu Profili 2) stanowi od 41,41% do 51,64%.
- Wartość *M(a)* z sumy wartości momentów zginających ze schematów 18 i 22 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 26 i 30 (tj. przy zastosowaniu Profili 2) stanowi od 64,72% do 83,63%.
- Wartość M(0,5L) z sumy wartości momentów zginających ze schematów 18 i 22 (tj. przy zastosowaniu Profili 1) w odniesieniu do sumy wartości momentów

zginających ze schematów bazowych 26 i 30 (tj. przy zastosowaniu Profili 2) stanowi od 112,26% do 116,47%.

- F_x(16p) z sumy wartości sił ze schematów 19 i 23 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy wartości sił ze schematów bazowych 27 i 31 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 17,25% do 36,24%.
- 10. Wartość *M(16p)* z sumy wartości momentów zginających ze schematów 19 i 23 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 27 i 31 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 25,97% do 45,04%.
- 11. Wartość *M(a)* z sumy wartości momentów zginających ze schematów 19 i 23 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 27 i 31 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 25,97% do 45,04%.
- 12. Wartość *M(0,5L)* z sumy wartości momentów zginających ze schematów 19 i 23 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 27 i 31 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 99,63% do 101,46%.
- 13. Wartość F_x(16p) z sumy wartości sił ze schematów 20 i 24 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy wartości sił ze schematów bazowych 28 i 32 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 20,28% do 21,48%.
- 14. Wartość *M(16p)* z sumy wartości momentów zginających ze schematów 20 i 24 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 28 i 32 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 27,01% do 28,64%.
- 15. Wartość *M(a)* z sumy wartości momentów zginających ze schematów 20 i 24 (Profil 1 + przegub w podporach) w odniesieniu do sumy wartości momentów zginających ze schematów bazowych 28 i 32 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 27,01% do 28,64%.
- 16. Wartość *M(0,5L)* z sumy wartości momentów zginających ze schematów 20 i 24
 (tj. przy zastosowaniu Profili 1 i przegubu w podporach) w odniesieniu do sumy

wartości momentów zginających ze schematów bazowych 28 i 32 (tj. przy zastosowaniu Profili 2 i przegubu w podporach) stanowi od 100,16% do 100,99%.

Porównując jednoczesne działanie obciążeń, dla konstrukcji z przęsłami o momencie bezwładności J_x5 , pochodzących od ciężaru własnego konstrukcji i zmian temperatury dla schematów bazowych 1 oraz 5 z wartościami sił wewnętrznych ze schematów (2 i 6, 3 i 7, 4 i 8, 9 i 13, 10 i 14, 11 i 15, 12 i 16) możemy wyodrębnić następujące informacje:

- Wartość F_x(16p) z sumy schematów (2 i 6, 3 i 7, 4 i 8, 9 i 13, 10 i 14, 11 i 15, 12 i 16) stanowi od 5,96% do 137,48% wartości sumy sił ze schematów bazowych 1 i 5.
- Wartość *M(16p)* z sumy schematów (2 i 6, 3 i 7, 4 i 8, 9 i 13, 10 i 14, 11 i 15, 12 i 16) stanowi od 14,64% do 213,55% wartości momentów zginających z sumy schematów bazowych 1 i 5.
- Wartość *M(a)* z sumy schematów (2 i 6, 3 i 7, 4 i 8, 9 i 13, 10 i 14, 11 i 15, 12 i 16) stanowi od 3,18% do 148,31% wartości momentów zginających z sumy schematów bazowych 1 i 5.
- Wartość *M(0,5L)* z sumy schematów (2 i 6, 3 i 7, 4 i 8, 9 i 13, 10 i 14, 11 i 15, 12 i 16) stanowi od 88,38% do 102,12% wartości momentów zginających z sumy schematów bazowych 1 i 5.

Porównując jednoczesne działanie obciążeń, dla konstrukcji z przęsłami o momencie bezwładności *J_x*, pochodzących od ciężaru własnego konstrukcji i zmian temperatury dla schematów bazowych 17 oraz 25 z wartościami sił wewnętrznych ze schematów (18 i 22, 19 i 23, 20 i 24, 25 i 29, 26 i 30, 27 i 31, 28 i 32) możemy wyodrębnić następujące informacje:

- Wartość *F_x(16p)* z sumy schematów (18 i 22, 19 i 23, 20 i 24, 25 i 29, 26 i 30, 27 i 31, 28 i 32) stanowi od 13,51% do 297,50% wartości sumy sił ze schematów 17 i 25.
- Wartość *M(16p)* z sumy schematów (18 i 22, 19 i 23, 20 i 24, 25 i 29, 26 i 30, 27 i 31, 28 i 32) stanowi od 34,70% do 586,99% wartości momentów zginających z sumy schematów bazowych 17 i 25.
- Wartość *M(a)* z sumy schematów (18 i 22, 19 i 23, 20 i 24, 25 i 29, 26 i 30, 27 i 31, 28 i 32) stanowi od 7,23% do 339,62% wartości momentów zginających z sumy schematów bazowych 17 i 25.
- 4. Wartość *M(0,5L)* z sumy schematów (18 i 22, 19 i 23, 20 i 24, 25 i 29, 26 i 30, 27 i 31, 28 i 32) stanowi od 56,20% do 101,50% wartości momentów zginających z sumy schematów bazowych 17 i 25.

Podsumowując zastosowanie Profili 1 (Rys. 10.2), dla konstrukcji z przęsłami o momencie bezwładności J_x5 powoduje, iż:

- a) Wartość F_x(16p) stanowi od 68,08% do 77,01% wartości siły wewnętrznej
 w porównaniu do wartości siły wewnętrznej ze schematów bazowych
 (tj. takich w których zastosowano Profile 2).
- b) Wartość *M(16p)* stanowi od 39,78 % do 74,75% wartości momentu zginającego w porównaniu do wartości momentów zginających ze schematów bazowych (tj. w których zastosowano Profile 2).
- c) Wartość *M(a)* stanowi od 59,28% do 79,48% wartości momentu zginającego w porównaniu do wartości momentów zginających ze schematów bazowych (tj. w których zastosowano Profile 2),

przy niewielkim (maksymalnie 2,73%) wzroście *M(0,5L)* w porównaniu do schematów bazowych (tj. w których zastosowano Profile 2).

Ten sam zabieg, tj. zastosowanie Profili 1 (Rys. 10.2) w przypadku konstrukcji z przęsłami o momencie bezwładności *J_x* powoduje, iż:

- a) Wartość F_x(16p) stanowi od 78,13% do 87,40% wartości siły wewnętrznej
 w porównaniu do wartości siły wewnętrznej ze schematów bazowych
 (tj. takich w których zastosowano Profile 2).
- b) Wartość *M(16p)* stanowi od 41,41% do 52,96% wartości momentu zginającego
 w porównaniu do wartości momentów zginających ze schematów bazowych
 (tj. w których zastosowano Profile 2).
- c) Wartość *M(a)* stanowi od 64,72% do 89,88% wartości momentu zginającego w porównaniu do wartości momentów zginających ze schematów bazowych (tj. w których zastosowano Profile 2),

przy wzroście wartości *M(0,5L)* do 16,47% w porównaniu do schematów bazowych (tj. w których zastosowano Profile 2).

Dla konstrukcji z przęsłami o momencie bezwładności *J*_x5 zastosowanie Profili 1 wraz z ukształtowaniem przegubu w podporach (Rys. 10.2) powoduje:

- a) Zmniejszenie wartości F_x(16p) od 89,48% do 94,06%, odnosząc do wartości siły wewnętrznej ze schematów bazowych (tj. przy zastosowaniu Profili 2).
- b) Zmniejszenie wartości *M(16p)* od 75,49% do 85,46% w porównaniu do wartości momentów zginających ze schematów bazowych (tj. przy zastosowaniu Profili 2).

c) Zmniejszenie wartości *M(a)* od 93,23% do 96,82% w porównaniu do wartości momentów zginających z schematów bazowych (tj. przy zastosowaniu Profili 2),

przy <u>niewielkim</u> (maksymalnie 1,72%) wzroście wartości *M(0,5L)* w porównaniu do schematów bazowych (tj. przy zastosowaniu Profili 2).

Natomiast w przypadku konstrukcji z przęsłami o momencie bezwładności J_x zastosowanie Profili 1 wraz z ukształtowaniem przegubu w podporach (Rys. 10.2) powoduje:

- a) Zmniejszenie wartości $F_x(16p)$ od 85,29% do 94,28% w porównaniu do wartości siły ze schematów bazowych (tj. w których zastosowano Profile 2).
- b) Zmniejszenie wartości *M(16p)* od 54,46% do 86,74% w porównaniu do wartości momentów zginających ze schematów bazowych (tj. w których zastosowano Profile 2).
- c) Zmniejszenie wartości *M(a)* od 80,79% do 86,97% w porównaniu do wartości momentów zginających ze schematów bazowych (tj. w których zastosowano Profile 2),

przy <u>znacznym</u>, dochodzącym do 36,94%, wzroście wartości *M(0,5L)* w porównaniu do wartości momentów zginających ze schematów bazowych (tj. przy zastosowaniu Profili 2).

Rozpatrując wpływ pogorszenia warunków gruntowych (symulowanych jako zmniejszenie K_{xi} o 50%), dla konstrukcji z przęsłami o momencie bezwładności J_x5 i przy zastosowaniu Profili 1, należy liczyć się ze zmianą wartości sił wewnętrznych dochodzącą dla:

- a) Wartości F_x(16p) do 29,46% w porównaniu do wartości siły wewnętrznej ze schematów bazowych (tj. przy zastosowaniu Profili 2 i dwukrotnie większym module oporu bocznego pali K_{xi}).
- b) Wartości *M(16p)* do 32,09% w porównaniu do wartości momentów zginających ze schematów bazowych (tj. przy zastosowaniu Profili 2 i dwukrotnie większym module oporu bocznego pali *K_{xi}*).
- c) Wartości *M(a)* do 32,09% w porównaniu do wartości momentów zginających ze schematów bazowych (tj. przy zastosowaniu Profili 2 i dwukrotnie większym module oporu bocznego pali *K_{xi}*).
- d) Wartości *M(0,5L)* do 4,66% w porównaniu do wartości momentów zginających ze schematów bazowych (tj. przy zastosowaniu Profili 2 i dwukrotnie większym module oporu bocznego pali *K_{xi}*).
Dla konstrukcji z przęsłami o momencie bezwładności J_x wpływ odmiennych warunków gruntowych (symulowanych jako zmianę K_{xi} o 50%), przy zastosowaniu Profili 1 powoduje zmianę wartości sił wewnętrznych dochodzącą dla:

- a) Wartości F_x(16p) do 51,17% w porównaniu do wartości siły wewnętrznej ze schematów bazowych (tj. przy zastosowaniu Profili 2 i dwukrotnie większym module oporu bocznego pali K_{xi}).
- b) Wartości *M(16p)* do 31,08% w porównaniu do wartości momentów zginających ze schematów bazowych (tj. przy zastosowaniu Profili 2 i dwukrotnie większym module oporu bocznego pali *K*_{xi}).
- c) Wartości *M(a)* do 31,08% w porównaniu do wartości momentów zginających ze schematów bazowych (tj. przy zastosowaniu Profili 2 i dwukrotnie większym module oporu bocznego pali *K_{xi}*).
- d) Wartości *M(0,5L)* do 2,5% w porównaniu do wartości momentów zginających ze schematów bazowych (tj. przy zastosowaniu Profili 2 i dwukrotnie większym module oporu bocznego pali *K*_{xi}).

10.5 Podsumowanie badań analitycznych Zintegrowanych obiektów ramowych poddanych obciążeniu ciężarem własnym konstrukcji i zmianami temperatury o podporach posadowionych na profilach stalowych

Uzyskane w wyniku analizy dane pozwoliły na wykazanie bardzo dużej możliwości regulacji sił wewnętrznych w konstrukcjach Zintegrowanych przy pomocy zabiegów konstrukcyjnych. Zabiegi konstrukcyjne takie jak zmiana momentu bezwładności przęsła, cech Profili na których oparte są podpory skrajne czy wykształtowanie w podporach przegubu pozwala na zmniejszenie sił wewnętrznych o 94,04% lub ich zwiększenie o 893,24%. Wydaje się ponadto, iż ukształtowanie przegubów w podporach skrajnych może być z powodzeniem stosowane zwłaszcza na obszarach gdzie występują temperatury dodatnie przez cały rok lub opady są sporadyczne tj. np. regiony południowej Europy, Półwyspu Iberyjskiego, Afryki, Azji. Niemniej wydaje się, iż również w Polsce (oczywiście po odpowiednim doborze uszczelnienia – patrz rozwiązania uszczelnień w ścianach szczelinowych) rozwiązanie takie mogłoby być zastosowane.

Ważnym wnioskiem z analizy jest też wykazanie, iż w przypadku pogorszenia się warunków gruntowych (symulowanych jako zmniejszenie K_{xi} o 50%) i zastosowania podpór o wysokości H = 2 m, zmiana wartości momentu zginającego w punkcie "0,5*L*" nie przekracza 2,5%

dla przęseł o momencie bezwładności J_x i 4,66% dla przęseł o momencie bezwładności J_x5 . Wiedza ta pozwala na praktycznie niezakłóconą prefabrykację belek/zbrojenia przęseł nawet w przypadku odmiennych (niż założonych na etapie projektowania) warunków gruntowych.

Reasumując dla Zintegrowanych obiektów inżynierskich tzw. "typu amerykańskiego" proponuje się stosowanie:

- a) przęseł sprężonych (zwłaszcza w przypadku ukształtowania przegubu w podporach),
- b) podatnych profili stalowych tj. umożliwiających przesuw konstrukcji na kierunku maksymalnych przemieszczeń. Zastosowanie podatnych profili stalowych zmniejsza siły wewnętrzne w miejscu połączenia profilu stalowego z podporą skrajną co ułatwia kształtowanie tego połączenia/węzła.

Należy również wskazać, iż poza możliwym wykorzystaniem istniejących elementów obiektów Klasycznych (przęseł, podpór) celem ich przeprojektowania w obiekty Zintegrowane/Pół-zintegrowane można, wykorzystać istniejące nasypy. W przypadku wykorzystania istniejących nasypów możliwość zaprojektowania tzw. "schematu amerykańskiego" powinna być jedną z pierwszych poddanych ocenie. Faktem jest, iż po kilkudziesięciu latach użytkowania dokonał się bowiem proces osiadania nasypu wynikający z odziaływania konstrukcji jak i samego nasypu na podłoże gruntowe. Powoduje zmniejszenie możliwości uszkodzeń nawierzchni na dojazdach do obiektu i przyczynia się do zwiększenia trwałości tej części obiektu inżynierskiego/drogi.

Nie bez znaczenia jest również ograniczenie, w przypadku wykorzystania istniejących elementów konstrukcji jak i nasypów, wpływu inwestycji na środowisko naturalne co jest dodatkowym argumentem przemawiającym za obiektami Zintegrowanymi mogącym znacząco ułatwić uzyskanie dotacji z różnego rodzaju funduszy.

11. ANALIZA OBIEKTÓW ZINTEGROWANYCH (RAMOWYCH) PODDANYCH OBCIĄŻENIU CIĘŻAREM WŁASNYM KONSTRUKCJI i PARCIEM GRUNTU

11.1 Wprowadzenie

Niniejszy Rozdział zawiera analizę wartości sił wewnętrznych wywołanych obciążeniem parciem gruntu i obciążeniem od ciężaru własnego konstrukcji w zależności od długości przęsła, wysokości podpór i schematu statycznego konstrukcji. Analiza ma pozwolić na określenie zakresu zmian wartości sił wewnętrznych w zależności od relacji wzajemnych sztywności przęseł/podpór, długości przęseł, wysokości podpór i różnych sposobach podparcia podpór.

Analizy dokonano odrębnie dla obciążenia ciężarem własnym konstrukcji jak i obciążenia parciem gruntu wyznaczonym wg wytycznych [22], [118], [10].

W szczególności analizowano wpływ:

- 1. zmiany sposobu podparcia (tj. z podpór sztywno-zamocowanych na podpory przegubowo-nieprzesuwne),
- 2. zmiany ciężaru przęsła przy stałej sztywności podpór,
- 3. zmiany wysokości ściany podpór i ciężaru przęsła przy stałej sztywności podpór,
- 4. zmian sztywności podpór,

5. różnic w wyznaczaniu obciążenia parciem gruntu wg wytycznych [22], [118], [10], na wartości sił wewnętrznych w konstrukcji.

Rozpiętości przęseł równe 10; 20; 30; 40 metrów i wysokości przęseł przyjęto wg opisu z Rozdziału 9.1.

Dla przęseł o rozpiętościach 20 m, 30 m, 40 m wykonano również obliczenia przy założeniu ciężaru własnego konstrukcji równego **12,5** $\frac{kN}{m}$ (= 25,0 $\frac{kN}{m^3}$ * 0,5 m * 1,0 m). W założeniu odpowiada to odwzorowaniu konstrukcji <u>zespolonej</u> przęsła o belkach stalowych tj. konstrukcji najlżejszej. Przyjęto następujące grubości/wielkości:

- warstw nawierzchni o grubości ~10 cm a odpowiadające ciężarowi ~8 cm betonu,
- zespalających płyt betonowych o grubościach 18-40 cm,
- belek stalowych wraz z poprzecznicami odpowiadających ciężarowi płyty pełnej o grubości 7-15 cm betonu.

Łącznie otrzymujemy grubość konstrukcji wynoszącą od 31 cm (8+18+7) do 65 cm (10+40+15). Ostatecznie do dalszych obliczeń przyjęto ciężar własny konstrukcji jak dla konstrukcji o wysokości h = 0,5 m.

Grubości podpór przyjęto 0,6 i 1,5 metra jako reprezentatywne dla obiektów inżynierskich.

Wysokości podpór przyjęto od 2 do 8 metrów. I tak np. wysokość 2 metry jest reprezentatywna w przypadku konstruowania podpory w nasypie, wysokość 5 metrów reprezentuje wysokość obiektu inżynierskiego przy najczęściej spotykanej skrajni 4,5 metra, zaś 8 metrowa wysokość podpory może występować np. w przypadku konstruowania obiektów o podwyższonej skrajni, w wysokim nasypie z uwagi na warunki miejscowe czy też nad rzekami.

Ciężar jednostkowy betonu przyjęto 25,0 $\frac{kN}{m^3}$ wg opisu z Rozdziału 9.1.

Moment bezwładności J_x obrazuje przęsło w postaci sprężonej płyty pełnej (dla rozpiętości 10 i 20 metrów) i przęsła wykonanego w postaci sprężonych dźwigarów dla przęseł o długościach 30 i 40 metrów.

Zakres zmian temperatury pracy przęsła ⊿T, od temperatury montażu, przyjęto 25°C wg opisu z Rozdziału 10.1.

Szczegółowe informacje/wyniki obliczeń na podstawie których opracowano wnioski przedstawiono w Rozdziale 11.2 oraz w Załączniku 14.11.

11.2 Założenia do obliczeń – ramowe obiekty jednoprzęsłowe

Obliczenia wykonano przy następujących założeniach:

- a) Wysokość podpór H = 2; 3; 4; 5; 6; 7; 8 m jest zmienna dla rozpatrywanych długości przęsła L.
- b) Grubość podpór Gs przyjęto jako równe 0,6 m lub 1,5 m.
- c) Rozpiętość przęsła *L* = 10; 20; 30; 40 m.
- d) Wysokość konstrukcyjna przęsła h jest zmienna w zależności od rozpiętości przęsła
 L i wynosi, dla:
 - a. h = 0,6 m (dla L = 10 m),
 - b. h = 1,0 m (dla L = 20 m),
 - c. h = 1,25 m (dla L = 30 m),
 - d. $h = 1,5 \text{ m} (\text{dla } L \ge 40 \text{ m}).$

- e) Moment bezwładności przęsła J_x zależy od wysokości konstrukcyjnej przęsła i wynosi:
 - a. $J_x = 0,018 \text{ m}^4$; przy h = 0,6 m;
 - b. $J_x = 0,083 \text{ m}^4$; przy h = 1,0 m;
 - c. $J_x = 0,163 \text{ m}^4$; przy h = 1,25 m;
 - d. $J_x = 0,281 \text{ m}^4$; przy h = 1,5 m.
- f) Moment bezwładności podpór wynosi, przy:
 - a. $Gs = 0,6 \text{ m}; J_x = 0,018 \text{ m}^4;$
 - b. $Gs = 1,5 \text{ m}; J_x = 0,281 \text{ m}^4$.
- g) Ciężar przęsła i podpór przyjęto jako 25,0 $\frac{kN}{m^3}$. Celem otrzymania wartości ciężaru własnego na 1 mb konstrukcji dokonano obliczeń w zależności od wysokości przęsła lub grubości podpór. Otrzymujemy więc dla:
 - a. *h* lub *Gs* = 0,6 m; ciężar własny konstrukcji wynosi 25,0 $\frac{kN}{m^3}$ * 0,6 m * 1,0 m = 15,0 $\frac{kN}{m}$;
 - b. h = 1,0 m; ciężar własny konstrukcji wynosi 25,0 $\frac{kN}{m^3}$ * 1,0 m * 1,0 m = 25,0 $\frac{kN}{m}$;
 - c. h = 1,25 m; ciężar własny konstrukcji wynosi 25,0 $\frac{kN}{m^3}$ * 1,25 m * 1,0 m = 31,25 $\frac{kN}{m}$;
 - d. *h* lub *Gs* = 1,5 m; ciężar własny konstrukcji wynosi 25,0 $\frac{kN}{m^3}$ * 1,5 m * 1,0 m = 37,5 $\frac{kN}{m}$.
 - h) Dla konstrukcji o wysokościach *h* = 1,0; 1,25; 1,5 m wykonano ponadto obliczenia przy założeniu, iż ciężar własny przęsła wynosi 25,0 $\frac{kN}{m^3}$ * 0,5 m * 1,0 m = **12,5** $\frac{kN}{m}$.
- i) ΔT zakres zmian temperatury pracy przęsła od temperatury montażu, przyjęto 25°C.
- j) Obciążenie parciem gruntu podpór wyznaczono wg wytycznych [22], [118], [10].

Schematy analizowanych Zintegrowanych konstrukcji ramowych przedstawiono od Rys. 11.1 do Rys. 11.4.

Zmienne H = 2; 3; 4; 5; 6; 7; 8 m Gs = 0,6 m; 1,5 m	Stałe L = .10 m h = .0,6 m Jx ciężar własny przęsła = 15 kN/m $\Delta T = 25^{\circ}\text{C}$	schemat obciążenia gruntem
Rodzaj podpory		777

Rys. 11.1 Schemat Zintegrowanych konstrukcji ramowych o stałych L = 10 m, h = 0.6 m, J_x i zmiennych ciężarze przęsła, H, Gs, podporach przegubowo-nieprzesuwnych lub sztywno-zamocowanych i o poddanych obciążeniu parciem gruntu wg [22], [118], [10].

Zmienne H = 2; 3; 4; 5; 6; 7; 8 m Gs = 0,6 m; 1,5 m	State L = 20 m h = 1.0 m Jx $\Delta T = 25^{\circ}\text{C}$	Zmienne ciężar własny prz 12,5 kN/m lub 25,0 kN/mb	zesła = schemat obciążenia gruntem
Rodzaj podpory			777

Rys. 11.2 Schemat Zintegrowanych konstrukcji ramowych o stałych L = 20 m, h = 1,0 m, J_x i zmiennych ciężarze przęsła, *H*, *Gs*, podporach przegubowo-nieprzesuwnych lub sztywno-zamocowanych i poddanych obciążeniu parciem gruntu wg [22], [118], [10].

Zmienne H = 2; 3; 4; 5; 6; 7; 8 m Gs = 0,6 m; 1,5 m	Stałe <i>L</i> = 30 m <i>h</i> = 1,25 m <i>J</i> x <i>∆T</i> = 25°C	Zmienne ciężar własny prz 12,5 kN/m lub 31,25 kN/m	esta = schemat obciążenia gruntem
Rodzaj podpory			777

Rys. 11.3 Schemat Zintegrowanych konstrukcji ramowych o stałych L = 30 m, h = 1,25 m, J_x i zmiennym ciężarze przęsła, H, Gs, podporach przegubowo-nieprzesuwnych lub sztywno-zamocowanych i poddanych obciążeniu parciem gruntu wg [22], [118], [10].

Zmienne H = 2; 3; 4; 5; 6; 7; 8 m Gs = 0,6 m; 1,5 m	Stałe <i>L</i> = 40 m <i>h</i> = 1,5 m <i>J</i> x	Zmienne ciężar własny prze 12,5 kN/m lub 37,5 kN/m	esta = schemat obciążenia gruntem
Rodzaj podpory			

Rys. 11.4 Schemat Zintegrowanych konstrukcji ramowych o stałych L = 40 m, h = 1,5 m, J_x , zmiennym ciężarze przęsła, H, Gs, podporach przegubowo-nieprzesuwnych lub sztywno-zamocowanych i poddanych obciążeniu parciem gruntu wg [22], [118], [10].

11.2.1 Wyznaczenie obciążenia parciem gruntu według wytycznych [118]

Obciążenie parciem gruntu podpór wyznaczono na podstawie (4.27) i przy przyjęciu opisanych wartości:

a) $K_{o Kal} = 0,412.$

b)
$$\gamma_{Kal} = 18,9 \frac{\text{kN}}{\text{m}^3}$$

gdzie:

 $K_{o \ Kal}$ – współczynnik spoczynkowego parcia gruntu wg [118], [-], γ_{Kal} - ciężar gruntu wg [118], [$\frac{kN}{m^3}$].

11.2.2 Wyznaczenie obciążenia parciem gruntu według wytycznych [10]

Obciążenie parciem gruntu podpór wyznaczono na podstawie (4.28), "kopertowego" wykresu obciążenia parciem gruntu (

Rys. 4.8) i przy przyjęciu wartości:

a)
$$K_{o ang} = 0,60.$$

b)
$$K_{p ang} = 3,5; 9,5; 11,9.$$

c)
$$\gamma_{ang} = 18.0 \frac{\text{kN}}{\text{m}^3}$$
.

Należy zaznaczyć, iż wytyczne [10] zalecają stosowanie obiektów Zintegrowanych o maksymalnej długości całkowitej **60** m. Nie jest jednak sprecyzowane czy po przekroczeniu tej długości proponowane sposoby na obliczanie obciążenia parciem gruntu są nadal ważne, czy też np. wartość obciążenia parciem gruntu wyznaczona dla konstrukcji o długości 60 metrów jest obciążaniem maksymalnym jakie należy przyjmować również dla konstrukcji o długościach większych niż 60 m.

11.2.3 Wyznaczenie obciążenia parciem gruntu według wytycznych [22]

Obciążenie parciem gruntu podpór wyznaczono na podstawie (4.33), położeniu wypadkowych parcia gruntu wg Rys. 4.9 i przy przyjęciu wartości:

- a) $K_{o szw} = 0,43.$
- b) $\gamma_{szw} = 18.0 \, \frac{\text{kN}}{\text{m}^3}$.

11.2.4 Opis obliczeń

Wartości sił wewnętrznych obliczono Metodą Elementów Skończonych w następujących punktach charakterystycznych (Rys. 11.5):

a. Punkt "0a" – (podpora) –

- i. Wartość momentu zginającego oznaczono jako *M(0a)*; [kNm].
- b. Punkt "a" (narożnik/węzeł)
 - i. Wartość momentu zginającego oznaczono jako *M(a)*; [kNm].

- c. Punkt "0,5L" (środek przęsła)
 - i. Wartość momentu zginającego oznaczono jako *M(0,5L)*; [kNm].

Rys. 11.5 Miejsca analiz sił wewnętrznych

W etapie I obliczono wartości sił wewnętrznych dla ciężaru własnego konstrukcji oraz wartości przemieszczeń góry konstrukcji ⊿ od zmian temperatury.

W etapie II na podstawie znanych wartości przesunięcia ⊿ od zmian temperatury, obliczono wartości obciążenia parciem gruntu według poszczególnych wytycznych tj. [10], [22], [118].

Jako wartość pomocniczą na potrzeby analizy przyjęto tzw. "**referencyjny iloraz odniesienia**". Jest to współczynnik określany przez iloraz wartości momentu zginającego od obciążenia parciem gruntu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji. Referencyjny iloraz odniesienia przyjęto jako równy 5%. Należy wskazać, iż przyjęta wartość 5% jest wartością <u>przykładową</u>. Wartość 5% przyjęto w analogii do możliwego przekroczenia wartości naprężeń w stali zbrojeniowej wg punktu 2.8 z [66] i opinii z [67] o braku konieczności weryfikacji wymiarów konstrukcji w przypadku różnicy pomiędzy wymiarami wstępnymi i końcowymi ≤ 5%.

11.2.5 Omówienie wyników analizy Zintegrowanych, jednoprzęsłowych obiektów ramowych poddanych obciążeniu parciem gruntu - konstrukcje betonowe płytowe/belkowe

Przeprowadzona analiza pozwala na stwierdzenie, iż dla większości^q analizowanych konstrukcji **największe** wartości sił wewnętrznych od obciążenia parciem gruntu otrzymuje się przy stosowaniu wytycznych [22], **najmniejsze** zaś przy obliczaniu według wytycznych [118].

^q Przypadki szczególne opisano w następnym akapicie

Należy jednak zwrócić uwagę, iż dla punktów "0a" dla $L \le 30$ m i przy $H \sim 2$ m; punktów "a" i "0,5L" dla $L \le 20$ m i przy o H < 5 i dla wszystkich punktów dla $L \le 10$ m <u>największe</u> wartości sił wewnętrznych od obciążenia parciem gruntu otrzymuje się w przypadku obliczania obciążenia parciem gruntu wg <u>wytycznych</u> [10] i przy przyjęciu (bardzo wysokiego poziomu) $K_{p ang} = 11,9$.

Szczegółowe informacje/wyniki obliczeń na podstawie których opracowano opisywane wnioski przedstawiono od Rys. 11.6 do Rys. 11.10, od Rys 14.106 do Rys. 14.120 i w Załączniku 14.12.

Warto odnotować, iż stosunek pomiędzy najmniejszą a największą wartością sił wewnętrznych wywołanych obciążeniem parciem gruntu w odniesieniu do obciążenia ciężarem własnym konstrukcji, <u>wzrasta</u> w przypadku zwiększenia wysokości podpory (skrajnej) i wynosi:

A. Dla przęseł o długości *L* = 10 m opartych na podporach sztywno-zamocowanych

- a. Dla wartości *M(0a)* od 1,98 do 2,91.
- b. Dla wartości *M*(*a*) i *M*(*0,5L*) od 2,34 do 3,38.
- B. Dla przęseł o długości *L* = 10 m opartych na podporach przegubowo-nieprzesuwnych:
 - a. Dla wartości *M(a)* od 2,15 do 3,14.
- C. Dla przęseł o długości *L* = 20 m opartych na podporach sztywno-zamocowanych:
 - a. Dla wartości *M(0a)* od 2,93 do 3,58.
 - b. Dla wartości *M*(*a*) i *M*(*0,5L*) od 3,67 do 4,35.
- D. Dla przęseł o długości *L* = 20 m opartych na podporach przegubowo-nieprzesuwnych:
 - a. Dla wartości *M*(*a*) od 3,31 do 3,93.
- E. Dla przęseł o długości *L* = 30 m opartych na podporach sztywno-zamocowanych:
 - a. Dla wartości *M(0a)* od 3,88 do 4,31.
 - b. Dla wartości *M*(*a*) i *M*(*0,5L*) od 4,32 do 5,04.
- F. Dla przęseł o długości *L* = 30 m opartych na podporach przegubowo-nieprzesuwnych:
 - a. Dla wartości *M*(*a*) i *M*(*0,5L*) od 5,25 do 6,39.
- G. Dla przęseł o długości *L* = 40 m opartych na podporach sztywno-zamocowanych:
 - a. Dla wartości *M(0a)* od 4,66 do 4,90.
 - b. Dla wartości *M*(*a*) i *M*(*0,5L*) od 5,25 do 6,39.
- H. Dla przęseł o długości *L* = 40 m opartych na podporach przegubowo-nieprzesuwnych:
 - a. Dla wartości *M*(*a*) i *M*(*0*,*5L*) od 10,99 do 17,00.

Dodatkowo można stwierdzić, iż różnica ilorazu wartości momentu zginającego wywołanego obciążeniem parciem gruntu^r do wartości momentu zginającego wywołanego obciążeniem ciężarem własnym konstrukcji, przekracza wartość **5%**^s:

[A].W przypadku przęseł o *L* = 10 m opartych na podporach sztywno-zamocowanych:

- a. W punkcie "0a" przy *H* wynoszącym od ~1,5 m do ~1,8 m (Rys 14.106).
- b. W punkcie "a" przy *H* wynoszącym od ~2,5 m do ~4,7 m (Rys. 14.107).
- c. W punkcie "0,5L" przy *H* wynoszącym od ~3,3 m do ~4,5 m (Rys. 14.108).

[B]. W przypadku przęseł o *L* = 10 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" przy *H* wynoszącym od ~3,3 m do ~4,5 m (Rys. 14.109).
- b. W punkcie "0,5L" przy *H* wynoszącym od ~2,7 m do ~3,6 m (Rys. 14.110).

[C]. W przypadku przęseł o *L* = 20 m opartych na podporach sztywno-zamocowanych:

- a. W punkcie "0a" przy H wynoszącym od ~1,9 m do ~3,0 m (Rys. 14.111).
- b. W punkcie "a" przy H wynoszącym od ~4,4 m do ~6,1 m (Rys. 14.112).
- c. W punkcie "0,5L" przy *H* wynoszącym od ~4,7 m do ~7,0 m (Rys. 14.113).

[D].W przypadku przęseł o L = 20 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" przy H wynoszącym od ~3,6 m do ~ 4,9 m (Rys. 14.114).
- b. W punkcie "0,5L" przy *H* wynoszącym od ~4,0 m do ~4,7 m (Rys. 14.115).

[E]. W przypadku przęseł o L = 30 m opartych na podporach sztywno-zamocowanych:

- a. W punkcie "0a" przy H wynoszącym od ~2,5 m do ~4,1 m (Rys. 14.116).
- b. W punkcie "a" przy H wynoszącym od ~5,0 m do ~6,4 m (Rys. 14.117).
- c. W punkcie "0,5L" przy *H* wynoszącym od ~5,7 m do >>> 8 m (Rys. 14.118).

[F]. W przypadku przęseł o *L* = 30 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" przy *H* wynoszącym od ~4,1 m do ~6,0 m (Rys. 14.119).
- b. W punkcie "0,5L" przy *H* wynoszącym od ~4,9 m do ~7,8 m (Rys. 14.120).
- [G]. W przypadku przęseł o *L* = 40 m opartych na podporach sztywno-zamocowanych:
 - a. W punkcie "0a" przy H wynoszącym od ~3,1 m do ~5,1 m (Rys. 11.6).
 - b. W punkcie "a" przy *H* wynoszącym od ~5,3 m do >>8 m (Rys. 14.17).
 - c. W punkcie "0,5L" przy *H* wynoszącym od ~6,6 m do >>> 8 m (Rys. 11.8).
- [H]. W przypadku przęseł o *L* = 40 m opartych na podporach przegubowo-nieprzesuwnych:
 - a. W punkcie "a" przy *H* wynoszącym od ~4,4 m do >8 m (Rys. 11.9).
 - b. W punkcie "0,5L" przy *H* wynoszącym od ~5,6 m do >>> 8 m (Rys. 11.10).

^r w zależności od przyjętych wytycznych

^s przyjęte jako 5% wg opisu z podrozdziału 11.2.4

Wnioski z analizy opisane w punktach od [A] do [H] pozwalają na stwierdzenie, iż wraz <u>ze zwiększaniem się długości przęsła</u> *L* **zmniejsza się** możliwość przekroczenia stanów granicznych nośności w przypadku niewłaściwego oszacowania obciążenia parciem gruntu. Wniosek ten jest ważny dla wszystkich analizowanych punktów obiektu Zintegrowanego (jednoprzęsłowego). Dalsza analiza pozwoliła na uzyskanie informacji przy jakich wysokościach podpór różnica wartości momentu zginającego wywołanego obciążeniem parciem gruntu w odniesieniu do wartości momentu zginającego wywołanego obciążeniem ciężarem własnym konstrukcji, przekracza **5**%^t. Poszukiwana wysokość podpór *H* wynosi więc:

(A).W przypadku przęseł o L = 10 m opartych na podporach sztywno-zamocowanych:

- a. W punkcie "0a" ~1,5 m (Rys. 14.106).
- b. W punkcie "a" ~3,0 m (Rys. 14.107).
- c. W punkcie "0,5L" ~3,7 m (Rys. 14.108).

(B). W przypadku przęseł o L = 10 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" ~3,7 m (Rys. 14.109).
- b. W punkcie "0,5L" ~3,1 m (Rys. 14.110).
- (C). W przypadku przęseł o L = 20 m opartych na podporach sztywno-zamocowanych:
 - a. W punkcie "0a" ~2,1 m (Rys. 14.111).
 - b. W punkcie "a" ~4,6 m (Rys. 14.112).
 - c. W punkcie "0,5L" ~5,2 m (Rys. 14.113).

(D).W przypadku przęseł o L = 20 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" ~4,0 m (Rys. 14.114).
- b. W punkcie "0,5L" ~4,4 m (Rys. 14.115).
- (E). W przypadku przęseł o L = 30 m opartych na podporach sztywno-zamocowanych:
 - a. W punkcie "0a" ~2,9 m (Rys. 14.116).
 - b. W punkcie "a" ~5,2 m (Rys. 14.117).
 - c. W punkcie "0,5L" ~6,1 m (Rys. 14.118).
- (F). W przypadku przęseł o *L* = 30 m opartych na podporach przegubowo-nieprzesuwnych:
 - a. W punkcie "a" ~6,0 m (Rys. 14.119).
 - b. W punkcie "0,5L" ~7,8 m (Rys. 14.120).
- (G). W przypadku przęseł o L = 40 m opartych na podporach sztywno-zamocowanych:
 - a. W punkcie "0a" ~3,3 m (Rys. 11.6).

^t przyjęte jako 5% wg opisu z podrozdziału 11.2.4

- b. W punkcie "a" ~5,5 m (Rys. 14.17).
- c. W punkcie "0,5L" ~7,0 (Rys. 11.8).

(H).W przypadku przęseł o *L* = 40 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" ~4,5 m (Rys. 11.9).
- b. W punkcie "0,5L" ~5,8 m (Rys. 11.10).

Informacje opisane w punktach (A) do (H) są <u>jednymi z najważniejszych</u> uzyskanych w wyniku analizy, gdyż pozwalają nam na podanie jednoznacznej informacji o wysokości *H* powyżej której należy ze <u>szczególna uwaga</u> podejść do określania obciążenia parciem gruntu. Należy bowiem wskazać, iż referencyjny iloraz odniesienia może wynosić dla:

{1}. przęseł o *L* = 10 m opartych na podporach sztywno-zamocowanych:

- a. W punkcie "0a" od 9,38% (H = 2 m) do 1097,78% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 17,38% (H = 2 m) do 544,17% (H = 8 m; Rys. 14.106)
- b. W punkcie "a" od 0,12% (H = 2 m) do 98,79% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,28% (H = 2 m) do 56,66% (H = 8 m; Rys. 14.107).
- c. W punkcie "0,5L" od 0,41% (H = 2 m) do 51,44% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,17% (H = 2 m) do 89,69% (H = 8 m; Rys. 14.108).

{2}. przęseł o *L* = 10 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" od 0,33% (H = 2 m) do 212,42% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,70% (H = 2 m) do 113,84% (H = 8 m; Rys. 14.109).
- b. W punkcie "0,5L" od 0,46% (H = 2 m) do 163,30% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,98% (H = 2 m) do 87,51% (H = 8 m; Rys. 14.110).

{3}. przęseł o *L* = 20 m opartych na podporach sztywno-zamocowanych:

- a. W punkcie "0a" od 1,67% (H = 2 m) do 318,02% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 4,32% (H = 2 m) do 209,51% (H = 8 m; Rys. 14.111).
- b. W punkcie "a" od 0,04% (H = 2 m) do 53,97% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,12% (H = 2 m) do 39,36% (H = 8 m; Rys. 14.112).

c. W punkcie "0,5L" od 0,04% (H = 2 m) do 28,51% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,13% (H = 2 m) do 20,79% (H = 8 m; Rys. 14.113).

{4}. przęseł o *L* = 20 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" od 0,11% (H = 2 m) do 113,34% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,32% (H = 2 m) do 79,13% (H = 8 m; Rys. 14.114).
- b. W punkcie "0,5L" od 0,11% (H = 2 m) do 48,15% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,32% (H = 2 m) do 33,62% (H = 8 m; Rys. 14.115).

{5}. przęseł o *L* = 30 m opartych na podporach sztywno-zamocowanych:

- a. W punkcie "0a" od 0,68% (H = 2 m) do 168,48% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 2,25% (H = 2 m) do 125,03% (H = 8 m; Rys. 14.116).
- b. W punkcie "a" od 0,01% (H = 2 m) do 34,06% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,05% (H = 2 m) do 27,30% (H = 8 m; Rys. 14.117).
- c. W punkcie "0,5L" od 0,01% (H = 2 m) do 14,71% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,05% (H = 2 m) do 11,79% (H = 8 m; Rys. 14.118).

{6}. przęseł o *L* = 30 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" od 0,05% (H = 2 m) do 78,80% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,16% (H = 2 m) do 54,97% (H = 8 m; Rys. 14.118).
- b. W punkcie "0,5L" od 0,05% (H = 2 m) do 24,29% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,14% (H = 2 m) do 18,86% (H = 8 m; Rys. 14.119).

{7}. przęseł o *L* = 40 m opartych na podporach sztywno-zamocowanych:

a. W punkcie "0a" od 0,36% (H = 2 m) do 111,93% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 1,31% (H = 2 m) do 88,66% (H = 8 m; Rys. 11.6).

- b. W punkcie "a" od 0,01% (H = 2 m) do 26,19% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,04% (H = 2 m) do 22,09% (H = 8 m; Rys. 14.7).
- c. W punkcie "0,5L" od 0,01% (H = 2 m) do 9,18% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,01% (H = 2 m) do 7,74% (H = 8 m; Rys. 14.8).

{8}. przęseł o *L* = 40 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" od 0,01% (H = 2 m) do 54,13% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,14% (H = 2 m) do 49,20% (H = 8 m; Rys. 11.9).
- b. W punkcie "0,5L" od 0,01% (H = 2 m) do 14,91% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,01% (H = 2 m) do 13,56% (H = 8 m; Rys. 11.10).

Informacje zawarte od Rys 11.6 do Rys. 11.10 i od Rys. 14.106 do Rys. 14.120, pozwalają odczytać poszukiwaną wysokość podpór H powyżej której należy ze szczególną uwagą podchodzić do wyznaczania obciążenia parciem gruntu.

Wnioski z analizy pozwoliły również na wskazanie punktów "Oa" i "a" dla obiektów Zintegrowanych opartych na podporach sztywno-zamocowanych jako tych które powinny być poddane szczególnej analizie dla <u>wszystkich</u> analizowanych długości przęseł^u. Identyczny wniosek dla obiektów Zintegrowanych opartych na podporach przegubowo-nieprzesuwnych można sformułować dla punktu "a".

^u w przypadku stosowania podpór powyżej opisywanych w pracy wartości

Rys. 11.6 Udział wartości momentu zginającego w punkcie "0a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 40 m (Gs = 0.6 m, $h_p = 1.5$ m) i podporach sztywno-zamocowanych

Rys. 11.7 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 40 m (Gs = 0.6 m, $h_p = 1.5$ m) i podporach sztywno-zamocowanych

Rys. 11.8 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 40 m (Gs = 0,6 m, $h_p = 1,5$ m) i podporach sztywno-zamocowanych

Rys. 11.9 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 40 m (Gs = 0,6 m, $h_p = 1,5$ m) i podporach przegubowo-nieprzesuwnych

Rys. 11.10 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 40 m (Gs = 0,6 m, $h_p = 1,5$ m) i podporach przegubowo-nieprzesuwnych

11.2.6 Omówienie wyników analizy Zintegrowanych, jednoprzęsłowych obiektów ramowych poddanych obciążeniu parciem gruntu – konstrukcje zespolone na belkach stalowych

Przeprowadzona analiza pozwala na stwierdzenie, iż dla większości^v analizowanych konstrukcji **największe** wartości sił wewnętrznych od obciążenia parciem gruntu otrzymuje się przy stosowaniu wytycznych [22], **najmniejsze** zaś przy obliczaniu według wytycznych [118]. Należy jednak zwrócić uwagę, iż dla punktów "0a" dla $L \le 30$ m i przy $H \sim 2$ m; wszystkich punktów dla $L \le 20$ m i przy o H < 5 <u>największe</u> wartości sił wewnętrznych od obciążenia parciem gruntu otrzymuje się w przypadku obliczania obciążenia parciem gruntu wg <u>wytycznych [10]</u> i przy przyjęciu (bardzo wysokiego poziomu) $K_{p ang} = 11,9$. Szczegółowe informacje/wyniki obliczeń na podstawie których opracowano wnioski

przedstawiono od Rys. 11.6 do Rys. 11.15, od Rys. 14.121 do Rys. 14.130 i w Załączniku 14.12.

Warto odnotować, iż stosunek pomiędzy najmniejszą a największą wartością sił wewnętrznych wywołanych obciążeniem parciem gruntu w odniesieniu do obciążenia ciężarem własnym konstrukcji, <u>wzrasta</u> w przypadku zwiększenia wysokości podpory (skrajnej) i wynosi:

- A. Dla przęseł o długości *L* = 20 m opartych na podporach sztywno-zamocowanych:
 - a. Dla wartości *M(0a)* od 2,93 do 3,58.
 - b. Dla wartości *M*(*a*) i *M*(*0,5L*) od 3,67 do 4,35.
- B. Dla przęseł o długości *L* = 20 m opartych na podporach przegubowo-nieprzesuwnych:
 - a. Dla wartości *M*(*a*) od 3,31 do 3,93.
- C. Dla przęseł o długości *L* = 30 m opartych na podporach sztywno-zamocowanych:
 - a. Dla wartości *M(0a)* od 3,88 do 4,31.
 - b. Dla wartości *M*(*a*) i *M*(*0*,*5L*) od 4,28 do 5,47.
- D. Dla przęseł o długości *L* = 30 m opartych na podporach przegubowo-nieprzesuwnych:
 - a. Dla wartości *M*(*a*) i *M*(*0*,*5L*) od 4,28 do 4,47.
- E. Dla przęseł o długości *L* = 40 m opartych na podporach sztywno-zamocowanych:
 - a. Dla wartości *M(0a)* od 4,65 do 4,90.
 - b. Dla wartości *M*(*a*) i *M*(*0*,*5L*) od 5,11 do 6,39.
- F. Dla przęseł o długości *L* = 40 m opartych na podporach przegubowo-nieprzesuwnych:
 - a. Dla wartości *M*(*a*) i *M*(*0,5L*) od 5,11 do 6,39.

^v Przypadki szczególne opisano w następnym akapicie

Wnioski z analizy opisane w punktach od A. do H. pozwalają stwierdzić, iż <u>ze zwiększaniem się</u> <u>wysokości podpory</u> *H* **zwiększa się** niepewność oszacowania obciążenia parciem gruntu dla obiektu Zintegrowanego (jednoprzęsłowego). Dodatkowo można stwierdzić, iż różnica ilorazu wartości momentu zginającego wywołanego obciążeniem parciem gruntu^w do wartości momentu zginającego wywołanego obciążeniem ciężarem własnym konstrukcji, przekracza wartość **5%**^x:

[A].W przypadku przęseł o L = 20 m opartych na podporach sztywno-zamocowanych:

- a. W punkcie "0a" przy *H* od ~1,6 m do ~2,3 m (Rys. 14.121).
- b. W punkcie "a" przy *H* od ~3,7 m do ~5,1 m (Rys. 14.122).
- c. W punkcie "0,5L" przy *H* od ~3,9 m do ~5,7 m (Rys. 14.123).

[B]. W przypadku przęseł o *L* = 20 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" przy *H* od ~3,0 m do ~4,1 m (Rys. 14.124).
- b. W punkcie "0,5L" przy *H* od ~3,2 m do ~4,6 m (Rys. 14.125).
- [C]. W przypadku przęseł o L = 30 m opartych na podporach sztywno-zamocowanych:
 - a. W punkcie "0a" przy *H* od ~1,8 m do ~3,1 m (Rys. 14.126).
 - b. W punkcie "a" przy *H* od ~4,0 m do ~5,9 m (Rys. 14.127).
 - c. W punkcie "0,5L" przy *H* od ~4,4 m do ~7,1 m (Rys. 14.128).

[D].W przypadku przęseł o *L* = 30 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" przy *H* od ~3,2 m do ~4,7 m (Rys. 14.129).
- b. W punkcie "0,5L" przy *H* od ~3,7 m do ~5,9 m (Rys. 14.130).

[E]. W przypadku przęseł o *L* = 40 m opartych na podporach sztywno-zamocowanych:

- a. W punkcie "0a" przy *H* od ~2,0 m do ~3,5 m (Rys. 11.11).
- b. W punkcie "a" przy *H* od ~4,1 m do ~6,3 m (Rys. 11.12).
- c. W punkcie "0,5L" przy *H* od ~4,7 m do > 8 m (Rys. 11.13).

[F]. W przypadku przęseł o *L* = 40 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" przy *H* od ~4,0 m do ~6,1 m (Rys. 11.14).
- b. W punkcie "0,5L" przy *H* od ~4,8 m do >>> 8 m (Rys. 11.15).

Wnioski z analizy opisane w punktach od [A] do [H] pozwalają na stwierdzenie, iż wraz ze <u>zwiększaniem się długości przęsła</u> *L* **zmniejsza się** możliwość przekroczenia stanów granicznych nośności w przypadku niewłaściwego oszacowania obciążenia parciem gruntu.

^w w zależności od przyjętych wytycznych

^x przyjęte jako 5% wg opisu z podrozdziału 11.2.4

Wniosek ten jest ważny dla wszystkich analizowanych punktów obiektu Zintegrowanego (jednoprzęsłowego).

Dalsza analiza pozwoliła na uzyskanie informacji przy jakich wysokościach podpór różnica wartości momentu zginającego wywołanego obciążeniem parciem gruntu w odniesieniu do wartości momentu zginającego wywołanego obciążeniem ciężarem własnym konstrukcji przekracza **5**%^y. Poszukiwana wysokość podpór *H* wynosi więc:

(A).W przypadku przęseł o *L* = 20 m opartych na podporach sztywno-zamocowanych:

- a. W punkcie "0a" ~1,7 m (Rys. 14.121).
- b. W punkcie "a" ~4,0 m (Rys. 14.122).
- c. W punkcie "0,5L" ~4,2 m (Rys. 14.123).
- (B). W przypadku przęseł o *L* = 20 m opartych na podporach przegubowo-nieprzesuwnych:
 - a. W punkcie "a" ~3,3 m (Rys. 14.124).
 - b. W punkcie "0,5L" ~3,6 m (Rys. 14.125).
- (C). W przypadku przęseł o L = 30 m opartych na podporach sztywno-zamocowanych:
 - a. W punkcie "0a" ~1,9 m (Rys. 14.126).
 - b. W punkcie "a" ~4,2 m (Rys. 14.127).
 - c. W punkcie "0,5L" ~4,7 m (Rys. 14.128).
- (D).W przypadku przęseł o L = 30 m opartych na podporach przegubowo-nieprzesuwnych:
 - a. W punkcie "a" ~3,4 m (Rys. 14.129).
 - b. W punkcie "0,5L" ~4,0 m (Rys. 14.130).
- (E). W przypadku przęseł o L = 40 m opartych na podporach sztywno-zamocowanych:
 - a. W punkcie "0a" ~2,1 m (Rys. 11.11).
 - b. W punkcie "a" ~4,2 m (Rys. 11.12).
 - c. W punkcie "0,5L" ~5,0 m (Rys. 11.13).

(F). W przypadku przęseł o *L* = 40 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" ~4,1 m (Rys. 11.14).
- b. W punkcie "0,5L" ~5,1 m (Rys. 11.15).

Informacje opisane w punktach (A) do (F) są <u>jednymi z najważniejszych</u> uzyskanych w wyniku analizy, gdyż pozwalają nam na podanie jednoznacznej informacji o wysokości *H* powyżej której należy ze <u>szczególną uwagą</u> podejść do sposobu określania obciążenia parciem gruntu.

^y przyjęte jako 5% wg opisu z podrozdziału 11.2.4

Należy bowiem wskazać, iż referencyjny iloraz odniesienia może wynosić dla:

{1}. przęseł o *L* = 20 m opartych na podporach sztywno-zamocowanych:

- a. W punkcie "0a" od 3,36% (H = 2 m) do 638,59% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 8,67% (H = 2 m) do 420,70% (H = 8 m; Rys. 14.121).
- b. W punkcie "a" od 0,07% (H = 2 m) do 108,37% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,24% (H = 2 m) do 79,03% (H = 8 m; Rys. 14.122).
- c. W punkcie "0,5L" od 0,08% (H = 2 m) do 57,24% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,26% (H = 2 m) do 41,74% (H = 8 m; Rys. 14.123).

{2}. przęseł o *L* = 20 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" od 0,22% (H = 2 m) do 227,58% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,63% (H = 2 m) do 158,89% (H = 8 m; Rys. 14.124).
- b. W punkcie "0,5L" od 0,22% (H = 2 m) do 96,69% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,64% (H = 2 m) do 67,50% (H = 8 m; Rys. 14.125).

{3}. przęseł o *L* = 30 m opartych na podporach sztywno-zamocowanych:

- a. W punkcie "0a" od 1,71% (H = 2 m) do 423,51% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 5,65% (H = 2 m) do 314,30% (H = 8 m; Rys. 14.126).
- b. W punkcie "a" od 0,04% (H = 2 m) do 85,53% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,12% (H = 2 m) do 68,56% (H = 8 m; Rys. 14.127).
- c. W punkcie "0,5L" od 0,03% (H = 2 m) do 36,93% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,12% (H = 2 m) do 29,60% (H = 8 m; Rys. 14.128).

{4}. przęseł o *L* = 30 m opartych na podporach przegubowo-nieprzesuwnych:

a. W punkcie "a" od 0,12% (H = 2 m) do 177,86% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,39% (H = 2 m) do 138,09% (H = 8 m; Rys. 14.129).

b. W punkcie "0,5L" od 0,10% (H = 2 m) do 61,04% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,34% (H = 2 m) do 47,40% (H = 8 m; Rys. 14.130).

{5}. przęseł o *L* = 40 m opartych na podporach sztywno-zamocowanych:

- a. W punkcie "0a" od 1,08% (H = 2 m) do 337,14% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 3,95% (H = 2 m) do 267,04% (H = 8 m; Rys. 11.11).
- b. W punkcie "a" od 0,02% (H = 2 m) do 778,89% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,10% (H = 2 m) do 66,54% (H = 8 m; Rys. 11.12).
- c. W punkcie "0,5L" od 0,02% (H = 2 m) do 27,64% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,08% (H = 2 m) do 23,32% (H = 8 m; Rys. 11.13).

{6}. przęseł o *L* = 40 m opartych na podporach przegubowo-nieprzesuwnych:

- a. W punkcie "a" od 0,03% (H = 2 m) do 94,77% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,11% (H = 2 m) do 79,93% (H = 8 m; Rys. 11.14).
- b. W punkcie "0,5L" od 0,02% (H = 2 m) do 26,11% (H = 8 m), zaś różnica pomiędzy jego wartością minimalną a maksymalną wynosi od 0,08% (H = 2 m) do 22,02% (H = 8 m; Rys. 11.15).

Informacje zawarte od Rys. 11.11 do Rys. 11.15 i od Rys. 14.121 do Rys. 14.130, pozwalają odczytać poszukiwaną wysokość podpór *H* powyżej której należy ze szczególną uwagą podchodzić do wyznaczania obciążenia parciem gruntu.

Wnioski z analizy pozwoliły również na wskazanie punktów "0a" i "a" dla obiektów Zintegrowanych opartych na podporach sztywno-zamocowanych jako tych które powinny być poddane szczególnej analizie dla <u>wszystkich</u> analizowanych długości przęseł^z. Identyczny wniosek dla obiektów Zintegrowanych opartych na podporach przegubowo-nieprzesuwnych można sformułować dla punktu "a".

^z w przypadku stosowania podpór powyżej opisywanych w pracy wartości

Rys. 11.11 Udział wartości momentu zginającego w punkcie "0a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 40 m (Gs = 0.6 m, $h_p = 1.5$ m) i podporach sztywno-zamocowanych przy ciężarze przęsła jak dla h = 50 cm.

Rys. 11.12 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 40 m (Gs = 0,6 m, h_p = 1,5 m) i podporach sztywno-zamocowanych przy ciężarze przęsła jak dla h = 50 cm.

Rys. 11.13 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 40 m (Gs = 0,6 m, $h_p = 1,5$ m) i podporach sztywno-zamocowanych przy ciężarze przęsła jak dla h = 50 cm.

Rys. 11.14 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 40 m (Gs = 0.6 m, $h_p = 1.5$ m) i podporach przegubowo-nieprzesuwnych przy ciężarze przęsła jak dla h = 50 cm

Rys. 11.15. Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 40 m (Gs = 0.6 m, $h_p = 1.5$ m) i podporach przegubowo-nieprzesuwnych przy ciężarze przęsła jak dla h = 50 cm

11.3 Omówienie wyników analizy obiektów Zintegrowanych ramowych poddanych obciążeniu parciem gruntu w przypadku zwiększania sztywności podpór

Przeprowadzenie analizy przy zwiększeniu sztywności podpór o około 15,6 raza (tj. przy zwiększeniu *Gs* z 0,6 m 1,5 m) pozwala na stwierdzenie, iż **największe** wartości obciążenia parciem gruntu otrzymuje się przy stosowaniu wytycznych [22], **najmniejsze** zaś przy obliczaniu według wytycznych [118].

Należy również wskazać na <u>niewielkie</u> różnice wartości obciążenia parciem gruntu, w przypadku zwiększenia sztywności podpór przegubowo-nieprzesuwnych, wynoszące dla przęsła o:

A. *L* = 40 m, od 0,06% do 1,39% (Rys. 11.16),

B. *L* = 30 m, od 0,05% do 0,82% (Rys. 11.17),

- C. L = 20 m, od 0,0% do 0,61% (Rys. 11.18),
- D. L = 10 m, od 0,0% do 0,2% (Rys. 11.19).

Odmiennie przedstawia się jednak sytuacja w przypadku stosowania podpór sztywnozamocowanych (zamiast przegubowo-nieprzesuwnych). W tym przypadku występują <u>znaczne</u> zmiany wartości obciążenia parciem gruntu (zwłaszcza dla podpór o wysokości H < 5 m) wynoszące dla przęsła o:

- a) L = 40 m od 0,93% do 26,40% w przypadku stosowania wytycznych [10] i od 2,31%
 do 53,23% w przypadku stosowania wytycznych [22] (Rys. 11.16),
- b) L = 30 m od 1,24% do 25,03% w przypadku stosowania wytycznych [10] i od 3,08% do 51,33% w przypadku stosowania wytycznych [22] (Rys. 11.17),
- c) L = 20 m od 0,65% do 22,66% w przypadku stosowania wytycznych [10] i od 1,60%
 do 47,40% w przypadku stosowania wytycznych [22] (Rys. 11.18),
- d) L = 10 m od 0,48% do 20,40% w przypadku stosowania [10] i od 1,20% do 43,47%
 w przypadku stosowania wytycznych [22] (Rys. 11.19).

Analiza zmian obciążenia parciem gruntu w przypadku zwiększenia sztywności podpór (w omawianym przypadku ~15,6 raza) i zmiany podpór z przegubowo-nieprzesuwnych na sztywno-zamocowane pozwala na stwierdzenie, iż zmiana wartości obciążenia parciem gruntu dla przęsła o długości:

L = 40 m, wynosi (Rys. 11.16) od 70,06% do 98,95% dla wytycznych [10] i od 41,08% do 97,40% dla wytycznych [22].

- 2) L = 30 m, wynosi (Rys. 11.17) od 71,87% do 98,65% dla wytycznych [10] i od 43,79% do 96,66% dla wytycznych [22].
- 3) L = 20 m, wynosi (Rys. 11.18) od 74,79% do 99,28% dla wytycznych [10] i od 48,37% do 98,20% dla wytycznych [22].
- 4) L = 10 m, wynosi (Rys. 11.19) od 77,64% do 99,44% dla wytycznych [10] i od 53,12% do 98,60% dla wytycznych [22].

Rys. 11.16 Porównanie wartości obciążenia parciem gruntu w przypadku zwiększenia sztywności podpór o ~15,6 raza dla przęsła L = 40 m Zintegrowanego obiektu ramowego i zmiany podpór z przegubowonieprzesuwnych na sztywno-zamocowane

- 11 – ANALIZA OBIEKTÓW ... OBCIĄŻENIEM PARCIEM GRUNTU

Rys. 11.19 Porównanie wartości obciążenia parciem gruntu w przypadku zwiększenia sztywności podpór o ~15,6 raza dla przęsła L = 10 m Zintegrowanego obiektu ramowego i zmiany podpór z przegubowonieprzesuwnych na sztywno-zamocowane

Przeprowadzenie analizy pozwoliło również zauważyć (od Rys. 11.16 do Rys. 11.19), iż w przypadku zwiększenia sztywności podpór o ~15,6 raza i zamiany podpór z przegubowonieprzesuwnych na sztywno-zamocowane, zmiana wartości obciążenia parciem gruntu wynosi mniej niż 5% dla podpór wyższych od:

a. ~4,5 m przy obliczaniu parcia gruntu wg [10],

b. ~6,4 m przy stosowaniu wytycznych [22].

Wartość 5% jest wartością <u>przykładową</u>. Wartość 5% przyjęto w analogii do możliwego przekroczenia wartości naprężeń w stali zbrojeniowej wg punktu 2.8 z [66] i opinii z [67] o braku konieczności weryfikacji wymiarów konstrukcji w przypadku różnicy pomiędzy wymiarami wstępnymi i końcowymi ≤ 5%.

11.4 Ocena możliwości stosowania wyników analizy obciążenia parciem gruntu jednoprzęsłowych, ramowych obiektów Zintegrowanych o długości 10-40 metrów dla obiektów dłuższych niż 40 m jak i obiektów wieloprzęsłowych.

Przeprowadzenia analizy dla obiektów jednoprzęsłowych pozwoliło wykazać m.in. znaczne <u>zmniejszanie</u> się stosunku wartości momentów zginających pochodzących od obciążenia parciem gruntu w odniesieniu do momentów zginających od obciążenia ciężarem własnym konstrukcji w przypadku <u>zwiększania</u> się długości przęsła. Zmniejszenie to dotyczy wszystkich analizowanych miejsc tj. punktów "0a"; "a"; "0,5*L*" jak i typów konstrukcji.

Należy jednak zadać pytanie czy wnioski z analizy obiektów Zintegrowanych jednoprzęsłowych można zastosowywać dla obiektów dłuższych niż 40 metrów jak i wieloprzęsłowych?

Dlatego też **przyjmując założenie**, iż cechy przęseł obiektów wieloprzęsłowych (tj. moment bezwładności, ciężar jednostkowy) są podobne jak dla jednoprzęsłowych obiektów ramowych, możliwym wydaje się zastosowanie wyników analizy obiektów o długości 10-40 m do analizy obiektów dłuższych niż 40 m jak i wieloprzęsłowych.

Wiedząc, iż udział obciążenia parciem gruntu w stosunku do obciążenia ciężarem własnym konstrukcji maleje wraz ze zwiększaniem się długości przęsła można z <u>całkowita</u> pewnością wysnuć wniosek, iż dla Zintegrowanych <u>obiektów jednoprzęsłowych</u> dłuższych niż 40 metrów niebezpieczeństwo wpływu niewłaściwego oszacowania obciążenia parciem gruntu <u>maleje</u> wraz ze wzrostem długości przęsła. Należy jednak odrębnie przeanalizować wieloprzęsłowe obiekty Zintegrowane, a zwłaszcza przęsła jak i podpory skrajne w których to dochodzi do zwiększenia skutków obciążenia parciem gruntu.

Analizując równanie (4.28) [10], jak i wytyczne [22] można wysnuć wniosek, iż najdalej po osiągnięciu przez przęsło długości **65 m** obciążenie parciem gruntu NIE wzrasta.

Na bazie założeń o braku wzrostu obciążenia parciem gruntu po osiągnięciu przez przęsło długości **65 m** proponuje się wyznaczanie zredukowanej wysokości podpór skrajnych obiektu wieloprzęsłowego H_{RED} . Wielkość H_{RED} (11.1) pozwala na określenie wysokości podpory powyżej której należy ze szczególną uwagą podejść do określania obciążenia parciem gruntu dla obiektów wieloprzęsłowych.

gdzie:

$$H_{RED} = H_{i} * L_{skr} / L_{ob} \tag{11.1}$$

 H_i – wysokość podpór obiektu jednoprzęsłowego przy założonej wartości odniesienia (np. 5%) dla danej długości przęsła [m],

 H_{RED} – zredukowana wysokość podpór skrajnych obiektu wieloprzęsłowego przy założonej wartości odniesienia (np. 5%) [m],

L_{skr} – długość przęsła skrajnego Zintegrowanego obiektu wieloprzęsłowego [m],

Lob – długość wieloprzęsłowego obiektu inżynierskiego lecz nie więcej niż 65 [m].

11.5 Podsumowanie wyników analizy Zintegrowanych obiektów ramowych poddanych obciążeniu parciem gruntu

Analiza wyników badań analitycznych, wykazała <u>konieczność **zmniejszania** wysokości</u> podpór celem **zmniejszenia niepewności** oszacowania obciążenia parciem gruntu obiektów Zintegrowanych ramowych.

Należy zwrócić uwagę na niewielki lub wręcz brak korzyści wynikających ze zwiększania sztywności podpór. Ewentualne zwiększanie sztywności podpór powinno być stosowane dla podpór nie wyższych niż 3,8 metra.

Podsumowując jako wysokość *H* (*H*_i) podpór dla obiektów Zintegrowanych ramowych powyżej której należy podchodzić ze <u>szczególną uwagą</u> do szacowania obciążenia gruntu, proponuje się ustalić dla:

I. Obiektów jednoprzęsłowych:

- A. Dla przęseł o konstrukcji płytowej/zespolonej o belkach betonowych i opartych na podporach sztywno-zamocowanych:
 - a. *L* ≤10 m przyjęcie *H* ≤ <u>0,9</u> m;
 - b. 10 m < $L \le$ 20 m przyjęcie $H \le 1.5$ m;
 - c. 20 m < $L \le$ 30 m przyjęcie $H \le 2,1$ m;
 - d. $30 \text{ m} < L \le 40 \text{ m} \text{ przyjęcie } H \le 2.9 \text{ m};$
 - e. $L > 40 \text{ m przyjęcie } H_{40} \le 3.3 \text{ m.}$
- B. Dla przęseł o konstrukcji płytowej/zespolonej o belkach betonowych i opartych na podporach przegubowo-nieprzesuwnych:
 - a. $L \leq 10$ m przyjęcie $H_0 \leq 3,4$ m;
 - b. $10 \text{ m} < L \le 20 \text{ m} \text{ przyjęcie } H \le 3.7 \text{ m};$
 - c. 20 m < $L \le$ 30 m przyjęcie $H \le 4,0$ m;
 - d. 30 m < $L \le 40$ m przyjęcie $H \le 4.2$ m;
 - e. *L* > 40 m przyjęcie *H* ≤ <u>4,4</u> m.
- C. Dla przęseł o konstrukcji zespolonej o belkach stalowych i opartych na podporach sztywno-zamocowanych:
 - a. $L \leq 20$ m przyjęcie $H \leq 1,5$ m;
 - b. 20 m < $L \le$ 30 m przyjęcie $H \le 1,7$ m;
 - c. $30 \text{ m} < L \le 40 \text{ m} \text{ przyjęcie } H \le 1.9 \text{ m};$
 - d. L > 40 m przyjęcie $H \le 2,1$ m.

- D. Dla przęseł o konstrukcji zespolonej o belkach stalowych i opartych na podporach przegubowo-nieprzesuwnych:
 - a. $L \leq 20$ m przyjęcie $H \leq 3,0$ m;
 - b. 20 m < L < 30 m przyjęcie $H \le 3.3$ m;
 - c. $30 \text{ m} < L < 40 \text{ m} \text{ przyjęcie } H \le 3.4 \text{ m};$
 - d. L > 40 m przyjęcie $H \le 4.1$ m.

II. **Obiektów wieloprzęsłowych** wg (11.1) tj.: $H_{RED} = H_i * L_{skr}/L_{ob}$

Dla przypadków szczególnych opisanych w punktach A-D szukane wysokości *H_{RED}* podpór dla obiektów Zintegrowanych ramowych proponuje się wyznaczać w zależności od długości przęsła skrajnego. I tak przy np.:

- a. L = 10 m; pomnożyc przez $\frac{10}{65}$,
- b. $L = 20 \text{ m}; \text{ pomnożyc przez } \frac{20}{65},$
- c. L = 30 m; pomnożyc przez $\frac{30}{65}$,
- d. L = 40 m; pomnożyc przez $\frac{40}{65}$ (~61,5%), czyli przy wartości 4,1 m (punkt D ppkt. d.) * 61,5% otrzymujemy H_{RED} = ~2,5 m.

Po przekroczeniu opisanych w punktach I i II wysokości podpór, w szczególności dla momentów podporowych w punkcie "Oa"^{aa}, należy ze szczególną uwagą podejść do szacowania obciążenia parciem gruntu.

Należy ponadto podnieść, iż wpływ obciążenia parciem gruntu na wartość momentu przęsłowego *M(0,5L)* jest, w porównaniu do wartości sił wewnętrznych w punktach "Oa" czy też "a", znacznie mniejszy. Wiedza ta pozwala na wykonywanie zbrojenia czy też całych elementów przęseł praktycznie <u>niezależnie</u> od warunków gruntowych stwierdzanych podczas wykonywania badań sprawdzających na placu budowy.

Jako ostatni wniosek należy wskazać na konieczność <u>niezwłocznego</u> podania wytycznych co do sposobu przyjmowania obciążenia parciem gruntu obiektów Zintegrowanych. Jak bowiem wynika z przeprowadzonej analizy, niewłaściwe oszacowanie obciążenia parciem gruntu z jednej strony może być powodem katastrofy budowlanej, z drugiej zaś strony być powodem znacznego przeszacowywania sił wewnętrznych. Faktem jest też, iż przeszacowanie wartości sił wewnętrznych powoduje wzrost zużycia materiałów a tym samym pogorszenie ekonomiki inwestycji.

^{aa} obiekty o podporach sztywno-zamocowanych w fundamentach
12. POŁĄCZENIE OBIEKTU ZINTEGROWANEGO i PÓŁ-ZINTEGROWANEGO z DROGĄ (NASYPEM) – PROPOZYCJA ROZWIĄZANIA PROJEKTOWEGO

12.1 Wstęp i opis podstaw do propozycji kształtowania połączenia obiektu Zintegrowanego i Pół-zintegrowanego z drogą (nasypem)

Mając na uwadze przeprowadzone analizy odkształceń zasypki pod wpływem przemieszczeń za podporami (skrajnymi) obiektów Zintegrowanych/Pół-zintegrowanych (Rozdział 3), uszkodzeń Zintegrowanych i Pół-zintegrowanych obiektów inżynierskich (Rozdział 5), połączeń obiektów Zintegrowanych/Pół-zintegrowanych z drogą/nasypem (Rozdział 6) jak i obserwacje własne autora można stwierdzić, iż:

- a) Ewentualne uszkodzenia na połączeniu obiektu i drogi/nasypu występują przede wszystkim w początkowym stadium użytkowania konstrukcji.
- b) Zasięg strefy osiadania zależy od stopnia zagęszczania zasypki przy podporach i wynosi najczęściej od 0,1 do ~0,38 h_{wsp} lub H (Rys. 3.1).
- c) Wysokość podpór/Przewieszek ma bezpośredni wpływ na zasięg odziaływania/uszkodzeń na dojazdach do obiektów (Rys. 3.1).
- d) Zwiększanie długości płyty przejściowej powoduje odsunięcie strefy uskoku od podpór, jednak wydłuża zasięg odziaływań obiektu Zintegrowanego/Półzintegrowanego na nawierzchnię na dojeździe do obiektu.
- e) Osiadanie zasypki jest największe w strefie przy podporach/Przewieszkach i wynosi
 ~20 mm (Rys. 3.2). Powoduje to spękanie warstw asfaltowych a w dalszej kolejności
 wymywanie warstw podbudowy.
- f) Zasięg osiadania zasypki od krawędzi podpór/Przewieszek wynosi ~370 mm (Rys. 3.2).
- g) Stosowanie wysokich podpór (skrajnych) jest wątpliwe pod względem ekonomicznym (Rozdziały 9 i 10).
- h) Stosowanie wysokich podpór (skrajnych) powoduje znaczne różnice w szacowaniu obciążenia parciem gruntu (Rozdział 11).

Rys. 12.1 Schemat Przewieszki

12.2 Propozycja rozwiązania połączenia obiektu Zintegrowanego/Pół-zintegrowanego z drogą (nasypem)

Uwzględniając opisane w Podrozdziale 12.1 wnioski z analiz proponuje się stosowanie rozwiązania wg **Rys. 12.2**. Proponowane rozwiązanie powinno zminimalizować problemy związane z trwałością połączenia obiektu Zintegrowanego/Pół-zintegrowanego z drogą (nasypem). Należy wskazać, iż korzyści ze stosowania rozwiązania będą się zwiększały w przypadku projektowania niskich podpór/Przewieszek.

- A. Wyjaśnienia/uwagi dodatkowe:
 - Podobnie jak w Rozdziale 9.6 proponuje się zwiększenie △T o 20°C przy wyznaczaniu wartości przemieszczeń konstrukcji i przy ocenie możliwości zastosowania proponowanego rozwiązania. Jest to wymóg podobny jaki odnajdujemy dla określania temperatur przy przyjmowaniu łożysk i dylatacji w Eurokodzie PN-EN 1991-1-5 [130].
 - Proponuje się rezygnację z poprzecznego drenu odwadniającego lub ewentualnie jego odsunięcie w linii ostatnich wpustów/sączków tj. na odległość ≥ 2 m od końca konstrukcji. Powodem są znane autorowi przypadki "spękania" nawierzchni

nad drenem, co prowadziłoby do osłabienia wpływu zbrojenia nawierzchni na trwałość połączenia.

- Proponowana długość zbrojenia nawierzchni (min 9.0 m) wynika z granicy odziaływania wg badań Englanda [54] (wynoszącej ~7.8/8.0 metra) i dodatku na zakotwienie siatki stanowiącej zbrojenie nawierzchni.
- Grubość styropianu (na Przewieszce lub końcu płyty przejściowej) proponuje się przyjmować jako równą pięciokrotności wartości przemieszczeń konstrukcji od obciążenia zmianami temperatury, lecz nie mniej niż 5 cm.
- Proponowana minimalna długość płyty przejściowej 4,4 metra wynika ze zwiększenia obecnie wymaganej długości płyty przejściowej (4 m) o ~ 37 cm z uwagi na badania Englanda [54].
- Zalecane nachylenie płyty przejściowej 10% 20%. W przypadku nachylenia > 10% jest potrzebne odstępstwo od przepisów techniczno-budowlanych [29].
- Zbrojenie górne w warstwie nawierzchni asfaltowej proponuje się wykonywać w każdym przypadku, zaś zbrojenie dolne w warstwie nawierzchni asfaltowej w przypadku gdy przemieszczenia konstrukcji są > 5 mm.
- 8. Wartość 0,38 jak i współczynnik $\alpha_{LpN-Ram} = (0,1 + \frac{\Delta}{0,002} * 0,28)$; wynika z badań Springmana [36] dla $I_s = 0,95$, zaś 0,66 dla $I_s = 0,85$ (założono trudność w zagęszczeniu zasypki w rejonie podpór obiektów Pół-zintegrowanych. Wartość 0,002 jest przybliżoną wartością tangensa dla kąta 1,17° (Rys. 3.1) dla I_s równego 95%.
- Zaleca się wykonywanie nasypów (<u>zwłaszcza w klinie odłamu</u>) z wyprzedzeniem kilkunastu tygodni przed wykonaniem płyt przejściowych.

Rys. 12.2 Propozycja rozwiązania połączenia obiektu Zintegrowanego/Pół-zintegrowanego z nawierzchnią drogową (dojazdem)

12.3 Granica zastosowania połączenia obiektu Zintegrowanego/Pół-zintegrowanego z drogą (nasypem)

Granicę stosowania autorskiego rozwiązania (**Rys. 12.2**) proponuje się przyjąć w zależności od spodziewanych przemieszczeń obiektu Zintegrowanego lub Pół- zintegrowanego z podziałem na:

a) Przemieszczenia "-" (skrócenie) wg (12.1):
(
$$60 + 35$$
)/ 2) = **47 mm** (12.1)

Wartości 60 mm i 35 mm są wartościami przemieszczeń, przy których występują spękania nawierzchni (TST1 i TST2 wg Rys. 3.5 i Rys. 3.6).

Niemniej dla obiektów Zintegrowanych/Pół-zintegrowanych w ciągu dróg klas <u>A, S, GP, G,</u> zwłaszcza w przypadku stosowania płyty przejściowej o nachyleniu 10%, proponuje się przyjęcie granicy stosowania rozwiązania przy przemieszczeniach obiektu **≤ 35 mm**.

Wartość tych przemieszczeń uznano, z uwagi na proponowane <u>zwiększenie</u> ΔT o **20**°C wg [130], jako możliwe do przyjęcia z punktu widzenia komfortu przejazdu i bezpieczeństwa ruchu.

b) Przemieszczenia "+"(wydłużenie) wg (12.2)

$$(30 + 20)/(2) = 25 \text{ mm}$$
(12.2)

Wartości 30 mm i 20 mm są wartościami przemieszczeń, przy których występują przemieszczenia pionowe nawierzchni (TST1 i TST2 wg Rys. 3.7 i Rys. 3.8) dla odkształceń wynoszących odpowiednio 16 mm i 22,5 mm.

Niemniej dla obiektów Zintegrowanych/Pół-zintegrowanych w ciągu dróg klas <u>A, S, GP, G,</u> zwłaszcza w przypadku stosowania płyty przejściowej o nachyleniu 10%, proponuje się przyjęcie granicy stosowania rozwiązania przy przemieszczeniach obiektu **≤ 20 mm**.

Wartość tych przemieszczeń uznano, z uwagi na proponowane <u>zwiększenie</u> ΔT o **20**°C wg [130], jako możliwe do przyjęcia z punktu widzenia komfortu przejazdu i bezpieczeństwa ruchu.

12.4 Propozycja wyznaczania długości płyty przejściowej - obiekty Zintegrowane

Długość płyty przejściowej *L*_{pp-Zin} dla obiektów Zintegrowanych proponuje się przyjmować wg (12.3):

$$L_{pp-Zin} = 0,4 + \alpha_{Lpp-Zin} * Hn \ge 4,4 \text{ m}$$
(12.3)

gdzie:

- Hn wysokość podpory (skrajnej) wraz z grubością płyty przejściowej i warstw nawierzchni.
 W przypadku obiektów istniejących/remontowanych głębokość wymiany nasypu pod płytą przejściową wraz z grubością płyty przejściowej i warstw nawierzchni; [m],
- L_{pp-Zin} długość płyty przejściowej dla obiektów Zintegrowanych, lecz $L_{pp-Zin} \ge 0.6 * Hn$; [m],
- $\alpha_{Lpp-Zin}$ współczynnik do określania długości płyty przejściowej dla obiektów Zintegrowanych = $(0,1 + \frac{\Delta}{0.002} * 0,28) \le 0,38$; [-].

Dla obiektów Zintegrowanych proponuje się utrzymać wyznaczanie długości płyty przejściowej jak minimum 0,6 *Hn* wg [29].

12.5 Propozycja wyznaczania długości płyty przejściowej - obiekty Pół-zintegrowane

Długość płyty przejściowej *L*_{pp-Wsp} dla obiektów Pół-zintegrowanych proponuje się przyjmować wg (12.4):

$$L_{pp-Wsp} = 0,4 + 0,66 \ Hn \ge 4,4 \ m \tag{12.4}$$

gdzie:

L_{pp-Wsp} – długość płyty przejściowej dla obiektów Pół-zintegrowanych, [m].

12.6 Propozycja wyznaczania długości zbrojenia siatką w warstwach nawierzchni asfaltowej

Zbrojenie <u>warstwy górnej</u> nawierzchni asfaltowej proponuje się zakotwić poniżej warstwy wiążącej/ścieralnej na długości 0,7 metra pod warstwą wiążącą na płycie pomostu i wydłużyć (na długości płyty przejściowej) do długości *L*_{sg} (12.5):

$$L_{sg} = 0.7 + 2 (L_{pp-Zin} \text{ lub } L_{pp-Wsp}) + 1.0 \ge 9,0 \text{ m}$$
(12.5)

gdzie:

 L_{sg} – długość zbrojenia siatką warstwy górnej nawierzchni asfaltowej, [m].

Zbrojenie <u>warstwy dolnej</u> nawierzchni asfaltowej (stosowane przy przemieszczeniach góry podpory/Przewieszki większych niż 5 mm) proponuje się zakotwić poniżej podbudowy bitumicznej i wydłużyć do długości *L*_{sd} (12.6):

$$L_{sd} = 2 (L_{pp-Zin} \text{ lub } L_{pp-Wsp}) \ge 9,0 \text{ m}$$
 (12.6)

gdzie:

Lsd – długość zbrojenia siatką warstwy dolnej nawierzchni asfaltowej, [m].

13. PODSUMOWANIE

W rozprawie wykazano, iż kryterium długości przy określaniu możliwości stosowania obiektów Zintegrowanych/Pół-zintegrowanych może być traktowane jedynie jako <u>wskazówka</u> nie zaś bezwzględnie obowiązująca wytyczna. Wprowadzanie bowiem zaleceń co do długości obiektów Zintegrowanych/Pół-zintegrowanych może skutkować złudnym poczuciem bezpieczeństwa. Na podstawie przeglądu uszkodzeń obiektów Zintegrowanych/Pół-zintegrowanych analiz udowodniono, iż projektowanie obiektów o długościach krótszych niż zalecane nie gwarantuje automatycznego spełnienia warunków nośności (bezpiecznego użytkowania) i trwałości konstrukcji. Udowodniono ponadto, iż uszkodzenia obiektów Zintegrowanych/Pół-zintegrowanych/Pół-zintegrowanych nie zależą od ich długości czy też klasy obciążenia, lecz są wynikiem popełnianych błędów na etapie projektowania i wykonawstwa.

Przeprowadzenie analiz (na 320 schematach statycznych) pozwoliło również wykazać, iż <u>szczególnie</u> <u>niebezpieczne</u> jest niedoszacowanie obciążeń od zmian temperatur dla obiektów Zintegrowanych w przypadku projektowania podpór niskich, sztywnozamocowanych w fundamentach. Udowodniono ponadto, że skutki niewłaściwego oszacowania obciążenia od zmian temperatury zmniejszają się wraz ze wzrostem długości przęsła czy też smukłości podpór. Odwrotny zaś skutek tj. wzrost skutków niewłaściwego oszacowania obciążenia od zmian temperatury zwiększa się w przypadku wzrostu sztywności podpór. Celem minimalizacji skutków niewłaściwego oszacowania obciążenia od zmian temperatury zwiększa się w przypadku wzrostu sztywności podpór. Celem minimalizacji skutków niewłaściwego się:

- A. Projektowanie zamiast podpór sztywno-zamocowanych podpór przegubowonieprzesuwnych lub pośrednich tj. np. podpór przegubowo-nieprzesuwnych opartych na profilach stalowych tzw. "typ amerykański" {Rys. 2.3 punkt c)}. Jest to rozwiązanie zalecane szczególnie w przypadku stosowania niskich podpór (w analizowanych przypadkach przy H = 2 m).
- B. Projektowanie podpór o jak najmniejszej, z punktu widzenia spełnienia wymagań nośności, sztywności.
- C. W przypadku konieczności stosowania podpór sztywno-zamocowanych stosowanie podpór wysokich tj. o wysokości ~>5 metrów.

D. Zwiększenie przyjmowanych do obliczeń zmian temperatury ∠T- o 10-15°C przy wyznaczaniu wartości sił wewnętrznych dla podpór sztywno-zamocowanych w fundamencie.

Propozycja zwiększania ΔT - o wartość 15°C dotyczy punktu "0a" oraz "a" obiektów Zintegrowanych jednoprzęsłowych o przęsłach krótszych niż 20 metrów jak i wszystkich obiektów wieloprzęsłowych. W pozostałych przypadkach proponuje się zwiększenie ΔT - o 10°C.

Przegląd badań w tym prób laboratoryjnych i dalsze rozważania analityczne (na 434 schematach statycznych) potwierdziły istotny wpływ zmian temperatury na obciążenie parciem gruntu a dalej na wartości sił wewnętrznych w obiektach Zintegrowanych. Wykazano, iż stosunek współczynnika *K* pomiędzy wartościami maksymalnymi i minimalnymi, może dochodzić dla:

- a. *K_a* do ~ 56%.
- b. *K*_o do ~ 21%.
- c. *K_p* do ~ <u>396</u>%.

Wykazano również, iż stosunek współczynnika parcia biernego K_p do wartości współczynnika parcia czynnego K_a może różnić się nawet <u>50</u> krotnie, co ma <u>bardzo istotne</u> znaczenie w projektowaniu obiektów Zintegrowanych. Wnioski z przeprowadzonych analiz wskazują na konieczność <u>zmniejszania wysokości podpór</u> celem ograniczenia niepewności oszacowania obciążenia parciem gruntu obiektów Zintegrowanych. Dodatkowo zmniejszenie wysokości podpór niweluje oddziaływanie konstrukcji na grunt za podporami skrajnymi a tym samym wpływa korzystnie na trwałość obiektu inżynierskiego jako całości.

Na podstawie wyników analiz zaproponowano sposób określania wysokości podpór, powyżej wysokości których należy podchodzić ze <u>szczególną uwagą</u> do szacowania obciążenia parciem gruntu. Wartym odnotowania jest również niewielki wpływ obciążenia parciem gruntu (zwłaszcza dla konstrukcji o L > 20 m) na wartość momentu przęsłowego M(0,5L). Pozwala to na wykonywanie prefabrykacji zbrojenia czy też całych elementów przęseł praktycznie <u>niezależnie</u> od faktycznych warunków gruntowych stwierdzanych podczas wykonywania badań sprawdzających na placu budowy.

Z uwagi na bezpieczeństwo konstrukcji wskazuje się na konieczność doprecyzowania wytycznych co do sposobu przyjmowania obciążenia parciem gruntu obiektów Zintegrowanych/Pół-zintegrowanych. Jak bowiem wynika z przeprowadzonych analiz, niewłaściwe oszacowanie obciążenia parciem gruntu z jednej strony może być powodem **zmniejszenia trwałości** konstrukcji a nawet katastrofy budowlanej.

Odrębnym aspektem jest możliwość znacznego przeszacowywania wartości sił wewnętrznych co bezpośrednio przekłada się na ekonomikę procesu budowlanego.

Przeprowadzenie analiz uszkodzeń konstrukcji Zintegrowanych i wartości sił wewnętrznych wywołanych obciążeniem zmianami temperatury i parciem gruntu przemawia za opieraniem podpór (zwłaszcza skrajnych) obiektów Zintegrowanych na profilach stalowych nie zaś palach żelbetowych. Dlatego też w pracy przeanalizowano i udowodniono możliwość stosowania ogólnie dostępnych profili stalowych typu HEB, HEM, HEA z uwagi na warunki korozyjne panujące w gruncie i przy zakładanej trwałości konstrukcji.

W pracy, na bazie analizy badań laboratoryjnych jak i doświadczeń z kilkudziesięciu lat eksploatacji obiektów Zintegrowanych/Pół-zintegrowanych, zaproponowano kształtowanie połączenia (Rys. 12.2) obiektu Zintegrowanego/Pół-zintegrowanego z drogą (nasypem).

Program dalszych badań przewiduje:

- a. Wykonanie analizy ukształtowania (wraz z uszczelnieniem) oraz przeprowadzenie badań zachowania się zaproponowanego na Rys. 10.2 połączenia przegubowo-nieprzesuwnego.
- Badania co do możliwości zastąpienia siatek w zaproponowanym w rozprawie połączeniu Zintegrowanego/Pół-zintegrowanego obiektu z nawierzchnią/nasypem na dojeździe modyfikowaną mieszanką asfaltową.
- c. Adaptację zaproponowanego połączenia Zintegrowanego/Pół-zintegrowanego obiektu z nasypem w przypadku stosowania nawierzchni betonowej.
- d. Analizę kosztową i czasową realizacji obiektu Klasycznego i Zintegrowanego po zaobserwowanych w ostatnich miesiącach zmianach cen.
- e. Analizę wymagań przy kształtowaniu połączenia profilu stalowego z podporą skrajną.

14. ZAŁĄCZNIKI

14.1 Wybrane cechy obiektów Zintegrowanych, Pół-zintegrowanych i Klasycznych wybudowanych w Polsce przed 1989 r.

Tabela 14.1. Wybrane cechy obiektów Zintegrowanych, Pół-zintegrowanych i Klasycznych na odcinku Konin -

Nr obiektu	Rok budowy	Rozpiętość teoretyczna przęseł	1	2	Klasa drogi	Kategoria drogi	3	4
<u>WA38</u> <u>KL</u>	1975	15,1 + 2 * 15,7 + 15,1 = 61,6	-	C (Klasa I)	А	Autostrada	90	Tak
<u>WA39</u> <u>KL</u>	1976	2 * 18,1 = 36,2	-	C (Klasa I)	А	Autostrada	85	Tak
WD41	1977	12 + 2 * 21 + 12 = 66	Α	C (Klasa I)	G	Wojew.	79	Nie
MA42	1977	8,8 + 9 + 8,8 = 26,6		C (Klasa I)	Α	Autostrada	84	Tak
WD43	1985	12 + 2 * 21 + 12 = 66	Α	C (Klasa I)	Ζ	Powiatowa	68	Tak
WD45	1985	12 + 2 * 21 + 12 = 66	Α	C (Klasa I)	Ζ	Powiatowa	85	Tak
WD46	1985	12 + 2 * 21 + 12 = 66	Α	C (Klasa I)	Ζ	Powiatowa	90	Tak
WD47	1984	12 + 2 * 21 + 12 = 66	Α	C (Klasa I)	Ζ	Gminna	69	Tak
WD49	1984	12 + 2 * 21 + 12 = 66	Α	C (Klasa I)	Ζ	Gminna	68	Tak
WD51	1984	12 + 2 * 21 + 12 = 66	Α	C (Klasa I)	Ζ	Powiatowa	66	Tak
MA52	1984	11,5		C (Klasa I)	Α	Autostrada	90	Tak
WD53	1984	12 + 2 * 21 + 12 = 66	Α	C (Klasa I)	Ζ	Powiatowa	73	Tak
WD55	1985	12 + 2 * 21 + 12 = 66	Α	C (Klasa I)	G	Powiatowa	79	Tak
WD56	1984	12 + 2 * 21 + 12 = 66	А	C (Klasa I)	Ζ	Wojew.	65	Tak
MA57	1985	11,5		C (Klasa I)	Α	Autostrada	68	Tak
WD58	1985	12 + 2 * 21 + 12 = 66	Α	C (Klasa I)	D	Gminna	90	Nie
WD59	1985	12 + 2 * 21 + 12 = 66	Α	C (Klasa I)	Ζ	Powiatowa	66	Tak
WD60	1984	12 + 2 * 21 + 12 = 66	А	C (Klasa I)	Ζ	Gminna	66	Tak
WD61	1984	12 + 2 * 21 + 12 = 66	А	C (Klasa I)	Ζ	Powiatowa	87	Tak
WD62	1984	12 + 2 * 21 + 12 = 66	А	C (Klasa I)	Ζ	Gminna	88	Tak
WD63	1985	12 + 2 * 21 + 12 = 66	А	C (Klasa I)	D	Gminna	90	Tak
WD64	1985	12 + 2 * 21 + 12 = 66	А	C (Klasa I)	Ζ	Powiatowa	70	Tak
<u>WD66</u>	1984	18 + 2 * 21 + 18 = 79	-	C (Klasa I)	Z	Wojew.	67	Tak
<u>KL</u>	1005						00	N 7°
PG67	1985	5,5		C (Klasa I)	A	Autostrada	90	Nie T 1
WD69	1985	12 + 2 * 21 + 12 = 66	A	C (Klasa I)	D	Gminna	67	Tak
WD/0	1988	12 + 2 * 21 + 12 = 66	A	B	Z	Powiatowa	65	Tak
PG71	1988	5,5		A	A	Autostrada	90	Tak
WD72	1988	12 + 2 * 21 + 12 = 66	A	B	Z	Gminna	66	Tak
WD74	1988	12 + 2 * 21 + 12 = 66	A	C (Klasa I)	Z	Powiatowa	67	Tak
WD75	1988	12 + 2 * 21 + 12 = 66	A	C (Klasa I)	Z	Powiatowa	64	Tak
<u>WD77</u> KL	1989	19 + 2 * 22,5 + 19 = 83	-	В	G	Krajowa	77	Tak

Września autostrady A2

Legenda:

1. Schemat statyczny obiektu Zintegrowanego.

2. Klasa obciążenia wg [21] i [82].

3. Kąt skosu obiektu (°).

4. Płyta przejściowa.

5. WA38KL – obiekt Klasyczny

Rys. 14.1 Schemat statyczny wiaduktów Zintegrowanych na odcinku Września - Konin autostrady A2

Rys. 14.2 Przykładowe przekroje poprzeczne wiaduktów drogowych (Zintegrowanych i Klasycznych) na odcinku Września – Konin autostrady A2 (po modernizacji)

Nr obiektu	1	2	3	4	5	6	7	8	9	10	11	12	13
WA38KL	Χ	Х	Χ			Χ	Χ	Χ	Χ				
WA39KL		Х	Χ				Χ	Х	Х				Χ
WD41	Χ	Х	Χ	Χ	Χ	Χ							
MA 42							Χ	Х	Х	Х	Х		
WD43	Χ	Х	Χ	Χ	Χ	Χ							
WD45	Χ		Χ	Χ	Χ	Χ							
WD46	Χ		Χ	Х	Χ	Х						Χ	
WD47	Χ		Χ	Χ	Χ	Χ							
WD49	Χ	Х	Χ	Х	Χ	Х							
WD51	Χ	Χ	Χ	Χ	Χ	Χ							
MA52	Χ				Χ	Х	Χ	Х					Χ
WD53	Χ	Х	Χ	Х	Χ	Χ							
WD55	Χ	Х	Χ	Х	Χ	Χ							
WD56	Х	Х	Х	Х	Х	Х							
MA57	Х					Х	Х	Х					Χ
WD58	Χ	Х	Χ	Х	Χ	Х							
WD59	Χ	Χ	Χ	Х	Χ	Х							
WD60	Χ	Χ	Χ	Χ	Χ	Х							
WD61	Х	Х	Х	Х	Х	Х							
WD62	Χ	Χ	Χ	Х	Χ	Х							
WD63	Χ												
WD64	Χ	Χ	Χ	Х	Χ	Х						Χ	
WD66KL	Χ	Χ	Χ	Χ	Χ	Х							
PG67	Χ	Χ		Χ	Χ	Х	Χ	Χ					
WD69	Χ		Χ			Х							
WD70	Χ	Χ	Χ	Х	Χ							Χ	
PG71		Х											
WD72	Χ	Χ	Χ	Х	Χ	Х							
WD74					Χ	Χ						Χ	
WD75					Χ	Χ						Χ	
WD77KL	Χ		Χ	Χ	Χ	Χ							

Tabela 14.2. Uszkodzenia obiektów inżynierskich na odcinku Konin – Września autostrady A2

Legenda:

- 1. Zacieki na wspornikach podchodnikowych.
- 2. Skorodowane gzymsy.
- 3. Uszkodzenia otuliny zbrojenia podpór.
- 4. Rysy i zawilgocenia w strefie przypodporowej słupów.
- 5. Spękania poprzeczne jezdni w nawierzchni na końcach obiektu
- 6. Lokalne zawilgocenia płyty i przecieki między belkami.
- 7. Odsłonięte strzemiona belek.
- 8. Zarysowania oczepu.
- 9. Zawilgocenia oczepu.
- 10. Zawilgocenia słupów.
- 11. Uszkodzenia otuliny prętów na wspornikach.
- 12. Zarysowania na połączeniu skrzydełek i podpór skrajnych
- 13. Nieszczelności bitumicznych przykryć dylatacyjnych lub urządzeń dylatacyjnych.

Rys. 14.3 Przykładowe uszkodzenia Zintegrowanego wiaduktu drogowego na odcinku Września – Konin autostrady A2 (zawilgocenia i rysy w miejscu połączenia słupów z płytą pomostową) [83]

Rys. 14.4 Przykładowe uszkodzenia Zintegrowanego wiaduktu drogowego na odcinku Września – Konin autostrady A2 (korozja gzymsów) [83]

Rys. 14.5 Przykładowe uszkodzenia Zintegrowanego mostu autostradowego na odcinku Września – Konin autostrady A2 (rysy na połączeniu skrzydełek i korpusu) [83]

14.2 Przykłady uszkodzeń i ich ewidencji z lat 2002-2019 obiektów Zintegrowanych wybudowanych w Polsce przed 1989 r.

	W	ykaz potrzeb do planu bieżącego utrzyma	nia		
		WD-51 km 225, 127			
Lp.	Element	Wyszczególnienie rodzaju robót wg katalogu robót mostowych	Jm	llość jedn. obmiar.	Tryb wykonania
1	Nasypy i skarpy	Oczyszczenie z drobnej roślinności Naprawa spoinowania, deformacji oraz uzupełnienie betonowych kostek na umocnieniu stożków	m ² m ²	5 4	2 1
		Naprawa drobnych uszkodzeń powłoki antykorozyjnej oraz rys na umocnieniach stożków, naprawa uszkodzeń na oporniku betonowym na spodzie stożków, naprawa spoinowania na płytach	m ²	20	1
2	Dojazdy w obrębie skrzydeł	Naprawa drobnej rysy na końcu skrzydelek	m	7	2
3	Nawierzchnia jezdni				
4	Nawierzchnia chodników, krawężniki	Naprawa drobnych rys oraz uszkodzeń powierzchni izolacjonawierzchni, oczyszczenie z rdzawych zacieków	m ²	4	1
5	Balustrady, bariery ochronne	Wykonanie konserwacji kotew barier ochronnych wraz z naprawą podlewek, usunięcie rdzawych zacieków, uzupełnienie kapturków	%	60	1
13	Przyczółki i fundamenty	Uzupełnienie izolacji bitumicznej przy kostce betonowej	m ²	2	2
14	Filary i fundamenty	Naprawa kompleksowa filarów (rysy, uszkodzenia powłoki, ubytki betonu, korozja stali zbrojeniowej, izolacja)	%	100	l (pilne)
15	Koryto rzeki, przestrzeń podmostowa	Naprawa popękanych płyt na umocnieniu rowów	m²	1	2

Rys. 14.6 Przykładowy wykaz potrzeb do planu bieżącego utrzymania Zintegrowanego wiaduktu drogowego WD51 na odcinku Września – Konin autostrady A2 z roku 2012 (fragmenty)

	W	ykaz potrzeb do planu bieżącego utrzym	ania		
		MA-57			
		km 230, 967			
Lp.	Element	Wyszczególnienie rodzaju robót wg katalogu robót mostowych	Jm	Hość jedn. obmiar.	Tryb wykonania
1	Nasypy i skarpy	Usunięcie wegetującej roślinności z umocnienia stożków Naprawa spoinowania oraz powierzchni włotów betorowych odwodnienia naprawa rys i drobnych spękań	m ² m ²	30 5	1
2	Dojazdy w obrębie skrzydeł	Naprawa spoinowania i powierzchni krawężników betonowych na dojeżdzie do obiektu	m	3	2
3	Nawierzchnia jezdni		-		
4	Nawierzchnia chodników, krawężniki	Oczyszczenie z drobnej roślinności na dojściu do obiektu Naprawa izolacjonawierzchni na betonie i krawężnikach chodnika i w pasie rozdziału, uzupełnienie powłoki,	m ² m ²	5	î
		oczyszczenie Uszczelnienie styku nawierzchni i krawężników i szczelin między krawężnikami w pobliżu dylatacji	m	4	1
10	Dźwigary główne	Oczyszczenie z drobnych rdzawych wykwitów na spodzie belek	m²	Ĩ	ſ
11	Lożyska	and the state of the	-		
12	Urządzenia dylatacyjne	Usunięcie deformacji oraz uzupełnienie kruszywa	m	4	1

Rys. 14.7 Przykładowy wykaz potrzeb do planu bieżącego utrzymania dla Zintegrowanego mostu autostradowego MA57 na odcinku Września – Konin autostrady A2 z roku 2012 (fragmenty)

Rys. 14.8. Przykłady uszkodzeń wiaduktu Zintegrowanego WD41 na odcinku Września – Konin autostrady A2 w roku 2006

Widoczny brak uszkodzeń strefy dylatacyjnej po 4 latach użytkowania

Rys. 14.9 Przykłady uszkodzeń Zintegrowanego wiaduktu drogowego WD46 na odcinku Września – Konin autostrady A2 w roku 2018

Widoczny brak uszkodzeń strefy dylatacyjnej po 17 latach użytkowania.

Rys. 14.10 Przykłady uszkodzeń Zintegrowanego wiaduktu drogowego WD64 na odcinku Września – Konin autostrady A2 w roku 2018

Uszkodzenia po stronie południowej (zdjęcie po lewej stronie) i północnej (zdjęcie po prawej stronie) wystąpiły w wyniku braku jakakolwiek działań utrzymaniowych przez Zarządcę drogi.

Rys. 14.11 Przykłady uszkodzeń Zintegrowanego wiaduktu drogowego WD64 na odcinku Września – Konin autostrady A2, od roku 2007 do roku 2018 po stronie południowej (zapadnięcie stożków, obrukowania, spękania w nawierzchni), które doprowadziły do wymycia zasypki i uszkodzenia nawierzchni na jednym z dojazdów

Łącznie przeglądowi podlegało ponad 47 tysięcy zdjęć i dokumentów, których wyniki przedstawia Tabela 14.3.

Obiekt	Problem	Raportowany	Propagacja	Uwagi
WD41	Średni	Brak	Brak	
MA42	Średni	2007	Mała	Wymiana nawierzchni/dylatacji w roku 2007 i 2017
WD43	Mały	2006	Średnia	Osiadania kostki na stożkach
WD45	Mały	2006	Mała	
WD46	Brak	Brak	Brak	
WD47	Mały	2011	Mała	
WD49	Mały	2006	Średnia	
WD51	Mały	2010	Średnia	Osiadania kostki na stożkach
MA52	Mały	2006	Duża	
WD53	Mały	2006	Mała	
WD55	Mały	2006	Mała	
WD56	Średni	2006	Mała	
MA57	Średni	2006	Średnia	Wymiana nawierzchni/dylatacji w roku 2007 i 2017
WD58	Mały	2010	Mała	
WD59	Średni	2014	Mała	
WD60	Mały	2006	Mała	
WD61	Średni	2012	Duża	"wybrzuszenia" kostki na stożkach i jej osiadanie przy skrzydełkach
WD62	Mały	2014	Średnia	
WD63	Brak	Brak	Mała	
WD64	Mały	2016	Duża	Osiadania kostki na stożkach
PG67	Mały	2006	Mała	Wymiana nawierzchni/dylatacji w roku 2007 i 2017
WD69	Brak	2006	Mała	
WD70	Mały	2006	Średnia	
PG71	Mały	2006	Mała	Wymiana nawierzchni/dylatacji w roku 2007 i 2017
WD72	Średni	2007	Średnia	Osiadania kostki na stożkach
WD74	Mały	2007	Duża	Osiadania kostki na stożkach
WD75	Mały	2007	Mała	

Tabela 14.3. Zestawienie problemów związanych z uszkodzeniami remontowanych obiektów Zintegrowanych na odcinku Września – Konin autostrady A2

Legenda:

Typ Problemów/ Propagacji - Małe/a; Średnie/a; Duży/a

Pod pojęciem problemy rozumie się przecieki lub uszkodzenia przykryć bitumicznych, dylatacji lub nawierzchni na dojeździe do obiektu wymagające ich naprawy

14.3 Przykłady uszkodzeń i ich ewidencji z lat 2002-2019 dla obiektów Klasycznych wybudowanych w Polsce przed 1989 r.

		Wykaz potrzeb do planu bieżącego utrzym	nania
		WD-77 km 257, 219	
p. Elema	ent	Wyszczególnienie rodzaju robół wg katalogu robół mostowych	Jm
Nasyp	y i skarpy	Naprawa rys na umocnieniach stożków Naprawa zabezpieczenia antykorozyjnego na umocnieniach stożków oraz na schodach i betonowych korytkach ściekowych	% %
10 Loza	wigary glowne	Naprawa rys na prawie spodzie konstrukcji Naprawa uszkodzonej powłoki betonu na spodzie płytu	70 %
11 1.02	ynka	Oczyszczenie z korozii blach lożyskowach	m
12 Urzą	dzenia dylatacyjne	Oczyszczenie elementów dylatacji z piasku, oczyszczenie z korozji przy krawężnikach oraz jezdni, oczyszczenie z zacieków z boku oraz lokalnie uszczelnienie (zacieki w niszy lożyskowej)	szt. %
	The second s		

Rys. 14.13 Przykłady uszkodzeń Klasycznego wiaduktu autostradowego WA39KL na odcinku Września – Konin autostrady A2 z roku 2006 – konieczność wymiany nawierzchni w rejonie nad płytą przejściową, w tle widoczne przecieki przez urządzenie dylatacyjne

Rys. 14.14 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD66KL na odcinku Września – Konin autostrady A2 roku 2006

Rys. 14.15 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD66KL na odcinku Września – Konin autostrady A2 z roku 2014 - przecieki przez wymienioną dylatację

Rys. 14.16 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD66KL na odcinku Września – Konin autostrady A2 z roku 2018 - widoczne osiadanie krawężników jak i przecieki przez dylatację

Rys. 14.17 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD77KL na odcinku Września – Konin autostrady A2 z roku 2006 - widoczne przecieki przez dylatację

Rys. 14.18 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD77KL na odcinku Września – Konin autostrady A2 z roku 2018 – uszkodzenie nawierzchni na dojeździe i ławy podłożyskowej

Łącznie przeglądowi podlegało blisko 8 tysięcy zdjęć i dokumentów.

Tabela 14.4. Zestawienie problemów związanych z uszkodzeniami remontowanych obiektów Klasycznych na odcinku Września – Konin autostrady A2

Obiekt	Problem	Raportowany	Propagacja	Uwagi
<u>WA38KL</u>	Duży	2006	Duża	
<u>WA39KL</u>	Duży	2010	Duża	Konieczna wymiana urządzeń dylatacyjnych
<u>WD66KL</u>	Duży	2006	Duża	Konieczna wymiana urządzeń dylatacyjnych
WD77KL	Średni	2006	Średnia	

14.4 Przykłady uszkodzeń i ich ewidencji dla obiektów Pół-zintegrowanych wybudowanych w Polsce w latach 2003-2004

Lp.	Element	Wyszczególnienie rodzaju robót wg katalogu robót mostowych	Jm	Ilość jedn. obmiar.
1	Nasypy i skarpy	Naprawa przemieszczeń kostki betonowej przy skrzydełku Naprawa powłoki na betonie schodów roboczych	$\begin{array}{c} m^2 \\ m^2 \end{array}$	0,1 1
2	Dojazdy w obrębie skrzydeł	Oczyszczenie z piasku oraz wegetującej roślinności	m ²	5
3	Nawierzchnia jezdni	Oczyszczenie z piasku oraz wegetującej roślinności	m ²	3
4	Nawierzchnia chodników, krawężniki			
11	Łożyska			
12	Urządzenia dylatacyjne	Naprawa rys i deformacji w dylatacjach bitumicznych	%	100
13	Przyczółki i fundamenty			

Rys. 14.19 Przykładowy wykaz potrzeb do planu bieżącego utrzymania Pół-zintegrowanego wiaduktu drogowego WD88 na odcinku Komorniki – Nowy Tomyśl autostrady A2 z roku 2012 (fragmenty)

Lp.	Element	Wyszczególnienie rodzaju robót wg katalogu robót mostowych	Jm	Ilość jedn. obmiar.
1	Nasypy i skarpy	Uzupełnienie gruntu przy skrzydełku Naprawa zniszczonej siatki przy skrzydełku	${m^3 \over m^2}$	0,5 0,2
2	Dojazdy w obrębie skrzydeł	Oczyszczenie nawierzchni z drobnej roślinności	m ²	4
3	Nawierzchnia jezdni	Usunięcie graffiti z nawierzchni jezdni	m ²	5
4	Nawierzchnia chodników, krawężniki	Naprawa drobnych zarysowań i przebarwień w nawierzchnioizolacji	m ²	1
11	Łożyska	Usunięcie rdzawych wykwitów z ciosów łożyskowych	m ²	0,2
12	Urządzenia dylatacyjne	Naprawa deformacji dylatacji bitumicznej, naprawa rys i pęknięć	m	12
13	Przyczółki i fundamenty	Uzupełnienie wypełnienia pomiędzy kostką betonową a ściana przyczółka w niszy łożyskowej	m	3
		Naprawa rys z boku przyczółka przy łożyskach	m^2	0,3

Rys. 14.20 Wykaz potrzeb do planu bieżącego utrzymania Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2 z roku 2012 (fragmenty)

Rys. 14.21 Przykłady uszkodzeń Pół-zintegrowanego wiaduktu drogowego WD88 na odcinku Komorniki – Nowy Tomyśl autostrady A2 z roku 2005

Rys. 14.22 Przykłady uszkodzeń Pół-zintegrowanego wiaduktu drogowego WD88 na odcinku Komorniki – Nowy Tomyśl autostrady A2 z roku 2019

Należy zwrócić uwagę na praktyczny brak propagacji uszkodzeń w ciągu 14 lat użytkowania.

Rys. 14.23 Przykłady uszkodzeń Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2 z roku 2005

Rys. 14.24 Przykłady uszkodzeń Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2 z roku 2019

Należy zwrócić uwagę na niewielką propagację uszkodzeń i brak przecieków w ciągu 14 lat użytkowania

Łącznie przeglądowi podlegało ponad 2 tysiące zdjęć i dokumentów.

Obiekt	Zintegrowany	Problem	Uwagi
<u>WD</u> <u>24KL</u>	Nie	Duży	
<u>WD 25KL</u>	Nie	Duży	
<u>WD 26KL</u>	Nie	Średni	
<u>WD 27KL</u>	Nie	Mały	
<u>WD 28KL</u>	Nie	Mały	
<u>WD 29KL</u>	Nie	Średni	
<u>WD 30KL</u>	Nie	Brak	
<u>WD 31KL</u>	Nie	Duży	
WD 32KL	Nie	Duży	
WD 33KL	Nie	Duży	
$\frac{WD}{WA} \frac{34KL}{25KI}$	Nie Nie	Sreani	
$\frac{WA}{WD}$ 35 $_{0}KI$	Nie	Duzy Śradni	
WD 36KI	Nie	Mah	
WA 73KI	Nie	Średni	Wymiana nawierzchni 2009
MA 74KL	Nie	Średni	Wymiana nawierzchni 2009
WD $75KL$	Nie	Mały	
WD 76KL	Nie	Mały	
WD 78KL	Nie	Małv	
WA 79KL	Nie	Średni	Wymiana nawierzchni 2009
WD 80KL	Nie	Średni	
WD 81KL	Nie	Dużv	
<u>WD 82KL</u>	Nie	Średni	
<u>WD</u> <u>83KL</u>	Nie	Mały	
<u>WD 84KL</u>	Nie	Brak	
<u>MA</u> <u>85KL</u>	Nie	Średni	Wymiana nawierzchni 2009
<u>WD 86KL</u>	Nie	Mały	
<u>MA 87KL</u>	Nie	Duży	Wymiana nawierzchni 2009
WD 88	TAK	Mały	Praktyczny brak propagacji uszkodzeń w ciągu 14 lat
<u>MA 89KL</u>	Nie	Średni	Wymiana nawierzchni 2009
<u>WD</u> <u>90KL</u>	Nie	Średni	
<u>WD 91KL</u>	Nie	Duży	
<u>WD</u> <u>92KL</u>	Nie	Średni	
<u>WD 93KL</u>	Nie	Duży	Naprawa dylatacji 2017
<u>WD 94KL</u>	Nie	Średni	
<u>WA 98KL</u>	Nie	Średni	Wymiana nawierzchni 2009
<u>WD 99KL</u>	Nie	Duży	
<u>WD 100KL</u>	Nie	Duży	
WD 101	TAK	Średni	
<u>WD 103KL</u>	Nie	Średni	
<u>MA</u> <u>104KL</u>	Nie	Duży	Wymiana nawierzchni 2009
WD 105KL	Nie	Średni	

Tabela 14.5. Uszkodzenia obiektów Pół-zintegrowanych i Klasycznych wybudowanych w latach 2003/4 na odcinkach Września – Krzesiny oraz Komorniki – Nowy Tomyśl autostrady A2

Legenda:

Typ Problemów - Małe; Średnie; Duże

Pod pojęciem Problemy rozumie się przecieki lub uszkodzenia przykryć bitumicznych, dylatacji lub nawierzchni na dojeździe do obiektu

14.5 Przykłady uszkodzeń i ich ewidencji z lat 2002-2019 dla obiektów Klasycznych

Rys. 14.25 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD99 na odcinku Komorniki – Nowy Tomyśl autostrady A2 z roku 2018

Widoczne uszkodzenia bitumicznych przykryć dylatacyjnych

Rys. 14.26 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD31 na odcinku Września – Krzesiny autostrady A2 z roku 2015

Rys. 14.27 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD33 na odcinku Września – Krzesiny autostrady A2 z roku 2015

Widoczne uszkodzenia bitumicznych przykryć dylatacyjnych jak i szczeliny na połączeniu chodnika i krawężników

Łącznie przeglądowi podlegało ponad 8 tysięcy zdjęć i dokumentów.

14.6 Opis Pół-zintegrowanych wiaduktów drogowych WD88 i WD101

Wiadukty z przęsłami wspornikowymi o długości 1,85 m wprowadzonymi w nasyp z oparciem płyty nośnej na łożyskach. Płyty przejściowe 4,5 metrowej długości. Przekrój poprzeczny został dostosowany do przekroju na drogach gminnych (klasy technicznej "D") i jest następujący (w nawiasach dane dla wiaduktu drogowego WD88).

Szerokość jezdni	2 x 2,75 m (2x1	.,75) = 5,50 (3,50)
Opaska	2 x 0,80 m (2x0,8	0) = 1,60 m (1,60)
Gzyms z barieroporęczą	2 x 0,80 m (2x0,8	0) = 1,60 m (1,60)
Całkowita szerokość	Σ	8,70 m (6,70)
Kąt skosu obiektu	α = 1	04,02 ° (113,18 °)
Długość teoretyczna <i>L</i> _t = 1,85 + 16,0 + 2 * 20 + 16,0 ·	+ 1,85	

(1,85 + 16,5 + 2* 21,0 + 16,5 + 1,85) = 75,70 m (78,70).

Klasa obciążenia "B".

Przekrój poprzeczny stanowi jeden dźwigar o wysokość 1,10 metra ze Przewieszkami o wysięgu 2,30 m (1,70). Góra płyty wyprofilowana ze nachyleniem poprzecznym jezdni. Podpora środkowa słup wysokości 5,0 m (4,5) o przekroju owalnym 80 x 180 na fundamencie 5,8 x 3,4 x 1,2 m (4,4 x 3,5 x 1,2). Podpory pośrednie o wysokości 4,0 m zaprojektowane, jako słup o przekroju owalnym 80x180 na fundamencie 5,0x3,4x1,2 m (4,4 x 3,5 x 1,2). Przyczółki zaprojektowane, jako dwusłupowe filary, o przekroju 0,6 x 0,9 m, stężone w górnej części ryglem. Słupy w rozstawie 4,5 m (3,8) posadowione na wspólnym fundamencie o wymiarach 7,0 x 2,5 x 1,2 m. Posadowienie fundamentów na kolumnach DSM. Łożyska garnkowe podpór pośrednich o nośności 4700 kN (3900) i oraz podpór skrajnych 2*1400 kN (2 * 1200). Dylatacje szczelne bitumiczne dostosowane do przesuwów +20 mm - 25 mm. Bariery podatne SP-06 na dojazdach i barieroporęcze niepodatne (sztywne) BPS/M/1 (na obiekcie).

Rys. 14.28 Pół-zintegrowany wiadukt drogowy WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2 (widok z boku)

Rys. 14.29 Pół-zintegrowany wiadukt drogowy WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2 (przekrój poprzeczny)

Rys. 14.30 Pół-zintegrowany wiadukt drogowy WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2 (przekrój poprzeczny)

14.7 Opis uszkodzeń wiaduktów drogowych WD88 i WD101

W trakcie przeglądu dokonanego wiosną roku 2005 [92], po niespełna pół roku od oddania do eksploatacji, zaobserwowano następujące uszkodzenia:

a) Pęknięcia materiału uszczelniającego na połączeniach krawężników bezpośrednio za bitumicznymi przykryciami dylatacyjnymi. Jest to najczęściej spotykane uszkodzenie obserwowane również za granicą. Wydaje się, iż wystarczającym środkiem zapobiegawczym będzie stosowanie na pierwszym krawężniku za dylatacją szczeliny zakrytej materiałem elastycznym lub poprawianie wypełnienia podczas dorocznych przeglądów.

Rys. 14.31 Uszkodzenia Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2

b) Spękania w nawierzchni na dojazdach (WD101).

Rys. 14.32 Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2

W trakcie przeglądu dokonanego wiosną roku 2007 [93], [94] tj. po dwóch i pół roku od oddania do eksploatacji zaobserwowano następujące uszkodzenia:

 a) Pęknięcia materiału uszczelniającego na połączeniach krawężników bezpośrednio za bitumicznymi przykryciami dylatacyjnymi. Należy zauważyć, iż w ciągu dwóch lat okresu gwarancji <u>nie zauważono</u> propagacji uszkodzenia.

Rys. 14.33 Uszkodzenia Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2

b) Miejscowe wypłukania zasypek i szczeliny na granicy skarpy i skrzydełek. Należy zauważyć, iż pomimo identycznych rozwiązań konstrukcyjnych, obciążeń jak i podobnych cech geometrycznych na obiekcie WD88 tego typu uszkodzenia nie wystąpiły. Możliwe jest więc, iż ubytki powstały w wyniku gorszego (niż w WD88) zagęszczenia zasypki wokół skrzydełek.

Rys. 14.34 Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2

c) Szczeliny pomiędzy obrukowaniem a ścianką zapleczną wynikające z cyklicznych ruchów konstrukcji. W ramach nadzoru autorskiego zaproponowano uszczelnienie materiałem plastycznym oraz naprawę zniszczonych fragmentów obrukowania (wandalizm).

Rys. 14.35 Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2

14.8 Przykład kryteriów, schematów decyzyjnych dla wykonywania płyt przejściowych oraz minimalnego wskaźnika zagęszczenia zasypki *I*_s

14.8.1 Przegląd rozwiązań połączenia obiektu Zintegrowanego z drogą (nasypem)

			F F	<u> </u>		XX7 1 //
Stan	Wszystkie obiekty	Natężenie ruchu	Typ nawierzchni	Spodziewane osiadania	Klasa drogi	Wysokość nasypu
Arizona	X					
Georgia	Х					
Illinois	Х					
Iowa		X	Х	Х	Х	
Kalifornia			Х	X		
Kansas		X	Х	X		
Kentucky	X					
Kolorado	X					
Maine		X		X		X
Montana	X					
New	v					
Hampshire	Λ					
Nevada	Х					
Oklahoma	Х					
Oregon		X				
Południowa		x				x
Kalifornia		Δ				Λ
Południowa Dakota					Х	
Północna Dakota					Х	
Vermont	X					
Vancouver	X					
Waszyngton				Х		

Tabela 14.6. Kryteria stosowane przy projektowaniu płyt przejściowych [132]

Rys. 14.36 Przykład procesu decyzyjnego przy określaniu odcinka przejściowego w przypadku nawierzchni asfaltowej na dojeździe [133]

14.8.2 Przykłady połączeń obiektów Zintegrowanych/Pół-zintegrowanych z drogą

(nasypem)

Doświadczenia związane z wykonywanie obiektów o długościach 22-57 m, wysokości nasypu ~6 m oraz płytach przejściowych długości do 6 m, zaprezentowano w [134]. Warto zauważyć, iż zastosowana długość płyty przejściowej jest o ~2 metry większa od wymagań minimalnych. Podkreślono, iż w przypadku starannego wykonania zagęszczenia nasypu oraz zastosowania siatek wzmacniających poniżej warstwy wiążącej nie zauważono w ciągu dwóch lat (poza jednym przypadkiem) uszkodzeń połączenia. W pracy nie podano wytycznych dla określania długości siatek wzmacniających czy też płyt przejściowych.

Przykładem zagranicznego, najbardziej zbliżonego do stosowanego w Polsce rozwiązania są wytyczne [13], gdzie warstwy nawierzchni układane są na płycie przejściowej (Rys. 14.37).

Rys. 14.37 Detal z warstwami nawierzchniowymi na płycie przejściowej [13]

W wytycznych [115] połączenie obiektu następuje poprzez płytę przejściową oraz płytę kotwiącą w przypadku połączenia z nawierzchnią betonową (Rys. 14.38). Minimalna długość płyty przejściowej 4,57 metra.

Rys. 14.38 Szczegół płyty przejściowej w przypadku połączenia z nawierzchnią betonową [115]

Płyta przejściowa "podąża" za przemieszczeniami podpór a szczelinę pomiędzy ścianką zapleczną a płytą wypełnia się wypełnieniem bitumicznym, zaś na końcu płyty przejściowej stosuje się dylatację zależną od przesuwów obiektu inżynierskiego. Tam też wykonuje się płytę tzw. "kotwiącą". Rozwiązanie (Rys. 14.38) stosuje się, gdy odcinki niezdylatowanej nawierzchni betonowej nie przekraczają 61 (200 stóp) metrów. W przypadku, gdy odcinki niezdylatowanej nawierzchni betonowej zawierają się pomiędzy 61 m (200 stóp) a 213 m (700 stóp) metrów stosuje się rozwiązanie, w którym wykonuje się płytę kotwiącą o długości 9.1 metra (30 stóp) z jednym żebrem (Rys. 14.39). Dla odcinków nawierzchni betonowej pomiędzy dylatacjami dłuższe niż 213 metrów (700 stóp) wykonuje się wg rozwiązania z płytą kotwiącą z dwoma żebrami (Rys. 14.39).

Rys. 14.39 Szczegół płyty kotwiącej - nawierzchnia betonowa [115]

Wytyczne [99] i [135] wymagają dla nawierzchni betonowych wykonania odcinków przejściowych wg Rys. 14.40, gdzie płyta przejściowa przemieszcza się na warstwie poślizgowej a na połączeniu płyty przejściowej i płyty kotwiącej umieszcza się dylatację.

Rys. 14.40 Szczegół odcinka przejściowego N(14D) - [135]

W [116] zaproponowano dla obiektu Pół-zintegrowanego o długości 33,5 metra zastosowanie na ścianie czołowej 38 centymetrowej warstwy styropianu (osłoniętej geotekstyliami). Warstwy nawierzchni o grubości ~ 51 cm oparto, bez płyty przejściowej, na odpowiednio ukształtowanej wnęce nad ścianką zapleczną. W rozwiązaniu (Rys. 14.41) należy zwrócić uwagę na jego wady, tj. m.in.:

- możliwość przecieków wody na styku nawierzchni i płyty pomostu a dalej wymywania zasypki inżynierskiej spod nawierzchni,
- utrudnienie/zblokowanie możliwości przesuwu ścianki zaplecznej w przypadku zniszczenia łożyska,
- możliwość zarysowania podpór wraz ze <u>znaczącą</u> zmianą jej obciążenia (mimośród)
 w przypadku oparcia (np. niedokładności wykonawcze) ścianki zaplecznej na podporach.

Rys. 14.41 Szczegół połączenia Pół-zintegrowanego obiektu inżynierskiego z dojazdem [116]

Rozwiązania stosowane w USA bardzo często proponują umiejscowienie płyty przejściowej na równi z nawierzchnią lub proponują jej oparcie na belce podwalinowej. Jest to rozwiązanie rekomendowane w [5], gdzie dopuszcza się rezygnację z dylatacji przy przesuwach do 13 mm i stosowaniu nawierzchni bitumicznej. W większości przepisów minimalna długość płyty przejściowej podawana jest arbitralnie i wynosi od 4,5 m, poprzez np. 6,1 m [117] do 9 metrów [118]. Konieczność wykonania jak i długość płyty przejściowej ustala się w zależności od spodziewanych przemieszczeń podpór, ich wysokości, klasy drogi, natężenia ruchu (dzienny, godzinny, całkowity, tylko ciężarowy), czy też spodziewanej różnicy osiadań (14.1) pomiędzy podporą skrajną a nasypem [119]:

$$L_{pp} = 200 (O_p - O_n) \tag{14.1}$$

gdzie:

L_{pp} – długość płyty przejściowej [m],

O_n – spodziewane osiadanie nasypu [m],

 O_p – spodziewane osiadanie podpór [m].

Innym zmiennym czynnikiem jest m.in. wartość zagęszczenia gruntu *I*_s stosowana pomiędzy wartościami 0,90 do 1,00 (Tabela 14.7).

Kraj (Stan)	Min Is	Uwagi
Alaska	0,95	
Arizona	1,00	
Floryda	1,00	
Georgia	1,00	
Illinois	0,95	Część górna, pozostała zmiennie w zależności od wysokości nasypu
Kalifornia	1,00	Część górna (72 cm)
Kansas	0,90	
Kentucky	0,95	
Maryland	0,97	Część górna (30 cm), pozostała 0,92
Michigan	0,95	
Minnesota	0,95	
New Hampshire	0,98	
Nevada	0,95	
Nowy Jork	0,95	
Oklahoma	0,95	
Oregon	0,95	Część górna (91 cm), pozostała 0,92
Północna Dakota	0,97	Część górna (30 cm)
Vermont	0,90	
Vancouver	0,95	
Waszyngton	0,95	
Wielka Brytania [10]	0,95	

Tabela 14.7. Porównanie wymagań dla wskaźnika zgęszczenia zasypek Is za podporą skrajną

14.9 Dane do analiz opisanych w Rozdziale 8

Analizę dla (14.2) wykonano przy założeniu korozji (dla jednej strony profilu) wg [16], [123] wynoszącej 12 [μ m/rok] tj.:

$$D_{K\acute{s}rl} = K_{\acute{s}rl} * t = 12 * 100 \text{ lat} = 1,2 \text{ mm}$$
(14.2)

Legenda:

- A pole powierzchni profilu stalowego [cm²].
- A' pole powierzchni profilu stalowego po 100 latach użytkowania [cm²].
- G ciężar profilu stalowego na metr długości [kg/m].
- G' ciężar profilu stalowego na metr długości po 100 latach użytkowania [kg/m].
- *t_f* grubość pasa profilu stalowego [mm].
- t_{f} grubość pasa profilu po 100 latach użytkowania [mm].
- t_w grubość środnika profilu stalowego [mm].
- t_w' grubość środnika profilu stalowego po 100 latach użytkowania [mm].

U – obwód profilu stalowego [m].

U' – obwód profilu stalowego po 100 latach użytkowania [m].

 W_y – wskaźnik wytrzymałości profilu [cm³].

 W_y' – wskaźnik wytrzymałości profilu po 100 latach użytkowania [cm³].

Bazę i szczegółowe wyniki analiz profili stalowych zawiera Tabela 14.8.
	Dwuteowniki szerokostopowe HEA																	
m	t_w	<i>t</i> _f	Α	G	U	W_y	G / U	W_y/G	Α'	U'	t_w	t_{f}	A / A'	G / U'	U' / U	Wy	W_y / W_y'	$W_y \not \mid G$
Тур	[mm]	[mm]	[cm ²]	[kg/m]	[m ² /m]	[cm ³]	[kg/m ²]	[cm ³ /kg]	[cm ²]	[m ² /m]	[mm]	[mm]	[-]	[kg/m ²]	[-]	[cm ³]	[-]	[cm ³ /kg]
300	8,5	14	113	88	1,72	421	51,3	4,77	92	1,70	6,1	11,6	-22,28%	51,94	-1,16%	342	-23,2%	3,87
360	10	17,5	143	112	1,83	526	61,2	4,70	121	1,82	7,6	15,1	-18,18%	61,54	-0,55%	445	-18,3%	3,97
400	11	19	159	125	1,91	571	65,4	4,57	136	1,90	8,6	16,6	-16,91%	65,79	-0,52%	489	-16,8%	3,91
450	12	21	178	140	2,01	631	69,7	4,51	154	2,00	9,1	18,6	-15,58%	70,00	-0,50%	548	-15,2%	3,91
500	12	23	198	155	2,11	691	73,5	4,46	172	2,10	9,6	20,6	-15,12%	73,81	-0,47%	607	-13,9%	3,91
Dwuteowniki szerokostopowe HEB																		
Tun	t_w	<i>t</i> _f	Α	G	U	W_y	G / U	W_y/G	A'	U'	t_w	t_{f}	A / A'	G / U'	U' / U	Wy	W_y / W_y'	W_y '/ G
тур	[mm]	[mm]	[cm ²]	[kg/m]	[m ² /m]	[cm ³]	[kg/m ²]	[cm ³ /kg]	[cm ²]	[m ² /m]	[mm]	[mm]	[-]	[kg/m ²]	[-]	[cm ³]	[-]	[cm ³ /kg]
300	11,0	19,0	149	117	1,73	571	67,6	4,88	128	1,72	8,6	16,6	-16,48%	68,02	-0,58%	489	-16,8%	4,18
360	12,5	22,5	181	142	1,85	676	76,8	4,76	159	1,84	10,1	20,1	-13,84%	77,17	-0,54%	596	-13,5%	4,19
400	13,5	24,0	198	155	1,93	721	80,3	4,65	175	1,91	11,1	21,6	-13,14%	81,15	-1,04%	636	-13,3%	4,10
450	14,0	26,0	218	171	2,03	781	84,2	4,57	194	2,01	11,6	23,6	-12,37%	85,07	-0,99%	695	-12,4%	4,06
500	14,5	28,0	239	187	2,12	842	88,2	4,50	213	2,11	12,1	25,6	-12,21%	88,63	-0,47%	754	-11,7%	4,03
								Dwuteowr	niki szer	okostopo	we HEN	N						
	t_w	t_f	Α	G	U	W_y	G / U	W_y/G	A'	U'	t_w	t_{f}	A / A'	G / U'	U' / U	Wy	W_y / W_y'	W_y $'/ G$
	[mm]	[mm]	[cm ²]	[kg/m]	[m ² /m]	[cm ³]	[kg/m ²]	[cm ³ /kg]	[cm ²]	[m ² /m]	[mm]	[mm]	[-]	[kg/m ²]	[-]	[cm ³]	[-]	[cm ³ /kg]
300	21,0	39,0	303	238	1,83	1250	130,1	5,25	281	1,82	18,6	36,6	-7,83%	130,77	-0,55%	1152	-8,5%	4,84
360	21,0	40,0	319	250	1,93	1270	129,5	5,08	296	1,92	18,6	37,6	-7,77%	130,21	-0,52%	1168	-8,7%	4,67
400	21,0	40,0	326	256	2,00	1260	128,0	4,92	302	1,99	18,6	37,6	-7,95%	128,64	-0,50%	1161	-8,5%	4,53
450	21,0	40,0	335	263	2,1	1260	125,2	4,79	310	2,08	18,6	37,6	-8,06%	126,44	-0,95%	1161	-8,5%	4,41
500	21,0	40,0	344	270	2,18	1250	123,9	4,63	318	2,17	18,6	37,6	-8,18%	124,42	-0,46%	1153	-8,4%	4,27

Tabela 14.8. Zestawienie wyników analizy cech profili stalowych po 100 latach od rozpoczęcia procesu korozji

14.10 Dane do analiz opisanych w Rozdziale 9

14.10.1 Legenda

- schemat 1, 17, 33 Ut, Jx5, P60 oznacza wartość momentu zginającego w danym punkcie schematów 1, 17, 33; przy momencie bezwładności przęsła J_x5; podporach sztywno-zamocowanych i przy Gs = 0,6 m.
- schemat 2, 18, 34 Pr, Jx5, P60 oznacza wartość momentu zginającego w danym punkcie schematów 2, 18, 34; przy momencie bezwładności przęsła J_x; podporach przegubowo-nieprzesuwnych i przy Gs = 0,6 m.
- schemat 9, 25, 41 Ut, Jx, P60 oznacza wartość momentu zginającego w danym punkcie schematów 9, 25, 41; przy momencie bezwładności przęsła *J_x5*; podporach sztywno-zamocowanych i przy *Gs* = 0,6 m.
- schemat 10, 26, 42 Pr, Jx, P60 oznacza wartość momentu zginającego w danym punkcie schematów 10, 26, 42; przy momencie bezwładności przęsła J_x; podporach przegubowo-nieprzesuwnych i przy Gs = 0,6 m.
- schemat 5, 21, 37 Ut, Jx5, P150 oznacza wartość momentu zginającego w danym punkcie schematów 5, 21, 37; przy momencie bezwładności przęsła J_x5; podporach sztywno-zamocowanych i przy Gs = 1,5 m.
- schemat 6, 22, 38 Pr, Jx5, P150 oznacza wartość momentu zginającego w danym punkcie schematów 6, 22, 38; przy momencie bezwładności przęsła J_x; podporach przegubowo-nieprzesuwnych i przy Gs = 1,5 m.
- schemat 13, 29, 45 Ut, Jx, P150 oznacza wartość momentu zginającego w danym punkcie schematów 13, 29, 45; przy momencie bezwładności przęsła J_x5; podporach przegubowo-nieprzesuwnych i przy Gs = 1,5 m.
- schemat 14, 30, 46 Pr, Jx, P150 oznacza wartość momentu zginającego w danym punkcie schematów 14, 30, 46; przy momencie bezwładności przęsła J_x; podporach przegubowo-nieprzesuwnych i przy Gs = 1,5 m.
- schemat Ut, Jx5, P60 oznacza stosunek wartości momentów zginających w danym punkcie, przy danej rozpiętości przęsła i przy obciążeniu zmianami temperatury (∠T = 25°C), do obciążenia ciężarem własnym konstrukcji; przy momencie bezwładności przęsła J_x5; podporach sztywno-zamocowanych i przy Gs = 0,6 m.
- schemat Ut, Jx, P60 oznacza stosunek wartości momentów zginających w danym punkcie, przy danej rozpiętości przęsła i przy obciążeniu zmianami temperatury

($\Delta T = 25^{\circ}$ C), do obciążenia ciężarem własnym konstrukcji; przy momencie bezwładności przęsła J_x; podporach sztywno-zamocowanych i przy Gs = 0,6 m.

- schemat Ut, Jx, P150 oznacza stosunek wartości momentów zginających w danym punkcie, przy danej rozpiętości przęsła i przy obciążeniu zmianami temperatury (ΔT = 25°C), do obciążenia ciężarem własnym konstrukcji; przy momencie bezwładności przęsła J_x; podporach sztywno-zamocowanych i przy Gs = 1,5 m.
- schemat Ut, Jx5, P150 schemat Ut, Jx5, P60 oznacza stosunek wartości momentów zginających w danym punkcie, przy danej rozpiętości przęsła i przy obciążeniu zmianami temperatury (∠T = 25°C), do obciążenia ciężarem własnym konstrukcji; przy momencie bezwładności przęsła J_x5; podporach sztywno-zamocowanych i przy Gs = 1,5 m.
- schemat Pr, Jx5, P60 oznacza stosunek wartości momentów zginających w danym punkcie, przy danej rozpiętości przęsła i przy obciążeniu zmianami temperatury (ΔT = 25°C), do obciążenia ciężarem własnym konstrukcji; przy momencie bezwładności przęsła J_x5; podporach przegubowo-nieprzesuwnych i przy Gs = 0,6 m.
- schemat Pr, Jx, P60 oznacza stosunek wartości momentów zginających w danym punkcie, przy danej rozpiętości przęsła i przy obciążeniu zmianami temperatury (ΔT = 25°C), do obciążenia ciężarem własnym konstrukcji; przy momencie bezwładności przęsła J_x; podporach przegubowo-nieprzesuwnych i przy Gs = 0,6 m.
- schemat Pr, Jx5, P150 oznacza stosunek wartości momentów zginających w danym punkcie, przy danej rozpiętości przęsła i przy obciążeniu zmianami temperatury ($\Delta T = 25^{\circ}$ C), do obciążenia ciężarem własnym konstrukcji; przy momencie bezwładności przęsła J_x5; podporach przegubowo-nieprzesuwnych i przy Gs = 1,5 m.
- schemat Pr, Jx, P150 schemat Pr, Jx5, P60 oznacza stosunek wartości momentów zginających w danym punkcie, przy danej rozpiętości przęsła i przy obciążeniu zmianami temperatury (ΔT = 25°C), do obciążenia ciężarem własnym konstrukcji; przy momencie bezwładności przęsła J_x; podporach przegubowo-nieprzesuwnych i przy *Gs* = 1,5 m.

14.10.2 Lista analizowanych obiektów Zintegrowanych, jednoprzęsłowych

(ramowych) poddanych obciążeniu ciężarem własnym konstrukcji i obciążeniu

zmianami temperatur

	Rama o $L = 10$ m, $H = 2, 5, 8$ m, $h = 60$ cm
1	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
2	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
3	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
4	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
5	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
6	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
7	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
8	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
9	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
10	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
11	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
12	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
13	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
14	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
15	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
16	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
17	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
18	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
19	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
20	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury

21	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
22	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
23	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
24	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
25	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
26	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
27	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
28	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
29	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
30	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
31	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
32	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
33	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
34	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
35	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
36	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
37	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
38	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
39	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
40	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
41	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
42	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
43	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury

44	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
45	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
46	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
47	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
48	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 10 m (wysokość 60 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
	Rama o $L = 20$ m, $H = 2, 5, 8$ m, $h = 100$ cm
49	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
50	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
51	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
52	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
53	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
54	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
55	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
56	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
57	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
58	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
59	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
60	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
61	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
62	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
63	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
64	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
65	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
66	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji

67	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
68	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
69	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
70	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
71	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
72	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
73	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
74	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
75	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
76	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
77	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
78	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
79	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
80	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
81	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
82	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
83	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
84	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
85	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
86	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
87	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
88	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
89	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji

90	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
91	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
92	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
93	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
94	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
95	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
96	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 20 m (wysokość 100 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
	Rama o $L = 30$ m, $H = 2, 5, 8$ m, $h = 125$ cm
97	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
98	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
99	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
100	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
101	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
102	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
103	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
104	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
105	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
106	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
107	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
108	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
109	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
110	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
111	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
112	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
113	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji

114	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
115	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
116	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
117	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
118	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
119	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
120	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
121	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
122	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
123	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
124	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
125	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
126	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
127	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
128	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
129	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
130	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
131	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
132	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
133	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
134	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
135	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury

136	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
137	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
138	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
139	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
140	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
141	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
142	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
143	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
144	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 30 m (wysokość 125 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
	Rama o $L = 40$ m, $H = 2, 5, 8$ m, $h = 150$ cm
145	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
146	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
147	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
148	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
149	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
150	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
151	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
152	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
153	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
154	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
155	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
156	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 2 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
157	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
158	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
159	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury

160	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 2 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
161	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
162	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
163	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
164	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
165	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
166	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
167	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
168	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
169	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
170	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
171	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
172	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 5 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
173	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
174	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
175	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
176	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 5 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
177	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
178	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
179	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
180	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
181	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
182	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem

183	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
184	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm) - moment bezwładności zwiększono 5-krotnie, wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
185	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
186	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie ciężarem własnym konstrukcji
187	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
188	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 8 m (grubość 60 cm) - tylko obciążenie zmianą temperatury
189	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
190	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie ciężarem własnym konstrukcji
191	Rama o podporach sztywno-zamocowanych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury
192	Rama o podporach przegubowo-nieprzesuwnych, rozpiętości przęsła 40 m (wysokość 150 cm), wysokość podpór 8 m (grubość 150 cm) - tylko obciążenie zmianą temperatury

14.10.3 Wyniki obliczeń obiektów Zintegrowanych, jednoprzęsłowych (ramowych)

poddanych obciążeniu ciężarem własnym konstrukcji i zmianami temperatury

Tabela 14.9. Zestawienie sił wewnętrznych dla obiektów Zintegrowanych (ramowych) o L = 10-40 metrów

Nr	M(0a)	Fz(0a)	Fx(0a)	M(a)	Fz(a)	Fx(a)	M(0,5L)
1	33,37	-56,40	105,42	-79,44	-56,40	75,30	108,81
2	0,00	-36,82	105,42	-73,64	-36,82	75,30	114,61
3	-218,43	163,82	0,00	109,21	163,82	0,00	109,21
4	0,00	35,65	0,00	71,30	35,65	0,00	71,30
5	-23,50	-46,52	150,60	-116,54	-46,52	75,30	71,71
6	0,00	-58,09	150,60	-116,19	-58,09	75,30	72,06
7	-1 497,43	793,75	0,00	90,07	793,75	0,00	90,07
8	0,00	56,24	0,00	112,48	56,24	0,00	112,48
9	47,25	-79,85	105,42	-112,46	-79,85	75,30	75,79
10	0,00	-55,00	105,42	-110,01	-55,00	75,30	78,24
11	-185,54	108,23	0,00	30,92	108,23	0,00	30,92
12	0,00	10,65	0,00	21,30	10,65	0,00	21,30
13	-24,93	-49,34	150,60	-123,60	-49,34	75,30	64,65
14	0,00	-61,76	150,60	-123,52	-61,76	75,30	64,73
15	-1 511,74	765,42	0,00	19,11	765,42	0,00	19,11
16	0,00	11,96	0,00	23,92	11,96	0,00	23,92
17	49,55	-29,95	150,60	-100,18	-29,95	75,30	88,07
18	0,00	-18,81	150,60	-94,04	-18,81	75,30	94,21
19	-44,93	15,40	0,00	32,09	15,40	0,00	32,09
20	0,00	3,64	0,00	18,18	3,64	0,00	18,18
21	48,25	-32,62	263,55	-114,84	-32,62	75,30	73,41
22	0,00	-22,56	263,55	-112,79	-22,56	75,30	75,46
23	-457,89	104,21	0,00	63,16	104,21	0,00	63,16
24	0,00	8,74	0,00	43,68	8,74	0,00	43,68
25	49,55	-29,95	150,60	-100,18	-29,95	75,30	88,07
26	0,00	-18,81	150,60	-94,04	-18,81	75,30	94,21
27	-34,79	9,28	0,00	11,60	9,28	0,00	11,60
28	0,00	1,46	0,00	7,28	1,46	0,00	7,28
29	51,76	-35,00	263,55	-123,21	-35,00	75,30	65,04
30	0,00	-24,55	263,55	-122,73	-24,55	75,30	65,52
31	-437,05	90,12	0,00	13,55	90,12	0,00	13,55
32	0,00	1,90	0,00	9,51	1,90	0,00	9,51
33	20,82	-7,82	195,78	-41,76	-7,82	75,30	146,49
34	0,00	-4,28	195,78	-34,21	-4,28	75,30	154,04
35	-18,93	4,26	0,00	15,15	4,26	0,00	15,15
36	0,00	1,03	0,00	8,28	1,03	0,00	8,28
37	53,12	-20,48	376,50	-110,75	-20,48	75,30	77,50
38	0,00	-13,37	376,50	-106,99	-13,37	75,30	81,26
39	-194,59	29,28	0,00	39,66	29,28	0,00	39,66
40	0,00	3,24	0,00	25,89	3,24	0,00	25,89
41	44,67	-16,78	195,78	-89,58	-16,78	75,30	98,67
42	0.00	-10.23	195.78	-81,82	-10.23	75.30	106,43
43	-14,62	2,64	0,00	6,50	2,64	0,00	6,50
44	0,00	0,50	0,00	3,96	0,50	0,00	3,96
45	58,64	-22,61	376,50	-122,24	-22,61	75,30	66,01

46	0,00	-15,16	376,50	-121,30	-15,16	75,30	66,95
47	-179,77	23,57	0,00	8,76	23,57	0,00	8,76
48	0,00	2,94	0,00	5,87	2,94	0,00	5,87
49	142,61	-247,30	281,12	-351,99	-247,30	247,30	903,01
50	0,00	-158,02	281,12	-316,04	-158,02	247,30	938,96
51	-476,18	404,35	0,00	332,52	404,35	0,00	332,52
52	0,00	106,24	0,00	212,48	106,24	0,00	212,48
53	-190,10	-257,04	326,30	-704,18	-257,04	247,30	550,82
54	0,00	-347,76	326,30	-695,52	-347,76	247,30	559,48
55	-2 678,56	1 512,09	0,00	345,62	1 512,09	0,00	345,62
56	0,00	233,80	0,00	467,60	233,80	0,00	467,60
57	265,78	-460,89	281,12	-656,01	-460,89	247,30	598,99
58	0,00	-314,66	281,12	-629,32	-314,66	247,30	625,68
59	-391,67	257,81	0,00	123,95	257,81	0,00	123,95
60	0,00	42,31	0,00	84,62	42,31	0,00	84,62
61	-217,68	294,32	326,30	-806,33	294,32	247,30	448,67
62	0,00	-402,02	326,30	-804,04	-402,02	247,30	450,97
63	-2 750,50	1 414,82	0,00	79,15	1 414,82	0,00	79,15
64	0,00	54,06	0,00	108,12	54,06	0,00	108,12
65	105,50	-63,58	326,30	-212,85	-63,58	251,00	1 042,15
66	0,00	-34,33	326,30	-171,63	-34,33	251,00	1 083,37
67	-100,26	37,15	0,00	85,49	37,15	0,00	85,49
68	0,00	9,23	0,00	46,16	9,23	0,00	46,16
69	277,78	-192,68	439,25	-685,62	-192,68	251,00	569,38
70	0,00	-132,43	439,25	-662,14	-132,43	251,00	592,86
71	-958,60	243,54	0,00	259,08	243,54	0,00	259,08
72	0,00	35,61	0,00	178,06	35,61	0,00	178,06
73	260,33	-157,56	326,30	-527,48	-157,56	251,00	727,52
74	0,00	-94,28	326,30	-471,38	-94,28	251,00	783,62
75	-78,98	24,27	0,00	42,37	24,27	0,00	42,37
76	0,00	5,07	0,00	25,36	5,07	0,00	25,36
77	324,67	-225,21	439,25	-801,36	-225,21	251,00	453,64
78	0,00	-158,95	439,25	-794,76	-158,95	251,00	460,23
79	-878,17	187,75	0,00	60,56	187,75	0,00	60,56
80	0,00	8,55	0,00	42,74	8,55	0,00	42,74
81	73,88	-27,76	371,48	-148,23	-27,76	251,00	1 106,74
82	0,00	-14,57	371,48	-116,54	-14,57	251,00	1 138,43
83	-41,36	9,84	0,00	37,33	9,84	0,00	37,33
84	0,00	2,45	0,00	19,58	2,45	0,00	19,58
85	374,70	-145,30	552,20	-787,72	-145,30	251,00	467,28
86	0,00	-96,81	552,20	-774,46	-96,81	251,00	480,53
87	-425,50	72,98	0,00	158,82	72,98	0,00	158,82
88	0,00	12,54	0,00	100,34	12,54	0,00	100,34
89	216,20	-81,25	371,48	-433,76	-81,25	251,00	821,20
90	0,00	-46,78	371,48	-374,20	-46,78	251,00	880,77
91	-33,65	6,94	0,00	21,85	6,94	0,00	21,85
92	0,00	1,57	0,00	12,58	1,57	0,00	12,58
93	374,70	-145,30	552,20	-787,72	-145,30	251,00	467,28
94	0,00	-96,81	552,20	-774,46	-96,81	251,00	480,53
95	-368,77	50,98	0,00	39,08	50,98	0,00	39,08

96	0,00	3,25	0,00	26,04	3,25	0,00	26,04
97	320,55	-573,78	500,82	-827,00	-573,78	470,70	2 703,25
98	0,00	-370,96	500,82	-741,92	-370,96	470,70	2 788,32
99	-713,42	624,55	0,00	535,69	624,55	0,00	535,69
100	0,00	173,17	0,00	346,34	173,17	0,00	346,34
101	-632,17	-619,26	546,00	-1 870,70	-619,26	470,70	1 659,55
102	0,00	-911,25	546,00	-1 822,50	-911,25	470,70	1 707,75
103	-3 575,31	2 076,73	0,00	578,16	2 076,73	0,00	578,16
104	0,00	425,38	0,00	850,76	425,38	0,00	850,76
105	666,27	-1 192,60	500,82	-1 718,93	-1 192,60	470,70	1 811,32
106	0,00	-820,36	500,82	-1 640,72	-820,36	470,70	1 889,53
107	-592,10	407,39	0,00	222,69	407,39	0,00	222,69
108	0,00	76,59	0,00	153,18	76,59	0,00	153,18
109	-756,28	-740,85	546,00	-2 237,98	-740,85	470,70	1 292,27
110	0,00	-1 111,95	546,00	-2 223,90	-1 111,95	470,70	1 306,34
111	-3 723,94	1 931,14	0,00	138,33	1 931,14	0,00	138,33
112	0,00	103,81	0,00	207,62	103,81	0,00	207,62
113	240,37	-145,55	546,00	-487,68	-145,55	470,70	3 042,50
114	0,00	-77,81	546,00	-389,04	-77,81	470,70	3 141,21
115	-153,92	57,96	0,00	135,89	57,96	0,00	135,89
116	0,00	14,53	0,00	72,64	14,53	0,00	72,64
117	704,24	-504,23	658,95	-1 816,91	-504,23	470,70	1 713,34
118	0,00	-349,30	658,95	-1 746,52	-349,30	470,70	1 783,74
119	-1 446.92	383.54	0.00	470.76	383.54	0.00	470.76
120	0.00	65.22	0.00	326.12	65.22	0.00	326.12
121	656.33	-397.92	546.00	-1 333.29	-397.92	470.70	2 196.96
122	0.00	-234.19	546.00	-1 170.96	-234.19	470.70	2 359.30
123	-123.60	39.58	0.00	74.30	39.58	0.00	74.30
124	0.00	8.75	0.00	43.72	8.75	0.00	43.72
125	861.35	-616.72	658 95	-2.222.24	-616.72	470 70	1 308 01
126	0.00	-440 11	658 95	-2,200,54	-440 11	470.70	1 329 71
127	-1 309 09	284.85	0.00	115.16	284.85	0.00	115.16
128	0.00	16 44	0,00	82.18	16 44	0,00	82.18
129	166.26	-62 50	591 18	-333 78	-62 50	470 70	3 196 47
130	0.00	-32 52	591,10	-260.12	-32 52	470,70	3 270 13
131	-63.20	-52,52	0.00	-200,12	-52,52	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	58.36
132	0.00	3 79	0,00	30,36	3 70	0,00	30,36
133	787.00	-307.28	771.90	-1 671 23	-307.28	470.70	1 859 02
133	0.00	102.06	771.00	1 5/3 70	102.06	470,70	1 035,02
135	-658.68	118 19	0.00	286.88	118 19	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	286.88
136	0.00	22 52	0,00	180.16	22 52	0,00	180.16
137	530.40	100 /0	501 18	1 064 83	100 /0	470.70	2 465 42
137	0.00	-199,40	501.10	-1 004,85	-199,40	470,70	2 405,42
130	52.67	-112,74	0.00	-901,00	-112,74	470,70	2 020,37
140	-52,07	2.62	0,00	21.06	2.62	0,00	21.06
140	1.024.62	2,03 400.06	0,00 771.00	21,00 2 175 94	2,03	470.70	21,00 1 254 41
1/17	1 024,03	-400,00	771.00	-2 173,04	-400,00	470,70	1 304,41
142	0,00 550 72	-200,23	//1,90	-2 150,02	-200,23	4/0,/0	1 400,22
1/1	-330,70	/9,10	0,00	/4,/0	/9,18	0,00	/4,/0
144	0,00	6,21	0,00	49,72	6,21	0,00	49,72
145	549,00	-1 005,01	783,12	-1 460,61	-1 005,01	153,00	6 069,39

146	0,00	-653,89	783,12	-1 307,78	-653,89	753,00	6 222,21
147	-954,73	857,43	0,00	760,14	857,43	0,00	760,14
148	0,00	247,29	0,00	494,58	247,29	0,00	494,58
149	-1 406,57	-1 164,06	677,70	-3 734,69	-1 164,06	753,00	3 795,31
150	0,00	-1 791,52	677,70	-3 583,04	-1 791,52	753,00	3 946,95
151	-4 402,17	2 641,30	0,00	880,43	2 641,30	0,00	880,43
152	0,00	677,51	0,00	1 355,02	677,51	0,00	1 355,02
153	1 269,51	-2 322,28	783,12	-3 375,05	-2 322,28	753,00	4 154,95
154	0,00	-1 601,06	783,12	-3 202,12	-1 601,06	753,00	4 327,87
155	-800,94	576,12	0,00	351,29	576,12	0,00	351,29
156	0,00	121,10	0,00	242,20	121,10	0,00	242,20
157	-1 768,89	-1 436,91	677,70	-4 696,00	-1 436,91	753,00	2 833,28
158	0,00	-2 323,63	677,70	-4 647,26	-2 323,63	753,00	2 882,75
159	-4 650,36	2 435,91	0,00	221,45	2 435,91	0,00	221,45
160	0,00	175,75	0,00	351,50	175,75	0,00	351,50
101	413,44	-250,96	828,30	-841,34	-250,96	753,00	6 688,66
162	0,00	-133,02	828,30	-005,08	-133,02	/53,00	0 804,92
164	-209,25	79,81	0,00	189,81	79,81	0,00	189,81
165	0,00	20,12	0,00	2 611 75	20,12	0,00	2 018 25
165	1 558,55	-994,00	564,75	-3 011,73	-994,00	753,00	3 918,23
167	1 054 02	-090,43	0.00	-5 452,14	-090,43	/33,00	4 077,05
168	-1 934,93	104 44	0,00	522.20	104 44	0,00	522.20
169	1 237 56	-751 19	828 30	-2 518 39	-751 19	753.00	5 011 61
170	0.00	-434 71	828,30	-2 173 56	-434 71	753,00	5 356 45
171	-171.81	57.09	0.00	171.81	57.09	0.00	171.81
172	0.00	13 15	0,00	65 76	13 15	0,00	65.76
173	1 751.66	-1 281.70	564.75	-4 656.85	-1 281.70	753.00	2 873.15
174	0.00	-920.40	564 75	-4 601 98	-920.40	753.00	2 928 01
175	-1 744.95	387.77	0.00	193.88	387.77	0.00	193.88
176	0.00	27.85	0.00	139.22	27.85	0.00	139.22
177	282.57	-106.26	873.48	-567.53	-106.26	753.00	6 962.47
178	0,00	-54,89	873,48	-439,14	-54,89	753,00	7 090,86
179	-85,51	20,74	0,00	80,37	20,74	0,00	80,37
180	0,00	5,19	0,00	41,52	5,19	0,00	41,52
181	1 532,45	-601,09	451,80	-3 276,23	-601,09	753,00	4 253,77
182	0,00	-373,22	451,80	-2 985,76	-373,22	753,00	4 544,24
183	-909,26	170,49	0,00	454,63	170,49	0,00	454,63
184	0,00	35,29	0,00	282,28	35,29	0,00	282,28
185	972,89	-365,86	873,48	-1 954,00	-365,86	753,00	5 576,00
186	0,00	-203,32	873,48	-1 626,56	-203,32	753,00	5 903,44
187	-73,05	16,05	0,00	55,34	16,05	0,00	55,34
188	0,00	3,84	0,00	30,76	3,84	0,00	30,76
189	2 122,20	-832,40	451,80	-4 537,03	-832,40	753,00	2 992,97
190	0,00	-552,25	451,80	-4 418,00	-552,25	753,00	3 112,01
191	-755,51	110,18	0,00	125,92	110,18	0,00	125,92
192	0,00	10,44	0,00	83,54	10,44	0,00	83,54

-6,13	6,97	-2,18	7,8	36	-0,30	6,86	-0	,06	3,98	-34,71	-34	4,71
-22,62	1,84	-16,76	5 3,2	23	-8,87	0,49	-2	,62	0,12	-48,34	-4	8,34
pkt. A.1.	pkt. A.2.	pkt. A.1.	pkt. A.2	pkt. C	C.1	pkt. C.2.	pkt. C.1	pk	tt. C.2	pkt. A.1	pkt. A.	1.
-31,05	-31,05											
-61,73	-61,73											
pkt. B.1.	pkt. B.1.											
34,63%	-37,61%	-47,43%	-86,13%	-91,04%	-86,13%	34,4	0% -5	3,54%				
14,71%	-48,53%	-61,14%	-89,43%	-91,33%	-89,43%	13,9	6% -6	6,42%				
pkt. D.I.1.	pkt. D.I.2	pkt. D.I.3	pkt. F.I.1	pkt. F.I.2	pkt. F.I.1	pkt. D.I	I.1 pkt. I	D.II.2				
			temperatura									
-88,39%	-88,39% 1	2,08% 126,	,04%									
-91,60%	-91,60% -1	15,17% 8,9	5%									
pkt. F.II.1 p	okt. F.II.1 pkt	t. E.I.1 pkt. E	E.I.2									
temperatura												
-48,36%	-79,35%	-48,36% 1	6,32% 11	,35%								
-55,97%	-87,01%	-55,97% -1	4,11% -16	5,67%								
pkt. G.I.1	pkt. G.I.2 p	okt. G.I.1 pkt.	. E.II.1 pkt.	E.II.2								
temperatura												
37,10%	-5,46% -2	20,35%										
30,19%	-23,36% -4	42,10%			-78,98%	-90,88%	-78,98%	40,77%	-25,62%			
I					-84,25%	-92,12%	-84,25%	36,03%	-49,20%			
pkt. D.I.1. p	okt. D.I.2. pk	t. D.I.3		_pk	t. F.I.1	pkt. F.I.2	pkt. F.I.1	pkt. D.II.1	pkt. D.II.2			
temperatura												
-81.41%	-81.41%	5.64% -	1.10%								75 /6%	75 169/
-87 30%	-87.30%	2.10% -	3.39%		-43,14%	-83,75%	-43,14%	7,95%	-1,80%		-/5,40%	-/5,40%
nkt FII 1	nkt FII 1 n	$\frac{1}{1}$ kt EI1 nkt	EI2		-54,16%	-88,11%	-54,16%	3,43%	-4,93%		-10,4370	-10,45%
temperatura	рки: 1 :11:1 р	Kt. D.I.1 pKt	. 1.1.2									
- temperatura				pk	t. G.I.1	pkt. G.I.2	pkt. G.I.1	pkt. E.II.1	l pkt. E.II.2	pł	tt. G.II. I	ркt. G.I1.I
				te	emperatura					te	emperatura	

Rys. 14.42 Wartości momentów zginających w punkcie "0a" dla Zintegrowanego obiektu ramowego oL = 10 m od obciążenia ciężarem własnym konstrukcji

Rys. 14.43 Wartości momentów zginających w punkcie "0a" dla Zintegrowanego obiektu ramowego o L = 10 m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)

Rys. 14.44 Wartości momentów zginających w punkcie "0a" dla Zintegrowanego obiektu ramowego o L = 20 m od obciążenia ciężarem własnym konstrukcji

Rys. 14.45 Wartości momentów zginających w punkcie "0a" dla Zintegrowanego obiektu ramowego o L = 20 m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)

Rys. 14.46 Wartości momentów zginających w punkcie "0a" dla Zintegrowanego obiektu ramowego o L = 30 m od obciążenia ciężarem własnym konstrukcji

Rys. 14.47. Wartości momentów zginających w punkcie "0a" dla Zintegrowanego obiektu ramowego o L = 30 m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)

Rys. 14.48 Wartości momentów zginających w punkcie "0a" dla Zintegrowanego obiektu ramowego oL = 40 m od obciążenia ciężarem własnym konstrukcji

Rys. 14.49 Wartości momentów zginających w punkcie "0a" dla Zintegrowanego obiektu ramowego o L = 40 m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)

Rys. 14.50 Wartości momentów zginających w punkcie "0a" dla Zintegrowanego obiektu ramowego o L = 40 m od obciążenia ciężarem własnym konstrukcji i zmianą temperatury ($\Delta T = 25^{\circ}$ C)

Rys. 14.51 Wartości momentów zginających w punkcie "a" dla Zintegrowanego obiektu ramowego o *L* = 10 m od obciążenia ciężarem własnym konstrukcji

Rys. 14.52 Wartości momentów zginających w punkcie "a" dla Zintegrowanego obiektu ramowego o L = 10 m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)

Rys. 14.54 Wartości momentów zginających w punkcie "a" dla Zintegrowanego obiektu ramowego o L = 20 m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)

Rys. 14.55 Wartości momentów zginających w punkcie "a" dla Zintegrowanego obiektu ramowego oL = 30 m od obciążenia ciężarem własnym konstrukcji

Rys. 14.56 Wartości momentów zginających w punkcie "a" dla Zintegrowanego obiektu ramowego o L = 30 m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)

Rys. 14.57 Wartości momentów zginających w punkcie "a" dla Zintegrowanego obiektu ramowego o *L* = 40 m od obciążenia ciężarem własnym konstrukcji

Rys. 14.58 Wartości momentów zginających w punkcie "a" dla Zintegrowanego obiektu ramowego o L = 40 m od obciążenia zmianą temperatury ($\Delta T = 25$ °C)

Rys. 14.59 Wartości momentów zginających w punkcie "a" dla Zintegrowanego obiektu ramowego o L = 40 m od obciążenia ciężarem własnym konstrukcji i zmianą temperatury ($\Delta T = 25^{\circ}$ C)

Rys. 14.62. Wartości momentów zginających w punkcie "0,5L" dla Zintegrowanego obiektu ramowego o L = 20 m od obciążenia ciężarem własnym konstrukcji

Rys. 14.63. Wartości momentów zginających w punkcie "0,5L" dla Zintegrowanego obiektu ramowego o $L = 40 \text{ m od obciążenia zmianą temperatury } (\Delta T = 25^{\circ}\text{C})$

Rys. 14.64 Wartości momentów zginających w punkcie "0,5L" dla Zintegrowanego obiektu ramowego o L = 30 m od obciążenia ciężarem własnym konstrukcji

Rys. 14.65 Wartości momentów zginających w punkcie "0,5L" dla Zintegrowanego obiektu ramowego o $L = 30 \text{ m od obciążenia zmianą temperatury } (\Delta T = 25^{\circ}\text{C})$

Rys. 14.66 Wartości momentów zginających w punkcie "0,5L" dla Zintegrowanego obiektu ramowego o L = 40 m od obciążenia ciężarem własnym konstrukcji

Rys. 14.67 Wartości momentów zginających w punkcie "0,5L" dla Zintegrowanego obiektu ramowego o $L = 40 \text{ m od obciążenia zmianą temperatury } (\Delta T = 25^{\circ}\text{C})$

14.10.5 Materiały do analizy wartości momentów zginających od obciążenia

zmianami temperatury dla obiektów Zintegrowanych, jednoprzęsłowych (ramowych)

Rys. 14.69 Stosunek wartości momentów zginających w punkcie "0a" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła L = 20 metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji

Rys. 14.70 Stosunek wartości momentów zginających w punkcie "0a" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych)o rozpiętości przęsła L = 30 metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji

Rys. 14.71 Stosunek wartości momentów zginających w punkcie "0a" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła L = 40 metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji

Rys. 14.72 Stosunek wartości momentów zginających w punkcie "a" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła L = 10 metrów od obciążenia zmianą temperatur $(\Delta T = 25^{\circ}\text{C})$ do obciążenia ciężarem własnym konstrukcji

Rys. 14.73 Stosunek wartości momentów zginających w punkcie "a" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych)o rozpiętości przęsła L = 20 metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji

Rys. 14.74Stosunek wartości momentów zginających w punkcie "a" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła L = 30 metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji

Rys. 14.75 Stosunek wartości momentów zginających w punkcie "a" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła L = 40 metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji

Rys. 14.76 Stosunek wartości momentów zginających w punkcie "0,5L" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła L = 20 metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji

Rys. 14.77 Stosunek wartości momentów zginających w punkcie "0,5L" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych)o rozpiętości przęsła L = 30 metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji

Rys. 14.78 Stosunek wartości momentów zginających w punkcie "0,5L" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła L = 40 metrów od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji

Rys. 14.79 Procentowy stosunek wartości momentów zginających w punkcie "a" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła 10-40 metrów od obciążenia zmianą temperatury $(\Delta T = 25^{\circ}\text{C})$ do obciążenia ciężarem własnym konstrukcji przy H = 5 m

Rys. 14.80 Procentowy stosunek wartości momentów zginających w punkcie "0a" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła 10-40 metrów od obciążenia zmianą temperatury $(\Delta T = 25^{\circ}\text{C})$ do obciążenia ciężarem własnym konstrukcji przy H = 8 m

Rys. 14.81 Procentowy stosunek wartości momentów zginających w punkcie "a" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła 10-40 metrów od obciążenia zmianą temperatury $(\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji przy H = 8 m

14.11 Dane do analiz opisanych w Rozdziale 10

14.11.1 Legenda

- Schemat 1, Profil 1, Jx5 oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla schematu 1, dla obiektu Zintegrowanego opartego na Profilach 1 i przy momencie bezwładności przęsła J_x5.
- Schemat 2, Profil 1, Jx5, 50% oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla schematu 2, dla obiektu Zintegrowanego opartego na Profilach 1, przy momencie bezwładności przęsła *J_x5* i zmniejszeniu modułu oporu bocznego pala o 50%.
- Schemat 3, Profil 1, Jx5,P oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla schematu 3, dla obiektu Zintegrowanego opartego na Profilach 1, przy momencie bezwładności przęsła J_x5 i przy możliwości obrotu podpór w połowie ich wysokości.
- Schemat 4, Profil 1, Jx5,50%,P oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla schematu 4, dla obiektu Zintegrowanego opartego na Profilach 1, przy momencie bezwładności przęsła *J_x5*, przy możliwości obrotu podpór w połowie ich wysokości i zmniejszeniu modułu oporu bocznego pala o 50%.
- Schemat 9, Profil 2, Jx5 oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla schematu 9, dla obiektu Zintegrowanego opartego na Profilach 2 i przy momencie bezwładności przęsła J_x5.
- Schemat 10, Profil 2, Jx5, 50% oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla schematu 10, dla obiektu Zintegrowanego opartego na Profilach 2, przy momencie bezwładności przęsła *J_x5* i zmniejszeniu modułu oporu bocznego pala o 50%.
- Schemat 11, Profil 2, Jx5,P oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla schematu 11, dla obiektu Zintegrowanego opartego na Profilach 2, przy momencie bezwładności przęsła J_x5 i przy możliwości obrotu podpór w połowie ich wysokości.
- Schemat 12, Profil 2, Jx5,50%, P oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla schematu 12, dla obiektu Zintegrowanego opartego na Profilach 2, przy momencie bezwładności przęsła J_x5, przy możliwości

obrotu podpór w połowie ich wysokości i zmniejszeniu modułu oporu bocznego pala o 50%.

- Schemat 13+9, Profil 2, Jx5 oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla sumy wartości od schematów 13+9, dla obiektu Zintegrowanego opartego na Profilach 2 i przy momencie bezwładności przęsła J_x5.
- Schemat 14+10, Profil 2, Jx5,50%,P oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla schematu dla sumy wartości schematów 14+10, dla obiektu Zintegrowanego opartego na Profilach 2, przy momencie bezwładności przęsła J_x5, przy możliwości obrotu podpór w połowie ich wysokości i zmniejszeniu modułu oporu bocznego pala o 50%.
- Schemat 29, Profil 2, Jx oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla schematu 29, dla obiektu Zintegrowanego opartego na Profilach 2 i przy momencie bezwładności przęsła J_x.
- Schemat 32, Profil 2, Jx,50%,P oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla schematu 32, dla obiektu Zintegrowanego opartego na Profilach 2, przy momencie bezwładności przęsła *J_x*, przy możliwości obrotu podpór w połowie ich wysokości i zmniejszeniu modułu oporu bocznego pala o 50%.
- Schemat 30+26, Profil 2, 50% oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla sumy wartości od schematów 30+26, dla obiektu Zintegrowanego opartego na Profilach 2,przy momencie bezwładności przęsła J_x i zmniejszeniu modułu oporu bocznego pala o 50%.
- Schemat 24+20, Profil 1,50%,P oznacza wartość momentu zginającego w danym punkcie {"16p"; "a"; "0,5L"} dla schematu dla sumy wartości schematów 24+20, dla obiektu Zintegrowanego opartego na Profilach 1, przy momencie bezwładności przęsła *J_x*, przy możliwości obrotu podpór w połowie ich wysokości i zmniejszeniu modułu oporu bocznego pala o 50%.

14.11.2 Lista analizowanych schematów obiektów Zintegrowanych, jednoprzęsłowych

(ramowych) poddanych obciążeniu ciężarem własnym konstrukcji i zmianami

temperatur o podporach posadowionych na profilach stalowych

Schemat	Opis
nr	Rama o $L = 10 \text{ m}, H = 2 \text{ m}, h = 60 \text{ cm}$
1	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $J_x 5$ - tylko obciążenie ciężarem własnym konstrukcji
2	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $J_x 5$, redukcja oporu bocznego pala K_{yi} o 50% - tylko obciażenie cieżarem własnym konstrukcji
3	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x5 , przegub w $1/2H$ - tylko obciażenie cieżarem własnym konstrukcji
4	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x5 , przegub w $1/2H$, redukcja oporu bocznego pala K_{xi} o 50% - tylko obciażenie cieżarem własnym konstrukcji
5	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $J_x 5$ - tylko obciążenie zmianą temperatury
6	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $J_x 5$, redukcja oporu bocznego pala $K = 0.50\%$ – tylko obciażenie zmiana temperatury
7	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $Jx5$, przegub w $1/2H$ - tylko obciążenie zmiene temperatury
8	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$ - tylko obciążenie
9	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , redukcja oporu bocznego pola K_x o 50% – tylko obcieżenie ojeżerem właczum konstrukcji
10	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , przegub w $1/2H$ - tylko obciążenie ciężerem własnym konstrukcji
11	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , przegub w $1/2H$, redukcja oporu bocznego pala K_x o 50% – tylko obcjażenie cjeżarem własnym konstrukcji
12	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$ - tylko obciążenie zmianą temperatury
13	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciażenie zmiana temperatury
14	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , przegub w $1/2H$ - tylko obciażenie zmianą temperatury
15	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , przegub w $1/2H$ - tylko obciażenie zmiana temperatury
16	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , przegub w 1/2 <i>H</i> , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciażenie zmiana temperatury
17	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x5 - tylko obciążenie cieżarem własnym konstrukcji
18	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciażenie cieżarem własnym konstrukcji
19	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , przegub w 1/2H - tylko obciążenie ciężarem własnym konstrukcji
20	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , przegub w 1/2 <i>H</i> , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciażenie cieżarem własnym konstrukcji
21	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x - tylko obciążenie zmianą temperatury
22	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciażenie zmiana temperatury
23	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , przegub w $1/2H$ - tylko obciażenie zmiana temperatury
24	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x - tylko obciążenie ciężarem własnym konstrukcji
25	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , redukcja oporu bocznego pala K_x o 50% - tylko obciażenie cieżarem własnym konstrukcji
26	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w 1/2 <i>H</i> - tylko obciążenie ciężarem własnym konstrukcji

27	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w 1/2 <i>H</i> , redukcja oporu bocznego pala K_{yi} o 50% - tylko obciażenie cieżarem własnym konstrukcji
28	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x - tylko obciążenie zmianą temperatury
	Pama o podporach opartych na Profilu 2 moment hezwladności przesła L redukcja oporu bocznego
29	nala $K_{x} = 0.50\%$ - tylko obciażenie zmiana temperatury
	Rama o podporach opartych na Profilu 2 moment bezwładności przesła L. przegub w $1/2H$ - tylko
30	obciażenie zmiana temperatury
	Rama o podporach opartych na Profilu 2. moment bezwładności przesła $L_{\rm c}$ przegub w $1/2H$ - tylko
31	obciażenie zmiana temperatury
22	Rama o podporach opartych na Profilu 2, moment bezwładności przesła J_x , przegub w 1/2H, redukcja
32	oporu bocznego pala K_{xi} o 50% - tylko obciążenie zmianą temperatury
	Rama o $L = 20$ m, $H = 2$ m, $h = 100$ cm
1	Rama o podporach opartych na Profilu 1, moment bezwładności przesła $J_x 5$ - tylko obciążenie
1	ciężarem własnym konstrukcji
C	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $J_x 5$, redukcja oporu bocznego
2	pala K _{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
3	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $J_x 5$, przegub w $1/2H$ - tylko
5	obciążenie ciężarem własnym konstrukcji
4	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x5 , przegub w 1/2 H ,
•	redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
5	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $J_x 5$ - tylko obciążenie zmianą
	temperatury
6	Rama o podporach opartych na Profilu I, moment bezwładności przęsła $J_x 5$, redukcja oporu bocznego
	pala K_{xi} o 50% - tylko obciązenie zmianą temperatury
7	Rama o podporach opartych na Profilu I, moment bezwładności przęsła $Jx3$, przegub w $1/2H$ - tylko
	Doma a nadnowach anartisch na Drafily 2. margant harviladnaści mrzech. 15. tulka abaiażania
8	kaina o podporach opartych na Promu 2, moment dezwiadności przęsia J_x - tyrko obciążenie ajeżarom włesnym konstrukcji
	Pama o podporach opertuch na Profilu 2. moment hezuvladności przesła 15. rodukcja operu bocznago
9	kalila o pouporacii opartych na Fromu z, moment oczwiadności przęsia $J_x J_y$, redukcja oporu bocznego nala $K \cdot o 50\%$ - tylko obciążenie cieżarem własnym konstrukcji
	Rama o podporach opartych na Profilu 2 moment bezwładności przesła L_5 przesub w $1/2H$ - tylko
10	obciażenie cieżarem własnym konstrukcji
11	Rama o podporach opartych na Profilu 2, moment bezwładności przesła $J_x 5$, przegub w 1/2H,
11	redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
10	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$ - tylko obciążenie zmianą
12	temperatury
13	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$, redukcja oporu bocznego
15	pala K_{xi} o 50% - tylko obciążenie zmianą temperatury
14	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$, przegub w $1/2H$ - tylko
	obciążenie zmianą temperatury
15	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$, przegub w $1/2H$ - tylko
	obciązenie zmianą temperatury
16	Rama o podporach opartych na Profilu 2, moment bezwiadności przęsła $J_x S$, przegub w 1/2H,
	Pama o podporach opartych na Profilu 1. moment hezyvladności przesła L_5 , tylko obciażenie
17	cieżarem własnym konstrukcji
	Rama o podporach opartych na Profilu 1. moment bezwładności przesła L. redukcia oporu bocznego
18	pala K_{yi} o 50% - tylko obciażenie cieżarem własnym konstrukcji
1.0	Rama o podporach opartych na Profilu 1. moment bezwładności przesła J_x , przegub w 1/2H - tylko
19	obciażenie ciężarem własnym konstrukcji
20	Rama o podporach opartych na Profilu 1, moment bezwładności przesła J_x , przegub w 1/2H, redukcja
20	oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
21	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x - tylko obciążenie zmianą
21	temperatury
22	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , redukcja oporu bocznego
	pala K_{xi} o 50% - tylko obciążenie zmianą temperatury
23	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , przegub w 1/2 H - tylko
	obciążenie zmianą temperatury
24	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x - tylko obciążenie ciężarem
1	WIASHYIH KONSTUKCI

25	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , redukcja oporu bocznego
	pala K_{xi} 0 50% - tylko obciążenie ciężarem własnym konstrukcji Rama o podporach opartych na Profilu 2 moment bezwładności przesła L. przegub w $1/2H$ - tylko
26	obciążenie ciężarem własnym konstrukcji
27	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w 1/2 <i>H</i> , redukcja oporu bogznago pala K_{-0} 50% tylko objectorze władności przesła J_x , przegub w 1/2 <i>H</i> , redukcja
	oporu bocznego pala A_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji Rama o podporach opartych na Profilu 2 moment bezwładności przesła L_{xi} - tylko obciażenie zmiana
28	temperatury $-$
29	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie zmianą temperatury
30	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w $1/2H$ - tylko obciążenie zmianą temperatury
31	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w $1/2H$ - tylko obciażenie zmiana temperatury
32	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w 1/2 <i>H</i> , redukcja oporu bocznego pala K_x o 50% - tylko obciażenie zmiana temperatury
	Rama o $L = 30$ m, $H = 2$ m, $h = 125$ cm
1	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $J_x 5$ - tylko obciążenie
1	ciężarem własnym konstrukcji
2	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $J_x 5$, redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
3	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $J_x 5$, przegub w $1/2H$ - tylko
	obciążenie ciężarem własnym konstrukcji
4	Rama o podporach opartych na Profilu 1, moment bezwiadności przęsła J_x 3, przegub w 1/2H, redukcja oporu bocznego pala K_x o 50% - tylko obciażenie cieżarem własnym konstrukcji
	Rama o podporach opartych na Profilu 1. moment bezwładności przesła $J_x 5$ - tylko obciążenie zmiana
5	temperatury
6	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $J_x 5$, redukcja oporu bocznego pala K_{xi} o 50% - tylko obciażenie zmiana temperatury
7	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $Jx5$, przegub w $1/2H$ - tylko
	Rama o podporach opartych na Profilu 2 moment bezwładności przesła L_5 - tylko obciażenie
8	ciężarem własnym konstrukcji
9	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$, redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
10	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$, przegub w $1/2H$ - tylko obciażenie cieżarem własnym konstrukcji
11	Rama o podporach opartych na Profilu 2, moment bezwładności przesła $J_x 5$, przegub w 1/2 <i>H</i> ,
11	redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
12	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$ - tylko obciążenie zmianą temperatury
13	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$, redukcja oporu bocznego pala K_{x} o 50% - tylko obciażenie zmiana temperatury
14	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , przegub w $1/2H$ - tylko
14	obciążenie zmianą temperatury
15	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , przegub w $1/2H$ - tylko obciążenie zmianą temperatury
16	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$, przegub w 1/2 <i>H</i> ,
	redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie zmianą temperatury Rama o podporach opartych na Profilu 1. moment bezwładności przesła L_{5} – tylko obciążenie
17	ciężarem własnym konstrukcji
18	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
19	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , przegub w 1/2 <i>H</i> - tylko obciażenie cieżarem własnym konstrukcii
20	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , przegub w 1/2 <i>H</i> , redukcja
-	oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji Rama o podporach opartych na Profilu 1. moment bezwładności przesła I_{-} tylko obciążenie zmiana
21	temperatury
22	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie zmianą temperatury

23	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , przegub w 1/2 H - tylko obciażenie zmiana temperatury
24	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x - tylko obciążenie ciężarem
25	własnym konstrukcji Rama o podporach opartych na Profilu 2, moment bezwładności przesła J_x , redukcja oporu bocznego
25	pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
26	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w 1/2H - tylko obciążenie ciężarem własnym konstrukcji
27	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w 1/2 <i>H</i> , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
28	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x - tylko obciążenie zmianą temperatury
29	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , redukcja oporu bocznego pala $K_{x,y}$ o 50% – tylko obcieżenia zmiana temperatury
30	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w 1/2 <i>H</i> - tylko obciążenie zmiana temperatury
31	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w $1/2H$ - tylko obcieżenie zmiene temperatury
32	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w 1/2 <i>H</i> , redukcja
52	oporu bocznego pala K_{xi} o 50% - tylko obciążenie zmianą temperatury R oma o $L = 40$ m $H = 2$ m $h = 150$ cm
	Rama o podporach opartych na Profilu 1. moment hezwładności przesła I_{5-} tylko obciażenie
1	ciężarem własnym konstrukcji
2	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $J_x 5$, redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
3	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x5 , przegub w 1/2H - tylko obciażenie cieżarem własnym konstrukcji
4	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x5 , przegub w $1/2H$,
5	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $J_x 5$ - tylko obciążenie zmianą
	temperatury
6	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x 5, redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie zmianą temperatury
7	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła $Jx5$, przegub w $1/2H$ - tylko obciażenie zmiana temperatury
8	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$ - tylko obciążenie
0	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$, redukcja oporu bocznego
9	pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji Rome o nodporosch oportuch no Profilu 2. more ort hornikalności przeska 15. przeswa w 1/211. tylko
10	obciążenie ciężarem własnym konstrukcji
11	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , przegub w 1/2 <i>H</i> , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
12	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła $J_x 5$ - tylko obciążenie zmianą temperatury
13	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciażenie zmiana temperatury
14	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , przegub w $1/2H$ - tylko obciażenie zmiana temperatury
15	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , przegub w $1/2H$ - tylko
16	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x5 , przegub w 1/2 <i>H</i> ,
10	redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie zmianą temperatury Rama o podporach opartych na Profilu 1. moment bezwładności przesła $L5$ - tylko obciążenie
17	ciężarem własnym konstrukcji
18	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
19	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , przegub w 1/2H - tylko obciażenie cieżarem własnym konstrukcji
20	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , przegub w 1/2 <i>H</i> , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji

21	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x - tylko obciążenie zmianą temperatury
22	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie zmianą temperatury
23	Rama o podporach opartych na Profilu 1, moment bezwładności przęsła J_x , przegub w 1/2 H - tylko obciążenie zmianą temperatury
24	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x - tylko obciążenie ciężarem własnym konstrukcji
25	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
26	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w 1/2H - tylko obciążenie ciężarem własnym konstrukcji
27	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w 1/2 <i>H</i> , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie ciężarem własnym konstrukcji
28	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x - tylko obciążenie zmianą temperatury
29	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie zmianą temperatury
30	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w $1/2H$ - tylko obciążenie zmianą temperatury
31	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w $1/2H$ - tylko obciążenie zmianą temperatury
32	Rama o podporach opartych na Profilu 2, moment bezwładności przęsła J_x , przegub w 1/2 <i>H</i> , redukcja oporu bocznego pala K_{xi} o 50% - tylko obciążenie zmianą temperatury

Rys. 14.82 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1) od obciążenia ciężarem własnym konstrukcji, bez i z 50% redukcją K_{xi} , L = 10 m, przęsło $J_x 5$

Rys. 14.83 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 2) od obciążenia ciężarem własnym konstrukcji, bez i z 50% redukcją K_{xi} , L = 10 m, przęsło $J_x 5$

Rys. 14.84 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1 i Profil 2) od obciążenia ciężarem własnym konstrukcji i zmianami temperatury ($\Delta T = 25^{\circ}$ C), bez i z przegubem w podporach, bez i z 50% redukcją K_{xi} , L = 10 m, przęsło $J_x 5$

Rys. 14.85 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 2) od obciążenia ciężarem własnym konstrukcji, bez i z 50% redukcją K_{xi} , L = 10 m, przęsło J_x

schemat 1, Profil 1,Jx5 — schemat 2, Profil 1,Jx5,50% 🔺 schemat 3, Profil 1,Jx5,P 💛 schemat 4, Profil 1,Jx5,50%,P

Rys. 14.86 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1) od obciążenia ciężarem własnym konstrukcji, bez i z 50% redukcją K_{xi} , L = 20 m, przęsło J_x5

Rys. 14.87 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1 i Profil 2) od obciążenia ciężarem własnym konstrukcji i zmianami temperatury ($\Delta T = 25^{\circ}$ C), bez i z przegubem w podporach, bez i z 50% redukcją K_{xi} , L = 10 m, przęsło J_x

schemat 9, Profil 2,Jx5 -- schemat 10, Profil 2,Jx5,50% -- schemat 11, Profil 2,Jx5,P -- schemat 12, Profil 2,Jx5,50%,P

Rys. 14.88 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 2) od obciążenia ciężarem własnym konstrukcji, bez i z 50% redukcją K_{xi} , L = 20 m, przęsło J_x 5

Rys. 14.89 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 2) od obciążenia ciężarem własnym konstrukcji, bez i z 50% redukcją K_{xi} , L = 20 m, przęsło J_x

Rys. 14.90 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1 i Profil 2) od obciążenia ciężarem własnym konstrukcji i zmianami temperatury ($\Delta T = 25^{\circ}$ C), bez i z przegubem w podporach, bez i z 50% redukcją K_{xi} , L = 20 m, przęsło $J_x 5$

Rys. 14.91 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1 i Profil 2) od obciążenia ciężarem własnym konstrukcji i zmianami temperatury ($\Delta T = 25^{\circ}$ C), bez i z przegubem w podporach, bez i z 50% redukcją K_{xi} , L = 20 m, przęsło J_x

Rys. 14.92 Wartości momentów zginających w punktach "0a", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1) od obciążenia ciężarem własnym konstrukcji, bez i z 50% redukcją K_{xi} , L = 30 m, przęsło $J_x 5$

Rys. 14.93 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 2) od obciążenia ciężarem własnym konstrukcji, bez i z 50% redukcją K_{xi} , L = 30 m, przęsło $J_x 5$

schemat 5, Profil 1,Jx5 — schemat 6, Profil 1,Jx5,50% - schemat 7, Profil 1,Jx5,P - - schemat 8, Profil 1,Jx5,50%,P

Rys. 14.94 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1) od obciążenia zmianami temperatury $(\Delta T = 25^{\circ}C)$, bez i z 50% redukcją K_{xi} , L = 30 m, przęsło J_x5

📥 schemat 13, Profil 2,Jx5 🛑 schemat 14, Profil 2,Jx5,50% 📲 schemat 15, Profil 2,Jx5,P 😽 schemat 16, Profil 2,Jx5,50%, P

Rys. 14.95 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 2) od obciążenia zmianami temperatury $(\Delta T = 25^{\circ}\text{C})$, bez i z 50% redukcją K_{xi} , L = 30 m, przęsło J_x5

Rys. 14.96 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1 i Profil 2) od obciążenia ciężarem własnym konstrukcji i zmianami temperatury ($\Delta T = 25^{\circ}$ C), bez i z przegubem w podporach, bez i z 50% redukcją K_{xi} , L = 30 m, przęsło J_x

h

Rys. 14.97 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 2) od obciążenia ciężarem własnym konstrukcji, bez i z 50% redukcją K_{xi} , L = 30 m, przęsło J_x

Rys. 14.98 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1) od obciążenia ciężarem własnym konstrukcji, bez i z 50% redukcją K_{xi} , L = 40 m, przęsło J_x 5

Rys. 14.99 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1 i Profil 2) od obciążenia ciężarem własnym konstrukcji i zmianami temperatury ($\Delta T = 25^{\circ}$ C), bez i z przegubem w podporach, bez i z 50% redukcją K_{xi} , L = 30 m, przęsło J_x

Rys. 14.100 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 2) od obciążenia ciężarem własnym konstrukcji, bez i z 50% redukcją K_{xi} , L = 40 m, przęsło $J_x 5$

Rys. 14.101 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1) od obciążenia zmianami temperatury $(\Delta T = 25^{\circ}\text{C})$, bez i z 50% redukcją K_{xi} , L = 40 m, przęsło $J_x 5$

Rys. 14.102 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 2) od obciążenia zmianami temperatury $(\Delta T = 25^{\circ}\text{C})$, bez i z 50% redukcją K_{xi} , L = 40 m, przęsło $J_x 5$

Rys. 14.103 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 2) od obciążenia ciężarem własnym konstrukcji, bez i z 50% redukcją K_{xi} , L = 40 m, przęsło J_x

Rys. 14.104 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1 i Profil 2) od obciążenia ciężarem własnym konstrukcji i zmianami temperatury ($\Delta T = 25^{\circ}$ C), bez i z przegubem w podporach, bez i z 50% redukcją K_{xi} , L = 40 m, przęsło $J_x 5$

Rys. 14.105 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1 i Profil 2) od obciążenia ciężarem własnym konstrukcji i zmianami temperatury ($\Delta T = 25^{\circ}$ C), bez i z przegubem w podporach, bez i z 50% redukcją K_{xi} , L = 40 m, przęsło J_x

14.12 Dane do analiz opisanych w Rozdziale 11

14.12.1 Legenda

- Wytyczne szwedzkie oznacza udział wartości momentu zginającego w danym punkcie od obciążenia parciem gruntu wyznaczonego wg [22] w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji przy momencie bezwładności przęsła równym J_x.
- Wyt. Kalifornia oznacza udział wartości momentu zginającego w danym punkcie od obciążenia parciem gruntu wyznaczonego wg [118] w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji przy momencie bezwładności przęsła równym J_x.
- Wyt. ang K_p = 3,5 oznacza udział wartości momentu zginającego w danym punkcie od obciążenia parciem gruntu wyznaczonego wg [10] w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji przy momencie bezwładności przęsła równym J_x i przy przyjęciu K_p = 3,5.
- Wyt. ang K_p = 11,9 oznacza udział wartości momentu zginającego w danym punkcie d obciążenia parciem gruntu wyznaczonego wg [10] w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji przy momencie bezwładności przęsła równym J_x i przy przyjęciu K_p = 11,9.

14.12.2	Lista analizowanych schematów obiektów Zintegrowanych, jednoprzęsłowych
	(ramowych) poddanych obciążeniu ciężarem własnym konstrukcji i parciem gruntu

Schemat	Opis
nr	Rama o $L = 10$ m, $H = 2-8$ m, $h_p = 60$ cm, $Gs = 60$ cm
1	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym
	konstrukcji; podpory sztywno-zamocowane
2	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
2	[10] $K_p = 3,5$; podpory sztywno-zamocowane
3	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
3	[10] $K_p = 9,5$; podpory sztywno-zamocowane
4	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
4	[10] $K_p = 11,9$; podpory sztywno-zamocowane
5	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
5	[118], podpory sztywno-zamocowane
6	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
0	[22], podpory sztywno-zamocowane
7	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie zmianą temperatury;
/	podpory sztywno-zamocowane
8	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym
	konstrukcji; podpory sztywno-zamocowane
9	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według
	[10] $K_p = 3,5$; podpory sztywno-zamocowane

10	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
11	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory sztywno-zamocowane
12	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
13	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
14	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
15	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji: podpory sztywno-zamocowane
16	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_n = 3.5$; podpory sztywno-zamocowane
17	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_n = 9.5$; podpory sztywno-zamocowane
18	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_x = 11.9$: podpory sztywno-zamocowane
19	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
20	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
21	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
22	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
23	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane
24	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
25	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory sztywno-zamocowane
26	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
27	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
28	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
29	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
30	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory sztywno-zamocowane
31	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory sztywno-zamocowane
32	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $Kp = 11.9$; podpory sztywno-zamocowane
33	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
34	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
35	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
36	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
37	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_n = 3.5$; podpory sztywno-zamocowane
38	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_n = 9.5$; podpory sztywno-zamocowane
39	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane

40	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
41	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [22] nodpory sztuwo zamosci wrzęsła J
	Rama o momencie bezwładności przesła L wysokość podpór 7 m - obciażenie zmiana temperatury:
42	ruma o momenere bezwadanser przęsia y_x , wysokose podpor / m oberązenie zimaną temperatary, podpory sztywno-zamocowane
43	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym kontrakcji podporty zatrumo zamosowane
44	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według
45	[10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według
15	[10] $K_p = 9,5$; podpory sztywno-zamocowane
46	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane
47	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
48	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według
	[22], podpory sztywno-zamocowane
49	podpory sztywno-zamocowane
50	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym
	konstrukcji; podpory przegubowo-nieprzesuwne
51	[10] $K_p = 3.5$: podpory przegubowo-nieprzesuwne
50	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
32	[10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
53	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_z = 11.9$; podpory przegubowo pieprzesuwne
	Rama o momencie bezwładności przesła J_x , wysokość podpór 2 m - obciażenie parciem gruntu według
54	[118], podpory przegubowo-nieprzesuwne
55	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
56	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie zmianą temperatury;
	podpory przegubowo-nieprzesuwne
57	konstrukcji; podpory przegubowo-nieprzesuwne
58	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według
	[10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
59	Kama o momencie bezwładności przęsła J_x , wysokość podpor 3 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
60	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory przegubowo-nieprzesuwne
61	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według
	[118], podpory przegubowo-nieprzesuwne
62	[22], podpory przegubowo-nieprzesuwne
63	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
64	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym
	Rama o momencie bezwładności przesła <i>I</i> _* wysokość podpór 4 m - obciażenie parciem gruptu według
65	[10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
66	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_n = 9.5$; podpory przegubowo-nieprzesuwne
<u> </u>	Rama o momencie bezwładności przesta $L_{\rm w}$ wysokość podpór 4 m - obciażenie parciem gruptu według
67	[10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
68	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [118] podpory przegubowo-nieprzesuwne
	Rama o momencie bezwładności przesła $J_{\rm v}$, wysokość podpór 4 m - obciażenie parciem gruntu według
69	[22]. podpory przegubowo-nieprzesuwne

70	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
71	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji: podpory przegubowo-nieprzesuwne
72	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_n = 3.5$; podpory przegubowo-nieprzesuwne
73	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_x = 9.5$; podpory przegubowo-nieprzesuwne
74	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_z = 11.0$, podpory przegubowo incerzogramu me
75	[10] $K_p = 11,9$; podpory przegubowo-meprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
76	[118], podpory przegubowo-meprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
77	[22], podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą temperatury;
78	podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym
70	konstrukcji; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła J _x , wysokość podpór 6 m - obciążenie parciem gruntu według
19	[10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
80	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
81	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $Kp = 11,9$; podpory przegubowo-nieprzesuwne
82	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
83	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
84	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
85	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
86	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne
87	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne
88	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
89	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [118] podpory przegubowo-nieprzesuwne
90	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [22] podpory przegubowo nieprzesuwne
91	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie zmianą temperatury; podpory przegubowo nieprzesuwne
92	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji: podpory przegubowo pieprzeguwne
93	Ronstruccji, podpory przegubowo-incprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_z = 3.5$: podpory przegubowo nieprzesuwne
94	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_z = 9.5$; podpory przegubowo-nieprzesuwne
95	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_x = 11.9$: podpory przegubowo-pieprzesuwne
96	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [118] podpory przegubowo nieprzesuwne
97	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według
-	[22], podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przesta <i>L</i> wysokość podpór 8 m - obciażenie zmiana temperatury:
98	podpory przegubowo-nieprzesuwne

Schemat	Opis
nr	Rama o $L = 20$ m, $H = 2-8$ m, $h_p = 100$ cm, $Gs = 60$ cm
1	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji: podpory sztywno-zamocowane
	Pama a momencia bezwładności przesła L wysakość podpór 2 m. obcieżenie parajem gruptu według
2	Kaina o momencie bezwiadności przęsia J_x , wysokość podpor z mie obciązenie parcieni gruntu według [10] $K_z = 3.5$; podpory sztywno zamocowana
	$[10]$ $K_p = 5.5$, podpory sztywno-zamocowane
3	Rama o momencie bezwładności przęsła J_x , wysokość podpor 2 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory sztywno-zamocowane
	Rama o momencie bezwładności przesła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
4	[10] $K_p = 11,9$; podpory sztywno-zamocowane
5	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
6	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
-	Rama o momencie bezwładności przesła J_x , wysokość podpór 2 m - obciążenie zmianą temperatury;
	podpory sztywno-zamocowane
	Rama o momencie bezwładności przesła J _z , wysokość podpór 3 m - obciażenie cieżarem własnym
8	konstrukcji; podpory sztywno-zamocowane
0	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według
9	[10] $K_p = 3.5$; podpory sztywno-zamocowane
10	Rama o momencie bezwładności przesła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według
10	[10] $K_p = 9.5$; podpory sztywno-zamocowane
	Rama o momencie bezwładności przesła J., wysokość podpór 3 m - obciażenie parciem gruntu według
11	[10] $K_n = 11.9$ podpory sztywno-zamocowane
12	Rama o momencie bezwładności przesta L wysokość podpór 3 m f podpory sztywno zamocowane
12	Rama o momencie bezwiadności przesła J_{χ} , wysokość podpór 5 m r podpór y sztywno-zamocowane Rama o momencie bezwiadności przesła J_{χ} , wysokość podpór 2 m - obcieżenie porziem gruptu wedłuc
13	Kaina o momencie bezwiadności przęsia J_x , wysokość podpor 5 m - obciążenie parcieni gruntu według
	[22], podpory sztywno-zaniocowane
14	Kama o momencie bezwiauności przęsta J_x , wysokość poupor 5 m - obciązeme zimaną temperatury,
	podpory sztywno-zamocowane
15	Rama o momencie bezwiadności przęsła J_x , wysokość podpor 4 m - obciążenie ciężarem własnym
	konstrukcji; podpory sztywno-zamocowane
16	Rama o momencie bezwładności przęsła J_x , wysokośc podpor 4 m - obciążenie parciem gruntu według
	[10] $K_p = 3.5$; podpory sztywno-zamocowane
17	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_z = 0.5$; podpory sztywno zamocowana
	$[10]$ $K_p = 9.5$, poupory szty who-zamocowane
18	Kaina o momencie bezwiadności przęsia J_x , wysokość podpor 4 m - obciązenie parcieli gruntu według
	$[10]$ $K_p = 11,9$; podpory sztywno-zamocowane
19	Rama o momencie bezwładności przęsła J_x , wysokość podpor 4 m - obciążenie parciem gruntu według
	[118], podpory sztywno-zamocowane
20	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według
	[22], podpory sztywno-zamocowane
21	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą temperatury;
	podpory sztywno-zamocowane
22	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym
	konstrukcji; podpory sztywno-zamocowane
23	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
23	[10] $K_p = 3,5$; podpory sztywno-zamocowane
24	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
24	[10] $K_p = 9.5$; podpory sztywno-zamocowane
25	Rama o momencie bezwładności przesła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
25	[10] $K_p = 11.9$; podpory sztywno-zamocowane
26	Rama o momencie bezwładności przesła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
26	[118], podporv sztywno-zamocowane
	Rama o momencie bezwładności przesła J_x , wysokość podpór 5 m - obciażenie parciem gruntu według
27	[22], podporv sztywno-zamocowane
	Rama o momencie bezwładności przesła <i>L.</i> wysokość podpór 5 m - obciążenie zmiana temperatury
28	podpory sztywno-zamocowane
	Rama o momencie hezwładności przesła I wysokość podpór 6 m. obojożania ojażoram własnym
29	konstrukcji: podpory sztywno-zamocowane
	Roma o momencie bezuvladności przesla I wysakość podpór 6 m – abajażania parajam arvety wodłyc
30	Kama o momencie bezwiaunosci przęsia J_x , wysokość poupor o mie obciązenie parcieni grunu według
	$[10]$ $\mathbf{n}_p = 3.3$, poupory salywho-zamocowane

31	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory sztywno-zamocowane
32	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $Kp = 11.9$; podpory sztywno-zamocowane
33	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
34	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
35	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
36	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji: podpory sztywno-zamocowane
37	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory sztywno-zamocowane
38	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_n = 9.5$; podpory sztywno-zamocowane
39	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_x = 11.9$; podpory sztywno-zamocowane
40	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [118] podpory sztywno-zamocowane
41	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [22] podpory sztywno-zamocowane
42	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
43	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji: podpory sztywno-zamocowane
44	Roma u mojn, pocpory sztywno zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_n = 3.5$; podpory sztywno-zamocowane
45	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_x = 9.5$; podpory sztywno-zamocowane
46	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_n = 11.9$: podpory sztywno-zamocowane
47	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [118] podpory sztywno-zamocowane
48	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [22] podpory sztywno-zamocowane
49	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
50	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji: podpory przegubowo-nieprzesuwne
51	Roma ukcji, podpory przegubowo meprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_x = 3.5$; podpory przegubowo-nieprzesuwne
52	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_n = 9.5$; podpory przegubowo-nieprzesuwne
53	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_n = 11.9$: podpory przegubowo-nieprzesuwne
54	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
55	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22] podpory przegubowo-nieprzesuwne
56	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
57	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji: podpory przegubowo-nieprzesuwne
58	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_x = 3.5$; podpory przegubowo-nieprzeguwne
59	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo – iczysta Jz, staraczenie parciem gruntu według [10] $K_z = 0.5$; podpory [10] $K_z = $
60	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_n = 11.9$: podpory przegubowo-nieprzesuwne

61	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
62	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
63	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
64	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
65	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne
66	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne
67	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory przegubowo-nieprzesuwne
68	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
69	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
70	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
71	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
72	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
73	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
74	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
75	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
76	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
77	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
78	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
79	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
80	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
81	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $Kp = 11,9$; podpory przegubowo-nieprzesuwne
82	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
83	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
84	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
85	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
86	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne
87	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne
88	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory przegubowo-nieprzesuwne
89	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne

90	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
91	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
92	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
93	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
94	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
95	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
96	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
97	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
98	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
99	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
100	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
101	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
102	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
103	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
104	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsta 50 cm; moment bezwładności przęsta J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o $h_p = 100$ cm lecz ciężar jak przy wysokości przesta 50 cm; moment bezwładności przesta J_x
105	Rama o $h_p = 100$ cm, jecz ciężar jak przy wysokości przęsła 50 cm, moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o $h_r = 100$ cm lecz ciężar jak przy wysokości przesła 50 cm; moment bezwładności przesła L_r
106	wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
107	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
108	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
109	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
110	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
111	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
112	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
Schemat	Opis
nr	Rama o $L = 20$ m, $H = 2-8$ m, $h_p = 100$ cm, $Gs = 150$ cm
1	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
2	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory sztywno-zamocowane

3	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
4	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory sztywno-zamocowane
5	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
	[118], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
0	[22], podpory sztywno-zamocowane
7	podpory sztywno-zamocowane
8	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
9	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane
10	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
11	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane
12	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
13	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
14	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
15	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji: podpory sztywno-zamocowane
16	Romsu uteji, podpory sztywno zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_z = 3.5$; podpory sztywno zamocowane
17	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_z = 9.5$; podpory sztywno-zamocowane
18	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_z = 11.9$: podpory sztywno-zamocowane
19	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [118] podpory sztywno-zamocowane
20	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [22] podpory sztywno zamocowane
21	Rama o momencie bezwładności przesła J_x , wysokość podpór 4 m - obciążenie zmianą temperatury;
22	podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym
22	konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przesła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
23	[10] $K_p = 3.5$; podpory sztywno-zamocowane
24	[10] $K_p = 9.5$; podpory sztywno-zamocowane
25	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane
26	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
27	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
28	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
29	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji: podpory sztywno-zamocowane
30	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według
	[10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przesła J_x , wysokość podpór 6 m - obciażenie parciem gruntu według
31	[10] $K_p = 9.5$; podpory sztywno-zamocowane
32	kama o momencie bezwiadności przęsia J_x , wysokośc podpor 6 m - obciążenie parciem gruntu według [10] $Kp = 11,9$; podpory sztywno-zamocowane

33	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
34	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
35	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
36	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji: podpory sztuwno zamocowano
37	Ronstruccji, podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według
38	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według
39	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według
40	[10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według
	[118], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła <i>J_x</i> , wysokość podpór 7 m - obciążenie parciem gruntu według
41	[22], podpory sztywno-zamocowane Rama o momencie bezwładności przesła J_x , wysokość podpór 7 m - obciążenie zmianą temperatury;
42	podpory sztywno-zamocowane Rama o momencie bezwładności przesła L wysokość podpór 8 m - obciażenie cieżarem własnym
43	konstrukcji; podpory sztywno-zamocowane
44	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane
45	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
46	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory sztywno-zamocowane
47	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
48	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [22] podpory sztywno-zamocowane
49	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
50	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji, podpory przesybawa pierzegywane
51	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
52	[10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
52	[10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
	[10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przesła J_x , wysokość podpór 2 m - obciażenie parciem gruntu według
54	[118], podpory przegubowo-nieprzesuwne
55	[22], podpory przegubowo-nieprzesuwne
56	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
57	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
58	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne
59	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo nieprzesuwne
60	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według
	[10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przesła J_x , wysokość podpór 3 m - obciażenie parciem gruntu według
61	[118], podpory przegubowo-nieprzesła <i>L. wysakość podpór 2 m. obciężenie poreiem grantu w odrug</i>
62	kama o momencie bezwiadności przęsia J_x , wysokość podpor 5 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
63	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie zmianą temperatury; podpory przesubowo-nieprzesuwne
---------------------	---
64	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym
	konstrukcji; podpory przegubowo-nieprzesuwne
65	Rama o momencie bezwładności przęsła J_x , wysokośc podpor 4 m - obciążenie parciem gruntu według [10] $K_x = 3.5$; podpory przegubowo-nieprzesuwne
	Pama o momencie bezwładności przesła L wysokość podpór 4 m. obciążenie parciem gruptu według
66	[10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne
<i>(</i> 7)	Rama o momencie bezwładności przesła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według
67	[10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
68	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
69	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [22] podpory przegubowo-nieprzesuwne
	Rama o momencie bezwładności przesła $J_{r_{\rm c}}$ wysokość podpór 4 m - obciażenie zmiana temperatury:
70	podpory przegubowo-nieprzesuwne
71	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym
/1	konstrukcji; podpory przegubowo-nieprzesuwne
72	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
	$[10]$ $K_p = 3,5$; podpory przegubowo-nieprzesuwne
73	[10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne
74	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
, ,	[10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
75	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
	[118], podpory przegubowo-nieprzesuwne
76	Kama o momencie bezwiadności przęsia J_x , wysokość podpor 5 m - obciązeme parciem gruniu według [22] podpory przegubowo-nieprzesuwne
	Rama o momencie bezwładności przesła <i>L</i> _x wysokość podpór 5 m - obciażenie zmiana temperatury:
77	podpory przegubowo-nieprzesuwne
78	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji: podpory przegubowo pioprzeguwne
	Roma o momencie bezwładności przesła L wysokość podpór 6 m. obciażenie parciem gruptu według
79	[10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne
00	Rama o momencie bezwładności przesła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według
80	[10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
81	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według
	[10] $Kp = 11,9$; podpory przegubowo-nieprzesuwne
82	Rama o momencie bezwładności przęsła J_x , wysokość podpor o m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
02	Rama o momencie bezwładności przesła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według
83	[22], podpory przegubowo-nieprzesuwne
84	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie zmianą temperatury;
	podpory przegubowo-nieprzesuwne
85	kama o momencie bezwładności przęsła J_x , wysokość podpor / m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
97	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według
80	[10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
07	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według
0/	[10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
88	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
<u>00</u>	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według
07	[118], podpory przegubowo-nieprzesuwne
90	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [22] podpory przegubowo-nieprzesuwne
	Pama a momencia bezuvladności przesła I wysakość podpór 7 m – obcieżania zmiena temperaturu
91	podpory przegubowo-nieprzesuwne

92	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
93	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne
94	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne
95	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory przegubowo-nieprzesuwne
96	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
97	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
98	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
99	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 2 m - obciażenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
100	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
101	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
102	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
103	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
104	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
105	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
106	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
107	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
108	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
109	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
110	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
111	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
112	Rama o $h_p = 100$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
Schemat	Opis
nr	Rama o $L = 30$ m, $H = 2-8$ m, $h_p = 125$ cm, $G_s = 60$ cm
1	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji: podpory sztywno-zamocowane
	Rama o momencie bezwładności przesła J _x . wysokość podpór 2 m - obciażenie parciem gruntu według
2	[10] $K_p = 3,5$; podpory sztywno-zamocowane
3	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
4	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory sztywno-zamocowane

5	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
6	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22] podpory sztywno-zamocowane
7	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie zmianą temperatury;
	podpory sztywno-zamocowane Rama o momencie bezwładności przesła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym
8	konstrukcji; podpory sztywno-zamocowane
9	[10] $K_p = 3,5$; podpory sztywno-zamocowane
10	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
11	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory sztywno-zamocowane
12	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [118] podpory sztuwno-zamocowane
13	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według
15	[22], podpory sztywno-zamocowane Rama o momencie bezwładności przesła <i>L</i> . wysokość podpór 3 m - obciażenie zmiana temperatury:
14	podpory sztywno-zamocowane
15	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
16	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory sztywno-zamocowane
17	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory sztywno-zamocowane
18	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_n = 11.9$: podpory sztywno-zamocowane
19	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [118] podpory sztywno-zamocowane
20	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [22] podpory sztywno-zamocowane
21	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
22	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji: podpory sztywno-zamocowane
23	Romstrukcji, poupory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
25	[10] $K_p = 3.5$; podpory sztywno-zamocowane Rama o momencie bezwładności przesła J_x , wysokość podpór 5 m - obciażenie parciem gruntu według
24	[10] $K_p = 9,5$; podpory sztywno-zamocowane
25	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane
26	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
27	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
28	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
29	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji: podpory sztywno-zamocowane
30	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_z = 3.5$: podpory sztywno zamocowane
31	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według
32	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według
32	[10] <i>Kp</i> = 11,9; podpory sztywno-zamocowane Rama o momencie bezwładności przesła <i>J</i> _w wysokość podpór 6 m - obciażenie parciem gruptu według
33	[118], podpory sztywno-zamocowane
34	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane

35	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
36	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji: podpory sztywno-zamocowane
37	Ronstrukcji, poupory sztywno zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_z = 3.5$; podpory sztywno zamocowane
38	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według
39	[10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według
40	[10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według
41	[118], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J _x , wysokość podpór 7 m - obciążenie parciem gruntu według
41	[22], podpory sztywno-zamocowane Rama o momencie bezwładności przesła J_x , wysokość podpór 7 m - obciążenie zmianą temperatury;
42	podpory sztywno-zamocowane Rama o momencie bezwładności przesła L. wysokość podpór 8 m obciażenie cieżarem własnym
43	konstrukcji; podpory sztywno-zamocowane
44	Rama o momencie bezwładności przęsła J_x , wysokość podpor 8 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane
45	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
46	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_n = 11.9$; podpory sztywno-zamocowane
47	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [118] podpory sztywno-zamocowane
48	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według
49	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie zmianą temperatury;
50	podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym
51	konstrukcji; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przesła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
51	[10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przesła $L_{\rm c}$ wysokość podpór 2 m - obciażenie parciem gruntu według
52	[10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne R ome a momental objekt w start w solución przesiwne przestwart w solución prze
53	Rama o momencie bezwiadności przęsła J_x , wysokość podpor 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
54	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
55	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
56	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie zmianą temperatury; podpory przesubowo-nieprzesuwne
57	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji, podpory przegubowo nioprzeguwne
58	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_z = 3.5$; podpory przegubowo nieprzesuwne
59	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 0.5$, godporze przesła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 0.5$, godporze przesła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 0.5$, godporze przesła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 0.5$, godporze przesła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 0.5$, godporze przesła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 0.5$, godporze przesła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 0.5$, godporze przesła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 0.5$, godporze przesła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 0.5$, godporze przesła J_x , wysokości przesła J_x , wys
60	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według
	[10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciażenie parciem gruntu według
61	[118], podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przesła <i>L</i> . wysokość podpór 3 m - obciażenie parciem gruptu według
62	[22], podpory przegubowo-nieprzesuwne
63	kaina o momencie bezwiadności przęsia J_x , wysokość podpor 3 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
64	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne

65	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
66	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
67	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_n = 11.9$: podpory przegubowo-nieprzesuwne
68	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
69	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
70	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
71	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
72	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne
73	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne
74	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory przegubowo-nieprzesuwne
75	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
76	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
77	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
78	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
79	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
80	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
81	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $Kp = 11.9$; podpory przegubowo-nieprzesuwne
82	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
83	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
84	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
85	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
86	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne
87	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
88	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
89	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
90	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
91	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
92	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji: podpory przegubowo-nieprzeguwne
93	Roma o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne

94	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
95	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
96	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
97	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
98	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
99	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
100	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
101	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
102	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
103	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
104	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
105	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
106	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
107	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
108	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
109	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
110	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_{x} , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
111	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
112	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
Schemat	Opis Contract of the second se
nr	Kama o $L = 50$ m, $H = 2-8$ m, $h_p = 125$ cm, $Gs = 150$ cm Rama o momencie bezwładności przech L wysokość podpór 2 m obcieżonie sieżerzem właszym
1	konstrukcji; podpory sztywno-zamocowane
2	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - przy $K_p = 3,5$; podpory sztywno- zamocowane
3	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
4	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane
5	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
6	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane

7	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
8	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym
	konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przesła L. wysokość podpór 3 m. obciażenie parciem gruptu według
9	[10] $K_p = 3.5$: podpory sztywno-zamocowane
10	Rama o momencie bezwładności przesła J_x , wysokość podpór 3 m - obciażenie parciem gruntu według
10	[10] $K_p = 9,5$; podpory sztywno-zamocowane
11	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według
11	[10] $K_p = 11,9$; podpory sztywno-zamocowane
12	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
13	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [22] podpory sztywno-zamocowane
1.4	Rama o momencie bezwładności przesła J_x , wysokość podpór 3 m - obciażenie zmiana temperatury;
14	podpory sztywno-zamocowane
15	Rama o momencie bezwładności przęsła J _x , wysokość podpór 4 m - obciążenie ciężarem własnym
15	konstrukcji; podpory sztywno-zamocowane
16	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według
	[10] $K_p = 3,5$; podpory sztywno-zamocowane
17	Rama o momencie bezwładności przęsła J_x , wysokość podpor 4 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory sztywno-zamocowane
18	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według
10	[10] $K_p = 11,9$; podpory sztywno-zamocowane
19	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według
	[118], podpory sztywno-zamocowane Roma a momencia bezywładności przesła L. wysakość podpór 4 m. obciażenie porciem gruptu według
20	[22] podpory sztywno-zamocowane
	Rama o momencie bezwładności przesła J_x , wysokość podpór 4 m - obciażenie zmiana temperatury:
21	podpory sztywno-zamocowane
22	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji: podpory sztywno-zamocowane
22	Rama o momencie bezwładności przesła J_x , wysokość podpór 5 m - obciażenie parciem gruntu według
23	[10] $K_p = 3,5$; podpory sztywno-zamocowane
24	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
27	[10] $K_p = 9,5$; podpory sztywno-zamocowane
25	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
	[10] $K_p = 11,9$; podpory sztywno-zamocowane Roma a momencia bezykedności przeska <i>L</i> . wysakość podpór 5 m. obcieżenia porziem gruptu wodług
26	[118] podpory sztywno-zamocowane
	Rama o momencie bezwładności przesła J_x , wysokość podpór 5 m - obciażenie parciem gruntu według
27	[22], podpory sztywno-zamocowane
28	Rama o momencie bezwładności przęsła J _x , wysokość podpór 5 m - obciążenie zmianą temperatury;
20	podpory sztywno-zamocowane
29	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym
	konstrukcji; podpory sztywno-zamocowane
30	Rama o momencie bezwładności przęsła J_x , wysokość podpor o m - obciążenie parciem gruntu według [10] $K_z = 3.5$; podpory sztywno-zamocowane
	Rama o momencie bezwładności przesła J_{x} wysokość podpór 6 m - obciażenie parciem gruptu według
31	[10] $K_n = 9.5$; podpory sztywno-zamocowane
22	Rama o momencie bezwładności przesła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według
52	[10] <i>Kp</i> = 11,9; podpory sztywno-zamocowane
33	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według
55	[118], podpory sztywno-zamocowane
34	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według
	[22], poupory sztywno-zamocowane
35	rama o momencie bezwiadności przęsia J_x , wysokość poupor o m - obciązenie zmianą temperatury; podpory sztywno-zamocowane
	Rama o momencie bezwładności przesła J _x , wysokość podpór 7 m - obciażenie cieżarem własnym
36	konstrukcji; podpory sztywno-zamocowane

37	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory sztywno-zamocowane
38	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_n = 9.5$; podpory sztywno-zamocowane
39	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_n = 11.9$; podpory sztywno-zamocowane
40	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [118] podpory sztywno-zamocowane
41	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [22] podpory sztywno zamocowane
42	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie zmianą temperatury;
43	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji, no dpory sztywno-zamocowane
44	Ronstrukcji, podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według
45	[10] $K_p = 3.5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według
46	[10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według
47	[10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według
48	[118], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła <i>J_x</i> , wysokość podpór 8 m - obciążenie parciem gruntu według
49	[22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła <i>J_x</i> , wysokość podpór 8 m - obciążenie zmianą temperatury;
50	podpory sztywno-zamocowane Rama o momencie bezwładności przęsła <i>J_x</i> , wysokość podpór 2 m - obciążenie ciężarem własnym
51	konstrukcji; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła J _x , wysokość podpór 2 m - obciążenie parciem gruntu według
52	[10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
52	[10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przesła J_x , wysokość podpór 2 m - obciażenie parciem gruntu według
53	[10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przesła L_p wysokość podpór 2 m - obciażenie parciem gruntu według
54	[118], podpory przegubowo-nieprzesła <i>L</i> , wysokość podpór 2 m - obciążenie parciem gruntu według
55	Rama o momencie bezwiadnosci przęsła J_x , wysokość podpór 2 m – obciążenie pareteni grantu według [22], podpory przegubowo-nieprzesuwne
56	Rama o momencie bezwładności przęsła J_x , wysokość podpor 2 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
57	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
58	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
59	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne
60	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory przegubowo-nieprzesuwne
61	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
62	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
63	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie zmianą temperatury; podpory przesubowo-nieprzesuwne
64	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
65	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_n = 3.5$; podpory przegubowo-nieprzesuwne
66	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne

67	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory przegubowo-nieprzesuwne
68	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
69	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
70	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
71	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji: podpory przesubowo-nieprzesuwne
72	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_z = 3.5$; podpory przegubowo-nieprzesuwne
73	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_z = 0.5$; podpory przegubowo nioprzesuwne
74	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
75	[10] $K_p = 11,9$; podpory przegubowo-meprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
76	[118], podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
70	[22], podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła <i>J_x</i> , wysokość podpór 5 m - obciążenie zmianą temperatury;
70	podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła <i>J_x</i> , wysokość podpór 6 m - obciążenie ciężarem własnym
78	konstrukcji; podpory przegubowo-nieprzesuwne Rama o momencje bezwładności przesła J., wysokość podpór 6 m - obciażenie parciem gruntu według
79	[10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przesła <i>L.</i> wysokość podpór 6 m. obciażenie parciem gruptu według
80	[10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przesła $L_{\rm vuysokość}$ podpór 6 m. obciążenie parciem gruntu według
81	Kama o momencie bezwiadności przęsta J_x , wysokość podpór o m - obciążenie parciem gruntu według [10] $Kp = 11,9$; podpory przegubowo-nieprzesuwne
82	Rama o momencie bezwładności przęsła J_x , wysokość podpor o m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
83	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
84	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
85	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
86	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne
87	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
88	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
89	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
90	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
91	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
92	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
93	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne
94	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_n = 9.5$: podpory przegubowo-nieprzesuwne
95	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory przegubowo-nieprzesuwne

96	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
97	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
98	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
99	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
100	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
101	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
102	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
103	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
104	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
105	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
106	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
107	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
108	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_{x} , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
109	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
110	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_{x} , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
111	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
112	Rama o $h_p = 125$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_{x} , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
Schemat	Opis
nr	Rama o $L = 40$ m, $H = 2-8$ m, $h_p = 150$ cm, $Gs = 60$ cm
1	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
2	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane
3	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
4	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane
5	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
6	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
7	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
8	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
9	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory sztywno-zamocowane

10	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
11	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory sztywno-zamocowane
12	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
13	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
14	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
15	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji: podpory sztywno-zamocowane
16	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_n = 3.5$; podpory sztywno-zamocowane
17	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_n = 9.5$; podpory sztywno-zamocowane
18	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_x = 11.9$: podpory sztywno-zamocowane
19	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
20	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
21	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
22	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
23	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane
24	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
25	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory sztywno-zamocowane
26	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
27	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
28	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
29	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
30	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane
31	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
32	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $Kp = 11.9$; podpory sztywno-zamocowane
33	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
34	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
35	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
36	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
37	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory sztywno-zamocowane
38	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory sztywno-zamocowane
39	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane

40	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane
41	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [22] nodpory sztuwo zamosci wrzęsła J
	Rama o momencie bezwładności przesła L wysokość podpór 7 m - obciażenie zmiana temperatury:
42	podporv sztywno-zamocowane
43	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji: podpory sztywno-zamocowane
44	Romstrukcji, poupory sztywno zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_x = 3.5$; podpory sztywno-zamocowane
45	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_n = 9.5$; podpory sztywno-zamocowane
46	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_n = 11.9$: podpory sztywno-zamocowane
47	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [118] podpory sztywno zamocowane
	Rama o momencie bezwładności przesła J_x , wysokość podpór 8 m - obciażenie parciem gruntu według
48	[22], podpory sztywno-zamocowane
49	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
50	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
51	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_n = 3.5$; podpory przegubowo-nieprzesuwne
52	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_x = 9.5$; podpory przegubowo-nieprzesuwne
53	Rama o momencie bezwładności przesła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_z = 11.0$; podpory przesubowo pioprzesuwno
54	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [118] nodnoru przesubawo nieprzesuwne
	Rama o momencie bezwładności przesła J_x , wysokość podpór 2 m - obciażenie parciem gruntu według
55	[22], podpory przegubowo-nieprzesuwne
56	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
57	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
58	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne
59	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_x = 9.5$; podpory przegubowo-nieprzesuwne
60	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_x = 11.0$; godnory przeswie mierzegowie mejrzestwine
	$[10]$ $\Lambda_p = 11,7$, poupory przegubowo-ineprzesuwne Rama o momencie bezwładności przesła J_{∞} wysokość podpór 3 m - obciażenie parciem gruptu według
61	[118], podpory przegubowo-nieprzesuwne
62	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
63	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
64	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji: podpory przegubowo-nieprzesuwne
65	Rama o momencie bezwładności przesła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_z = 3.5$; podpory przegubowo-pieprzesuwne
66	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według
	[10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przesła <i>L</i> . wysokość podpór 4 m. obciażenie parciem gruptu wodług
67	[10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
68	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
69	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne

70	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
71	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji: podpory przegubowo-nieprzesuwne
72	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_n = 3.5$; podpory przegubowo-nieprzesuwne
73	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_x = 9.5$; podpory przegubowo-nieprzesuwne
74	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_z = 11.0$, podpory przegubowo incerzogramu me
75	[10] $K_p = 11,9$; podpory przegubowo-meprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
76	[118], podpory przegubowo-meprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
77	[22], podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą temperatury;
78	podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym
70	konstrukcji; podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przęsła J _x , wysokość podpór 6 m - obciążenie parciem gruntu według
/9	[10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
80	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
81	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $Kp = 11,9$; podpory przegubowo-nieprzesuwne
82	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
83	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
84	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
85	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
86	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
87	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne
88	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
89	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [118] podpory przegubowo-nieprzesuwne
90	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [22] podpory przegubowo nieprzesuwne
91	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie zmianą temperatury; podpory przegubowo nieprzesuwne
92	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji: podpory przegubowo pieprzeguwne
93	Ronstruccji, podpory przegubowo-meprzesuwne Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_z = 3.5$: podpory przegubowo nieprzesuwne
94	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K = 9.5$; podpory przegubowo-nieprzesuwne
95	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_x = 11.9$: podpory przegubowo-pieprzesuwne
96	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [118] podpory przegubowo nieprzesuwne
97	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według
	[22], podpory przegubowo-nieprzesuwne Rama o momencie bezwładności przesła <i>L</i> wysokość podpór 8 m - obciażenie zmiana temperatury:
98	podpory przegubowo-nieprzesuwne

99	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x ,
,,,	wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
100	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 3 m., obciażenie ciężarem własnym konstrukcji: podpory sztywyno zamocowane
	Rama o $h_p = 150$ cm. lecz cieżar jak przy wysokości przesła 50 cm: moment bezwładności przesła J_{rec}
101	wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
102	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x ,
102	wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
103	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x ,
	wysokość podpor 6 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o $h_{\rm c} = 150$ cm lecz ciężar jek przy wysokości przesła 50 cm; moment bezwładności przesła I
104	wysokość podpór 7 m - obciażenie cieżarem własnym konstrukcji: podpory sztywno-zamocowane
105	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_{x_x}
105	wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x ,
106	wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-
	nieprzesuwne
107	Rama o $n_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 3 m – obciażenie cieżarem własnym konstrukcji: podpory przegubowo-
107	nieprzesuwne
	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x ,
108	wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-
	nieprzesuwne
100	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x ,
109	nieprzesuwne
	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przesła 50 cm; moment bezwładności przesła J_{xy}
110	wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-
	nieprzesuwne
111	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x ,
111	wysokość podpor / m - obciązenie ciężarem własnym konstrukcji; podpory przegubowo-
	nieprzesuwne Rama o $h_p = 150$ cm, lecz cieżar jak przy wysokości przesła 50 cm; moment bezwładności przesła J_x ,
112	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-
112	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
112 Schemat	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Domo o $L = 40$ m $H = 2.8$ m $h_c = 150$ cm $C_2 = 150$ cm
112 Schemat nr	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2-8$ m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przesła L_z wysokość podpór 2 m - obciążenie ciężarem własnym
112 Schemat nr 1	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2-8$ m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
112 Schemat nr 1	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2-8$ m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według
112 Schemat nr 1 2	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_{x_5} wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2-8$ m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane
112 Schemat nr 1 2 3	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2-8$ m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
112 Schemat nr 1 2 3	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2-8$ m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane
112 Schemat nr 1 2 3 4	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła $J_{x,s}$ wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2-8$ m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła $J_{x,s}$ wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła $J_{x,s}$, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła $J_{x,s}$, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła $J_{x,s}$, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła $J_{x,s}$, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory sztywno-zamocowane
112 Schemat nr 1 2 3 4	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2-8$ m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane
112 Schemat nr 1 2 3 4 5	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2$-8 m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane
112 Schemat nr 1 2 3 4 5 6	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2-8$ m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [11] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [11] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [11] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [11] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [11] $K_p = 10$
112 Schemat nr 1 2 3 4 5 6	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2$-8 m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [11] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane
112 Schemat nr 1 2 3 4 5 6 7	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła $J_{x,y}$, wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o L = 40 m, H = 2-8 m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła $J_{x,y}$ wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [11], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
112 Schemat nr 1 2 3 4 5 6 7	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_{x_x} , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2$-8 m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_{x_x}, wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 3 m - obciążenie cieżarem własnym
112 Schemat nr 1 2 3 4 5 6 7 8	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_{x} , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2$-8 m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
112 Schemat nr 1 2 3 4 5 6 7 8 8	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o L = 40 m, H = 2-8 m, $h_p = 150$ cm, Gs = 150 cm Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [110] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane
112 Schemat nr 1 2 3 4 5 6 7 8 9	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2$-8 m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [11] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [12], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
112 Schemat nr 1 2 3 4 5 6 7 8 9 10	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2-8$ m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [11] $K_p = 11.9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [12], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [22], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory sztywno-zamocowane
112 Schemat nr 1 2 3 4 5 6 7 8 8 9 10	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_{x_1} wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2$-8 m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [12], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [12], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [12], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem g
112 Schemat nr 1 2 3 4 5 6 7 8 9 10 11	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2-8$ m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [11] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [12], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [12], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [12], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 3 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 3 m - o
112 Schemat nr 1 2 3 4 5 6 7 8 9 10 11 12	nieprzesuwne Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne Opis Rama o $L = 40$ m, $H = 2.8$ m, $h_p = 150$ cm, $Gs = 150$ cm Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [118], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [12], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [12], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 2 m - obciążenie parciem gruntu według [12], podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 3 m - obciążenie zmianą temperatury; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 1,9$; podpory sztywno-zamocowane Rama o momencie bezwładności przęsła J_x, wysokość podpór 3 m - obciążenie parciem grunt

14Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie zmianą podpory sztywno-zamocowane15Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane16Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gr [10] $K_p = 3.5$; podpory sztywno-zamocowane17Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gr [10] $K_p = 9.5$; podpory sztywno-zamocowane18Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gr [10] $K_p = 11.9$; podpory sztywno-zamocowane19Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gr [118], podpory sztywno-zamocowane20Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gr [122], podpory sztywno-zamocowane21Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gr [22], podpory sztywno-zamocowane22Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane23Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 3.5$; podpory sztywno-zamocowane24[10] $K_p = 5$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 11.9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 11.9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła	temperatury; em własnym runtu według runtu według runtu według runtu według runtu według temperatury; em własnym runtu według runtu według runtu według runtu według runtu według
15Rama o momencie bezwładności przęsła J_{x_3} , wysokość podpór 4 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane16Rama o momencie bezwładności przęsła J_{x_3} , wysokość podpór 4 m - obciążenie parciem g [10] $K_p = 3.5$; podpory sztywno-zamocowane17Rama o momencie bezwładności przęsła J_{x_3} , wysokość podpór 4 m - obciążenie parciem g [10] $K_p = 9.5$; podpory sztywno-zamocowane18Rama o momencie bezwładności przęsła J_{x_3} , wysokość podpór 4 m - obciążenie parciem g [10] $K_p = 11.9$; podpory sztywno-zamocowane19Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [118], podpory sztywno-zamocowane20Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [22], podpory sztywno-zamocowane21Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane22Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane23Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 3.5$; podpory sztywno-zamocowane24Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 9.5$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 11.9$; podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 1.9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie pa	em własnym runtu według runtu według runtu według runtu według runtu według temperatury; em własnym runtu według runtu według runtu według runtu według runtu według runtu według
15konstrukcji; podpory sztywno-zamocowane16Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [10] $K_p = 3.5$; podpory sztywno-zamocowane17Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [10] $K_p = 9.5$; podpory sztywno-zamocowane18Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [10] $K_p = 11.9$; podpory sztywno-zamocowane19Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [118], podpory sztywno-zamocowane20Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [22], podpory sztywno-zamocowane21Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane22Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane23Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 3.5$; podpory sztywno-zamocowane24Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 11.9$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 11.9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 11.9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 11.9$; podpory sztywno-zamocowane27Rama o momencie bezwładności	runtu według runtu według runtu według runtu według runtu według temperatury; em własnym runtu według runtu według runtu według runtu według runtu według
16Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [10] $K_p = 3,5$; podpory sztywno-zamocowane17Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [10] $K_p = 9,5$; podpory sztywno-zamocowane18Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [10] $K_p = 11,9$; podpory sztywno-zamocowane19Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [118], podpory sztywno-zamocowane20Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [22], podpory sztywno-zamocowane21Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą podpory sztywno-zamocowane22Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane23Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 3,5$; podpory sztywno-zamocowane24Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 9,5$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 11,9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 11,9$; podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 11,9$; podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [22], p	runtu według runtu według runtu według runtu według runtu według temperatury; em własnym runtu według runtu według runtu według runtu według runtu według
17Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [10] $K_p = 9.5$; podpory sztywno-zamocowane18Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [10] $K_p = 11.9$; podpory sztywno-zamocowane19Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [118], podpory sztywno-zamocowane20Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [22], podpory sztywno-zamocowane21Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane22Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane23Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 3.5$; podpory sztywno-zamocowane24Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 3.5$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 11.9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 11.9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 11.9$; podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [118], podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [12], podpory szty	runtu według runtu według runtu według runtu według temperatury; em własnym runtu według runtu według runtu według runtu według runtu według
18Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [10] $K_p = 11.9$; podpory sztywno-zamocowane19Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [118], podpory sztywno-zamocowane20Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [22], podpory sztywno-zamocowane21Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą podpory sztywno-zamocowane22Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane23Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 3.5$; podpory sztywno-zamocowane24Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 5.5$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 11.9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 11.9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [118], podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [12], podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [22], podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane	runtu według runtu według runtu według temperatury; em własnym runtu według runtu według runtu według runtu według untu według
19Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [118], podpory sztywno-zamocowane20Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g [22], podpory sztywno-zamocowane21Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą podpory sztywno-zamocowane22Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane23Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 3,5$; podpory sztywno-zamocowane24Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 9,5$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [10] $K_p = 11,9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [118], podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [118], podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem g [122], podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane29Rama o momencie bezwładności przę	runtu według runtu według temperatury; em własnym runtu według runtu według runtu według runtu według
20Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem g21Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą podpory sztywno-zamocowane21Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane22Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane23Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 3,5$; podpory sztywno-zamocowane24Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 9,5$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 11,9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [118], podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [118], podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [22], podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [22], podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane29Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m -	runtu według temperatury; em własnym runtu według runtu według runtu według untu według
21Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą podpory sztywno-zamocowane22Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane23Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 3,5$; podpory sztywno-zamocowane24Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 9,5$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 11,9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [118], podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [12], podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane29Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężar konstrukcji nednorw astrumo zemocowane	temperatury; em własnym runtu według runtu według runtu według runtu według
21Rama o momencie bezwładności przęsła J_x , wysokość podpór 1 m. obciążenie zmianą podpory sztywno-zamocowane22Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane23Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 3,5$; podpory sztywno-zamocowane24Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 9,5$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 11,9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [118], podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [12], podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [22], podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane29Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężar konstrukcji nechora od przesi parcene gr	em własnym runtu według runtu według runtu według runtu według
22Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężar konstrukcji; podpory sztywno-zamocowane23Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 3.5$; podpory sztywno-zamocowane24Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 9.5$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 11.9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [118], podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [12], podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane29Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężary konstrukcji podpory sztywno-zamocowane	em własnym runtu według runtu według runtu według runtu według
23Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 3,5$; podpory sztywno-zamocowane24Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 9,5$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 11,9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [118], podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [12], podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane29Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężary konstrukcji podpory sztywno-zamocowane	runtu według runtu według runtu według runtu według
24Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 9,5$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 11,9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [118], podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [22], podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane29Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężary konstrukcji podpory sztywno-zamocowane	runtu według runtu według runtu według
24[10] $K_p = 9,5$; podpory sztywno-zamocowane25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą29Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężary	runtu według runtu według
25Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [10] $K_p = 11,9$; podpory sztywno-zamocowane26Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [118], podpory sztywno-zamocowane27Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gr [22], podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane28Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane29Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężary konstrukcji podpory sztywno-zamocowane	runtu według runtu według
26 Rama o momencie bezwładności przęsła J _x , wysokość podpór 5 m - obciążenie parciem gr [118], podpory sztywno-zamocowane 27 Rama o momencie bezwładności przęsła J _x , wysokość podpór 5 m - obciążenie parciem gr [22], podpory sztywno-zamocowane 28 Rama o momencie bezwładności przęsła J _x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane 29 Rama o momencie bezwładności przęsła J _x , wysokość podpór 6 m - obciążenie ciężary konstrukcji, podpory sztywno-zamocowane	runtu według
27 Rama o momencie bezwładności przęsła J _x , wysokość podpór 5 m - obciążenie parciem g. 28 Rama o momencie bezwładności przęsła J _x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane 28 Rama o momencie bezwładności przęsła J _x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane 29 Rama o momencie bezwładności przęsła J _x , wysokość podpór 6 m - obciążenie ciężary konstrukcji podpory sztywno-zamocowane	
28 Rama o momencie bezwładności przęsła J _x , wysokość podpór 5 m - obciążenie zmianą podpory sztywno-zamocowane 29 Rama o momencie bezwładności przęsła J _x , wysokość podpór 6 m - obciążenie ciężary konstrukcji podpory sztywno-zamocowane	untu według
29 Rama o momencie bezwładności przęsła J _x , wysokość podpór 6 m - obciążenie ciężary konstrukcji, podpory sztrumo zemocowane	temperatury;
$1 \times 0.05111 \times 0.01001 \times 521 \times 0.00000 \times 521 \times 0.000000 \times 521 \times 0.00000000 \times 521 \times 0.0000000000000000000000000000000000$	em własnym
Rama o momencie bezwładności przesła J_x , wysokość podpór 6 m - obciażenie parciem gr	runtu według
$\frac{30}{[10]} K_p = 3,5; \text{ podpory sztywno-zamocowane}$. 11
31 Rama o momencie bezwładności przęsła J_x , wysokość podpor 6 m - obciążenie parciem gr [10] $K_p = 9.5$; podpory sztywno-zamocowane	runtu według
32 Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gr [10] $Kp = 11.9$; podpory sztywno-zamocowane	untu według
33 Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gr [118], podpory sztywno-zamocowane	runtu według
Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gr [22], podpory sztywno-zamocowane	runtu według
35 Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie zmianą podpory sztywno-zamocowane	temperatury;
Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężar	em własnym
Konstrukcji; podpory sztywno-zamocowane37Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gr	runtu według
[10] $K_p = 3,5$; podpory sztywno-zamocowane Rama o momencie bezwładności przesła L wysokość podpór 7 m. obciażenie parajem r	runtu wedhua
$\frac{38}{[10]} K_p = 9,5; \text{ podpory sztywno-zamocowane}$	untu wediug
39 Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gr [10] $K_p = 11,9$; podpory sztywno-zamocowane	untu wedhie
Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gr	untu weatug
[118], podpory sztywno-zamocowane	runtu według
Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gr	runtu według
[22], podpory sztywno-zamocowane	runtu według runtu według

43	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji: podpory sztuwno zamocowana
	Rama o momencie bezwładności przesła J _x , wysokość podpór 8 m - obciażenie parciem gruntu według
44	[10] $K_p = 3.5$; podpory sztywno-zamocowane
45	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według
43	[10] $K_p = 9,5$; podpory sztywno-zamocowane
46	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory sztywno-zamocowane
47	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według
	[118], podpory sztywno-zamocowane Rama o momencie bezwładności przesła L. wysokość podpór 8 m. obciażenie parciem gruptu według
48	[22], podpory sztywno-zamocowane
49	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie zmianą temperatury;
	podpory sztywno-zamocowane
50	kama o momencie bezwładności przęsła J_x , wysokość podpor 2 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
51	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
51	[10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
52	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne
52	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
55	[10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
54	Rama o momencie bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie parciem gruntu według
_	[118], podpory przegubowo-nieprzesuwne
55	Rama o momencie bezwładności przęsła J_x , wysokość podpor 2 m - obciążenie parciem gruniu według [22] podpory przegubowo-nieprzesuwne
	Rama o momencie bezwładności przesła J_x , wysokość podpór 2 m - obciażenie zmiana temperatury;
56	podpory przegubowo-nieprzesuwne
57	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji: podpory przegubowo-nieprzesuwne
	Rama o momencie bezwładności przesła <i>L</i> . wysokość podpór 3 m - obciażenie parciem gruntu według
58	[10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
50	Rama o momencie bezwładności przesła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według
59	[10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
60	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według [10] $K_p = 11.9$: podpory przegubowo-nieprzesuwne
(1	Rama o momencie bezwładności przesła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według
61	[118], podpory przegubowo-nieprzesuwne
62	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie parciem gruntu według
02	[22], podpory przegubowo-nieprzesuwne
63	Rama o momencie bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
64	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym
64	konstrukcji; podpory przegubowo-nieprzesuwne
65	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według
	[10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
66	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [10] $K_n = 9.5$; podpory przegubowo-nieprzesuwne
	Rama o momencie bezwładności przesła J_x , wysokość podpór 4 m - obciażenie parciem gruntu według
67	[10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
68	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie parciem gruntu według [118] podpory przegubowo-pieprzesuwne
	Rama o momencie bezwładności przesła $J_{\rm v}$, wysokość podpór 4 m - obciażenie parciem gruntu według
69	[22], podpory przegubowo-nieprzesuwne
70	Rama o momencie bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie zmianą temperatury;
/0	podpory przegubowo-nieprzesuwne
71	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji: podpory przegubowo-nieprzesuwne
70	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według
72	[10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne

73	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne
74	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
75	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [118] podpory przegubowo-nieprzesuwne
76	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
77	Rama o momencie bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
78	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
79	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_p = 3.5$; podpory przegubowo-nieprzesuwne
80	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne
81	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [10] $Kp = 11.9$: podpory przegubowo-nieprzesuwne
82	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
83	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
84	Rama o momencie bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
85	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
86	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
87	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 9.5$; podpory przegubowo-nieprzesuwne
88	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [10] $K_p = 11.9$; podpory przegubowo-nieprzesuwne
89	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
90	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
91	Rama o momencie bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
92	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo-nieprzesuwne
93	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 3,5$; podpory przegubowo-nieprzesuwne
94	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 9,5$; podpory przegubowo-nieprzesuwne
95	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [10] $K_p = 11,9$; podpory przegubowo-nieprzesuwne
96	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [118], podpory przegubowo-nieprzesuwne
97	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie parciem gruntu według [22], podpory przegubowo-nieprzesuwne
98	Rama o momencie bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie zmianą temperatury; podpory przegubowo-nieprzesuwne
99	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 2 m - obciażenie ciężarem własnym konstrukcii: podpory sztywno-zamocowane
100	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 3 m - obciażenie cieżarem własnym konstrukcii: podpory sztywno-zamocowane
101	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane

102	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
103	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
104	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
105	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory sztywno-zamocowane
106	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 2 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
107	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 3 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
108	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 4 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
109	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 5 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
110	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 6 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
111	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 7 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne
112	Rama o $h_p = 150$ cm, lecz ciężar jak przy wysokości przęsła 50 cm; moment bezwładności przęsła J_x , wysokość podpór 8 m - obciążenie ciężarem własnym konstrukcji; podpory przegubowo- nieprzesuwne

14.12.3 Wyniki obliczeń obciążenia parciem gruntu dla podpór, materiały bazowe i szczegółowe wyniki dla obiektów Zintegrowanych, jednoprzęsłowych (ramowych) – konstrukcje betonowe płytowe/belkowe

Rys. 14.106 Udział wartości momentu zginającego w punkcie "0a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 10 m (Gs = 0,6 m, $h_p = 0,6$ m) i podporach sztywno-zamocowanych

Rys. 14.107 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 10 m (Gs = 0.6 m, $h_p = 0.6$ m) i podporach sztywno-zamocowanych

Rys. 14.108 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 10 m (Gs = 0,6 m, $h_p = 0,6$ m) i podporach sztywno-zamocowanych

Rys. 14.109 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 10 m (Gs = 0.6 m, $h_p = 0.6$ m) i podporach przegubowo-nieprzesuwnych

Rys. 14.110 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 10 m (Gs = 0.6 m, $h_p = 0.6$ m) i podporach przegubowo-nieprzesuwnych

Rys. 14.111 Udział wartości momentu zginającego w punkcie "0a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 20 m (Gs = 1,0 m, $h_p = 1,0$ m) i podporach sztywno-zamocowanych

Rys. 14.112 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 20 m (Gs = 1,0 m, $h_p = 1,0$ m) i podporach sztywno-zamocowanych

Rys. 14.113 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 20 m (Gs = 0,6 m, $h_p = 1,0$ m) i podporach sztywno-zamocowanych

Rys. 14.114 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 20 m (Gs = 0.6 m, $h_p = 1.0$ m) i podporach przegubowo-nieprzesuwnych

Rys. 14.115 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 20 m (Gs = 0.6 m, $h_p = 1.0$ m) i podporach przegubowo-nieprzesuwnych

Rys. 14.116 Udział wartości momentu zginającego w punkcie "0a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o *L* = 30 m (*Gs* = 0,6 m, *h*_p = 1,25 m) i podporach sztywno-zamocowanych

Rys. 14.117 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 30 m (Gs = 0.6 m, $h_p = 1.25$ m) i podporach sztywno-zamocowanych

Rys. 14.118 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 30 m (Gs = 0,6 m, $h_p = 1,25$ m) i podporach sztywno-zamocowanych

Rys. 14.119 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 30 m (Gs = 0,6 m, $h_p = 1,25$ m) i podporach przegubowo-nieprzesuwnych

Rys. 14.120 Udział wartości momentu w punkcie "0,5L" zginającego od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 30 m (Gs = 0,6 m, $h_p = 1,25$ m) i podporach przegubowo-nieprzesuwnych

14.12.4 Wyniki obliczeń obciążenia parciem gruntu dla podpór, materiały bazowe i szczegółowe wyniki dla obiektów Zintegrowanych –

Rys. 14.121 Udział wartości momentu zginającego w punkcie "0a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 20 m (Gs = 0.6 m, $h_p = 1.0$ m) i podporach sztywno-zamocowanych przy ciężarze przęsła jak dla h = 50 cm.

Rys. 14.122 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 20 m (Gs = 0.6 m, $h_p = 1.0$ m) i podporach sztywno-zamocowanych przy ciężarze przęsła jak dla h = 50 cm.

Rys. 14.123 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 20 m (Gs = 0.6 m, $h_p = 1.0$ m) i podporach sztywno-zamocowanych przy ciężarze przęsła jak dla h = 50 cm.

Rys. 14.124 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 20 m (Gs = 0.6 m, $h_p = 1.0$ m) i podporach przegubowo-nieprzesuwnych przy ciężarze przęsła jak dla h = 50 cm.

Rys. 14.125 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 20 m (Gs = 0.6 m, $h_p = 1.0$ m) i podporach przegubowo-nieprzesuwnych przy ciężarze przęsła jak dla h = 50 cm

Rys. 14.126 Udział wartości momentu zginającego w punkcie "0a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 30 m (Gs = 0.6 m, $h_p = 1.0$ m) i podporach sztywno-zamocowanych przy ciężarze przęsła jak dla h = 50 cm.

Rys. 14.127 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 30 m (Gs = 0.6 m, $h_p = 1.0$ m) i podporach sztywno-zamocowanych przy ciężarze przęsła jak dla h = 50 cm.

Rys. 14.128 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 30 m (Gs = 0.6 m, $h_p = 1.0$ m) i podporach sztywno-zamocowanych przy ciężarze przęsła jak dla h = 50 cm.

Rys. 14.129 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 30 m (Gs = 0.6 m, $h_p = 1.0$ m) i podporach przegubowo-nieprzesuwnych przy ciężarze przęsła jak dla h = 50 cm.

Rys. 14.130 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu w odniesieniu do wartości momentu zginającego od obciążenia ciężarem własnym konstrukcji dla Zintegrowanego obiektu ramowego o L = 30 m (Gs = 0,6 m, $h_p = 1,0$ m) i podporach przegubowo-nieprzesuwnych przy ciężarze przęsła jak dla h = 50 cm.

<u>Spis Rysunków</u>

Rys.	2.1 Schemat Klasycznego obiektu inżynierskiego
Rys.	2.2 Klasyczny obiekt inżynierski (wiadukt WD94 autostrada A2
	odcinek Komorniki – Nowy Tomyśl)17
Rys.	2.3 Przykłady kształtowania podpór skrajnych Zintegrowanych i Pół-zintegrowanych
	OBIEKTÓW INŻYNIERSKICH [10]17
Rys.	2.4 Most Zintegrowany z podporami skrajnymi osadzonymi w nasypie i przęsłami opartymi
	NA PODATNYCH, SŁUPOWYCH PODPORACH
Rys.	2.5 Most Zintegrowany z podporami skrajnymi osadzonymi w nasypie i podatnymi słupami
	PODPÓR POŚREDNICH (OGUNQUIT – MAINE)
Rys.	2.6 Schemat mostu Pół-zintegrowanego z podporami skrajnymi osadzonymi w nasypie
	I PRZĘSŁAMI OPARTYMI NA ŁOŻYSKACH UMIEJSCOWIONYCH NA MASYWNYCH PODPORACH POŚREDNICH 18
Rys.	2.7 Schemat wiaduktu Pół-zintegrowanego z przęsłami opartymi na łożyskach
	UMIEJSCOWIONYCH NA PODPORACH I PRZEWIESZKAMI WPROWADZONYMI W NASYP
Rys.	2.8 Wiadukt Pół-zintegrowany z przęsłami opartymi na łożyskach umiejscowionych na
	podporach i Przewieszkami wprowadzonymi w nasyp (autostrada A2
	Odcinek Komorniki – Nowy Tomyśl)19
Rys.	2.9 Schemat obiektu Pół-zintegrowanego z Przewieszkami wprowadzonymi w nasyp, sztywnym
	POŁĄCZENIEM PRZĘSEŁ Z MASYWNYMI PODPORAMI POŚREDNIMI, PODPORAMI SKRAJNYMI WYKONANYMI W
	POSTACI "WIOTKIEJ" ŚCIANY I WYKSZTAŁTOWANYM POŁĄCZENIEM PRZEGUBOWYM NA POŁĄCZENIU PRZĘSŁA
	I PODPÓR [13]
Rys.	2.10. NAJDŁUŻSZY OBIEKT PÓŁ-ZINTEGROWANY NA ŚWIECIE – TENNESSEE [14]
Rys.	2.11 ZAKRESY TEMPERATUR PRZYJMOWANYCH DO OBLICZEŃ KONSTRUKCJI INŻYNIERSKICH21
Rys.	3.1 Zasięg strefy osiadania zasypki w zależności od wartości $I_{\rm S}$ oraz kąta obrotu ściany κ [36]
Rys.	3.2 OSIADANIE ZASYPKI W ZALEŻNOŚCI OD CYKLÓW PRZEMIESZCZEŃ KONSTRUKCJI [54]
Rys.	3.3 WIDOK SPĘKAŃ NAWIERZCHNI PRZY PRZEMIESZCZENIU PŁYTY PRZEJŚCIOWEJ RÓWNYM 35 MM [38] . 26
Rys.	3.4 WIDOK SPĘKAŃ NAWIERZCHNI PRZY PRZEMIESZCZENIU PŁYTY PRZEJŚCIOWEJ RÓWNYM 60 MM [38] . 27
Rys.	3.5 PRZEMIESZCZENIA PIONOWE W _{PAV I} POZIOME U _{PAV EDG} NAWIERZCHNI W FAZIE "WYCIĄGANIA Z GRUNTU"
_	PŁYTY PRZEJŚCIOWEJ O NACHYLENIU 20% [38]
Rys.	3.6 PRZEMIESZCZENIA PIONOWE WPAVI POZIOME UPAV.EDG NAWIERZCHNI W FAZIE "WYCIĄGANIA Z GRUNTU"
_	PŁYTY PRZEJŚCIOWEJ O NACHYLENIU 10% [38]
Rys.	3.7 PIONOWE W _{PAV I} POZIOME U _{PAV.EDG} PRZEMIESZCZENIA NAWIERZCHNI W FAZIE "PRZEMIESZCZENIE
_	W STRONĘ GRUNTU" PŁYTY PRZEJŚCIOWEJ O NACHYLENIU 20% [38]
Rys.	3.8 PIONOWE $W_{PAV I}$ POZIOME $U_{PAV,EDG}$ PRZEMIESZCZENIA NAWIERZCHNI W FAZIE "PRZEMIESZCZENIE
_	W STRONĘ GRUNTU" PŁYTY PRZEJŚCIOWEJ O NACHYLENIU 10% [38]
RYS.	4.1 PRZYKŁAD OKRESLANIA STANOW PARCIA GRUNTU
RYS.	4.2 TENSOR NAPRĘZENIA 1º IJEGO SKŁADOWE AKSJATOR 1 ^A I DEWIATOR 1 ^D
RYS.	4.3 HIPOTEZA COULOMBA-IMOHRA - PREZENTACJA DLA OPORU GRUNTU NA SCINANIE
RYS.	4.4 SCHEMAT DZIAŁANIA SIŁ PRZY WYZNACZANIU OBCIĄZENIA PARCIEM GRUNTU WG TEORII COULOMBA . 36
Rys.	4.5 WYSOKOSC ZACZEPIENIA WYPADKOWEJ SIŁY PARCIA LUB ODPORU W ZALEZNOSCI OD POŁOZENIA OSI
_	OBROTU ŚCIANY/PODPORY [43]
Kys.	4.6 SCHEMATY OBCIĄŻENIA PARCIEM GRUNTU I POŁOŻENIA JEGO WYPADKOWEJ W ZALEŻNOŚCI OD PUNKTU
	OBROTU/PRZESUNIĘCIA SCIANY NIEODKSZTAŁCALNEJ [51]
KYS.	4.7 WYKRES "KOPERTOWEGO" OBCIĄZENIA PARCIEM GRUNTU NA PODPORY ZINTEGROWANYCH OBIEKTÓW
D . 1	KAMOWYCH [1U]
KYS.	4.8 WYKRES "KOPERTOWEGO" OBCIĄZENIA PARCIEM GRUNTU DLA UTWIERDZONYCH W GRUNCIE PODPÓR
	OBIEKTU ZIN FEGROWANEGO [10]

Rys.	4.9 Prezentacja położenia wypadkowych obciążenia parciem gruntu wg [22]
Rys.	4.10 Przemieszczenie konstrukcji konieczne do wywołania biernego parcia gruntu według [59]
	(LINIA B) ORAZ WYTYCZNYCH [60] (LINIA A)
Rys.	5.1 Przykład uszkodzenia obiektów inżynierskich na odcinku autostrady A2 Września – Konin
	(SPĘKANIA POPRZECZNE NAWIERZCHNI) [83]
Rys.	5.2 WIADUKT DROGOWY PÓŁ-ZINTEGROWANY WD101 - WIDOK Z BOKU
Rys.	5.3 WIADUKT DROGOWY PÓŁ-ZINTEGROWANY WD101 – WIDOK PRZEKROJU POPRZECZNEGO
Rys.	5.4 Spękanie w nawierzchni na dojazdach do wiaduktu drogowego Pół-zintegrowanego
	WD101
Rys.	5.5 Przykłady uszkodzenia wiaduktu Pół-zintegrowanego WD88
Rys.	5.6 Przykłady szczelin powstałych na połaczeniu konstrukcji obiektu Zintegrowanego
	1 NAWIERZCHNI DROGI [95]
Rys.	5.7 ZARYSOWANIA BARIER NAD PODPORĄ SKRAJNĄ ZINTEGROWANYCH OBIEKTÓW INŻYNIERSKICH [95] 56
Rys.	5.8 Pekniecia naroży i kraweżników w okolicach końców Zintegrowanych i Pół-
	ZINTEGROWANYCH OBIEKTÓW INŻYNIERSKICH [95]
Rys.	5.9 Zarysowania skrzydełek i belek podłożyskowych Zintegrowanych i Pół-zintegrowanych
	OBIEKTÓW INŻYNIERSKICH [95]
Rys.	5.10 Zarysowania pali żelbetowych stanowiacych oparcie podpór skrainych Zintegrowanego
	OBIEKTU INŻYNIERSKIEGO [97]
Rys.	6.1 Szczegół połaczenia obiektu Pół-zintegrowanego z nawierzchnia wykonana na podbudowie
	sztywnei [114]
Rvs	6.2 Szczegół połaczenia obiektu Pół-zintegrowanego z nawierzchnia wykonana na podbudowie
Rvs	6 3 S7C7EGÓŁ PŁYTY PRZEIŚCIOWEL - NAWJERZCHNIA BETONOWA [115]
Rvs	6.4 Szczegół połaczenia Pół-zintegrowanego objektu inżynierskiego z dojazdem [116] 62
Rvs	8.1 ZMNIE ISZENIE A' DLA PROFILI STALOWYCH PO 100 LATACH OD ROZPOCZECIA PROCESI KOROZII 68
Rvs	8.2 LOŚĆ W_{ν} 7.1 kg profili stalowych po 100 latach od rozpoczecia procesu korozji 68.
Rvs	8.3 μ OŚĆ KG STALI NA 1 M^2 OBWODU DLA PROFILI STALOWYCH PO 100 LATACH OD ROZPOCZECIA PROCESU
Rvc	
Rvs	9.2 SCHEMAT DODDORY DRZECI BOWO-NIEDRZESI WNIELZ DRZEWADKA Z ELASTOMEDI 72
Dvc	9.2 Schemat Zintechowanych konstrukcii ramonavch o stałych $l = 10$ m $\mu = 0.6$ m $(AT = 25^{\circ}C)$
N13.	5.5 SCHEMAL ZINTEGROWANTCH RONSTRUCCH RAINOWTCH USTACTCH $L = 10$ MJ, $H = 0.0$ MJ, $(\Delta T = 25 \text{ C})$
	T_{z} zimiennich <i>H</i> , GS, J_X , J_X S ORAZ PODPORACH PRZEGOBOWO-NIEPRZESOWNICH LOB SZTYWNO-
Dvc	2 AMOLOWANYCH
RYS.	9.4 SCHEMAT ZINTEGROWANYCH KONSTRUKCJI RAMOWYCH U STAŁYCH $L = 20 \text{ M}, H = 1,0 \text{ M}, (21 = 25^{\circ}\text{C})$
	I ZMIENNYCH H, GS, J_X , J_X 5 ORAZ PODPORACH PRZEGUBOWO-NIEPRZESUWNYCH LUB SZTYWNO-
_	ZAMOCOWANYCH
Rys.	9.5 SCHEMAT ZINTEGROWANYCH KONSTRUKCJI RAMOWYCH O STAŁYCH $L = 30 \text{ m}, H = 1,25 \text{ m}, (\Delta T = 25^{\circ}\text{C})$
	I ZMIENNYCH H, Gs, J_x , J_x 5 oraz podporach przegubowo-nieprzesuwnych lub sztywno-
	ZAMOCOWANYCH
Rys.	9.6 Schemat Zintegrowanych konstrukcji ramowych o stałych $L = 40$ m, $H = 1,5$ m, ($\Delta T = 25^{\circ}$ C)
	I ZMIENNYCH <i>H</i> , <i>Gs</i> , J_{x} , J_{x} ⁵ oraz podporach przegubowo-nieprzesuwnych lub sztywno-
	ZAMOCOWANYCH
Rys.	9.7 Miejsca analizy sił wewnętrznych
Rys.	9.8 Procentowy stosunek wartości momentów zginających w punkcie "Oa" dla obiektów
	ZINTEGROWANYCH (JEDNOPRZĘSŁOWYCH) O ROZPIĘTOŚCI PRZĘSŁA 10-40 METRÓW OD OBCIĄŻENIA
	TEMPERATURĄ ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji przy $H = 8$ m80

Rys.	9.9 Schemat przyjmowania podpór przęseł/podpór stycznych, podpór przęseł/podpór
	SĄSIEDNICH, PODPÓR PRZĘSEŁ/PODPÓR SKRAJNYCH, UMOWNEGO PUNKTU ROZSZERZANIA SIĘ KONSTRUKCJI
	i punktów "0a"; "a"; "0,5L"
Rys.	9.10 Procentowy stosunek wartości momentów zginających w punkcie "Oa" dla obiektów
	ZINTEGROWANYCH (WIELOPRZĘSŁOWYCH) O ROZPIĘTOŚCI PRZĘSŁA 10-70 METRÓW OD OBCIĄŻENIA
	TEMPERATURĄ ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji
Rys.	9.11 Schemat Pół-zintegrowanego wiaduktu z przęsłami opartymi na łożyskach
	UMIEJSCOWIONYCH NA PODPORACH POŚREDNICH I SZTYWNYM POŁĄCZENIU MASYWNYCH PODPÓR
	SKRAJNYCH Z PRZĘSŁEM (SCHEMAT NIEZALECANY)
Rys.	9.12 Schemat mostu Zintegrowanego z podporami skrajnymi masywnymi i przęsłami opartymi
_	NA PODPORACH POŚREDNICH NA ŁOŻYSKACH UMOŻLIWIAJĄCYMI PRZESUW (SCHEMAT NIEZALECANY)86
Rys.	10.1 Schemat podpór w przypadku zastosowania Profilu 2 (z lewej) i Profilu 1 (z prawej) 90
Rys.	10.2 Schemat podpór w przypadku węzła sztywnego (z lewej) jak i z możliwością obrotu
_	(Z PRAWEJ) W WYNIKU UKSZTAŁTOWANIA PRZEGUBU
RYS.	10.3 SCHEMAT ZINTEGROWANYCH KONSTRUKCJI O STAŁYCH $L = 10$ m, $H = 0.6$ m, $H = 2.0$ m,
_	$G_{S} = 0,6 \text{ M} (\Delta T = 25^{\circ}\text{C}) \mid \text{ZMIENNYCH} J_{x}, J_{x}5 \text{ ORAZ} K_{x_{1}} \dots 94$
RYS.	10.4 SCHEMAT ZINTEGROWANYCH KONSTRUKCJI O STAŁYCH $L = 10$ m, $H = 0.6$ m, $H = 2.0$ m, $Gs = 0.6$ m
_	$(\Delta T = 25^{\circ}\text{C})$, przegubie w podporach i zmiennych J_x , J_x 5 oraz K_{x_1}
RYS.	10.5 SCHEMAT ZINTEGROWANYCH KONSTRUKCJI O STAŁYCH $L = 20$ M, $H = 1,0$ M, $H = 2,0$ M,
_	$G_{S} = 0,6 \text{ M}, (\Delta T = 25^{\circ}\text{C}) \text{ I ZMIENNYCH } J_{x}, J_{x}5 \text{ ORAZ } K_{x1} $
RYS.	10.6 SCHEMAT ZINTEGROWANYCH KONSTRUKCJI O STAŁYCH $L = 20$ m, $H = 1,0$ m, $H = 2,0$ m,
_	$G_{S} = 0,6$ M, ($\Delta T = 25^{\circ}$ C), PRZEGUBIE W PODPORACH I ZMIENNYCH $J_{x}, J_{x}5$ ORAZ K_{x1}
Rys.	10.7 Schemat Zintegrowanych konstrukcji o stałych $L = 30$ m, $H = 1,25$ m, $H = 2,0$ m,
_	$G_{S} = 0,6 \text{ M}, (\Delta T = 25^{\circ}\text{C}) \mid \text{ZMIENNYCH} J_{x}, J_{x}5 \text{ ORAZ } K_{x1} \dots 95$
Rys.	10.8 SCHEMAT ZINTEGROWANYCH KONSTRUKCJI O STAŁYCH $L = 30$ m, $H = 1,25$ m, $H = 2,0$ m,
_	Gs = 0,6 M, (ΔT = 25°C), PRZEGUBIE W PODPORACH I ZMIENNYCH J_x , J_x 5 ORAZ K_{x1}
Rys.	10.9 Schemat Zintegrowanych konstrukcji o stałych $L = 40$ m, $H = 1,5$ m, $H = 2,0$ m,
	$G_{S} = 0,6 \text{ m}, (\Delta T = 25^{\circ}\text{C}) \text{ ZMIENNYCH } J_{x}, J_{x}5 \text{ oraz } K_{x_{1}} $
Rys.	10.10 Schemat Zintegrowanych konstrukcji o stałych $L = 40$ m, $H = 1,5$ m, $H = 2,0$ m,
	Gs = 0,6 M, (ΔT = 25°C), PRZEGUBIE W PODPORACH I ZMIENNYCH J_x , J_x 5 ORAZ K_{x1}
Rys.	10.11 MIEJSCA ANALIZY SIŁ WEWNĘTRZNYCH DLA OBIEKTÓW ZINTEGROWANYCH O PODPORACH OPARTYCH
	NA PROFILACH STALOWYCH W PRZYPADKU WĘZŁA SZTYWNEGO (Z LEWEJ) JAK I Z MOŻLIWOŚCIĄ OBROTU
_	(Z PRAWEJ) W WYNIKU UKSZTAŁTOWANIA PRZEGUBU
Rys.	11.1 Schemat Zintegrowanych konstrukcji ramowych o stałych $L = 10$ m, $H = 0.6$ m, J_x
	I ZMIENNYCH CIĘZARZE PRZĘSŁA, H, GS, PODPORACH PRZEGUBOWO-NIEPRZESUWNYCH LUB SZTYWNO-
-	ZAMOCOWANYCH I O PODDANYCH OBCIĄZENIU PARCIEM GRUNTU WG [22], [118], [10]
RYS.	11.2 SCHEMAT ZINTEGROWANYCH KONSTRUKCJI RAMOWYCH O STAŁYCH $L = 20$ m, $H = 1,0$ m, J_X
	ZMIENNYCH CIĘZARZE PRZĘSŁA, H, GS, PODPORACH PRZEGUBOWO-NIEPRZESUWNYCH LUB SZTYWNO-
Dura	ZAMOCOWANYCH I PODDANYCH OBCIĄŻENIU PARCIEM GRUNTU WG [22], [118], [10]114
RYS.	11.3 SCHEMAT ZINTEGROWANYCH KONSTRUKCJI RAMOWYCH O STAŁYCH $L = 30$ M, $H = 1,25$ M, J_X
	ZMIENNYM CIĘZARZE PRZĘSŁA, H, GS, PODPORACH PRZEGUBOWO-NIEPRZESUWNYCH LUB SZTYWNO-
Dvc	2AMOCOWANYCH I PODDANYCH OBCIĄŻENIU PARCIEM GRUNIU WG $[22], [118], [10], \dots, 114$
RYS.	11.4 SCHEMATZINTEGROWANYCH KONSTRUKCJI RAMOWYCH USTAŁYCH $L = 40$ M, $H = 1,5$ M, J_X , ZMIENNYM
	LICODDANIYCH ORCIAŻENIU DADCIENA CDUNITU WC [22] [10] [10]
Rvc	1 FODDAINTCH OBCIĄŻENIU PAKUIEWI GRUNTU WG [22], [110], [10],
RVC	11.5 ΙΨΠΕΙΣΤΑ ΑΙΝΑΓΙΖ ΣΙΈ ΨΕΨΝΊΑΕΙ ΤΖΙΝΤΟΠ
1113	W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIAŻENIA CIEŻAREM WŁASNYM KONSTRUKCI

	DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O $L = 40$ m ($Gs = 0,6$ m, $H_P = 1,5$ m) i podporach sztywno- ZAMOCOWANYCH
Rys.	11.7 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu
	W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
	DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O $L = 40$ m ($Gs = 0,6$ m, $H_P = 1,5$ m) i podporach sztywno-
	ZAMOCOWANYCH
Rys.	11.8 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu
	W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
	DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O $L = 40$ m ($Gs = 0,6$ m, $H_P = 1,5$ m) i podporach sztywno-
Dura	ZAMOCOWANYCH
RYS.	11.9 UDZIAŁ WARTOŚCI MOMENTU ZGINAJĄCEGO W PUNKCIE "A OD OBCIĄŻENIA PARCIEM GRUNTU
	W ODNIESIENIU DU WARTOSCI MOMENTU ZGINAJĄCEGO OD UBCIĄZENIA CIĘZAREMI WŁASNYM KONSTRUKCJI DLA ZINIEGROWANEGO ODJEKTU RAMOWEGO O $L = 40 \text{ M}$ (GS = 0.6 M, $H = 1.5 \text{ M}$) L DODDORACH
	PRZEGUROWO-NIEPRZESUWNYCH 126
Rys.	11.10 Udział wartości momentu zginającego w punkcie "0.51" od obciażenia parciem gruntu
	W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIAŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
	DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O $L = 40$ m ($Gs = 0.6$ m, $H_P = 1.5$ m) PODPORACH
	PRZEGUBOWO-NIEPRZESUWNYCH
Rys.	11.11 Udział wartości momentu zginającego w punkcie " 0 a" od obciążenia parciem gruntu
	W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
	DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O $L = 40$ m ($Gs = 0,6$ m, $H_P = 1,5$ m) i podporach sztywno-
	ZAMOCOWANYCH PRZY CIĘŻARZE PRZĘSŁA JAK DLA $H = 50$ cm
Rys.	11.12 Udział wartości momentu zginającego w punkcie "A" od obciążenia parciem gruntu
	W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
	DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O $L = 40$ M ($Gs = 0,6$ M, $H_P = 1,5$ M) I PODPORACH SZTYWNO-
Dvc	ZAMOCOWANYCH PRZY CIĘZARZE PRZĘSŁA JAK DLA $H = 50$ cm
KY5.	11.13 UDZIAŁ WARTOŚCI MOMENTU ZGINAJĄCEGO W PUNKCIE "U, SL. OD OBCIĄŻENIA PARCIEM GRUNTU
	W ODNIESIENIO DO WARTOSCI MOMENTO ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJ DIA ZINTEGROWANEGO OBJEKTU RAMOWEGO O $I = 40 \text{ M} (Gs = 0.6 \text{ M} H_2 = 1.5 \text{ M})$ I DODDORACH SZTVWNO-
	ZAMOCOWANYCH PRZY CIEŻARZE PRZESŁA JAK DI A $H = 50$ cm 135
Rys.	11.14 Udział wartości momentu zginającego w punkcie "A" od obciażenia parciem gruntu
	W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
	DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O $L = 40$ m ($Gs = 0,6$ m, $H_P = 1,5$ m) I PODPORACH
	PRZEGUBOWO-NIEPRZESUWNYCH PRZY CIĘŻARZE PRZĘSŁA JAK DLA $H = 50$ cm
Rys.	11.15. Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu
	W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
	dla Zintegrowanego obiektu ramowego o $L = 40$ m ($Gs = 0,6$ m, $H_P = 1,5$ m) i podporach
	PRZEGUBOWO-NIEPRZESUWNYCH PRZY CIĘŻARZE PRZĘSŁA JAK DLA $H = 50$ CM
Rys.	11.16 PORÓWNANIE WARTOŚCI OBCIĄŻENIA PARCIEM GRUNTU W PRZYPADKU ZWIĘKSZENIA SZTYWNOŚCI
	PODPOR O ~15,6 RAZA DLA PRZĘSŁA L = 40 M ZINTEGROWANEGO OBIEKTU RAMOWEGO I ZMIANY PODPOR
Dvc	2 PRZEGUBOWO-NIEPRZESUWNYCH NA SZTYWNO-ZAMOCOWANE
Γ Ύ5.	11.17 POROWNANIE WARIOSCI OBCIĄŻENIA PARCIEM GRUNIU W PRZYPADKU ZWIĘKSZENIA SZTYWNOSCI PODDÓR O ~15.6 PAZA DLA DRZESKA / - 30 M ZINIEGO OWANIEGO ODJEKTU PAMOWEGO I ZMIANY DODDÓR
	7 PR7EGUBOWO-NIFPR7ESUWNYCH NA S7TYWNO-74MOCOWANE COURT (NAMIOWE COURT (NAMIOWE COURT))
Rys.	11.18 PORÓWNANIE WARTOŚCI OBCIAŻENIA PARCIEM GRUNTU W PRZYPADKU ZWIFKSZENIA SZTYWNOŚCI
	PODPÓR O ~15,6 RAZA DLA PRZESŁA $L = 20$ M ZINTEGROWANEGO OBIEKTU RAMOWEGO I ZMIANY PODPÓR
	Z PRZEGUBOWO-NIEPRZESUWNYCH NA SZTYWNO-ZAMOCOWANE

Rys. 11.19 Porównanie wartości obciążenia parciem gruntu w przypadku zwiększenia sztywności
podpór o ~15,6 raza dla przęsła L = 10 m Zintegrowanego obiektu ramowego i zmiany podpór
Z PRZEGUBOWO-NIEPRZESUWNYCH NA SZTYWNO-ZAMOCOWANE141
Rys. 12.1 Schemat Przewieszki
Rys. 12.2 Propozycja rozwiązania połączenia obiektu Zintegrowanego/Pół-zintegrowanego
z NAWIERZCHNIĄ DROGOWĄ (DOJAZDEM)148
Rys. 14.1 Schemat statyczny wiaduktów Zintegrowanych na odcinku Września – Konin Autostrady 42
Rys 14.2 Przykładowe przekroje poprzeczne wiadujktów drogowych (Zintegrowanych
$K_{1} = K_{2} = K_{2} = K_{2} = K_{2} = K_{2} = K_{1} = K_{2} = K_{1} = K_{1} = K_{2} = K_{2$
Rys 14.3 Przykładowe uszkodzenia Zintegrowaniego wiaduktu drogowego na odcinku
WRZEŚNIA – KONIN ALITOSTRADY $\Delta 2$ (ZAWILGOCENIA I RYSY W MIEJSCH POŁACZENIA SŁUDÓW Z DŁYTA
$R_{VS} = 14.4$ Przykładowe uszkodzenia Zintegrowaniego wiaduktu drogowego na odcinku
$W_{\text{RZEŚNIA}} = K_{\text{ONINI ALITOSTRADY}} \Delta 2 (k_{\text{OROZIA GZYMSÓW}}) [83] $ 157
Rys 14.5 Przykładowe uszkodzenia Zintegrowanego mostu autostradowego na odcinku
$W_{\text{RZEŚNIA}} = K_{\text{CNINIA}} + K_{CNINIA$
$R_{VS} = 11.6$ Przykładowy wykaz botrzer do planiu rieżacego litrzymania Zintegrowaniego wiaduktu
DROGOWEGO WD51 NA ODCINKU WRZEŚNIA – KONIN AUTOSTRADY $\Delta 2$ 7 roku 2012 (ERAGMENTY) 158
Rys 14.7 Przykładowy wykaz potrzeb do planu bieżacego utrzymania dla Zintegrowanego mostu
ALITOSTRADOWEGO MASZ NA ODCINKU WRZEŚNIA – KONIN ALITOSTRADY A2 Z ROKU 2012 (ERAGMENTY)
158
Rys. 14.8. Przykłady uszkodzeń wiaduktu Zintegrowanego WD41 na odcinku Września – Konin
AUTOSTRADY A2 W ROKU 2006
Rys. 14.9 Przykłady uszkodzeń Zintegrowanego wiaduktu drogowego WD46 na odcinku
Września – Konin Autostrady A2 w roku 2018
Rys. 14.10 Przykłady uszkodzeń Zintegrowanego wiaduktu drogowego WD64 na odcinku
Września – Konin Autostrady A2 w roku 2018159
Rys. 14.11 Przykłady uszkodzeń Zintegrowanego wiaduktu drogowego WD64 na odcinku Września
– Konin autostrady A2, od roku 2007 do roku 2018 po stronie południowej (zapadnięcie
STOŻKÓW, OBRUKOWANIA, SPĘKANIA W NAWIERZCHNI), KTÓRE DOPROWADZIŁY DO WYMYCIA ZASYPKI
I USZKODZENIA NAWIERZCHNI NA JEDNYM Z DOJAZDÓW
Rys. 14.12 Wykaz potrzeb do planu bieżącego utrzymania Klasycznego wiaduktu drogowego
WD77KL NA ODCINKU WRZEŚNIA – KONIN AUTOSTRADY A2 Z ROKU 2012 (FRAGMENTY)
Rys. 14.13 Przykłady uszkodzeń Klasycznego wiaduktu autostradowego WA39KL na odcinku
Września – Konin autostrady A2 z roku 2006 – konieczność wymiany nawierzchni w rejonie nad
PŁYTĄ PRZEJŚCIOWĄ, W TLE WIDOCZNE PRZECIEKI PRZEZ URZĄDZENIE DYLATACYJNE
Rys. 14.14 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD66KL na odcinku
Września – Konin Autostrady A2 roku 2006162
Rys. 14.15 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD66KL na odcinku
Września – Konin Autostrady A2 z roku 2014 - przecieki przez wymienioną dylatację 163
Rys. 14.16 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD66KL na odcinku Września
– Konin autostrady A2 z roku 2018 - widoczne osiadanie krawężników jak i przecieki przez
DYLATACJĘ
Rys. 14.17 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD77KL na odcinku Września
– Konin Autostrady A2 z roku 2006 - widoczne przecieki przez dylatację
Rys. 14.18 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD77KL na odcinku Września
– Konin autostrady A2 z roku 2018 – uszkodzenie nawierzchni na dojeździe
I ŁAWY PODŁOŻYSKOWEJ164

 MIADUKTU DROGOWEGO WD28 NA ODCINKU KOMORNIKI – NOWY TOMYSL AUTOSTRADY A2 2 ROKU 2012 (FRAGMENTY)	Rys.	14.19 Przykładowy wykaz potrzeb do planu bieżącego utrzymania Pół-zintegrowanego
(FRAGMENTY) 165 RYS. 14.20 WYKAZ POTRZEB DO PLANU BIEŻĄCEGO UTEZYMANIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2012 (FRAGMENTY) 165 RYS. 14.21 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD88 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2005. 165 RYS. 14.23 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 166 RYS. 14.23 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 166 RYS. 14.24 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 166 RYS. 14.25 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 168 RYS. 14.25 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA - KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.24 RDYL-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY). 170 RYS. 14.24 POŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY). 170 RYS. 14.31 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 171 RYS. 14.31 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWEGO WD101 NA ODCINK		WIADUKTU DROGOWEGO WD88 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2012
RYS. 14.20 WYKAZ POTRZEB DO PLANU BIEŻĄCEGO UTRZYMANIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2012 [FRAGMENTY] 165 RYS. 14.21 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD88 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2005. 166 RYS. 14.22 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 166 RYS. 14.23 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 166 RYS. 14.24 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2018. 168 RYS. 14.25 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.26 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.27 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.29 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (REZEKO) POPZECZNY). 170 RYS. 14.30 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (REZEKO) POPZECZNY). 170 R		(FRAGMENTY)
DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2012 (FRAGMENTY)	Rys.	14.20 Wykaz potrzeb do planu bieżącego utrzymania Pół-zintegrowanego wiaduktu
(FRAGMENTY) 165 Rys. 14.21 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD88 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2005. 165 Rys. 14.22 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD88 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2005. 166 Rvs. 14.23 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 166 Rvs. 14.24 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 166 Rvs. 14.25 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2015. 168 Rvs. 14.26 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 Rvs. 14.27 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 ROKU 2015. 168 Rvs. 14.29 POŁ-ZINTEGROWANY WADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKO) POPRZECZNY). 170 Rvs. 14.32 DÓŁ-ZINTEGROWANY WADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKO) POPRZECZNY). 170 Rvs. 14.31 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 171 Rvs. 14.33 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2.		drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2 z roku 2012
RYS. 14.21 PRZYKŁADY USZKODZEŃ PÓ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD88 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2005. 165 RYS. 14.22 PRZYKŁADY USZKODZEŃ PÓ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 166 RYS. 14.24 PRZYKŁADY USZKODZEŃ PÓ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 166 RYS. 14.24 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD99 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2018. 168 RYS. 14.25 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU WRZEŚNIA - KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.26 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU WRZEŚNIA - KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.27 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU WRZEŚNIA - KRZESINY AUTOSTRADY A2 ROKU 2015. 168 RYS. 14.28 PÓL-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (RZEKRÓJ PORZECZNY). 170 RYS. 14.30 PÓL-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 171 RYS. 14.30 PÓL-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 171		(FRAGMENTY)
KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2005.	Rys.	14.21 Przykłady uszkodzeń Pół-zintegrowanego wiaduktu drogowego WD88 na odcinku
RYS. 14.22 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WADUKTU DROGOWEGO WD88 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 166 RYS. 14.23 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2005. 166 RYS. 14.25 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 168 RYS. 14.25 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.27 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.28 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (RZEKYĆJ POPRZECZNY). 170 RYS. 14.30 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 171 RYS. 14.31 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 170 RYS. 14.31 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW OROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 171 RYS. 14.32 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW OROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY		Komorniki – Nowy Tomyśl autostrady A2 z roku 2005 165
KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019.	Rys.	14.22 Przykłady uszkodzeń Pół-zintegrowanego wiaduktu drogowego WD88 na odcinku
RYS. 14.23 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2005. 166 RYS. 14.24 PRZYKŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 166 RYS. 14.25 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2018. 168 RYS. 14.26 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.27 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.28 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKÓJ POPRZICZNY) 170 RYS. 14.30 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKÓJ POPRZICZNY) 170 RYS. 14.31 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 171 RYS. 14.32 VIZZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 171 RYS. 14.33 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2.		Komorniki – Nowy Tomyśl autostrady A2 z roku 2019166
KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2005. 166 RYS. 14.24 PRZYŁADY USZKODZEŃ PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU NOWT TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 166 RYS. 14.25 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2018. 168 RYS. 14.25 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU WRZEŚNIA – 168 RYS. 14.26 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – 168 RYS. 14.28 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.28 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (WIDOK Z BOKU). 169 RYS. 14.30 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY). 170 RYS. 14.31 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 171 RYS. 14.32 USZKODZENIA PÓŁ-ZINTEGROWANYGO WIADUKTÚ W DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 171 RYS. 14.32 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTÚ DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 171 RYS. 14.33 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTÚ DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 172 RYS. 14.34 USZKODZE	Rys.	14.23 Przykłady uszkodzeń Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku
Rys. 14.24 Przykłady uszkodzeń Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2 z roku 2019. 166 Rys. 14.25 Przykłady uszkodzeń klasycznego wiaduktu drogowego WD99 na odcinku Komorniki – Nowy Tomyśl autostrady A2 z roku 2018. 168 Rys. 14.26 Przykłady uszkodzeń klasycznego wiaduktu drogowego WD31 na odcinku Września – Krzesiny autostrady A2 z roku 2015. 168 Rys. 14.27 Przykłady uszkodzeń klasycznego wiaduktu drogowego WD33 na odcinku Września – Krzesiny autostrady A2 z roku 2015. 168 Rys. 14.27 Przykłady uszkodzeń klasycznego wiaduktu drogowego WD33 na odcinku Września – Krzesiny autostrady A2 z roku 2015. 168 Rys. 14.28 Pół-zintegrowany wiadukt drogowy WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2 (widok z roku). 169 Rys. 14.30 Pół-zintegrowany wiadukt drogowy WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2 (przekrój poprzeczny). 170 Rys. 14.32 Uszkodzenia Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2 (przekrój poprzeczny). 171 Rys. 14.32 Uszkodzenia Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2. 171 Rys. 14.33 Uszkodzenia Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2. 171 Rys. 14.33 Uszkodzenia Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2. 172 Rys. 14.34 Uszkodzenia Pół-zinte		Komorniki – Nowy Tomyśl autostrady A2 z roku 2005166
KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2019. 166 RYS. 14.25 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD99 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2018. 168 RYS. 14.26 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.27 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.29 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY). 169 RYS. 14.29 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY). 170 RYS. 14.30 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY). 170 RYS. 14.31 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 171 RYS. 14.31 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 171 RYS. 14.34 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 172 RYS. 14.34 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 172 RYS. 14.34 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. <	Rys.	14.24 Przykłady uszkodzeń Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku
RYS. 14.25 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD99 NA ODCINKU KOMORNIKI – NOWY TOMŚL AUTOSTRADY A2 Z ROKU 2018. 168 RYS. 14.26 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.27 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.28 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (WIDOK Z BOKU). 169 RYS. 14.30 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY). 170 RYS. 14.30 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY). 170 RYS. 14.31 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 171 RYS. 14.33 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÚ DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 172 RYS. 14.33 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 172 RYS. 14.34 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 172		Komorniki – Nowy Tomyśl autostrady A2 z roku 2019166
KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 Z ROKU 2018. 168 RYS. 14.26 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.27 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015. 168 RYS. 14.28 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (WIDOK Z BOKU). 169 RYS. 14.29 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY). 170 RYS. 14.30 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY). 170 RYS. 14.31 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 171 RYS. 14.32 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 171 RYS. 14.33 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 172 RYS. 14.33 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 172 RYS. 14.35 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 172 RYS. 14.35 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2. 172	Rys.	14.25 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD99 na odcinku
RYS. 14.26 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD31 NA ODCINKU WRZEŚNIA – 168 RYS. 14.27 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – 168 RYS. 14.27 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – 168 RYS. 14.27 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – 168 RYS. 14.28 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (WIDOK Z BOKU) 169 RYS. 14.20 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKÓJ POPRZECZNY) 170 RYS. 14.30 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKÓJ POPRZECZNY) 170 RYS. 14.31 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 171 RYS. 14.32 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 172 RYS. 14.33 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 172 RYS. 14.34 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 172 RYS. 14.34 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 172 RYS. 14.35 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD10		Komorniki – Nowy Tomyśl autostrady A2 z roku 2018
 KRZESINY AUTOSTRADY A2 Z ROKU 2015 168 RYS. 14.27 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 ROKU 2015 168 RYS. 14.28 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (WIDOK Z BOKU) 169 RYS. 14.29 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY) 170 RYS. 14.30 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY) 170 RYS. 14.31 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 171 RYS. 14.32 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 171 RYS. 14.33 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 171 RYS. 14.33 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTÚ DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 172 RYS. 14.34 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTÚ DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 172 RYS. 14.34 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 173 RYS. 14.35 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 173 RYS. 14.36 PRZYKŁAP PROCESU DECYZYINEGO PRZY OKREŚLANIU ODCINKA PRZEJŚCIOWEGO W PRZYPADKU NAWIERZCHNI ASFALTOWEJ NA DOJEŹDIZE [133] 174 RYS. 14.37 DETAL Z WARSTWAMI NAWIERZCHNIOWYMI NA PŁYCIE PRZEJŚCIOWEGO W PRZYPADKU NAWIERZCHNI ASFALTOWEJ NA DOJEŹDIZE [133] 174 RYS. 14.43 SZCZEGÓŁ PŁYTY PRZEJŚCIOWEJ W PRZYPADKU POŁĄCZENIA Z NAWIERZCHNIA BETONOWĄ [115] 176 RYS. 14.43 CZZEGÓ	Rys.	14.26 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD31 na odcinku Września
 RYS. 14.27 PRZYKŁADY USZKODZEŃ KLASYCZNEGO WIADUKTU DROGOWEGO WD33 NA ODCINKU WRZEŚNIA – KRZESINY AUTOSTRADY A2 Z ROKU 2015		– Krzesiny Autostrady A2 z roku 2015 168
KRZESINY AUTOSTRADY A2 Z ROKU 2015	Rys.	14.27 Przykłady uszkodzeń Klasycznego wiaduktu drogowego WD33 na odcinku Września –
Rys. 14.28 Pół-zintegrowany wiadukt drogowy WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2 (widok z boku)		KRZESINY AUTOSTRADY A2 Z ROKU 2015
AUTOSTRADY A2 (WIDOK Z BOKU)	Rys.	14.28 Pół-zintegrowany wiadukt drogowy WD101 na odcinku Komorniki – Nowy Tomyśl
RYS. 14.29 PÓŁ-ZINTEGROWANY WIADUKT DROGOWY WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY)		AUTOSTRADY A2 (WIDOK Z BOKU)
AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY)	Rys.	14.29 Pół-zintegrowany wiadukt drogowy WD101 na odcinku Komorniki – Nowy Tomyśl
Rys. 14.30Pół-zintegrowany wiadukt drogowy WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2 (przekrój poprzeczny)170Rys. 14.31Uszkodzenia Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2171Rys. 14.32Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2171Rys. 14.33Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2171Rys. 14.33Uszkodzenia Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2172Rys. 14.34Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2172Rys. 14.35Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2172Rys. 14.35Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2173Rys. 14.36Przykład procesu decyzyjnego przy określaniu odcinka przejściowego w przypadku nawierzchni asfaltowej na dojeździe [133]174Rys. 14.36Przykład procesu decyzjnego przy padku połączenia z nawierzchnią betonową [115]176Rys. 14.41Szczegół płyty przejściowej w przypadku połączenia z nawierzchnią betonową [115]176Rys. 14.42Wartości momentów zginających w punkcie "Oa" dla Zintegrowanego oblektu ramowego o l = 10 m od obciążenia ciężarem własnym konstrukcii198Rys. 14.43Wartości momentów zginających w punkcie "Oa" dla Zintegrowanego oblektu ramowego o l = 10 m od obciążenia ciężar		AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY)
AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY)	Rys.	14.30 Pół-zintegrowany wiadukt drogowy WD101 na odcinku Komorniki – Nowy Tomyśl
Rys. 14.31 Uszkodzenia Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2		AUTOSTRADY A2 (PRZEKRÓJ POPRZECZNY)
KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2.171Rys. 14.32Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2.171Rys. 14.33Uszkodzenia Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 na odcinku KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2.172Rys. 14.34Uszkodzenia Pół-zintegrowanych wiaduktú drogowego WD101 na odcinku KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2.172Rys. 14.34Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2.172Rys. 14.35Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2.173Rys. 14.36Przykład Procesu decyzyjnego przy określaniu odcinka przejściowego w Przypadku Nawierzchni Asfaltowej na dojeździe [133]174Rys. 14.37Detal z warstwami nawierzchniowymi na płycie przejściowej [13]175Rys. 14.39Szczegół płyty przejściowej w przypadku połączenia z nawierzchnią betonową [115]176Rys. 14.40Szczegół połączenia Pół-zintegrowanego obiektu inżynierskiego z dojazdem [116]177Rys. 14.42Wartości momentów zginających w punkcie "Oa" dla Zintegrowanego obiektu raMOwego o $l = 10$ mod obicłążenia ciężarem własnym konstrukcii198Rys. 14.44Wartości momentów zginających w punkcie "Oa" dla Zintegrowanego obiektu raMOwego o $l = 10$ mod obicłążenia ciężarem własnym konstrukcii198Rys. 14.44Wartości momentów zginających w punkcie "Oa" dla Zintegrowanego obiektu raMOwego o $l = 10$ mod obicłążenia ciężarem własnym konstrukcii198Rys. 14.44Wartości momentów zginających w punkc	Rys.	14.31 Uszkodzenia Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 na odcinku
Rys. 14.32 Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2		Komorniki – Nowy Tomyśl autostrady A2
KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2171RYS. 14.33 USZKODZENIA PÓŁ-ZINTEGROWANYCH WIADUKTÓW DROGOWYCH WD88 I WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2172RYS. 14.34 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2172RYS. 14.35 USZKODZENIA PÓŁ-ZINTEGROWANEGO WIADUKTU DROGOWEGO WD101 NA ODCINKU KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2173RYS. 14.36 PRZYKŁAD PROCESU DECYZYJNEGO PRZY OKREŚLANIU ODCINKA PRZEJŚCIOWEGO W PRZYPADKU NAWIERZCHNI ASFALTOWEJ NA DOJEŹDZIE [133]174RYS. 14.37 DETAL Z WARSTWAMI NAWIERZCHNIOWYMI NA PŁYCIE PRZEJŚCIOWEJ [13]175RYS. 14.38 SZCZEGÓŁ PŁYTY PRZEJŚCIOWEJ W PRZYPADKU POŁĄCZENIA Z NAWIERZCHNIĄ BETONOWĄ [115]176RYS. 14.39 SZCZEGÓŁ DOLINKA PRZEJŚCIOWEGO N(14D) - [135]177RYS. 14.41 SZCZEGÓŁ DOLINKA PRZEJŚCIOWEGO N(14D) - [135]177RYS. 14.42 WARTOŚCI MOMENTÓW ZGINAJĄCYCH W PUNKCIE "OA" DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O L = 10 M OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI198RYS. 14.44 WARTOŚCI MOMENTÓW ZGINAJĄCYCH W PUNKCIE "OA" DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O L = 10 M OD OBCIĄŻENIA ZMIANĄ TEMPERATURY ($\Delta T = 25^{\circ}C$)198RYS. 14.44 WARTOŚCI MOMENTÓW ZGINAJĄCYCH W PUNKCIE "OA" DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O L = 10 M OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI198RYS. 14.44 WARTOŚCI MOMENTÓW ZGINAJĄCYCH W PUNKCIE "OA" DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O L = 10 M OD OBCIĄŻENIA ZMIANĄ TEMPERATURY ($\Delta T = 25^{\circ}C$)198RYS. 14.44 WARTOŚCI MOMENTÓW ZGINAJĄCYCH W PUNKCIE "OA" DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O L = 10 M OD OBCIĄŻENIA ZMIANĄ TEMPERATURY ($\Delta T = 25^{\circ}C$)198RYS. 14.44 WARTOŚCI MOMENTÓ	Rys.	14.32 Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku
Rys. 14.33 Uszkodzenia Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2		Komorniki – Nowy Tomyślautostrady A2171
KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2.172Rys. 14.34 Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2.172Rys. 14.35 Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2.173Rys. 14.36 Przykład procesu decyzyjnego przy określaniu odcinka przejściowego w przypadku nawierzchni Asfaltowej na dojeździe [133]174Rys. 14.37 Detal z warstwami nawierzchniowymi na płycie przejściowej [13]175Rys. 14.38 Szczegół płyty przejściowej w przypadku połączenia z nawierzchnią betonową [115]176Rys. 14.40 Szczegół odcinka przejściowego N(14D) - [135]177Rys. 14.41 Szczegół połączenia Pół-zintegrowanego obiektu inżynierskiego z dojazdem [116] 178178Rys. 14.43 Wartości momentów zginających w punkcie "Oa" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)198Rys. 14.44 Wartości momentów zginających w punkcie "Oa" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)198Rys. 14.44 Wartości momentów zginających w punkcie "Oa" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)198Rys. 14.44 Wartości momentów zginających w punkcie "Oa" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)198Rys. 14.44 Wartości momentów zginających w punkcie "Oa" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)198	Rys.	14.33 Uszkodzenia Pół-zintegrowanych wiaduktów drogowych WD88 i WD101 na odcinku
Rys. 14.34 Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2		Komorniki – Nowy Tomyśl autostrady A2
KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2.172Rys. 14.35 Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2.173Rys. 14.36 Przykład procesu decyzyjnego przy określaniu odcinka przejściowego w przypadku nawierzchni asfaltowej na dojeździe [133]174Rys. 14.37 Detal z warstwami nawierzchniowymi na płycie przejściowej [13]175Rys. 14.38 Szczegół płyty przejściowej w przypadku połączenia z nawierzchnią betonową [115]176Rys. 14.39 Szczegół odcinka przejściowego N(14D) - [135]177Rys. 14.40 Szczegół połączenia Pół-zintegrowanego obiektu inżynierskiego z dojazdem [116]178Rys. 14.42 Wartości momentów zginających w punkcie "0A" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)198Rys. 14.44 Wartości momentów zginających w punkcie "0A" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)198Rys. 14.44 Wartości momentów zginających w punkcie "0A" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)198Rys. 14.44 Wartości momentów zginających w punkcie "0A" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)198Rys. 14.44 Wartości momentów zginających w punkcie "0A" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)198Rys. 14.44 Wartości momentów zginających w punkcie "0A" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)198	Rys.	14.34 Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku
Rys. 14.35 Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku Komorniki – Nowy Tomyśl autostrady A2		Komorniki – Nowy Tomyślautostrady A2
KOMORNIKI – NOWY TOMYŚL AUTOSTRADY A2	Rys.	14.35 Uszkodzenia Pół-zintegrowanego wiaduktu drogowego WD101 na odcinku
Rys. 14.36 Przykład procesu decyzyjnego przy określaniu odcinka przejściowego w przypadku nawierzchni asfaltowej na dojeździe [133]		Komorniki – Nowy Tomyślautostrady A2
NAWIERZCHNI ASFALTOWEJ NA DOJEŹDZIE [133]	Rys.	14.36 Przykład procesu decyzyjnego przy określaniu odcinka przejściowego w przypadku
Rys. 14.37 Detal z warstwami nawierzchniowymi na płycie przejściowej [13]	-	NAWIERZCHNI ASFALTOWEJ NA DOJEŹDZIE [133]
Rys. 14.38 Szczegół płyty przejściowej w przypadku połączenia z nawierzchnią betonową [115] 176 Rys. 14.39 Szczegół płyty kotwiącej - nawierzchnia betonowa [115]	Rys.	14.37 DETAL Z WARSTWAMI NAWIERZCHNIOWYMI NA PŁYCIE PRZEJŚCIOWEJ [13]
Rys. 14.39 Szczegół płyty kotwiącej - nawierzchnia betonowa [115]	Rys.	14.38 Szczegół płyty przejściowej w przypadku połaczenia z nawierzchnia betonowa [115] 176
Rys. 14.40 Szczegół odcinka przejściowego N(14D) - [135]	Rys.	14.39 Szczegół płyty kotwiacej - nawierzchnia betonowa [115]
Rys. 14.41 Szczegół połączenia Pół-zintegrowanego obiektu inżynierskiego z dojazdem [116] 178 Rys. 14.42 Wartości momentów zginających w punkcie "0a" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia ciężarem własnym konstrukcji	Rys.	14.40 Szczegół odcinka przejściowego N(14D) - [135] 177
Rys. 14.42 Wartości momentów zginających w punkcie "Oa" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia ciężarem własnym konstrukcji	Rys.	14.41 Szczegół połaczenia Pół-zintegrowanego objektu inżynierskiego z dojazdem [116] 178
RAMOWEGO O $L = 10$ M OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI	Rys.	14.42 WARTOŚCI MOMENTÓW ZGINAJACYCH W PLINKCIE $\Omega a^{\prime\prime}$ DIA ZINTEGROWANEGO OBJEKTU
Rys. 14.43 Wartości momentów zginających w punkcie "Oa" dla Zintegrowanego obiektu ramowego o $L = 10$ m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)		RAMOWEGO O $L = 10$ M OD OBCIAŻENIA CIEŻAREM WŁASNYM KONSTRUKCII 198
RAMOWEGO O $L = 10$ M OD OBCIĄŻENIA ZMIANĄ TEMPERATURY ($\Delta T = 25^{\circ}$ C)	R۷۹	14.43 WARTOŚCI MOMENTÓW ZGINAJACYCH W PLINKCIE $\Omega a^{\prime\prime}$ DIA ZINTEGROWANEGO OBJEKTU
Rys. 14.44 Wartości momentów zginających w punkcie "Oa" dla Zintegrowanego obiektu Ramowego o $I = 20$ m od obciążenia cieżarem własnym konstrukcji 199		PAMOWEGO O I = 10 M OD OBCIAŻENIA ZMIANA TEMPEDATUDY (AT - 25°C) 109
RAMOWEGO O $I = 20$ M OD OBCIAŻENIA CIEŻAREM WŁASNYM KONSTRUKCU 199	Rvc	1Δ ΔΔ WARTOŚCI MOMENTÓW ZGINAJACYCH W DUNKCIE $\Omega A''$ DIA ZINTEGROWANEGO ODJEKTU
		RAMOWEGO O $I = 20$ M OD OBCIAŻENIA CIEŻAREM WŁASNYM KONSTRUKCII 199

Rys.	14.45 WARTOŚCI MOMENTÓW ZGINAJĄCYCH W PUNKCIE "OA" DLA ZINTEGROWANEGO OBIEKTU
_	RAMOWEGO O $L = 20$ m od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C)
Rys.	14.46 WARTOŚCI MOMENTÓW ZGINAJĄCYCH W PUNKCIE "UA" DLA ZINTEGROWANEGO OBIEKTU
D	RAMOWEGO O $L = 30$ M OD OBCIĄZENIA CIĘZAREM WŁASNYM KONSTRUKCJI
RYS.	14.47. WARTOSCI MOMENTOW ZGINAJĄCYCH W PUNKCIE "UA" DLA ZINTEGROWANEGO OBIEKTU
Dura	RAMOWEGO O L = 30 M OD OBCIĄZENIA ZMIANĄ TEMPERATURY (ΔI = 25°C)
KYS.	14.48 WARTOSCI MOMENTOW ZGINAJĄCYCH W PUNKCIE "UA" DLA ZINTEGROWANEGO OBIEKTU
Dvc	RAMOWEGO O $L = 40$ M OD OBCIĄZENIA CIĘZAREM WŁASNYM KONSTRUKCJI
RYS.	14.49 WARTOSCI MOMENTOW ZGINAJĄCYCH W PUNKCIE "UA DLA ZINTEGROWANEGO OBIEKTU $(4T - 2E^{0}C)$
Dvc	RAMOWEGO O L = 40 M OD OBCIĄZENIA ZMIANĄ TEMPERATURY ($217 = 25^{\circ}$ C)
RY5.	14.50 WARTOSCI MOMENTOW ZGINAJĄCYCH W PUNKCIE "UA DLA ZINTEGROWANEGO OBIEKTU DAMONIECO O $L = 40$ m od odciażenia cieżadena nakasnyma konstrukcji i znajana temperatury
	RAMOWEGO U $L = 40$ M OD OBCIĄZENIA CIĘZAREM WŁASNYM KONSTRUKCJI I ZMIANĄ TEMPERATURY $LAT = 2E^{0}C$
Dvc	$(\Delta I = 25^{\circ}C)$
Γ Ύ5.	14.51 WARTOSCI MOMENTOW ZGINAJĄCYCH W PUNKCIE "A DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO 202
Dvc	0L = 10 M OD OBCIĄZENIA CIĘZAREM WŁASNYM KONSTRUKCJI
N13.	14.52 WARTOSCI MOMENTOW ZGINAJĄCICH W PONKCIE "A DLA ZINTEGROWANEGO OBJEKTU RAMOWEGO $-1 - 10$ M od odciażenia znajania temperatury ($4T - 2E^{\circ}C$)
Dvc	$0L = 10$ M OD OBCIĄZENIA ZMIANĄ TEMPERATURY ($217 = 25^{\circ}$ C)
NY3.	14.55 WARTOSCI MOMENTOW ZGINAJĄCYCH W PONKCIE "A DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO -2.4 ± 20 M od odciażenia cieżadem wilacnyma konstrukcji 204
Dvc	UL = 20 M OD OBCIĄZENIA CIĘZAREM WŁASNYM KONSTRUKCJI
N13.	14.34 WARTOSCI MOMENTOW ZGINAJĄCICH W PONKCIE "A DLA ZINTEGROWANEGO OBJEKTU RAMOWEGO $(4T - 3E^{0}C)$
Dvc	UL = 20 M OD OBCIĄZENIA ZMIANĄ TEMPERATURY (217 – 23 C)
N13.	$14.55 WARTOSCI MOMENTOW ZGINAJĄCICH W PONKCIE "A DLA ZINTEGROWANEGO OBJEKTU KAMOWEGO 0.1 - 20 \text{ Martosci momentow zginającich w ponkcie "A DLA Zintegrowanego Objektu kamowego 205$
Rvc	0L = 30 m od obciązenia cięzarem własnym konstrukcji
1113.	$14.50 \text{ WARTOSCH MOMENTOW ZGINAJĄCTCH W PONKCIE "A DLA ZINTEGROWANEGO OBJERTO RAMOWEGO 0.1 - 20 \text{ M OD ODCIAŻENIA ZNAJANIA TEMPEDATUDY (AT - 25^{\circ}\text{C}) 205$
Rvc	0L = 30 M OD OBCIĄZENIA ZMIANĄ TEMPERATORY (Z17 – Z3 C)
1113.	14.57 WARTOSCH MOMENTOW ZGINAJĄCTCH W PONKCIE "A DLA ZINTEGROWANEGO OBJERTO RAMOWEGO 0.1 - 10 M OD OBCIAŻENIA CIEŻADEM WŁASNYM KONSTRUKCII 206
Rvc	14.58 Wartości momentów zgina jacych w dunkcje a'' dla Zintegrowianego objektu ramowego
N15.	$0.1 = 40 \text{ M} \text{ OD} \text{ OBCIAŻENIA ZMIANA TEMPERATURY} (AT = 25^{\circ}\text{C}) 206$
Rvs	14.59 Wartości momentów zgina jacych w plinkcie a ^{\prime} dla Zintegrowanego objektu ramowego
N15.	$-1 - 10$ M of orciginal cieżadem własnym konstrukcji i zmiana temperatury ($AT - 25^{\circ}$ C) 207
Rvs	14.60 WARTOŚCI MOMENTÓW ZGINAJACYCH W PUNKCIE 0.51° DLA ZINTEGROWANEGO OBJEKTU
N15.	RAMOWEGO O I = 10 M OD OBCIAŻENIA CIEŻAREM WŁASNYM KONSTRUKCII 208
Rvs	14.61 Wartości momentów zginalacych w plinkcie 0.51° dla Zintegrowanego objektu
	RAMOWEGO O $I = 10$ M OD OBCIAŻENIA ZMIANA TEMPERATURY ($AT = 25^{\circ}$ C) 208
Rvs	14.62 WARTOŚCI MOMENTÓW ZGINAJACYCH W PLINKCJE 0.51° dla Zintegrowanego objektu
	RAMOWEGO O $I = 20$ M OD OBCIAŻENIA CIEŻAREM WŁASNYM KONSTRUKCII 2009
Rys.	14.63. Wartości momentów zginających w punkcie $0.5L''$ dla Zintegrowanego objektu
	RAMOWEGO O $I = 40$ M OD OBCIAŻENIA ZMIANA TEMPERATURY ($AT = 25^{\circ}$ C) 209
Rvs	14.64 WARTOŚCI MOMENTÓW ZGINALACYCH W PLINKCIE 0.51° DIA ZINTEGROWANEGO OBJEKTU
	RAMOWEGO O I = 30 M OD OBCIAŻENIA CIEŻAREM WŁASNYM KONSTRUKCII 210
Rys.	14.65 WARTOŚCI MOMENTÓW ZGINAJACYCH W PUNKCIE 0.51° DIA ZINTEGROWANEGO OBJEKTU
	$RAMOWEGO = 30 \text{ MOD OBCIAŻENIA ZMIANA TEMPERATURY} (AT = 25^{\circ}\text{C}) $ 210
Rys	14.66 WARTOŚCI MOMENTÓW ZGINALACYCH W PUNKCIE $0.51''$ dla Zintegrowanego oriektu
	RAMOWEGO O $L = 40$ M OD OBCIAŻENIA CIEŻAREM WŁASNYM KONSTRUKCII
Rys.	14.67 Wartości momentów zginajacych w punkcie0.5L" dla Zintegrowanego obięktu
	RAMOWEGO O $L = 40$ M OD OBCIAŻENIA ZMIANA TEMPERATURY ($\Lambda T = 25^{\circ}$ C)

Rys.	14.68 Wartości momentów zginających w punkcie "0,5L" dla Zintegrowanego obiektu ramowego o $L = 40$ m od obciążenia ciężarem własnym konstrukcji i zmianą temperatury ($\Delta T = 25^{\circ}$ C)
Rys.	14.69 Stosunek wartości momentów zginających w punkcie " $0a$ " dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła $L = 20$ metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji
Rys.	14.70 Stosunek wartości momentów zginających w punkcie "Oa" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych)o rozpiętości przęsła $L = 30$ metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji
Rys.	14.71 Stosunek wartości momentów zginających w punkcie " $0a''$ dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła $L = 40$ metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji
Rys.	14.72 Stosunek wartości momentów zginających w punkcie "a" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła $L = 10$ metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji
Rys.	14.73 Stosunek wartości momentów zginających w punkcie "a" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych)o rozpiętości przęsła $L = 20$ metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji
Rys.	14.74Stosunek wartości momentów zginających w punkcie "A" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła $L = 30$ metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia cieżarem własnym konstrukcji
Rys.	14.75 Stosunek wartości momentów zginających w punkcie "A" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła $L = 40$ metrów od obciążenia zmianą temperatur ($\Lambda T = 25^{\circ}$ C) do obciążenia cieżarem własnym konstrukcji
Rys.	14.76 Stosunek wartości momentów zginających w punkcie "0,5L" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła $L = 20$ metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji
Rys.	14.77 Stosunek wartości momentów zginających w punkcie "0,5L" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych)o rozpiętości przęsła $L = 30$ metrów od obciążenia zmianą temperatur ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji
Rys.	14.78 Stosunek wartości momentów zginających w punkcie "0,5L" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła $L = 40$ metrów od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji 217
Rys.	14.79 PROCENTOWY STOSUNEK WARTOŚCI MOMENTÓW ZGINAJĄCYCH W PUNKCIE "A" DLA OBIEKTÓW ZINTEGROWANYCH (JEDNOPRZĘSŁOWYCH - RAMOWYCH) O ROZPIĘTOŚCI PRZĘSŁA 10-40 METRÓW OD OBCIĄŻENIA ZMIANĄ TEMPERATURY ($\Delta T = 25^{\circ}$ C) DO OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI PRZY $H = 5$ M.
Rys.	14.80 Procentowy stosunek wartości momentów zginających w punkcie "Oa" dla obiektów Zintegrowanych (jednoprzęsłowych - ramowych) o rozpiętości przęsła 10-40 metrów od obciążenia zmianą temperatury ($\Delta T = 25^{\circ}$ C) do obciążenia ciężarem własnym konstrukcji
Rys.	PKZY $Π = 8$ M

- Rys. 14.96 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu Zintegrowanego o podporach posadowionych na profilach stalowych (Profil 1 i Profil 2)

OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI I ZMIANAMI TEMPERATURY (${\it \Delta}T$ = 25°C),
BEZ I Z PRZEGUBEM W PODPORACH, BEZ I Z 50% REDUKCJĄ K_{XI} , $L = 30$ m, przęsło J_X
Rys. 14.97 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu
ZINTEGROWANEGO O PODPORACH POSADOWIONYCH NA PROFILACH STALOWYCH (PROFIL 2) OD OBCIĄŻENIA
CIĘŻAREM WŁASNYM KONSTRUKCJI, BEZ I Z 50% REDUKCJĄ K_{xi} , $L = 30$ m, przęsło J_x
Rys. 14.98 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu
ZINTEGROWANEGO O PODPORACH POSADOWIONYCH NA PROFILACH STALOWYCH (PROFIL 1) OD OBCIĄŻENIA
CIĘŻAREM WŁASNYM KONSTRUKCJI, BEZ I Z 50% REDUKCJĄ K_{xi} , $L = 40$ m, przęsło $J_x 5$
Rys. 14.99 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu
Zintegrowanego o podporach posadowionych na profilach stalowych (Profil $1 Profil 2$)
OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI I ZMIANAMI TEMPERATURY ($arDelta T$ = 25°C),
BEZ I Z PRZEGUBEM W PODPORACH, BEZ I Z 50% REDUKCJĄ K_{x_1} , $L = 30$ m, przęsło J_x
Rys. 14.100 Wartości momentów zginających w punktach "16p", "A", "0,5L" obiektu
ZINTEGROWANEGO O PODPORACH POSADOWIONYCH NA PROFILACH STALOWYCH (PROFIL 2) OD OBCIĄŻENIA
CIĘŻAREM WŁASNYM KONSTRUKCJI, BEZ I Z 50% REDUKCJĄ K_{XI} , $L = 40$ m, przęsło $J_X 5$
Rys. 14.101 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu
ZINTEGROWANEGO O PODPORACH POSADOWIONYCH NA PROFILACH STALOWYCH (PROFIL 1) OD OBCIĄŻENIA
ZMIANAMI TEMPERATURY ($\Delta T = 25^{\circ}$ C), bez i z 50% redukcją K_{x_1} , $L = 40$ m, przęsło $J_x 5$ 239
Rys. 14.102 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu
ZINTEGROWANEGO O PODPORACH POSADOWIONYCH NA PROFILACH STALOWYCH (PROFIL 2) OD OBCIĄŻENIA
ZMIANAMI TEMPERATURY ($\Delta T = 25^{\circ}$ C), BEZ I Z 50% REDUKCJĄ K_{x1} , $L = 40$ M, PRZĘSŁO J_x5
Rys. 14.103 Wartości momentów zginających w punktach "16p", "A", "0,5L" obiektu
ZINTEGROWANEGO O PODPORACH POSADOWIONYCH NA PROFILACH STALOWYCH (PROFIL 2) OD OBCIĄŻENIA
CIĘŻAREM WŁASNYM KONSTRUKCJI, BEZ I Z 50% REDUKCJĄ K_{XI} , $L = 40$ m, przęsło J_X
Rys. 14.104 Wartości momentów zginających w punktach "16p", "a", "0,5L" obiektu
ZINTEGROWANEGO O PODPORACH POSADOWIONYCH NA PROFILACH STALOWYCH (PROFIL 1 PROFIL 2)
OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI I ZMIANAMI TEMPERATURY (ΔT = 25°C),
BEZ I Z PRZEGUBEM W PODPORACH, BEZ I Z 50% REDUKCJĄ K_{XI} , $L = 40$ M, PRZĘSŁO $J_X 5$
RYS. 14.105 WARTOŚCI MOMENTÓW ZGINAJĄCYCH W PUNKTACH "16P", "A", "0,5L" OBIEKTU
ZINTEGROWANEGO O PODPORACH POSADOWIONYCH NA PROFILACH STALOWYCH (PROFIL 1 PROFIL 2)
OD OBCIĄZENIA CIĘZAREM WŁASNYM KONSTRUKCJI I ZMIANAMI TEMPERATURY ($\Delta I = 25^{\circ}$ C),
BEZ I Z PRZEGUBEM W PODPORACH, BEZ I Z 50% REDUKCJĄ K_{X1} , $L = 40$ M, PRZĘSŁO J_X
RYS. 14.106 UDZIAŁ WARTOSCI MOMENTU ZGINAJĄCEGO W PUNKCIE "UA" OD OBCIĄZENIA PARCIEM GRUNTU
W ODNIESIENIU DO WARTOSCI MOMENTU ZGINAJĄCEGO OD OBCIĄZENIA CIĘZAREM WŁASNYM KONSTRUKCJI
DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O $L = 10 \text{ M}$ (GS = 0,6 M, $H_P = 0,6 \text{ M}$) PODPORACH SZTYWNO-
RYS. 14.107 ODZIAŁ WARTOŚCI MOMENTU ZGINAJĄCEGO W PUNKCIE "A OD OBCIĄŻENIA PARCIEM GRUNTU
W ODNIESIENIU DU WARTOSCI MOMENTU ZGINAJĄCEGO OD OBCIĄZENIA CIĘZAREM WŁASNYM KONSTRUKCJI DLA ZWIESCROWANISCO ODJEKTU DANOWISCO O $L = 10 \text{ M}/(C_{\text{C}} = 0.6 \text{ M})$ – 0.6 M) – 0.0000000000000000000000000000000000
DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O $L = 10 \text{ M} (GS = 0,0 \text{ M}, H_P = 0,0 \text{ M}) TPODPORACH SZTYWNO-$
ΖΑΜΟΕΟΨΑΝΥΕΠ
KYS. 14.108 ODZIAŁ WARTOŚCI MOMENTU ZGINAJĄCEGO W PUNKCIE "U, SL. OD OBCIĄŻENIA PARCIEM GRUNTU W ODNIESIENIU DO WARTOŚCI MOMENTU ZCINAJĄCEGO OD OBCIĄŻENIA CIĘŻABEM WŁASNYM KONSTRUKCI
W ODNIESIENIO DO WARTOSCI MOMENTO ZGINAJĄCEGO OD OBCIĄZENIA CIĘZAREM WŁASNYM KONSTRUKCJ DLA ZINIEGO MANEGO ODJEKTU PAMOWEGO O $L = 10 \text{ M} (GS = 0.6 \text{ M})$ i doddodach sztywno-
DEA ZIN FEGROWANEGO OBJEKTO KAMOWEGO O $L = 10$ M ($O3 = 0,0$ M), $H_P = 0,0$ M) FODPORACH SZTYWNO-
$Z_{AMOCOWANTCH}$
W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO W POWRCIE "A OD OBCIĄŻENIA PARCIEM GRUNIU
DIA ZINTEGROWANEGO OBJEKTU RAMOWEGO O $J = 10 \text{ M} (G_S = 0.6 \text{ M} + B_S = 0.6 \text{ M}) + DODDORACH$
PRZEGUBOWO-NIEPRZESUWNYCH

RYS. 14.110 UDZIAŁ WARTOSCI MOMENTU ZGINAJĄCEGO W PUNKCIE "U,5L" OD OBCIĄZENIA PARCIEM GRUNTU
W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
dla Zintegrowanego obiektu ramowego o $L = 10$ m (Gs = 0,6 m, $H_P = 0,6$ m) i podporach
PRZEGUBOWO-NIEPRZESUWNYCH275
Rys. 14.111 Udział wartości momentu zginającego w punkcie "Oa" od obciażenia parciem gruntu
W ODNIESIENIO DO WARTOSCI MOMENTO ZUNAJĄCEGO OD OBCIĄZENIA CIĘZAREM WŁASINTIM KONSTROKCJ DLA ZINIECDOWANIECO ODJEKTU DAMOWECO O $L = 20$ MA $(C_{\rm C} = 1.0$ MA $(L = 1.0$ MA $)$ DODDODACU SZTVIANO
DLA ZINTEGROWANEGO OBJEKTO RAMOWEGO O $L = 20$ M ($G_3 = 1,0$ M, $H_P = 1,0$ M) TPODPORACH SZTYWNO-
ZAMOCOWANYCH
Rys. 14.112 Udział wartości momentu zginającego w punkcie "A" od obciążenia parciem gruntu
W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O $L = 20$ m ($Gs = 1,0$ m, $H_P = 1,0$ m) I PODPORACH SZTYWNO-
ZAMOCOWANYCH
Rys. 14.113 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu
W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
DIA ZINTEGROWANEGO OBJEKTU RAMOWEGO O $L = 20$ m (Gs = 0.6 m, $H_0 = 1.0$ m) i podporach sztywno-
74MOCOWANYCH 278
$P_{\rm VS}$ 14 114 Πρτιακ μιαρτοές: μορμετιτή τς μια μαρείς ο μι ρυμήζεις a'' ορ ορςιαζετία ραρείεται σρυμιτή
KTS. 14.114 ODZIAŁ WARTOSCI MOMENTO ZGINAJĄCEGO W PONKCIE "A OD OBCIĄŻENIA PARCIEM GRUNTO
W ODNIESIENIU DO WARTOSCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O $L = 20$ M (GS = 0,6 M, $H_P = 1,0$ M) I PODPORACH
PRZEGUBOWO-NIEPRZESUWNYCH
Rys. 14.115 Udział wartości momentu zginającego w punkcie "0,5L" od obciążenia parciem gruntu
W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
dla Zintegrowanego obiektu ramowego o $L = 20$ m (Gs = 0,6 m, $H_P = 1,0$ m) i podporach
przegubowo-nieprzesuwnych280
Rys. 14.116 Udział wartości momentu zginającego w punkcie "Oa" od obciążenia parciem gruntu
W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O L = 30 M (Gs = 0.6 M, H_P = 1.25 M) I PODPORACH
sztywno-zamocowanych
Rys 14 117 LIDZIAŁ WARTOŚCI MOMENTU ZGINAJACEGO W PUNKCIE A ["] OD OBCIAŻENIA PARCIEM GRUNTU
W ODNIESIENIO DO WARTOSCI MOMENTO ZGINAJĄCEGO OD OBCIĄZENIA CIĘZAREM WŁASINTIM KONSTRUKCJI DLA ZINITECDOWANIECO, ODJEKTU DAMOWECO, O $L = 20$ M $/C_{\rm C} = 0.6$ M $/L = 1.25$ M) – DODDODACU
DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O $L = 30$ M (GS = 0,6 M, $H_P = 1,25$ M) T PODPORACH
SZTYWNO-ZAMOCOWANYCH
RYS. 14.118 UDZIAŁ WARTOŚCI MOMENTU ZGINAJĄCEGO W PUNKCIE "0,5L" OD OBCIĄŻENIA PARCIEM GRUNTU
W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
dla Zintegrowanego obiektu ramowego o $L = 30$ m (Gs = 0,6 m, $H_p = 1,25$ m) i podporach
sztywno-zamocowanych
Rys. 14.119 Udział wartości momentu zginającego w punkcie "a" od obciążenia parciem gruntu
W ODNIESIENIU DO WARTOŚCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O L = 30 M ($Gs = 0.6$ M, $H_P = 1.25$ M) I PODPORACH
PRZEGUBOWO-NIEPRZESUWNYCH
Rys 14 120 Udział wartości momentu w punkcie 0 51" zginającego od obciążenia parciem gruntu
W ODNIESIENIO DO WANTOSCI MOMENTO ZGINAJĄCEGO OD OBCIĄZENIA CIĘZAREM WŁASINTIM KONSTRUKCJI DLA ZINITECDOWANIECO, ODJEKTU DAMOWECO, O $L = 20$ M $(C_{\rm C} = 0.6$ M $\mu = 1.25$ M) – DODDODACU
DLA ZINTEGROWANEGO OBERTU RAMOWEGO O $L = 50$ M ($GS = 0,0$ M, $H_P = 1,25$ M) T PODPORACH
PRZEGUBOWO-NIEPRZESUWNYCH
KYS. 14.121 UDZIAŁ WARIOSCI MOMENTU ZGINAJĄCEGO W PUNKCIE "UA" OD OBCIĄZENIA PARCIEM GRUNTU
W ODNIESIENIU DO WARTOSCI MOMENTU ZGINAJĄCEGO OD OBCIĄŻENIA CIĘŻAREM WŁASNYM KONSTRUKCJI
DLA ZINTEGROWANEGO OBIEKTU RAMOWEGO O $L = 20$ m ($Gs = 0, 6$ m, $H_P = 1, 0$ m) I PODPORACH SZTYWNO-
ZAMOCOWANYCH PRZY CIĘŻARZE PRZĘSŁA JAK DLA <i>H</i> = 50 cm

<u>Spis Tabel</u>

TABELA Z.I. PRZYKŁADY DOPUSZCZALNYCH DŁUGOSCI PRZĘSEŁ I WYKONANYCH OBIEKTOW
ZINTEGROWANYCH/PÓŁ-ZINTEGROWANYCH
TABELA 2.2. WARTOŚCI TEMPERATUR PRZYJMOWANE DO OBLICZEŃ KONSTRUKCJI INŻYNIERSKICH
TABELA 4.1. PRZYKŁADOWE WARTOŚCI WSPÓŁCZYNNIKÓW PARCIA GRUNTU 41
TABELA 4.2. PRZYKŁADOWE WARTOŚCI CIĘŻARU BETONU WYSTĘPUJĄCE W WYTYCZNYCH
TABELA 4.3. PRZYKŁADOWE WARTOŚCI CIĘŻARU GRUNTU WYSTĘPUJĄCE W WYTYCZNYCH
Tabela 5.1. Porównanie skali problemów związanych z uszkodzeniami remontowanych obiektów
Zintegrowanych i Klasycznych w obrębie bitumicznych przykryć dylatacyjnych/urządzeń
DYLATACYJNYCH NA DOJEŹDZIE DO OBIEKTU
Tabela 5.2. Porównanie propagacji problemów związanych z uszkodzeniami remontowanych
OBIEKTÓW KLASYCZNYCH I ZINTEGROWANYCH W OBRĘBIE BITUMICZNYCH PRZYKRYĆ
DYLATACYJNYCH/URZĄDZEŃ DYLATACYJNYCH NA DOJEŹDZIE DO OBIEKTU
TABELA 5.3. PORÓWNANIE SKALI PROBLEMÓW ZWIAZANYCH Z USZKODZENIAMI OBIEKTÓW PÓŁ-
ZINTEGROWANYCH I KLASYCZNYCH W OBREBIE BITUMICZNYCH PRZYKRYĆ DYLATACYJNYCH/URZADZEŃ
DYLATACYINYCH NA DOJEŹDZIE DO OBJEKTU INŻYNIERSKIEGO (TYLKO WIADUKTY DROGOWE)
TABELA 14.1. WYBRANE CECHY OBJEKTÓW ZINTEGROWANYCH, PÓŁ-ZINTEGROWANYCH I KLASYCZNYCH NA
ODCINKU KONIN - WRZEŚNIA AUTOSTRADY A2 154
Τάβει α 14.2 Πεζκορζενία οβιεκτόψ ινζυνιεργκίας μια οραινκή Κονίν – Września αυτοςτραφία Δ2, 156
TABELA 14.2. OSZKODZENIA OBIEKTÓW INZTNIERSKICH NA ODCINKO KONIN WYKZESNIA AUTOSTKADT AZ 150
TABELA 14.3. ZESTAWIENIE PROBLEMIOW ZWIĄZANTCH Z USZRODZENIAMI REMONTOWANTCH OBIERTOW ZINTECDOWANYCH NA ODCINICH WRZEŚNIA – KONINI AUTOCTRADY A2
ZINTEGROWANTCH NA ODCINKU WRZESNIA – KONIN AUTOSTRADTAZ
TABELA 14.4. ZESTAWIENIE PROBLEMIOW ZWIĄZANYCH Z USZKODZENIAMI REMONTOWANYCH OBIEKTOW
KLASYCZNYCH NA ODCINKU W RZESNIA – KONIN AUTOSTRADY AZ
TABELA 14.5. USZKODZENIA OBIEKTOW POŁ-ZINTEGROWANYCH I KLASYCZNYCH WYBUDOWANYCH W LATACH
2003/4 NA ODCINKACH WRZESNIA – KRZESINY ORAZ KOMORNIKI – NOWY I OMYSL AUTOSTRADY A2 167
TABELA 14.6. KRYTERIA STOSOWANE PRZY PROJEKTOWANIU PŁYT PRZEJŚCIOWYCH [] 174
Tabela 14.7. Porównanie wymagań dla wskaźnika zgęszczenia zasypek I_s za podporą skrajną 179
Tabela 14.8. Zestawienie wyników analizy cech profili stalowych po 100 latach od rozpoczęcia
PROCESU KOROZJI
TABELA 14.9. ZESTAWIENIE SIŁ WEWNĘTRZNYCH DLA OBIEKTÓW ZINTEGROWANYCH (RAMOWYCH) O $L = 10-40$
METRÓW

BIBLIOGRAFIA

- [1] BD 57/01, Design for Durability Bridges, 05.2003.
- [2] Bridge Design Guide, Main DOT, 08.2003.
- [3] Enhancing Steel Bridges, Modern Steel Construction, 10.1998.
- [4] Guidelines for Preliminary Design of Bridges and Culverts, Iowa DOT, 04.2000.
- [5] Wasserman E. P., Walker J. H., Integral Abutments for Steel Bridges, American Iron and Steel Institute, AISI), 10.1996.
- [6] Why Integral Bridges? Steel Bridges, Summer/Fall 1993.

[7] Moulton L.K., H. V. S GangaRao, G.T. Halvorsen, Tolerable Movement Criteria for Highway Bridges, Report FHWA/RD-85/107.

[8] Moulton L.K., Observation of Highway Bridges Movements and their Effects on Joints and Bearings, Transportation Research Record 903, 1983.

[9] Mistry V. C., Integral and Jointless bridges, 2005.

[10] BA 42/96, The Design of Integral Bridges, 05.2003.

[11] Topolewicz K, Olczyk H, Projekt Wykonawczy wiaduktu WD101. Transprojekt Gdański, 2002.

[12] Topolewicz K., Olczyk H., Projekt Wykonawczy wiaduktu WD88. Transprojekt Gdański, 2002.

[13] Kunin J., Alampalli S., Integral Abutment Bridges, Current practice in the USA and Canada, Report FHWA/NY/SR-99/132.

[14] Tennessee boats record length jointless bridge, Concrete Products, 1.04.2000.

[15] CD 350, The design of highway structures.2020.

[16] Standard Specifications for Highway Bridge, AASHTO.

[17] Bridge Design Guide. Loads and loads factors, Arizona DOT, 08.2002.

[18] Structural Design Guidelines. FDOT, 07.2004.

[19] Bride Design Manual. Iowa DOT, 07.2004.

[20] Temperature Movement Policy, Nebraska Department of Road, 01.2000.

[21] PN-85/S-10030. Obiekty mostowe. Obciążenia.

[22] Brandborn J., Classification calculation of road bridges. Klassningsberakning av vagbroar, VV Publ 1998:78, 08.2004.

[23] Structures Manual, State of Vermont Agency of Transportation, Edition 2004.

[24] Dwivedi A.K., Bhargava P., Bhandri N.M., Temperature Effects in the Design of Concrete Bridges. Advances in Bridge Engineering, 03.2006.

[25] R. G. Oesterle, J. S. Volz, Effective Temperature and Longitudinal Movement in Integral Abutment Bridges, FHWA Conference, Integral abutment and Jointless Bridges. 16-18.03.2005 Baltimore, Maryland.
[26] Oesterle R. G., Lotfi H. R., Transverse Movement in Skewed Integral Abutment Bridges. CHWAL

Conference, Integral abutment and Jointless Bridges, 16-18.03.2005 Baltimore, Maryland.

[27] Zobel H., Naturalne zjawiska termiczne w mostach, Wydawnictwa Komunikacji i Łączności 2003.

[28] Furtak K., B. Wrana, Mosty zintegrowane, Wydawnictwa Komunikacji i Łączności 2005.

[29] Rozporządzenie Ministra Infrastruktury z dnia 01.08.2019 r. Dziennik Ustaw Poz. 1642 z dnia 01.08.2019 r. zmieniający rozporządzenie nr 735 w sprawie warunków technicznych, jakimi powinny odpowiadać drogowe obiekty inżynierskie i ich usytuowanie.

[30] Program Funkcjonalno-Użytkowy, Droga S-3 Nowa Sól-Legnica(A-4), Zadanie II 2013.

[31] SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA, Zaprojektowanie i wybudowanie drogi ekspresowej S5 Poznań –Wrocław na odcinku Korzeńsko (bez węzła), węzeł Widawa Wrocław, ZADANIE 1. Odcinek od Korzeńska (km ok. 108+758) do km 123+700 z 02.2014.

[32] PROGRAM FUNKCJONALNO-UŻYTKOWY, Zaprojektowanie i wybudowanie obwodnicy Kłodzka w ciągu dk 33 wraz z łącznikiem dk 46.

[33] Program Funkcjonalno-Użytkowy, Droga S-7, Odcinek II: węzeł "Szczepanowice" (wraz z węzłem)
 węzeł "Widoma" (wraz z węzłem) z 2017 r.

[34] Program Funkcjonalno-Użytkowy, Droga S-19, Część nr 3: obwodnica m. Kraśnik (węzeł "Kraśnik" – obecnie "Kraśnik Północ" – węzeł "Słodków" obecnie "Kraśnik Południe" z węzłem) z 2017 r.

[35] Program Funkcjonalno-Użytkowy, Droga S-61, Zadanie nr 1: m. Szczuczyn – w. Ełk Południe od km 0+000 do km 23+255 z 2017 r.

[36] S.M. Springman, A.R Norrish, C.W. Ng, Cyclic Loading of Sand Behind Integral Abutment Bridges. TRL Report 146, 1996.

[37] Dreier D., Burdet O., Muttoni A., Transition Slabs of Integral Abutment Bridges, Structural Engineering International, 2/2011, str. 144-150.

[38] Muttoni A., Dumont A.-G., Burdet O., Savvilotidou M., Einpaul J., Nguyen M. L., Experimental verification of integral bridge abutments, Rapport OFROU, Switzerland, 2013.

[39] Sawicki A, Świdziński W, Problem Odciążenia i obciążenia w mechanice gruntów. Czasopismo Techniczne Politechniki Krakowskiej. Z 3-Ś/2008

[40] Dołżyk K., Warunki stanu granicznego dla ośrodków rozdrobnionych. Budownictwo i Inżynieria Środowiska. 2/2011.

[41] Trąmpczyński W., Sokołowski K., Wstęp do mechaniki gruntów, Wydawnictwo Politechniki Świętokrzyskiej, 2004.

[42] Glinicki S.P., Geotechnika Budowlana, Wydawnictwa Politechniki Białostockiej, 1990.

[43] Glazer Z., Mechanika gruntów, Wydawnictwa Geologiczne, 1985.

[44] Chang-Yu Ou. Deep excavation: Theory and practice. Taylor & Francis Group, London, UK 2006.

[45] James R. G., Bransby P. L. Géotechnique. A Velocity Field for Some Passive Earth Pressure Problems. Volume 21 Issue 1, March 1971, pp. 61-83.

[46] BS 8002:1994. Code of practice for earth retaining structures.

[47] Jarominiak A., Lekkie konstrukcje oporowe. Wydawnictwa Komunikacji i Łączności 1989

[48] S. Pisarczyk, Mechanika gruntów. Oficyna Wydawnicza Politechniki Warszawskiej 2005.

[49] O.L. Rudykh, Effect of Displacement of the Retaining Walls on Parameters of the Lateral Earth Pressure Diagram. Geotechnika 08.2006.

[50] Y. Wang, Z. Tang, B. Zheng, Distribution of Active Earth Pressure of Retaining Walls with Wall Movement of Rotation about Top. Geotechnika 08.2006.

[51] Wiłun Z., Zarys geotechniki. Wydawnictwa Komunikacji i Łączności, 1987.

[52] V.D. Kostiukow, Determination of Lateral Earth Pressure on Retaining Walla with Consideration of Dispersion of the Values of the Physicomechanical Characteristics of Backfill. Geotechnika.

[53] Łupieżowiec M., Lepkoplastyczność w gruntach, wrażliwość na prędkość odkształcenia. Zeszyty Naukowe Politechniki Śląskiej. Nr. kol 1559 z.95, 2002)

[54] G.L England, N.C.M. Tsang, D.I. Bush, A Fundamental Approach to The Time Temperature Loading Problem, 2000.

[55] E. J. Hoppe, Field Study of an Integral Backwall Bridge. Virginia Transportation Research Council VTRC 97-R7, 1996.

[56] E. J. Hoppe, Field Study of Integral Backwall with Elastic Inclusion. FHWA Conference, Integral abutment and Jointless Bridges. 16-18.03.2005 Baltimore, Maryland.

[57] O. Kerkoski, Soil-Structure Interaction of long Jointless Bridges with Integral Abutments. Tampere University of Technology. Publication 605, 2006.

[58] LRFD Bridge Design Manual. Loads and loads factors, Minnesota DOT, 10.2003.

[59] PN-EN 1997-1/:2005 Eurokod 7 Projektowanie geotechniczne. Część 1: Zasady ogólne.

[60] S. Denton, T. Christie, J. Shave, A. Kidd, Recommendations for the Design of Structures Subject to Traffic Loading to EN1997-1, PD6694-1.

[61] E.C. Hambly, Bridge Deck behavior, 1991) E&FN second edition.

[62] M. Dicleli, A Rational Design Approach for Prestressed-Concrete-Girder Integral Bridges. Engineering Structures, 03.2000) Vol. 22, No. 3 strony 230-245.

[63] M. Dicleli, Simplified Model for Computer-Aided Analysis of Integral Bridges. Journal of Bridge Engineering, 08.2000) Vol. 5, No. 3, strony 240-248.

[64] Dembicki E., Rymsza B., Obliczanie parcia i odporu gruntu według Eurokodu 7, Postęp czy regres? INŻYNIERIA MORSKA i GEOTECHNIKA. Nr 3/2015 strony 237-246

[65] J.S. Horvath, Integral-Abutment Bridges. Problems and Innovative Solutions Using EPS Geofam and Other Geosynthetics, 05.2000) Manchatan College Research Report No. CE/GE-00-2.

[66] PN-91/S-10042 Obiekty mostowe. Konstrukcje betonowe, żelbetowe i sprężone. Projektowanie.

[67] Madaj A., Wołowicki W. Podstawy projektowania budowli mostowych. Wydawnictwo Komunikacji i Łączności. Warszawa 2003.

[68] Memorandum. Illinois DOT. 04.1997.

[69] Bridge Design Manual. Section 3.62. Missouri DOT, 04/2004.

[70] PN-EN 1991-1-1: Eurokod 1, Odziaływania na konstrukcje, Część 1-1: Odziaływania ogólne, Ciężar objętościowy, ciężar własny, Obciążenia użytkowe w budynkach.

[71] Unit Weight of Reinforced Concrete. Memorandum Washington SDT, 04.2000.

[72] Bridge Design Specification. Caltrans, 02.2004.

[73] Bridge Design Manual, Section 1.2, Missouri DOT, 08/2004.

[74] PN-81/B-03020 Grunty budowlane. Posadowienie bezpośrednie budowli. Obliczenia statyczne i projektowanie.

[75] PN-58/B-03261. Betonowe i żelbetowe konstrukcje mostowe. Obliczenia statyczne i projektowanie.

[76] PN-63/S-10040. Drogi samochodowe. Mosty żelbetowe. Warunki techniczne wykonania i odbioru.

[77] PN-64/S-10041. Drogi samochodowe. Mosty betonowe sprężone. Wykonanie i badania.

[78] PN-68-B-03010 Ściany oporowe. Obliczenia statyczne i projektowanie.

[79] PN-B-03020:1974 Grunty budowlane. Projektowanie i obliczenia statyczne posadowień bezpośrednich.

[80] PN-S-10040:1977 Żelbetowe i betonowe konstrukcje mostowe. Wymagania i badania.

[81] PN-S-10050:1977 Stalowe konstrukcje mostowe. Wymagania i badania.

[82] PN-66/B-02015. Obiekty mostowe. Obciążenia.

[83] Aneks nr 7, Projekt Wstępny autostrady A2, Transprojekt Poznań, 1996.

[84] Projekty Budowlane i Wykonawcze 31 obiektów inżynierskich sekcji I Września - Konin autostrady

A2. Zespół projektantów T. Bączyk, K. Fidler, J. Jankowski, W. Konkiewicz, R. Palicki, G. Ratajczak,R. Ratajczak – Transprojekt Poznański (2001).

[85] PN-S-10050:1989 Stalowe konstrukcje mostowe. Wymagania i badania.

[86] PN-S/99-10040:1999 Konstrukcje betonowe, żelbetowe i sprężone. Wymagania i badania.

[87] PN-81-B-03020:1997 Grunty budowlane. Posadowienie bezpośrednie budowli. Obliczenia statyczne i projektowanie.

[88] Aprobata Techniczna ITB AT-15-4120/2000, Stalowe pręty żebrowane do zbrojenia betonu RB 500W/BSt500S TECOR i RB 400W TECOR o średnicach: 10, 12, 14, 16, 18, 20, 22, 25, 28 i 32 mm.
[89] Aprobata Techniczna IBDiM Nr AT/2000-04-0959, Bariery i barieroporęcze stalowe dla konstrukcji obiektów mostowych

[90] Aprobata Techniczna IBDiM Nr AT/2001-04-1115, Pręty żebrowane do zbrojenia betonu RB 500W/BSt500S.

[91] Projekty Budowlane i Wykonawcze 39 obiektów inżynierskich sekcji II i III Września -Krzesiny i Komorniki – Nowy Tomyśl autostrady A2. Zespół projektantów – A. Nadolny, K. Skowrońska, W. Szkudlarek, K. Topolewicz – Transprojekt Gdański, ORTOTRANS, Transprojekt Warszawski (2001-2002).

[92] Raport z przeglądu gwarancyjnego obiektów mostowych autostrady A2 (Konin – Nowy Tomyśl), 05.2005.

[93] Raport z przeglądu gwarancyjnego wiaduktu WD101 na autostradzie A2 (Konin – Nowy Tomyśl), 19.04.2007.

[94] Zalecenia nadzoru autorskiego po przeglądzie gwarancyjnym dla wiaduktu WD101 na autostradzie A2 (Konin – Nowy Tomyśl), 24.04.2007.

[95] I. Husain, D. Bagnariol, Performance of Integral Abutment Bridges, Ontario Ministry of Transportation. Report BO-99-04, 2000.

[96] Performance of Piles Supporting Integral Bridges. Transportation Research Record Journal of the Transportation Research Board 1808, 01.2002.

[97] An Integral Abutment Bridge with Precast Concrete Piles. Iowa Highway Research Board Project TR-438 and Iowa Department of Transportation Project 99-48. May 2007.

[98] Bridge Practice Guidelines. Arizona DOT.

[99] Structure Approaches Types. Caltrans.

[100] Bridge Manual, Illinois, 04.1999.

[101] Bridge Design Guide, Maine DOT, 07.2004.

[102] Bridge Design Manual, Michigan.

- [103] Bridge Approaches Slabs APN 5, 6. Missouri DOT, 13.09.2004.
- [104] Approaches Slabs. Nebraska Department of Road, Bridge Division, 01.2003.
- [105] Construction Details. New Jersey DOT.
- [106] Bridge Manual. New Jork DOT, 04.2002.
- [107] Bridge Design Manual. OHIO DOT, 01.2004.
- [108] Standard Integral Abutments. Commonwealth of Pennsylvania DOT, 01.2003.
- [109] Pavement/Approach Slab Details, Utah DOT, 03.2004.
- [110] Bridge Details. Tennessee DOT, 1996.
- [111] Structures Manual. Vermont AOT, 2004.
- [112] Bridge Design Manual. Washington DOT, 08.2002.
- [113] Bridge Design Manual. West Virginia DOT, 03.2004.

[114] Katalog Detali Mostowych. Biuro Projektowo, Badawcze Dróg i Mostów "Transprojekt-Warszawa", 2002.

[115] Bridge Group Structure Detail. Approach slab detail 2.01 i 2.02. Arizona DOT.

[116] Hoppe E. J., Bagnall T. M. Performance of Skewed Semi-Integral Bridge: Final Report VTRC 08-R20: Virginia Transportation Research Council, 06.2008.

[117] BRIDGE APPROACHES DD-631. WEST VIRGINIA DEPARTMENT OF TRANSPORTATION, DIVISION OF HIGHWAYS, DESIGN DIRECTIVE, 01.10.2003.

[118] Memo to Designers. Caltrans, 12.1992.

[119] B. Dupont, D. Allen, Movements and Settlements of Highway Bridges Approaches. Kentucky Transportation Centre report KTC-02-18/SPR-220-00-1F, 06.2002.

[120] Elias V., Corrosion/ Degradation of Soil Reinforcements for Mechanically Stabilized Earth

Walls and Reinforced Soil Types. Report FHWA-NHI-00-044, 09.2000.

[121] Beckham T.L, Sun. L., Hopkins T.C., Corrosion Evaluation of Mechanically Stabilized Earth Walls. Report KTC-05-28/SpR 239-02-1F, 09.2005.

[122] Rowińska W., Wysokowski A. Pryga A., Zalecenia projektowe i technologiczne dla podatnych konstrukcji inżynierskich z blach falistych, 2004.

[123] Load and Resistance Factor Design (LFRD) for Highway Bridge Substructures. FHWA HI-98-032, 05.2001.

[124] EN 1993-5:2007.: Eurocode 3, Design of steel structures, Part 5: Piling.

[125] CAN/CSA S6-00, Canadian Highway Bridge Design Code.

[126] AS/NZS 2041:1998 Australian/New Zealand Standard TM Buried corrugated metal structures. Standards Australia and Standards New Zealand jointly.

[127] Adamczewski G., Woyciechowski P., Oleszek R.: Prefabrykacja, jakość, trwałość, różnorodność. Zeszyt 4. Obiekty infrastruktury drogowo-mostowej. Stowarzyszenie Producentów Betonów. Warszawa, wrzesień 2016.

[128] Katalog typowych konstrukcji drogowych obiektów mostowych i przepustów. Część 1: Kształtowanie konstrukcji. Wzorce i standardy rekomendowane przez Ministra właściwego ds. transportu WR-M-21-1. Rekomendował: Minister Infrastruktury w dniu 13 czerwca 2019 r. (DDP.4.0600.11.2017.GK.16). [129] Grabiec K., Konstrukcje betonowe. Przykłady obliczeń statycznych. Wydawnictwo Naukowe PWN. Warszawa-Poznań. 1996.

[130] PN-EN 1991-1-5: Eurokod 1,Oddziaływania na konstrukcje. Część 1-5: oddziaływania ogólne. Oddziaływania termiczne

[131] Szydło-Stilger E., Posadowienie budowli infrastruktury transportu lądowego. Dolnośląskie Wydawnictwo Edukacyjne. Wrocław, 2005.

[132] E. Hoppe, Guidelines for the use, design and construction of bridge approach slabs. Report VTRC 00-R4, 11.1999.

[133] Memos to Designers. Caltrans, 05.1996.

[134] Kulawik A., Dylatacje w mostach integralnych, str. 123-128. V Ogólnopolska Konferencja Mostowców, Konstrukcja i wyposażanie mostów. Wisła, 11.2008.

[135] Bridge Standard drawing xs3-010-1. Structure approach N(14D). California DOT, 07.2003.