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Abstract

Energy Efficiency (EE) is the crucial consideration in designing the current and future wireless

communication systems. Devices connected to the Internet have produced 3.5% of global CO2

emissions in the last 10 years, and it is anticipated that this nuber will increase to 14% by 2040.

Moreover, in 2025, it is expected that the Information And Communications Technology (ICT)

will be responsible for 20% of all the world’s electricity becoming the largest global energy users.

Therefore, EE has become one of the Key Performance Indicators (KPI) in designing the Fifth

Generation (5G) networks, and the power consumption in 5G networks is aimed to be 10% of the

power consumed by ICT infrastructure in 2015. Furthermore, the paradigms for future 5G systems

are: 1000 times the capacity, 10 times connection density, 10 times experienced throughput, 3

times spectrum efficiency, 100 times energy efficiency of the contemporary Fourth Generation

(4G) networks, and latency lower than 1 ms.

In this dissertation, algorithmic solutions have been proposed to provide high energy efficiency

of the Orthogonal Frequency Division Multiplexing (OFDM) based wireless communication sys-

tems with the computational awareness. Here, the computational awareness of an intelligent radio

communication system means that in the algorithms for EE optimization, the power consumption

of required signal processing and computations are taken into account, both at the transmitter

and the receiver.

First, the state of the art with the original classification of the key aspects of energy-efficient

resource allocation in the context of OFDM is presented. The definition of the EE metric with

the ways its maximization are presented. Moreover, the analysis of each aspect and the relation

between them have been discussed. Then, the investigated energy-efficient resource allocation

methods and solutions are presented for a single OFDM link, multiuser Orthogonal Frequency

Division Multiple Access (OFDMA) networks and multiuser OFDMA relay networks.

Regarding a single OFDM link, a computationally-aware adaptive resource allocation algo-

rithm has been proposed for energy efficiency. Research results show that the proposed algorithm

increases EE and the average throughput, reduces the required transmit power and the total power

consumption by the Adaptive Modulation and Coding (AMC) and transmit power selection.

In the context of multiuser OFDMA networks, an iterative algorithm is proposed to maximize

the overall energy efficiency of the downlink transmission taking the limitations of the practical

wireless communication systems into account, such as the fact that the allowable code rates take

discrete values, and that subcarriers are grouped in resource blocks. It is also assumed that all

Resource Blocks (RBs) assigned to the same user must use the same Modulation and Coding

Scheme (MCS), as in the Long-Term Evolution (LTE) or 5G specification. In order to maximize

EE, the author of this thesis proposes the iterative algorithm with fast convergence based on the

Dinkelbach method. Simulation results show that despite the computational simplicity of the

proposed solution, it achieves better results than the solutions known from the literature.

The joint subcarrier (SC) allocation, pairing and power loading for optimized energy efficiency
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in multiuser, multicarrier downlink Decode and Forward (DF) relay interference networks with

computational awareness has also been investigated in this thesis. In order to maximize EE of

the network, the transmission mode is adapted to instantaneous channel conditions. For the

benefit of spectral-efficiency, both direct- and relayed transmission is allowed to use the same SCs

simultaneously. Linearly rate-dependent power consumption of signal processing is considered. The

author develops an iterative algorithm based on the Successive Concave/Convex Approximation

(SCA) and the Dinkelbach method to tackle the nonlinear fractional programming problem which

maximizes EE of the system. Simulation results demonstrate the effectiveness of this solution for

future relay networks.

Finally, in this thesis, the practicality of the energy-efficient resource allocation is discussed.

The author also touches upon the problem of nonlinear Power Amplifier (PA) characteristics

(causing distortions typical for OFDM signals) to be taken into account for energy-efficient resource

allocation. The author discuss trade-offs and provides recommendations for future energy-efficient

OFDM networks design.



Streszczenie

Efektywność energetyczna (ang. energy efficiency - EE) jest kluczowym czynnikiem projektowania

obecnych i przyszłych systemów komunikacji bezprzewodowej. Obecnie urządzenia podłączone do

sieci Internet są odpowiedzialne za 3, 5% globalnej emisji dwutlenku węgla a według przewidywań

wartość ta wzrośnie do 14% w przeciągu 10 lat. Na dodatek, przewiduje się, że w 2025 roku

technologie informacyjne i komunikacyjne będą zużywały 20% całkowitej światowej energii elek-

trycznej stając się największymi światowymi konsumentem energii. Dlatego też EE jest jednym z

kluczowych wskaźników efektywności (ang. Key Performance Indicators - KPI) w projektowaniu

sieci 5. generacji (ang. Fifth Generation - 5G), dla których zużycie energii powinno wynosić 10%

mocy pobieranej przez infrastrukturę teleinformatyczną w 2015 roku. Ponadto, paradygmatami

przyszłych systemów 5G są: 1000 razy większa przepustowość, 10 razy większa gęstość połączeń,

10 razy większa doświadczona przepustowość, 3 razy większa wydajność widmowa, 100 razy wyż-

sza efektywność energetyczna w porównaniu do obecnych systemów 4G oraz opóźnienie niższe niż

1 ms.

W niniejszej rozprawie przedstawiono algorytmy przydziału zasobów zapewniające wysoką efek-

tywność energetyczną systemów komunikacji bezprzewodowej opartych na technice OFDM (ang.

Orthogonal Frequency Division Multiplexing) ze świadomością obliczeniową. Wspomniana świa-

domość obliczeniowa oznacza, że w algorytmach optymalizujących EE brana jest też pod uwagę

moc niezbędna do realizacji przetwarzania sygnałów i potrzebnych obliczeń.

W pierwszej kolejności przedstawiony został stan wiedzy wraz z oryginalną klasyfikacją kluczo-

wych aspektów energooszczędnej alokacji zasobów w kontekście techniki OFDM. Przedstawiono

definicję metryki EE oraz sposoby jej maksymalizacji. Ponadto, przedstawiono analizę każdego z

aspektów i zależności między nimi. Następnie przedstawiono oryginalne algorytmy optymalizacji

efektywności energetycznej kolejno: dla pojedynczego łącza OFDM, sieci z wielodostępem OFDMA

(ang. Orthogonal Frequency Division Multiple Access) oraz wielodostępowych sieci przekaźniko-

wych OFDMA.

Jeśli chodzi o pojedyncze łącze OFDM, zaproponowano efektywny energetycznie adaptacyjny

algorytm przydziału zasobów ze świadomością obliczeniową. Wyniki badań pokazują, że zapropo-

nowany algorytm zwiększa EE oraz średnią przepustowość, zmniejsza wymaganą moc nadawczą

oraz całkowity pobór mocy poprzez zastosowanie adaptacyjnego wyboru modulacji i kodowania

(ang. Adaptive Modulation and Coding - AMC) oraz mocy nadawanej.

W kontekście wielodostępnych sieci OFDMA zaproponowano iteracyjny algorytm maksyma-

lizacji całkowitej efektywności energetycznej transmisji w dół, uwzględniający ograniczenia prak-

tycznych systemów komunikacji bezprzewodowej, takie jak fakt, że dopuszczalne szybkości kodo-

wania przyjmują wartości dyskretne, a podnośne są pogrupowane w bloki zasobów (ang. Resource

Blocks - RBs). Zakłada się również, że wszystkie bloki zasobów przypisane do tego samego użyt-

kownika muszą wykorzystywać ten sam schemat modulacji i kodowania (ang. Modulation and

Coding Scheme - MCS), tak jak w specyfikacji LTE (ang. Long-Term Evolution) lub 5G. W celu
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maksymalizacji EE, autor rozprawy proponuje algorytm iteracyjny o szybkiej zbieżności oparty na

metodzie Dinkelbacha. Wyniki symulacji pokazują, że pomimo prostoty obliczeniowej proponowa-

nego rozwiązania, osiąga ono lepsze wyniki niż rozwiązania znane z literatury. W niniejszej pracy

badano również łączny przydział podnośnych (ang. subcarrier - SC) oraz alokowanie mocy w celu

optymalizacji efektywności energetycznej w wielodostępnych sieciach przekaźnikowych w łączu w

dół działających w trybie zdekoduj i przekaż (ang. Decode and Forward DF) ze świadomością

obliczeniową, tzn. z uwzględnieniem energii związanej z obliczeniami. W celu maksymalizacji

EE sieci, tryb transmisji jest dostosowywany do warunków kanału. Ze względu na efektywność

spektralną, dozwolone jest jednoczesne korzystanie z tych samych SC zarówno w transmisji bez-

pośredniej jak i z wykorzystaniem przeźnika. W celu rozwiązania problemu optymalizacyjnego

autor opracował iteracyjny algorytm oparty na metodzie sukcesywnej aproksymacji funkcji wy-

pukłej/wklęsłej (ang. Successive Concave/Convex Approximation SCA) i metodzie Dinkelbacha,

który maksymalizuje EE systemu. Wyniki symulacji pokazują skuteczność tego rozwiązania dla

przyszłych sieci przekaźnikowych.

Na zakończenie rozprawy autor porusza również problem nieliniowości wzmacniacza mocy (ang.

Power Amplifier - PA) powodujących zniekształcenia typowe dla sygnałów OFDM, które należy

uwzględnić przy projektowaniu algorytmów maksymalizujących efektywność energetyczną. Autor

omawia również praktyczne aspekty projektowania przyszłych energooszczędnych sieci OFDM oraz

przedstawia stosowne rekomendacje dla ich wdrażania.
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Introduction

In the era of ubiquitous Internet access, exponential growth of telecommunication traffic can be

observed every year. According to Cisco predictions there will be 4.8 billion of global Internet users

in 2022 and 28.5 billion networked devices and connections [1]. Moreover, the mobile data traffic

will increase to 930 eksabytes annually in 2022. According to the Ericsson Mobility Report [2],

communication of 26.9 billions of machines and devices that are expected by 2026 to comprise the

Internet of Things (IoT) poses challenges, never encountered before. One of these challenges is an

increase of energy consumption associated with the data-traffic growth worldwide. That is why

reduced-energy wireless communication has been in the focus of research and industry interest

for the recent years, aiming at achieving 10 times the EE in the 5G radio systems compared

with the 4G of these systems [3]. Moreover, so-called zero-energy radios are envisioned for future

Sixth Generation Sixth Generation (6G) systems as their technology enablers [4]. According to

this vision, drivers from society, including the United Nations sustainability goals, will shape 6G

communication systems. Moreover, high energy efficiency to reduce the overall network energy

consumption will be a critical requirement for these future systems.

On the completion of 3GPP Release 15 [5] and Release 16 [6] (as of today, Release 17 be-

ing under way), the set of 5G standards has been defined. As in 4G LTE standard, the OFDM

has been proposed for 5G systems. Moreover, OFDM has been also successfully applied in other

radio communication systems, such as Wireless Local Area Networks (WLANs), including IEEE

802.11a/g/n, Wireless Metropolitan Area Networks (WMANs), including Worldwide Interoper-

ability For Microwave Access (WiMAX) standard, Wireless Personal Area Networks (WPANs),

including MultiBand - OFDM in the 3.1− 10.6 GHz band, as well as in the Digital Audio Broad-

casting (DAB) or Digital Video Broadcasting-Terrestrial (DVB-T) systems. Popularity of the

OFDM technique results from its known advantages: high Spectral Efficiency (SE) compared to

other double sideband modulation schemes, flexibility and adaptation potential to channel condi-

tions, robustness against intersymbol interference (ISI), efficient implementation using Fast Fourier

Transform (FFT), low sensitivity to time synchronization errors and facilitation of the Single Fre-

quency Networks (SFNs) [7]. Finally, OFDMA is the popular OFDM-based method for Medium

Access Control (MAC) layer to facilitate multiple users network access.

Motivated by the increased mobile communication traffic, required high data-rates and asso-

ciated energy-consumption on one hand, and the applicability of the OFDM/OFDMA techniques

in contemporary and prospective radio communication systems on the other, in this dissertation,

the author presents his research that led to new approaches and promising methods to optimize

wireless OFDM/OFDMA links and networks. Contrarily to the traditional approach to mini-

mize the transmission power for the assumed target bit-rate, the author focuses on advanced

power-consumption models and optimization of the energy efficiency metric defined as the number

of successfully transmitted and received bits per Joule. This is because depending on the link

quality, power consumption of different causes, e.g., Radio Frequency (RF) signal radiation at a

1
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transmitter, analog circuits and components, or Baseband (BB) digital signal processing both at a

transmitter and at a receiver, may dominate over each other, and may be worth minimization for

overall energy efficiency. Moreover, the optimization algorithm itself also consumes energy, that

needs to be accounted for. Thus, the power consumption modelling of wireless communication

systems must take necessary computations into account, both at the transmitter and the receiver,

and not just the transmitted power (as in the conventional approach). Intelligent utilization of

such a model in the link- and network- energy-efficiency optimization algorithms, is here below

called computational awareness.

Dissertation thesis and main goals

The thesis of this dissertation is the following:

New algorithms can be devised, more effective than the existing ones, for OFDM/OFDMA-

based systems that allow for maximization of the energy efficiency taking into account the baseband

processing power consumption.

The main goal of the thesis is to propose such enhanced techniques and in particular:

• To develop the effective, low-cost algorithm for the maximization of the energy efficiency

metric in computationally-aware OFDM link with adaptive transmission power and adaptive

modulation and coding selection (This goal is addressed in Chapter 2).

• To develop the algorithm for energy-efficient resource allocation in the multiuser OFDMA

network which takes the limitations of the piratical wireless communication systems into

account (This goal is addressed in Chapter 3).

• To solve the optimization problem for energy efficiency maximization in multiuser decode

and forward relay interference network with computational awareness (This goal is addressed

in Chapter 4).

• To identify recommendations for future energy-efficient OFDM networks design (This goal

is addressed in Chapter 5).

Overview of the dissertation contributions

In Chapter 1, the state of the art and the key aspects of the energy-efficient resource allocation

in the context of OFDM systems are presented. The definition of the energy efficiency metric and

the ways to maximize it are discussed. Moreover, the problem of the transmission data rate and

power consumption estimation in wireless systems are discussed. The approaches to data rate and

power consumption estimation with their advantages and disadvantages have been distinguished

in this chapter, as well. Then, the general view of the system limitations and requirements in the

context of energy-efficient resource allocation is presented. Finally, the overview of the optimization

methods are presented that can be applied to solve the problem of the energy efficiency metric

maximization.

Chapter 2 is devoted to the energy-efficient resource allocation in the context of a single OFDM

link. The aspects of the energy-efficient resource allocation provided in Chapter 1 are first reviewed

in the context of a single link scenario. Moreover, the author of this thesis proposes the algorithm

for the energy-efficient resource allocation in a computationally-aware adaptive OFDM system.

Here, by resources, the power, the subcarriers or resource blocks are meant. The proposed algo-

rithm maximizes the energy efficiency metric which takes not just the transmit power, but also
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the transceiver computation-power consumption into account by adaptive transmit power and

AMC selection. The AMC selection causes that the defined optimization problem belongs to a

broader class of Mixed Integer Nonlinear Fractional Programming (MINLFP) programming prob-

lem what means that the optimization variables take continuous and discrete values. Therefore,

the optimization problem has been transformed by introducing the decision matrix, the Dinkelbach

method and than solved using dual decomposition method. The analytical solutions are derived

by the numerical method according to the Lagrange multipliers and Karush-Kuhn-Tucker (KKT)

conditions. Simulation results show that the adaptive modulation and coding techniques allow

for: increased energy efficiency, increased average throughput, reduced required transmit power

and reduced total power consumption. Moreover, there exists the optimal point for the transmit

power maximizing the energy efficiency. Finally, the results show that the EE values obtained by

the proposed algorithm are achieved with superlinear convergence.

In Chapter 3, the author of this thesis focuses on the energy efficiency maximization in the

multiuser OFDMA network. First, analogously as in the previous chapters, the data rate, power

consumption, system limitations and requirements as well as optimization aspects are reviewed

in the context of multiuser network. An iterative algorithm is proposed to maximize the overall

energy efficiency of the downlink transmission by allocating the RBs and the transmit power,

which is constant for all RBs assigned to a given user. Moreover, the author assumes that all RBs

assigned to the same user must use the same MCS, as in the LTE and 5G specifications. Due

to the continuous values of the Signal to Noise power Ratio (SNR) and discrete values of the SE

and code rate the defined optimization problem is MINLFP programming problem. Moreover,

because the modulation and coding scheme for each user has to be chosen from the finite set the

optimization is combinatorial. Therefore, the optimization problem is very difficult in the original

form and cannot be solved analytically. Thus, in order to maximize EE, the author of this thesis

proposes the iterative algorithm with fast convergence based on the Dinkelbach method. In each

iteration, the solution for the power and resource blocks allocation is derived by the numerical

method using the KKT multipliers and KKT conditions, while MCS, for each user, is obtained by

the iterative algorithm. Simulation results show that despite the computational simplicity of the

proposed solution, it achieves better results than the solutions known from the literature.

The energy-efficient resource allocation in the multiuser OFDMA relay network is addressed

in Chapter 4. The different system models in the context of the relay network with the data rate,

power consumption estimation and system limitations and requirements are discussed. First, the

optimization methods mainly applied in the context of the relay network are reviewed. Then,

the author of this thesis investigates joint SC allocation, pairing and power loading for optimized

energy efficiency in multiuser, multicarrier downlink DF relay interference networks with compu-

tational awareness, i.e., taking computations-related energy into account. In order to maximize

EE of the network, the transmission mode is adapted to instantaneous channel conditions. For the

benefit of spectral-efficiency, both direct- and relayed transmission is allowed to use the same SCs

simultaneously. Linearly rate-dependent power consumption of signal processing is considered.

The formulated optimization problem is the nonconvex MINLFP problem, which has NP-hard

complexity. Hence, the author approximates the problem by the series of equivalent convex prob-

lems applying convex relaxation techniques such as a SCA. Based on these transformations, the

author develops an iterative algorithm exploiting the Dinkelbach method to tackle the nonlinear

fractional programming problem which maximizes EE of the system. Simulation results demon-

strate the effectiveness of this solution for future relay networks.

In Chapter 5 the author of this thesis discuss the practicality of the energy-efficient resource

allocation. The author also touches upon the problem of nonlinear PA characteristics (causing
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distortions typical for OFDM signals) to be taken into account for energy-efficient resource al-

location. The author discuss trade-offs and provides recommendations for future energy-efficient

OFDM networks design.

Finally, this dissertation is concluded in Chapter 6, in which the main findings of the author

regarding energy-efficient resource allocation in OFDM systems with computational awareness are

summarized.
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Chapter 1

Energy-Efficient Resource Allocation

Energy-saving or energy-efficient operation of communication and computing networks is typically

evaluated using metrics related to either a total energy-consumption figure or the expected perfor-

mance per energy unit. The later is called energy efficiency, and can be expressed in the number

of successfully transmitted bits per Joule or the number of computational operations (clock cycles)

per Joule or the number of transported and processed computational tasks per Joule. This thesis

concentrates on wireless networks exploiting OFDM/OFDMA flexibility for energy-efficient com-

munication. For such networks, the energy efficiency metric η is commonly defined as a benefit-cost

ratio, where the achieved data rate is divided over the associated power consumption:

η

[
bit

Joule

]
=

data rate [bit/s]

power consumption [W]
. (1.1)

Thus, this EE metric determines the number of successfully transmitted, received and processed

bits per energy unit, and should be maximized. Here, processing of bits refers to digital signal

processing both at the transmitter and at the receiver, which is required for successful transmission

and reception of information. In Figure 1.1, the relation between the energy efficiency and transmit

power for different values of the SNR is presented1 for a single link. Let us observe that there

exist the optimal point for the transmit power that maximizes EE. It means that there exists

a trade-off between the data rate (which is dependent on the transmission power) and the total

power consumption which allows for energy-efficient transmission. Moreover, for the higher SNR

values, the optimal point is reached for lower transmission power.

Thus, in order to maximize the energy efficiency of wireless communications systems, one of

three ways can be chosen:

(i) The maximization of the data rate, whilst minimizing the total power consumption. This

approach is practically infeasible because the achievable data rate strictly depends on the

transmit power (and the overall power consumption) and vice versa.

(ii) The maximization of the data rate with a minimum possible increase in power consumption

(e.g., minimum increase of the transmit power can cause a significant gain in the date rate,

particularly for low SNR values).

(iii) The minimization of the power consumption with a minimum reduction of the data rate

(e.g. by applying less advanced coding decoding energy can be reduced, particularly at short

communication distances).
1Note that because in this chapter, the author of this thesis aims at discussing the general problems of rate

and power estimation, in Figure 1.1 and in several following figures, particular values on the axes are omitted.
This is intentional to show the general trends and relations between graph coordinates, abstracting from particular
simulation scenarios.
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Figure 1.1: Relation between the EE and transmit power for different values of the SNR.

In the context of the energy-efficient resource allocation exploiting OFDM/OFDMA techniques,

the second and third approaches are usually chosen because in OFDM/OFDMA based networks,

the total available bandwidth and power are partitioned into a number of SCs or RBs. For

each of them, the transmission parameters can be determined and adopted, depending on the

channel conditions. Moreover, the short time-scale approach can be applied to maximize the

energy efficiency metric. It means that the resource allocation is realized in the frequency domain

for a given time slot.

Here, by resources the author means energy-related communication means (such as transmit

power, basic resource blocks, MCSs and other transmission parameters) and network means (such

as relying nodes) that can be adjusted, depending on channels and network conditions. Optimiza-

tion of resource allocation for energy efficiency involves estimation of the transmission rate and

power consumption as well as taking all transmission limitations and network requirements into

TRANSMISSION 
RATE 

ESTIMATION

POWER 
CONSUMPTION 
ESTIMATION

SYSTEM LIMITATIONS/REQUIREMENTS

OPTIMIZATION

Figure 1.2: Interaction between the tasks of energy-efficient resource allocation in wireless com-
munication systems.



1.1. Estimation of the transmission data rate 9

account what has been elaborated in the following subsections, in detail. Regarding the first two

tasks, namely transmission rate- and power consumption estimation, they are required for the en-

ergy efficiency metric definition. Based on the literature review, the author distinguishes different

approaches to estimate the data rate and power consumption, and analyze them. Regarding the

system limitations/requirements identification task, the author concentrates on the system and

network constraints and requirements which have to be fulfilled, and demonstrates their impact

on the energy efficiency. Finally, in the optimization task, the challenges and problems related to

finding the solution of the EE optimization problem are discussed, allowing for the design of the

energy-efficient resource allocation algorithm.

Figure 1.2 shows how the considered tasks interact with each other. Specifically, the power

consumption estimation is determined by the transmission rate estimation (e.g. if coded trans-

mission is considered, the power consumed by the encoder and decoder should be taken into

account). The system limitations and requirements have an impact on transmission rate estima-

tion (for example, when the fairness constraint or/and subcarriers grouping into resource blocks

are considered). The transmission and power consumption estimations determine how the sys-

tem limitations/requirements are met, while all aspects have an impact on the solution of the

optimization problem which allows for energy-efficient resource allocation.

1.1 Estimation of the transmission data rate

The crucial aspect of the energy-efficient resource allocation is the estimation of the data rate and

power consumption - the numerator and denominator of (1.1) respectively. In this subsection, the

main approaches to the transmission rate estimation are described. Having in mind the diversity

of wireless communication systems, the transmission rate estimation is not a trivial task. In the

literature (not just that related to energy-efficient resource allocation), three main approaches of

transmission rate estimation can be distinguished:

(i) based on the Shannon formula,

(ii) estimated by the Shannon formula with scaling factors,

(iii) based on the error-rate function and the SE of the applied MCS.

The Shannon formula for transmission rate estimation is the most commonly used approach.

In general, the data rate described by Shannon formula is given by:

R

[
bit

s

]
= ∆f · log2

(
1 +

PR

σ2
N + σ2

I

)
, (1.2)

where ∆f is the channel (and the signal) bandwidth, PR is the average received signal power over

that bandwidth, while σ2
N and σ2

I are the average powers of the noise and interference respectively

over bandwidth ∆f . The Shannon formula can be easily adopted to OFDM/OFDMA subcarrier-

channels as well as to different network scenarios e.g. multi-cell, heterogeneous or cooperative

network. Moreover, according to (1.2), R for σ2
I = 0 is the concave function of the signal

power PR, while when σ2
I 6= 0, there exist techniques which allow to transform it into the concave

one. (Note that concavity of this function results in relatively low computational complexity of

its optimization, as well as optimization of the energy efficiency, which is in the focus of this

thesis.) The Shannon formula formulates the upper bound of the data rate which is not achieved

by any practical wireless system. Therefore, using (1.2) for data rate estimation can be treated as

idealistic approach which does not take the limitations of practical communication systems (e.g.,

such as a limited set of the modulation and coding schemes) into account.
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Figure 1.3: The spectral efficiency as a function of SNR for three approaches of the data rate
estimation.

In order to account for practical limitations of a wireless communication system, the data rate

can be estimated by:

R

[
bit

s

]
= ξ ·∆f · log2

(
1 +

ν · PR

σ2
N + σ2

I

)
, (1.3)

where ξ and ν are the scaling factors fitting the Shannon formula to a practical system. The

scaling factors can fit Shannon formula to single MCS and spectral efficiency or to the whole set of

them. Such an approach for rate estimation has been first considered in [8] where scaling factor ν

depending on the bit error probability has been introduced. Based on [8] and the assumed code rate,

the coding gain and bit error probability for various MCSs, the data rate has been estimated in [9].

Similar approximations for a whole range of the MCSs can be found in [10–12]. In the last case

(in [12]), the Shannon formula is scaled just by factor ξ (assuming ν = 1). The Shannon formula

with scaling factors (formula (1.3)) reflects achievable rate in a practical communication system,

and can still be the concave function of the signal power if the factors are appropriately chosen.

Thus, using it for rate estimation is more accurate than using (1.2), and results in acceptable

computational complexity of the considered optimization tasks.

The third approach to data rate estimation which is considered as accurately characterizing

practical wireless communication systems is based on SE and the error rate function of the applied

MCS, e.g., the Block Error Rate (BLER), the Packet Error Rate (PER) or Bit Error Rate (BER).

This approach depends on the parameters of the modulation and coding scheme, e.g., on the applied

(de)modulation and (de)coding algorithms, the packet size, the number of decoder iterations, etc.

In general, the data rate in this approach can be expressed by [13–16]:

R

[
bit

s

]
= ∆f · ζSE · [1− err (x)] , (1.4)

where ζSE is the spectral efficiency in bit/s/Hz, err (·) is the function of error rate, while x is

the vector of the parameters on which this function depends e.g. SNR, modulation and coding

scheme. The data rate estimation by BLER function can be found in [14] where BLER curves

have been approximated by the complementary error function erfc (·) with two scaling factors in

a function of effective Signal to Interference and Noise power Ratio (SINR). Moreover, in [16], the

scaling factors for the MCS set of LTE network are provided. The approximation of PER based

on the non-central chi-square distribution has been introduced in [17], and then applied in [18] in

the context of the energy efficiency maximization for hybrid automatic repeat request (HARQ)

in a Rician fading channel. Other approximations of PER in systems applying HARQ be found

in [19,20].
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Shannon 
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Shannon formula
with scaling factors

Based on 
error-rate function

Low complexity of the resource allocation 
algorithm 
Ideal approach without the  practical wireless 
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algorithm

Difficulty in estimating the error rate function
Approach with the  practical wireless systems 

aspects consideration

Figure 1.4: Trade-off observed in the data rate estimation.

In Figure 1.3, SE as a function of SNR for transmission rate estimation based on the Shannon

formula, estimated by the Shannon formula with scaling factors and based on the block-error rate

are plotted. It can be observed that the Shannon formula deviates from the real communication

system. On the other hand, the data rate resulting from the block error-rate is a non-convex

function of the signal power (and SNR) making the prospective energy efficiency optimization

problem very hard (complex) to solve. In Figure 1.4, the trade-off between the accuracy of data

rate estimation and the complexity of the optimal, energy-efficient resource allocation algorithm

is illustrated. Note that for the low accuracy of data rate estimation (according to the Shannon

formula), usually, the energy-efficient resource allocation algorithm with low complexity can be

designed. On the other hand, the estimation with high accuracy causes high complexity of the

energy efficiency optimization problem. Therefore, the Shannon formula with scaling factors seems

to be a good trade-off between accurate mapping of practical system data rates and the complexity

of solving the considered optimization problem.

Finally, the pros and cons of data rate estimation for the three described approaches are

summarized in Table 1.1.

Table 1.1: Pros and cons of the data rate estimation

Pros Cons

S
h

an
n

on
fo

rm
u

la • the universal approach allows for describing the
different systems

• allows for determining the upper bound of
the energy efficiency in the system

• allows for applying optimization techniques with
low complexity

• the ideal case which does not take the aspects
of the practical wireless communication systems
into account

S
h

an
n

on
fo

rm
u

la
w

it
h

sc
al

in
g

fa
ct

or
s • brings the Shannon formula closer to the prac-

tical wireless communication systems
• allows for applying optimization techniques with

low complexity
• better representation of the practical communi-

cation systems than Shannon formula without
scaling factors

• scaling factors can consider different aspects of
the practical wireless communication systems

• does not take all aspects of the practical wireless
communication systems into account

• worse representation of the practical communi-
cation systems than approaches based on error
rate function

• the need to obtain the scaling factors
• the scaling factors depend on the considered sys-

tem

b
as

ed
on

er
ro

r
ra

te
fu

n
ct

io
n

• the best representation of the practical commu-
nication systems

• take the aspects of the practical wireless com-
munication systems into account

• makes the optimization problem non-convex
which is very difficult to solve

• the need to find the mathematical function
which describes the error-rate function

• the error-rate function highly depends on the
parameters of the modulation and coding
scheme
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1.2 Total power consumption estimation

Estimation of the power consumption (the denominator in (1.1)) in a network is the crucial aspect

in designing the energy-efficient wireless communication systems. In general, the power consump-

tion models consist of the power required to transmit the signal PT and the power consumed by

the circuits PC which can be divided into power consumed by the BB digital signal processing PBB

and by the analog radio-frequency (including intermediate-frequency) signal processing PRF (see

Figure 1.5):

P [W] = PT + PBB−TX + PBB−RX︸ ︷︷ ︸
PBB

+PRF−TX + PRF−RX︸ ︷︷ ︸
PRF︸ ︷︷ ︸

PC

, (1.5)

where PBB−TX and PRF−TX are the powers consumed by baseband and radio frequency signal

processing in the transmitter while PBB−RX and PRF−RX in the receiver, respectively. In case of

the OFDM/OFDMA technique, the transmission power PT is equal to the sum of powers allocated

to subcarriers which are determined by the designed resource allocation algorithm that responds

to instantaneous channel conditions. The issue is more difficult in the case of the estimation of

power consumed by the transmitter and receiver digital and analog circuits. The main difficulty

results from different types of transmission and reception techniques, applied technologies, stan-

dards, algorithms implementations, etc. In the literature, three approaches of power consumption

modeling can be distinguished:

(i) high-level power consumption model,

(ii) estimating power consumption based on the measurements,

(iii) the estimation of the power consumed by each transmitter and receiver components.

The high-level models can determine the power consumption of different techniques in a univer-

sal way but at the expense of the low accuracy of estimation. The simplest total power consumption

model can be found in the early papers focusing on the energy-efficient resource allocation [21,22].

In these papers, the total power consumption model consists of the constant circuit power and

the transmit power allocated at each OFDM subchannel. The constant circuit power includes the

power consumed by the baseband- and radio frequency signal processing at the transmitter and

at the receiver, while the transmit power dynamically changes according to instantaneous channel

conditions.

In [9, 23, 24], the power dissipation in a chip is modelled as the sum of a static term and a

dynamic term. The latter depends on, among other parameters, the supply voltage, the clock

frequency and the circuit capacitance. It is assumed that the dynamic term depending on the

clock frequency is scaled with the data rate. Thus, the circuit power is modelled as the linear

TX ANTENNA

RX ANTENNA

OUTPUT 
BITS

INPUT 
BITS

TX BASEBAND 
PROCESSING

TX RADIO 
FREQUENCY 
PROCESSING

RX RADIO 
FREQUENCY 
PROCESSING

RX BASEBAND 
PROCESSING

Figure 1.5: The general block diagram of the transmitter and receiver with the power consumption
description related to each element.
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function of the achieved data rate:

PC [W] = α+ β ·R, (1.6)

where α is the static term, and β is the implementation-dependent factor determined in W/ (bit/s).

These high-level power consumption models are commonly used in the energy-efficient resource

allocation optimization.

The second approach to estimate the power consumption of wireless devices is based on mea-

surements. Such an approach guarantees high accuracy of power estimation but it highly depends

on the equipment/link/network configuration, implementation, vendors, etc. In this approach, the

total consumed power (including transmission power) is measured. It means that the transmis-

sion power allocation algorithm can not be applied with such models because the transmit power

and the circuit power are not separable, thus the relation between them can not be determined a

posteriori (after measurement). In [25–29], the authors describe measurements of the power con-

sumption of a set of commercially available devices, in the number of configurations. In [26], the

stochastic power consumption models have been proposed based on measurements of a range of

transceivers offered by various vendors. The authors of [26–29] have focused on the WiFi standards

while in [25] the set of measured devices includes cellular network USB modem e.g. LTE as well as

WiFi USB modem. Moreover, these papers provide the analytical models of the power consumed

by devices. Although the power consumption modelling based on measurements highly depends

on the devices hardware and software implementation, application techniques, vendors, etc., they

can be useful to design the high-level models by the means of interpolation of measurement points

or statistical approach.

The most accurate but also the most complex approach is to estimate the power consump-

tion of each transmitter- and receiver-component separately. Having in mind the fact that the

transceiver is integrated into one chip, the measurement of each its component is very difficult and

practically impossible. Therefore, in the literature, the estimation of each transceiver component

power consumption is usually based on its architecture. (The block diagram of the coded OFDM

transmitter and receiver is presented in Figure 1.6.) In this approach, the power consumption

model by circuits is given by:

PC [W] = PENC + PMOD + PIFFT + PDAC︸ ︷︷ ︸
PBB−TX

+PLPF + PADC + PFFT + PDEMOD + PDEC︸ ︷︷ ︸
PBB−RX

(1.7)

+ PPA + PMIX + PLO︸ ︷︷ ︸
PRF−TX

+PRFF + PLNA + PMIX + PLO︸ ︷︷ ︸
PRF−RX

,

where PPA, PLNA, PLO, PRFF and PMIX describe the power consumption of the PA, Low Noise Am-

plifier (LNA), Local Oscillators (LO), RF filter and mixer, respectively. The power consumed by

baseband processing includes power consumption of the Analog-to-Digital Converter (ADC) PADC,

the Digital-to-Analog Converter (DAC) PDAC, modulation PMOD and demodulation PDEMOD, en-

coding PENC and decoding PDEC, low-pass filter PLPF, Inverse Fast Fourier Transform (IFFT)

PIFFT and fast Fourier transform PFFT. It can be observed that depending on the structure of

a transceiver, the power consumption model can be different. Nevertheless, some elements are

common for the most digital transmission systems. The power consumption models of these com-

ponents consuming most considerable amount of power can be found in [30–33]. There, the total

power spent in the communication link is the sum of power consumed by the power amplifier, the

low noise amplifier, the ADC and the error-correcting decoder. More system-level energy models

for the radio frequency front-end components of a wireless transceiver with the exemplary power
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Table 1.2: The review of the power consumption models of the transmitter/receiver components.

Power Model parameters Reference

PPA

class A power amplifier; parameters: the Peak-to-Average Power Ratio (PAPR) and
the drain efficiency of the power amplifier

[30–33]

class A power amplifier; parameters: PAPR, the proportionality constant and the
output power proportional to the detected signal power at the receiver

[34]

class A, AB and B power amplifier; parameters: PAPR, the drain efficiency of the
power amplifier and the transmit power factor

[35]

PLNA

the power gain, the noise figure, the operating bandwidth, the thermal noise and the
figure-of-merit

[30–33]

the gain, the noise figure and some proportionality constant parameter [34]
PMIX the gain, the noise figure and some proportionality constant [34]

PLPF
the proportionality constant depending on the filter topology and the active elements
used, the quality factor, the corner frequency and SNR

[34]

PLO
the parasitic capacitance loading of the RF circuits, the reference frequency, is the
supply voltage, the LO frequency, the proportionality constants

[34]

PADC

the resolution, the bandwidth, the thermal noise and some proportionality constant
depending on the ADC architecture

[30–33]

the minimum channel length for the given Complementary Metal-Oxide-
Semiconductor (CMOS) technology, the power supply, the signal and sampling fre-
quency and the resolution which depends on PAPR and the Signal to Quantization
Noise Ratio (SQNR)

[34]

PDAC

the parasitic capacitance of each switch, the oversampling rate, the signal bandwidth,
the power supply, the unit current source per least significant bit and the resolution
which depends on PAPR and SQNR

[34]

PENC
the number of operations needed to encode or decode the information bit [38]
the clock frequency, CBS (not explained in the paper) [39]

PDEC

Low Density Parity Check (LDPC) codes; parameters: the number of ones in each
column, the number of iterations, the data rate, the bandwidth and the constant
parameter

[31, 32]

the number of operations needed to encode or decode the information bit [38, 40]

PMOD
Quadrature Amplitude Modulation (QAM) modulator; parameters: the clock fre-
quency and the number of the quantization bits

[39]

PIFFT the clock frequency, the number of the quantization bits and IFFT size [39]

consumption values from most commonly refereed publications can be found in [34]. The compo-

nents include ADC, DAC, the reconstruction and anti-aliasing filters, the mixers, the frequency

synthesizer, PA, LNA, and the baseband amplifier. In [35], more exemplary power consumption

values are listed in the context of LTE technology. The power consumption models from the papers

cited above have been adapted to multiuser massive Multiple-Input and Multiple-Output (MIMO)

scenario in [36, 37]. In addition to adapting existing models of energy consumption, the model

has been extended by elements specific to the presented scenario, such as energy consumption by

the channel estimation process, by the load-dependent backhaul or linear processing at the Base

Station (BS).

In most of the papers cited above, the authors focus on the power consumption of the RF

front-end and channel coding, neglecting the power consumed by other baseband signal processing

algorithms which have a significant share in power consumption, in case of short links. In [38–42],

more attention is put to this aspect. In [38, 40], the number of operations needed to encode or

decode the information bit for the channel coding algorithms was determined. Then, knowing the

energy consumption per operation, the total power consumed by channel coding can be determined.

In [41], a dynamic power estimation methodology for Field Programmable Gate Array (FPGA)

based system has been presented. The methodology has been evaluated on the LTE downlink

physical layer and provides fast and accurate power estimation. Similarly as in the general power

consumption model presented in [23], the power consumed by FPGA is also divided into static

and dynamic power. In the proposed methodology, the total dynamic power is determined by
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the power estimations of each sub-element in the system e.g. in the wireless communication

scenario, the power is estimated for channel coding, modulation, fast Fourier transform etc. That

work has been continued in [39, 42] where the more advanced scenarios are considered, and the

power consumption values of each system element are presented. Moreover, the extension to

other FPGAs by introducing a scaling factor has been introduced. As overviewed above, diverse

power consumption models can be considered for distinct transmitter and receiver components. In

Table 1.2, key parameters of the power consumption models for distinct transmitter and receiver

components known from the literature are summarized.

Finally, Figure 1.7 illustrates the trade-off between the accuracy of the power consumption

models and the difficulty in defining them while in Table 1.3 presented thier pros and cons. It can

be observed that if the power consumption model is easy to define, the representation accuracy of

the real system is low. On the other hand, if the accuracy of the power consumption model is high,

the model is really difficult to determine, for example, due to the fact that all transmitter/receiver

components are integrated in a single chip. Therefore, the power consumption based on the

measurements and augmented with the interpolation or stochastic modelling seems to be a good

trade-off.

High-level
model

Based on 
measurements

Each component 
power estimation

Easy to define
Low accuracy of power consumption model
Does not take all aspects of the real systems 
into account

Very difficult to determine the power 
consumption model of each component

High accuracy of power consumption model 
Approach with the  real systems aspects 

consideration

Figure 1.7: Trade-off observed in the power consumption estimation.

Table 1.3: Pros and cons of the power consumption estimation

Pros Cons

h
ig

h
-l

ev
el

m
od

el • easy to define
• the universal approach allows for describing the

different systems
• allows for applying optimization techniques with

low complexity
• low-dependent on the implementation, systems,

parameters etc. and mathematically simple

• does not take all aspects of the real systems into
account

b
as

ed
on

m
ea

su
re

m
en

ts • better representation of the real systems than
high-level model

• takes some aspects of the real systems e.g. data
rate, path loss into account

• the measurements of the power consumed by the
transmitter and receiver are required

• the power consumption model depends on the
implementation, system, parameter etc.

• the energy consumption of the individual com-
ponents of the transmitter and receiver is un-
known

ea
ch

co
m

p
on

en
t

p
ow

er
es

ti
m

at
io

n

• the best representation of the real systems
• takes the aspects of the real systems e.g. pa-

rameters of transmission into account

• very difficult to determine the power consump-
tion model of each component

• the power consumption model depends on the
implementation, system, parameter etc.
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1.3 System limitations and requirements

The maximization of energy efficiency metric as defined by (1.1) without constraints is not prac-

tical for multiple reasons.2 In the optimization, physical limitations of the network such as the

maximum transmit power, minimum guaranteed throughput or particular standard requirements

(e.g. the spectrum emission mask) have to be taken into account. Therefore, the energy efficiency

optimization problem is usually defined as the objective function with constraints. Moreover,

some limitations of wireless communication systems can be included in the objective function,

e.g., grouping the subcarriers into resource blocks. The most common constraints known from the

literature are listed below:

• the maximum transmission power constraint ensures that the sum of the transmission power

allocated to the subcarriers is lower than or equal to the maximum assumed value. In the

case of downlink transmission, this constraint typically limits the transmission power of the

base station while, for the uplink, the transmit power of each end-user (UE) is limited. This

constraint results from practical aspect of designing wireless communication systems where

the total transmission power is limited by standards.

• the requirement on the minimum data rate aims at providing the end-user quality of service.

In this case, the achieved data rate has to be higher than or equal to assumed threshold.

In the literature, this constraint is typically considered in the short-term context. It means

that in a given time slot, the resource allocation algorithm has to provide the required data

rate. From the energy efficiency point of view, the data rate for a user with poor channel

conditions can be extremely low, even zero, if this constraint was not applied. Thus, such

constraint is necessary in the practical radio communication networks.

• the subcarrier/resource block allocation constraint which guarantees that the same subcarriers

can be assigned to a certain, limited number of users. This constraint is relevant in the case of

a multiuser scenario in order to avoid interference between users. In the case of homogeneous

network, it means that a particular subcarrier or RB can be assigned to at most one end-

user. However, there exist scenarios, e.g. heterogeneous or relay networks, where the same

subcarriers can be utilized by more than one user, resulting in interference between users.

Note that a properly designed resource allocation algorithm, in an interference network, can

increase the energy efficiency compared to the network without users interference. From

the optimization point of view, this constraint requires the introduction of binary decision

variables (representing each subcarrier assignment or no-assignment to a particular user)

making the optimization problem a MINLFP problem which is very difficult to solve in its

original form.

• the fairness constraint is introduced to maintain the transmission rate among users with

a predetermined proportion. Thus, it is considered in the multiuser system model.

1.4 Optimization of energy efficiency metric

The design of the energy-efficient resource allocation algorithm usually comes down to solving the

optimization problem defined as the maximization of the energy efficiency metric. Because of the

fractional form of the energy efficiency metric, the optimization problem belongs to a broad class

2Without mentioned constraints, the maximal energy efficiency could be achieved if no transmission takes place.
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of fractional problems, i.e. to find:

x? = arg max
x

R (x)

P (x)
, (1.8)

subject to:

fi (x) ≤ bi, i = 1, . . . ,m. (1.9)

Here, the vector x? = (x?1, . . . , x
?
n) contains the optimal values of the optimization variables x =

(x1, . . . , xn), the ratio of functions R : Rn → R and P : Rn → R+ is the objective function, the

functions fi : Rn → R, i = 1, . . . ,m are the (inequality) constraint functions, and the constants

b1, . . . , bm are the limits, or bounds, for the constraints.

Since the objective function in (1.8) is in general non-concave, standard convex optimization

algorithms are not guaranteed to converge to global optimum and specific algorithms are required.

In the literature, four approach to solve the fractional programming problem can be found:

(i) the Dinkelbach’s method [43],

(ii) the Charnes-Cooper transform method [44],

(iii) solution of the quasi-concave optimization problem,

(iv) suboptimal solution of the optimization problem.

The Dinkelbach method and the Charnes-Cooper method can be used if the numerator of the

objective function is concave while the denominator is convex or if the numerator is affine, the

denominator does not have to be restricted in sign. Otherwise, if the optimization problem can

not be transformed into concave one, the designing of the special algorithm or heuristic to solve

the optimization problem is required. In this case the Dinkelbach’s method the objective function

is transformed into a new parametrized concave function with parameter λ can be applied:

x? = arg max
x

g0 (x, λ) = arg max
x

(f0 (x)− λ?h0 (x)) , (1.10)

subject to (1.9). Let x? be the optimal solution set in (1.10), and λ? = f0(x?)
h0(x?) . The following

statements are equivalent:

g0 (x?, λ) > 0⇔ λ < λ?

g0 (x?, λ) = 0⇔ λ = λ?

g0 (x?, λ) < 0⇔ λ > λ?

Solving the problem (1.8) is equivalent to finding the unique zero of g0 (x?, λ). In order to find

the root of (1.10), the Dinkelbach’s algorithm can be applied, i.e., an iterative algorithm to find

the λ value by solving the parameterized problem in each iteration. The Dinkelbach’s algorithm

converges to the optimal solution with a superlinear convergence rate. The generalized form of

Dinkelbach’s algorithm is presented in Algorithm 1.

Another approach to tackle a fractional optimization problem is the Charnes-Cooper transform

method [44], which is able to convert a fractional problem into an equivalent convex problem,

provided that f0 is concave, g0 is convex, and the feasible set is also convex:

y? = arg max
y
t

tf0

(y

t

)
, (1.11)
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Algorithm 1 Generalized Dinkelbach’s algorithm

1: initialize x and λ such that g0 (x, λ) > 0, maximum error ε,
maximum number of iteration Idink and idink = 0

2: repeat
3: solve x? = arg max

x
g0 (x, λ)

4: λ = f0(x?)
h0(x?)

5: idink ← idink + 1
6: until |g0 (x, λ)| ≤ ε or idink = Idink

7: assign x← x? and λ← λ?

8: return x? and λ?

Table 1.4: The comparison of the methods to solve the fractional optimization problem

Dinkelbach
method

Charnes-Cooper
method

Quasiconcave
optimization

Suboptimal
solution

• transform the objec-
tive function into a
new parametrized con-
cave function

• an iterative algorithm
which solve the pa-
rameterized problem in
each iteration is re-
quired

• superlinear conver-
gence of the Dinkelbach
algorithm

• standard optimization
techniques can be used
to solve the subproblem
in each iteration

• the fractional prob-
lem transforms into
an equivalent convex
problem with one addi-
tional variable and two
constrains

• if the numerator is
affine, the fractional
problem transforms
into an equivalent
convex problem with
one additional variable
and one constrains

• a single convex problem
must be solved

• standard optimization
techniques can be used
to solve the optimiza-
tion problem

• the proof of quasicon-
cavity is required

• the proof that the lo-
cal maximum is also the
global optimum is re-
quired in order to pro-
vide the global opti-
mum

• the special algorithm or
heuristic has to be de-
signed to solve the op-
timization problem

• the global optimum is
not guarantee

• the special algorithm or
heuristic has to be de-
signed to solve the op-
timization problem

• low complexity solution
can be provided

subject to (1.9) and

t · h0

(y

t

)
≤ 1,

t ≥ 1,

where y = x
h0(x) and t = 1

h0(x) . If h0 is affine, the first constraint is changed to t · h0

(
y
t

)
= 1

and the assumption that t is nonnegative can be dropped. Unlike Dinkelbach’s algorithm, in this

approach a single convex problem must be solved, thus the iterative procedure is not required. On

the other hand, the equivalent problem has one additional variable and constraint compared to

problem (1.10).

Finally, in Table 1.4, the comparison of the methods to solve the fractional optimization problem

is presented.

1.5 Chapter summary

In this chapter, the state of the art in energy-efficient resource allocation in the OFDM/OFDMA-

based wireless communication systems has been reviewed. First, the author provided the definition

of the EE metric, and discussed necessary steps towards its maximization. These steps (subtasks)

have been classified by the author, and interaction between them have been considered in order

to design the energy-efficient resource allocation algorithm. For each task, the author provided
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an literature review with the original classification of approaches which can be distinguished.

Moreover, the author discussed pros and cons of investigated approaches as well as the observed

trade-offs. The provided classification can allow to determine the best way of designing the energy-

efficient resource allocation algorithm with a given accuracy and computational complexity.



Chapter 2

Single OFDM link flexibility for EE

In this chapter, the author of this thesis presents his original research and achievements regarding

the energy-efficient resource allocation optimization in the context of a single OFDM link. Visu-

alization of the example single link transmission with the related power consumption is presented

in Figure 2.1. It can be observed that the user achieves some transmission rate as a result of

per-subcarrier power allocation in response to the instantaneous channel conditions (visualized in

Figure 2.1 as the magnitude of the instantaneous channel characteristic). In the presented example,

the resource allocation algorithms come down to determining the values of transmission powers

allocated to subcarriers. However, more degrees of freedom can be identified in the single link

scenario. Depending on the considered system scenario, the transmit power can be allocated per

subcarrier, per resource block consisting of many SCs or per user. Moreover, in practical wireless

communication systems, modulation and coding schemes and other transmission parameters can

be adaptively selected in order to maximize the energy efficiency.

In this chapter, the author first (in Section 2.1) reviews the aspects of energy efficiency op-

timization (rate and power estimation, appropriate constraints and the optimization problem) in

the context of a single link scenario. Then, in Section 2.2 the author’s original contribution to

the problem of OFDM resource allocation is presented aiming at energy efficiency maximization,

while taking the computational energy cost into account. (For this reason, the considered adaptive

OFDM system is called computationally-aware.) Specifically, in Subsection 2.2.2, the system model

is described, and the optimization problem of EE is formulated. The two-steps transformation of

the optimization problem and its solution are proposed in Subsection 2.2.3. The simulation results

are provided, and compared against the standard (not computationally-aware) water-filling perfor-

mance in Subsection 2.2.5 together with detailed analysis. The chapter summary and conclusions

are provided in Section 2.3.

2.1 State of the art

2.1.1 Estimation of the OFDM single link transmission rate

In the context of the single, uth user’s OFDM link, transmission rate R(u) is determined by the

sum of the rates r(u,n) achieved using the allocated resource units:

R(u) =
∑
n∈N

r(u,n), (2.1)

where N is the set of allocated resources. In the literature, the first two approaches to the data

rate estimation mentioned in Section 1.1 are usually considered for a single link scenario. While

in [23,24,44,45], the data rate achieved per subcarrier is determined by the Shannon formula, the

21
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transmission rate in [9,21,22] is estimated using Shannon formula with a scaling factor related to

an adopted modulation and coding scheme and a target bit-error probability.

Most importantly, the data rate estimation methods can have various complexity as a result

of the number of degrees of freedom available in a given system. In [9], the scaling factors for the

Shannon formula-based rate estimation, depending on the code rate, the coding gain, and the target

bit-error probability are determined per subcarrier. This means that the modulation and coding

schemes can vary among subcarriers. The assumption that different MCS can be used at each

subcarrier requires potentially many parallel coding and decoding blocks to be run in a single UE,

a solution infeasible in many hardware implementations. Two other limiting factors are: a non-flat

wireless channel characteristic and a limited available amount of control information. A wireless

channel is typically assumed to be invariant within time-frequency resource block when it is defined

in the boundaries of the coherence time and the coherence bandwidth. This block, often called

Basic Resource Block (BRB), usually contains several subcarriers and OFDM symbols that should

be assigned the same MCS. The MCS allocation has to be preceded by the channel impulse response

estimation, typically using pilots, and feedback reporting quantized channel quality. These two

processes need some time-frequency resources to accommodate pilots or control messages, reducing

available resources for user data. The problem of finding the balance between the accurate channel

estimation and the reduction in data rate has been discussed in [46]. Thus, in many real-world

OFDM-based systems, the available degrees of freedom in resource allocation are limited and the

data rate can be estimated per block of several subcarriers. The authors of [21,22] have considered

grouping subcarriers into subchannels described by the effective power-gain of a channel. There,

the data rate has been estimated by the Shannon formula with the scaling factors which have

been obtained for the M-QAM transmission with Gray mapping, the Additive White Gaussian

Noise (AWGN) channel and coherent detection. It has been shown that it depends on a data

interval, a signalling interval, the number of transmitted symbols, the number of subcarriers in the

subchannel and the SNR gap dependent on the applied modulation and coding scheme.
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Figure 2.1: The single link scenario, where p(n)
T determines the power allocated on SC n ∈ N , the

channel coefficient in the link is defined by h(u,n) while R(u) is the data rate achieved by user u.
The variables related to the system constraints are denoted as PMAX and R

(u)
MIN which define the

maximum transmit power and the minimum data rate achieved by user, respectively.
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2.1.2 Power consumption estimation for a single link

As shown in Figure 2.1, in the case of a single OFDM link, the total power consumption consists of

the power consumed by BB and RF signal processing on the transmitter and receiver side as well

as of the transmit power being the sum of powers allocated to subcarriers. Observe that, while

the wireless channel frequency response has an influence on the optimal allocated powers, its sum

is typically fixed. It influences indirectly the consumed power. Moreover, as shown in Section 1.2,

the power consumed by the circuits depends on many system parameters, e.g., the modulation

and coding schemes, implementation, circuits technology etc. what additionally complicates the

estimation of the power consumption in wireless communication systems. Usually, the high-level

power consumption model is used in the context of the single link scenario. One of these power

consumption models considered in the literature assumes that the power consumption of BB and

RF signal processing is expressed by one constant value. For example in [21, 22], the authors

assumed that this value is constant, equal to 0.1 W, though the adaptive QAM scheme has been

used wherein the power consumption can vary for different modulation orders. Nevertheless, the

adaptive QAM scheme has an impact on the transmit power because of different scaling factors in

the data rate estimation among the modulation orders.

In [44], the circuit power (understood as the sum of the power consumed by BB and RF signal

processing) is assumed to be constant, but the transmission power is scaled by the parameter that

expresses power amplifier inefficiency which is defined as a constant value. Nevertheless, the values

of the circuit power and the power amplifier inefficiency as well as the numerical results have been

not provided in this paper (only analytical analysis has been considered). Another high-level power

consumption model considers variations in the circuit power [23, 24]. In this approach the circuit

power is modelled as the sum of a static term and a dynamic term where the second of them

depends on the sum rate. Moreover, the transmission power is scaled by the parameter related to

the efficiency of the power amplifier which is given by the PAPR divided by the drain efficiency

of the power amplifier. There the maximum, rarely observed PAPR, equal to the number of

subcarriers for an OFDM system, is assumed. Although, the authors have not provided the value

of the power consumption model parameters, they have shown the impact of these parameters on

the energy efficiency metric. In [9] the modulation and coding scheme-dependent circuit power

in the fast adaptive OFDM system has been considered. It means that the power consumption

model does not depend only on the data rate and β parameter (as shows equation (1.6)) but also

on the coding rate of applied modulation and coding scheme. Moreover, the data rate achieved

per subcarrier has been estimated using Shannon formula with scaling factor which depend on the

modulation and coding scheme as well. Therefore, the optimal transmit power can vary among the

modulation and coding schemes for the same channel impulse response. The parameter describing

the constant circuit power is equal 0.1 W while parameter β = 5 · 10−5 W/ (Mbit/s). Another

high-level power consumption model consisting of the fixed circuit power and the variable power

increasing with the number of utilized subcarriers has been presented in [45]. It can be observed

that the above models present increasing complexity in order to reflect rising number of relations

influencing an OFDM link power consumption. Though, the models are rather high-level and

general, independent of specific transceivers architectures. This can be treated as an advantage

of these models, making the derived resource allocation algorithm independent from the hardware

platform. A set of transceiver-dependent parameters, e.g., β, can be adjusted individually without

a need for reformulation of the optimization problem or its’ solving algorithm.

The above-cited papers use the high-level power consumption models to optimize the energy

efficiency. Sample results for maximization of EE have been generated in the single link scenario
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Figure 2.2: The energy efficiency, the data rate and the transmit power as a function of the static
part of the circuit power α for different values of parameter β related to the dynamic part of the
circuit power consumption.

with the linearly rate-dependent circuit power consumption model (described by equation (1.6))

are presented in Figure 2.21. The energy efficiency, data rate and transmit power in a function of

the static part of circuit power consumption model α are plotted. Let us observe that the data rate

and transmit power are the same for different values of the parameter related to the dynamic part

of the circuit power consumption (β). It means that the dynamic part does not affect transmit

powers allocated on subcarriers but only energy efficiency value. Moreover, the transmit power

increases with the static part of the circuit power (α) in order to eliminate the domination of static

power over the transmission power.

However, there are some more detailed power consumption models considered in the literature

as well. A single link transmission where the BB power consumption is modelled as the power

consumed by each component is presented in [39]. The authors do not consider EE optimization.

In [39,41] the authors propose the dynamic power estimation methodology for FPGA-based OFDM

transceiver. Moreover, in [39], the authors proposed measurement-based power consumption mod-

els for the considered FPGA implementation.

2.1.3 Constraints for a single link

In Figure 2.1 it can be observed that the system can be limited by the maximum transmission

power and the minimum required data rate. The important thing here is that if both constraints

are considered the maximal transmission power has to be enough to provide the required data

rate. Otherwise, the resource allocation is non-feasible.

The maximum transmission power constraint which ensures that the sum of the transmission

power allocated on the subcarriers is less than or equal to the maximum assumed value has been

1Note that because in Section 2.1, the author of this thesis discusses the state of the art and general problems of
EE optimization in a single OFDM link, in Figure 2.2 and in several following figures in this Section, particular values
on the axes are omitted. This is intentional to show the general relations between graph coordinates, abstracting
from particular simulation scenarios.
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Figure 2.3: The energy efficiency as a function of available transmission power for the EE and
throughput maximization (left subfigure), or as a function of the minimal throughput for the EE
maximization and transmission power minimization (right subfigure).

considered, e.g., in [9, 21, 22]. Figure 2.3 illustrates the optimized energy efficiency for the con-

strained OFDM link. On the left side the energy efficiency as a function of available transmission

power for the EE and throughput maximization are presented. In the case of EE maximization,

the energy efficiency increases with the available transmission power and remains constant after

reaching the maximum. For higher available transmission power value, it is not fully exploited. In

contrast, the throughput maximization causes the energy efficiency to drop as a result of increasing

data rate and fully utilized maximal transmit power.

The minimum data rate constraint provides the end-user’s data rate higher or equal to the

assumed threshold and has been considered, e.g., in [21, 22]. On the right side of Figure 2.3 the

energy efficiency versus the minimum required throughput for EE maximization and transmission

power minimization are plotted. It can be observed that with increasing the data rate requirement

the energy efficiency decreases in both schemes above some point. However, for relatively low

throughput requirements and the EE maximization, the energy efficiency takes constant value

because the throughput resulting from optimization is higher than the data rate requirement.

2.1.4 Optimization of EE in an OFDM single link

The complexity of the energy-efficient resource allocation algorithm depends on the degrees of

freedom of the considered system and on the utilized model of the data rate and power consumption

as well as the system limitations/requirements. In the literature, two sets of the optimization

variables are considered in the context of a single-link scenario: (i) the transmit powers allocated

on the resource unit or related to them data rates achieved on the resource unit, (ii) the transmit

powers/data rates on the resource unit and applied modulation and coding scheme. It means that

in the first approach the data rate is estimated by the Shannon formula, thus only transmission

power can be determined and the modulation and coding schemes are not selected. In contrast,

in the second approach the data rate is esteemed by different methods where the transmit power

and the modulation and coding scheme have be to determined. The first set of the optimization



26 Single OFDM link flexibility for EE

Table 2.1: Summary of the energy-efficient resource allocation methods in a single-link scenario

Scenario Optimization variables Methods Convergence References
the data rate estimated
by the Shannon formula,
the linearly rate-dependent
circuit power consumption
model

transmit power allo-
cated on subcarriers

Charnes-Cooper
method

constant [23]

the data rate estimated
by the Shannon formula,
the linearly rate-dependent
circuit power consumption
model

transmit power allo-
cated on subcarriers

Dinkelbach
method

superlinear [24]

the data rate estimated by
the Shannon formula, the
constant value of the cir-
cuit power consumption

transmit power allo-
cated on subcarriers

Dinkelbach
method and

Charnes-Cooper
method

constant
(Charnes-Cooper

method),
superlinear
(Dinkelbach

method)

[44]

the data rate estimated
by the Shannon formula
with the scaling factors,
the linearly rate-dependent
circuit power consumption
model, adaptive OFDM
system

transmit power allo-
cated on subcarriers,
modulation and coding
scheme per SC selec-
tion

Dinkelbach
method

superlinear [9]

the data rate estimated
by the Shannon formula
with the scaling factors,
the constant value of the
circuit power consumption,
uncoded M-QAM

transmit power allo-
cated on subchannel

solve the
quasiconcave
problem by
GABS and

BSAA
algorithms

linear [21,22]

variables has been considered in [23,24,44]. In [44] the authors have optimized the energy efficiency

by selecting optimal transmission power using Dinkelbach method with superlinear convergence.

Due to the rate-dependent circuit power consumption model, in [23, 24] the energy efficiency

has been maximized by obtaining the optimal value of the data rate achieved on each subcarrier.

Moreover, in [44] the Charnes-Cooper and Dinkelbach methods have been used to solve the energy-

efficient resource allocation optimization problem. The authors have shown that both methods

give the same optimal result. In [21,22] the energy efficiency is optimized for an uncoded M-QAM

modulated OFDM link. The modulation order is expressed as the function of the data rate, thus,

in fact, the data rate achieved per subcarrier is optimized. The authors has proven that the defined

optimization problem is quasiconcave, thus if a local maximum exists, it is also globally optimal.

In order to find the optimal data rate for the single subchannel transmission Gradient Assisted

Binary Search (GABS) method has been proposed which then is used in the Binary Search Assisted

Ascent (BSAA) algorithm to find the optimal solution in the multi-subchannel scenario.

The second set of optimization variables is considered in [9]. The transmit power and mod-

ulation and coding scheme are determined per each subcarrier in order to maximize the energy

efficiency. In the first step of proposed algorithm the Dinkelbach method has been used to trans-

form the objective function. Next, the transmit power for each MCS has been obtained. Finally,

based on the cost-benefit function the modulation and coding scheme is selected per subcarrier.

In Table 2.1 the summary of the energy-efficient resource allocation methods in a single-link

scenario is presented.
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2.2 Optimization of energy efficiency in computationally-aware

adaptive OFDM systems

In this Section, the original contribution of the author of this dissertation to the problem of

computationally-aware EE optimization is presented. First, energy efficiency of an adaptive OFDM

system is analyzed taking not just the transmit power into account, but also the transceiver circuit

power consumption related to signal processing. Such an energy efficiency optimization problem

belongs to a broader class of problems called convex-concave fractional programs, which in the case

of the adaptive modulation and coding techniques is also a Mixed Integer Nonlinear Fractional

Programming (MINLFP). In order to solve it, the author of this thesis proposes the joint adaptive

power and AMC algorithm with fast convergence based on Dinkelbach method, where the analytical

solutions are derived by the numerical method according to the Lagrange multipliers and KKT

conditions. Simulation results show that the adaptive modulation and coding techniques allow

for: increased energy efficiency, increased average throughput, reduced required transmit power

and reduced total power consumption. Moreover, there exists the optimal point for the transmit

power maximizing the energy efficiency.

2.2.1 Main contribution over the existing methods

It is well known that the energy efficiency will be a crucial factor in designing future wireless com-

munication systems. The steadily increasing capacity and coverage of the wireless communication

systems results in increasing power consumption by mobile terminals, base stations, and network

infrastructure, while the batteries capacity increases very slowly.

Interestingly, enhanced capacity and service quality in wireless systems come at the expense of

increased computational complexity of radio devices, and is related to more and more advanced

signal processing (coding, decoding, modulation, equalization and other techniques). Thus, in the

optimization of the energy efficiency, the power consumption of baseband processing should also be

taken into account independently where the optimization is performed because the main algorithms

of BB processing (coding, decoding, FFT, IFFT) are the same for both mobile terminals and base

stations. However traditionally, wireless systems are optimized for EE by taking into account the

signal transmission energy only, while the power consumption of analog and digital processing is

usually neglected or is assumed to be constant.

In the recent years, the EE problem has been widely investigated for OFDM systems, and

in the literature one can find a lot of works about energy-efficient resource allocation schemes.

For example in [21] and [22] the authors focused on EE of adaptive (uncoded or fixed-code)

OFDM modulation systems, where the total power consumption model does not include the power

consumption of BB processing. In [23], OFDM link adaptation is based on finding the total

throughput that minimizes the cost function being the energy consumption per bit. In order to

find this throughput the water-filling principle is used. There, the analog circuit power is modeled

as a linear function of the sum-rate, however, the model does not accommodate AMC-related

power consumption of digital circuits. Similar considerations can be found in [24, 44] where the

energy consumption per bit is determined by setting up a cutoff level. Moreover, in these works

a constraint for the total transmit power (typically assumed in radio communication systems) is

not considered. Raghavendra et al. [47] propose an energy-efficient water-filling algorithm for an

OFDM system where the energy minimization problem is quite general and subsumes both rate

maximization and power minimization problems as specific cases. In all of these papers, joint

transmit power allocation, adaptive modulation and coding and adaptive decoding have not been
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considered. Moreover, dynamically changing complexity of digital signal processing in particular

decoding, as a result of the applied adaptive coding and decoding, is not taken into account.

The novelty of contribution by the author of this thesis is in new AMC technique to maximize

EE, while the power consumption model includes the BB processing power (related to computa-

tional complexity of such processing). This power depends on adaptively selected modulation and

coding schemes, and in particular, the related decoding algorithms. Moreover in this chapter, the

author of the thesis proposes the computationally-aware joint algorithm of power allocation and

modulation and coding scheme selection for EE optimization with superlinear convergence.

2.2.2 System model and problem formulation

Let us consider an adaptive OFDM system with the set N of subcarriers and the setM of available

modulation and coding schemes, and assume a frequency-selective channel and the perfect Channel

State Information (CSI) availability at both the transmitter and the receiver. The transmitter

applies adaptive selection of the transmit power and modulation and coding scheme at each SC, in

response to the related subchannel’s CSI and target Bit Error Probability (BEP).2 Let us denote

the channel characteristic at the nth SC as h(n), the code rate, the coding gain and the allocated

power at this SC as ρ(n), g(n) and p
(n)
T respectively, and the power spectral density of the white

noise as N0. The data rate on this SC equals [48]:

r(n) = ∆fρ(n) log2

(
1 +

p
(n)
T

∣∣h(n)
∣∣2 g(n)

Γ∆fN0

)
, (2.2)

where ∆f is the SCs distance, Γ = − log(5·PE)
1.5 is an SNR gap for M-QAM [8], and PE is the target

BEP.

The total power consumption P consists of three parts: the transmit power PT, the power

consumption by analog circuits PAC and the power consumption of digital circuits (BB processing

including adaptive (de)modulation and (de)coding with related computational complexity) PDC.

Thus, for an adaptive OFDM link:

P = PAC +
∑
n∈N

p
(n)
T +

∑
n∈N

p
(n)
DC, (2.3)

where p(n)
DC is the BB processing power at SC n. This power is very difficult to determine because it

is dependent on the encoder/decoder structures, hardware implementation, data-rates, wire-width

etc. Here, a model as in [49], for the lower-bound of the power consumption by the encoder/decoder

being the major source of computational complexity has been applied:

p
(n)
DC = β(1− ρ(n))r(n), (2.4)

where β is a parameter dependent on the structure and hardware implementation of the en-

coder/decoder, BEP etc. Moreover, rn depends on the applied modulation and coding scheme,

and thus, on g(n), ρ(n) and p
(n)
T .

Here, the EE metric is defined as the ratio of the throughput to the total power consumed in

the link, i.e. as the number of successfully transmitted information bits (satisfying the assumed

BEP) per unit energy consumption (Joule):

η =
R

P

[
bit

Joule

]
, (2.5)

2This flexibility at each SC is meant for theoretical considerations on achievable rates and EE. In practice,
a block of SCs may use the same modulation and coding scheme, as in LTE or 5G.
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where R is the throughput equal to R =
∑
n∈N

r(n). The optimization problem is then defined so as

to find a vector of the SCs powers p?T =
{
p

(n)?

T

}
, a vector of SCs modulation and coding schemes

Ω? =
{
ρ(n)? , g(n)?

}
, (concatenation of a vector of code-rates and a vector of coding gains) that

maximize η:

(p?T,Ω
?) = arg max

pT,Ω
η (pT,Ω) , (2.6)

subject to: ∑
n∈N

p
(n)
T = PTOT, (2.7)

Constraint (2.7) guarantees that the total transmit power limit is met and used as power available

for signal emission.

2.2.3 Proposed solution

A coding scheme is characterized by a number of parameters such as the length of code word, code

rate, coding gain, the number of decoding iterations, etc., which are discrete values. Additionally,

in case of M-QAM with the target BEP PE, it can be assumed that the coding gains are also

discrete values. Hence, the optimization problem defined in (2.6) is MINLFP which is very difficult

to analytically solve in the original form. Moreover, the EE optimization problem belongs to a

broader class of convex-concave fractional programs. Thus, the optimization problem will be

transformed into a traceable form.

Transformation of the optimization problem

Let us introduce a matrix of binary values Ψ, with |N | rows and |M| columns. If Ψ(n,m) = 1, the

nth SC is modulated/demodulated and coded/decoded using modulation and coding scheme m.

Thus, the optimization problem can be transformed into:

(p?T,Ψ
?) = arg max

pT,Ψ
η (pT,Ψ) = (2.8)

= arg max
pT,Ψ

∑
m∈M

∑
n∈N

Ψ(n,m)r(n,m)

PAC +
∑

m∈M

∑
n∈N

Ψ(n,m)
(
p

(n,m)
T + p

(n,m)
DC

) ,

subject to:

Ψ(n,m) ∈ {0, 1} ∀n ∈ N , m ∈M, (2.9)

p
(n,m)
T ≥ P (n,m)

MIN ∀n ∈ N , m ∈M, (2.10)∑
m∈M

Ψ(n,m) ≤ 1 ∀n ∈ N , (2.11)∑
m∈M

∑
n∈N

Ψ(n,m)p
(n,m)
T = PTOT, (2.12)

where p(n,m)
T , r(n,m) is the power allocated and the data rate archived at SC n using modulation

and coding scheme m, respectively. Moreover, the minimum required power for the use of modu-

lation and coding scheme is P (n,m)
MIN . Constraints (2.9) and (2.11) guarantees that each SC can be

modulated and encoded using only one modulation and coding scheme.



30 Single OFDM link flexibility for EE

Although the optimization problem is transformed by introduction of matrix Ψ, it still belongs

to a class of convex-concave fractional programs. For non-linear fractional programming, there

exist techniques which allow to transform the objective function into a parametrized concave

function with parameter λ. The problem can be defined as:

(p?T,Ψ
?) = arg max

pT,Ψ
F (pT,Ψ, λ) = arg max

pT,Ψ
R (pT,Ψ)− λ?P (pT,Ψ) . (2.13)

Let (p?T,Ψ
?) be the optimal solution set in (2.13), and

λ? =
R(p?

T,Ψ
?)

P(p?
T,Ψ

?)
. The following statements are equivalent [43]:

F (p?T,Ψ
?, λ) > 0⇔ λ < λ?,

F (p?T,Ψ
?, λ) = 0⇔ λ = λ?,

F (p?T,Ψ
?, λ) < 0⇔ λ > λ?.

Solving problem (2.13) is equivalent to finding the root of non-linear align F (p?T,Ψ
?, λ) = 0. In

order to find the root of (2.13), the Dinkelbach method can be applied, i.e., an iterative algorithm

to find the λ value by solving the parametrized problem in each iteration. The algorithm converges

to the optimal solution with a superlinear convergence rate. The detailed convergence analysis can

be found in [43].

Dual problem

In order to solve MINLFP problems, the Generalized Benders Decomposition (GBD) method,

the Hunagarian algorithm or heuristic methods can be used. Unfortunately, the computational

complexity of these algorithms is usually high, e.g. GBD is adequate for problems with just a few

variables and for problems (2.8)-(2.12), the complexity of exhaustive search is O
(
|M||N | |M|

)
.

To reduce the computational complexity the binary values of matrix Ψ are relaxed to be real

numbers. Thus, the optimization problem is transformed to:

(p?Tt,Ψ
?) = arg max

pT,Ψ
η (pTt,Ψ, λ?) = (2.14)

= arg max
pt,Ψ

∑
m∈M

∑
n∈N

Ψ(n,m)r(n,m) − λ?
(
PAC +

∑
m∈M

∑
n∈N

Ψ(n,m)
(
p

(n,m)
T + p

(n,m)
DC

))
,

subject to:

Ψ(n,m) ∈ R ∀n ∈ N , m ∈M (2.15)

and (2.10)–(2.12). Introducing the Lagrangian multiplier Λ for equality constraint (2.12) and

non-negative multipliers µ =
{
µ(n,m)

}
, ∀n ∈ N , m ∈M for constraints (2.10), the Lagrangian

function for the optimization problem can be written as:

L (pT,Ψ, λ,Λ,µ) =
∑
m∈M

∑
n∈N

Ψ(n,m)r(n,m) − λ

(
PAC +

∑
m∈M

∑
n∈N

Ψ(n,m)
(
p

(n,m)
T + p

(n,m)
DC

))

− Λ

( ∑
m∈M

∑
n∈N

Ψ(n,m)p
(n,m)
T − PTOT

)
+
∑
m∈M

∑
n∈N

µ(n,m)
(
p

(n,m)
T − P (n,m)

MIN

)
. (2.16)

The dual objective function is:

LD (λ,µ) =

 max
pT,Ψ

L (pT,Ψ, λ,Λ,µ)

s. t. (2.9)− (2.12)
. (2.17)

Then, the dual optimization problem is given by:

(λ?,µ?) = arg min
Λ,µ
LD (Λ,µ) . (2.18)



2.2. Optimization of energy efficiency in computationally-aware adaptive OFDM systems 31

2.2.4 Solution of the optimization problem

After redefining the primal problem (2.14) to Lagrange function, and after defining the dual opti-

mization problem, the necessary and sufficient KKT conditions can be used to solve the optimiza-

tion problem:
∂L (pT,Ψ, λ,Λ,µ)

∂p
(n,m)
T

= 0, (2.19)

∂L (pT,Ψ, λ,Λ,µ)

∂Ψ(n,m)
= 0, (2.20)

Λ

( ∑
m∈M

∑
n∈N

Ψ(n,m)p
(n,m)
T − PTOT

)
= 0, (2.21)

µ(n,m)
(
−p(n,m)

T + P
(n,m)
MIN

)
= 0 ∀n ∈ N , m ∈M. (2.22)

Let us solve the first condition for p(n,m)
T , and obtain the power allocation at the nth SC using

modulation and coding scheme m, assuming Ψ(n,m) = 1. For a given λ is derived as:

p
(n,m)?

T =

[
∆fρ(m)

(
βλ
(
ρ(m) − 1

)
+ 1
)

log (2)
(
λ+ Λ− µ(n,m)

) − ∆fN0

g(m)Γ
∣∣h(n)

∣∣2
]

, (2.23)

If Ψ(n,m) = 0, the solution is p(n,m)?

T = 0. It can be observed that if ρ(m) = 0 and g(m) = 0 dB,

the system applies uncoded scheme and the solution for the power allocation is the same as in the

case of well-known water-filling algorithm. Similarly, solving the second condition, we obtain:

ζ(n,m) ,
∂L (λ,µ)

∂Ψ(n,m)
= r(n,m)? − λ

(
p

(n,m)?

T + p
(n,m)?

DC

)
− Λp

(n,m)?

T . (2.24)

The subtrahend of variables ζ determine the cost (the sum of the transmit power and the power

consumed by the BB processing) of the achieved throughput at the nth SC and for modulation and

coding scheme m. Thus, the modulation and coding scheme can be simply selected by selecting

the highest value of matrix ζ =
{
ζ(n,m)

}
for each SC. The closed-form solution for the modulation

and coding scheme selection is defined as:

Ψ(n,m)? =

{
1 for m? = arg max

m
ζ(n,m)

0 for otherwise
. (2.25)

Let us now determine the Lagrange multipliers which fulfill constraints (2.10) and (2.12). The

subgradient method could be used to find the optimal values of Λ and µ(n,m), however, it is

computationally complex for a large number of variables. Thus, the KKT conditions to solve the

dual problem are used. Substituting (2.23) into (2.22), the closed-form for µ(n,m) is derived:

µ(n,m)? = λ+ Λ−
∆fρ(m)

(
βλ
(
ρ(m) − 1

)
+ 1
)

log (2)

(
P

(n,m)
MIN + ∆fN0

g(m)Γ|h(n)|2
) . (2.26)

For Λ, the four possible cases are considered. First, when in the transmitter the total transmit

power is not limited. In this case, the constraint (2.12) is not taken into account and Λ? = 0.

Second, when the power allocated to each SC is higher than the minimum power required for the

use of a specific encoder (without causing transmission outage at this SC), and (2.22) is inactive

(µ(n,m) = 0, ∀n ∈ N , m ∈M). In this case, the optimal Λ is:

Λ? =

∑
m∈M

∑
n∈N

Ψ(n,m)?∆fρ(m)
(
βλ
(
ρ(m) − 1

)
+ 1
)

log (2)

(
PTOT +

∑
m∈M

∑
n∈N

Ψ(n,m)? ∆fN0

g(m)Γ|h(n)|2
) − λ. (2.27)
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Algorithm 2 Proposed algorithm

initialization the maximum number of iteration Imax and the maximum
tolerance ε
set µ(n,m) = 0, ∀n,m, λ = λ0, Λ = 0 and the index of iteration i = 0
repeat

Calculate p(n,m)?

T using (2.23) and Ψ(n,m)? using (2.24) and (2.25) for a
given λ

if p(n,m)?

t < P
(n,m)
MIN then

Calculate µ(n,m) using (2.26)
end if
if PTOT is not limited then

Λ = 0
else if

∑
n∈N

p
(n,m)?

t 6= PTOT then

Calculate Λ by equation (2.27) or (2.28) or using numercial method
depending on the size of the set V.

end if
λ← R(p?

T,Ψ
?,λ)

P(p?
T,Ψ

?,λ)
i← i+ 1

until |F (p?T,Ψ
?, λ) | ≤ ε or i = Imax

return p?T,Ψ
?

The third case occurs when the power allocated to the nth SC is higher than P (n,m)
MIN for the encoder

m for at least one SC. By applying (2.23) and (2.26) to (2.21), the optimal Lagrange multiplier λ

is given by:

Λ? = −λ+
1

log (2)


∑

n,m∈N/V
Ψ(n,m)?∆fρ(m)

(
βλ
(
ρ(m) − 1

)
+ 1
)

Ptot −
∑

n,m∈V
Ψ(n,m)?P

(n,m)
MIN +

∑
n,m∈N/V

Ψ(n,m)? ∆fN0

g(m)Γ|h(n)|2

 , (2.28)

where V ⊂ N is a set of indicates n and m for which µ is positive. It can be observed that if V = ∅
the above equation reduces to (2.27). In the last case, the powers allocated by formula (2.23) at

all SCs are lower than the power levels required to use modulation and coding schemes and (2.22)

is active (∀n,mµ(n,m) > 0). This may happen when the total transmit power limit is very low. In

this case, the numerical methods have to be used to calculate λ value.

Based on the Dinkelbach method and equations (2.23)–(2.28) the proposed scheme is designed

as Algorithm 2 presented above. In each iteration, the power allocation and modulation and coding

scheme selection indicators for a given λ, Λ and µ(n,m) are derived. Then, the values of Lagrange

multipliers using the closed-form solution or numerical methods are updated, depending on the

size of the subset V. The algorithm finishes when one of the stop criterion is met.

2.2.5 Numerical results

In this subsection, results obtained by the proposed algorithm (Algorithm 2) are presented. The

adaptive OFDM system uses |M| = 21 AMC schemes. The Look-Up-Table (LUT), which contains

the values of coding gain, coding rate and minimum SNR for the use of modulation and coding

scheme for M-QAM (M ∈ {4, 8, 16, 64, 256}) and for the Turbo Code (TC), Convolutional Code

(CC), Punctured Convolutional Code (PCC) and for an uncoded scheme is used. Moreover, in

order to maximize the EE the SC outage is allowed. The number of available SCs |N | = 256, and

the SCs distance is ∆f = 15kHz (as in the LTE system). Other parameters are as follows: for

the noise power spectral density the operational point in the temperature of 20◦C is assumed, and



2.2. Optimization of energy efficiency in computationally-aware adaptive OFDM systems 33

that it is increased by the receiver noise figure of 10dB. Moreover, PE = 10−5, β = 5 · 10−5, and

PAC = 0.1 W as assumed in [22]. The channel model is Extended Pedestrian A.

Figure 2.4 illustrates the convergence of Algorithm 2 for various link distances. In this Figure,

the normalized EE (energy efficiency over the maximum achieved EE value) versus the number

of iterations is plotted. It can be observed that the energy efficiency converges to the maximum

value within twelve iterations for all considered link distances.

Figure 2.5 illustrates the performance of Algorithm 2 compared to the reference methods.

Because the EE results are presented against the link distance, the total transmit power is not fixed,

assuming that it has to be sufficient to achieve the target BEP. The water-filling scheme allocates

the transmit power using water-filling principle and chooses the modulation and coding scheme

according to the SNR at each SC. The Shannon limit for EE is calculated as the Shannon channel-

capacity over the total transmit power and the power of analog circuits as e.g. in [24, 44] (thus,

neglecting the computational power). It can be observed that Algorithm 2 results in higher EE

than the water-filling algorithm. Moreover, that for Algorithm 2, noticeably higher EE translates

to slightly lower throughput when compared to the water-filling scheme. Figure 2.6 shows the

total transmit power versus the link distance. It can be observed that Algorithm 2 reduces the

total transmit power compared to the water-filling scheme.

Next, Algorithm 2 with adaptive modulation using only one (non-adaptive) coding technique

(either CC, PCC or uncoded scheme) has been examined. In Figure 2.7, EE of such approaches

versus the link distance can be observed. Note that EE for the Algorithm 2 is always higher than

for the adaptive modulation techniques (with no coding adaptation). Considering results presented

in Figure 2.5 and in Figure 2.7 it can be observed that AMC with computational awareness allows

to increase EE significantly in wireless links.

Figure 2.8 compares EE versus the total transmit power for the considered schemes and for

four example link distances. It can be observed that there exist the optimal point for the transmit

power that maximizes EE. Moreover, Algorithm 2 achieves the best results for all values of the

transmit power. In Figure 2.9 the throughput as a function of the total transmit power is plotted.

For Algorithm 2, the achieved throughput is the highest compared to the water-filling scheme.

The reason is that in case of the fixed transmit power the proposed algorithm maximizes the total

Figure 2.4: The convergence of Algorithm 2
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Figure 2.5: Energy efficiency (left) and throughput (right) versus the link distance.

throughput and minimizes the computational power.

2.3 Chapter summary and conclusions

In Chapter 2, the author of this thesis proposed the energy-efficient resource allocation algorithm

for the OFDM wireless communication system using AMC techniques with computational aware-

Figure 2.6: Total transmit power versus the link distance.
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Figure 2.7: Energy efficiency versus the link distance.

ness. It means that the power consumption model contains not only the transmission power

allocated to SCs and the static circuit power but also the power consumed by the baseband sig-

nal processing which changes dynamically according to the radio environment conditions. The

energy efficiency is maximized by the adaptive transmit power allocation and modulation and

coding scheme selection. For this reason the energy efficiency optimization problem belongs to

a broader class of MINLFP programming problem what means that the optimization variables

take continuous and discrete values. Therefore, the optimization problem has been transformed

Figure 2.8: Energy efficiency versus the total transmit power.
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Figure 2.9: Throughput versus the total transmit power.

by introducing the decision matrix, applying the Dinkelbach method, and finally solved using dual

decomposition method. For the transformed optimization problem, the closed-form solution for

the power allocation and the encoder/decoder selection has been determined.

The solution has been evaluated by the computer simulations, and the results have been com-

pared with other methods known from the literature. Simulation results show that the adap-

tive modulation and coding techniques allow for: increased energy efficiency, increased average

throughput, reduced required transmit power and reduced total power consumption. Moreover, it

has been observed that there exists the optimal point for the transmit power maximizing the energy

efficiency. The gain in the energy efficiency of the proposed solution compared to the reference

methods is between 10% and 15% depending on the scenario what can result in the reduction of

the power consumption in OFDM wireless communication systems. Finally, the results show that

the EE values obtained by the proposed algorithm are achieved with superlinear convergence.



Chapter 3

Energy efficiency in a multiuser OFDMA

network

In this Chapter, the author of this thesis extends his considerations from a single link to a multiuser

OFDMA network where a base station serves a number of users which share the bandwidth divided

into subcarriers. In this case, the energy efficiency metric can be associated with the whole network

or individual users, thus can be defined in different ways. In the literature, three main approaches

to maximizing the energy efficiency metric can be distinguished:

(i) maximizing the energy efficiency of the whole network,

(ii) maximizing the sum of the users energy efficiency,

(iii) maximizing the minimum user’s energy efficiency.

In the first approach, the energy efficiency is defined as the ratio of total throughput (the sum of

users data rate) to the total power consumed in the network. It means that the channel coefficients

of all users have to be available in one central entity. Therefore such an approach is mostly applied

in the downlink scenario wherein the base station allocates the resources. The energy efficiency

for the second and the third approach is defined by the sum of the ratio of data rate achieved by

each user to the power consumed by it. Thus the energy efficiency is maximized individually for

each user and the channel coefficient of other users are not required. Therefore these definitions

are usually considered in the uplink transmission. Moreover, it is obvious that depending on the

energy efficiency metric definition, the resource allocation and EE resulting from it can be different.

In Figure 3.1 and 3.2 the example of the downlink and uplink transmissions in the multiuser

OFDMA network is presented, respectively. It can be observed that (in the contrast to the single

link scenario) the available bandwidth is shared among many users in the network. It means that

not only transmit power but the subcarrier assignment has to be determined as well. Moreover,

for some systems, the modulation and coding schemes have to be determined for each user. Thus,

more degrees of freedom can be distinguished compared to the single link scenario.

In this chapter, the author first (in Section 3.1) reviews the aspects of energy efficiency op-

timization (rate and power estimation, appropriate constraints and the optimization problem) in

the context of a multiuser OFDMA network scenario. Then, in Section 3.2, he presents his orig-

inal contribution to the solution of the problem of OFDMA resource allocation aiming at energy

efficiency maximization, with computational awareness. Specifically, in Subsection 3.2.2, the con-

sidered system model is described, and the optimization problem is formulated. The necessary

transformation of the optimization problem and the proposed solution are described in Subsection

37
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Figure 3.1: The multicell OFDMA downlink network, where p(n)
T determines the power allocated

on SC n, Ψ(u,n) the binary variable determining if the subcarrier n is assigned to user u or not
while the channel coefficients in the link between BS and users u and u′ are defined by h(u,n)

and h(u′,n), respectively. The data rate achieved by user u and u′ are denoted as R(u) and R(u′)

respectively. The variables related to the system constraints are denoted as PMAX, R(u)
MIN and

R
(u′)
MIN which define the maximum transmit power and the minimum data rate achieved by user u

and u′, respectively.

3.2.3. In Subsections 3.2.4 and 3.2.5, practical iterative algorithms for the EE resource allocation

and MCS selection are presented respectively for the considered system model and problem for-

mulation. The numerical results with detailed analysis are presented in Subsection 3.2.6. These

experimental results are compared against the standard algorithms performance. The chapter

summary and conclusions are provided in Section 3.3.
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Figure 3.2: The multicell OFDMA uplink network, where p(n)
T determines the power allocated on

SC n ∈ N , Ψ(u,n) the binary variable determining if the subcarrier n is assigned to user u or
not while the channel coefficients in the link between BS and users u and u′ are defined by h(u,n)

and h(u′,n), respectively. The data rate achieved by user u and u′ are denoted as R(u) and R(u′)

respectively. The variables related to the system constraints are denoted as P (u)
MAX, P

(u′)
MAX, R(u)

MIN

and R
(u′)
MIN which define the maximum transmit power and the minimum data rate for u and u′,

respectively.
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Table 3.1: The values of the power consumption parameters.

Papers Scenario Circuit power [W]
Power amplifier

efficiency β
[

W
Mbit/s

]
Wang et al. [59] downlink 0.01 38% –
Xiong et al. [50] uplink, downlink {0.05, 10} 38% –
Ye et al. [55] uplink 0.1 38% –
Bossy et al. [16] downlink 0.1 100% –
Ren et al. [54] downlink 0.2 38% –
Tham et al. [58] downlink 1.0 38% 0.1

Wang et al. [53] downlink 10 40% 0.1

D.W.K Ng et al. [61] downlink 10 100% 0.1

Yang et al. [56] downlink {10, 30} 38% {1, 2}
Xiong et al. [51] downlink {15, 30} 38% 0.2

D.W.K Ng et al. [62] multicell downlink 10 20% –

3.1 State of the art

3.1.1 Transmission rate estimation in a multiuser OFDMA network

In the case of the multiuser OFDMA network, the total throughput is the sum of the throughput for

each user. The user’s data rate is determined by the sum of data rate achieved on each subcarrier

assigned to it. In the literature, all three approaches of the data rate estimation presented in

Section 1.1 can be found:

(i) based on the Shannon formula considered among others in [50–57]. In [50–55] the subcarriers

are considered independently (are not grouped into RBs), thus the resource allocation is

determined per subcarrier. Whereas in [56, 57] the subcarriers are grouped into resource

blocks as in some practical wireless communication systems, e.g., LTE.

(ii) estimated by the Shannon formula with scaling factors considered in [58, 59]. In [58] the

Shannon formula is scaled by the factor dependent on a target bit error rate for an uncoded

M-QAM modulation. In [59] the scaling factor is used to model the imperfect channel state

information.

(iii) based on the error-rate function and the spectral efficiency of the applied MCS considered

in [16] where the subcarriers are grouped into resource blocks and all RBs assigned to the

same user must use the same modulation and coding scheme. In this case, the throughput

results from the spectral efficiency of the applied MCS, effective SINR and the block-error rate

which has been estimated by the complementary error function with two fitting parameters

for each MCS. The values of the fitting parameters for the MCS used in the LTE standard

have been provided in [16].

When grouping subcarriers into resource blocks, each RB includes multiple subcarriers subject

to different channel gains, thus, an effective SNR mapping method should be applied to collect,

and represent the channel state information. In [13, 14] one can find methods of channel-quality

representation for the user’s RBs. In [57, 60] the effective SINR over one RB has been obtained

using the mean instantaneous capacity method which is based on the Shannon formula.

3.1.2 Estimation of the power consumption in a multiuser OFDMA network

In the multiuser OFDMA network, the total power consumption (similarly as in the single link

scenario) consists of the transmit power and the power consumption of BB and RF processing at the
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transmitter and receiver. The total transmit power is equal to the sum of the users’ transmission

power. The users’ transmission power is usually determined as the sum of the transmit power

allocated to resources (subcarriers or RBs)s assigned to them. This definition works both for an

uplink and a downlink scenario. As shown in Figures 3.1 and 3.2, the transmit power can be

potentially allocated per subcarrier. While this is an additional degree of freedom, that can lead

to a gain in the achievable data rate, it comes at a cost. The receiver must have the knowledge

of the power allocated to each subcarrier to enable channel estimation and decoding. Therefore,

the signalling overhead is much bigger than in a more practical scenario, e.g., in LTE where the

transmit power is the same among all resource blocks assigned to one user [16].

In the case of the BB and RF processing, the power consumption model should be determined

for each user independently (due to different characteristics of the end-user equipment). Thus,

the receiver circuit power is the sum of the power consumed by the BB and RF processing at the

end-users equipment in the downlink scenario. For example in [52], the power of the circuit is

divided into the power consumed at the base station and the user equipment which is scaled with

the number of subcarriers assigned in the base station to users. In the rest of the cited papers, the

power consumed by circuits remains constant or is modeled as the linear function of the achieved

data rate.

In Table 3.1 the values of the total fixed circuit power, power amplifier efficiency parameter

and/or β parameter from a set of well established papers are provided. It can be observed that

the power amplifier efficiency parameter in most cited papers hovers around 38% while the circuit

power and β parameter oscillate much more. Moreover, in all cited papers, all parameters: the

circuit power, the power amplifier efficiency and parameter β are assumed the same for all users

in the network.

3.1.3 Constraints in a multiuser OFDMA network

It is obvious that each constraint of the system can cause reduction in maximal energy efficiency.

Nevertheless, let us remember that the maximization of the energy efficiency does not ensure the

network fulfils users Quality of Service (QoS) requirements. For example, Figure 3.3 shows the

data rates and transmit powers of three users in the network1. Two of them are located close to

the base station while the third is located at the edge of the cell. The resources (transmit power

and subcarriers) have been allocated to maximize the energy efficiency of the whole network. It

can be observed that none resources are allocated to the user at the edge of the cell. Thus,

despite maximum energy efficiency is achieved, not all users are served. Therefore, in this case the

minimum data rate constraints are required. In the literature, the following constraints for the

energy efficiency optimization of the multiuser OFDMA network have been considered:

• the maximum transmission power constraint which has been considered in [50–55, 58, 59,

61, 62]. In the case of the downlink transmission this constraint ensures that the sum of

transmission powers allocated in the base station is less than or equal to the maximum

allowed value. Whereas, for the uplink transmission [50, 55] the maximum transmission

power constraint concerns each user in the network. It means that the sum of transmit

powers allocated on subcarriers for a given user has to be less than or equal to the maximum

transmit power of its device. It is obvious that the maximum transmit power can vary among

users as shown in Figures 3.1 and 3.2.

1Note that because in Section 3.1, the author of this thesis discusses the state of the art and general problems of
EE optimization in a OFDMA network, in Figure 3.3, particular values on the axes are omitted. This is intentional
to show the general relations between graph coordinates, abstracting from particular simulation scenarios.
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Figure 3.3: The data rates and transmit powers of three users in the network where two of the
users are located close to the base station while the third is located at the edge of the cell. The
case of EE maximization without additional constraints.

• the minimum data rate constraint considered in [50–53, 55, 59, 61, 62]. In both (downlink

and uplink) scenario it means that the data rate of a given user has to be not smaller than

assumed value. Moreover, this value can be different for each user as shown in Figures 3.1

and 3.2.

• the subcarrier/resource block allocation constraint examined in [50–55,57,59–61]. This con-

straint guarantees that a given subcarrier/resource block can be assigned to maximally one

user, in order to avoid the inter-user interference. It is usually realized by introducing the

auxiliary variables which take binary values making the optimization problem a MINLFP

problem for which the techniques described in Section 1.4 are not sufficient. Therefore, in

Section 3.1.4 the methods dealing with MINLP in the context of energy efficiency optimiza-

tion are reviewed.

• the instantaneous proportional rate fairness constraint contemplated in [50, 54, 58] which

ensures that each user would obtain a predetermined proportion of the system throughput

in each resource-allocation determination [63].

• constraints resulting from system model considered in [16, 57, 60]. Such constraints usually

are not described by the equation in the optimization problem because results from the

considered system model, directly. For example in [16, 57, 60] the subcarriers are grouped

into resource blocks and for each user, the same MCS over all its allocated RBs has to be

used. Moreover, in [16] the transmit power is constant per RB for all RBs assigned to a given

user.

3.1.4 Energy efficiency optimization in a multiuser OFDMA network

Let us note that in the context of a multiuser OFDMA network, not only the transmit power

but also the subcarrier/resource blocks assignment has to be determined. The subcarriers or

resource blocks assignment is usually represented by the binary variables (that can be equal to 1

if a subcarrier or resource block is assigned to a particular user or 0 if it is not), so that the

optimization problems can be classified as MINLFP problems which are very difficult to solve by

standard optimization techniques. Therefore, in this section the optimization techniques used to

solve a MINLFP problem in the context of the energy efficient multiuser OFDMA network are

presented.
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In the most of the cited papers, the optimization procedure consists of at least two stages out of

all presented below: (i) transmission power allocation, (ii) subcarriers/resource blocks assignment

and/or (iii) modulation and coding scheme selection. The values of the optimization variables of

the particular stage are usually determined while setting the values of the optimization variables

for other stages as fixed. Such an approach can be realized by the primal decomposition tech-

nique which reformulates the problem into many maximization problems. For example, in the

first stage, the values of the transmission power allocated at the subcarrier which maximize the

energy efficiency are determined. In the second stage, based on these powers, the optimization is

carried by changing subcarriers assignment and modulation and coding schemes. For continuous

transmit power values, standard optimization techniques can be used as long as the problem is

concave/convex. The more complex task is to determine the binary decision variables.

Various methods can be used to solve MINLFP problems [64], e.g., branch-and-bound [57,

60], outer approximation or generalized Bender’s decomposition method. The drawback of these

methods is their poor scalability, i.e., these are efficient only for small size problems. For example, in

the branch-and-bound method the complexity increases exponentially as the problem size increases.

Therefore, the suboptimal solutions which give the near-optimal results have been proposed in the

literature. Here below, the author focuses on the most common method which can be applied to

different system models. In this method, applied in [16, 52, 53, 61], the binary decision variables

have been relaxed to be real numbers within interval [0, 1] and then the Dinkelbach [43], dual

decomposition method and KKT conditions [65] have been applied to determine the transmission

power allocation. Moreover, in order to determine the decision variables of the subcarrier/resource

block allocation for each subcarrier/resource block, the cost-benefit metric which is equal to the

achieved throughput minus the transmit power multiplied by the parameter resulting from the

Dinkelbach method are obtained. Thus, if this value is positive a given subcarrier should be

allocated to the user but if it is negative the assignment of this subcarrier to the user is unprofitable

from the EE point of view. It is obvious that if for a given subcarrier/resource block, more than

one user has a positive value of the cost-benefit metric, this subcarrier should be allocated to the

user with the highest cost-benefit metric. Then, these metrics are rounded to 0 or 1 to get an

integer-valued solution. The presented suboptimal solution gives the near-optimal results with

superlinear convergence.

While in minority, there are also other solution methods used in the literature. For example,

in [57, 60], the branch-and-bound method has been applied to find optimal RB allocation. In

[50], the brute force search has been applied to find optimal subcarrier assignment, but due to

extremely high complexity near-optimal and suboptimal solution have been proposed as well.

The suboptimal methods which are based on the energy efficiency transmit power estimation and

subcarrier assignment resulting from spectral-efficient maximization have been designed in [54,55].

Other suboptimal methods have been proposed in [51, 52, 59]. Nevertheless, the review of all

proposed methods is not the goal of this chapter because these depend on the system model and

do not have universal nature.

3.2 Optimization of EE in the Downlink LTE Transmission with

computational awareness

In the remainder of this chapter, the author of this thesis investigates the energy-efficient resource

allocation problem in the downlink of an OFDMA network with multiple users, and presents his

original contribution to this field. An iterative algorithm is developed to maximize the overall
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energy efficiency of the downlink transmission by allocating the RBs and the transmit power,

which is constant for all RBs assigned to a given user. Moreover, it is assumed that all RBs

assigned to the same user must use the same MCS, as in the LTE or 5G specification. In this

form, the optimization problem belongs to a broad class of problems called MINLFP, which is very

difficult to solve analytically in the original form. Hence, in order to solve it, the author of this

thesis proposes an iterative algorithm with fast convergence based on the Dinkelbach method. In

each iteration, the solution for the power and resource blocks allocation is derived by the numerical

method using the KKT multipliers and KKT conditions, while modulation and coding scheme,

for each user, is obtained by the iterative algorithm. Simulation results show that despite the

computational simplicity of the proposed solution, it achieves better results than the solutions

known from the literature.

3.2.1 Main contribution over the existing methods

In the recent years, the energy efficiency problem has been widely investigated for wireless com-

munication, including systems applying OFDMA. In the literature, one can find a lot of works

dealing with energy-efficient resource allocation schemes for such networks. For example, in [66],

the authors focus on the downlink energy-efficient transmission in OFDMA systems where the

energy efficiency metric is defined as the ratio of Shannon capacity to the total power transmitted

in the network. In that paper, flat fading channel is considered. Moreover, individual subcar-

riers are treated independently, and are not grouped into resource blocks, unlike in the most of

contemporary wireless communications systems. The approach presented in that paper is an ide-

alized case, which does not take limitations of the practical wireless communication systems into

account. The same approach is taken in [53] and [50], where the authors consider maximization

of the energy efficiency for the downlink (and uplink in [50]) transmission for frequency-selective

channels. Zhanyang et al. in [56] propose an energy-efficient resource allocation scheme for the

downlink in the LTE networks where subcarriers are grouped into resource blocks. However there,

simplified method of collecting the channel information is considered. Furthermore, the system

throughput is calculated using the Shannon formula what means that the resulting throughput

is higher than that resulting from the use of a specific modulation and coding scheme. In [60]

and [54], the energy efficiency optimization problem is divided into two subproblems: (i) RBs (or

subcarriers) allocation and (ii) power control. It means that the process of subcarrier allocation

is made only one and is not change in the power control phase. In this chapter, the author of this

thesis proposes the joint resource blocks and power allocation algorithm with MCS selection for

the allocated RBs.

The system model which the author of this thesis considers in this chapter, is the same as

in [13] and [14]. However, contrarily to those papers, where the authors focus on throughput

maximization, here below, the author defines and solves the problem of energy efficiency maxi-

mization. Moreover, here, the throughput is calculated based on the target BLER curves, and the

spectral efficiency of given MCS. In contrast to the cited works, the author of this thesis takes

limitations of the practical wireless communication systems into account, such as the fact that the

allowable code rates take discrete values, and that subcarriers are grouped in resource blocks. It

is also assumed that all RBs assigned to the same user must use the same MCS, as in the LTE or

5G specification. As mentioned, the optimization problem is an MINLFP problem, which cannot

be solved analytically. In order to solve it, the author of this thesis proposes the iterative algo-

rithm with fast convergence that maximizes the overall energy efficiency of the considered OFDM

LTE/5G-like network.
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Figure 3.4: System model with MCS and power allocation for RBs of distinct users in the downlink.

3.2.2 System model and problem formulation

Let us consider the downlink transmission presented in Figure 3.4 where the set of users U share

the set of NRB resource blocks, and each RB contains the set of N adjacent subcarriers. More-

over, let us assume that the users channels are reciprocal (the downlink channel has the same

characteristic, as the uplink channel), and all RBs assigned to the same user in the downlink,

in any given Transmission Time Interval (TTI) must use the same MCS (one from the set M
available modulation and coding schemes), as in the LTE specification. Furthermore, all resource

blocks assigned to the user, are transmitted with the same power, but the power between the users

can vary. In the considered system model, the interference from and to the other system are not

taken into account. Because each RB, assigned to the user, includes multiple subcarriers subject

to different channel gains (attenuation), an SNR-mapping method should be applied to collect

and represent the channel state information. One of such methods is Exponential Effective SINR

Mapping (EESM).

In [13, 15], one can find other methods of channel-quality representation for the user’s RBs.

In the remainder of this thesis, the author will use the more accessible method to approximate

effective SINR which is expressed as:

γ̃(u,m) =

∣∣∣N (u,m)
RB

∣∣∣ |N |∑
k∈N (u,m)

RB

∑
n∈N

N0

p
(u,m,k,n)
T |h(u,k,n)|2

, (3.1)

where N u,m
RB and

∣∣∣N (u,m)
RB

∣∣∣ is the set and the number of RBs assigned to user u who uses m-

th modulation and coding scheme, respectively. Moreover, p(u,m,k,n)
T is the power allocated to

subcarrier n in RB k for user u and MCS m, and h(u,k,n) is the channel characteristic for this

user at subcarrier n in RB k. The power spectral density of the white noise is denoted as N0.

In the above equations, it can be observed that RBs allocated to the users are dependent on the
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Table 3.2: MCS parameters table

MCS index m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b(m) 0.187 0.308 0.466 0.742 1.171 1.852 3.057 4.498 7.247 10.845 16.723 25.714 38.311 59.211 95.875
c(m) 0.044 0.045 0.054 0.066 0.091 0.141 0.234 0.275 0.461 0.632 0.911 1.355 2.461 3.551 5.445

γ
(m)
REQ [dB] [67] -6.2790 -4.5350 -2.7910 -0.9301 1.1012 3.0802 5.2610 6.8614 8.9403 10.580 12.530 14.390 16.180 18.050 20.130

applied MCSs. From the energy efficiency perspective, this an important aspect. If we order

the MCS indexes according to the bit-rates they provide, in the ascending order (the lower m

the lower bit-rate) then, in the case of relatively high channel attenuation (low effective SNR)

for a given RB, application of a high MCS index causes increase of the transmit power. As a

result the energy efficiency can be reduced. In the typical approach, for many reasons [66]- [54],

the system throughput is calculated using Shannon formula which does not take limitations of

practical wireless communication systems into account. In the approach, the author depart from

this ideal case, and calculates the system throughput as a real throughput resulting from the

block-error rate and the spectral efficiency of the applied MCS. Consequently, in the considered

system model, the throughput is defined as:

R =
∑
u∈U

ρ(m)
∣∣∣N (u,m)

RB

∣∣∣ |N |
T

[
1− BLER

(
m, γ̃(u,m)

)]
, (3.2)

where m is MCS index for user u, ρ(m) is code rate in bits/symbol for MCS m, and T is the OFDM

symbol duration. Moreover, BLER for RBs that are assigned to the user u and that use MCS m

can be accurately predicted by [14]:

BLER
(
m, γ̃(u,m)

)
= 0.5 · erfc

(
γ̃(u,m) − b(m)

√
2 · c(m)

)
, (3.3)

where erfc (·) is the complementary error function, and b(m) and c(m) are the fitting parameters for

given MCS m whose values are shown in Table 3.2 and which were determined by authors using

Curve Fitting Toolbox being part of MATLAB software.

In the considered system model, the total power consumption consists of two parts: variable

transmission power PT and constant circuit power PC. Based on equation (3.1), the total transmit

power is defined as:

PT =
∑
u∈U

∣∣∣N (u,m)
RB

∣∣∣ |N | p(u,m,k,n)
T =

∑
u∈U

γ̃(u,m)
∑

k∈N (u,m)
RB

∑
n∈N

N0∣∣h(u,k,n)
∣∣2 . (3.4)

The circuit power PC is the power required by all operations of transmitter circuitry, which is

incurred by the radio frequency transceiver frontend and baseband processing.

The energy efficiency of the considered downlink transmission is defined as the ratio of the

throughput to the total power consumed in the downlink, i.e. as the number of successfully

transmitted information bits (satisfying the assumed BLER) per unit energy consumption (Joule):

η =
R

P
=

R

PC + PT

[
bit

Joule

]
. (3.5)

Thus, the optimization problem is defined as to find the MCS index for each user m? =
{
m(u)?

}
, a

set of RBs assigned to the users N ?
RB =

{
N (u,m)?

RB

}
and the value of effective SINR γ̃? =

{
γ̃(u,m)?

}
(depending on and resulting from the allocated transmit power p(u,m,k,n)

T ) that maximize η:

(γ̃?,m?,N ?
RB) = arg max

γ̃,m,NRB

η (γ̃,m,NRB) , (3.6)
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subject to:

N (i,m)
RB ∩N (j,m)

RB = ∅, i 6= j ∀i ∈ U , j ∈ U , (3.7)

γ̃(u,m) ≥ γ(m)
REQ ∀u ∈ U , m ∈M. (3.8)

Constraint (3.7) guarantees that each RB is assigned to maximum one user. Moreover, constraint

(3.8) guarantees achieving the minimum value of effective SINR γ
(m)
REQ for MCS m that assures

required BLER.

3.2.3 Proposed solution

In the optimization problem, we deal with discrete values of the code rate and continuous values of

the effective SINR. Furthermore, the RB that maximize energy efficiency to each user have to be

assigned. Consequently, the optimization problem is MINLFP, and in the case of exhaustive search,

its complexity is equal to O
(
|U||NRB| |M||U|

)
. Moreover, in view of the ratio of two functions,

the defined problem belongs to a broad class of convex-concave fractional problems. In practical

communications systems, high complexity transceivers are less favorable, thus below, the author

proposes the iterative algorithm with low complexity equal to O (|NRB| |N | idink), (where idink is

the number of iteration for Dinkelbach method), which achieves the higher energy efficiency than

the solutions presented in the literature so far.

Transformation of the optimization problem

In order to solve the optimization problem, the objective function has been transformed into a more

traceable form. In the first step of the transformation, the Dinkelbach method [43] for nonlinear

fractional programming which then allows to determine the optimal value of effective SINR for

each user and for a given set of the RBs is used. Thus, (3.6) is transformed into a new parametrized

concave function with parameter λ, which is mathematically defined as:

(γ̃?,m?,N ?
RB) = arg max

γ̃,m,NRB

F (γ̃,m,NRB, λ
?) = (3.9)

= arg max
γ̃,m,NRB

R (γ̃,m,NRB)− λ?P (γ̃,m,NRB) .

Let (γ̃?,m?,N ?
RB) be the optimal solution set in (3.9), and

λ? =
R(γ̃?,m?,N?

RB)

P(γ̃?,m?,N?
RB)

. The following statements are equivalent:

F (γ̃?,m?,N ?
RB, λ) > 0⇔ λ < λ?,

F (γ̃?,m?,N ?
RB, λ) = 0⇔ λ = λ?,

F (γ̃?,m?,N ?
RB, λ) < 0⇔ λ > λ?.

Solving problem (3.9) is equivalent to finding the root of nonlinear equations F (γ̃?,m?,N ?
RB, λ

?) =

0. In order to find the root of (3.9), the Dinkelbach method can be applied, i.e., an iterative algo-

rithm to find the λ value by solving the parameterized problem in each iteration. The algorithm

using the Dinkelbach method converges to the optimal solution with a superlinear convergence

rate. The detailed convergence analysis can be found in [43].

In the second step of the objective function transformation, let us introduce the decision ma-

trix Ψ whose size is |U| × |NRB| × |M|. The elements Ψ(u,k,m) of the decision matrix determine

whether RB k is assigned to the user u, who uses MCS m. In this case, the system throughput

and the total transmit power are represented as:

R =
ρ(m) |N |

T

∑
u∈U

∑
k∈NRB

∑
m∈M

Ψ(u,k,m)
[
1− BLER

(
m, γ̃(u,m)

)]
, (3.10)
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PT =
∑
u∈U

γ̃(u,m)
∑

k∈NRB

∑
m∈M

Ψ(u,k,m)
∑
n∈N

N0∣∣h(u,k,n)
∣∣2 , (3.11)

respectively. Finally, the values of decision matrix Ψ are equal to 0 or 1, but in order to reduce

the computational complexity the binary values of matrix Ψ are temporary relaxed to be real

numbers.

3.2.4 Energy efficient resource allocation algorithm

Here below, the author of this thesis proposes the energy efficient resources allocation algorithm

with fast convergence. In order to determine the optimal value of effective SINR and the set of

RBs for each user, the Lagrangian function:

L (γ̃,Ψ, λ,µ) = R− λ (PC + PT) +
∑
m∈M

∑
u∈U

µ(u,m)
(
γ̃(u,m) − γ(m)

REQ

)
, (3.12)

and KKT conditions:

∂L (γ̃,Ψ, λ,µ)

∂γ̃(u,m)
= 0, (3.13)

µ(u,m)
(
−γ̃(u,m) + γ

(m)
REQ

)
= 0 ∀u ∈ U , m ∈M (3.14)

are defined. The Lagrange multiplier which is responsible for fulfilling constraint (3.8) is denoted

as µ(u,m), ∀u ∈ U , m ∈M, µ(u,m) ≥ 0. Then, solving condition (3.13), the closed form solution of

the effective SINR for user u, MCS m and for a given λ is derived as:

γ̃(u,m)? = b(m) + c(m)

√√√√√√− log


√
πc(m)λ

∑
k∈NRB

Ψ(u,k,m)
∑
k∈N

N0

|hu,k,n|2

ρ(m)
∣∣∣N (u,m)

RB

∣∣∣ (1 + µ(u,m)
)

. (3.15)

Similarly, calculating derivative of (3.12) with respect to Ψ(u,k,m), obtaining:

ζ(u,k,m) ,
ρ(m) |N |

T

[
1− 0.5erfc ·

(
γ̃(u,m)? − b(m)

√
2 · c(m)

)]
− λ

∑
k∈N

γ̃(u,m)?N0∣∣h(u,k,n)
∣∣2 . (3.16)

It can be observed that the subtrahend of the above equation defines the cost of the achieved

throughput for RB k, modulation and coding scheme m and for user u. Thus, if the value of

variable ζ(u,k,m) is positive, it means that the RB k should be allocated to the user u. It is obvious

that in this solution, one RB can be allocated to more than one user, so the highest of ζ(u,k,m)

values for each RB and for each user, assuming that the users apply a given MCS have to be

chosen. Consequently, the closed-form solution for the RBs allocation is defined as:

Ψ(u,k,m)? =

 1 for (k?, u?) = arg max
k,u

ζ(u,k,m)

0 for otherwise
. (3.17)

Based on the equations and transformations described in the previous subsection, let us propose

the energy-efficient resource blocks and power allocation algorithm for a given λ and a set of

modulation and coding schemes m which is designed as in Algorithm 3. In Algorithm 3, one

can pay special attention to lines 4–6, which are responsible for finding the best RB when a user

has not obtained any resource block to transmit its data. In this case, each RB is considered

independently, i.e., it means that the number of RBs assigned to user u is equal 1
(∣∣∣N (u,m)

RB

∣∣∣ = 1
)

,
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and that the optimal value of effective SINR for each RB is calculated according to the following

equation:

γ̃(u,k,m)? = b(m) + c(m)

√√√√√√− log


√
πc(m)λ

∑
k∈N

N0

|hu,k,n|2

ρ(m)
(
1 + µ(u,m)

)
. (3.18)

Then, the RB, which is assigned to a user, is selected using equation (3.16) and (3.17) for

γ̃(u,m)? = γ̃(u,k,m)? . If at least one RB is assigned to the user, the optimal value of effective

SINR is determined using equation (3.15). This procedure is repeated until the sets of RBs allo-

cated to the users achieve convergence, or the index of an iteration is equal the maximum number

of iterations.

3.2.5 MCS selection algorithm

The iterative MCS selection algorithm is proposed below. Typically, the EE optimization is per-

formed using the Shannon formula for the throughput definition, and then, a modulation and

coding scheme is selected according to the value of the determined SINR value. This approach is

an over-simplification of the real energy efficiency estimation problem in practical wireless commu-

nication systems. In the approach, the author of this thesis considers selection of each MCS based

on the BLER curves. The first problem in the approach is that the code rates are discrete values

in contrast to the standard approaches (where the Shannon formula is used) what causes that the

mixed integer nonlinear fractional problem is also non-convex. Moreover, for each MCS, the set

of RBs allocated to a user can be different, so the problem cannot separate into two subproblems:

the RBs allocation problem and the MCS selection problem. As a consequence, the complexity

of this problem is too high for practical applications. Hence, below in this chapter, the author of

this thesis proposes iterative algorithm which is presented as Algorithm 4. It can be observed that

for each MCS change, a new set of RBs assigned to the users and a value of parameter λ̂(u,m) is

determined using Algorithm 3. When all changes of MCS for all users are done, a new λ parameter

Algorithm 3 Resource blocks and power allocation

1: initialization the maximum number of iteration IRB, the index of
iteration iRB = 0 and N (u,m)

RB = ∅,∀u ∈ U , m ∈M
2: For a given λ and m:
3: repeat
4: if N (u,m)

RB = ∅ then
5: Calculate γ̃(u,k,m)? using equation (3.18) and Ψ(u,k,m)? using

equations (3.16) and (3.17) for γ̃(u,m)? = γ̃(u,k,m)? .
6: else
7: Calculate γ̃(u,m)? using equation (3.15) and Ψ(u,k,m)? using equa-

tions (3.16) and (3.17).
8: end if
9: if γ̃(u,m)? or γ̃(u,k,m)? ≤ γ(m)

REQ then
10: Calculate µ(u,m) using numerical method.
11: end if
12: iRB ← iRB + 1
13: until NRB converges or iRB = IRB

14: return λ =
R(γ̃?,m,N?

RB)

P(γ̃?,m,N?
RB)
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is determined by selecting the highest value of matrix λ̂ and the vector of MCS m is updated.

Algorithm 4 finishes when one of the stop criteria is met.

3.2.6 Numerical results

In this section, computer simulation results obtained by the proposed optimization algorithm

are presented. The tested system model consists of |M| = 15 modulation and coding schemes

which are defined in the LTE specification as the set of the number of available RB: |NRB| ∈
{6, 15, 25, 50, 75, 100}. Moreover, in order to maximize the energy efficiency, the resource block is

not necessarily assigned to any user. Each RB contains |N | = 12 subcarriers, which are spaced

by ∆f = 15kHz from each other. Other parameters are as follows: for the noise power spectral

density operational point in the temperature of 20◦C is assumed, and that it is increased by the

receiver noise figure of 10dB. Moreover, each user has to achieve the BLER lower than 10% and

PC = 0.1W as assumed in [22]. The channel model is the Extended Pedestrian A.

In order to investigate the performance of the proposition, the results have been compared to the

reference methods. The first method, which is called the max-throughput, the system throughput

is maximized constrained by the maximum transmit power, which is determined by the proposed

solution. In order to maximize the total throughput, the resource blocks are assigned to the users

with the highest channel gain, and then, the optimal transmit power is obtained using the water-

filling principle. Finally, the modulation and coding scheme is selected according to the effective

SINR calculated by equation (3.1). The second reference scheme Shannon EE, which is based on

the method found in [53], maximizes the energy efficiency of an OFDMA network by the power

and subcarriers allocation, but without MCS selection. In order to fairly compare this reference

methods with the author’s proposition, the scheme presented in [53] was adapted to the system

model and all subcarriers assigned to the user, are transmitted with the same power, but the

power between the users can vary. After the subcarrier and power allocation the MCS is selected

according to the effective SINR.

Figure 3.5 illustrates the convergence of the proposed algorithm for various cell radius l, the

number of users |U| and for |NRB| = 100 resource blocks. The energy efficiency determined by the

proposed solution is normalized to the optimal one. The curves in this figure show the number of

iterations resulting from Dinkelbach method equals idink = iRB + iMCS, because this is the only

unknown value in the set of O (|N | |NRB| idink) values. It can be observed that EE figure converges

Algorithm 4 MCS selection

1: initialization the maximum number of iteration IMCS, the index of
iteration iMCS = 0, the maximum tolerance ε and m(u) = 0,∀u ∈ U

2: repeat
3: for u := 1 to |U| do
4: for m := 1 to |M| do
5: Use Algorithm 3 for a given λ and m to generate a new value

of λ̂(u,m) parameter and NRB

6: end for
7: end for
8: Select a new MCS for one user according to: m(u)? ← arg max

u,m
λ̂.

9: λ← λ̂ for m(u)?

10: iMCS ← iMCS + 1
11: until F (γ̃,m,NRB, λ) < ε or iMCS = IMCS

12: return (γ̃?,m?,N ∗RB)← (γ̃,m,NRB)
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Figure 3.5: The convergence of the proposed algorithmic solution.

to the maximum value in 15 to 30 iterations depending on the system configuration.

In the next figures, the energy efficiency versus the number of available RBs is plotted. It can

be seen in Figure 3.6 and Figure 3.7 that the algorithmic solution achieves better results than the

results obtained by the max-throughput scheme and scheme proposed in [53] for all considered

system configurations. Moreover, energy efficiency increases with the number of RBs. It means

that the cost resulting from increasing of the transmit power is relatively small compared to the

gains obtained by increasing the total throughput. Note that the difference between the proposed

solution and the reference methods are lower for smaller cell radius because in such cases, the

constant circuits power dominates over the total transmit power.

Figure 3.8 presents the energy efficiency as a function of the number of users. In this case,

the system, where the users share |NRB| = 100 resource blocks, and are located at the cell edge

with radius 0.75 km and 3.0 km is considered. Here again, the proposed solution achieves better

Figure 3.6: Energy efficiency versus the number of available RBs for l = 0.75km (left) and l =
3.0km (right).
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Figure 3.7: energy efficiency versus the number of available RBs for l = 0.75km (left) and l = 3.0km
(right).

EE results than the reference methods. It is noticeable, that for the proposed solution and for

the scheme proposed in [53], the energy efficiency increases with the number of users due to the

multiuser diversity gain. However, for the max-throughput scheme, the energy efficiency can

decrease because maximization of throughput can increase the total transmit power, and as a

result can reduce the energy efficiency.

Figure 3.9 shows the energy efficiency as a function of cell radius. Again, it is assumed that

all users are located at the cell edge. This figure confirms that the performance of the proposed

algorithmic solution outperforms the another (reference) ones. It is also noticeable, that the energy

efficiency decreases with the cell radius.

Figure 3.8: energy efficiency versus the number of users for l = 0.75km (left) and l = 3.0km (right).
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Figure 3.9: energy efficiency versus the cell radius.

3.3 Chapter summary and conclusions

In this chapter, the author of this thesis has analyzed the downlink energy-efficient transmission

in an OFDMA (LTE-like) network. The EE metric has been defined as the sum throughput in

the network over the network total energy consumption that includes the radio signal emission

power as well as the signal processing power at all transmitters and receivers. (Again, accounting

for the power consumed by necessary computations stands for the computational awareness in the

network.) The throughput has been determined based on BLER, and the spectral efficiency for the

considered modulation and coding schemes. Moreover, in the system model, the subcarriers are

grouped in RBs. It means that the considered system takes the practical aspects of the wireless

communication systems into account what is not a common approach in the literature particularly

in the context of EE maximization. Due to the continuous values of the SNR and discrete values of

the SE and code rates, the defined optimization problem is MINLFP problem. Moreover, because

the modulation and coding scheme for each user has to be chosen from the finite set, the optimiza-

tion is combinatorial. Therefore, the optimization problem is very difficult in the original form and

cannot be solved analytically. Thus, the author of this thesis proposed the original algorithm which

maximizes the energy efficiency by the joint power and RBs allocation based on the Dinkelbach

method. Furthermore, the iterative algorithm for modulation and coding scheme has been pro-

posed. The computational complexity of the proposed solution is equal to O (|NRB| |N | idink) what

compared to exhaustive search which complexity is equal to O
(
|U||NRB| |M||U|

)
gives significant

gain.

The proposed solution has been evaluated by the computer simulations. Simulation results show

that the algorithm proposed by the author of this thesis achieves better results than the reference

methods. The energy efficiency values obtained by the proposed solution are higher than obtained

by the reference methods in all investigated scenarios. The gain in the energy efficiency of the

proposed solution compared to the reference methods is between 10% and 60% depending on the

scenario what can result in the reduction of the power consumption in the wireless communication

systems applying it. Finally, due to low complexity of the proposed algorithm, it can be a good

alternative to the methods which do not include practical complexity aspects in the system design.



Chapter 4

Energy efficiency in multiuser OFDMA

relay networks

The use of relaying nodes is a promising a technique for increasing the energy efficiency of a

radio communication network. In the literature, different scenarios of transmission supported by

relay nodes can be distinguished. Figure 4.1 illustrates four transmission modes in the multiuser

OFDMA relay network which can be found in the literature:

(i) direct transmission [68–71],

(ii) relayed transmission [68–73],

(iii) relayed transmission with direct link [74,75],

(iv) relay beamforming [76].

Depending on the system model, the transmission mode is selected related to network conditions

from the considered set of modes. The set of transmission modes can contain all transmission

modes, several or one of them, e.g., direct transmission and relayed transmission. Another scenario

commonly considered in the literature, is when the user pairs communicate with each other via

the relay node as shown in Figure 4.2.

Nevertheless, irrespective of the scenario, in the case of the multiuser OFDMA relay network,

the transmission is typically analyzed in two Time Slots (TSs). One use case, which is considered

(ii) relayed transmission (iii) relayed transmission with direct link

(i) direct tranmission (iv) relay beamforming

relay node
relay node

relay node

relay node

base 
station

Figure 4.1: The transmission modes in the multiuser OFDMA relay network.
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user pair

relay node

destination 
nodes

source 
nodes

Figure 4.2: The scenario where three user pairs communicate in parallel via the relay node.

by the author of this thesis in his research is the relayed transmission with direct link. In such a

case, in the first time slot, a transmitter sends data to be received by the relay and by the end-

users. In the second time slot, the relay forwards the received data to their destination. Moreover,

Amplify and Forward (AF) and the Decode and Forward (DF) relaying protocols are possible.

The first one is based on amplification of the signal received by the relay, whereas the later on the

demodulation and decoding of the received signal (resulting in noise and interference rejection)

before further processing and transmission to the destination. Both protocols are elaborated in

the next subsection.

The relayed transmission is considered as the promising technique for increasing the energy

efficiency because the distance to end-user is divided into two or more shorter parts with lower

channel attenuation. It allows reducing the transmit power while providing the same throughput or

increasing the throughput for the same power allocation. Moreover, the smaller distances (better

channel conditions) can result in less signal processing to be required for reliable communication,

e.g., less complex channel coding and decoding is necessary. On the other hand, the cooperative

transmission requires two time slots to deliver data to an end-user whereas the direct transmission

only one. Moreover, similarly as base stations and end-user devices, the relay nodes consume the

power related to receiving, processing and transmitting data. Thus, there are a few aspects which

can impact the energy efficiency in the case of relay networks. These are summarized in Table 4.1

compared to the direct transmission.

In the context of the multiuser OFDMA relay network more degrees of freedom in the trans-

mission flexibility can be distinguished than for a multiuser single-hop OFDMA network. In the

literature the following degrees of freedom can be found:

• the transmission mode selection - if more than one of modes presented in Figure 4.1 are

considered in the system, the transmission mode can be selected. Usually, in the system

models from the literature, the direct transmission and the transmission with the help of the

relay node are selectable. Moreover, two options of adaptability are possible. In the first the

users are divided into groups, each with a pre-determined transmission mode [68–70]. In the

second option the transmission modes are adaptively selected for every user related to the

current channel conditions [71,74,76].

• the relay nodes selection - in the literature, two approaches are considered in the context

of relay nodes selection. In the first approach the users are assigned to the relay nodes

permanently [68,69]. In the second approach the relay nodes are selected adaptively [70,71,

74,75]. The complexity of the first approach is lower than of the second one but the achieved
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Figure 4.3: The energy efficiency against the number of the relay nodes.

energy efficiency can be lower. It results from the fact that in the adaptive relay selection

more ways to transmit signal is possible. Finally, in the case of relay beamforming the relay

nodes selection is extended to the set of relay nodes selection [76]. It means that more than

one relay node can transmit data to one user.

• the subcarrier/resource block pairing - relies on matching subcarriers in the first and second

time slot of the relaying transmission, which maximize the energy efficiency. The subcarrier

pairing is realized in two possible ways: when the same [68, 69, 75, 77] or different [70–

74, 76, 78–80] subcarriers are used in the first and second time slots. The first approach

can be less efficient in terms of energy efficiency but less computationally complex than

the second approach which reallocates resources in the second time slot. Nevertheless, the

resource reallocation requires down-conversion of the signal to base band what may consume

additional power.

• the localization and the number of relay nodes - these aspects are not usually determined

during the optimization procedure but have a significant impact on the achieved energy

efficiency. Let us remember that each relay node consumes power when it is turned on.

Table 4.1: The factors increasing or decreasing the energy efficiency of relayed and direct trans-
mission

Increasing EE Decreasing EE
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• the distance to end-user is divided into two or
more shorter parts with lower channel attenua-
tion

• reducing the transmit power while providing the
same throughput or increasing the throughput
for the same power allocation

• less complex signal processing may be used
• possibility of regenerating the signal in the relay

nodes

• two time slots are required to deliver data to
end-user

• the relay nodes consume the power related to
receiving, processing and transmitting data

• more (than in the direct transmission) optimiza-
tion variables which can cause more complex re-
source allocation algorithm
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on • one time slot is required to deliver data to end-
user

• less circuit power consumption than in the mul-
tiuser OFDMA relay transmission

• less (than in the relayed transmission) optimiza-
tion variables can reduce the complexity of re-
source allocation algorithm

• high transmit power for the long links
• complex signal processing may be required for

the long links
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Figure 4.4: The energy efficiency against the distance form the base station to the relay node.

Thus, if the number of relay nodes is too high the power consumption can dominate over

the potential profit resulting from applying the cooperative transmission. In Figure 4.3 the

energy efficiency against the number of relay nodes for a sample scenarios is plotted [71,74]1.

It can be observed that in both scenarios exist some number of the relay nodes in the

network which maximize the energy efficiency. Below this value, the potential of the relayed

transmission is not fully used while above this value the circuit powers dominate over the

achieved profit. Moreover, if the relays are misplaced in the network, the benefit of using

them may be negligible. An extreme case is when the relay node is located very close to the

base station or the end-user. In such cases, the distance to the end-user is divided into a very

short and long path with a length comparable to that of the direct link. Figure 4.4 illustrates

the energy efficiency versus distance to the relay node from the base station for AF and DF

relaying protocols. The relay is placed in between source and destination nodes of fixed

positions. It can be observed that for both relaying protocols the highest energy efficiency is

achieved when the relay divides the distance between the base station and end-user in half.

• the transmit power and subcarrier/resource block allocation - in this case, the transmission

powers allocated on subcarriers and subcarriers assignment to the users are determined

(similar to the multiuser OFDMA network or the single link).

In Figure 4.5 the trade-offs observed in the multiuser OFDMA relay network are presented. Let

us observe that if the number of degrees of freedom increases the computational complexity of the

resource allocation algorithms increases. On the other hand fewer number of degrees of freedom

reduces the computational complexity of the algorithms at the cost of potentially decreased energy

efficiency.

In this chapter, the author of this thesis examines multiuser OFDMA relay (two-hop) networks

with all degrees of freedom listed above, and in the presence of interference originating from the fact

that the same resources (subcarriers) can be used in the first and the second time slot of the relayed

transmission. First, in Section 4.1 the author reviews the aspects of energy efficiency optimization

(rate and power estimation, appropriate constraints and the optimization problem) for multiuser

1Note that because in this chapter introduction, the author of this thesis discusses the general issues of EE
optimization in OFDMA relay networks, in Figure 4.3 and in the following one (Figure 4.4), particular values on
the axes are omitted. This is intentional to show the general relations between graph coordinates, abstracting from
particular simulation scenarios.
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OFDMA relay networks with transmission flexibility. Then, in Section 4.2 he presents his original

contribution to this field. Specifically, in Subsection 4.2.2, the considered multiuser DF relay in-

terference network model and the problem of OFDMA resource allocation are presented for such a

network, aiming at energy efficiency maximization, with computational awareness. Next, the au-

thor’s original analytical and algorithmic solutions for the mentioned problem are presented. The

steps in the transformation of the non-concave optimization problem are discussed in Subsection

4.2.3. In Subsection 4.2.4, the author of this thesis presents novel algorithmic solution to approach

the optimal selection of the transmission mode (direct or relayed), transmission power, subcarri-

ers and subcarriers-pairing. This is followed by the algorithm complexity analysis in Subsection

4.2.5. In Subsection 4.2.6, the computer simulation results are provided and compared against the

performance of reference methods. The chapter is summarized and concluded in Section 4.3.

4.1 State of the art

4.1.1 Data rate estimation in a relay network

All the papers considered in this thesis, investigating a multiuser OFDMA relay network use the

Shannon formula for the data rate estimation. This is in the contrast to the OFDM single link

and multiuser OFDMA network, where other solutions were used as well. However, the specific

usage of Shannon formula depends on the considered relaying protocol. Figure 4.6 illustrates the

transmission with help of the relay node and the power consumption related to the amplify and

forward and decode and forward relaying protocols. Let us note that if the direct link is not

considered (e.g., it is in a deep fade), the SNR at the end-user device on subcarrier n aims to zero:

γ(u,n) → 0. Such an assumption is commonly applied mainly due to the increase in the complexity

of the optimization problem. Nevertheless, if the direct link is taken into account, it can cause

the increase in the energy efficiency without any additional cost because the signal received by the

end-user from the relay node, in the second time slot, is combined with the signal received from

the base station in the first time slot, using e.g. the Maximum Ratio Combining (MRC) method,

thus the SNR in the receiver increases, as well. In the context of the energy-efficient resource

allocation the link data rate is described differently for each relaying protocol:

• the amplify and forward protocol wherein the signal received in the first time slot by a relay

node is amplified and transmitted to the end-user in the second time slot. Thus, it can

be observed that no time-consuming and energy-intensive signal processing is carried out.

On the other hand, let us remember that the relay amplifies not only desired signal but all

other received signals as well. The data rate of user u while using subcarrier pair (n, k), i.e.,

subcarrier n for transmission from BS and subcarrier k for transmission from the relay, and

Reduced degrees 
of freedom

Computational complexity 
of the algorithm

Reducing the energy efficiency and the 
complexity of the resource allocation 
algorithms for fewer degrees of freedom

Increasing the energy efficiency and the 
complexity of the resource allocation algorithms 

in the case of many degrees of freedom

Figure 4.5: The trade-offs observed in the multiuser Orthogonal Frequency Division Multiple
Access relay network.
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applying MRC reception can be estimated by [81]:

r
(u,n,k)
R =

1

2
∆f log2

(
1 +

γ(RN,n)γ(u,k)

1 + γ(RN,n) + γ(u,k)
+ γ(u,n)

)
, (4.1)

where γ(x,y) determines the SNR value at the receiver x observed on subcarrier y as shown

in Figure 4.6. Moreover, u denotes UE, and Relay Node (RN) denotes the relay node.

Because of two-slot transmission the factor 1
2 scales Shannon formula. Moreover, in some

papers, e.g., [68–70], the authors have applied the approximation for high receiver’s SNR

values. Moreover, in [72, 77, 82] the data rate estimation of the AF relaying protocol in the

interference networks can be found.

• the decode and forward protocol wherein the received by relay node data (in the first time

slot) are decoded and then coded again and forwarded to end-user (in the second time

slot). This approach can increase the total power consumption but the potential errors can

be eliminated in the relay node and thus they are not propagated to the end-user. For

DF relaying protocol the data rate of user u using subcarrier pair (n, k) may be expressed

as [71,73,81,83]:

r
(u,n,k)
R =

1

2
∆f min

{
log2

(
1 + γ(RN,n) + γ(u,n)

)
log2

(
1 + γ(u,k)

) }
. (4.2)

The factor of 1
2 in (4.2), similarly as in (4.1), accounts for the fact that two time slots are

required. Moreover, in [78–80] the data rate estimation of the DF relaying protocol in the

interference networks can be found.

Sometimes, the authors have consider AF relaying protocol instead of DF protocol because

they think that DF relaying protocol requires more than two time slots due to the time-

consuming signal processing. Finally, in Table 4.2 the pros and cons of the described relaying

protocols are summarized.

PBB–TX + PRF–TX + PT–TX PRF–RN + PT–RN PBB–RX + PRF–RX

PBB–TX + PRF–TX + PT–TX PBB–RN +PRF–RN + PT–RN PBB–RX + PRF–RX

AF:

DF:

1st time slot      2nd time slot

- not allocated resources

... ... ...1 ...

... ... ...1 ...

- allocated resources

Figure 4.6: Transmission supported by the relay node, and the power consumption related to the
amplify and forward and decode and forward relaying protocols, where γ(x,y) determines the SNR
value at the receiver x observed on subcarrier y.
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Table 4.2: Pros and cons of the relaying protocols

Pros Cons
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• no time-consuming and energy-intensive BB sig-
nal processing is carried out

• two time slots are enough to deliver the data
• the simple structure of the relay node

• the increase in the total power consumption re-
sulting from RF signal processing in the relay
node

• the relay node amplifies not only desired signal
but also other received signals (the potential er-
rors can be propagated to the end-user)

• the resource reallocation is limited and may re-
quire additional signal processing that increases
the power consumption
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• the potential errors can be eliminated in the re-
lay node (are not propagated to the end-user)

• the possibility to resource reallocation during
the BB signal processing

• the increase in the total power consumption re-
sulting from the BB and RF signal processing
in the relay node

• the time-consuming signal processing may re-
quire more than two time slots to deliver the
data to end-user

• the complex structure of the relay node

Table 4.3: The values of the power consumption parameters in the multiuser OFDMA relay net-
works.

Papers Scenario
TX PC

[W]
RN PC

[W]
RX PC

[W]
TX PA

efficiency
RN PA

efficiency β
[

W
Mbit/s

]
Cheung et
al. [68, 69]

AF downlink 60 20 – 38% 20% –

Loodaricheh et
al. [70]

AF downlink 100 0.1 0.1 38% 100% –

Lu et al. [75]
DF with DL

downlink
0.05, 0.1,

0.2
– – 50% 50% 0.38

Xiong et al. [76]
DF with DL

downlink
0.2 – – 38% 38% 0.01

Bossy et al. [71] DF downlink 40 4 0.1 100% 100% –
Singh et al. [73] DF downlink 0.1 0.1 – 100% 100% –
Bossy et al. [74] DF downlink 40 4 0.1 100% 100% 0.01

Zappone et al. [83] DF – – 0.01 100% 100% –
Xiong et al. [85] AF 0.025 – 0.025 40% 40% –
Singh et al. [72,77] AF 0.2 0.1 0.2 100% 100% –
Singh et al. [78] DF – 0.025 0.025 100% 100% –
Singh et al. [82] AF 0.025 0.025 0.025 100% 100% –
Singh et al. [79] DF 0.01 – 0.01 100% 100% –
Singh et al. [80] DF 0.025 0.05 0.025 100% 100% –

It can be observed that the equations (4.1) and (4.2) describe the data rate achieved by user

u using a given subcarrier pair. Thus, in general, the total throughput in the multiuser OFDMA

relay network within two time slots is equal to the sum of the data rate for all users links using

subcarriers assigned to them, in one of the selected transmission modes or relaying protocols if they

can be adaptively selected according to channel conditions. It means that the total throughput can

contain the throughput of relayed transmission as well as the throughput of direct transmission.

In order to avoid inter-user interference, typically it is assumed that the subcarriers pair can be

assigned to the maximum one user among all transmission modes. Nevertheless, there are some

paper where the same subcarrier can be used by more users [71, 74, 83, 84]. It may result in

interference among signals transmitted to different users but if the channel attenuation values in

the interfering links are relatively high, the interference may be small enough that the transmission

will result in higher EE.
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4.1.2 Total consumed power estimation in a relay network

Similar to the data rate estimation, the total consumed power depends on the relaying protocol:

• in the case of the AF relying protocol the signal received by relay node does not have to be

downconverted to baseband, thus the total power consumption equals:

P = PT−TX + PT−RN︸ ︷︷ ︸
PT

+PBB−TX + PBB−RX︸ ︷︷ ︸
PBB

+PRF−TX + PRF−RN + PRF−RX︸ ︷︷ ︸
PRF

, (4.3)

as shown in Figure 4.6. It can be observed that the transmit power is the sum of transmission

power allocated in the transmitter and relay node keeping in mind that these transmissions

happen typically in two consecutive time slots. Moreover, the power consumption by the RF

signal processing in the relay node PRF−RN can be divided into receiving and transmitting

part but in the literature, it is usually assumed to be one value.

• in the DF relaying protocol, the received signal is downconverted, decoded, coded and mod-

ulated, causing increased power consumption. Thus, the power consumption model contains

in addition the power consumed by the BB processing in the relay node PBB−RN resulting

in the total power consumption:

P = PT−TX + PT−RN︸ ︷︷ ︸
PT

+PBB−TX + PBB−RN + PBB−RX︸ ︷︷ ︸
PBB

+PRF−TX + PRF−RN + PRF−RX︸ ︷︷ ︸
PRF

.

(4.4)

Similarly to the power consumption by the RF signal processing in the relay node, the power

consumed by the BB processing PBB−RN can be divided into transmitting and receiving part

but it is usually assumed to be one value. Moreover, PBB−RN may depend on the complexity

of the signal processing.

Depending on the considered past work, some elements of the models presented above are taken

into account and some are omitted. Therefore, similarly as in the previous section in the case

of multiuser OFDMA network, the values of the power consumption parameters used by various

authors are collected in Table 4.3. It is obvious that due to the diversity of the relay nodes and

end-user devices in the network the circuit power consumption can be different. Nevertheless, in

all cited papers it is assumed that the circuit power consumption is the same among the end-

user devices and relay nodes. Moreover, in some papers [75, 76] the circuit power has not been

divided into power consumed by BS, relay node and end-user but has been summed in one value.

Furthermore, it can be observed that in Table 4.3 the direction of transmission (downlink or uplink)

is not specified for some papers. These authors consider transmission between pairs of users with

help of the relay node as shown in Figure 4.2. If some value in Table 4.3 is not specified, it means

that such an parameter has not been considered. If there is more than one value provided, it means

that the authors have analyzed different scenarios.

4.1.3 Constraints in a multiuser OFDMA relay network

There is high number of potential degrees of freedom in the multiuser OFDMA relay network.

Below the author summarizes the constraints considered in the related papers:

• the maximum transmit power constraint considered in [68–70, 72–80, 82]. In the context

of practical wireless communication systems, the transmit power should be limited in each

transmitter. Nevertheless, the common approach in the literature is to ensure that the sum
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of the power allocated in all transmitters does not exceed the maximum power budget of the

whole system.

• the minimum data rate constraint which has been taken into account in [70, 72, 74, 77].

Due to two time slots that are required to deliver the data to the end-user in the relayed

transmission mode, two approaches are considered in the context of the data rate constraints.

In the first approach, the data rate is considered over two time slots. It means that in the

direct transmission the data rate achieved by the user is summed over two time slots [74]

or scaled by factor 1
2 [70]. If the sum of the data rate achieved in the direct transmission

mode is not scaled the factor 1
2 is neglected for relayed transmission. Whereas, in the second

approach the minimum data rate constraint ensures that the data rate achieved in the one

time slot has to gather or equal to the assumed threshold, thus for the relayed transmission

the data rate is scaled by the factor 1
2 [72, 77,82].

• the subcarrier assignment constraints which restrict each subcarrier to be used at most once

in each time slot in order to avoid interference. In the contrast to the multiuser OFDMA

network this constraint has two meanings in the context of relay network. On the one

hand, it ensures that a single transmission mode, usually direct or relayed, is chosen for

each user-subcarrier pair while on the other hand guarantees that each subcarrier is only

allocated to at most one end-user. In this form, the subcarrier assignment constraints have

been considered in [68–70, 76]. Nevertheless, in the literature exist papers [71, 74, 77] where

the subcarrier can be utilized in the direct and relayed transmission mode simultaneously,

but within one transmission mode, it can be utilized by one user. Such an approach can

cause interference, however, the properly designed resource allocation algorithm can increase

the energy efficiency compared to the network without inter-user interference. Moreover, in

the scenario wherein the user pairs communicate with each other via relay node [72, 73, 75,

78–80] (Figure 4.2) or only the relayed transmission mode is considered [75], the subcarrier

assignment constraints comes to guaranteeing that subcarrier or subcarrier pair is utilized

by only one user.

• the proportional rate fairness constraint considered in [75, 76, 85]. It is defined in the same

way as in the multiuser OFDMA network. Thus, each user would obtain a predetermined

proportion of the system throughput in each resource-allocation determination.

4.1.4 Energy efficiency optimization in a multiuser OFDMA relay network

As presented in Figure 4.5, the complexity of the resource allocation algorithm increases with the

number of the degree of freedom. Moreover, usually the originally defined optimization problem can

not be solve by the standard optimization techniques and some transformations may be required.

Thus, let us review the techniques/methods applied to solve the energy efficiency optimization

problem in the multiuser OFDMA relay network:

• the Dinkelbach method known from the previous sections allows to transform the objective

fractional function into a new parameterized concave function. Let us remember that the

Dinkelbach method can be applied if the numerator of the objective function is concave while

the denominator is convex or if the numerator is affine, the denominator does not have to

be restricted in sign. The transformation of the objective function into the parameterized

concave function has been applied in [68–74, 76–80, 82, 83, 85], thus in 15 out of 16 cited in

this section papers, even when the numerator is non-concave. In this case other methods
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(described below) can be applied to transform the non-concave objective function into the

series of concave functions.

• the epigraph method which is usually applied in the context of the decode and forward re-

laying protocol and the linearly rate-dependent circuit power consumption model. It can be

observed that in equation (4.2) the min {·} function is used to calculate the data rate for DF

relaying protocol. From the optimization point of view it causes that the optimization prob-

lem belongs to the class of the max-min programming problem [71,73,78–81,83]. Therefore,

by applying the epigraph method the auxiliary variable is introduced replacing the min {·}
function. It requires two additional constraints to be created because the auxiliary variable

has to be lower than or equal to the arguments of min {·} function but on the other hand

the standard optimization techniques can be applied after this transformation. In the case of

the linearly, rate-dependent circuit power consumption the auxiliary variable is introduced

making the denominator convex or affine [74].

• the SCA method transforms the non-convex/non-concave function into the series of con-

vex/concave ones. The main idea of SCA method in the context of non-concave function is

presented in Figure 4.7. The non-concave function f(x) is locally approximated in i-th itera-

tion by a concave function f̃
(
x|x(i)

)
that is equal to the approximated function for x = x(i)

and not smaller in the rest of its range. The approximation is used to find new solution

x(i+1). This procedure is repeated until the stop criteria are met. Because the approxima-

tion of the originally optimization problem is solved in each iteration, it is not guaranteed to

obtain the global optimum. Nevertheless, due to convexity/concavity the convergence of the

method is guaranteed. The SCA method is usually applied in the context of the system with

inter-user interference wherein the function describing the users data rate is the source of

the non-concavity [71,72,74,77–80,82,83,85]. In the literature two approaches to determine

the approximation function can be found. In the first approach, the concrete approximation

function together with replacing the optimization variables by equivalent ones is used. It

means that the non-concave/non-convex function has to have a specific form that allows for

approximation. This is commonly applied in the relayed transmission with the assumption

that the direct link is not used [72, 77–80, 82]. The more universal method, based on the

Difference of Concave/Convex (DC) programming, is considered in the second approach.

Figure 4.7: The illustration of the Successive Concave/Convex Approximation method.
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Table 4.4: The optimization methods used depending on the system model.

System model Optimization methods
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Cheung et. all [68, 69] × × × ×
Loodaricheh et. all [70] × × × × × ×
Xiong et. all [76] × × × ×
Bossy et. all [71] × × × × × × × × ×
Bossy et. all [74] × × × × × × × × × ×
Lu et. all [75] × × × ×
Singh et. all [77] × × × × ×
Singh et. all [73] × × × × × × ×
Singh et. all [72, 82] × × × × × × × × ×
Singh et. all [78–80] × × × × × × × × ×
Xiong et. all [85] × × × ×

This requires the approximated non-concave/non-convex function to be a difference of con-

cave/convex functions. Then, the subtrahend is approximated using the first order Taylor

series at a given point achieving the difference of a concave/convex function and a linear

function. This solution is typically used when the first one is not possible.

• the Hungarian algorithm that solves the assignment problem in polynomial time and is

usually used in the context of the subcarrier pairing. It means that the Hungarian algorithm

determines which subcarriers will be utilized as a pair in the first and second time slot,

respectively. The input of the Hungarian algorithm is the |N | × |N | matrix with each

element containing the cost of utilizing a given subcarrier pair in the first and second time

slot. From the energy efficiency optimization point of view, it means that for each subcarrier

pair, the user and relay node which maximize the energy efficiency have to be determined.

Thus, actually, all possible combinations of the user-relay node pair for a given subcarriers

pair should be checked. Hence the complexity of the resource allocation algorithm in the

approach where the users are assigned to the pre-defined relay nodes is lower than in the

approach with the adaptive assignment because fewer combinations have to be checked. The

cost of utilizing a given subcarrier pair used by the user-relay node pair can be obtained

by the cost-benefit metric in an analogical way as in the multiuser OFDMA network. In

the context of computational complexity, the time complexity of the original algorithm is

O
(
|N |4

)
[86] but it can be modified to achieve an O

(
|N |3

)
[87] running time. Thus, it

can be observed that the subcarrier pairing together with adaptive relay selection causes the

high computational complexity of the energy efficiency resource allocation algorithm.

Finally, Table 4.4 presents the optimization methods used depending on the scenario. It can be

seen that with the increasing complexity of system model and the increase in the number of degrees

of freedom, the number of optimization methods that have to be used grows. At the same time

the computational complexity of the resource allocation algorithm rises.
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4.2 Energy-efficient resource allocation in multiuser DF relay

interference network with computational awareness

In this section, the author presents his original contribution to the field of design of energy-efficient

resource allocation in multiuser DF relay interference network with computational awareness.

He investigates joint subcarrier allocation, subcarriers pairing and power loading for optimized

energy efficiency in multiuser and multicarrier downlink decode and forward relay interference

networks with computational awareness, i.e., taking computations-related energy into account. In

order to maximize EE of the network, the transmission mode is adapted to instantaneous channel

conditions. For the benefit of spectral-efficiency, both direct- and relayed transmission is allowed

to use the same SCs simultaneously. Linearly rate-dependent power consumption of signal pro-

cessing is considered. The formulated optimization problem is the nonconvex fractional mixed

binary-integer programming problem, which has Non-deterministic Polynomial-time (NP)-hard

complexity. Hence, the author approximates the problem by the series of equivalent convex prob-

lems applying convex relaxation techniques such as a Successive Concave/Convex Approximation.

Based on these transformations, the author develops an iterative algorithm exploiting the Dinkel-

bach method to tackle the nonlinear fractional programming problem which maximizes EE of the

system. Moreover, in the considerations, the total transmission power constraint and the minimum

required rate constraints have been included. Simulation results demonstrate the effectiveness of

the proposed solution for future relay networks.

4.2.1 Main contribution over the existing methods

The energy-efficient resource allocation in OFDMA relay networks has been investigated in [68,

70,75,76,88–90]. In [70], the authors have developed a joint relay selection, SC allocation, pairing,

and power allocation algorithm for EE maximization in multiuser AF relay networks. Two groups

of users have been considered: one is supposed to receive data directly from the BS in the first time

slot, amplify, and forward data to the second group in the second TS. Thus, adaptive selection

of the groups members has not been taken into account. Moreover, the authors assume that

the direct-link channel, between BS and users belonging to the second group, is deeply fading.

Furthermore, the power consumption model encompasses just the transmit power and the constant

device on-off power without the power consumed by BB signal processing. Simplified system model

is presented in [68]. In contrast to [70], the authors assume fixed relays locations in the network,

and use of the same SCs in two TSs. Again, the power consumed by the BB processing has

not been considered, the transmission mode has not been selected adaptively, and the direct-link

interference between BS and a user has not been taken into account when the relaying mode is

applied (direct and relayed transmission are not interfering). In [90], an energy-aware system has

been considered for multiuser relay networks applying the AF protocol. Similarly to most other

works, the covered region is divided into two areas, in each only one of the two transmission

modes is served. Moreover, the power consumption of BB processing is not considered in the

relay network, neither the interfering links between BS and a user in the relaying region. A more

practical system presented in [75] assumes transmission via just one relay, and considers the BB

signal-processing power. However, the convexity of the considered optimization problem is not

proven, and the suboptimal solution is proposed. Furthermore, reuse of OFDM subcarriers in the

second TS is not considered. In [76], multiple relay-aided OFDM systems are presented, where

DF relay beamforming is employed. There, the BB-power-consumption model is included but the

optimal solution and SCs reuse are not considered.
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Optimization of EE in multiuser interference relay networks employing the AF or the DF

protocol is considered in [78, 80, 91, 92]. In these works, non-cellular system is considered with

multiple sources, destinations and one relay intermediating between them. There, SCs reuse can

be applied in the relayed uplink when a relay can receive signals from multiple sources at the

same SCs and in the relayed downlink, when a relay can transmit data to different destination

receivers using the same SCs. Thus, interference occurs for users, what making the presented EE

optimization problem nonconvex. Moreover, it is assumed that there is no interference channel in

the direct link between sources and destinations, and the power consumption of BB processing is

not included in the problem definition. Moreover, a specific case of SCA method has been applied

to transform the optimization problem into a series of convex approximation functions which is not

adequate in the considered case. In [93] similar scheme has been applied in the context of multicell

network but the authors have consider multicell cluster with one relay-sharing for cell-edge users

and the power consumed by BB-processing has been neglected.

In [83,84,94], the authors have proposed other methods to optimize EE metric in the interference

networks. Nevertheless, the proposed method can not be applied in the considered system model in

a direct way, because the authors have assumed the simplified model of the power consumption. In

this case, the numerator is only nonconvex function while the denominator is affine, what simplifies

the optimization problem transformation, significantly. In the considered case, the author takes

the BB signal processing power depending on achieved rate into account, which causes that the

numerator as well as the denominator of the objective function are nonconvex functions. Therefore,

in order to solve the presented optimization problem, the additional transformations have to be

done. Moreover, in [83,84,94], the authors have focused mainly on the power allocation algorithm

while the optimal SC allocation and pairing (in the case of DF relay network) is usually neglected.

In this thesis, the author focuses on the EE optimization for the multiuser OFDMA downlink

DF relay interference network. Here, BB-processing power consumption in taken into account,

making the network management computationally-aware. The author proposes joint SCs pairing

(SCs selection for the subsequent TSs), SCs and power allocation together with the transmission

mode selection algorithm maximizing EE of the network. The novelty and the main contributions

of the author of this thesis are as follows:

• In this thesis, the energy efficiency metric is optimized in the interference relay networks

where the same subcarrier can be used by the base station and relay nodes causing the

interference to the end-users. In the existing papers [68, 70, 75, 95] a given subcarrier can

be assigned to only one user in direct or relayed transmission. Therefore in the considered

system, three transmission modes can be chosen based on channel conditions. Apart from

two standard modes: direct and relayed transmission using two TSs, the author considers

the new approach where in the second TS (when a relay forwards data to an end-user), BS

can simultaneously transmit the signal to another user using the same SC as the relay (what

can increase spectral-efficiency). This causes intracell and intercell interference observed by

the involved users. This also complicates the problem by making it nonconvex.

• In the considered model, one of the three mentioned transmission modes is adaptively selected

for every user, in contrast to the common approach to EE optimization in relay networks [68,

70], where users are divided in groups, each with a pre-determined transmission mode. The

common approach reduces the optimization complexity but is less efficient than proposed.

• In the considered system, the signal received by the end-user from the DF relay, in the second

TS, is combined with the signal received from BS in the first TS, using MRC method, what
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increases the SINR. This effect is desired for EE, but it impedes the optimization problem,

and past works [78, 80, 91] neglect it. The author of this thesis presents the optimization-

problem solution by applying the SCA method to transform the problem to more tractable

form.

• Moreover, the power consumption of BB processing has been taken into account. Although

the power model, linearly dependent on the throughput, is known in the literature [23,75,76],

it is usually neglected in relay networks due to non-convexity of the EE optimization problem.

The author proposes transformation of the problem to find its solution.

4.2.2 System model and problem formulation

Let us consider the downlink transmission in a single-cell network with the set of DF relay nodes,

denoted as R. Each relay node works in the half-duplex mode i.e., the relay cannot receive and

transmit data, simultaneously. In the considered network two sets of can be distinguish. The set

UD denotes the users receiving data via direct transmission while UR denotes the users receiving

data via relayed transmission with direct link. Moreover, the set of all users in the network is

denoted by U = UD ∪ UR. The available bandwidth is divided into OFDM SC separated by ∆f .

The set of subcarrier is denoted as N . As mentioned before the direct transmission required on

TS to deliver data to end-user whereas the relayed transmission with direct link two TSs. In the

first TS, base station transmits data received by the relays and by the UEs, while in the second

time slot, the relays decode and forward the received data to their destinations. Moreover, in this

model, the same subcarrier in the second TS of the direct and relayed transmission can be used,

simultaneously. The example illustrating transmission in two TSs for the mentioned situation is

presented in Figure 4.8. In the presented example, two end-users (denoted as uD and u′D) receive

data directly from the base station, while one user uR receives data from BS with the help of relay

r. In the first TS, one can observe the standard case wherein data are transmitted to user uD and

to relay r using SC n′ and n, respectively. Note that data received by the relay can be received

by user uR (in the first TS). In order not to cause too high interference, transmissions from BS

to different users have to use different SCs (n 6= n′). However, in the second TS, both the relay

and BS can use the same SC (k = k′) for signal transmission to user uR and u′D. This approach

results in interference among signals transmitted to different users, but if the channel attenuation

values in the interfering links are high it can increase spectral efficiency as well as energy efficiency.

Figure 4.8: Exemplification of the relayed and direct transmission modes using two time slots and
subcarriers: n, k, n′ and k′.
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Moreover, in contrast to the existing solutions [68, 70], in this system, the users are not grouped

a priori, with pre-determined direct or relayed transmission. It means that each user adapts the

transmission depending on the channel condition, to maximize EE of the network.

In the presented network model, the capacity of the relayed transmission link between base

station and user uR with the help of relay r, when using SC n in the first TS, and SC k in the

second TS [95]:

r
(uR,r,n,k)
R = min

{
r

(r,n)
R,T1, r

(uR,r,n,k)
R,T2

}
, (4.5)

where r(r,n)
R,T1 and r(uR,r,n,k)

R,T2 describe the involved links capacities between BS and the relay node r

in the first TS given by:

r
(r,n)
R,T1 = ∆f log2

(
1 +

Ψ
(uR,r,n,k)
R p

(n)
R,T1

∣∣h(r,n)
∣∣2

∆fN0

)
(4.6)

and between RN r and the end-user uR in the second TS of the relayed transmission:

r
(uR,r,n,k)
R,T2 = (4.7)

∆f log2

1 +
Ψ

(uR,r,n,k)
R p

(r,k)
R,T2

∣∣h(uR,r,k)
∣∣2

∆fN0 +
∑

uD∈UD

Ψ
(uR,r,n,k)
R p

(k)
D,T2

∣∣∣h(uR,k)
∣∣∣2 +

Ψ
(uR,r,n,k)
R p

(n)
R,T1

∣∣h(uR,n)
∣∣2

∆fN0

 ,

respectively, where p(n)
R,T1 and p

(r,k)
R,T2 and determine the transmission powers allocated in the base

station and relay node r on SCs n and k in the first and second TS of the relayed transmission

while p(n)
R,T1 the transmission power allocated in the base station on SC k in the second TS of the

direct transmission, respectively. The channel coefficients between the base station and RN r on

subcarrier n and between relay node r and user uR on SC k are given by h(r,n) and h(uR,r,k) while

between the base station and user uR on SCs n and k by h(uR,n) and h(uR,k), respectively. The

power spectral density of the white noise is denoted as N0. The capacities of direct transmission

in the first TS using subcarrier n and in the second TS using subcarrier k for the user uD, are

defined as:

r
(uD,n)
D,T1 = ∆f log2

(
1 +

Ψ
(uD,n)
D,T1 p

(n)
D,T1

∣∣h(uD,n)
∣∣2

∆fN0

)
, (4.8)

r
(uD,k)
D,T2 = ∆f log2

1 +
Ψ

(uD,k)
D,T2 p

(k)
D,T2

∣∣h(uD,k)
∣∣2

∆fN0 +
∑

uR∈UR

Ψ
(uR,r,n,k)
R p

(r,k)
R,T2

∣∣∣h(uD,r,k)
∣∣∣2
 , (4.9)

respectively, where p(n)
D,T1 determines the transmission power allocated in the base station on SC

n in the time slot of the direct transmission. The channel coefficients between the RN r and user

uD on subcarrier k is given by h(uD,r,k) while between the base station and user uD on SCs n

and k by h(uD,n) and h(uD,k), respectively. Finally, binary variables Ψ
(uD,n)
D,T1 and Ψ

(uD,k)
D,T2 determine

whether SC n in the first TS or k in the second TS of direct transmission is assigned to user uD,

i.e., Ψ
(uD,n)
D,T1 = 1 if SC n is assigned to user uD in the first TS of direct transmission, otherwise

Ψ
(uD,n)
D,T1 = 0. The same rule applies to Ψ

(uD,k)
D,T2 . Moreover, Ψ

(uR,r,n,k)
R = 1 when SC n selected in

the first time slot is paired with SC k used in the second TS of the relayed transmission. Note

that if Ψ
(uR,r,n,k)
R = 1 it automatically means that Ψ

(uD,n)
D,T1 = 0, because the utilization of the
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same SCs in relayed and direct transmission is allowed only in the second TS, thus in practice

Ψ
(uD,n)
D,T1 = 1−Ψ

(uR,r,n,k)
R .

Thus, the sum-capacity of the considered network within two TSs for all links involving end-

users in one of the selected transmission modes is expressed as:

R =
∑

uR∈UR

∑
r∈R

∑
n∈N

∑
k∈N

r
(uR,r,n,k)
R +

∑
uR∈UD

∑
n∈N

∑
k∈N

(
r

(uD,n)
D,T1 + r

(uD,k)
D,T2

)
. (4.10)

Let us now estimate the total power consumed in the network. In general, this power consists of

the static power consumed by active circuits of devices, the dynamically changing transmit power,

and the BB processing power consumption in the transmitters and receivers (dependent mostly

on the modulation and coding schemes). The most common model of the BB processing power

consumption is the linear model, wherein this power is directly proportional to the bit-rate (or

capacity) of a link [23, 75, 76]. In considered model system this model has been applied as well.

Moreover, the author deals with network where the technological advancement of each transmitter

and receiver can be significantly different. For this reason, two independent proportionality factors:

β
(uR,r)
R and β(uD)

D , determining the power consumed by BB processing, in the relayed transmission

for relay node r, end-user uR and in the direct transmission for user uD have been introduced.

Thus, the total consumed power in the considered system is defined as:

P = PC +
∑
r∈R

P
(r)
C +

∑
uR∈UR

P
(uR)
C +

∑
uD∈UD

P
(uD)
C (4.11)

+
∑

uR∈UR

∑
r∈R

∑
n∈N

∑
k∈N

Ψ
(uR,r,n,k)
R

(
p

(n)
R,T1 + p

(r,k)
R,T2 + β

(uR,r)
R r

(uR,r,n,k)
R

)
+

∑
uD∈UD

∑
n∈N

Ψ
(uD,n)
D,T1

(
p

(n)
D,T1 + β

(uD)
D r

(uD,n)
D,T1

)
+

∑
uD∈UD

∑
k∈N

Ψ
(uD,k)
D,T2

(
p

(k)
D,T2 + β

(uD)
D r

(uD,k)
D,T2

)
,

where PBl

C , P (r)
C , P (uR)

C and P (uD)
C are the constant powers consumed by the active circuits of BS,

the relay node r and users’ equipment respectively, when they are turned on.

The goal is to maximize the energy efficiency of the network defined by the ratio of the to-

tal throughput and total consumption power. The EE optimization problem amounts to finding

such values of the transmit powers allocated to SCs and of the above-defined indicator variables

p?R =
{
p

(n)?

R,T1, p
(r,k)?

R,T2

}
, Ψ?

R =
{

Ψ
(uR,r,n,k)?

R

}
in the relayed transmission, and p?D =

{
p

(n)?

D,T1, p
(k)?

D,T2

}
,

Ψ?
D =

{
Ψ

(uD,n)?

D,T1 ,Ψ
(uD,k)?

D,T2

}
in the direct transmission that maximize η, i.e.,

(p?R,p
?
D,Ψ

?
R,Ψ

?
D) = arg max

pR,pD
ΨR,ΨD

η (pR,pD,ΨR,ΨD) , (4.12)

subject to: ∑
uD∈UD

Ψ
(uD,n)
D,T1 ≤ 1 ∀n ∈ N , (4.13)

∑
uD∈UD

Ψ
(uD,k)
D,T2 ≤ 1 ∀k ∈ N , (4.14)

∑
uR∈UR

∑
r∈R

Ψ
(uR,r,n,k)
R ≤ 1 ∀n ∈ N , k ∈ N , (4.15)

∑
uD∈UD

∑
uR∈UR

∑
r∈R

Ψ
(uD,n)
D,T1 Ψ

(uR,r,n,k)
R < 1 ∀n ∈ N , k ∈ N . (4.16)

Constraints (4.13) and (4.14) restrict SCs n and k to be assigned to the maximum one user in a

given BS, in the first and in the second TS of direct transmission, respectively. Likewise, constraint

(4.15) guarantees that SCs n and k can be used by no more than one end-user and one relay node,
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in the relayed transmission for one BS. Constraint (4.16) ensures that SC n cannot be assigned

at the same time to the direst and relayed transmission in the first TS at BS. Moreover, Ψ
(uD,n)
D,T1 ,

Ψ
(uD,k)
D,T2 and Ψ

(uR,r,n,k)
R take only binary values: 0 or 1.

4.2.3 Transformation of the non-concave optimization problem

The optimization problem (4.12) is non-concave due to the fractional form of the objective function.

However, it can be solved on condition that the numerator is concave or affine, and the denominator

is convex, or vice versa. If the numerator is affine, the denominator does not have to be restricted

in sign [43]. Unfortunately, in the considered case the numerator as well as the denominator of

the objective function is non-convex. Moreover, the optimization problem belongs to a class of

problems called MINLFP [65] problem what means that the optimization variables take both the

continuous and the discrete values. Finally, inside the objective function, one can find min {·}
functions causing additional complication. Summarizing the above considerations, there does not

exist any standard technique to solve the optimization problem. Thus, in order to solve it, some

transformations of the objective function are needed.

Primal decomposition technique

In the first step of the optimization problem transformation, let us apply the primal decomposition

technique. The primal decomposition can be applied when the problem has a coupling variable

such that, when fixed to some value, the rest of the optimization problem decouples into several

subproblems. Thus, let us decompose the objective problem to (4.12):

(p?R,p
?
D,Ψ

?
R,Ψ

?
D) = arg max

ΨR,ΨD

arg max
pR,pD

η (pR,pD,ΨR,ΨD) , (4.17)

subject to (4.13)–(4.16). Now, according to (4.17), the solution to the optimization problem comes

down to solving a two-step maximization problem. In the first step, the optimal transmission

powers p?R,p
?
D are determined for fixed allocation variables and then base on them the subcarrier

assignment problem can be solved.

Epigraph equivalent representation

Thus, the following transformations will be applied in order to determine the optimal transmis-

sion powers p?R,p
?
D. Let us introduce an auxiliary optimization variables: p̂

(k)
D,T2 = ln

(
p

(k)
D,T2

)
,

p̂
(n)
R,T1 = ln

(
p

(n)
R,T1

)
and p̂

(r,k)
R,T2 = ln

(
p

(r,k)
R,T2

)
. Thus, from now, each previously defined variable

with the circumflex determine the variables after substitution the auxiliary optimization variables

e.g.:

r̂
(r,n)
R,T1 = ∆f log2

1 +
Ψ

(uR,r,n,k)
R ep̂

(n)
R,T1

∣∣h(r,n)
∣∣2

∆fN0

 . (4.18)

In the next step of the (4.12) transformation, the min {·} function in equation (4.5), is replaced

by auxiliary variable Υ
(uR,r,n,k)
R for end-user uR, relay node r and SCs (n, k). The introduced

auxiliary variable has to be lower or equal to r̂
(r,n)
R,T1 and r̂

(uR,r,n,k)
R,T2 , what implies two additional

constraints in the optimization problem:

Υ
(uR,r,n,k)
R ≤ r̂(r,n)

R,T1, (4.19)

Υ
(uR,r,n,k)
R ≤ r̂(uR,r,n,k)

R,T2 . (4.20)



70 Energy efficiency in multiuser OFDMA relay networks

Let note that a convex optimization problem is a problem where all of the constraints are

convex functions, and the objective is a concave function if maximizing while constraint (4.19) is

concave and constraint (4.20) is non-concave. Moreover, let us remember that r(uD,k)
D,T2 given by

equation (4.9) is is still non-concave, thus the standard techniques can not be used to solve the

defined optimization problem. Nevertheless, in the next subsection, the sequential programming

framework has been applied to transform introduced constrained to concave form.

Sequential concave optimization

The main idea of the Successive Concave/Convex Approximation is based on the approximation

of the non-concave function by the series of concave ones. In this chapter, the SCA method in

which the function has to be the difference of two convex functions is applied, i.e.,

f (x) = f1 (x)− f2 (x) . (4.21)

Then, f2 (x) is approximated the by linear function using the first-order Taylor series expansion

at x̄:

f2 (x) ≤ f2 (x̄) +
∂f2 (x̄)

∂x̄
(x− x̄) . (4.22)

Note that constraints (4.19) and (4.20) as well as r(uD,k)
D,T2 given by equation (4.9) with a modicum

of algebra can be presented in a form of the difference of concave function:

Υ
(uR,r,n,k)
R − r̂(r,n)

R,T1 ≤ 0, (4.23)

Υ
(uR,r,n,k)
R + u

(uR,r,n,k)
R,T2 − υ(uR,r,n,k)

R,T2 ≤ 0, (4.24)

r
(uD,k)
D,T2 = u

(uD,k)
D,T2 − υ

(uD,k)
D,T2 , (4.25)

where

u
(uR,r,n,k)
R,T2 = ∆fN0ep̂

(r,k)
R,T2

∣∣∣h(uR,r,k)
∣∣∣2 (4.26)

+

(
∆fN0 +

∑
uD∈UD

ep̂
(k)
D,T2

∣∣∣h(uR,k)
∣∣∣2)(∆fN0 + ep̂

(n)
R,T1

∣∣∣h(uR,n)
∣∣∣2) ,

υ
(uR,r,n,k)
R,T2 = ∆fN0

(
∆fN0 +

∑
uD∈UD

ep̂
(k)
D,T2

∣∣∣h(uR,k)
∣∣∣2) , (4.27)

u
(uD,k)
D,T2 = ∆fN0 +

∑
uR∈UR
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(r,k)
R,T2

∣∣∣h(uD,r,k)
∣∣∣2 + ep̂

(k)
D,T2

∣∣∣h(uD,k)
∣∣∣2 , (4.28)

υ
(uD,k)
D,T2 = ∆fN0 +

∑
uR∈UR

ep̂
(r,k)
R,T2

∣∣∣h(uD,r,k)
∣∣∣2 . (4.29)

Now, let us approximate the subtrahends of (4.23)–(4.25) by the first-order Taylor series expansion

at p̄R =
{
p̄

(n)
R,T1, p̄

(r,k)
R,T2

}
and p̄D =

{
p̄

(n)
D,T1, p̄

(k)
D,T2

}
getting:

Υ
(uD,k)
D,T2 − r̃

(r,n)
R,T1 ≤ 0, (4.30)

Υ
(uR,r,n,k)
R + u

(uR,r,n,k)
R,T2 − υ̃(uR,r,n,k)

R,T2 ≤ 0, (4.31)

r̃
(uD,k)
D,T2 = u

(uD,k)
D,T2 − υ̃

(uD,k)
D,T2 , (4.32)
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where υ̃(uD,k)
D,T2 determines the linear approximations and is given by equation:

r̃
(r,n)
R,T1 =

∂r
(r,n)
R,T1

∣∣∣p̂(n)
R,T1=p̄

(n)
R,T1

∂p̄
(n)
R,T1

(
p̂

(n)
R,T1 − p̄

(n)
R,T1

)
+ r

(r,n)
R,T1

∣∣∣p̂(n)
R,T1=p̄

(r,k)
R,T2

(4.33)

The rest approximations r̃(r,n)
R,T1 and υ̃(uR,r,n,k)

R,T2 is obtained in the analogous way as in (4.33). Finally,

the optimization problem (4.17) can be rewritten to the following form:

(p̂?R, p̂
?
D,Υ

?
R,Ψ

?
R,Ψ

?
D) = arg max

ΨR,ΨD

arg max
p̂R,p̂D,ΥR

R (p̂R, p̂D,ΥR,ΨR,ΨD)

P (p̂R, p̂D,ΥR,ΨR,ΨD)
, (4.34)

subject to (4.13)–(4.16) and (4.30)–(4.31). The vectors of variables maximizing the goal function

are defined as: p̂?R =
{
p̂

(n)?

R,T1, p̂
(r,k)?

R,T2

}
, Υ?

R =
{

Υ
(uR,r,n,k)?

R

}
in the relayed transmission, and

p̂?D =
{
p

(n)?

D,T1, p̂
(k)?

D,T2

}
in the direct transmission while:

R (p̂R, p̂D,ΥR,Ψ
?
R,Ψ

?
D) =

∑
uR∈UR

∑
r∈R

∑
n∈N

∑
k∈N

Υ
(uR,r,n,k)
R +

∑
uR∈UD

∑
n∈N

∑
k∈N

(
r

(uD,n)
D,T1 + r̃

(uD,k)
D,T2

)
(4.35)

and

P (p̂R, p̂D,ΥR,Ψ
?
R,Ψ

?
D) = PC +

∑
r∈R

P
(r)
C +

∑
uR∈UR

P
(uR)
C +

∑
uD∈UD

P
(uD)
C (4.36)

+
∑

uR∈UR

∑
r∈R

∑
n∈N

∑
k∈N

Ψ
(uR,r,n,k)
R

(
ep̂

(n)
R,T1 + ep̂

(r,k)
R,T2 + β

(uR,r)
R Υ

(uR,r,n,k)
R

)
+

∑
uD∈UD

∑
n∈N

Ψ
(uD,n)
D,T1

(
p

(n)
D,T1 + β

(uD)
D r

(uD,n)
D,T1

)
+

∑
uD∈UD

∑
k∈N

Ψ
(uD,k)
D,T2

(
ep̂

(k)
D,T2 + β

(uD)
D r̃

(uD,k)
D,T2

)
,

determine the redefined throughput and total power consumption resulting from the application

of the described transformations, respectively.

Dinkelbach method

Note that the numerator of the objective function of the optimization problem (4.34) is the sum

of affine and concave functions while the denominator is the sum of constants, convex and convex

function, thus the Dinkelbach method [43] can not be applied, theoretically. Nevertheless, in

[23] the concavity of the optimization problem after applying the Dinkelbach method has been

proven. Thus, let us transform the objective function into a new parametrized concave function

by introducing parameter λ?, obtaining:

(p̂?R, p̂
?
D,Υ

?
R,Ψ

?
R,Ψ

?
D) = (4.37)

arg max
ΨR,ΨD

arg max
p̂R,p̂D,ΥR

[R (p̂R, p̂D,ΥR,ΨR,ΨD)− λ?P (p̂R, p̂D,ΥR,ΨR,ΨD)] ,

subject to (4.13)–(4.16) and (4.30)–(4.31), where λ? = R(p̂R,p̂D,ΥR,ΨR,ΨD)
P (p̂R,p̂D,ΥR,ΨR,ΨD) . Solving (4.37) is equiv-

alent to finding the root of equation R (p̂R, p̂D,ΥR,ΨR,ΨD) − λ?P (p̂R, p̂D,ΥR,ΨR,ΨD) = 0,

what can be done using iterative Dinkelbach algorithm. Finally, it can be observed that optimiza-

tion problem (4.37) is concave because the objective function is the summation of the concave

terms and linear terms, thus it is concave by nature while all constraints are convex.

4.2.4 Proposed algorithmic solution

In order to maximize energy efficiency of the network, joint adaptive transmission mode selection,

subcarrier pairing, subcarrier and power allocation algorithm is proposed. Because the indicator
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variables take binary values, the original optimization problem (4.12) belongs to MINLFP problems

and the solution can be found using exhaustive search over all variables. Hence, the complexity

of the optimization problem is high, particularly for a high number of users and SCs. Therefore,

the optimization problem (4.37) has been decoupled (using primal decomposed technique) into

transmission power allocation problem and subcarrier assignment problem.

Transmission power allocation problem solution

Note that the optimization problem (4.37) is a concave problem for the fixed subcarrier pairing and

allocation and approximation at p̄R and p̄D. Thus, let us define the transmission power allocation

optimization problem as:

(p̂?R, p̂
?
D,Υ

?
R) = arg max

p̂R,p̂D,ΥR

[R (p̂R, p̂D,ΥR)− λ?P (p̂R, p̂D,ΥR)] (4.38)

subject to(4.30)–(4.31) which can be solved by applying a dual decomposition method. The La-

grangian function for (4.38) is given by:

L (p̂R, p̂D,ΥR, λµR) = R (p̂R, p̂D,ΥR)− λP (p̂R, p̂D,ΥR) (4.39)

−
∑

uR∈UR

∑
r∈R

∑
n∈N

∑
k∈N

µ
(uR,r,n,k)
R,T1

(
Υ

(uR,r,n,k)
R − r̃(r,n)

R,T1

)
−
∑

uR∈UR

∑
r∈R

∑
n∈N

∑
k∈N

µ
(uR,r,n,k)
R,T2

(
Υ

(uR,r,n,k)
R + u

(uR,r,n,k)
R,T2 − υ̃(uR,r,n,k)

R,T2

)
,

where and µR =
{
µ

(uR,r,n,k)
R,T1 , µ

(uR,r,n,k)
R,T2

}
are the Lagrangian multipliers related to constraints

(4.30) and (4.31). The dual optimization problem is to find:

(µ?R) = arg min
µR

LD (µR) , (4.40)

where LD (µR) is the dual Lagrangian function defined as:

LD (µR) = arg max
pR,pD
ΥR,µR

L (p̂R, p̂D,ΥR,µR) (4.41)

The dual optimization problem (4.40) can be decomposed to a master problem and a subproblem,

and it can be solved iteratively [70]. In the subproblem, for the initial values of the Lagrange

multipliers, the optimization variables: p̂R, p̂D and ΥR are determined. After that, the Lagrangian

multipliers µR are updated by solving the master problem. This procedure finishes when the

convergence is reached and the KKT conditions are fulfilled.

Solution of the sub-problem

According to the KKT conditions, the optimal values of the transmit power and the auxiliary

variables can be determined by taking the partial derivative of (4.39) with respect to p̂(n)
R,T1, p̂(r,k)

R,T2

and Υ
(uR,r,n,k)
R for the relayed transmission, p(n)

D,T1 and p̂
(k)
D,T2 for direct transmission and then,

setting them to zero. Such system of equations can be iteratively solve by e.g. Newton method,

thus let us define Jacobian for SC pair (n, k):

J(n,k) =


∂L

∂p̂
(n,k)
R

∂L
∂p̂

(n,k)
D

∂L
∂Υ

(n,k)
R

 , (4.42)
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where p̂
(n,k)
R , p̂

(n,k)
D and Υ

(n,k)
R determine the vectors of the optimization variables for a given SC

pair (n, k) and relay nodes r ∈ R. Moreover, the Hessian matrix for SC pair (n, k) is given by:

H(n,k) =


∂2L

∂2p̂
(n,k)
R

∂2L
∂p̂

(n,k)
R ∂p̂

(n,k)
D

∂2L
∂p̂

(n,k)
R ∂Υ

(n,k)
R

∂2L
∂p̂

(n,k)
D ∂p̂

(n,k)
R

∂2L
∂2p̂

(n,k)
D

∂2L
∂p̂

(n,k)
D ∂Υ

(n,k)
R

∂2L
∂Υ

(n,k)
R ∂p̂

(n,k)
R

∂2L
∂Υ

(n,k)
R ∂p̂

(n,k)
D

∂2L
∂2Υ

(n,k)
R

 . (4.43)

According to the Newton method, the optimal values of the transmit powers and the auxiliary

variables in inewt + 1 iteration can be calculated by:p̂
(n,k)?

R (inewt + 1)

p̂
(n,k)?

D (inewt + 1)

Υ
(n,k)?

R (inewt + 1)

 =

p̂
(n,k)?

R (inewt)

p̂
(n,k)?

D (inewt)

Υ
(n,k)?

R (inewt)

− (H(n,k)
)−1

J(n,k), (4.44)

This iterative procedure is repeated until the stop criteria are met. Note, that the optimal values

for a given SC pair (n, k) can be obtained for each pair, independently. It allows to parallelize the

calculations and decrease their time.

Solution of the Master Problem

In master problem, the sub-gradient method [96] is used to update the Lagrange multipliers using

equations (4.45) and (4.46), where τR =
{
τ

(uR,r,n,k)
R,T1 , τ

(uR,r,n,k)
R,T2

}
, are the positive step-values in

the iterative algorithm, while isub is the iteration number. Positive constant step size parameters

are used in this chapter which are optimized to obtain fast convergence rate. The convergence

proof of the sub-gradient method for constant step size is given in [97].

µ
(uR,r,n,k)
R,T1 (isub + 1) =

[
µ

(uR,r,n,k)
R,T1 (isub) + τ

(uR,r,n,k)
R,T1 (isub)

(
Υ

(uR,r,n,k)?

R − r̃(r,n)?

R,T1

)]+
, (4.45)

µ
(uR,r,n,k)
R,T2 (isub + 1) = (4.46)[

µ
(uR,r,n,k)
R,T2 (isub) + τ

(uR,r,n,k)
R,T2 (isub)

(
Υ

(uR,r,n,k)?

R + u
(uR,r,n,k)?

R,T2 − υ̃(uR,r,n,k)?

R,T2

)]+
for all n ∈ N , k ∈ N , r ∈ R and uR ∈ UR.

Subcarrier assignment problem solution

Now, based on the optimal values of the transmit powers and the auxiliary variables, the SC paring

and allocation optimization problem can be defined:

(Ψ?
R,Ψ

?
D) = arg max

ΨR,ΨD

C (p̂?R, p̂
?
D,Υ

?
R,µ

?
R) +

∑
uR∈UR

∑
r∈R

∑
n∈N

∑
k∈N

Ψ
(uR,r,n,k)
R D(uR,r,n,k)

R (4.47)

+
∑

uD∈UD

∑
n∈N

Ψ
(uD,n)
D,T1 D

(uD,n)
D,T1 +

∑
uD∈UD

∑
k∈N

Ψ
(uD,k)
D,T2 D

(uD,k)
D,T2

subject to: (4.13)–(4.16), where D(uR,r,n,k)
R , D(uD,n)

D,T1 and D(uD,k)
D,T2 are given by:

D(uR,r,n,k)
R = Υ

(uR,r,n,k)?

R − λ
(

ep̂
(n)?

R,T1 + ep̂
(r,k)?

R,T2 + β
(uR,r)
R Υ

(uR,r,n,k)?

R

)
, (4.48)

D(uD,n)
D,T1 = r

(uD,n)?

D,T1 − λ
(
p

(n)?

D,T1 + β
(uD)
D r

(uD,n)?

D,T1

)
(4.49)
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D(uD,k)
D,T2 = r̃

(uD,k)?

D,T2 − λ
(

ep̂
(k)?

D,T2 + β
(uD)
D r̃

(uD,k)?

D,T2

)
(4.50)

Moreover, function C (p̂?R, p̂
?
D,Υ

?
R,µ

?
R) is defined by the following formula:

C (p̂?R, p̂
?
D,Υ

?
R,µ

?
R) = −λ

(
PC +

∑
r∈R

P
(r)
C +

∑
uR∈UR

P
(uR)
C +

∑
uD∈UD

P
(uD)
C

)
(4.51)

−
∑

uR∈UR

∑
r∈R

∑
n∈N

∑
k∈N

µ
(uR,r,n,k)
R,T1

(
Υ

(uR,r,n,k)
R − r̃(r,n)

R,T1

)
−
∑

uR∈UR

∑
r∈R

∑
n∈N

∑
k∈N

µ
(uR,r,n,k)
R,T2

(
Υ

(uR,r,n,k)
R + u

(uR,r,n,k)
R,T2 − υ̃(uR,r,n,k)

R,T2

)
It can be observed that the subtrahends of (4.48)–(4.50) define the cost of the throughput achieved

on SC pair n and k for user uR in the relayed transmission and for user uD in the direct transmission,

respectively. Hence, if the values of D(uR,r,n,k)
R , D(uD,n)

D,T1 or D(uD,k)
D,T2 are negative, using SCs n and k

is not beneficial from the energy efficiency point of view. Moreover, note that C (p̂?R, p̂
?
D,Υ

?
R,µ

?
R)

does not depend on the subcarrier pairing and allocation, and thus, it can be neglected.

In the following, the author of this thesis proposes the novel, optimal SCs pairing, SCs and

power allocation, and the transmission mode selection scheme that maximizes EE of the network.

In order to maximize the energy efficiency metric, for each subcarrier pair (n, k), the optimal

users and relay nodes (optimal means for whom allocating SC pair (n, k) would cause the highest

increase in EE) are determined.

• For the case when the relayed transmission and the direct transmission use the same subcar-

rier during the second time slot, the optimal users-pair (u?D,1, u
?
R,1) and relay r?1 for SC pair

(n, k) can be found:

∀n, k
(
r?1 , u

?
D,1, u

?
R,1

)
= max
r,uD,uR

D(uR,r,n,k)
R + D(uD,k)

D,T2 . (4.52)

• For the relayed mode, when each SC can be used only once in each time slot to avoid

interference, the optimal user u?R,2 and relay r?2 can be found using formula:

∀n, k
(
r?2 , u

?
R,2

)
= max

r,uR

D(uR,r,n,k)
R

∣∣∣∣
e
p̂
(k)?

D,T2=0
. (4.53)

• For the direct, the optimal users in the first and in the second time slot can be found:

∀n u?D,2 = max
uD

D(uD,n)
D,T1 , (4.54)

∀k u?D,3 = max
uD

D(uD,k)
D,T2

∣∣∣∣ e
p̂
(n)?

R,T1=0

e
p̂
(r,k)?

R,T2 =0

, (4.55)

where D(uR,r,n,k)
R =

{
D(uR,r,n,k)

R

}
for r ∈ R and uR ∈ UR, D(uD,n)

D,T1 =
{
D(uD,n)

D,T1

}
and D(uD,k)

D,T2 ={
D(uD,k)

D,T2

}
for uD ∈ UD. Now, based on above equations, the optimal transmission mode for SC

pair (n, k) which maximizes energy efficiency can be selected in a simple way:

Ω (n, k) = max

{
D(u?

R,1,r
?
1 ,n,k)

R +D(u?
D,1,k)

D,T2 ,D(u?
R,2,r

?
2 ,n,k)

R ,D(uD,2,n)
D,T1 +D(u?

D,3,k)
D,T2

}
. (4.56)

Thus, if Ω (n, k) = D(u?
R,1,r

?
1 ,n,k)

R +D(u?
D,1,k)

D,T2 , the relayed and direct transmission is selected, wherein

the same SC at the same time can be used. If Ω (n, k) = D(u?
R,2,r

?
2 ,n,k)

R the relayed mode without

interference is selected, while Ω (n, k) = D(uD,2,n)
D,T1 +D(u?

D,3,k)
D,T2 implies that the direct transmission is
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Algorithm 5 Iterative EE-maximizing Algorithm

1: Set the maximum numbers of iterations Idink, Inewt and convergence tolerance ε.
2: Initialize the iteration counter idink = 0, parameter λ = λ0.
3: Initialize p̂R, p̂D, p̄R, p̄D, ΥR, µR and step size τR

4: repeat
5: Initialize the iteration counter inewt = 0.
6: repeat
7: Update p̂R, p̂D and ΥR using (4.44).
8: Update µD using (4.45)–(4.46).
9: Set inewt ← inewt + 1.

10: until convergence to get the optimal solutions p̂?R, p̂?D and Υ?
R or inewt > Inewt

11: Set p̄R ← p̂?R, p̄D ← p̂?D.
12: Update ΨR and ΨD using (4.52)–(4.56).
13: Update λ =

R(p̂?
R,p̂

?
D,Υ

?
R,Ψ

?
R,Ψ

?
D)

P(p̂?
R,p̂

?
D,Υ

?
R,Ψ

?
R,Ψ

?
D)

.

14: Set idink ← idink + 1.
15: until convergence or idink > Idink

16: Set ΨR ← Ψ?
R, ΨD ← Ψ?

D and λ? ← λ.

the best solution for the EE optimization. Finally, the SC pairing and allocation can be determined

by introducing |N |×|N |matrices Ω = {Ω (n, k)}, Θ = {0, 1} and applying Hungarian method [86],

where Ω is a matrix of the SC allocation costs while Θ is a decision matrix. If, as the result of

the Hungarian algorithm, Θ (n, k) = 1 for Ω (n, k) = D(u?
R,1,r

?
1 ,n,k)

R + D(u?
D,1,k)

D,T2 it means that SC

n is assigned to user u?R,1 in the first TS of relayed transmission while SC k to user u?R,1 who

receives data with the help of relay r?1 and to user u?D,1 using direct transmission in the second

time slot, so that Ψ
(u?

R,1,r
?
1 ,n,k)

?

R = 1 and Ψ
(us

D,1tar,k)
?

D,T2 = 1. Analogously, if Θ (n, k) = 1 for

Ω (n, k) = D(u?
R,2,r

?
2 ,n,k)

R variable Ψ
(u?

R,2,r
?
2 ,n,k)

?

R = 1, and when Θ (n, k) = 1 for Ω (n, k) =

D(uD,2,n)
D,T1 +D(u?

D,3,k)
D,T2 it means that Ψ

(us
D,2tar,n)

?

D,T1 = 1 and Ψ
(us

D,3tar,k)
?

D,T2 = 1.

Finally, let us formulate the novel proposed scheme that optimally allocates the resources in the

multiuser downlink DF relay interference network with computational awareness, i.e., incorporating

the BB-processing-related power in the power-consumption model. The EE-maximizing procedure

is summarized in Algorithm 5. In the first steps of the proposed scheme, the maximum numbers

of iterations Idink and Inewt for two loops in the algorithm are set, and a set of variables is

initialized. Then, for a given value of parameter λ, the transmission power variables p̂R, p̂D and

ΥR are updated using equations (4.44). Next, based on these values the Lagrangian multipliers

µR are updated using (4.45)–(4.46). In the next step, the approximation of the transmission power

variables p̄R and p̄D are updated and the SC paring and allocation problem is solved by update

ΨR and ΦD using (4.52)–(4.56). This procedure is repeated until the convergence of parameter λ

is achieved or the iteration counter reaches Idink.

4.2.5 Complexity analysis

The computational complexity of the proposed algorithm is O
(
inewtidink |N |2 |K| (|UR|+ |UD|)2

+idink |N |3
)

, where the mean values of inewt and idink are presented in Figure 4.9 and Figure 4.10.

In Figure 4.9, the number of iteration of Newton inewt and Dinkelbach idink algorithm as a function

of the number of combinations equal to |N |2 |K| (|UR|+ |UD|)2 is plotted. It can be observed that

the number of iterations of the Netwon algorithm increases with the number of combinations,

while the number of iterations of the Dinkelbach algorithm is independent on the number of
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combinations. Figure 4.10 shows the EE metric which is normalized to the maximum value of the

energy efficiency for Inewt = 1000 versus the number of iterations of Dinkelbach algorithm for the

different values of the maximum number of iteration of the Newton method Inewt. Note that for

value of Inewt ≥ 5 the proposed algorithm reaches the maximum values of EE in 8 iterations of the

Dinkelbach method. It means that the maximum number of the Netwon method can be limited

and the same results will be determined. This relatively high complexity results from the number

of combinations which have to examined in order to solve the SC pairing and allocation problem.

For each subcarrier pair (n, k) and for each combination of users and relay nodes (what gives

|N |2 |K| (|UR|+ |UD|)2 combinations), the transmission powers are determined in inewt iterations.

Then, based on the optimal power allocation, the Hungarian algorithm with O
(
|N |3

)
complexity

is applied to find the optimal SC pair in allocation. This procedure is repeated idink times to

achieve the convergence of parameter λ or the maximum number of iterations Idink.

Although, the complexity of the proposed solution is relatively high, particularly for a large

network, note the following: (i) equations (4.48) - (4.50) can be calculated independently for each

combination, thus this procedure can be parallelized, (ii) the main goal here is to show the upper

bound of the energy efficiency in the presented scheme, therefore all combinations are considered.

The future work is to propose a suboptimal (practical) solution, e.g., by assigning the users to

specific predicted relays and transmission modes based on channel conditions or other heuristic

rules resulting from practical application of the proposed solution.

4.2.6 Simulation results

In this section, numerical and simulation results are presented that allow to compare the perfor-

mance of the proposed algorithm with reference scheme. In the reference method (known from the

literature), wherein direct or relayed transmission modes but without interference can be selected

in response to channel conditions. In one of them, data are transmitted to the end-users directly

Figure 4.9: The mean number of iterations of the Newton and Dinkelbach method vs. number of
combinations.
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Figure 4.10: The normalized energy efficiency metric as a function of number of iterations of the
Dinkelbach method.

Table 4.5: Simulation parameters.

Simulation parameter Value

Center frequency 3.5 GHz

SC bandwidth, ∆f 15 kHz

Noise power spectral density, N0 −174 dBm/Hz

Static power consumption of the BS, PC 40 W

Static power consumption of each relay, P (r)
C ∀r ∈ R 4 W

Static power consumption of each user, P (uR)
C ∀uR ∈ UR and

P
(uR)
C ∀uD ∈ UD [70]

0.1 W

Factor of the power consumed by BB signal processing,
β
(uR,r)
R ∀r ∈ R, uR ∈ UR and β

(uD)
D ∀uD ∈ UD

0.01

Convergence tolerance, ε 10−8

Cell radius 2 km

Channel model Extended Pedestrian A
Number of channel realizations 1500

from BS both in the first and in the second TS. In the other, the user receives data via relay, so

only one user is supported in the first and the second TS (there is no interference between users).

It means that, in the second TS, the relay node and base station can not transmit data at the same

SC. Moreover, in the reference method, and the BB-processing power is not taken into account in

the optimization procedure, however, it is included in the EE metric calculation.

The author of this thesis considers single-cell network with BS in the center of the cell and users

randomly located with 2-D uniform distribution. The relays are located in the carefully selected

points in the cell. Their location-randomization significantly increases the time of the simulations,

while not providing any additional value to results and conclusions. Nevertheless, the model can

be readily extended to random location of relays. The simulation parameters are summarized in

Table 4.5.

Now, let us show the cases, wherein in the second TS, the same SCs are assigned to the users
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for the direct and the relayed transmission. The results showing the transmission mode selection

depending on the user location are presented in Figure 4.11. In this figure, for each channel

realization two users have been randomly localized in the cell and they are plotted if the same

SC in the second TS is used by them. The relay, for this illustrating example, is located 1.75 km

from BS. Observe that EE optimization implies that the users which receive data directly from

base station are concentrated in the center of the cell while the users receiving data via relay node

are located closer to the relay. This is because significant channels attenuations in the interfering

links result in the negligible signal distortion, and the use of the same SC at the same time can

be possible. Presumably, a higher number of relays can increase the number of users working in

the relayed transmission mode (reusing SCs in the second TS) and consequently, can increase EE

significantly.

In Figure 4.12 average energy efficiency of the proposed and reference schemes and the sum

of subcarriers which have been used simultaneously by the base station and the relay node in the

second time slot, for 10 thousand channel realizations are plotted versus the number of relays. In

this case, the results have been generated for |N | = 1, |UR|+|UD| = 2 and in the case where the total

transmission power is unlimited and the minimum rate is not provided. Note that for each number

of relay nodes the energy efficiency of the proposed scheme achieves higher values compared to the

reference scheme. Moreover, the profit in energy efficiency metric between proposed and reference

scheme increases with the number of relay nodes in the cell because there is more possibility to

find the channel conditions when the same subcarrier can be used by BS and relay node in the

second TS, simultaneously. Finally, it can be observed that, in the beginning, the energy efficiency

increases with the number of relay nodes then achieves the maximum value for the 6-th relay in

the network and after that decrease. It results from dominating the static power consumed by the

relay nodes over the throughput which they can provide.

In Figure 4.13, the network EE and the sum-throughput in the single-cell are presented. They

have been obtained for |R| = 8 relays and |N | = 1, |UR| + |UD| = 6 users in the system. In

Figure 4.11: The cases when the same subcarriers are obtained for the direct and the relayed
transmission in the second time slot.
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Figure 4.12: The energy efficiency of the proposed and reference schemes and the sum of SCs
which have been used simultaneously by BS and the relay node in the second TS.

Figure 4.13, it can be observed that EE as well as throughput for the proposed scheme achieve

higher values than the reference method. It can be also noticed that for a small number of SCs,

the results are similar in both schemes because in this case, the probability of experiencing the

channel conditions that allow to apply the mode re-using the SCs in the second TS is relatively

low. Both energy efficiency and the sum-throughput increase with the number of SCs. In Figure

4.14, the mean of SCs used in each of the transmission modes versus the total number of SCs

Figure 4.13: The energy efficiency and sum-throughput versus the number of subcarriers.
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Figure 4.14: The mean of subcarriers used in a given transmission mode versus the total number
of subcarriers.

is shown for |R| = 8 and |UR| + |UD| = 4 in the system without the minimum rate constraint

and total transmission power constraint. Observe that most of SCs are used in the mode wherein

the BS and relay node used the same subcarrier in the second time slot (called in the figure as

”relayed transmission with interference”) because from the EE point of view it is the most beneficial

approach.

The next results presented in Figure 4.15 show the impact of the number of users on energy

Figure 4.15: The energy efficiency and throughput versus the number of users.
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efficiency and the sum-throughput in the system with |N | = 16 and |R| = 8. Here, again energy

efficiency and sum-throughput are higher when the proposed energy efficiency maximization scheme

is applied than in the reference method. Moreover, EE increases with the number of users due to

the multiuser diversity gain. It can be also observed that the gap between the proposed scheme

and reference method increases with the number of users for both metrics. The reason for that is

shown in Figure 4.16 where the mean of subcarriers used in a given transmission mode as a function

of the number of users is shown. In this figure, one can observe that the number of subcarriers

which are applied in ”relayed transmission with interference” increases with the number of users.

In Figure 4.17, the energy efficiency and the power consumption of the baseband processing as

a function of factors β(uR,r)
R and β(uD)

D for |UR|+ |UD| = 4 and |UR|+ |UD| = 8 are plotted. In this

case, the author assumed that the factors of the power consumption of the baseband processing is

the same in whole network, thus β = β
(uR,r)
R = β

(uD)
D for all l, k,m, n. It can be observed that the

energy efficiency decreases when the power consumption of the BB processing increases. Moreover,

power consumption of the baseband processing has the huge impact on the energy efficiency metric.

Therefore, taking the power consumed by the BB processing into account is an important aspect

of energy efficiency optimization.

4.3 Chapter summary and conclusions

In this chapter, the author of the thesis has analysed and solved the problem of energy-efficient

resource allocation in multiuser downlink DF relay interference network with computational aware-

ness. In the considered system model, the same subcarrier can be used by the base station and by

the relay nodes, causing interference to end users. However, this subcarriers-reuse increases the

energy efficiency of the network by increasing its spectral efficiency. The computational aware-

ness refers to incorporating the power of BB processing in the power-consumption model, which

becomes an issue in the future relay-opportunistic massive-communication networks. The formu-

Figure 4.16: The mean of subcarriers used in a given transmission mode versus the number of
users.
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Figure 4.17: The energy efficiency and the power consumption of BB processing as a function of
the factors β(uR,r)

R and β
(uD)
D assuming that β = β

(uR,r)
R = β

(uD)
D for all k,m, n.

lated optimization problem is a non-concave fractional and mixed binary integer programming

problem which is NP-hard to solve in its original form. Thus, the author of this thesis proposed

a mechanism to transform such problem into the series of concave ones which can be solved by

standard optimization techniques. Firstly, the primal decomposition technique has been applied

to decouple the optimization problem into two-step maximization problem. Then, the epigraph

and SCA methods have been employed to transform optimization problem to the form required by

the Dinkelbach method which has been the last step of the optimization problem transformation.

The joint subcarrier pairing, SC and power allocation with transmission mode selection algorithm,

maximizing the energy efficiency metric of the network has been proposed. In order to obtain the

optimal transmit power- and subcarrier allocation, a computationally efficient scheme basing on

dual decomposition method has also been proposed. Moreover, the optimal SC pairing has been

developed via Hungarian method. Finally, the proposed solution has been investigated by com-

puter simulations and compared with the other existing competitive scheme. Simulation results

show that it is possible to increase the energy efficiency of the network when subcarrier reusing is

allowed. Although mutual interference is caused by parallel transmissions of the base station and

relays nodes the resultant spectral efficiency is higher than in a single transmitter case. As a result,

achievable EE is higher.



Chapter 5

Practical aspects of the energy-efficient

resource allocation in OFDM/OFDMA

links and networks

Followed by Chapters 2, 3 and 4, that presented optimal and algorithmic solutions for resource

allocation in various scenarios, in this chapter, the author of this thesis addresses practical as-

pects of the energy-efficient resource allocation in OFDM/OFDMA radio communication links

and networks. He addresses the issues of practical implementation of the algorithms, limitations

of technologies and design trade-offs that are faced.

It is well known that the drawback of the OFDM technique is relatively high variations of

the time-domain signal envelope and high PAPR. This in turn causes signal energy spilling (that

might be called energy waste and negatively contributes to the transmitter EE) over the adjacent

bands after the signal is amplified in the RF front-end, i.e. in PA. The severity of this phenomena

depends on the particular design and used equipment, e.g. on the number of subcarriers, the

class of PA and other techniques used to combat the non-linear distortions caused by the signal

clipping. Thus, these design methods and equipment must be considered for the overall energy

efficiency in links and networks. The discussion on practical design aspects of the RF front-end

for energy-efficiency is presented in Section 5.1.

The author of this thesis is also aware of practical obstacles, limitations and degrees of freedom

in finding the EE optimum for resource allocation in the networks considered in the preceding

chapters. Therefore, in Section 5.2, he discusses practicality of the optimized solutions, identifies

necessary design trade-offs, and tries to formulate a set of recommendations for the practical

energy-efficient design of the future radiocommunication OFDM links and networks.

5.1 Impact of practical RF front-end on OFDM energy efficiency

An important topic that is typically overlooked while optimizing resources allocation for OFDM-

based networks is the nonlinearity of OFDM transceivers. All works on adaptive resource allocation

mentioned in the state-of-the art in Chapters 1–4 consider OFDM transceivers as linear systems

resulting in, e.g., linear increase of the consumed power with the allocated power and no influence

of power allocation on the interference power for this link. However, while this model can be

used for high-throughput systems it cannot be used when the transceiver is optimized for low

energy consumption. This is mainly caused by nonlinear characteristic of any practical power

amplifier [98]. The operating point of a power amplifier, called ”back-off” is the difference between

83
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the PA clipping power and the mean transmit power (in decibels, i.e., in the logarithmic scale).

When high back-off is used, the nonlinear distortion can be negligible at the cost of low power

amplifier efficiency. When trying to maximize the PA efficiency, thus, emitting the maximal part

of the PA input power as a useful waveform, low back-off has to be used, and high nonlinear

distortion is expected. Note that the power amplifier efficiency is not a fixed value [34]. It depends

not only on the power back-off but also on the amplifier architecture (defined by its class) [99]

or even on the methods of powering it. One of the heavily investigated scheme that can allow

for the amplifier increased energy efficiency is envelope tracking, whose aim is to adjust the PA

supply voltage according to the envelope of the transmitted signal [100]. Even if the PA energy

consumption is reliably modeled, the nonlinearity of the supply voltage should be considered while

powering a transceiver from batteries. The battery capacity decreases non-linearly with the energy

consumption of PA [101].

The nonlinear PA input-output (AM/AM and AM/PM) characteristic has even stronger in-

fluence on the transmitted OFDM signal and its distortion. As a result of nonlinear processing,

all utilized OFDM subcarriers, undergo intermodulation. New power components appear in the

PA output signal spectrum at frequencies being linear combination of the input signal subcarrier

frequencies. This is also visible as a Gaussian noise-like distortion at the occupied subcarriers [102].

The effect depends not only on the chosen PA back-off but also on the PA characterstics or on the

properties of the OFDM signal being amplified. There are tens of different models of nonlinear PA

ranging from some complicated Volterra-series, through polynomial representation with or with-

out memory, to a simple clipper having linear AM/AM characteristic in a given range of input

power and saturation above this range [103]. It has been shown in [104] that a PA of clipper-like

characteristic guarantees the highest Signal to Noise and Distortion power Ratio (SNDR). Even if

the PA characteristic is not like this, it is common to utilize Digital Pre-Distortion (DPD) (being

a nonlinear signal processing unit applied before the OFDM signal enters PA) [105], so that the

effective joint characteristic of DPD and PA is clipper-like.

While DPD minimizes the nonlinear distortion power, there is also an input OFDM waveform

feature that plays an important role. Note that minimum distortion power at the PA output is

obtained for a signal of constant envelope, e.g., Minimum Shift Keying signal. In the case of an

OFDM signal, a sample for each time instance is a sum of many subcarriers modulated by typically

uncorrelated complex data symbols. As there may be tens or hundreds of subcarriers, central limit

theorem applies, resulting in OFDM signal samples being approximated by the complex Gaussian

distribution [106]. This causes the instantaneous signal envelope to fluctuate significantly. This

is typically measured for an OFDM symbol using Peak to Average Power Ratio (PAPR) metric

that is the ratio of peak sample power to mean sample power. Observe that while both PAPR

and PA back-off are defined in relation to the mean signal power, PAPR higher than the back-off

for clipper PA means that some OFDM signal samples are clipped. As typical PAPR for OFDM

symbol is greater than 6 dB, it means that PA can output signal of mean power up to 25% of

its maximal rated power not to observe distortions. Such a scheme would be highly ineffective

in terms of EE. For this reason, a number of signal processing algorithms have been elaborated

that reduce PAPR of an OFDM signal [107] or even directly the induced distortion being aware

of the PA characteristics [108,109]. On the other hand, recent investigations have shown that the

nonlinear ”distortion” can be used to improve reception quality [110]. Last but not least, the above

described Gaussian signal approximation is valid for the appropriately high number of subcarriers

of possibly equal power. It has been shown that the PAPR distribution changes if the utilized

subcarriers do not constitute a single block in frequency [111], or have varying power [112]. The

ultimate example is an OFDM transmitter modulating a single subcarrier resulting in PAPR of
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0 dB.

All these models and signal processing blocks should be considered at the stage of resources

allocation for OFDM links or networks. However, even for simplified OFDM transceiver non-

linearity modeling, there is a limited number of papers that consider it in resources allocation

algorithms. In [113], power allocation in an OFDM-based cognitive radio is considered, in order

to maximize secondary user rate. The in-band and out-of-band distortion is calculated for the 3rd

order polynomial nonlinearity. However, the model does not consider variation in allocated power

among subcarriers, neither frequency-specific character of nonlinear distortion. Similar model and

optimization is used in [114] for Generalized Frequency Division Multiplexing. As such, the same

limitation of the results validity is observed. A clipper nonlinerity model is considered for op-

timization of power allocation in an OFDM-based link with relay. However, again there is no

frequency-selectivity of the utilized distortion model, neither the number of utilized subcarriers

influences the results. The optimization variable is the total allocated power, and equal power is

allocated to each subcarrier.

The above discussion shows that there are still unsolved problems in resources allocation for

energy efficient OFDM-based transmission. One of these is the front-end nonlinearity-aware opti-

mization.

5.2 Practical OFDM system design trade-offs and recommendations

for energy efficiency

As discussed in the previous sections, the role of computational awareness in OFDM/OFDMA

resource allocation optimization for the expected energy efficiency of future radio communication

systems cannot be overestimated, and has been emphasized in a number of recent papers. However,

there are some limitations of the wireless systems or costs related to EE maximization, that can

prevent the optimal solution to be achieved or makes it not profitable.

EE maximization versus optimization complexity

Power consumption associated with the implementation of the optimization algorithms to achieve

maximal energy efficiency can be significant. The definition of optimization problem and its con-

straints are becoming more and more complex in order to reflect complex relation between different

factors, e.g., influence of coding/decoding schemes on the transceiver power consumption. At the

same time, the more complex problem results typically in more advanced optimization methods

that need to be applied to find the global optimum. The resource allocation optimization meth-

ods, e.g., a combination of Dinkelbach method, SCA, Hungarian method, etc., can be significantly

computationally complex, requiring many iterations to be employed. Moreover, these problems

do not scale well with increasing problem size, e.g., number of considered users or subcarriers. As

such, obtaining of a global EE maximum might be impossible in full-size networks in real time.

Even if possible, this can bring so much energy consumption for computation of a solution, that

it becomes impractical. Algorithms complexity and required computational resources (the cost)

must be balanced with the performance improvement (the profit) that comes with exploiting the

optimization algorithms. A suboptimal solution may achieve the EE performance close to the

optimal at significantly lower computational time or energy. It can be achieved by utilizing a

natural property of the SCA, Dinkelbach etc. algorithms, being iterativeness. The algorithms

can be terminated after fewer iterations, reducing computational complexity proportionally to the

savings in number of iterations. Another option, related to the numerical optimization methods,
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is proper definition of a starting point. By setting it close to the final solution, e.g., by using some

simplified models or historical knowledge, fast convergence can be achieved.

EE maximization versus information availability and signaling overhead

Even if the EE optimization algorithm results in globally optimal solution, it is optimal only for the

considered system model, being inherently imperfect. The most common source will be delayed or

quantized channel- and network-state information required by the optimization algorithm. Finding

the proper balance between EE maximization and provisioning of accurate input knowledge is one

of the main trade-offs for the deployment of EE OFDM networks. First, this information can

be inaccurate or outdated at source since it is based on (inevitably imperfect) estimation of the

channel coefficients in the presence of noise using, typically, pilot signals from past symbol periods.

Moreover, this information is typically quantized in order to reduce the required throughput of

the control channel, e.g., to send it periodically from a UE performing channel estimation to a BS

allocating resources. Last but not least, it may not be available in full at all network nodes, i.e.,

transmission of all channel coefficients of a given link to all other network nodes or to a central

resource management unit, in order to coordinate inter-BS interference, would be associated with

impractically high signalling overhead and potentially significant delay. Even if the optimal solution

is calculated on time in the central resource management unit, the decision should be distributed

among all controlled BSs within very tight latency budget.

Therefore, an optimization using reduced (but representative) information of links qualities

should be considered, accepting reduced EE. The second option is to use hierarchical or distributed

optimization, that performs delay and control link-demanding optimization locally at a single base

station. This allows for prompt reaction to mobile radio channel changes, limiting control messages

between BSs. The hierarchical optimization means that local decisions are supported by global,

but slowly-varying coordination among BSs.

EE maximization versus available degrees of freedom

A limitation in achieving high energy efficiency may be a particular radio communication standard

or a radio architecture with a limited number of degrees of freedom. For example, only one

MCS might be available (allowed by system recommendations) for a given OFDM symbol or

resource block (as in LTE or 5G system standard) or a fixed power per RB will be emitted.

Moreover, the power-consumption of the wireless transceiver may be invariant of the resources

allocation, e.g., the power consumed by a class A power amplifier may be independent of the

transmitted signal or base-band power consumption may not scale linearly with the transmission

rate. In such cases the potential EE gain by optimization can be limited, making the total signaling

and computing overhead not justified. In the practical design of energy-efficient OFDM-based

communication networks one has to assess (by simulations or measurements) whether the energy

efficiency improvement achieved by the EE optimization algorithms is high enough and worth the

computational and signaling costs.

This problem cannot be solved differently than by enabling additional degrees of freedom by

redesigning transceivers or adding amendments to standards.
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5.3 Chapter summary and conclusions

In this chapter, the practical aspects of energy-efficient resource allocation in OFDM/OFDMA links

and networks were discussed. First, the author of this thesis considered the impact of practical RF

front-end on energy-efficient resource allocation algorithms. Then, the drawbacks of the OFDM

technique such as high PAPR, nonlinear PA characteristic and signal distortions were analyzed with

respect to their impact on energy efficiency. Moreover, the trade-offs between EE maximization and

typical limitations of wireless communication systems were considered. The author discussed the

optimization complexity, information availability and signaling overhead as well as available degrees

of freedom in the context of the energy efficiency maximization and provided recommendations for

future energy-efficient OFDM networks design.

Thus, this chapter presented the author’s view on the design of the energy-efficient resource

allocation algorithms considering practical obstacles, limitations and degrees of freedom in finding

the EE optimum for resource allocation in OFDM/OFDMA links and networks.





Chapter 6

Conclusion

Based on the theoretical research, analysed optimization problems, proposed analytical and algo-

rithmic solutions, as well as experimental evaluations (based on computer simulations) conducted

by the author of this thesis, the following conclusions can be drawn.

The maximization of the energy efficiency metric defined as the ratio of the achieved data rate

to the power consumption is not a trivial issue. This is because enhanced capacity and service

quality in modern wireless systems come at the expense of increased computational complexity

of radio devices, and is related to more and more advanced signal processing (coding, decoding,

modulation, equalization and other techniques). The power associated with the computational

complexity of signal processing, apart and beyond the transmission power is a considerable part

of the total power consumption. Thus, modern, energy efficient massive radio communication

systems and networks are required to be computationally aware. Furthermore, diversification of

the wireless communication systems, different hardware implementations of the applied algorithms

as well as the practical limitations of these systems significantly complicate the EE optimization

problem.

To address these issues structurally, the author of this thesis has identified three scenarios that

he has investigated in depth. The author discusses the increasingly complex systems, starting from

(i) the single OFDM link, (ii) the OFDMA single-hop network to (iii) the multi-hop relay OFDMA

interference network. In each case, the author elaborates on the transmission rate estimation, power

consumption modelling, existing optimization constraints, the optimization problem statement and

the problem solutions. Specifically, in the power-consumption modelling, the author includes the

signal-processing (and related computing) power. Moreover, in each investigated scenario, the

author of this thesis proposed novel solutions and original algorithms for energy-efficient resource

allocation which allow to increase the energy efficiency compared to the existing solutions.

The adaptive modulation and coding selection together with adaptive transmit power alloca-

tion obtained by the dedicated algorithm can increase the energy efficiency of the system without

significant loss of the link throughput. The OFDM technique allows for the adaptive adjustment

of transmission parameters allocated to subcarriers or resource blocks in response to the channel

instantaneous conditions. Contrarily to the existing approaches that use AMC for the throughput

maximization or the transmit power minimization, the author of this thesis has designed the al-

gorithm with fast convergence for energy-efficient resource allocation in the system which applies

adaptive modulation and coding and is computationally aware, i.e., the algorithm accounts for the

transceiver computation-power consumption. Simulation results show that the adaptive modula-

tion and coding techniques allow for: increased energy efficiency, increased average throughput,

reduced required transmit power and reduced total power consumption. Moreover, there exists
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the optimal point for the transmit power maximizing the energy efficiency of a given OFDM link.

The maximization of the energy efficiency of an OFDMA radio network which takes the prac-

tical constraints of wireless communication systems into account is computationally complex and

nontrivial. The limitations such as that the transmit power for all RBs assigned to a given user

has to be constant, and that all RBs assigned to the same user must use the same MCS make

the optimization problem combinatorial and the global optimum is very difficult to determined.

Moreover, the data rate in a real wireless system results from the applied MCS and the error

rate function, and thus, it is problematic to be estimated for the EE metric, in particular, when

MCS depends on other parameters such as the applied coding, parameters of encoder/decoder,

the length of the packet etc. In this thesis, the author has proposed the the iterative algorithm

with fast convergence for energy-efficient resource allocation in the OFDMA system with practical

limitations mentioned above. In each iteration, the solution for the multiuser power and resource

blocks allocation is derived while modulation and coding scheme, for each user, is obtained by

another embedded iterative algorithm proposed by the author. Simulation results show that de-

spite the computational simplicity of the proposed algorithmic solution, it achieves higher energy

efficiency, than the solutions from the existing literature, where the data rate is estimated by the

Shannon formula. It means that the accuracy in the system modelling has a huge impact on the

energy efficiency metric maximization.

The reuse of subcarriers in a multiuser OFDMA decode and forward relay network with em-

bedded computational awareness can increase the energy efficiency in these networks. The author

of this thesis has investigated the multiuser OFDMA network, in which the end-users can receive

the signal via relay nodes operating in the decode and forward mode, or directly from the base

station. Moreover, in the scenario considered by the author, the same subcarrier (or multiple

subcarriers) can be (re)used in the second time slot of relaying, simultaneously in the direct and

relayed transmission. This approach results in interference among signals transmitted to different

users, but if the channel attenuation values in the interfering links are high, it increases both the

spectral efficiency and the energy efficiency. In the considered model, the linearly rate-dependent

power consumption of signal processing is considered. The author developed the iterative algo-

rithm to tackle the nonlinear fractional programming problem which maximizes energy efficiency

of the investigated system. Simulation results demonstrate the effectiveness of the proposed solu-

tion for future relay networks. The energy-efficient resource allocation in OFDM/OFDMA links

and networks with computational awareness faces a number of practical limitations. This calls

for the proper design and engineering of these systems accounting for OFDM/OFDMA technol-

ogy imperfections. The author of this thesis elaborated on the ways of considering RF front-end

imperfections (nonlinearities) for the EE optimization. Moreover, he discussed the design trade-

offs, and formulated recommendations for the energy-efficiency maximization accounting for the

optimization complexity, required information availability, signalling overhead and the available

degrees of freedom in OFDM/OFDMA resource allocation.

The author believes that the above conclusions allow to claim that the thesis of the disserta-

tion has been proved, i.e., that there exist new methods for the energy efficiency maximization

in the OFDM/OFDMA systems with computational awareness. Some of these new methods have

been proposed and evaluated in this dissertation.
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