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Abstract

Automatic program synthesis is increasingly used to support programmers in software
development, enabling automatization for users based on simple cues or examples, and
in scientific discovery. However, because the search space grows exponentially with the
length of solutions, the exact approaches to program synthesis fall short as their runtime
becomes too long. One of the alternatives to limiting the search space is applying heuristic
algorithms, which do not provide guarantees of eventually finding the solution, but are
often able to solve this task relatively quickly.

In this thesis, we propose and examine four approaches to heuristic program synthesis
based on genetic programming (GP). The common feature of these approaches is acquiring
some additional information (knowledge) about the particular program synthesis task they
are solving, and then extending GP so that it is able to use that information. The first
approach, Evolutionary Program Sketching (EPS), uses a framework characteristic for
memetic algorithms to complete a provided partial program (sketch) using an optimizing
Satisfiability Modulo Theories (SMT) solver, and either replace the original program by
the completed sketch, or assign the fitness of the completed sketch. The second approach,
Counterexample-Driven Genetic Programming (CDGP), uses formal verification to check
if the programs are correct, and if they are not, then an input representing a fault is
returned and added to the set of test cases, thus guiding the subsequent search. The third
approach, Counterexample-Driven Symbolic Regression (CDSR), adapts CDGP to the
problem of symbolic regression with formal constrains, and optimizes for both numerical
error on a test set and satisfaction of the constraints. Finally, Neuro-Guided Genetic
Programming uses a neural network to predict the conditional probability of instructions
that should occur in programs given input-output examples, and then those predictions
are used to bias search. Importantly, two of these approaches (CDGP and CDSR) allow
synthesizing programs that are provably correct with respect to specification, which makes
them close to unique in the domain of metaheuristics, where search algorithms do not offer
such guarantees and typically produce approximate solutions only.

Computational experiments demonstrate that all these approaches are feasible and in
certain cases can compete with the state-of-the-art exact counterparts. The addition of
knowledge in almost all cases improves the efficiency of search compared to the “vanilla”
GP.






Uczenie maszynowe i formalna
weryfikacja dla pozyskiwania wiedzy w
heurystycznej syntezie programoéw

Streszczenie rozprawy w jezyku polskim

1 Woprowadzenie

Automatyczna synteza programéw komputerowych to problem polegajacy na znalezie-
niu programu komputerowego spelniajacego pewien zestaw wymagan/ograniczeni, ktory
nazywamy specyfikacjg. Specyfikacja moze przyjmowaé rézne formy, przyktadowo zbior
przyktadéw wejscie-wyjscie, formalne ograniczenia wyrazone w jezyku logiki, demonstracja
etap6w posrednich wykonania programu, czy tez opis zadania w jezyku naturalnym. Zbior
dopuszczalnych programéw okreslony jest jezykiem programowania, ktory takze jest, obok
specyfikacji, czescia opisu danego problemu syntezy.

W literaturze mozna znalez¢ wiele algorytméw rozwiagzujacych rézne warianty pro-
blemu syntezy. Podejécia te mozemy zaklasyfikowaé do czterech gtéwnych paradygmatéw [77]:

e Metody petnego przeglgdu, w ktorych przestrzen mozliwych programéw jest systema-

tycznie przeszukiwana.

e Podejscia oparte o rozwigzywanie ograniczen, w ktérych problem syntezy zostaje
przetransformowany do innego znanego problemu, na przyktad spetnialnosci formut
logicznych (SAT), i rozwiazany za pomoca dedykowanych dla tego problemu metod.

e Podejscia dedukcyjne, w ktorych specyfikacja jest stopniowo przeksztalcana do oczeki-
wanego programu, najczesciej za pomocs szeregu predefiniowanych regut.

o Techniki statystyczne i stochastyczne, ktoére oparte sg na uczeniu maszynowym lub
algorytmach metaheurystycznych, takich jak programowanie genetyczne.

Jako Ze przestrzen przeszukiwania mozliwych rozwigzan problemu syntezy jest bardzo duza
i rosnie wykltadniczo wraz z rosnaca dtugoscia programéw, podejécia doktadne potrze-
buja duzo czasu by zwroécié rozwigzanie dla bardziej ztozonych probleméw. Alternaty-
wnym podej$ciem sg algorytmy heurystyczne, ktore co prawda nie gwarantuja rozwigzania
problemu syntezy ani znalezienia globalnie najlepszego programu w przypadku optyma-
lizacyjnego wariantu tego problemu (w ktérym szukamy programu najlepszego wedlug



pewnej funkcji celu), ale w zamian sa w stanie zwrécié relatywnie szybko aproksymowane
rozwiazanie. W rozprawie skupiamy sie na programowaniu genetycznym (GP) [103, 159],
ktore jest heurystycznym podejéciem do syntezy w ktérym utrzymywana jest populacja
programow wraz z presja selekcyjna na ich jakos¢, i poprzez mechanizm selekcji oraz ope-
ratory wariacji (mutacja, krzyzowanie) znajdowane sa rozwiazania o coraz wyzszej jakosci.

Wspodlna cechg wszystkich prac opisanych w niniejszej rozprawie jest wzbogacenie pro-
gramowania genetycznego o dodatkowa informacje (wiedze), ktéra jest nastepnie wyko-
rzystywana przez rézne elementy algorytmu (selekcja, operatory wariacji) do zwiekszenia
efektywnosci przeszukiwania, albo wrecz umozliwienia rozwiazywania przez GP problemu
syntezy dla danego rodzaju specyfikacji. W rozprawie przedstawione sg nastepujace pode-
jécia:

o ewolucyjne szkicowanie programéw [30],

o programowanie genetyczne kierowane kontrprzykladami [32, 106, 107],

o regresja symboliczna kierowana kontrprzykladami [31],

o programowanie genetyczne wspierane sztuczng siecig neuronowq [122].

2 Ewolucyjne szkicowanie programéw

Ewolucyjne szkicowanie programéw (ang. Evolutionary Program Sketching, EPS) [30]
bazuje na paradygmacie syntezy programdéw przez szkicowanie [174, 176], w ktérym algo-
rytm syntezy oprocz specyfikacji dziatania dostaje réwniez na wejécie cze$ciowo napisany
program (,,szkic”) wraz ze wskazanymi miejscami (“luki”), ktére powinny zosta¢ wypelnione
brakujacymi fragmentami programu. Szkicowanie pozwala uniknaé pelnego przeszukiwa-
nia ogromnej przestrzeni rozwiazan, a jednoczesnie naturalnie wpisuje sie w praktyczne
zastosowania syntezy programéw w sytuacji, kiedy programista/uzytkownik ma dos$é¢ do-
bre pojecie jak w ogdlnosci powinna wygladaé¢ struktura programu, ale chce skorzystacé z
algorytmu syntezy zeby uzupetnié, czesto wymagajace dtuzszej analizy, detale.

EPS zwalnia uzytkownika z obowiazku przygotowania szkicu, poniewaz sg one gene-
rowane automatycznie na drodze ewolucji, a nastepnie uzupelniane przez metode syn-
tezy oparta o rozwiazywanie ograniczen. Problem syntezy sprowadzany jest do pro-
blemu spelnialnosci formut logicznych modulo teorie (ang. Satisfiability Modulo Theories,
SMT) [20, 54]. Specyfikacja dzialania programu sa przyklady wejscie-wyjscie, a zadaniem
jest znalezienie programu spelniajacego jak najwiecej z nich. Do rozwiazania tego zadania
optymalizacji wykorzystany zostal solwer Z3 [53], ktory udostepnia narzedzie stuzace do
optymalizacji bazujace na SMT [26].

EPS dziala na podobnej zasadzie jak algorytmy memetyczne [140], to znaczy rozwiaza-
nia znalezione przez algorytm ewolucyjny sa nastepnie oceniane i potencjalnie mody-
fikowane na podstawie tego, jak dobrze solwer SM'T dal rade je uzupetni¢. Zaproponowano
dwa warianty podejscia: w wariancie Baldwinowskim (EPS-B) ma miejsce jedynie przypi-
sywanie do danego rozwiazania (szkicu) wartosci przystosowania jego uzupelnionej przez
solwer SMT wersji. Z kolei w wariancie Lamarckowskim (EPS-L) rozwiazanie jest takze
zastepowane w populacji przez uzupelniony szkic. Nowe luki dodawane sa do programéw



matyki jezyka programowania o przypisanym typie wskazujacym na rodzaj wartosci zwra-
canej przez brakujacy fragment kodu.

Przeprowadzono wstepne eksperymenty obliczeniowe, w ktérych zostaly ze soba pordw-
nane EPS-B i EPS-L w réznych konfiguracjach, a takze sprawdzono czy radza sobie one
lepiej niz samo GP bez mechanizmu szkicowania. Wyniki pokazaly, ze szkicowanie rzeczy-
wiscie daje lepsze wyniki niz standardowe GP, o ile luki sa wypelniane przez stale a nie
tylko zmienne wejsciowe programu. Oba warianty EPS okazaly si¢ znaczaco dominowaé
nad GP przy tej samej liczbie pokolen, przy czym wariant Baldwinowski okazat si¢ zdecy-
dowanie lepszy od Lamarckowskiego. Zeby skompensowa¢ dlugi rzeczywisty czas dzialania
EPS, przetestowane zostaly réowniez dwie dodatkowe konfiguracje w ktérych GP miato
do dyspozycji taki sam budzet czasu obliczeniowego oraz znacznie wieksza populacje —
po tych zmianach EPS-B pozostal zdecydowanie dominujacym wariantem jezeli chodzi o
skuteczno$é, jednak EPS-L okazal si¢ by¢ w tych warunkach gorszym algorytmem niz GP.

3 Programowanie genetyczne kierowane
kontrprzyktadami

Programowanie genetyczne kierowane kontrprzykladami (ang. Counterexample-Driven
Genetic Programming, CDGP) [32, 106, 107] jest préba zastosowania GP do probleméw
syntezy programéw, w ktérych zadanie jest okreSlone wytacznie przez formalna specy-
fikacje ztozong z logicznych ograniczen wyrazonych w logice pierwszego rzedu rozszerzonej
teoriami. Teorie pozwalaja wzbogaci¢ semantyke wyrazen logicznych i znaczaco utatwié
przygotowywanie formalnych specyfikacji; w tej pracy skupiliémy sie na dwoéch z nich:
liniowej arytmetyce liczb catkowitych (Linear Integer Arithmetic, LIA), oraz operacjach
na ciggach znakow i liczbach (Strings with Linear Integer Arithmetic, SLIA).

Problem z bezposrednim uzyciem GP do zadan syntezy na podstawie formalnej specy-
fikacji polega na trudnosci w skonstruowaniu odpowiedniej funkcji celu, gdyz GP realizuje
zadanie optymalizacji, podczas gdy synteza na podstawie formalnej specyfikacji to problem
przeszukiwania. Problem ten prébowano rozwiazaé poprzez zliczanie spetnionych indywi-
dualnych ograniczen [82, 88], wyrdznianie poziomu spelnienia danego ograniczenia [94, 95],
czy tez wykorzystanie kontrprzykladéw pochodzacych z nieudanych weryfikacji [96, 97].

CDGP réwniez jest oparte o zbieranie kontrprzykladéw, ktére po przeksztalceniu do
regularnych testéw wykorzystywane sa do obliczania miary przystosowania programéw
w populacji. W odréznieniu od wczesdniej opisanych prac, wykorzystujemy to podejs-
cie do rozwigzywania bardziej ztozonych probleméw i wprowadzamy dodatkowy warunek
ktory musi spetnié¢ program zanim zostanie poddany weryfikacji. Poczatkowo zbiér testéw
w CDGP jest pusty, i moze ulec powiekszeniu gdy program w populacji spetni procent
a (parametr algorytmu) juz zebranych testéw i zostanie poddane formalnej weryfikacji
przy uzyciu solwera SMT. Celem weryfikacji jest formalne udowodnienie poprawnosci pro-
gramu dla kazdego wejscia; proces ten przeprowadzany jest z pomoca solwera SMT, ktéry
pozwala uniknaé testowania programu na wszystkich mozliwych wejsciach. Jezeli wery-
fikacja zakonczy sie sukcesem, to CDGP konczy dziatanie, poniewaz program spelniajacy
formalna specyfikacje zostal znaleziony. W przeciwnym wypadku, tworzony jest nowy test
na bazie kontrprzyktadu zwréconego przez solwer SMT i dodawany jest do zbioru testow.



Zastosowany tutaj mechanizm pozwala ograniczy¢ liczbe kosztownych weryfikacji kiedy
posiadamy informacje, ze program jest niepoprawny (nie spelnia wszystkich testéw). Z
drugiej strony nizsze wartos$ci parametru « pozwalajg uzyskaé wiecej testéw i dostarczaé
tym samym wiecej informacji ewolucyjnemu algorytmowi przeszukiwania.

Eksperymenty obliczeniowe wykazaly, ze w dziedzinie LIA CDGP dziata gorzej niz for-
malne metody syntezy z ktérymi go poréwnywaliSmy (pelnoprzegladowy EUSolver [11],
oraz oparty o rozwiazywanie ograniczeii CVC4 [169]) — osiaga gorsze rezultaty w znacznie
gorszym czasie. Jednak LIA to relatywnie prosta teoria, dla znacznie trudniejszej SLIA to
CDGP okazalo si¢ uzyskiwaé lepsze rezultaty. Programy znalezione przez CDGP byly tez
czesto, dla obu problemoéw, wielokrotnie krotsze niz te znalezione przez metody doktadne.
Inne wnioski z eksperymentow obliczeniowych to bardzo wysoka skutecznos¢ algorytmu se-
lekcji lexicase [178] w poréwnaniu do selekcji turniejowej, lekka przewaga wartosci o = 0.75
nad innymi testowanymi wartosciami, a takze obserwacja, ze kontrprzyktady generowane
przez solwer SMT pozwalajg uzyskac¢ lepsze rezultaty niz te generowane losowo.

4 Regresja symboliczna kierowana kontrprzyktadami

Regresja symboliczna kierowana kontrprzykladami (ang. Counterexample-Driven Sym-
bolic Regression, CDSR) [31] to efekt adaptacji CDGP do rozwiazywania probleméw re-
gresji symbolicznej. Regresja symboliczna polega na znalezieniu wyrazenia matematy-
cznego, ktore mozliwie dobrze wyjasni zbiér przykladéw wejécie-wyjscie (zbiér uczacy).
Jest to problem z dziedziny uczenia maszynowego, poniewaz oczekujemy ze zaproponowana
formuta bedzie réwniez trafnie przewidywaé¢ wartosci dla przyktadow spoza, potencjalnie
obarczonego szumem i bledami (np. pomiarowymi), zbioru uczacego. W rozwazanym
przez nas scenariuszu, poza zbiorem testéw uzytkownik dostarcza takze zbiér ograniczen
logicznych (przykladowo, wymagajac od formuly symetrii albo monotonicznosci), i tak
zdefiniowane ogdélniejsze zadanie nazywamy regresjg symboliczng z formalnymi ogranicze-
niami (Symbolic Regression with Formal Constraints, SRFC) [31].

W poréwnaniu do CDGP, w CDSR zmienione zostaly gléwnie dwa elementy. Po pier-
wsze, ze zbioru uczacego wydzielony zostal zbior walidacyjny, ktéry zapobiega przeuczeniu
i konczy dziatanie algorytmu kiedy btad na zbiorze uczacym nie ulega poprawie przez
pewng liczbe pokolen. Po drugie, musieliSmy przyjaé¢ prég bledu (domyslnie 5% od-
chytu od oczekiwanego wyjscia) przy ktérym uznajemy testy za spelnione dla kryterium
weryfikacji opartym na parametrze o. Opracowali$émy réwniez CDSR,,, wariant CDSR w
ktérym spelnienie indywidualnych ograniczen jest uwzglednione w wektorze przystosowa-
nia rozwigzan, dzieki czemu spelnianie ograniczen ma bezposredni wpltyw na presje selek-
cyjna.

Sposréd testowanych wariantéw CDSR, w eksperymentach CDSR,, okazal si¢ zdecy-
dowanie najlepszy jezeli chodzi o spelnianie ograniczen, podczas gdy pod wzgledem bledu
sredniokwadratowego na zbiorze testowym nieco lepszy okazal sie standardowy wariant
CDSR. PrzeprowadziliSmy réwniez kompleksowe poréwnanie CDSR z szeregiem klasy-
cznych algorytméw uczenia maszynowego dla problemu regresji. Algorytmy te nie przyj-
muja formalnych ograniczen jako danych uczacych, i celem eksperymentu byto sprawdze-
nie, czy pomimo to potrafig te ograniczenia spetni¢ poprzez nauke na przyktadach. Nieco



wbrew naszym oczekiwaniom okazalto sie, ze najlepsze algorytmy regresji spelniaja érednio
wiecej ograniczen niz CDSR,. CDSR;, jednak wyraZnie czeéciej daje rade spetni¢ wszys-
tkie ograniczenia na raz oraz jest znacznie skuteczniejszy w spelnianiu pewnych rodzajéw
ograniczen. Z kolei standardowy wariant CDSR zdotal uzyskaé¢ mniejszy btad na zbiorze
testowym.

5 Programowanie genetyczne wspierane sztuczng
siecig neuronowa

Prace nad programowaniem genetycznym wspieranym sztuczng siecia neuronowa (ang.
Neuro-Guided Genetic Programing) [122] byly zainspirowane podej$ciem DEEPCODER [17],
w ktorym problem syntezy programéw rozwigzywany jest w dwoch fazach. W pierwszej
fazie, model uczenia maszynowego (sztuczna sie¢ neuronowa) uczony jest rozkladu praw-
dopodobienstwa wystapienia instrukcji w programie pod warunkiem przykladéw wejscie-
wyjscie. Co istotne, proces uczenia przeprowadzany jest tylko raz dla wybranej domeny
probleméw. W drugiej fazie, nauczony model jest wykorzystywany jako wsparcie dla
zewnetrznego algorytmu przeszukiwania potrafigcego wykorzystaé predykcje sieci neu-
ronowej przy rozwiazywaniu konkretnych probleméw syntezy (potencjalnie innych, niz na
ktorych sie¢ byla uczona w pierwszej fazie). Przykladowo, takim algorytmem moze by¢
zmodyfikowany wariant DFS (ang. depth-first search), ktéry konstruuje drzewa reprezen-
tujace programy metoda priorytetyzowanego przegladu, dajac pierwszenstwo przeszukiwa-
niu galezi odpowiadajacych bardziej prawdopodobnym instrukcjom wedtug wskazan sieci
neuronowe;j.

Nasz przyczynek w zakresie tego podejécia do syntezy programéw miala charakter
eksperymentalny, i polegala na jego zastosowaniu razem z GP oraz przetestowaniu, jak
parametryzacja GP wplywaé¢ bedzie na skutecznosé tego podejécia. Eksperymenty prze-
prowadzone zostaly przy pomocy naszej wlasnej implementacji sieci neuronowej oraz mod-
ulu generujacego dane uczace, bazujacych jednak mocno na tych zastosowanych w DEEP-
CODER [17]. Wykazaly one, ze jest istotna poprawa efektywnosci dla GP wspieranego
przez sie¢ neuronowa w poréwnaniu do wariantéw bez takiego wsparcia lub z prostym
obciazeniem faworyzujacym instrukcje najczesciej wystepujace w zbiorze uczacym. Zaob-
serowano takze, ze zastosowanie predykcji sieci takze podczas inicjalizacji GP daje bardzo
wyrazng poprawe w poréwnaniu do uzywania predykcji sieci wytacznie podczas mutacji.

6 Podsumowanie

Niniejsza rozprawa proponuje cztery heurystyczne podejécia do syntezy programoéw
oparte na GP i zdobywajace dodatkowa wiedz¢ o zadaniu syntezy za pomocs formalnej
weryfikacji/optymalizacji przy uzyciu solwera SMT lub uczenia maszynowego. Najwaz-
niejsze rezultaty rozprawy to:

e Ewolucyjne podejscie do syntezy programdw przez szkicowanie, w ktorym szkice sg
generowane automatycznie przez GP.
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Podejscie do syntezy programéw na podstawie formalnej specyfikacji przy uzyciu
GP, oparte na kontrprzyktadach uzyskanych z formalnej weryfikacji niepoprawnych
programow.

Definicja zadania regresji symbolicznej z formalnymi ograniczeniami.

Opracowanie algorytmu wykorzystujacego GP do rozwiazywania tego zadania, i
doglebne poréwnanie go z klasycznymi algorytmami uczenia maszynowego dla pro-
blemu regresji.

Implementacja i przetestowanie podejscia do rozwiazywania problemu syntezy uzytego
w DEEPCODER [17] w rezimie obliczen ewolucyjnych.
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Chapter 1
Introduction

1.1 Motivation

It is often said that information is more valuable than gold. In the current so-called “infor-
mation society” this seems particularly evident — information often makes the difference
between success and defeat in business, war, or social interactions. Information in itself,
however, is static, like books in a library. It is the flow and processing of information, and
ultimately applying it to the real world problems, that makes it valuable.

Before the 1940s, the word “computer” more often than not denoted a person whose
job was to perform repetitive computations. It was not until the advent of programmable
electronic computing devices, today known as computers, that humans became able to
relegate the task of information processing to machines. Instead of constructing a separate
device for every kind of computation one may want to perform, we can build a single
machine with behavior directed by a replaceable piece of code in its memory — a program.
This is how the division between hardware and software was born. The formal models
of computation were also created around that time, such as Turing machines [189] and
A-calculus [43, 44], which formalized the intuitive notion of an algorithm and allowed for
many deep insights into what can theoretically be computed and what are the bounds on
the resources (memory, time) needed to solve particular computational problems.

Due to the enormous usefulness of computers as general information processors, they
are prevalent in almost all aspects of contemporary society. Our lives were transformed
by the computational power, ease of communication, and flexibility that these devices
offer. As a side effect, the complexity of software also has been increasing to satisfy
the ever-growing expectations, and producing reliable software became challenging and
time-consuming.

One of the potential ways to facilitate the production of software and to make it more
reliable is automatic program synthesis, which poses the task of generating a program con-
sistent with the user intent as a search or optimization problem. There are several existing
approaches to program synthesis, and we review them in Chapter 2. Unfortunately, the
exact approaches to program synthesis are hindered by the exponential size of the search
space of programs that needs to be searched. To address this challenge, in this thesis
we resort to the means offered by heuristic algorithms and machine learning, namely ge-
netic programming (Section 4.2) and neural networks (Chapter 8). While not providing
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guarantees that an optimal solution will be found, heuristic algorithms have high chance
of finding relatively good solutions faster than the exact approaches, which often return
either an optimal solution or no solution at all.

1.2 Aims and scope

The particular focus of this thesis is on approaches which, despite relying on heuristics for
search and optimization, are still guaranteed to synthesize, upon successful termination,
programs that are provably correct or provably optimal. The common feature of all the
approaches that we propose is acquiring some additional information (knowledge) about
the particular program synthesis task they are solving, and then using it to make the
search with genetic programming more effective, or even allow it to solve a particular type
of program synthesis problems that are otherwise beyond its reach. This ties closely to
the notion of prioritization of search, i.e., introducing a bias to the algorithm so that it
visits the promising regions of the search space first, and thus on average its effectiveness
increases for the computational problem of interest.

To perform effective prioritization, a search algorithm has to be provided with knowl-
edge about the problem as a whole and/or the particular problem’s instance. We consider
three sources of such knowledge:

o Using an optimizing SMT solver [26] to fill the ‘holes’ in the evolved programs so
that the maximum possible number of tests is passed.

e Finding counterexamples that reveal the faults in the currently considered candi-
date programs (working solutions), i.e., inputs for which programs exhibit incorrect
behavior.

e Training a machine learning model on a set of instances of a certain program synthesis
problem in order to predict the features of the correct program given its specification.

While the first element on the above list fits into the established research area of memetic
algorithms [140], the other elements are rarely seen in conjunction with genetic program-
ming (nor in conjunction with many other heuristic search algorithms that could be con-
ceivably used for program synthesis). Our goal is thus to investigate the ways in which
genetic programming can be augmented by the aforementioned techniques so that its
effectiveness for solving program synthesis problems increases.

In summary, the general goals of this thesis are as follows:

e designing heuristic-driven algorithms for the synthesis of provably correct programs,

e defining and exploring new types of tasks that can be approached with this ‘appa-
ratus’,

o devising new notions of generalization for such tasks,

« assessing the usefulness of these ideas in realistic settings, including working with
benchmarks that are rooted in well-known programming/physics/engineering prob-
lems, and examining the robustness of methods/solutions to noise.
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1.3 Organization of the thesis

This dissertation is organized as follows.

Chapter 2 defines the problem of program synthesis and its most important character-
istics. We describe the main paradigms of solving that problem, and provide several
examples of practical applications.

Chapter 3 explains the importance and basic principles of formal verification of soft-
ware. We focus on Satisfiability Modulo Theories (SMT), which is the formalism we
employed in several approaches described in this thesis. The chapter concludes with
the examples of successful industrial use of these techniques.

Chapter 4 is an introduction to evolutionary computation and genetic programming,
and describes all crucial components of these algorithms, as well as some of their
practical applications.

Chapter 5 presents Evolutionary Program Sketching (EPS), our approach to program
synthesis by sketching. After description of the algorithm and its connection to
memetic algorithms, we examine it on several benchmarks and compare it with
“vanilla” genetic programming.

Chapter 6 presents Counterexample-Driven Genetic Programming (CDGP), our approach
for using genetic programming to synthesize programs from formal specifications.
After presenting the verification framework involved with this process and its inte-
gration with genetic programming, we investigate the effectiveness of CDGP on a
suite of integer and text processing benchmarks.

Chapter 7 describes our extension of CDGP for symbolic regression problems, which we
dubbed Counterexample-Driven Symbolic Regression (CDSR). In the experimental
part, we compare various variants of CDSR with the state of the art machine learning
regression algorithms.

Chapter 8 presents Neuro-Guided Genetic Programming, which employs an artificial
neural network to prioritize genetic programming search. We describe the network’s
architecture, training, and how it assists the search. We also present the results
of the computational experiments, in which we compare different variants of our
approach with the baselines.

Chapter 9 summarizes this dissertation, and suggests future research directions.






Chapter 2

Program Synthesis

In this chapter, we define a problem of program synthesis and describe the main aspects
that can vary between synthesis tasks: user intent (specification), and search space (pro-
gramming language). We also present the main paradigms of solving synthesis problems,
as well as the practical applications of this technology.

2.1 Introduction

In the 1950s, ACM editors described assemblers as “automatic programming systems” [171],
and, according to Parnas [152], in the 1940s the term was even used for a rather unso-
phisticated automation of punching holes in paper tapes fed into computing machines.
Parnas further writes: “In short, automatic programming always has been a euphemism
for programming with a higher-level language than was then available to the program-
mer” [152; p. 1333]. In accordance with this logic, nowadays automatic programming,
under the name of program synthesis that is used by most authors (e.g., [10, 11, 77, 105]),
does not include assemblers and higher level programming languages. The goal has shifted
to the generation of whole programs in these languages based on a specification of their
expected behavior, and everything indicates that this understanding will remain in place
for a foreseeable future.

2.2 What are programs?

The word “program” (from Greek mpdypoppo, programma) originally meant a written
public notice, but two additional meanings evolved over time: that of “written or printed
list of pieces at a concert, playbill”, and “a definite plan or scheme, method of operation or
line of procedure prepared or announced beforehand” [7]. This last meaning of “program”
is also the one being used in “linear programming”’. It is not hard to see how the modern
meaning of the word related to computers evolved from it — at its core, a computer
program is simply a prepared beforehand sequence of actions to be performed by a machine
executing it.

14To do this entails a look at the structure and state of the system, and at the objective to be fulfilled,
in order to construct a statement of the actions to be performed, their timing, and their quantity (called
a ‘program’ or ‘schedule’) [..]” [50, p. 1].
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From the perspective of software engineer, a program is a sequence of instructions
in a certain programming language which, when executed, produces the expected result
aligned with requirements (if the program is correct?). Requirements are divided into
functional (i.e., related to the outcomes that program produces) and non-functional (other
characteristics, such as processing time, memory usage, stability, ease of maintenance).
Generally, most of the work in program synthesis, and in this thesis too, focuses on the
functional requirements, although there is also some research into satisfying non-functional
requirements such as optimization of program’s runtime [114, 131], or deobfuscation of
software [87].

There are several approaches to modeling programs in order to investigate the limita-
tions of computation, and the most widely known are Turing machines [189] and lambda
calculus [43, 44]. These formalisms have enormous theoretical importance due to their
simplicity, which still allows them to capture, as it is widely believed (Church-Turing the-
sis), all possible computable functions. Program synthesis research has, however, rather
an “engineering” approach, i.e., it focuses on efficient solving of practical problems. As a
result, if any reasoning about programs is performed (see, e.g., deductive approaches to
synthesis in Section 2.5.3.3), it happens on the level of semantics of a particular program-
ming language.

As shown by Turing [189], it is fundamentally impossible to create an algorithm that
always determines in a finite time if a program halts or not — in other words, this problem is
undecidable®. In program synthesis systems, non-terminating programs are often avoided
by design (e.g., by proving that a given program halts, or constraining a programming
language so that it comprises only terminating programs), and if not, then programs that
exceed a given runtime limit are discarded (which may ultimately cause the synthesis
algorithm to fail the synthesis task).

In this thesis, we limit ourselves to programs that:

e always halt,

e are functional in the sense that the produced output defines the entirety of the
outcomes of computation (i.e., there are no side effects),

e have no loops or recursive calls,

e are deterministic.

Even under these assumptions, an efficient synthesis of such programs is far from being
trivial. The main reasons for this are a large space of possible programs to search and
complex interactions between program instructions (a small change in code can drastically
impact the result).

2And a big part of software engineering literature is dedicated to avoiding such situations.

3Turing’s proof of this fact is based on trying to verify (whether a program halts) a program that uses
exactly that verifier to do the same but loops forever if the answer is positive. What if we required our
halt verifier to only work for programs that do not try to verify that property themselves? Would such
limited halting problem still be undecidable? An interesting question that is rarely being posed.
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2.3 Definition of program synthesis

According to Gulwani [77, p. 3]:

Program Synthesis (PS) is the task of automatically finding programs from the
underlying programming language that satisfy user intent expressed in some form of
constraints.

Krawiec [105, p. 3] expressed this definition more formally, which we present below together
with a clear distinction between synthesis tasks and synthesis problems:

Definition 2.3.1. A program synthesis task is an ordered pair (P, Correct), where P
is a programming language, and Correct is a function P — B called correctness predicate.
Solving the program synthesis task (P, Correct) consists in finding a program p € P that
satisfies Correct.

Definition 2.3.2. A program synthesis problem is a set of all possible program syn-
thesis tasks for a fixed programming language P and a specific form of correctness predicate
(see Section 2.5.1).

In other words, a program synthesis task is an instance of a program synthesis prob-
lem. When we design program synthesis algorithms (also called program synthesizers, or
simply synthesizers), we want them to solve program synthesis problems, i.e., be able to
handle every individual synthesis task that belongs to that problem. Synthesizers are
also often specialized for a certain application domain, such as for example synthesis of
text processing formulas, or symbolic regression. Since in a program synthesis problem
the programming language is fixed, discovering and exploiting its characteristics is usually
crucial for efficient program synthesis. In certain situations, one can even design languages
in a way that facilitates the synthesis process (e.g., FlashFill [74], Rosette [188]).

Depending on the expressive power of a programming language P, a program synthesis
task can be either solvable or unsolvable. The latter means that no program p € P satisfies
the Correct predicate, while the former means the opposite, i.e., that such programs exists.
Efficient handling of unsolvable tasks may require detection of such situations in order to
avoid unnecessary computations. In this thesis, we consider only solvable synthesis tasks.

Compilers, used routinely in contemporary software development, translate a program
written in one language into some other, usually lower level, language, and could be on
this ground considered to be program synthesis algorithms, with the Correct predicate
expressing the semantic correspondence between the synthesized and the original code.
Despite this, they are not treated as such, because there is hardly any search involved
in this process. Arguably, there are exceptions from this rule, for instance the optimiza-
tion of code during compilation, and particularly superoptimization [131], which searches
for an optimal semantically-equivalent code fragment and is not limited to being merely
refactorization of the original code. Superoptimization is, however, universally agreed to
be a program synthesis problem in its own right [77].

We can distinguish several variants of program synthesis problems based on the objec-
tive of computation [150]:

» Search PS problem: find a program p € P such that Correct(p) (Definition 2.3.2).
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¢ Decision PS problem: determine, if there exists a program p € P such that
Correct(p).

o Optimization PS problem: find a program p € P such that Correct(p) and the
program p is optimal for a certain objective function (e.g., MSE on test cases).

o Counting PS problem: count the number of programs p € P such that Correct(p).

In this thesis, we present our contributions for solving the search PS problem (Sec-
tions 6, 8), and the optimization PS problem (Sections 5, 7).

2.4 Syntax-guided synthesis problem

Alur et al. [10] introduced the syntaz-guided synthesis (SyGuS) problem, which formalizes,
and to some extent constrains, the programming language P and the Correct predicate
from Definition 2.3.1.

Definition 2.4.1. The syntaz-guided synthesis (SyGuS) task is a triplet (7, ¢, G), where
7 is a background theory, ¢ is a logical formula expressing the Correct predicate of a
function f to be synthesized, and G is a context-free grammar specifying a set of allowed
expressions. The solution of a SyGuS problem is an expression e € L, where L is a set of
all expressions over the grammar G, such that ¢[f/e] (formula ¢ with all occurrences of f
replaced with e, with appropriately substituted arguments) is true in the theory .

Definition 2.4.2. The syntax-guided synthesis (SyGuS) problem is a set of all possible
SyGuS tasks.

A background theory 7 is what provides meaning (semantics) to symbols. Background
theories were introduced as an extension to Boolean satisfiability problem (SAT), lead-
ing to the concept of Satisfiability Modulo Theories (SMT) [20, 54] (for a more detailed
discussion, see Section 3.2). For example, the theory of integers allows to use integer
variables and constants in logical formulas, as well as arithmetical functions and relations
(e.g., +, —, X, =, >, <, =). Often, the limited forms of theories, known as logics, are
considered, which impose additional constraints on the allowed expressions; for example,
Linear Integer Arithmetic (LIA) requires, among others, that multiplication can happen
only between constants or a constant and a variable.

The logical formula ¢ describes the synthesis task as a relation between inputs of the
function f being synthesized and its outputs (it is an example of formal specification,
presented in Section 2.5.1). ¢ uses symbols from the background theory 7.

Finally, the grammar G is a syntactic template. It gives flexibility in specifying how
the final solution is supposed to look like, potentially even including domain knowledge
that a user may posses. Notice that since a programming language, defined by G, is part
of the input, a SyGuS problem is not a program synthesis problem per Definition 2.3.2,
which assumes that a programming language is fixed — instead, we could be tempted to
call it a meta-synthesis problem.

Example 2.4.3. The max2 program synthesis task (computing a maximum of two num-
bers) can be defined as a SyGuS task in the following way:



2.5 Dimensions of program synthesis 25

e 7: theory of integers, providing the standard mathematical interpretation of integer
constants and operators (+, —, >, <, =, <, >, etc.). It is also commonly assumed
that this theory includes the ite (if-then-else) operator.

o O Vayez f(@y) 22 A flz,y) 2y A (flzy) =2 V fz,y) =y)
o G (with the starting symbol I):
I:i=1|x |y | (+II)] (—ITI) | (iteBTII)
B:ii=(>I1I)|(<KII |[(=2II |(SII) | (=1ITI) |
(NBB) | (VBB) | (= B)

2.5 Dimensions of program synthesis

Gulwani [73] identified three “dimensions” of program synthesis, by which he meant dif-
ferent aspects influencing program synthesis problems and the techniques of solving them.
Those are:

1. expression of user intent (specification),
2. space of programs over which to search (programming language),

3. search technique (synthesis algorithm).

2.5.1 Expression of user intent

The first dimension is user intent, which is a specification of the target program’s expected

behavior (the Correct predicate in Definition 2.3.1). It describes what a program is sup-

posed to do, but not how. Discovering the latter is the main goal of program synthesis.
User intent may assume many different forms, most common of which are:

o Input-output examples — a set of pairs (z,y), in which = represents an input to
a program, and y the target output that the program is supposed to return for x.
This is arguably the most common form of user intent, and in a vast majority of
cases it forces a synthesis algorithm to “guess” the expected program’s behavior on
the inputs not provided in the original set of input-output examples. In other words,
this is where program synthesis meets machine learning in the task of generalizing
beyond a provided training sample (inductive learning).

e Formal specification — a logical formula ¢ describing the relation between pro-
gram’s inputs and the expected output. The formula ¢ is usually universally quan-
tified over variables representing inputs of a program. If a precondition is present,
i.e., a condition specifying the inputs for which the behavior of a program is defined,
then ¢ is an implication with the precondition as an antecedent, and the correctness
condition, called postcondition, as a consequent. For example, a formal specification
of a program (function) f : R — R that returns a value f(z) > 0 when x > 100,
would be:

Veer x> 100 = f(z) > 0.
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In general, formal specification enforces programs to satisfy a set of constraints, and
as a special case the constraints can unambiguously define output for each input
(complete formal specification). Contrary to the input-output examples, in program
synthesis from formal specification it is rare to consider generalization of programs
beyond the provided constraints.

Natural language — programmers usually receive requirements (specification) of
a project in the form of a description in natural language. Their knowledge of
the language, together with the general intelligence and knowledge of computer sci-
ence, makes it possible for them to understand the task and solve it. Currently, we
are unable to create an artificial intelligence system with such capabilities. How-
ever, many patterns can be already discovered using natural language processing
techniques [130]. A sufficient training set of language descriptions and their pro-
grammatic solutions can be used as a basis for a program synthesis system to
learn an appropriate mapping, as was attempted for example in [25]. Another no-
table example of this form of user intent are natural language query interfaces to
databases [12, 120, 153].

Demonstration (traces) — traces are intermediate environment states resulting ei-
ther from an execution of a (reference) program on some input, or a demonstration
of computational steps. They are readily available, for example, as an effect of re-
verse engineering (or debugging) [116]. Traces are also crucial for programming by
demonstration paradigm [49]. A recent example of such a system is the Rousillon
Chrome extension [40], which records user’s activity in the browser, and on that
basis constructs a script in Helena [4], a high-level programming language for web
automation, which then scrapes hierarchical and distributed data from the websites
of interest.

Programs — programs can also themselves constitute a specification of program syn-
thesis problems. In fact, this scenario occurs naturally in several applications, such
as: program optimization (e.g., superoptimization [131, 158]), deobfuscation [87],
synthesis of program inverses [182]. Programs are also sometimes provided in con-
junction with other forms of intent, for example in the programming by sketching
paradigm [176, 174], in which the synthesizer generates code to fill the holes indi-
cated in an incomplete program (sketch) by a programmer so that the unit tests are
passed.

2.5.2 Space of programs

The second dimension is the search space of valid programs (a programming language P

in Definition 2.3.1) that may constitute a solution of a given program synthesis task. This

choice is made by the developer of the synthesis system, and in some synthesis systems it

can be additionally restricted by a user to fit their needs.

The search space does not necessarily contain a program consistent with the user

intent, i.e., the language may be too limited. Efficient handling of program synthesis

tasks for which there is no solution in the given programming language is an additional

complication, and it is a common practice that synthesizers are explicitly stated to not
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be optimized for such situations — usually, they will run until exhaustion of the assigned
computational budget. In this thesis, we also assume that a solution to the program
synthesis task is always present in the search space.

When selecting a programming language for a synthesis system, it is necessary to
ensure a good balance between expressiveness of the language and efficiency of search. On
one hand, a synthesis system needs to be useful for a user, and on the other it needs to
realize its task in a reasonable time. How programs are represented in the system can
also play a big role in the overall efficiency of the synthesizer, and sometimes imposing
additional constraints on the code’s structure can be beneficial, while not reducing the
expressive power of the language (e.g., not using goto statements in C++ programs).

An important subclass of search spaces in program synthesis problems are those of loop-
free programs. Reasoning about such programs is much simpler, and it is often easy to
guarantee that every program terminates. The synthesis of loop-free programs is, however,
still challenging because the number of possible programs is exponential in the number of
their components and program’s length.

There are many features of programming languages that can influence the range of
methods that can be used for the synthesis as well as the hardness of a synthesis problem,
and we present below the most significant of them:

o restricted model of computation (e.g., regular expressions) / domain specific lan-
guage (DSL) / a subset of a conventional programming language / conventional
programming language,

o functional / imperative,
o single function / multiple functions / modules / entire applications,
o loop-free programs / programs with loops,

o programs that always terminate / programs that are not guaranteed to terminate.
Finally, we can briefly consider two interesting extreme cases of search space:

o FEvery candidate program is also an instruction — upon closer inspection, the dis-
tinction between a program and an instruction is fluid: usually both are functions,
and often a program may consist of just a single instruction. We can thus imagine
a theoretical program synthesis task, in which the set of instructions contains every
valid program as a component to be used. While in such a scenario the shortest
solution is always composed of just a single instruction, finding it may be harder
than discovering a composition of many other program-instructions.

e There is only a single instruction — in this case, the programs are constructed from
only a single instruction. An example may be the synthesis of logical functions using
only NOR logical gate, which is sufficient for the construction of all possible logical
functions.

2.5.3 Search technique

According to Gulwani [77], program synthesis techniques can be divided into enumera-
tive, constraint solving, deductive, and stochastic/statistical. We will briefly present each



28 2 Program Synthesis

paradigm in the following sections.

2.5.3.1 Enumerative search

Enumerative approaches, as the name suggests, enumerate programs in a certain order,
and for each individual program check if it satisfies the specification. These methods
are typically exhaustive, meaning that eventually they are guaranteed to find a correct
program, if it exists. Enumerative approaches work well in practice when the number
of components for building programs is not too large. In particular, if the programming
language contains constants that may assume many different values (e.g., integers), then
enumerative algorithms, at least without assistance of other techniques, would not fare
well due to the combinatorial explosion of possible values.
The main axes of improvement for enumerative approaches are:

e pruning semantically redundant programs,

e prioritizing the search, i.e., changing the order in which candidate programs are
being visited, so that programs that are more likely requested by a synthesis task
can be visited earlier,

o reusing already enumerated programs, either for construction of more complex pro-
grams, or by accumulating knowledge about the synthesis task.

Example uses of enumerative techniques for program synthesis are:

o EUSolver [11], which enumerates small expressions and then tries to perform, using
decision tree learning algorithm [163], a wunification into a single program with if-
then-else branches. As such, EUSolver requires the if-then-else instruction present
in the programming language, or a capability to simulate one by means of other
instructions.

e Providing a baseline for other synthesis algorithms by a simple brute force enu-
meration assisted with some minor pruning to improve scalability, as was done by
Katayama [92] for generation of all type-correct functional programs. He later ex-
tended this approach into a much more efficient MAGICHASKELLER system [93].

e Superoptimization of the machine code, for which enumerative search can give guar-
antees that the generated program is the shortest possible [131, 158].

2.5.3.2 Constraint solving

Approaches based on constraint solving reduce a program synthesis task to an instance
of some other? constraint satisfaction problem (e.g., linear programming, SAT, SMT), for
which an efficient specialized solver exists. Thus, approaches based on constraint solving
work in two main steps [77]:

1. constraint generation,

2. constraint resolution.

4Program synthesis can be considered to be a constraint satisfaction problem.
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In the constraint generation step, the program synthesis task specification and the
space of possible programs are encoded in the form of constraints, so that values of free
variables correspond to programs. During the constraint resolution phase, a specialized
solver searches for such values of the free variables that lead to the satisfaction of the
constraints. If the solver succeeds, then a program corresponding to the valuation of
variables is extracted and returned as a final solution.

Example constraint solving approaches to program synthesis:

o SKETCH synthesis system [174, 176], designed for programming by sketching, in
which the synthesis task was reduced to an instance of the SAT problem.

o Oracle-guided component-based synthesis [87], in which a linear loop-free program
is constructed from several components. Constraint solving by reduction to the
Satisfiability Modulo Theories (SMT) problem (Section 3.2) was used to find, on
the basis of collected input-output examples, a new program and an input that
distinguishes it from the previous program passing the examples.

o Template-based synthesis [183, 184], in which a synthesis task was reduced to an
instance of SMT problem, and the templates (very similar to sketches in [174, 176],
but more flexible) provided additional constraints on the structure of programs.

2.5.3.3 Deductive approaches

Deductive approaches to program synthesis try to construct a correct program purely
by means of transformation of the provided task specification (they “deduce” the correct
program from it). Typically, several rewrite/transformation rules are prepared before-
hand by an expert, and applied depending on the circumstances. A common strategy
is to decompose a synthesis task into several subtasks, and then combine their solutions
(divide-and-conquer). The particular way of decomposing the task is often posed as a
hypothesis, and if a contradiction is reached or there is no possible compatible program
completion, then the algorithm backtracks. Deductive approaches require some degree of
axiomatization of the programming language and data that it operates on, which limits
their practical applications.
Example uses of deductive techniques for program synthesis are:

o Transformation rules for converting a formal specification into a program [127], pos-
sibly assisted with theorem proving techniques [128, 129], especially if loops and
recursion are involved.

o Automatic transformation of mathematical expressions to improve accuracy of float-
ing point operations [149]. In this particular work, inputs are randomly sampled to
detect parts of the expression leading to significant rounding errors, and then a
database of rewrite rules is searched to find rules which, when applied, would reduce
the overall rounding error. The process continues until no further improvement is
found.

o Data-driven domain-specific deduction [161], which employs deduction to reduce a
synthesis task into smaller synthesis subtasks. This is done by using language-specific
rules (provided by a user) for operator inverses, formalized by the authors under the
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name of witness functions [161].

2.5.3.4 Stochastic/statistical techniques

These program synthesis algorithms are based either on stochastic metaheuristic ap-
proaches, or machine learning. In the former case, a program synthesis problem is usually
converted to an optimization problem (typically with the number of passed input-output
examples as an objective measure), and then solved with a heuristic search algorithm.
In the latter case, the algorithm tries to learn a conditional probability distribution of
programs given a specification, and then uses that information to efficiently find a correct
program.
Example uses of these techniques for program synthesis are:

o The stochastic SyGusS solver [10], which uses Metropolis-Hastings algorithm [135, 80]

to sample programs from a grammar.

o Approaches based on genetic programming [103], described in more detail in Sec-
tion 4.2, where a population of programs is stochastically improved in an evolutionary

process.

e Training a machine learning model to learn a conditional probability distribution
that a certain instruction should occur in the solution given a user intent. An
example of such an approach is DEEPCODER [17], which first trains a neural network
to predict instructions based on a (small) set of input-output examples, and then
uses this information to support other search algorithms, such as depth-first search
(DFS), which first traverses the branches associated with instructions with high
probability.

e Approaches based on neural networks, which can be classified into:

— Supporting other search techniques in the form of a machine learning model,
an example of which is the aforementioned DEEPCODER.

— Neural program induction, where a neural network is itself a program (poten-
tially equipped with additional modules, such as memory) that realizes the
desired computation [72, 90, 108, 168|.

— Neural program synthesis, in which a neural network generates an interpretable
symbolic program [117, 151]. One of the interesting applications of this tech-
nique is converting simple hand drawings into graphics programs written in a

subset of IXTEX [62].

2.6 Applications

There are three main categories of applications of program synthesis:
e software development,
e automation of repetitive tasks for end-users,

o discovery of knowledge.
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2.6.1 Software development

In our experience, the first reaction of the people not familiar with the topic of this thesis is
that if our research succeeds, then the software would “write itself”, and thus programmers
would lose their jobs. In reality, however, until we construct machines more intelligent
than us (in which case all people, not just programmers, would be in trouble), it will always
be necessary to describe in detail to the synthesizer what an application is supposed to
do. This is a highly nontrivial task for most real world applications, and it is easier and
cheaper to hire programmers to write the application, rather than carefully consider all
edge cases to express in some formal language what the code is supposed to do. And then
there is also the time it would take the synthesizer to synthesize a program that meets that
specification. For these reasons, virtually all practical applications of program synthesis
in software development aim for a more limited goal of assisting programmers in their job
and synthesizing small code fragments.
Program synthesis can be used in software development in the following ways:

e Generating code fragments or functions correct with respect to the provided speci-
fication [11, 32, 160, 161].

o Filling in the omitted computational details in the general structure of code provided
by a user — the process known as sketching [174, 176]. In this paradigm, a user of
a synthesis system explicitly leaves “holes” in their code (i.e., placeholders for some
yet unknown content), and then provides a specification in the form of input-output
examples, unit tests, or logical formulas, and the synthesis system searches for a
piece of code that, when put into the hole, would meet that specification.

 Fixing bugs in code [67, 102, 193].

o Improvement of an inefficient code [114, 156], including superoptimization [131, 158].
In these problems, synthesizers search for a semantically equivalent program that is
more efficient.

o Generating program inverses [182]. In such a case, the original program itself con-
stitutes the specification.

Another research field similarly focused on automation of programmer’s work is search-
based software engineering (SBSE) [78, 79], which uses various search and optimization
techniques in order to facilitate the development of software. Some of the uses of SBSE
include: finding the minimal number of unit tests covering all program branches, modu-
larization of an existing code base, finding an optimal sequence of refactorings, or project
planning.

2.6.2 Automation of repetitive tasks for end-users

There are many situations in which end-users of computer systems need to do certain
repeatable tasks. Unfortunately, most of end-users cannot program, and thus have no
effective tools for dealing with such problems. One of the solutions is using a program
synthesis system specialized for a particular application, which will be able to generate
a program from a simple specification provided by the end-user. Input-output examples
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are a very intuitive form of specification, in contrast to logical formulas. Programming by
demonstration [49, 115] also seems to be a good choice for end-users without programming
experience, as well as natural language interfaces.

Example applications of program synthesis for automating repetitive tasks and en-
abling programming for end-users of computer systems are:

o Automatic inferring of text processing formulas from input-output examples, for
example the FlashFill system available in the Microsoft Excel spreadsheet soft-
ware [74, 75].

o Automatic generation of structured drawings from a small example of the pat-
tern [42].

o Natural language query interfaces to databases [12, 120, 153].

« Automatic collection of structured data from websites based on demonstration [40].

2.6.3 Discovery of knowledge

Program synthesis can be also used for knowledge discovery, especially in the domains
where phenomena are complex and there are many interdependent variables. Examples
of this application of program synthesis include:

e Symbolic regression, which is the problem of discovering a symbolic formula express-
ing a relationship between variables [173, 190, 191, 192].

o Synthesis of programs for quantum computers [132, 133, 179, 180].

o Discovery of new classical algorithms, for example bitvector algorithms [76, 87],
mutual exclusion algorithms [94, 95, 96, 97|, and potentially even machine learning
algorithms [166].



Chapter 3
Formal verification of programs

In this chapter, we will describe the techniques for proving that a program is correct with
respect to its specification. After explaining the motivation for using formal verification,
we will show how to formally verify correctness of programs using SAT/SMT constraint
solving, an approach we used in several algorithms presented in this thesis. We conclude
with some successful applications of formal verification in real-world scenarios.

3.1 Introduction

During the High-Assurance Cyber-Military Systems (HACMS) program [65], carried out
by DARPA in years 2012-2021, it was demonstrated that attackers can remotely take con-
trol not only of an open source quadcopter, but also of the proprietary Boeing’s Unmanned
Little Bird (ULB) helicopter. This spectacular demonstration was not entirely surprising,
since many cases of insecure computer systems embedded in devices were reported earlier,
such as the possibility of remotely taking control over a car [41], or wireless hacking of
an insulin pump to make it deliver an incorrect dosage of medicine [164]. HACMS pro-
gram, however, went further in that the researchers made a serious attempt at creating
a hacker-proof system by means of formal verification, and the “read team” responsible
for hacking did not manage to compromise the improved versions of quadcopter and heli-
copter, despite having full knowledge of their software and hardware, and taking part in
the development process. This experiment reportedly convinced DARPA that formal ver-
ification is a technology which can be applied to real-world systems and is worth investing
in.

Nowadays, many software systems are so complex that imagining all possible usage
scenarios, especially when a system is concurrent and distributed, is a considerable chal-
lenge for a human mind. This has led in the past to several costly accidents due to faults in
software, such as the Ariane 5 Flight 501 failure caused by a wrong float conversion [118],
or the Pentium FDIV bug caused by a subtle error in the microchip’s implementation of
the SRT division algorithm [60]. Some kind of assurances about program’s reliability are
thus required if we are to trust software that we use, and they come mainly in two forms:
unit tests, and formal verification. Unit tests, which are pieces of code that confront
program’s output or state with the one that should be reached in a given situation, are
considered a standard programming practice. They are usually easy to create and modify
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when the project’s requirements change, as happens in almost every software project in the
industry. On the other hand, they are limited by programmer’s imagination and usually
are far from covering all possible situations, and thus the guarantees they provide are only
partial.

The guarantees provided by formal verification are much stronger, because its goal
is constructing a mathematical proof that a given program has certain properties. This
uncompromising nature of formal verification makes it suitable for creating hacker-proof,
and more generally fault-proof, computer systems. Notably, during this process there is no
need to directly execute a program, and thus formal verification belongs to the family of
techniques called static program analysis (in contrast, unit tests are an example of dynamic
program analysis). Due to improvements in processing power and algorithms (e.g., SAT
solving), this technology became feasible for applications in industry. However, lunches
are seldom free, and formal verification involves a considerable burden of:

o writing a formal specification, a precise high-level model of what software is expected
to do, which is a nontrivial task,

o modeling the programming language so that instructions’ semantics can be used
during deduction process (this step can be automated by existing tools),

« constructing a proof that the piece of software is correct, which may take considerable
time depending on its complexity,

« modifying formal specification as project’s requirements change.

In conclusion, the prevailing opinion is that the costs of formal verification are currently
justifiable only for safety-critical and business-critical systems.

There is a popular science aphorism that “all models are wrong, some are useful”,
and it applies very well to formal verification. In order to prove properties of real-world
computer systems, we need to create their models, and the essence of every model is
abstraction (i.e., simplification by removing unimportant details). This means that all
security guarantees are provided under certain assumptions (“fine print”), and one should
not be lulled into a false sense of total security just because the software was proven
correct. For example, typically hardware is assumed to be without faults, and software
used for the construction of proof is assumed to be without bugs. There is also always
the possibility that the specification itself happens to ignore certain cases of program’s
behavior, since the human element involved in its creation is fallible. Despite all this, if
done well, formal verification allows one to design a system with as high level of security
as is realistically possible.

3.2 SAT/SMT problems

One of the approaches to the task of formal verification is reducing it to some other
algorithmic problem, preferably a one for which efficient solvers already exist. The Sat-
isfiability Modulo Theories (SMT) problem [20, 22, 54], which is a generalization of the
Boolean satisfiability (SAT) problem, is often used for formal verification because it is
relatively simple and yet expressive enough for formal specifications. What is more, since
it is an extension of the SAT problem, it taps into the long line of research on exact and
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Table 3.1: Examples of logical formulas and their models for propositional logic.

Formula Is satisfiable? Model
a yes a = true
—a V b yes a = false, b= true
a AN —a ADb no —

Table 3.2: Examples of logical formulas and their models for first order logic extended with theories
(SMT), where z,y € Z, a € {false,true}, and sy, sy are text strings over the English alphabet.

Formula Is satisfiable? Model
(10-2=20) A a yes xr =2, a=true
Yoy (x4 y)? > 22 + y? no —
str.len(s; ++ s2) = str.len(sy) + str.len(s2) yes sp = "a",sp = "a"

heuristic algorithms for solving that problem.

Definition 3.2.1. Boolean satisfiability (SAT) problem is the problem of determining for
a given propositional formula ¢ if there exists such an interpretation of Boolean variables
that will satisfy ¢ (i.e., values of variables for which ¢ will be true). Example SAT formulas
are presented in Table 3.2.

Definition 3.2.2. Satisfiability modulo theories (SMT) problem is the problem of de-
termining for a given first-order logical formula ¢ containing constants, operators, and
variables of types defined within a set T of theories (because often several theories are
used in conjunction), if there exists such an interpretation of variables that satisfies ¢.
Each theory 7 € T defines a set of available symbols (constants, operators) and their
semantics, and specifies the kind of expressions that can be created with them. Example
SMT formulas are presented in Table 3.2.

There are several software implementations of SMT solvers, the most popular of which
are Z3 [53] and CVC4 [18]. All contemporary SMT solvers accept queries written in
the SMT-LIB language [19, 21]. A good compilation of SAT/SMT queries expressed in
SMT-LIB for solving various problems can be found in [200].

3.3 Formal verification of programs

Formal verification of a program p is the task of proving that the following logical formula
is true:
Vin Pre(in) = Post(in,p(in)), (3.1)

where in is program’s input, Pre is a logical formula called precondition which expresses
the initial conditions imposed on the program input ¢n for which a program is supposed
to work (e.g., in TSP distances between cities are required to be greater than zero), and
Post is a logical formula called postcondition which describes the expected properties of
the program’s output (e.g., for a program that is meant to calculate the maximum of its
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two numerical arguments, returning a bigger of the two numbers). Proving that the above
formula is true is often equivalently approached by changing it to:

Jin, Pre(in) =%~ Post(in,p(in)), (3.2)

where we search for an input ¢n which disproves the formula, and if we are unable to find
it, then program is correct.

The semantics of a program is typically expressed using Hoare logic [84], in which we
can specify for each instruction, or more generally a sequence of instructions, the conditions
satisfied before and after its execution. This can be written as:

{P} C{Q},

where C' is a sequence of instructions, and P and ) are conditions on the values of
program’s variables (program’s states) before and after the execution of C, respectively.
An expression {P} C {Q}, known as the partial correctness specification, is true when a
program C executed in a state satisfying P (precondition) either produces a state satisfying
@, or does not terminate; for the total correctness specification, we need to additionally
enforce that a program always terminates. Hoare additionally provided a set of axioms
for combining sequences of instructions and their conditions, and in this way we can
transform the whole program into a logical formula specifying its behavior. The only
thing that remains is to check if this formula is subsumed by the program’s specification,
and Equation 3.1 is one of the ways to achieve this.

Formal verification in the presence of loops and recurrence is more challenging and
involves either bounded verification for a finite number of loop iterations (and thus gives
incomplete guarantees), or finding loop invariants and using them to prove that a loop
will eventually terminate and what are the possible program’s states when that happens.
In this thesis, however, we do not consider programs with loops and recurrence, and thus
we omit that material.

Example 3.3.1. We will now show how to formally verify a program for solving a non-
negative! variant of the max2 problem, in which it is expected to return a maximum of
two non-negative integers z and y. We will use SMT as the formalism for describing a
program and its specification. We will verify the following program p written in Python:

def max2(x,y):
if x < y:
return x
else:
return y

This program is incorrect, since the greater-than operator should be reversed. The se-
mantics of this program can be represented in SMT (Section 3.2) with theory of integers

! Non-negativity is introduced here only so that the precondition is not empty (true).
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as:

r<y = out=x A
T>Yy = out =y

where out = p(z,y). This actually is an idealized (mathematical) model of p, in which
integers can be of arbitrary size; for real-world applications it would be in general necessary
to represent integers as bit vectors or otherwise safeguard against overflows.

The formal specification of our non-negative max2 problem consists of precondition Pre
and postcondition Post:

Pre(z,y) = >0 A y>0
Post(z,y,out) = out>x A out>y A (out=x V out =1y)

The full verification formula is thus:

doyez 20N y>0 =<y = out=2x A
T>Yy = out=y A
out>x A out >y A (out=x V out =y)

The Z3 SMT solver applied to this program and specification produces a model {x =
0, y = 1, out = 0} illustrating an incorrect run of the program. Once the greater-than
operator is reversed, no model can be found and thus the program is correct. O

3.4 Model checking

While not directly used in our work presented in this thesis, model checking [15, 45, 64]
is another family of formal verification techniques which are worth describing in more
detail. Model checking approaches the problem of formal verification by conducting an
exhaustive search through the graph of program’s state space, where state is defined by
a certain combination of values of the program’s variables. A consequence of this is that
model checking is limited to programs that can assume only a finite number of states. In
the real world practice, however, all programs have finite number of possible states due
to finite memory, so this is not such a severe limitation as it may seem at first. It is
rather the exhaustive nature of search that limits, despite impressive efficiency achieved
by model checking algorithms [36], practical uses of this technique. For the specification of
program’s correct behavior, model checking employs various temporal logics [63] to express
allowed /expected states of the system in time (e.g., it may be verified that a certain state
will be always eventually reached).

3.5 Applications

The successful applications of formal verification include:
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e The mentioned in the introduction HACMS program and creation of a more secure
quadcopter and helicopter, which resisted hacking attempts by a team with full
access to the source code [65].

o CompCert [1, 119], the first formally verified compiler of a big subset of the C
programming language, which provides high guarantees that a compiled code will
behave in accordance with the semantics of the source C program. In their study on
robustness of compilers, Yang et al. [197] managed to discover some bugs in Com-
pCert (the bugs were either in the yet unverified front-end code of the development
version of CompCert, or were due to the missing constraints in the specification; all
bugs were fixed in the later versions), but it was still a small percentage compared
to the number of bugs that was found in other C compilers.

o Amazon [143] uses model checking for verification of high-level abstract models of
their critical systems, i.e., verified is the design rather than the implementation.
For this task, they use the TLA+ specification language [113] and the TLC model
checker [199]. According to the authors [143], using these systems allowed Amazon
to avoid a range of subtle but serious problems in their applications.

o Facebook maintains the Infer [39] static program analysis tool, and uses it to verify
certain properties of its mobile applications. Infer is based on separation logic [170]
(an extension of the Hoare logic that allows reasoning about heap structures and
pointer manipulation), and supports several programming languages, such as Java
and C. It is a support tool for detecting several types of common errors (like null
pointer exceptions, resource leaks, or race conditions) and does not require a formal
specification to be provided by a user.

o sel4 [101] is a fully verified microkernel (a minimal functional core of an operating
system that is the only software that needs to run in a privileged mode) of around
10,000 lines of C. For verification was used Isabelle/HOL framework [145], which is
an interactive theorem prover in which part of the burden of conducting a proof lies
on a user.

o Formal verification was also employed to verify a neural network [98] which was used
in Airborne Collision Avoidance System (ACAS) to reduce the memory usage (neural
network effectively compressed a huge table of parameter values and assigned correct
responses). Various properties of the network were established, mostly of the kind
that for a certain range of parameters the network would never return certain values
(e.g., a “strong” danger message if another plane is on a collision course but is still
far away).

In the future, we can expect even more successful verification projects and more secure
software due to the further improvements in processing units and algorithms. Recently,
Elon Musk demonstrated progress of his startup Neuralink on the design of brain-computer
interfaces [142], and we definitely would like to have at least some level of certainty that
a hacker attack or a sudden bug will not happen on a chip inside one’s head.



Chapter 4
Evolutionary computation for program
synthesis

The purpose of this chapter is to introduce heuristic evolutionary approaches to the syn-
thesis of computer programs. After the introduction of evolutionary algorithms and their
principles of work and applications, we proceed to genetic programming, which is the main
algorithm used in the rest of the thesis.

4.1 Evolutionary algorithms

While it is debated by philosophers whether art imitates life or the other way around, we
can certainly say that science imitates life, at least sometimes'. The two most influen-
tial natural inspirations for artificial intelligence are: brains, in which a huge number of
relatively simple cells connected with each other are able to adapt to the changing envi-
ronment and solve hard problems relevant to the organism’s survival (such as writing this
thesis), and the process of natural evolution [51], which spawned all the diverse life we can
observe, as well as the brains. Given the observed performance of these natural phenom-
ena, it is unsurprising that scientists try to imitate them, although there are also cases
when imitation of nature, especially if done on a superficial level, is taken too far [177].

Evolutionary computation is the area of research that tries to harness the power of
evolution to achieve various goals of practical relevance in, e.g., engineering. Evolution
itself might be compared to diffusion in physics, because it is simply a phenomenon that
statistically happens when some capable of reproduction individuals are preferred over
others (selection pressure), and the reproduction does not always produce perfect copies
of the parents. Evolutionary computation uses this insight to design artificial evolution
scenarios, in which a carefully devised selection pressure leads a population of individuals,
representing solutions to some problem, to their desired optimal form. Although the
natural evolution works in a time scale of millions of years, computers allow to simulate
these simplified evolutionary processes very quickly. An algorithm realizing the process
of artificial evolution is called evolutionary algorithm (EA), and formally it is a heuristic
iterative search algorithm that maintains a working set (population) of candidate solutions
that are stochastically selected and modified according to their quality (fitness).

! Albeit no one would exclaim that all science is quite useless; only some of it.
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4.1.1 Brief history

The field of evolutionary computation originates in the three streams of research that until
1990s were conducted largely independently:

+ evolutionary programming, first described in 1966 by Fogel [66]. It was also his-
torically the first approach. Characteristic features include: pooling together chil-
dren and parents before final selection into a new population, use of relative fitness,
and mutation being the only variation operator. The representation of solutions was
problem-dependent.

» evolutionary strategies, introduced by Rechenberg in 1973 [167]. Evolutionary
strategies were designed for the optimization of real functions of real variables, and
thus individuals are represented as vectors of real numbers. Both crossover and
mutation are used, and the parameters of the latter are stored in the genome and
evolve together with the genes of a solution.

» genetic algorithms, proposed by Holland in 1975 [85]. In this approach, a typical
representation is a sequence of bits, and crossover exchanges bit strings between
parents, while mutation flips each bit with a certain probability.

In the 1990s, the fourth genetic programming (GP) stream appeared, popularized
by John Koza [103], although it is worth mentioning that it was Nichael Cramer [48]
who first used the tree representation and tree variation operators for the evolutionary
synthesis of computer programs. Around the time GP was introduced, several annual and
biannual conferences on evolutionary computation were established, and it was universally
agreed that, given their similarities, all four streams are different subareas of a wider field
of evolutionary computation.

4.1.2 Genetic representation of individuals

In natural evolution, there is the distinction between phenotype, i.e., observable features
of an organism, and genotype, which is the encoded representation of phenotype in the
form of inheritable (by offspring) units called genes. Contrary to some early speculations
by Lamarck [111, 112], based on the idea that organs not being used diminish during
organism’s life and this effect is inherited by its offspring, we now know that the phenotype
is, for the most part, not inherited directly by offspring?. However, adaptive changes in
behavior during lifetime can, by means of natural selection, influence species’ genotype
indirectly in the long run (the so called Baldwin effect [16]).

Since phenotype is created on the basis of information encoded in genotype, it makes
sense to introduce the notion of genotype-phenotype mapping, which determines how indi-
vidual genes influence the phenotype. The correspondence between genes and phenotypic
traits is often not one-to-one: a single phenotypic trait can be affected by multiple genes,
and one gene can affect many phenotypic traits. There is also nothing that prevents many
different genotypes to map onto the same phenotype.

2Some information, however, indeed is inherited by means different than genes, and the research field
of epigenetics studies these processes.
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A representation of solutions in evolutionary algorithms is basically a way of encoding
(genotype) a particular candidate solution (phenotype) to the computational problem of
interest. In order to perform evolutionary search over the search space of all candidate
solutions to the problem, we must first encode them in a form that is accepted by some
variation operators (Section 4.1.9), and define a genotype-phenotype mapping for a fitness
function to grade the quality of solutions (Section 4.1.6). For example, assume that the
task is to find a placement of eight queens on a chessboard such that no two queens check
each other (the Eight-Queens Problem). There are many possible representations for this
problem. For example, positions of queens may be encoded as a set of 8 pairs of integers
representing coordinates on the chessboard. This representation is trivial in the sense that
it can be practically directly decoded to the original phenotype (i.e., the positioning of
queens on the chessboard).

The choice of representation can be essential for the efficiency of search, and some
prior knowledge about the form of a correct solution can also be taken into account. For
example, we could observe that in the Eight-Queens Problem, queens can never occupy
the same row or column, and since there are as many rows and columns as queens to place,
we can evolve only a vector of vertical coordinates of queens (i.e., horizontal coordinates
are fixed and not included in the genotype), instead of their absolute coordinates on the
chessboard, thus reducing the search space.

4.1.3 Population of candidate solutions

A characteristic feature of evolution, both natural and artificial, is that it is a process
which happens for a certain collection of individuals, which we call population. Formally,
the population is a multiset, because in EA we usually allow redundancy. The size of a
population is usually kept constant during the algorithm’s run, but it is a choice motivated
by tradition or simplicity rather than considerations regarding algorithm’s effectiveness.

The benefit of keeping many competing candidate solutions in a population is the
resulting parallel search. For comparison, hill climbing local search algorithms [125] it-
eratively modify a single solution, and sooner or later necessarily end up in some local
optimum. Iterative local search [125], in which a local search algorithm is run multiple
times for different starting points, partially mitigates this problem and may potentially
reach global optimum given enough time. However, the subsequent runs gain no knowledge
from the previous ones, and the redundancy of search increases with time. Evolutionary
algorithms represent a different approach to this problem, because the initial population
is scattered across the whole search space, and, at least in theory, as the time goes the
algorithm accumulates knowledge regarding the good regions of search.

4.1.4 General workflow of evolutionary algorithms

We will employ here a top-down explanation strategy, meaning that we will first present
the general outline of how different modules constituting evolutionary algorithm interact
with each other, and then, in later sections, we will describe them in more detail. To a
significant extent, the modules mirror the mechanisms of natural evolution, so we hope
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Algorithm 4.1: The general scheme of evolutionary algorithms.

1: function EVOLUTIONARYALGORITHM

2 P < InitializePopulation()

3 Evaluate(P)

4 while —TerminationCondition(P) do

5: parents <— Selection(P)

6 children <+ Variation(parents)

7 P + ReplacePopulation(P, parents, children)
8 Evaluate(P)

9

return arg max, p fitness(p)

that after reading this section the reader should have, by means of analogy, the general
idea of what happens in the algorithm.

The general scheme of evolutionary algorithms is presented in Algorithm 4.1. Evolu-
tionary algorithms start with the initialization of the population P (Section 4.1.5), followed
by the evaluation (Section 4.1.6) of quality of the generated solutions. Then, until a termi-
nation condition (Section 4.1.7) is met, in the main loop (also called evolutionary loop) of
evolutionary algorithm we repeatedly select parents for reproduction (Section 4.1.8) and
apply wvariation operators (Section 4.1.9) to create offspring (named children in Algo-
rithm 4.1). Then, the current population is replaced (Section 4.1.10) with the new one,
and before the next generation (i.e., iteration of the main loop) the non-evaluated indi-
viduals in the newly created population are evaluated. If the termination condition is
satisfied at some point, either by finding an optimal solution or exhausting the assumed
computational budget (primarily time), then the evolutionary search is terminated and
the individual with the best fitness in the population is returned.

4.1.5 Population initialization

The first step of every evolutionary algorithm is initialization, i.e., filling the population
with some initial individuals that form the starting points for the search process. During
initialization, individuals are usually generated randomly, and the exact implementation
of this process depends on the selected genetic representation. In situations when it is pos-
sible, using domain-knowledge to seed the initial population with prospective individuals
can have some advantages [61, 173]: preventing waste of computational effort by “rein-
venting the wheel”, and biasing the search to the regions of search space containing good
solutions (at the risk, however, of a decreased diversity of the population and leading to
the search being stuck in a local optimum).

4.1.6 Fitness function

A fitness function is a function that evaluates the quality of a candidate solution. The
value it produces, usually a scalar, is called fitness (or fitness value; in case of a vector,
it would be called fitness vector), and is primarily used for the selection of parents for
reproduction (Section 4.1.8). From the perspective of classical optimization, a fitness
function is equivalent to an objective function which is to be maximized/minimized, i.e.,
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(a) Generation 1. (b) Generation 2. (c) Generation 3.

Figure 4.2: A visualization of an evolutionary algorithm’s run as a population of individuals traversing
the fitness landscape of a problem. On the horizontal axis is presented the search space of genotypes,
and on the vertical axis a corresponding value of fitness.

we search for such a genotype p* that:
p* = arg max, p fitness(p).

As mentioned earlier, a fitness value is assigned to the phenotype, so we need to first
employ genotype-phenotype mapping on the genotype.

By presenting a space of possible genotypes on the horizontal axis (or axes, depending
on the assumed structure of the search space), and fitness values on the vertical axis, we
arrive at the idea of adaptive landscapes (or fitness landscapes). Historically, the first to
apply this technique for studying natural evolution was Sewall Wright in 1932 [196]. Using
this approach, in Figure 4.2 we will illustrate how an evolutionary algorithm navigates the
(genotypic) search space. Initially, in Figure 4.2a points (representing candidate solutions)
are distributed randomly during initialization (Section 4.1.5). In the next generation (Fig-
ure 4.2b), their distribution changes, but since well-performing solutions were prioritized
in the parent selection, their children shift slightly towards local optima. Finally, in Fig-
ure 4.2c, we see that a candidate solution with fitness close to the globally optimal value
was found.

4.1.7 Termination Condition

Evolutionary algorithms are anytime algorithms, meaning that as the time progresses
they generate better and better solutions to the problem, and thus if stopped at any
time, some solution can be returned. As a consequence, the termination condition of
algorithm’s evolutionary loop can be adaptive or external to the algorithm itself. For

example, termination condition can be based on:

o Lack of improvement in a certain time interval (stagnation).
o Exhaustion of wall-clock or processor time.

o Number of evaluated solutions (for a constant population size, it is equivalent to
specifying the number of generations).

Often, some combination of these conditions (and other non-mentioned) is used — in such
cases, triggering even one condition is sufficient to terminate the search.

In some applications, it is possible to determine that the optimal solution was found,
for example in the Eight-Queens Problem mentioned before. In such cases, the optimality
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of individuals in the population is checked in termination condition, and the search is
terminated when such optimal individual is found.

4.1.8 Parent selection

Parent selection algorithm (also called selection algorithm, or just selection) is responsible
for gradual improvement of the population by applying selection pressure to individuals.
There are two contrary objectives that need to be considered:

o exploration, that is examining solutions from many different (and potentially yet
unexplored) locations in the fitness landscape to discover new promising regions of
search space.

o exploitation, that is trying to find better solutions in the already discovered promis-
ing regions of search space.

In order to avoid too strong bias towards exploitation, and thus potentially premature
convergence to some local optimum, a parent selection algorithm needs to allow weaker
solutions to reproduce too. There are many different types of parent selection algorithms,
which vary in how they balance exploitation and exploration. For example, in proportional
selection individuals are selected with the probability equal to the ratio of their fitness to
the sum of fitness of all individuals, and in rank selection the ordinal ranks are used in the
similar way. Nowadays, the most popular selection technique is tournament selection, and
in applications related to program synthesis the lezicase selection [178] gains popularity
due to its effectiveness. We will describe both of these algorithms in more detail.

4.1.8.1 Tournament selection

To select a single parent in tournament selection, we draw randomly (without replacement)
k individuals from the population, and return the best of those k solutions. Note that
this gives a good chance of reproduction to individuals with weaker fitness, and thus
facilitates exploration. The value of k& determines the strength of the selection pressure,
with low values (e.g., ¥ = 2) being much more lenient than larger values (e.g., k = 7).
The appropriate value of k£ needs to be determined experimentally, because there is no
universal method for adjusting it to a particular problem.

4.1.8.2 Lexicase selection

Lexicase selection [178] is a parent selection method, devised originally with modal prob-
lems in mind, i.e., problems for which the behavior of a target function changes significantly
in different regions of the problem’s domain. Lexicase selection is multiobjective by na-
ture [109], and as such requires a fitness vector to work on, and each element of this vector
is treated as a criterion to be optimized. We will call the positions (indexes) of elements
in this vector tests; for example, if we have a fitness vector x = [4, 2, 5] of some solution s,
then the value obtained by s on the first test is 4, on the second 2, etc.

The pseudocode of lexicase selection is presented in Algorithm 4.3. The algorithm
always finishes in the one of two states:

e Only one solution remains (lines 2-3), and it is returned.
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Algorithm 4.3: The general scheme of the lexicase selection algorithm.

1: function LEXICASE(tests, solutions)
2: if |solutions| = 1 then > Only one solution remains
3: return solutions|0] > Return the solution
4: else if tests = () then > All tests were used
5: return solutions[random(0, |solutions|)] > Return a random solution
6: else
7: t = RANDOMTEST(tests) > Select a random test
8: tests = tests \ {¢} > Remove it from tests
9: solutions = arg max g jutions VAL(S,t) > Leave only the best solutions on ¢
10: return LEXICASE(tests, solutions) > Solve the smaller problem

o All tests were used (lines 4-5), and a random remaining solution is returned.

If none of these conditions is met, then a test ¢ is selected randomly (line 7) and is removed
from the remaining set of tests (line 8), and all solutions not having the best value on ¢ are
filtered out (line 9). Finally, the lexicase selection is applied once again to the remaining
tests and solutions (line 10). This algorithm is guaranteed to terminate, since the number
of tests decreases in each iteration.

The name of this method originates from the randomly generated lexicographic order-
ing? of tests that is used in each application of lexicase selection. The tests act as filters
applied sequentially in this order, and only the best performing solutions on the current
test pass through to the next iteration. Sooner or later, only a single solution (or, in some
cases, a subset of solutions) will remain, and it will become a parent. A consequence of
sequential application of random tests is that the solutions performing well on tests that
are hard for the rest of the population are rewarded and selected, even if they produce poor
results on all other tests. Thus, lexicase selection implicitly attempts to create populations
containing the entire pareto-front of solutions on tests.

4.1.9 Variation Operators

In local search optimization algorithms [125], a new solution to visit is selected based on
the explicitly provided neighborhood relation on the search space. In evolutionary algo-
rithms, this role is assumed (implicitly) by variation operators. These operators, as the
name suggests, introduce a change to the selected parents (Section 4.1.8) so that new, and
hopefully better, candidate solutions will be added to the new population. Contrary to
the local search algorithms, after the perturbation is done it is not checked, if the child is
better than the parent, and therefore EAs allow the quality of solutions to “locally dete-
riorate”. This is a deliberate decision, because EA are global optimization methods [125],
i.e., if we run them long enough, they have a chance to eventually find a global optimum
independently of the starting point, and to do that they need a capability to escape the
local optima.
The two standard variation operators, used in most of the works on EA, are:

3In the pseudocode (Algorithm 4.3), a random test is selected in each iteration, but an equivalent
implementation would randomly shuffle tests once at the beginning, and then always select the first test
in line 7.



46 4 Evolutionary computation for program synthesis

[1fof1]1]1]of0]1] [lofolo[1Joli]1]1] [oJoJo[1[1]0]0]1]
¢ >
[1JoJol1]1]ol1]1] [1jof1f1]1]ofo]1] [1jof1]1fof1]1]1]
(a) Mutation. (b) Crossover.

Figure 4.4: The examples of variation operators for a binary representation of solutions.

e Mutation, which takes as an argument one parent individual, and randomly changes
a small fragment of its genotype to produce one offspring. An example of mutation
for a binary representation of solutions is presented in Figure 4.4a.

e Crossover, which takes two parents and exchanges fragments of their genotypes,
resulting in two offspring individuals. Often, only one of them is returned as a
child. An example of crossover for a binary representation of solutions is presented
in Figure 4.4b.

Typically, the variation operators are applied (with certain probability) independently
of each other, meaning that, e.g., after crossover a solution can be additionally mutated.

4.1.10 Population replacement

Population replacement (also called survivor selection) [61] is a method of creating a new
population on the basis of the current population, the parents, and the created offspring.
We can distinguish the following main approaches:

Generational EA The current population is discarded, and all created offspring consti-
tute the new population.

Steady-state EA [194] Ouly one offspring is generated per generation, and from the
current population is removed the weakest or random solution so that the population
size remains constant.

Many other replacement methods are possible, which mainly vary in the proportions of
parents and offspring; for example, in the (u + \) variant of evolutionary strategies the
new population consists of u parents selected from the current population, and A offspring
created from them.

4.1.11 Applications

Evolutionary algorithms find numerous applications in many different fields, for example?:

o Engineering: design of vibration-resistant antenna boom for spacecraft [99], design
of lens systems [24, 187], design of electronic circuits [123].

o Program synthesis/machine learning: evolving wavelet for better image compres-
sion [71], ellipse detection that is more robust than conventional methods [198].

4Applications of genetic programming are excluded from this list, because we dedicate the entire Sec-
tion 4.2 to that paradigm.
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o Construction of phylogenetic trees [46, 47].
» Timetabling [38, 148].

o Various aspects of game design: intelligence of opponents [137, 162, 186], level de-
sign [28], or even entire game design [35].

o Designing robots (evolutionary robotics) [33, 57, 121].

o Training weights and designing architectures of neural networks (neuroevolution) [52,
68, 185].

 Heuristic selection/generation (hyperheuristics) [23, 37, 59].

The above list is far from being comprehensive. From the perspective of heuristic algo-
rithms, there is nothing inherently special about evolutionary algorithms, and many other
(meta)heuristics could be used in their place for the same problems. However, the broad
range of successful applications demonstrates that evolutionary algorithms are an effective
metaheuristic for many practical problems. And notably, the solutions found by evolu-
tionary algorithms are often innovative and more effective than those devised by human

experts.

4.2 Genetic Programming

Genetic programming (GP) was introduced as an evolutionary method of inductive syn-
thesis of programs [103]. It works by rephrasing the program synthesis problem as an
optimization task, in which an unknown target program has the optimal value (e.g., the
smallest numerical error on some collection of examples, or the highest number of passed
test cases or unit tests). Typically, solutions have variable-length representation, which
is natural for computer programs and mathematical expressions, which can vary vastly
in their complexity. Sometimes, the variable-length representation is achieved indirectly
by means of nop instructions (which does nothing) or similar tactics®, and a fixed-length
representation — this approach is the most common in linear GP [34].

In the following sections, we will describe the typical tree representation used in GP
(Section 4.2.1), and then initialization (Section 4.2.2) and variation (Section 4.2.3) opera-
tors that are compatible with it. After that, we will present the standard way of calculating
fitness value (Section 4.2.4), and finally the practical applications (Section 4.2.5).

4.2.1 Representation of solutions
There are several ways in which programs can be represented in GP:

o expression trees [48, 103],
 nested lists of instructions (Push [2, 181]),

o graphs, i.e., expressions in which subexpressions can be reused multiple times ( Carte-
sian GP [138]),

5For example, the lines of code that save some to a regsiter, and that value is never again used.
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o variable-length vectors of integers specifying the productions of some formal gram-
mar to use (grammatical evolution [146]).

In this thesis, we use only the expression trees, and thus we will describe in more detail
only that approach, and for the descriptions of other representations we refer an interested
reader to the cited publications and other sources [159].

To facilitate programming, high-level abstractions known as programming languages
were devised. In these languages, basic building blocks of programs can be manipulated
without worrying about low-level details of a processor or memory management, because
the dedicated compiler of the language will automatically translate the high-level source
code to the machine code. Usually, the source code of high-level programming languages
is not processed by a compiler directly, but an intermediary form called abstract syntaz
tree (AST) is used. ASTs are “abstract” in the sense that redundant elements, which
can be inferred from the tree (e.g., parentheses), are omitted and not directly represented
as nodes. In this form, the logical relation between, e.g., function and its arguments, is
directly represented. Many works in GP use this type of representation, because it makes
it easy to apply variation operators and the search space is reduced by not including the
redundant elements of the language. The examples of tree program representation for
arithmetical expressions can be seen in Figure 4.5 and 4.6.

This leads us to the description of how a typical expression tree in GP is built. The
basic unit of a solution’s representation in GP is an instruction. An instruction is basically
a function, although in some applications side effects in an environment are involved (e.g.,
changes in memory, or some actions of a simulated agent). Instructions can be divided
into:

o Terminals, which do not need any arguments to produce a value (usually they are
constants and program’s inputs).

o Nonterminals, which accept a certain number of arguments (depending on the
arity of a particular instruction) and then produce a value.

In the tree on the left in Figure 4.5, + and X are nonterminals, and Y, X, and 1 are
terminals. To execute a program represented by a tree, we move bottom-up, from leaves
to the root. Whenever we are at a nonterminal node, we substitute it for the result
produced by the node’s function supplied with the leaves as arguments. This process
continues until only a single constant is present in the root.

Loops and recurrence, the fundamental flow control elements in programming, can
be realized in this representation too. However, in this thesis we limit ourselves to the
non-recursive programs without loops, so we omit the discussion of this topic.

In the strongly-typed GP [139], each instruction has an associated output type and the
types of its arguments. This is motivated by different kinds of data that instructions may
require; for example, the if-then-else instruction expects a Boolean value for the condi-
tion, while the branches may return any other value (but in vast majority of cases, both
branches should return values of the same type). Strongly-typed GP imposes additional
constraints on which programs are valid, and enforces them by modifying initialization
and variation operators so that an invalid program cannot be produced. We will describe
the modifications to these operators in the relevant sections.
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Figure 4.5: An example of mutation variation operator on tree representation. Grayed out node on
the left was a root from which was generated a new branch, color in gray on the right.

—

Figure 4.6: An example of the crossover variation operator on tree representation. The subtrees
marked in gray are exchanged between the individuals. Depending on the implementation, either one
offspring is returned, or both.

4.2.2 Population initialization

Koza [103] proposed two basic initialization algorithms for the tree program representation,
which are still widely used to this day. Both have one parameter h,q;, which defines a
maximum height of the trees to be generated. The algorithms are:

e Full, which produces a tree with all leaves located at exactly the same depth h,qz.
To achieve this, any node at depth h < hjq. is selected randomly from a set of
nonterminals, and all nodes on depth h,,q; are selected from the set of terminals.
An example of a tree that could result from the application of this algorithm is
presented in Figure 4.5 on the right.

e Grow, which constructs the tree recursively top-down selecting instructions ran-
domly from the combined set of terminals and nonterminals, with the exception of
the situation when node is at depth hj,4z, in which case it selects an instruction only
from the set of terminals. Any valid tree (up to depth h,4.) can be produced by
this method, including the tree on the left in Figure 4.5, which cannot be produced
by Full.

In order to improve diversification of the initial population, a combination of these
methods was introduced by Koza under the name ramped half-and-half [103, p. 93].
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In this method, a range of depths is used (in the experiments in his book, Koza used
the range of [2,6]), and the same number of solutions is created for each depth (so, for
the range used by Koza, 20% of solutions would be generated with hp,e, = 2, 20% with
hmaz = 3, etc.). Then, for each depth, 50% of solutions are initialized using Grow, and
another 50% using Full.

To adapt the initialization to the requirements of strongly-typed GP, when we are
selecting a new node, we limit ourselves to only these instructions that return a value of
the type required by the parent node. The return type of the root node is determined
by the type that should be returned by entire program. During construction of a tree
it may happen that a certain branch cannot be finished at depth huq, (e.g., if there are
no terminals of some type) — in such cases the whole tree is usually discarded and then
generated once again from the root.

4.2.3 Variation operators

In this section, we describe the most commonly used variation operators for the tree
representation of programs (Section 4.2.1). Contrary to EA, in GP parents are typically
either mutated or recombined with certain predefined probabilities, but these operations
are never applied one after another on the same individual.

4.2.3.1 Subtree mutation

Subtree mutation [103, 159], which is the most often used mutation algorithm in GP,
randomly selects a node in the parent tree, and then replaces (in the parent’s copy)
a subtree rooted there with a new randomly generated subtree (usually by the Grow
procedure from Section 4.2.2). This process is illustrated in Figure 4.5.

Choosing nodes randomly with a uniform probability distribution leads to the unde-
sirable growth of programs (bloat). To illustrate this, we can imagine a full binary tree
of height h — in such a case, the number of internal nodes is 2" — 1, and the number of
leaves is 2. This means that with the probability of approximately 1/2; the node selected
for mutation will be a leaf, and a new subtree will be added there, increasing the depth of
the whole tree. In order to avoid this, a more elaborate node sampling strategy is often
used (e.g., 90% for selecting internal nodes, and 10% for selecting leaves).

In strongly-typed GP, the same mutation procedure can be used, as long as a strongly-
typed version of Grow (Section 4.2.2) is used to generate a new subtree.

4.2.3.2 Subtree Crossover

The most commonly used crossover operator in GP is subtree crossover [103, 159]. After
two parents are provided as arguments, a node (called crossover point) is selected inde-
pendently at random in both of them. Then, the subtree rooted at one parent’s crossover
point (with the crossover point included) replaces the subtree rooted at the second parent’s
crossover point, and vice versa. This process is visualized in Figure 4.6. The replacement
is done on the copies of the parents, so that the original parents remain untouched ready
to potentially produce more offspring. Although creating two offspring is very natural in
this approach, according to Poli [159, p. 15] it is common to discard the second offspring
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and return only one; however, both offspring are returned in the original description of
subtree crossover by Koza [103, p. 101].

Choosing crossover points randomly with a uniform probability distribution leads to
the undesirable effect of a very high probability of exchanging the leaves. To increase the
impact of crossover on search, a similar node sampling strategy as for mutation is often
used (i.e., 90% for internal nodes, 10% for leaves).

In strongly-typed GP, after selecting a crossover point in the first parent, the crossover
point in the second parent is selected randomly from only those nodes that have the same
return type. If no such node exists, then the crossover is aborted and the parent selection
method is invoked again.

4.2.4 Fitness

The evaluation of programs in GP is typically conducted on the basis of interactions
of programs with a set of test cases (also called tests for short). In most scenarios, a
test case is a tuple (in,out), where in is the vector of program’s inputs, and out is the
target output that we want the program to produce. In some scenarios, e.g., evolution
of game strategies, it is common for programs to compete against each other, and such
interactions can be also counted as a test. The outputs of a program for all test cases can
be collected in a single vector, which we will call fitness vector (often, this vector contains
errors rather than raw program’s outputs, or binary values indicating if a test was passed
or not). This vector is then either directly used during parent selection (e.g., in lexicase
selection; Section 4.1.8.2), or some aggregation of its elements is used, such as a sum or
mean squared error (e.g., in tournament selection; Section 4.1.8.1).

4.2.5 Applications

In this section, we describe some interesting successful applications of GP. The works pre-
sented here are a selection of GP systems which were awarded or nominated at the annual
Humies [5] competition held at the Genetic and Evolutionary Computation Conference
(GECCO). For a more comprehensive review of applications of GP, we refer an interested
reader to [159].

Probably the most recognized achievement of GP is that of Lohn et al. [124], who
evolved an antenna for NASA’s Space Technology 5 mission (sending into space microsatel-
lites to measure the effect of solar activity on the Earth’s magnetosphere). The antenna
generated by GP met the mission requirements, while the antenna designed by a team
of human experts did not. After the first prototype of the antenna was prepared and
evaluated, the objectives of the mission changed. Impressively enough, in a month, the
authors managed to evolve a new antenna, which was adapted to the new requirements
and once again outperformed the one created by human experts. This is also an example
of GP not used to evolve programs, but rather tree-like physical structures, since the nodes
were representing rotations and branching of fragments of wire. The antennas produced
by GP were highly irregular and asymmetrical, proving that evolutionary approaches can
discover solutions unbiased by human’s aesthetics or preconceived notions.
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In the domain of software engineering, Weimer et al. [67, 193] used GP to automati-
cally repair existing software artifacts written in the C programming language. Examples
of the software being repaired are: Flex lexical analyzer [3], Null httpd web server [6], and
operating system of the Microsoft’s Zune media player [8]. The programs were represented
as AST trees, and thus required compilation for each fitness evaluation, which was con-
ducted on a set of unit tests, covering both the basic functionality (to avoid regression),
and the situations for which the original program behaved incorrectly. The patches gener-
ated by GP were checked by both automatic fuzzers (stochastic generators of inputs which
attempt to discover faults in the application’s behavior), and manual code inspection, and
no issues were detected.

Schmidt et al. [173] applied GP to the automatic discovery of physical laws based on
measurements obtained from experiments. Starting with no prior knowledge, their GP
system (re)discovered Lagrangians, Hamiltonians, and other laws of geometric invariance
and momentum conservation. They have also observed that by seeding the initial pop-
ulation with terms of solutions for simpler, but still similar, problems (e.g., oscillations
of a single pendulum, and a double pendulum), the effectiveness of search was greatly
improved.

Spector et al. [179, 180] were the first to demonstrate that GP can be used for the syn-
thesis of programs for quantum computers. Such computers operate very differently than
the classical ones, and the design of quantum algorithms is hard for humans. Spector’s
GP system managed to automatically discover several known quantum algorithms for,
e.g., the depth-two AND/OR tree problem, and the Deutsch-Jozsa problem. This line of
research was continued by Massey et al. [132, 133], who managed to synthesize the quan-
tum Fourier transform algorithm. While no fundamentally new quantum algorithm was
discovered in these works, they demonstrate the theoretical possibility of such endeavors.

Recently, Real et al. [166] introduced the AutoML-Zero system, in which they used
linear GP [34] to evolve from scratch, using only common mathematical operations (on
scalars, vectors, and matrices; derivatives were not included), machine learning models for
a set of classification tasks. Three components of machine learning algorithms were evolved
in parallel: initialization, prediction, and learning step. As the evolution proceeded, many
classical results were rediscovered, for example: linear models, simple neural networks
trained by backpropagation, ReLLU, and gradient normalization. What is interesting, the
generated machine learning algorithms adapted to the characteristics of a particular task,
for example, dropout-like techniques and noisy ReLU activation function were invented
when the training data was scarce, and the exponential learning rate decay was invented
when the training time (the number of epochs of training) was reduced.



Chapter 5

Evolutionary Program Sketching

Program synthesis by sketching [174, 176] is a paradigm in which a human expert provides
a sketch of the solution (i.e., a partial program), the missing parts of which are then filled by
a synthesis system. We present our approach to sketching, in which it is the evolutionary
algorithm that performs the role of sketch-provider, and SMT solver is used to fill the
missing parts with short provably optimal code fragments.

This chapter is based on the material published previously in [30], which was created
in collaboration with Krzysztof Krawiec.

5.1 Introduction

In Chapter 2, we presented program synthesis primarily as a search problem, in which the
objective is to find a program satisfying the correctness predicate (Definition 2.3.1). In this
chapter, we will reformulate program synthesis as an optimization problem, which is also
the typical mode of operation for genetic programming (GP; Section 4.2). More precisely,
given a set of input-output examples (tests) T" and a set of programs L (a programming
language), we want to find a program p € £ that satisfies the maximum number of tests:

max|(z,y) €T+ px) =yl (5.1)
Program synthesis by sketching [174, 176], briefly described in Section 2.6.1, eases the
burden on the synthesis system by allowing users to specify a sketch of the solution, i.e., a
partial program with holes. Instead of generating the whole program p from scratch, the
goal of the synthesis system is to fill the holes in the provided sketch p with code fragments
adhering to the programming language £ in such a way that a specification is satisfied,
or, in the optimization variant of program synthesis that we consider in this chapter, the
maximum number of tests is passed:

ml?x](:c,y) eT: pp(z) =1y, (5.2)

where b is an ordered list (of length equal to the number of holes in p) containing fragments
of code, and py, is a complete program created as a result of filling the holes in p with
the corresponding code fragments in b. Depending on the synthesizer’s capabilities, the
complexity of the elements of b may vary from just a constant or variable to a block of
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Population of programs

Mutation or Selection . % .
Crossover .
] |
]
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GDE [ ]

Fitness and substitution H « b

SMT synthesis

Figure 5.1: The diagram of EPS. H represents a hole, and b the content assigned to holes by the
SMT synthesis module. The EPS-L and EPS-B variants of EPS are described in Section 5.2.1.

code. It is also worth noting that sketching can be easily applied to a mixed specification
consisting of both tests and logical constraints.

While sketches make it easier to find the correct/optimal program by reducing the
search space, they require additional work and knowledge from the user. The sketch pro-
posed by the user can be suboptimal, or in the worst scenario even infeasible, meaning that
it cannot be completed so as to satisfy the specification. To address these issues, we pro-
pose Evolutionary Program Sketching (EPS), in which genetic programming is responsible
for generating sketches, and the user needs only to provide the tests.

5.2 Evolutionary Program Sketching

EPS consists of two main modules:

e GP search, responsible for finding good sketches.
¢ SMT synthesis, responsible for finding the content to fill the holes in sketches.

Both GP and SMT can be used to solve program synthesis problems on their own, but
they have different strengths. SMT synthesis exhaustively searches the space of all possible
programs while trying to prune that space as much as possible using logical deduction,
which allows it to, e.g., accurately compute required values for constants, but at the cost
of long runtime. GP, on the other hand, heuristically finds “good enough” solutions in
reasonable time, but is not good at tweaking fine details, such as the aforementioned
constants. By combining these two methods, we hope to achieve the best of both worlds.

Figure 5.1 presents the general principles of operation of EPS. GP maintains a pop-
ulation of candidate solutions, either sketches or complete programs, which we repre-
sent as trees. All program instructions, variables, and constants have an associated type
(strongly-typed GP; Section 4.2.1). This also holds for holes, which are represented in
EPS as terminal instructions of the same type as the output of the expressions they stand
for. Whether holes are present in a program or not depends purely on chance, since they
are treated by variation operators (initialization, mutation, crossover) as any other lexical
element of the programming language £. Holes are used only during evolutionary search,
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and the final returned solution has always all holes filled.

A new population is created from the old one in the way typical for GP (Section 4.2),
i.e., solutions are stochastically selected based on their fitness and recombined with each
other (crossover), or simply a part of a program is randomly changed (mutation). After a
new candidate solution p is created, EPS needs to compute its fitness, and this is where
the SMT synthesis takes the stage. If there are no holes in p, then its fitness is simply the
number of passed test cases, according to Equation 5.1. If there are holes, however, SMT
solver searches for a list b of code fragments such that when they replace the holes, then
the pp’s number of passed test cases would be the highest possible. In a single program
there can be several holes (no upper limit on their number is set), and interactions between
them can potentially exert big influence on the program’s semantics. Thus, to assure that
the program will have the best fitness possible, SMT solver needs to solve for all holes
at once. To make this problem computationally more tractable, we assume that elements
of b can be only constants and variables. We describe the details of the process of hole
completion in Section 5.2.2.

5.2.1 EPS as an example of memetic algorithm

EPS falls into the wider category of memetic algorithms [140]. In memetic algorithms, an
evolutionary algorithm is combined with some other heuristic, usually local search, which
is responsible for the fine-tuning of candidate solutions. Effectively, evolutionary algorithm
navigates the global landscape of the search space, while the local search finds the nearest
local optima. In EPS, the role of the fine-tuning algorithm, this time non-heuristic, is
taken by the SMT solver, and more precisely the optimization module [26] embedded in
the Z3 SMT solver [53]. The consequence is that we have the guarantee that the best
content for holes will be found.

There are two main types of memetic algorithms [104], which differ in how they handle
the information obtained by the supporting heuristic:

e Lamarckian memetic algorithms, which replace the current candidate solution
in the population with the one obtained by the supporting heuristic.

o« Baldwinian memetic algorithms, where the current candidate solution is kept
without changes, but its fitness is the same as that of the solution found by the
supporting heuristic.

Similarly, we distinguish two variants of EPS depending on how they handle the hole
completion list b and fitness fi, of pp, obtained from the SMT solver:

o EPS-L (“Lamarckian” EPS), in which a newly created candidate solution (sketch)
p is replaced by pp, in the new population, i.e., the pair (pp, fp) is returned. It is,
however, possible that the solver will not manage to find a solution in the assorted
time budget (1.5 s), and in such a case EPS-L would return the pair (p,0).

« EPS-B (“Baldwinian” EPS), in which a new candidate solution p remains unchanged
in the population, but has assigned the same fitness as py, i.e., the pair (p, fp,) is
returned.
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Table 5.2: The terminals, including different types of holes, available to variation operators in the
configurations of EPS/GP considered in this thesis.

Configuration Terminals Possible hole completion

Constants Input variables Constants Input variables

GP v v

EPS. v v v

EPS, v v v
EPS., v v v v

5.2.2 Filling holes in sketches

In order to find the optimal completion of holes in a sketch produced by GP, EPS creates
a query to the SMT solver, which we present and describe in detail in Appendix A.7.
This requires encoding the space of all possible hole completions in the form of a formal
grammar, defining a formula for computing the number of passed tests (fitness), and then
finding the completion of holes that leads to the best fitness. Optimization is beyond
the original formulation of SMT satisfiability problem, and thus SMT solvers cannot be
expected to handle it. However, in this case, a bisection algorithm may be used, because we
have a discrete and bounded set of possible fitness values. By halving intervals and adding
appropriate constraints, it is possible to determine the largest fitness value for which the
synthesis formula is still satisfied, using only log, |T'| solver queries. Alternatively, there
are solvers with a built-in capability for optimization, like Z3 [26]. Our implementation is
based on the latter, because it proved to be more efficient. In our experiments, the solver
has a computational budget of 1.5 s, after which we assume that the problem was too hard
and assign the worst possible fitness of 0 to the solution.

5.3 Experiment

The goal of the computational experiment is to investigate the effectiveness of EPS and
to compare it with GP baselines.

5.3.1 Configurations

As mentioned in Section 5.2.1, we consider two basic variants of EPS varying in how they
handle holes: EPS-L, and EPS-B. Additionally, we want to investigate the impact of
the type of expressions allowed to replace holes on the effectiveness of search, and thus we
consider the following types of holes:

e ¢ — “constant holes”, which can be replaced by any integer constant. This leads to
the EPS-L. and EPS-B,. configurations.

e v — “variable holes”, which can be replaced by any input variable of the program.
We consider this type of hole only for the benchmarks with more than one input
variable. This leads to the EPS-L, and EPS-B,, configurations.
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Table 5.3: The shared parameters of the evolutionary algorithm.

Parameter Value
Population size 250
Maximum height of initial programs 4
Maximum height of subprograms inserted by mutation 4
Constant terminals drawn from interval [0, 5]
Maximum number of generations 100
Probability of mutation 0.5
Probability of crossover 0.5
Tournament size 7

Figure 5.4: The NIA grammar defining the set of considered programs. c stands for an ephemeral
integer constant, v; for the ith input variable, and h; for the jth type of hole (in our experiments, there
is always only one type of hole). ite stands for if-then-else, the conventional conditional statement.

I::=I+I1|I-1I|Ix*xI]|I/1I]| ite(B,I,I) | c
| vi [ v2 | oo | v
| hi | ha | ooo | Iy
B::=I<I|I<=I1|I=I|B=B|I>=1] ]1I>1I

e cv — “constant/variable holes”, which can be replaced either by an integer constant,
or an input variable. This leads to the EPS-L., and EPS-B., configurations.

The terminals present in each of these configurations are summarized in Table 5.2.
To determine if the evolutionary sketching supported by SMT solver is indeed better
than pure evolution, we also consider the following GP baselines:

e GP — the GP algorithm configured in the same way as EPS, but with the holes
excluded from the grammar in Figure 5.4.

e GPr — the same as the GP configuration, but with a different runtime-based termi-
nation condition instead of the maximum number of generations. G Pr terminates
either when a perfect solution is found, or when the average runtime of all EPS
configurations on a given benchmark is reached (which implies that the EPS runs
have to be conducted first). This configuration was motivated by the high runtime
overhead generated by the SMT solver.

e G Pspgp — the same as the GP configuration, but with a much bigger population size
of 5000.

In Table 5.3 we present the shared parameters of GP, which were used for all introduced
configurations. Tournament selection with k = 7 was used, as well as the standard subtree
crossover and subtree mutation (Section 4.2.3). Evolutionary search terminates when a
perfect solution is found, or a budget of 100 generations is exhausted.

Our implementation of all EPS and GP variants is accessible at https://github.com/
iwob/EPS, and for communication with the Z3 SMT solver we use our own Python library
accessible at https://github.com /iwob/pysv.
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Table 5.5: The program synthesis benchmarks on which we test EPS.

Benchmark — Arity Formula Tests (T') T
Keijzerl2 2 v — 2} +23/2 — 29 x1,x9 € {-3,...,0,...,3} 49
777777777777777777 N B
Kozal PN €{-5,—-4,...,0,...,4,5} 11
Kezalwp S c2Aberddeod .
Kozal-2D 1+ a3 + a3

oz PR w9 € {=3,...,0,...,3} 49
Kozal-p-2D 3r] — 2x5 + 627 + 312 — 4

5.3.2 Benchmarks

We test EPS on a suite of five integer polynomial benchmarks presented in Table 5.5, of
which Keijzerl2 and Kozal are integer versions of the benchmarks from [134], and Kozal-p,
Kozal-2D, and Kozal-p-2D are our variations on the Kozal benchmark. All benchmarks
adhere to the NIA (nonlinear integer arithmetic) logic in SMT. In Figure 5.4 we present
the programming language £ (hole terminals presented there are used only in EPS con-
figurations).

5.3.3 Discussion of the results

In Tables 5.6, 5.7, and 5.8 we present the results of the computational experiment in
terms of the number of optimal solutions found (success rate), average fitness, and average
runtime, respectively. Figure 5.9 contains more detailed statistics of the distribution of the
fitness of the best-of-run programs on individual benchmarks. Based on this information,
we reach the following conclusions:

e Overall, the EPS-B configurations perform better than or at least as good as the
corresponding EPS-L configurations in terms of both success rate (Table 5.6), and
the average end-of-run fitness (Table 5.7). This holds for 11 out of 13 pairs of
corresponding EPS-B and EPS-L configurations. This is not surprising, given the
conditions of the experiment (the same number of generations), since EPS-B is
vastly more flexible because of the holes not being replaced in fitness evaluation.
Unfortunately, Table 5.8 shows that this happens at the cost of an order of magnitude
longer runtime.

o As for the comparison between different types of holes, for the Lamarckian variants
(EPS-L) the best results were obtained by the EPS-L,, configuration, but its superi-
ority over EPS-L. is only slight. Of note is that EPS-L, never achieved success, and
the average fitness was also the poorest among the methods. As for the Baldwinian
variants (EPS-B), the best results were obtained by the EPS-B,. configuration, espe-
cially for the benchmarks with the arity of two, for which it outclasses the EPS-B,,
variant that allows more flexible filling of holes. Similarly as before, the EPS-B,
variant is definitely inferior, although it managed to see some successes.

e The EPS. and EPS,, variants outperformed the GP baseline on all benchmarks.
The G Pr and G Psgg baselines, however, proved to be more challenging, and only the
best of the EPS configurations, i.e., EPS-B. and EPS-B,,, achieved better results.
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Table 5.6: The success rates. An empty cell means that the success rate was zero.

GP EPS
GP GPT GP5000 Lc Lv ch Bc Bv Bcv
Keijzerl2 0.05 0.01 0.39 0.01
Kozal 0.19 0.68 0.96 0.33 - 0.32 1.00 - 1.00
Kozal-p 0.05 - 0.03 1.00 - 1.00
Kozal-2D 0.01 0.12 0.20 0.02 0.11 0.80 0.21 0.23
Kozal-p-2D 0.01 0.75

Table 5.7: The average end-of-run fitness.

GP EPS
GP GPT GPS()O() Lc Lv ch Bc Bv Bcv

Keijzerl2 15.85 23.02 25.06 23.92 18.05 27.77 39.05 20.45 17.47
Kozal 5.89  9.74  10.87 9.93 - 9.83 11.00 - 11.00
Kozal-p 2.9 445 3.98 9.05 - 8.78 11.00 - 11.00
Kozal-2D 16.54 29.73 33.18 23.39 19.47 31.29 45.42 27.36 23.70
Kozal-p-2D 9.29 17.18 14.60 22.60 10.66 29.47 46.23 12.56 15.41

Table 5.8: The average runtime in seconds.

GP EPS
GP GPT GPSOOO Lc Lv ch Bc Bv Bc’u
Keijzerl2 '14.8 11330.7 493.0 772.3 488.0 1578.6 15439.8 21172.6 28354.0
Kozal 4.8 291.0 46.3 699.8 - 801.4  652.0 - 695.8
Kozal-p 4.5 962.9 344.0 892.3 - 971.6  978.2 - 982.0

Kozal-2D 16.0 7635.8 431.9 793.1 478.7 1790.6 9076.9 16280.5 23033.8
Kozal-p-2D 15.4 9206.1 515.9 750.4 511.3 1725.7 11986.4 12390.8 27875.4

It seems that the adaptability of holes is the best that EPS can offer, and the
“premature” loss of that adaptability, which happens in the EPS-L variants, makes
this approach not competitive, given the SMT solver’s runtime overhead.

Concerning the average runtime, unsurprisingly the Baldwinian configurations are,
by a huge margin, more time consuming (except for the simpler Kozal and Kozal-p
benchmarks) than the corresponding Lamarckian variants — after all, they contain
more holes, since they accumulate them during a run as the holes are introduced
by the variation operators. It is also interesting that the Lamarckian configurations
generally achieve the end-of-run fitness (and, to a lesser extent, success rate) that is
comparable to G Py, which was granted much larger time budgets. This, however,
may be a result of bloat, which could have lessened the effectiveness of GP.

5.4 Conclusions

In this chapter, we described EPS, a novel approach to program synthesis by sketching, in
which a user provides only a set of tests, and the sketches are generated automatically by
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Figure 5.9: The box-and-whiskers plots of the fitness (number of passed tests) of the final solutions
across all configurations and benchmarks. Boxes mark lower and upper quartiles, red line — median,
red square — mean, whiskers — 1.5 of inter-quartile range below/above the corresponding quartile, and
crosses — the outliers. Since the Kozal and Kozal-p benchmarks are univariate, the EPS-L,, and EPS-B,,
configurations were not tested to them.
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GP. We demonstrated that the Baldwinian variants of this approach with holes that can
be filled by constants (i.e., EPS-B. and EPS-B, ), outperform all baseline GP approaches,
which try to find the optimal program by evolutionary search only. In EPS, the SMT solver
performs logical deduction to reach the completion of holes leading to optimal fitness value,
which can be posed as acquiring knowledge, both in the form of code fragments and fitness
of the completed program. This knowledge is then subsequently used by GP during search
to improve its effectiveness. Importantly, this technique allows to solve one of the known
challenges for GP, which is finding the right values of constants — EPS equipped with an
appropriate type of hole can find the required constant easily.

Admittedly, the experimental study was small, and is thus too limited to address
the question if this approach would scale for more tests and more input variables. We
consider this work to be a proof of concept rather than a mature approach, in contrast to
the Counterexample-Driven Genetic Programming (CDGP) presented in the next chapter.
Still, we decided to describe EPS, since it builds upon one of the more influential ideas in
the field of program synthesis, i.e., program sketching [176].






Chapter 6
Counterexample-Driven Genetic
Programming

In this chapter, we introduce Counterexample-Driven Genetic Programming (CDGP),
a heuristic algorithm based on genetic programming for synthesis of provably correct
programs from formal specifications. Formal specifications do not lend themselves easily
to guiding evolutionary search, since the feedback they provide is binary: a program either
passes the specification or not. To mitigate this problem, we use a deductive reasoning
solver to verify solutions and find inputs for which programs behave incorrectly, and then
these inputs are used to create additional test cases. The set of test cases grows with time,
providing more fine-grained feedback as the search continues.

This chapter is based on the material published previously in [32, 106, 107], which was
created in collaboration with Krzysztof Krawiec and substantial support from Jerry Swan.
Special thanks go to John Drake for the help in presenting this work at the International
Joint Conferences on Artificial Intelligence (IJCAI'18).

6.1 Introduction

Genetic programming (GP), as introduced in Section 4.2, is an evolutionary approach used
for inductive program synthesis from a set of examples. Specifying a task with a set of
examples is not only convenient for humans, but it also facilitates the creation of measures
of candidate programs’ quality. And while it is common knowledge that “testing shows the
presence, not the absence of bugs” [56], unit tests are prevalent in software engineering,
since they are a good compromise between the guarantees of correctness they offer on
the one hand, and the effort of creation and maintenance on the other. In the domain
of program synthesis from examples, where de facto unit tests (in the form of examples)
are the only explicit criteria of correctness, this entails an inherent inductive aspect of the
problem and the need for generalization to avoid overfitting.

There is, however, a group of applications where even the smallest fault is unacceptable,
with safety-critical systems being the most prominent example. The main characteristic
of safety-critical systems is that the cost of any failure, no matter how small, can be
potentially very high. The situation is even worse if there is an adversarial party interested
in the failure of said system and willing to actively search for errors. Examples of safety-
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critical systems include medical equipment, expensive engineering projects, or integrated
circuits. Another area of applications where faults are associated with a very high cost is
mathematical modeling. For example, when scientists are searching for a mathematical
model with certain properties based on few observations of some phenomenon, then any
error in meeting those properties may render the model useless from the perspective of
science, and potentially dangerous when subsequently applied in practice.

Formal specifications (also sometimes called contracts in the context of software en-
gineering or programming languages [136]), described earlier in Section 2.5.1, are one of
the solutions to the problem of generalization. They can either be the only source of
information about program’s expected behavior, or an additional set of constraints on
top of examples. In this chapter, we will consider the first scenario, i.e., complete for-
mal specification, for the task of integer-valued symbolic regression and operations on text
strings. The second scenario will be considered in Chapter 7 for the problem of real-valued
symbolic regression in the presence of noise.

We will begin with presenting existing work on heuristic program synthesis from formal
specifications. After the context is laid out, we will proceed to describing CDGP, our ap-
proach based on GP to solving the problem of program synthesis from formal specification.
The chapter will be concluded with an experimental study.

6.2 Related work

6.2.1 Formal specifications in GP

There are few previous works that combined evolutionary search with formal specification
of program’s behavior. Arguably, the biggest challenge is the lack of a readily available
method of computing fitness. For the set of test cases, usually considered as a task specifi-
cation in the GP literature, one can simply count the number of tests for which candidate
program returns correct answer. In the case of formal specification, however, a program
either satisfies it or not, so all incorrect candidate programs would have the worst fitness,
and thus there would be no selection pressure towards improvement. Another challenge
associated with formal specifications is the necessity of proving that a solution is correct
for every possible input, and fast deductive reasoning solvers, as well as improved com-
puter hardware, made finding such proofs feasible for larger problems rather recently. This
progress in proof efficiency was especially important for generate-and-test metaheuristics
like GP, because they need to call such solvers repeatedly during their runtime.

A natural way to overcome the problem of fitness bottleneck for formal specifications
is to somehow decompose the full specification into a set of smaller independent parts
which programs could still be evaluated upon. We can notice here that a similar process is
happening behind the scenes for sets of test cases — programs, instead of being checked for
correctness on all tests at once with a binary feedback, are evaluated on individual tests
and those evaluations are then aggregated in some way. Similarly, a formal specification
given as a formula in the conjunctive normal form, can be divided into a set of predicates,
and programs can be evaluated on each of the predicates independently. That way, instead
of a binary feedback, a more flexible spectrum of program correctness emerges. During
evolutionary search, incorrect programs are rewarded for meeting any of the predicates,
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and then, for example by means of the crossover operator, two programs satisfying different
predicates may be combined into a single program satisfying both predicates at the same
time.

To the best of our knowledge, most previous works on heuristic program synthesis
from formal specifications are based on the idea outlined above, i.e., dividing specification
into smaller parts, usually single subformulas, and then for each of them checking, if it is
satisfied by a candidate program. The number of satisfied formulas can then be used as a
fitness measure to be optimized. Some past works considered also an alternative approach
based on the creation of test cases from the failed verification attempts during runtime of
the search algorithm, and then using these tests to compute fitness. CDGP falls into the
second category.

An approach due to Colin Johnson [88] incorporated model checking (Section 3.4) with
the specification of the task expressed via Computation Tree Logic (CTL) to evolve finite
state machines, and was used to learn a controller for a simple vending machine. The
fitness was computed as the number of independent CTL formulas that were satisfied by a
given program. A similar approach by He et al. [82], the Hoare logic-based GP, computes
fitness as the number of postcondition clauses which can be inferred from the precondition
and the program being evaluated. Instead of model checking, the Hoare logic [84] is used
for the specification of the task and verification.

From 2008, Katz and Peled authored a series of papers combining model checking
and GP [94, 95, 96, 97], in which they progressively refine their MCGP tool based on
Linear Temporal Logic (LTL). The program specification consists of several independent
LTL properties. Katz and Peled distinguished several levels of passing an LTL property
(i.e., met for all inputs, met for only some inputs, met for no input), which they verified
using model checking [94, 95]. Apart from the various levels of correctness and different
formalism, this approach is very similar to the two previously described. For parametric
programs (i.e., with unbounded input size), the authors abandoned the idea of provid-
ing full correctness guarantees and tested programs on counterexamples found by model
checking [96, 97]. It is worth noting that in [96] Katz and Peled briefly considered using
an SMT solver for verification of parametric programs instead of model checking, and
used counterexamples to provide for more granular fitness in a similar spirit as CDGP.
However, they only reported trying to solve a simple problem, and seemingly abandoned
this line of research after that.

The use of coevolutionary GP to synthesize programs from formal specifications in the
first order logic (augmented with arrays and arithmetic operators) was researched by Ar-
curi and Yao [13, 14]. They maintained separate populations of tests (generated from the
specification) and programs within a competitive coevolution framework, in which pro-
grams were rewarded for passing tests, and tests were rewarded for failing programs. The
fitness of programs was calculated using a heuristic that estimated how close a postcondi-
tion was from being satisfied by the program’s output for specific tests. While allowing the
synthesis of programs with GP from formal specifications, this approach provides no guar-
antees that the returned program will be consistent with the specification for all possible
inputs.
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6.2.2 Deductive program synthesis methods

In the domain of deductive program synthesis methods, the closest approach to CDGP
is Counterexample Guided Inductive Synthesis (CEGIS), which was first described by
Solar-Lezama et al. [176] in 2006, but the name itself was coined two years later in [175].
CEGIS is a very general scheme of combining an inductive program synthesizer with a
formal verification procedure. It is assumed that the formal verification procedure either
proves that a program is correct (thus terminating the search), or returns a counterexample
otherwise. On the other hand, the inductive program synthesizer takes as an input a set
of test cases (counterexamples) and produces a program that works correctly for that
set. CEGIS operates in a loop: one starts from a randomly generated test case, from
which the synthesizer produces a program. This program is then verified by the formal
verification procedure, and if the program is incorrect a counterexample is returned. This
counterexample is then added to the set of test cases, and the process continues until a
globally correct program is found. From that perspective, CDGP is an instance of CEGIS,
where the inductive program synthesizer is GP, and the verification procedure is realized
by an SMT solver.

6.3 Counterexample-Driven Genetic Programming

A feedback obtained from formal verification can be only twofold: success or failure. On
the other hand, to be effective, search-based synthesis algorithms such as GP require a
more graded guidance through the search space. Thus, in order to synthesize programs
with guarantees of correctness using search-based techniques, the primary problem is to
elicit more detailed information about the quality of candidate programs from the speci-
fication.

The approaches considered previously in the literature (Section 6.2) focus mostly
on the decomposition of specification into independent constraints, and the number of
individually satisfied constraints constitutes candidate program’s fitness. In contrast,
Counterezample-Driven Genetic Programming (CDGP) solves this problem by 1) collect-
ing counterexamples from failed verification attempts, and 2) constructing new test cases
from the collected counterexamples and using them as a basis to compute fitness in the
conventional way. To the best of our knowledge, approaches similar to CDGP, with the
exception of [96], were not previously considered in the domain of search-based synthesis
methods.

The conceptual diagram of CDGP is presented in Figure 6.1, where it is divided into
several independent modules:

GP search A module responsible for generating new candidate programs. In the case of
CDGP it is GP, but in general it can be any other generate-and-test search algorithm.

Testing A procedure for evaluating candidate programs and returning their fitness com-
puted on the collected test cases 1. In the simplest scenario, the fitness value is the
number of tests for which program returns a correct output.

T. A set of test cases. T, is initially empty, and is gradually filled with tests created from

counterexamples as the algorithm runs.
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Figure 6.1: The conceptual diagram of CDGP.

Verification Performs formal verification using a deductive solver (e.g., SMT solver).
Only solutions which pass a certain ratio « of tests in T, are verified (o = 0: verify
always; a = 1: all tests need to be passed before solution is verified). If the verifi-
cation ends with an unsat answer, then no counterexample was found and CDGP
terminates returning the correct candidate program as a final solution. Otherwise,
a new test is added to T..

The reader might have noticed at this point that CDGP can work with a hybrid program
specification that comprises both formal constraints and test cases — it suffices to initialize
T, with the tests from the specification. In this chapter, however, we make the following
assumptions about formal specification:

e It is the only source of information about the search goal, i.e., the program to
synthesize.

e It can be in any form accepted by the formal verifier. In other words, search algo-
rithm cannot make any prior assumptions about the structure or content of formulas
constituting the specification.

6.3.1 Verification/Evaluation of programs

Formal verification is a computationally costly procedure. Thus, for efficiency reasons, in
CDGP verification is performed only if a program passes at least a ratio « of tests. If
a candidate program is incorrect for at least one test case, then we already know that
it will also not satisfy the formal specification. However, we might still want to perform
verification in order to increase the number of test cases. Solver’s proof process is guided
by various heuristics, and, as our experiments have confirmed, the solver can produce a
different counterexample than the ones already collected in T, for which program being
verified was incorrect. Without that capability, the only sensible setting for a would be
1.0 (i.e., all tests need to be passed). The technical details of the verification query to the
SMT solver are presented in Appendix A.3.

The evaluation loop in CDGP is presented in Algorithm 6.2. As was mentioned earlier,
in CDGP the fitness of solutions is computed based on the test cases collected in T (func-
tion EVAL). Since formal verification step is both 1) dependent on the candidate program’s
fitness (or, more precisely, binary evaluation vector) through tests ratio «, 2) a criterion
of program correctness, it makes sense to consider it as a part of the evaluation process. If
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Algorithm 6.2: Evaluation in CDGP, given the current population P, the current set of tests T,
program specification (Pre, Post), and tests ratio «, returns either a correct verified solution, or the
evaluated population together with an updated set of tests.

1: function CDGPEVAL(P, T, (Pre, Post), a)

2 T <+ 0 > Working set of tests
3 for all p € P do > Evaluation loop
4 p.eval < EvVAL(p, T, (Pre, Post))

5: if p.eval > « - |T;| then > At least « - |T,| tests are passed
6 ¢ < VERIFY(p, (Pre, Post))

7 if ¢ = () then return p > Correct program
8 else

9: t. <+ CREATETEST(c, (Pre, Post))

10: T« T U{t:} > Add newly created test t. to T’

11: return (P, 7. UT)

Algorithm 6.3: Evaluation of a single program in CDGP, given a program p, the current set of tests
T., and program specification (Pre, Post), returns a binary evaluation vector (we assume here that 1
= passed test).

1: function EvAL(p, T,, (Pre, Post))

2 eval < |] > Empty vector
3 for allt € T. do

4: res < RUN(p, t.in) > Run program on test’s input
5: if t.out = null then > Incomplete test
6 eval < eval U CORRECTOUTPUT(res, t.in, (Pre, Post))

7 else > Complete test
8 if res = t.out then

9 eval < eval U [1] > Correct program output
10: else

11: eval < eval U [0] > Incorrect program output
12: return eval

formal verification (VERIFY) determines that a program p satisfies the specification, then
that program is returned as a correct solution. Otherwise, a counterexample is returned,
and it needs to be converted (by CREATETEST) to a proper test case before it is added
to T.. A counterexample returned by solver is a logical model, with the interpretation
of an input for which the program behaves incorrectly. For a proper test case, however,
besides input we also require expected output, and thus the need for transformation of a
counterexample to a test case, details of which are presented in Section 6.3.3.

During the evaluation of a given population P, all new test cases are collected in a
temporary set T', and that set is merged into T> only at the end of a generation. Tests ratio
« is always applied to T, and thus whether program will be verified or not is independent
of the order of programs in the population. When using CDGP for generational, as
opposed to steady state, evolution scheme, then a small issue may arise because T, is
initially empty, which causes all programs in P to be verified. As a result, T, may grow in
size immensely already after the first generation. In order to prevent this, an additional
parameter maxNewTestsPerlter (not presented in Algorithm 6.2) limits how many new
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tests can be added to T in a single generation.

6.3.2 Complete and incomplete tests

The process of candidate program evaluation is, in fact, more complex than Figure 6.1
may suggest. Depending on the characteristics of the synthesis problem, we are forced to
consider two types of tests:

Complete tests Tests of the form (in,out), where out is the only correct answer for
input in. For example, ({x = 2,y = 5},5) for the max2 problem.

Incomplete tests Tests of the form (in, null), where there are many correct answers for
in, or the expected answer is defined relative to the program’s output for some other
inputs. For example, ({x = 2,y = 5}, null) for the max2 problem if we remove the
requirement that the result is equal to one of the inputs.

Because of these differences, complete and incomplete tests need to be evaluated differently.

For complete tests, since we know the correct answer and that it is the only correct
answer, we can directly execute a program on the test’s input in and compare the result
with the test’s expected output out. This is exactly the same as it is usually done in GP.

For incomplete tests, we similarly compute the program’s output for test’s input in,
but the task of determining whether it is correct is relegated to the Satisfiability Modulo
Theories (SMT) solver. Given the program’s output, test’s input, and formal specification,
the solver tries to conduct a proof that the output satisfies the specification (the technical
details are described in Appendix A.4). A consequence is that evaluation of incomplete
tests is much slower than that of complete tests, and CDGP will always try to create
complete tests whenever possible.

The process of evaluation of a single program p is presented in Algorithm 6.3. We
iterate over all tests, and for each of them we need to determine if a program is correct
or not. In order to do this, we begin with executing p on the test’s input (function RUN).
Then, depending on whether the test is complete or incomplete, we respectively either
compare the result with the expected output of the test, or use a solver to determine
correctness (function CORRECTOUTPUT).

6.3.3 Creation of test cases

Complete tests can be created only if for the test’s input in there is only one correct
output — we will call this a single-output property. We can distinguish two variants of this

property:
e Local single-output property.
e Global single-output property.

Figure 6.5 presents example specifications illustrating these properties.

Definition 6.3.1. Local single-output property states that for a given input in and formal
specification (Pre, Post):

Pre(in) = Vy, 4, Post(in,y1) A Post(in,y2) < y1 = y2
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Algorithm 6.4: Function for the transformation of counterexamples into test cases, given counterex-
ample ¢, and program specification (Pre, Post), returns either a complete test, or an incomplete test.

1: function CREATETEST(c, (Pre, Post))

2 out; < FINDOUTPUT(c, (Pre, Post)) > Use solver to find correct output
3 if out; = () then > No correct output
4 EXCEPTION("The specification is contradictory.")

5: else if GLOBALSINGLEOUTPUT((Pre, Post)) then

6 return (c, out;)

7 else

8 Post' « Post U {f(c) # out,} > f is a target function in Post
9: outy + FINDOUTPUT(c, (Pre, Post'))
10: if outy = 0 then
11: test < (c, outy) > Complete test
12: else
13: test < (c,null) > Incomplete test
14: return test

where y1 and g9 are some possible values of program’s output.

Definition 6.3.2. Global single-output property is an extension of the local single-output
property to all possible inputs:

Vin Pre(in) = Yy, 4, Post(in,y1) A Post(in,y2) < y1 = 4o

In order to check, whether the global single-output property holds, an appropriate
query to the solver is created (a detailed description is presented in Appendix A.6) and
executed once at the beginning of a CDGP run (for clarity, in Algorithm 6.4 this call
is inside CREATETEST function). If solver proves that this property holds, then only
complete tests will be created during this run of CDGP. Otherwise, a check for the lo-
cal single-output property will be performed during the creation of a test case from a
counterexample.

The process of transforming a counterexample to a test case is presented in Algo-
rithm 6.4. It starts with a call to the FINDOUTPUT function, which uses the solver to
find some correct output out; for the counterexample (technical details are described in
Appendix A.5). We can distinguish three main scenarios in the CREATETEST function:

e If no correct output out; was found, then the specification is contradictory. It may
at first seem a little counterintuitive, but if a function is undefined at some point,
then any value returned by a program should be accepted as correct. The absence of
a correct value implies that there are at least two mutually incompatible constraints
which result in the synthesis task having no solution.

o If some correct output out; was found and we have ascertained that the global single-
output property holds, then we can immediately return a complete test composed
of the counterexample and the correct output.

o If some correct output out; was found and we have ascertained that the global single-
output property does not hold, then we need to check for the local single-output
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flay) >y A f(0,0)=0 A
(flz,y) =z V f(z,y) =y) f(@,y) = f(y,z) flay) Zzz+y
(a) Global single-output. (b) Local single-output at (0, 0). (c) None.

Figure 6.5: Examples of formal specifications in the context of global and local single-output properties.

property by once again using the FINDOUTPUT function, but this time adding an
additional constraint to exclude the previous value out;. If an additional correct
output outs is found, then an incomplete test will be created; otherwise, it will be a
complete test with the correct output out; found earlier.

6.4 Design of experiments

In this section, we describe experimental setup and some implementation details of CDGP,
such as search operators.

6.4.1 Benchmark suite

All benchmarks used in the experiments are expressed in the SyGuS format [165] (Sec-
tion 2.4), so each program synthesis task description consists in:

o A signature (declaration) of the function to be synthesized (target function), i.e., its
name, arguments and their types, type of the function’s output.

o A context-free grammar defining the syntax of a function body.

o A formal specification of the target function’s expected behavior represented as a
set of logical constraints using symbols defined in a certain fixed theory (e.g., theory
of integer arithmetic).

The benchmarks can be divided into two families:

o LTIA (Linear Integer Arithmetic) benchmarks — a program to be synthesized
consists of arithmetical operators and a conditional if-then-else statement. The list
of benchmarks used is presented in Table 6.6, and the grammar! for solutions in
Figure 6.7. All LIA benchmarks can be downloaded from: https://github.com/iwob/
CDGP /tree/master/resources/benchmarks_phd/cdgp/LIA.

The Max, Search, and Sum benchmarks were taken from the Conditional Linear In-
teger Arithmetic track of SyGuS 2017 competition; the remaining benchmarks are
of our own design. Some benchmarks (IsSeries, IsSorted, Search) interpret in-
put arguments as a fixed-length ordered sequence of type I. In the IsSeries and
IsSorted benchmarks, the program is required to return 1 if the arguments form,

IThe original SyGuS benchmarks did not have grammar explicitly specified, meaning that any expres-
sion adhering to the LIA logic is a valid program. The grammar we assumed in CDGP is a subset of the
full original grammar, and is slightly biased toward common arithmetical functions.
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respectively, an arithmetic series or are sorted in ascending order, and 0 other-
wise. In the Search-n benchmarks, a correct program should return a 0-based in-
dex of the last argument in an ‘array’ of length n formed by the other arguments
(which are constrained by a precondition to be already sorted). Hence, for instance,
Search2(3,7,1)=0, Search2(3,7,4)=1, and Search2(3,7,10)=2.

o SLIA (Strings with Linear Integer Arithmetic) benchmarks — a program to
be synthesized consists of arithmetical operators and string manipulation operators.
The list of benchmarks used is presented in Table 6.8, and the grammar? of solutions
in Figure 6.9.

The benchmarks we use in our experiments are based on the benchmarks from
the Programming By Ezample Strings track of SyGuS 2017 competition®. Since
in these benchmarks a task is specified by means of input-output examples, and
in this chapter we are concerned only with synthesis from full formal specification,
we converted the input-output examples to a formal specification representing the
same intended task. This often required addition of task-specific preconditions in
order to make the specification fully describe the intended task. Owur converted
benchmarks can be downloaded from: https://github.com/iwob/CDGP /tree/master/

resources/benchmarks_phd/cdgp/SLIA.

To visually distinguish the two families of benchmarks in the text, names of the LIA
benchmarks begin with a capital letter, and names of the SLIA benchmarks begin with a
lower case letter.

6.4.2 Program representation

In our implementation of CDGP, we evolve complete SMT-LIB expressions (‘programs’)
represented as trees, in which internal nodes correspond to nonterminals, and leafs to ter-
minals of the benchmark’s grammar. Because of SMT-LIB’s LISP-like functional struc-
ture, tree representation typical for GP is a natural and convenient choice here. Each
node, besides the operator’s name, stores also information about the grammar’s produc-
tion it was created from. This allows the search operators (Section 6.4.3) to easily replace
any given node with a new randomly generated one so that candidate programs always
satisfy the grammar provided by a user.

6.4.3 Search and selection operators

Since in SyGuS problems the search space is explicitly defined by a formal grammar, it is
necessary to ensure that programs produced by GP conform to that grammar. In order
to achieve this, we use a strongly-typed variant of GP [139], where each production of the
supplied grammar defines a separate type, and search operators are designed so that they
always respect type constraints.

2The grammar is not consistent across SyGuS benchmarks; for example, sometimes certain instructions
are not present. Additionally, constant terminals in the grammar differ across benchmarks.

3The original SyGuS 2017 string benchmarks can be downloaded from: https://github.com/SyGuS-Org/
benchmarks/tree/master/comp /2017 /PBE_ Strings_Track
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Table 6.6: LIA benchmarks. The input type is I" and the output type is I (I=integer). Some functions
were tested in variants with different arities.

Name Arity

SyGuS  Semantics

CountPos 2, 3, 4
IsSeries 3,4
IsSorted 4,5

Max

Median

Range

Search 2,
2

Sum

The number of positive arguments

Do arguments form an arithmetic series?

Are arguments in ascending order?
v The maximum of arguments

The median of arguments

The range of arguments
v The index of an argument among the other arguments
v The sum of the first two arguments with a sum > 15

Figure 6.7: The grammar defining the domain of LIA programs. v; is the ith input variable, ite is the
conditional statement, % is the modulo operator. The starting symbol is I.

I ::=

| vi | v2 |
C ::=-10 | -9
B ::= and(B,B)

C|I+I|I-I|I*xC|I/C|I%C]| ite(B,I,I)

| vn
| -1 ] 0|1 ... 9] 10

| or(B,B) | not(B)
| I<I | I<=1]|I=1]1I>=1]|T1I>1I

Table 6.8: SLIA benchmarks. Input type is S or 52, and the output type is S (S=string).

Name Arity Semantics

dr-name 1  Extract first name from full name and prepend it with "Dr."
firstname 1 Extract first name from full name

initials 1 Extract initials name from full name

lastname 1  Extract last name from full name

combine 2 Combine first and last name into full name

combine-2 2  Combine first and last name into first name followed by initial
combine-3 2  Combine first and last name into initial followed by last name
combine-4 2  Combine first and last name into last name followed by initial
phone 1 Extract the first triplet of digits from a phone number
phone-1 1 Extract the second triplet of digits from a phone number
phone-2 1 Extract the third triplet of digits from a phone number
phone-3 1 Put first three digits of a phone number in parentheses
phone-4 1 Change all ‘-’ in a phone number to

Figure 6.9: The grammar defining the domain of String programs (some instruction names were
changed for clarity). inputs are the input variables, constants is a benchmark-specific set of constants
of the same type as the production, ++ is a string concatenation. Boolean operators are never used and
thus omitted. The starting symbol is S.

S::="" ]S ++ S | replace(S,S,S) | charAt(S,I) | fromInt(I)
| substring(S,I,I) | inputs | constants
I ::=constants | T+ I | I -1 | len(S) | index0f(S, S, I)

| fromString(S)
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Initialization Starting from the starting symbol of the grammar, a program tree is re-
cursively constructed by randomly choosing expressions from the right-hand sides of
the productions. Once the depth of any node of a program tree reaches 3, terminals
are picked whenever possible. If the depth exceeds 4, the tree is discarded and the
process starts anew.

Mutation A random node in the program tree is picked, and then replaced with a ran-
domly generated subtree. To conform to the grammar, the process of subtree con-
struction starts with a grammar production of the type corresponding to the picked
location (e.g., if the return type of the picked node is I, the generation of the replac-
ing subtree starts with the production I of the grammar).

Crossover A random node x is drawn from the first parent program, and then one creates
a list L of the nodes in the second parent that have the same type. If L is empty, a
node from the first parent is drawn again and the procedure is repeated. Otherwise,
a node y is drawn uniformly from L, and the subtree rooted in x in the first parent
is exchanged with the subtree rooted in y in the second parent. This process is
guaranteed to terminate, since both parent trees always feature at least one node
of the type associated with the root node (I for LIA and S for SLIA) and the root
nodes are allowed to be swapped.

As for selection operators, in our experiments we compare the effectiveness of:

Tournament selection (Section 4.1.8.1), where fitness is computed as the number of
not passed test cases (so that 0 is an optimal value). The size of the tournament
used in our experiments was 7.

Lexicase selection (Section 4.1.8.2), where at every selection step solutions that do not
pass a given test are filtered out.

To control bloat, we set the limit on the maximum height of programs to 12. Addi-
tionally, if tournament selection has to choose between programs with the same fitness, it
will prefer the shortest one (this is also known as lezicographic parsimony pressure [126]).

6.4.4 Population replacement

The GP literature usually considers the generational variant of population replacement,
in which a new population is created in one step directly from a parent population. For
CDGP, this design choice has a potentially important consequence, namely that during
initialization of the evolutionary algorithm, because of the set T of test cases being
empty, all programs are being verified, leading usually to a substantial amount of created
test cases. This may lead to a higher number of costly program verifications (in case of
incomplete tests) and the search process trying to satisfy many test cases (objectives) at
the same time.

In order to verify the impact of this phenomenon, and compare it with a more gradual
approach, we decided to also test the steady state variant (Section 4.1.10) of population
replacement, in which a single iteration step consists of replacing one candidate solution
with another created from mutation or crossover. In this mode of operation, verification is
not conducted during initialization of the evolutionary algorithm (although it technically
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Table 6.10: Parameters of CDGP and GPR used in the computational experiments.

Parameter Value
Number of runs 50
Population size 500
Maximum number of generations 00
Maximum runtime in seconds 1800
Solver timeout in seconds 3
Probability of mutation 0.5
Probability of crossover 0.5
Tournament size 7
Maximum height of initial programs 4
Maximum height of trees inserted by mutation 4

Maximum height of programs in population 12

could), but after the evaluation of each newly created candidate solution. This implies
that at most one new test will be added to T¢ in each generation, and that after the first
generation |T¢| = 1. Notice, that if @ > 0.0, then the next program verification will be
conducted only when some program works correctly for that initial test, which may slow
the search in the beginning if the test is hard to satisfy. This also makes this approach
the most similar to the CEGIS scheme described earlier (Section 6.2.2).

In the steady state variant, besides a selection operator, there is also a deselection
operator responsible for removing solutions from the population — in the experiments we
assume that it is the same as the selection operator but with a reversed ordering, so,
for example, in tournament deselection, for removal, a candidate solution with the worst
fitness among those considered will be selected.

6.4.5 SMT solver

The SMT solver used in our experiments is Z3 [53, 55] developed by Microsoft Research,
which is one of the most performant and widely-used noncommercial open source SMT
solvers. This choice was arbitrary, and no Z3-specific features were used.

All queries to the solver are expressed in SMT-LIB language version 2.5 [19, 21|, rec-
ognized by most contemporary SMT solvers. Since the SyGuS benchmark specification
language is build upon SMT-LIB, almost all constraints, declarations, and defined func-
tions can be directly translated into their SMT-LIB counterparts.

The calls to SMT solver are the main efficiency bottleneck of CDGP. The time needed
to solve a given query varies widely depending on its characteristics and particular bench-
mark, and for this reason we set a limit of 3 seconds for solving a query. If the solver does
not respond in that time, then the unknown status is returned and appropriately handled
by CDGP (e.g., if unknown is returned during verification, no new test case is created and
search process is not terminated). Another consequence of this efficiency bottleneck is
that the primary termination criterion for CDGP in our experiments is wall-clock time,
rather than the number of generations. This makes the comparison between different
configurations of CDGP, especially those differing by tests ratio «, more fair.
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6.4.6 Baseline: GPR

In order to investigate the role of counterexamples in guiding search, we devised GPR (GP
Random), a baseline variant of CDGP which, after the verification of a program, discards
a counterexample (if it was found) and instead generates a test with random input. The
correct output of this test is determined in the same way as in CDGP (Section 6.3.3).

For the LIA benchmarks, we narrowed the range of randomly generated inputs to
[—100, 100]™, where n is the arity of the function being synthesized. For the SLIA bench-
marks, on the other hand, due to the presence of rather restrictive preconditions, GPR was
not used, because most random sequences would be uninformative for the search process,
as function’s output is undefined for them — which possibly is an additional advantage of
the test acquiring strategy used by CDGP for such precondition-heavy problems.

6.5 Experiment 1: Evaluation of CDGP on LIA
benchmarks

The goal of the first experiment was to assess the effectiveness of CDGP and its baseline
GPR on the LIA benchmarks (Table 6.6). The experiment described here is similar to that
conducted in [32], but with an improved code base?*, a newer version of Z3 SMT solver®,
and reduced maximum computation time from 1 hour to 30 minutes. Experiments were
performed on a computational cluster with computers equipped with Intel i7-4790 3.60GHz
CPU. The dimensions of the experiment are:

e Method: CDGP, GPR.
» Population replacement: generational (G), steady state (S).
o Selection operator: tournament with k =7 (tour), lexicase (lex).

e Tests ratio a: 0.0, 0.25, 0.5, 0.75, 1.0.
In the following, we will denote a particular algorithm’s configuration using the notation:
<method>/<population replacement>/<selection>/<tests ratio>

using the abbreviations provided above, so, for example, a generational variant of CDGP
with tests ratio @ = 0.5 and lexicase selection is represented by CDGP/G/lex/0.5. Some-
times ‘*’ will be used to represent all values of a certain parameter; for example, CDGP/x/lex/*
would represent all CDGP configurations with the lexicase selection.

Tables 6.11 and 6.12 present success rates on the LIA benchmarks for, respectively,
CDGP and GPR configurations. The problem of program synthesis from formal speci-
fication is essentially an uncompromising program synthesis problem [83], meaning that
partially correct solutions are of no interest. For this kind of problems, a success rate,
i.e., the ratio of times when a correct solution was found, is the most natural measure of
effectiveness.

We start by observing that CDGP outperfomed GPR, on practically all benchmarks
for both generational and steady state variants, and on many of them by a significant

“https://github.com/iwob/CDGP, master branch, commit laefd7f from 2nd September 2020.
®https://github.com/Z3Prover/z3, master branch, commit 2fb914d from 27th July 2020.
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Table 6.11: Success rate of CDGP configurations on the LIA benchmarks. An empty cell means
that the success rate was zero.

generational steadyState
Tour Lex Tour Lex
0.0 |0.25] 0.5 [0.75] 1.0 | 0.0 ]0.25] 0.5 [0.75] 1.0 | 0.0 |0.25] 0.5 |0.75] 1.0 | 0.0 |0.25] 0.5 [0.75] 1.0

CountPos2| 0.92 0.98 0.94 1.00 0.96 1.00 1.00 1.00 1.00 0.92 0.98 0.96 0.98 0.96 0.76 1.00 1.00 1.00 1.00 0.94
CountPos3| 0.32 0.42 0.44 0.66 0.50 0.94 0.96 0.92 0.94 0.40 0.12 0.14 0.18 0.50 0.14 0.32 0.46 0.52 0.90 0.58
CountPos4 0.02 0.02 0.36 0.38 0.48 0.52 0.04 0.04 0.04 0.10 0.14 0.32

IsSeries3 | 0.64 0.66 0.66 0.86 0.54 0.92 0.84 0.84 0.84 0.34 0.26 0.36 0.36 0.72 0.58 0.60 0.50 0.60 0.86 0.48
IsSeries4 |0.20 0.08 0.22 0.46 0.32 0.48 0.44 0.36 0.46 0.10 0.08 0.02 0.10 0.40 0.30 0.04 0.08 0.12 0.20 0.34
IsSorted4 |0.94 0.90 0.94 0.98 0.96 1.00 1.00 0.98 1.00 0.80 0.90 0.90 0.98 0.98 0.68 0.98 0.98 0.96 0.98 0.80
IsSorted5 | 0.86 0.86 0.98 1.00 0.82 0.94 1.00 0.98 0.94 0.54 0.72 0.68 0.92 0.96 0.52 0.90 0.92 0.86 0.90 0.66
Max4 0.98 1.00 0.98 1.00 1.00 1.001.001.001.00 1.00 0.90 0.88 0.98 1.00 0.88 1.00 1.00 1.00 1.00 1.00
Median3 [0.98 0.96 0.96 1.00 0.96 1.00 1.00 1.00 1.00 0.98 0.70 0.76 0.86 0.98 0.66 0.98 0.98 1.00 1.00 0.98
Range3 0.82 0.86 0.84 0.94 0.92 1.00 0.98 0.98 1.00 0.92 0.26 0.34 0.68 0.98 0.64 0.76 0.84 0.84 0.92 0.94
Search2 0.96 0.94 0.92 0.98 0.92 1.001.001.00 0.98 0.86 1.00 0.94 0.96 0.98 0.70 0.98 0.94 0.98 1.00 0.84
Search3 0.74 0.88 0.96 0.98 0.94 0.96 1.00 0.96 0.98 0.88 0.80 0.90 0.96 0.94 0.46 0.98 0.94 0.92 1.00 0.88
Search4 0.62 0.74 0.66 0.88 0.76 0.90 0.96 0.98 0.94 0.68 0.52 0.58 0.78 0.70 0.06 0.64 0.70 0.78 0.90 0.78

Sum?2 0.62 0.32 0.52 1.00 0.96 1.001.00 1.00 1.00 1.00 0.58 0.22 0.94 0.98 0.90 1.00 1.00 1.00 1.00 0.98
Sum3 0.12 0.38 0.66 0.96 0.72 1.001.00 1.00 0.98 0.68 0.02 0.12 0.34 0.82 0.22 0.60 0.78 0.82 0.96 0.68
Sum4 0.02 0.10 0.46 0.12 0.54 0.68 0.66 0.72 0.06 0.02 0.42 0.06 0.10 0.22 0.42 0.16
Mean 0.61 0.63 0.67 0.82 0.71 0.88 0.89 0.88 0.89 0.64 0.49 0.49 0.63 0.77 0.47 0.68 0.71 0.73 0.84 0.69
Rank 15.03 13.38 12.88 5.50 11.91 3.84 3.31 4.38 3.94 13.62 16.81 17.44 13.41 8.47 17.81 10.78 10.31 8.91 5.84 12.44

Table 6.12: Success rate of GPR configurations on the LIA benchmarks. An empty cell means that
the success rate was zero.

generational steadyState
Tour Lex Tour Lex
0.0 [0.25] 0.5 [0.75] 1.0 | 0.0 |0.25] 0.5 [0.75] 1.0 | 0.0 [0.25] 0.5 [0.75] 1.0 | 0.0 [0.25]| 0.5 [0.75] 1.0

CountPos2| 0.70 0.70 0.68 0.88 0.82 0.96 0.80 0.86 0.88 0.78 0.22 0.34 0.36 0.64 0.48 0.66 0.84 0.82 0.86 0.78

CountPos3| 0.08 0.02 0.10 0.16 0.40 0.56 0.54 0.48 0.54 0.04 0.08 0.12 0.04 0.06 0.06 0.26 0.44
CountPos4 0.18 0.14 0.16 0.04

IsSeries3 0.06 0.06 0.02 0.04 0.04 0.08 0.08 0.06
IsSeries4

IsSorted4 | 0.02 0.04 0.20 0.62 0.54 0.64 0.66 0.30 0.22 0.42 0.44 0.54 0.48 0.70
IsSorted5 0.02 0.08 0.08 0.14 0.08 0.04 0.18
Max4 0.76 0.72 0.74 1.00 1.00 0.98 0.98 1.00 0.96 0.90 0.22 0.22 0.30 0.88 0.98 0.94 0.92 1.00 0.92 0.96
Median3 | 0.90 0.98 0.96 0.96 0.90 0.98 0.96 0.92 0.96 0.90 0.08 0.10 0.08 0.64 0.64 0.80 0.78 0.86 0.92 0.90
Range3 0.84 0.86 0.94 0.94 1.00 0.98 0.98 0.98 0.98 0.92 0.02 0.20 0.64 0.52 0.36 0.48 0.70 0.92 0.98

Search2 0.94 0.98 0.98 0.98 0.92 0.92 0.98 0.90 0.96 0.82 0.78 0.72 0.80 0.80 0.74 0.94 0.98 0.90 0.96 0.82
Search3 0.82 0.92 0.84 0.88 0.80 0.90 0.96 0.94 0.92 0.70 0.26 0.38 0.60 0.68 0.32 0.64 0.70 0.80 0.92 0.60
Search4 0.64 0.60 0.76 0.78 0.52 0.88 0.84 0.90 0.80 0.56 0.04 0.20 0.20 0.20 0.12 0.10 0.32 0.54 0.76 0.66

Sum?2 0.98 0.96 0.92 0.96 1.00 0.92 1.00 0.96 0.98 1.00 0.08 0.08 0.12 1.00 1.00 0.88 0.96 0.96 0.98 0.94
Sum3 0.36 0.44 0.52 0.58 0.82 0.72 0.76 0.76 0.68 0.40 0.02 0.14 0.36 0.20 0.20 0.36 0.42 0.76
Sum4 0.02 0.02 0.08 0.24 0.40 0.40 0.36 0.26 0.04 0.02 0.02 0.04 0.14
Mean 0.44 0.45 0.47 0.51 0.54 0.63 0.62 0.63 0.61 0.47 0.11 0.13 0.17 0.36 0.35 0.37 0.42 0.47 0.53 0.56
Rank 11.91 10.75 10.84 8.38 7.28 4.84 4.47 4.94 5.56 10.00 17.56 17.09 16.47 14.03 12.28 14.00 12.16 10.53 8.81 8.09

margin. There is, however, a big difference between GPR’s effectiveness for generational
and steady state configurations; the latter proved to be much less successful, while the
former was not that far behind CDGP on the easier benchmarks.

It seems that extreme values of a are not optimal for CDGP on the LIA benchmarks,
and a = 0.75 managed to be on average the best. We speculate that, in the case of
“conservative” a = 1.0 variant, the low amount of created tests hampers progress because
fitness is not granular enough to give a good feedback to the evolutionary search process.
On the other hand, costly formal verification is the efficiency bottleneck of CDGP, and
thus configurations with low « (“non-conservative”), while generating more tests, spend
also more time waiting for the solver. For GPR, the overall influence of o seems to be
more nuanced and configuration-dependent, but here also @ = 0.75 consistently achieves
good success rate.
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Table 6.13: Success rate of CDGP and GPR, aggregated across the LIA benchmarks.

CDGP GPR
generational | steadyState | generational | steadyState
Tour l Lex | Tour l Lex | Tour l Lex | Tour l Lex
1.0 | 0.71 0.64 0.47 0.69 0.54 0.47 0.35 0.56
0.751 0.82 0.89 0.77 0.83 051 061 0.36 0.53
0.5 | 0.67 088 063 0.73 047 0.63 0.17 047
0.25| 063 0.89 049 0.71 045 062 0.13 042
0.0 | 061 088 049 0.68 044 0.63 0.10 0.37

Table 6.14: Average end-of-run size of T,, aggregated across the LIA benchmarks.

CDGP GPR
generational | steadyState | generational | steadyState
Tour l Lex | Tour l Lex | Tour l Lex | Tour l Lex
1.0 |37 87 28 75 550 504 1967 1330
0.75 388 414 706 1202 2383 787 10305 5687
0.5 |895 541 2196 2679 2871 862 14270 7474
0.25 1140 539 2939 3031 3202 885 16154 9073
0.0 |1457 533 3232 3274 3222 876 18799 11006

Table 6.15: Average runtime of CDGP and GPR (in seconds), aggregated across the LIA benchmarks.

CDGP GPR
generational | steadyState | generational | steadyState
Tour l Lex | Tour l Lex | Tour l Lex |Tour l Lex
1.0 | 687 790 1137 701 940 1060 1279 934
0.75| 471 354 573 451 960 816 1291 994
0.5 | 852 416 925 724 1080 778 1585 1130
0.25| 947 = 437 1162 759 1120 801 1657 1252
0.0 | 976 440 1155 816 1131 790 1675 1329

The above observations regarding the number of generated tests are supported by Ta-
ble 6.14, where we can see that indeed the number of created tests is much higher for low
values of . We can also notice that, for the same value of o, GPR generates an order
of magnitude more tests than CDGP. This is caused by the redundancy of counterexam-
ples found by the solver, since independent calls to the solver are likely to produce the
same counterexamples, which CDGP does not guard against; GPR, on the other hand,
generates tests randomly and thus “collisions” are rather rare. Additionally, we can ob-
serve that GPR with tournament selection produces on average many more tests than
with lexicase selection. This, however, might be simply the effect of lexicase selection
itself being more costly than tournament selection, and thus resulting in fewer algorithm
iterations overall (which is supported by the data regarding number of iterations collected
during experiments). Interestingly, this does not seem to be the case for CDGP, because
for steady state configurations the number of collected tests for tournament and lexicase
configurations seems to be comparable for the most part.

As for the differences between generational and steady state configurations, it seems
that generational configurations were better for basically all setups. In Table 6.14 we can
see that while steady state configurations tend to generate much more tests than their
generational counterparts, this is not followed by the improvement in success rate. We
can speculate that the initial portion of 10 tests usually obtained by the generational
configurations during initialization forces solutions to approach some minimal level of
quality before more tests are generated, while steady state configurations start from blank
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slate and generate many redundant non-interesting tests, leading to more time wasted on
verification.

Lexicase selection, which in many past experiments proved to be superior [83], here
also seems to dominate. This can be seen more clearly in Table 6.13, where we can see
that lexicase selection is almost always on average better than the corresponding tourna-
ment configurations. The configurations of CDGP with generational mode of population
replacement, lexicase selection, and a < 0.75 (CDGP/G/Lex/a<0.75) boast both the biggest
success rate over all configurations, and the shortest runtime (Table 6.15).

Statistical analysis

For a statistical analysis of the results in Tables 6.11 and 6.12, Friedman’s test for multiple
achievements of multiple subjects [91, 154] was used. Friedman’s test was conducted
separately for CDGP and GPR configurations, with 20 configurations on 16 benchmarks
per each test. The obtained p-values were very small, respectively 1.0-10733 (CDGP) and
4.11-1072° (GPR), meaning that in each case at least one variant was significantly better
than some other.

In order to find the pairs of configurations with significantly different effectiveness
(success rate), the Wilcoxon-Nemenyi-McDonald-Thompson post-hoc test (also known as
the Nemenyi post-hoc test) [86, 154] was used. As a result, complicated graphs of inter-
configuration significance were obtained. Rather than presenting them in full, we will
provide here only the most interesting general observations:

e CDGP/G/Lex/a<0.75 configurations dominated all CDGP/*/Tour/a#0.75 configura-
tions. CDGP/x/*/0.75 configurations were never dominated in this comparison and
dominated several other configurations.

e GPR/G/Lex/a<0.75 configurations dominated all GPR/S/Tour/=* and all other GPR/*/%/0.0
configurations.

The best CDGP variant (CDGP/G/Lex/0.25) and the best GPR variant (GPR/G/Lex/0.25)
were then compared using Wilcoxon signed-rank test [195], which yielded the p-value equal
to 0.00097. Thus, after taking into account Tables 6.11 and 6.12, we may conclude that the
best configuration of CDGP is significantly better than the best configuration of GPR. At
the same time, however, the worst configuration of CDGP (CDGP/S/Tour/1.0) performed
on most benchmarks worse than the best configuration of GPR, but Wilcoxon signed-
rank test yielded a p-value 0.14, and thus the result is not statistically significant. It is
clear, however, that parametrization (with selection, population replacement, etc.) has
big impact on the efficiency of CDGP, which can be concluded from many configurations
of GPR having higher average success rate and lower runtime than some of the weaker
CDGP configurations.

6.6 Experiment 2: Evaluation of CDGP on SLIA
benchmarks

The goal of the second experiment was to assess the effectiveness of CDGP on SLIA
benchmarks (listed in Table 6.8). The experiment was similar to that conducted in [32],
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Table 6.16: Success rate of CDGP configurations on the SLIA benchmarks. An empty cell means
that the success rate was zero.

generational steadyState
Tour Lex Tour Lex
0.0 [0.25] 0.5 [0.75] 1.0 | 0.0 [0.25] 0.5 [0.75] 1.0 | 0.0 [0.25] 0.5 [0.75] 1.0 | 0.0 | 0.25] 0.5 [0.75] 1.0
combine |1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00
combine-2| 0.94 1.00 0.98 1.00 0.98 0.96 0.98 1.00 0.98 0.98 0.82 0.96 0.98 1.001.00 0.98 0.96 1.00 1.00 1.00
combine-3| 0.92 0.96 0.96 1.00 0.96 0.98 0.96 1.00 1.00 0.96 0.86 0.90 0.96 0.98 1.00 1.00 0.96 1.00 1.00 1.00
combine-4| 0.84 0.96 0.94 1.00 1.00 0.86 0.98 0.94 1.00 0.98 0.78 0.86 0.96 0.98 0.98 0.96 0.96 0.98 1.00 1.00
dr-name 0.10 0.26 0.22 0.08 0.06 0.06 0.08 0.14 0.56 0.56 0.10 0.28 0.22 0.46
firstname | 0.72 0.64 0.76 0.88 0.96 0.42 0.56 0.58 0.46 0.48 0.44 0.44 0.74 0.96 0.98 0.50 0.58 0.68 0.74 0.82
initials 0.02 0.02 0.02 0.02 0.02 0.02 0.12 0.02 0.02 0.10 0.04
lastname | 0.12 0.54 0.68 0.88 0.84 0.16 0.24 0.18 0.34 0.40 0.14 0.28 0.70 0.940.94 0.34 0.42 0.30 0.62 0.60
phone 0.32 1.00 1.00 1.00 1.00 0.42 1.00 1.00 0.98 1.00 0.74 1.00 1.001.00 1.00 0.78 1.00 0.98 1.00 1.00
phone-1 | 0.20 1.00 1.00 0.98 1.00 0.40 0.98 1.00 1.00 1.00 0.54 1.00 1.001.001.00 0.66 1.00 1.00 1.00 1.00
phone-2 | 0.08 1.00 0.98 0.92 0.96 0.14 0.94 0.92 0.96 0.86 0.10 0.96 1.00 0.98 0.96 0.20 0.92 1.00 0.96 0.94

phone-3 0.60 0.60 0.56 0.66 0.40 0.38 0.48 0.36 0.84 0.82 0.78 0.76 0.68 0.72 0.46 0.60
phone-4 0.02 0.02 0.04 0.02 0.02 0.08 0.04 0.02 0.04 0.04
Mean 0.40 0.67 0.70 0.73 0.74 0.41 0.62 0.62 0.64 0.62 0.42 0.65 0.72 0.78 0.79 0.49 0.66 0.69 0.70 0.73
Rank 17.12 9.23 9.00 7.81 8.08 16.58 12.73 11.50 11.31 11.31 17.69 10.85 9.04 6.38 5.15 14.23 11.04 8.31 6.50 6.15

with the same changes as in Experiment 1. The dimensions of the experiment are:

Method: CDGP.

Population replacement: generational (G), steady state (S).

Selection operator: tournament with k = 7 (tour), lexicase (lex).

Tests ratio a: 0.0, 0.25, 0.5, 0.75, 1.0.

Table 6.16 presents the success rates obtained by CDGP on SLIA benchmarks (as men-
tioned in Section 6.4.6, GPR was not feasible as a baseline for this family of benchmarks).
We notice that, at the first glance, effectiveness of CDGP was fairly similar across all
configurations. Certain benchmarks, like for example the combine family, are very simple
and were solved by many configurations in every run. Some other benchmarks, like for
example the phone family, proved to be very hard for CDGP configurations with o« = 0,
but it was simple for other configurations (at least phone, phone-1, and phone-2 were).
dr-name benchmark was solved in more than 50% of runs only by steady state tourna-
ment selection configurations with a > 0.75, and they also proved to be the best overall
when success rates and runtimes were averaged across all benchmarks (Table 6.17 and
Table 6.19).

We can observe in Table 6.17 that tournament selection configurations tended to be
better than their lexicase counterparts, which is contrary to the results obtained on the LIA
benchmarks. This suggests that the characteristics of a particular benchmark, or family
of benchmarks, may play an important role in how the evolutionary search conducted by
CDGP proceeds. Despite lexicase selection’s efficiency on uncompromising problems [83],
for the SLIA benchmarks it happened to be worse.

Other observation is that the success rate seems to consistently rise with the value of
a. This may be caused by a much longer time required by the solver to solve string queries
as compared to integer queries, and, in the presence of time limit, reducing the number
of such queries is more important than providing more test cases. In Table 6.19 we can
observe that average runtimes have a similar tendency, i.e., they are lower with the higher
« values. To account for the impact of failed runs on the average runtime, in Table 6.20



6.6 Experiment 2: Evaluation of CDGP on SLIA benchmarks 81

Table 6.17: Success rate of CDGP, aggregated Table 6.18: Average end-of-run size of T, ag-

across the SLIA benchmarks. gregated across the SLIA benchmarks.
CDGP CDGP
generational | steadyState generational | steadyState
Tour l Lex | Tour l Lex Tour l Lex | Tour l Lex
1.0 | 0.74 0.62 0.79 0.73 1.0 |12 14 4 7
0.75] 0.73 0.64 0.78 0.70 0.75 | 20 21 8 15
05 | 0.70 0.62 0.72 0.69 0.5 |48 37 57 52
0.25| 0.67 0.62 0.65 0.66 0.25 | 62 42 116 88
00 | 040 041 042 049 0.0 |95 76 212 149
Table 6.19: Average runtime of CDGP (in sec- Table 6.20: Average runtime of successful runs
onds), aggregated across the SLIA benchmarks. of CDGP (in seconds), aggregated across the
SLIA benchmarks.
CDGP CDGP
generational | steadyState generational | steadyState
Tour l Lex | Tour l Lex Tour l Lex | Tour l Lex
1.0 689 903 467 589 1.0 295 364 121 143
0.75| 717 891 496 617 0.75| 321 369 139 117
0.5 815 918 648 686 0.5 384 371 193 184
0.25| 870 919 783 729 0.25| 417 389 230 181
0.0 | 1310 1261 1234 1072 0.0 561 488 443 327

we present the average runtimes of successful runs only, and we can see that those times
also tend to go down with higher values of a.

The success rates of generational and steady state configurations do not vary by much,
but steady state configurations seem to be slightly better, and their runtimes noticeably
shorter. Similarly as before, the simplest explanation could be the number of created test
cases, however for a < 0.5 it actually is higher (Table 6.18) than for the corresponding
generational configurations, while runtime is still shorter, suggesting that something else
is at play here. It is possible, however, that this boost to runtime is simply a result
of generational configurations conducting verification of all candidate solutions during
initialization (since T is initially empty); this is supported by a more detailed investigation
of the logs of the experiment, where easy phone variants were solved very quickly by
steady state approaches, while generational ones took much more time because of having
to process many more calls to the solver, which additionally were very costly for that
particular benchmark (in contrast, combine family was easy for the solver to verify, and
for those benchmarks the steady state population replacement does not give a clear runtime

advantage).

Statistical analysis
Similarly as for LIA benchmarks, we apply Friedman’s test for the statistical analysis of
the results. For 20 configurations of CDGP on 13 benchmarks the test yielded a p-value
8.97-107 %6, so we can infer that there is at least one pair of significantly different CDGP
configurations.

After using Nemenyi post-hoc test, the following observations can be made:

e Only the four CDGP/+*/+/0.0 configurations were dominated in this comparison,
and there was only one configuration that managed to dominate them all at once:
CDGP/S/Tour/1.0.
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e CDGP/S/Lex/a>0.5, CDGP/G/Tour/a>0.75, and CDGP/S/Tour/0.75 configurations dom-
inated all CDGP/*/%/0.0 configurations, excluding CDGP/S/Lex/0.0.

These results support the earlier observation that very low values of a are problematic on
the SLIA benchmarks.

6.7 Experiment 3: Comparison of CDGP with exact
program synthesis algorithms

The goal of the third experiment was to compare CDGP, a heuristic program synthesis
algorithm, with the exact approaches from the literature. For the purpose of comparison,
two such algorithms were selected: EUSolver [11], and CVC4 [169]. The set of benchmarks
comprises all the LTA and SLIA benchmarks from Experiment 1 and Experiment 2.

6.7.1 Tested algorithms
Two configurations of CDGP and one of GPR were selected for this experiment:

e CDGPy1a — the best variant of CDGP for LIA benchmarks, as indicated by Ex-
periment 1, i.e., CDGP/G/Lex/0.25.

e CDGPgria — the best variant of CDGP for SLIA benchmarks, as indicated by
Experiment 2, i.e., CDGP/S/Tour/1.0.

e GPRyp1a — the best variant of GPR for LIA benchmarks, as indicated by Experi-
ment 1, i.e., GPR/G/Lex/0.25.

The results of these CDGP/GPR configurations were taken from the experiments con-
ducted in Sections 6.5 and 6.6.
As for the exact program synthesis algorithms, we selected the following:

« EUSolver® [11] — an approach based on enumerating both terms and predicates
from the grammar until it is determined by a decision learning algorithm that they
cover all the collected points (counterexamples), the set of which is initially empty.
Then, the candidate program is constructed based on the created decision tree (the
process called unification) and verified. If the verification succeeds, a correct so-
lution has been found and the search terminates; otherwise, a counterexample is
added to the set of points and the enumeration procedure continues. Since a condi-
tional instruction (or its semantic equivalent) is required to perform the unification,
EUSolver is limited to the problems containing this construct in their grammars.

« CVC47 [169] — an SMT solver with the capability of solving SyGuS problems us-
ing refutation-based synthesis, equipped with efficient counterexample-guided tech-
niques for quantifier instantiation. In this approach, the synthesis task is expressed
using a logical formula with a universal quantifier over possible programs. This for-

Shttps://bitbucket.org/abhishekudupa/eusolver/, master branch, commit cedce@c from 16th June 2020.
TCVC4 1.8, https://github.com/CVC4/CVC4, released on 19th June 2020.
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Table 6.21: Success rate of the exact program Table 6.22: Average runtime (in seconds) of suc-
synthesis algorithms and the best CDGP/GPR cessful runs of the exact program synthesis algo-
configurations. rithms and the best CDGP/GPR configurations.
‘n/a’ in a cell means that there were no successful
runs.
EUSolver | CVC4][CDGPyia [ CDGPsria | GPRLia EUSolver [CVC4[CDGPria [ CDGPsiia [GPRLia
CountPos2 1.00 1.00 1.00 0.76 0.80 CountPos2 0.3 0.0 60 342 97
CountPos3 1.00 1.00 0.96 0.14 0.54 CountPos3 0.5 0.0 559 444 526
CountPos4 1.00 1.00 0.38 0.00 0.14 CountPos4 1.2 0.0 841 n/a 925
IsSeries3 1.00 1.00 0.84 0.58 0.02 IsSeries3 0.3 0.0 335 489 1223
IsSeries4 1.00 1.00 0.44 0.30 0.00 IsSeries4 0.3 0.0 919 633 n/a
IsSorted4 1.00 1.00 1.00 0.68 0.54 IsSorted4 0.3 0.0 132 368 443
IsSorted5 1.00 1.00 1.00 0.52 0.08 IsSorted5 0.3 0.0 281 315 899
Max4 1.00 1.00 1.00 0.88 0.98 Max4 0.4 0.0 41 224 50
Median3 1.00 1.00 1.00 0.66 0.96 Median3 0.5 0.0 7 478 42
Range3 1.00 1.00 0.98 0.64 0.98 Range3 0.7 0.0 276 393 112
Search2 1.00 1.00 1.00 0.70 0.98 Search2 0.3 0.0 83 466 37
Search3 1.00 1.00 1.00 0.46 0.96 Search3 0.3 0.0 85 545 59
Search4 1.00 1.00 0.96 0.06 0.84 Search4 0.3 0.0 335 755 209
Sum2 1.00 1.00 1.00 0.90 1.00 Sum?2 0.2 0.0 36 122 103
Sum3 1.00 1.00 1.00 0.22 0.76 Sum3 0.3 0.0 225 862 372
Sum4__ | /100 1.00 068 000 _ 040 ||Sumd__ | 03 0.0 997 _ _ _nfa _ _ T735_|
combine - 1.00 1.00 1.00 - combine - 0.1 17 1.4 -
combine-2 - 0.00 0.98 1.00 - combine-2 - n/a 56 3.0 -
combine-3 - 0.00 0.96 1.00 - combine-3 - n/a 85 5.0 -
combine-4 - 0.00 0.98 0.98 - combine-4 - n/a 136 9.5 -
firstname - 1.00 0.56 0.98 - firstname - 2.1 756 139 -
initials - 0.00 0.00 0.12 - initials - n/a n/a 375 -
lastname - 1.00 0.24 0.94 - lastname - 8.4 768 167 -
phone - 1.00 1.00 1.00 - phone - 1.0 624 4.3 -
phone-1 - 1.00 0.98 1.00 - phone-1 - 2.9 544 2.9 -
phone-2 - 1.00 0.94 0.96 - phone-2 - 1.3 641 8.5 -
phone-3 - 1.00 0.40 0.76 - phone-3 - 63 1054 688 -
phone-4 - 1.00 0.00 0.02 - phone-4 - 15 n/a 796 -

mula is first negated, and then the solver tries to prove its unsatisfiability. The final
solution is constructed from the proof of unsatisfiability.

These algorithms were run only once for each benchmark, so their success rate is either
1.0 or 0.0.

6.7.2 Results and discussion

EUSolver and CVC4 outclass, by a far margin, CDGP on the LIA family of benchmarks —
each of them not only solves every task perfectly (Table 6.21), but also almost instantly
(Table 6.22). We speculate that the main problem of CDGP is the amount of queries to
the solver, which the exact methods avoid.

For the SLIA benchmarks, only a comparison with CVC4 could be made, since in the
benchmarks’ grammar there was no conditional instruction, and thus EUSolver could not
employ the unification that it relies on. On this family of benchmarks, CDGP proved to
be more competitive. While CVC4 still solved 7 out of 13 benchmarks almost instantly,
it did not manage to find any solution in the given time limit of 30 minutes for the rest
of the benchmarks, while CDGPgr 1o managed to solve all of them, although in case of
initials and phone-4 only in a few runs.

Interestingly, CDGP produces in many cases much shorter programs than the exact
approaches (Table 6.23). GP is known to produce messy, bloated programs, and in our
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Table 6.23: Average size of solutions (number of nodes in the simplified expression tree) found by the
exact program synthesis algorithms and the best CDGP/GPR configurations. ‘n/a’ in a cell means that
there were no successful runs.

EUSolver [CVC4]CDGPria | CDGPsris | GPRL1a

CountPos2 40 29 42 34 45
CountPos3 177 87 7 47 80
CountPos4 662 25 67 n/a 69
IsSeries3 10 12 57 30 19
IsSeries4 18 22 83 33 n/a
IsSorted4 13 28 39 30 51
IsSorted5 16 36 51 29 48
Max4 37 76 46 35 53
Median3 114 167 60 38 58
Range3 422 568 86 36 68
Search2 19 88 30 25 26
Search3 37 187 40 28 43
Search4 61 309 59 29 55
Sum?2 10 17 20 16 26
Sum3 41 70 47 30 58
Sum4 93 160 66 n/a 66
|combine | - 5 | a4 5 - |
combine-2 - n/a 9 10 -
combine-3 - n/a 8 8 -
combine-4 - n/a 10 9 -
firstname - 8 10 9 -
initials - n/a n/a 21 -
lastname - 11 15 14 -
phone - 4 6 7 -
phone-1 - 4 7 6 -
phone-2 - 4 7 7 -
phone-3 - 8 9 7 -
phone-4 - 7 n/a 17 -

implementation of CDGP we automatically perform a simplification step after the search
terminates using the simplification feature offered by Z3. For fairness of comparison,
program sizes in Table 6.23 were computed after all the found solutions were subjected to
the simplification® using Z3. The inspection of the solutions generated by EUSolver and
CV(C4 revealed that they overuse conditional instructions in order to cover all possible
cases instead of finding more streamlined solutions. Though the SyGuS benchmarks do
not provide test sets since the tasks are fully defined by the specification, we hypothesize
that, in the case of partial specification, the programs synthesized by CVC4 and EUSolver
would generalize poorly compared to those produced by CDGP.

6.8 Conclusions

In this chapter, we have described CDGP, a novel approach for combining evolutionary
search and formal reasoning to synthesize programs satisfying formal specifications. CDGP
relies on collecting counterexamples from failed verification attempts, and uses them to
create test cases, which then provide search gradient for GP. The computational experi-
ments showed that CDGP is capable of solving many specification-based problems in the
domains of integer arithmetic and text strings manipulation. A comparison with GPR, a
baseline variant of CDGP which discards counterexamples and generates tests randomly,

8Simplification in Z3 sometimes makes programs longer as it converts them to a canonical form (e.g.,
‘<’ are replaced with the negation of ‘>’). In Table 6.23 are presented the sizes of the shorter of the two
programs: before or after the simplification.
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showed that counterexamples used by CDGP are more beneficial for search than the test
cases generated randomly.

A comparison with existing exact approaches from the literature shows that much work
still needs to be done for evolutionary search heuristics to be competitive in the domain
of program synthesis from specification, especially for the LIA class of problems. The
strategy represented by EUSolver, i.e., enumeration of simple terms and their unification
using a conditional statement, proves to be very effective in practice. However, it also
requires that a conditional statement is present in the grammar, which was the reason
why we could not use EUSolver for SLIA benchmarks; CDGP has no such constraints.
CVC4, a logical deduction based approach, is unable to solve some SLIA benchmarks
which CDGP does and often produces very long solutions for LIA benchmarks, but that
aside it generally outclasses CDGP in terms of speed.






Chapter 7
Counterexample-Driven Symbolic
Regression

In the previous chapter, we investigated the possibility of using counterexamples to suc-
cessfully solve the task of program synthesis from complete formal specification using GP.
In this chapter, we consider what needs to be modified in CDGP in order to handle real-
valued symbolic regression problems in the presence of noise, with a task specification
consisting of both a training set of examples and formal constraints. In order to differ-
entiate this new approach from CDGP, we dubbed it Counterexample-Driven Symbolic
Regression (CDSR).

This chapter is based on the material published previously in [31], which was created

in collaboration with Krzysztof Krawiec.

7.1 Introduction

Symbolic regression problems typically involve as a starting point only a set of input-
output examples representing the expected behavior of the modeled system. A regressor,
by which we mean an executable artifact analogous to a classifier but predicting real values
instead of labels, is expected to both minimize an error on the training set and generalize
well on inputs not seen during training. This aspect of generalization places symbolic
regression between machine learning problems rather than pure optimization problems.
In machine learning, the generalization power of an algorithm is typically evaluated in a
quantitative fashion as an aggregated error on examples not seen during training (test set).
This is a natural approach, since without additional knowledge or assumptions about the
data, e.g., consistent patterns between outputs for different inputs, the regressor’s behavior
on the test set is the only available measure of generalization.

However, if we consider a scenario in which formal constraints expressing these complex
patterns in data are part of a problem specification, then we can additionally evaluate
generalization in a qualitative fashion as a level to which the constraints are satisfied by
the synthesized regressor. We use the term “formal constraints” to emphasize that they
are expressed in some formal language (e.g., first-order logic), as opposed to input-output
examples.

Theoretically, we can imagine a scenario in which formal constraints are generated
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automatically from input-output examples, possibly in addition to some prior formalized
domain knowledge. For example, from the following set of training examples of the form
(in, out): {(0,1),(1,2),(2,3)}, we could infer that a “good” solution would always return
a larger number than the input. However, there are many (in fact infinitely many) con-
straints that can be conceived in this way, and many of them, e.g., f(in) < 3, would be
considered trivial at best, and unfounded at worst. This illustrates a significant challenge
of choosing an appropriate frame of reference, i.e., the properties which can be reasonably
inferred from data.

In many practical scenarios, however, those properties can be supplied by the user, who
either knows beforehand that they are true of the system in question (domain knowledge),
or simply finds them convenient or beneficial. For instance, a regression model that is
meant to serve as a controller may be not allowed to output a negative value, as that
would damage some hardware component; in medicine, the predicted dose of an active
substance may need to monotonously increase with patient’s weight, etc. In this chapter,
we will focus solely on the scenario that formal constraints are provided by a user of the
synthesis system, and we will not attempt to infer additional constraints (either from data
or the user-provided constraints) or modify the existing ones.

In optimization problems, constraints often prove to be very helpful in finding good
solutions — a good example may be the simplex algorithm [50] for the linear programming
problem, which utilizes the fact that optimal solution, if it exists, must lie on the boundary

1 While generate-and-test metaheuristics are unable to use

spanned by the constraints.
constraints to such an extent and still be applicable to a large set of different problems,
we still speculate that taking constraints into account during search can be beneficial in
terms of generalization. Furthermore, we hypothesize that standard constraint-agnostic
regression methods, while generalizing well in the quantitative sense (i.e., related to the
aggregation of multiple point-wise classifier interactions on test set), does not fare that
well in terms of the qualitative generalization based on the expected high-level properties
of a final solution. In order to investigate these hypotheses, we propose an extension of
CDGP called CDSR (Counterexample-Driven Symbolic Regression) and compare it with
state of the art machine learning regression algorithms.

This chapter is organized as follows. First, in Section 7.2 we define the task of symbolic
regression with formal constraints (SRFC), and in Section 7.3 provide a range of examples
of formal constraints of practical relevance. After the background is properly set up, we
proceed to the description of CDSR (Section 7.4), a method for solving SRFC tasks that
relies on genetic programming (GP) combined with formal verification. After that, we
describe two computational experiments conducted in this work: verifying effectiveness of
the state of the art constraint-agnostic regression algorithms (Section 7.5), and analyzing
different variants of CDSR (Section 7.6). Section 7.7 concludes the chapter.

Tt must be noted, however, that constraints are an essential part of the definition of the linear program-
ming problem. Still, we can use them directly to find the solution, instead of, e.g., using generate-and-test
methods.
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7.2 Symbolic Regression with formal constraints

Russell and Norvig [172, p. 695] define the task of supervised learning as follows?:

Definition 7.2.1. (Supervised learning) Given a training set T of n example input-output
pairs
(:CIJ y1)7 (3:27 y2)7 ceey (xTM yn)7

where each y; was generated by an unknown function y = f(x), discover a function h that
approximates the true function f.

If f returns values from a finite set of discrete labels, then the task is called classi-
fication. On the other hand, if f returns a number, then the task is called regression.
Regression is typically approached by deciding on some parameterized family of models
H, and then selecting, by means of tuning these parameters, such h € H that best fit
the data. For example, in linear regression it is assumed that H is a set of all linear
combinations of inputs, and the least-squares method [172] is used to find appropriate
coefficients, thus determining h. In contrast, symbolic regression (SR) is an approach in
which the structure of a model is not assumed a priori, but is being optimized during
learning together with the parameters. This is usually achieved by representing the model
as an explicit mathematical formula and gradually modifying it to better fit the data —
a prominent example of this strategy is GP [103]. This freedom of structure is especially
important when a knowledge about the problem is insufficient to narrow down the model’s
structure. Models produced by symbolic regression algorithms are also easy to interpret,
which puts symbolic regression algorithms as a potentially important tool for interpretable
machine learning [58, 141]. Applications of symbolic regression are numerous, and include,
among others, materials science [192], chemical sciences [191], and discovery of physical
laws from observations [173, 190].

In our previous work [31], we have defined Symbolic Regression with Formal Con-
straints (SRFC), a variant of symbolic regression task in which, alongside a set of example
input-output pairs, there is also given a set of formal constraints which the function h
is supposed to satisfy. This task falls into a broader category of supervised learning with
constraints [89], which can be defined as follows:

Definition 7.2.2. (Supervised learning with constraints) Given a training set T of n
example input-output pairs

(xla yl)a ($2,y2), R (rxn,yn),

where each y; was generated by an unknown function y = f(z), and a set of constraints C,
discover a function h that approximates the true function f while satisfying all constraints
in C.

Each constraint in C' is a logical formula that should be satisfied by the model h for
an (often infinite) subset of f’s domain, for example Vz : h(z) > 0, or Vz : h(z) = h(—x).
Technically, nothing prevents a constraint from defining function’s output for a single input

2We introduced minor notation changes to facilitate the discussion in this chapter.
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(e.g., h(3) = 7), making it similar to the input-output pairs in 7', but differing in being
a hard constraint not allowing h for any error on that input. When C = (), supervised
learning with constraints reduces to the classical supervised learning.

We are now ready to define Symbolic Regression with Formal Constraints (SRFC) task:

Definition 7.2.3. Symbolic Regression with Formal Constraints (SRFC) is a special case
of supervised learning with constraints (Definition 7.2.2), where all y,, are real numbers
(i.e., it is a regression task). Additionally, the “symbolic” part requires that an approxi-
mating function h (model) is chosen from a set M of all possible mathematical expressions
over a certain formal grammar.

This definition of SRFC is similar in spirit to that of Syntax-Guided Synthesis (Sy-
GuS) [10], where solutions are required to be constructed based on the provided formal
grammar. Contrary to SyGuS, however, in SRFC there is a set of training examples,
which are not necessarily supposed to be fitted perfectly (as this may lead to overfitting),
but rather serve as a basis for the discovery of the model that explains them most ad-
equately. The explicit mention of “formal grammar” may seem unnecessarily limiting,
but it is intended to serve as a sort of boundary between symbolic and non-symbolic (or
sub-symbolic) methods. In neural networks, which we would like to not be classified as a
symbolic regression method, usually weights of a fixed network architecture are optimized,
and thus no one considers this learning paradigm to be a search over some formal grammar.
However, this does not change the fact that theoretically a formal grammar representing
a family of functions learnable by a particular neural network could be defined. Perhaps
we should, after [155], require a synthesized symbolic expression to be concise, and thus
exclude neural networks on the grounds of their complex representation. We acknowledge
that our distinction here is not perfectly precise, but we leave it to the future authors,
since the definitions of symbolic regression that we have found in the literature are rather
vague regarding their exact boundaries.

7.3 Examples of formal properties of practical
relevance

In this section, we present a number of formal constraints (properties) that we find likely
to occur in practical applications of SRFC. The word “constraint”, while correct, brings
to mind mostly reducing the number of valid assignments of values to variables. We
will occasionally use the word “property” instead, to emphasize the qualitative aspect
the final solution is expected to possess.? For each property, we discuss plausible usage
scenarios and provide its specification in SMT-LIB [19, 21|, the standard language for
communication with SMT solvers. In the following, f denotes a function that should meet

the constraint in question.

Symmetry with respect to arguments. Many multivariate models are expected to be
symmetric with respect to the order of their arguments. Examples include the equivalent

30f course, the only way of exhibiting a certain property is by adhering to constraints preventing
situations in which the property is not held; this is only a change in perspective.
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resistance of a number of electrical resistors (chained or arranged in parallel), or the force
of gravity that remains the same if the interacting masses are swapped. In SMT-LIB, this
property can be expressed as:

(assert (= (f xy) (fyx)))

In SRFC, this assertion would be included in the set of constraints C, while the tests/ex-
amples would be placed in T. However, let us emphasize again that the assertion requires
f to meet the constraint for all arguments x and y satisfying the precondition, not only
for those present in 7. When a CDSR run with such a constraint in C' ends with success,
then the synthesized model is guaranteed to be symmetric with respect to its arguments.

Symmetry with respect to argument’s sign. It is sometimes desirable to require
models to be even functions (f(z) = f(—z)) or odd functions (—f(z) = f(—z)). For
instance in classical physics, the direction of the restoring force of a spring depends on
the direction of displacement, which implies that the dependency in question is an odd

function F'(x) = —kx, where k is the spring constant. Expressing such properties is
straightforward:
(assert (= (f x) (f (- x))))

Such symmetry may be also useful when constraining multivariate models, where it may
be selectively applied to individual variables. A bivariate model f(x,y) can be demanded
to be even with respect to x with the following assertion:

(assert (= (f xy) (f (- x) y)))

Range. There are multiple scenarios in which domain knowledge excludes certain ranges
of values from f’s codomain. In classical physics, mass cannot be negative and velocity
cannot exceed the speed of light. In econometrics, employee’s wage cannot be negative.
In medicine, it may not make sense to estimate patient’s life expectancy to more than 120
years. The last of these examples can be expressed in SMT-LIB as:

(assert (<= (f x y) 120.0))

Monotonicity. Monotonicity is one of the most common properties expected from models
induced from data. In transportation, for instance, the cost of delivery is almost always a
monotonically increasing function of distance (or time). Such a constraint can be encoded
as:

(assert (forall ((x Real)(x1 Real))
(== (> x1 x) (> (f x1) (f x)))
))

Using a quantifier that way has a negative consequence that no counterexamples will be
generated since the variables are bounded, and the method introduced in this chapter
(CDSR; Section 7.4) requires them for successful operation. Including such a constraint
is, however, still beneficial, because it stops CDSR from terminating with a program not
satisfying it. In CDSR,, variant (to be introduced in Section 7.4.1), where satisfaction of
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each individual constraint is represented in the solution’s fitness vector, such constraints
have even more substantial impact on search.

Convexity /concavity. Convex models are often sought after, because they can be later
efficiently optimized. Convexity of a univariate function can be defined using Jensen’s
inequality:

Vegtepa) fz+ (1 —t)y) <tf(x) + (1 —1)f(y)-

Similarly as for monotonicity, convexity constraint requires a universal quantifier:

(assert (forall ((t Real)(x Real)(x1l Real))
(== (and (>= 1t 0.0) (<=1t 1.0))
(<= (f (+ (x t x) (x (- 1.0 t) x1)))
(+ (x t (f x)) (x (- 1.0 t) (f x1)))))

Changing this constraint to concavity would simply require replacing <= with >= in the
quantified formula; replacing it with < would demand the function to be strictly convex.

Slope. In many applications, it may be known that the rate of change of model’s output
with respect to its input cannot exceed certain threshold. For instance, a body free-
falling in Earth’s gravitational field cannot accelerate faster than 9.81 m/s2. This kind of
constraints can be expressed with the derivative. However, in order to compute derivative
in a way supported by SMT solver, we need to use an approximation:

fay et = f)

€

where € is some very small number.
In the following SMT-LIB example, we assume that the expected derivative of a func-
tion f for x = 1.0 is 2.0, e = 1079, and a tolerance for error is 0.001:

(define-fun df ((x Real)) Real
(/ (- (f (+ x 0.000001)) (f x)) 0.000001))
(assert (=> (= x 1.0) (<= (abs (- (df x) 2.0)) 0.001)))

Note that this constraint affects only the slope of f at point 1.0, while not determining
the desired value of f at that point. Therefore, this requirement cannot be alternatively
enforced by providing input-output tests in 7T that would implicitly constrain the slope,
because such tests would also necessarily determine the value of f.

Discussion. The above list presents only the simplest and most common properties.
Other examples include:

o periodicity: f(x) = f(x 4+ kT),k € Z,
o additivity: f(z+y) = f(z) + f(v),
o multiplicativity: f(z-y) = f(x) - f(y).

Compound constraints can be easily created by combining elementary constraints with
logical conjunction. Also, all above properties can be defined either globally (i.e., in the
entire domain of the considered function) or locally (i.e., in an interval, at a given point,
or otherwise constrained part of function’s domain).
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7.4 Counterexample-Driven Symbolic Regression

In this section, we describe the modifications we have made to CDGP (Section 6.3)
in order to handle SRFC problems (Section 7.2). We dubbed the resulting algorithm
Counterexample-Driven Symbolic Regression (CDSR). The overview of changes in CDSR
is presented in Table 7.1.

The following challenges prevent the use of CDGP in its original form:

1. Presence of noise — input-output examples are represented in our SyGuS bench-
marks as equality constraints (i.e., f(z) = y), and if any noise has disturbed z or
y, then the equality will not hold even for the optimal solution. Adding a toler-
ance range to the equality is limiting for many types of noise, for example Gaussian
noise can happen to be, although with a very small probability, arbitrarily high.
Additionally, f may magnify any noise present in x.

2. Formal verification criterion — in CDGP, whether a solution undergoes formal
verification or not depends on the parameter « representing the ratio of tests which
must be passed in order for the solution to be verified. However, in the presence of
noise even a perfect candidate solution will practically never have no error on a test,
and thus the notion of “passing a test” needs to be clarified.

3. Generalization — CDGP works with a formal specification fully describing the
behavior of a target function, which means that generalization beyond “training
set” is not a concern. In contrast, formal constraints in CDSR perform a rather
auxiliary role, because the expected behavior of the function is mostly defined by the
provided input-output examples (training set). Thus, additional mechanisms need
to be introduced in order to bias GP towards finding interesting well-generalizing
solutions for points beyond the training set, instead of overfitted solutions that are
perfect on the training set.

Challenge 1. was solved by seeding the internal set of test cases T¢ (Section 6.3)
with all input-output examples in the specification, instead of initializing T as an empty
set and including the input-output examples as constraints for formal verification. This
at first may seem like a natural solution without any negative side effects, but there
are many situations in which it is a combination of tests and constraints that uniquely
defines a function or family of functions. For example, when a function f is linear, i.e.,
f(z1,...,xn) = > ; aiz; +b, and an input consisting of zeros is included in the training set
with the expected output being b, then as a result the set of all straight lines is constrained
into a much smaller subset. However, when this input-output example is not taken into
account during formal verification, then an incorrect linear function g might be decided
to satisfy the constraints, although at the cost of higher error on the training examples.
This is, however, not that important in practice, since usually there are several training
examples which will sufficiently penalize such solutions.

This leads us to challenge 2. and the formal verification criterion. We decided to use a
threshold with the default of 5% of the target output of a given test. Setting this threshold
too low may stop counterexamples from being generated, and setting it too high may result
in too many counterexamples and a significant time used on their evaluation.
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Table 7.1: A summary of differences between CDGP and CDSR.

CDGP CDSR
Verification the ratio « of passed the ratio « of passed
criterion complete and incomplete incomplete tests and
tests complete tests with an error

under a given threshold (5%
of the expected output)

Validation set no yes
Termination successful formal verification lack of improvement on
criterion (besides validation set for
1800 s time 25 generations
budget)
Formal constraints no yes in CDSR,, variant

part of fitness

Finally, challenge 3. was solved by employing a validation set and the early stopping
technique [70, 144] used often during training of neural networks, which stops the opti-
mization process when the validation error of currently the best solution does not improve
in a certain time window (in our experiments: 25 generations). A solution with the lowest
error on validation set is also remembered and returned as a final solution of a CDSR run.

7.4.1 CDSR with properties in fitness (CDSR;)

We have also considered additional ways to increase the impact of the expected properties
(formal constraints) on search in CDSR. This led us to the creation of a new variant of
CDSR, which we dubbed CDSR,, (CDSR with properties in fitness). In CDSR, the infor-
mation regarding satisfaction of individual constraints is stored directly in the candidate
program’s fitness vector. This gives evolution an additional incentive to produce programs
that exhibit the desired properties. The satisfaction of individual constraint is checked
by means of formal verification in a process practically identical to that described in Sec-
tion 6.3.1, with the exception that only a single constraint is included in the verification
query. Thus, the solver verifies the program’s correctness on that constraint, and then to
the candidate solution’s fitness vector is appended either 0 (if constraint was satisfied) or
1 (if it was not satisfied) for each constraint.

[43

CDSR,, has one parameter w. representing a “weight” that a constraint has in the
fitness vector. The weight impacts the fitness vector by duplicating all constraints’ entries
in the vector w. times. For example, if the first constraint was satisfied and w,. = 5, then

the fitness vector of that solution would look like this:
[0,0,0,0,0,{other constraints}, {errors on training set}|

We will now examine the impact of w. depending on the selection algorithm used.
In e-lexicase [110] (a variant of lexicase selection for regression problems; described in
Section 7.6.2), the impact of every constraint’s entry in the fitness vector is the same as
that of a single input-output test. Thus, by setting w. appropriately, we can achieve the
desired trade-off between constraints and tests during evolution. In the example above,
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the satisfaction of the first constraint is effectively worth as much as passing five input-
output tests. The situation is, however, more complex for tournament selection, which in
our implementation of CDSR ranks the candidate solutions on the basis of aggregation
of tests by means of MSE. Depending on the magnitude of errors in the benchmark,
the impact of an individual constraint can be either very big or very small, but still an
appropriate w. setting should allow to achieve a desired average, benchmark-dependent,
level of trade-off between the importance of passing input-output examples and meeting
formal constraints.

7.5 Experiment 1: Standard regression algorithms in
the presence of formal constraints

In the first experiment, we will examine several commonly used constraint-agnostic re-
gression algorithms from the literature in order to see how well they generalize in the
qualitative sense, i.e., constraints satisfied by the synthesized model (regressor). As these
algorithms accept as input only a training set of examples, the only way for them to pro-
duce a model that exhibits the desired properties is by means of induction from examples.

7.5.1 Regression algorithms and machine learning framework

The algorithms selected for this experiment, together with a grid of hyperparameters they
were tested on, are presented in Table 7.2. We mirrored the selection of algorithms and
their hyperparameters from the work by Orzechowski et al. [147], and we have also used
the open source framework they kindly shared?.

Similarly as in [147], to compare different parameterizations of the algorithms we used
5-fold cross validation, which is also the default setting in the scikit-learn Python library.
This means that all training examples are partitioned into 5 sets (“folds”), and there are 5
iterations of learning in which one of the folds, different each time, constitutes a validation
set used to compute the regression error, and the other folds constitute the training data.
The final quality of a single parameterization of the algorithm is then computed as an
average validation error obtained in these 5 iterations. The final performance of a given
algorithm (i.e., of its best parameterization) is determined as follows: we select the param-
eterization that produced the smallest average validation error, and that parameterization
is tested on the test set for objective comparison with other regression algorithms. The
above cross validation procedure is repeated 10 times for different partitioning of data into
training set and test set, and the average test error is the final measure of quality of the
regression algorithm.

One of the criteria used to evaluate the algorithms is the number of satisfied formal
constraints. Normally, we would use an SMT solver to perform a full formal verification
to determine whether a produced regressor satisfies a given constraint or not. However,
this poses difficulties, because some of the regressors used in this study involve operations
not supported by NRA logic in contemporary SMT solvers, for example logarithms or
trigonometric functions. There are also practical challenges of reconstructing regressor’s

“https://github.com /EpistasisLab/srbench
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Table 7.2: The standard regression algorithms that we used in the experiment, and their hyperparam-
eters which were tested. This table is reproduced from [147], since our experimental setup mirrored
for the most part the one in that work; we have not used all algorithms tested there, and below are
presented only those that we had.

Algorithm name

Parameter

Values

AdaBoostRegressor

‘n_estimators’
‘learning_rate’

{10, 100, 1000}
{0.01,0.1,1,10}

GradientBoostingRegressor

‘n_estimators’
‘min_weight_fraction_leaf’
‘max_features’

{10,100, 1000}
{0.0,0.25,0.5}
{‘sqrt’, ‘log2’, None}

KernelRidge ‘kernel’ {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’}
‘alpha’ {le—4,1e—2,0.1,1}
‘gamma’ {0.01,0.1,1,10}
LassoLARS ‘alpha’ {le—04,0.001,0.01,0.1,1}
LinearRegression default default
MLPRegressor ‘activation’ {‘logistic’, ‘tanh’, ‘relu’}
‘solver’ {‘Ibfgs’, ‘adam’, ‘sgd’}

‘learning_rate’

{‘constant’, ‘invscaling’, ‘adaptive’}

RandomForestRegressor

‘n_estimators’
‘min_weight_fraction_leaf’
‘max_features’

{10,100, 1000}
{0.0,0.25,0.5}
{‘sqrt’, ‘log2’, None}

SGDRegressor ‘alpha’ {le—06,1e—04,0.01,1}
‘penalty’ {112’, 11’, ‘elasticnet’}
LinearSVR ‘c’ {le—06,1e—04,0.1,1}
‘loss’ {‘epsilon__insensitive’, ‘squared_epsilon_insensitive’}
XGBoost ‘n_estimators’ {10, 50, 100, 250, 500, 1000}

‘learning_rate’

{le—4,0.01,0.05,0.1,0.2}

‘gamma’ {0,0.1,0.2,0.3,0.4}
‘max_depth’ {6}
‘subsample’ {0.5,0.75,1}

equivalent symbolic formula from the Python objects in the scikit-learn library. Our
solution to these challenges was relaxing the notion of verification to that of approximate
verification, in which for each constraint we checked whether it is satisfied for several
points in the benchmark’s inputs domain (Table 7.3) in a grid-like fashion. Because the
verification of constraints of so many solutions® is costly, we used the following policy for
assigning the number of points depending on the benchmark’s arity: 41/variable (arity 1;
41 points in total), 11/variable (arity 2; 121 points in total), and 7/variable (arity 3; 343
points in total). Approximate verification allows us to simply use in the verification query
a regressor’s output instead of its symbolic equivalent formula, which is compensated by
the need to perform such partial verification many times for different points, and the
guarantees this method offers are also only partial.

This technique was motivated by an observation that “deceptive” cases are relatively
rare in practice and, for example, if a symmetry constraint (f(z,y) = f(y, z)) is satisfied
for 10 different pairs of values of x and y, then it is quite likely that it will be also satisfied
for other pairs. Our observations during Experiment 2 (Section 7.6), where for CDSR
runs we could compare the results of approximate verifier with those of a full verification,

50 (runs per configuration) x 12 (total different configurations) x 22 (total number of benchmarks
with and without noise) = 13200. And we also need to verify all solutions produced by constraint-agnostic
regression algorithms (2200).
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Table 7.3: The SRFC benchmarks used in our experiments. U(a,b) stands for a uniform distribution
in range [a, b], inclusive for a and b.

Benchmark Arity Solution Training set ~ # constraints
gravity 3 fmy, ma,r) = 86410 mima—— 77(0,0001, 21) 4
keijzer5 3 flz,y,2) = xi“}'g; 7 U(-10,11) 3
keijzer12 2 flz,y) =t — 23+ y —y U(-10,11) 6

. 8
keijzer14 2 f(z, y) m U(—10,11) 4
keijzer1h 2 flz,y) = + S -y— U(-10,11) 3
nguyenl 1 flx) = x3 +a22 4z U(-10,11) 3
nguyen3 1 fx)=2®+2* + 22 + 22+ 2 U(-10,11) 3
nguyend 1 f@y=aS+22 + 2t + 23+ 22+ U(-10,11) 3
pagiel 2 flz,y) = 1+$,4 + 1+y,4 U(-10,11) 3
res2 2 flri,re) = e U(0.0001, 21) 3
res3 3 f(ri,me,r3) = g2 U(0.0001, 21) 5

corroborate this hypothesis.

7.5.2 Benchmarks

Since, to the best of our knowledge, there is no established set of benchmarks for SRFC
problems, we adapted several well known regression benchmarks from [134] (page 8, ta-
ble 3) and manually defined some formal constraints for them. Additionally, we included
three benchmarks (gravity, res2, res3) from our previous work [31] based on the well
known laws of physics — Newton’s law of universal gravitation, and the equivalent resistance
of two and three resistors connected in parallel, respectively. The general characteristics
of all 11 SRFC benchmarks used in this study are presented in Table 7.3, and they can
be downloaded from: https://github.com /iwob/CDGP /tree/master/resources/benchmarks_
phd/cdsr.
The benchmarks are divided into two groups:

« noNoise, where benchmarks are generated from the ground truth formulas without
any distortions.

« withNoise, where both inputs z; and outputs y;, the same as generated for the
corresponding noNoise benchmark, are distorted by a multiplicative Gaussian noise
with g =1 and ¢ = 0.01 (i.e., z = x; - N(1,0.01)).

Each benchmark consists in:

e Preconditions specifying which function’s arguments are valid. For example, for
gravity they specify that valid are m1,mo,r > 0.

e 500 samples generated from a benchmark-dependent uniform distribution specified
in Table 7.3. All samples are also required to be correct with respect to the pre-


https://github.com/iwob/CDGP/tree/master/resources/benchmarks_phd/cdsr
https://github.com/iwob/CDGP/tree/master/resources/benchmarks_phd/cdsr

Table 7.4: The list of preconditions and constraints for all SRFC benchmarks used in this study. The

constraints are expected to be satisfied when the function's input satisfies a precondition.

Benchmark: gravity Benchmark: keijzerb
1 .
Solution: flmi,ma,r) = w Solution: flz,y,2) = (If(jﬁ
Precondition: mi,ms,r >0 Precondition: y # 0,z # 10
Constraints: Constraints:
f(ma,ma,r) = f(ma,ma, ) r=2=0= f(z,9,2)=0
f(lmi,ma,r) >0 r=y=2z N x>10 = f(z,y,2) >0
f monotonically increases w.r.t. m r=y=2z N <10 = f(z,y,2) <0
f monotonically increases w.r.t. ms
Benchmark: keijzerl2 Benchmark: keijzerl4
2
Solution: flz,y) =az* — 2% + -y Solution: flz,y) = ﬁ
Precondition: none Precondition: none
Constraints: Constraints:
>0 = f(z,y) < f(-z,9) f(z,y) >0
y>0 = f(z,y) < f(z,~y) flz,y) <4
r=y=0 = f(z,y)=0 f(z,y) < £(0,0)
z <0 = f monotonically decreases w.r.t. flz,y) = f(y,x)
y > 1 = f monotonically increases w.r.t. y
y <1 = f monotonically decreases w.r.t. y
Benchmark: keijzerlb Benchmark: nguyenl
3 B
Solution: flz,y) = % +% —y—z Solution: flz)=a* 42>+

Precondition: none
Constraints:

r=y=0 = f(z,y) =0
z=-y AN z<0 = f(z,y) >0
r=—-y AN z>0 = f(z,y) <0

Precondition: none
Constraints:

x>0 = f(z)>0
<0 = f(z)<0
>0 = f(z) > f(-2)

Benchmark: nguyen3
flx)=a +2* + 2>+ 2 + 2

Precondition: none

Solution:

Constraints:

>0 = f(z)>0
<0 = f(z)<0
z>0 = f(z) > f(—2)

Benchmark: nguyen4
Solution:
Precondition: none
Constraints:

x>0 = f(z)>0
<0 = f(z)>-0.75
>0 = f(z) > f(-2)

Benchmark: pagiel

Solution: flz,y) = Hﬁ + ﬁ
Precondition: z,y # 0

Constraints:

f(z,y) >0

f(z,y) <2

f(wvy) = f(y,x)

Benchmark: res2

f(ri,me) = 222

Solution:
Precondition: 71,72 >0
Constraints:

f(ri,r2) = f(rz2,m1)

flri,me) <ri A f(ri,re) <o
f(rl, 7’2) >0

Benchmark: res3

f(T'l,T'Qﬂ’B) = Lt

Solution: Frratris 7T

Precondition: r1,72,73 > 0
Constraints:

f(T177"377”2)

r
0

1 A flri,re,rs) <rg A f(ri,re,rm3) <rs

fl@)y=af+2° +at + 23+ 2% + 2
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Listing 7.5: An example of our modified SyGuS format (notice the presence of a ‘precondition’ term)
for the res2 noNoise benchmark.

(set-logic NRA)

(synth-fun res2 ((rl Real)(r2 Real)) Real)

(declare-var rl Real)

(declare-var r2 Real)

(constraint (= (res2 5.62255 16.57643) 4.1984724747037925))
(constraint (= (res2 15.88644 18.40775) 8.527205801040935))

(constraint (= (res2 11.33382 0.88174) 0.8180944997036567))
(precondition (and (> rl 0.0) (> r2 0.0)))

(constraint (= (res2 rl r2) (res2 r2 rl)))

(constraint (and (<= (res2 rl r2) rl) (<= (res2 rl r2) r2)))
(constraint (> (res2 rl r2) 0.0))

(check-synth)

conditions. Samples were generated only once before the experiment, and in every
algorithm’s run they are randomly partitioned into training set (375 samples) and
test set (125 samples). The cross-validation framework described earlier works only
on the 375 training samples, and after it finishes, the most promising regressor is
tested on the remaining 125 test samples.

e A set of formal constraints we devised based on the properties of solutions. Con-
straints are enforced only for the values specified as valid by preconditions. For ex-
ample, for gravity we selected symmetry with respect to masses (i.e., g(mi, mo,r) =
g(ma, my, 7)), non-negative codomain (g(ms1,ma,r) > 0), and increasing monotonic-
ity with respect to masses. Table 7.4 presents a detailed listing of preconditions and
constraints for all benchmarks.

The benchmarks are represented in two formats, different for CDSR and constraint-
agnostic regression algorithms. The former employs the SyGuS format [165], modified
with an additional ‘precondition’ term because our implementation of CDSR requires
preconditions to be specified explicitly (in pure SyGuS format an equivalent semantic
can be achieved by means of an additional implication in the ‘constraint’ terms). The
latter employs the TSV (Tab Separated Values) format, in which formal constraints and
preconditions are omitted. This was purely a pragmatic choice, since TSV is readily
accepted by the implementation of the regression algorithms that we used.

An example specification of the SRFC task in our modified SyGuS format can be
found in Listing 7.5. In this format, similarly as in the original SyGuS format, on the level
of syntax there is no distinction between tests and constraints, which is understandable,
given that it was created for the task of program synthesis from a full formal specification.
Thus, in order to seed the T, with the training set in CDSR we need to recognize tests
among other constraints, and we do it by detecting equality constraints where one of
the arguments is an application of the target function to some constants, and the other
argument is a constant.
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Table 7.6: The average ratio of satisfied constraints for all benchmarks (N=Noise). Success rate
greater than 0% was obtained only by algorithms with a ratio of 1.0 of satisfied properties, and their
success rate was also 100%. We have applied a shading which marks the worst value as white and the
best as dark gray, and the best value achieved on a given benchmark is in bold.

Ada- | Gradient- | Kernel- | Lasso- | Linear | Linear- | MLP | Random- | SGD | XG-

Boost | Boosting | Ridge | Lars SVR Forest Boost
gravity 0.50 0.50 0.00 0.50 0.50 0.50 0.00 0.50 0.50 0.50
keijzer12 0.17 0.00 0.33 0.17 0.17 0.17 0.00 0.00 0.17 0.17
keijzer14 0.75 0.50 1.00 1.00 0.25 0.50 0.25 0.75 0.25 0.75

keijzerld 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
keijzerb 0.33 0.67 0.67 0.67 0.33 0.33 0.33 0.67 0.67 0.33
nguyenl 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
nguyen3 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
nguyen4 1.00 1.00 0.67 0.67 0.67 0.67 1.00 1.00 0.67 1.00

pagiel 0.67  0.33 0.67 0.00 000 033 000 0.67 033 0.67
res2 0.67 0.67  0.67 033 033 033 033 0.67 033 0.67
| res3 0.80 0.80  0.80 020 020 020 0.00 0.80 0.20 0.80 |
gravityN | 0.50  0.50  0.50 0.50 025 0.50 0.00 0.50 0.50 0.50
keijzer12N | 0.17  0.00 0.17 0.17 0.17 0.17 000 0.0 0.17 0.17
keijzerldN | 0.75  0.50 1.00 1.00 025 050 025 075 025 0.75

keijzer15N | 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
keijzer5N | 0.33 0.67 0.67 0.67 0.33 0.33 0.33 0.67 0.67 0.33
nguyenlN [ 1.00 1.00 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00
nguyen3N | 1.00 1.00 0.33 1.00 1.00 1.00 1.00 1.00 1.00 1.00
nguyen4N | 1.00 1.00 0.67 0.67 0.67 0.67 1.00 1.00 0.67 1.00

pagielN 0.67 0.33 1.00 0.33 0.00 0.67 0.33 0.33 0.00 0.33
res2N 0.67 0.67 0.67 0.33 0.33 0.33 0.33 0.67 0.33 0.67
res3N 0.80 0.80 0.80 0.20 0.20 0.20  0.00 0.80 0.20 0.80
Mean 0.66 0.62 0.59 0.55 0.42 0.50  0.40 0.66 0.48 0.64
Rank 4.36 4.89 4.82 5.45 6.95 6.07  7.27 4.50 6.16 4.52

7.5.3 Discussion of the results
In the following, we will evaluate regression algorithms on the following criteria:

e The ratio of satisfied constraints to the total number of constraints of a given bench-
mark, representing the degree to which the model exhibits the expected properties
of the target function, which can be observed when one considers many data points
(qualitative evaluation of generalization). This information is presented in Table 7.6.

e« The MSE on test set, which represents an aggregated numerical error on examples
not seen during training (quantitative evaluation of generalization). This information
is presented in Table 7.7.

The following observations can be made:

1. As expected, there was a high variability in the difficulty level of benchmarks. For
example, the constraints of nguyen benchmarks were almost always satisfied. On
the other end of the spectrum are benchmarks like keijzerl2 or keijzerls, for
which only a small fraction of constraints were satisfied per run. For the satisfia-
bility of individual constraints for every benchmark, refer to Tables B.4 and B.5 in
Appendix B.

2. Certain algorithms were much better than other at capturing high-level function’s
behavior: AdaBoost, GradientBoosting, RandomForest, and XGBoost obtained the
best ranks with similar overall efficiency. Out of those, AdaBoost had both the
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Table 7.7: The median MSE on test set for all benchmarks (N=Noise). We have applied a row-wise
shading which marks the worst values in a row as white and the best as dark gray, and the best value
achieved on a given benchmark is in bold.

Ada- |Gradient-|Kernel-| Lasso- | Linear | Linear-| MLP |Random-| SGD XG-

Boost | Boosting | Ridge | Lars SVR Forest Boost
gravity 2.6E-14 5.5E-14 5.5E-14 5.6E-14 5.5B-14 5.6E-14 5.5E-14 5.6E-14 5.6E-14 4.2E-14
keijzerl2 |4.6es 4.2e3 3.982 9.0e6 9.1ee 9.1e6¢ 1.983 3.6E3 9.1e6 1.6E3
keijzerl4 |1l.1g-2 2.5E-2 2.6e-4 6.4e2 6.4E2 6.382 3.98-3 1.3E3 6.48-2 1.2E-3
keijzerl5 |1.3es  2.1e2 1.4e-10 1.0e4 1.0a 1.0es4 8.280 5.2E2 1.0e4 1.3B2
keijzerb 7.584 1.1E7 2.8E9 1.1z 2.3e7 4.3ea 1287 1.4E7 8.3e6 2.7Es
nguyenl |[6.5e2  5.2E1 2.1e-9 5.0e4 5.0e4 5.1pa 591 2.6E1 5.0e4 1.5E1
nguyen3 |[2.8e7 1.3Ee 2.1e3 6.0es 6.0es 6.0es 7.7Tma 1.3m6 6.0es 7.4ms
nguyend [5.1e9  1.6Es 3.289  7.1g1w0 7.1e10 7.1E10 [1.3B7 3.1E7 7.2810 3.6ET7
pagiel 1.3e-2 1.28-3 3.0e-3 1.4e-1 14e-1 1.4e-1 1.3e-3 1.1e-2 1.4g-1 2.Te-3
res2 1.0e-1  1.88-2 3.1e-5 140 14e0 14e0 7.2B-4 1.6E-2 1.4e0 8.2E-3
res3 1.58-1 2.4B-2 3.1e-8 6.4p-1 6.4e-1 6.4e1 4.1B-3 1.7B-2 6.48-1 8.9e-3

gravityN |2.1g-14 1.4E-14 1.28-14 1.4E-14 1.38-14 1.4E-14 1.4E-14 1.4E-14 1.48-14 9.98-15
keijzer12N |4.8e5  3.8E4 2.4g4 89m6¢ 8.8e6¢ 8.8e6¢ 2.3ma 3.2E4 8.986 3.5E4
keijzerl4N |1.1g-1  7.1g-2 5.98-4 2.1g-1 2.1e1 2.1e-1 6.0B-3 2.5E-2 2.1e-1 1.2E-2
keijzer15N [1.4e3  2.8E2 6.7e1  1.1g4a 1l.1ea 1.1e4a 85E1 7.0E2 1.1e4 2.2gE2

keijzerbN [4.586 1.4E7 4.3er 1l4er 26er 4.586 9.8e6¢ 1.9E7 1.6e7 1l.1es
nguyenlN [9.8e2  3.9E2 2.682 4.0e4 4.0es4 4.0a 2.582 3.2E2 4.04 3.3B2
nguyen3N |1.4e7 1.0e7 7.586 598 598 59ms 7.TE6é 1.1E7 5.9e8 1.0E7
nguyendN [4.980  8.9Es 4488 1.1e11 1l.1enn 1.1enn [3.7es 7.8Es8 1.2e11 1.0B9
pagielN [2.5e-2 7.6E-3 3.0e-3 1.8e-1 1.8e-1 19e-1 [1.98-3 2.2E-2 1.8e-1 7.Te-3
res2N 1.3e-1  2.0B-2 5.5E-3 1.0e0 9.98-1 1.00 [4.0E-3 2.1E-2 1.0e0 1.1E-2
res3N 1.78-1  2.0B-2 4.88-3 7.8e-1 7.8e-1 7.8e-1 1.3B-2 3.4E-2 7.8e-1 1.38-2
Rank 5.52 4.36 2.52 798 786 T.77 2.57 4.61 8.25  3.55

highest average ratio of satisfied constraints, and the best average rank.

3. The best MSE on test set was achieved by KernelRidge, which had also a decent
ratio of satisfied constraints. In contrast, the second algorithm with the best MSE,
i.e., MLP (multilayer perceptron), achieved the lowest ratio of satisfied constraints.

4. The presence of noise, at least at the assumed magnitude (normal distribution with
o = 1% of the value being distorted), did not have much effect on the number of
satisfied constraints. What is interesting, in some cases the noise led to the increased
ratio of satisfied constraints, for example KernelRidge on gravity benchmark. MSE
on test set was also often lower after noise was added, though sometimes (keijzer5
benchmark) it was much higher for certain algorithms.

5. For every algorithm, the ratio of satisfied constraints is almost always better than
that achieved by linear regression. This suggests that certain properties of linear
functions, since only those can be satisfied by Linear, are also preserved in many
nonlinear models and are relatively easy to satisfy. An analogous observation can
be made for MSE, but this was expected since target functions are nonlinear, and
nonlinear regression algorithms should, in theory, handle them better.

The statistical analysis was conducted using Friedman’s test for multiple achievements
of multiple subjects [91, 154], with the Wilcoxon-Nemenyi-McDonald-Thompson post-
hoc test (also known as the Nemenyi post-hoc test) [86, 154]. For the ratio of satisfied
constraints, there was one significant difference: AdaBoost satisfied more constraints (p-
value = 0.047) than MLP. For the MSE on test set, there were several statistically significant
differences — LassolLars, Linear, LinearSVR, and SGD were dominated (p-values < 0.025)
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Table 7.8: The parameters of CDSR and CDSR,, that remained fixed during the experiment.

Parameter Value
Number of runs 50
Population size 1000
Maximum number of generations o0
Maximum runtime in seconds 1800
Solver timeout in seconds 3
Probability of mutation 0.5
Probability of crossover 0.5
Tournament size 7
Maximum height of initial programs 4
Maximum height of trees inserted by mutation 4
Maximum height of programs in population 12
Validation set improvement window (generations) 25

Figure 7.9: The grammar of programs generated by CDSR. v; is the ith input variable, and U(—1,1)
is an ephemeral constant sampled from [—1, 1].

R::=R+R|R-R|R*R|R/R|w |va] ... | v, | UL1

by all other approaches with the exception of AdaBoost, which was dominated (p-value
= 0.03) only by the best under this criterion KernelRidge.

7.6 Experiment 2: Comparison of different variants
of CDSR

In the second experiment, we examine the efficiency and generalization power of CDSR®
and its variants in different configurations, and then compare them with the standard
regression algorithms from Experiment 1. To facilitate comparison, the set of benchmarks
remains the same (see Section 7.5.2).

7.6.1 Configuration of CDSR

Metaheuristic algorithms, such as GP, usually have several important hyperparameters
and components that can immensely impact the search process. CDSR inherits all hyper-
parameters (e.g., population size, probability of mutation) and components (e.g., selection
algorithm, mutation/crossover operator) of GP since it is an extension of it, and adds sev-
eral of its own. The most important hyperparameters of CDSR which remain constant
throughout the experiment are presented in Table 7.8.

The instruction set of CDSR contains only standard arithmetic operators (+, -, *, /),
and the formal grammar is presented in Figure 7.9. Division is not protected, and division
by 0 is always interpreted as leading to a wrong output. The fitness function interprets
such cases as infinite error values.

Shttps://github.com /iwob/CDGP, master branch, commit 444d9ec from 4th July 2021.
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Table 7.10: The dimensions of the experiment.

CDSR: CDSRy:
¢ Selection: tournament, e-lexicase ¢ Selection: tournament, e-lexicase
o Tests ratio a: 0.75, 1.0 o Tests ratio a: 0.75, 1.0
o we 1,5
Table 7.11: The average ratio of satisfied con- Table 7.12: The average number of evaluated
straints, aggregated across all benchmarks. solutions (in thousands), aggregated across all
benchmarks.
CDSR CDSR, CDSR CDSR,
Tour | Lex Tour Lex Tour | Lex Tour Lex
we 1 |5 1] 5 we 1 |5 ]1]5
a=0.75| 0.26 0.22 0.30 0.29 0.32 0.41 a=0.75| 52.2 373 254 26.2 9.3 94
a=1.0 0.25 0.21 0.31 0.29 0.32 0.41 a=1.0 | 62.3 55.1 27.2 26.7 9.4 9.3

Similarly as for CDGP, we used in this experiment the Z3 [53, 55] SMT solver.

7.6.2 Dimensions of the experiment

Here, we present the “dimensions” of this experiment, i.e., the hyperparameters/compo-
nents that we control for and want to gain some insight into their impact on the results.
Two variants of CDSR are considered: ‘vanilla’ CDSR (Section 7.4), and CDSR,;, (Sec-
tion 7.4.1). The dimensions of the experiment are presented in Table 7.10.

The use of e-lexicase [110] was motivated by the fact that in CDSR test outcomes
are continuous (real numbers), and thus if similarly as in the standard lexicase selection
(Section 4.1.8.2) we would select only the best individuals for a given test, then it would
usually limit our set of candidates for reproduction to a single solution after just one
iteration of the lexicase loop. To prevent this, e-lexicase, for each test separately, computes
a threshold, defined as the median absolute deviation (MAD) [157] (this is the variant of
e-lexicase presented in equation 5 in [110]). MAD is computed by a formula:

MAD(e;) = median; (|e;; — mediang(ey, )|),

where e; is a vector of errors for all tests ¢, and e; , 1s an error of a solution j on the test ¢.
In other words, MAD is a median deviation of the data from the median. For each test ¢
selected in an e-lexicase’s iteration, solutions pass it when they commit on it an absolute
error lower than MAD(e;) of the best error achieved in the population for that test.

7.6.3 Discussion of the results

Table 7.11 presents the average ratios of satisfied constraints for CDSR and CDSR,,
aggregated across all benchmarks. Note, that this is a different information than success
rate (a ‘success’ is defined as a situation in which all constraints are satisfied). We can
observe that « did not make a big difference in the number of constraints satisfied by
the algorithms. Thus, for clarity, we decided to include in the main body of this work
only the results for one of the a values, and present the complete results of CDSR and its
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Table 7.13: Success rates for all benchmarks

7 Counterexample-Driven Symbolic Regression

Table 7.14:

The average ratio of satisfied con-

(N=Noise). straints for all benchmarks (N=Noise).
CDSR CDSR,, CDSR CDSR,,
Tour | Lex Tour Lex Tour | Lex Tour Lex
« 1.0 1.0 1.0 1.0 a 1.0 | 1.0 1.0 1.0
We 1 5 1 5 We 1 5 1 5
gravity 0.02 0.08 0.00 0.00 0.02 0.06 gravity 0.40 0.46 0.41 0.39 0.48 0.53
keijzer12 0.04 0.10 0.00 0.00 0.04 0.12 keijzer12 0.10 0.12 0.46 0.40 0.43 0.56
keijzer14 0.58 0.00 0.64 0.70 0.20 0.72 keijzer14 0.62 0.03 0.67 0.73 0.23 0.73
keijzerl5 0.00 0.06 0.00 0.02 0.14 0.28 keijzerl5 0.03 0.07 0.03 0.03 0.17 0.36
keijzer5 0.02 0.04 0.02 0.00 0.02 0.08 keijzerb 0.23 0.19 0.23 0.16 0.20 0.32
nguyenl 0.90 0.42 0.90 0.86 0.62 0.64 nguyenl 0.90 0.42 0.90 0.86 0.66 0.69
nguyen3 0.40 0.12 0.36 0.26 0.22 0.38 nguyen3 0.40 0.12 0.37 0.26 0.33 0.50
nguyen4 0.12 0.12 0.24 0.24 0.34 0.50 nguyen4 0.12 0.12 0.24 0.25 0.35 0.56
pagiel 0.32 0.10 0.42 0.24 0.40 0.58 pagiel 0.48 0.40 0.67 0.56 0.73 0.84
res2 0.90 0.84 0.86 0.80 0.66 0.76 res2 0.91 0.88 0.87 0.86 0.77 0.83
| res3 0.10 0.40 0.00 0.00 0.28 0.22 | | res3 0.10 0.45 0.10 0.14 0.46 0.42 |
gravityN 0.00 0.00 0.00 0.00 0.00 0.04 gravityN 0.38 0.38 0.41 0.42 0.47 0.49
keijzer12N | 0.02 0.00 0.00 0.00 0.00 0.02 keijzer12N | 0.15 0.13 0.38 0.36 0.35 0.49
keijzer1l4N | 0.50 0.00 0.62 0.64 0.26 0.74 keijzerl4N | 0.56 0.01 0.66 0.70 0.33 0.77
keijzer15N | 0.02 0.02 0.00 0.02 0.14 0.22 keijzerl5N | 0.03 0.03 0.05 0.05 0.17 0.29
keijzer5N | 0.00 0.06 0.02 0.02 0.10 0.06 keijzer5N | 0.21 0.23 0.24 0.19 0.33 0.35
nguyenlN | 0.36 0.38 0.40 0.50 0.70 0.52 nguyenlN | 0.45 0.42 0.49 0.59 0.77 0.68
nguyen3N | 0.22 0.20 0.24 0.28 0.24 0.36 nguyen3N | 0.39 0.33 0.35 0.45 0.37 0.52
nguyendN | 0.28 0.18 0.28 0.24 0.42 0.40 nguyendN | 0.31 0.22 0.35 0.30 0.50 0.49
pagielN 0.32 0.08 0.44 0.18 0.44 0.74 pagielN 0.52 0.37 0.74 0.61 0.74 0.88
res2N 0.54 0.66 0.70 0.42 0.72 0.58 res2N 0.69 0.77 0.81 0.62 0.81 0.78
res3N 0.02 0.30 0.00 0.00 0.18 0.24 res3N 0.05 0.38 0.10 0.10 0.33 0.50
Mean 0.26 0.19 0.28 0.25 0.28 0.38 Mean 0.37 0.30 0.43 041 045 0.57
Rank 3.84 4.07 3.82 4.25 3.16 1.86 Rank 4.36 4.84 3.30 3.98 291 1.61

variants in Appendix B. We can observe there that while the ratio of satisfied constraints
1.0
(see Table B.3), and thus we continue our analysis only for that superior value. This

is similar for both « values, the MSE on test set was overall much better for a =

was, however, an interesting result in itself, because it suggests that counterexamples
collected for regression problems may not be worth the computational effort involved in
their evaluation.

We can make the following observations based on Tables 7.13-7.15:

1. Overall, the highest success rate and satisfiability ratio, both on benchmarks with
and without noise, was obtained by CDSR;,/Lex/w.=5. This proves that the addi-
tional focus on constraints was effective. This was, however, achieved at the cost of
a significantly worse MSE, especially for CDSR,, with lexicase selection.

2. For CDSR,, lexicase achieves better constraint satisfiability than the corresponding
tournament selection variants. At the same time, however, when we consider MSE
on the test set, then tournament variants of CDSR,, are better than the lexicase
ones. Interestingly, the situation is reversed for ‘vanilla’ CDSR, where lexicase leads
to lower MSE on test set, while the amount of satisfied constraints is on a similar
level as for tournament selection.

3. When the satisfiability ratio is considered, tournament selection is less robust in
the presence of noise compared to lexicase selection. It is worth noting, that for
CDSR,, with w. = 1.0, the amount of satisfied constraints remained roughly the same
after the noise was applied, which cannot be said about corresponding tournament
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Table 7.15: The median MSE on test set for all benchmarks (N=Noise).

CDSR CDSRp
Tour Lex Tour Lex
« 1.0 1.0 1.0 1.0
We 1 5 1 5
gravity 7.3e-15 | 6.Te-16  3.4E-15 1l.1g-14 7.28-15 7.4B-15

keijzer12 3.Te-2  3.08-1 6.582 7.082 6.082 4. 782
keijzer14 1.3e-1 7.7e-5 1.3e1 1.2 9.6E-2 1.3e1
keijzerl5 1.1E2 5.1g-1 1.2E3 1.3E3 2.982 1.5E2
keijzerb 4.9e6 1.786 1.3e7 1.4xe 1.3es8 1.2e8
nguyenl 2.7Te-27 3.0e-27  3.0e-27  2.8e-27 2.4E-2 2.88-2
nguyen3 6.0e-23 1.8e1 6.2E-23 5.48-23 6.0E2 1.5E3
nguyens 7.48-21  3.583 4.48-2 9.38-21  1.8E5 4.0e5

pagiel 1.1g1 4.48-3 1.1 1.0E-1 1.0E-1 1.2E1
res2 2.5E-31  2.68-31 2.4B-31 2.58E-31 3.1E-31 2.6E-31
res3 1.48-1 2.4E-4 6.3E-1 6.9e-1 7.8E-2 2.1E-1

gravityN 3.3e-15  1.2B-15 2.1g-14 1.3g-14 2.1g-14 1.1E-14
keijzer12N | 2.8ea 2.9e4 3.4E4 3.7e4 3.3B4 2.9e4
keijzer14N | 1.2e-1 1.1g-2 1.1e1 1.1e1 1.1g1 1.2E1
keijzer15N | 8.5E2 7.0E1 1.3e3 1.4e3 1.5E2 1.582
keijzer5N 3.4E6 2.Tee 2.8e6 6.8E6 7.5E7 8.2E6
nguyenlN | 2.9g2 2.4E2 2.452 2.582 2.782 2.8E2
nguyen3N | 4.9¢ 4.3e6 4.96 5.0E6 5.2E6 5.5E6
nguyendN | 6.4Es 7.4E8 6.1e8 6.3E8 7.0E8 6.1e8
pagielN 1.1e-1 6.7E-3 1.1e1 8.6E-2 8.6E-2 1.48-1

res2N 3.9E-3 4.1E-3 4.1E-3 3.9E-3 4.1E-3 4.2E-3
res3N 1.3e-1 1.5e-3 6.58-1 5.98-1 2.7TE-1 1.5E-1
Rank 2.95 2.09 3.70 3.64 4.09 4.52

variants.

4. Table 7.12 provides some insight into the number of solutions evaluated by each
algorithm. Lexicase is a more costly selection scheme than tournament selection, so
its lower results were expected. It was, however, a little surprising, how small was
the number of evaluated solutions for CDSR,,/Lex variants. We speculate that this
could be the reason for their worse results in terms of MSE on test set.

Statistical analysis with the Friedman test and Nemenyi post-hoc test showed
that when all benchmarks are taken into account, then CDSR,/Lex/w.=5 satisfies
significantly more constraints (p-values < 0.035) than all other configurations except
CDSR;/Lex/w.=1, which in turn satisfies more constraints (p-value = 0.01) than the
worst CDSR configuration, i.e., CDSR/Lex. For MSE on test set, there were only two
significant differences: CDSR/Lex was better (p-values < 0.002) than both CDSR,,/Lex

variants.

7.6.4 Comparison with constraint-agnostic regression
algorithms

We will compare here two CDSR configurations, which proved the best in Experiment 2:

« CDSR/Lex/a=1.0 — the best average MSE on test set out of all CDSR variants.
We will call this configuration CDSRysE.

« CDSR,/Lex/a=1.0/w.=5 — the best ratio of satisfied constraints out of all
CDSR variants. We will call this configuration CDSRgaT.
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Table 7.16: A comparison of the best constraint-agnostic regression algorithms with the best configu-
rations of CDSR. The values in this table are compiled from Tables B.6-B.9 in Appendix B, and were
averaged over all benchmarks, i.e., both noNoise and withNoise.

Ada- Kernel- CDSRyseg  CDSRgaT
Boost  Ridge

avg. rank) median tests set MSE ~ 3.50 2.27 1.41 2.82

avg. rank) satisfiability ratio 2.05 2.16 3.61 2.18

avg. rank) success rate 2.82 3.14 2.34 1.70

avg.) satisfiability ratio 0.66 0.59 0.30 0.57

avg.) success rate 0.27 0.18 0.19 0.38
g

(
(
(
(
(
(avg.) runtime (s) 75.59  27.49 1058.95 1729.27

with two regression algorithms with the best results in Experiment 1:

e AdaBoost — the best ratio of satisfied constraints and success rate..

e KernelRidge — the best MSE on test set.

A summary of the results of the selected algorithms for all benchmarks is presented
in Table 7.16, and the full results are presented in Appendix B in Tables B.6-B.9. The
following observations can be made:

1. Surprisingly, both constraint-agnostic regression algorithms managed to satisfy on
average more constraints than our best CDSR approaches. Despite that, there are
some constraints which are easy for CDSR to satisfy, while at the same time hard for
constraint-agnostic algorithms, for example: equality constraint for keijzerl2 (z =
y=0 = f(x,y) = 0), the symmetry constraint for pagiel (f(z,y) = f(y,x)),
the output bound for res2 and res3 (f(ri,m2) <1 A f(ri,7r2) < r2). Examples
to the contrary can also be found, for example: output bound for keijzerl5 (x =
—y AN <0 = f(x,y) > 0), but even in such cases there are configurations of
CDSR which have the probability of 1/3 for satisfying that constraint.

2. While constraint-agnostic regression algorithms satisfied the highest number of con-
straints, CDSR boasts the best total success rate of 38%. Its successes are also
much more evenly distributed in the set of benchmarks, in contrast to the constraint-
agnostic algorithms which either have a success rate of 0% or 100%. This property
was also reflected in the better average ranks of CDSR on this criterion.

3. Yet another surprise was that CDSRygg managed to achieve a much better average
rank on MSE on test set, and generally the most of the lowest MSE scores were ob-
tained by either of the CDSR variants. We expected this to be the other way around,
i.e., CDSR, and especially CDSR},, having higher numbers of satisfied properties at
the cost of higher MSE. One might be tempted to speculate that the improvement
of MSE was caused by the presence of constraints in fitness, but CDSRygg was a
‘vanilla’ CDSR variant not taking them into account during search other then by
generating counterexamples.

4. Standard machine learning regression algorithms achieve their results much faster
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than CDSR, which employs formal verification to check if the constraints are satis-
fied or not. However, optimizing CDSR for maximum speed was not our priority,
and some relatively easy improvements (conceptually, at least) could potentially sig-
nificantly reduce the execution time (e.g., approximate verification of constraints in
CDSR,, instead of full verification with the SMT solver).

A statistical analysis conducted on Tables B.7 and B.8, again with the Friedman sta-
tistical test and Nemenyi post-hoc test, revealed that all algorithms satisfied significantly
more constraints than CDSRysg (p-values < 0.002), and CDSRysg achieved significantly
lower MSE than AdaBoost and CDSRgar (p-values < 0.009). Also, KernelRidge had
significantly lower MSE than AdaBoost (p-value = 0.009).

7.7 Conclusions

In this chapter, we adapted CDGP to symbolic regression problems, and dubbed the re-
sulting approach Counterexample-Driven Symbolic Regression (CDSR). The motivation
for applying CDSR to symbolic regression problems was its focus on formal constraints,
which are rarely taken into account in symbolic regression and thus pose an interesting
avenue of research. We consider the satisfiability ratio of formal constraints to be an inter-
esting measure of generalization. Contrary to the quantitative evaluation of generalization
represented by an aggregation of point-wise errors, constraints describe behavior that a
function exhibits over multiple data points, and thus can be thought of as a higher-order
generalization, or, as we called it in this thesis, qualitative generalization.

We conducted several computational experiments. First, we assessed a degree to which
common machine learning regression algorithms satisfy formal constraints. Their results
were impressive, given that they have not taken it explicitly into account during training.
As a second step, we tested various configurations of CDSR on the same set of bench-
marks. Overall, CDSR satisfied fewer constraints than constraint-agnostic algorithms,
but it traded it for much better success rate. Additionally, CDSR managed to satisfy, in
at least some of its runs, many constraints that other regression algorithms had problems
with, while achieving better MSE on test set. Standard regression algorithms are, how-
ever, much more time-efficient in producing their results. CDSR has also a limitation of
its own, that is it requires a solver equipped with a theory for a given domain, and tran-
scendental functions, such as logarithms and trigonometric functions, are not supported
by contemporary SMT solvers and must be approximated.






Chapter 8
Neuro-Guided Genetic Programming

In this chapter, we present our preliminary work into prioritizing the search in program
space. To this aim, we automatically acquire knowledge about problem’s structure by
training a neural network on a training set of selected program synthesis tasks. Predictions
of the network are then used by the modified mutation and initialization operators of
genetic programming to promote the instructions indicated as promising by the network.

The work presented in this chapter is based on [122], which was created in collaboration
with Pawetl Liskowski and Krzysztof Krawiec.

8.1 Introduction

A program synthesis problem is a set of program synthesis tasks (Definition 2.3.2), similarly
as the SAT problem is a set of all possible SAT instances. In many practical applications,
however, it is often the case that the majority or all of instances that one may ever need
to solve constitute only a certain limited subset of the original problem — for instance, the
SAT instances which we need to solve may be only Horn clauses (i.e., disjunctive clauses
with at most one non-negated literal), and thus a more efficient dedicated solver can be
used (in fact, HORNSAT subproblem of SAT is solvable in linear time [150, p. 94]). This
is an example of domain knowledge about the structure of a problem, and our ultimate
objective is to design algorithms that make the most of it to efficiently solve a given task.

The notion of domain knowledge is, unfortunately, hard to formalize, so instead we
will approach it by providing some examples. In the field of metaheuristics, it is common
for algorithms’ behavior to be explicitly dependent on a set of (hyper)parameters (e.g.,
probability of mutation in evolutionary algorithms). When performance of the algorithm
on a given problem is systematically better for certain values of parameters, then we can
say that these values are a form of domain knowledge. Another possibility is introducing
to the search algorithm a bias towards promising regions of search space, either inherent
to the algorithm (e.g., regularization), or dynamically determined based on the particular
problem instance. From these examples we can attempt to formulate an informal definition
of domain knowledge, i.e., any information that makes the algorithm more efficient on the
problems of interest.

In this chapter, we investigate the possibility of automatic acquisition of such knowl-
edge by means of machine learning, and we attempt to bias the evolutionary search so that
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it concentrates on regions of search space that are more likely to contain good solutions.
Balog et al. [17] presented a framework for acquiring and using domain knowledge in the
context of program synthesis, which they called Learning Inductive Program Synthesis
(LIPS). This framework consists of the following components [17]:

» a domain specific language (DSL) specification,

a data generation procedure (generation of a training set),

e a machine learning model that maps input-output examples to program attributes,

e a search procedure that searches program space in an order guided by the model.

They also presented an implementation of the LIPS framework in the form of DEEP-
CODER, in which DSL was a language for manipulating lists of integers, a neural network
was used as a machine learning model, and there was a selection of different search proce-
dures ranging from depth-first search to SAT-based Sketch program synthesis system [174].
When they compared these search procedures augmented with DEEPCODER to their base
versions, they noted a significant improvement of efficiency.

Inspired by their work, we decided to apply these principles in the realm of evo-
lutionary program synthesis, and more precisely genetic programming (GP). Since the
DEEPCODER’s source code was not shared by the authors, we reimplemented their system
based on their paper [17], while introducing certain minor improvements. The main nov-
elty of this chapter is thus the examination of how different variants of GP behave when
augmented with such domain knowledge.

This chapter is organized as follows. In Section 8.2 we describe our version of the
DEEPCODER system for domain knowledge acquisition but using GP as a search procedure.
After that, in Section 8.3 we evaluate different variants of Neuro-Guided GP and selected
baselines to assess the impact of the acquired knowledge on the effectiveness of search.
Section 8.4 concludes the chapter.

8.2 Neuro-Guided Genetic Programming

In this section, we present our genetic programming synthesis system supported by a
trained neural network for prioritizing search, which we called Neuro-Guided Genetic Pro-

gramming. This approach has two distinct phases:

e Offline learning phase, in which a training set of program synthesis tasks and their
solutions are used to train a neural network to predict, based on input-output ex-
amples, which instructions will be present in the solutions (synthesized correct pro-
grams).

e Online solving phase, which is an application of Neuro-Guided GP to solve a particu-
lar program synthesis task, in which the neural network determines the probabilities
of using individual DSL instructions in the search process.

The idea of the approach is to train the neural network once (big initial commitment), and
then repeatedly use it to solve synthesis tasks more effectively. We will describe these two
phases in more detail in the following sections, but first we present the domain specific
language (DSL) in which synthesized programs are expressed, since it has significant im-
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Listing 8.1: Example program from the DSL (P2 from [17]).

a + [int]

b < [int]

C < ZipWith (-) b a
d < Count (>0) c

Listing 8.2: Example program from the DSL (P4 from [17]).

[int]

[int]

Sort x

Sort y

Reverse d
ZipWith (x) d e
Sum f

TTTTTTT

pact on various aspects of the synthesis system (e.g., network’s inputs and layers, program

representation, and variation operators in GP).

8.2.1 Domain-specific language

We decided to synthesize programs in the same programming language as in [17], which is
a domain-specific language for operations on lists of integers. Programs in that language
are very similar to programs in linear GP [34] because they are fixed-length sequences
of instructions, and the results produced by previous instructions are accessible for the
subsequent instructions. A single instruction is of the form:

var = function(argy,args,...,argg)

where var is a fresh variable, function is a function from the DSL, and the arguments arg;
are variables defined earlier, lambdas, or predicates. The set of functions which can be
used in instructions comprises the typical list manipulation functions HEAD, LAST, TAKE,
Drop, ACCEss, MINIMUM, MAXIMUM, REVERSE, SORT, SUM, and the higher-order func-
tions (i.e., functions taking as an argument some other function) MApP, FILTER, COUNT,
Z1PWITH, SCANL (for the exact semantics of the instructions we refer to [17, p. 17]). The
DSL contains also lambdas and predicates which can be used only as arguments for the

higher-order functions:

e lambdas of type int — int for MAP: ADD1, SUB1, MULTMINUS1, MULT2, MULT3,
MULT4, DIV2, DIV3, DIV4, SQUARE.

e predicates of type int — bool for FILTER and CoUNT: >0, <0, 1SODD, ISEVEN.

e lambdas of type (int, int) — int for ZIPWITH and SCANL: +, -, *, MIN, MAX.

The DSL involves two datatypes which can be assigned to variables: integers (int) and
lists of integers ([int]), and a boolean (bool) datatype which is used as a return type of
the predicates.

Example programs in the DSL are presented in Listings 8.1 and 8.2. The first &
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instructions, where k£ is the number of inputs of a program to be synthesized, represent
the inputs of the program and make them accessible for the subsequent instructions. These
k instructions are determined by the signature of the program, and as such they are fixed
and do not count towards length of a program. The output of a program is the value of
the last assigned variable.

8.2.2 Offline learning phase

8.2.2.1 Encoding of the input-output examples

Input-output examples of a given benchmark (program synthesis task) have the form
(X;,Y;), where i is the index of a given input-output example (there are five of them per
benchmark), X; denotes inputs to the program, and Y; the correct output. We consider
only programs with at most two inputs, and thus X; = [X;; Xj2]. Programs return only a
single output value, so Y; = [Yj1]. A single input-output example is thus represented as a
vector T; = [X;1 X0 Y;1]. Each element of the vector T; is encoded for the neural network
in the following way:

o A value’s type is encoded via one-hot encoding, and thus a vector of length 2 is
sufficient (one element for int, and the other for [int]).

o Lists of integers have the limit L put on their maximum length, and in our exper-
iments L = 20. A list of length n is encoded as a vector of L values, in which the
first n elements are the same as the elements of the list, and the remaining elements
of the vector have the NULL value (technically realized as an integer 256). We also
require that all integers are in range [—256,255] in order to facilitate the learning
process and make the problem easier.

o Integers are encoded as lists of length one in the same process as described above,
and thus only information about the type differentiates them from actual lists of
length 1.

If a program expects only a single input (i.e., X;3 = ), then X5 is represented in T; as
L NULLs with the zero vector as its type information. It thus follows that each element
of vector T; is encoded using 2 + 20 = 22 values, the whole vector T; requires 3 - 22 = 66
values.

8.2.2.2 Architecture of the neural network

In this study we recreated the neural network used in DEEPCODER [17], with only minor
changes in the architecture. The diagram of the network’s architecture is presented in
Figure 8.1. The network is feedforward and consists of several layers:

e the input layer,

e the embedding layer,

o the three fully connected layers (256 neurons each),
o the average pooling layer (256 neurons),

o the fully connected output layer (34 neurons).



8.2 Neuro-Guided Genetic Programming 113

embedding
(X1, Y3) -
1
hidden layers pooling output
layer
2 1,
KoY e —— )
_ <0
()(3’ Y3) ..... L. — — —>3 —> >O
4 L» ZipWith
(Xq, Yq) e —_— 5

/
(Xs, Ys) |:| -

Figure 8.1: The diagram of the neural network’s architecture. The hidden layers process each input-
output example independently (as indicated by the numbered arrows), and then aggregate results for
those five examples in the pooling layer.

Importantly, the first three stages from the above list are applied to each input-output
example independently.

As the first processing step, all values representing input-output examples (including
NULLs), with the exception of vectors representing types, are embedded in a 20-dimensional
space, which means that each integer is mapped to a certain vector in that space. This
mapping is learned in the embedding layer during the network’s training, and is expected
to distribute numbers “meaningfully” in this space so that the subsequent layers of the
network are able to pick on patterns between different integers. As an example, Balog et
al. [17, p. 16] reported that in their experiments with 2-dimensional embeddings the even
and odd numbers formed parallel elongated clusters (notice the presence of 1SODD and
ISEVEN predicates in the DSL).

As the next step, the three fully connected layers are independently mapping (with
the same weights) each encoded and embedded input-output example of a program into
a latent representation, and these five resulting representations are then averaged in the
pooling layer.

Finally, the fully connected output layer with sigmoid activation function returns a
vector of length 34 (the number of language elements in the DSL) with values in range
[0, 1] indicating network’s estimation of likelihood that a given language element (function,
lambda, predicate) is present in the solution.

8.2.2.3 Generation of the training set

When constructing a training set for machine learning problems, we would like for it to
cover all possible observations'. Unfortunately, usually this is not the case, and a training
set is only a small sample of the space of all possible observations. The objective of
Neuro-Guided GP is, however, to efficiently synthesize programs from the a priori selected

L At least if we had infinite computing power.
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programming language, and nothing prevents us from exhaustive generation of such a
training set.

A training set 7T is thus constructed by enumerating all programs in the DSL starting
from the shortest one-instruction programs and gradually increasing their length up to the
assumed maximum length l,,,q,. We apply various heuristics to prune redundant seman-
tically equivalent programs and programs with dead code; their absence introduces a bias
of our models towards concise programs. For the purpose of computational experiments
(Section 8.3), we generated two such training sets for the DSL presented in Section 8.2.1,
which we dubbed small (lyae = 3; |T| = 822,582) and large (lnaz = 4; |T] = 5,004,532).

For each program p € T, we generate five random input-output examples. This process
involves certain challenges, for example many inputs do not satisfy implicit program’s
preconditions, such as for example a requirement that both provided lists are of the same
length. Additionally, we must ensure that all program’s inputs and an output are in the
proper range of [—256, 255]. To meet these requirements, we “back-propagate” the allowed
ranges of variables starting from the program’s output, and we end up with constraints on
the program’s inputs, which allow us to uniformly draw values satisfying the constraints.
Our implementation, however, does not take into account constraints for lengths of lists,
and thus their acceptable lengths are obtained by trial and error, and if that fails too
many times, then the program is discarded from the training set.

8.2.2.4 Network training

During training, the neural network learns to predict from input-output examples (encoded
in the way presented in Section 8.2.2.2) generated for a certain program p € 7T which
instructions occur in p. A single epoch of the network’s training is a pass through all
programs in 7. A gradient is computed in batches of 512 training examples, with the
binary cross-entropy between a vector returned by the network and a target binary vector
(with 1s indicating that a given instruction is present in the correct program, and Os that
it is not) being a measure of loss. As the optimization algorithm, we used Adam [100], and
network’s weights were initialized using the He method [81]. We used the implementations
of these method available in the TensorFlow library [9]. We train the network for 100
epochs, with the early stopping condition terminating the optimization process when the
loss on a validation set, delineated from the training set, starts deteriorating.

We examined different possible activation functions (rectified linear units (ReLUs),
‘leaky’ ReLUs, and exponential-linear units (ELUs)) for the three consecutive fully con-
nected layers (Section 8.2.2.2), and decided to use ReLUs for the small training set, and
ELU for the large training set. The accuracy on the test set (10000 programs not present
in the training set) of these best performing activation functions was 92.48% for the small
(ReLU), and 90.85% for the large training set (ELU).

While the full results of the experiment are presented in Section 8.3, we find it beneficial
to present in Figure 8.2 the heatmaps visualizing predictions of the trained neural networks
for, respectively, small and large training sets, and for the eight considered benchmarks
P0O-P7 (see Section 8.3.2). Squares with green frames indicate instructions which are part
of the solution and ideally should have the likelihood of 1. For comparison, we include
also the priors representing frequencies of occurrence of lexical elements of the DSL in all
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Figure 8.2: The visualization of the trained networks' outputs for individual benchmarks on, respec-
tively, small and large training sets (reproduced from [122]). In the columns are lexical elements of the
DSL, and in the rows are benchmarks used in our experiments. Included are also priors computed on
the whole training sets.

peT.

Based on Figure 8.2, we can observe that:

o Predictions of the networks significantly diverge from the priors and vary per bench-
mark.

e The networks manage to discover meaningful patterns between input-output exam-
ples and lexical elements of the DSL. For example, only programs P4 (Listing 8.2)
and P7 were supposed to use the multiplication lambda (*), and both networks cor-
rectly indicated this fact, at the same time predicting probability 0 for that lambda
for all other benchmarks. Statistically, this observation is backed by the high accu-
racy that we reported earlier in this section.

8.2.3 Online solving phase

In this section, we detail Neuro-Guided GP, the genetic programming algorithm adapted
to using predictions of the trained neural network to search through the space of programs
more effectively. We will emphasize that the neural network is trained only once, and then
it can be repeatedly used for different synthesis tasks. We denote the vector of probabilities
provided by the network as P(L|T), where L is the set of all relevant lexical elements of
the DSL (Section 8.2.1).

A task specification for Neuro-Guided GP is a set of input-output examples. The first
step of our method is querying the trained neural network on these examples in order
to get a concrete vector of probabilities P(L|7). This vector is then used to bias GP’s
initialization and variation operators. Notice that the querying of the network takes place
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only once per a run of Neuro-Guided GP.

8.2.3.1 Fitness

While the neural network accepts only five input-output examples, this number is insuf-
ficient for the fitness function to effectively guide the evolutionary search process (there
would be only six unique values of fitness). Thus, in our experiments we generated 128
input-output examples in total per a single benchmark, of which only the first five were
used by the neural network.

8.2.3.2 Termination condition

A GP run is terminated after a set number of generations (200 in our experiments), or
earlier if it finds a program with zero error on the set of all 128 input-output examples.
However, program correctness is judged based on the fitness alone, and there is no guaran-
tee that the program is correct outside of the provided sample of input-output examples.

8.2.3.3 Population initialization

During population initialization, programs are generated instruction by instruction. A set
V' of variables initially contains only the input variables annotated with their types. The
process of generation of a new instruction var := f(args) proceeds in the following way:

e A function f is drawn from the DSL according to the probability distribution defined
by a normalized vector of the network’s outputs P(L|7). If this is the last instruction
of the program, we take into account only those functions that have the same output
type as the program’s return type.

e For each argument arg of f, we draw it randomly from the set of accessible language
elements compatible with arg’s type. Two situations are possible:

— A type of arg is int or [int], in which case we draw uniformly from the set
V' of variables created earlier in the program; if no variable of an appropriate
type exists, we draw a function f once again®.

— A type of arg is a lambda or predicate, in which case we draw it randomly using
the normalized vector P(L|T) and taking into account only those elements that

are compatible with the expected lambda/predicate type.

e A new variable symbol var is introduced and added to V', annotated with a return
type of f.

This process continues until the assumed program length is reached.

8.2.3.4 Mutation

A mutation operator picks randomly a single instruction in a program, and changes its
function f in such a way that the arguments are still valid. A new function f’ is selected

2The DSL has the property that for any set of variables, there always exists at least one function for
which all arguments can be selected from these variables.
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Table 8.3: Common parameter settings for all methods.

Parameter Value

Probability of mutation p,, 0.8
Probability of crossover p. 0.0 or 0.5

Population size 1000

Selection method Tournament (T) or Lexicase (L)
Max program length 3or4d

Number of fitness cases 128

Max generations 200

using a probability distribution defined by a normalized vector P(L|T), of which we con-
sider only the functions with the same signature as f. The arguments of the function call
remain the same.

We considered also alternative designs of mutation operators, but they proved inferior
in our preliminary experiments, so we do not present them here.

8.2.3.5 Crossover

A crossover operator exchanges up to [, compatible function calls between parent pro-
grams (in our experiments [ = 2), but without changing their arguments. In order to
find the possible crossover points, we extract from both parents the multisets M; and
M> of type signatures (composed of the types of function’s output and arguments) for

“intersec-

successive [.-sized blocks of instructions (signature vectors), and calculate the
tion” multisets M{ and M/ by leaving in them only those elements, which are present at
least once in both M; and M. Next, we randomly pick a signature vector from Mj. It
is guaranteed by construction that the same signature vector is present at least once in
M, and we select it randomly from among these. The function calls corresponding to the
selected signature vectors are then exchanged between both parent programs, and the so
constructed programs are returned as offspring. If there are no matching signature vectors
for both parents, we repeat the procedure with [, — 1, or return both parent programs
unchanged as offspring when [. has reached zero.

As it can be seen, the crossover operator is not informed in any way by the network’s
predictions P(L|T).

8.3 Experiment

The goal of the experiment is to investigate the extent to which domain knowledge obtained
by the neural network impacts performance of GP, and which GP configurations are well
suited for using this knowledge.

8.3.1 Configurations

We compare with each other the following variants of GP, presented below in the order of
increasing use of domain knowledge:
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Table 8.4: The list of benchmarks used in our study and originating from [17].

Name Arity  Length of
solution

Types

Description

PO

P1

P2

P3

P4

P5

P6

P7

P8

2 3

int, [int] — int

[int], [int] — int

[int], [int] — int

[int] — int

[int], [int] — int

[int] — [int]

[int], [int] — int

[int], [int] — int

[int] — int

Sums the requested number of the smallest
elements from the list
Computes a score of the best team in a soccer
league based on the number of wins and ties for
each team
Counts the number of elements in the list passed
as the first argument that are greater than the
corresponding elements in the list passed as the
second argument (Listing 8.1)
Calculates the minimum number of deductions by
1 which would make the list non-increasing
Returns the smallest possible total area of
rectangles that can be constructed by pairing
dimensions provided in the input lists (Listing 8.2)
Returns a list containing at each position ¢ the
minimum of the values on positions 7 in input list
and the reversed input list
Sums the two input lists element-wise and returns
the smallest element decreased by 2
Returns the sum of multiplications of a number at
index i in the second input list by the sum of
elements on positions [, n] (n is the length of the
input lists) from the first input list
Computes element-wise differences between the
input list and reversed input list, removes negative
entries, and returns a sum of the remaining
elements

1. U: An unbiased GP search, i.e., all instructions have the same probability of being

used by the initialization and mutation operators (uniform probability distribution).

. P: A GP search with the initialization and mutation operators biased with a priori

probabilities P(L) of instructions (called priors in Figure 8.2), i.e., their frequency

of occurrence in the training set 7.

S: The Search-only variant of Neuro-Guided GP, in which predictions P(L|T) of the

neural network are used only during search, and initialization is unbiased (i.e., uses

uniform distribution).

IS: The Init-and-Search variant of Neuro-Guided GP, in which predictions P(L|T)

of the neural network are used both during search and initialization.

The parameters shared by the methods are presented in Table 8.3. For certain param-

eters we examined several different values, which effectively became a separate dimension

of t

he experiment:

e Probability of crossover operator: 0.0 and 0.5.

tion 4.1.8.2).

Selection method:

tournament selection (T) and lexicase selection (L; Sec-
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The length of programs in the population is set to 1 4 l;,42, Where 1,4, is the maximum
length of programs in a given training set. Shorter programs can be effectively constructed
by means of redundant code, which in this case is equivalent to not using certain variables
in the rest of the program after they are introduced.

8.3.2 Benchmarks

We have used the same benchmarks as in [17], and we present them together with their
characteristics and a concise description in Table 8.4. The examples of a correct solution
are provided for benchmarks P2 (Listing 8.1) and P4 (Listing 8.2); for the solutions of
others, we refer the reader to [17, p. 12]. The arity of benchmarks vary between 1 and 2,
and input arguments are of two types: int (integer), and [int] (list of integers).

8.3.3 Discussion of the results

Tables 8.5 and 8.6 present success rates (i.e., the ratio of runs in which a correct program
was found) of the algorithms, respectively for the networks trained on the small and large
training set. Each configuration was ran 50 times. The configurations not assisted with
any model (i.e., Ty, Ly) are unaffected by the change of a training set, and thus they were
ran only once on our suite of benchmarks and their results are shared between the tables
for comparison. Configurations of Neuro-Guided GP are marked in the tables with light
blue color, and the configurations of unbiased search with light green.

The benchmarks vary in the level of difficulty they pose to the methods, ranging from
very easy ones, which are solved in all runs by all methods (P2), to difficult ones, on which
even the best performing configurations barely exceed 50% probability of success (P4).
Unsurprisingly, success rate seems to negatively correlate with the length of the target
program (2 for P2 (Listing 8.1) and 5 for P4 (Listing 8.2), the longest target program in
the benchmark suite).

Most importantly, the success rates of the configurations parameterized with networks’
estimates P(L|T), i.e., S and IS, are systematically better than those of configurations that
rely on the uniform distribution (U) and those parameterized by the prior probabilities
calculated from the training set (P). Interestingly, the latter are usually worse than the
former, which suggests that for an approach that is not informed by the network, it is better
to use the uniform distribution. The possible explanation is that many benchmarks are
composed of several “frequent” and at least one “niche” instructions, and it thus becomes
unlikely for that rare instruction to be drawn, even when it is required for a given task. In
contrast, relying on the uniform distribution makes even the “niche” instructions relatively
likely to be drawn.

Of the two approaches informed by the networks, priming both initialization and search
(IS) performs better. Though this effect was expected, we did not anticipate its size (note
the large differences between the average ranks of IS and S configurations). We hypothesize
that the observed gain stems from the fact that initialization is relatively likely to produce a
program that uses all instructions appointed as most probable by the network. In contrast,
the mutation operator can substitute only one instruction at a time, so if it happens to
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Table 8.5: Success rates for particular configurations, for the small training set. Legend: T (tourna-
ment), L (lexicase), U (unbiased), P (priors baseline), S (search), IS (initialization and search).

Method Ty Tp Tg TS Ly Lp Lg Lis

cx 0.0 05 00 05 00 05 00 05 00 05 00 05 00 05 00 05
PO 0.70 0.54 0.34 042 088 0.94 1.00 1.00 0.58 0.66 0.40 0.58 0.72 0.82 1.00 1.00
P1 0.18 0.16 0.26 0.24 0.24 0.20 0.54 0.58 0.16 0.08 0.20 0.12 0.60 0.44 0.96 0.96
P2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P3 0.14 0.16 0.12 0.12 0.46 0.48 1.00 0.96 0.52 0.62 0.28 0.54 0.82 0.76 1.00 1.00
P4 0.14 0.06 0.02 0.08 0.02 0.02 0.00 0.00 0.52 0.56 0.38 0.44 0.38 0.18 0.14 0.14
P5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.92 1.00 0.98 1.00 0.98 1.00 1.00
Pé6 0.08 0.08 0.06 0.14 0.02 0.14 0.04 0.04 0.40 0.60 0.82 0.68 0.68 0.74 0.78 0.80
p7 0.16 0.08 0.3¢ 0.16 0.3¢4 0.44 0.56 0.58 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P8 0.18 0.36 0.10 0.12 0.14 0.18 0.28 0.32 0.36 0.46 0.26 0.30 0.50 0.34 0.82 0.76

Mean 0.40 0.38 0.36 0.36 0.46 0.49 0.60 0.61 0.61 0.66 0.59 0.63 0.74 0.70 0.86 0.85
Rank 10.72 10.94 12.00 11.33 10.67 9.61 8.28 8.06 8.50 8.22 8.17 8.78 5.39 7.00 4.17 4.17

Table 8.6: Success rates for particular configurations, for the large training set.

Method Tu Tp Tg TrS Ly Lp Ls Lrs

cx 0.0 05 00 0.5 00 05 00 05 00 05 00 0.5 0.0 05 00 0.5
PO 0.70 0.54 0.34 0.38 0.82 0.78 1.00 1.00 0.58 0.66 0.54 0.58 0.64 0.68 1.00 1.00
P1 0.18 0.16 0.20 0.20 0.18 0.24 0.58 0.62 0.16 0.08 0.16 0.16 0.48 0.32 0.98 0.88
P2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
P3 0.14 0.16 0.10 0.10 0.12 0.28 0.68 0.74 0.52 0.62 0.46 0.52 0.60 0.74 0.98 0.94
P4 0.14 0.06 0.02 0.00 0.02 0.02 0.00 0.00 0.52 0.56 0.52 0.50 0.22 0.32 0.32 0.08
P5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.92 098 0.96 1.00 1.00 1.00 1.00
P6 0.08 0.08 0.00 0.04 0.08 0.10 0.12 0.12 040 0.60 0.64 0.70 0.64 0.70 0.72 0.74
P7 0.16 0.08 0.28 0.24 048 0.42 0.78 090 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
P8 0.18 0.36 0.16 0.08 0.18 0.24 042 042 036 046 0.32 034 0.28 032 0.84 0.78

Mean 0.40 0.38 0.34 0.34 0.43 0.45 0.62 0.64 0.61 0.66 0.62 0.64 0.65 0.68 0.87 0.82
Rank  10.56 11.06 12.33 12.67 10.44 9.56 7.28 6.89 8.50 7.83 9.39 850 7.17 6.11 3.56 4.17

start with a program that contains no useful instructions, it needs to be applied several
times to produce the desired effect, which is unlikely.

The lexicase selection operator (L setups) proves its usefulness again, systematically
and significantly boosting the success rates in comparison to the tournament selection (T
setups). Nevertheless, in relative terms, the informed configurations improve over the non-
informed ones irrespectively of the type of selection operator, which suggests that priming
is beneficial independently of this component of search algorithm. It becomes thus even
less likely for the observed effects of priming to be incidental.

What comes as a bit of surprise is the not so clearly positive effect of using the large
training set, when compared to the small one. For IS, moving from the latter to the
former causes the success rate to improve only in 12 cases (combinations of benchmark
and settings) while deteriorating on 8 cases, out of the total of 9 -4 = 36 (of which 17
could not be improved to begin with due to perfect score). Similarly, there is no clear
winner when comparing the small and the large dataset for S configurations.

For statistical evaluation of our results, we employed the Friedman’s test for multiple
achievements of multiple subjects [91, 154]. In Table 8.7 we present the average ranks and
p-values computed for four disjoint groups of configurations:

e smally — small training set, methods not using crossover.
e smallg — small training set, methods using crossover.

e largey — large training set, methods not using crossover.
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Table 8.7: Average ranks for the tested configurations. Legend: small/large (training set used), N (no
crossover), C (crossover).

Method L;js Lg Trg Lp Ly Ts Ty Tp
Rank  2.50 3.06 4.28 4.28 4.56 5.50 5.67 6.17

Method L;jgs Lg Ty Ly Lp Tg Ty Tp
Rank  2.17 3.61 4.33 4.33 4.72 5.22 5.72 5.89

Method L;js Lg Tjs Ly Lp Tg Ty Tp
Rank  2.06 3.61 3.72 4.44 4.83 5.44 5.50 6.39

Method L;jgs Lg Tys Ly Lp Tg Ty Tp
Rank 2.22 3.50 3.83 4.33 4.56 5.11 5.83 6.61

smally  (p = 0.00877)

smalle  (p = 0.010579)

largey  (p = 0.00093)

largec  (p = 0.00075)

e largec — large training set, methods using crossover.

In each group, the configurations that rely on neural guidance clearly rank at the top. The
p-values indicate that some methods are significantly better than others. We conducted
a post-hoc analysis with the Wilcoxon-Nemenyi-McDonald-Thompson post-hoc test (also
known as the Nemenyi post-hoc test) [86, 154], which allowed us to conclude that Lrg
is statistically significantly better than Ty and Tp in every group. Additionally, in the
largen group, Lrg was significantly better than Tg.

8.4 Conclusions

We have shown that statistical models learned by machine learning algorithms can be
successfully used by GP to guide search. This was not an entirely unexpected result,
given that several other heuristics were improved in this fashion [17, 69]. While our choice
of the DSL and network’s architecture was inspired by that of [17], we had no access to
the author’s original implementation and had to recreate it based on their paper, which
confirms the soundness of the general idea.

We hypothesize that aiding search with machine learning models can be particularly
beneficial for stochastic search. Neural estimates of probabilities are inherently noisy (not
least because they are based on just a handful of examples), and thus treating them with
absolute confidence bears certain risks — and this is what, at least in a certain sense, some
of the deterministic search algorithms considered in [17] do. In particular, the depth-first
search uses the instructions strictly in the ordering given by the estimated probabilities,
so an instruction unfairly deemed as unlikely will wait very long to be used. A stochastic
search, like the evolutionary algorithm considered here, is free from that shortcoming, as
it treats the estimates as probabilistic guidance only.

It is worth noting that the proposed approach is largely independent from the under-
lying programming language (DSL), and the described training regimen could be easily
used for any other language operating on integers. For real numbers, embedding becomes
a problem; for text strings and generally more complicated data structures, the algorithm
would require further modifications.






Chapter 9
Conclusions

9.1 Summary

Program synthesis is a computationally hard problem of growing relevance as the impor-
tance and complexity of software increases. In this thesis, we focused on the different ways
in which GP, a heuristic program synthesis algorithm, can be augmented to better handle
program synthesis problems. We presented several new variants of GP supported by either
an SMT solver, or a neural network. The feature these approaches have in common is
utilizing external sources of knowledge which are then used to assist search. Using an
SMT solver for verification enabled GP to synthesize programs from formal specifications,
and the counterexamples were collected from the failed verification attempts and subse-
quently used to guide search. Using an SMT solver for optimization, in conjunction with
holes in the programs evolved by GP, allowed finding the most fitting content of holes,
and assigning the corresponding fitness to the whole solution. And last but not least, a
neural network was used to learn how the relationship between inputs and the expected
output of tests constituting program synthesis tasks can be statistically associated with
the instructions in the correct program.

9.2 Contributions

Below we summarize the most important contributions of this thesis:

o Evolutionary Program Sketching (EPS; Chapter 5), our proof-of-concept evolution-
ary approach to program synthesis by sketching [174, 176], which relegates the cre-
ation of sketches to GP, and the user needs only to provide a set of tests. An
optimizing SMT solver [26] is then used to complete the sketch in the framework
typical for memetic algorithms [140]. In our experiments, the “Baldwinian” vari-
ant of EPS proved to be better than both the “Lamarckian” variant and the GP
baselines.

o Counterexample-Driven GP (CDGP; Chapter 6), a novel approach for GP to syn-
thesize provably-correct programs from formal specifications. The correctness of
programs is verified by the SMT solver, and counterexamples from the failed veri-
fication attempts are converted to tests and subsequently used to guide search. To



124

9 Conclusions

limit the costly calls to the SMT solver, only the solutions that pass the ratio « of
the collected tests are formally verified.

Definition of the Symbolic Regression with Formal Constraints problem (SRFC;
Section 7.2).

Allowing GP to generate symbolic regression models satisfying arbitrary logical con-
straints provided by the user (i.e., the SRFC problem). This was realized as an exten-
sion of CDGP, and to differentiate these two approaches we called it Counterexample-
Driven Symbolic Regression (CDSR; Chapter 7).

Comparison of CDSR with the state-of-the-art constraint-agnostic machine learning
regression algorithms, both in terms of error on test set and the number of satisfied
constraints. We discovered that while the best constraint-agnostic regression algo-
rithms surprisingly managed to satisfy more constraints on average than CDSR, the
best success rates and MSE on test set were achieved by the best configurations of
CDSR using the lexicase selection (Section 4.1.8.2).

Training a neural network to predict instructions present in the correct program
based on the input-output examples, and using this information to prioritize the
search (Neuro-Guided GP; Chapter 8). While the network’s architecture and orig-
inal inspiration came from DEEPCODER [17], we were the first who tested this ap-
proach with GP and investigated the impact of various hyperparameters of GP on
the effectiveness of search. Our conclusion is that Neuro-Guided GP outperforms
both the ‘vanilla’” GP and the GP supported with the naive bias computed as the
instructions’ frequency of occurrence in the training set.

0.3 Future work

The work described in this dissertation can be followed with more research, the main

directions of which are:

Conducting a more comprehensive computational experiment for EPS (Chapter 5)
in order to investigate how that approach would scale as the number of benchmark’s
input variables increases.

The notion of approximate verification (Section 7.5.1) was devised after we have
already implemented and tested CDGP and CDSR, and we used it only to compare
the latter with the constraint-agnostic regression algorithms. It could be, however,
integrated with the CDGP/CDSR’s evaluation function (Algorithm 6.2) and used to
drastically reduce the number of costly calls to the SMT solver. We speculate that
such a modification would bring substantial reduction of runtime.

Applying Neuro-Guided GP to problems in which program synthesis task is specified
by means of formal specification instead of tests. This would require a vastly different
approach on the side of the neural network, since instead of a sequence of numbers
(program’s inputs and correct output) there would be a logical expression in a certain
formalism provided as input to the network.

Combining all the approaches described in this thesis in a single algorithm. In
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principle, there are no obstacles for using CDSR equipped with EPS for finding values
of constants and using a trained neural network to bias the choice of instructions
selected by the variation operators.

e Our general observation is that GP may not necessarily be the best heuristic for
program synthesis. The fitness landscape in GP for non-trivial program synthesis
problems is known to be rugged, meaning that introducing even a small difference to
a program can drastically influence its fitness. Exploring different heuristic or exact
algorithms, such as enumerative search, in conjunction with the techniques proposed
in this thesis, can also be an interesting avenue of research.






Appendix A

Queries to SMT solver

A.1 Introduction

In this appendix, we will briefly describe the queries to SMT solver which are used in EPS
(Chapter 5), CDGP (Chapter 6), and CDSR (Chapter 7). All queries, with the exception
of the optimization query in EPS (Section A.7), will be presented for the max2 synthesis
task, which is defined by the following specification:

maz(z,y) >x A
maz(z,y) 2y A
(maz(z,y) =z vV max(z,y) =y)

where z,y € Z.

A.2 Short introduction to SMT-LIB

The established format of communication with SMT solvers is the SMT-LIB language [19,
21]. We will now briefly describe the semantics of this language so that interested readers
can understand listings in this appendix without referencing external sources.

SMT-LIB was created with the goal of representing logical formulas in a uniform
format, which was inspired by the LISP programming language. In SMT-LIB scripts the
most important are assert statements, which specify logical formulas. All formulas, even
when in different assert statements, are connected implicitly by a conjunction. Expressions
inside assert statements often utilize free variables, which are declared with the declare-fun
statement (in the case of free variables, the arity of the function is 0). A solver will try
to find values for those variables in such a way that all formulas in assert statements are
satisfied. Each free variable has assigned type; in the examples below they are of the type
Int (i.e., integer numbers). The define-fun statement is used to define a function or a
constant, which then can be used multiple times in assert statements or other functions.
Functions may also make use of free variables, so strictly speaking they are more like
macros than mathematical functions (unless we implicitly treat free variables as function’s
arguments).

The remaining commands are on the meta-level and instruct the solver itself:
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o set-logic — Specifies a logic for SMT solver, which is a combination of a theory (e.g.,
a theory of integers which defines the semantics of arithmetical operators and integer
constants) with some additional constraints. For example, as a logic can be specified
LIA (Linear Integer Arithmetic) or NIA (Nonlinear Integer Arithmetic), which sub-
sumes LIA. Similarly, there is LRA (Linear Real Arithmetic) and NRA (Nonlinear Real
Arithmetic). There are also dedicated logics for operations on arrays, text strings,
or bitvectors.

e check-sat — Starts the search for proof of the conjunction of formulas in assert
statements. The result is either a sat answer accompanied with a logical model, i.e.,
valuation of free variables which make all formulas satisfied, or an unsat answer with
the interpretation that no such valuation exists.

e get-value — Instructs the solver to print the value of a specified variable in the model.

A.3 Verification query (CDGP/CDSR)

(set-logic LIA)

(define-fun max ((x Int)(y Int)) Int (ite (>=vy x) x vy))
(declare-fun x () Int)

(declare-fun y () Int)

(assert (not (and
(>= (max x y) x)
(>= (max x y) y)

(or (= (max x y) x) (= (max x y) y)))))
(check-sat)
(get-value (x y))

The aim of this query is to determine, if a program satisfies the formal specification.
In the example above, the (incorrect) program (ite (>=y x) x y)) was selected for veri-
fication and constitutes the body of the max function in line 2. In lines 3-4, inputs to the
function are declared as free variables. Then, in lines 5-8, there is the negated conjunc-
tion of all constraints from the formal specification. The negation is crucial here, because
we are searching for inputs invalidating the program, so that they may be later used to
create test cases. In general, for a formal specification given as (Pre, Post), asserted will
be —(Pre = Post). In the max2 problem there is no precondition, hence the lack of
implication.

The interpretation of solver’s results is as follows:

e sat — input for which specification does not hold was found; a program is incorrect.

e unsat — it was proven that no such input exists; a program is correct.

In this case, a sat will be returned together with a logical model (counterexample). The
output of Z3 4.8.8 for this query looks like this:
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A.4 Query for evaluation of an incomplete test
(CDGP/CDSR)

(set-logic LIA)
(define-fun max ((x Int)(y Int)) Int (ite (>=vy x) x y))
(define-fun x () Int (- 1))
(define-fun y () Int 0)
(assert (and
(>= (max x y) x)
(>= (max x y) vy)
(or (= (max x y) x) (= (max x y) y))))
(check-sat)

The aim of this query is to determine, if a program satisfies the formal specification
for a given input. This query is very similar to the query in Section A.3, but it has two
differences:

e Function’s inputs in lines 3-4 are not free variables but constants.

e Specification in lines 5-8 is not negated. The objective of this query is to assert
correctness, not search for a counterexample.

If the solver answers with unsat then the function is incorrect for that input; if it
answers with sat then it is correct for that input. The output of Z3 4.8.8 for the query
above looks like this:

unsat

meaning that program (ite (>= x y) y x) is not correct for the inputs (r = —1,y = 0).

A.5 Query for finding output of a test case
(CDGP/CDSR)

(set-logic LIA)
(declare-fun out () Int)
(define-fun max ((x Int)(y Int)) Int out)
(define-fun x () Int (- 1))
(define-fun y () Int 0)
(assert (and
(>= (max x y) x)
(>= (max x y) vy)
(or (= (max x y) x) (= (max x y) y))))
(check-sat)
(get-value (out))

This query is used during the creation of a test case from a counterexample. The aim
of this query is to find such an output to a particular input (in this case: z = —1,y = 0)



10

11

12

13

14

15

16

17

18

130 A Queries to SMT solver

that will satisfy the formal specification. For consistency with other queries, free variable
out is put inside the max function definition. Then, in lines 6-9 we simply assert the original
specification.

The output of Z3 4.8.8 for this query looks like this:

sat
((out 0))

The interpretation is that 0 is a correct output with respect to the formal specification.
We have, however, no guarantees that it is the only correct output. If solver answers with
unsat then it means that the specification is contradictory for this input.

A.6  Query for checking if a synthesis problem has
global single-output property (CDGP)

(set-logic LIA)

(declare-fun outl () Int)

(declare-fun out2 () Int)

(define-fun max2__1 ((x Int)(y Int)) Int outl)
(define-fun max2__2 ((x Int)(y Int)) Int out2)
(declare-fun x () Int)

(declare-fun y () Int)

(assert (>= (max2__1 x y) X))
(assert (>= (max2__1 x y) vy))
(assert (or (= x (max2__1 x y)) (=y (max2__1 x y))))

(assert (>= (max2__2 x y) x))
(assert (>= (max2__2 x y) y))
(assert (or (= x (max2__2 x y)) (=y (max2__2 x y))))

(assert (distinct outl out2))
(check-sat)

The aim of this query is to determine, if there exists such an input to the function
that at least two different outputs would satisfy the specification. To this end, two free
variables outl and out2 are declared in lines 2 and 3 (and, for consistency with other
queries, they are placed inside wrapping-functions defined in lines 4 and 5). Then, in lines
6 and 7, declared are free variables representing inputs of the program. Lines 9-11 and
13-15 contain the original specification with the target function replaced by an appropriate
wrapping-function. Both wrapping-functions have the same input. At the very end of the
script in line 17, we assert that the two output variables need to have different values.

The interpretation of solver’s results is as follows:

e sat — two different correct outputs for the same input were found; the synthesis
problem does not have global single-output property.
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e unsat — it was proven that no such outputs exist; the synthesis problem has global
single-output property.

For this particular example, the output of Z3 4.8.8 looks like this:

unsat

A.7 Optimization query (EPS)

(set-logic NIA)

; FORMAL GRAMMAR

(declare-fun H1StartO_r () Int)

(assert (<= 0 H1StartO_r))(assert (<= Hl1StartO_r 4))
(declare-fun H1StartO_Int () Int)

(declare-fun HlStartl_r () Int)

(assert (<= 0 HlStartl_r))(assert (<= HlStartl_r 1))
(declare-fun H1Startl_Int () Int)

(declare-fun HlStart2_r () Int)

(assert (<= 0 HlStart2_r))(assert (<= HlStart2_r 1))
(declare-fun HlStart2_Int () Int)

(define-fun H1Start2 ((x Int)) Int
(ite (= H1Start2_r 0)
X
H1Start2_Int)
)
(define-fun H1Startl ((x Int)) Int
(ite (= H1lStartl_r 0)
X
H1Startl_Int)
)
(define-fun H1Start0® ((x Int)) Int
(ite (= Hl1StartO_r 0)
X
(ite (= HlStartO_r 1)
H1Start0_Int
(ite (= H1Starto_r 2)
(+ (H1Startl x) (H1Start2 x) )
(ite (= Hl1Starto_r 3)
(- (H1Startl x) (H1Start2 x) )
(* (H1Startl x) (H1Start2 x) )))))
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; TEST CASES

(define-fun res_TO () Int (+ (H1Start0 -2) 1))
(define-fun itest0® () Int (ite (= res_TO 5) 1 0))

(define-fun res_T1 () Int (+ (H1Start® 0) 1))
(define-fun itestl () Int (ite (= res_T1 1) 1 0))

(define-fun res_T2 () Int (+ (H1Starto 2) 1))
(define-fun itest2 () Int (ite (= res_T2 5) 1 0))

(declare-fun fitness () Int)

(assert (= fitness (+ itestO itestl itest2)))
(maximize fitness)

(check-sat)

(get-model)

In this query we assume that we have a partial program (sketch) with holes, but in the
example above for simplicity there is only one hole represented by a function H1Starto.
This function is parameterized with several free variables (H1StartO_r, HlStartl_r,
H1Start2_r, H1StartO_Int, H1lStartl_Int, H15tart2_Int) and organized into a more
manageable form with the help of auxiliary functions (H1Startl, H1Start2). The free
variables define the space of all possible completions of H1Start0, and they do it by
expressing the formal grammar of the content that can be put into the hole. In this
case, the depth of expression to fill the hole is limited to be not greater than 2. After
the definition of H1Start0, all test cases are processed by the program and the fitness is
computed. Finally, the maximize statement instructs SMT solver about the optimization
criterion, i.e., maximization of the number of passed tests.

The query can have the following outcomes:

e sat — the optimal hole’s completion was found.

e unsat — no hole’s completion was able to satisfy additional, unrelated to the fitness,
constraints (there are no such constraints in the example above).



Appendix B

CDSR: Detailed experimental results

B.1

Introduction

In this appendix, we present the full results of the computational experiment performed
in Chapter 7:

Table B.1 — Success rates for all benchmarks (rows) and CDSR variants (columns).
A ‘success’ is defined as a satisfaction of all constraints at the end of the run.

Table B.2 — Average ratio of satisfied constraints per run for all benchmarks and
CDSR variants.

Table B.3 — Median MSE on test set for all benchmarks and CDSR variants.

Table B.4 — (noNoise benchmarks) Information about how often a given constraint
(rows) was satisfied by a solution returned by a given algorithm (columns). 1.0
means that it was satisfied in every run, and 0.0 that in no run.

Table B.5 — (withNoise benchmarks) The same as above, but for a different set of
benchmarks.

Table B.6 — a comparison of success rates between the most performant constraint-
agnostic regression algorithms and CDSR.

Table B.7 — a comparison of constraint satisfiability ratio between the most per-
formant constraint-agnostic regression algorithms and CDSR.

Table B.8 — a comparison of MSE on test set between the most performant
constraint-agnostic regression algorithms and CDSR.

Table B.9 — a comparison of runtimes between the most performant constraint-
agnostic regression algorithms and CDSR.
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Table B.6: Success rates for all benchmarks Table B.7: The average ratio of satisfied con-

(N=Noise). straints for all benchmarks (N=Noise).
Ada- | Kernel- | CDSRysE | CDSRgat Ada- | Kernel- | CDSRysg | CDSRgat
Boost | Ridge Boost | Ridge
gravity 0.00  0.00 0.08 0.06 gravity 0.50  0.00 0.46 0.53
keijzer12 | 0.00  0.00 0.10 0.12 keijzer12 | 0.17  0.33 0.12 0.56
keijzerl4 | 0.00 | 1.00 0.00 0.72 keijzerl4 | 0.75  1.00 0.03 0.73
keijzerl5 | 0.00  0.00 0.06 0.28 keijzerl5 | 0.33  0.33 0.07 0.36
keijzer5 0.00  0.00 0.04 0.08 keijzer5 0.33  0.67 0.19 0.32
nguyenl 1.00 1.00 0.42 0.64 nguyenl 1.00 1.00 0.42 0.69
nguyen3 1.00 0.00 0.12 0.38 nguyen3 | 1.00  0.00 0.12 0.50
nguyend | 1.00  0.00 0.12 0.50 nguyend | 1.00  0.67 0.12 0.56
pagiel 0.00  0.00 0.10 0.58 pagiel 0.67  0.67 0.40 0.84
res2 0.00  0.00 0.84 0.76 res2 0.67  0.67 0.88 0.83
res3 0.00  0.00 0.40 0.22 res3 0.80 0.80 0.45 0.42 |
|gravityN | 0.00 000 000  0.04 | |gravityN | 0.50 0.50 038  0.49
keijzer12N | 0.00  0.00 0.00 0.02 keijzer12N | 0.17  0.17 0.13 0.49
keijzer14N | 0.00 | 1.00 0.00 0.74 keijzer14N | 0.75  1.00 0.01 0.77
keijzer15N | 0.00  0.00 0.02 0.22 keijzer15N | 0.33  0.33 0.03 0.29
keijzer5N | 0.00  0.00 0.06 0.06 keijzer5N | 0.33  0.67 0.23 0.35
nguyenIN | 1.00  0.00 0.38 0.52 nguyenIN | 1.00  0.67 0.42 0.68
nguyen3N | 1.00  0.00 0.20 0.36 nguyen3N | 1.00  0.33 0.33 0.52
nguyen4N | 1.00 0.00 0.18 0.40 nguyen4N | 1.00 0.67 0.22 0.49
pagielN 0.00 | 1.00 0.08 0.74 pagielN 0.67  1.00 0.37 0.88
res2N 0.00  0.00 0.66 0.58 res2N 0.67  0.67 0.77 0.78
res3N 0.00  0.00 0.30 0.24 res3N 0.80 0.80 0.38 0.50
Mean 0.27  0.18 0.19 0.38 Mean 0.66  0.59 0.30 0.57
Rank 2.82  3.14 2.34 1.70 Rank 2.05 2.16 3.61 2.18
Table B.8: The median MSE on test set for all Table B.9: The average wall-clock runtime (in
benchmarks (N=Noise). seconds) for all benchmarks (N=Noise).
Ada- Kernel- CDSRMSE CDSRsat Ada- | Kernel- CDSRMSE CDSRsat
Boost Ridge Boost | Ridge
gravity 2.6-101* 5510 6.7-1016 7.4.1071° gravity 889 322 1335 1800
keijzerl2 [4.6-10° 3.9-102 8.0-10 % 4.7-102 keijzer12 62 48 1719 1800
keijzerld [1.1-102 2.6-10% 7.7-10° 1.3.-10! keijzer14 36 4.8 1518 1800
keijzerl5 [1.3-10% [1.4:10710 5.1-101 1.5-102 keijzerl5 39 7.0 1583 1800
keijzer5 [7.5:10% 2.8-10% 1.7 108 1.2 108 keijzerb 24 13 658 1800
nguyenl [6.5-102 2.1-10°2 3.0-1027 2.8-1072 nguyenl 13 3.3 1158 1447
nguyen3 |2.8-107 2.1-10° 1.8-10' 1.5-10° nguyen3 12 4.5 1640 1773
nguyend |5.1-10% 3.2-10° 3.5-102 4.0-10° nguyend 12 3.5 1659 1794
pagiel 13-102 3.0-10% 44-10°% 1.2-107! pagiel 37 17 876 1800
res2 1.0-10! 3.1-10° [2.6:1031 2.6.1031 res2 32 4.2 313 752
res3 15-10" 31-10% 24.10% 21-10" | |res3 167 22 953 1678 |
leravityN  |2.1- 1014 1.2- 1014 1.2.12018 11101 gravityN 73 61 1285 1800
keijzer12N (4.8 - 10> 2.4-10%* 2.9-10*  2.9-10% keijzer12N | 29 17 388 1800
keijzer14N 1.1 .10 5.9-10% 1.1:10% 1.2-107! keijzer14N | 21 4.7 1209 1800
keijzerl5N [1.4-10% 6.7 10 7.0- 10! 1.5 - 102 keijzerl5N | 39 6.3 983 1800
keijzer5N [4.5-108 4.3-10 2.7 - 10 8.2 108 keijzer5N 23 14 397 1800
nguyenIN [9.8 - 102 2.6 102 2.4-102 2.8-102 nguyenlN 12 3.5 545 1800
nguyen3N [1.4-107 7.5-10 4.3-10% 5.5 108 nguyen3N | 12 3.5 403 1800
nguyendN (4.9 -10° 4.4-108 7.4-10%  6.1-10° nguyendN | 12 4.5 516 1800
pagieIN [2.5-102 8.0:10° 6.7-10° 1.4-10"! pagielN 38 16 953 1800
res2N 1.3-101 55-10° 4.1-10% 42103 res2N 31 3.9 1731 1800
res3N 1.7-101 4.8-10° 1.5:-10% 1.5-107" res3N 50 21 1475 1800
Rank 2.50 2.50 2.50 2.50 Mean 75.59 27.49  1058.95  1729.27
Rank 2.00  1.00 3.00 4.00
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