

POZNAŃ UNIVERSITY OF TECHNOLOGY

FACULTY OF COMPUTING AND TELECOMMUNICATIONS

SYLWESTER MILEWSKI

HYPERCOMPRESSION OF TEST DATA

Ph. D. Thesis

Supervisor:

prof. dr hab. inż. Jerzy Tyszer

Poznań, Poland, 2021

3

Abstract

Testing of digital circuits has always been a vibrant area of research and development, primarily

due to imperfect manufacturing processes and staggering complexity of semiconductor devices.

It can be easily observed that each shrinking technology node brings new challenges for man-

ufacturing test due to, for example, new types of failure mechanisms and defects. These defects

require more complex fault models, and thus test patterns whose number is steadily increasing.

This, in turn, leads to long test application times and elevated test data volumes. Furthermore,

modern safety-critical applications require reliable and robust in-system tests of quality match-

ing that of manufacturing tests. To alleviate and temper these problems, new testing methods

are required despite significant advancements made in the past. Furthermore, power consump-

tion during test must be seriously taken into account so that functional power limits are not

exceeded. To satisfy current and anticipated VLSI test requirements, the thesis introduces

a number of methods that target two important aspects of a test preparation process: test set

compaction and test data compression.

First, a novel test set compaction methodology employing a state-of-the-art SAT-based

automatic test pattern generation (ATPG) algorithm is presented. In principle, it is based on

a dimensionality reduction paradigm that works with a meaningful representation of test pat-

terns using external and internal necessary assignments to determine small groups of potentially

compatible faults. These faults are subsequently retargeted by the robust SAT-based ATPG and

its solvers producing a single test pattern for the entire group, thus making the resultant test set

smaller in size.

The subsequent part of the thesis presents a new test compression scheme that aims at

achieving encoding efficiency higher than any best-to-date sequential compression methods.

The approach is based on a key observation that among care bits populating test cubes only

a very few have a status of necessary assignments (their locations cannot be changed), whereas

the remaining ones have alternative sites. These test cubes are used to form circular test tem-

plates which synergistically control a decompressor and guide back ATPG to find assignments

yielding highly compressible test patterns.

4

The last part of this work proposes a next step in developing a new class of test data

compression schemes. Although it builds on the paradigm recalled in the previous paragraph,

it further limits silicon overhead, remains non-intrusive to the core logic, and elevates compres-

sion ratios. More importantly, however, it is inherently a low-power test solution that alleviates

problems related to fault coverage drop and pattern count inflation caused by power constraints.

Extremely small test templates make that scheme very flexible – it is capable of attaching a tem-

plate to every pattern at a negligible cost related to test time and data volume, especially when

working with a very few ATE channels.

All solutions presented in the thesis have been thoroughly verified through experimental

results obtained for a variety of industrial and open-source benchmark circuits representing the

latest technology nodes while varying with respect to design styles and scan methodologies, to

name just a few factors that were taken into account.

5

Streszczenie

Testowanie układów i systemów cyfrowych pozostaje dynamicznie rozwijanym obszarem ba-

dań naukowych i praktyki inżynierskiej, przede wszystkim ze względu na niedoskonałości pro-

cesów wytwarzania układów półprzewodnikowych i ich bezprecedensową złożoność. Kolejne

generacje cyfrowych układów scalonych wielkiej skali integracji wprowadzają nowe typy

uszkodzeń, których wykrycie wymaga złożonych modeli oraz stale rosnącej liczby wektorów

testowych. W konsekwencji rośnie konieczna ilość danych testowych oraz wydłuża się czas

testowania. Istotny wpływ na kształt nowych technologii testowania ma także powszechna już

obecność układów elektronicznych w urządzeniach o krytycznym znaczeniu dla zdrowia lub

bezpieczeństwa. Ewentualne uszkodzenia układów zajmujących centralne miejsce w takich

systemach mogą prowadzić do katastrofalnych następstw. Systemy te wymagają periodycznych

testów wysokiej jakości (zwykle porównywalnej z jakością testów produkcyjnych) wykonywa-

nych także w trakcie normalnej eksploatacji układu. Kolejny problem stanowi kilkukrotny

wzrost, w trakcie testowania, zużycia energii. Ponadnormatywna aktywność układu w trakcie

testu wymusza zatem bardzo staranne zarządzanie wykorzystaniem energii za pomocą dedyko-

wanych, energooszczędnych metod testowania. W związku z przedstawionymi wymaganiami

w pracy podjęto próbę rozwiązania dwóch istotnych zagadnień: minimalizacji liczby wektorów

testowych (co w efekcie oznacza skrócenie czasu testowania) oraz redukcji wolumenu danych

niezbędnych w procesie aplikacji właściwych testów.

W pierwszej części rozprawy podano metodę ograniczenia liczby wektorów testowych,

początkowo otrzymanych za pomocą konwencjonalnych algorytmów automatycznej generacji

testów. W zaproponowanym podejściu wykorzystano technikę redukcji wymiaru, tj. proces

zmniejszania liczby zmiennych branych pod uwagę w trakcie analizy wektorów testowych.

Zgodnie z tym podejściem, początkowy zbiór wektorów testowych, a w szczególności zbiór

jego wartości koniecznych, jest wykorzystywany do zdefiniowania małych grup uszkodzeń po-

tencjalnie zgodnych (wykrywanych za pomocą tego samego pobudzenia). Następnie wektory

testowe są generowane ponownie za pomocą heurystycznych algorytmów stosowanych trady-

cyjnie w rozstrzyganiu problemu spełnialności formuł logicznych.

6

W dalszej części rozprawy przedstawiono metodę redukcji (kompresji) danych testo-

wych, której celem jest osiągnięcie wysokiej efektywności kodowania. Zaproponowane podej-

ście opiera się na obserwacji, że wśród wyspecyfikowanych bitów wektorów testowych tylko

nieliczne są konieczne (ich wartości oraz przypisania do wejść układu nie można zmienić),

podczas gdy pozostałe można zastąpić innymi wartościami przypisanymi do alternatywnych

wejść. Tak interpretowane wektory testowe są następnie wykorzystywane do utworzenia cy-

klicznych szablonów sterujących procesem kompresji (i dekompresji) danych testowych.

Ostatni rozdział pracy to kolejny krok w ewolucji metod kompresji danych testowych.

Bazując na opisanej we wcześniejszych rozdziałach rozprawy metodzie redukcji danych, nowy

algorytm umożliwia dalsze ograniczenie infrastruktury testującej, zwiększa stopień kompresji

oraz znacząco zmniejsza pobór mocy w trakcie podawania testów. W szczególności redukuje

także rozmiar szablonów, które są dodawane do każdego wektora bez istotnego wpływu na czas

testu i wynikową ilość danych testowych.

Wszystkie rozwiązania przedstawione w pracy zweryfikowano w badaniach eksperymen-

talnych przeprowadzonych za pomocą opracowanego przez autora oryginalnego oprogramo-

wania będącego rozszerzeniem istniejących narzędzi komercyjnych. W eksperymentach wyko-

rzystano współczesne scalone cyfrowe układy przemysłowe oraz układy testowe typu open-

source.

7

Contents

 INTRODUCTION .. 14

 PREAMBLE .. 14

 MOTIVATION ... 19

 ACKNOWLEDGMENTS .. 21

 PRELIMINARIES .. 23

 DETERMINISTIC TEST PATTERN GENERATION .. 23

 DESIGN FOR TESTABILITY .. 25

 EMBEDDED DETERMINISTIC TEST ... 26

 ISOMETRIC COMPRESSION ... 28

 COMPUTING NECESSARY ASSIGNMENTS .. 32

 SINGLE-STEM-BASED NECESSARY ASSIGNMENTS .. 33

 FANOUT-FREE REGIONS AND GLOBAL DOMINATORS .. 34

 COMBINED SIMULATION .. 35

 CONTRAPOSITIVE LEARNING ... 36

 CONSTRUCTIVE DILEMMA ... 37

 D-FRONTIER .. 38

 MULTITARGET CUBE GENERATION .. 39

 FAULT DETECTION PROFILE ... 39

 REDUCTION OF PATTERNS ... 41

4.2.1 Fault grouping ... 41

4.2.2 SAT-based ATPG formulation for multiple targets .. 44

 EXPERIMENTAL RESULTS .. 46

 HYPERCOMPRESSION OF TEST DATA ... 49

 DECOMPRESSOR ARCHITECTURE ... 49

 TEST TEMPLATE SYNTHESIS .. 52

5.2.1 Toggle ranges .. 52

5.2.2 Test templates .. 55

 TEST COMPRESSION FLOW ... 59

5.3.1 Implied values .. 61

 EXPERIMENTAL RESULTS .. 64

8

 LOW POWER HYPERCOMPRESSION .. 68

 LOW POWER ARCHITECTURE ... 68

 ESSENTIAL TEST CUBES ... 69

 TEST TEMPLATE SYNTHESIS .. 71

 TEST COMPRESSION FLOW ... 74

 EXPERIMENTAL RESULTS .. 77

 CONCLUSION ... 79

BIBLIOGRAPHY .. 82

9

Figures

Fig. 1.1. “Traditional” types of defects. ... 15

Fig. 1.2. Stochastic printing defects. .. 16

Fig. 1.3. Evolution of test data compression. ... 20

Fig. 2.1. D-multiplexed scan cells. ... 25

Fig. 2.2. General scheme of test data compression and compaction. 27

Fig. 2.3. Example of the EDT decompressor. .. 28

Fig. 2.4. Example of isometric compression. ... 29

Fig. 2.5. Isometric test data decompressor. .. 30

Fig. 2.6. Isometric test pattern. ... 30

Fig. 3.1. Primary fanout stems. .. 32

Fig. 3.2. Necessary assignments computation flow. .. 33

Fig. 3.3. Single-stem-based necessary assignments. .. 34

Fig. 3.4. Fanout-free regions and global dominator. .. 35

Fig. 3.5. Combined simulation. .. 36

Fig. 3.6. Contrapositive learning. ... 36

Fig. 3.7. Constructive dilemma. ... 37

Fig. 3.8. D-frontier. .. 38

Fig. 4.1. 1D1 fault grouping flow. .. 42

Fig. 5.1. Hypercompression architecture. .. 50

Fig. 5.2. Full toggling decoder with two active outputs. .. 51

Fig. 5.3. Reduce operation on toggle ranges. ... 54

Fig. 5.4. Selection of full toggle taps. .. 55

Fig. 5.5. Relaxation. ... 56

Fig. 5.6. High-level test flow. ... 59

Fig. 5.7. Examples of guided ATPG. ... 60

10

Fig. 5.8. Implied values and hold segments. .. 63

Fig. 6.1. Low power hypercompression test logic. .. 69

Fig. 6.2. Circuit for Example 6.1. ... 70

Fig. 6.3. Circuit for Example 6.2. ... 72

Fig. 6.4. Transformations of TPRs. .. 73

Fig. 6.5. High-level test flow. ... 75

11

Tables

Table 4.1: Fault detection profile. .. 40

Table 4.2: Breakdown of faults nD. ... 40

Table 4.3: Breakdown of faults 1D. ... 41

Table 4.4: Circuit characteristics. ... 47

Table 4.5: Experimental results – stuck-at faults. .. 48

Table 5.1: Area overhead – 2-input NAND equivalent (and mm2). .. 52

Table 5.2: Circuit characteristics. ... 64

Table 5.3: Experimental results – stuck-at faults. .. 65

Table 5.4: Experimental results – transition faults. .. 65

Table 5.5: Avarage fill rate for stuck-at patterns [%]. ... 66

Table 5.6: Power metrics [%]. .. 66

Table 6.1: Circuits characteristics. ... 76

Table 6.2: Experimental results – stuck-at faults ... 77

Table 6.3. Power metrics [%]. .. 78

12

List of abbreviations

 Abbreviation Description

 ATE Automatic test equipment

 ATPG Automatic test pattern generation

 BIST Built-in self-test

 CAD Computer-aided design

 CMOS Complementary metal-oxide semiconductor

 CNF Conjunctive normal form

 CUT Circuit under test

 DFT Design for testability

 DPM Defects per million

 DUT Design under test

 EDA Electronic design automation

 EDT Embedded deterministic test

 EUV Extreme ultraviolet

 FFR Fanout-free region

 HTL Hypercompression test logic

 IC Integrated circuit

 IECEJ Institute of Electronics and Communication Engineers of Japan

 LBIST Logic built-in self-test

 LFSR Linear feedback shift register

 LP Low power

 LP-HTL Low power hypercompression test logic

 MISR Multiple-input signature register

 NA Necessary assignment

 PCB Printed circuit boards

13

 PRPG Pseudorandom pattern generator

 ROM Read-only memory

 SCOAP Sandia Controllability/Observability Analysis Program

 SAT Boolean satisfiability problem

 SoC System on a chip

 SPIE Société Parisienne pour l'Industrie Electrique

 STUMPS Self-testing using MISR and parallel shift register sequence

generator

 TPG Test pattern generator

 VLSI Very-large-scale integration

 WSM Weighted switching activity

 WTM Weighted transition metric

 The conference names:

 ATS IEEE Asian Test Symposium

 DAC ACM/IEEE Design Automation Conference

 DATE Design Automation and Test in Europe

 ETS IEEE European Test Symposium

 FTCS IEEE International Symposium on Fault-Tolerant Computing

 ICCAD ACM/IEEE International Conference on Computer-Aided De-

sign

 ICCD IEEE International Conference on Computer Design

 IEDM IEEE International Electron Devices Meeting

 ISSCC IEEE International Solid-State Circuits Conference

 ITC IEEE International Test Conference

 VTS IEEE VLSI Test Symposium

14

Introduction

 Preamble

On April 25, 1961, the US patent office awarded the first patent for a monolithic integrated

circuit (IC) to Robert Noyce of Fairchild Semiconductor startup company. Although those so-

called “unitary circuits” comprised just a few transistors [65], they were seminal signs of the

shift in technology that was moving the entire world into the third industrial revolution, which

would be dominated by electronics, computing, information, and digital advances. From that

moment on, microelectronic devices have been increasingly shaping every aspect of our lives:

the way we work, communicate, travel, or entertain. Interestingly, humankind is again facing

a time of significant change. During the last two decades, we have witnessed a perfect storm of

technology convergence that includes the dominance of data, massive computing, progress in

algorithms and processing methodologies, and the integration of disparate technologies.

Clearly, one of the key factors that makes all of this possible is the exponential miniaturization

of chips and other components, predicted inexorably by Moore’s Law [59]. Despite of several

concerns, this 60-year old observation “is still there” as evidenced by Apple releasing, in 2020,

one of the most powerful processors made of more than 16 billion transistors [94].

Semiconductor chips housing large circuitries capable of executing complex tasks and

functions are prone to defects as any other result of product engineering. However, the reliabil-

ity and robustness of electronic systems is no longer a concern limited to certain industries,

where a failure may have severe (or even catastrophic) consequences. On the contrary, reliabil-

ity and test techniques have become of increasing interest to a countless number of applications.

As a result, the challenge of testing electronic systems has been growing rapidly over the last

decades driven by unprecedented technological advances resulting in the technology feature

dimensions shrinking such that state-of-the-art ultra-tiny interconnects between transistors are

now matter of tens of atoms, whereas the thickness of insulating layers of transistor gates is

equal to 3-5 atoms [13]. Even though the introduction of extreme ultraviolet (EUV) lithography

Introduction

15

[92] made this miniaturization possible, it also made a complex defects inevitable in nanometer-

scale devices. A list of principal failure mechanisms includes surface and bulk effects, metalli-

zation, process instabilities, package-related problems, and human errors. In addition to popular

types of defects such as extra and missing material, oxide breakdowns, or electromigration (Fig.

1.1) [56], [91], one needs to consider more frequent stochastic printing failures such as micro-

bridges, broken lines, and missing or merging contacts (Fig. 1.2) [9], [91], all of them resulting

in faulty circuits. These defects require robust test procedures to assure delivery of impeccable

products, regardless of whether the product is a single IC or an electronic system composed of

many VLSI devices. Nevertheless, the wide variety of defects in chips makes it virtually im-

possible to create test patterns that would detect all actual physical failures. As a solution, ab-

stract fault models are employed to represent a defective circuit behavior, including the all-time

favorite single stuck-at fault where one of the signal lines in a circuit is assumed to be stuck at

a fixed logic value. Since new manufacturing techniques generate new types of defects, many

fault models were gradually introduced to better represent behavior of a faulty IC [1].

Defects in microelectronic systems may occur at any stage of their production process.

Consequently, various types of test routines are deployed several times beginning with manu-

facturing tests for individual ICs, then tests involving the same ICs soldered on printed circuit

boards (PCBs), and subsequently all the way to a complete system assembled and sent to

the end user. At each stage, the device must be tested thoroughly because the later a defect is

detected, the higher the cost of fault detection is going to be. As the rule of ten states [83],

Fig. 1.1. “Traditional” types of defects: (a) cluster, (b) line collapse, (c) particles, (d) process defect [5].

Introduction

16

detecting a defective IC further in the process increases that cost by order of magnitude per

stage. Consequently, it is crucial to spot a defective circuit as soon as possible.

Given a circuit, the basic objective of the IC testing is to produce patterns that excite

(provoke) faults and propagate their effects (errors) to observable outputs (or other observation

points). To put it in a different way, a test stimulus must yield different responses depending on

whether a circuit is fault-free or faulty. Apart from very simple designs, it is virtually impossible

to get such patterns manually. In 1966 and 1967, P. Roth published two seminal papers [74],

[75] on D-algorithm – the method to automate test pattern generation that, for the first time,

introduced a calculus and methods for automatic test pattern generation (ATPG) for combina-

tional circuits. It was also shown [44] that although the D-algorithm can find a test pattern for

any detectable fault, it belongs to the class of NP-complete problems. Because of such com-

plexity, several combinational ATPG heuristics were proposed in the following years [83] to

reduce ATPG processing times. Although most of them used the concepts introduced by

P. Roth, these techniques may not guarantee a solution. Instead, they exploit structural infor-

mation or sophisticated learning processes to improve ATPG performance (as detailed in the

next chapter). As a result, the test generation algorithms can maximize the number of detected

faults, but they may not optimize the corresponding pattern count. Since it determines test ap-

plication time and a tester memory size (and thus cost of test), a lot of research effort was spent

on developing test set reduction methods, also known as test set compaction. In principle, these

algorithms transform test sets in such a way that each (compact) test vector detects as many

faults as possible [83].

 The challenge of test generation is clearly more cumbersome and intricate for sequential

circuits. Although there were several attempts to develop a fully functional sequential ATPG

[61], [64], its computational complexity makes generating patterns for large sequential circuits

Fig. 1.2. Stochastic printing defects: (a) missing contact, (b) merging contact, (c) microbridge,
(d) broken line [5].

Introduction

17

an excruciating and daunting task. Even worse, those algorithms were handling successfully

only fairly regular structures. The inability to easily control and/or observe internal state varia-

bles of sequential circuits led finally to adoption of design techniques that facilitate testing.

These so-called design for test (DFT) schemes advocate the use of additional on-chip constructs

that make testing easier with respect to test generation, test application, and many other test-

related activities. The DFT started with the ad-hoc insertion of control and observation test

points into a design. However, it has required manual implementation and verification which

quickly became unfeasible because of complexity of VLSI circuits. This created a particularly

pressing need for automation. In the 70s, IBM and NEC have introduced independently a scan-

based design methodology, which unified and automated the process of DFT insertion [25],

[27], [49]. According to this paradigm, a synchronous sequential circuit works in two modes:

(1) a functional mode, where a circuit executes a mission it was designed for, whereas in (2)

a test mode, all or almost all flip-flops form one or more shift registers (scan chains), which are

used to gain access to internal nodes of a chip. As a result, test generation is reduced to that of

combinational circuits which can be directly driven and observed. The resultant patterns and

responses can be shifted-in and shifted-out via scan chains, respectively. This test paradigm

was successfully and firmly in place for the next five decades, and there are no contenders on

the horizon even though scan designs incur certain hardware overhead and performance degra-

dation, not to mention certain IP security concerns.

Despite the overwhelming deployment of efficient ATPG and DFT schemes, new test

challenges surfaced in the early nineties. In particular, smaller and smaller technology nodes

with the corresponding new fault models have caused the magnitude of test sets produced by

contemporary ATPG tools to grow at a pace visibly surpassing Moore’s Law. This, in turn, has

resulted in a significant increase in test cost because of lengthy test times and large tester

memory requirements. In 1999, at his International Test Conference (ITC) keynote speech, Pat

Gelsinger, the CEO of Intel at that time, warned that in 10 years, the cost of testing a transistor

would become greater than its manufacturing cost [29]. The test community responded to this

challenge promptly with the introduction of test data compression, another milestone in reduc-

ing the test cost [6], [72], [79]. In accordance with this new paradigm, ATE stores compressed

test patterns and delivers them to an on-chip decompressor, which drives scan chains with the

actual test stimuli. Similarly, test responses are shifted-out via scan chains to an on-chip com-

pactor and sent back to a tester to be compared against golden references. This approach reduces

Introduction

18

test application time, ATE memory as well as I/O channels. Moreover, the test throughput is

increased while maintaining the high-quality of test.

The trend to integrate various functionalities on a single chip continues and brings more

and more functionalities to a single die. Massive integration is even stronger in the mobile,

space, home automation, or automotive electronics, where systems-on-a-chip (SoC) bring to-

gether complex computing, communications, and entertainment functions on a single die. As

a result, durability and reliability over their expected lifetime become a significant concern. In

these applications, devices must be thoroughly tested, not only before their application but also

during their lifespan; it requires monitoring of material aging and wear-out. This was partially

resolved by deployment of logic built-in self-test (LBIST) [4], [80]. However, the resultant test

quality and test application times were not satisfactory, mainly due an inherent inability to suc-

cessfully tackle random pattern resistant faults. This bottleneck was overcome by combining

LBIST with test compression. New compression techniques allowed sharing specific on-chip

resources and created hybrid test schemes as a new and promising direction in the embedded

test. Several hybrid LBIST schemes were proposed to store deterministic top-up patterns (de-

tecting random pattern resistant faults) on a tester in a compressed form, and then use the ex-

isting LBIST hardware to decompress them. Nowadays, many manufacturers go even further

and perform full deterministic in-system tests. It takes more memory resources but assures the

desired test quality.

The drive to pack more functions into a small space leads also to power delivery and heat

flux issues affecting supply integrity and chip packaging. Power issues, however, affect not

only the mission mode but the test mode as well, as toggling rates and the resultant power

consumption can be much higher than a circuit is rated for (typically, the goal of structural scan-

based test is to activate as many nodes as possible in a very short period of time [30]). This

trend is only expected to get worse. The resulting higher junction temperature and increased

peak power lead to overheating or supply voltage noise - either of which can cause a device

malfunction and thus yield loss, chip reliability degradation, shorter product lifetime, or device

permanent damage.

In spite of many techniques used to arrive with high quality and compact tests, the afore-

mentioned limitations and constraints are still shaping development of testing schemes for

VLSI devices. Therefore, new generation ATPG and test compression schemes must take those

Introduction

19

factors into account. In response to these challenges, the thesis proposes new techniques target-

ing test pattern generation, test set compaction, and test data compression.

 Motivation

Although combinational ATPG, the associated test compaction schemes, and test data com-

pression methods are considered a very mature area of science and engineering by many, the

magnitude of test sets produced by contemporary ATPG tools continues to grow, as already

mentioned in the previous chapter. The inflated test sets and lengthy test application times are

commonly attributed, although not limited, to: (1) pattern-intensive transistor-level test gener-

ation techniques aimed at reducing test escapes and handling many clock domains, (2) circuits

of large combinational depths with staggeringly complex clocking schemes, (3) excessive tail

pattern counts featuring very few specified bits, yet difficult to merge due to mutual conflicts,

and (4) automatically generated RTL whose tricky control logic poses non-trivial test chal-

lenges. As a result, large test sets become efficiency limiting and cost-increasing factors in test-

ing embedded systems, system-on-a-chip designs, or any other complex designs brought to the

market.

To address these challenges, the first part of this work proposes a new test set compaction

technique that follows a long list of earlier contributions in the same area, including reverse

order fault simulation [78], [82], methods setting unspecified values so as to detect more faults

by a single pattern [32], or techniques that target faults in a particular order to further decrease

a test set [66]. A method presented here replaces a complete set of fully specified test patterns

by its meaningful yet reduced representation. It integrates synergistically several techniques,

such as computation of necessary assignments, a comprehensive fault profiling, a fault group-

ing, and a customized version of SAT-based ATPG, to reduce effectively the original test set

while preserving all benefits of modern ATPG tools.

It is worth noting that even a compact test set can still be a major source of test complexity

due to the explosive pace of test data growth. Clearly, this problem is not new [50]. However,

since the late nineties, it is growing much more acute. As a result, various test data compression

schemes have started having a significant impact on the test landscape. One of the most straight-

forward solutions was to broadcast test data to scan chains through hardwired fanouts of a few

ATE channels [54], as shown in Fig. 1.3b. The Illinois scan [36] used the same principle but

Introduction

20

allowed reconfiguration of input fanouts. Clearly, these techniques can only succeed provided

they are tightly coupled with a compression-aware ATPG. More flexible solutions belong to

a linear compression class that involves only linear operations to decompress test vectors. These

techniques are based on combinational linear expansion circuits comprising XOR gates [7], [8]

(Fig. 1.3c), or various forms of linear finite state machines, such as linear feedback shift regis-

ters (LFSRs), ring generators, or cellular automata (Fig. 1.3d)1. The chronologically first static

LFSR reseeding [40], [50], was eventually replaced by a dynamic LFSR reseeding streaming

data into a decompressor as it loads the scan chains. This continuous-flow paradigm is probably

best represented by the embedded deterministic test (EDT) [72] that has gained broad ac-

ceptance as a reliable industrial solution. Its sequential decompressor has much higher encoding

capacity, so the encoding works for arbitrary test cubes. The other major advantage of EDT is

that its decompressor can be reused as pseudorandom test pattern generator (PRPG) in com-

pression/LBIST hybrids. Any conventional dynamic LFSR reseeding scheme, however, cannot

compress test data to less than the total number of specified bits. Isometric compression [51]

1 Another group of methods uses on-chip devices to handle various forms of code-based test pattern com-

pression (Fig. 1.3e). However, these methods have a limited usage in the industrial test realm due to a non-trivial
encoding process and a complex on-chip hardware needed to decompress test data [81].

Fig. 1.3. Evolution of test data compression: (a) no compression, (b) broadcast scan, (c) combinational linear
decompressor, (d) sequential linear decompressor, (e) code-based decompressor.

Introduction

21

elevates the encoding beyond this limit by synergistically engineering both ATPG and test en-

coding. Nevertheless, it might be inconvenient to implement a generic isometric decompressor,

as proposed in [51]. Furthermore, since the scheme works exclusively with low-power patterns

affecting all scan chains, it may also compromise test coverage.

The above concerns are addressed by a novel test data compression paradigm called hy-

percompression which is presented in the second part of this work. It aims at extreme test data

compression ratios and, additionally, it offers inherent low-power capabilities by reducing

switching activity during shift-in of test data. While it builds on the isometric compression

principles, the native isometric decompressor is rearchitected to keep a silicon real estate of test

logic at an acceptable level. As a result, its area becomes a tiny fraction of the entire DFT in-

frastructure. Moreover, the hypercompression test power management scheme deploys a pro-

grammable selection of a very few scan chains that should be put into a full-toggle mode. As

a result, it avoids periods of elevated toggling in scan chains and reduces scan load switching

activity.

The remainder of the thesis is organized as follows. Chapter 2 recalls and outlines the

basic VLSI test concepts as well as state-of-the-at solutions related to problems being tackled

in this work. Chapter 3 describes the methods of computing necessary assignments. What fol-

lows in Chapter 4 is a presentation of a static compaction algorithm that combines necessary

assignments with SAT-based ATPG. The second part of the thesis begins with Chapter 5 that

introduces the test hypercompression technique. Chapter 6 demonstrates how this method can

be enhanced by further reducing the decompressor size and lowering a power dissipation. The

thesis concludes with Chapter 7. All solutions proposed in this work are thoroughly verified by

means of experimental results obtained for large and complex industrial designs.

 Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisors Prof. Janusz

Rajski and Prof. Jerzy Tyszer for their invaluable guidance and encouragement throughout the

span of this thesis. Their enthusiasm and high standards have fueled the motivation behind my

work and helped me acquire valuable skills with carry over to my future endeavors. I am also

thankful for scientific advice, knowledge, and many insightful suggestions and discussions we

Introduction

22

had. Without their assistance and dedication in every step throughout the project it would have

never been successfully completed.

My special gratitude goes to Dr. Grzegorz Mrugalski of Siemens Digital Industries Soft-

ware, Poland, whose stimulating suggestions and constructive feedback helped me many times

resolve various technical problems. I extend my thanks to Dr. Justyna Zawada and Dr. Jędrzej

Solecki who have accompanied me on my PhD journey. I also would like to acknowledge the

members of DFT group at Siemens Digital Industries Software. In particular, I appreciate very

much insightful suggestions and support received from Dr. Yu Huang, Dr. Chen Wang and Dr.

Elham Moghaddam. They all have been a source of friendship as well as good advice and col-

laboration. Finally, I gratefully acknowledge funding that made my PhD work possible. The

Siemens Digital Industries Software scholarship I received during my PhD journey allowed me

to attend international conferences and to successfully join the international test community.

Lastly, I would like to thank my family: my parents who supported me in all my pursuits,

and most of all, my loving, supportive, encouraging, and patient wife Karolina whose faithful

support during all stages of this PhD process is so appreciated. Thank you.

23

Preliminaries

As the thesis tackles problems related to test set compaction and the resultant test data com-

pression, this chapter, for the sake of self-containment and completeness, recalls and reviews

both the useful key terms and the most relevant state-of the-art solutions in these areas. We

begin with principles of algorithmic generation of test patterns and the corresponding test com-

paction methods. Subsequently, the basic concepts that govern the process of designing circuits

to make them easy to test are briefly revisited to allow a review of the isometric test compres-

sion – a technique that lays foundations for the hypercompression of test data, a new test para-

digm presented in the following parts of this work.

 Deterministic test pattern generation

In 1966, P. Roth introduced the first-ever published algorithmic procedure for test pattern gen-

eration [74], [75]. His D algorithm uses a five-value algebra comprising symbols 0, 1, D, D� and

X. In particular, symbols D and D� stand for a faulty effect on a line, i.e., they allow one to

distinguish a good circuit behavior and its faulty counterpart: D represents the logic value of

1 in the good circuit and 0 in the faulty one, whereas D� is the opposite case. The algorithm

injects the faulty effect D or D� (depending on a fault type) at the fault site, and then tries to

propagate it to an observable output. Furthermore, all gates necessary to propagate the faulty

effects must be justified with the required values. Since the test generation problem belongs to

the NP-complete class, D algorithm’s runtime for larger circuits becomes quickly unacceptable.

Consequently, the following years brought several attempts to reduce the test generation CPU

time. Authors of PODEM [31] – one of the first methods proposed at that time – noticed that

D algorithm added every node to a decision tree. However, in combinational circuits, it suffices

to consider primary input (PI) nodes only. As a result, a fewer number of decisions makes a test

generation process much faster. Still, backtracking from decisions involving PIs needs to re-

cover states of all gates driven by the same PIs, which again might be a fairly time-consuming

Preliminaries

24

process. This problem is tackled by FAN [26], which introduced the concept of fanout-free

regions (FFR). It finds headlines, i.e., the outputs of FFRs, and uses that information to reduce

decision trees. TOPS [48] further improves that idea by using basis-nodes instead of headlines.

Along different lines, in the middle of eighties, new techniques were explored to increase

awareness of a circuit structure. In particular, SOCRATES [78] introduced concepts of static

and dynamic learning which reveal indirect implications allowing to identify wrong decisions

made earlier. In the meantime, a number of tools, such as BACK [14], EBT [57], FASTEST

[47], GATTO [16], or HITEC [64] made attempts to address the problem of test pattern gener-

ation for sequential circuits. Moreover, ATPG tools producing diagnostic test patterns were

introduced in [10], [34], [67], [93]. Another direction in test generation is comprised of tech-

niques that employ SAT solvers to generate, in a rather CPU-time-intensive manner, compact

test sets (see, for example, NEMESIS [52] or [20]). On top of those techniques, several algo-

rithms were proposed to generate test patterns capable of minimizing power dissipated dur-

ing test application, e.g., [17], [84], [85]. Nowadays, the state-of-the-art ATPG algorithms

include FastScan [95], TestMAX [96], or Modus [97], which continue to reduce search space

by introducing new heuristics while adding, at the same time, support for novel fault models

and parallel processing.

In parallel with test pattern generation schemes, a lot of research effort was spent on de-

veloping test compaction methods that allow reducing counts of ATPG-produced test patterns.

Typically, these methods are either static or dynamic. The former ones use pre-generated test

sets and remove redundant test patterns while trying to merge the remaining test cubes. Proba-

bly the most prominent approach here is the reverse order fault simulation and its derivatives

[1], [68], [69] that handle tests in the opposite order of generation. If a test pattern does not

detect any new faults when simulated, it is discarded with no impact on the final fault coverage.

Other techniques are discussed, for example, in [42], [55], [58], [62], [63], [66]. In particular,

relaxation-based post-processing schemes (see, for instance, [58]) try to determine unspecified

values which are not needed to detect essential faults. As a result, a test set may include more

unspecified values, and thus static compaction can be applied more effectively. Yet another

approach leverages SAT-based ATPG to determine compatible fault groups which can be then

detected by the same test [24]. As a result, the scheme of [24] is capable of producing lower

pattern counts than those of state-of-the-art ATPG tools. On the other hand, dynamic test com-

Preliminaries

25

paction techniques such as [12], [18], [37], [45], [62], [66] are integral parts of the ATPG pro-

cess itself where they work with heuristics that are likely to yield fewer test patterns by assign-

ing certain unspecified bits of generated tests with values allowing detection of additional faults.

 Design for testability

As the size of VLSI circuits was expanding exponentially (including sequential elements), con-

trolling and observing internal state variables using only primary inputs and primary outputs

became unwieldy. In fact, sequential test generation algorithms were unable to efficiently han-

dle large and continuously growing designs. At some point, it became clear that a synergistic

integration of design and test processes is needed to make testing feasible. It was the advent of

DFT. It started with ad-hoc methods such as partitioning [3] or test points insertion [2], [38],

[88]. In particular, the latter one adds extra easily accessible gates placed on lines hard to control

or observe. Identification of such locations in large circuits is a complex problem, hence various

procedures and measures, e.g., SCOAP [33], have been used to compute and quantify control-

lability and observability, and to assist in finding suitable test point locations. Recall that con-

trollability is a measure of how easily a signal line can be set to a particular value (subsequently

used to excite a fault). At the same time, observability indicates the effort needed to determine

the logic value of a given node by properly setting inputs and observing outputs.

Although the aforementioned methods have substantially improved testability of designs

and made sequential ATPG less severe, they were still circuit-dependent and generally difficult

to automate. Thus, more systematic and structured techniques were incorporated into the design

Fig. 2.1. D-multiplexed scan cells.

Preliminaries

26

process. Clearly, the most pronounced structured DFT technology is a scan [49]. In this ap-

proach, all memory elements are transformed into scan cells (see, for example, Fig. 2.1) form-

ing shift registers or scan chains. According to this paradigm, a design has two modes of oper-

ations: a functional (mission) mode, where the circuit works as originally intended, and a test

mode, where all memory elements form scan chains whose serial inputs and outputs are used

to shift-in test patterns and to receive shifted-out test responses, respectively. Scan makes all

state elements directly accessible and observable, and thus the complex problem of testing se-

quential circuits boils down to much simpler testing of their combinational parts (integrity of

scan chains is usually verified by applying so-called flush tests).

With the deployment of scan-based designs, a structured design for test approach has

gained wide industrial acceptance. The resultant high controllability and observability of inter-

nal nodes made it possible to automatically generate high quality tests for large designs and use

verification techniques to debug the first silicon. Moreover, simple architecture of scan chains

enables their automated stitching and insertion. Scan, supported by many electronic design au-

tomation tools, offers a systematic way to manufacture testable and reliable semiconductor de-

vices. Overall, due to its advantages, it has become one of the most influential and industry-

proven DFT techniques.

 Embedded Deterministic Test

The scan-based design-for-test paradigm was firmly in place for four decades. With circuits

growing in size, however, it became more and more expensive to retain high level of test cov-

erage. It was due to prohibitively large volumes of test data and long test application times.

With cost-effective test data reduction techniques as the foundation for maintaining the high

efficiency of a testing scheme, on-chip test compression has quickly established itself as a next

DFT milestone and a mainstream DFT methodology [46], [81], with all major EDA companies

and some semiconductor manufacturers regularly announcing products and technologies in that

area. Embedded Deterministic Test [71] is one of the most representative solutions in the area

of test data compression.

 EDT inserts a decompressor and a compactor on chip to drive and observe scan chains

(Fig. 2.2). The design does not require any modifications other than a configuration with a large

number of short scan chains. The compression logic is placed in the scan path, so it does not

Preliminaries

27

affect the functional operation. The EDT decompressor consists of a ring generator and a phase

shifter (Fig. 2.3). Compressed data from ATE goes, through the input channels, to the injector

sites of the ring generator. It is a form of LFSR [60] with much shorter propagation delays and

internal fan-outs limited to two branches. Data circulating within the ring generator feeds

a phase shifter, whose outputs are directly connected to scan chains. A phase shifter delivers

tests to scan chains whose number is typically much larger than the size of the ring generator.

EDT is an example of a continuous flow compression, i.e., a dynamic LFSR reseeding,

where successive seed variables are delivered to test logic in a per-cycle fashion (in a vivid

contrast to a static reseeding of LFSRs [35], [40], [41], [50], [73], [87], [89] or counters [11],

[39]). The actual compression algorithm works as follows. ATPG-produced test cubes (sparsely

specified tests targeting certain faults) are encoded using a system of linear equations, two ex-

amples of which are shown in Fig. 2.3. Clearly, all scan cells are assigned respective linear

expressions that form a system of linear equations once locations of specified bits are known.

Solving these equations maps specified bits into a compressed stimulus. If the solver succeeds

in compressing a test cube, ATPG targets additional faults and adds more specified bits to the

current test cube. The solver and ATPG iterate incrementally increasing gradually the fill rate

until a predefined number of encoding failures.

Although test compression has been a successful methodology of the last two decades,

the current and future technology nodes keep introducing new test challenges. In order to sus-

tain low defect per million (DPM) rates, new fault models are used, which consequently in-

creases the pattern counts. It directly translates into increased ATE memory volume and test

Fig. 2.2. General scheme of test data compression and compaction.

Preliminaries

28

application time. The requirements for new test technologies are also shaped by safety-critical

applications which require high-quality, in-system deterministic tests. In particular, it applies

to automotive designs, where the ISO 26262 standard defines high test quality requirements,

quite difficult to meet by conventional LBIST schemes. Thus, deterministic test patterns need

to be stored in a system, whereas current solutions may not be able to reduce test data to the

desired levels. One solution capable of outperforming conventional sequential compression is

based on the isometric compression paradigm.

 Isometric compression

Isometric compression [51] takes the on-chip test data compression to a new level by having

more interactions between test generation (ATPG) and test encoding. This approach is aimed

at elevating compression ratios to values unachievable through the conventional static [40],

[50], and dynamic LFSR reseeding [5], [72], which can reach, at their best, the value of f –1,

where f is a test pattern fill rate.

It is worth noting that the number of care bits does not have to constrain neither compres-

sion nor a desired low toggling (in low power test solutions). On the contrary, having several

Fig. 2.3. Example of the EDT decompressor.

Preliminaries

29

cells assigned the same value and hosted by the same chain may actually ease problems related

to both data reduction and switching activity. Indeed, only specified bits occurring at certain

locations would be then encoded, while bits of the same value make it possible to deliver iden-

tical test data to scan chains for several shift cycles, thereby reducing the resultant toggling.

Consider a test cube shown in Fig. 2.4. It detects a stuck-at-1 fault (for the sake of the presen-

tation, stuck-at faults are represented by diamonds, while nets set to the logic values of 0 and

1 are printed in blue and red, respectively) by feeding a 25-input XOR gate G1 and a 3-input

OR gate G3. Alternatively, one can apply a test pattern listed at the bottom of the figure. The

number of specified bits that must be encoded within the first vector is equal to 25 + 3 = 28,

whereas it suffices to target only 13 + 1 = 14 care bits to encode the second test cube. Indeed,

the specified pairs 00 and 11 can be obtained by encoding just the first value of each pair (indi-

cated by arrows) and then sustaining the decompressor outputs to deliver the identical value

during the next shift cycle.

Fig. 2.6 recalls a generic architecture of the isometric test data decompressor [51] imple-

menting the above concept. In addition to a ring generator and a phase shifter driving scan

chains, a hold register is placed between these two devices. It occasionally captures certain

states of the ring generator. As a result, the toggling-free data can be provided to the scan chains

for several continuous scan shift cycles, while the generator keeps advancing to the next states

needed to encode another group of specified bits. As in many other schemes, compressed test

patterns are delivered to the decompressor through c external channels in such a way that a new

c-bit vector is injected into the ring generator every scan shift cycle.

Fig. 2.4. Example of isometric compression.

Preliminaries

30

 The isometric decompressor houses also its key component – a circular template register

whose size matches the longest scan chain, as shown in Fig. 2.6. The template register controls

the decompressor by providing a control bit to the hold register every shift cycle to indicate

whether this register is to be updated by the ring generator. If so, such a time is referred to as

a toggle point, with two successive toggle points forming a hold segment. Thus, a given test

cube is partitioned into several transition-free hold segments. One can repeat, therefore, a given

decompressor state many times in succession by using the hold register storing a state that the

ring generator entered at the beginning of the hold segment. Locations of all toggle points form

a test template (Fig. 2.5), where two colors indicate the values of 0 and 1 applied to scan cells

Fig. 2.5. Isometric test pattern.

Fig. 2.6. Isometric test data decompressor.

Preliminaries

31

between toggle points T1, T2, …, T8. Clearly, ATPG tries to generate test cubes that fit to a given

test template and segments it defines.

As can be seen, the isometric test compression provides a coherent way to generate and

apply test patterns compressed beyond the limits achievable by the earlier solutions while sub-

stantially reducing power dissipation during all scan operations (other methods tackling low

power operations within the framework of test compression can be found in [19], [53], [73],

[90], to recall just a few representative works). However, its sizeable template register (or reg-

isters) is a non-negligible footprint of the entire DFT infrastructure. Moreover, multiple reloads

of a template register might take a substantial amount of time which would be unacceptable in

many practical applications. These concerns will be addressed in Chapter 5 that revisits the

concept of isometric compression and proposes a new and more effective solution.

32

Computing necessary assignments

The thesis tackles two key aspects of testing VLSI circuits: test set compaction and test data

compression. The next two chapters focus on the former problem. A proposed test set compac-

tion method works with a precomputed list of assignments mandatory to detect every target

fault. These necessary assignments (NAs) are deployed, to a large degree, for the purpose of

fault grouping. Such groups of faults are subsequently retargeted by a robust SAT-based ATPG

whose solver is trying to arrive with a single test pattern for the entire group, thus making the

resultant test set smaller in size. This is why techniques used to determine NAs are detailed

herein with respect to their algorithmic capabilities and execution efficiency. It is worth noting

that NAs are obtained for primary inputs, pseudo-primary inputs (scan cells), and all internal

primary fanout stems (or simply primary stems). The latter are defined as fanout stems driven

either by (1) a gate with two or more inputs, or by (2) a sequence of single-input gates only

such that a gate in this sequence with a lowest input level is not driven by another stem. Fig.

3.1 illustrates a simple circuit with two primary stems S1 and S2 at the out-

put of gates G1 and G9, respectively. Note that processing stem S3 will not yield any new NA

because it is functionally the same as primary stem S1. Essentially, in order to determine NAs

Fig. 3.1. Primary fanout stems.

Computing necessary assignments

33

in a computationally feasible manner, six different techniques are used that either handle all

faults in parallel or target every fault in a more individual fashion, as shown in Fig. 3.2. These

techniques, in varying forms and to various degrees, have been deployed earlier by several

ATPG systems [70], [77], [78]. However, while preserving their basic functionalities, they are

run here either individually or in a combined effort to identify as many internal NAs as possible

within the most critical parts of a design through low-cost processing procedures. They are

presented in the subsections to follow.

 Single-stem-based necessary assignments

This approach is run independently for every primary stem (plus inputs regardless of their fan-

out count). These nets are systematically set to 0 and 1, and then an event-driven fault-free logic

simulation is used to learn what other signal values it implies. Given the logic value v(s) as-

signed to net s, every simulation run consists of three steps: (1) finding forward implications of

v(s), (2) carrying out a backward justification of v(s), and (3) finding additional forward impli-

cations of signals implied at branches of stems encountered during (2). The simulation termi-

nates once it cannot determine any more logic values (the even list becomes empty). In addition

to finding logic values, the logic simulation keeps track of all visited gates and, in particular,

records gates whose inputs have been set to a controlling value. It also applies to some other

devices such as multiplexers, where setting select inputs to a particular combination blocks sig-

nals reaching data inputs that have not been selected.

Consider now gates, visited by the above process, whose inputs and outputs are sites of

faults. These gates are checked to determine if the presence of their local faults causes the af-

fected terminals to have the same values as those of a fault-free circuit. If so, such faults would

clearly be test escapes. As a result, an inversion ���������� of a given primary stem value is assigned

Fig. 3.2. Necessary assignments computation flow.

Computing necessary assignments

34

to these faults as a NA required for their detection. Furthermore, for every gate G with an input

having a controlling value, all propagation paths are traced back leading to the remaining inputs

of G. This process is aimed at finding faults whose propagation is blocked by those controlling

values. In particular, if a fanout branch came across, it is marked as blocked. If the remaining

branches of the same fanout are also blocked, then tracing towards primary inputs continues.

Again, all encountered faults are assigned the value of ���������� as their NA.

The above process is illustrated in Fig. 3.3. First, the stem at the output of gate G5 is set

to 0 (Fig. 3.3a). As can be seen, the fault site of fault f3 has the same value as the fault’s polarity,

therefore it cannot be excited. On the other hand, f4 is blocked on gate G9. Consequently, both

have NA on this node of the value 1. In the second step, the same line is set to 1 (Fig. 3.3b).

Now, excitation of fault f2 is impossible and fault f1 could not be propagated to any observable

output. It is worth noting that even though f1 has two propagation paths through gates G7 and

G8, both are blocked. As a result, the output of gate G5 set to 0 became NA for both f1 and f2.

 Fanout-free regions and global dominators

Computing NAs within FFRs is a relatively straightforward task which is repeated for every

fault. First, a unique propagation path is established from a fault site to the FFR output. The

fault site is assigned a test value (fault excitation) which is subsequently implied forward until

the FFR output. The same process determines off-path signals (within FFR) that enable fault

effect propagation. Because of its simplicity, this is the only case where NAs are assigned to

Fig. 3.3. Single-stem-based necessary assignments. Simulation of (a) logic 0 and (b) logic 1.

Computing necessary assignments

35

some internal nets of a circuit different than PIs or fanout stems. It is worth noting that in some

cases selecting off-path values may not be possible – a two-input XOR gate propagating a faulty

effect may serve here as an example. Additional NAs are determined by going beyond the FFR

hosting the current fault. This is accomplished by taking advantage of global (absolute) domi-

nators, i.e., lines through which the fault effect has to pass to be detected at any primary output

[48]. Moreover, one can move then to another FFR associated with the closest dominator (con-

sidering its inversion parity) and essentially repeat operations detailed above. The process ter-

minates once primary outputs are reached or there are no more global dominators that could be

used.

The whole process is summarized in Fig. 3.4. First, G2 set to 0 is added to the list of NAs

because it is a value needed to excite a fault. Next, as the analysis moves forward to the FFR

output, all visited gates are included in the list of NAs: G4 = 1, G7 = 1, G10 = 1, and G12 = 0,

respectively. Moreover, the NAs list is complemented by the first part of each off-path set to

the non-controlling values as follows: G1 = 1, G3 = 0, G6 = 1, and G11 = 0.

 Combined simulation

NAs gathered in the two previous steps (see Sections 3.1 and 3.2) are now reused jointly to

launch, for each fault separately, the event-driven fault-free logic simulation again. The objec-

tive here is to discover additional NAs that can only be computed provided several NAs are

analyzed simultaneously rather than individually. Initially, the event list includes all NAs ob-

tained so far for a given fault. Subsequently, forward implications, backward justifications, and

further forward implications are run in a manner similar to that of the first phase discussed

Fig. 3.4. Fanout-free regions and global dominator.

Computing necessary assignments

36

earlier. Whenever the simulation hits a primary stem, its value is saved as a new NA for a given

fault.

Consider, for example, a fault shown in Fig. 3.5. Gates G2 and G4 are among those for

which NAs have been computed in the previous steps. Propagation of these signals individually

would stop at XOR gate G8 because only a single input would always be specified, and thus the

output of G8 could not be determined. When working synergistically, however, simulation can

proceed further, and logic values associated with gate G8 can also be added to the list of NAs

for the indicated fault. Moreover, because logic 0 is the controlling value of gate G10, the pro-

cedure may continue to find more NAs.

 Contrapositive learning

In the process of collecting NAs as shown above, a learning procedure is used to reveal addi-

tional relationships between gates set currently to controlling values and other signals that they

may imply. Given such a gate, one can set its output to a non-controlling value, and then can

run the backward justification followed by forward implications of signals implied at branches

Fig. 3.6. Contrapositive learning.

Fig. 3.5. Combined simulation.

Computing necessary assignments

37

of stems encountered during the backward justification. For each gate set to its newly obtained

output non-controlling value, the Boolean contrapositive relation is used the same way it is

done in [77], i.e.,

�	 ⇒ �� ⟺ ��� ⇒ 	̅� �3.1�

to learn contrapositive implications towards the initial controlled gate. As an example, consider

a circuit shown in Fig. 3.6. If gate G1 was originally set to 1 (a controlling value), now its output

is set to a non-controlling value of 0 which implies S1 = 0 and S2 = 0. As a result, gate G4 has 1

on its output. Using now the contrapositive learning, the reasoning is as follows:

��� � 0 ⇒ �� � 1� ⇔ ��� � 0 ⇒ �� � 1� �3.2�

In other words, having G4 set to 0 implies G1 being set to 1. Such a relation is saved and subse-

quently used as a NA for G1 whenever other procedures will arrive, for example, with the value

of 0 assigned to G4.

 Constructive dilemma

This technique employs a logic rule of inference, also used in [77], to get further NAs in a cost-

effective manner. It is known as the constructive dilemma:

��	 ⇒ �� ∧ �	̅ ⇒ ��� ⇒ � �3.3�

This approach is used in conjunction with the combined simulation step for a given fault. Once

the simulation is completed, one can collect unate gates with only one input x left unspecified.

In such a manner, only a small fraction of all simulated gates is processed without visibly re-

ducing the number of new NAs. Input x is first set to 0, and then to 1. What follows in both

cases is again the 3-step logic simulation, as done before. Its second run allows us to identify

line(s) y whose value remains the same in both simulation steps, that is, the status of y can be

Fig. 3.7. Constructive dilemma. Simulation of (a) logic 0 and (b) logic 1.

Computing necessary assignments

38

deduced independently of a value assigned to x. The value of line y becomes then the next NA

for the current fault. Consider an example of Fig. 3.7. After the combined simulation, gates G1,

G2, and G3 have only one input left unspecified. Therefore, simulating stem S1 in conjunction

with formula (3.3) leads to the following result:

���� � 0 ⇒ �� � 0� ∧ ��� � 1 ⇒ �� � 0�� ⇒ ��� � 0� �3.4�

Node �� remains intact in both simulation runs of ��. As a result �� = 0 becomes a new NA.

 D-frontier

Finally, for every fault being analyzed, the well-known ATPG-originated concept of a D-fron-

tier is adapted. Starting with the output of FFR hosting a given fault, one can check every branch

of this fanout stem to determine its status as a potential fault propagation path. If all of them

but one are blocked, for example, due to unate gates having controlling values on their inputs,

the only propagation path is further examined by setting off-path non-controlling values as the

fault’s NAs and by moving on to the following FFR, as described earlier.

Fig. 3.8 shows an example of the above process. A stuck-at-1 fault propagates through

FFR1 to stem S1. Now, there are five possible propagation paths. Since gates G1, G2, G3, and G5

are blocked due to NAs obtained in the previous phases, the fault effect propagates through gate

G4, and the analysis of Section 3.2 can be repeated for FFR2.

Fig. 3.8. D-frontier.

39

Multitarget cube generation

This chapter proposes a new test set compaction technique. It can be briefly summarized as

follows. Given a fault list, the corresponding ATPG-produced test patterns are fault simulated

with a high and user-defined n-detect threshold. As a result, each fault is assigned a list of pat-

terns detecting this particular defect. These multiple-detect profiles are used synergistically

with sets of external and internal necessary assignments associated with every fault (as pre-

sented in Chapter 3) to form clusters of likely compatible faults. It is worth noting that this

process is based on the principle of dimensionality reduction [52], an approach that has grown

rapidly in recent years, where high dimensional data (here a complete set of fully specified test

patterns) is replaced by a meaningful representation of reduced dimensionality (here a subset

of tests with necessary assignments obtained in a time-efficient manner for selected faults).

Subsequently, the clusters of faults are retargeted by the SAT-based ATPG to generate a single

test pattern per cluster, what effectively reduces the original test set. This method has been

presented, for the first time, at the IEEE International Test Conference in 2021 [23].

 Fault detection profile

Having determined the comprehensive sets of NAs for every fault, the test set compaction pro-

cedure proposed in this chapter enters now the first phase of its main flow. It runs a conventional

ATPG with dynamic compaction to produce an initial set of test patterns that detect all target

faults. These patterns are then fault simulated with virtually no fault dropping. As a result, it

allows to count how many times each fault is detected, and thus to form a fault detection profile.

For the sake of brevity, a fault detected by n test patterns will be designated as nD, e.g., 2D,

3D, etc. Furthermore, a fault nD will also be linked with a list of n associated test patterns that

detect it. What follows is creation of a much more detailed breakdown of faults that are detected

only once (1D). These faults, detected by just a single test pattern, are often referred to as es-

sential faults [12], [24], [45].

Multitarget cube generation

40

The breakdown of 1D faults is used to find out how many faults of this kind share a test

pattern. In other words, given a 1D fault f, it is of interest to learn how many other 1D faults are

detected by a test pattern detecting f. Let 1Dk denote a fault whose sole test pattern is also de-

tecting other k – 1 1D faults. Clearly, nothing prevents test patterns targeting 1D faults from

detecting other faults of type nD, where n > 1. For the sake of illustration, consider three test

patterns p1, p2, and p3 detecting six faults from f1 to f6 as follows:

p1 → {f1, f4, f6}, p2 → {f2, f4, f5, f6}, p3 → {f3, f4}.

The above relations can be represented in a tabular form, as shown in Table 4.1. Indeed, faults

f1, f2, f3, and f5 are 1D as they are detected exclusively by patterns p1, p2, p3, and p2, respectively.

Since f1 is the only 1D fault detected by pattern p1, it is labeled as 1D1. The same rule applies

to f3. Fault f2 is 1D as well, but pattern p2 detects another 1D fault (f5), and thus both faults get

label 1D2. The remaining two faults are detected three times (f4) and twice (f6).

A simple experimental multiple-detect profile is shown in Table 4.2. An entry in column

nD gives the number of faults that are detected by exactly n test patterns. These results were

obtained for ATPG-produced test patterns targeting stuck-at faults in 9 industrial designs (their

Table 4.1: Fault detection profile.

 f1 f2 f3 f4 f5 f6

p1 × × ×

p2 × × × ×

p3 × ×

 1D1 1D2 1D1 3D 1D2 2D

Table 4.2: Breakdown of faults nD.

 1D 2D 3D 4D 5D > 5D

D1 204,074 142,323 96,972 84,662 69,228 749,416

D2 61,881 43,982 26,773 17,871 11,052 221,669

D3 147,410 96,111 72,988 60,464 48,600 898,614

D4 132,414 79,781 65,735 53,981 45,762 699,182

D5 136,765 108,387 86,817 69,856 56,962 709,767

D6 381,265 148,160 48,424 19,740 8,508 134,910

D7 31,616 14,791 16,381 17,898 16,022 294,131

D8 16,266 8,913 7,031 6,209 5,273 6,320

D9 152,838 145,019 143,318 150,483 152,481 2,044,979

Multitarget cube generation

41

detailed characteristics can be found in Section 4.3). Table 4.3 illustrates a more detailed break-

down of 1D faults (their total number is listed in column 1D of Table 4.2). Each entry in column

1Dk gives the number of 1D faults that belong to this particular category, i.e., a class of faults

being uniquely detected by a pattern that detects, in total, k 1D faults. As can be seen, class 1D1

is typically the most populated one with some noticeable exceptions though (designs D3 or D5).

It is a good starting point for the actual test pattern reduction, as shown in the next sections. It

will also be shown that having a healthy population of 1D2 faults can be beneficial in some

cases as well.

 Reduction of patterns

4.2.1 Fault grouping

The ranking of faults from the previous section as well as their necessary assignments (obtained

by applying the methods of Chapter 3) can now facilitate grouping of faults in such a way that

subsequent processing of the corresponding test patterns may lead to a more compact test set.

It begins by sorting 1D1 faults such that they are in order by largest NA counts (note that this

approach may prefer faults located in large FFRs as NAs within an FFR hosting a given fault

are not limited to primary stems – see Chapter 3). The fault grouping procedure works as fol-

lows (see also a flowchart in Fig. 4.1 for 1D1 faults). First, pick two compatible 1D1 faults f1

and f2 with the highest NA scores. For the sake of this work, two faults are assumed compatible

if their NAs do not contradict each other. Moreover, these faults can only be accepted for further

processing provided their test patterns do not share any 2D fault f3 they both detect. This is to

Table 4.3: Breakdown of faults 1D.

 1D1 1D2 1D3 1D4 1D5 1D > 5

D1 6,748 536 477 1,576 295 51,778

D2 3,930 3,226 1,344 988 615 51,778

D3 9,435 16,314 5,370 4,804 4,195 107,292

D4 3,225 2,116 1,770 1,668 1,475 122,160

D5 635 1,356 2,127 1,368 1,225 130,054

D6 5,750 4,414 2,490 1,760 1,405 365,446

D7 915 470 270 200 110 29,651

D8 4,369 4,826 2,523 1,560 790 2,198

D9 1,080 8,176 9,978 7,860 4,320 121,424

Multitarget cube generation

42

avoid a situation in which a novel test that is to be generated does not cover f3 anymore. If fault

f1 cannot be paired with any other fault f2, then f1 is moved to the end of the 1D1 faults list while

the process continues by trying other pairs of 1D1 faults.

A pair of faults (f1, f2) that has been accepted becomes the subject of the optimized SAT-

based multiple-target test generation [20]. If the SAT solver succeeds in finding a single test

pattern that covers both faults f1 and f2, then a conventional dynamic compaction tries to add

more faults that could be detected by a newly created test pattern (see also Section 4.2.2). The

next step is to discard the former test patterns detecting f1, f2, and other faults added by the

dynamic compaction, replace these patterns with the SAT-generated vector, and drop all the

corresponding faults. After deleting the test patterns, one important task has to be accomplished:

check to see whether deleting a given test pattern brought any non-1D faults closer to class 1D.

This task is implemented with a single scan through the list of non-1D faults. It updates status

of faults that were covered so far by the just-deleted test patterns. In particular, a 2D fault may

now become a member of a class 1Dk, respective 3D faults are elevated to the rank of 2D, and

Fig. 4.1. 1D1 fault grouping flow.

Multitarget cube generation

43

so on. At this point, the process is ready to pick another pair of 1D1 faults, and to carry on, as

described above. Continuing in this way, it is ensured that there are no two 1D1 faults left that

could be paired. On the other hand, certain 1D1 faults may still remain on the list as standalone

items that cannot be coupled with any other 1D1 fault, unless other 1D faults would be tried

instead, as shown below.

Consider now 1D2 faults. As in the approach for 1D1 faults, the first step is to rearrange

1D2 faults so that they are ordered according to the number of their NAs. Let f1 be now a 1D2

fault with the largest NA count. Next, the 1D2 fault f2 that shares a test pattern with f1 is picked.

Clearly, these faults are compatible by definition. Having combined their NAs, a 1D1 fault f3 is

selected that is compatible with both f1 and f2. Moreover, as shown earlier, test patterns p12 and

p3 detecting faults f1, f2, and f3, respectively, cannot share any 2D fault they both detect. The

SAT solver is then deployed to find a single test pattern that covers faults f1, f2, and f3. If it

succeeds, all relevant data regarding faults is updated, and the process is repeated for other

possible choices of two 1D2 faults. If the SAT solver fails to deliver a desired test pattern,

another attempt to pair one more suitable 1D1 fault with the 1D2 faults f1 and f2 is made. This

method may continue through several selections of a 1D1 fault. Eventually, it will run out of

possible choices and will terminate. In this case, it is possible to investigate potential solutions

with 1D1 faults being paired with faults belonging to classes 1D3, 1D4, etc. How far this

method may go depends on the constraints regarding resultant run time, diminishing returns

effects, and other circuit-dependent factors.

The fault coupling process can be generalized in a twofold manner. First of all, one may

attempt to pair 1Dk faults with other 1Dk faults, for k > 1. It might be followed by coupling of

1Dk faults with faults of type 1Dn, where n = k + 1, k + 2, … Moreover, given the ability of the

SAT-based ATPG to produce a single test pattern for several faults in parallel, another tech-

nique goes beyond the limits set by the process of replacing just two original test patterns with

a single (new) one. From the very beginning, it picks 3, 4 or more faults to be processed simul-

taneously. In principle, the approach works as described in this section. There are, however,

some differences. If three 1D1 faults are selected, then their original test patterns cannot solely

detect 2D and 3D faults. Working with four 1D1 faults would preclude from merging faults

whose patterns are sole tests for some 2D, 3D, and 4D faults, and so on. Clearly, there is a trade-

off between the degree of compaction that can be achieved here and the effort spent on selecting

Multitarget cube generation

44

successive k-tuples of faults, where k > 2, and running the SAT solver in each case. Conse-

quently, to prevent excessive run time, a parameter whose exact value depends upon the imple-

mentation is deployed to bound the number of faults that can be targeted by one instance of

a test generator.

4.2.2 SAT-based ATPG formulation for multiple targets

A SAT solver, such as MiniSat [21], accepts as input a Boolean formula in conjunctive normal

form (CNF), also called the SAT instance �. A CNF � is a conjunction of clauses, and a clause

is a disjunction of literals. A literal is a Boolean variable x or its inverse 	̅. Clearly, to satisfy

a CNF, all clauses have to be satisfied, and to satisfy a clause, at least one literal has to be

satisfied. This homogeneous problem formulation enables application of very effective reason-

ing and learning techniques.

Invoking the SAT solver to generate test patterns is preceded by the following steps:

1. Each signal line in the circuit is assigned a Boolean variable to represent the logic state 0

or 1 of this net.

2. Each gate or cell g is transformed into a set of clauses �� using the Boolean variables of

the connected signal lines.

3. The CNF of � of a circuit or circuit part C is then formed by combining the CNF formulas

of all its gates (cells). It represents the characteristic function of C.

4. Fault detection implications (constraints) for a fault f are transformed into a CNF formula

�!. This consists of the faulty part of the circuit, miter and/or D-chain structures establish-

ing links between the good and the faulty circuit.

The final SAT instance for test generation �!
"# consists of the conjunction of the CNF for

the circuit part and the fault detection constraints:

�!
"# � �$ ∙ �! �4.1�

This SAT instance is given to the solver. If a solution is found, a test can be directly extracted

through the solution assignments. Otherwise, the fault is untestable. Typically, a comprehen-

sive structural analysis is deployed to reduce the number of variables, the SAT instance size,

and the resultant test cube.

The presented formulation for single faults can now be extended to target multiple de-

fects. For that, the faulty parts of each fault &�, &�, … , &) and their detection constraints

��, ��, … , �) have to be added to the overall SAT instance. While the CNF of the good circuit

Multitarget cube generation

45

�$ can be shared by all target faults, the faulty parts have to be defined for each single fault

leading to the following formula:

�!*…!+

"# � �$ ∙ �!*
∙ … ∙ �!+

�4.2�

The SAT solver returns a test that detects &�, &�, … , &) provided all faults are mutually compat-

ible. However, this approach fails if at least two faults are incompatible with each other. To

alleviate this deficiency, the above decision problem can be reformulated to an optimization

one with the objective of finding a test that detects the largest possible number of faults out of

a given fault list. The corresponding optimization function , can be written as follows:

, � -� + -� + ⋯ + -) �4.3�

where -�, -�, … , -) are Boolean variables representing the detection status of faults

&�, &�, … , &), respectively. They are linked to the faulty parts in the CNF.

Assigning the value of 1 to variable di forces detection of fault fi, i.e., it triggers a D-chain

for this fault. Setting di to 0 ignores detection of the fault. Clearly, having all variables set to 1

would yield the largest number of detected faults. As this may not lead to a test (see above), an

incremental SAT solving strategy is used to find an optimal solution. During this process, the

detection variables are dynamically reassigned to find the optimal test. Furthermore, the SAT

solver takes advantage of its conflict-driven learning strategy. It allows the solver to reuse in-

formation in a series of calls to prune the search space [22]. Eventually, the optimization pro-

cedure returns an assignment of the fault detection variables as well as the satisfying assignment

of the SAT instance from which a test can be extracted.

The SAT-based ATPG of [24] has been adapted to work with the proposed test compac-

tion method by including additional information into the SAT instance. In particular, the solving

process has been strengthened with NAs obtained for each target fault (see Chapter 3). These

assignments allow the solver to prune the search space and to reduce the complexity of the SAT

instance. In the following, it is shown how NAs are modelled.

Let a necessary assignment be a triple (f, x, v), where f is a fault affecting a signal line x,

and v is a logic value. Each NA can be transformed into an implication which is then added to

the SAT instance �!*…!+

"# . The following steps illustrate how to carry out this transformation. In

addition to the detection variable df, the Boolean variable x representing the necessary state of

line x is used. With these two variables, the implications are formulated depending on the logic

value of v as follows:

Multitarget cube generation

46

� � 0: -! � 1 ⇒ 	 � 0

� � 1: -! � 1 ⇒ 	 � 1
 �4.4�

Each implication is transformed into a clause:

� � 0: -!
��� ∨ 	̅

� � 1: -!
��� ∨ 	

 �4.5�

Note that each implication is unidirectional only. When fault f is not detected, the impli-

cation will be dynamically ignored during the solving process since the assignment df = 0 al-

ready satisfies the clauses. On the other hand, the assignment df = 1 causes the literal to be false,

and thus the clause can only be satisfied by the correct assignment of x. Once the implica-

tions/clauses are formulated and added to the SAT instance �!*…!+

"# , the regular solving process

can be applied to find a test.

A newly generated test pattern goes back to the dynamic compaction procedure. It at-

tempts to add more faults by following the conventional rules, i.e., it first reclaims all necessary

assignments and their implications that the new test pattern consists of, and then checks, if tests

for additional faults can be added without violating earlier assignments. A distinct feature of

this phase is an order in which fault candidates are tried. Dynamic compaction in our case starts

with faults of type 1D, followed by faults 2D, 3D, etc. Within class 1D, faults are ordered as

discussed in Section 4.2, i.e., 1D1, 1D2, and so forth.

 Experimental results

The new test set compaction scheme has been verified by conducting a series of experiments

with several industrial cores ranging in size between 218K and 7.8M gates. The basic data

regarding these circuits such as the number of gates, the number of scan cells, the number of

scan chains, the size of the longest chain, and the number of stuck-at faults are listed in Table

4.4. In all experiments, the original test patterns are produced by a state-of-the-art commercial

ATPG tool. Furthermore, every test pattern set is split into two unequal parts: a relatively small

group G1 of tests which nevertheless detect a significant percentage (usually greater than 90%)

of faults, and a much larger set G2 of patterns that cover the fault list tail end. The experiments

presented in this section focus primarily on the second group of patterns (faults). It is beneficial

in two ways: one can still expect a visible reduction of the total pattern count by working ex-

clusively with patterns of group G2. At the same time, a procedure handling a relatively small

Multitarget cube generation

47

subset of the entire fault list is likely to run significantly faster than any other method tackling

the complete fault list.

Table 4.5 summarizes the results of the experiments for stuck-at faults, including a de-

tailed breakdown of test patterns produced by the SAT-based ATPG of Section 4.2.2 invoked

for faults being clustered, as shown in Section 4.2.1. The successive columns of the table list

the following data:

• test coverage (TC) of deterministic patterns produced by a conventional ATPG,

• the number of test patterns (TP1) in group G1; recall that those patterns are not directly

subjected to the test compaction process,

• the number of test patterns (TP2) in group G2 which forms the primary source of input

data for the compaction method presented in the thesis,

• the total number of patterns obtained after running the SAT-based ATPG (SAT TP); note

that this number is also taking account of patterns that the SAT solver was unable to

replace with new patterns detecting some additional faults,

• the next six columns provide a detailed breakdown of those patterns that were specifically

produced by the SAT-based ATPG; every column shows the number of test patterns ob-

tained by using one of the corresponding (and the simplest) fault-pairing schemes, from

pairs (1D1, 1D1) up to pairs of patterns detecting solely three faults each, i.e., (1D3, 1D3),

• the resultant test pattern reduction, i.e., a difference between the numbers reported in col-

umns TP2 and SAT TP divided by TP2.

Table 4.4: Circuit characteristics.

 Gates Scan cells Scan chains Longest chain Stuck-at faults

D1 2.4M 181K 1,365 134 4,049,753

D2 218K 14.2K 54 263 349,286

D3 2.1M 143K 400 360 3,053,898

D4 2.5M 174K 114 1,964 4,731,360

D5 2.1M 148K 70 2,579 3,612,124

D6 1.2M 97.8K 300 327 2,421,874

D7 3.1M 169K 69 2,456 3,977,620

D8 103K 1,140 25 46 229,550

D9 7.8M 429K 857 502 10,874,455

Multitarget cube generation

48

The last column of Table 4.5 clearly indicates that the test set compaction scheme pro-

posed in the thesis is capable of producing compact test sets, and in several cases it compares

favorably with the state-of-the-art ATPG that was used to deliver the original test sets of size

listed in columns TP1 and TP2. Interestingly, for some designs, the pattern counts of the new

approach are significantly lower than those of the standard ATPG and its compaction tech-

niques, while test coverage remains uncompromised. In other test cases, the pattern count re-

duction is not so spectacular. Although the pattern count reduction appears to be the case across

all designs, its degree remains a strong circuit-specific factor. Our analysis (see Section 4.1)

and experiments clearly confirm that there is a class of circuits whose structural properties al-

low the contemporary commercial ATPG tools to produce near-optimal test sets. However,

there do exist other industrial cores, circuits, and designs that may challenge the state-of-the-

art ATPG algorithms. The method presented in this chapter provides the ability to thrive in such

complex scenarios and to push new limits of the ATPG technology.

Table 4.5: Experimental results – stuck-at faults.

TC
[%]

TP1 TP2
SAT
TP

1D1-1D1 1D1-1D2 1D1-1D3 1D2-1D2 1D2-1D3 1D3-1D3 Reduction

D1 99.19 1,894 7,290 2,196 2,176 12 0 0 0 0 69.88%

D2 99.81 1,806 6,841 2,248 1,718 211 29 9 4 2 67.14%

D3 96.37 5,265 20,843 18,0491 2,538 171 5 0 0 0 13.40%

D4 90.72 5,504 5,556 4,873 240 215 42 5 34 16 12.29%

D5 98.10 2,047 4,543 4,033 236 190 2 2 23 2 11.23%

D6 97.45 19,543 5,750 4,137 1,674 0 0 0 0 0 28.05%

D7 93.53 272 1,573 1,501 50 11 1 0 10 0 4.58%

D8 97.89 1,252 8,226 6,007 1,256 0 0 308 297 41 26.98%

D9 93.00 3,691 11,158 10,439 668 0 0 0 0 0 6.44%

49

Hypercompression of test data

The chapter presents a next-generation test data compression scheme. It builds on the isometric

compression paradigm but makes it more flexible and elevates encoding efficiency to values

unachievable through state-of-the-art sequential compression schemes. Furthermore, its pro-

grammable selection of full toggle scan chains ensures high test coverage and virtually elimi-

nates compression aborts. A redesigned low-silicon-area decompressor is also capable of re-

ducing switching rates in scan chains with a new test power control scheme, as was initially

shown in [43].

 Decompressor architecture

Recall that the isometric decompressor houses a circular template register whose size matches

the longest scan chain, as shown in Fig. 2.6. The template register controls the decompressor

by providing a control bit to the hold register every shift cycle to indicate whether this register

is to be updated by the ring generator. To avoid a sizeable template register (or registers) of the

isometric decompressor, a new decompressor architecture (Fig. 5.1) is proposed here that de-

ploys a much smaller template register, typically no longer than 32 bits. Again, this circular

register provides a control bit to the hold register every scan shift cycle to indicate whether this

register should be reloaded with the current content of the ring generator. Because of its size,

however, the very same short test template is now going to be used multiple times within dura-

tion of the same test pattern. Back to Fig. 2.4, the repetitive use of a 4-bit test template 0101

may suffice to handle the second test cube, and to designate all necessary toggle points.

Although the use of short circular test templates can still deter abnormal scan toggling

and reduce the number of specified bits that need to be encoded, applying the same control bits

several times may require additional ATPG constraints to secure compression of a given test

cube, as further discussed in Section 5.3. It is also important to observe that short test tem-

plates make the new scheme very flexible. It is now capable of deploying a test template for

Hypercompression of test data

50

any number of test patterns, including a single vector. This is because an update of a small test

template register requires no additional patterns and/or ATE channels, and time needed to do

this is a negligible fraction of a regular test pattern upload period.

The function of the new scheme to control every segment of the hold register individually

is another feature, for which the approach of [51] has no comparable capability. The hold reg-

ister can be implemented, for example, as a set of latches, where every data input is fed directly

by the corresponding stage of the ring generator, while enable inputs are driven by the corre-

sponding outputs of a tap decoder. If the output k of the tap decoder is asserted, then the kth

segment of the hold register becomes transparent allowing the kth output of the ring generator

to feed directly the phase shifter, and thus scan chains driven by XOR gates connected to the

kth stage of the ring generator. As a result, these scan chains enter the full toggle mode regard-

less of the current test template. The full toggle register interfacing the tap decoder with an

external tester is loaded once per pattern. Its binary-coded content determines stages of the hold

register that should remain transparent. Consequently, the same content defines the fraction of

scan chains that may receive a full toggle stimulus.

The functionality offered by the circular template register and the tap decoder allows one

to select dynamically certain stages (taps) of the hold register to stay in the transparent mode,

while feeding scan chains with test patterns. As a result, a subset of scan chains – called full

toggle scan chains – driven by such taps can toggle every scan shift cycle rather than at selected

toggle points. This approach prevents scenarios where certain faults escape detection (leading

Fig. 5.1. Hypercompression architecture.

Hypercompression of test data

51

to a coverage drop) because they need more frequent changes in a given scan chain than a test

template could permit. For the remaining scan chains, toggle points and hold cycles are deter-

mined by the content of the template register. When a 1 reaches the rightmost position of the

register, these scan chains capture the ring generator content processed by the phase shifter,

otherwise they hold their current state.

Experimental evidences indicate that typically it suffices to have at most two hold latches

in the transparent mode. To accommodate just two transparent stages of the hold register in an

n-bit test data decompressor, a pair of 1-out-of-n decoders driven by two associated full toggle

registers can be deployed, as illustrated in Fig. 5.2. For each test pattern, this circuitry selects

two of n hold latches to be fed directly by the ring generator (such latches will also be referred

to as full toggle taps).

An important figure of merit when introducing a new DFT scheme is its test logic silicon

real estate. As shown above, the hypercompression test logic (HTL) requires one hold latch and

one 3-input OR gate per a single bit of a ring generator. Furthermore, it comprises a template

register, typically a 32-bit device, two log� 6-bit full toggle registers, where n is the number of

scan chains, and two 1-out-of-n decoders using a certain number (depending on n) of 5-input

AND gates and inverters.

Table 5.1 reports the silicon footprint taken up by HTL in terms of equivalent area of 2-

input NAND gates (measured also in mm2). The presented numbers were computed with a com-

mercial synthesis tool for four industrial circuits. All components of test logic were synthesized

Fig. 5.2. Full toggling decoder with two active outputs.

Hypercompression of test data

52

using a 65nm CMOS standard cell library under 2.5ns timing constraint. The table reports the

following quantities: the resultant silicon area with respect to combinational and sequential de-

vices for conventional scan-based designs (the first three columns), the total area taken by cir-

cuits with on-chip EDT-based test compression, and then the percentage area increase (∆8).

Subsequently, the total HTL-based area is presented and compared with the corresponding area

occupied by conventional scan-based designs (∆9). The results of Table 5.1 do not account for

a routing cost. Besides two signals to control template and full toggle registers, however, it

remains similar to that of conventional scan. As can be seen, the resultant area is comparable

to other scan-based DFT methods. Indeed, in testing with power constraints there is typically

additional hardware required to: activate a high-speed scan enable signal, moderate di/dt

through a scan burst capability, gate scan cells to reduce power dissipation during shift, and

gate scan out signal to reduce the power consumption during normal operations. Clearly, having

HTL logic on a chip may result in slightly more complicated designs with respect to the place-

ment and routing, but, in turn, the new approach further reduces test data volume, power con-

sumption, and it allows for more efficient handling of new types of defects.

Having discussed the new decompressor architecture, an explanation of how to determine

a desired circular test template and how to designate 2-out-of-n full toggle taps is provided in

the following sections.

 Test template synthesis

5.2.1 Toggle ranges

The approach presented in the following works with a set of test cubes corresponding to a sub-

set of faults. It begins by processing each test cube individually, and then moves gradually to

Table 5.1: Area overhead – 2-input NAND equivalent (and mm2).

Conventional scan Designs with EDT logic Hypercompression (HTL)

Sequential Combinational Total Total DE Total DH

C1 462,203 (0.54) 724,627 (0.85) 1,186,830 (1.39) 1,197,765 (1.40) 0.92% 1,200,893 (1.41) 1.18%

C2 749,037 (0.88) 1,057,120 (1.24) 1,806,157 (2.12) 1,812,503 (2.12) 0.35% 1,814,766 (2.13) 0.48%

C3 213,204 (0.25) 71,419 (0.08) 284,623 (0.33) 286,439 (0.33) 0.64% 287,191 (0.34) 0.90%

C4 713,196 (0.83) 1,614,419 (1.89) 2,327,615 (2.72) 2,335,625 (2.73) 0.34% 2,338,450 (2.74) 0.46%

Hypercompression of test data

53

the process of merging these test cubes based on their ability to form a circular test template

and to deploy a certain fraction of full toggle scan chains.

The hypercompression can encode a test cube in a low toggling fashion by selecting tog-

gle points in places where scan chains change their content values. Recall that the toggle point

requires a hold register update by the ring generator. If two successive specified values in a test

cube are separated by scan cells with don’t cares, a toggle point can occur anywhere between

these scan cells provided they differ in values. Consider the following test cube:

x x 1 x 0 x x x 0 x x x 1 x x x x x 1 x x 0 x x x x 0 1 x x x x x

 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

As can be seen, the rightmost toggle point is already fixed. However, locations of three

other toggle points remain to be determined as they can occur anywhere between the values of

0 and 1 or vice versa. A sequence of adjacent cells where a toggle point can be located is re-

ferred to as a toggle range. Let v1 and v2 be specified values assigned to scan cells c1 and c2,

respectively. All cells between c1 and c2 are don’t cares. If v1 ≠ v2, then the corresponding toggle

range, denoted by [c1, c2), consists of c1 and all subsequent cells until c2 which is, by definition,

excluded. If scan cells are numbered from the left starting with 0, then, for the above example,

the following toggle ranges are as follows: [2, 4), [8, 12), [18, 21), [26, 27).

The next step is to convert, for every scan chain, its toggle ranges into reduced toggle

ranges. For the sake of simplicity, let us assume that given a range [x, y), a toggle point can

occur at one of the following sites: x, x + 1, x + 2, …, y – 1. Let s be the size of a test template.

If a given range consists of more than s cells, it is ignored. Otherwise, every toggle range [x, y)

is mapped into a toggle range [x mod s, y mod s) with potential sites of toggle points converted

accordingly. The resultant ranges and the corresponding toggle points become now the subject

of a reduce operation.

The reduce step transforms the set of converted toggle ranges into another set of toggle

ranges by either computing non-empty intersections of toggle ranges or just leaving certain

ranges intact, if they do not overlap with any other range. As an example, consider a 15-bit-

long scan chain shown in Fig. 5.3. The following list of toggle ranges can be easily determined:

[1, 4), [7, 9), [12, 13), assuming that scan cells are numbered from the left, starting with 0. Let

s = 5. Now the scan chain is divided into three equal parts (black vertical bars), and any toggle

range between sections is dropped. The remaining is conversed using modulo s operation re-

sulting in the following ranges: [1, 4), [2, 4), [2, 3). Hence, the resultant toggle point candidates

Hypercompression of test data

54

are as follows: {1, 2, 3}, {2, 3}, and {2}. Clearly, their intersection is {2}, and this would be

the toggle point location for the scan chain being analyzed here.

In a general case, toggle ranges after reduction are processed as follows. Let :� and :� be

two toggle ranges. If :� and :� are disjoint, then there is no reduction of toggle point candidates,

and both ranges are kept for further processing. If :� ∩ :� � ∅, then the largest overlap between

:� and :� is picked. The remaining toggle point candidates are discarded. If an intersection

comprises more than a single toggle point (or it consists of disjoint subsets), we do not pick any

specific toggle points yet. Finally, if more than two ranges overlap in a pairwise fashion, they

are processed in an arbitrary order. For example, given ranges :�, :� and :=, a new range :� �

:� ∩ :� ∩ := can be determined. As a result, we obtain a list of reduced toggle ranges for every

scan chain. Every list is referred to as a prime toggle group.

Prime toggle groups have to be now merged to obtain a set of toggle points that can be

shared by as many scan chains as possible provided a desired toggle ratio is not exceeded. First,

all prime toggle groups are sorted in ascending order by using the number of reduced toggle

ranges every group features as a sort key. Starting from a prime toggle group with the smallest

number of ranges, we keep combining prime toggle groups until the number of potential toggle

points becomes greater than a predefined threshold representing a target toggling (recall that

every reduced toggle range is eventually represented by a single toggle point). We follow here

the very same reduction rules as those presented earlier. If a given prime toggle group cannot

be merged because of the resultant threshold, a next group is tried until all groups have been

examined. Scan chains whose prime groups have not been merged become full toggle scan

Fig. 5.3. Reduce operation on toggle ranges.

Hypercompression of test data

55

chains (the green chains in Fig. 5.4), where every care bit will be set individually. The above

procedure repeats for every test cube.

5.2.2 Test templates

To make full toggle scan chains operational, one needs to select full toggle taps, typically no

more than two – see Section 5.1 and Fig. 5.4. Clearly, identifying the smallest number of taps

that drive 3-input XOR gates feeding full toggle scan chains is equivalent to solving a maximum

covering problem [15]. To determine full toggle taps, the hypercompression makes use of

a greedy approach which first sorts all full toggle scan chains in descending order according to

the number of test cubes a given full toggle scan chain is involved. During next iterations, it

picks successive full toggle chains and determines their tap drivers. The highest-ranked chain

will have three such taps to choose from (if driven by a 3-input XOR gate), and all subsequent

chains will either share certain taps with the previously selected ones or narrow down the space

of available taps. The procedure keeps trying different full toggle chains to maximize the num-

ber of covered faults (or test cubes) until there are no more than two taps available. All test

cubes whose full toggle chains cannot be served by the selected taps (the second chain from the

bottom in Fig. 5.4) are returned to the pool of test cubes to be merged in next iterations.

Admittedly, certain full toggle taps can make additional scan chains full toggle ones.

Consider a 32-bit hold register feeding 960 scan chains through 3-input XOR gates. As a result,

every hold latch has its fan-out equal to 90. Consequently, some of these scan chains have likely

been controlled by a test template in the first place. Since they do not need toggle points any

Fig. 5.4. Selection of full toggle taps.

Hypercompression of test data

56

more, the corresponding test template may become the subject of further adjustments. As such

a flow is usually complex, a relaxation approach presented below is used to avoid further cor-

rections of test templates. Another scenario occurs when certain test cubes are not covered be-

cause not all of their full toggle chains can be enabled. These test cubes remain in the pool of

cubes to be merged in subsequent iterations.

We now turn to the problem of forming an s-bit test template that could be shared by non-

full-toggle scan chains of several test cubes. Initially, each cube in a buffer is assigned the num-

ber of bits to encode with no templates involved. Such cubes can be obtained by using a con-

ventional ATPG. Subsequently, a relaxation algorithm is used that begins with an s-bit test

template set to the all-1 vector (with such a template, the scheme is equivalent to the conven-

tional EDT-based compression). It then iteratively determines test cubes that could still be en-

coded if toggle points corresponding to position k were not used, when k = 0, …, s – 1 (bit k of

a test template is set to 0). If a given cube remains encodable, we determine a difference G

between the original number of its specified bits and the number of specified bits that need to

(a)

(b)

Fig. 5.5. Relaxation: (a) the first phase, (b) the second phase.

Hypercompression of test data

57

be EDT encoded after relaxing a template bit (note that the latter number represents just the

leading specified bits of every hold segment). If the cube cannot be encoded anymore (a deleted

toggling point has been separating two cells with the opposite values), its gain L from the last

iteration is retrieved. Once all cubes in a buffer are examined, their values of G and L are

summed. A test-template bit corresponding to the largest value of ΣG – ΣL is subsequently

reset, and all potential toggle points on this position for all test cubes are discarded. Cubes that

cannot be encoded are removed from the buffer. One can now refill vacated positions with new

cubes under the current intermediate template and carry on looking for next template bits to be

flipped to 0. It is important to observe that new test cubes are now produced by a constrained

ATPG aware of disabled toggle points.

The whole process continues until the number of bits set to 1 in the test template becomes

smaller than a predefined threshold that corresponds to user’s low power test requirements. For

example, if a scan chain shift toggle rate is to be 25%, then relaxing 50% of template bits can

achieve this goal. This procedure can be summarized by the following algorithm (the meaning

of variables G and L remains the same as defined above):

set all bits in the test template to 1
while number of 1s in the test template is above threshold do

for each 1 in the test template do
set bit to 0
set score S to 0
for each test cube do

if test cube can be encoded, then
add G to S

else

subtract L from S
reset bit with the highest S
remove all cubes which cannot be encoded from the buffer
refill test cube buffer

Example 5.1: Consider an 8-bit-long scan chain fed by 8 test cubes and a 4-bit test tem-

plate. Initially, the template is set to 1111 (Fig. 5.5a). In four identical steps, we verify which

test cubes could still be encoded if a given template bit were set to 0 (green boxes in the figure).

As can be checked, the lack of two toggling points on bits indicated by arrows (recall that the

template is circular) precludes encoding of test cubes printed in yellow. For example, the first

cube –1–110–0 cannot be encoded because of a disabled toggling point between bits having

values of 1 and 0, i.e., exactly where a hold register should be reloaded with a new content of

the decompressor. As can be seen, if the first bit of the template were reset, then five test cubes

Hypercompression of test data

58

could not be encoded. Similarly, we verify if the same test cubes can or cannot be encoded

when successive template bits are set to 0. It appears that resetting the second template bit leaves

the largest number (6) of test cubes unaffected, and thus the test template becomes 1011. The

cube buffer is refiled now with two new cubes (replacing those that could not be encoded) and

the second round begins (Fig. 5.5b, the horizontal arrows point to new cubes). Again, the impact

of setting the template bits to 0 on the ability of the scheme to encode the test cubes is examined.

This is done in a similar manner as before. As can be easily verified, de-asserting the third and

fourth template bits leaves four test cubes in each case. However, the encodable test cubes in

the last column feature one more specified bit than those of the second column, so the template

1010 is picked. For larger test templates, the same process continues until the number of toggle

points is smaller than a threshold corresponding to low power test requirements.

Example 5.2. Suppose there are three scan chains and three test cubes with toggle ranges

as follows:

Test cube 0:
Chain 0: [7, 9) [14, 17)
Chain 1: [10, 12)
Chain 2: [13, 14)

Test cube 1:
Chain 0: [0, 5) [8, 10) [16, 17)
Chain 1: [0, 10)
Chain 2: [1, 2) [2, 3) [3, 4)

Test cube 2:
Chain 0: [7, 9) [9, 11)
Chain 1: [2, 3) [3, 4) [4, 5)
Chain 2: [6, 7) [7, 8) [8, 9)

Let us assume that there is an 8-bit test template and at most two toggle points are allowed

per template. Let us also assume that at most one full toggle scan chain is permitted. After

reduction, the prime toggle groups for each scan chain are:

Test cube 0:
Chain 0: [7, 1) [2, 4); prime toggle group
Chain 1: only 2 toggle points allowed, so no more points
Chain 2: full toggle scan chain

Test cube 1:
Chain 0: [0, 1); prime toggle group
Chain 1: toggle range larger than a template
Chain 2: full toggle scan chain

Test cube 2:
Chain 0: [7, 1) [1, 3); prime toggle group

Hypercompression of test data

59

Chain 1: full toggle scan chain
Chain 2: full toggle scan chain

Finally, after computing prime toggle groups and finding a full toggle scan chain, “Test

cube 2” is dropped (too many full toggle scan chains). The test template becomes 10100000

with the third scan chain working in the full toggle mode.

 Test compression flow

Test templates of the previous section can guide ATPG to produce highly compressible test

cubes. Fig. 5.6 sketches out the proposed test compression flow. As can be seen, the first phase

produces test cubes by means of a conventional ATPG for randomly selected faults, forms

a corresponding test template, and finds full toggle taps. These steps are controlled by a desired

toggle ratio. Test cubes with more full toggle scan chains than allowed or not compliant with

the template are dropped, and the corresponding faults are returned to the fault list. The test

template is now passed to ATPG aware of recently added constraints. The guided ATPG and

Fig. 5.6. High-level test flow.

Hypercompression of test data

60

EDT-based compression iterate until a given number of test patterns compliant with the newly

created test template are produced or a user-defined abort limit is reached. Note that all faults

still on the fault list can be used in this phase. The resultant test patterns are fault simulated,

and the fault list is updated accordingly. If there are still faults on the list, the method goes back

to pick new faults and to produce new test cubes. Otherwise, it terminates.

A conventional ATPG working with testability measures may remain unaware of hold

segments where several scan cells in a row assume the same value. Ignoring this additional

constraint may lead to wrong decisions. Consider a 2-input AND gate driven by cells x and y

of the same hold segment in such a way that one of the inputs receives data through an inverter

(Fig. 5.7a). Since either xy = 00 or xy = 11, the output value of this gate will always be equal to

0 as along as this particular test template is employed. Effectively, the AND gate becomes

a constant 0 that can be regarded as a surrogate. Clearly, ATPG should not try to justify 1 over

there. If there are no inverters on the inputs of an AND gate, then it behaves like a buffer (Fig.

5.7b). Furthermore, hold segments may also impact observability of certain nets. If the AND

gate, replaced by the constant 0 surrogate, drives another AND gate, then this particular gate is

blocked as well (Fig. 5.7c). Consequently, ATPG should not propagate faults toward this logic.

In order to guide the ATPG in a test-template-aware manner, first an identification of all

surrogates and blocked gates is needed. This is handled by the following algorithm:

for each hold segment do
set all segment’s scan cells to 0
run logic simulation
find all blocked gates G0
set all segment’s scan cells to 1
run logic simulation
find all blocked gates G1

for each gate g whose output is either 0 or 1 do
if gate g has the same value in both simulations then

replace g with its proper constant surrogate
else

replace g with its buffer surrogate

 (a) (b) (c)

Fig. 5.7. Examples of guided ATPG: (a) buffer surrogate, (b) tie-0 surrogate, and (c) blocked path.

Hypercompression of test data

61

Simulate design several times using surrogates inserted earlier
Recompute testability measures with surrogates

The above procedure uses an auxiliary function to find all blocked gates due to asserted

or de-asserted scan cells of a given hold segment. The basic steps of this function are as follows:

for each gate g with one input set to a controlling value do
trace backward from each non-controlling input of g
if all fan-out branches of a visited gate v are blocked

gate v is blocked
trace all inputs of v

else

stop tracing the branch leading to v

if gate g is blocked in both simulations
gate g is always blocked
set observability of g to 0

Use blocked gates in subsequent simulations

Experiments run on several large industrial designs indicate that fault reordering paving

the way for the guided ATPG can yield better compression results. In particular, one can assign

weights to successive faults and sort the entire fault list by using these weights. Every fault

weight is computed as a ratio of the fault’s new testability (taking into account rules like those

of Fig. 5.7) and the same fault’s testability determined in a conventional fashion, e.g., by using

the SCOPE-like metrics. A potential testability increase is only taken into account if its value

is greater than a predefined threshold r (experiments reported in the thesis use r = 1.1).

5.3.1 Implied values

Detection of so-called implied values is another mechanism that allows the hypercompression

to foster a close interaction between ATPG and encoding. This approach is aimed at reducing

CPU time needed to generate and compress test cubes. It guides back ATPG in such a way that

ATPG does not assign certain nodes values that otherwise lead to conflicts, compression aborts,

and backtracks. These objectives are accomplished by trimming the number of possible test

cubes ATPG may produce and merge by using values that ATPG must consider necessary as-

signments as they become gradually available [28]. Clearly, savings due to a reduced number of

decision nodes ATPG is to go through might be partially nullified by the time needed to deter-

mine all implied values. Within the EDT framework, however, this problem is solved by work-

ing with linear equations to quickly arrive with implied values given the current status of a com-

pression solver.

Hypercompression of test data

62

Recall that the EDT compression treats the external test data as variables forming linear

expressions assigned to scan cells [72]. A compressed pattern is then obtained by solving a sys-

tem of linear equations in GF(2). Typically, Gaussian elimination determines the reduced row-

echelon form of an equation system by picking leading variables. Suppose there are k specified

scan cells at certain point. To make sure that these assignments can be encoded, one has to solve

a partially specified set of equations. If there is no solution, an ATPG backtrack is needed since

a test cube in its current form cannot be compressed.

 If the k specified bits can be encoded, then one can add another specified cell, thus form-

ing a set of k + 1 equations. There are now 3 possible scenarios. (1) The newly added equation

is independent, and thus a cube with k + 1 specified values can be encoded. As a result, ATPG

carries on. (2) The newly added equation is linearly dependent on others, but it remains solva-

ble. As before, ATPG can continue. Note, however, that the new value could be determined

prior to the actual ATPG assignment as it is a linear combination of the earlier assignments. (3)

The newly added equation is linearly dependent on others, and it is not solvable. Clearly, ATPG

has to backtrack in this case. As previously, the value of cell k + 1 could be implied (here with

the opposite value to the desired one) once the k scan cells have become specified. Being aware

of this relation, one could constrain ATPG to avoid setting a scan cell to a value that cannot be

encoded.

The hold segments add a new dimension to the above approach. This is illustrated in Fig.

5.8 depicting two scan chains. Here a 9-bit test template forms three consecutive hold segments

comprising 4, 3, and 2 bits, respectively. As can be seen, the template is applied twice. Consider

two faults f1 and f2. Let fault f1 require 3 scan cell assignments, as shown in Fig. 5.8a. After

these assignments are done, the corresponding values can fill the remaining cells within the

same hold segments, as depicted in Fig. 5.8b. Furthermore, solving equations representing spec-

ified bits of the first step may result, through already determined seed variables, in additional

(implied) values, such as those in Fig. 5.8c. As they occur in different hold segments, the re-

maining cells of the same segments must assume exactly the same values, as shown in Fig.

5.8d. At this point, ATPG attempts to find a test cube detecting fault f2. Suppose it requires

a logic value of 0 on the output of the AND gate shown in the figure (plus another 0 in the same

chain). Since one of the inputs of this gate is already set to 1, the only solution is to reset the

other input, as in Fig. 5.8e. Note that ignoring implied values could misguide ATPG and result

in a destructive attempt to assign 0 to the other input, which would cause a conflict and invoke

Hypercompression of test data

63

Fig. 5.8. Implied values and hold segments. (a) Assignments for fault f1, (b) Implied values in hold segments,

(c) Additional implied values, (d) Filling hold segments for additional implied values, (e) ATPG assignments

for fault f2, and (f) Final assignments.

Hypercompression of test data

64

time-consuming backtracks. Finally, the remaining scan cells of two hold segments affected by

the test cube are filled with the same values, as demonstrated in Fig. 5.8f.

It is worth noting that all implied values discussed above are computed, updated, and

passed to ATPG as dynamic constraints. It simplifies the task of test generation as ATPG will

trim the search space based on these new constrains and generate compact test patterns with

less run time.

 Experimental results

The hypercompression approach has been verified by conducting a series of experiments with

several industrial designs and circuits from the IWLS’05 benchmark suit. The basic data re-

garding the designs such as the number of gates, the number of scan cells, the number of scan

chains, the size of the longest chain, the number of EDT input channels, and the size of decom-

pressor are listed in Table 5.2. All experiments are performed with a 30-bit test template and at

most two full toggle taps. It is also assumed that the number of toggle points per this particular

test template is equal to 15, virtually for all test cases. A test session consists of two repeatable

steps: (1) shifting in a test template and the content of two full toggle registers, and (2) applying

64 test patterns corresponding to this template.

Table 5.3 summarizes the results of the experiments for stuck-at faults, obtained for both

the conventional EDT-based compression and the hypercompression presented in the thesis.

The successive columns of the table list the test coverage (TC), the number of test patterns (TP),

Table 5.2: Circuit characteristics.

 Gates Scan cells Scan chains Longest chain EDT channels EDT size

D1 1.2M 72K 400 181 1 22

D2 3.2M 281K 960 293 2 32

D3 4.8M 287K 960 299 2 32

D4 1.3M 52K 200 260 1 32

D5 3.2M 213K 500 426 2 33

D6 2.4M 182K 1,365 134 6 55

D7 4.0M 421K 1,500 281 10 56

leon3mp 1.2M 109K 800 137 1 29

leon2 2.5M 149K 400 374 4 32

Hypercompression of test data

65

the corresponding input data volume (DV) in megabits, and the resultant reduction of test pat-

tern counts over the conventional EDT-based solution. Note that the hypercompression-based

DV includes test templates data and binary-coded full toggle tap labels.

As the “TP reduction” column of Table 5.3 indicates, the hypercompression produces

appreciable results. It compares favorably with earlier solutions as far as pattern and compres-

sion numbers are concerned. In all test cases, compression rates are significantly higher than

those of the standard EDT, while the test coverage remains virtually unaffected. The observed

pattern reduction relative to the EDT varies from 1.5x to 4.0x, and its average value computed

Table 5.4: Experimental results – transition faults.

TC [%]

Standard EDT Hypercompression
TP reduction

 TP DV [Mb] TP DV [Mb]

D1 88.81 33,331 6.77 22,272 4.52 1.50x

D2 80.22 15,742 10.23 13,439 8.73 1.17x

D3 82.55 18,880 12.50 17,408 11.52 1.08x

D4 69,63 11,010 3.31 5,632 1.69 1.95x

D5 96.17 21,664 19.89 12,224 11.22 1.77x

D6 90.41 12,130 11.79 6,270 6.09 1.93x

D7 77.72 19,561 61.22 16,640 52.08 1.17x

leon3mp 97.70 27,574 5.24 19,926 3.78 1.38x

leon2 99.64 36,331 15.44 27,947 11.88 1.30x

Table 5.3: Experimental results – stuck-at faults.

TC [%]

Standard EDT Hypercompression
TP reduction

 TP DV [Mb] TP DV [Mb]

D1 96.92 31,246 6.34 19,870 4.03 1.57x

D2 96.95 57,037 37.07 24,137 15.69 2.36x

D3 94.84 33,013 21.85 21,160 14.01 1.56x

D4 91.34 45,523 13.73 11,219 3.38 4.06x

D5 97.87 17,153 15.75 10,237 9.40 1.68x

D6 99.78 15,551 15.12 8,118 7.89 1.92x

D7 98.50 39,226 122.78 15,589 48.80 2.52x

leon3mp 99.83 13,352 2.54 7,907 1.50 1.69x

leon2 98.64 13,310 5.66 9,472 4.02 1.40x

Hypercompression of test data

66

across the examined designs is virtually equal to 2x. Clearly, the proposed scheme raises com-

pression beyond what the state-of-the-art sequential schemes can achieve. In particular, it suc-

cessfully handles test cubes with incidentally high fill rate, whereas earlier solutions would

either inflate pattern counts or declare compression aborts. Table 5.4 provides similar experi-

mental results for transition faults. As can be seen, results shown in Table 5.4 are in line with

those of Table 5.3. Here, the average reduction computed across all examined benchmark cir-

cuits is close to 1.5x.

 As one may expect, the hypercompression is capable of handling test patterns with higher

fill rates than those of test vectors that the EDT can encode. This is illustrated in Table 5.5 for

Table 5.6: Power metrics [%].

 Standard EDT Hypercompression

 Load Capture Unload Load Capture Unload

D1 49.34 10.79 49.94 32.90 10.48 36.36

D2 49.38 11.70 44.37 28.71 11.54 29.68

D3 49.53 10.69 42.01 30.25 10.54 26.09

D4 49.52 14.69 42.04 30.00 14.40 33.48

D5 49.65 15.96 44.78 33.47 15.37 33.16

D6 49.24 36.55 46.75 28.32 31.58 43.40

D7 49.23 15.83 44.77 24.63 10.36 26.20

leon3mp 49.39 7.59 49.38 23.38 7.49 22.83

leon2 49.70 6.76 49.69 24.91 9.66 25.19

Table 5.5: Avarage fill rate for stuck-at patterns [%].

 Standard EDT Hypercompression

D1 0.34 0.59

D2 0.23 0.45

D3 0.22 0.40

D4 1.64 1.11

D5 0.41 0.74

D6 0.67 0.66

D7 0.09 0.42

leon3mp 0.18 0.32

leon2 0.11 0.17

Hypercompression of test data

67

stuck-at tests. In many test cases, the acceptable fill rates can be doubled. A noticeable excep-

tion is design D4 where the actual fill rate served by the hypercompression drops to 1.11 com-

pared to the corresponding value of 1.64 for the EDT-based compression. Interestingly, how-

ever, this is exactly the same design where the hypercompression achieves the highest reduction

of the test pattern count (4.06x) and the test data volume for otherwise the same test coverage.

Finally, Table 5.6 offers the switching activity numbers. In all examined test cases the

resultant scan-shift-induced switching activity was measured by the normalized weighted tran-

sition metric (WTM) [76]. As can be easily verified, these particular figures of merit were re-

duced to approximately 30% compared to the reference value of nearly 50% obtained as the

average value over all examined designs for the standard EDT scheme. The toggling activity in

the capture mode was recorded by means of a weighted switching activity (WSA) [86]. Since

the average power dissipated during test is proportional to a shift-clock frequency, almost 2-

fold reduction of a test power envelope creates a significant margin that allows for acceleration

of scan shifting at a rate that maintains the same power consumption as that of conventional

test solutions.

68

Low power hypercompression

This chapter is the next evolutionary step in developing a new class of test data compression

schemes. The presented low-silicon-area scheme builds on a test hypercompression paradigm

but is capable of handling stringent power requirements in a more flexible fashion. Moreover,

it deploys, on the average, fewer control registers than its hypercompression counterpart. How-

ever, additional processing needed to evaluate the most suitable decompressor configuration

might increase the overall runtime by 50%. Consequently, the proposed scheme offers a trade-

off between the ability to resolve problems related to test power dissipation and the resultant

processing overhead.

 Low power architecture

Test logic deployed by the new scheme follows the principles that serve as foundations for the

original hypercompression, including the use of test templates. However, low power hypercom-

pression test logic (LP-HTL) employs a different test template circuitry than that of Fig. 5.1.

The new scheme is shown in Fig. 6.1. A very short circular register (seldom longer than 4 bits)

is controlled by an initialization decoder that updates the register based on a template ID which

directly precedes test pattern seeds in data streamed by ATE. Clearly, as there is no need to

store templates any longer, time needed to channel a template ID is a negligible fraction of

a regular test pattern upload period. It makes the new scheme very flexible since it is now ca-

pable of attaching a test template to every pattern. Back to Fig. 6.1, one can pick one of the four

test templates: 1000, 0100, 0010, or 0001, just by attaching a 2-bit ID to the corresponding test

pattern seeds.

To further reduce test data, it is assumed that every test pattern can put at most two hold

latches in the transparent mode (the feasibility of this assumption is strongly supported by

experimental evidences). To accommodate two transparent stages of the hold register, a pair of

1-out-of-n decoders driven by two associated full toggle latch ID registers are deployed, as

Low power hypercompression

69

illustrated in Fig. 6.1, where n is the size of the ring generator. For each test pattern, this circuitry

selects two out of n hold latches to be fed directly by the ring generator. Similarly to the previous

scheme, such latches will also be referred to as full toggle taps.

 Essential test cubes

The first step to determine short hypercompression test templates is the computation of the

corresponding essential test cubes. Given a fault, the essential test cube is a partially specified

vector that retains only those positions of an ATPG-produced test cube that correspond to pri-

mary inputs and scan cells whose likelihood of being specified is greater than a predetermined

threshold. In particular, all necessary assignments associated with certain scan cells become

unconditional parts of any essential test cube. Once a fault is injected, the process to determine

an essential test cube keeps track of assignments made by APTG and computes the correspond-

ing signal odds along fault’s propagation and justification paths. A noteworthy observation is

that a signal probability is computed regardless of the actual logic value (0 or 1) used to set

a given net. This is why every specified net gets just a single value. Clearly, as long as there is

a unique fault propagation path, the corresponding probabilities are set to 1. Probabilities asso-

ciated with branches of a fan-out are equal fractions (inversely proportional to the number of

branches) of the probability that the fault can reach the stem. However, the probability is only

Fig. 6.1. Low power hypercompression test logic.

Low power hypercompression

70

assigned to a branch that was actually selected by ATPG and follows that path. In a backward

implication process, inputs assume the values based on the corresponding outputs; if they are

NAs, then the corresponding probabilities are equal to 1. Otherwise, the number of (remaining)

inputs divides the output signal probability. Again, the resultant probability is just assigned to

an input that has been set to a specific value by ATPG. In the off-path implication phase, while

inputs assume the same non-controlling value as that of the fault propagation, we use the same

rules as stated above to determine and assign the corresponding probabilities. Having deter-

mined test cubes and their probabilistic weights, the essential test cubes are obtained by keeping

only specified bits with the corresponding signal probabilities greater than or equal to a given

limit.

The above description highlights the main features of the method used to determine prob-

abilities for all relevant nets in a circuit until it hits both primary inputs and scan cells (pseudo-

primary inputs). The following examples illustrate the algorithm in operation on two simple

circuits.

Example 6.1: Consider a stuck-at-0 fault shown in Fig. 6.2. To excite this fault, ATPG

assigns the value of 1 (red nets) to the fault site c, and thus the probability pc associated with

this net becomes 1.0, i.e., pc = 1.0. An off path input f of gate G3 is assigned a non-controlling

yet necessary value (0 – blue nets), and hence pf = 1.0. Since the output g of gate G3 is uniquely

determined, the related probability is pg = 1.0. Furthermore, as probabilities associated with

branches of this fan-out are equal fractions of the stem probability, we have ph = 0.33, pi = 0.33,

and pj = 0.33. However, only ph is recorded, as representing a path selected by ATPG. Now,

gate G2 should output 0. Thus the number of its inputs divides the output signal probability such

that pd = 0.5 and pe = 0.5. Only pd is stored, again because of the ATPG-based decision. Since

gate G1 yields 1 by setting both of its inputs to 1, we get pa = 1.0 and pb = 1.0.

Fig. 6.2. Circuit for Example 6.1.

Low power hypercompression

71

Example 6.2: A stuck-at-1 fault affecting the output of gate G1 (Fig. 6.3) forces ATPG to

assign the value of 0 to all lines printed in blue. Note that as far as gate G1 is concerned, all

these assignments are necessary, and thus the corresponding signal probabilities are all equal

to 1.0. The same applies to stem G3. Here, ATPG selects the upper branch as a fault propagation

path. Since the probabilities associated with branches of this fan-out are inversely proportional

to the number of branches (3), the input of gate G4 gets 0.33 as its signal probability. Conse-

quently, the same applies to the remaining pins of the same gate, and then a scan cell driving

G4. At the same time, as one of the inputs of G2 is already driven by a set-to-0 necessary as-

signment, a desired value of 1 is assigned (arbitrarily) to the second input of the gate. As the

number of inputs (here the remaining 2) divides the output signal probability, this particular

input and its scan cell driver get 1.0 / 2 = 0.5 probability of being specified. As a result, four

scan cells are specified with different associated probabilities. If the acceptance threshold is set

to 0.5, the essential test cube is as follows: xxx00xx1xxxx. However, if the threshold is lowered

to 0.25, the essential test cube becomes x1x00xx1xxxx.

 Test template synthesis

The approach presented in this section works with a set of essential test cubes corresponding to

certain faults. Initially, essential test cubes are processed individually, and then they are gradu-

ally merged based on their ability to form a circular test template and to deploy, if necessary,

a small fraction of full toggle scan chains.

The method begins by selecting toggle points, i.e., locations where scan chains change

their content values. The same concept is used in the previous technique, as presented in Section

5.2.1. However, in addition to the computations introduced earlier, essential test cubes are

merged while preserving all necessary toggle points and toggle ranges.

Example 6.3: Consider an essential test cube and its toggle ranges (see Fig. 6.4, cube 1):

[0, 3), [4, 6), [6, 11). Let s = 4 and the number of toggle points per template be confined to 1.

After conversion modulo s, we get two toggle ranges: [0, 3), [0, 2); note that toggle range [6,

11) is rejected as too long. The resultant toggle point candidates are, therefore, {0, 1, 2} and {0,

1}. As their intersection is {0, 1}, the current single-1 test templates at this stage of processing

are 1 0 0 0 and 0 1 0 0. The next essential test cube (cube 2) is first merged with cube 1. The

resultant cube comprises three toggle ranges: [1, 3), [4, 5), and [9, 10). The conversion modulo

Low power hypercompression

72

4 gives the following ranges: [1, 3), [0, 1), and [1, 2). They would need a template 1 1 0 0,

which is rejected as not having a single 1. Consequently, cube 2 is not merged with cube 1.

Merging the third essential test cube (cube 3) with cube 1 yields eventually three toggle ranges:

[0, 3), [1, 2), and [1, 3). The intersection of the corresponding toggle points leads to a desired

template 0 1 0 0.

Having test templates with a single one is two-fold beneficial. It reduces the total number

of templates, and thus allows uploading their IDs rather than the entire templates. Moreover, it

elongates non-toggling periods of scan-in shifting, thus reducing the total switching activity.

As a result, the presented scheme becomes an efficient low power solution. If one uses slightly

longer test templates, for example 8-bit long, their preferable form comprises combinations

with two adjacent 1s to reduce the resultant template count. Furthermore, it addresses several

cases when one needs to reload scan chains twice in a row with different values. The basic

purpose of this operation is to shift-in a sequence having the same logic values but passing

through scan cells connected via inverters.

 In summary, given an essential test cube, its modular toggle ranges corresponding to

a single scan chain are processed as follows. Let r1 and r2 be two toggle ranges. If r1 and r2 are

disjoint, then there is no reduction of toggle point candidates, and both ranges are kept with no

changes. If r1 ∩ r2 ≠ ∅, then the largest overlap between r1 and r2 is picked, with the remaining

toggle point candidates being discarded. No specific toggle points are finalized yet, if an inter-

section comprises more than a single toggle point candidate. Generally, given a list {r1, r2, …,

Fig. 6.3. Circuit for Example 6.2.

Low power hypercompression

73

rn} of toggle ranges, they are processed in an arbitrary order by computing rk ∩ rk+1 ∩ … as

long as they are not empty. Every such product becomes a prime toggle group obtained for

every scan chain.

Prime toggle groups are combined to obtain toggle points that can be shared by as many

scan chains as possible. First, all lists are sorted by using the number of toggle ranges every list

features as a sort key. Starting from a list with the smallest number of ranges, we keep combin-

ing lists until the number of potential toggle points becomes greater than a predefined threshold.

Fig. 6.4. Transformations of TPRs.

Low power hypercompression

74

Note that the very same rules are used as those presented earlier. If a given list cannot be merged

because of the resultant threshold, we try a next list until all lists are examined. Scan chains

whose lists have not been merged become full toggle scan chains, where every care bit is set

individually. The above procedure works repeatedly by selecting a new essential test cube that

could be merged with a cube already processed (see Example 6.3) provided it has the ability on

its own to form an acceptable test template. If there are no more essential test cubes that could

be merged, a new test template is formed and process continues until all essential test cubes

have been checked.

Recall that enabling certain stages of the hold register makes the corresponding scan

chains fully toggling. The number of such full toggle taps should not be greater than two, as

shown in Fig. 6.1. Identifying at most two taps that feed full toggle scan chains via 3-input XOR

gates is somewhat similar to solving a maximum covering problem. To this end, a greedy ap-

proach presented in [43] is used. First, it sorts full toggle scan chains in descending order ac-

cording to the number of test cubes these scan chains are involved. Next, we iterate the process

that picks full toggle chains and determines their tap drivers. Assuming a scan chain is driven

by a 3-input XOR gate, the highest-ranked chain will have three such taps to choose from. Next,

subsequent chains will either share certain taps with the previously selected ones or narrow

down the space of available taps. The procedure continues until there are no more than two taps

available. At the end, certain test cubes may not be served by the selected taps. They go back

to the test cube pool to be merged next time.

 Test compression flow

Fig. 6.5 is the proposed test compression flow. Once a test template becomes available (as

shown in the previous sections), ATPG starts with faults that have been used to arrive with

essential test cubes and the corresponding templates. Information provided by test templates is

passed to ATPG as constraints. However, in order to guide ATPG in a test-template-aware

manner, an identification of so-called surrogates and other blocked gates is needed. Here, the

same methodology is used as the one presented in Section 5.3.

In addition to short test templates, other mechanisms that allow the presented scheme to

foster a close interaction between ATPG and encoding are used. These techniques are primarily

aimed at tailoring test cubes towards a template-enforced format and at reducing pattern counts.

Low power hypercompression

75

They guide ATPG back in such a way that ATPG does not assign certain nodes values that

otherwise lead to conflicts, compression aborts, and backtracks. As can be seen in Fig. 6.5, the

above objectives are achieved by taking the following additional steps:

• modifying conventional testability measures, i.e., controllability and observability, in such

a way that every net in a circuit is assigned five integral metrics; two of them give the

number of specified bits necessary to set a give line to 0 and 1, respectively; the third

one provides the number of specified bits necessary to make a given net observable; the

last two integers count how many faults are blocked if a given line is set to 0 and 1, respec-

tively,

• limiting the encoding capacity of a compression solver during the regular merging of test

cubes; typically the process of cube merging terminates once the number of seed variables

with assigned logic values of 0 or 1 becomes higher than 70% of the total number of vari-

ables injected into a system; the resultant specified values assigned to scan cells are passed

Fig. 6.5. High-level test flow.

Low power hypercompression

76

to ATPG as its constraints – maintaining a proper fraction of unspecified scan cells leaves

more space for dynamic-compaction-made assignments, which, in turn, increases effi-

ciency of the latter technique,

• reordering faults based on simple heuristics – see the following paragraph,

• computing probabilities of having scan cells set to 0 or 1 for a given subset of already

produced test cubes; this information is subsequently guiding ATPG so as to use – prefer-

ably – the same values for next test cubes (faults) to reduce the number of care bits; clearly,

this approach generalizes immediately by taking advantage of probabilistic data obtained

in the process of finding essential test cubes; the scan cell statistics are being iteratively

updated when processing successive faults, as shown in Fig. 6.5,

• trimming the number of ATPG-produced test cubes by using values that ATPG considers

necessary assignments as they become gradually available; details regarding these implied

values can be found in [28].

Given test patterns produced by now, the fault reordering is periodically checking

whether these patterns have established, for faults still on a list, the following: (1) an excitation

path, (2) complete off-paths, (3) off-paths within a FFR hosting a given fault. The fault list is

then sorted in such a way that faults with patterns setting their off-paths come first, followed

by faults with patterns setting their off-paths within the corresponding FFRs. The tail end con-

sists of faults with patterns forming excitation paths. Within each group, preference is given to

faults with the smallest pattern counts. These heuristics help to target, in the first place, faults

that might be the most demanding in terms of finding their compressible test cubes.

Experiments run on several large industrial designs indicate that the above heuristics,

paving the way for the guided ATPG, can yield better compression results. Nevertheless, it is

Table 6.1: Circuits characteristics.

 Gates Scan cells Scan chains Longest chain EDT channels EDT size

D1 1.2M 72K 400 181 1 22

D2 3.2M 281K 960 293 2 32

D3 4.8M 287K 960 299 2 32

D4 1.3M 52K 200 260 1 32

D5 3.2M 213K 500 426 2 33

D6 2.4M 182K 1,365 134 6 55

D7 4.0M 421K 1,500 281 10 56

Low power hypercompression

77

worth noting that the situation when a single essential test cube has no acceptable test template

is usually extraneous: in such a case all scan chains enter the full toggle mode and a test cube

is handled by the conventional EDT-based compression.

 Experimental results

As done before, the low power (LP) hypercompression technology has been verified by con-

ducting a series of experiments with several industrial designs. The basic data regarding these

circuits such as the number of gates, the number of scan cells, the number of scan chains, the

size of the longest chain, the number of input channels, and the size of decompressor are listed

in Table 6.1. All experiments are performed with a 4-bit test template and at most two full

toggle taps. It is also assumed that there is only a single toggle point per template. A test session

consists of two repeatable steps: (1) shifting in IDs of a test template and two full toggle latches,

and (2) applying 64 test patterns corresponding to this template.

Table 6.2 summarizes the results of the experiments for stuck-at faults, obtained for the

conventional EDT-based compression, the original hypercompression, and the new version of

hypercompression presented in this chapter. The successive columns of the table list the test

coverage (TC), the number of test patterns (TP), the corresponding input data volume (DV) in

megabits, and the resultant reduction of test pattern counts over the conventional EDT (TPRE)

and over the former version of hypercompression (TPRH). Note that the hypercompression-

based DV includes test templates data and binary-coded full toggle tap labels, whereas the LP

Table 6.2: Experimental results – stuck-at faults

TC [%]
Standard EDT Hypercompression LP Hypercompression

TPRE TPRH
TP DV [Mb] TP DV [Mb] TP DV [Mb]

D1 96.92 31,246 6.34 19,870 4.03 19,584 3.98 1.60 1.01

D2 96.95 57,037 37.07 24,137 15.69 23,528 15.29 2.42 1.03

D3 94.84 33,013 21.85 21,160 14.01 20,823 13.78 1.59 1.02

D4 91.34 45,523 13.73 11,219 3.38 10,643 3.20 4.28 1.05

D5 97.87 17,153 15.75 10,237 9.40 10,186 9.35 1.68 1.01

D6 99.78 15,551 15.12 8,118 7.89 7,973 7.75 1.95 1.02

D7 98.50 39,226 122.78 15,589 48.80 15,011 46.98 2.61 1.04

Low power hypercompression

78

version of hypercompression-based DV includes binary-coded IDs of test templates and full

toggle taps.

As TPRE and TPRH columns of Table 6.2 indicate, the LP hypercompression compares

favorably with its predecessors as far as test pattern counts and compression rates are con-

cerned. In all test cases, the compression ratios are higher than those of the standard EDT and

similar to the former hypercompression, while test coverage is not compromised. The observed

pattern reduction relative to the EDT varies from 1.59x to 4.28x, and its average value computed

across the examined designs is equal to 2.3x. Clearly, the proposed scheme raises compression

beyond what state-of-the-art sequential compression schemes can achieve.

Table 6.3 reports the switching activity results. In all examined test cases the scan-shift-

induced switching activity is measured by the normalized weighted transition metric (WTM)

[76]. As can be seen, the hypercompression reduces WTM to approximately 30% compared to

the reference value of nearly 50% obtained as the average value over all examined designs for

the standard EDT. Furthermore, the new hypercompression lowers WTM down to nearly 17%.

The toggling activity in the capture mode is represented by means of a weighted switching

activity (WSA) [86]. Since the average test power is proportional to a scan-shift-clock fre-

quency, its almost 3-fold reduction, as observed in the reported experiments, creates a signifi-

cant margin that, at a cost of complex and time-consuming computations, allows for accelera-

tion of scan shifting (and thus the entire test session) at a rate that corresponds to the difference

between the power consumption of conventional test solutions and the new scheme.

Table 6.3. Power metrics [%].

 Standard EDT Hypercompression LP Hypercompression

 Load Capture Unload Load Capture Unload Load Capture Unload

D1 49.34 10.79 49.94 32.90 10.48 36.36 17.50 10.25 26.35

D2 49.38 11.70 44.37 28.71 11.54 29.68 15.97 11.32 20.21

D3 49.53 10.69 42.01 30.25 10.54 26.09 16.21 10.48 19.96

D4 49.52 14.69 42.04 30.00 14.40 33.48 17.01 14.32 24.54

D5 49.65 15.96 44.78 33.47 15.37 33.16 18.12 15.17 23.98

D6 49.24 36.55 46.75 28.32 31.58 43.40 15.15 31.08 38.76

D7 49.23 15.83 44.77 24.63 10.36 26.20 15.03 10.16 20.01

79

Conclusion

CMOS technology scaling has been a constant since its initial development with the purpose of

obtaining integrated circuits that work at higher frequencies. The semiconductor industry is

rapidly moving into new technology nodes and offers chips that comprise billions of transistors

operating at GHz frequencies. The capabilities that allowed the industry to build this unprece-

dented trend require a sustained improvement in fabrication technologies, design automation

tools, and last, but by no means least, test and verification methods. Clearly, technology scaling

into the nanometer regime has a direct impact on contemporary test schemes. In particular, test

application time and the amount of test data are progressively increasing because of higher

complexity of designs, new types of defects, variance, and noise mechanisms. As a result, the

high-quality tests become increasingly expensive to maintain. Furthermore, shaping a circuit

power envelop, as required by reliable tests, is becoming more and more demanding. On top of

everything, integrated circuits need constant and thorough monitoring in safety-critical appli-

cations. The novel concepts, schemes, and detailed solutions presented in the thesis address

some of the challenges the contemporary test is facing. The author believes that these methods

may play an important role in the quest for more pattern- and time-efficient VLSI testing

schemes.

The test compaction scheme, presented in the first part of the thesis, is capable of reducing

pattern counts of the state-of-the-art ATPG tools in a noticeable manner. The proposed solution

combines a novel fault profiling, fault grouping, and a customized version of the SAT-based

ATPG. It begins with a comprehensive analysis of necessary assignments associated with pri-

mary inputs, pseudo-primary inputs, and all internal primary fanout stems. Having determined

this data, the thesis introduces an automated selection of fault groups, and then a method to

produce a single test pattern for the entire group, if possible. As confirmed by experiments on

industrial designs, the proposed approach can yield compact test sets, in many cases breaking

barriers laid out by former test set compaction algorithms. In principle, the method can work

Conclusion

 80

with any precomputed deterministic test set. As the new approach preserves all benefits of con-

temporary ATPG tools, it is an important factor in the process of gradual development of new

automated test pattern generation techniques.

The hypercompression of test data, presented in Chapter 5, is a step towards a next gen-

eration of test data compression schemes outperforming conventional sequential compression

techniques. Although it builds on the isometric compression paradigm, the hypercompression

substantially limits its silicon overhead, remains non-intrusive to the core logic, and further

elevates encoding efficiency and compression ratios. Moreover, it offers a flexible technique to

control scan toggling rates by deploying a programmable selection of full-toggle scan chains,

which in turn alleviates problems traditionally related to fault coverage drop and pattern count

inflation. The use of a small test template makes the proposed scheme very flexible – it is ca-

pable of reconfiguring test templates at negligible cost related to test time and data volume

overheads, for example, by working with very few external ATE channels. As the hypercom-

pression preserves all benefits of the sequential test compression, its adoption may become an

important factor in future scaled DFT technologies.

Finally, Chapter 6 describes a new low-power test data compression scheme. With the

hypercompression as its modus operandi, the new technique limits silicon overhead even fur-

ther, remains non-intrusive to the core logic, and elevates compression ratios. Moreover, high-

quality tests are guaranteed as this approach can work with all traditional fault models and any

new fault model of the future. More importantly, however, it is inherently a test-power-friendly

solution that alleviates several problems typically related to test power constraints. The ex-

tremely small test templates it deploys can be attached to every pattern at negligible cost as far

as test time and data volume are concerned. However, yielding very compact, high quality, and

exceedingly low power tests comes at the expense of additional processing.

The thesis demonstrates that even in such mature areas as test pattern generation and test

data compression, there are improvement opportunities. Moreover, the proposed solutions can

also be regarded as starting points for future research directions. For example, the test set com-

paction technique of Chapters 3 and 4 works exclusively with the tail end of a test set. One of

the next steps could be to develop rules that help a test set compaction algorithm form a subset

of test patterns susceptible to more effective merging based on the initial and complete test set.

Furthermore, the use of necessary assignments, as shown in Chapter 3, could be adapted by the

hypercompression approach to better adjust templates, and thus to further improve results. In

Conclusion

 81

summary, the solutions proposed in the thesis address some of the key challenges of the modern

VLSI test and help to converge toward an ultimate on-chip test solution with a negligible impact

on a design and manufacturing realm.

82

Bibliography

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing & Testable

Design. New York: Wiley, 1994.

[2] C. Acero, D. Feltham, F. Hapke, E. Moghaddam, N. Mukherjee, V. Neerkundar, M.

Patyra, J. Rajski, J. Tyszer, and J. Zawada, “On new test points for compact cell-aware

tests,” IEEE Des. Test Comput., vol. 33, no. 6, pp. 7-14, Dec. 2016.

[3] S. B. Akers, “Partitioning for testability,” J. Des. Autom. Fault-Toler. Comput., vol. 1, pp.

121–126, Feb. 1977.

[4] P. H. Bardell, W. H. McAnney, and J. Savir, Built-In Test for VLSI: Pseudorandom Tech-

niques. New York: Wiley, 1987.

[5] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, A. Ferko, B. Keller, D. Scott, B.

Koenemann, and T. Onodera, “Extending OPMISR beyond 10x scan test efficiency,”

IEEE Des. Test Comput., vol. 19, no. 5, pp. 65–73, Sep. 2002.

[6] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, B. Keller, and B. Koenemann, “OP-

MISR: the foundation for compressed ATPG vectors,” in Proc. ITC, 2001, pp. 748–757.

[7] I. Bayraktaroglu and A. Orailoglu, “Test volume and application time reduction through

scan chain concealment,” in Proc. DAC, 2001, pp. 151–155.

[8] I. Bayraktaroglu and A. Orailoglu, “Concurrent application of compaction and compres-

sion for test time and data volume reduction in scan designs,” IEEE Trans. Comput., vol.

52, no. 11, pp. 1480–1489, Nov. 2003.

[9] P. D. Bisschop and E. Hendrickx, “Stochastic effects in EUV lithography,” in Proc. SPIE

Advanced Lithography, 2018, vol. 10583, p. 105831K.

[10] P. Camurati, D. Medina, P. Prinetto, and M. Sonza Reorda, “A diagnostic test pattern

generation algorithm,” in Proc. ITC, 1990, pp. 52–58.

Bibliography

 83

[11] K. Chakrabarty, B. T. Murray, and V. Iyengar, “Built-in test pattern generation for high-

performance circuits using twisted-ring counters,” in Proc. VTS, 1999, pp. 22–27.

[12] J.-S. Chang and C.-S. Lin, “Test set compaction for combinational circuits,” IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst., vol. 14, no. 11, pp. 1370–1378, Nov. 1995.

[13] R. Chau and R. Arghavani, “A method for making a semiconductor device having a high-

k gate dielectric,” U.S. Patent 6 617 210, Sep. 9, 2003.

[14] W.-T. Cheng, “The BACK algorithm for sequential test generation,” in Proc. ICCD, 1988,

pp. 66–69.

[15] V. Chvatal, “A greedy heuristic for the set-covering problem,” Math. Oper. Res., vol. 4,

no. 3, pp. 233–235, Aug. 1979.

[16] F. Corno, P. Prinetto, M. Rebaudengo, and M. Sonza Reorda, “GATTO: a genetic algo-

rithm for automatic test pattern generation for large synchronous sequential circuits,”

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 15, no. 8, pp. 991–1000, Aug.

1996.

[17] F. Corno, P. Prinetto, M. Rebaudengo, and M. Sonza Reorda, “A test pattern generation

methodology for low power consumption,” in Proc. VTS, 1998, pp. 453–457.

[18] A. Czutro, I. Polian, P. Engelke, S. M. Reddy, and B. Becker, “Dynamic compaction in

SAT-based ATPG,” in Proc. ATS, 2009, pp. 187–190.

[19] D. Czysz, M. Kassab, X. Lin, G. Mrugalski, J. Rajski, and J. Tyszer, “Low-Power Scan

Operation in Test Compression Environment,” IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 28, no. 11, pp. 1742–1755, Nov. 2009.

[20] R. Drechsler, S. Eggergluss, G. Fey, A. Glowatz, F. Hapke, J. Schloeffel, and D. Tille,

“On acceleration of SAT-Based ATPG for industrial designs,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 27, no. 7, pp. 1329–1333, July 2008.

[21] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and Applications of

Satisfiability Testing, E. Giunchiglia and A. Tacchella, Eds. Berlin: Springer, 2004, pp.

502–518.

[22] N. Eén and N. Sörensson, “Translating pseudo-Boolean constraints into SAT,” J. Satisf.

Boolean Model. Comput., vol. 2, no. 1–4, pp. 1–26, March 2006.

Bibliography

 84

[23] S. Eggersglüß, S. Milewski, J. Rajski, and J. Tyszer, “On reduction of deterministic test

patterns sets,” in Proc. ITC, 2021.

[24] S. Eggersglüß, K. Schmitz, R. Krenz-Bååth, and R. Drechsler, “On optimization-based

ATPG and its application for highly compacted test sets,” IEEE Trans. Comput.-Aided

Des. Integr. Circuits Syst., vol. 35, no. 12, pp. 2104–2117, April 2016.

[25] E. B. Eichelberger and T. W. Williams, “A logic design structure for LSI testability,” in

Proc. DAC, 1988, pp. 462–468.

[26] H. Fujiwara and T. Shimono, “On the acceleration of test generation algorithms,” IEEE

Trans. Comput., vol. 32, no. 12, pp. 1137-1144, Dec. 1983.

[27] S. Funatsu, N. Wakatsuki, and T. Arima, “Test generation systems in Japan,” in Proc.

DAC, 1975, pp. 114–122.

[28] M. Gębala, G. Mrugalski, N. Mukherjee, J. Rajski, and J. Tyszer, “On using implied val-

ues in EDT-based test compression,” in Proc. DAC, 2014, pp. 1–6.

[29] P. Gelsinger, “Discontinuities driven by a billion connected machines,” IEEE Des. Test

Comput., vol. 17, no. 1, pp. 7–15, Jan. 2000.

[30] P. Girard, N. Nicolici, and X. Wen, Eds., Power-Aware Testing and Test Strategies for

Low Power Devices. New York: Springer, 2010.

[31] P. Goel, “An implicit enumeration algorithm to generate tests for combinational logic cir-

cuits,” IEEE Trans. Comput., vol. 30, no. 3, pp. 215–222, March 1981.

[32] P. Goel and B. C. Rosales, “Test generation and dynamic compaction of tests,” in Proc.

ITC, 1979, pp. 189–192.

[33] L. H. Goldstein and E. L. Thigpen, “SCOAP: sandia controllability/observability analysis

program,” in Proc. DAC, 1980, pp. 190–196.

[34] T. Gruning, U. Mahlstedt, and H. Koopmeiners, “DIATEST: a fast diagnostic test pattern

generator for combinational circuits,” in Proc. ICCAD, 1991, pp. 194–197.

[35] A.-W. Hakmi, S. Holst, H.-J. Wunderlich, J. Schloffel, F. Hapke, and A. Glowatz, “Re-

strict encoding for mixed-mode BIST,” in Proc. VTS, 2009, pp. 179–184.

[36] I. Hamzaoglu and J. H. Patel, “Reducing test application time for full scan embedded

cores,” in Proc. FTCS, 1999, pp. 260–267.

Bibliography

 85

[37] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for combinational circuits,”

IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 19, no. 8, pp. 957–963, Aug.

2000.

[38] J. P. Hayes and A. D. Friedman, “Test point placement to simplify fault detection,” IEEE

Trans. Comput., vol. 23, no. 7, pp. 727–735, July 1974.

[39] S. Hellebrand, H.-G. Liang, and H.-J. Wunderlich, “A mixed mode BIST scheme based

on reseeding of folding counters,” in Proc. ITC, 2000, pp. 778–784.

[40] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois, “Built-in test for

circuits with scan based on reseeding of multiple-polynomial linear feedback shift regis-

ters,” IEEE Trans. Comput., vol. 44, no. 2, pp. 223-233, Feb. 1995.

[41] S. Hellebrand, B. Reeb, S. Tarnick, and H.-J. Wunderlich, “Pattern generation for a deter-

ministic BIST scheme,” in Proc. ICCAD, 1995, pp. 88–941.

[42] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Fast static compaction algorithms for se-

quential circuit test vectors,” IEEE Trans. Comput., vol. 48, no. 3, pp. 311–322,

March 1999.

[43] Y. Huang, S. Milewski, J. Rajski, J. Tyszer, and C. Wang, “Low cost hypercompression

of test data,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 39, no. 10, pp.

2964–2975, Oct. 2020.

[44] O. H. Ibarra and S. K. Sahni, “Polynomially complete fault detection problems,” IEEE

Trans. Comput., vol. C–24, no. 3, pp. 242–249, March 1975.

[45] S. Kajihara, I. Pomeranz, K. Kinoshita, and S. M. Reddy, “Cost-effective generation of

minimal test sets for stuck-at faults in combinational logic circuits,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 14, no. 12, pp. 1496–1504, Dec. 1995.

[46] R. Kapur, S. Mitra, and T. W. Williams, “Historical perspective on scan compression,”

IEEE Des. Test Comput., vol. 25, no. 2, pp. 114–120, March 2008.

[47] T. P. Kelsey and K. K. Saluja, “Fast test generation for sequential circuits,” in Proc. IC-

CAD, 1989, pp. 345–347.

[48] T. Kirkland and M. R. Mercer, “A topological search algorithm for ATPG,” in Proc. DAC,

1987, pp. 502–508.

Bibliography

 86

[49] T. Kobayashi, T. Matsue, and H. Shiba, “Flip-flop circuit with FLT capability,” in Proc.

IECEJ Conf., 1968, p. 692.

[50] B. Koenemann, “LFSR-coded test patterns for scan designs,” in Proc. ETC, 1991, pp.

237–242.

[51] A. Kumar, M. Kassab, E. Moghaddam, N. Mukherjee, J. Rajski, S. M. Reddy, J. Tyszer,

and C. Wang, “Isometric test data compression,” IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 34, no. 11, pp. 1847–1859, Nov. 2015.

[52] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 11, no. 1, pp. 4–15, Jan. 1992.

[53] J. Lee and N. Touba, “LFSR-reseeding scheme achieving low-power dissipation during

test,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 2, pp. 396-401,

Feb. 2007.

[54] K.-J. Lee, J.-J. Chen, and C.-H. Huang, “Using a single input to support multiple scan

chains,” in Proc. ICCAD, 1998, pp. 74–78.

[55] X. Lin, J. Rajski, I. Pomeranz, and S. M. Reddy, “On static test compaction and test pattern

ordering for scan designs,” in Proc. ITC, 2001, pp. 1088–1097.

[56] W. Maly, “Modeling of lithography related yield losses for CAD of VLSI circuits,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 4, no. 3, pp. 166–177, July 1985.

[57] R. A. Marlett, “EBT: a comprehensive test generation technique for highly sequential cir-

cuits,” in Proc. DAC, 1978, pp. 335–339.

[58] K. Miyase and S. Kajihara, “XID: Don’t care identification of test patterns for combina-

tional circuits,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 23, no. 2, pp.

321–326, Feb. 2004.

[59] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38,

no. 8, pp. 114-117, April 1965.

[60] N. Mukherjee, J. Rajski, G. Mrugalski, A. Pogiel, and J. Tyszer, “Ring generator: an ulti-

mate linear feedback shift register,” IEEE Computer, vol. 44, no. 6, pp. 64-71, June 2011.

[61] P. Muth, “A nine-valued circuit model for test generation,” IEEE Trans. Comput., vol. 25,

no. 6, pp. 630–636, June 1976.

Bibliography

 87

[62] S. N. Neophytou and M. K. Michael, “Test set generation with a large number of unspec-

ified bits using static and dynamic techniques,” IEEE Trans. Comput., vol. 59, no. 3, pp.

301–316, March 2010.

[63] S. N. Neophytou and M. K. Michael, “Test pattern generation of relaxed n-detect test sets,”

IEEE Trans. VLSI Syst., vol. 20, no. 3, pp. 410–423, March 2012.

[64] T. Niermann and J. H. Patel, “HITEC: a test generation package for sequential circuits,”

in Proc. ECDA, 1991, pp. 214–218.

[65] R. Norman, J. Last, and I. Haas, “Solid-state micrologic elements,” in Proc. ISSCC, 1960,

pp. 82–83.

[66] I. Pomeranz, L. N. Reddy, and S. M. Reddy, “COMPACTEST: a method to generate com-

pact test sets for combinational circuits,” IEEE Trans. Comput.-Aided Des. Integr. Cir-

cuits Syst., vol. 12, no. 7, pp. 1040–1049, July 1993.

[67] I. Pomeranz and S. M. Reddy, “A diagnostic test generation procedure based on test elim-

ination by vector omission for synchronous sequential circuits,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 19, no. 5, pp. 589–600, May 2000.

[68] I. Pomeranz and S. M. Reddy, “Forward-looking fault simulation for improved static com-

paction,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 20, no. 10, pp.

1424–1428, Oct. 2001.

[69] I. Pomeranz and S. M. Reddy, “Forward-looking reverse order fault simulation for n-de-

tection test sets,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 28, no. 9,

pp. 1424–1428, Sep. 2009.

[70] J. Rajski and H. Cox, “A method to calculate necessary assignments in algorithmic test

pattern generation,” in Proc. ITC, 1990, pp. 25–34.

[71] J. Rajski, M. Kassab, N. Mukherjee, N. Tamarapalli, J. Tyszer, and J. Qian, “Embedded

deterministic test for low-cost manufacturing,” IEEE Des. Test Comput., vol. 20, no. 5,

pp. 58–66, Sep. 2003.

[72] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded deterministic test,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 23, no. 5, pp. 776–792, May 2004.

Bibliography

 88

[73] P. M. Rosinger, B. M. Al-Hashimi, and N. Nicolici, “Low power mixed-mode BIST based

on mask pattern generation using dual LFSR re-seeding,” in Proc. ICCD, 2002, pp. 474–

479.

[74] J. P. Roth, “Diagnosis of automata failures: a calculus and a method,” IBM J. Res. Dev.,

vol. 10, no. 4, pp. 278–291, July 1966.

[75] J. P. Roth, W. G. Bouricius, and P. R. Schneider, “Programmed algorithms to compute

tests to detect and distinguish between failures in logic circuits,” IEEE Trans. Electron.

Comput., vol. 16, no. 5, pp. 567–580, Oct. 1967.

[76] R. Sankaralingam, R. R. Oruganti, and N. A. Touba, “Static compaction techniques to

control scan vector power dissipation,” in Proc. VTS, 2000, pp. 35–40.

[77] M. H. Schulz and E. Auth, “Improved deterministic test pattern generation with applica-

tions to redundancy identification,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst., vol. 8, no. 7, pp. 811–816, July 1989.

[78] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES: a highly efficient automatic

test pattern generation system,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,

vol. 7, no. 1, pp. 126–137, Jan. 1988.

[79] N. Sitchinava, E. Gizdarski, S. Samaranayake, F. Neuveux, R. Kapur, and T. W. Williams,

“Changing the scan enable during shift,” in Proc. VTS, 2004, pp. 73–78.

[80] C. E. Stroud, A Designer’s Guide to Built-In Self-Test. New York: Springer, 2002.

[81] N. A. Touba, “Survey of test vector compression techniques,” IEEE Des. Test Comput.,

vol. 23, no. 4, pp. 294–303, April 2006.

[82] J. A. Waicukauski, P. A. Shupe, D. J. Giramma, and A. Matin, “ATPG for ultra-large

structured designs,” in Proc. ITC, 1990, pp. 44–51.

[83] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures. San Fran-

cisco: Elsevier, 2006.

[84] S. Wang and S. K. Gupta, “ATPG for heat dissipation minimization during scan testing,”

in Proc. DAC, 1997, pp. 614–619.

[85] S. Wang and S. K. Gupta, “ATPG for heat dissipation minimization during test applica-

tion,” IEEE Trans. Comput., vol. 47, no. 2, pp. 256–262, Feb. 1998.

Bibliography

 89

[86] S. Wang and S. K. Gupta, “An automatic test pattern generator for minimizing switching

activity during scan testing activity,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst., vol. 21, no. 8, pp. 954–968, Aug. 2002.

[87] Z. Wang and K. Chakrabarty, “Test data compression for IP embedded cores using selec-

tive encoding of scan slices,” in Proc. ITC, 2005, pp. 581–590.

[88] M. J. Y. Williams and J. B. Angell, “Enhancing testability of large-scale integrated circuits

via test points and additional logic,” IEEE Trans. Comput., vol. 22, no. 1, pp. 46–60, Jan.

1973.

[89] P. Wohl, J. Waicukauski, S. Patel, and M. Amin, “Efficient compression and application

of deterministic patterns in a logic BIST architecture,” in Proc. DAC, 2003, pp. 566–569.

[90] M.-F. Wu, J.-L. Huang, X. Wen, and K. Miyase, “Reducing power supply noise in linear-

decompressor-based test data compression environment for at-speed scan testing,” in

Proc. ITC, 2008, pp. 1–10.

[91] Q. Wu, Y. Li, Y. Yang, and Y. Zhao, “A photolithography process design for 5 nm logic

process flow,” J. Microelectron. Manuf., vol. 2, no. 4, pp. 1–8, Dec. 2019.

[92] A. Yen, H. Meiling, and J. Benschop, “EUV lithography at threshold of high-volume man-

ufacturing,” in Proc. IEDM, 2018, pp. 11.6.1-11.6.4.

[93] X. Yu, J. Wu, and E. M. Rudnick, “Diagnostic test generation for sequential circuits,” in

Proc. ITC, 2000, pp. 225–234.

[94] “Apple unleashes M1,” Apple Newsroom. Accessed: May 6, 2021. [Online]. Available:

https://www.apple.com/newsroom/2020/11/apple-unleashes-m1/.

[95] “Tessent FastScan,” Siemens Digital Industries Software, May 20, 2021. Accessed: May

20, 2021. [Online]. Available: https://eda.sw.siemens.com/en-US/ic/tessent/test/fastscan.

[96] “TestMAX DFT comprehensive, advanced design-for-test (DFT),” Synopsys, Inc. Ac-

cessed: May 20, 2021. [Online]. Available: https://www.synopsys.com/implementation-

and-signoff/test-automation/testmax-dft.html.

[97] “Modus DFT Software Solution,” Cadence Design Systems, Inc., May 20, 2021.

Accessed: May 20, 2021. [Online]. Available: https://www.cadence.com/en_US/home/

tools/digital-design-and-signoff/test/modus-test.html.

