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Abstract 

Testing of digital circuits has always been a vibrant area of research and development, primarily 

due to imperfect manufacturing processes and staggering complexity of semiconductor devices. 

It can be easily observed that each shrinking technology node brings new challenges for man-

ufacturing test due to, for example, new types of failure mechanisms and defects. These defects 

require more complex fault models, and thus test patterns whose number is steadily increasing. 

This, in turn, leads to long test application times and elevated test data volumes. Furthermore, 

modern safety-critical applications require reliable and robust in-system tests of quality match-

ing that of manufacturing tests. To alleviate and temper these problems, new testing methods 

are required despite significant advancements made in the past. Furthermore, power consump-

tion during test must be seriously taken into account so that functional power limits are not 

exceeded. To satisfy current and anticipated VLSI test requirements, the thesis introduces 

a number of methods that target two important aspects of a test preparation process: test set 

compaction and test data compression. 

First, a novel test set compaction methodology employing a state-of-the-art SAT-based 

automatic test pattern generation (ATPG) algorithm is presented. In principle, it is based on 

a dimensionality reduction paradigm that works with a meaningful representation of test pat-

terns using external and internal necessary assignments to determine small groups of potentially 

compatible faults. These faults are subsequently retargeted by the robust SAT-based ATPG and 

its solvers producing a single test pattern for the entire group, thus making the resultant test set 

smaller in size. 

The subsequent part of the thesis presents a new test compression scheme that aims at 

achieving encoding efficiency higher than any best-to-date sequential compression methods. 

The approach is based on a key observation that among care bits populating test cubes only 

a very few have a status of necessary assignments (their locations cannot be changed), whereas 

the remaining ones have alternative sites. These test cubes are used to form circular test tem-

plates which synergistically control a decompressor and guide back ATPG to find assignments 

yielding highly compressible test patterns.  
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The last part of this work proposes a next step in developing a new class of test data 

compression schemes. Although it builds on the paradigm recalled in the previous paragraph, 

it further limits silicon overhead, remains non-intrusive to the core logic, and elevates compres-

sion ratios. More importantly, however, it is inherently a low-power test solution that alleviates 

problems related to fault coverage drop and pattern count inflation caused by power constraints. 

Extremely small test templates make that scheme very flexible – it is capable of attaching a tem-

plate to every pattern at a negligible cost related to test time and data volume, especially when 

working with a very few ATE channels. 

All solutions presented in the thesis have been thoroughly verified through experimental 

results obtained for a variety of industrial and open-source benchmark circuits representing the 

latest technology nodes while varying with respect to design styles and scan methodologies, to 

name just a few factors that were taken into account. 
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Streszczenie 

Testowanie układów i systemów cyfrowych pozostaje dynamicznie rozwijanym obszarem ba-

dań naukowych i praktyki inżynierskiej, przede wszystkim ze względu na niedoskonałości pro-

cesów wytwarzania układów półprzewodnikowych i ich bezprecedensową złożoność. Kolejne 

generacje cyfrowych układów scalonych wielkiej skali integracji wprowadzają nowe typy 

uszkodzeń, których wykrycie wymaga złożonych modeli oraz stale rosnącej liczby wektorów 

testowych. W konsekwencji rośnie konieczna ilość danych testowych oraz wydłuża się czas 

testowania. Istotny wpływ na kształt nowych technologii testowania ma także powszechna już 

obecność układów elektronicznych w urządzeniach o krytycznym znaczeniu dla zdrowia lub 

bezpieczeństwa. Ewentualne uszkodzenia układów zajmujących centralne miejsce w takich 

systemach mogą prowadzić do katastrofalnych następstw. Systemy te wymagają periodycznych 

testów wysokiej jakości (zwykle porównywalnej z jakością testów produkcyjnych) wykonywa-

nych także w trakcie normalnej eksploatacji układu. Kolejny problem stanowi kilkukrotny 

wzrost, w trakcie testowania, zużycia energii. Ponadnormatywna aktywność układu w trakcie 

testu wymusza zatem bardzo staranne zarządzanie wykorzystaniem energii za pomocą dedyko-

wanych, energooszczędnych metod testowania. W związku z przedstawionymi wymaganiami 

w pracy podjęto próbę rozwiązania dwóch istotnych zagadnień: minimalizacji liczby wektorów 

testowych (co w efekcie oznacza skrócenie czasu testowania) oraz redukcji wolumenu danych 

niezbędnych w procesie aplikacji właściwych testów. 

W pierwszej części rozprawy podano metodę ograniczenia liczby wektorów testowych, 

początkowo otrzymanych za pomocą konwencjonalnych algorytmów automatycznej generacji 

testów. W zaproponowanym podejściu wykorzystano technikę redukcji wymiaru, tj. proces 

zmniejszania liczby zmiennych branych pod uwagę w trakcie analizy wektorów testowych. 

Zgodnie z tym podejściem, początkowy zbiór wektorów testowych, a w szczególności zbiór 

jego wartości koniecznych, jest wykorzystywany do zdefiniowania małych grup uszkodzeń po-

tencjalnie zgodnych (wykrywanych za pomocą tego samego pobudzenia). Następnie wektory 

testowe są generowane ponownie za pomocą heurystycznych algorytmów stosowanych trady-

cyjnie w rozstrzyganiu problemu spełnialności formuł logicznych. 
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W dalszej części rozprawy przedstawiono metodę redukcji (kompresji) danych testo-

wych, której celem jest osiągnięcie wysokiej efektywności kodowania. Zaproponowane podej-

ście opiera się na obserwacji, że wśród wyspecyfikowanych bitów wektorów testowych tylko 

nieliczne są konieczne (ich wartości oraz przypisania do wejść układu nie można zmienić), 

podczas gdy pozostałe można zastąpić innymi wartościami przypisanymi do alternatywnych 

wejść. Tak interpretowane wektory testowe są następnie wykorzystywane do utworzenia cy-

klicznych szablonów sterujących procesem kompresji (i dekompresji) danych testowych.  

Ostatni rozdział pracy to kolejny krok w ewolucji metod kompresji danych testowych. 

Bazując na opisanej we wcześniejszych rozdziałach rozprawy metodzie redukcji danych, nowy 

algorytm umożliwia dalsze ograniczenie infrastruktury testującej, zwiększa stopień kompresji 

oraz znacząco zmniejsza pobór mocy w trakcie podawania testów. W szczególności redukuje 

także rozmiar szablonów, które są dodawane do każdego wektora bez istotnego wpływu na czas 

testu i wynikową ilość danych testowych. 

Wszystkie rozwiązania przedstawione w pracy zweryfikowano w badaniach eksperymen-

talnych przeprowadzonych za pomocą opracowanego przez autora oryginalnego oprogramo-

wania będącego rozszerzeniem istniejących narzędzi komercyjnych. W eksperymentach wyko-

rzystano współczesne scalone cyfrowe układy przemysłowe oraz układy testowe typu open-

source. 
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Introduction 

 Preamble 

On April 25, 1961, the US patent office awarded the first patent for a monolithic integrated 

circuit (IC) to Robert Noyce of Fairchild Semiconductor startup company. Although those so-

called “unitary circuits” comprised just a few transistors [65], they were seminal signs of the 

shift in technology that was moving the entire world into the third industrial revolution, which 

would be dominated by electronics, computing, information, and digital advances. From that 

moment on, microelectronic devices have been increasingly shaping every aspect of our lives: 

the way we work, communicate, travel, or entertain. Interestingly, humankind is again facing 

a time of significant change. During the last two decades, we have witnessed a perfect storm of 

technology convergence that includes the dominance of data, massive computing, progress in 

algorithms and processing methodologies, and the integration of disparate technologies. 

Clearly, one of the key factors that makes all of this possible is the exponential miniaturization 

of chips and other components, predicted inexorably by Moore’s Law [59]. Despite of several 

concerns, this 60-year old observation “is still there” as evidenced by Apple releasing, in 2020, 

one of the most powerful processors made of more than 16 billion transistors [94].   

Semiconductor chips housing large circuitries capable of executing complex tasks and 

functions are prone to defects as any other result of product engineering. However, the reliabil-

ity and robustness of electronic systems is no longer a concern limited to certain industries, 

where a failure may have severe (or even catastrophic) consequences. On the contrary, reliabil-

ity and test techniques have become of increasing interest to a countless number of applications. 

As a result, the challenge of testing electronic systems has been growing rapidly over the last 

decades driven by unprecedented technological advances resulting in the technology feature 

dimensions shrinking such that state-of-the-art ultra-tiny interconnects between transistors are 

now matter of tens of atoms, whereas the thickness of insulating layers of transistor gates is 

equal to 3-5 atoms [13]. Even though the introduction of extreme ultraviolet (EUV) lithography 
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[92] made this miniaturization possible, it also made a complex defects inevitable in nanometer-

scale devices. A list of principal failure mechanisms includes surface and bulk effects, metalli-

zation, process instabilities, package-related problems, and human errors. In addition to popular 

types of defects such as extra and missing material, oxide breakdowns, or electromigration (Fig. 

1.1) [56], [91], one needs to consider more frequent stochastic printing failures such as micro-

bridges, broken lines, and missing or merging contacts (Fig. 1.2) [9], [91], all of them resulting 

in faulty circuits. These defects require robust test procedures to assure delivery of impeccable 

products, regardless of whether the product is a single IC or an electronic system composed of 

many VLSI devices. Nevertheless, the wide variety of defects in chips makes it virtually im-

possible to create test patterns that would detect all actual physical failures. As a solution, ab-

stract fault models are employed to represent a defective circuit behavior, including the all-time 

favorite single stuck-at fault where one of the signal lines in a circuit is assumed to be stuck at 

a fixed logic value. Since new manufacturing techniques generate new types of defects, many  

fault models were gradually introduced to better represent behavior of a faulty IC [1].  

Defects in microelectronic systems may occur at any stage of their production process. 

Consequently, various types of test routines are deployed several times beginning with manu-

facturing tests for individual ICs, then tests involving the same ICs soldered on printed circuit 

boards (PCBs), and subsequently all the way to a complete system assembled and sent to 

the end user. At each stage, the device must be tested thoroughly because the later a defect is 

detected, the higher the cost of fault detection is going to be. As the rule of ten states [83], 

 

Fig. 1.1. “Traditional” types of defects: (a) cluster, (b) line collapse, (c) particles, (d) process defect [5]. 
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detecting a defective IC further in the process increases that cost by order of magnitude per 

stage. Consequently, it is crucial to spot a defective circuit as soon as possible.  

Given a circuit, the basic objective of the IC testing is to produce patterns that excite 

(provoke) faults and propagate their effects (errors) to observable outputs (or other observation 

points). To put it in a different way, a test stimulus must yield different responses depending on 

whether a circuit is fault-free or faulty. Apart from very simple designs, it is virtually impossible 

to get such patterns manually. In 1966 and 1967, P. Roth published two seminal papers [74], 

[75] on D-algorithm – the method to automate test pattern generation that, for the first time, 

introduced a calculus and methods for automatic test pattern generation (ATPG) for combina-

tional circuits. It was also shown [44] that although the D-algorithm can find a test pattern for 

any detectable fault, it belongs to the class of NP-complete problems. Because of such com-

plexity, several combinational ATPG heuristics were proposed in the following years [83] to 

reduce ATPG processing times. Although most of them used the concepts introduced by 

P. Roth, these techniques may not guarantee a solution. Instead, they exploit structural infor-

mation or sophisticated learning processes to improve ATPG performance (as detailed in the 

next chapter). As a result, the test generation algorithms can maximize the number of detected 

faults, but they may not optimize the corresponding pattern count. Since it determines test ap-

plication time and a tester memory size (and thus cost of test), a lot of research effort was spent 

on developing test set reduction methods, also known as test set compaction. In principle, these 

algorithms transform test sets in such a way that each (compact) test vector detects as many 

faults as possible [83].  

 The challenge of test generation is clearly more cumbersome and intricate for sequential 

circuits. Although there were several attempts to develop a fully functional sequential ATPG 

[61], [64], its computational complexity makes generating patterns for large sequential circuits 

 

Fig. 1.2. Stochastic printing defects: (a) missing contact, (b) merging contact, (c) microbridge, 
(d) broken line [5]. 
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an excruciating and daunting task. Even worse, those algorithms were handling successfully 

only fairly regular structures. The inability to easily control and/or observe internal state varia-

bles of sequential circuits led finally to adoption of design techniques that facilitate testing. 

These so-called design for test (DFT) schemes advocate the use of additional on-chip constructs 

that make testing easier with respect to test generation, test application, and many other test-

related activities. The DFT started with the ad-hoc insertion of control and observation test 

points into a design. However, it has required manual implementation and verification which 

quickly became unfeasible because of complexity of VLSI circuits. This created a particularly 

pressing need for automation. In the 70s, IBM and NEC have introduced independently a scan-

based design methodology, which unified and automated the process of DFT insertion [25], 

[27], [49]. According to this paradigm, a synchronous sequential circuit works in two modes: 

(1) a functional mode, where a circuit executes a mission it was designed for, whereas in (2) 

a test mode, all or almost all flip-flops form one or more shift registers (scan chains), which are 

used to gain access to internal nodes of a chip. As a result, test generation is reduced to that of 

combinational circuits which can be directly driven and observed. The resultant patterns and 

responses can be shifted-in and shifted-out via scan chains, respectively. This test paradigm 

was successfully and firmly in place for the next five decades, and there are no contenders on 

the horizon even though scan designs incur certain hardware overhead and performance degra-

dation, not to mention certain IP security concerns.  

Despite the overwhelming deployment of efficient ATPG and DFT schemes, new test 

challenges surfaced in the early nineties. In particular, smaller and smaller technology nodes 

with the corresponding new fault models have caused the magnitude of test sets produced by 

contemporary ATPG tools to grow at a pace visibly surpassing Moore’s Law. This, in turn, has 

resulted in a significant increase in test cost because of lengthy test times and large tester 

memory requirements. In 1999, at his International Test Conference (ITC) keynote speech, Pat 

Gelsinger, the CEO of Intel at that time, warned that in 10 years, the cost of testing a transistor 

would become greater than its manufacturing cost [29]. The test community responded to this 

challenge promptly with the introduction of test data compression, another milestone in reduc-

ing the test cost [6], [72], [79]. In accordance with this new paradigm, ATE stores compressed 

test patterns and delivers them to an on-chip decompressor, which drives scan chains with the 

actual test stimuli. Similarly, test responses are shifted-out via scan chains to an on-chip com-

pactor and sent back to a tester to be compared against golden references. This approach reduces 
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test application time, ATE memory as well as I/O channels. Moreover, the test throughput is 

increased while maintaining the high-quality of test. 

The trend to integrate various functionalities on a single chip continues and brings more 

and more functionalities to a single die. Massive integration is even stronger in the mobile, 

space, home automation, or automotive electronics, where systems-on-a-chip (SoC) bring to-

gether complex computing, communications, and entertainment functions on a single die. As 

a result, durability and reliability over their expected lifetime become a significant concern. In 

these applications, devices must be thoroughly tested, not only before their application but also 

during their lifespan; it requires monitoring of material aging and wear-out. This was partially 

resolved by deployment of logic built-in self-test (LBIST) [4], [80]. However, the resultant test 

quality and test application times were not satisfactory, mainly due an inherent inability to suc-

cessfully tackle random pattern resistant faults. This bottleneck was overcome by combining 

LBIST with test compression. New compression techniques allowed sharing specific on-chip 

resources and created hybrid test schemes as a new and promising direction in the embedded 

test. Several hybrid LBIST schemes were proposed to store deterministic top-up patterns (de-

tecting random pattern resistant faults) on a tester in a compressed form, and then use the ex-

isting LBIST hardware to decompress them. Nowadays, many manufacturers go even further 

and perform full deterministic in-system tests. It takes more memory resources but assures the 

desired test quality.  

The drive to pack more functions into a small space leads also to power delivery and heat 

flux issues affecting supply integrity and chip packaging. Power issues, however, affect not 

only the mission mode but the test mode as well, as toggling rates and the resultant power 

consumption can be much higher than a circuit is rated for (typically, the goal of structural scan-

based test is to activate as many nodes as possible in a very short period of time [30]). This 

trend is only expected to get worse. The resulting higher junction temperature and increased 

peak power lead to overheating or supply voltage noise - either of which can cause a device 

malfunction and thus yield loss, chip reliability degradation, shorter product lifetime, or device 

permanent damage. 

In spite of many techniques used to arrive with high quality and compact tests, the afore-

mentioned limitations and constraints are still shaping development of testing schemes for 

VLSI devices. Therefore, new generation ATPG and test compression schemes must take those 
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factors into account. In response to these challenges, the thesis proposes new techniques target-

ing test pattern generation, test set compaction, and test data compression.  

 Motivation 

Although combinational ATPG, the associated test compaction schemes, and test data com-

pression methods are considered a very mature area of science and engineering by many, the 

magnitude of test sets produced by contemporary ATPG tools continues to grow, as already 

mentioned in the previous chapter. The inflated test sets and lengthy test application times are 

commonly attributed, although not limited, to: (1) pattern-intensive transistor-level test gener-

ation techniques aimed at reducing test escapes and handling many clock domains, (2) circuits 

of large combinational depths with staggeringly complex clocking schemes, (3) excessive tail 

pattern counts featuring very few specified bits, yet difficult to merge due to mutual conflicts, 

and (4) automatically generated RTL whose tricky control logic poses non-trivial test chal-

lenges. As a result, large test sets become efficiency limiting and cost-increasing factors in test-

ing embedded systems, system-on-a-chip designs, or any other complex designs brought to the 

market. 

To address these challenges, the first part of this work proposes a new test set compaction 

technique that follows a long list of earlier contributions in the same area, including reverse 

order fault simulation [78], [82], methods setting unspecified values so as to detect more faults 

by a single pattern [32], or techniques that target faults in a particular order to further decrease 

a test set [66]. A method presented here replaces a complete set of fully specified test patterns 

by its meaningful yet reduced representation. It integrates synergistically several techniques, 

such as computation of necessary assignments, a comprehensive fault profiling, a fault group-

ing, and a customized version of SAT-based ATPG, to reduce effectively the original test set 

while preserving all benefits of modern ATPG tools.  

It is worth noting that even a compact test set can still be a major source of test complexity 

due to the explosive pace of test data growth. Clearly, this problem is not new [50]. However, 

since the late nineties, it is growing much more acute. As a result, various test data compression 

schemes have started having a significant impact on the test landscape. One of the most straight-

forward solutions was to broadcast test data to scan chains through hardwired fanouts of a few 

ATE channels [54], as shown in Fig. 1.3b. The Illinois scan [36] used the same principle but 
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allowed reconfiguration of input fanouts. Clearly, these techniques can only succeed provided 

they are tightly coupled with a compression-aware ATPG. More flexible solutions belong to 

a linear compression class that involves only linear operations to decompress test vectors. These 

techniques are based on combinational linear expansion circuits comprising XOR gates [7], [8] 

(Fig. 1.3c), or various forms of linear finite state machines, such as linear feedback shift regis-

ters (LFSRs), ring generators, or cellular automata (Fig. 1.3d)1. The chronologically first static 

LFSR reseeding [40], [50], was eventually replaced by a dynamic LFSR reseeding streaming 

data into a decompressor as it loads the scan chains. This continuous-flow paradigm is probably 

best represented by the embedded deterministic test (EDT) [72] that has gained broad ac-

ceptance as a reliable industrial solution. Its sequential decompressor has much higher encoding 

capacity, so the encoding works for arbitrary test cubes. The other major advantage of EDT is 

that its decompressor can be reused as pseudorandom test pattern generator (PRPG) in com-

pression/LBIST hybrids. Any conventional dynamic LFSR reseeding scheme, however, cannot 

compress test data to less than the total number of specified bits. Isometric compression [51] 

 
1 Another group of methods uses on-chip devices to handle various forms of code-based test pattern com-

pression (Fig. 1.3e). However, these methods have a limited usage in the industrial test realm due to a non-trivial 
encoding process and a complex on-chip hardware needed to decompress test data [81]. 

Fig. 1.3. Evolution of test data compression: (a) no compression, (b) broadcast scan, (c) combinational linear 
decompressor, (d) sequential linear decompressor, (e) code-based decompressor. 



 

Introduction 

 

21 

 

elevates the encoding beyond this limit by synergistically engineering both ATPG and test en-

coding. Nevertheless, it might be inconvenient to implement a generic isometric decompressor, 

as proposed in [51]. Furthermore, since the scheme works exclusively with low-power patterns 

affecting all scan chains, it may also compromise test coverage. 

The above concerns are addressed by a novel test data compression paradigm called hy-

percompression which is presented in the second part of this work. It aims at extreme test data 

compression ratios and, additionally, it offers inherent low-power capabilities by reducing 

switching activity during shift-in of test data. While it builds on the isometric compression 

principles, the native isometric decompressor is rearchitected to keep a silicon real estate of test 

logic at an acceptable level. As a result, its area becomes a tiny fraction of the entire DFT in-

frastructure. Moreover, the hypercompression test power management scheme deploys a pro-

grammable selection of a very few scan chains that should be put into a full-toggle mode. As 

a result, it avoids periods of elevated toggling in scan chains and reduces scan load switching 

activity.  

The remainder of the thesis is organized as follows. Chapter 2 recalls and outlines the 

basic VLSI test concepts as well as state-of-the-at solutions related to problems being tackled 

in this work. Chapter 3 describes the methods of computing necessary assignments. What fol-

lows in Chapter 4 is a presentation of a static compaction algorithm that combines necessary 

assignments with SAT-based ATPG. The second part of the thesis begins with Chapter 5 that 

introduces the test hypercompression technique. Chapter 6 demonstrates how this method can 

be enhanced by further reducing the decompressor size and lowering a power dissipation. The 

thesis concludes with Chapter 7. All solutions proposed in this work are thoroughly verified by 

means of experimental results obtained for large and complex industrial designs.  
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Preliminaries 

As the thesis tackles problems related to test set compaction and the resultant test data com-

pression, this chapter, for the sake of self-containment and completeness, recalls and reviews 

both the useful key terms and the most relevant state-of the-art solutions in these areas. We 

begin with principles of algorithmic generation of test patterns and the corresponding test com-

paction methods. Subsequently, the basic concepts that govern the process of designing circuits 

to make them easy to test are briefly revisited to allow a review of the isometric test compres-

sion – a technique that lays foundations for the hypercompression of test data, a new test para-

digm presented in the following parts of this work.  

 Deterministic test pattern generation 

In 1966, P. Roth introduced the first-ever published algorithmic procedure for test pattern gen-

eration [74], [75]. His D algorithm uses a five-value algebra comprising symbols 0, 1, D, D� and 

X. In particular, symbols D and D� stand for a faulty effect on a line, i.e., they allow one to 

distinguish a good circuit behavior and its faulty counterpart: D represents the logic value of 

1 in the good circuit and 0 in the faulty one, whereas D� is the opposite case. The algorithm 

injects the faulty effect D or D� (depending on a fault type) at the fault site, and then tries to 

propagate it to an observable output. Furthermore, all gates necessary to propagate the faulty 

effects must be justified with the required values. Since the test generation problem belongs to 

the NP-complete class, D algorithm’s runtime for larger circuits becomes quickly unacceptable. 

Consequently, the following years brought several attempts to reduce the test generation CPU 

time. Authors of PODEM [31] – one of the first methods proposed at that time – noticed that 

D algorithm added every node to a decision tree. However, in combinational circuits, it suffices 

to consider primary input (PI) nodes only. As a result, a fewer number of decisions makes a test 

generation process much faster. Still, backtracking from decisions involving PIs needs to re-

cover states of all gates driven by the same PIs, which again might be a fairly time-consuming 
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process. This problem is tackled by FAN [26], which introduced the concept of fanout-free 

regions (FFR). It finds headlines, i.e., the outputs of FFRs, and uses that information to reduce 

decision trees. TOPS [48] further improves that idea by using basis-nodes instead of headlines. 

Along different lines, in the middle of eighties, new techniques were explored to increase 

awareness of a circuit structure. In particular, SOCRATES [78] introduced concepts of static 

and dynamic learning which reveal indirect implications allowing to identify wrong decisions 

made earlier. In the meantime, a number of tools, such as BACK [14], EBT [57], FASTEST 

[47], GATTO [16], or HITEC [64] made attempts to address the problem of test pattern gener-

ation for sequential circuits. Moreover, ATPG tools producing diagnostic test patterns were 

introduced in [10], [34], [67], [93]. Another direction in test generation is comprised of tech-

niques that employ SAT solvers to generate, in a rather CPU-time-intensive manner, compact 

test sets (see, for example, NEMESIS [52] or [20]). On top of those techniques, several algo-

rithms were proposed to generate test patterns capable of minimizing power dissipated dur-

ing test application, e.g., [17], [84], [85]. Nowadays, the state-of-the-art ATPG algorithms 

include FastScan [95], TestMAX [96], or Modus [97], which continue to reduce search space 

by introducing new heuristics while adding, at the same time, support for novel fault models 

and parallel processing.  

In parallel with test pattern generation schemes, a lot of research effort was spent on de-

veloping test compaction methods that allow reducing counts of ATPG-produced test patterns. 

Typically, these methods are either static or dynamic. The former ones use pre-generated test 

sets and remove redundant test patterns while trying to merge the remaining test cubes. Proba-

bly the most prominent approach here is the reverse order fault simulation and its derivatives 

[1], [68], [69] that handle tests in the opposite order of generation. If a test pattern does not 

detect any new faults when simulated, it is discarded with no impact on the final fault coverage. 

Other techniques are discussed, for example, in [42], [55], [58], [62], [63], [66]. In particular, 

relaxation-based post-processing schemes (see, for instance, [58]) try to determine unspecified 

values which are not needed to detect essential faults. As a result, a test set may include more 

unspecified values, and thus static compaction can be applied more effectively. Yet another 

approach leverages SAT-based ATPG to determine compatible fault groups which can be then 

detected by the same test [24]. As a result, the scheme of [24] is capable of producing lower 

pattern counts than those of state-of-the-art ATPG tools. On the other hand, dynamic test com-
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paction techniques such as [12], [18], [37], [45], [62], [66] are integral parts of the ATPG pro-

cess itself where they work with heuristics that are likely to yield fewer test patterns by assign-

ing certain unspecified bits of generated tests with values allowing detection of additional faults. 

 Design for testability 

As the size of VLSI circuits was expanding exponentially (including sequential elements), con-

trolling and observing internal state variables using only primary inputs and primary outputs 

became unwieldy. In fact, sequential test generation algorithms were unable to efficiently han-

dle large and continuously growing designs. At some point, it became clear that a synergistic 

integration of design and test processes is needed to make testing feasible. It was the advent of 

DFT. It started with ad-hoc methods such as partitioning [3] or test points insertion [2], [38], 

[88]. In particular, the latter one adds extra easily accessible gates placed on lines hard to control 

or observe. Identification of such locations in large circuits is a complex problem, hence various 

procedures and measures, e.g., SCOAP [33], have been used to compute and quantify control-

lability and observability, and to assist in finding suitable test point locations. Recall that con-

trollability is a measure of how easily a signal line can be set to a particular value (subsequently 

used to excite a fault). At the same time, observability indicates the effort needed to determine 

the logic value of a given node by properly setting inputs and observing outputs. 

Although the aforementioned methods have substantially improved testability of designs 

and made sequential ATPG less severe, they were still circuit-dependent and generally difficult 

to automate. Thus, more systematic and structured techniques were incorporated into the design 

 

Fig. 2.1. D-multiplexed scan cells. 
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process. Clearly, the most pronounced structured DFT technology is a scan [49]. In this ap-

proach, all memory elements are transformed into scan cells (see, for example, Fig. 2.1) form-

ing shift registers or scan chains. According to this paradigm, a design has two modes of oper-

ations: a functional (mission) mode, where the circuit works as originally intended, and a test 

mode, where all memory elements form scan chains whose serial inputs and outputs are used 

to shift-in test patterns and to receive shifted-out test responses, respectively. Scan makes all 

state elements directly accessible and observable, and thus the complex problem of testing se-

quential circuits boils down to much simpler testing of their combinational parts (integrity of 

scan chains is usually verified by applying so-called flush tests). 

With the deployment of scan-based designs, a structured design for test approach has 

gained wide industrial acceptance. The resultant high controllability and observability of inter-

nal nodes made it possible to automatically generate high quality tests for large designs and use 

verification techniques to debug the first silicon. Moreover, simple architecture of scan chains 

enables their automated stitching and insertion. Scan, supported by many electronic design au-

tomation tools, offers a systematic way to manufacture testable and reliable semiconductor de-

vices. Overall, due to its advantages, it has become one of the most influential and industry-

proven DFT techniques. 

 Embedded Deterministic Test 

The scan-based design-for-test paradigm was firmly in place for four decades. With circuits 

growing in size, however, it became more and more expensive to retain high level of test cov-

erage. It was due to prohibitively large volumes of test data and long test application times. 

With cost-effective test data reduction techniques as the foundation for maintaining the high 

efficiency of a testing scheme, on-chip test compression has quickly established itself as a next 

DFT milestone and a mainstream DFT methodology [46], [81], with all major EDA companies 

and some semiconductor manufacturers regularly announcing products and technologies in that 

area. Embedded Deterministic Test [71] is one of the most representative solutions in the area 

of test data compression.  

 EDT inserts a decompressor and a compactor on chip to drive and observe scan chains 

(Fig. 2.2). The design does not require any modifications other than a configuration with a large 

number of short scan chains. The compression logic is placed in the scan path, so it does not 
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affect the functional operation. The EDT decompressor consists of a ring generator and a phase 

shifter (Fig. 2.3). Compressed data from ATE goes, through the input channels, to the injector 

sites of the ring generator. It is a form of LFSR [60] with much shorter propagation delays and 

internal fan-outs limited to two branches. Data circulating within the ring generator feeds 

a phase shifter, whose outputs are directly connected to scan chains. A phase shifter delivers 

tests to scan chains whose number is typically much larger than the size of the ring generator. 

EDT is an example of a continuous flow compression, i.e., a dynamic LFSR reseeding, 

where successive seed variables are delivered to test logic in a per-cycle fashion (in a vivid 

contrast to a static reseeding of LFSRs [35], [40], [41], [50], [73], [87], [89] or counters [11], 

[39]). The actual compression algorithm works as follows. ATPG-produced test cubes (sparsely 

specified tests targeting certain faults) are encoded using a system of linear equations, two ex-

amples of which are shown in Fig. 2.3. Clearly, all scan cells are assigned respective linear 

expressions that form a system of linear equations once locations of specified bits are known.  

Solving these equations maps specified bits into a compressed stimulus. If the solver succeeds 

in compressing a test cube, ATPG targets additional faults and adds more specified bits to the 

current test cube. The solver and ATPG iterate incrementally increasing gradually the fill rate 

until a predefined number of encoding failures.  

Although test compression has been a successful methodology of the last two decades, 

the current and future technology nodes keep introducing new test challenges. In order to sus-

tain low defect per million (DPM) rates, new fault models are used, which consequently in-

creases the pattern counts. It directly translates into increased ATE memory volume and test 

 

Fig. 2.2. General scheme of test data compression and compaction. 
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application time. The requirements for new test technologies are also shaped by safety-critical 

applications which require high-quality, in-system deterministic tests. In particular, it applies 

to automotive designs, where the ISO 26262 standard defines high test quality requirements, 

quite difficult to meet by conventional LBIST schemes. Thus, deterministic test patterns need 

to be stored in a system, whereas current solutions may not be able to reduce test data to the 

desired levels. One solution capable of outperforming conventional sequential compression is 

based on the isometric compression paradigm. 

 Isometric compression 

Isometric compression [51] takes the on-chip test data compression to a new level by having 

more interactions between test generation (ATPG) and test encoding. This approach is aimed 

at elevating compression ratios to values unachievable through the conventional static [40], 

[50], and dynamic LFSR reseeding [5], [72], which can reach, at their best, the value of f –1, 

where f is a test pattern fill rate.  

It is worth noting that the number of care bits does not have to constrain neither compres-

sion nor a desired low toggling (in low power test solutions). On the contrary, having several 

 

Fig. 2.3. Example of the EDT decompressor. 
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cells assigned the same value and hosted by the same chain may actually ease problems related 

to both data reduction and switching activity. Indeed, only specified bits occurring at certain 

locations would be then encoded, while bits of the same value make it possible to deliver iden-

tical test data to scan chains for several shift cycles, thereby reducing the resultant toggling. 

Consider a test cube shown in Fig. 2.4. It detects a stuck-at-1 fault (for the sake of the presen-

tation, stuck-at faults are represented by diamonds, while nets set to the logic values of 0 and 

1 are printed in blue and red, respectively) by feeding a 25-input XOR gate G1 and a 3-input 

OR gate G3. Alternatively, one can apply a test pattern listed at the bottom of the figure. The 

number of specified bits that must be encoded within the first vector is equal to 25 + 3 = 28, 

whereas it suffices to target only 13 + 1 = 14 care bits to encode the second test cube. Indeed, 

the specified pairs 00 and 11 can be obtained by encoding just the first value of each pair (indi-

cated by arrows) and then sustaining the decompressor outputs to deliver the identical value 

during the next shift cycle. 

Fig. 2.6 recalls a generic architecture of the isometric test data decompressor [51] imple-

menting the above concept. In addition to a ring generator and a phase shifter driving scan 

chains, a hold register is placed between these two devices. It occasionally captures certain 

states of the ring generator. As a result, the toggling-free data can be provided to the scan chains 

for several continuous scan shift cycles, while the generator keeps advancing to the next states 

needed to encode another group of specified bits. As in many other schemes, compressed test 

patterns are delivered to the decompressor through c external channels in such a way that a new 

c-bit vector is injected into the ring generator every scan shift cycle. 

 

Fig. 2.4. Example of isometric compression. 
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 The isometric decompressor houses also its key component – a circular template register 

whose size matches the longest scan chain, as shown in Fig. 2.6. The template register controls 

the decompressor by providing a control bit to the hold register every shift cycle to indicate 

whether this register is to be updated by the ring generator. If so, such a time is referred to as 

a toggle point, with two successive toggle points forming a hold segment. Thus, a given test 

cube is partitioned into several transition-free hold segments. One can repeat, therefore, a given 

decompressor state many times in succession by using the hold register storing a state that the 

ring generator entered at the beginning of the hold segment. Locations of all toggle points form 

a test template (Fig. 2.5), where two colors indicate the values of 0 and 1 applied to scan cells 

 

Fig. 2.5. Isometric test pattern. 

 

Fig. 2.6. Isometric test data decompressor. 
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between toggle points T1, T2, …, T8. Clearly, ATPG tries to generate test cubes that fit to a given 

test template and segments it defines.  

As can be seen, the isometric test compression provides a coherent way to generate and 

apply test patterns compressed beyond the limits achievable by the earlier solutions while sub-

stantially reducing power dissipation during all scan operations (other methods tackling low 

power operations within the framework of test compression can be found in [19], [53], [73], 

[90], to recall just a few representative works). However, its sizeable template register (or reg-

isters) is a non-negligible footprint of the entire DFT infrastructure. Moreover, multiple reloads 

of a template register might take a substantial amount of time which would be unacceptable in 

many practical applications. These concerns will be addressed in Chapter 5 that revisits the 

concept of isometric compression and proposes a new and more effective solution.
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Computing necessary assignments  

The thesis tackles two key aspects of testing VLSI circuits: test set compaction and test data 

compression. The next two chapters focus on the former problem. A proposed test set compac-

tion method works with a precomputed list of assignments mandatory to detect every target 

fault. These necessary assignments (NAs) are deployed, to a large degree, for the purpose of 

fault grouping. Such groups of faults are subsequently retargeted by a robust SAT-based ATPG 

whose solver is trying to arrive with a single test pattern for the entire group, thus making the 

resultant test set smaller in size. This is why techniques used to determine NAs are detailed 

herein with respect to their algorithmic capabilities and execution efficiency. It is worth noting 

that NAs are obtained for primary inputs, pseudo-primary inputs (scan cells), and all internal 

primary fanout stems (or simply primary stems). The latter are defined as fanout stems driven 

either by (1) a gate with two or more inputs, or by (2) a sequence of single-input gates only 

such that a gate in this sequence with a lowest input level is not driven by another stem. Fig. 

3.1 illustrates a simple circuit with two primary stems S1 and S2 at the out-

put of gates G1 and G9, respectively. Note that processing stem S3 will not yield any new NA 

because it is functionally the same as primary stem S1. Essentially, in order to determine NAs 

 

Fig. 3.1. Primary fanout stems. 
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in a computationally feasible manner, six different techniques are used that either handle all 

faults in parallel or target every fault in a more individual fashion, as shown in Fig. 3.2. These 

techniques, in varying forms and to various degrees, have been deployed earlier by several 

ATPG systems [70], [77], [78]. However, while preserving their basic functionalities, they are 

run here either individually or in a combined effort to identify as many internal NAs as possible 

within the most critical parts of a design through low-cost processing procedures. They are 

presented in the subsections to follow. 

 Single-stem-based necessary assignments 

This approach is run independently for every primary stem (plus inputs regardless of their fan-

out count). These nets are systematically set to 0 and 1, and then an event-driven fault-free logic 

simulation is used to learn what other signal values it implies. Given the logic value v(s) as-

signed to net s, every simulation run consists of three steps: (1) finding forward implications of 

v(s), (2) carrying out a backward justification of v(s), and (3) finding additional forward impli-

cations of signals implied at branches of stems encountered during (2). The simulation termi-

nates once it cannot determine any more logic values (the even list becomes empty). In addition 

to finding logic values, the logic simulation keeps track of all visited gates and, in particular, 

records gates whose inputs have been set to a controlling value. It also applies to some other 

devices such as multiplexers, where setting select inputs to a particular combination blocks sig-

nals reaching data inputs that have not been selected.  

Consider now gates, visited by the above process, whose inputs and outputs are sites of 

faults. These gates are checked to determine if the presence of their local faults causes the af-

fected terminals to have the same values as those of a fault-free circuit. If so, such faults would 

clearly be test escapes. As a result, an inversion ���������� of a given primary stem value is assigned 

 

Fig. 3.2. Necessary assignments computation flow. 
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to these faults as a NA required for their detection. Furthermore, for every gate G with an input 

having a controlling value, all propagation paths are traced back leading to the remaining inputs 

of G. This process is aimed at finding faults whose propagation is blocked by those controlling 

values. In particular, if a fanout branch came across, it is marked as blocked. If the remaining 

branches of the same fanout are also blocked, then tracing towards primary inputs continues. 

Again, all encountered faults are assigned the value of ���������� as their NA. 

The above process is illustrated in Fig. 3.3. First, the stem at the output of gate G5 is set 

to 0 (Fig. 3.3a). As can be seen, the fault site of fault f3 has the same value as the fault’s polarity, 

therefore it cannot be excited. On the other hand, f4 is blocked on gate G9. Consequently, both 

have NA on this node of the value 1. In the second step, the same line is set to 1 (Fig. 3.3b). 

Now, excitation of fault f2 is impossible and fault f1 could not be propagated to any observable 

output. It is worth noting that even though f1 has two propagation paths through gates G7 and 

G8, both are blocked. As a result, the output of gate G5 set to 0 became NA for both f1 and f2. 

 Fanout-free regions and global dominators 

Computing NAs within FFRs is a relatively straightforward task which is repeated for every 

fault. First, a unique propagation path is established from a fault site to the FFR output. The 

fault site is assigned a test value (fault excitation) which is subsequently implied forward until 

the FFR output. The same process determines off-path signals (within FFR) that enable fault 

effect propagation. Because of its simplicity, this is the only case where NAs are assigned to 

 

Fig. 3.3. Single-stem-based necessary assignments. Simulation of (a) logic 0 and (b) logic 1. 
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some internal nets of a circuit different than PIs or fanout stems. It is worth noting that in some 

cases selecting off-path values may not be possible – a two-input XOR gate propagating a faulty 

effect may serve here as an example. Additional NAs are determined by going beyond the FFR 

hosting the current fault. This is accomplished by taking advantage of global (absolute) domi-

nators, i.e., lines through which the fault effect has to pass to be detected at any primary output 

[48]. Moreover, one can move then to another FFR associated with the closest dominator (con-

sidering its inversion parity) and essentially repeat operations detailed above. The process ter-

minates once primary outputs are reached or there are no more global dominators that could be 

used.  

The whole process is summarized in Fig. 3.4. First, G2 set to 0 is added to the list of NAs 

because it is a value needed to excite a fault. Next, as the analysis moves forward to the FFR 

output, all visited gates are included in the list of NAs: G4 = 1, G7 = 1, G10 = 1, and G12 = 0, 

respectively. Moreover, the NAs list is complemented by the first part of each off-path set to 

the non-controlling values as follows: G1 = 1, G3 = 0, G6 = 1, and G11 = 0. 

 Combined simulation 

NAs gathered in the two previous steps (see Sections 3.1 and 3.2) are now reused jointly to 

launch, for each fault separately, the event-driven fault-free logic simulation again. The objec-

tive here is to discover additional NAs that can only be computed provided several NAs are 

analyzed simultaneously rather than individually. Initially, the event list includes all NAs ob-

tained so far for a given fault. Subsequently, forward implications, backward justifications, and 

further forward implications are run in a manner similar to that of the first phase discussed 

 

Fig. 3.4. Fanout-free regions and global dominator. 
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earlier. Whenever the simulation hits a primary stem, its value is saved as a new NA for a given 

fault. 

Consider, for example, a fault shown in Fig. 3.5. Gates G2 and G4 are among those for 

which NAs have been computed in the previous steps. Propagation of these signals individually 

would stop at XOR gate G8 because only a single input would always be specified, and thus the 

output of G8 could not be determined. When working synergistically, however, simulation can 

proceed further, and logic values associated with gate G8 can also be added to the list of NAs 

for the indicated fault. Moreover, because logic 0 is the controlling value of gate G10, the pro-

cedure may continue to find more NAs. 

 Contrapositive learning 

In the process of collecting NAs as shown above, a learning procedure is used to reveal addi-

tional relationships between gates set currently to controlling values and other signals that they 

may imply. Given such a gate, one can set its output to a non-controlling value, and then can 

run the backward justification followed by forward implications of signals implied at branches 

 

Fig. 3.6. Contrapositive learning. 

 

Fig. 3.5. Combined simulation. 
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of stems encountered during the backward justification. For each gate set to its newly obtained 

output non-controlling value, the Boolean contrapositive relation is used the same way it is 

done in [77], i.e.,  

�	 ⇒ �� ⟺ ��� ⇒ 	̅� �3.1� 

to learn contrapositive implications towards the initial controlled gate. As an example, consider 

a circuit shown in Fig. 3.6. If gate G1 was originally set to 1 (a controlling value), now its output 

is set to a non-controlling value of 0 which implies S1 = 0 and S2 = 0. As a result, gate G4 has 1 

on its output. Using now the contrapositive learning, the reasoning is as follows: 

��� � 0 ⇒ �� � 1� ⇔ ��� � 0 ⇒ �� � 1� �3.2� 

In other words, having G4 set to 0 implies G1 being set to 1. Such a relation is saved and subse-

quently used as a NA for G1 whenever other procedures will arrive, for example, with the value 

of 0 assigned to G4. 

 Constructive dilemma 

This technique employs a logic rule of inference, also used in [77], to get further NAs in a cost-

effective manner. It is known as the constructive dilemma: 

��	 ⇒ �� ∧ �	̅ ⇒ ��� ⇒ � �3.3� 

This approach is used in conjunction with the combined simulation step for a given fault. Once 

the simulation is completed, one can collect unate gates with only one input x left unspecified.  

In such a manner, only a small fraction of all simulated gates is processed without visibly re-

ducing the number of new NAs. Input x is first set to 0, and then to 1. What follows in both 

cases is again the 3-step logic simulation, as done before. Its second run allows us to identify 

line(s) y whose value remains the same in both simulation steps, that is, the status of y can be 

 

Fig. 3.7. Constructive dilemma. Simulation of (a) logic 0 and (b) logic 1. 



 

Computing necessary assignments 

 

38 

 

deduced independently of a value assigned to x. The value of line y becomes then the next NA 

for the current fault. Consider an example of Fig. 3.7. After the combined simulation, gates G1, 

G2, and G3 have only one input left unspecified. Therefore, simulating stem S1 in conjunction 

with formula (3.3) leads to the following result: 

���� � 0 ⇒ �� � 0� ∧ ��� � 1 ⇒ �� � 0�� ⇒ ��� � 0� �3.4� 

Node �� remains intact in both simulation runs of ��. As a result �� = 0 becomes a new NA.  

 D-frontier 

Finally, for every fault being analyzed, the well-known ATPG-originated concept of a D-fron-

tier is adapted. Starting with the output of FFR hosting a given fault, one can check every branch 

of this fanout stem to determine its status as a potential fault propagation path. If all of them 

but one are blocked, for example, due to unate gates having controlling values on their inputs, 

the only propagation path is further examined by setting off-path non-controlling values as the 

fault’s NAs and by moving on to the following FFR, as described earlier.   

Fig. 3.8 shows an example of the above process. A stuck-at-1 fault propagates through 

FFR1 to stem S1. Now, there are five possible propagation paths. Since gates G1, G2, G3, and G5 

are blocked due to NAs obtained in the previous phases, the fault effect propagates through gate 

G4, and the analysis of Section 3.2 can be repeated for FFR2.

 

Fig. 3.8. D-frontier. 
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Multitarget cube generation 

This chapter proposes a new test set compaction technique. It can be briefly summarized as 

follows. Given a fault list, the corresponding ATPG-produced test patterns are fault simulated 

with a high and user-defined n-detect threshold. As a result, each fault is assigned a list of pat-

terns detecting this particular defect. These multiple-detect profiles are used synergistically 

with sets of external and internal necessary assignments associated with every fault (as pre-

sented in Chapter 3) to form clusters of likely compatible faults. It is worth noting that this 

process is based on the principle of dimensionality reduction [52], an approach that has grown 

rapidly in recent years, where high dimensional data (here a complete set of fully specified test 

patterns) is replaced by a meaningful representation of reduced dimensionality (here a subset 

of tests with necessary assignments obtained in a time-efficient manner for selected faults). 

Subsequently, the clusters of faults are retargeted by the SAT-based ATPG to generate a single 

test pattern per cluster, what effectively reduces the original test set. This method has been 

presented, for the first time, at the IEEE International Test Conference in 2021 [23]. 

 Fault detection profile 

Having determined the comprehensive sets of NAs for every fault, the test set compaction pro-

cedure proposed in this chapter enters now the first phase of its main flow. It runs a conventional 

ATPG with dynamic compaction to produce an initial set of test patterns that detect all target 

faults. These patterns are then fault simulated with virtually no fault dropping. As a result, it 

allows to count how many times each fault is detected, and thus to form a fault detection profile. 

For the sake of brevity, a fault detected by n test patterns will be designated as nD, e.g., 2D, 

3D, etc. Furthermore, a fault nD will also be linked with a list of n associated test patterns that 

detect it. What follows is creation of a much more detailed breakdown of faults that are detected 

only once (1D). These faults, detected by just a single test pattern, are often referred to as es-

sential faults [12], [24], [45]. 
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The breakdown of 1D faults is used to find out how many faults of this kind share a test 

pattern. In other words, given a 1D fault f, it is of interest to learn how many other 1D faults are 

detected by a test pattern detecting f. Let 1Dk denote a fault whose sole test pattern is also de-

tecting other k – 1 1D faults. Clearly, nothing prevents test patterns targeting 1D faults from 

detecting other faults of type nD, where n > 1. For the sake of illustration, consider three test 

patterns p1, p2, and p3 detecting six faults from f1 to f6 as follows: 

p1 → {f1, f4, f6},   p2 → {f2, f4, f5, f6},            p3 → {f3, f4}. 

The above relations can be represented in a tabular form, as shown in Table 4.1. Indeed, faults 

f1, f2, f3, and f5 are 1D as they are detected exclusively by patterns p1, p2, p3, and p2, respectively. 

Since f1 is the only 1D fault detected by pattern p1, it is labeled as 1D1. The same rule applies 

to f3. Fault f2 is 1D as well, but pattern p2 detects another 1D fault (f5), and thus both faults get 

label 1D2. The remaining two faults are detected three times (f4) and twice (f6).  

A simple experimental multiple-detect profile is shown in Table 4.2. An entry in column 

nD gives the number of faults that are detected by exactly n test patterns. These results were 

obtained for ATPG-produced test patterns targeting stuck-at faults in 9 industrial designs (their 

Table 4.1: Fault detection profile. 

 f1 f2 f3 f4 f5 f6 

p1 ×   ×  × 

p2  ×  × × × 

p3   × ×   

 1D1 1D2 1D1 3D 1D2 2D 

 

Table 4.2: Breakdown of faults nD. 

 1D 2D 3D 4D 5D > 5D 

D1 204,074 142,323 96,972 84,662 69,228 749,416 

D2 61,881 43,982 26,773 17,871 11,052 221,669 

D3 147,410 96,111 72,988 60,464 48,600 898,614 

D4 132,414 79,781 65,735 53,981 45,762 699,182 

D5 136,765 108,387 86,817 69,856 56,962 709,767 

D6 381,265 148,160 48,424 19,740 8,508 134,910 

D7 31,616 14,791 16,381 17,898 16,022 294,131 

D8 16,266 8,913 7,031 6,209 5,273 6,320 

D9 152,838 145,019 143,318 150,483 152,481 2,044,979 
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detailed characteristics can be found in Section 4.3). Table 4.3 illustrates a more detailed break-

down of 1D faults (their total number is listed in column 1D of Table 4.2). Each entry in column 

1Dk gives the number of 1D faults that belong to this particular category, i.e., a class of faults 

being uniquely detected by a pattern that detects, in total, k 1D faults. As can be seen, class 1D1 

is typically the most populated one with some noticeable exceptions though (designs D3 or D5). 

It is a good starting point for the actual test pattern reduction, as shown in the next sections. It 

will also be shown that having a healthy population of 1D2 faults can be beneficial in some 

cases as well.  

 Reduction of patterns 

4.2.1 Fault grouping 

The ranking of faults from the previous section as well as their necessary assignments (obtained 

by applying the methods of Chapter 3) can now facilitate grouping of faults in such a way that 

subsequent processing of the corresponding test patterns may lead to a more compact test set. 

It begins by sorting 1D1 faults such that they are in order by largest NA counts (note that this 

approach may prefer faults located in large FFRs as NAs within an FFR hosting a given fault 

are not limited to primary stems – see Chapter 3). The fault grouping procedure works as fol-

lows (see also a flowchart in Fig. 4.1 for 1D1 faults). First, pick two compatible 1D1 faults f1 

and f2 with the highest NA scores. For the sake of this work, two faults are assumed compatible 

if their NAs do not contradict each other. Moreover, these faults can only be accepted for further 

processing provided their test patterns do not share any 2D fault f3 they both detect. This is to 

Table 4.3: Breakdown of faults 1D. 

 1D1 1D2 1D3 1D4 1D5 1D > 5 

D1 6,748 536 477 1,576 295 51,778 

D2 3,930 3,226 1,344 988 615 51,778 

D3 9,435 16,314 5,370 4,804 4,195 107,292 

D4 3,225 2,116 1,770 1,668 1,475 122,160 

D5 635 1,356 2,127 1,368 1,225 130,054 

D6 5,750 4,414 2,490 1,760 1,405 365,446 

D7 915 470 270 200 110 29,651 

D8 4,369 4,826 2,523 1,560 790 2,198 

D9 1,080 8,176 9,978 7,860 4,320 121,424 
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avoid a situation in which a novel test that is to be generated does not cover f3 anymore. If fault 

f1 cannot be paired with any other fault f2, then f1 is moved to the end of the 1D1 faults list while 

the process continues by trying other pairs of 1D1 faults.  

A pair of faults (f1, f2) that has been accepted becomes the subject of the optimized SAT-

based multiple-target test generation [20]. If the SAT solver succeeds in finding a single test 

pattern that covers both faults f1 and f2, then a conventional dynamic compaction tries to add 

more faults that could be detected by a newly created test pattern (see also Section 4.2.2). The 

next step is to discard the former test patterns detecting f1, f2, and other faults added by the 

dynamic compaction, replace these patterns with the SAT-generated vector, and drop all the 

corresponding faults. After deleting the test patterns, one important task has to be accomplished: 

check to see whether deleting a given test pattern brought any non-1D faults closer to class 1D. 

This task is implemented with a single scan through the list of non-1D faults. It updates status 

of faults that were covered so far by the just-deleted test patterns. In particular, a 2D fault may 

now become a member of a class 1Dk, respective 3D faults are elevated to the rank of 2D, and 

 

Fig. 4.1. 1D1 fault grouping flow. 
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so on. At this point, the process is ready to pick another pair of 1D1 faults, and to carry on, as 

described above. Continuing in this way, it is ensured that there are no two 1D1 faults left that 

could be paired. On the other hand, certain 1D1 faults may still remain on the list as standalone 

items that cannot be coupled with any other 1D1 fault, unless other 1D faults would be tried 

instead, as shown below.  

Consider now 1D2 faults. As in the approach for 1D1 faults, the first step is to rearrange 

1D2 faults so that they are ordered according to the number of their NAs. Let f1 be now a 1D2 

fault with the largest NA count. Next, the 1D2 fault f2 that shares a test pattern with f1 is picked. 

Clearly, these faults are compatible by definition. Having combined their NAs, a 1D1 fault f3 is 

selected that is compatible with both f1 and f2. Moreover, as shown earlier, test patterns p12 and 

p3 detecting faults f1, f2, and f3, respectively, cannot share any 2D fault they both detect. The 

SAT solver is then deployed to find a single test pattern that covers faults f1, f2, and f3. If it 

succeeds, all relevant data regarding faults is updated, and the process is repeated for other 

possible choices of two 1D2 faults. If the SAT solver fails to deliver a desired test pattern, 

another attempt to pair one more suitable 1D1 fault with the 1D2 faults f1 and f2 is made. This 

method may continue through several selections of a 1D1 fault. Eventually, it will run out of 

possible choices and will terminate. In this case, it is possible to investigate potential solutions 

with 1D1 faults being paired with faults belonging to classes 1D3, 1D4, etc. How far this 

method may go depends on the constraints regarding resultant run time, diminishing returns 

effects, and other circuit-dependent factors.  

The fault coupling process can be generalized in a twofold manner. First of all, one may 

attempt to pair 1Dk faults with other 1Dk faults, for k > 1. It might be followed by coupling of 

1Dk faults with faults of type 1Dn, where n = k + 1, k + 2, … Moreover, given the ability of the 

SAT-based ATPG to produce a single test pattern for several faults in parallel, another tech-

nique goes beyond the limits set by the process of replacing just two original test patterns with 

a single (new) one. From the very beginning, it picks 3, 4 or more faults to be processed simul-

taneously. In principle, the approach works as described in this section. There are, however, 

some differences. If three 1D1 faults are selected, then their original test patterns cannot solely 

detect 2D and 3D faults. Working with four 1D1 faults would preclude from merging faults 

whose patterns are sole tests for some 2D, 3D, and 4D faults, and so on. Clearly, there is a trade-

off between the degree of compaction that can be achieved here and the effort spent on selecting 
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successive k-tuples of faults, where k > 2, and running the SAT solver in each case. Conse-

quently, to prevent excessive run time, a parameter whose exact value depends upon the imple-

mentation is deployed to bound the number of faults that can be targeted by one instance of 

a test generator. 

4.2.2 SAT-based ATPG formulation for multiple targets 

A SAT solver, such as MiniSat [21], accepts as input a Boolean formula in conjunctive normal 

form (CNF), also called the SAT instance �. A CNF � is a conjunction of clauses, and a clause 

is a disjunction of literals. A literal is a Boolean variable x or its inverse 	̅. Clearly, to satisfy 

a CNF, all clauses have to be satisfied, and to satisfy a clause, at least one literal has to be 

satisfied. This homogeneous problem formulation enables application of very effective reason-

ing and learning techniques.  

Invoking the SAT solver to generate test patterns is preceded by the following steps: 

1. Each signal line in the circuit is assigned a Boolean variable to represent the logic state 0 

or 1 of this net. 

2. Each gate or cell g is transformed into a set of clauses �� using the Boolean variables of 

the connected signal lines. 

3. The CNF of �  of a circuit or circuit part C is then formed by combining the CNF formulas 

of all its gates (cells). It represents the characteristic function of C. 

4. Fault detection implications (constraints) for a fault f are transformed into a CNF formula 

�!. This consists of the faulty part of the circuit, miter and/or D-chain structures establish-

ing links between the good and the faulty circuit. 

The final SAT instance for test generation �!
"# consists of the conjunction of the CNF for 

the circuit part and the fault detection constraints: 

�!
"# � �$ ∙ �! �4.1� 

This SAT instance is given to the solver. If a solution is found, a test can be directly extracted 

through the solution assignments. Otherwise, the fault is untestable. Typically, a comprehen-

sive structural analysis is deployed to reduce the number of variables, the SAT instance size, 

and the resultant test cube. 

The presented formulation for single faults can now be extended to target multiple de-

fects. For that, the faulty parts of each fault &�, &�, … , &) and their detection constraints 

��, ��, … , �) have to be added to the overall SAT instance. While the CNF of the good circuit 
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�$ can be shared by all target faults, the faulty parts have to be defined for each single fault 

leading to the following formula: 

�!*…!+

"# � �$ ∙ �!*
∙ … ∙ �!+

�4.2�

The SAT solver returns a test that detects &�, &�, … , &) provided all faults are mutually compat-

ible. However, this approach fails if at least two faults are incompatible with each other. To 

alleviate this deficiency, the above decision problem can be reformulated to an optimization 

one with the objective of finding a test that detects the largest possible number of faults out of 

a given fault list. The corresponding optimization function , can be written as follows: 

, � -� + -� + ⋯ + -) �4.3�

where -�, -�, … , -) are Boolean variables representing the detection status of faults 

&�, &�, … , &), respectively. They are linked to the faulty parts in the CNF.  

Assigning the value of 1 to variable di forces detection of fault fi, i.e., it triggers a D-chain 

for this fault. Setting di to 0 ignores detection of the fault. Clearly, having all variables set to 1 

would yield the largest number of detected faults. As this may not lead to a test (see above), an 

incremental SAT solving strategy is used to find an optimal solution. During this process, the 

detection variables are dynamically reassigned to find the optimal test. Furthermore, the SAT 

solver takes advantage of its conflict-driven learning strategy. It allows the solver to reuse in-

formation in a series of calls to prune the search space [22]. Eventually, the optimization pro-

cedure returns an assignment of the fault detection variables as well as the satisfying assignment 

of the SAT instance from which a test can be extracted. 

The SAT-based ATPG of [24] has been adapted to work with the proposed test compac-

tion method by including additional information into the SAT instance. In particular, the solving 

process has been strengthened with NAs obtained for each target fault (see Chapter 3). These 

assignments allow the solver to prune the search space and to reduce the complexity of the SAT 

instance. In the following, it is shown how NAs are modelled.  

Let a necessary assignment be a triple (f, x, v), where f is a fault affecting a signal line x, 

and v is a logic value. Each NA can be transformed into an implication which is then added to 

the SAT instance �!*…!+

"# . The following steps illustrate how to carry out this transformation. In 

addition to the detection variable df, the Boolean variable x representing the necessary state of 

line x is used. With these two variables, the implications are formulated depending on the logic 

value of v as follows: 
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� � 0: -! � 1 ⇒ 	 � 0

� � 1: -! � 1 ⇒ 	 � 1
 �4.4� 

Each implication is transformed into a clause: 

� � 0: -!
��� ∨ 	̅

� � 1: -!
��� ∨ 	

 �4.5� 

Note that each implication is unidirectional only. When fault f is not detected, the impli-

cation will be dynamically ignored during the solving process since the assignment df = 0 al-

ready satisfies the clauses. On the other hand, the assignment df = 1 causes the literal to be false, 

and thus the clause can only be satisfied by the correct assignment of x. Once the implica-

tions/clauses are formulated and added to the SAT instance �!*…!+

"# , the regular solving process 

can be applied to find a test.  

A newly generated test pattern goes back to the dynamic compaction procedure. It at-

tempts to add more faults by following the conventional rules, i.e., it first reclaims all necessary 

assignments and their implications that the new test pattern consists of, and then checks, if tests 

for additional faults can be added without violating earlier assignments. A distinct feature of 

this phase is an order in which fault candidates are tried. Dynamic compaction in our case starts 

with faults of type 1D, followed by faults 2D, 3D, etc. Within class 1D, faults are ordered as 

discussed in Section 4.2, i.e., 1D1, 1D2, and so forth.  

 Experimental results 

The new test set compaction scheme has been verified by conducting a series of experiments 

with several industrial cores ranging in size between 218K and 7.8M gates. The basic data 

regarding these circuits such as the number of gates, the number of scan cells, the number of 

scan chains, the size of the longest chain, and the number of stuck-at faults are listed in Table 

4.4. In all experiments, the original test patterns are produced by a state-of-the-art commercial 

ATPG tool. Furthermore, every test pattern set is split into two unequal parts: a relatively small 

group G1 of tests which nevertheless detect a significant percentage (usually greater than 90%) 

of faults, and a much larger set G2 of patterns that cover the fault list tail end. The experiments 

presented in this section focus primarily on the second group of patterns (faults). It is beneficial 

in two ways: one can still expect a visible reduction of the total pattern count by working ex-

clusively with patterns of group G2. At the same time, a procedure handling a relatively small 
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subset of the entire fault list is likely to run significantly faster than any other method tackling 

the complete fault list. 

Table 4.5 summarizes the results of the experiments for stuck-at faults, including a de-

tailed breakdown of test patterns produced by the SAT-based ATPG of Section 4.2.2 invoked 

for faults being clustered, as shown in Section 4.2.1. The successive columns of the table list 

the following data: 

• test coverage (TC) of deterministic patterns produced by a conventional ATPG, 

• the number of test patterns (TP1) in group G1; recall that those patterns are not directly 

subjected to the test compaction process, 

• the number of test patterns (TP2) in group G2 which forms the primary source of input 

data for the compaction method presented in the thesis, 

• the total number of patterns obtained after running the SAT-based ATPG (SAT TP); note 

that this number is also taking account of patterns that the SAT solver was unable to 

replace with new patterns detecting some additional faults, 

• the next six columns provide a detailed breakdown of those patterns that were specifically 

produced by the SAT-based ATPG; every column shows the number of test patterns ob-

tained by using one of the corresponding (and the simplest) fault-pairing schemes, from 

pairs (1D1, 1D1) up to pairs of patterns detecting solely three faults each, i.e., (1D3, 1D3), 

• the resultant test pattern reduction, i.e., a difference between the numbers reported in col-

umns TP2 and SAT TP divided by TP2. 

Table 4.4: Circuit characteristics. 

 Gates Scan cells Scan chains Longest chain Stuck-at faults 

D1 2.4M 181K 1,365 134 4,049,753 

D2 218K 14.2K 54 263 349,286 

D3 2.1M 143K 400 360 3,053,898 

D4 2.5M 174K 114 1,964 4,731,360 

D5 2.1M 148K 70 2,579 3,612,124 

D6 1.2M 97.8K 300 327 2,421,874 

D7 3.1M 169K 69 2,456 3,977,620 

D8 103K 1,140 25 46 229,550 

D9 7.8M 429K 857 502 10,874,455 

 



 

Multitarget cube generation 

 

48 

 

The last column of Table 4.5 clearly indicates that the test set compaction scheme pro-

posed in the thesis is capable of producing compact test sets, and in several cases it compares 

favorably with the state-of-the-art ATPG that was used to deliver the original test sets of size 

listed in columns TP1 and TP2. Interestingly, for some designs, the pattern counts of the new 

approach are significantly lower than those of the standard ATPG and its compaction tech-

niques, while test coverage remains uncompromised. In other test cases, the pattern count re-

duction is not so spectacular. Although the pattern count reduction appears to be the case across 

all designs, its degree remains a strong circuit-specific factor. Our analysis (see Section 4.1) 

and experiments clearly confirm that there is a class of circuits whose structural properties al-

low the contemporary commercial ATPG tools to produce near-optimal test sets. However, 

there do exist other industrial cores, circuits, and designs that may challenge the state-of-the-

art ATPG algorithms. The method presented in this chapter provides the ability to thrive in such 

complex scenarios and to push new limits of the ATPG technology.

Table 4.5: Experimental results – stuck-at faults. 

 
TC 
[%] 

TP1 TP2 
SAT 
TP 

1D1-1D1 1D1-1D2 1D1-1D3 1D2-1D2 1D2-1D3 1D3-1D3 Reduction 

D1 99.19 1,894 7,290 2,196 2,176 12 0 0 0 0 69.88% 

D2 99.81 1,806 6,841 2,248 1,718 211 29 9 4 2 67.14% 

D3 96.37 5,265 20,843 18,0491 2,538 171 5 0 0 0 13.40% 

D4 90.72 5,504 5,556 4,873 240 215 42 5 34 16 12.29% 

D5 98.10 2,047 4,543 4,033 236 190 2 2 23 2 11.23% 

D6 97.45 19,543 5,750 4,137 1,674 0 0 0 0 0 28.05% 

D7 93.53 272 1,573 1,501 50 11 1 0 10 0 4.58% 

D8 97.89 1,252 8,226 6,007 1,256 0 0 308 297 41 26.98% 

D9 93.00 3,691 11,158 10,439   668 0 0 0 0 0 6.44% 
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Hypercompression of test data 

The chapter presents a next-generation test data compression scheme. It builds on the isometric 

compression paradigm but makes it more flexible and elevates encoding efficiency to values 

unachievable through state-of-the-art sequential compression schemes. Furthermore, its pro-

grammable selection of full toggle scan chains ensures high test coverage and virtually elimi-

nates compression aborts. A redesigned low-silicon-area decompressor is also capable of re-

ducing switching rates in scan chains with a new test power control scheme, as was initially 

shown in [43]. 

 Decompressor architecture 

Recall that the isometric decompressor houses a circular template register whose size matches 

the longest scan chain, as shown in Fig. 2.6. The template register controls the decompressor 

by providing a control bit to the hold register every shift cycle to indicate whether this register 

is to be updated by the ring generator. To avoid a sizeable template register (or registers) of the 

isometric decompressor, a new decompressor architecture (Fig. 5.1) is proposed here that de-

ploys a much smaller template register, typically no longer than 32 bits. Again, this circular 

register provides a control bit to the hold register every scan shift cycle to indicate whether this 

register should be reloaded with the current content of the ring generator. Because of its size, 

however, the very same short test template is now going to be used multiple times within dura-

tion of the same test pattern. Back to Fig. 2.4, the repetitive use of a 4-bit test template 0101 

may suffice to handle the second test cube, and to designate all necessary toggle points. 

Although the use of short circular test templates can still deter abnormal scan toggling 

and reduce the number of specified bits that need to be encoded, applying the same control bits 

several times may require additional ATPG constraints to secure compression of a given test 

cube, as further discussed in Section 5.3. It is also important to observe that short test tem-

plates make the new scheme very flexible. It is now capable of deploying a test template for 
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any number of test patterns, including a single vector. This is because an update of a small test 

template register requires no additional patterns and/or ATE channels, and time needed to do 

this is a negligible fraction of a regular test pattern upload period.  

The function of the new scheme to control every segment of the hold register individually 

is another feature, for which the approach of [51] has no comparable capability. The hold reg-

ister can be implemented, for example, as a set of latches, where every data input is fed directly 

by the corresponding stage of the ring generator, while enable inputs are driven by the corre-

sponding outputs of a tap decoder. If the output k of the tap decoder is asserted, then the kth 

segment of the hold register becomes transparent allowing the kth output of the ring generator 

to feed directly the phase shifter, and thus scan chains driven by XOR gates connected to the 

kth stage of the ring generator. As a result, these scan chains enter the full toggle mode regard-

less of the current test template. The full toggle register interfacing the tap decoder with an 

external tester is loaded once per pattern. Its binary-coded content determines stages of the hold 

register that should remain transparent. Consequently, the same content defines the fraction of 

scan chains that may receive a full toggle stimulus. 

The functionality offered by the circular template register and the tap decoder allows one 

to select dynamically certain stages (taps) of the hold register to stay in the transparent mode, 

while feeding scan chains with test patterns. As a result, a subset of scan chains – called full 

toggle scan chains – driven by such taps can toggle every scan shift cycle rather than at selected 

toggle points. This approach prevents scenarios where certain faults escape detection (leading 

 

Fig. 5.1. Hypercompression architecture. 
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to a coverage drop) because they need more frequent changes in a given scan chain than a test 

template could permit. For the remaining scan chains, toggle points and hold cycles are deter-

mined by the content of the template register. When a 1 reaches the rightmost position of the 

register, these scan chains capture the ring generator content processed by the phase shifter, 

otherwise they hold their current state. 

Experimental evidences indicate that typically it suffices to have at most two hold latches 

in the transparent mode. To accommodate just two transparent stages of the hold register in an 

n-bit test data decompressor, a pair of 1-out-of-n decoders driven by two associated full toggle 

registers can be deployed, as illustrated in Fig. 5.2. For each test pattern, this circuitry selects 

two of n hold latches to be fed directly by the ring generator (such latches will also be referred 

to as full toggle taps).  

An important figure of merit when introducing a new DFT scheme is its test logic silicon 

real estate. As shown above, the hypercompression test logic (HTL) requires one hold latch and 

one 3-input OR gate per a single bit of a ring generator. Furthermore, it comprises a template 

register, typically a 32-bit device, two log� 6-bit full toggle registers, where n is the number of 

scan chains, and two 1-out-of-n decoders using a certain number (depending on n) of 5-input 

AND gates and inverters.  

Table 5.1 reports the silicon footprint taken up by HTL in terms of equivalent area of 2-

input NAND gates (measured also in mm2). The presented numbers were computed with a com-

mercial synthesis tool for four industrial circuits. All components of test logic were synthesized 

 

Fig. 5.2. Full toggling decoder with two active outputs. 
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using a 65nm CMOS standard cell library under 2.5ns timing constraint. The table reports the 

following quantities: the resultant silicon area with respect to combinational and sequential de-

vices for conventional scan-based designs (the first three columns), the total area taken by cir-

cuits with on-chip EDT-based test compression, and then the percentage area increase (∆8). 

Subsequently, the total HTL-based area is presented and compared with the corresponding area 

occupied by conventional scan-based designs (∆9). The results of Table 5.1 do not account for 

a routing cost. Besides two signals to control template and full toggle registers, however, it 

remains similar to that of conventional scan. As can be seen, the resultant area is comparable 

to other scan-based DFT methods. Indeed, in testing with power constraints there is typically 

additional hardware required to: activate a high-speed scan enable signal, moderate di/dt 

through a scan burst capability, gate scan cells to reduce power dissipation during shift, and 

gate scan out signal to reduce the power consumption during normal operations. Clearly, having 

HTL logic on a chip may result in slightly more complicated designs with respect to the place-

ment and routing, but, in turn, the new approach further reduces test data volume, power con-

sumption, and it allows for more efficient handling of new types of defects. 

Having discussed the new decompressor architecture, an explanation of how to determine 

a desired circular test template and how to designate 2-out-of-n full toggle taps is provided in 

the following sections. 

 Test template synthesis 

5.2.1 Toggle ranges 

The approach presented in the following works with a set of test cubes corresponding to a sub-

set of faults. It begins by processing each test cube individually, and then moves gradually to 

Table 5.1: Area overhead – 2-input NAND equivalent (and mm2). 

Conventional scan Designs with EDT logic Hypercompression (HTL) 

Sequential Combinational Total Total DE Total DH 

C1 462,203 (0.54) 724,627 (0.85) 1,186,830 (1.39) 1,197,765 (1.40) 0.92% 1,200,893 (1.41) 1.18% 

C2 749,037 (0.88) 1,057,120 (1.24) 1,806,157 (2.12) 1,812,503 (2.12) 0.35% 1,814,766 (2.13) 0.48% 

C3 213,204 (0.25) 71,419 (0.08) 284,623 (0.33) 286,439 (0.33) 0.64% 287,191 (0.34) 0.90% 

C4 713,196 (0.83) 1,614,419 (1.89) 2,327,615 (2.72) 2,335,625 (2.73) 0.34% 2,338,450 (2.74) 0.46% 
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the process of merging these test cubes based on their ability to form a circular test template 

and to deploy a certain fraction of full toggle scan chains. 

The hypercompression can encode a test cube in a low toggling fashion by selecting tog-

gle points in places where scan chains change their content values. Recall that the toggle point 

requires a hold register update by the ring generator. If two successive specified values in a test 

cube are separated by scan cells with don’t cares, a toggle point can occur anywhere between 

these scan cells provided they differ in values. Consider the following test cube: 

x x 1 x 0 x x x 0 x x x 1 x x x x x 1 x x 0 x x x x 0 1 x x x x x 

 ↑ ↑ ↑  ↑  ↑  ↑  ↑  ↑  ↑                   ↑ 

As can be seen, the rightmost toggle point is already fixed. However, locations of three 

other toggle points remain to be determined as they can occur anywhere between the values of 

0 and 1 or vice versa. A sequence of adjacent cells where a toggle point can be located is re-

ferred to as a toggle range. Let v1 and v2 be specified values assigned to scan cells c1 and c2, 

respectively. All cells between c1 and c2 are don’t cares. If v1 ≠ v2, then the corresponding toggle 

range, denoted by [c1, c2), consists of c1 and all subsequent cells until c2 which is, by definition, 

excluded. If scan cells are numbered from the left starting with 0, then, for the above example, 

the following toggle ranges are as follows: [2, 4), [8, 12), [18, 21), [26, 27). 

The next step is to convert, for every scan chain, its toggle ranges into reduced toggle 

ranges. For the sake of simplicity, let us assume that given a range [x, y), a toggle point can 

occur at one of the following sites: x, x + 1, x + 2, …, y – 1. Let s be the size of a test template. 

If a given range consists of more than s cells, it is ignored. Otherwise, every toggle range [x, y) 

is mapped into a toggle range [x mod s, y mod s) with potential sites of toggle points converted 

accordingly. The resultant ranges and the corresponding toggle points become now the subject 

of a reduce operation. 

The reduce step transforms the set of converted toggle ranges into another set of toggle 

ranges by either computing non-empty intersections of toggle ranges or just leaving certain 

ranges intact, if they do not overlap with any other range. As an example, consider a 15-bit-

long scan chain shown in Fig. 5.3. The following list of toggle ranges can be easily determined: 

[1, 4), [7, 9), [12, 13), assuming that scan cells are numbered from the left, starting with 0. Let 

s = 5. Now the scan chain is divided into three equal parts (black vertical bars), and any toggle 

range between sections is dropped. The remaining is conversed using modulo s operation re-

sulting in the following ranges: [1, 4), [2, 4), [2, 3). Hence, the resultant toggle point candidates 
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are as follows: {1, 2, 3}, {2, 3}, and {2}. Clearly, their intersection is {2}, and this would be 

the toggle point location for the scan chain being analyzed here. 

In a general case, toggle ranges after reduction are processed as follows. Let :� and :� be 

two toggle ranges. If :� and :� are disjoint, then there is no reduction of toggle point candidates, 

and both ranges are kept for further processing. If :� ∩ :� � ∅, then the largest overlap between 

:� and :� is picked. The remaining toggle point candidates are discarded. If an intersection 

comprises more than a single toggle point (or it consists of disjoint subsets), we do not pick any 

specific toggle points yet. Finally, if more than two ranges overlap in a pairwise fashion, they 

are processed in an arbitrary order. For example, given ranges  :�, :� and :=, a new range :� �

:� ∩ :� ∩ := can be determined. As a result, we obtain a list of reduced toggle ranges for every 

scan chain. Every list is referred to as a prime toggle group. 

Prime toggle groups have to be now merged to obtain a set of toggle points that can be 

shared by as many scan chains as possible provided a desired toggle ratio is not exceeded. First, 

all prime toggle groups are sorted in ascending order by using the number of reduced toggle 

ranges every group features as a sort key. Starting from a prime toggle group with the smallest 

number of ranges, we keep combining prime toggle groups until the number of potential toggle 

points becomes greater than a predefined threshold representing a target toggling (recall that 

every reduced toggle range is eventually represented by a single toggle point). We follow here 

the very same reduction rules as those presented earlier. If a given prime toggle group cannot 

be merged because of the resultant threshold, a next group is tried until all groups have been 

examined. Scan chains whose prime groups have not been merged become full toggle scan 

 

Fig. 5.3. Reduce operation on toggle ranges. 
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chains (the green chains in Fig. 5.4), where every care bit will be set individually. The above 

procedure repeats for every test cube.  

5.2.2 Test templates 

To make full toggle scan chains operational, one needs to select full toggle taps, typically no 

more than two – see Section 5.1 and Fig. 5.4. Clearly, identifying the smallest number of taps 

that drive 3-input XOR gates feeding full toggle scan chains is equivalent to solving a maximum 

covering problem [15]. To determine full toggle taps, the hypercompression makes use of 

a greedy approach which first sorts all full toggle scan chains in descending order according to 

the number of test cubes a given full toggle scan chain is involved. During next iterations, it 

picks successive full toggle chains and determines their tap drivers. The highest-ranked chain 

will have three such taps to choose from (if driven by a 3-input XOR gate), and all subsequent 

chains will either share certain taps with the previously selected ones or narrow down the space 

of available taps. The procedure keeps trying different full toggle chains to maximize the num-

ber of covered faults (or test cubes) until there are no more than two taps available. All test 

cubes whose full toggle chains cannot be served by the selected taps (the second chain from the 

bottom in Fig. 5.4) are returned to the pool of test cubes to be merged in next iterations. 

Admittedly, certain full toggle taps can make additional scan chains full toggle ones. 

Consider a 32-bit hold register feeding 960 scan chains through 3-input XOR gates. As a result, 

every hold latch has its fan-out equal to 90. Consequently, some of these scan chains have likely 

been controlled by a test template in the first place. Since they do not need toggle points any 

 

Fig. 5.4. Selection of full toggle taps. 
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more, the corresponding test template may become the subject of further adjustments. As such 

a flow is usually complex, a relaxation approach presented below is used to avoid further cor-

rections of test templates. Another scenario occurs when certain test cubes are not covered be-

cause not all of their full toggle chains can be enabled. These test cubes remain in the pool of 

cubes to be merged in subsequent iterations. 

We now turn to the problem of forming an s-bit test template that could be shared by non-

full-toggle scan chains of several test cubes. Initially, each cube in a buffer is assigned the num-

ber of bits to encode with no templates involved. Such cubes can be obtained by using a con-

ventional ATPG. Subsequently, a relaxation algorithm is used that begins with an s-bit test 

template set to the all-1 vector (with such a template, the scheme is equivalent to the conven-

tional EDT-based compression). It then iteratively determines test cubes that could still be en-

coded if toggle points corresponding to position k were not used, when k = 0, …, s – 1 (bit k of 

a test template is set to 0). If a given cube remains encodable, we determine a difference G 

between the original number of its specified bits and the number of specified bits that need to 

 
(a) 

 
(b) 

Fig. 5.5. Relaxation: (a) the first phase, (b) the second phase. 
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be EDT encoded after relaxing a template bit (note that the latter number represents just the 

leading specified bits of every hold segment). If the cube cannot be encoded anymore (a deleted 

toggling point has been separating two cells with the opposite values), its gain L from the last 

iteration is retrieved. Once all cubes in a buffer are examined, their values of G and L are 

summed. A test-template bit corresponding to the largest value of ΣG – ΣL is subsequently 

reset, and all potential toggle points on this position for all test cubes are discarded. Cubes that 

cannot be encoded are removed from the buffer. One can now refill vacated positions with new 

cubes under the current intermediate template and carry on looking for next template bits to be 

flipped to 0. It is important to observe that new test cubes are now produced by a constrained 

ATPG aware of disabled toggle points.  

The whole process continues until the number of bits set to 1 in the test template becomes 

smaller than a predefined threshold that corresponds to user’s low power test requirements. For 

example, if a scan chain shift toggle rate is to be 25%, then relaxing 50% of template bits can 

achieve this goal. This procedure can be summarized by the following algorithm (the meaning 

of variables G and L remains the same as defined above): 

set all bits in the test template to 1 
while number of 1s in the test template is above threshold do 

for each 1 in the test template do 
set bit to 0 
set score S to 0 
for each test cube do 

if test cube can be encoded, then 
add G to S 

else 

subtract L from S 
reset bit with the highest S 
remove all cubes which cannot be encoded from the buffer 
refill test cube buffer 

 

Example 5.1: Consider an 8-bit-long scan chain fed by 8 test cubes and a 4-bit test tem-

plate. Initially, the template is set to 1111 (Fig. 5.5a). In four identical steps, we verify which 

test cubes could still be encoded if a given template bit were set to 0 (green boxes in the figure). 

As can be checked, the lack of two toggling points on bits indicated by arrows (recall that the 

template is circular) precludes encoding of test cubes printed in yellow. For example, the first 

cube –1–110–0 cannot be encoded because of a disabled toggling point between bits having 

values of 1 and 0, i.e., exactly where a hold register should be reloaded with a new content of 

the decompressor. As can be seen, if the first bit of the template were reset, then five test cubes 
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could not be encoded. Similarly, we verify if the same test cubes can or cannot be encoded 

when successive template bits are set to 0. It appears that resetting the second template bit leaves 

the largest number (6) of test cubes unaffected, and thus the test template becomes 1011. The 

cube buffer is refiled now with two new cubes (replacing those that could not be encoded) and 

the second round begins (Fig. 5.5b, the horizontal arrows point to new cubes). Again, the impact 

of setting the template bits to 0 on the ability of the scheme to encode the test cubes is examined. 

This is done in a similar manner as before. As can be easily verified, de-asserting the third and 

fourth template bits leaves four test cubes in each case. However, the encodable test cubes in 

the last column feature one more specified bit than those of the second column, so the template 

1010 is picked. For larger test templates, the same process continues until the number of toggle 

points is smaller than a threshold corresponding to low power test requirements.  

Example 5.2. Suppose there are three scan chains and three test cubes with toggle ranges 

as follows: 

Test cube 0: 
Chain 0:  [7, 9) [14, 17) 
Chain 1:  [10, 12)  
Chain 2:  [13, 14) 

Test cube 1: 
Chain 0:  [0, 5) [8, 10) [16, 17) 
Chain 1:  [0, 10)  
Chain 2:  [1, 2) [2, 3) [3, 4) 

Test cube 2: 
Chain 0:  [7, 9) [9, 11) 
Chain 1:  [2, 3) [3, 4) [4, 5)  
Chain 2:  [6, 7) [7, 8) [8, 9) 

 
Let us assume that there is an 8-bit test template and at most two toggle points are allowed 

per template. Let us also assume that at most one full toggle scan chain is permitted. After 

reduction, the prime toggle groups for each scan chain are: 

Test cube 0: 
Chain 0:  [7, 1) [2, 4); prime toggle group 
Chain 1: only 2 toggle points allowed, so no more points 
Chain 2: full toggle scan chain 

Test cube 1: 
Chain 0:  [0, 1); prime toggle group 
Chain 1: toggle range larger than a template 
Chain 2: full toggle scan chain 

Test cube 2: 
Chain 0:  [7, 1) [1, 3); prime toggle group 
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Chain 1: full toggle scan chain 
Chain 2: full toggle scan chain 

 
Finally, after computing prime toggle groups and finding a full toggle scan chain, “Test 

cube 2” is dropped (too many full toggle scan chains). The test template becomes 10100000 

with the third scan chain working in the full toggle mode. 

 Test compression flow 

Test templates of the previous section can guide ATPG to produce highly compressible test 

cubes. Fig. 5.6 sketches out the proposed test compression flow. As can be seen, the first phase 

produces test cubes by means of a conventional ATPG for randomly selected faults, forms 

a corresponding test template, and finds full toggle taps. These steps are controlled by a desired 

toggle ratio. Test cubes with more full toggle scan chains than allowed or not compliant with 

the template are dropped, and the corresponding faults are returned to the fault list. The test 

template is now passed to ATPG aware of recently added constraints. The guided ATPG and 

 

Fig. 5.6. High-level test flow. 
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EDT-based compression iterate until a given number of test patterns compliant with the newly 

created test template are produced or a user-defined abort limit is reached. Note that all faults 

still on the fault list can be used in this phase. The resultant test patterns are fault simulated, 

and the fault list is updated accordingly. If there are still faults on the list, the method goes back 

to pick new faults and to produce new test cubes. Otherwise, it terminates.  

A conventional ATPG working with testability measures may remain unaware of hold 

segments where several scan cells in a row assume the same value. Ignoring this additional 

constraint may lead to wrong decisions. Consider a 2-input AND gate driven by cells x and y 

of the same hold segment in such a way that one of the inputs receives data through an inverter 

(Fig. 5.7a). Since either xy = 00 or xy = 11, the output value of this gate will always be equal to 

0 as along as this particular test template is employed. Effectively, the AND gate becomes 

a constant 0 that can be regarded as a surrogate. Clearly, ATPG should not try to justify 1 over 

there. If there are no inverters on the inputs of an AND gate, then it behaves like a buffer (Fig. 

5.7b). Furthermore, hold segments may also impact observability of certain nets. If the AND 

gate, replaced by the constant 0 surrogate, drives another AND gate, then this particular gate is 

blocked as well (Fig. 5.7c). Consequently, ATPG should not propagate faults toward this logic. 

In order to guide the ATPG in a test-template-aware manner, first an identification of all 

surrogates and blocked gates is needed. This is handled by the following algorithm: 

for each hold segment do 
set all segment’s scan cells to 0 
run logic simulation 
find all blocked gates G0 
set all segment’s scan cells to 1 
run logic simulation 
find all blocked gates G1 

for each gate g whose output is either 0 or 1 do 
if gate g has the same value in both simulations then 

replace g with its proper constant surrogate 
else  

replace g with its buffer surrogate 

 

       (a)           (b)              (c) 

Fig. 5.7. Examples of guided ATPG: (a) buffer surrogate, (b) tie-0 surrogate, and (c) blocked path. 
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Simulate design several times using surrogates inserted earlier  
Recompute testability measures with surrogates 

 

The above procedure uses an auxiliary function to find all blocked gates due to asserted 

or de-asserted scan cells of a given hold segment. The basic steps of this function are as follows: 

for each gate g with one input set to a controlling value do 
trace backward from each non-controlling input of g 
if all fan-out branches of a visited gate v are blocked 

gate v is blocked 
trace all inputs of v 

else 

stop tracing the branch leading to v 

if gate g is blocked in both simulations 
gate g is always blocked 
set observability of g to 0 

Use blocked gates in subsequent simulations 

 

Experiments run on several large industrial designs indicate that fault reordering paving 

the way for the guided ATPG can yield better compression results. In particular, one can assign 

weights to successive faults and sort the entire fault list by using these weights. Every fault 

weight is computed as a ratio of the fault’s new testability (taking into account rules like those 

of Fig. 5.7) and the same fault’s testability determined in a conventional fashion, e.g., by using 

the SCOPE-like metrics. A potential testability increase is only taken into account if its value 

is greater than a predefined threshold r (experiments reported in the thesis use r = 1.1). 

5.3.1 Implied values 

Detection of so-called implied values is another mechanism that allows the hypercompression 

to foster a close interaction between ATPG and encoding. This approach is aimed at reducing 

CPU time needed to generate and compress test cubes. It guides back ATPG in such a way that 

ATPG does not assign certain nodes values that otherwise lead to conflicts, compression aborts, 

and backtracks. These objectives are accomplished by trimming the number of possible test 

cubes ATPG may produce and merge by using values that ATPG must consider necessary as-

signments as they become gradually available [28]. Clearly, savings due to a reduced number of 

decision nodes ATPG is to go through might be partially nullified by the time needed to deter-

mine all implied values. Within the EDT framework, however, this problem is solved by work-

ing with linear equations to quickly arrive with implied values given the current status of a com-

pression solver. 
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Recall that the EDT compression treats the external test data as variables forming linear 

expressions assigned to scan cells [72]. A compressed pattern is then obtained by solving a sys-

tem of linear equations in GF(2). Typically, Gaussian elimination determines the reduced row-

echelon form of an equation system by picking leading variables. Suppose there are k specified 

scan cells at certain point. To make sure that these assignments can be encoded, one has to solve 

a partially specified set of equations. If there is no solution, an ATPG backtrack is needed since 

a test cube in its current form cannot be compressed. 

 If the k specified bits can be encoded, then one can add another specified cell, thus form-

ing a set of k + 1 equations. There are now 3 possible scenarios. (1) The newly added equation 

is independent, and thus a cube with k + 1 specified values can be encoded. As a result, ATPG 

carries on. (2) The newly added equation is linearly dependent on others, but it remains solva-

ble. As before, ATPG can continue. Note, however, that the new value could be determined 

prior to the actual ATPG assignment as it is a linear combination of the earlier assignments. (3) 

The newly added equation is linearly dependent on others, and it is not solvable. Clearly, ATPG 

has to backtrack in this case. As previously, the value of cell k + 1 could be implied (here with 

the opposite value to the desired one) once the k scan cells have become specified. Being aware 

of this relation, one could constrain ATPG to avoid setting a scan cell to a value that cannot be 

encoded.  

The hold segments add a new dimension to the above approach. This is illustrated in Fig. 

5.8 depicting two scan chains. Here a 9-bit test template forms three consecutive hold segments 

comprising 4, 3, and 2 bits, respectively. As can be seen, the template is applied twice. Consider 

two faults f1 and f2. Let fault f1 require 3 scan cell assignments, as shown in Fig. 5.8a. After 

these assignments are done, the corresponding values can fill the remaining cells within the 

same hold segments, as depicted in Fig. 5.8b. Furthermore, solving equations representing spec-

ified bits of the first step may result, through already determined seed variables, in additional 

(implied) values, such as those in Fig. 5.8c. As they occur in different hold segments, the re-

maining cells of the same segments must assume exactly the same values, as shown in Fig. 

5.8d. At this point, ATPG attempts to find a test cube detecting fault f2. Suppose it requires 

a logic value of 0 on the output of the AND gate shown in the figure (plus another 0 in the same 

chain). Since one of the inputs of this gate is already set to 1, the only solution is to reset the 

other input, as in Fig. 5.8e. Note that ignoring implied values could misguide ATPG and result 

in a destructive attempt to assign 0 to the other input, which would cause a conflict and invoke 
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Fig. 5.8. Implied values and hold segments. (a) Assignments for fault f1, (b) Implied values in hold segments, 

(c) Additional implied values, (d) Filling hold segments for additional implied values, (e) ATPG assignments 

for fault f2, and (f) Final assignments. 
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time-consuming backtracks. Finally, the remaining scan cells of two hold segments affected by 

the test cube are filled with the same values, as demonstrated in Fig. 5.8f. 

It is worth noting that all implied values discussed above are computed, updated, and 

passed to ATPG as dynamic constraints. It simplifies the task of test generation as ATPG will 

trim the search space based on these new constrains and generate compact test patterns with 

less run time. 

 Experimental results 

The hypercompression approach has been verified by conducting a series of experiments with 

several industrial designs and circuits from the IWLS’05 benchmark suit. The basic data re-

garding the designs such as the number of gates, the number of scan cells, the number of scan 

chains, the size of the longest chain, the number of EDT input channels, and the size of decom-

pressor are listed in Table 5.2. All experiments are performed with a 30-bit test template and at 

most two full toggle taps. It is also assumed that the number of toggle points per this particular 

test template is equal to 15, virtually for all test cases. A test session consists of two repeatable 

steps: (1) shifting in a test template and the content of two full toggle registers, and (2) applying 

64 test patterns corresponding to this template. 

Table 5.3 summarizes the results of the experiments for stuck-at faults, obtained for both 

the conventional EDT-based compression and the hypercompression presented in the thesis. 

The successive columns of the table list the test coverage (TC), the number of test patterns (TP), 

Table 5.2: Circuit characteristics. 

 Gates Scan cells Scan chains Longest chain EDT channels EDT size 

D1 1.2M 72K 400 181 1 22 

D2 3.2M 281K 960 293 2 32 

D3 4.8M 287K 960 299 2 32 

D4 1.3M 52K 200 260 1 32 

D5 3.2M 213K 500 426 2 33 

D6 2.4M 182K 1,365 134 6 55 

D7 4.0M 421K 1,500 281 10 56 

leon3mp 1.2M 109K 800 137 1 29 

leon2 2.5M 149K 400 374 4 32 
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the corresponding input data volume (DV) in megabits, and the resultant reduction of test pat-

tern counts over the conventional EDT-based solution. Note that the hypercompression-based 

DV includes test templates data and binary-coded full toggle tap labels. 

As the “TP reduction” column of Table 5.3 indicates, the hypercompression produces 

appreciable results. It compares favorably with earlier solutions as far as pattern and compres-

sion numbers are concerned. In all test cases, compression rates are significantly higher than 

those of the standard EDT, while the test coverage remains virtually unaffected. The observed 

pattern reduction relative to the EDT varies from 1.5x to 4.0x, and its average value computed 

Table 5.4: Experimental results – transition faults. 

 
TC [%] 

Standard EDT Hypercompression 
TP reduction 

 TP DV [Mb] TP DV [Mb] 

D1 88.81 33,331 6.77 22,272 4.52 1.50x 

D2 80.22 15,742 10.23 13,439 8.73 1.17x 

D3 82.55 18,880 12.50 17,408 11.52 1.08x 

D4 69,63 11,010 3.31 5,632 1.69 1.95x 

D5 96.17 21,664 19.89 12,224 11.22 1.77x 

D6 90.41 12,130 11.79 6,270 6.09 1.93x 

D7 77.72 19,561 61.22 16,640 52.08 1.17x 

leon3mp 97.70 27,574 5.24 19,926 3.78 1.38x 

leon2 99.64 36,331 15.44 27,947 11.88 1.30x 

 

Table 5.3: Experimental results – stuck-at faults. 

 
TC [%] 

Standard EDT Hypercompression 
TP reduction 

 TP DV [Mb] TP DV [Mb] 

D1 96.92 31,246 6.34 19,870 4.03 1.57x 

D2 96.95 57,037 37.07 24,137 15.69 2.36x 

D3 94.84 33,013 21.85 21,160 14.01 1.56x 

D4 91.34 45,523 13.73 11,219 3.38 4.06x 

D5 97.87 17,153 15.75 10,237 9.40 1.68x 

D6 99.78 15,551 15.12 8,118 7.89 1.92x 

D7 98.50 39,226 122.78 15,589 48.80 2.52x 

leon3mp 99.83 13,352 2.54 7,907 1.50 1.69x 

leon2 98.64 13,310 5.66 9,472 4.02 1.40x 
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across the examined designs is virtually equal to 2x. Clearly, the proposed scheme raises com-

pression beyond what the state-of-the-art sequential schemes can achieve. In particular, it suc-

cessfully handles test cubes with incidentally high fill rate, whereas earlier solutions would 

either inflate pattern counts or declare compression aborts. Table 5.4 provides similar experi-

mental results for transition faults. As can be seen, results shown in Table 5.4 are in line with 

those of Table 5.3. Here, the average reduction computed across all examined benchmark cir-

cuits is close to 1.5x. 

 As one may expect, the hypercompression is capable of handling test patterns with higher 

fill rates than those of test vectors that the EDT can encode. This is illustrated in Table 5.5 for 

Table 5.6: Power metrics [%]. 

 Standard EDT Hypercompression 

 Load Capture Unload Load Capture Unload 

D1 49.34 10.79 49.94 32.90 10.48 36.36 

D2 49.38 11.70 44.37 28.71 11.54 29.68 

D3 49.53 10.69 42.01 30.25 10.54 26.09 

D4 49.52 14.69 42.04 30.00 14.40 33.48 

D5 49.65 15.96 44.78 33.47 15.37 33.16 

D6 49.24 36.55 46.75 28.32 31.58 43.40 

D7 49.23 15.83 44.77 24.63 10.36 26.20 

leon3mp 49.39 7.59 49.38 23.38 7.49 22.83 

leon2 49.70 6.76 49.69 24.91 9.66 25.19 

 

Table 5.5: Avarage fill rate for stuck-at patterns [%]. 

 Standard EDT Hypercompression 

D1 0.34 0.59 

D2 0.23 0.45 

D3 0.22 0.40 

D4 1.64 1.11 

D5 0.41 0.74 

D6 0.67 0.66 

D7 0.09 0.42 

leon3mp 0.18 0.32 

leon2 0.11 0.17 
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stuck-at tests. In many test cases, the acceptable fill rates can be doubled. A noticeable excep-

tion is design D4 where the actual fill rate served by the hypercompression drops to 1.11 com-

pared to the corresponding value of 1.64 for the EDT-based compression. Interestingly, how-

ever, this is exactly the same design where the hypercompression achieves the highest reduction 

of the test pattern count (4.06x) and the test data volume for otherwise the same test coverage. 

Finally, Table 5.6 offers the switching activity numbers. In all examined test cases the 

resultant scan-shift-induced switching activity was measured by the normalized weighted tran-

sition metric (WTM) [76]. As can be easily verified, these particular figures of merit were re-

duced to approximately 30% compared to the reference value of nearly 50% obtained as the 

average value over all examined designs for the standard EDT scheme. The toggling activity in 

the capture mode was recorded by means of a weighted switching activity (WSA) [86]. Since 

the average power dissipated during test is proportional to a shift-clock frequency, almost 2-

fold reduction of a test power envelope creates a significant margin that allows for acceleration 

of scan shifting at a rate that maintains the same power consumption as that of conventional 

test solutions.    
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Low power hypercompression 

This chapter is the next evolutionary step in developing a new class of test data compression 

schemes. The presented low-silicon-area scheme builds on a test hypercompression paradigm 

but is capable of handling stringent power requirements in a more flexible fashion.  Moreover, 

it deploys, on the average, fewer control registers than its hypercompression counterpart. How-

ever, additional processing needed to evaluate the most suitable decompressor configuration 

might increase the overall runtime by 50%. Consequently, the proposed scheme offers a trade-

off between the ability to resolve problems related to test power dissipation and the resultant 

processing overhead. 

 Low power architecture 

Test logic deployed by the new scheme follows the principles that serve as foundations for the 

original hypercompression, including the use of test templates. However, low power hypercom-

pression test logic (LP-HTL) employs a different test template circuitry than that of Fig. 5.1. 

The new scheme is shown in Fig. 6.1. A very short circular register (seldom longer than 4 bits) 

is controlled by an initialization decoder that updates the register based on a template ID which 

directly precedes test pattern seeds in data streamed by ATE. Clearly, as there is no need to 

store templates any longer, time needed to channel a template ID is a negligible fraction of 

a regular test pattern upload period. It makes the new scheme very flexible since it is now ca-

pable of attaching a test template to every pattern. Back to Fig. 6.1, one can pick one of the four 

test templates: 1000, 0100, 0010, or 0001, just by attaching a 2-bit ID to the corresponding test 

pattern seeds.  

To further reduce test data, it is assumed that every test pattern can put at most two hold 

latches in the transparent mode (the feasibility of this assumption is strongly supported by 

experimental evidences). To accommodate two transparent stages of the hold register, a pair of 

1-out-of-n decoders driven by two associated full toggle latch ID registers are deployed, as 



 

Low power hypercompression 

 

69 

 

illustrated in Fig. 6.1, where n is the size of the ring generator. For each test pattern, this circuitry 

selects two out of n hold latches to be fed directly by the ring generator. Similarly to the previous 

scheme, such latches will also be referred to as full toggle taps.  

 Essential test cubes 

The first step to determine short hypercompression test templates is the computation of the 

corresponding essential test cubes. Given a fault, the essential test cube is a partially specified 

vector that retains only those positions of an ATPG-produced test cube that correspond to pri-

mary inputs and scan cells whose likelihood of being specified is greater than a predetermined 

threshold. In particular, all necessary assignments associated with certain scan cells become 

unconditional parts of any essential test cube. Once a fault is injected, the process to determine 

an essential test cube keeps track of assignments made by APTG and computes the correspond-

ing signal odds along fault’s propagation and justification paths. A noteworthy observation is 

that a signal probability is computed regardless of the actual logic value (0 or 1) used to set 

a given net. This is why every specified net gets just a single value. Clearly, as long as there is 

a unique fault propagation path, the corresponding probabilities are set to 1. Probabilities asso-

ciated with branches of a fan-out are equal fractions (inversely proportional to the number of 

branches) of the probability that the fault can reach the stem. However, the probability is only 

 

Fig. 6.1. Low power hypercompression test logic. 
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assigned to a branch that was actually selected by ATPG and follows that path. In a backward 

implication process, inputs assume the values based on the corresponding outputs; if they are 

NAs, then the corresponding probabilities are equal to 1. Otherwise, the number of (remaining) 

inputs divides the output signal probability. Again, the resultant probability is just assigned to 

an input that has been set to a specific value by ATPG. In the off-path implication phase, while 

inputs assume the same non-controlling value as that of the fault propagation, we use the same 

rules as stated above to determine and assign the corresponding probabilities. Having deter-

mined test cubes and their probabilistic weights, the essential test cubes are obtained by keeping 

only specified bits with the corresponding signal probabilities greater than or equal to a given 

limit.  

The above description highlights the main features of the method used to determine prob-

abilities for all relevant nets in a circuit until it hits both primary inputs and scan cells (pseudo-

primary inputs). The following examples illustrate the algorithm in operation on two simple 

circuits.  

Example 6.1: Consider a stuck-at-0 fault shown in Fig. 6.2. To excite this fault, ATPG 

assigns the value of 1 (red nets) to the fault site c, and thus the probability pc associated with 

this net becomes 1.0, i.e., pc = 1.0. An off path input f of gate G3 is assigned a non-controlling 

yet necessary value (0 – blue nets), and hence pf = 1.0. Since the output g of gate G3 is uniquely 

determined, the related probability is pg = 1.0. Furthermore, as probabilities associated with 

branches of this fan-out are equal fractions of the stem probability, we have ph = 0.33, pi = 0.33, 

and pj = 0.33. However, only ph is recorded, as representing a path selected by ATPG. Now, 

gate G2 should output 0. Thus the number of its inputs divides the output signal probability such 

that pd = 0.5 and pe = 0.5. Only pd is stored, again because of the ATPG-based decision. Since 

gate G1 yields 1 by setting both of its inputs to 1, we get pa = 1.0 and pb = 1.0. 

 

Fig. 6.2. Circuit for Example 6.1. 
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Example 6.2: A stuck-at-1 fault affecting the output of gate G1 (Fig. 6.3) forces ATPG to 

assign the value of 0 to all lines printed in blue. Note that as far as gate G1 is concerned, all 

these assignments are necessary, and thus the corresponding signal probabilities are all equal 

to 1.0. The same applies to stem G3. Here, ATPG selects the upper branch as a fault propagation 

path. Since the probabilities associated with branches of this fan-out are inversely proportional 

to the number of branches (3), the input of gate G4 gets 0.33 as its signal probability. Conse-

quently, the same applies to the remaining pins of the same gate, and then a scan cell driving 

G4. At the same time, as one of the inputs of G2 is already driven by a set-to-0 necessary as-

signment, a desired value of 1 is assigned (arbitrarily) to the second input of the gate. As the 

number of inputs (here the remaining 2) divides the output signal probability, this particular 

input and its scan cell driver get 1.0 / 2 = 0.5 probability of being specified. As a result, four 

scan cells are specified with different associated probabilities. If the acceptance threshold is set 

to 0.5, the essential test cube is as follows: xxx00xx1xxxx. However, if the threshold is lowered 

to 0.25, the essential test cube becomes x1x00xx1xxxx. 

 Test template synthesis 

The approach presented in this section works with a set of essential test cubes corresponding to 

certain faults. Initially, essential test cubes are processed individually, and then they are gradu-

ally merged based on their ability to form a circular test template and to deploy, if necessary, 

a small fraction of full toggle scan chains. 

The method begins by selecting toggle points, i.e., locations where scan chains change 

their content values. The same concept is used in the previous technique, as presented in Section 

5.2.1. However, in addition to the computations introduced earlier, essential test cubes are 

merged while preserving all necessary toggle points and toggle ranges. 

Example 6.3: Consider an essential test cube and its toggle ranges (see Fig. 6.4, cube 1): 

[0, 3), [4, 6), [6, 11). Let s = 4 and the number of toggle points per template be confined to 1. 

After conversion modulo s, we get two toggle ranges: [0, 3), [0, 2); note that toggle range [6, 

11) is rejected as too long. The resultant toggle point candidates are, therefore, {0, 1, 2} and {0, 

1}. As their intersection is {0, 1}, the current single-1 test templates at this stage of processing 

are 1 0 0 0 and 0 1 0 0. The next essential test cube (cube 2) is first merged with cube 1. The 

resultant cube comprises three toggle ranges: [1, 3), [4, 5), and [9, 10). The conversion modulo 
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4 gives the following ranges: [1, 3), [0, 1), and [1, 2). They would need a template 1 1 0 0, 

which is rejected as not having a single 1. Consequently, cube 2 is not merged with cube 1. 

Merging the third essential test cube (cube 3) with cube 1 yields eventually three toggle ranges: 

[0, 3), [1, 2), and [1, 3). The intersection of the corresponding toggle points leads to a desired 

template 0 1 0 0.  

Having test templates with a single one is two-fold beneficial. It reduces the total number 

of templates, and thus allows uploading their IDs rather than the entire templates. Moreover, it 

elongates non-toggling periods of scan-in shifting, thus reducing the total switching activity. 

As a result, the presented scheme becomes an efficient low power solution. If one uses slightly 

longer test templates, for example 8-bit long, their preferable form comprises combinations 

with two adjacent 1s to reduce the resultant template count. Furthermore, it addresses several 

cases when one needs to reload scan chains twice in a row with different values. The basic 

purpose of this operation is to shift-in a sequence having the same logic values but passing 

through scan cells connected via inverters.  

 In summary, given an essential test cube, its modular toggle ranges corresponding to 

a single scan chain are processed as follows. Let r1 and r2 be two toggle ranges. If r1 and r2 are 

disjoint, then there is no reduction of toggle point candidates, and both ranges are kept with no 

changes. If r1 ∩ r2 ≠ ∅, then the largest overlap between r1 and r2 is picked, with the remaining 

toggle point candidates being discarded. No specific toggle points are finalized yet, if an inter-

section comprises more than a single toggle point candidate. Generally, given a list {r1, r2, …, 

 

Fig. 6.3. Circuit for Example 6.2. 
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rn} of toggle ranges, they are processed in an arbitrary order by computing rk ∩ rk+1 ∩ … as 

long as they are not empty. Every such product becomes a prime toggle group obtained for 

every scan chain.  

Prime toggle groups are combined to obtain toggle points that can be shared by as many 

scan chains as possible. First, all lists are sorted by using the number of toggle ranges every list 

features as a sort key. Starting from a list with the smallest number of ranges, we keep combin-

ing lists until the number of potential toggle points becomes greater than a predefined threshold. 

 

Fig. 6.4. Transformations of TPRs. 
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Note that the very same rules are used as those presented earlier. If a given list cannot be merged 

because of the resultant threshold, we try a next list until all lists are examined. Scan chains 

whose lists have not been merged become full toggle scan chains, where every care bit is set 

individually. The above procedure works repeatedly by selecting a new essential test cube that 

could be merged with a cube already processed (see Example 6.3) provided it has the ability on 

its own to form an acceptable test template. If there are no more essential test cubes that could 

be merged, a new test template is formed and process continues until all essential test cubes 

have been checked. 

Recall that enabling certain stages of the hold register makes the corresponding scan 

chains fully toggling. The number of such full toggle taps should not be greater than two, as 

shown in Fig. 6.1. Identifying at most two taps that feed full toggle scan chains via 3-input XOR 

gates is somewhat similar to solving a maximum covering problem. To this end, a greedy ap-

proach presented in [43] is used. First, it sorts full toggle scan chains in descending order ac-

cording to the number of test cubes these scan chains are involved. Next, we iterate the process 

that picks full toggle chains and determines their tap drivers. Assuming a scan chain is driven 

by a 3-input XOR gate, the highest-ranked chain will have three such taps to choose from. Next, 

subsequent chains will either share certain taps with the previously selected ones or narrow 

down the space of available taps. The procedure continues until there are no more than two taps 

available. At the end, certain test cubes may not be served by the selected taps. They go back 

to the test cube pool to be merged next time. 

 Test compression flow 

Fig. 6.5 is the proposed test compression flow. Once a test template becomes available (as 

shown in the previous sections), ATPG starts with faults that have been used to arrive with 

essential test cubes and the corresponding templates. Information provided by test templates is 

passed to ATPG as constraints. However, in order to guide ATPG in a test-template-aware 

manner, an identification of so-called surrogates and other blocked gates is needed. Here, the 

same methodology is used as the one presented in Section 5.3. 

In addition to short test templates, other mechanisms that allow the presented scheme to 

foster a close interaction between ATPG and encoding are used. These techniques are primarily 

aimed at tailoring test cubes towards a template-enforced format and at reducing pattern counts. 
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They guide ATPG back in such a way that ATPG does not assign certain nodes values that 

otherwise lead to conflicts, compression aborts, and backtracks. As can be seen in Fig. 6.5, the 

above objectives are achieved by taking the following additional steps: 

• modifying conventional testability measures, i.e., controllability and observability, in such 

a way that every net in a circuit is assigned five integral metrics; two of them give the 

number of specified bits necessary to set a give line to 0 and 1, respectively; the third 

one provides the number of specified bits necessary to make a given net observable; the 

last two integers count how many faults are blocked if a given line is set to 0 and 1, respec-

tively, 

• limiting the encoding capacity of a compression solver during the regular merging of test 

cubes; typically the process of cube merging terminates once the number of seed variables 

with assigned logic values of 0 or 1 becomes higher than 70% of the total number of vari-

ables injected into a system; the resultant specified values assigned to scan cells are passed 

 

Fig. 6.5. High-level test flow. 
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to ATPG as its constraints – maintaining  a proper fraction of unspecified scan cells leaves 

more space for dynamic-compaction-made assignments, which, in turn, increases effi-

ciency of the latter technique, 

• reordering faults based on simple heuristics – see the following paragraph, 

• computing probabilities of having scan cells set to 0 or 1 for a given subset of already 

produced test cubes; this information is subsequently guiding ATPG so as to use – prefer-

ably – the same values for next test cubes (faults) to reduce the number of care bits; clearly, 

this approach generalizes immediately by taking advantage of probabilistic data obtained 

in the process of finding essential test cubes; the scan cell statistics are being iteratively 

updated when processing successive faults, as shown in Fig. 6.5, 

• trimming the number of ATPG-produced test cubes by using values that ATPG considers 

necessary assignments as they become gradually available; details regarding these implied 

values can be found in [28]. 

Given test patterns produced by now, the fault reordering is periodically checking 

whether these patterns have established, for faults still on a list, the following: (1) an excitation 

path, (2) complete off-paths, (3) off-paths within a FFR hosting a given fault. The fault list is 

then sorted in such a way that faults with patterns setting their off-paths come first, followed 

by faults with patterns setting their off-paths within the corresponding FFRs. The tail end con-

sists of faults with patterns forming excitation paths. Within each group, preference is given to 

faults with the smallest pattern counts. These heuristics help to target, in the first place, faults 

that might be the most demanding in terms of finding their compressible test cubes.  

Experiments run on several large industrial designs indicate that the above heuristics, 

paving the way for the guided ATPG, can yield better compression results. Nevertheless, it is 

Table 6.1: Circuits characteristics. 

 Gates Scan cells Scan chains Longest chain EDT channels EDT size 

D1 1.2M 72K 400 181 1 22 

D2 3.2M 281K 960 293 2 32 

D3 4.8M 287K 960 299 2 32 

D4 1.3M 52K 200 260 1 32 

D5 3.2M 213K 500 426 2 33 

D6 2.4M 182K 1,365 134 6 55 

D7 4.0M 421K 1,500 281 10 56 
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worth noting that the situation when a single essential test cube has no acceptable test template 

is usually extraneous: in such a case all scan chains enter the full toggle mode and a test cube 

is handled by the conventional EDT-based compression. 

 Experimental results 

As done before, the low power (LP) hypercompression technology has been verified by con-

ducting a series of experiments with several industrial designs. The basic data regarding these 

circuits such as the number of gates, the number of scan cells, the number of scan chains, the 

size of the longest chain, the number of input channels, and the size of decompressor are listed 

in Table 6.1. All experiments are performed with a 4-bit test template and at most two full 

toggle taps. It is also assumed that there is only a single toggle point per template. A test session 

consists of two repeatable steps: (1) shifting in IDs of a test template and two full toggle latches, 

and (2) applying 64 test patterns corresponding to this template. 

Table 6.2 summarizes the results of the experiments for stuck-at faults, obtained for the 

conventional EDT-based compression, the original hypercompression, and the new version of 

hypercompression presented in this chapter. The successive columns of the table list the test 

coverage (TC), the number of test patterns (TP), the corresponding input data volume (DV) in 

megabits, and the resultant reduction of test pattern counts over the conventional EDT (TPRE) 

and over the former version of hypercompression (TPRH). Note that the hypercompression-

based DV includes test templates data and binary-coded full toggle tap labels, whereas the LP 

Table 6.2: Experimental results – stuck-at faults 

TC [%] 
Standard EDT Hypercompression LP Hypercompression 

TPRE TPRH 
TP DV [Mb] TP DV [Mb] TP DV [Mb] 

D1 96.92 31,246 6.34 19,870 4.03 19,584 3.98 1.60 1.01 

D2 96.95 57,037 37.07 24,137 15.69 23,528 15.29 2.42 1.03 

D3 94.84 33,013 21.85 21,160 14.01 20,823 13.78 1.59 1.02 

D4 91.34 45,523 13.73 11,219 3.38 10,643 3.20 4.28 1.05 

D5 97.87 17,153 15.75 10,237 9.40 10,186 9.35 1.68 1.01 

D6 99.78 15,551 15.12 8,118 7.89 7,973 7.75 1.95 1.02 

D7 98.50 39,226 122.78 15,589 48.80 15,011 46.98 2.61 1.04 
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version of hypercompression-based DV includes binary-coded IDs of test templates and full 

toggle taps. 

As TPRE and TPRH columns of Table 6.2 indicate, the LP hypercompression compares 

favorably with its predecessors as far as test pattern counts and compression rates are con-

cerned. In all test cases, the compression ratios are higher than those of the standard EDT and 

similar to the former hypercompression, while test coverage is not compromised. The observed 

pattern reduction relative to the EDT varies from 1.59x to 4.28x, and its average value computed 

across the examined designs is equal to 2.3x. Clearly, the proposed scheme raises compression 

beyond what state-of-the-art sequential compression schemes can achieve.  

Table 6.3 reports the switching activity results. In all examined test cases the scan-shift-

induced switching activity is measured by the normalized weighted transition metric (WTM) 

[76]. As can be seen, the hypercompression reduces WTM to approximately 30% compared to 

the reference value of nearly 50% obtained as the average value over all examined designs for 

the standard EDT. Furthermore, the new hypercompression lowers WTM down to nearly 17%. 

The toggling activity in the capture mode is represented by means of a weighted switching 

activity (WSA) [86]. Since the average test power is proportional to a scan-shift-clock fre-

quency, its almost 3-fold reduction, as observed in the reported experiments, creates a signifi-

cant margin that, at a cost of complex and time-consuming computations, allows for accelera-

tion of scan shifting (and thus the entire test session) at a rate that corresponds to the difference 

between the power consumption of conventional test solutions and the new scheme.    

 

 

Table 6.3. Power metrics [%]. 

 Standard EDT Hypercompression LP Hypercompression 

 Load Capture Unload Load Capture Unload Load Capture Unload 

D1 49.34 10.79 49.94 32.90 10.48 36.36 17.50 10.25 26.35 

D2 49.38 11.70 44.37 28.71 11.54 29.68 15.97 11.32 20.21 

D3 49.53 10.69 42.01 30.25 10.54 26.09 16.21 10.48 19.96 

D4 49.52 14.69 42.04 30.00 14.40 33.48 17.01 14.32 24.54 

D5 49.65 15.96 44.78 33.47 15.37 33.16 18.12 15.17 23.98 

D6 49.24 36.55 46.75 28.32 31.58 43.40 15.15 31.08 38.76 

D7 49.23 15.83 44.77 24.63 10.36 26.20 15.03 10.16 20.01 

 



 

79 

 

  

Conclusion 

CMOS technology scaling has been a constant since its initial development with the purpose of 

obtaining integrated circuits that work at higher frequencies. The semiconductor industry is 

rapidly moving into new technology nodes and offers chips that comprise billions of transistors 

operating at GHz frequencies. The capabilities that allowed the industry to build this unprece-

dented trend require a sustained improvement in fabrication technologies, design automation 

tools, and last, but by no means least, test and verification methods. Clearly, technology scaling 

into the nanometer regime has a direct impact on contemporary test schemes. In particular, test 

application time and the amount of test data are progressively increasing because of higher 

complexity of designs, new types of defects, variance, and noise mechanisms. As a result, the 

high-quality tests become increasingly expensive to maintain. Furthermore, shaping a circuit 

power envelop, as required by reliable tests, is becoming more and more demanding. On top of 

everything, integrated circuits need constant and thorough monitoring in safety-critical appli-

cations. The novel concepts, schemes, and detailed solutions presented in the thesis address 

some of the challenges the contemporary test is facing. The author believes that these methods 

may play an important role in the quest for more pattern- and time-efficient VLSI testing 

schemes.  

The test compaction scheme, presented in the first part of the thesis, is capable of reducing 

pattern counts of the state-of-the-art ATPG tools in a noticeable manner. The proposed solution 

combines a novel fault profiling, fault grouping, and a customized version of the SAT-based 

ATPG. It begins with a comprehensive analysis of necessary assignments associated with pri-

mary inputs, pseudo-primary inputs, and all internal primary fanout stems. Having determined 

this data, the thesis introduces an automated selection of fault groups, and then a method to 

produce a single test pattern for the entire group, if possible. As confirmed by experiments on 

industrial designs, the proposed approach can yield compact test sets, in many cases breaking 

barriers laid out by former test set compaction algorithms. In principle, the method can work 
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with any precomputed deterministic test set. As the new approach preserves all benefits of con-

temporary ATPG tools, it is an important factor in the process of gradual development of new 

automated test pattern generation techniques. 

The hypercompression of test data, presented in Chapter 5, is a step towards a next gen-

eration of test data compression schemes outperforming conventional sequential compression 

techniques. Although it builds on the isometric compression paradigm, the hypercompression 

substantially limits its silicon overhead, remains non-intrusive to the core logic, and further 

elevates encoding efficiency and compression ratios. Moreover, it offers a flexible technique to 

control scan toggling rates by deploying a programmable selection of full-toggle scan chains, 

which in turn alleviates problems traditionally related to fault coverage drop and pattern count 

inflation. The use of a small test template makes the proposed scheme very flexible – it is ca-

pable of reconfiguring test templates at negligible cost related to test time and data volume 

overheads, for example, by working with very few external ATE channels. As the hypercom-

pression preserves all benefits of the sequential test compression, its adoption may become an 

important factor in future scaled DFT technologies. 

Finally, Chapter 6 describes a new low-power test data compression scheme. With the 

hypercompression as its modus operandi, the new technique limits silicon overhead even fur-

ther, remains non-intrusive to the core logic, and elevates compression ratios. Moreover, high-

quality tests are guaranteed as this approach can work with all traditional fault models and any 

new fault model of the future. More importantly, however, it is inherently a test-power-friendly 

solution that alleviates several problems typically related to test power constraints. The ex-

tremely small test templates it deploys can be attached to every pattern at negligible cost as far 

as test time and data volume are concerned. However, yielding very compact, high quality, and 

exceedingly low power tests comes at the expense of additional processing.  

The thesis demonstrates that even in such mature areas as test pattern generation and test 

data compression, there are improvement opportunities. Moreover, the proposed solutions can 

also be regarded as starting points for future research directions. For example, the test set com-

paction technique of Chapters 3 and 4 works exclusively with the tail end of a test set. One of 

the next steps could be to develop rules that help a test set compaction algorithm form a subset 

of test patterns susceptible to more effective merging based on the initial and complete test set. 

Furthermore, the use of necessary assignments, as shown in Chapter 3, could be adapted by the 

hypercompression approach to better adjust templates, and thus to further improve results. In 
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summary, the solutions proposed in the thesis address some of the key challenges of the modern 

VLSI test and help to converge toward an ultimate on-chip test solution with a negligible impact 

on a design and manufacturing realm. 
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