
Kalina Kobus

Efficient algorithms for extreme multi-label
classification

Doctoral Dissertation

Submitted to the Discipline Council
of Information and Communication Technology

of Poznań University of Technology

Advisor: Krzysztof Dembczyński, Ph. D., Dr. Habil.

Poznań · 2020

Kalina Kobus

Efektywne algorytmy dla wieloetykietowej
klasyfikacji ekstremalnej

Rozprawa doktorska

Przedłożono Radzie Dyscypliny
Informatyka Techniczna i Telekomunikacja

Politechniki Poznańskiej

Promotor: Krzysztof Dembczyński, Ph. D., Dr. Habil.

Poznań · 2020

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computing Science.

Kalina Kobus
Laboratory of Intelligent Decision Support Systems
Faculty of Computing and Telecommunications
Institute of Computing Science
Poznań University of Technology
kalina.jasinska@cs.put.poznan.pl

Typeset by the author in LATEX.

Copyright c© 2020 by Kalina Kobus

This dissertation and associated materials can be downloaded from:
http://www.cs.put.poznan.pl/kjasinska

Institute of Computing Science
Poznań University of Technology
Piotrowo 2, 60–965 Poznań, Poland
http://www.cs.put.poznan.pl

The research presented in this dissertation was partially funded from National Science Centre funds granted
under grant no. 2017/25/N/ST6/00747.

Computational experiments have been performed in Poznan Supercomputing and Networking Center.

The use in this dissertation of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

kalina.jasinska@cs.put.poznan.pl
http://www.cs.put.poznan.pl/kjasinska
http://www.cs.put.poznan.pl

Abstract

Extreme multi-label classification (XMLC) is a learning task of tagging instances
with a small subset of relevant labels chosen from an extremely large pool of
possible labels. Problems of this scale can be efficiently handled by organizing
labels as a tree, like in hierarchical softmax used for multi-class problems. In
this dissertation, we propose and thoroughly investigate probabilistic label trees
(PLTs), suitable for estimating the conditional probabilities of labels, that can be
treated as a generalization of hierarchical softmax for multi-label problems.

We introduce the PLT model and discuss training and inference procedures.
We present a general training scheme given a label tree structure in advance.
Furthermore, we consider a problem of training PLTs in a fully online setting,
without any prior knowledge of training instances, their features, or labels. In
this case, both node classifiers and the tree structure are trained online. We prove
a specific equivalence between the fully online algorithm and an algorithm with a
tree structure given in advance. We describe three inference procedures allowing
prediction with PLTs suitable for various optimized performance metrics.

We prove the consistency of PLTs for a wide spectrum of performance metrics.
To this end, we first analyze the performance metrics used in extreme multi-label
classification and derive the Bayes classifiers for them. This way we show for
which performance metrics the optimal decisions can be determined through the
conditional probabilities of labels. Then, we upper-bound the regret with respect
to these metrics by a function of surrogate-loss regrets of node classifiers.

We analyze the computational complexity of training and prediction proce-
dures of PLTs and show that under certain assumptions it is sublinear in the
number of labels. Finally, we discuss several implementations of PLTs, empiri-
cally evaluate their performance, and demonstrate their competitiveness to the
state-of-the-art methods.

Acknowledgments

I would like to express sincere gratitude to my advisor, Dr. Krzysztof Dem-
bczyński, for giving me the opportunity to pursue my scientific interests, sharing
with me the ins and outs of doing research, and all his help throughout the years.

I would also like to extend my special thanks to Dr. Wojciech Kotłowski,
who got me interested in machine learning in the first place, and also for many
insightful comments and discussions. I also thank Dr. Nikos Karampatziakis,
my internship mentor, for the great opportunity of doing research at Microsoft,
and for his guidance, kindness, and help. I am truly grateful to Prof. Roman
Słowiński and all the members of the Laboratory of Intelligent Decision Support
Systems for their kindness and support, and also for showing me how the world-
class research is carried out in Poznań. I thank my fellow PhD student Marek
Wydmuch, who collaborated with me on much of this work. I also thank my
other fellow PhD students, with whom I shared the toil of pursuing a PhD, for
many good laughs and their unshakable belief in my research.

Last, but certainly not least, I wish to thank my family and friends. In particu-
lar, I wish to thank from the bottom of my heart my parents, Anita and Waldek,
for their love and teaching me how to be curious, and my dearest husband
Tadeusz, who walked this path before me, for his love, support and never-ending
encouragement, without which this dissertation would not exist.

List of publications

Journal papers:

K. Jasinska-Kobus, M. Wydmuch, K. Dembczyński, M. Kuznetsov, and
R. Busa-Fekete. Probabilistic label trees for extreme multi-label classification.
Journal of Machine Learning Research (in review), 2020a,

K. Jasinska, K. Dembczyński, and N. Karampatziakis. Extreme classification
under limited space and time budget. Schedae Informaticae, 2017. doi:
10.4467/20838476SI.16.001.6182.

Conference papers:

K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and
E. Hullermeier. Extreme f-measure maximization using sparse probability
estimates. In Proceedings of The 33rd International Conference on Machine
Learning, pages 1435–1444, New York, USA, 2016. PMLR,

M. Wydmuch, K. Jasinska, M. Kuznetsov, R. Busa-Fekete, and K. Dem-
bczynski. A no-regret generalization of hierarchical softmax to extreme
multi-label classification. In Advances in Neural Information Processing Sys-
tems 31, pages 6355–6366. Curran Associates, Inc., 2018,

K. Jasinska-Kobus, M. Wydmuch, D. Thiruvenkatachari, and K. Dem-
bczyński. Online probabilistic label trees. AISTATS 2020 (in review), 2020d.

Workshop and arxiv papers:

K. Jasinska and K. Dembczyński. Consistent label tree classifiers for extreme
multi-label classification. In The ICML Workshop on Extreme Classification,
2015,

K. Jasinska and N. Karampatziakis. Log-time and log-space extreme classi-
fication. CoRR, abs/1611.01964, 2016,

K. Jasinska. Efficient exact batch prediction for label trees. In Extreme
Multilabel Classification for Social Media at The Web Conference, 2018,

vi

K. Jasinska and K. Dembczyński. Bayes optimal prediction for ndcg@k in
extreme amulti-label classification. In From Multiple Criteria Decision Aid to
Preference Learning Workshop, 2018,

R. Busa-Fekete, K. Dembczynski, A. Golovnev, K. Jasinska, M. Kuznetsov,
M. Sviridenko, and C. Xu. On the computational complexity of the proba-
bilistic label tree algorithms. CoRR, abs/1906.00294, 2019,

K. Jasinska-Kobus, M. Wydmuch, D. Thiruvenkatachari, and K. Dem-
bczyński. Online probabilistic label trees. CoRR, abs/2007.04451, 2020c,

K. Jasinska-Kobus, M. Wydmuch, K. Dembczyński, M. Kuznetsov, and
R. Busa-Fekete. Probabilistic label trees for extreme multi-label classification.
CoRR, abs/2009.11218, 2020b.

Contents

1 Introduction 1
1.1 Extreme classification . 2
1.2 Related work . 3
1.3 Motivations . 5
1.4 Aim and scope . 6

1.4.1 Bayes classifiers . 6
1.4.2 Probabilistic label trees model 6
1.4.3 Consistency and regret bounds 7
1.4.4 Computational complexity of training and prediction . . . 8
1.4.5 Empirical evaluation . 8

1.5 Personal contribution to development of PLTs 9
1.6 Outline . 9

2 Theoretical background 11
2.1 Binary classification . 11
2.2 Strongly proper composite losses 13
2.3 Multi-label classification . 15
2.4 Statistical consistency . 17

3 Multi-label classification metrics 19
3.1 Generalized classification performance metrics 19
3.2 Precision@k and recall@k . 22

3.2.1 Pick-one-label heuristic . 23
3.2.2 Comparison of the optimal classifiers 23

3.3 DCG@k and NDCG@k . 25
3.3.1 NDCG at different ranks . 27
3.3.2 Comparison of the optimal classifiers 27

3.4 Conclusions . 28

viii Contents

4 Probabilistic label trees (PLTs) 29
4.1 Probabilistic label trees . 29
4.2 Training . 32
4.3 Prediction . 33

5 Statistical analysis of PLTs 37
5.1 L1 estimation error . 37
5.2 Strongly proper composite losses 39
5.3 Generalized classification performance metrics 40
5.4 Precision@k . 43
5.5 DCG@k . 45
5.6 Relation to hierarchical softmax . 46

6 Computational complexity of PLTs 47
6.1 Training complexity . 47
6.2 Prediction complexity . 48
6.3 Memory complexity . 51

7 Online PLT 53
7.1 Online and incremental training of PLTs 53
7.2 Online tree building and training of node classifiers 55
7.3 Theoretical analysis of OPLT . 59

8 Implementation 61
8.1 Popular PLT packages . 61
8.2 Training of node classifiers . 62
8.3 Sparse features . 63
8.4 Dense features . 64
8.5 Prediction . 64
8.6 Tree structure . 65
8.7 Ensemble of PLTs . 66
8.8 Node probabilities via multi-class classification 67

9 Empirical validation of PLTs 69
9.1 Experimental setting . 69
9.2 PLTs with different design choices 70

9.2.1 Batch and incremental learning 71
9.2.2 Prediction methods . 72
9.2.3 Sparse and dense representation 77
9.2.4 Tree structure . 77
9.2.5 Ensemble of PLTs . 79

9.3 Generalized classification performance metrics 81
9.4 Comparison to hierarchical softmax 82
9.5 Online PLTs . 84
9.6 PLT vs. state-of-the-art . 85

Contents ix

10 Discussion and open research directions 89
10.1 Other proposed methods . 89

10.1.1 BR-trees . 89
10.1.2 Log-Time Log-Space . 90

10.2 Tree structure . 91
10.2.1 Spectral tree . 92
10.2.2 FastPLT . 92
10.2.3 Online PLT tree building policies 93

10.3 ε-approximate prediction . 94
10.4 Limitations of PLTs in the context of other extreme classification

challenges . 94
10.4.1 The problem of rare labels 94
10.4.2 The positive-unlabeled labels problem 95

10.5 Open research directions . 96

11 Summary 97

Bibliography 99

A Omitted proofs 107
A.1 Proofs of the results from Sections 3.2 and 3.3 107
A.2 Proofs of the results from Section 5.1 109
A.3 Proofs of the results from Chapter 5.2 111
A.4 Proofs of the results from Section 5.3 113
A.5 Proofs of the results from Section 5.5 117
A.6 Proofs of the results from Chapter 6 119
A.7 Proofs of the results from Chapter 7 123

B Implementation and experimental setup 127
B.1 Batch uniform-cost search . 127
B.2 Synthetic data . 129
B.3 Hyperparameters . 130
B.4 Tree depth impact for the squared hinge loss 132
B.5 Weight pruning . 133
B.6 Precision@1, 3, 5 of state-of-the-art methods 134

C Notation 137

Streszczenie 139

1
Introduction

Machine learning is a broad and fast-growing field in between computer science,
information theory, statistics, and even neuroscience. The development of ma-
chine learning focuses on not only the theoretical aspects but also the empirical
results and applications. As it has proven to be successful in many applications,
the number of such applications is growing, which leads to the emergence of
new research directions. Machine learning is divided into three main subfields:
supervised learning, unsupervised learning, and reinforcement learning.

Let us focus on classification, being the interest of supervised learning. In
classification problems, the task is to assign, or predict, a label, or a number of
them, to an instance based on its features as correctly as possible. The correctness
of the prediction is evaluated using a loss function, which defines the solved task.
To solve the classification problem, one usually trains a classifier, being a function
assigning labels to instances based on their features. Such classifier is selected
from a class of possible classifiers in a process of training. The training is done
with a learning algorithm using a data set of training observations. The classifier
is selected during training based on its loss, not necessarily the same as the task
loss. The quality of the classifier is evaluated based on the task loss computed on
its predictions, obtained in the process of prediction or inference, and observed
ground truth labels. A desirable property of a learning algorithm is that given an
infinitely growing sample it selects a classifier with task risk converging to the
lowest possible task risk. We refer to such property as consistency.

In standard classification problems, the number of possible output labels
is moderate. However, in many modern machine learning applications, the
output space can be enormous, as it may contain even millions of labels. As
an example, let us consider the task of tagging Wikipedia articles. In this case,
each article is an observation, words appearing in its text are the instance’s
features, and the categories to which it is assigned are the labels. By creating a
data set from the current content of Wikipedia, we end up with an enormous
classification problem not only with millions of observations and features but
also with over one million labels. Problems of this scale are often referred to

2 1 Introduction

as extreme classification. We distinguish extreme multi-class classification and
extreme multi-label classification, depending on the number of relevant labels
assigned to an instance: exactly one in the multi-class case, or any number in the
multi-label case.

1.1 Extreme classification

Some notable examples of extreme classification problems are image and video
annotation for multimedia search [Deng et al., 2011], tagging of text docu-
ments [Dekel and Shamir, 2010], online advertising [Beygelzimer et al., 2009a,
Agrawal et al., 2013], recommendation of bid words for online ads [Prabhu and
Varma, 2014], video recommendation [Weston et al., 2013], or prediction of the
next word in a sentence [Mikolov et al., 2013]. To understand how to frame these
problems as classification consider the following examples. In the case of tagging
of text documents, as in the aforementioned Wikipedia example, the text of the
document is the instance’s features, and the tags are the labels. In the case of
recommendation of bid words for online ads, the instance represents the landing
page of the ad, and the labels are the relevant bid words. In the case of video
recommendation, either user may be represented as an instance with videos
being the labels, or the other way round. Notice that the number of labels in all
these applications is extremely large.

In extreme multi-label classification, one usually needs to retrieve a small
number of relevant labels or create a ranking of these labels. The quality of such
predictions is usually measured with precision@k, being the fraction of relevant
labels among k retrieved labels, or NDCG@k, being a ranking quality measure
assigning rank-diminishing gains to relevant predictions. Other measures used
in extreme classification include recall@k and macro-F1-measure. However,
because of the size of the output space, the computational efficiency of training
and prediction algorithms plays a much more important role than in the case of
non-extreme problems. In extreme classification, even algorithms scaling linearly
with the number of labels may be prohibitively slow. As an example consider a
standard naive solution to multi-label problems, training an independent model,
e.g. a linear classifier, for each label individually. This approach, usually referred
to as 1-VS-ALL, has time and space complexity linear in the number of labels.
Such complexity is too costly in practical applications. Consider a problem with
106 labels and assume that a single binary classifier is trained in 1 second. In
such a case, training 106 binary classifiers would take over 11 days. Mind you,
that given a large number of training observations and features, the training
time is likely to be much longer. Also, prediction with 1-VS-ALL, which requires
evaluation of all 106 classifiers, is time-consuming. If you consider also the
model size, under the assumption that there exist 105 features, you easily get
a model of the size of the order of hundreds of GB. Hence there is a need for
more advanced solutions characterized by both good predictive performance

1.2 Related work 3

and sublinear complexity.
Besides computational challenges, extreme classification poses statistical ones,

not present in standard learning problems. For example, for many labels, only a
small number of training observations is usually available. These are so-called
long-tail labels. In the ultimate case, we face the problem of zero-shot learning,
where there are no training observations for some labels in the training set.
Furthermore, training data might be of low quality as no one could go through all
labels to verify whether they have been correctly assigned even to a single training
observation. The training information is therefore usually obtained from implicit
feedback and we often deal with the so-called counterfactual learning. However,
in the dissertation, we solely focus on predictive quality and computational
performance.

1.2 Related work

Extreme classification methods apply various techniques to reduce the training
and prediction times and increase the predictive performance of the classifiers.
Classically, the efficiency of prediction and good predictive performance is ob-
tained by decision trees. However, the direct use of standard decision tree
algorithms can be very costly [Agrawal et al., 2013] in extreme classification,
mainly due to the need to compute the split criterion. The FASTXML algo-
rithm [Prabhu and Varma, 2014] reduces the cost of computation of splits of the
feature space by use of, instead of simple conditions, the linear classifiers resulting
from alternating optimization of a multi-criteria objective. To improve accuracy,
FASTXML builds an ensemble of many decision trees. The idea of FASTXML
was further applied by PFASTREXML [Jain et al., 2016] and CRAFTML [Siblini
et al., 2018], which modify the optimized criterion or method of creation of node
classifiers, respectively. Online tree building method is considered in [Choro-
manska and Langford, 2015], which proposes LOMTREE for multi-class problems.
Recently, Majzoubi and Choromanska [2019] introduced LDSM for multi-label
problems, building the tree semi-online node-by-node. For a long time since
the introduction, the decision-tree-based algorithms were the state-of-the-art of
extreme multi-label classification, characterized by competitive predictive and
computational performance.

Another approach adopted to solve multi-label classification are the methods
based on embeddings. They reduce the original output space to a space with
smaller dimensionality [Tai and Lin, 2012] and build regression models in this low-
dimensional space. Methods adopting this approach differ in the compression
and decompression schemes. Bhatia et al. [2015] have proposed sparse local
embeddings (SLEEC) that use a k-nearest neighbor classifier in the embedding
space to decompress the final prediction. This method performs better than
decision-tree-based methods on some benchmark data sets, and worse on other
ones. It is also characterized by large model sizes and long training and prediction

4 1 Introduction

times. ANNEXML [Tagami, 2017] improved the efficiency of prediction compared
to SLEEC by use of k-nearest neighbor graph of label vectors and obtained state-
of-the-art predictive performance. Recently, Guo et al. [2019] introduced GLAS,
taking advantage of co-occurrences of labels and fast maximum inner product
search inference, and improving the predictive performance of the embedding-
based methods.

The predictive performance of 1-VS-ALL has long been considered as hard to
beat by less costly approaches. The smart 1-VS-ALL approaches do train a single
binary classifier per label, but reduce the computational costs of naive methods
by use of distributed computation and weight pruning (DISMEC, Babbar and
Schölkopf [2017]), exploring different optimization and prediction methods (PD-
SPARSE, Yen et al. [2016]; PPDSPARSE, Yen et al. [2017]), or both (PROXML, Bab-
bar and Schölkopf [2019]). These methods obtain state-of-the-art predictive
performance. However, their total training and prediction times are significantly
longer than the times reached by other methods.

Jasinska et al. [2016] proposed the PLTs model, the first label-tree-based ex-
treme multi-label classification approach. Label-tree-based methods allow to
efficiently approximate the 1-VS-ALL, and hence are characterized by shorter
training and prediction times. They differ significantly from decision trees, as
in a label tree each tree leaf corresponds to exactly one label, not to a part of the
feature space. Several PLT based models can be used in an ensemble, with an
appropriate inference procedure, to increase the overall performance. The PLT-
based approach was further adopted by EXTREMETEXT Wydmuch et al. [2018],
PARABEL [Prabhu et al., 2018], BONSAI TREE [Babbar and Schölkopf, 2019], or AT-
TENTIONXML [You et al., 2019], allowing these methods to reach state-of-the-art
predictive performance and shorter prediction times than the decision-tree-based
or smart 1-VS-ALL methods. An important aspect of label-tree-based methods
is the choice of the label tree structure. Prabhu et al. [2018] have proposed an
algorithm based on hierarchical balanced 2-means clustering on representations
of labels, being the average features of observations with a given label. A variant
of this method using k-means clustering is used by Wydmuch et al. [2018] and
Khandagale et al. [2019]. Optimal structure with respect to the cost of training
is considered by Busa-Fekete et al. [2019], while Zhuo et al. [2020] consider the
optimal tree structure for approximate beam-search-based inference. In the case
of multi-class label trees, Beygelzimer et al. [2009a] proposed an online tree build-
ing procedure for CPTs. FASTTEXT [Joulin et al., 2017] uses hierarchical softmax
with a Huffman tree built on the label frequencies. Jernite et al. [2017] have intro-
duced a LEARNED TREE algorithm, which combines hierarchical softmax with a
hierarchical clustering that reassigns labels to paths in the tree in a semi-online
manner. In this dissertation, we focus on PLTs and analyze them in detail.

Deep-learning-based methods have also been applied to extreme multi-label
classification. These methods, when applied to textual data, use the raw text
representations of data, while the previously described methods use sparse rep-
resentations. Therefore we cannot directly compare their predictive performance
to the results of previously described methods. Also, their training and pre-

1.3 Motivations 5

diction times are incomparable, as these methods use GPUs instead of CPUs.
The first deep learning method applied to extreme multi-label classification is
XML-CNN, introduced in [Liu et al., 2017]. It under-performs in terms of pre-
dictive performance and needs long training times. The already mentioned
ATTENTIONXML [You et al., 2019] uses a shallow PLT and a multi-label atten-
tion mechanism. This way, ATTENTIONXML obtains state-of-the-art predictive
performance. On the other hand, X-BERT [Chang et al., 2019], which also can be
viewed as a PLT, uses a BERT-based [Devlin et al., 2018] probabilistic classifiers
in the internal PLT nodes, and linear models in the leaves.

Many methods besides PLTs have been proposed to tackle extreme multi-
label classification challenges. These methods usually allow to compute the
predictions more efficiently than a naively applied 1-VS-ALL approach and fre-
quently achieve good empirical results in terms of popular performance metrics.
However, most of these methods are analyzed neither in terms of their statistical
consistency with respect to the optimized performance metric nor in terms of
their computational complexity.

1.3 Motivations

The motivation of the proposed probabilistic label trees model is a simple ob-
servation: it turns out that the optimal decisions, i.e. the Bayes classifiers, for
precision@k and many other extreme multi-label classification metrics can be
determined through the conditional probabilities of labels. Therefore estimating
these conditional probabilities of labels and plugging-in a suitable decision rule
might guarantee the statistical consistency of methods designed under this prin-
ciple. From this perspective, the problem of extreme multi-label classification
appears to be a problem of efficient estimation of the conditional probabilities of
labels and efficient inference.

To estimate the conditional probabilities of labels efficiently, one can organize
labels as a tree in which each label corresponds to one and only one path from the
root to a leaf. Such methods have been applied to multi-class problems. A promi-
nent example of such label tree model is hierarchical softmax (HSM) [Morin
and Bengio, 2005], often used with neural networks to speed up computations
in multi-class problems, for example, in natural language processing [Mikolov
et al., 2013]. Interestingly, similar algorithms have been introduced indepen-
dently in many different research fields. In statistics, they are known as nested
dichotomies [Fox, 1997], in multi-class regression as conditional probability trees
(CPTs) [Beygelzimer et al., 2009b], and in pattern recognition as multi-stage
classifiers [Kurzynski, 1988]. However, probabilistic variants of label trees have
not been used in extreme multi-label classifications before.

6 1 Introduction

1.4 Aim and scope

Given the motivations presented above, the hypothesis of this dissertation is
formulated as follows:

There exists a class of statistically consistent learning algorithms for extreme
multi-label classification whose computational complexity is sublinear with
the number of labels.

The following points describe the main contribution of this dissertation.

1.4.1 Bayes classifiers

We review the Bayes classifiers for predictive performance metrics relevant
to extreme multi-label classification. We prove that the Bayes prediction for
precision@k is a set of k labels with the highest conditional probabilities. We
also prove the forms of Bayes classifiers for DCG@k and NDCG@k. Following
the literature, we include the results for generalized classification performance
metrics [Kotłowski and Dembczyński, 2017], and recall@k [Menon et al., 2019].
This way, we show which metrics used in extreme multi-label classification can
be optimized using conditional probabilities of labels.

1.4.2 Probabilistic label trees model

We introduce and exhaustively discuss the probabilistic label trees (PLTs) model.
PLTs use a label tree to factorize conditional label probabilities by applying the
chain rule along the paths in the tree. This way, they reduce the original multi-
label problem to a number of binary classification (estimation) problems. From
this point of view, PLTs follow the learning reductions framework [Beygelzimer
et al., 2016]. PLTs use class probability estimators in all nodes of the tree to
estimate the relevant factors being specific conditional probabilities. The estimate
of the conditional probability of a label associated with a leaf is defined then as a
product of the probability estimates on the path from the root to that leaf. For
efficient prediction PLTs follow a proper tree search procedure.

We consider two learning setups of PLTs: incremental or batch training with
label tree structure given in advance, and online with tree structure created
simultaneously with the training. We prove a specific equivalence of those
training methods. Prediction-wise, we consider three tree search procedures. The
first one retrieves labels with the estimated conditional probability exceeding the
given threshold. The second one, based on the uniform-cost search, retrieves the
given number of highest scoring labels. The third, based on beam search, is an
approximate method of retrieval of the highest scoring labels.

Let us relate the proposed approach to literature. Similar label tree approaches,
HSM, nested dichotomies, or CPTs, have already been used for solving multi-
class problems. PLTs can be treated as a proper generalization of these ap-

1.4 Aim and scope 7

proaches to the problem of multi-label estimation of conditional probabilities of
single labels. There also exist other label tree approaches which mainly differ
from PLTs and other methods mentioned above in that they do not use the prob-
abilistic framework. The most similar to PLTs method out of these is HOMER

introduced by Tsoumakas et al. [2008]. Other, less similar are Tournament-based
or filter trees, which have been considered in [Beygelzimer et al., 2009b] and
[Li and Lin, 2014] to solve respectively multi-class and multi-label problems.
Another example are label embedding trees introduced in [Bengio et al., 2010].
None of these methods, however, has been thoroughly tested in the extreme
classification setting, but initial studies suggest that they neither scale to prob-
lems of this scale nor perform competitively to PLTs. Interestingly, probabilistic
classifier chains [Dembczyński et al., 2010], suited for multi-label problems under
the subset 0/1-loss, can also be interpreted as a specific label tree, but with paths
corresponding to subsets of labels. This way the size of the tree is exponential
in the number of labels, while the size of the PLT tree grows linearly with the
number of labels.

Since the first articles [Jasinska and Dembczyński, 2015, Jasinska et al., 2016]
the PLT model has been used in many other algorithms such as PARABEL [Prabhu
et al., 2018], BONSAI TREE [Khandagale et al., 2019], EXTREMETEXT [Wydmuch
et al., 2018], and ATTENTIONXML [You et al., 2019], allowing these methods to
reach state-of-the-art predictive performance and shorter prediction times than
other methods. This emphasizes the importance of the proposed PLTs model in
the area of extreme multi-label classification.

1.4.3 Consistency and regret bounds

The theoretical results regarding PLTs concern their consistency for a wide
spectrum of performance metrics, outlined before. We show the consistency
following the learning reductions framework [Beygelzimer et al., 2016]. We
upper-bound the regret of a PLT with respect to these performance metrics by a
function of surrogate regrets of node classifiers. To this end, we first bound the L1

estimation error of conditional probability of a single label by L1 errors of node
classifiers on a path from the root to the label’s leaf. This result is similar to the
result obtained by [Beygelzimer et al., 2009a] for multi-class problems, however,
presented proofs seem to be simpler and the bounds tighter. Then we apply the
bound of the L1 error of node classifiers by their regret with respect to a strongly
proper composite loss [Agarwal, 2014]. This way we connect the regret of the
node classifiers with the L1 error of estimation of conditional probabilities of
labels. These results are the building blocks for all other results regarding metrics
for which the optimal predictions may be determined through the conditional
probabilities of labels.

Using the bound for the L1 estimation error, we show the regret bounds for
generalized performance metrics of the linear-fractional form. This class of func-
tions contains among other Hamming loss, micro-, and macro- F-measure. The
bounds for PLTs are based on results obtained by [Kotłowski and Dembczyński,

8 1 Introduction

2017] for the 1-VS-ALL approach. Then we consider precision@k. By using the
definition of the regret and the bound for the L1 estimation error, we obtain
conditional and unconditional bounds for precision@k. This result combined
with the priority-queue-based inference shows that PLTs are well-tailored for
this metric. The last metric considered is DCG@k. For this metric we report
analogous results to precision@k.

We also study the relation of PLTs to HSM. We show that the former is
indeed a proper generalization of the latter to multi-label problems. Namely, for
multi-class distribution PLTs reduce to the HSM model. Moreover, we show
that other popular generalization of HSM to multi-label problems using the
pick-one-label heuristic, used for example in FASTTEXT [Joulin et al., 2017] and
LEARNED TREE [Jernite et al., 2017], is not consistent in terms of L1 estimation
error and precision@k.

1.4.4 Computational complexity of training and prediction

We analyze the computational complexity of training and prediction with PLTs.
We show that training of node classifiers (with a tree structure given in advance)
can be done in logarithmic time under additional assumptions concerning the tree
structure and the maximum number of labels per training observation. Moreover,
with additional assumptions on estimates of conditional label probabilities also
the prediction time is logarithmic in the number of labels. This result is not trivial
as a prediction method needs to use a tree search algorithm that, in the worse
case, explores the entire tree leading to linear complexity.

1.4.5 Empirical evaluation

Besides our theoretical findings, we discuss several existing implementations
of the general PLT scheme, such as XMLC-PLT [Jasinska et al., 2016], PLT-
VW1, PARABEL [Prabhu et al., 2018], BONSAI TREE [Khandagale et al., 2019],
EXTREMETEXT [Wydmuch et al., 2018], ATTENTIONXML [You et al., 2019], and
NAPKINXC [Jasinska-Kobus et al., 2020a]. We thoroughly analyze the imple-
mentation possibilities regarding the representation of features and models or
methods of training and prediction.

In the experiments, we mostly focus on NAPKINXC and PARABEL. We thor-
oughly analyze different instances of PLTs and relate their results to other state-
of-the-art decision-tree-based and 1-VS-ALL-based algorithms. Our experiments
indicate that PLTs are very competitive, reaching the best precision@1 on the
majority of benchmark data sets, being at the same time even a thousand times
faster in training and prediction than the 1-VS-ALL-based approaches.

1https://github.com/VowpalWabbit/vowpal_wabbit

https://github.com/VowpalWabbit/vowpal_wabbit

1.6 Outline 9

1.5 Personal contribution to development of PLTs

Below we overview the papers about PLTs which contribute to the dissertation.
The initial work about PLTs [Jasinska and Dembczyński, 2015] was presented
at the Extreme Classification Workshop at ICML 2015. This paper proposes the
PLTs models, besides another label-tree-based model named BR-TREE. The PLTs
model, with simple training and prediction procedures, was later published
in [Jasinska et al., 2016]. This paper considers the use of PLTs for optimization of
precision@k, using uniform-cost search based prediction, and macro-F1-measure,
using threshold-based prediction with tuned thresholds. Then, a batch uniform-
cost search prediction procedure was proposed in [Jasinska, 2018]. Next, [Wyd-
much et al., 2018], considered L1 estimation error bound and precision@k regret
bound. The computational complexity of PLTs was analyzed in [Busa-Fekete
et al., 2019]. This dissertation includes some of the results from this paper con-
cerning the computational cost bounds, while the paper includes many other
results. Online PLTs were proposed in 2016, and finally published in [Jasinska-
Kobus et al., 2020c,d]. Most of the theoretical results presented in this dissertation
are available in [Jasinska-Kobus et al., 2020a], summarizing the long-term work
on PLTs. This dissertation also includes results independent of PLTs. [Jasinska
and Karampatziakis, 2016] describes another extreme classification algorithm
named LTLS. The results related to NDCG@k are presented in [Jasinska and
Dembczyński, 2018].

1.6 Outline

In Chapter 2 we formally state the extreme multi-label classification problem and
present the framework used in this dissertation. In Chapter 3 we discuss the forms
of the Bayes classifiers for selected predictive performance metrics and narrow
down the set of metrics of interest to those, for which the optimal predictions
can be determined through the conditional probabilities of labels. Those first
two chapters outline the setting of our further work. The next chapters describe
and thoroughly analyze the probabilistic label trees. Chapter 4 defines the PLT
model and discusses training and prediction procedures. Chapter 5 contains
the theoretical analysis of PLTs in terms of the regret bounds. In Chapter 6 we
analyze the computational complexity of training and prediction with PLTs. In
Chapter 7 we present online probabilistic label trees and prove their properties.
In Chapter 8 we discuss the implementation choices of the PLT model. The
experimental results are presented in Chapter 9. In Chapter 10, we briefly describe
other algorithms proposed for extreme multi-label classification, discuss other
results related to PLTs, briefly analyze other challenges of extreme multi-label
classification, and outline open research directions related to PLTs. Chapter 11
summarizes the dissertation.

2
Theoretical background

In this chapter, we formally define binary and multi-label classification problems
and characterize the extreme setting of the latter. We focus on the statistical
decision theory point of view and define the risk of a classifier, the Bayes optimal
classifier, and the regret of a classifier. By analyzing the 0/1 loss in binary
classification, we show the importance of estimation of conditional probabilities
of labels and introduce theL1 estimation error. Then, we recall the strongly proper
composite loss functions that allow estimating the conditional probabilities and
to bound the L1 error. We define the consistency of classifiers in the context of
surrogate losses and learning reductions. To this end, we use the example of
1-VS-ALL reduction. Finally, we outline the goal of the dissertation by briefly
commenting on the properties and limitations of 1-VS-ALL.

2.1 Binary classification

Let X denote an instance space. In a binary classification problem, we assume that
an instance x ∈ X is associated with a binary label, y ∈ {−1, 1}, corresponding
to a negative and positive class, respectively. We assume that the observations
(x, y) are generated independently and identically according to a probability dis-
tribution P(x, y) defined on X ×{−1, 1}. We denote the positive class probability
P(y = 1 |x) by η(x), and its estimate by η̂(x).

For the sake of generality, we assume that a binary classifier h(x) is a function
from class H1 : X → R. The predictive performance of a classifier is measured
using a (task) loss `. The goal of solving a classification problem is to deliver
prediction ŷ = h(x), being the best under a given task loss for an instance x.
The problem of binary classification can be then defined as finding classifier
h(x) ∈ H1 which minimizes the expected loss, or risk:

R`(h) = E(x,y)∼P(x,y)(`(y, h(x)) .

12 2 Theoretical background

The risk can be expressed as an expectation of conditional risks

R`(h|x) = Ey∼P(y|x)(`(y, h(x))

as
R`(h) = Ex∼P(x)R`(h|x) .

The optimal classifier, the so-called Bayes classifier, for a given loss function `
is:

h∗` = arg min
h

R`(h) .

The regret of a classifier h with respect to ` is defined as:

reg`(h) = R`(h)−R`(h∗`) = R`(h)−R∗` .

The regret quantifies the suboptimality of h compared to the optimal classifier h∗` .
The goal could be then defined as finding h with a small regret, ideally equal to
zero.

The canonical loss function for binary classification is the zero-one (0/1) loss:

`0/1(y, h(x)) = Jh(x) 6= yK

We will analyze this loss following [Tewari and Bartlett, 2013, Bartlett, 2014]. The
0/1 risk is:

R0/1(h) = E(x,y)∼P(x,y)(`0/1(y, h(x))

= Ex∼P(x)Ey∼P(y |x)(`0/1(y, h(x))

= Ex∼P(x)[`0/1(1, h(x))η(x) + `0/1(−1, h(x))(1− η(x))]

= Ex∼P(x)[J1 6= h(x)Kη(x) + J−1 6= h(x)K(1− η(x))]

= Ex∼P(x)[J1 6= h(x)K(2η(x)− 1) + 1− η(x)]

Therefore, the Bayes optimal classifier with respect to the zero-one loss h∗0/1 is
given by:

h∗0/1(x) =

{
−1 if η(x) < 0.5

1 if η(x) > 0.5
(2.1)

where ties P(y = 1 |x) = P(y = −1 |x) are broken randomly. The `0/1-regret of
a classifier h is

reg0/1(h) = Ex∼X [Jh(x) 6= h∗0/1(x)K|2η(x)− 1|]

This result can be derived from the 0/1 risk as follows:

2.2 Strongly proper composite losses 13

reg0/1(h) = R0/1(h)−R0/1(h∗0/1)

= Ex∼P(x)[J1 6= h(x)K(2η(x)− 1) + 1− η(x)]

− Ex∼P(x)[J1 6= h∗0/1(x)K(2η(x)− 1) + 1− η(x)]

= Ex∼P(x)[J1 6= h(x)K(2η(x)− 1)− J1 6= h∗0/1(x)K(2η(x)− 1)]

= Ex∼P(x)[Jh(x) 6= h∗0/1K|2η(x)− 1|]

The above analysis suggests that the estimation of η(x) is one of the right
approaches to solving binary classification under the 0/1 loss. The estimate η̂(x)

can be plugged-in to the rule defined by the Bayes optimal classifier (2.1) to
obtain the 0/1 predictions. Let us denote such a classifier as hη̂. Below, we show
formally that such an approach upper bounds the 0/1 regret.

When estimating η(x) one usually considers the L1 estimation error:

|η(x)− η̂(x)| . (2.2)

To show the relation to the 0/1 regret, let us write:

reg0/1(hη̂) = R0/1(h)−R0/1(h∗`)

= Ex∼X [Jhη̂(x) 6= h∗0/1(x)K|2η(x)− 1|]

= 2Ex∼X
[
Jhη̂(x) 6= h∗0/1(x)K

∣∣∣∣η(x)− 1

2

∣∣∣∣] .
Notice that if hη̂(x) 6= h∗0/1(x), then η(x) and η̂(x) must lie on the opposite

sides of 1
2 , which means that

∣∣η(x)− 1
2

∣∣+
∣∣η̂(x)− 1

2

∣∣ equals |η(x)− η̂(x)| in such
case. Thus, we have:

Jhη̂(x) 6= h∗0/1(x)K
∣∣∣∣η(x)− 1

2

∣∣∣∣ ≤ Jhη̂(x) 6= h∗0/1(x)K
(∣∣∣∣η(x)− 1

2

∣∣∣∣+

∣∣∣∣η̂(x)− 1

2

∣∣∣∣)
= Jhη̂(x) 6= h∗0/1(x)K |η(x)− η̂(x)|
≤ |η(x)− η̂(x)| .

We finally get:
reg0/1(hη̂) ≤ 2Ex∼X [|η(x)− η̂(x)|] .

2.2 Strongly proper composite losses

We recall the concept of strongly proper composite losses [Agarwal, 2014, Kotłowski
and Dembczyński, 2017] for binary classification. These losses are of special
interest in the case of the problem of estimation of η(x) under the L1 estimation
error. Let us first define a class probability estimation (CPE) loss as a function

14 2 Theoretical background

` : {−1, 1} × [0, 1] 7→ R+. Its conditional risk is given by

R`(η̂ |x) = η(x)`(1, η̂(x)) + (1− η(x))`(−1, η̂(x)) .

A CPE loss is proper if for any η(x) ∈ [0, 1], η(x) ∈ arg minη̂ R`(η̂ |x). Since it
is often more convenient for prediction algorithms to work with a real-valued
scoring function, f : X 7→ R, than with an estimate bounded to interval [0, 1], we
transform η̂(x) using a strictly increasing (and therefore invertible) link function
ψ : [0, 1]→ R, that is, f(x) = ψ(η̂(x)).

We then consider a composite loss function `c : {−1, 1} × R 7→ R+ defined
via a CPE loss as

`c(y, f(x)) = `(y, ψ−1(f(x))) .

The regret of f in terms of a loss function `c at point x is defined as:

reg`c(f |x) = R`(ψ
−1(f) |x)−R∗` (x) ,

where R∗` (x) is the minimum expected loss at point x, achievable by f∗(x) =

ψ(η(x)). The above statement shows that the `c-regret of f is the `-regret of
ψ−1(f).

We say a loss function `c is λ-strongly proper composite loss, if for any
η(x), ψ−1(f(x)) ∈ [0, 1]:

∣∣η(x)− ψ−1(f(x))
∣∣ ≤√ 2

λ

√
reg`c(f |x) . (2.3)

It can be shown under mild regularity assumptions that `c is λ-strongly proper
composite if and only if its corresponding CPE loss is proper and function
H`(η) = R`(η |x) is λ-strongly concave, that is,

∣∣∣d2H`(η)
d2η

∣∣∣ ≥ λ. As ψ is invert-

ible, then we can treat ψ−1(f(x)) as the estimate of the class probability η̂(x).
This means that the L1 estimation error |η(x)− η̂(x)| is bounded by the `c-regret
of the scoring function f .

As an example consider the logistic loss, being a CPE loss:

`(y, η̂(x))) = −Jy = 1K log η̂(x)− Jy = −1K log(1 = η̂(x)) . (2.4)

Its conditional risk is given by:

R`(η̂ |x) = η(x) log(η̂(x))− (1− η(x)) log(1− η̂(x)) ,

being the cross-entropy between η(x) and η̂(x). The conditional `-regret is the
binary Kullback-Leibler divergence between η(x) and η̂(x):

reg`(η(x), η̂(x)) = η(x) log
η(x)

η̂(x)
+ (1− η(x)) log

1− η(x)

1− η̂(x)
.

Since H`(η(x)) = R`(η |x) is the binary entropy function, and
∣∣∣d2H`(η)

d2η

∣∣∣ =
1

η(x)(1−η(x)) ≥ 4, c is 4-strongly proper loss. Using the logit link function

2.3 Multi-label classification 15

ψ(η̂(x)) = log η̂(x)
1−η̂(x) , we end up with the logistic loss function defined for scoring

function f :
`c(y, f) = log(1 + e−yf).

Other examples of commonly used strongly proper composite losses are squared
loss, squared hinge loss, and exponential loss. Notice that the standard hinge
loss does not belong to this class of losses. Table 2.1 summarizes the formulas
and the link functions of these losses.

loss function squared logistic exponential

lc(y, f) (y − f)2 log(1 + e−fy) e−fy

l(1, η̂) 4(1− η̂)2 − log η̂
√

1−η̂
η̂

l(−1, η̂) 4η̂2 − log(1− η̂)
√

η̂
1−η̂

ψ(η̂) 2η̂ − 1 log η̂
1−η̂

1
2 log η̂

1−η̂

Table 2.1: Loss formula, CPE loss formula, and link function for three popular strongly
proper composite losses: squared, logistic and exponential losses.

2.3 Multi-label classification

Let us define the multi-label classification problem, which is the main focus of
this dissertation. Let X denote an instance space, and let L = [m] be a finite set of
m class labels. 1 We assume that an instance x ∈ X is associated with a subset
of labels Lx ⊆ L (the subset can be empty); this subset is often called the set of
relevant or positive labels, while the complement L\Lx is considered as irrelevant
or negative for x. We identify the set Lx of relevant labels with the binary vector
y = (y1, y2, . . . , ym), in which yj = 1 ⇔ j ∈ Lx.2 By Y = {0, 1}m we denote the
set of all possible label vectors. We assume that observations (x,y) are generated
independently and identically according to a probability distribution P(x,y)

defined on X × Y . The conditional (given x) joint probability of a label vector
is P(y|x), and the conditional probability of a label j is the following marginalized
value:

P(yj = 1 |x) =
∑
y∈Y

yjP(y|x) .

We use ηj(x) to denote P(yj = 1 |x).
The above definition concerns not only multi-label classification but also

multi-class (when ‖y‖1 = 1) and k-sparse multi-label (when ‖y‖1 ≤ k) problems

1We use [n] to denote the set of integers from 1 to n.
2 Notice that in the definition of multi-label classification to denote the negative label in y we

use 0, instead of -1 which was used in the sections about binary classification. Such notation is
more convenient for multi-label problems. One can be transformed to another: let y0/1 ∈ {0, 1}
and y−1/1 ∈ {−1, 1} be the two different notations, then y−1/1 = 2y0/1 − 1.

16 2 Theoretical background

as special cases. 3 In the case of extreme multi-label classification, we assume m to
be a large number (for example ≥ 105), and k to be much smaller than m, k � m.

The problem of extreme multi-label classification can be defined as finding a
classifier h(x) = (h1(x), h2(x), . . . , hm(x)), from a function classHm : X → Rm,
that minimizes the risk:

R`(h) = E(x,y)∼P(x,y)(`(y,h(x)) ,

where `(y, ŷ) is a multi-label (task) loss. The optimal classifier for a given loss
function ` is:

h∗` = arg min
h

R`(h) ,

and the regret of a classifier hwith respect to ` is:

reg`(h) = R`(h)−R`(h∗`) = R`(h)−R∗` .

Consider a generalization of the binary 0/1-loss to multi-class classification:

`0/1(y, h(x)) = Jh(x) 6= jK ,

where, for simplicity of notation, j denotes the only label being positive in y, and
the classifier predicts only one label, h(x) ∈ L. The optimal strategy, which is a
generalization of the result for binary classification, for this loss is the label with
the highest conditional probability:

h∗0/1(x) = arg max
j∈L

ηj(x) . (2.5)

This simple multi-class loss is not applicable in the general multi-label case.
A basic loss function used in multi-label classification is Hamming loss:

`H(y,h(x)) =
1

m

m∑
j=1

Jyj 6= hj(x)K . (2.6)

It is easy to notice that it is the average label-wise (binary) 0/1-loss:

`H(y,h(x)) =
1

m

m∑
j=1

Jyj 6= hj(x)K

=
1

m

m∑
j=1

`0/1(yj , hj(x)) .

One can easily observe that the optimal strategy for this loss is [Dembczyński
et al., 2012]:

h∗j (x) = Jηj(x) > 0.5K . (2.7)

This optimal strategy results then from the aforementioned result from binary
classification.

3We use ‖x‖1 to denote the L1 norm of x.

2.4 Statistical consistency 17

Another standard loss used in multi-label classification is the subset-0/1-loss

`0/1(y,h(x)) = Jy 6= h(x)K .

This loss is analogous to the multi-class 0/1-loss, however is defined on a new
multi-class problem with 2m labels that correspond to all possible label vectors.
Notice that for multi-class data this loss is the same as the multi-class 0/1 loss, as
there are only m possible label vectors, each with only one positive label. The
Bayes optimal classifies for the subset-0/1-loss is [Dembczyński et al., 2010]:

h∗(x) = arg max
y∈{0,1}m

P(y|x) .

Notice that two different losses: Hamming loss and subset-0/1-loss, both relevant
to multi-label classification, have different optimal strategies.

2.4 Statistical consistency

Multi-label classification problem can be approached in different ways. We
describe two approaches: first we follow the reasoning related to surrogate losses,
and then describe an alternative one, based on learning reductions. Consider multi-
label classification under Hamming loss. Let us start with finding a surrogate
loss for this task loss. Similarly to the binary classification case, we are interested
in multi-label classifiers that estimate conditional probabilities of labels, ηj =

P(yj = 1|x), j ∈ L, as accurately as possible, that is, with possibly small L1

estimation error,
|ηj(x)− η̂j(x)| , (2.8)

where η̂j(x) is an estimate of ηj(x). This allows us to plug-in the optimal strategy
rule (2.7) and minimize the task loss, i.e. Hamming loss, by minimizing the
label-wise L1 estimation errors. To obtain such estimates η̂j(x) with h(x) one can
use the label-wise logistic loss, sometimes referred to as binary cross-entropy:

`log(y,h(x)) =

m∑
j=1

`log(yj , hj(x)) =

m∑
j=1

(yj log(hj(x)) + (1− yj) log(1− hj(x))) .

As we have discussed in Section 2.2, logistic loss (2.4) is a strongly proper CPE
loss. Therefore, by minimizing the binary cross-entropy loss, we minimize the
L1 estimation error of conditional probabilities of labels, and ultimately the
Hamming loss. This way, by minimizing a surrogate loss, we minimize the task
loss.

Another way to solve a multi-label classification problem is reducing it to a
number of less complex problems, solving the less complex problems, and then
translating the solutions to these problems to a solution to the original problem.
Such a strategy for solving problems is called learning reductions [Beygelzimer

18 2 Theoretical background

et al., 2016]. Under Hamming loss such a strategy may be adopted as follows: in-
stead of solving a multi-label problem with m labels, solve m binary classification
problems. From (2.6) you can easily notice, that for this reduction of the multi-
label problem under Hamming loss, it is sufficient to treat each binary problem as
an independent binary problem under 0/1-loss. Then, each binary problem shall
be solved according to the rule (2.1), and the solution to the multi-label problem
is simply aggregating all the predicted labels. Such an approach corresponds to
the vanilla 1-VS-ALL method. This reduction translates an optimal solution to
the base problems, into an optimal solution of the original problem. However,
not every reduction has such a desirable property. Another simple reduction
is a multi-class variant of 1-VS-ALL, suited for the multi-class 0/1-loss. It also
solves m binary problems, but instead of predicting all the labels for which the
estimated probability is higher than 0.5, it predicts the label with the highest
probability, according to the rule (2.5). Notice that this variant of 1-VS-ALL would
not produce an optimal solution to a multi-label problem under the Hamming
loss. In this simple multi-label example, both approaches: minimizing the binary
cross-entropy loss and reducing the problem via the 1-VS-ALL reduction, may
seem to be the same, however, it is not always the case, as there exist many other
learning reductions.

We described methods of solving a task problem by solving a surrogate
problem, or a proxy problem, instead. The proxy problems we discussed, the
use of binary cross-entropy loss or 1-VS-ALL learning reduction, allowed us to
optimally solve the task problems. Let us state this formally following [Gao and
Zhi-Hua, 2013]. Let the original problem be defined by the task loss `. As in the
example, instead of the original problem, we solve a proxy problem. The proxy
problem can be defined by either a surrogate loss or a reduction. Let ˜̀denote the
proxy loss, used instead of ` to select classifier h.

Definition 2.1. We say that a proxy loss ˜̀ is consistent with the task loss ` when the
following holds:

reg˜̀(h)→ 0⇒ reg`(h)→ 0

In other words, for a consistent proxy loss ˜̀, the set of optimal solutions with
respect to ˜̀is a subset of the Bayes optimal classifiers for `.

The reduction of a multi-label problem with m labels to m binary problems
corresponds to the vanilla 1-VS-ALL approach. Such reduction is consistent with
respect to a problem of estimation of conditional probabilities of labels under
L1 estimation error, as each conditional probability of a label can be estimated
independently. However, 1-VS-ALL applied naively is costly in the extreme
setting, as training and prediction complexity is linear in the number of labels.
In this work, we discuss an alternative consistent reduction based on label trees,
which estimates the conditional probabilities of labels with a competitive accuracy,
but in a much more efficient way.

3
Multi-label classification metrics

In this chapter, we overview the most popular extreme multi-label classification
metrics. We focus on the forms of the optimal classifier with respect to each
of these metrics. We are interested in understanding for which metrics the
optimal decisions can be determined through the conditional probabilities of
labels. The results presented in this chapter include both the contributions of
this dissertation and the results from the literature. Precision@k and the pick-
one-label heuristic were analyzed in [Wydmuch et al., 2018, Jasinska-Kobus
et al., 2020b], while NDCG@k in [Jasinska and Dembczyński, 2018]. The results
related to the generalized classification performance metrics follow [Kotłowski
and Dembczyński, 2017], and the form of the Bayes classifier for recall@k is based
on [Menon et al., 2019]. Interestingly, the work of Menon et al. [2019] regarding
recall@k was inspired by observations about precision@k from [Wydmuch et al.,
2018].

3.1 Generalized classification performance metrics

We start with a wide family of generalized classification performance metrics,
which includes metrics often used to report performance of multi-label classifiers,
such as (weighted) Hamming loss, AM metric, as well as macro- and micro-
averaged Fβ-measure. As already proven [Koyejo et al., 2015, Kotłowski and
Dembczyński, 2017] the optimal strategy for these metrics is to find a threshold
on the conditional probability ηj(x) for each label j ∈ L. Such thresholds should
be either set to predefined values, if they are known from theory (for example,
this is 0.5 for Hamming loss), or tuned on a validation set, if their optimal value
depends on the optimum of the metric. Here we discuss those results in more
detail.

The discussed family of metrics can be defined as linear-fractional functions

20 3 Multi-label classification metrics

of label-wise false positives

FPj(hj) = P(hj(x) = 1 ∧ yj = 0) ,

and false negatives

FNj(hj) = P(hj(x) = 0 ∧ yj = 1) .

To define generalized classification performance metrics, consider a linear-
fractional function Ψ of the following generic form:

Ψ(FP,FN) =
a0 + a1FP + a2FN

b0 + b1FP + b2FN
, (3.1)

being non-increasing in its arguments. We assume that there exists γ > 0, such
that

b0 + b1FP + b2FN ≥ γ, (3.2)

that is, the denominator of Ψ is positive and bounded away from 0. Let us notice
that other parameterizations of these functions are possible, and, for example,
Koyejo et al. [2015] parametrize Ψ also with true positives TP and true negatives
TN. However, the parametrization using FP and FN is sufficient, as TP and TN

are known for a given problem given FP and FN as they sum up to the fraction
of positives and fraction of negatives that are fixed for a given problem.

A macro-averaged generalized classification performance metric Ψmacro(x) is defined
as:

Ψmacro(h) =
1

m

m∑
j=1

Ψ(hj) =
1

m

m∑
j=1

Ψ(FPj(hj),FNj(hj)). (3.3)

It computes an average performance over single labels. Micro-averaged perfor-
mance metrics compute first the average false positives and false negatives:

F̄P(h) =
1

m

m∑
i=1

FPj(hj) , F̄N(h) =
1

m

m∑
j=1

FNj(hj) .

Then, a micro-averaged generalized classification performance metric Ψmicro(x) is de-
fined as:

Ψmicro(h) = Ψ(F̄P(h), F̄N(h)) . (3.4)

The optimal classifier from class Hmbin = X → {0, 1}m for the generalized
performance metrics has the generic form:

h∗Ψ(x) = h∗α∗Ψ
(x) =

(
h∗1,α∗Ψ,1

(x), h∗2,α∗Ψ,2
(x), . . . , h∗m,α∗Ψ,m

(x)
)
, (3.5)

where
h∗j,α∗Ψ,j

(x) = Jηj(x) > α∗Ψ,jK ,

with Ψ-optimal thresholds α∗Ψ:

α∗Ψ = (α∗Ψ,1, α
∗
Ψ,2, . . . , α

∗
Ψ,m) ∈ [0, 1]m .

3.1 Generalized classification performance metrics 21

In other words, for each metric there is an optimal vectorα∗Ψ of thresholds defined
over the conditional probabilities of labels, ηj(x), for all j ∈ L. The values of its
elements are given by the following expression [Koyejo et al., 2015, Kotłowski
and Dembczyński, 2017]:

α∗Ψ =
Ψ(FP∗,FN∗)b1 − a1

Ψ(FP∗,FN∗)(b1 + b2)− (a1 + a2)
,

where FP∗, FN∗ are arguments maximizing either Ψ(FPj(hj),FNj(hj)), for each
label j ∈ L separately, in case of a macro-averaged metric, or Ψ(F̄P(h), F̄N(h)) in
case of a micro-averaged metric. This shows that for macro-averaged metrics the
threshold may be different for each label, while for micro-averaged metrics there
is one common threshold shared by all labels. Therefore, we denote the optimal
classifier for a macro-average metric by h∗α∗Ψ , while for a micro-average metric by
h∗α∗Ψ

.
The thresholds, in general, depend on the optimal value of Ψ, which makes

their value to be unknown beforehand. Only for metrics for which b1 = b2 = 0,
the thresholds can be computed a priori. This is the case of Hamming loss, its
cost-sensitive variant (in which there are different costs of false positive and false
negative predictions), or the AM metric. In other cases, thresholds have to be
found on a validation set. For some metrics, such as the micro- and macro-F
measure, this can be performed efficiently even in the XMLC setting, as only
positive and positively predicted labels are needed to tune thresholds [Jasinska
et al., 2016]. This can be even obtained using an online procedure [Busa-Fekete
et al., 2015, Jasinska et al., 2016].

We present the form of Ψ(FP,FN) and α∗Ψ for some popular generalized
performance metrics in Table 3.1. We use there P to denote P(yj = 1), for macro-
averaging, and 1

m

∑m
j=1 P(yj = 1), for micro-averaging. Remark that this is a

constant not depending on h. All these metrics can be used with macro- and
micro-averaging. Remark, however, that for Hamming loss both variants lead
to the same form. A similar table can be found in [Kotłowski and Dembczyński,
2017].

Metric Ψ(FP,FN) α∗Ψ

Hamming loss 1− FP− FN 0.5

F-measure (1+β2)(P−FN)
(1+β2)P−FN+FP

Ψ(FP∗,FN∗)/2

Jaccard similarity P−FN
P+FP

Ψ(FP∗,FN∗)
Ψ(FP∗,FN∗)+1

AM 2P (1−P)−PFP−(1−P)FN
2P (1−P) P

Table 3.1: Examples of popular generalized performance metrics, with their form of
Ψ(FP,FN) and α∗Ψ. P denotes P(yj = 1), for macro-averaging, or 1

m

∑m
j=1 P(yj = 1), for

micro-averaging.

22 3 Multi-label classification metrics

3.2 Precision@k and recall@k

Let us now analyze precision@k and recall@k, which are of a different nature than
the metrics discussed above, as they are defined for exactly k predicted labels.
Therefore, consider a class of functionsHm@k = {h ∈ Hmbin :

∑m
j=1 hj(x) = k , ∀x ∈

X}, that is, functions that predict exactly k labels, k ≤ m. Then precision@k for
h@k ∈ Hm@k is defined as:

p@k(y,h@k(x)) =
1

k

∑
j∈L̂x

Jyj = 1K ,

while recall@k is defined as:

r@k(y,h@k(x)) =
1

|Lx|
∑
j∈L̂x

Jyj = 1K ,

where L̂x = {j ∈ L : hj(x) = 1} is a set of k labels predicted by classifier h@k for
x.

In order to define the relevant conditional risks it is more convenient to
consider the precision@k loss, `p@k = 1 − p@k(y,h@k(x)), and recall@k loss,
`r@k = 1− r@k(y,h@k(x)). The conditional risk for `p@k is then:

Rp@k(h@k |x) = Ey`p@k(y,h@k(x))

= 1−
∑
y∈Y

P(y |x)
1

k

∑
j∈L̂x

Jyj = 1K

= 1− 1

k

∑
j∈L̂x

∑
y∈Y

P(y |x)Jyj = 1K

= 1− 1

k

∑
j∈L̂x

ηj(x) .

From the above, it is easy to notice that the optimal strategy for precision@k,

h∗p@k(x) =
(
h∗1,p@k, h

∗
2,p@k, . . . , h

∗
m,p@k

)
,

is to predict k labels L∗x with the highest conditional probabilities ηj(x),

h∗j,p@k =

{
1 , j ∈ L∗x,p@k
0 , otherwise

, (3.6)

where L∗x,p@k is the set of k labels with highest conditional probabilities ηj(x)

with ties solved in any way.
The optimal strategy for recall@k is in general different. To show it, we

3.2 Precision@k and recall@k 23

consider the conditional risk for recall@k:

Rr@k(h@k |x) = Ey`r@k(y,h@k(x))

= 1−
∑
y∈Y

P(y |x)
1

|y|
∑
j∈L̂x

Jyj = 1K

= 1−
∑
j∈L̂x

∑
y∈Y

P(y |x)Jyj = 1K
1

|y|

= 1−
∑
j∈L̂x

η′j(x) ,

where
η′j(x) =

∑
y:yj=1

1

|y|
P(y|x).

This risk is minimized by

h∗r@k(x) =
(
h∗1,r@k, h

∗
2,r@k, . . . , h

∗
m,r@k

)
,

predicting k labels L∗x,r@k with the highest values of η′j(x) [Menon et al., 2019],

h∗j,r@k =

{
1 , j ∈ L∗x,r@k
0 , otherwise

, (3.7)

where L∗x,r@k is the set of k labels with highest values of η′j(x) with ties solved in
any way.

3.2.1 Pick-one-label heuristic

Interestingly, the η′(x) values are estimated using the pick-one-label heuristic, which
is sometimes used to transform multi-label classification problems to multi-class
classification problems [Joulin et al., 2017, Jernite et al., 2017]. This heuristic
randomly picks one of the positive labels from a given training observation.
The resulting observation is then treated as a multi-class observation. Since the
probability of picking a label j from y is equal to yj/

∑m
j′=1 yj′ , the pick-one-label

heuristic maps the multi-label distribution to a multi-class distribution in the
following way:

η′j(x) = P′(yj = 1 |x) =
∑
y∈Y

yj∑m
j′=1 yj′

P(y |x) , j ∈ L . (3.8)

The resulting η′j(x) form a multi-class distribution as the probabilities sum up to
1, and differ from conditional probabilities ηj(x).

3.2.2 Comparison of the optimal classifiers

Optimal classifiers h∗p@k and h∗r@k are in general different solutions, selecting
labels based on different marginalized values. As we show below, the pick-one-

24 3 Multi-label classification metrics

label heuristic is also not consistent for precision@k in general. To show the
general inconsistency of the pick-one-label heuristic for precision@k, one needs
to show that h∗r@k has a non-zero regret in terms of precision@k.

Proposition 3.1. A classifier h@k ∈ Hm@k predicting k labels with highest η′j(x), j ∈ L,
has in general a non-zero regret in terms of precision@k.

Proof. We prove the proposition by giving a simple counterexample. Consider
the following conditional distribution for some x:

P(y = (1, 0, 0) |x) = 0.1 , P(y = (1, 1, 0) |x) = 0.5 , P(y = (0, 0, 1) |x) = 0.4 .

The optimal top 1 prediction for this instance is label 1, since the conditional
probabilities are η1(x) = 0.6, η2(x) = 0.5, η3(x) = 0.4. However, the pick-one-
label heuristic will transform the original distribution to the following one:
η′1(x) = 0.35, η′2(x) = 0.25, η′3(x) = 0.4. The predicted top label will be then
label 3, giving the regret of 0.2 for precision@1.

Interestingly, the situation changes when the labels are conditionally indepen-
dent, that is, if for each y ∈ Y

P(y |x) =

m∏
j=1

P(yi |x) . (3.9)

Theorem 3.2. Given conditionally independent labels, ηj(x) and η′j(x), j ∈ L induce
the same order of labels.

We show here only a sketch of the proof, and give the full proof in Ap-
pendix A.1. It is enough to show that in the case of conditionally indepen-
dent labels the pick-one-label heuristic does not change the order of conditional
probabilities. Let labels i and j be so that ηi(x) ≥ ηj(x). Then in the sum-
mation over all ys in (3.8), we are interested in four different subsets of Y ,
Su,wi,j = {y ∈ Y : yi = u ∧ yj = w}, where u,w ∈ {0, 1}. Remark that dur-
ing mapping none of y ∈ S0,0

i,j plays any role, and for each y ∈ S1,1
i,j , the value

of

yt/(
m∑
t′=1

yt′) ·P(y |x) ,

for t ∈ {i, j}, is the same for both yi and yj . Now, let y′ ∈ S1,0
i,j and y′′ ∈ S0,1

i,j

be the same on all elements except the i-th and the j-th one. Then, because
of the label independence and the assumption that ηi(x) ≥ ηj(x), we have
P(y′ |x) ≥ P(y′′ |x). Therefore, after mapping (3.8) we obtain η′i(x) ≥ η′j(x).

Corollary 3.3. Given conditionally independent labels, hr@k ∈ Hm@k predicting k labels
with highest η′j(x), j ∈ L has zero regret in terms of the precision@k loss.

Corollary 3.4. Given conditionally independent labels, hp@k ∈ Hm@k predicting k labels
with highest ηj(x), j ∈ L has zero regret in terms of the recall@k loss.

3.3 DCG@k and NDCG@k 25

3.3 DCG@k and NDCG@k

Let us now move on to discounted @k metrics. However they may seem sim-
ilar to precision@k and recall@k, the used discounting of gains has significant
implications. Unlike in the analysis of precision@k and recall@k, here we need
to consider rankings of k labels, instead of just sets of L̂x of k labels. Let s be a
vector of m label-wise scores. A ranking of labels according to scores s, π(s), is a
permutation of these labels, such that πr(s) is the r-th ranked label according to
decreasing scores sj with ties solved any way. We denote the vector of condi-
tional probabilities of labels with η(x), and a ranking of labels according to these
probabilities with π(η(x)).

Consider the class of functionsHm, and a classifier h ∈ Hm, and a ranking of
labels π(h(x)) according to the scores of classifier h. By modifying the definition
of precision@k by summing over the ranking of labels π(h(x)) up to rank k,
adding a rank-dependent discounted gain factor

g(r) =
1

log2(r + 1)
,

and removing the normalizing factor 1
k we get the discounted cumulative gain:

DCG@k(y,h(x)) =
k∑
r=1

Jyπr(h)Kg(r)

Normalized discounted cumulative gain, NDCG@k, differs from DCG@k by a
normalization term. It is normalized by the highest possible DCG@k for a given
label vector y. This best possible, or the ideal, DCG@k is

IDCG@k(y) =

min(k,||y||1)∑
r=1

g(r).

By normalizing DCG@k by this factor we get the normalized discounted cumula-
tive gain

NDCG@k(y,h(x)) = Nk(y)DCG@k(y,h(x)), (3.10)

where, for simplicity of notation, we define

Nk(y) = IDCG@k−1(y) .

Notice that Ravikumar et al. [2011] give a general formula for NDCG by
parametrizing it with a monotonically increasing function of the relevance judg-
ments defining gains, and a rank-dependent monotonically increasing discount
function. However, we use the common variant of this metric, being used in
extreme multi-label classification.

In order to define conditional risks we consider DCG@k loss `D@k =

−DCG@k(y,h(x)) and NDCG@k loss `D@k = −NDCG@k(y,h(x)). The condi-

26 3 Multi-label classification metrics

tional risk for DCG@k is:

RD@k(h |x) = E`D@k(y,h(x))

= −
∑
y∈Y

P(y|x)
k∑
r=1

Jyπr(h(x))Kg(r)

= −
k∑
r=1

g(r)
∑
y∈Y

Jyπr(h(x))KP(y|x) .

Notice that
∑
y∈YJyπr(h(x))KP(y|x) is the probability that the r-ranked label is

positive. Moreover, the discounted gains g(r) diminish with increasing r. There-
fore, the optimal strategy for DCG@k is

h∗D@k(x) =
(
h∗1,D@k, h

∗
2,D@k, . . . , h

∗
m,D@k

)
,

such that π(h∗D@k(x)) ranks labels (up to rank k) in the order of conditional
probabilities of labels, as the ranking π(η(x)), with ties solved in any way. This
also could be accomplished by selecting k labels and sorting them accordingly.
The optimal strategy for DCG@k is similar to the one for precision@k, as it
considers the conditional probabilities of labels, however, it requires additionally
sorting by conditional probabilities to obtain the optimal order. Notice that
h∗D@k(x) allows for an optimal solution with respect to precision@k. Interestingly,
for k = m, it also coincides with the optimal solution for the unnormalized rank
loss [Dembczyński et al., 2010].

The conditional risk for NDCG@k is:

RN@k(h |x) = E`N@k(y,h(x))

= −
∑
y∈Y

P(y|x)Nk(y)
k∑
r=1

g(r)yπr(h(x))

= −
k∑
r=1

g(r)
∑
y∈Y

yπr(h(x))P(y|x)Nk(y)

= −
k∑
r=1

g(r)
∑

y:yπr(h(x))=1

∆j(k,x) ,

where ∆j(k,x) is the following marginalized value:

∆j(k,x) =
∑
y:yj=1

Nk(y)P(y|x) . (3.11)

The optimal strategy for NDCG@k is of form

h∗N@k(x) =
(
h∗1,N@k, h

∗
2,N@k, . . . , h

∗
m,N@k

)
,

such that π(h∗N@k(x)) ranks labels (up to rank k) in the order of π(∆(k,x)),
∆(k,x) = (∆1(k,x),∆2(k,x), . . . ,∆m(k,x)). Interestingly, the optimal strategy

3.3 DCG@k and NDCG@k 27

for NDCG@1 is the same as the optimal strategy for DCG@k, as

∆j(1,x) =
∑
y:yj=1

N1(y)P(y|x) =
∑
y:yj=1

P(y|x) = ηj(x) .

However, in general π(h∗N@k(x)) and π(h∗D@k(x)) are different rankings.

3.3.1 NDCG at different ranks

Unlike the optimal decisions for DCG@k, the optimal decisions for NDCG@k

depend on k. More precisely, for a fixed conditional distribution, NDCG@k and
NDCG@l, k < l, may be optimized by rankings with different labels on top k

positions.

Theorem 3.5. Let k < l ≤ m. Optimal rankings for NDCG@k and NDCG@l in
general may differ on first k ranks.

Proof. This can be proved by a counterexample for k = 1 and l = 2. Consider the
following conditional distribution for some x:

P(y = (1, 0, 0) |x) = 0.4 , P(y = (0, 1, 1) |x) = 0.6 .

The optimal decision for NDCG@1 is a ranking consisting of one label, being
either y2 or y3, as their marginal probabilities are the same, and N1(1) = 1. To
state the optimal decision for NDCG@2, compute the ∆ values:

∆1(2,x) = N2((1, 0, 0)) · 0.4 = 0.4 ,

∆2(2,x) = ∆3(2,x) = N2((0, 1, 1)) · 0.6 ≈ 0.3679 < 0.4 .

The first element of the ranking optimal for NDCG@2 is y1, not y2 or y3. Therefore,
it is different from the optimal decision for NDCG@1.

3.3.2 Comparison of the optimal classifiers

However h∗D@k and h∗N@k in general indicate different rankings, if labels are
conditionally independent, see (3.9), h∗D@k and h∗N@k indicate the same rankings.
This result is analogous to the one for h∗p@k and h∗r@k. The proof is included in
Appendix A.1.

Theorem 3.6. Given conditionally independent labels, ηj(x) and ∆j(k,x), j ∈ L
induce the same order of labels.

Corollary 3.7. Given conditionally independent labels, a classifier h∗D@k delivers opti-
mal solution for NDCG@k.

Corollary 3.8. Given conditionally independent labels, a classifier h∗N@k delivers opti-
mal solution for DCG@k.

28 3 Multi-label classification metrics

3.4 Conclusions

As we have shown, the optimal strategy for precision@k, the most popular
measure used in extreme multi-label classification, is determined through the
conditional probabilities of labels. Also metrics such as the DCG@k, Hamming
loss, and the micro- and macro F-measure are optimized through the conditional
probabilities of labels. This suggests that estimating the conditional probability of
labels, and then predicting the labels according to the form of the Bayes optimal
classifier, is a consistent strategy for solving extreme multi-label classification
under those metrics. In this dissertation, we propose multi-label classifiers that
estimate conditional probabilities of labels, ηj(x) = P(yj = 1|x), j ∈ L with
possibly small L1-estimation error (2.2), and bound the regrets with respect to
these metrics of the proposed approach.

4
Probabilistic label trees (PLTs)

In this chapter, we introduce the probabilistic label trees, which efficiently es-
timate the conditional probabilities of labels. We discuss the factorization of
these probabilities used by PLTs, give the general training procedure, and dis-
cuss several prediction procedures. PLTs have been proposed in [Jasinska and
Dembczyński, 2015], then analyzed and developed in [Wydmuch et al., 2018,
Jasinska-Kobus et al., 2020a].

4.1 Probabilistic label trees

Probabilistic label trees (PLTs) follow a label-tree approach to efficiently estimate
the conditional probabilities of labels. They reduce the original problem to a set
of binary estimation problems organized in the form of a rooted, leaf-labeled
tree with m leaves. We denote a single tree by T , a root node by rT , and the
set of leaves by LT . The leaf lj ∈ LT corresponds to the label j ∈ L. The set
of leaves of a (sub)tree rooted in an inner node v is denoted by Lv. The set of
labels corresponding to leaf nodes in Lv is denoted by Lv. The parent node of
v is denoted by pa(v), and the set of child nodes by Ch(v). A pre-leaf node is
a parent node whose all children are leaves. The path from node v to the root
is denoted by Path(v). The length of the path, that is, the number of nodes on
the path, is denoted by lenv. The set of all nodes is denoted by VT . The set of
nodes of a (sub)tree rooted in an inner node v is denoted by Vv. The degree of a
node v ∈ VT , being the number of its children, is denoted by degv = |Ch(v)|. An
example of a label tree is given in Figure 4.1.

30 4 Probabilistic label trees (PLTs)

rT = v1

pa(v4) = v2

l1 = v4

y1

l2 = v5

y2

v3

l3 = v6

y3

l4 = v7

y4

Figure 4.1: An example of a label tree T with labels L = {y1, y2, y3, y4}
assigned to the leaf nodes.

The assignment of labels to tree leaves corresponds to encoding them by
a prefix code, as any such code can be given in the form of a tree. Under the
coding, each label yj is uniquely represented by a code word cj = (1, cj1, . . . , cjd)

corresponding to a path from the root to leaf lj . The length of the code equals
the length of the path, that is, |cj | = d + 1 = lenlj . The zero position of the
code allows one to indicate a situation in which there is no label assigned to an
instance. Therefore, each label code starts with 1. For cji ∈ {0, 1}, the code and
the label tree are binary. In general, the code alphabet can contain more than
two symbols. Furthermore, cjis can take values from different sets of symbols
depending on the prefix of the code word. In other words, the code can result
in nodes of a different arity, like in [Grave et al., 2017] and [Prabhu et al., 2018].
Notice that any node v in the tree can be uniquely identified by the partial code
word cv = (1, cv1, . . . , cvdv). An example of the coding is visualized in Figure 4.2.
This coding perspective has been used in the original paper introducing the HSM
model [Morin and Bengio, 2005], as well as in some later articles [Dembczyński
et al., 2016, Wydmuch et al., 2018]. In the following, however, we use the tree
notation introduced in the paragraph before.

(1)

(1, 0)

c1 = (1, 0, 0)

y1

(1, 0, 1)

y2

(1, 1)

(1, 1, 0)

y3

(1, 1, 1)

y4

Figure 4.2: Example of assignment of codes to nodes and labels L =
{y1, y2, y3, y4}.

A PLT uses tree T to factorize the conditional probabilities of labels, ηj(x) =

P(yj = 1|x), for all j ∈ L. To this end let us define for every y a corresponding
vector z of length |VT |,1 whose coordinates, indexed by v ∈ VT , are given by:

zv = J
∑

j∈Lv yj ≥ 1K , or equivalently by zv =
∨
j∈Lv yj . (4.1)

In other words, the element zv of z, corresponding to the node v ∈ VT , is set
to one iff y contains at least one label in Lv. With the above definition, it holds

1Note that z depends on T , but T will always be clear from the context.

4.1 Probabilistic label trees 31

based on the chain rule that for any node v ∈ VT :

ηv(x) = P(zv = 1 |x) =
∏

v′∈Path(v)

η(x, v′) , (4.2)

where η(x, v) = P(zv = 1|zpa(v) = 1,x) for non-root nodes, and η(x, v) = P(zv =

1 |x) for the root. Notice that for leaf nodes we get the conditional probabilities
of labels, that is,

ηlj (x) = ηj(x) =
∏

v′∈Path(lj)

η(x, v′) , for lj ∈ LT . (4.3)

Remark that (4.2) can also be stated as recursion:

ηv(x) = η(x, v)ηpa(v)(x) , (4.4)

with the base case ηrT (x) = η(x, rT) = P(zrT = 1 |x).
As we deal here with multi-label distributions, the relation between prob-

abilities of a parent node and its children is not trivial. The following result
characterizes this relation precisely.

Proposition 4.1. For any T , P(y|x), and internal node v ∈ VT \ LT we have that:∑
v′∈Ch(v)

η(x, v′) ≥ 1 . (4.5)

Moreover, the probability ηv(x) satisfies:

max
{
ηv′(x) : v′ ∈ Ch(v)

}
≤ ηv(x) ≤ min

{
1,
∑

v′∈Ch(v) ηv′(x)
}
. (4.6)

Proof. We first prove the first inequality. From the definition of tree T and zv we
have that if zv = 1, then there exists at least one v′ ∈ Ch(v) for which zv′ = 1.
This gives that

∑
v′∈Ch(v) zv′ ≥ 1, if zv = 1. By taking expectation and recalling

that η(x, v′) = P(zv′ = 1|zv = 1,x), for v′ ∈ Ch(v), we get:∑
v′∈Ch(v)

η(x, v′) ≥ 1 .

To prove (4.6) we use the above result and (4.4). As η(x, v) ∈ [0, 1], for any v ∈ VT ,
therefore ηv′(x) ≤ ηv(x) for every v′ ∈ Ch(v). Moreover, from (4.4) we have that

η(x, v′) = η′v(x)/ηv(x) ,

for every v′ ∈ Ch(v). Substituting this to (4.5) gives ηv(x) ≤
∑

v′∈Ch(v) ηv′(x).
Since we clearly have ηv(x) ≤ 1, we get the final result.

32 4 Probabilistic label trees (PLTs)

4.2 Training

LetD = {(xi,yi)}ni=1 be a training set consisting of n tuples consisting of a feature
vector xi ∈ X and a label vector yi ∈ Y . Depending on the context we also use
the set notation for label vectors, that is, yi ≡ Lxi . From factorization (4.2)
we see that we need to train classifiers estimating η(x, v), for v ∈ VT . We use
a function class H1

prob : X 7→ [0, 1] which contains probabilistic classifiers of
choice, for example, logistic regression. We assign a classifier from H1

prob to
each node of the tree T . We index this set of classifiers by elements of VT as
H = {η̂(v) ∈ H1

prob : v ∈ VT }. We denote by η̂(x, v) the prediction made by η̂(v)

for some x, which is the estimate of η(x, v). The training algorithm for a PLT is
given in Algorithm 1. For simplicity, we discuss here a batch procedure, but an
online counterpart can be easily obtained based on it (see Chapter 7).

Algorithm 1 PLT.TRAIN(T,A,D)

1: H = ∅ . Initialize a set of node probabilistic classifiers
2: for each node v ∈ VT do . For each node in the tree
3: D(v) = ∅ . Initialize its set of training observation in D
4: for i = 1→ n do . For each training observation
5: (P,N) = ASSIGNTONODES(T,xi,Lxi

) . Compute positive and negative nodes
6: for v ∈ P do . For all positive nodes
7: D(v) = D(v) ∪ {(xi, zv = 1)} . Add (xi, zv = 1) to the training set of node t

8: for v ∈ N do . For each negative node
9: D(v) = D(v) ∪ {(xi, zv = 0)} . Add (xi, zv = 0) to the training set of node t

10: for each node v ∈ T do . For all nodes in the tree
11: η̂(v) = A(D(v)), H = H ∪ {η̂(v)} . Train a node classifier with algorithm A

12: return H . Return the set of node probabilistic classifiers

To train probabilistic classifiers η̂(v), v ∈ VT , we need to properly filter
training observations as given in (4.2). The TRAIN procedure first initializes the
sets of training observations in all nodes of T . Then, for each training observation,
it identifies the set of positive and negative nodes, that is, the nodes for which
the training observation is treated respectively as positive or negative. The
ASSIGNTONODES method, given in Algorithm 2, initializes the positive nodes
to the empty set and the negative nodes to the root node (to deal with y of all
zeros). Next, it traverses the tree from the leaves, corresponding to the labels of
the training observation, to the root adding the visited nodes to the set of positive
nodes. It also removes each visited node from the set of negative nodes, if it has
been added to this set before. All children of the visited node, which are not
in the set of positive nodes, are then added to the set of negative nodes. If the
parent node of the visited node has already been added to positive nodes, the
traversal of this path stops. Using the result of the ASSIGNTONODES method the
algorithm distributes the training observation to the corresponding nodes. Finally,
a probabilistic classifier η̂(v) is trained in each node v using algorithm A of choice.

4.3 Prediction 33

Notice that training of each node classifier can be performed simultaneously as an
independent task. The output of the algorithm is a set of probabilistic classifiers
H .

Algorithm 2 PLT.ASSIGNTONODES(T,x,Lx)

1: P = ∅, N = {rT } . Initialize sets of positive and negative nodes
2: for j ∈ Lx do . For all labels of the training observation
3: v = `j . Set v to a leaf corresponding to label j
4: while v not null and v 6∈ P do . On path to the root or till the first positive node
5: P = P ∪ {v} . Assign a node to positive nodes
6: N = N \ {v} . Remove the node from negative nodes if added there before
7: for v′ ∈ Ch(v) do . For all its children
8: if v′ 6∈ P then . If a child is not a positive node
9: N = N ∪ {v′} . Assign it to negative nodes

10: v = pa(v) . Move up along the path

11: return (P,N) . Return a set of positive and negative nodes for the observation

4.3 Prediction

For test instance x, the estimate of the conditional probability of label j is a
product of probability estimates on the path from the root to leaf lj ∈ LT :

η̂j(x) =
∏

v∈Path(lj)

η̂(x, v) , (4.7)

where we assume η̂(x, v) ∈ [0, 1]. The recursive dependency (4.4) also holds for
the estimates. We have, for any v ∈ VT , that:

η̂v(x) = η̂(x, v)η̂pa(v)(x) , (4.8)

with the base case η̂rT (x) = η̂(x, rT). However, the estimates may not satisfy
property (4.5) given in Proposition 4.1. Namely, it may not hold, for v ∈ VT , that:∑

v′∈Ch(v)

η̂(x, v′) ≥ 1 ,

since the node classifiers are trained independently from each other. The rem-
edy is an additional normalization step during prediction, which may take the
following form, for each child node v′ ∈ Ch(v):

η̂(x, v′)← η̂(x, v′)∑
v′′∈Ch(v) η̂(x, v′′)

, if
∑

v′′∈Ch(v)

η̂(x, v′′) < 1 . (4.9)

Nevertheless, this normalization is not always necessary. The theoretical results
presented in Chapter 5 hold without it. Also, empirically an algorithm without

34 4 Probabilistic label trees (PLTs)

normalization performs similarly, being often slightly better. However, the com-
plexity analysis of the prediction algorithms, presented in Chapter 6, requires
this normalization.

The estimation of the label probabilities is only a part of the solution as
we usually need a prediction algorithm that delivers a set of labels being as
similar as possible to the actual one with respect to some application-specific loss
function. Below we introduce two such algorithms based on tree search. Let us
first consider a prediction algorithm which finds, for a test instance x, all labels
such that:

η̂j(x) ≥ τj , j ∈ L ,

where τj ∈ [0, 1] are label-specific thresholds. The threshold-based predictions
are in line with the theoretical analysis given in the next section, as for many
performance metrics they lead to optimal decisions. Here, we present the algo-
rithmic solution assuming that the particular values of τj , for all j ∈ L, have been
provided.

Consider the tree search procedure presented in Algorithm 3. It starts with
the root node and traverses the tree by visiting the nodes v ∈ VT for which
η̂pa(v)(x) ≥ τv, where τv = min{τj : lj ∈ Lv}. It uses a simple stack Q to guide
the search. The final prediction consists of labels corresponding to the visited
leaves for which η̂`j (x) ≥ τj .

Algorithm 3 PLT.PREDICTWITHTHRESHOLDS(T,H, τ ,x)

1: ŷ = 0, Q = ∅ . Initialize prediction vector to all zeros and a stack
2: Q.add((rT , η̂(x, rT))) . Add the tree root with the corresponding estimate
3: while Q 6= ∅ do . In the loop
4: (v, η̂v(x)) = Q.pop() . Pop an element from the stack
5: if η̂v(x) ≥ τv then . If the probability estimate is greater or equal τv
6: if v is a leaf then . If the node is a leaf
7: ŷv = 1 . Set the corresponding label in the prediction vector
8: else . If the node is an internal node
9: for v′ ∈ Ch(v) do . For all child nodes

10: η̂v′(x) = η̂v(x)× η̂(x, v′) . Compute η̂v′(x) using η̂(v′) ∈ H
11: Q.add((v′, η̂v′(x))) . Add the node and the computed estimate
12: return ŷ . Return the prediction vector

The next algorithm finds the top k labels with the highest η̂j(x), j ∈ L.
Consider a variant of uniform-cost search [Russell and Norvig, 2009] presented
in Algorithm 4. It uses, in turn, a priority queue Q to guide the search. In each
iteration, a node with the highest η̂v(x) is popped from the queue. If the node is
not a leaf, then each its child node v′ is added to the priority queue with its η̂v′(x).
Otherwise, a label corresponding to the visited leaf is added to the prediction. If
the number of predicted labels is equal k, then the procedure returns prediction
ŷ. The priority queue guarantees that k labels with the highest η̂j(x), j ∈ L, are
predicted.

In many practical applications, the above algorithms work in time logarithmic
(or close to logarithmic) in the number of labels m, as discussed formally in
Chapter 6. However, in the worst case, both can visit all nodes of the tree. To

4.3 Prediction 35

Algorithm 4 PLT.PREDICTTOPLABELS(T,H, k,x)

1: ŷ = 0, Q = ∅, . Initialize prediction vector to all zeros and a priority queue
2: k′ = 0 . Initialize counter of predicted labels
3: Q.add((rT , η̂(x, rT))) . Add the tree root with the corresponding estimate
4: while k′ < k do . While the number of predicted labels is less than k
5: (v, η̂v(x)) = Q.pop() . Pop the top element from the queue
6: if v is a leaf then . If the node is a leaf
7: ŷv = 1 . Set the corresponding label in the prediction vector
8: k′ = k′ + 1 . Increment the counter
9: else . If the node is an internal node

10: for v′ ∈ Ch(v) do . For all its child nodes
11: η̂v′(x) = η̂v(x)× η̂(x, v′) . Compute η̂v′(x) using η̂(v′) ∈ H
12: Q.add((v′, η̂v′(x))) . Add the node and the computed probability estimate
13: return ŷ . Return the prediction vector

control the complexity directly, an algorithm based on beam search can be used
as an alternative to uniform-cost search. Its disadvantage is that it may not find
the exact top-k scoring labels. Moreover, as shown by experiments, the average
number of visited nodes is not necessarily smaller than that of uniform-cost
search. Algorithm 5 shows the pseudocode of this algorithm.

Algorithm 5 PLT.PREDICTBEAMSEARCH(T,H, k,B,x)

1: ŷ = 0, Q = ∅, . Initialize prediction vector to all zeros and a list
2: p = 0 . Initialize prediction vector to all zero probabilities
3: Q.add((rT , η̂(x, rT))) . Add the tree root with the corresponding estimate
4: while Q is not empty do . While there is a tree level to be processed
5: Qnext = ∅
6: while Q is not empty do
7: (v, η̂v(x)) = Q.pop()
8: for v′ ∈ Ch(v) do . For all its child nodes
9: η̂v′(x) = η̂v(x)× η̂(x, v′) . Compute η̂v′(x) using η̂(v′) ∈ H

10: if v′ is a leaf then . If the node is a leaf
11: pv′ = η̂v′(x) . Add label and its estimate to the retrieved leaves
12: else
13: Qnext.add((v′, η̂v′(x))) . Add the node and the estimate to Qnext

14: Q = top B elements of Qnext . Leave only the top-B scoring nodes from Qnext

15: L̂k = top k scoring labels from pv′ . Select the k highest scoring retrieved leaves
16: for j ∈ L̂k do ŷj = 1

17: return ŷ . Return the prediction vector

This algorithm works in a breadth-first manner searching the tree level by
level. We denote the width of the beam by B. To guide the search it uses a list
Q of B internal nodes from the previous level with the highest intermediate
estimates of conditional probabilities. At each level, it visits all the children of
nodes in Q, and constructs the Qnext for the next level by selecting B child nodes
v′ with the highest η̂v′(x). If a leaf is encountered, the η̂v′(x) of this node is saved.
Once the search is finished, the algorithm selects k highest scored leaves from the
set of visited leaves.

5
Statistical analysis of PLTs

In this chapter, we analyze the PLT model in terms of its statistical properties. We
first upper-bound the L1 estimation error of conditional probabilities of labels,
|ηj(x) − η̂j(x)|, by the L1 error of the node classifiers, |η(x, v) − η̂(x, v)|. We
then generalize this result to a wide class of strongly proper composite losses to
connect theL1 error of conditional probability estimates with a learning algorithm
used in the tree nodes. Having the link between the quality of solving the binary
problems, and the L1 estimation error, we move on to regrets of metrics discussed
in Chapter 2. Most of these results are included in [Jasinska-Kobus et al., 2020a].
Finally, we discuss the relation of PLTs to hierarchical softmax [Wydmuch et al.,
2018].

5.1 L1 estimation error

We start with the L1 estimation error, being a building block for the rest of the
results. First, we give a bound that expresses the quality of probability estimates
η̂v(x) in nodes v for any node v ∈ VT . The lemma and corollary below generalize
a similar result obtained for multi-class classification in [Beygelzimer et al., 2009b].

Lemma 5.1. For any tree T and distribution P(y|x) the following holds for each v ∈ VT :

|ηv(x)− η̂v(x)| ≤
∑

v′∈Path(v)

ηpa(v′)(x)
∣∣η(x, v′)− η̂(x, v′)

∣∣ , (5.1)

where we assume η̂(x, v) ∈ [0, 1], for each v ∈ VT , and ηpa(rT)(x) = 1, for the root node
rT .

From this lemma, we immediately get guarantees for the estimate of the
conditional probability for label j ∈ L, which corresponds to a bound for the leaf
node lj .

38 5 Statistical analysis of PLTs

Corollary 5.2. For any tree T and distribution P(y|x), the following holds for each
label j ∈ L:

|ηj(x)− η̂j(x)| ≤
∑

v∈Path(lj)

ηpa(v)(x) |η(x, v)− η̂(x, v)| , (5.2)

where we assume ηpa(rT)(x) = 1 for the root node rT .

It is worth to notice that the above bounds are tighter than the one in [Beygelz-
imer et al., 2009b], since the L1 estimation error of the node classifiers is addition-
ally multiplied by the probability of the parent node ηpa(v′)(x). Our proof, given
below, is also obtained using different arguments.

Proof. Recall the recursive factorization of probability ηv(x) given in (4.4):

ηv(x) = η(x, v)ηpa(v)(x) .

As the same recursive relation holds for η̂v(x), see (4.8), we have that

|ηv(x)− η̂v(x)| =
∣∣η(x, v)ηpa(v)(x)− η̂(x, v)η̂pa(v)(x)

∣∣ .
By adding and subtracting η̂(x, v)ηpa(v)(x), using the triangle inequality |a+ b| ≤
|a|+ |b| and the assumption that η̂(x, v) ∈ [0, 1], we obtain:

|ηv(x)− η̂v(x)| =
=
∣∣η(x, v)ηpa(v)(x)− η̂(x, v)ηpa(v)(x) + η̂(x, v)ηpa(v)(x)− η̂(x, v)η̂pa(v)(x)

∣∣
≤
∣∣η(x, v)ηpa(v)(x)− η̂(x, v)ηpa(v)(x)

∣∣+
∣∣η̂(x, v)ηpa(v)(x)− η̂(x, v)η̂pa(v)(x)

∣∣
≤ ηpa(v)(x) |η(x, v)− η̂(x, v)|+ η̂(x, v)

∣∣ηpa(v)(x)− η̂pa(v)(x)
∣∣

≤ ηpa(v)(x) |η(x, v)− η̂(x, v)|+
∣∣ηpa(v)(x)− η̂pa(v)(x)

∣∣
Since the rightmost term corresponds to the L1 error of the parent of v, we use
recursion to get the result of Lemma 5.1:

|ηv(x)− η̂v(x)| ≤
∑

v′∈Path(v)

ηpa(v′)(x)
∣∣η(x, v′)− η̂(x, v′)

∣∣ ,
where for the root node ηpa(rT)(x) = 1. As the above holds for any v ∈ V , the
result also applies to conditional probabilities of labels as stated in Corollary 5.2.

The above results are conditioned on x and concern a single node v ∈ V . The
expected L1 error for label j and x ∼ P(x) is given by the next lemma.

Lemma 5.3. For any tree T and distribution P(x,y) the following holds for j ∈ L:

Ex∼P(x) [|ηj(x)− η̂j(x)|]

≤
∑

v∈Path(lj)

P(zpa(v) = 1)Ex∼P(x|zpa(v)=1) [|η(x, v)− η̂(x, v)|] ,

5.2 Strongly proper composite losses 39

where for the root node P(zpa(rT) = 1) = 1.

This lemma bounds the expected L1 error for label j and x ∼ P(x) by a
weighted sum of L1 errors of node v classifiers in Path(lj). The weights corre-
spond to the probabilities that an observation reaches each node v, P(zpa(v) = 1).
The expected L1 errors are given for conditional distribution of x defined also on
x reaching node v.

Finally, the next theorem gives the understanding of the average performance
over all labels and the entire distribution P(x). We present the result in a general
form of a weighted average as this form will be required later.

Theorem 5.4. For any tree T , distribution P(x,y), and weights Wj ∈ R, j ∈
{1, . . . ,m}, the following holds:

1

m

m∑
j=1

WjEx∼P(x) [|ηj(x)− η̂j(x)|] ≤

1

m

∑
v∈V

P(zpa(v) = 1)Ex∼P(x|zpa(v)=1)

[
|η(x, v′)− η̂(x, v′)|

] ∑
j∈Lv

Wj , (5.3)

where for the root node P(zpa(rT) = 1) = 1. For Wj = 1, j ∈ {1, . . . ,m}, we have:

1

m

m∑
j=1

Ex∼P(x) [|ηj(x)− η̂j(x)|] ≤

1

m

∑
v∈V

P(zpa(v) = 1)Ex∼P(x|zpa(v)=1)

[
|η(x, v′)− η̂(x, v′)|

]
|Lv| .

The result states that the weighted expected L1 estimation error averaged
over all labels can be bounded by a weighted sum of expected L1 errors of node
classifiers divided by the number of labels. A weight associated with node v is a
product of the probability mass of a parent node and the number of leave nodes
in a subtree rooted in v. This means that a node closer to the root has a higher
impact on the overall performance. This agrees with the intuition as such nodes
impact estimates of more labels. We omit the proof of this theorem here as it is
quite technical. It is presented with other proofs in Appendix A.2.

5.2 Strongly proper composite losses

Recall that for λ-strongly proper composite loss `c for any η(x), ψ−1(f(x)) ∈ [0, 1]:

∣∣η(x)− ψ−1(f(x))
∣∣ ≤√ 2

λ

√
reg`c(f |x) .

We apply the above to node classifiers in a PLT tree. In each node v ∈ VT we
consider a binary problem with y = 2zv − 1 and pairs (x, zv) generated i.i.d.
according to P(x, zv | zpa(v) = 1). Moreover, let fv be a scoring function in node

40 5 Statistical analysis of PLTs

v ∈ VT minimized by a strongly proper composite loss function `c. The estimates
η̂(x, v), for all v ∈ V , are then computed as:

η̂(x, v) = ψ−1(fv(x)) .

We start with Corollary 5.2 and apply the bound from (2.3), recalled above.

Corollary 5.5. For any tree T and distribution P(y|x), a strongly proper composite
loss function `c, the following holds for each label j ∈ L:

|ηj(x)− η̂j(x)| ≤
√

2

λ

∑
v∈Path(lj)

ηpa(v)(x)
√

reg`c(fv |x) , (5.4)

where we assume ηpa(rT)(x) = 1 for the root node rT .

This result shows how the `c regrets accumulate among classifiers from
Path(lj) and bound the L1 error of estimation of ηj(x) for a single label j. To
bound the expected L1 error for all labels using the `c regrets of node classifiers,
we give a result similar to the one in Theorem 5.4.

Theorem 5.6. For any tree T , distribution P(x,y), weights Wj ∈ R, j ∈ {1, . . . ,m},
a strongly proper composite loss function `c, and a set of scoring functions fv, v ∈ VT ,
the following holds:

1

m

m∑
j=1

WjEx∼P(x) [|ηj(x)− η̂j(x)|] ≤
√

2

m
√
λ

∑
v∈V

√
P(zpa(v) = 1)reg`c(fv)

∑
j∈Lv

Wj ,

(5.5)
where for the root node P(zpa(rT) = 1) = 1, and reg`c(fv) is the expected `c-regret of fv
taken over P(x, zv | zpa(v) = 1). For Wj = 1, j ∈ {1, . . . ,m}, we have:

1

m

m∑
j=1

Ex∼P(x) [|ηj(x)− η̂j(x)|] ≤
√

2

m
√
λ

∑
v∈V
|Lv|

√
P(zpa(v) = 1)reg`c(fv) . (5.6)

The theorem justifies the use of strongly proper composite losses during the
training of node classifiers. The technical details of the proof are presented in
Appendix A.3. Here, we only notice that the weights of node errors follow from
Theorem 5.4, while the squared root dependency from (2.3).

5.3 Generalized classification performance metrics

In this section, we use the previously obtained bounds to demonstrate the regret
bounds for generalized classification performance metrics. The regret of the
Ψmacro metric decomposes into a weighted sum:

regΨmacro
(h) = Ψmacro(h∗α∗Ψ

)−Ψmacro(h) =
1

m

m∑
j=1

(Ψ(h∗j,α∗Ψ,j
)−Ψ(hj)) (5.7)

5.3 Generalized classification performance metrics 41

In turn, the regret of the Ψmicro metric is given by:

regΨmicro
(h) = Ψmicro(h∗α∗Ψ

)−Ψmicro(h) . (5.8)

We assume, similarly as in the previous subsection, that a score function fv(x)

in a node v ∈ V is trained via minimization of a strongly proper composite loss
function `c. We are interested in bounding these regrets with the performance of
node classifiers of a PLT. The estimates η̂(x, v), for all v ∈ V , are then computed
as:

η̂(x, v) = ψ−1(fv(x)) .

The prediction of a PLT is computed by Algorithm 3 and has a form similar to
the optimal classifier (3.5):

hτ (x) = (h1,τ1(x), h2,τ2(x), . . . , hm,τm(x)) , where hj,τj (x) = Jη̂j(x) > τjK ,

for some vector τ = (τ1, τ2, . . . , τm) ∈ [0, 1]m of thresholds. Estimates η̂j(x) are
computed as in (4.7), that is, η̂j(x) =

∏
v∈Path(lj)

η̂(x, v), where lj ∈ LT is a node
corresponding to label j.

Theorem 5.7. Let τ∗j = arg maxτ Ψ(hj,τ), for each j ∈ L, and τ ∗ = (τ∗1 , τ
∗
2 , . . . , τ

∗
m).

For any tree T and distribution P(x,y), the classifier hτ∗ achieves the following upper
bound on its Ψmacro-regret:

regΨmacro
(hτ∗) ≤

√
2

m
√
λ

∑
v∈V

√
P(zpa(v) = 1)reg`c(fv)

∑
j∈Lv

Cj ,

where Cj = 1
γ (Ψ(h∗Ψ, j)(b1 + b2)− (a1 + a2)), for each j ∈ L, with γ defined in (3.2),

P(zpa(rT) = 1) = 1 for the root node, and reg`c(fv) is the expected `c-regret of fv taken
over P(x, zv | zpa(v) = 1).

Theorem 5.8. Let hτ = (h1,τ , h2,τ , . . . , hm,τ) be a classifier which shares the same
threshold τ over all labels j ∈ L. For any tree T , distribution P(x,y), and τ∗ =

arg maxτ Ψmicro(hτ), classifier hτ∗ achieves the following upper bound on its Ψmicro-
regret:

regΨmicro(hτ∗) ≤
C

m

√
2

λ

∑
v∈V
|Lv|

√
P(zpa(v) = 1)reg`c(fv) ,

where C = 1
γ (Ψmicro(h∗Ψ)(b1 + b2)− (a1 + a2)) with γ defined in (3.2), P(zpa(rT) =

1) = 1 for the root node, and reg`c(fv) is the expected `c-regret of fv taken over
P(x, zv | zpa(v) = 1).

The above theorems can be interpreted in the following way. For conditional
probability estimates η̂j(x), j ∈ L, obtained as described just before the theorem,
there exists a vector τ of thresholds, for which the regret of a generalized perfor-
mance metric is upper-bounded solely by regrets of node classifiers, expressed in
terms of a strongly proper composite loss function. Therefore, from the perspec-
tive of learning one needs to focus on the node classifiers to get as accurate as

42 5 Statistical analysis of PLTs

possible estimates of conditional probabilities of labels, by minimizing a strongly
proper composite loss function in each node. The next step, being independent
of the previous one, is to obtain the right values of thresholds τ ∗, following one
of the approaches mentioned above.

Let us analyze the regret bounds more carefully. In the case of macro-averaged
metrics, the regret of each node classifier is weighted by the sum of Cj-values
of all labels in the corresponding subtree. In the case of micro-averaged metrics,
there is only one global C-value, and each node classifier is weighted by the
number of labels in the corresponding subtree. The values ofC and γ for different
metrics are given in Table 5.1 (a similar table can be found in [Kotłowski and
Dembczyński, 2017]). It is easy to verify with these values that for the Hamming
loss the regret bounds for macro- and micro-averaging are the same. This agrees
with the fact that both averaging schemes boil down to the same metric in the
case of the Hamming loss. In general, the macro- and micro-averaging bounds
coincide for all metrics with constant C. Interestingly, the bounds are different for
the F1-measure and the Jaccard similarity, while they both share the same optimal
solution (since the Jaccard similarity is a strictly monotone transformation of
the F1-measure). As γ is the same for both metrics, this observation suggests
that C could be defined more tightly. One can also observe that C grows with
decreasing P . Therefore, for sparse problems and labels from the long-tail the
value of C can be large, potentially leading to poor guarantees.

Metric γ C

Hamming loss 1 2
Fβ-measure β2P 1+β

β2P

Jaccard similarity P Ψ(FP∗,FN∗)+1
P

AM 2P (1− P) 1
2P (1−P)

Table 5.1: The values of γ and C values for some generalized classification performance
metrics. As before, P denotes P(yj = 1), for macro-averaging, or 1

m

∑m
j=1 P(yj = 1), for

micro-averaging.

The proofs of both theorems are given in Appendix A.4. They are based
on results previously obtained for the 1-VS-ALL approach in [Kotłowski and
Dembczyński, 2017], combined with Theorem 5.6. The result for the 1-VS-ALL

approach is based on two observations. The first one states that the regret for a
cost-sensitive binary classification can be upper-bounded by the L1 estimation
error of the conditional probabilities, if a classification procedure uses a threshold
which directly corresponds to the misclassification cost. The second shows that
the regret of the generic function Ψ(FP,FN) can be upper-bounded by the regret
of the cost-sensitive binary classification with costs related to α∗Ψ. The actual
value of the optimal thresholds is a direct consequence of the proof. Putting these
two observations together along with Theorem 5.6 gives the final results.

5.4 Precision@k 43

5.4 Precision@k

We analyze also the @k metrics, and again use the previously obtained bounds
for strongly proper composite loss functions. We start with giving a regret bound
for precision@k. The optimal strategy for precision@k is predicting labels with
the highest conditional probabilities, L̂∗x. However, a classifier h@k(x) predicts a
set L̂∗x, which not necessarily is equal to L̂∗x. Therefore h@k(x) may suffer a regret
with respect to precision@k. This conditional regret for precision@k is:

regp@k(h@k |x) =
1

k

∑
i∈L̂∗x

ηi(x)− 1

k

∑
j∈L̂x

ηj(x) .

The conditional regret with respect to precision@k can be upper-bounded by the
L1-estimation errors as stated by the following theorem.

Theorem 5.9. For any distribution P(y |x) and classifier h@k ∈ Hm@k the following
holds:

regp@k(h@k |x) =
1

k

∑
i∈L̂∗x

ηi(x)− 1

k

∑
j∈L̂x

ηj(x) ≤ 2 max
j
|ηj(x)− η̂j(x)| .

Proof. Let us add and subtract the following two terms, 1
k

∑
i∈L̂∗x

η̂i(x) and
1
k

∑
j∈L̂x η̂j(x), to the regret and reorganize the expression in the following way:

regp@k(h@k |x) =
1

k

∑
i∈L̂∗x

ηi(x)− 1

k

∑
i∈L̂∗x

η̂i(x)

︸ ︷︷ ︸
≤ 1
k

∑
i∈L̂∗x

|ηi(x)−η̂i(x)|

+
1

k

∑
j∈L̂x

η̂j(x)− 1

k

∑
j∈L̂x

ηj(x)

︸ ︷︷ ︸
≤ 1
k

∑
j∈L̂x |η̂j(x)−ηj(x)|

+
1

k

∑
i∈L̂∗x

η̂i(x)− 1

k

∑
j∈L̂x

η̂j(x)

︸ ︷︷ ︸
≤0

≤ 1

k

∑
i∈L̂∗x

|ηi(x)− η̂i(x)|+ 1

k

∑
j∈L̂x

|ηj(x)− η̂j(x)|

Next we bound each L1 error, |ηj(x)− η̂j(x)| by maxj |ηj(x)− η̂j(x)|. There are
at most |Yk|+ |Ŷk| = 2k such terms. Therefore

regp@k(h |x) ≤ 2 max
j
|ηj(x)− η̂j(x)| .

Interestingly, the bound does not depend neither on k nor m. However, if

44 5 Statistical analysis of PLTs

k = m then regp@m = 0 for any distribution, since L̂∗x = L̂x in this case. In
general, if m < 2k, then L̂∗x ∩ L̂x 6= ∅. In other words, some of the labels from L̂x
are also in L̂∗x, so the bound can be tighter. For example, one can multiply the
bound by min(k,m−k)

k , assuming that k ≤ m. However, in extreme classification
usually k � m, so we do not use the more complex bound.

Again, we assume that a score function fv(x) in a node v ∈ V is trained via
minimization of a strongly proper composite loss function `c, and the estimates
η̂(x, v), for all v ∈ V , are computed as: η̂(x, v) = ψ−1(fv(x)) . We assume that
the k predicted labels are the k labels with the highest η̂j(x). Such labels are
found by Algorithm 4. The form of the final classifier h@k(x) ∈ Hm@k is then
similar to (3.6), but with permutation π(η̂(x)) defined over η̂j(x), j ∈ L. The
next theorem provides an upper bound of the unconditional regret for a PLT.
Unfortunately, the max operator from Theorem 5.9 needs to be replaced by the
sum in the derivations, therefore the theorem has the following form.

Theorem 5.10. For any tree T and distribution P(x,y), classifier h@k(x) achieves the
following upper bound on its precision@k regret:

regp@k(h@k) ≤
2
√

2√
λ

∑
v∈V
|Lv|

√
P(zpa(v) = 1)reg`c(fv) ,

where P(zpa(rT) = 1) = 1 for the root node, and reg`c(fv) is the expected `c-regret of fv
taken over P(x, zv | zpa(v) = 1).

Proof. By taking an expectation over P(x) of the bound from Theorem 5.9 and
replacing the max operator by sum, that is, max(a, b) ≤ a + b, for a, b ≥ 0, we
obtain:

regp@k(h@k) ≤ 2
m∑
j=1

Ex∼P(x) [|ηj(x)− η̂j(x)|]

Next, by applying (5.6) from Theorem 5.6, we get the statement:

regp@k(h@k) ≤
2
√

2√
λ

∑
v∈V
|Lv|

√
P(zpa(v) = 1)reg`c(fv) .

It is worth comparing the above bound with the one for the Hamming loss,
taken either from Theorem 5.7 or Theorem 5.8, with C = 2 and γ = 1 (see
Table 5.1). It turns out that the bound for precision@k is m times larger. The
reason is that if there were k labels with the L1-estimation error approaching
1, but with the actual probability close to 0, then the precision@k regret would
get its maximum. On the other hand, the Hamming loss regret is an average of
label-wise regrets. Therefore, it does not suffer much, as there were only k labels
out of m with the highest regret.

5.5 DCG@k 45

5.5 DCG@k

Let us now move on to DCG@k, for which we give similar results to the ones
given for precision@k. In the following, we consider the rankings of labels. Recall
the definition of label ranking π(s) according to label-wise scores s, in which
πr(s) is the r-th ranked label. We denote the rank of label j in the label ranking
π(s) with π−1

j (s). The optimal classifier for DCG@k ranks the labels in the order
of decreasing conditional probabilities ηj(x), and produces a ranking π(h∗D@k).
However, a classifier h(x) gives a ranking π(h) that is not necessarily is equal on
first k ranks to π(h∗D@k). The conditional regret for DCG@k is then:

regD@k(h |x) =
k∑
r=1

(
ηπr(h∗D@k)(x)− ηπr(h)(x)

)
g(r)

=
∑
i∈L∗k

ηi(x)g(π−1
i (h∗D@k))−

∑
j∈L̂k

ηj(x)g(π−1
j (h))

where L∗k is the set of labels on first k ranks in ranking π(h∗D@k), and analogously,
L̂k is the set of labels on first k ranks in ranking π(h). The conditional regret with
respect to DCG@k can be upper-bounded by the L1-estimation error analogously
to the bound for precision@k. Since the proof is also analogous, we give it in the
Appendix A.5.

Theorem 5.11. For any distribution P(y |x) and classifier h ∈ Hm the following
holds:

regD@k(h@k |x) =
∑
i∈L∗k

ηi(x)g(π−1
i (h∗D@k))−

∑
j∈L̂k

ηj(x)g(π−1
j (h@k))

≤ 2 max
j
|ηj(x)− η̂j(x)| IDCG@k(k) ,

where IDCG@k(k) =
∑k

r=1 g(r), L∗k is the set of labels on first k ranks in ranking
π(h∗D@k), and L̂k is the set of labels on first k ranks in ranking π(h).

Compare the regret bounds for precision@k, from Theorem 5.9, and DCG@k,
above. They differ only by a factor IDCG@k(k). The bound for precision@k is a
special case of the bound for DCG@k, with constant, rank-independent, gains g
equal to 1

k . Moreover, by maximizing DCG@k one also optimizes precision@k.
Finally, we give an upper bound of the unconditional DCG@k regret in terms of
strongly proper composite loss functions, and prove it in the Appendix A.5.

Theorem 5.12. For any tree T and distribution P(x,y), classifier h(x) achieves the
following upper bound on its DCG@k regret:

regD@k(h) ≤ IDCG@k(k)
2
√

2√
λ

∑
v∈V
|Lv|

√
P(zpa(v) = 1)reg`c(fv) .

46 5 Statistical analysis of PLTs

where IDCG@k(k) =
∑k

r=1 g(r), P(zpa(rT) = 1) = 1 for the root node, and reg`c(fv)

is the expected `c-regret of fv taken over P(x, zv | zpa(v) = 1).

5.6 Relation to hierarchical softmax

Finally, we show that PLTs are strictly related to hierarchical softmax [Morin
and Bengio, 2005]. Hierarchical softmax is designed for multi-class classification.
Recall that using our notation, we have

∑m
i=1 yi = 1 for multi-class problems, that

is, there is one and only one label assigned to an instance (x,y). The conditional
probabilities ηj(x) in this case sum up to 1. Since in multi-class classification
always exactly one label is assigned to an instance, there is no need to learn a
root classifier that verifies whether there exists a positive label for an instance.
Nevertheless, the factorization of the conditional probability of label j is given
by the same equation (4.2) as for multi-label case:

ηj(x) =
∏

v′∈Path(lj)

η(x, v′) .

However, in this case, η(x, v′) = 1, for v′ being the root, and the η(x, v′) among
v′ children of a single node v sum to one∑

v′∈Ch(v)

η(x, v′) = 1 ,

since
∑m

i=1 yi = 1. The model above is the same as the one presented in [Morin
and Bengio, 2005], where the parent nodes are identified by a code indicating a
path from the root to this node. When used with a sigmoid function to model
the conditional probabilities, we obtain the popular formulation of hierarchical
softmax.

To deal with multi-label problems, some popular tools, such as FAST-
TEXT [Joulin et al., 2017] and its extension LEARNED TREE [Jernite et al., 2017],
apply hierarchical softmax with the pick-one-label heuristic (3.8). As we have
shown in Section 3.2, this heuristic is not consistent with respect to precision@k

and L1 estimation error of conditional probabilities of labels. In this chapter, we
have proven that PLTs are consistent for a wide spectrum of metrics. Since on
multi-class data PLTs boil down to hierarchical softmax, we can say that PLTs
are a non-regret generalization of hierarchical softmax to multi-label classification
with respect to those metrics.

6
Computational complexity of PLTs

In extreme classification the computational performance of the training and
prediction algorithms is crucial. In this chapter, we briefly analyze the training
and prediction complexity of PLTs, mostly following [Busa-Fekete et al., 2019],
and adding the results related to uniform-cost search and beam search. We
first define training and prediction costs as the number of updated or evaluated
node classifiers. Then, we bound those costs, relate the prediction cost with the
training cost and the L1 error of the classifiers, and explain the relation of cost to
the computational complexity of training and prediction algorithms.

6.1 Training complexity

We define the training complexity of PLTs in terms of the number of nodes in
which a training observation (x,y) is used. From the definition of the tree and
the PLT model (4.2), we have that each training observation is used in the root,
to estimate P(zrT = 1|x), and in each node v for which zpa(v) = 1, to estimate
P(zv = 1|zpa(v) = 1,x). Therefore, the training cost for a single observation (x,y)

can be given as:

c(T,y) = 1 +
∑

v∈I(T)

degv zv = 1 +
∑

v∈VT \rT

zpa(v) . (6.1)

where I(T) is the set of all non-leaf nodes of the tree T . This definition agrees with
the time complexity of the ASSIGNTONODES procedure, which isO(c(T,y)) if the
set operations are performed in O(1) time. The training cost for the training set D
is then c(T,Y) =

∑n
i=1 c(T,y). From the perspective of the training complexity

of node classifiers, the above definition of cost is only justified for learning
algorithms that scale linearly in the number of training observations. There exists,
however, plenty of such algorithms with a prominent example of stochastic

48 6 Computational complexity of PLTs

gradient descent. The following proposition determines the upper bound for the
training cost for a single observation c(T,y).

Proposition 6.1. For any tree T and vector y it holds that:

c(T,y) ≤ 1 + ‖y‖1 · depthT · degT ,

where depthT = maxv∈LT lenv − 1 is the depth of the tree, and degT = maxv∈VT degv
is the highest degree of a node in T .

We present the proof in the Appendix A.6. The immediate consequence of
this result is the following remark which states that the training complexity of
PLTs can scale logarithmically in the number of labels.

Remark 6.2. Consider k-sparse multi-label classification (for which, ‖y‖1 ≤ k). For a
balanced tree of constant degT = λ (≥ 2) and depthT = logλm, the training cost is
c(T,y) = O(k logm).

Interestingly, the problem of finding the optimal tree structure in terms of the
training cost is NP-hard, as proven in [Busa-Fekete et al., 2019]. However, the
balanced trees achieve a logarithmic approximation of the optimal tree in the
number of labels.

Let us also define the expected training cost, which we will use later to bound
the expected prediction cost. The expected training cost is

CP(T) = Ey [c(T,y)] =
∑
y∈Y

c(T,y)P(y) .

This cost can be formulated in terms of probabilities P(zv = 1), v ∈ VT , as follows:

Remark 6.3. For any tree T and distribution P(y) it holds that:

CP(T) = 1 +
∑

v∈VT \rT

P(zpa(v) = 1) = 1 +
∑
v∈VT

P(zv = 1) · degv .

6.2 Prediction complexity

For the prediction cost, we use a similar definition. We define it as the number of
calls to node classifiers for a single instance x. Let us first consider Algorithm 3
with a threshold vector τ . Its prediction cost cτ (T,x) for a single instance is given
by:

cτ (T,x) = 1 +
∑

v∈VT \rT

Jη̂pa(v)(x) ≥ τvK = 1 +
∑
v∈VT

Jη̂v(x) ≥ τvK · degv .

The expected prediction cost of the threshold-based algorithm is defined as

CP(x),τ (T) = Ex[cτ (T,x)].

6.2 Prediction complexity 49

Analogously to Proposition 6.1, we determine the upper bound for the pre-
diction cost cτ (T,x). To this end, let us upper bound

∑m
j=1 η̂j(x) by a constant

P̂ . Moreover, we assume that η̂v(x) are properly normalized to satisfy the same
requirements as true probabilities expressed in Proposition 4.1, like in (4.9). For
simplicity, we set all τv, v ∈ VT , to τ . Then, we can prove the following result.

Theorem 6.4. For Algorithm 3 with all thresholds τv, v ∈ VT , set to τ and any x ∈ X ,
we have that:

cτ (T,x) ≤ 1 + bP̂ /τc · depthT · degT , (6.2)

where P̂ is a constant upper-bounding
∑m

j=1 η̂j(x), depthT = maxv∈LT lenv − 1, and
degT = maxv∈VT degv.

We present the proof of this result, and the following ones, in Appendix A.6.
Similarly, as in the case of the training cost, we can conclude the logarithmic cost
in the number of labels.

Remark 6.5. For a tree of constant degT = λ(≥ 2) and depthT = logλm, the cost of
Algorithm 3 is O(logm).

The above result can also be related to the sum of true conditional label probabili-
ties,

∑m
j=1 ηj(x). To this end, one needs to relate the training to prediction and

take into account the L1-estimation error of ηj(x). The next theorem shows this
relation in terms of expected costs.

Theorem 6.6. Using the notation above, it holds that

CP(x),τ (T) ≤ 1

τ

(
CP(T)+

∑
v∈VT

Ex

[
ηpa(v)(x) · |η(x, v)− η̂(x, v)|

]
·|Vv\Lv|·degv

)
−1− τ

τ
.

This shows that the prediction cost is related to the training cost, in terms of
expectations, and to the L1 errors of node classifiers, minimized in the training
under strongly proper composite loss functions. Notice that the term correspond-
ing to the training cost represents the true P(zv), while to bound the expected
prediction cost we additionally take into account the relevant errors.

The analysis of Algorithm 4 which predicts the top k labels is more complex.
We define the prediction cost of Algorithm 4, denoted as ck(T,x), as the number
of nodes visited by the uniform-cost search procedure, i.e., the number of calls
to the node classifiers. Let η̂πk(η̂(x))(x) denote the k-th highest estimated condi-
tional probability of label The ck(T,x) cost is upper-bounded by the following
expression,

ck(T,x) ≤ 1 +
∑

v∈VT \rT

Jη̂pa(v)(x) ≥ η̂πk(η̂(x))(x)K

= 1 +
∑
v∈VT

Jη̂v(x) ≥ η̂πk(η̂(x))(x)K · degv ,

i.e., ck(T,x) is upper-bounded by cτ (T,x), with τ equal to η̂πk(η̂(x))(x). The
actual number of visited nodes depends however on the order of nodes with the
same η̂v(x) in the priority queue guiding the search.

50 6 Computational complexity of PLTs

Additionally, we give a condition under which the cost ck(T,x) is O(logm).
This result follows from similar arguments as Theorem 6.4. However, as it is
suited for Algorithm 4, it gives a better understanding of the cost bound for the
uniform-cost search based prediction.

Theorem 6.7. For Algorithm 4 retrieving k top-scoring labels and any x ∈ X we have
that:

ck(T,x) ≤ 1 + (k + c− 1) · depthT · degT ,

where c, c ≥ 1, is an integer for which η̂πk(η̂(x))(x) > 1
c

∑m
i=k+1 η̂πi(η̂(x))(x), η̂(x)

denotes the vector of estimates of conditional label probabilities using the normaliza-
tion (4.9), depthT = maxv∈LT lenv − 1, and degT = maxv∈VT degv.

Remark 6.8. If c = 1, then ck(T,x) ≤ 1 + k · depthT · degT .

Remark 6.9. For a tree of constant degT = λ(≥ 2) and depthT = logλm, the cost of
Algorithm 4 is O(logm) under the assumptions of Theorem 6.7.

The prediction cost of Algorithm 5, implementing the beam-search-based
prediction, is determined by the structure of the tree and the width B of the
beam and does not depend on the values of estimated conditional probabilities
of labels.

Theorem 6.10. For Algorithm 5 with beam B and any x ∈ X , we have that:

cB(T,x) ≤ 1 +B · degT ·depthT

where depthT = maxv∈LT lenv − 1, and degT = maxv∈VT degv.

Remark 6.11. For a tree of constant degT = λ(≥ 2) and depthT = logλm, the cost of
Algorithm 5 is O(logm).

The above bounds consider the prediction cost, not the computational com-
plexity of prediction algorithms. The computational complexity of Algorithm 3
is linear with respect to the prediction cost, O(cτ(T,x)), as each visit of a node
classifier is associated with a constant cost. Therefore it is logarithmic in m

under certain assumptions. However, Algorithm 4 uses a priority queue in
which operations require O(logm) time. Therefore, each visit of a node is not
associated with O(1) cost, but with O(logm) cost, and the computational com-
plexity with respect to m of Algorithm 4 is O(cτ(T,x) logm) = O(log2m), i.e.,
sublinear in m under certain assumptions. Moreover, in practical scenarios,
the maintenance of the priority queue is almost negligible as only in the worst-
case scenario its size approaches m. To assess the computational complexity
of Algorithm 5 we need to consider the cost of selecting the B highest scores
nodes from at most B · degT estimates depthT − 1 times and selecting the highest
scoring leaves from at most B · degT estimates. We assume that this is done
by sorting the B · degT in O(B · degT log(B · degT)). Then under assumptions
regarding the tree structure, given the logarithmic depth, we get the complexity
O(log(m)B degT log(B degT) +B degT log(m)). This is sublinear in m. Moreover,

6.3 Memory complexity 51

in practical scenarios, the cost of sorting B · degT is negligible compared to the
cost of evaluation of cB(T,x) classifiers, and therefore the beam width B plays
an important role in controlling the computational cost of this algorithm given a
fixed tree.

6.3 Memory complexity

Finally, let us shortly discuss the space complexity. The space needed for storing
the final model can also be expressed in terms of the number of nodes. As the
number of nodes of a label tree is upper-bounded by 2m−1, that is, the maximum
number of nodes of the tree with m leaves, the space complexity is O(m). During
training or prediction, there are no other structures with a higher space demand.
Nevertheless, different design choices impact the space requirements of PLTs.
We discuss some of them in Chapter 8.

7
Online PLT

In this chapter, we describe the online probabilistic label trees algorithm, which
trains a PLT classifier online, without prior knowledge of the set of labels. This
algorithm and results have been published in [Jasinska-Kobus et al., 2020c,a,d].

7.1 Online and incremental training of PLTs

A PLT model can be trained either in batch mode or incrementally. The batch
algorithm has been presented in Algorithm 1 in Chapter 4. It can be easily trans-
formed into an incremental algorithm operating sequentially on observations
from D = {(xi,yi)}ni=1. To this end, we need to use an incremental learning
algorithm Aonline in the tree nodes. Such incremental PLT (IPLT) is given in
Algorithm 6.

Algorithm 6 IPLT.TRAIN(T,Aonline,D)

1: HT = ∅ . Initialize a set of node probabilistic classifiers
2: for each node v ∈ VT do . For each node in the tree
3: η̂(v) = NEWCLASSIFIER(), HT = HT ∪ {η̂(v)} . Initialize its binary classifier.

4: for i = 1→ n do . For each observation in the training sequence
5: (P,N) = ASSIGNTONODES(T,xi,Lxi

) . Compute positive and negative nodes
6: for v ∈ P do . For all positive nodes
7: Aonline.UPDATE(η̂(v), (xi, 1)) . Do a positive update with xi.

8: for v ∈ N do . For each negative node
9: Aonline.UPDATE(η̂(v), (xi, 0)) . Do a negative update with xi.

10: return HT . Return the set of node probabilistic classifiers

The above algorithm, similarly to its batch counterpart, works on a finite
training set and requires a tree structure T to be given in advance. To construct T
at least the number m of labels needs to be known. More advanced tree construc-

54 7 Online PLT

tion procedures, as discussed in Section 8.6, exploit additional information like
feature values or label co-occurrence [Prabhu et al., 2018]. In all such algorithms,
the tree is built in a batch mode prior to the learning of node classifiers. Here, we
analyze a different scenario in which an algorithm operates on a possibly infinite
sequence of training instances and the tree is constructed online, simultaneously
with incremental training of node classifiers, without any prior knowledge of the
set of labels or training data. We refer to such an approach as online probabilistic
label trees.

Let us denote a sequence of observations by S = {(xi,Lxi)}∞i=1 and a subse-
quence consisting of the first t instances by St. We refer here to labels of xi only
by Lxi , not using the vector notation yi. This is because the number of labels m
increases over time, which would also change the length of yi.1 Furthermore,
let the set of labels observed in St be denoted by Lt, with L0 = ∅. An online
algorithm returns at step t a tree structure Tt constructed over labels in Lt and a
set of node classifiers Ht. Notice that the tree structure and the set of classifiers
change in each iteration in which one or more new labels are observed. Below
we discuss two properties that are desired for such an online algorithm, defined
in relation to the IPLT algorithm given above.

Definition 7.1 (A proper online PLT algorithm). Let Tt and Ht be respectively a tree
structure and a set of node classifiers trained on a sequence St using an online algorithm
A. We say that A is a proper online PLT algorithm, when for any S and t we have
that

• lj ∈ LTt iff j ∈ Lt, that is, leaves of Tt correspond to all labels observed in St,

• and Ht is exactly the same as H = IPLT.TRAIN(Tt, Aonline,St), that is, node
classifiers from Ht are the same as the ones trained incrementally by Algorithm 6
on D = St and tree Tt given as input parameter.

In other words, we require that whatever tree an online algorithm produces, the
node classifiers should be trained the same way as the tree would be know from
the very beginning of training. Thanks to that we can control the quality of each
node classifier, as we are not missing any update. Moreover, since the result of a
proper online PLT is the same as of IPLT, the same statistical guarantees apply
to both of them.

The above definition can be satisfied by a naive algorithm that stores all
observations seen so far, use them in each iteration to build a tree, and train
node classifiers with the IPLT algorithm. This approach is costly in terms of both
memory, used for storing St, and time, as all computations are run from scratch
in each iteration. Therefore, we also demand an online algorithm to be space and
time-efficient in the following sense.

Definition 7.2 (An efficient online PLT algorithm). Let Tt and Ht be respectively
a tree structure and a set of node classifiers trained on a sequence St using an online
algorithm A. Let Cs and Ct be the space and time training cost of IPLT trained on

1The same applies to xt as the number of features also increases. We keep however the vector
notation in this case, as it does not impact the description of the algorithm.

7.2 Online tree building and training of node classifiers 55

sequence St and tree Tt. An online algorithm is an efficient online PLT algorithm
when for any S and t we have its space and time complexity to be in a constant factor of
Cs and Ct, respectively.

In this definition, we abstract from the actual implementation of IPLT. In
other words, the complexity of an efficient online PLT algorithm depends directly
on design choices for an IPLT. Let us recall that the training cost for a single
training observation can be expressed by (6.1), as discussed in Chapter 6. By
summing it over all observations in St, we obtain the cost Ct of an IPLT. The
space complexity is upper-bounded by 2m− 1 (the maximum number of node
models), but it also depends on the chosen type of node models and the way of
storing them (see Chapter 8 for a detailed discussion on implementation choices).
Let us also notice that the definition implies that the update of a tree structure has
to be in a constant factor of the training cost of a single instance, given by (6.1).

7.2 Online tree building and training of node classifiers

Below we describe an online algorithm that, as we show in the next subsection,
satisfies both properties defined above. It is similar to the conditional probability
tree (CPT) [Beygelzimer et al., 2009a], introduced for multi-class problems and
binary trees, but extends it to multi-label problems and trees of any arity. We
refer to this algorithm as OPLT.

The pseudocode is presented in Algorithms 7-12. In a nutshell, OPLT pro-
cesses observations from S sequentially, updating node classifiers. For new
incoming labels it creates new nodes according to a chosen tree building policy
which is responsible for the main logic of the algorithm. Each new node v is
associated with two classifiers, a regular one η̂(v) ∈ HT , and an auxiliary one
θ̂(v) ∈ ΘT , where HT and ΘT denote the corresponding sets of node classifiers.
The task of the auxiliary classifiers is to accumulate positives updates. The algo-
rithm uses them later to initialize classifiers in new nodes added to a tree. They
can be removed if a given node will not be used anymore to extend the tree. A
particular criterion for removing an auxiliary classifier depends, however, on a
tree building policy.

OPLT.TRAIN, outlined in Algorithm 7, administrates the entire process. It
first initializes a tree with a root node rT only and creates two corresponding clas-
sifiers, η̂(vrT) and θ̂(vrT). Notice that the root has both classifiers initialized from
the very beginning without a label assigned to it. Thanks to this, the algorithm
can properly estimate the probability of P(Lx = ∅ |x). Observations from S are
processed sequentially in the main loop of OPLT.TRAIN. If a new observation
contains one or more new labels then the tree structure is appropriately extended
by calling UPDATETREE. The node classifiers are updated in UPDATECLASSI-
FIERS. After each iteration t, the algorithm sends HT along with the tree structure
T , respectively as Ht and Tt, to be used outside the algorithm for prediction tasks.

56 7 Online PLT

We assume that tree T along with sets of its all nodes VT and leaves LT , as well
as sets of classifiers HT and ΘT , are accessible to all subroutines discussed below.

Algorithm 7 OPLT.TRAIN(S, Aonline, Apolicy)

1: rT = NEWNODE(), VT = {rT } . Create the root of the tree
2: η̂(rT) = NEWCLASSIFIER(), HT = {η̂T (rT)} . Initialize a new classifier in the root
3: θ̂(rT) = NEWCLASSIFIER(), ΘT = {θ(rT)} . Initialize a root auxiliary classifier
4: for (xt,Lxt) ∈ S do . For each observation in S
5: if Lxt \ Lt−1 6= ∅ then . If the observation contains new labels
6: UPDATETREE(xt,Lxt

, Apolicy) . Add them to the tree

7: UPDATECLASSIFIERS(xt,Lxt , Aonline) . Update the classifiers
8: send Ht, Tt = HT , VT . Send the node classifiers and the tree structure.

v

v1

v2

y1

v3

y2

v

v

y2

v

y3

r

v1

v2

y1

v3

y2

v′′1

y5

v

v

y2

v

y3

(a) Tree Tt−1 after t−1 itera-
tions.

(b) Variant 1: A leaf node v′′1
for label j added as a child of
an internal node v1.

v

v1

v′1

v2

y1

v3

y2

v′′1

y5

v

v

y2

v

y3

v

v1

v2

v′2

y1

v′′2

y5

v3

y2

v

v

y2

v

y3

(c) Variant 2: A leaf node v′′1
for label j and an internal
node v′1 (with all children of
v1 reassigned to it) added as
children of v1.

(d) Variant 3: A leaf node v′′2
for label j and a leaf node v′2
(with a reassigned label of v2)
added as children of v2.

Figure 7.1: Three variants of tree extension for a new label j.

Algorithm 8, UPDATETREE, builds the tree structure. It iterates over all new
labels from Lx. If there were no labels in the sequence S before, the first new
label taken from Lx is assigned to the root note. Otherwise, the tree needs to be
extended by one or two nodes according to a selected tree building policy. One of
these nodes is a leaf to which the new label will be assigned. There are in general
three variants of performing this step illustrated in Figure 7.1. The first one is
selecting an internal node v whose number of children is lower than the accepted
maximum, and adding to it a child node v′′ with the new label assigned to it. In
the second one, two new child nodes, v′ and v′′, are added to a selected internal
node v. Node v′ becomes a new parent of child nodes of the selected node v,

7.2 Online tree building and training of node classifiers 57

that is, the subtree of v is moved down by one level. Node v′′ is a leaf with the
new label assigned to it. The third variant is a modification of the second one.
The difference is that the selected node v is a leaf node. Therefore there are no
children nodes to be moved to v′, but label of v is reassigned to v′. The Apolicy

method encodes the tree building policy, that is, it decides which of the three
variants to follow and selects the node v. The additional node v′ is inserted by
the INSERTNODE method. Finally, a leaf node is added by the ADDLEAF method.
We discuss the three methods in more detail below.

Algorithm 8 OPLT.UPDATETREE(x,Lx, Apolicy)

1: for j ∈ Lx \ Lt−1 do . For each new label in the observation
2: if LT is ∅ then . If no labels have been seen so far
3: LABEL(rT) = j . Assign label j to the root node
4: else . If there are already labels in the tree.
5: v, insert = Apolicy(x, j,Lx) . Select a variant of extending the tree
6: if insert then INSERTNODE(v) . Insert an additional node if needed.
7: ADDLEAF(j, v) . Add a new leaf for label j.

Apolicy returns the selected node v and a Boolean variable insert which in-
dicates whether an additional node v′ has to be added to the tree. For the first
variant, v is an internal node and insert is set to false. For the second variant, v is
an internal node and insert is set to true. For the third variant, v is a leaf node and
insert is set to true. In general, the policy can be guided by x, current label j, and
set Lx of all labels of x. As an instance of the tree building policy, we consider,
however, a much simpler method presented in Algorithm 9. It creates a b-ary
complete tree. In this case, the selected node is either the leftmost internal node
with the number of children less than b or the leftmost leaf of the lowest depth.
The insert variable is then false or true, respectively. So, only the first and third
variants occur here. Notice, however, that this policy can be efficiently performed
in amortized constant time per label if the complete tree is implemented using a
dynamic array with doubling. Nevertheless, more advanced and computation-
ally complex policies can be applied. As mentioned before, the complexity of
this step should be at most proportional to the complexity of updating the node
classifiers for one label, that is, it should be proportional to the depth of the tree.

Algorithm 9 BUILDCOMPLETETREE(b)

1: array = T.array . Let nodes of complete tree T be stored in a dynamic array T.array

2: s = array.length . Read the number of nodes in T
3: pa = d sbe − 1 . Index of a parent of a next added node; the array is indexed from 0
4: v = array(pa) . Get the parent node
5: return v, ISLEAF(v) . Return the node and whether it is a leaf.

The INSERTNODE and ADDLEAF procedures involve specific operations con-
cerning the initialization of classifiers in the new nodes. INSERTNODE is given
in Algorithm 10. It inserts a new node v′ as a child of the selected node v. If
v is a leaf then its label is reassigned to the new node. Otherwise, all children
of v become the children of v′. In both cases, v′ becomes the only child of v.

58 7 Online PLT

Figure 7.1 illustrates inserting v′ as either a child of an internal node (c) or a leaf
node (d). Since, the node classifier of v′ aims at estimating η(x, v′), defined as
P(zv′ = 1 | zpa(v′) = 1,x), its both classifiers, η̂(v′) and θ̂(v′), are initialized as
copies (by calling the COPY function) of the auxiliary classifier θ̂(v) of the parent
node v. Recall that the task of auxiliary classifiers is to accumulate all positive
updates in nodes, so the conditioning zpa(v′) = 1 is satisfied in that way.

Algorithm 10 OPLT.INSERTNODE(v)

1: v′ = NEWNODE(), VT = VT ∪ {v′} . Create a new node and add it to the tree nodes
2: if ISLEAF(v) then . If node v is a leaf
3: LABEL(v′) = LABEL(v), LABEL(v) = NULL . Reassign label of v to v′

4: else . Otherwise
5: Ch(v′) = Ch(v) . All children of v become children of v′

6: for vch ∈ Ch(v′) do pa(vch) = v′ . And v′ becomes their parent

7: Ch(v) = {v′}, pa(v′) = v . The new node v′ becomes the only child of v
8: η̂(v′) = COPY(θ̂(v)), HT = HT ∪ {η̂(v′)} . Create a classifier.
9: θ̂(v′) = COPY(θ̂(v)), ΘT = ΘT ∪ {θ̂(v′)} . And an auxiliary classifier.

Algorithm 11 outlines the ADDLEAF procedure. It adds a new leaf node v′′

for label j as a child of node v . The classifier η̂(v′′) is created as an “inverse” of
the auxiliary classifier θ̂(v) from node v. More precisely, the INVERSECLASSIFIER

procedure creates a wrapper inverting the behavior of the base classifier. It
predicts 1 − η̂, where η̂ is the prediction of the base classifier, and flips the
updates, that is, positive updates become negative and negative updates become
positive. Finally, the auxiliary classifier θ̂(v′′) of the new leaf node is initialized.

Algorithm 11 OPLT.ADDLEAF(j, v)

1: v′′ = NEWNODE(), VT = VT ∪ {v′′} . Create a new node and add it to the tree nodes
2: Ch(v) = Ch(v) ∪ {v′′}, pa(v′′) = v . Add this node to children of v.
3: LABEL(v′′) = j . Assign label j to the node v′′

4: η̂(v′′) = INVERSECLASSIFIER(θ̂(v)), HT = HT ∪ {η̂(v′′)} . Initialize a classifier for v′′

5: θ̂(v′′) = NEWCLASSIFIER(), ΘT = ΘT ∪ {θ̂(v′′)} . Initialize an auxiliary classifier for
v′′

The final step in the main loop of OPLT.TRAIN updates the node classifiers.
The regular classifiers, η̂(v) ∈ HT , are updated exactly as in IPLT.TRAIN given
in Algorithm 6. The auxiliary classifiers, θ(v) ∈ ΘT , are updated only in positive
nodes according to their definition and purpose.

Algorithm 12 OPLT.UPDATECLASSIFIERS(x,Lx, Aonline)

1: (P,N) = ASSIGNTONODES(T,x,Lx) . Compute its positive and negative nodes
2: for v ∈ P do . For all positive nodes
3: Aonline .UPDATE(η̂(v), (x, 1)) . Update classifiers with a positive update with x.
4: if θ̂(v) ∈ Θ then . Update auxiliary classifier if it exists.
5: Aonline .UPDATE(θ̂(v), (x, 1)) . With a positive online update with xi.

6: for v ∈ N do . For each negative node
7: Aonline .UPDATE(η̂(v), (x, 0)) . Update classifiers with a negative update with x.

7.3 Theoretical analysis of OPLT 59

7.3 Theoretical analysis of OPLT

The OPLT algorithm has been designed to satisfy the properness and efficiency
property of online probabilistic label trees. The theorem below states this fact
formally.

Theorem 7.3. OPLT is a proper and efficient OPLT algorithm.

The proof is quite technical and we present it in Appendix A.7. To show the
properness, it uses induction for both the outer and inner loop of the algorithm,
where the outer loop iterates over observations (xt,Lxt), while the inner loop
over new labels in Lxt . The key elements used to prove this property are
the use of the auxiliary classifiers and the analysis of the three variants of the
tree structure extension. The efficiency is proved by noticing that each node
has two classifiers, and the algorithm creates and updates no more than one
additional classifier per node comparing to IPLT. Moreover, any node selection
policy which cost is proportional to the cost of updating IPLT classifiers for a
single label meets the efficiency requirement. Particularly, the policy building a
complete tree presented above satisfies this constraint.

The OPLT algorithm aims at constructing the node classifiers in such a way
that its properness can be met by a wide range of tree building policies. The
naive complete tree policy was introduced mainly for ease of presentation. One
can, for example, easily adapt and further extend the policy originally used in
CPT [Beygelzimer et al., 2009a]. In short, the CPT policy selects a node v which
trade-offs balancedness of the tree and a fit of x, that is, the value of η̂v(x). Since
it works with binary trees only, the policy uses solely the third variant of the
tree extension. Moreover, it was designed for multi-class problems. In [Jasinska-
Kobus et al., 2020c] we have considered such an extension. From this point of
view, the presented framework significantly extends CPT. It solves both types
of problems, multi-class and multi-label, and can be used with more advanced
policies that exploit all three variants of the tree extension.

8
Implementation

In this chapter, we discuss the possibilities of implementation of PLTs. We
first recall several existing packages implementing this approach, and briefly
characterize their design. Then we analyze possible design choices in detail.

8.1 Popular PLT packages

There are several packages implementing the PLT model, for example, XMLC-
PLT [Jasinska et al., 2016],1 PLT-VW,2 PARABEL [Prabhu et al., 2018],3 EX-
TREMETEXT [Wydmuch et al., 2018],4 ATTENTIONXML [You et al., 2019],5 BON-
SAI [Khandagale et al., 2019],6 or NAPKINXC [Jasinska-Kobus et al., 2020b].7

In the following sections, we discuss the differences between them in terms of
training of node classifiers, dealing with sparse and dense features, efficient
prediction, tree structure learning, and ensembling. Table 8.1 summarizes the
differences between the discussed implementations. At the end of this chapter we
also shortly discuss a different approach to obtain η̂v(x), which uses multi-class
probability estimation instead of binary probability estimation.

1https://github.com/busarobi/XMLC
2https://github.com/VowpalWabbit/vowpal_wabbit
3http://manikvarma.org/code/Parabel/download.html
4https://github.com/mwydmuch/extremeText
5https://github.com/yourh/AttentionXML
6https://github.com/xmc-aalto/bonsai
7https://github.com/mwydmuch/napkinXC

https://github.com/busarobi/XMLC
https://github.com/VowpalWabbit/vowpal_wabbit
http://manikvarma.org/code/Parabel/download.html
https://github.com/mwydmuch/extremeText
https://github.com/yourh/AttentionXML
https://github.com/xmc-aalto/bonsai
https://github.com/mwydmuch/napkinXC

62 8 Implementation

Implementation node represen- prediction tree ensem-
classifiers tation structure bling

XMLC-PLT/ online sparse online/ complete tree no
PLT-VW unif.-cost search based on freq.
PARABEL batch sparse batch/ balanced yes

beam search h. 2-means
BONSAI batch sparse batch/ unbalanced yes

beam search h. k-means
EXTREMETEXT online dense online/ h. k-means yes

unif.-cost search.
ATTENTIONXML online & dense batch & leveled/ shallow no

leveled beam search h. k-means
NAPKINXC both both online/ any yes

unif.-cost search,
thresholds-based

Table 8.1: Comparison of different implementations of the PLT model in terms of node
classifiers (online, batch, or both), representation of features (sparse, dense, both), pre-
diction algorithm (online, batch, leveled/beam search, uniform cost search, thresholds-
based), tree structure learning (complete tree based on frequencies, hierarchical k means,
their shallow variant, or any), ensembling (yes, no). All the options are described in text.

8.2 Training of node classifiers

Given the tree structure, the node classifiers of PLTs can be trained either in
online or batch mode. Both training modes have their pros and cons. The batch
variant, implemented for example in PARABEL, can benefit from using well-
known batch solvers, such as LIBLINEAR [Fan et al., 2008]. These variants are
relatively easy to train and achieve high predictive performance. Moreover, each
model can be trained independently which enables a simple parallelization of
training.

In turn, the online variant, such as XMLC-PLT, PLT-VW, or EXTREMETEXT,
can be applied to stream data. However, all those implementations demand a
tree structure to be known prior to the training of node classifiers. Nevertheless,
the online node learners give the possibility of combining them with the online
tree construction, as discussed in the previous section. Moreover, they can benefit
from using deep networks to learn a complex representation of input instances.
Parallelization can be performed similarly as in the case of batch models. If
additional conflicts during updates of the node models are accepted, we can
apply parallelization on the level of single observation as in EXTREMETEXT. Each
thread consumes a part of the training observations and updates the model
allocated in shared memory.

NAPKINXC follows a modular design, therefore it can be used with either
batch or online node learners. In the latter case, it has an implemented function-
ality of collaborating with external learners to exchange forward and backward
signals. It also supports the online tree construction.

8.3 Sparse features 63

8.3 Sparse features

For problems with sparse features, such as text classification, PLTs can be effi-
ciently implemented using different approaches. One is training a dense model
using the sparse observations efficiently transformed into dense ones when nec-
essary, and then storing the model in a sparse representation. For example, in the
popular LIBLINEAR package, the observations are kept in the original sparse
format, but for efficiency, internal operations use dense vectors, and the resulting
model is also dense. This model can be stored as a sparse one, either if it was
trained with L1 regularization, or after removal of weights being close to zero in
the case of L2 regularization. Such an approach is applied in DISMEC [Babbar
and Schölkopf, 2017]. Since the node classifiers can be trained independently, the
runtime memory of this approach can also be optimized.

An alternative is sparse learning algorithms. Such algorithms follow usu-
ally the online/incremental learning paradigm, in which training observations
are processed sequentially one-by-one. Examples of such algorithms are Fo-
bos [Duchi and Singer, 2009] or AdaGrad [Duchi et al., 2011]. To store and update
weights one may use either hash maps or feature hashing [Weinberger et al.,
2009]. The latter, implemented for example in the popular VOWPAL WABBIT

package [Langford et al., 2007], allocates constant memory space for features
weights. Since the allocated space might be too small, conflicts can exist between
different weights. They are not resolved, that is, the weight is shared by all
conflicting features. If used with PLTs, the allocated memory may be shared by
all node models. In the case of hash maps, one needs to reallocate the memory if
the map is nearly full. NAPKINXC follows the ROBIN HOOD HASHING [Celis
et al., 1985] which allows doing very efficient insert and find operations, having
at the same time minimal memory overhead. It uses open addressing, but com-
pared to hash maps with linear and quadratic probing, it significantly reduces
the expected average and maximum probe lengths. This is achieved by shifting
the keys around in such a way that all keys stay reasonably close to the slot they
hash to. When a new element is inserted, if the probe length for the existing
element is less than the current probe length for the element being inserted,
ROBIN HOOD swaps the two elements and continues the procedure. This results
in much lower average probe lengths as well as its variance. This also allows
using a straightforward lookup algorithm that ignores empty slots and keeps
looking for a key until it reaches the known maximum probe length for the whole
table. This property also allows using high load factors (higher than 0.9). Since it
uses open addressing, the memory usage for the whole map is very close to the
memory needed to store its content as a sparse vector.

Interestingly, for sparse data, the sparsity of weights increases with the depth
of a tree. This implies a significant reduction of space of the final PLT model.
Paradoxically, this reduction can be the largest in the case of binary trees, al-
though the number of nodes is the highest in this case, (equal to 2m− 1, being
as much as twice the number of models in the 1-VS-ALL approach). This is

64 8 Implementation

because the models use only non-zero features of the sibling nodes, and there are
only two such nodes in binary trees. No other features are needed to build the
corresponding classifiers.

8.4 Dense features

PLTs can also work with dense features. However, the dimensionality of the
feature space cannot be too high, otherwise, the memory used for models would
be too large. The dense representation is usually connected with deep or shallow
neural networks.

One possibility is to use pre-trained embeddings. For text classification, one
can use word representations trained by WORD2VEC [Mikolov et al., 2013] or
GLOVE [Pennington et al., 2014] on large text corpora. The document repre-
sentation can be then created from the word representations in many ways, for
example, by taking the average, maximum or minimum value of each element
of the embeddings [De Boom et al., 2016]. Alternatively, the word embeddings
can be trained simultaneously with the node classifiers, similarly to in FAST-
TEXT [Joulin et al., 2017]. This approach is adopted in EXTREMETEXT. Another
option is to initialize the network with the pre-trained embeddings and then
update all the parameters of both the node classifiers and word representations.

To improve the representation of the documents, instead of a simple aggre-
gation over words, one can use word embeddings and a more advanced deep
architecture, such as LSTM [Hochreiter and Schmidhuber, 1997] or the text-based
convolution neural network [Liu et al., 2017]. PLTs can be used as the output
layer of such architecture. However, in the case of GPU-based training, one may
not observe any speedup compared to a simple linear output layer, as matrix
multiplication using GPUs is efficient. Nevertheless, in the case of complex and
memory-intensive approaches, PLTs can be used to decompose the problem in
such a way that computation is performed level-by-level in a tree, with additional
decomposition possible on a given level. All the layers except the PLT one (output
of the network) are initialized using the trained values from the preceding level.
This idea is followed by ATTENTIONXML [You et al., 2019].

8.5 Prediction

The top-k prediction, discussed in Section 4.3 as Algorithm 4, is a variant of the
uniform-cost search. It is used in XMLC-PLT, EXTREMETEXT, and NAPKINXC. It
is very efficient for online prediction, as we discussed in Chapter 6. The algorithm
also allows extending k at any time, without re-running the procedure. If one
does not need to change k, the algorithm can be improved by adding to the
priority queue only the nodes with probability greater than the probability of the

8.6 Tree structure 65

k-th top leaf already added to the queue. Also, the threshold-based prediction
Algorithm 3, or beam-search-based Algorithm 5, can be easily implemented in
the online setting. However, in the case of sparse models, online prediction
requires the models to be stored either in hash maps or by feature hashing to
allow efficient random access to model weights.

Unpacking a sparse model to dense representation can be very costly in the
case of online prediction. However, if a node classifier is unpacked only once for
a number of test instances, for sufficiently large batches, the dense representation
may be beneficial, as it allows efficient computation of the dot products. Such
batch variants of prediction methods need to be used in PARABEL, due to its
model representation. PARABEL uses batch beam search [Prabhu et al., 2018]. The
batch version of the uniform-cost search [Jasinska, 2018] is given in Appendix B.1.
Also, the threshold-based prediction Algorithm 3 could easily be implemented
in the batch mode. Batch beam search unpacks each node classifier at most
once, while uniform-cost search may need to unpack a node several times for
different subsets of the batch. Therefore in certain cases, batch beam search may
be more computationally efficient than batch uniform-cost search. In the case
of memory-intensive deep models, such as ATTENTIONXML, the prediction is
usually performed level-by-level in batches, similarly to training, and, therefore,
it uses batch beam search. Nevertheless, the batch variant of uniform-cost search
also could be used in such setting. If models are dense and they can be all loaded
to the main memory, then both online and batch methods perform similarly in
terms of computational times.

Finally, notice that uniform-cost search finds the exact top-k labels with the
highest estimated conditional probabilities, visiting the least possible number
of nodes (required to ensure that the predictions are exact). On the other hand,
beam search is an approximate method and it may not find the actual top-k
labels. Therefore it may suffer regret for precision@k [Zhuo et al., 2020], while
uniform-cost search based prediction gives a non-regret prediction. Moreover,
given a beam size large enough to reach predictive performance competitive to
uniform-cost search, beam search may visit more nodes than necessary.

8.6 Tree structure

The tree structure of a PLT is a crucial modeling decision. The theoretical results
from Chapter 5 concerning the vanishing regret of PLT hold regardless of the
tree structure, however, this theory requires the regret of the node classifiers also
to vanish. In practice, we can only estimate the conditional probabilities in the
nodes, therefore the tree structure does indeed matter as it affects the difficulty
of the node learning problems. In Chapter 7, we already discussed the problem
of building a tree in the online setting. Here, we focus on batch approaches
which assume that labels are known. The original PLT paper [Jasinska et al.,
2016] uses simple complete trees with labels assigned to leaves according to their

66 8 Implementation

frequencies. Another option, routinely used in HSM [Joulin et al., 2017], is the
Huffman tree built over the label frequencies. Such a tree takes into account
the computational complexity by putting the most frequent labels close to the
root. This approach has been further extended to optimize GPU operations
in [Grave et al., 2017]. Unfortunately, for multi-label classification the Huffman
tree is no longer optimal in terms of computational cost. As already mentioned
in Chapter 6, the problem of optimization of the tree structure with respect to
the computational complexity of PLTs has been analyzed by Busa-Fekete et al.
[2019]. Furthermore, Huffman trees ignore the statistical properties of the tree
structure. There exist, however, other methods that focus on building a tree with
high overall accuracy.

The method of [Prabhu et al., 2018] performs a simple top-down hierarchical
clustering. Each label in this approach is represented by a profile vector being an
average of the training vectors tagged by this label. Then the profile vectors are
clustered using balanced k-means which divides the labels into two or more clus-
ters of approximately the same size. This procedure is then repeated recursively
until the clusters are smaller than a given value (for example, 100). The nodes of
the resulting tree are then of various arities. The internal nodes up to the pre-leaf
nodes have k children, but the pre-leaf nodes are usually of higher arity. Thanks
to this clustering, similar labels are close to each other in the tree. Moreover,
the tree is balanced, so its depth is logarithmic in terms of the number of labels.
Variants of this method have been used in PARABEL [Prabhu et al., 2018] (with
k = 2), EXTREMETEXT [Wydmuch et al., 2018], NAPKINXC [Jasinska-Kobus et al.,
2020a], BONSAI TREES [Khandagale et al., 2019] and ATTENTIONXML [You et al.,
2019]. The two latter algorithms promote shallow trees, that is, trees of a much
higher arity.

8.7 Ensemble of PLTs

Various ensemble techniques, such as bagging, are routinely applied with tree-
based learners. A simple ensemble approach can also be implemented for PLTs.
To produce a diverse ensemble, one can use several PLT instances with different
tree structures, but sharing the feature space. Such various tree structures can
be obtained using k-means-based top-down hierarchical clustering several times
with different initialization. Depending on the tree structure, the accuracy of a
single PLT for specific labels may vary. Thus the aggregation of predictions of
this diverse pool of PLTs should lead to improvement of the overall predictive
performance.

There exist various aggregation strategies. Consider top-k prediction. PARA-
BEL for a single tree uses beam search with beam B. Then, the predictions of
trees, each consisting of B (or B degT) predictions of labels with their probability
estimates, are averaged and sorted. However, such inference with multiple PLTs
can be performed with another strategy, which can be efficiently implemented in

8.8 Node probabilities via multi-class classification 67

NAPKINXC. First, each tree is queried for its top-k predictions, obtained using
uniform-cost search. If a label does not have a probability estimate from a given
tree (it is not included in the top-k predictions), then the missing estimate is
computed by traversing a single path corresponding to the label in the relevant
tree. Finally, the average predictions for labels are computed. The good trade-
off between the improvement of the predictive performance and the required
computational resources is usually obtained by about 3 or 5 trees.

8.8 Node probabilities via multi-class classification

So far we assumed that each node v ∈ V is associated with a binary probabilistic
classifier that estimates ηv(x). As already mentioned in Section 4.3, this may
require the additional normalization step (4.9), as all models of siblings nodes are
trained independently. To avoid this problem, one can train a joint multi-class
classifier over the sibling nodes. Let v ∈ V be a parent of the sibling nodes Ch(v).
Then, the class labels of the multi-class problem correspond to binary codes of
vector c whose elements correspond to zv′ , v′ ∈ Ch(v). The classifier estimates
P(c |x, zv = 1), for all c ∈ {0, 1}|Ch(v)|. Probability ηv′(x), for v′ ∈ Ch(v), is
obtained by proper marginalization of the multi-class distribution over vectors c:

ηv′(x) =
∑
zv′=1

P(c |x, zv = 1) .

This approach has been proposed in PARABEL [Prabhu et al., 2018]. However, it
can be applied only to trees of small arity, as the number of class labels grows
exponentially with the number of sibling nodes.

9
Empirical validation of PLTs

In this chapter, we present a wide empirical study performed to comprehensively
evaluate the described algorithms and theoretical findings. In the first part of
the study, we analyze different design choices for PLTs. In the next part, we
evaluate PLTs in terms of Hamming loss, micro- and macro-F measure, to verify
our theoretical results concerning generalized performance metrics. Later, we
empirically confirm the suboptimality of hierarchical softmax with pick-one-label
heuristic. The next experiment studies the performance of the fully online variant
of PLTs, in which both node classifiers and tree structure are built incrementally
on a sequence of training observations. Finally, we compare PLTs to relevant
state-of-the-art algorithms.

9.1 Experimental setting

In the experiments evaluating the predictive performance, we mainly report the
results in terms of precision@k, as this is the most used metric in XMLC area.
Moreover, as shown in Chapter 5, PLTs are well-suited for this metric. To evaluate
the computational performance, we also present training and test times, as well
as memory consumption. Whenever it is necessary, we repeat the experiment
5 times to eliminate the impact of the randomness of algorithms. In such cases,
we report the mean performance along with standard errors. All computations
have been conducted on an Intel Xeon E5-2697 v3 2.60GHz (14 cores) machine
with 128GB RAM.1 In most experiments, we use TF-IDF versions of the real-word
benchmark data sets from the Extreme Classification Repository [Bhatia et al.,
2016],2 for which we use the original train and test splits. Table 9.1 gives basic
statistics of the data sets.

1Computational experiments have been performed in Poznan Supercomputing and Networking
Center.

2http://manikvarma.org/downloads/XC/XMLRepository.html

http://manikvarma.org/downloads/XC/XMLRepository.html

70 9 Empirical validation of PLTs

Dataset dimX dimY (m) Ntrain Ntest avg. |Lx|

EurLex-4K 5000 3993 15539 3809 5.31
AmazonCat-13K 203882 13330 1186239 306782 5.04
Wiki10-30K 101938 30938 14146 6616 18.64
DeliciousLarge-200K 782585 205443 196606 100095 75.54
WikiLSHTC-325K 1617899 325056 1778351 587084 3.19
WikipediaLarge-500K 2381304 501070 1813391 783743 4.77
Amazon-670K 135909 670091 490449 153025 5.45
Amazon-3M 337067 2812281 1717899 742507 36.17

Table 9.1: The number of unique features, labels, observations in train and test splits,
and the average number of true labels per observation in the benchmark data sets.

9.2 PLTs with different design choices

We analyze different design choices for PLTs. To this end, we use NAPKINXC,
as it allows us to do experiments with different settings. However, whenever a
given configuration agrees with an existing PLT implementation, we use this
one in the experiment. This is the case of PARABEL and EXTREMETEXT. The
former uses a dual coordinate descent method from LIBLINEAR with squared
hinge loss to train node classifiers. It uses weight pruning at threshold 0.1, that
is, it sets model weights lower than 0.1 to zero. The prediction algorithm is
based on the beam search. EXTREMETEXT is built over FASTTEXT [Grave et al.,
2017]. It uses dense representation, shared by all nodes, which is a result of a
1-layer network implementing the CBOW architecture [Mikolov et al., 2013]. This
representation is trained along with the node models using stochastic gradient
descent with L2 regularization and logistic loss. Both implementations use
hierarchical k-means clustering. PARABEL uses k = 2, while EXTREMETEXT

allows using different values of k. Both use pre-leaves of high degree equal to
100. In the experiment, we do not use ATTENTIONXML, as it uses a complex
deep architecture requiring GPUs and requires raw textual data. By comparing
the results from the original paper [You et al., 2019], we admit that it achieves the
best results among PLT-based approaches. Nevertheless, in this study, we focus
on efficient CPU implementations and the TF-IDF versions of the benchmark
data sets.

We start with a comparison of batch and incremental learning of node clas-
sifiers. For both, we use logistic and squared hinge loss. Next, we compare
different methods of prediction: uniform-cost search based and beam search
based, both in online and batch implementations. We then compare training
and prediction with sparse and dense representation. In the next experiment,
we analyze different tree-building strategies. Finally, we check the impact of
ensembling.

9.2 PLTs with different design choices 71

Optimizer p@1 [%] p@3 [%] p@5 [%] Ttrain [h] T/Ntest [ms] Msize [GB]

EurLex-4K

NXC-B,log 80.51±0.16 65.65±0.40 53.33±0.68 0.02±0.00 0.39±0.03 0.02±0.00
NXC-B,s.h. 80.17±0.27 65.33±0.53 53.01±0.87 0.01±0.00 0.24±0.02 0.00±0.00
NXC-I,log 80.43±0.09 66.08±0.26 53.87±0.58 0.01±0.00 0.25±0.02 0.05±0.00
NXC-I,s.h. 78.72±0.18 61.54±0.34 48.09±0.51 0.01±0.00 0.33±0.03 0.03±0.00

AmazonCat-13K

NXC-B,log 93.04±0.02 78.44±0.02 63.70±0.02 0.72±0.02 0.32±0.03 0.35±0.00
NXC-B,s.h. 92.40±0.04 78.49±0.02 63.88±0.02 0.29±0.00 0.19±0.00 0.19±0.00
NXC-I,log 93.23±0.02 78.76±0.03 64.05±0.02 0.17±0.00 0.32±0.02 0.72±0.00
NXC-I,s.h. 92.62±0.05 76.39±0.06 60.67±0.06 0.16±0.00 0.38±0.01 0.55±0.00

Wiki10-30K

NXC-B,log 85.36±0.09 73.90±0.07 63.84±0.07 0.21±0.00 5.35±0.32 0.58±0.00
NXC-B,s.h. 84.17±0.10 72.43±0.10 63.12±0.04 0.11±0.00 2.87±0.08 0.06±0.00
NXC-I,log 84.92±0.10 74.52±0.09 65.29±0.04 0.11±0.00 5.24±0.42 0.91±0.00
NXC-I,s.h. 85.64±0.10 70.37±0.09 59.43±0.13 0.10±0.00 7.19±0.06 0.35±0.00

DeliciousLarge-200K

NXC-B,log 49.55±0.05 43.08±0.03 39.90±0.02 2.58±0.15 9.89±0.89 0.95±0.00
NXC-B,s.h. 46.30±0.07 39.76±0.08 36.54±0.07 5.51±0.29 10.07±0.23 1.82±0.00
NXC-I,log 45.27±0.06 38.26±0.03 34.88±0.02 2.97±0.03 11.51±0.57 15.05±0.00
NXC-I,s.h. 45.29±0.34 38.15±0.50 34.44±0.58 3.13±0.10 27.11±1.55 9.59±0.00

WikiLSHTC-325K

NXC-B,log 61.96±0.03 40.77±0.02 30.19±0.02 2.95±0.15 1.77±0.11 2.73±0.00
NXC-B,s.h. 62.78±0.03 41.17±0.02 30.25±0.02 1.60±0.06 0.86±0.06 0.97±0.00
NXC-I,log 60.99±0.04 39.85±0.02 29.50±0.01 1.52±0.00 2.44±0.02 4.93±0.00
NXC-I,s.h. 59.55±0.05 37.33±0.04 27.02±0.03 1.41±0.05 1.70±0.17 3.64±0.00

WikipediaLarge-500K

NXC-B,log 66.20±0.05 47.14±0.02 36.83±0.01 16.10±0.44 6.67±0.23 8.89±0.00
NXC-B,s.h. 66.77±0.08 47.63±0.04 36.94±0.02 9.48±0.33 2.86±0.07 1.78±0.00
NXC-I,log 65.68±0.15 46.62±0.09 36.52±0.06 8.11±0.18 7.86±0.19 19.11±0.00
NXC-I,s.h. 65.05±0.08 44.35±0.03 33.74±0.05 8.22±0.06 6.66±0.06 24.71±0.00

Amazon-670K

NXC-B,log 43.54±0.01 38.71±0.02 35.15±0.03 0.56±0.00 4.13±0.28 2.26±0.00
NXC-B,s.h. 43.31±0.03 38.19±0.03 34.31±0.03 0.40±0.01 1.32±0.08 0.63±0.00
NXC-I,log 43.82±0.01 38.88±0.03 35.31±0.03 0.42±0.00 5.93±0.11 6.22±0.00
NXC-I,s.h. 41.46±0.02 36.16±0.04 32.34±0.03 0.41±0.00 2.08±0.17 5.26±0.00

Amazon-3M

NXC-B,log 46.09±0.02 43.11±0.01 40.98±0.01 7.07±0.56 3.26±0.08 20.84±0.00
NXC-B,s.h. 46.23±0.01 43.48±0.01 41.41±0.01 5.44±0.13 1.96±0.05 9.86±0.00
NXC-I,log 43.61±0.12 40.44±0.09 38.32±0.06 4.44±0.10 4.42±0.00 52.16±0.00
NXC-I,s.h. 43.73±0.07 40.19±0.06 37.75±0.05 4.45±0.04 11.03±0.02 24.77±0.01

Table 9.2: Comparison of NAPKINXC (NXC) with different modes of node classifiers
training. We perform batch LIBLINEAR (B) or incremental ADAGRAD (I) training with
logistic loss (log) or squared hinge loss (s.h.).

9.2.1 Batch and incremental learning

For batch learning, we use LIBLINEAR, the dual coordinate descent method,
with either logistic loss or squared hinge loss. We use L2 regularization for
both and tune its C parameter for each data set. For incremental learning, we
use ADAGRAD [Duchi et al., 2011] with 3 epochs and tune the base learning
rate ε for each data set. As above, we use either logistic loss or squared hinge
loss. In all algorithms, we prune the weights at 0.1 to obtain smaller models
and use uniform-cost search to obtain top-k predictions. Let us point out that
the configuration based on LIBLINEAR with squared hinge loss is similar to

72 9 Empirical validation of PLTs

PARABEL. The difference is that PARABEL uses beam search, thus we run the
implementation from NAPKINXC here.

The results are given in Table 9.2. None of the configurations strictly dom-
inates the others. It seems, however, that ADAGRAD with squared hinge loss
usually performs the worst. This agrees with the fact that stochastic gradient
approaches perform usually better with logistic loss. This configuration also leads
to models with substantially longer testing times. In turn, significantly larger
models for some data sets are built by ADAGRAD with logistic loss, while the
training time can be doubled by LIBLINEAR with the same loss. It seems from
this analysis that the batch training with squared hinge loss is the most reliable,
without outlying results. Moreover, it performs the best on both WIKIPEDIA data
sets. Nevertheless, incremental learning is a valid competitor that can be easily
combined with training of dense representation or online tree structure building.

9.2.2 Prediction methods

We compare two prediction algorithms, uniform-cost search and beam search,
and for each of them, we consider two implementations: online and batch. Online
implementations are done in NAPKINXC. It is well-suited for online predictions
and exploits efficient ROBIN HOOD hash maps to perform fast predictions. The
computational cost of online methods is independent of the number of processed
instances. PARABEL uses beam search implemented for batches of test instances.
It benefits from using larger batches of test instances. In each node it decom-
presses its sparse model to a dense form before evaluation for test instances
(see discussion on both algorithms in Section 8.5). For this experiment, we im-
plement the batch uniform-cost in PARABEL, besides the original beam search
based prediction method. Besides the prediction methods, NAPKINXC is set in
the experiment to have the same setting as PARABEL. We use a binary tree with
pre-leaf node arity equal to 100, built using hierarchical k-means clustering, and
use squared hinge loss with weight pruning at threshold 0.1. This way the PLT
models in NAPKINXC and PARABEL are as similar as possible. The small devia-
tions in the results between both models are likely caused by small differences in
their implementations and randomness. In each experiment, we use 5 different
NAPKINXC or PARABEL models and average the obtained results.

First we focus on predictive performance and computational cost of both
methods implemented online in NAPKINXC. In this experiment, we run top-
1, 3, 5 prediction with uniform-cost search and beam search prediction with beam
B = 1, 5, 10. We measure precision@1, 3, 5 and the average number of calls to
node classifiers per observation. Table 9.3 gives the measured precision. We
aggregate the results of all uniform-cost runs into a single column so that a
precision@k value corresponds to uniform-cost search retrieving at least k top-
scored leaves. Notice that for uniform-cost search, first, increasing k does not
affect the predictions up to the former k, and second, for top-k prediction only
precision up to k-th place makes sense. On the other hand, for beam search,
running with a larger beam may affect all the predictions. Uniform-cost search in

9.2 PLTs with different design choices 73

most cases obtains the highest precision among the tested methods, sometimes
on par with beam search with the beam of size 10, sometimes is slightly worse,
within the standard error. Beam search with beam equal 5 frequently does not
meet the performance of beam search with the beam of size 10 or uniform cost
search.

Prediction method u-c search beam search
B=1 B=5 B=10

p@1 [%]

EurLex-4K 80.20±0.28 73.72±0.27 80.20±0.27 80.20±0.27
AmazonCat-13K 92.39±0.05 90.29±0.20 92.44±0.06 92.44±0.06
Wiki10-30K 84.16±0.11 66.79±1.17 84.07±0.10 84.16±0.11
DeliciousLarge-200K 46.29±0.06 32.63±0.53 43.58±2.19 46.25±0.05
WikiLSHTC-325K 62.79±0.03 45.77±7.41 40.87±13.45 62.79±0.03
WikipediaLarge-500K 66.89±0.11 54.98±0.30 66.94±0.12 66.94±0.12
Amazon-670K 43.32±0.02 36.17±0.03 41.91±0.90 43.22±0.03
Amazon-3M 46.26±0.01 37.23±0.03 45.82±0.02 46.19±0.02

p@3 [%]

EurLex-4K 65.32±0.53 47.16±0.31 65.27±0.52 65.32±0.53
AmazonCat-13K 78.49±0.02 52.74±0.83 78.49±0.02 78.50±0.02
Wiki10-30K 72.43±0.11 38.78±0.41 71.79±0.17 72.41±0.11
DeliciousLarge-200K 39.71±0.07 25.02±0.61 35.53±3.26 39.63±0.08
WikiLSHTC-325K 41.18±0.02 22.13±3.44 26.58±8.76 41.16±0.02
WikipediaLarge-500K 47.69±0.06 29.22±0.16 47.33±0.07 47.70±0.06
Amazon-670K 38.20±0.02 25.68±0.03 36.52±0.82 38.03±0.02
Amazon-3M 43.47±0.01 30.87±0.02 42.75±0.01 43.35±0.01

p@5 [%]

EurLex-4K 52.98±0.88 33.39±0.26 52.84±0.86 52.98±0.88
AmazonCat-13K 63.88±0.02 35.22±0.78 63.82±0.02 63.88±0.02
Wiki10-30K 63.11±0.04 26.79±0.16 61.54±0.16 63.07±0.04
DeliciousLarge-200K 36.45±0.09 21.43±0.58 31.71±3.56 36.29±0.10
WikiLSHTC-325K 30.25±0.02 14.35±2.19 19.28±6.34 30.20±0.02
WikipediaLarge-500K 36.98±0.04 19.53±0.09 36.26±0.06 36.96±0.04
Amazon-670K 34.32±0.03 20.17±0.01 32.39±0.76 34.07±0.04
Amazon-3M 41.41±0.01 27.16±0.03 40.44±0.01 41.24±0.00

Table 9.3: Comparison of PLTs implementations using different online prediction meth-
ods: exact uniform-cost search and beam search with beam 1,5,10, all in NAPKINXC.

Let us now move on to the computational cost of these methods. Figure 9.1
gives the average number of calls to node classifiers per observation and the
average prediction time per observation, using different prediction methods.
First, let us focus on the average number of calls to node classifiers. The higher
is k, or the larger is the beam B, the more node classifiers are called. Beam
search with B = 10, suggested by Prabhu et al. [2018], calls in most cases more
classifiers than the uniform-cost search. This shows that beam search usually
needs to search more nodes, and call their classifiers, to achieve the predictive
performance of the uniform-cost search. Uniform-cost search calls more node
classifiers for DeliciousLarge-200K data set. This is caused by the large average
number of positive labels in this data set. The average prediction time per instance
mostly follows the number of calls to node classifiers. The slower growth of
the average prediction time with increasing k or B compared to the number of
visited nodes is likely caused by the increasing sparsity of models down the tree.

74 9 Empirical validation of PLTs

callstime

0

500

1,000
EurLex-4K

callstime

0

200

400

600

800

AmazonCat-13K

callstime

0

500

1,000

Wiki10-30K

callstime

0

1,000

2,000

DeliciousLarge-200K

callstime

0

500

1,000

1,500
WikiLSHTC-325K

callstime

0

500

1,000

WikipediaLarge-500K

callstime

0

500

1,000

1,500
Amazon-670K

callstime

0

500

1,000

1,500

Amazon-3M

time calls

0

0.5

1

T
/N

te
st

[m
s]

EurLex-4K

time calls

0

0.5

1

1.5

AmazonCat-13K

time calls

0

2

4

6

T
/N

te
st

[m
s]

Wiki10-30K

time calls

0

5

10

15

DeliciousLarge-200K

time calls

0

1

2

T
/N

te
st

[m
s]

WikiLSHTC-325K

time calls

0

2

4

6

8

WikipediaLarge-500K

time calls

0

0.5

1

1.5

T
/N

te
st

[m
s]

Amazon-670K

time calls

0

1

2

3

Amazon-3M

u-c, k=1 u-c, k=3 u-c, k=5 beam, B=1 beam, B=5 beam, B=10

Figure 9.1: Average average prediction time T/Ntest in [ms] and number
of calls to node classifiers (calls) for online uniform-cost search (u-c) with
k = 1, 3, 5 and online beam search (beam) with B = 1, 5, 10. The left
y-axis corresponds to the prediction time, the right, to the number of calls
to node classifies.

9.2 PLTs with different design choices 75

In the next experiment, we consider the batch implementations. We run the
batch uniform-cost search with k = 5, and compare its performance to batch
beam search with beam B = 10. We focus on computational costs. Figure 9.2
(lines representing batch uniform-cost search and batch beam search) shows the
average prediction time per a single test instance, T/Ntest, as a function of the
batch sizeNtest. For each batch size, we create 50 samples of instances by selecting
them uniformly from the test set. We measure the average prediction time over
5 different PARABEL models, which gives 250 measurements in total per each
batch size. For smaller Ntest the average prediction time per instance is shorter for
uniform cost search, while for larger batches the beam search is faster. Moreover,
batch uniform-cost search performs better in terms of the average prediction time
compared to batch beam search on data sets with a small number of labels than
on data sets with more labels.

Finally, we compare different implementations of PLTs and their default
prediction methods: uniform-cost search for NAPKINXC and batch beam search
with B = 10 for PARABEL. We consider the top-5 prediction. As shown in
Table 9.4, both methods perform very similarly in terms of precision@k, even
having slightly different models. To compare the computational performance
of those two default methods we perform an analogous experiment to the pre-
vious one with uniform-cost search in NAPKINXC. The results are also given
in Figure 9.2 (lines representing online u-c search and batch beam search). The
prediction time of the uniform-cost search, processing instance by instance, is
independent of the batch size and it is lower than 10ms for most of the data sets.
Beam search, working on batches of instances, is more than 100 times slower
than the uniform-cost search for small batches. To reach the prediction time of
uniform-cost search it requires often batch sizes greater than 1000.

p@1 [%] p@3 [%] p@5 [%]
Implementation NAPKINXC PARABEL NAPKINXC PARABEL NAPKINXC PARABEL
Prediction method u-c search beam search u-c search beam search u-c search beam search

EurLex-4K 80.17±0.27 80.66±0.16 65.33±0.53 67.76±0.05 53.01±0.87 56.57±0.07
AmazonCat-13K 92.40±0.04 92.58±0.02 78.49±0.02 78.53±0.00 63.88±0.02 63.90±0.01
Wiki10-30K 84.17±0.10 84.17±0.03 72.43±0.10 72.12±0.04 63.12±0.04 63.30±0.05
DeliciousLarge-200K 46.30±0.07 46.44±0.07 39.76±0.08 39.66±0.06 36.54±0.07 36.19±0.05
WikiLSHTC-325K 62.78±0.03 62.78±0.02 41.17±0.02 41.22±0.02 30.25±0.02 30.27±0.01
WikipediaLarge-500K 66.77±0.08 67.05±0.14 47.63±0.04 47.75±0.10 36.94±0.02 36.99±0.08
Amazon-670K 43.31±0.03 43.13±0.02 38.19±0.03 37.94±0.03 34.31±0.03 34.00±0.00
Amazon-3M 46.23±0.01 46.14±0.01 43.48±0.01 43.32±0.01 41.41±0.01 41.20±0.01

Table 9.4: Precision@k of uniform-cost (u-c) search in NAPKINXC and beam search in
PARABEL.

1 10 100 1,000

0.316

1

T
/N

te
st

[m
s]

EurLex-4K

1 10 100 1,000 10,000
0.1

1

10

100

AmazonCat-13K

1 10 100 1,000 10,000

1

10

T
/N

te
st

[m
s]

Wiki10-30K

1 10 100 1,000 10,000

1

10

100

1,000

DeliciousLarge-200K

1 10 100 1,000 10,000

1

100

T
/N

te
st

[m
s]

WikiLSHTC-325K

1 10 100 1,000 10,000

1

10

100

1,000

WikipediaLarge-500K

1 10 100 1,000 10,000

1

10

100

1,000

Ntest

T
/N

te
st

[m
s]

Amazon-670K

1 10 100 1,000 10,000
1

100

10,000

Ntest

Amazon-3M

online u-c search batch u-c search batch beam search

Figure 9.2: Average prediction times of online uniform-cost search in
NAPKINXC, batch uniform-cost search and batch beam search in PARABEL
as a function of batch size Ntest.

9.2 PLTs with different design choices 77

9.2.3 Sparse and dense representation

In the next experiment, we test the performance of PLTs with sparse and dense
representation. To this end, we use NAPKINXC and EXTREMETEXT, respectively.
Besides representation, we use a similar setting for both algorithms. Trees are
built with hierarchical k-means clustering. Node classifiers are trained incremen-
tally by minimizing logistic loss, however, NAPKINXC uses ADAGRAD, while
EXTREMETEXT stochastic gradient descent with L2 regularization. Prediction in
both is based on uniform-cost search.

Representation dense sparse dense sparse dense sparse

p@1 [%] p@3 [%] p@5 [%]

EurLex-4K 77.29±0.21 80.43±0.09 64.41±0.11 66.08±0.26 53.56±0.11 53.87±0.58
AmazonCat-13K 91.96±0.02 93.23±0.02 77.41±0.01 78.76±0.03 62.75±0.02 64.05±0.02
Wiki10-30K 85.76±0.06 84.92±0.10 74.37±0.10 74.52±0.09 64.44±0.05 65.29±0.04
DeliciousLarge-200K 47.95±0.03 45.27±0.06 41.69±0.02 38.26±0.03 38.60±0.01 34.88±0.02
WikiLSHTC-325K 57.58±0.06 60.99±0.04 38.01±0.04 39.85±0.02 28.33±0.02 29.50±0.01
WikipediaLarge-500K 64.56±0.06 65.68±0.15 46.04±0.06 46.62±0.09 36.06±0.04 36.52±0.06
Amazon-670K 40.24±0.03 43.82±0.01 35.84±0.04 38.88±0.03 32.61±0.05 35.31±0.03
Amazon-3M 39.29±0.03 43.61±0.12 36.53±0.02 40.44±0.09 34.65±0.01 38.32±0.06

Ttrain [h] T/Ntest [ms] Msize [GB]

EurLex-4K 0.21±0.00 0.01±0.00 0.36±0.00 0.25±0.02 0.02±0.00 0.05±0.00
AmazonCat-13K 10.75±0.71 0.17±0.00 0.17±0.01 0.32±0.02 0.41±0.00 0.72±0.00
Wiki10-30K 0.72±0.06 0.11±0.00 0.91±0.06 5.24±0.42 0.25±0.00 0.91±0.00
DeliciousLarge-200K 38.32±1.84 2.97±0.03 1.69±0.05 11.51±0.57 1.90±0.00 15.05±0.00
WikiLSHTC-325K 2.34±0.17 1.52±0.00 0.57±0.01 2.44±0.02 3.30±0.00 4.93±0.00
WikipediaLarge-500K 28.23±1.41 8.11±0.18 0.64±0.01 7.86±0.19 5.50±0.00 19.11±0.00
Amazon-670K 6.27±0.49 0.42±0.00 1.18±0.01 5.93±0.11 1.60±0.00 6.22±0.00
Amazon-3M 36.07±2.05 4.44±0.10 0.91±0.01 4.42±0.00 6.20±0.00 52.16±0.00

Table 9.5: Comparison of dense (EXTREMETEXT) and sparse (NAPKINXC) representation.

Table 9.5 shows the results. NAPKINXC with sparse representation achieves
higher precision@k than EXTREMETEXT on almost all data sets. This agrees with
a common observation that learning a powerful dense representation for XMLC
problems is difficult. Nevertheless, the results of EXTREMETEXT are approaching
those of NAPKINXC, despite its very simple architecture and gradient updates.
Because of the additional layer, EXTREMETEXT needs more time for training, but
the dense representation allows faster predictions and smaller models. Let us
comment, however, on the last observation. The size of a model in EXTREMETEXT

is determined by the dimension of dense representation, the number of labels,
features, and tree nodes. In NAPKINXC with sparse representation, the model size
is influenced by the distribution of features among the labels, the tree structure,
the chosen loss function and regularization. Moreover, aggressive weight pruning
can be applied without a significant drop in predictive performance, as we show
in Appendix B.5.

9.2.4 Tree structure

The choice of the tree structure is crucial as it affects all aspects of the performance:
the accuracy of predictions, execution times, and model sizes. In this experiment,
we investigate different tree-building strategies described in Section 8.6. We

78 9 Empirical validation of PLTs

first compare two types of balanced binary trees in which labels are split either
randomly or using k-means clustering in a top-down procedure. In trees of
both types, pre-leaf nodes are set to have a high degree equal to 100, that is, the
splitting procedure stops when a cluster contains less than 100 labels which are
then transformed into leaves. Both algorithms create trees of the same depth, but
with a different arrangement of labels. The results are given in Table 9.6. In all
cases, the k-means tree outperforms the random one in terms of precision@k. On
some data sets this difference is not substantial, but in several cases, k-means
clustering leads to a huge boost of almost 20 percent. Also training time and
model size benefit from the clustering. The power of k-means trees can be
explained by the fact that co-occurring and similar labels are grouped. Thanks to
this a training observation is used in fewer nodes on average, the training tasks
in tree nodes become simpler, and fewer features are necessary to solve them.

Tree type random k-means random k-means random k-means

p@1 [%] p@3 [%] p@5 [%]

EurLex-4K 76.22±0.21 80.51±0.16 54.54±0.13 65.65±0.40 39.20±0.09 53.33±0.68
AmazonCat-13K 91.39±0.04 93.04±0.02 75.86±0.03 78.44±0.02 61.00±0.02 63.70±0.02
Wiki10-30K 84.26±0.07 85.36±0.09 71.68±0.06 73.90±0.07 60.16±0.12 63.84±0.07
DeliciousLarge-200K 49.13±0.03 49.55±0.05 42.68±0.01 43.08±0.03 39.47±0.02 39.90±0.02
WikiLSHTC-325K 44.04±0.02 61.96±0.03 24.69±0.45 40.77±0.02 18.20±0.18 30.19±0.02
WikipediaLarge-500K 48.40±0.02 66.20±0.05 32.05±0.01 47.14±0.02 24.82±0.01 36.83±0.01
Amazon-670K 33.76±0.06 43.54±0.01 28.25±0.02 38.71±0.02 24.88±0.01 35.15±0.03
Amazon-3M 37.77±0.05 46.09±0.02 34.55±0.01 43.11±0.01 32.49±0.01 40.98±0.01

Ttrain [h] T/Ntest [ms] Msize [GB]

EurLex-4K 0.02±0.00 0.02±0.00 0.27±0.02 0.39±0.03 0.02±0.00 0.02±0.00
AmazonCat-13K 0.84±0.03 0.72±0.02 0.37±0.02 0.32±0.03 0.40±0.00 0.35±0.00
Wiki10-30K 0.19±0.01 0.21±0.00 2.59±0.21 5.35±0.32 0.62±0.00 0.58±0.00
DeliciousLarge-200K 5.26±0.26 2.58±0.15 5.24±0.43 9.89±0.89 1.30±0.00 0.95±0.00
WikiLSHTC-325K 3.01±0.16 2.95±0.15 1.36±0.13 1.77±0.11 3.25±0.00 2.73±0.00
WikipediaLarge-500K 22.07±0.59 16.10±0.44 10.65±0.52 6.67±0.23 12.00±0.00 8.89±0.00
Amazon-670K 1.02±0.02 0.56±0.00 4.74±0.22 4.13±0.28 3.00±0.00 2.26±0.00
Amazon-3M 48.09±1.72 7.07±0.56 8.05±0.17 3.26±0.08 29.00±0.00 20.84±0.00

Table 9.6: Precision@k for k = 1, 3, 5, training time, average test time per example, and
model size for random and k-means trees.

In the next two experiments, we evaluate the impact of tree depth on the
predictive and computational performance of PLTs. In the first experiment,
we increase the degree of tree nodes to 16 and 64, but keep the degree of pre-
leaves equal to 100. Such an approach is similar to the one used in BONSAI

TREE [Khandagale et al., 2019]. The results for k-means trees and logistic loss are
given in Table 9.7a. In the second experiment, we use binary trees, but change the
degree of pre-leaves from 100 to 25 and 400. The results are given in Table 9.7b.3

In both experiments, precision@k slightly increases with a decrease in tree depth.
This behavior is expected as suggested by the theoretical results from Chapter 5.
The shorter paths should result in tighter upper bounds. On the other hand,
a shallower tree leads to longer training times, as an observation is used for
training in more nodes. Notice that the 1-VS-ALL approach can be treated as
an extremely shallow tree, with each training observation used in all nodes.
Similarly to the training time, we should expect prediction time to increase with

3For completeness, we present the results for the squared hinge loss in Appendix B.4.

9.2 PLTs with different design choices 79

Arity 2 16 64 2 16 64

p@1 [%] T/Ntest [ms]

EurLex-4K 80.51±0.16 81.06±0.03 81.20±0.13 0.39±0.03 0.23±0.02 0.28±0.03
AmazonCat-13K 93.04±0.02 93.15±0.04 93.19±0.01 0.32±0.03 0.34±0.03 0.43±0.04
Wiki10-30K 85.36±0.09 85.85±0.06 86.03±0.07 5.35±0.32 5.63±0.33 7.34±0.62
DeliciousLarge-200K 49.55±0.05 49.56±0.04 49.51±0.04 9.89±0.89 12.74±1.69 11.77±0.61
WikiLSHTC-325K 61.96±0.03 63.16±0.03 63.62±0.03 1.77±0.11 1.26±0.03 1.91±0.19
WikipediaLarge-500K 66.20±0.05 67.36±0.10 67.49±0.05 6.67±0.23 6.47±0.30 9.02±0.39
Amazon-670K 43.54±0.01 43.33±0.04 43.53±0.05 4.13±0.28 2.91±0.17 5.12±0.24
Amazon-3M 46.09±0.02 46.74±0.01 46.97±0.01 3.26±0.08 3.06±0.04 4.19±0.16

Ttrain [h] Msize [GB]

EurLex-4K 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00
AmazonCat-13K 0.72±0.02 0.82±0.05 1.09±0.03 0.35±0.00 0.34±0.00 0.34±0.00
Wiki10-30K 0.21±0.00 0.20±0.01 0.43±0.04 0.58±0.00 0.50±0.00 0.51±0.00
DeliciousLarge-200K 2.58±0.15 5.49±0.36 9.21±0.90 0.95±0.00 0.93±0.00 0.91±0.00
WikiLSHTC-325K 2.95±0.15 3.71±0.13 7.13±0.41 2.73±0.00 2.65±0.00 2.62±0.00
WikipediaLarge-500K 16.10±0.44 26.28±0.40 46.84±2.94 8.89±0.00 8.20±0.00 8.13±0.00
Amazon-670K 0.56±0.00 0.78±0.03 2.17±0.12 2.26±0.00 1.68±0.00 1.60±0.00
Amazon-3M 7.07±0.56 9.80±0.10 23.69±1.09 20.84±0.00 20.32±0.00 20.17±0.00

(a) Results for arity equal to 2, 16 or 64 and pre-leaf node degree equal to 100.

Pre-leaf degree 25 100 400 25 100 400

p@1 [%] T/Ntest [ms]

EurLex-4K 80.62±0.12 80.51±0.16 79.49±0.39 0.15±0.00 0.39±0.03 0.62±0.02
AmazonCat-13K 93.05±0.02 93.04±0.02 93.07±0.02 0.14±0.02 0.32±0.03 0.67±0.04
Wiki10-30K 85.28±0.08 85.36±0.09 85.41±0.06 2.07±0.30 5.35±0.32 11.43±0.21
DeliciousLarge-200K 49.56±0.03 49.55±0.05 49.62±0.03 6.25±0.35 9.89±0.89 18.23±0.72
WikiLSHTC-325K 61.42±0.03 61.96±0.03 62.16±0.05 0.66±0.04 1.77±0.11 4.21±0.10
WikipediaLarge-500K 65.72±0.12 66.20±0.05 65.95±0.10 3.52±0.05 6.67±0.23 20.13±1.07
Amazon-670K 41.83±0.02 43.54±0.01 43.21±0.03 1.61±0.04 4.13±0.28 11.74±0.46
Amazon-3M 46.07±0.01 46.09±0.02 46.13±0.01 1.47±0.00 3.26±0.08 11.45±0.22

Ttrain [h] Msize [GB]

EurLex-4K 0.01±0.00 0.02±0.00 0.04±0.00 0.03±0.00 0.02±0.00 0.02±0.00
AmazonCat-13K 0.36±0.03 0.72±0.02 1.38±0.03 0.38±0.00 0.35±0.00 0.34±0.00
Wiki10-30K 0.09±0.01 0.21±0.00 0.32±0.01 0.73±0.00 0.58±0.00 0.37±0.00
DeliciousLarge-200K 2.14±0.11 2.58±0.15 4.18±0.23 1.14±0.00 0.95±0.00 0.86±0.00
WikiLSHTC-325K 2.36±0.05 2.95±0.15 4.83±0.29 3.28±0.00 2.73±0.00 2.47±0.00
WikipediaLarge-500K 12.40±0.08 16.10±0.44 34.15±0.46 10.60±0.01 8.89±0.00 7.94±0.00
Amazon-670K 0.42±0.01 0.56±0.00 1.01±0.05 2.20±0.00 2.26±0.00 1.52±0.00
Amazon-3M 5.18±0.25 7.07±0.56 16.41±0.52 24.00±0.00 20.84±0.00 19.35±0.01

(b) Results arity equal to 2 and pre-leaf node degree equal to 25, 100, or 400.

Table 9.7: Precision@k1, average prediction time per example, training time and model
size for k-means trees if different depths with logistic loss.

the decreasing tree depth. This is, however, clearly visible only in the second
experiment, in which we change the degree of pre-leaf nodes. Interestingly, the
size of the resulting models does not significantly change over the different tree
structures. The larger number of nodes is likely compensated by sparser models.

9.2.5 Ensemble of PLTs

In the last experiment focused on design choices, we analyze the predictive
performance of small ensembles of PLTs. In Figure 9.3, we compare ensembles of
size 3 and 5 to a single tree. Each tree is trained using 2-means clustering with the
degree of pre-leaf nodes set to 100. The tree nodes are trained using LIBLINEAR
with either logistic loss or squared hinge loss. The results show that the gain of
using 3 trees instead of one is much greater than the gain of using 5 trees instead
of 3. This makes the ensemble of size 3 a reasonable trade-off between predictive

80 9 Empirical validation of PLTs

p@1 p@3 p@5

60

80

EurLex-4K

p@1 p@3 p@5

60

80

100

AmazonCat-13K

p@1 p@3 p@5

60

70

80

90

Wiki10-30K

p@1 p@3 p@5

35

40

45

50

DeliciousLarge-200K

p@1 p@3 p@5
20

40

60

WikiLSHTC-325K

p@1 p@3 p@5

40

60

WikipediaLarge-500K

p@1 p@3 p@5

35

40

45

Amazon-670K

p@1 p@3 p@5

40

42

44

46

48

Amazon-3M

T=1,log T=3,log T=5,log T=1,s.h. T=3,s.h. T=5,s.h.

Figure 9.3: Precision@k for ensembles of T = 1, 3, and 5 trees trained
using either logistic loss (log) or squared hinge loss (s.h.).

9.3 Generalized classification performance metrics 81

and computational cost, as the size of the models and computational cost grow
linearly with the number of trees. It seems also that ensembles with squared
hinge loss gain slightly more than the ensembles trained with logistic loss.

9.3 Generalized classification performance metrics

The previous experiments concern PLTs with top-k predictions suited for
precision@k. In this section, we focus on threshold-based predictions and gener-
alized performance metrics, discussed in Section 5.3. We constrain our analysis
to Hamming loss, micro and macro F1-measure. For each metric, we report the
results of three approaches. The first one uses a fixed threshold of 0.5, which is the-
oretically optimal for Hamming loss. Remark, however, that for estimated proba-
bilities the optimal threshold may be different. The second approach optimizes
the micro F1-measure or macro F1 measure. In the case of micro-F1-measure, it
uses a global tuned threshold, as suggested by theory. For macro-F1-measure, the
theory suggests the use of a separate tuned threshold for each label. However,
the tested approach uses a separate threshold for 1000 or 10000 most frequent
labels, depending on the data set size, and a single threshold for the rest of them.
This was necessary to reduce the run time of threshold tuning and resolve the
problems with thresholds optimization for very rare labels. The third approach is
uniform-cost search retrieving k labels, with k set separately for each data set to
the average number of positive labels in the data set, see avg. |Lx| in Table 9.1.
However this approach differs from the one suggested by the theoretical results,
we include it as it provides additional insights. In this experiment we use 70% of
original training data to train a PLT model, and the remaining 30% to tune the
thresholds using online F-measure optimization (OFO) [Busa-Fekete et al., 2015],
similarly to [Jasinska et al., 2016]. We repeat computations 5 times and report the
average results along with standard errors.

Table 9.8 presents the results. Notice that for Hamming loss the lower the
value the better is the performance, while for F -measures it is the opposite, the
higher the value, the better. Let us first focus on threshold-based approaches. As
expected from the theoretical analysis, a procedure using thresholds suited for a
given metric leads to significantly better results: threshold 0.5 performs best for
Hamming loss, while the OFO-tuned thresholds usually outperform it in terms
of F1-measures. Interestingly, for some data sets the top-avg. |Lx| prediction
outperforms threshold tuning in terms of both F1-measures. However, on the
other ones, it severely underperforms compared to the theoretically grounded
method. We hypothesize that the side information of the average number of
labels that should be selected per instance may facilitate the choice of the correct
ones. This, accompanied by the fact that it is hard to precisely tune the thresholds
for infrequent labels, may lead to the observed advantage of top-avg. |Lx|
prediction over OFO tuned thresholds on some data sets. However, the top-avg.
|Lx| prediction is not guaranteed to perform well, while the threshold-based

82 9 Empirical validation of PLTs

prediction is theoretically sound.

Hamming loss1

thr=0.5 micro-OFO top-avg. |Lx|

EurLex-4K 4.20±0.00 8.10±0.13 5.15±0.00
AmazonCat-13K 2.77±0.00 3.14±0.02 6.91±0.05
Wiki10-30K 17.42±0.01 24.92±0.84 25.21±0.03
DeliciousLarge-200K 97.16±0.00 584.20±0.38 157.75±0.22
WikiLSHTC-325K 2.92±0.00 4.87±0.43 04.03±0.00
WikipediaLarge-500K 4.10±0.01 4.72±0.30 6.18±0.01
Amazon-670K 4.66±0.00 6.90±0.23 6.65±0.00
Amazon-3M 34.80±0.00 69.55±0.59 53.18±0.00

micro-F1 [%]
thr=0.5 micro-OFO top-avg. |Lx|

EurLex-4K 47.04±0.00 39.57±0.34 50.00±0.00
AmazonCat-13K 67.25±0.00 67.95±0.17 31.60±0.45
Wiki10-30K 25.01±0.06 31.63±0.88 33.69±0.07
DeliciousLarge-200K 0.83±0.00 12.45±0.78 9.00±0.13
WikiLSHTC-325K 32.67±0.14 30.74±0.20 37.80±0.05
WikipediaLarge-500K 32.49±0.22 38.72±0.11 37.30±0.11
Amazon-670K 19.73±0.13 30.39±0.72 34.58±0.05
Amazon-3M 13.23±0.03 25.00±0.15 26.62±0.00

macro-F1[%]
thr=0.5 macro-OFO top-avg. |Lx|

EurLex-4K 44.65±0.00 46.35±0.95 50.15±0.00
AmazonCat-13K 27.53±0.00 42.05±0.50 16.49±0.23
Wiki10-30K 29.89±0.01 29.29±0.08 31.51±0.05
DeliciousLarge-200K 11.18±0.00 8.56±0.32 11.11±0.19
WikiLSHTC-325K 18.43±0.04 23.08±0.18 27.22±0.03
WikipediaLarge-500K 7.28±0.04 12.85±0.16 18.44±0.07
Amazon-670K 50.60±0.02 51.26±0.07 52.29±0.09
Amazon-3M 3.42±0.02 18.33±0.00 15.34±0.01

1 multiplied by the number of labels to avoid presentation of very small numbers

Table 9.8: The results of PLTs with threshold-based predictions along with top-avg. |Lx|
predictions for Hamming loss, micro F1-measures. The name of the column with the
theoretically optimal tuning strategy for a given metric is given in bold.

9.4 Comparison to hierarchical softmax

In this experiment, we verify our theoretical findings from Sections 3.2 and
5.6. As we have shown, hierarchical softmax with the pick-one-label heuristic
(HSM-POL) leads to a suboptimal solution with respect to precision@k. To
demonstrate this empirically, we run two experiments. In the first one, we
compare the performance of PLTs and HSM-POL on synthetic data. In the
second experiment, we evaluate both algorithms on benchmark data sets. To
conduct the experiments, we implemented HSM-POL in NAPKINXC. We made
it as similar as possible to the implementation of PLTs, with the only differences
coming from the model definition. For both algorithms, we use LIBLINEAR
with L2-regularized logistic loss to train node classifiers. In the experiment on
benchmark data, we additionally use weight pruning to reduce model sizes. This

9.4 Comparison to hierarchical softmax 83

is not necessary for synthetic data. To simulate the pick-one-label heuristic in
batch learning, we transform a multi-label observation with ||y||1 positive labels
to ||y||1 weighted multi-class observations, each with a different positive label
assigned and weight equal 1

||y||1 .

HSM-POL PLT # losses # ties # wins p-value

multi-label dependent 71.29±0.98 72.31±0.94 5 0 45 4.21e-09
multi-label independent 32.66±0.08 32.64±0.08 25 3 22 0.4799
multi-class 61.23±1.14 61.23±1.14 0 50 0 -

Table 9.9: Precision@1 of PLTs and HSM-POL on synthetic data. Reported are mean
values over 50 runs along with standard errors, the number of wins, ties, and losses of
PLTs, and p-value of the sign test.

The results for precision@1 are given in Table 9.9. We use three types of
synthetic data generated from different distributions: multi-label with condi-
tionally independent labels, multi-label with conditionally dependent labels,
and multi-class. A detailed description of the data generation process is given
in Appendix B.2. The presented values are averages over 50 runs along with
standard errors. Notice, however, that the data generation processes may lead
to very diverse problems, with a different level of noise. Therefore, standard
errors indicate rather the diversity of the generated problems. To overcome this
issue, we report the number of wins, ties, and losses, as well as p-values of the
very conservative sign test. On data with conditionally dependent labels, PLTs
clearly outperform HSM-POL as indicated by the p-value. This agrees with
our theoretical results. On data with conditionally independent labels, both
algorithms perform similarly without statistically significant differences. This
also agrees with the theory, as we have proven that under label independence
HSM-POL performs optimally for precision@k. The results on multi-class data
completely match, as for this distribution, the PLT model boils down to HSM.

p@1 [%] r@1 [%] r@5 [%]
HSM PLT HSM PLT HSM PLT

EurLex-4K 67.89±0.26 80.51±0.16 13.64±0.06 16.20±0.04 44.64±0.45 51.71±0.67
AmazonCat-13K 88.19±0.16 93.04±0.02 24.73±0.06 26.37±0.01 69.38±0.09 74.64±0.02
Wiki10-30K 54.69±1.00 85.36±0.09 3.18±0.07 5.06±0.01 12.58±0.18 18.26±0.02
WikiLSHTC-325K 58.35±0.04 61.96±0.03 26.41±0.02 27.41±0.01 49.81±0.01 52.96±0.03
WikipediaLarge-500K 60.48±0.09 66.20±0.05 20.16±0.03 21.50±0.01 43.17±0.03 47.12±0.03
Amazon-670K 40.38±0.04 43.54±0.01 8.53±0.01 9.01±0.01 29.52±0.04 32.83±0.02

Table 9.10: Precision@1 and recall@k of hierarchical softmax with pick-one-label heuristic
(HSM) and PLT on benchmark datasets.

Table 9.10 gives the results on benchmark data sets. The difference in perfor-
mance between PLTs and HSM-POL is clearly visible. It is even more substantial
than in the previous experiment. Besides precision@1, the table contains also
results for recall@1. The pick-one-label heuristic should lead to optimal results
for this metric, as shown by Menon et al. [2019] and in Chapter 3. Nevertheless,
PLTs obtain better results also for this metric, but the difference is much smaller.
This suggests that indeed HSM-POL can be well-suited for recall@k, but the
pick-one-label heuristic may lead to corrupted learning problems in tree nodes.

84 9 Empirical validation of PLTs

As discussed in [Menon et al., 2019], there exist other strategies for optimizing
recall@k, which may perform better than PLTs.

9.5 Online PLTs

We empirically verify online probabilistic label trees in which both node clas-
sifiers and tree structure are built incrementally. We implemented the OPLT
algorithm, introduced in Chapter 7, in NAPKINXC. The tree is constructed using
the simple complete tree policy from Algorithm 9. To train node classifiers, we
use ADAGRAD with logistic loss. The incremental learning in the online setting
requires quick access to model weights, preferably storing all of them at once
in memory. Unfortunately, maintaining an array for all possible weights in a
dense format would require, for many data sets, thousands of GB of memory.
As described in Section 8.3, either hash maps, such as ROBIN HOOD, or feature
hashing should be applied to overcome this problem. In the experiment, we
compare both approaches.

#features #hashed features RAM [GB]
64GB 128GB 256GB ROBIN HOOD dense vector

EurLex-4K 5000 ∗ ∗ ∗ 0.6 0.2
AmazonCat-13K 203882 ∗ ∗ ∗ 9 60
Wiki10-30K 101938 ∗ ∗ ∗ 18 70
DeliciousLarge-200K 782585 13000 26000 52000 240 3593
WikiLSHTC-325K 1617899 8000 16000 32000 30 11754
WikipediaLarge-500K 2381304 5000 10000 20000 240 26670
Amazon-670K 135909 4000 8000 16000 36 2035
Amazon-3M 337067 1000 2000 4000 280 21187

Table 9.11: Number of features, hashed features for OPLT with complete tree policy and
memory required to train OPLT with complete tree policy with ROBIN HOOD hash maps
and dense vectors. With symbol ‘∗’ we denote data sets for which feature hashing is not
needed to fit the available memory.

Feature hashing allows us to directly control the amount of memory used,
but it may result in many unresolved collisions if the allocated space is too small.
We consider setups with 64GB, 128GB, and 256GB of RAM. The ROBIN HOOD

hash map avoids collisions, but does not allow restraining memory consumption.
The number of hashed features which can be allocated without collisions is given
in Table 9.11. We report this number for each data set and memory setup. It takes
into account memory needed for 2m− 1 nodes, each containing model weights
and cumulative gradients required by ADAGRAD, and auxiliary classifiers which
number can be limited to m for the chosen tree building policy. Additionally, we
present in the same table the amount of memory required by OPLT with ROBIN

HOOD and OPLT with dense vectors.
To simulate the online/streaming setting, the OPLT algorithms run three

times over training observations, each time permuted randomly. We evaluate

9.6 PLT vs. state-of-the-art 85

the performance on the original test sets in terms of precision@1. The results
are given in Table 9.12. For reference, we also present the results of a batch
PLT trained with the logistic loss on a complete binary tree. OPLT with ROBIN

HOOD performs similarly to PLT. This agrees with the results from Section 9.2.1
showing that incremental learning under logistic loss is competitive to its batch
counterpart. Interestingly, ROBIN HOOD allows us to train OPLT in 256GB of
RAM for all data sets, with the only exception of Amazon-3M for which 280GB
is required. The performance of OPLT with feature hashing drops significantly
for large data sets, even when using the same amount of memory as OPLT with
ROBIN HOOD. One may observe that the smaller is the hashing space compared
to the original feature space, the larger is the drop.

Algorithm OPLT PLT
Representation feature hashing ROBIN HOOD
RAM 64GB 128GB 256GB unlimited unlimited

EurLex-4K ∗ ∗ ∗ 76.69±0.21 76.82±0.35
AmazonCat-13K ∗ ∗ ∗ 91.35±0.06 91.20±0.05
Wiki10-30K ∗ ∗ ∗ 84.41±0.19 82.74±0.14
DeliciousLarge-200K 44.61±0.03 44.52±0.04 44.58±0.06 46.29±0.05 47.81±0.03
WikiLSHTC-325K 32.18±0.04 34.71±0.01 36.90±0.00 44.42±0.03 43.91±0.02
WikipediaLarge-500K 25.39±0.03 29.04±0.02 32.90±0.06 49.35±0.03 47.25±0.02
Amazon-670K 23.18±0.05 26.64±0.02 29.53±0.05 37.02±0.01 35.12±0.03
Amazon-3M 10.31±0.01 14.18±0.01 18.49±0.03 37.80±0.01 38.05±0.02

Table 9.12: Performance of OPLT with different memory management strategies: feature
hashing of 64GB, 128GB and 256GB, and ROBIN HOOD hash maps. Results of a batch
counterpart are given for reference. With symbol ‘∗’ we denote data sets where feature
hashing is not needed to fit the available memory.

A better tree building policy may improve the predictive performance of
OPLT. By comparing the results presented here to the ones of k-means trees, we
observe a large gap. The online tree-building algorithms are not able to fully
eliminate it, but we believe that the regret can be much smaller. Also, memory
usage could be improved by better utilization of auxiliary classifiers.

9.6 PLT vs. state-of-the-art

In the final part of the empirical study, we compare PLTs with state-of-the-art
algorithms. In this comparison we focus not only on predictive performance, but
also on the computational one, measured on the same hardware, therefore we
need to limit the number of compared methods. Full comparison of precision@k

of multiple state-of-the-art methods is given in Appendix B.6. Here, we use
two decision tree methods: FASTXML and PFASTREXML, and two smart 1-
VS-ALL methods: DISMEC and PPDSPARSE. Decision tree-based methods
are computationally efficient but under-perform compared to smart 1-VS-ALL

methods in terms of predictive performance. We describe these methods in more
detail. FASTXML, introduced in [Prabhu and Varma, 2014], uses sparse linear

86 9 Empirical validation of PLTs

classifiers in internal tree nodes, also trained using LIBLINEAR. Each linear
classifier decides between two classes, the left or the right child. These two classes
are initiated by a random assignment of training observations to the children
nodes. In the next steps, the assignment is reshaped by optimizing the normalized
discounted cumulative gain (NDCG) over both children. Once the assignment
stabilizes, a sparse linear classifier is trained using logistic loss. To improve
the overall accuracy FASTXML uses an ensemble of trees. PFASTREXML [Jain
et al., 2016] is a modification of FASTXML that optimizes propensity scored
NDCG at each tree node and re-ranks the predicted labels. DISMEC trains a
single classifier per label under L2 regularized squared hinge loss, also using
LIBLINEAR. It prunes weights of final models at a threshold equal 0.01 to reduce
the memory needed to store a 1-VS-ALL classifier. It uses distributed training
over multiple cores and processors to speed up computations. PPDSPARSE [Yen
et al., 2017], in turn, parallelizes PD-SPARSE [Yen et al., 2016] which optimizes
a max-margin loss by exploiting the primal-dual sparsity, resulting from the
use of the max-margin loss under L1 regularization, given that for each training
observations the set of highly scored incorrect labels is small. As instances of
PLTs, we use PARABEL and NAPKINXC. For the former, we use an ensemble of
three trees trained with squared hinge loss. This is the first label tree algorithm
being competitive to state-of-the-art, as reported in [Prabhu et al., 2018]. For
NAPKINXC, we use a configuration, suggested by the results of the previous
experiments, which uses also an ensemble of three trees, but with arity of 16,
providing a significant predictive performance boost over binary trees, at the
same keeping training and prediction times reasonably low. For training node
classifiers, we use LIBLINEAR with the logistic loss for 3 data sets (AmazonCat-
13K, Wiki10-30K and DeliciousLarge-200K) and squared hinge loss for the rest of
the data sets.

The results are given in Table 9.13. We report precision@k, training and
prediction times, and model sizes. For each not deterministic algorithm, we
repeat the experiment 5 times and report means with standard errors. We use
original implementations of all competitors. The hyperparameters used to tune
the final models are given in Appendix B.3. For DISMEC and PPDSPARSE

we report the best results found in the literature, namely from [Babbar and
Schölkopf, 2017, Yen et al., 2017, Prabhu et al., 2018, Bhatia et al., 2016]. We use
the provided implementations to approximate training and prediction times on
our hardware. From the results, we see that PLTs are indeed competitive to the
1-VS-ALL approaches, achieving the best precision@1 on 5 from 8 data sets and
is only slightly worse on the rest of the data sets. They outperform the decision
tree-based methods. PLTs are almost always the fastest in training and prediction
and achieve the smallest model sizes. They can be even a thousand times faster
in training and prediction than 1-VS-ALL. The variant of NAPKINXC used in
this experiment outperforms PARABEL in terms of precision@k by sacrificing the
computational performance of training and prediction. However, it can predict
in an online setting at the same time often consuming less memory.

p@1 [%] p@3 [%] p@5 [%] Ttrain [h] T/Ntest [ms] Msize [GB]

EurLex-4K

FASTXML 71.26±0.19 59.80±0.12 50.28±0.02 0.07±0.00 0.97±0.15 0.22±0.00
PFASTREXML 70.21±0.09 59.26±0.10 50.59±0.08 0.08±0.00 1.30±0.09 0.26±0.00
PPD-SPARSE 83.83 70.72 59.21 ≈ 0.02 ≈ 0.70 0.07
DISMEC 83.67 70.70 59.14 ≈ 0.70 ≈ 4.60 0.04

PARABEL-T=3 81.80±0.10 68.67±0.03 57.45±0.06 0.02±0.00 0.93±0.04 0.03±0.00
NXC-T=3 81.94±0.24 68.94±0.07 57.49±0.14 0.03±0.00 0.97±0.06 0.02±0.00

AmazonCat-13K

FASTXML 93.03±0.00 78.22±0.01 63.38±0.00 5.53±0.15 1.06±0.08 18.35±0.00
PFASTREXML 85.62±0.01 75.31±0.00 62.83±0.01 5.45±0.12 0.99±0.06 19.01±0.00
PPD-SPARSE 92.72 78.14 63.41 ≈ 2.97 ≈ 1.20 0.50
DISMEC 92.72 78.11 63.40 ≈ 138.60 ≈ 2.9 1.50

PARABEL-T=3 93.24±0.01 79.17±0.00 64.51±0.00 0.64±0.03 1.05±0.04 0.62±0.00
NXC-T=3 93.37±0.05 79.01±0.03 64.27±0.04 2.30±0.13 0.99±0.10 1.01±0.00

Wiki10-30K

FASTXML 82.97±0.02 67.58±0.07 57.68±0.03 0.23±0.01 8.21±0.52 0.54±0.00
PFASTREXML 75.58±0.07 64.38±0.11 57.25±0.07 0.23±0.00 10.40±0.41 1.13±0.00
PPD-SPARSE 73.80 60.90 50.40 ≈ 1.20 ≈ 22.00 0.80
DISMEC 85.20 74.60 65.90 ≈ 26.80 ≈ 112.40 2.40

PARABEL-T=3 84.49±0.05 72.57±0.04 63.66±0.10 0.20±0.00 2.67±0.06 0.18±0.00
NXC-T=3 85.90±0.02 74.45±0.11 64.84±0.09 0.39±0.01 11.76±0.19 2.16±0.00

DeliciousLarge-200K

FASTXML 43.17±0.03 38.70±0.01 36.22±0.02 3.86±0.09 12.27±0.36 6.95±0.00
PFASTREXML 17.44±0.02 17.28±0.01 17.19±0.01 3.71±0.02 19.64±0.35 15.34±0.00
PPD-SPARSE 45.05 38.34 34.90 ≈ 17.00 ≈ 64.00 3.40
DISMEC 45.50 38.70 35.50 ≈ 24000.00 ≈ 68.20 160.10

PARABEL-T=3 46.62±0.02 39.78±0.04 36.37±0.04 9.01±0.20 2.61±0.03 6.36±0.00
NXC-T=3 49.65±0.03 43.18±0.02 39.97±0.01 7.90±0.48 31.10±2.87 2.86±0.00

WikiLSHTC-325K

FASTXML 49.85±0.00 33.16±0.01 24.49±0.01 6.41±0.13 4.10±0.04 12.93±0.00
PFASTREXML 58.50±0.02 37.69±0.01 27.57±0.01 6.25±0.13 4.00±0.20 14.20±0.00
PPD-SPARSE 64.13 42.10 31.14 ≈ 16.00 ≈ 51.00 5.10
DISMEC 64.94 42.71 31.50 ≈ 2320.00 ≈ 340.00 3.80

PARABEL-T=3 64.95±0.02 43.21±0.02 32.01±0.01 0.81±0.02 1.27±0.03 3.10±0.00
NXC-T=3 65.57±0.10 43.64±0.11 32.33±0.11 7.10±0.13 1.70±0.13 2.68±0.00

WikipediaLarge-500K

FASTXML 49.32±0.03 33.48±0.03 25.84±0.01 51.48±0.65 15.35±0.56 59.69±0.01
PFASTREXML 59.58±0.02 40.26±0.01 30.73±0.01 51.07±0.92 15.24±0.24 69.33±0.01
PPD-SPARSE 70.16 50.57 39.66 ≈ 26.00 ≈ 130.00 4.00
DISMEC 70.20 50.60 39.70 ≈ 26800.00 ≈ 1200.00 14.80

PARABEL-T=3 68.66±0.06 49.48±0.05 38.60±0.04 7.33±0.12 3.44±0.13 5.69±0.00
NXC-T=3 69.24±0.20 49.82±0.16 38.81±0.14 41.11±1.34 5.53±0.10 4.68±0.01

Amazon-670K

FASTXML 36.90±0.02 33.22±0.01 30.44±0.01 2.80±0.03 8.57±0.20 9.54±0.00
PFASTREXML 36.97±0.02 34.18±0.01 32.05±0.01 3.01±0.03 9.96±0.14 10.98±0.00
PPD-SPARSE 45.32 40.37 36.92 ≈ 2.00 ≈ 90.00 6.00
DISMEC 45.37 40.40 36.96 ≈ 1830.00 ≈ 380.00 3.80

PARABEL-T=3 44.70±0.04 39.66±0.04 35.85±0.04 0.39±0.00 1.57±0.05 1.95±0.00
NXC-T=3 45.10±0.11 40.00±0.12 36.22±0.13 2.17±0.10 1.84±0.42 1.66±0.00

Amazon-3M

FASTXML 45.26±0.01 41.96±0.00 39.80±0.01 18.19±1.01 68.77±4.16 30.70±0.00
PFASTREXML 32.62±0.01 32.67±0.01 32.35±0.01 19.07±0.92 78.83±3.93 41.88±0.00
PPD-SPARSE - - - - - -
DISMEC 47.77 44.96 42.80 ≈ 18800.00 ≈ 2050.00 39.70

PARABEL-T=3 47.52±0.01 44.69±0.01 42.57±0.00 5.20±0.01 1.53±0.02 31.43±0.00
NXC-T=3 47.83±0.09 45.08±0.09 42.98±0.09 25.43±1.02 4.93±0.60 28.08±0.00

Table 9.13: PLTs compared to state-of-the-art algorithms.

10
Discussion and open research directions

In this chapter, we briefly discuss other ideas tested during the long-term work
on extreme multi-label classification. We describe two other proposed algorithms:
BR-TREES [Jasinska and Dembczyński, 2015] and LTLS [Jasinska and Karampatzi-
akis, 2016]. We include the ideas related to PLTs that have not been published,
but are intriguing and insightful. We discuss the limitations of PLTs in the context
of other extreme multi-label classification challenges. Finally, we mention several
open research directions related to PLTs.

10.1 Other proposed methods

Let us first describe two other methods proposed during the work on extreme
multi-label classification. Both of them are based on imposing a structure: a label
tree in the case of the BR-TREE or a graph in the case of LTLS. These methods
were not analyzed as thoroughly as PLTs, however, they may still turn out to be
interesting in the future.

10.1.1 BR-trees

Jasinska and Dembczyński [2015] have proposed, besides PLTs, a BR-TREES

(BRTs) algorithm. BR (standing for binary relevance) is another name of the 1-VS-
ALL method. BR-TREEs work as an index structure over the 1-VS-ALL classifiers,
allowing for retrieval of top-scoring elements without the linear scan over all
m binary classifiers. Like PLTs, BRTs are based on label trees, and each node
of a BRT corresponds to a classifier. However, BRTs differ from PLTs in the
formulation of problems solved by the node classifiers. The leaves of a BR-TREE

correspond to binary classifiers from a 1-VS-ALL classifier. Each internal node
classifier of a BR-TREE predicts whether there is a reachable positive prediction
among the predictions of the 1-VS-ALL binary classifiers corresponding to the

90 10 Discussion and open research directions

leaves in the subtree of the node. To define the problem for an internal BRT node,
we use a specific weighting of examples based on predictions of the children of
the node. This allows us to prove a regret bound with respect to Hamming loss,
which is expressed as the regret of the 1-VS-ALL approach plus a sum of weighted
false negatives among all the classifiers.

The initial experiments on small data sets have shown that BRTs obtain
prediction quality competitive to PLTs, or even outperforming it. However, as
BRTs do not filter the training observations based on their positive labels, they
create larger models and are more time consuming to train than PLTs. Especially,
they do not reduce the training time compared to a vanilla 1-VS-ALL classifier,
as they require training such classifier to create the leaf classifiers. However, the
training time of BRTs may be reduced by the use of techniques such as negative
sampling. Furthermore, BRTs reduce the prediction time compared to the vanilla
1-VS-ALL classifier.

10.1.2 Log-Time Log-Space

Jasinska and Karampatziakis [2016] have proposed another algorithm for extreme
classification, named LOG-TIME LOG-SPACE (LTLS), characterized by both space
and time complexity being logarithmic in the number of labels. LTLS represents
the multi-class/multi-label problem as a structured prediction problem. More
precisely, it creates a specific directed graph with m paths from the source to the
sink. An example graph is depicted in Figure 10.1. Each path from source to sink
represents a label, and each edge corresponds to a classifier. The prediction with
LTLS is done by finding the highest scoring paths using the Viterbi algorithm.
LTLS can also be viewed as a specific embedding-based method that embeds
the problem with m dimensions to a problem with as many dimensions as edges
in the graph, using an efficient decompression scheme based on the Viterbi
algorithm.

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

Figure 10.1: A graph with 19 edges and 22 paths from source (v0) to sink
(v10), corresponding to m = 22 labels. There are four layers with two
nodes in each layer.

We have proposed several methods of training a LTLS classifier. The first is

10.2 Tree structure 91

based on incremental minimization of the ranking separation loss [Crammer and
Singer, 2003, Yen et al., 2016]. For each training observation, we find the paths
violating the margin: the highest scored negative path and the lowest scored
positive path. We perform a positive update to the edge classifiers only on the
positive path (predicting too low values), and negative updates to classifiers only
on the negative path (predicting too high values). Another method, suitable only
for multi-class problems, is based on minimization of the logistic loss in a condi-
tional random fields manner [Lafferty et al., 2001]. Jasinska and Karampatziakis
[2016] have experimented with the use of two kinds of edge classifiers: linear
classifiers and a multi-layer neural network. Linear classifiers perform well in
case of problems with very sparse features, while the use of non-linear models is
necessary if the features are too dense for the linear classifiers to properly fit the
heavily compressed problems constructed by LTLS.

The performance of LTLS is influenced by the assignment of labels to paths
in the graph. This assignment plays a similar role to the tree structure in label
tree-based methods. We hypothesize that the optimal path assignment is the one
in which the paths of frequently co-occurring labels have many common edges.
However, as finding such an assignment is computationally complex, Jasinska
and Karampatziakis [2016] have proposed a greedy assignment of new labels to
the highest scoring paths.

LTLS may be used for both multi-class and multi-label problems. Empiri-
cally, it outperforms LOMTREE [Choromanska and Langford, 2015] on multi-class
problems. On multi-label problems, it underperforms compared to more compu-
tationally intensive extreme classification methods. However, it outperforms a
simple baseline classifier of the same model size and prediction cost: a 1-VS-ALL

classifier trained for as many most frequent labels as there are edges in the LTLS
graph. LTLS has been extended by WIDE-LTLS [Evron et al., 2018], which uses
a wider graph with more than two nodes in each layer. The use of more nodes
in each layer allowed WIDE-LTLS to obtain better predictive performance. To
increase the predictive performance of LTLS, we researched the correction of clas-
sification errors by the use of redundant paths. This did not lead to performance
gains, however other methods of improving the performance by modifying the
graph structure are possible. An interesting research direction related to LTLS
is the minimization of the binary cross-entropy loss for multi-label problems.
Another one is the use of LTLS as a deep network output layer.

10.2 Tree structure

Let us now move on to probabilistic label trees. The tree structure impacts both
the predictive and computational performance of a PLT classifier. In this disser-
tation, we focused on several structures: a random baseline, a k-means-based
built top-down using k-means clustering algorithm on simple representations
of labels, and one built online with OPLTs using a simple tree-building policy.

92 10 Discussion and open research directions

However, during the work on PLTs, the problem of tree structure choice was
approached from many other perspectives.

Efforts were made to formally define what is an optimal tree structure and
to create an optimization procedure that delivers such. Multiple criteria must
be taken into account when defining such an optimal tree. On one hand, we
know that the L1 error of estimation of conditional probabilities of labels η̂j(x)

accumulates over all node classifiers on Path(j), see Lemma 5.3. To minimize
this bound by changing the tree structure, one may consider using a two-level
tree with just a root and m leaves. If at least one label is positive for each
observation, the regret of the root can be considered zero, and this degenerated
PLT model boils down to a 1-VS-ALL. However, a PLT with such tree structure
suffers from long training and prediction time, and large model size, which
are exactly the problems of 1-VS-ALL PLTs aim at solving. On the other hand,
when optimizing the training complexity, one ends up with a well-defined but
NP-complete problem, as Busa-Fekete et al. [2019] show. However, an optimal
tree with respect to the training complexity may not be the best performing one
in terms of the quality of predictions. There exists an intriguing link between
tree structure, the learning problems, and the training and prediction complexity.
However, formally defining an optimal tree is out of the scope of this work.
Instead, we recall two methods we tested during the long-term works on PLTs
and extend the discussion of OPLT tree building policies.

10.2.1 Spectral tree

The initially [Jasinska and Dembczyński, 2015] proposed tree structure building
method is based on an observation, that some label pairs co-occur more often
than other pairs. The proposed method builds a tree structure top-down. To split
the labels between two children of a node, it solves a min-cut graph problem
on a graph with nodes corresponding to labels, with edges existing between
co-occurring ones, weighted with the number of their co-occurrences. This
method is called a spectral tree, as it uses spectral clustering, or more precisely,
a Fiedler vector, being the eigenvector corresponding to the second-smallest
eigenvalue of the Laplacian matrix of the label graph, to partition the graph. This
method was tested on the smallest benchmark data sets and used in [Jasinska
and Dembczyński, 2015]. Unfortunately, it did not scale to the commonly used
benchmark data sets.

10.2.2 FastPLT

The inspiration for the other proposed approach is the alternating optimization
procedure from FASTXML [Prabhu and Varma, 2014]. FASTXML is a decision-tree
with logistic regression models in the decision nodes. The decision boundaries of
the logistic regression models split the feature space and guide instances in the
process of prediction. FASTXML simultaneously defines the splits of the training
observations to the left and right children and trains the logistic regression models

10.2 Tree structure 93

to predict the left/right class for the test instances. The training of the decision
node classifier and splitting of the training observations are two alternating
steps of the optimization procedure. This procedure starts with a random split
of training observations to left and right. Then, to optimize a multi-criteria
objective, it alternately solves a logistic regression problem for a fixed split of
training observations and modifies the assignment of the left and right classes to
training observations. If needed, FASTXML repeats the alternating optimization
procedure several times until convergence to a local optimum.

This idea was applied in PLTs to build the tree top-down by minimizing the
total logistic loss of neighboring classifiers. The proposed method simultaneously
splits the labels among two children of a node and trains the two models corre-
sponding to these nodes. It minimizes the total logistic loss of the two trained
classifiers in an alternating optimization procedure. First, it randomly splits
labels into two balanced clusters. Then, it trains two logistic regression classifiers
using the current label split. Finally, it reassigns labels to two balanced clusters
in a way minimizing the total logistic loss given the fixed logistic regression
classifiers. It repeats the logistic regression training and labels reassignment until
no significant improvement of the total logistic loss.

The proposed methods have several flaws. First, it leads to overfitting and
requires regularization or early stopping based on a validation set. Moreover,
empirical observations have shown that the optimized criterion, total logistic
loss with the balanced split constraint, easily leads to imbalanced quality of
predictions between clusters. Also, the undesirable split of labels according to
their prior probability tends to give low values of the minimized criterion. Due
to the long run times of this approach and the aforementioned flaws, this method
was no longer investigated.

10.2.3 Online PLT tree building policies

In this work, we describe only the most basic OPLT tree building policy. However,
other possibilities were researched, starting from the application of CPT policies
from [Beygelzimer et al., 2009a]. Such a simple policy extends the leaf, see
Figure 7.1(d), with the highest score given current observation with the new label.
Such policy leads to undesirable properties of the constructed PLT tree: labels
occurring together in the observations from the initial training steps easily end
up in the most distant tree parts. This shows the importance of the proposed
additional nodes extensions, see Figure 7.1 (b) and (c), which are missing in the
original CPT building procedure. However, it also shows the complexity of the
online tree building problem.

Jasinska-Kobus et al. [2020c] give additional insights about OPLT, presenting
the ongoing work on the policies. They include a policy based on a trade-off
between balancedness of the tree and the fit of the new observations to the existing
classifiers. It is also an extension of the CPT policy that also trades-off these
two criteria. Other options like building a k-means based tree using a sample
of training data, and extending it with the OPLT methods, were researched by

94 10 Discussion and open research directions

other co-authors, and are described in [Jasinska-Kobus et al., 2020d].

10.3 ε-approximate prediction

The computational efficiency of the PLT classifiers has always been important,
so other faster prediction algorithms with provable guarantees were researched.
[Dembczyński et al., 2016] analyses multi-class probabilistic classifier trees and
proposes the ε-approximate prediction algorithm for approximate inference of
the highest-scoring class. This algorithm enables bounding the prediction cost
by a function of the distance, ε, from the optimal prediction. The ε-approximate
prediction algorithm and the mentioned bound are suited for multi-class clas-
sification. This algorithm was adopted to multi-label problems to reduce the
prediction time of the uniform-cost search based prediction algorithm for PLTs.
Unfortunately, in the multi-label case, we observed a significant drop in predic-
tive performance and just a minor drop in prediction time. Therefore we did not
continue the research on the ε-approximate prediction algorithms.

10.4 Limitations of PLTs in the context of other extreme
classification challenges

In this section, we discuss PLTs in the context of extreme classification challenges
that we skipped in the main work. We consider the problem of rare labels and
the problem of positive-unlabeled labels.

10.4.1 The problem of rare labels

The performance of the node classifiers determines the performance of a PLT
classifier. To train well-performing node classifiers, one needs enough data.
However, as Table 9.1 shows, the average number of observations per label
may be very small. Consider the learning problem in a leaf node with only
one neighbor. Assume that the label corresponding to the leaf is very rare and
the one corresponding to the leaf’s neighbor is frequent. In such a case, the
binary classification problem corresponding to the leaf is extremely imbalanced.
If both labels are rare, the classification problem is balanced, but there is too little
training data to properly fit a binary classifier. In both cases the quality of the
node classifiers may be very poor. A possible solution to this problem is treating
rare labels differently from the frequent ones, for example, by using the nearest
neighbor classifier for those labels. However, we did not explore this research
direction.

10.4 Limitations of PLTs in the context of other extreme classification challenges 95

Another aspect of the problem of rare labels is the impact of performance met-
ric choice. The most popular performance metrics: precision@k and NDCG@k,
take into account only the k predicted labels. However, frequently an observation
contains several frequent and several infrequent ones. Therefore, to achieve good
performance in terms of @k metrics is often enough to be able to predict only the
frequent ones. This way, the problem of estimation of conditional probabilities
of rare labels is often overlooked. The use of metrics like macro-F1-measure,
analyzed in detail in this work, can help in diagnosing this problem and foster
the research on the estimation of probabilities of rare labels. Interestingly, using
a data set prepared from a Wikipedia dump on our own, we observed that the
use of the threshold-based prediction suited for macro-F1-measure can also lead
to the prediction of labels that are not given as relevant, but are, in fact, rele-
vant. This leads us to another extreme multi-label classification problem: the
positive-unlabeled labels.

10.4.2 The positive-unlabeled labels problem

Another characteristic of extreme multi-label classification problems is that fre-
quently some of the truly relevant labels are given as irrelevant, i.e., they are
not observed. PLTs treat negative labels as truly negative, and the existence of
the positive-unlabeled labels makes the process of solving the binary problems
harder. Currently, PLTs do not take this problem into account, however, doing so
might lead to an improvement in their overall performance.

Also, we do not consider the propensity scored variants of performance
metrics. However, it is possible to adjust PLTs to some of them, as we discuss
below. Propensity qj of label j is the probability that label j is positive (observed)
given that it is truly relevant. Propensity scored metrics are defined in [Jain et al.,
2016]. Consider propensity scored precision@k:

pq@k(y,h@k(x)) =
1

k

∑
j∈L̂x

1

qj
Jyj = 1K .

Notice that the Bayes optimal classifier for propensity scored precision@k is
determined by the conditional probabilities of labels scaled by the inverse of the
label propensity. Given that the propensities (or their estimates) are given in
the time of prediction, and of course in the time of evaluation to compute the
propensity scored metrics, propensity scored precision@k might be optimized
using PLTs. This would require a customized inference procedure for PLTs,
ranking the labels according to their estimates of conditional probabilities scaled
by label-wise inverse propensities.

96 10 Discussion and open research directions

10.5 Open research directions

There exist many other open problems related to probabilistic label trees. One of
them includes making PLTs suitable for more performance metrics. In Chapter 3
we discussed recall@k and NDCG@k, which are not optimized by PLTs. As long
applying the pick-one-label heuristic gives the Bayes classifier for recall@k, we
observed that PLTs using original data perform better. However, using other
methods to make PLTs suitable for recall@k may lead to further improvement
of performance. On the other hand, NDCG@k requires sorting according to
specific marginal values. Making PLTs suitable for NDCG@k would be a major
improvement, however, it is unclear how it should be done. Another important
direction is to make PLTs suitable for the propensity scored variants of the
performance metrics, as discussed in the previous section.

An interesting direction of development of PLTs is the use of other probabilis-
tic binary classifiers than linear ones as the node classifiers. The node classifiers
can be, for example, the outputs of a deep network. Such an idea was initially
explored by EXTREMETEXT and ATTENTIONXML. Also, other probabilistic binary
classifiers could be plugged in as the node classifiers. This includes also extend-
ing the idea of estimating the node probabilities via multi-class classification from
Section 8.8.

PLTs also can be applied in other applications. The quality of PLTs was not
yet tested in recommendation problems, which are also considered as extreme
classification. If PLTs prove to perform well, they may become a computationally
efficient alternative to other more advanced recommendation approaches. PLTs
could also be used to sample negatives during 1-VS-ALL classifier training,
similarly to hierarchical softmax used in [Bamler and Mandt, 2020]. In such a
case, PLTs would not be the final classifier, but a tool allowing for faster training
of a more complex one.

Since the first publication, PLTs have become a popular approach to extreme
multi-class classification. They were applied in many classifiers [Prabhu et al.,
2018, Khandagale et al., 2019, You et al., 2019], and analyzed in other works [Zhuo
et al., 2020]. Therefore we expect that even more research directions related to
PLTs will appear in near future.

11
Summary

In this dissertation, we investigated probabilistic label trees, a computationally
efficient and statistically well-justified model for solving extreme multi-label
classification problems. The in-depth analysis shows that PLTs can scale logarith-
mically with the number of labels and are suitable for optimizing a wide spectrum
of performance metrics commonly used in extreme multi-label classification.

The main goal of this dissertation, as stated in Section 1.4, was to show the
existence of a class of statistically consistent learning algorithms for extreme
multi-label classification whose computational complexity scales sub-linearly
with the number of labels. We believe that this goal has been achieved. In support
of this claim, we summarize below the relevant contributions of this dissertation.

We described and analyzed the proposed class of learning algorithms. We
gave batch and incremental training algorithms working with the tree structure
given in advance. Then, we analyzed in-depth its consistency. We derived the
bound of L1 estimation error of conditional probabilities of labels via L1 errors of
the node classifiers constituting a PLT classifier. By applying the bound of the L1

error of node classifiers in terms of their regret with respect to a strongly proper
composite loss, we connected the learning algorithm used to train node classifiers,
and their regret, with the L1 estimation error of conditional probabilities of labels.
We showed the relevant regret bounds for precision@k, DCG@k, and generalized
classification performance metrics. This way we demonstrated the statistical
consistency of PLTs with respect to these popular metrics, for which the optimal
decisions are determined through conditional probabilities of labels. We also
described an online learning algorithm building the tree structure simultaneously
with the classifiers’ training, creating a PLT classifier equivalent to the one trained
incrementally.

We analyzed the computational complexity of the proposed methods. We
demonstrated non-trivial results related to the complexity of training and pre-
diction. We considered a computational cost, defined as the number of PLT
nodes processed during prediction or training. Training-wise, we demonstrated
conditions under which PLTs have training complexity logarithmic in the num-

98 11 Summary

ber of labels. Prediction-wise, we considered the computational complexity
of threshold-based, beam-search-based, and uniform-cost-based prediction al-
gorithms, and showed that under certain assumptions these are sublinear in
the number of labels. Additionally, we showed that OPLT is the same as the
complexity of an incremental PLT algorithm.

Finally, we showed that the proposed approach not only good theoretical
properties but also can be efficiently implemented in various settings achieving
state-of-the-art results both in terms of predictive and computational performance.
The number of works following the PLTs approach confirms the validity of this
method.

Bibliography

S. Agarwal. Surrogate regret bounds for bipartite ranking via strongly proper
losses. Journal of Machine Learning Research, 15:1653–1674, 2014.

R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. Multi-label learning with
millions of labels: Recommending advertiser bid phrases for web pages. In
Proceedings of the 22nd International Conference on World Wide Web, page 13–24,
New York, NY, USA, 2013. Association for Computing Machinery.

R. Babbar and B. Schölkopf. Dismec: Distributed sparse machines for extreme
multi-label classification. In Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining, page 721–729, New York, NY, USA, 2017.
Association for Computing Machinery.

R. Babbar and B. Schölkopf. Data scarcity, robustness and extreme multi-label
classification. Machine Learning, Special Issue of the ECML PKDD 2019 journal
Track, 108, 2019.

R. Babbar and B. Schölkopf. Adversarial extreme multi-label classification. CoRR,
abs/1803.01570, 2018.

R. Bamler and S. Mandt. Extreme classification via adversarial softmax approxi-
mation. In International Conference on Learning Representations, 2020.

P. Bartlett. Cs281b/stat241b. statistical learning theory. lecture 2., 2014.
URL https://www.stat.berkeley.edu/~bartlett/courses/

2014spring-cs281bstat241b/lectures/02-notes.pdf.

S. Bengio, J. Weston, and D. Grangier. Label embedding trees for large multi-class
tasks. In Advances in Neural Information Processing Systems 23, pages 163–171.
Curran Associates, Inc., 2010.

A. Beygelzimer, J. Langford, Y. Lifshits, G. Sorkin, and A. Strehl. Conditional
probability tree estimation analysis and algorithms. In Proceedings of the Twenty-

https://www.stat.berkeley.edu/~bartlett/courses/2014spring-cs281bstat241b/lectures/02-notes.pdf
https://www.stat.berkeley.edu/~bartlett/courses/2014spring-cs281bstat241b/lectures/02-notes.pdf

100 11 Bibliography

Fifth Conference on Uncertainty in Artificial Intelligence, page 51–58, Arlington,
Virginia, USA, 2009a. AUAI Press.

A. Beygelzimer, J. Langford, and P. Ravikumar. Error-correcting tournaments. In
Proceedings of the 20th International Conference on Algorithmic Learning Theory,
page 247–262, Berlin, Heidelberg, 2009b. Springer-Verlag.

A. Beygelzimer, H. Daumé, J. Langford, and P. Mineiro. Learning reductions that
really work. Proceedings of the IEEE, 104:136–147, 2016.

K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. Sparse local embeddings for
extreme multi-label classification. In Advances in Neural Information Processing
Systems 28, pages 730–738. Curran Associates, Inc., 2015.

K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, and M. Varma. The extreme
classification repository: Multi-label datasets and code, 2016. URL http:

//manikvarma.org/downloads/XC/XMLRepository.html.

R. Busa-Fekete, B. Szörényi, K. Dembczynski, and E. Hüllermeier. Online f-
measure optimization. In Advances in Neural Information Processing Systems 28,
pages 595–603. Curran Associates, Inc., 2015.

R. Busa-Fekete, K. Dembczynski, A. Golovnev, K. Jasinska, M. Kuznetsov,
M. Sviridenko, and C. Xu. On the computational complexity of the proba-
bilistic label tree algorithms. CoRR, abs/1906.00294, 2019.

P. Celis, P.-A. Larson, and J. I. Munro. Robin hood hashing. In Proceedings of the
26th Annual Symposium on Foundations of Computer Science, page 281–288, USA,
1985. IEEE Computer Society.

W. Chang, H. Yu, K. Zhong, Y. Yang, and I. S. Dhillon. A modular deep learning
approach for extreme multi-label text classification. CoRR, abs/1905.02331,
2019.

A. E. Choromanska and J. Langford. Logarithmic time online multiclass pre-
diction. In Advances in Neural Information Processing Systems 28, pages 55–63.
Curran Associates, Inc., 2015.

K. Crammer and Y. Singer. A family of additive online algorithms for category
ranking. Journal of Machine Learning Research, 3:1025–1058, 2003.

C. De Boom, S. Van Canneyt, T. Demeester, and B. Dhoedt. Representation
learning for very short texts using weighted word embedding aggregation.
Pattern Recognition Letters, 80:150–156, 2016.

O. Dekel and O. Shamir. Multiclass-multilabel classification with more classes
than examples. In Proceedings of the Thirteenth International Conference on Artifi-
cial Intelligence and Statistics, pages 137–144, Chia Laguna Resort, Sardinia, Italy,
2010. PMLR.

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

11 Bibliography 101

K. Dembczyński, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classi-
fication via probabilistic classifier chains. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, page 279–286, Madi-
son, WI, USA, 2010. Omnipress.

K. Dembczyński, W. Kotłowski, and E. Hüllermeier. Consistent multilabel rank-
ing through univariate loss minimization. In Proceedings of the 29th International
Coference on International Conference on Machine Learning, page 1347–1354, Madi-
son, WI, USA, 2012. Omnipress.

K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier. On label depen-
dence and loss minimization in multi-label classification. Machine Learning, 88:
5–45, 2012.

K. Dembczyński, W. Kotłowski, W. Waegeman, R. Busa-Fekete, and E. Hüller-
meier. Consistency of probabilistic classifier trees. In ECML PKDD 2016 :
machine learning and knowledge discovery in databases, pages 511–526. Springer,
2016.

J. Deng, S. Satheesh, A. C. Berg, and F. Li. Fast and balanced: Efficient label tree
learning for large scale object recognition. In Advances in Neural Information
Processing Systems 24, pages 567–575. Curran Associates, Inc., 2011.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805,
2018.

J. Duchi and Y. Singer. Efficient online and batch learning using forward backward
splitting. Journal of Machine Learning Research, 10:2899–2934, 2009.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12:
2121–2159, 2011.

I. Evron, E. Moroshko, and K. Crammer. Efficient loss-based decoding on graphs
for extreme classification. In Advances in Neural Information Processing Systems
31, pages 7233–7244. Curran Associates, Inc., 2018.

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library
for large linear classification. Journal of Machine Learning Research, 9:1871–1874,
2008.

J. Fox. Applied regression analysis, linear models, and related methods. Sage, 1997.

W. Gao and Z. Zhi-Hua. On the consistency of multi-label learning. Artificial
Intelligence, 199-200:22–44, 2013.

E. Grave, A. Joulin, M. Cissé, D. G. Facebook AI Research, and H. Jégou. Effi-
cient softmax approximation for gpus. In Proceedings of the 34th International
Conference on Machine Learning - volume 70, page 1302–1310. JMLR.org, 2017.

102 11 Bibliography

C. Guo, A. Mousavi, X. Wu, D. N. Holtmann-Rice, S. Kale, S. Reddi, and S. Kumar.
Breaking the glass ceiling for embedding-based classifiers for large output
spaces. In Advances in Neural Information Processing Systems 32, pages 4943–
4953. Curran Associates, Inc., 2019.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9:1735–1780, 1997.

H. Jain, Y. Prabhu, and M. Varma. Extreme multi-label loss functions for recom-
mendation, tagging, ranking & other missing label applications. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, page 935–944, New York, NY, USA, 2016. Association for Com-
puting Machinery.

K. Jasinska. Efficient exact batch prediction for label trees. In Extreme Multilabel
Classification for Social Media at The Web Conference, 2018.

K. Jasinska and K. Dembczyński. Consistent label tree classifiers for extreme
multi-label classification. In The ICML Workshop on Extreme Classification, 2015.

K. Jasinska and K. Dembczyński. Bayes optimal prediction for ndcg@k in extreme
amulti-label classification. In From Multiple Criteria Decision Aid to Preference
Learning Workshop, 2018.

K. Jasinska and N. Karampatziakis. Log-time and log-space extreme classification.
CoRR, abs/1611.01964, 2016.

K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and
E. Hullermeier. Extreme f-measure maximization using sparse probability
estimates. In Proceedings of The 33rd International Conference on Machine Learning,
pages 1435–1444, New York, USA, 2016. PMLR.

K. Jasinska, K. Dembczyński, and N. Karampatziakis. Extreme classification
under limited space and time budget. Schedae Informaticae, 2017. doi: 10.4467/
20838476SI.16.001.6182.

K. Jasinska-Kobus, M. Wydmuch, K. Dembczyński, M. Kuznetsov, and R. Busa-
Fekete. Probabilistic label trees for extreme multi-label classification. Journal of
Machine Learning Research (in review), 2020a.

K. Jasinska-Kobus, M. Wydmuch, K. Dembczyński, M. Kuznetsov, and R. Busa-
Fekete. Probabilistic label trees for extreme multi-label classification. CoRR,
abs/2009.11218, 2020b.

K. Jasinska-Kobus, M. Wydmuch, D. Thiruvenkatachari, and K. Dembczyński.
Online probabilistic label trees. CoRR, abs/2007.04451, 2020c.

K. Jasinska-Kobus, M. Wydmuch, D. Thiruvenkatachari, and K. Dembczyński.
Online probabilistic label trees. AISTATS 2020 (in review), 2020d.

11 Bibliography 103

Y. Jernite, A. Choromanska, and D. Sontag. Simultaneous learning of trees and
representations for extreme classification and density estimation. In Proceed-
ings of the 34th International Conference on Machine Learning - volume 70, page
1665–1674. JMLR.org, 2017.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for efficient text
classification. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: volume 2, Short Papers, pages 427–431,
Valencia, Spain, 2017. Association for Computational Linguistics.

S. Khandagale, H. Xiao, and R. Babbar. Bonsai - diverse and shallow trees for
extreme multi-label classification. CoRR, abs/1904.08249, 2019.

W. Kotłowski and K. Dembczyński. Surrogate regret bounds for generalized
classification performance metrics. Machine Learning, 10:549–572, 2017.

O. O. Koyejo, N. Natarajan, P. K. Ravikumar, and I. S. Dhillon. Consistent
multilabel classification. In Advances in Neural Information Processing Systems
28, pages 3321–3329. Curran Associates, Inc., 2015.

M. Kurzynski. On the multistage bayes classifier. Pattern Recognition, 21:355–365,
1988.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings
of the Eighteenth International Conference on Machine Learning, ICML ’01, page
282–289, 2001.

J. Langford, A. Strehl, and L. Li. Vowpal wabbit, 2007. URL http://hunch.

net/~vw/.

C.-L. Li and H.-T. Lin. Condensed filter tree for cost-sensitive multi-label classi-
fication. In Proceedings of the 31st International Conference on Machine Learning,
pages 423–431, Bejing, China, 2014. PMLR.

J. Liu, W.-C. Chang, Y. Wu, and Y. Yang. Deep learning for extreme multi-label
text classification. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, page 115–124, New York,
NY, USA, 2017. Association for Computing Machinery.

M. Majzoubi and A. Choromanska. Ldsm: Logarithm-depth streaming multi-
label decision trees. CoRR, abs/1905.10428, 2019.

A. K. Menon, A. S. Rawat, S. Reddi, and S. Kumar. Multilabel reductions: what is
my loss optimising? In Advances in Neural Information Processing Systems 32,
pages 10600–10611. Curran Associates, Inc., 2019.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed rep-
resentations of words and phrases and their compositionality. In Advances in
Neural Information Processing Systems 26, pages 3111–3119. Curran Associates,
Inc., 2013.

http://hunch.net/~vw/
http://hunch.net/~vw/

104 11 Bibliography

F. Morin and Y. Bengio. Hierarchical probabilistic neural network language
model. In Proceedings of the Tenth International Workshop on Artificial Intelligence
and Statistics, pages 246–252. Society for Artificial Intelligence and Statistics,
2005.

J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, 2014.
Association for Computational Linguistics.

Y. Prabhu and M. Varma. Fastxml: A fast, accurate and stable tree-classifier
for extreme multi-label learning. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, page 263–272,
New York, NY, USA, 2014. Association for Computing Machinery.

Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. Parabel: Partitioned
label trees for extreme classification with application to dynamic search ad-
vertising. In Proceedings of the 2018 World Wide Web Conference, page 993–1002,
Republic and Canton of Geneva, CHE, 2018. International World Wide Web
Conferences Steering Committee.

S. Puthiya Parambath, N. Usunier, and Y. Grandvalet. Optimizing f-measures by
cost-sensitive classification. In Advances in Neural Information Processing Systems
27, pages 2123–2131. Curran Associates, Inc., 2014.

P. Ravikumar, A. Tewari, and E. Yang. On ndcg consistency of listwise ranking
methods. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 618–626, Fort Lauderdale, FL, USA, 2011. PMLR.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall
Press, Upper Saddle River, New Jersey, USA, 2009.

W. Siblini, P. Kuntz, and F. Meyer. CRAFTML, an efficient clustering-based
random forest for extreme multi-label learning. In Proceedings of the 35th Inter-
national Conference on Machine Learning, pages 4664–4673, Stockholmsmässan,
Stockholm Sweden, 2018. PMLR.

Y. Tagami. Annexml: Approximate nearest neighbor search for extreme multi-
label classification. In Proceedings of the 23rd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, page 455–464, New York, NY,
USA, 2017. Association for Computing Machinery.

F. Tai and H.-T. Lin. Multilabel classification with principal label space transfor-
mation. Neural Computation, 24:2508–2542, 2012.

A. Tewari and P. Bartlett. An overview of learning theory, 2013.
URL http://dept.stat.lsa.umich.edu/~tewaria/research/

tewari13learning.pdf.

http://dept.stat.lsa.umich.edu/~tewaria/research/tewari13learning.pdf
http://dept.stat.lsa.umich.edu/~tewaria/research/tewari13learning.pdf

11 Bibliography 105

G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective and efficient multilabel classi-
fication in domains with large number of labels. In Proceedings of ECML/PKDD
2008 Workshop on Mining Multidimensional Data (MMD’08), 2008.

K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature
hashing for large scale multitask learning. In Proceedings of the 26th Annual
International Conference on Machine Learning, page 1113–1120, New York, NY,
USA, 2009. Association for Computing Machinery.

J. Weston, A. Makadia, and H. Yee. Label partitioning for sublinear ranking.
In Proceedings of the 30th International Conference on Machine Learning, pages
181–189, Atlanta, Georgia, USA, 2013. PMLR.

M. Wydmuch, K. Jasinska, M. Kuznetsov, R. Busa-Fekete, and K. Dembczynski. A
no-regret generalization of hierarchical softmax to extreme multi-label classifi-
cation. In Advances in Neural Information Processing Systems 31, pages 6355–6366.
Curran Associates, Inc., 2018.

I. E. Yen, X. Huang, W. Dai, P. Ravikumar, I. Dhillon, and E. Xing. Ppdsparse: A
parallel primal-dual sparse method for extreme classification. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, page 545–553. Association for Computing Machinery, 2017.

I. E.-H. Yen, X. Huang, P. Ravikumar, K. Zhong, and I. Dhillon. Pd-sparse
: A primal and dual sparse approach to extreme multiclass and multilabel
classification. In Proceedings of The 33rd International Conference on Machine
Learning, pages 3069–3077, New York, New York, USA, 2016. PMLR.

R. You, Z. Zhang, Z. Wang, S. Dai, H. Mamitsuka, and S. Zhu. Attentionxml:
Label tree-based attention-aware deep model for high-performance extreme
multi-label text classification. In Advances in Neural Information Processing
Systems 32, pages 5820–5830. Curran Associates, Inc., 2019.

J. Zhuo, Z. Xu, W. Dai, H. Zhu, H. Li, J. Xu, and K. Gai. Learning optimal tree
models under beam search. In Proceedings of the 37th International Conference on
Machine Learning, Vienna, Austria, 2020. PMLR.

A
Omitted proofs

A.1 Proofs of the results from Sections 3.2 and 3.3

To prove the Theorem 3.2 and Theorem 3.6, we will first prove a lemma general-
izing those two results.

Lemma A.1. Given conditionally independent labels, a label ranking π(η(x)) according
to their conditional probabilities ηj(x), and a ranking of labels π(δ) according to scores
δ,

δj(x) =
∑
y:yj=1

n(||y||1)P(y|x) . (A.1)

where n(||y||1) is a function depending only on ||y||1 =
∑m

j′=1 yj′ , are the same.

Proof. To prove the theorem we show that for conditionally independent labels
the order of labels induced by the conditional probabilities ηj(x) is the same
as the order induced by the values of δj(x). In other words, for any two labels
i, j ∈ {1, . . . ,m}, i 6= j, ηi(x) ≥ ηj(x)⇔ δi(x) ≥ δj(x).

Let ηi(x) ≥ ηj(x). Then in the summation over all y in (A.1), which can be
rewritten in the following way

δj(x) =
∑
y∈Y

n(||y||1)P(y|x)yj ,

we consider four subsets of Y , creating a partition of this set:

Su,wi,j = {y ∈ Y : yi = u ∧ yj = w}, u, w ∈ {0, 1}.

The subset S0,0
i,j does not play any role because yi = yj = 0 and therefore does not

108 A Omitted proofs

contribute to the final sum. Then δj(x) can be written in the following way:

δi(x) =
∑
y:S1,0

i,j

n(||y||1)P(y|x) +
∑
y∈S1,1

i,j

n(||y||1)P(y|x) (A.2)

δj(x) =
∑
y:S0,1

i,j

n(||y||1)P(y|x) +
∑
y∈S1,1

i,j

n(||y||1)P(y|x) (A.3)

The contribution of elements from S1,1
i,j is equal for both δi(x) and δj(x). It is so

because the value of n(||y||1)P(y|x) is the same for all y ∈ S1,1
i,j : the conditional

joint probabilities P(y|x) are fixed and they are multiplied by the same factors
n(||y||1).

Consider now the contributions of S1,0
i,j and S0,1

i,j to the relevant sums. By the
definition of Y , S1,0

i,j , and S0,1
i,j , there exists bijection bi,j : S1,0

i,j → S
0,1
i,j , such that

for each y′ ∈ S1,0
i,j there exists y′′ ∈ S0,1

i,j equal to y′ except on the i-th and the j-th
position.

Notice that because of the conditional independence assumption the joint
probabilities of elements in S1,0

i,j and S0,1
i,j are related to each other. Let y′′ =

bi,j(y
′), where y′ ∈ S1,0

i,j and y′′ ∈ S0,1
i,j . The joint probabilities are:

P(y′|x) = ηi(x)(1− ηj(x))
∏

l∈L\{i,j}

ηl(x)yl(1− ηl(x))1−yl

and
P(y′′|x) = (1− ηi(x))ηj(x)

∏
l∈L\{i,j}

ηl(x)yl(1− ηl(x))1−yl .

One can easily notice the relation between these probabilities:

P(y′|x) = ηi(x)(1− ηj(x))qi,j

and
P(y′′|x) = (1− ηi(x))ηj(x)qi,j ,

where qi,j =
∏
l∈L\{i,j} ηl(x)yl(1− ηl(x))1−yl ≥ 0. Consider now the difference of

these two probabilities:

P(y′|x)−P(y′′|x) = ηi(x)(1− ηj(x))qi,j − (1− ηi(x))ηj(x)qi,j

= qi,j(ηi(x)(1− ηj(x))− (1− ηi(x))ηj(x))

= qi,j(ηi(x)− ηi(x)ηj(x)− ηj(x) + ηi(x)ηj(x))

= qi,j(ηi(x)− ηj(x)).

From the above we see that ηi(x) ≥ ηj(x) ⇒ P(y′|x) ≥ P(y′′|x). Due to
the properties of the bijection bi,j , the number of positive labels in y′ and y′′

is the same and n(||y′||1) = n(||y′′||1), therefore we also get ηi(x) ≥ ηj(x) ⇒∑
y:S1,0

i,j
n(||y||1)P(y|x) ≥

∑
y:S0,1

i,j
n(||y||1)P(y|x), which finally based on (A.2)

and (A.3) gives us ηi(x) ≥ ηj(x)⇒ δi(x) ≥ δj(x).
The implication in the other side, i.e., ηi(x) ≥ ηj(x) ⇐ P(y′|x) ≥ P(y′′|x)

A.2 Proofs of the results from Section 5.1 109

holds obviously for qi,j > 0. For qi,j = 0, we can notice, however, that P(y′|x)

and P(y′′|x) do not contribute to the appropriate sums as they are zero, and
therefore we can follow a similar reasoning as above, concluding that ηi(x) ≥
ηj(x)⇐ δi(x) ≥ δj(x).

Thus for conditionally independent labels, the order of labels induced by
conditional probabilities ηj(x) is equal to the order induced by δj(x).

Having Lemma A.1, we can easily prove Corollary 3.3 and Theorem 3.6,
which are special cases of the previous result.

Theorem 3.2. Given conditionally independent labels, ηj(x) and η′j(x), j ∈ L induce
the same order of labels.

Proof. Notice that the values of η′j(x):

η′j(x) = P′(yj = 1 |x) =
∑
y∈Y

yj∑m
j′=1 yj′

P(y |x) =
∑
y:yj=1

1∑m
j′=1 yj′

P(y |x),

have the form of (A.1) with n(a) = 1
a . The rest follows from Lemma A.1.

Theorem 3.6. Given conditionally independent labels, ηj(x) and ∆j(k,x), j ∈ L
induce the same order of labels.

Proof. Notice that the values of ∆j(k,x):

∆j(k,x) =
∑
y∈Y

yjNk(y)P(y|x) =
∑
y:yj=1

Nk(y)P(y|x),

have the form of (A.1) with n(a) = (
∑min(k,a)

r=1 g(r))−1 , which values depend only
on a, given fixed k. The rest follows from Lemma A.1.

A.2 Proofs of the results from Section 5.1

Before we prove Lemma 5.3 and Theorem 5.4, we first present an additional
lemma. This lemma concerns expectation of ηpa(v′)(x) |η(x, v′)− η̂(x, v′)|, the
weighted L1 error in node v used in upper bounds from Lemma 5.1 and Corol-
lary 5.2. We express this expectation by the expected L1 error in node v multiplied
by P(zpa(x) = 1).

Lemma A.2. For any tree T and distribution P(x,y), the following holds for v ∈ VT :

Ex∼P(x)

[
ηpa(v)(x) |η(x, v)− η̂(x, v)|

]
=

= P(zpa(v) = 1)Ex∼P(x|zpa(v)=1) [|η(x, v)− η̂(x, v)|] ,

where for the root node P(zpa(rT) = 1) = 1.

110 A Omitted proofs

Proof. By using the definition of expectation, replacing ηpa(v)(x) by its definition,
applying Bayes’ theorem, and rearranging terms, we obtain:

Ex∼P(x)

[
ηpa(v)(x) |η(x, v)− η̂(x, v)|

]
=

=

∫
P(x)ηpa(v)(x) |η(x, v)− η̂(x, v)| dx

=

∫
P(x)P(zpa(v) = 1|x) |η(x, v)− η̂(x, v)| dx

= P(zpa(v) = 1)

∫
P(x|zpa(v) = 1) |η(x, v)− η̂(x, v)| dx .

Since ∫
P(x|zpa(v) = 1) |η(x, v)− η̂(x, v)| dx

is nothing else than the expected L1 estimation error in node v, denoted by

Ex∼P(x|zpa(v)=1) [|η(x, v)− η̂(x, v)|] ,

we obtain the final result.

Based on this result, we prove Lemma 5.3.

Lemma 5.3. For any tree T and distribution P(x,y) the following holds for j ∈ L:

Ex∼P(x) [|ηj(x)− η̂j(x)|]

≤
∑

v∈Path(lj)

P(zpa(v) = 1)Ex∼P(x|zpa(v)=1) [|η(x, v)− η̂(x, v)|] ,

where for the root node P(zpa(rT) = 1) = 1.

Proof. Take expectation of both hand sides of (5.2) and use linearity of expectation
for the right hand side:

Ex∼P(x) [|ηj(x)− η̂j(x)|]

≤ Ex∼P(x)

 ∑
v∈Path(lj)

ηpa(v)(x) |η(x, v)− η̂(x, v)|


=

∑
v∈Path(lj)

Ex∼P(x)

[
ηpa(v)(x) |η(x, v)− η̂(x, v)|

]
The rest follows from Lemma A.2.

Using the above results, we finally prove Theorem 5.4. It bounds the ex-
pectation of the L1-estimation error averaged over all labels by the expected
L1-estimation errors of node classifiers. The expectation is defined over the entire
distribution Pr(x). We present the result in a general form of a weighted average
as such form is used later in the proofs for the generalized performance metrics.

A.3 Proofs of the results from Chapter 5.2 111

Theorem 5.4. For any tree T , distribution P(x,y), and weights Wj ∈ R, j ∈
{1, . . . ,m}, the following holds:

1

m

m∑
j=1

WjEx∼P(x) [|ηj(x)− η̂j(x)|] ≤

1

m

∑
v∈V

P(zpa(v) = 1)Ex∼P(x|zpa(v)=1)

[
|η(x, v′)− η̂(x, v′)|

] ∑
j∈Lv

Wj , (5.3)

where for the root node P(zpa(rT) = 1) = 1. For Wj = 1, j ∈ {1, . . . ,m}, we have:

1

m

m∑
j=1

Ex∼P(x) [|ηj(x)− η̂j(x)|] ≤

1

m

∑
v∈V

P(zpa(v) = 1)Ex∼P(x|zpa(v)=1)

[
|η(x, v′)− η̂(x, v′)|

]
|Lv| .

Proof. From Lemma 5.3 we obtain:

1

m

m∑
j=1

WjEx∼P(x) [|ηj(x)− η̂j(x)|] ≤

1

m

m∑
j=1

Wj

∑
v∈Path(lj)

P(zpa(v) = 1)Ex∼P(x|zpa(v)=1) [|η(x, v)− η̂(x, v)|] .

The RHS can be further transformed to:

1

m

m∑
j=1

∑
v∈Path(lj)

WjP(zpa(v) = 1)Ex∼P(x|zpa(v)=1) [|η(x, v)− η̂(x, v)|] =

1

m

∑
v∈V

P(zpa(v) = 1)Ex∼P(x|zpa(v)=1) [|η(x, v)− η̂(x, v)|]
∑
j∈Lv

Wj .

where the last equation follows from the fact that each v ∈ VT appears in the
double sum |Lv| times (where |Lv| is the number of leaves in a subtree rooted in
v; in other words, this is the number of paths from leaves to the root that contain
node v). Changing the double sum to sum over all nodes and multiplying the
expected L1 estimation error for v by

∑
j∈Lv Wj gives the final result.

A.3 Proofs of the results from Chapter 5.2

We present the proof of Theorem 5.6. It expresses the bound from Theorem 5.4 in
terms of node regrets of a strongly proper composite loss function.

Theorem 5.6. For any tree T , distribution P(x,y), weights Wj ∈ R, j ∈ {1, . . . ,m},
a strongly proper composite loss function `c, and a set of scoring functions fv, v ∈ VT ,

112 A Omitted proofs

the following holds:

1

m

m∑
j=1

WjEx∼P(x) [|ηj(x)− η̂j(x)|] ≤
√

2

m
√
λ

∑
v∈V

√
P(zpa(v) = 1)reg`c(fv)

∑
j∈Lv

Wj ,

(5.5)
where for the root node P(zpa(rT) = 1) = 1, and reg`c(fv) is the expected `c-regret of fv
taken over P(x, zv | zpa(v) = 1). For Wj = 1, j ∈ {1, . . . ,m}, we have:

1

m

m∑
j=1

Ex∼P(x) [|ηj(x)− η̂j(x)|] ≤
√

2

m
√
λ

∑
v∈V
|Lv|

√
P(zpa(v) = 1)reg`c(fv) . (5.6)

Proof. As ψ is an invertible function satisfying f(x) = ψ(P(y = 1 |x)), we can
assume that η̂(x, v) = ψ−1(fv(x)). We then obtain from (2.3):

ηpa(v)(x) |η(x, v)− η̂(x, v)| ≤ ηpa(v)(x)

√
2

λ

√
reg`c(fv |x) , (A.4)

for any v ∈ VT . We take the expectation with respect to P(x) of (A.4). Based on
Lemma A.2, given in Appendix A.2, the left hand side is equal to:

P(zpa(v) = 1)Ex∼P(x|zpa(v)=1) [|η(x, v)− η̂(x, v)|] .

For the left hand side we obtain the following upper bound:

Ex∼P(x)

[
ηpa(v)(x)

√
2

λ

√
reg`c(fv |x)

]
=

=

√
2

λ
Ex∼P(x)

[
P(zpa(v) = 1|x)

√
reg`c(fv |x)

]
=

√
2

λ
Ex∼P(x)

[√
P(zpa(v) = 1|x)2reg`c(fv |x)

]
≤
√

2

λ
Ex∼P(x)

[√
P(zpa(v) = 1|x)reg`c(fv |x)

]
.

Using Jensen’s inequality we further get:√
2

λ
Ex∼P(x)

[√
P(zpa(v) = 1|x)reg`c(fv |x)

]
≤

≤
√

2

λ
Ex∼P(x)

[
P(zpa(v) = 1|x)reg`c(fv |x)

]
The next step is similarly to the proof of Lemma 5.1. We use first the definition of

A.4 Proofs of the results from Section 5.3 113

expectation, then Bayes’ theorem, and finally we rearrange the terms:√
2

λ
Ex∼P(x)

[
P(zpa(v) = 1|x)reg`c(fv |x)

]
=

=

√
2

λ

∫
P(x)P(zpa(v) = 1|x)reg`c(fv |x)dx

=

√
2

λ

∫
P(zpa(v) = 1)P(x|zpa(v) = 1)reg`c(fv |x)dx

=

√
2

λ
P(zpa(v) = 1)

∫
P(x|zpa(v) = 1)reg`c(fv |x)dx .

Notice that:∫
P(x|zpa(v) = 1)reg`(fv |x)dx = Ex∼P(x|zpa(v)=1)

[
reg`c(fv |x)

]
This is the expected regret of fv taken over P(x, zv | zpa(v) = 1), denoted by
reg`c(fv). We thus obtain the following by taking the expectation of (A.4):

P(zpa(v) = 1)Ex∼P(x|zpa(v)=1)

[
|η(x, v′)− η̂(x, v′)|

]
≤
√

2

λ

√
P(zpa(v) = 1)reg`c(fv)

By using the above in (5.3) from Theorem 5.4, we obtain the final result.

A.4 Proofs of the results from Section 5.3

This appendix contains proofs of Theorems 5.7 and 5.8 which state the regret
bounds of PLTs for generalized performance metrics. We start with presenting
two other results being the building blocks of the main proofs. Both are based
on [Kotłowski and Dembczyński, 2017]. The first one states that the regret for a
cost-sensitive binary classification can be upper-bounded by L1 estimation error
of the conditional probabilities by using a proper threshold that corresponds to
the misclassification cost. The second one shows that the regret of the generic
function Ψ(FP,FN) can be upper-bounded by the regret of the cost-sensitive bi-
nary classification with costs being a function of the optimal value of Ψ(FP,FN).

Given a real number α ∈ [0, 1], let us first define an α-cost-sensitive loss
function for a single binary label y, `α : {0, 1} × {0, 1} → [0, 2], as:

`α(y, ŷ) = 2αJy = 0KJŷ = 1K + 2(1− α)Jy = 1KJŷ = 0K

The cost-sensitive loss assigns different costs of misclassification depending on
whether the label is relevant (y = 1) or not (y = −1). The multiplier of 2 makes
`0.5(y, ŷ) to be the typical binary 0/1 loss. Given classifier h, the α-cost-sensitive

114 A Omitted proofs

risk of h is:

Rα(h) = E(y,x)∼P(y,x)[`α(y, ŷ)] = 2αFP(h) + 2(1− α)FN(h) (A.5)

The α-cost-sensitive regret of h is then:

regα(h) = Rα(h)−Rα(h∗α) , (A.6)

where h∗α = arg minhRα(h).

Proposition A.3. For any distribution P over (y,x) ∈ {0, 1}×X , with η(x) = P(y =

1 |x), any α ∈ [0, 1], and classifier h, such that h(x) = Jη̂(x) > αK with η̂(x) ∈ [0, 1],
the following holds:

regα(h) ≤ 2Ex∼P(x))[|η(x)− η̂(x)|]

Proof. The proof is a part of the derivation of the bound from Proposition 2
in Kotłowski and Dembczyński [2017]. Given η ∈ [0, 1] and h ∈ [0, 1], the
conditional α-cost-sensitive risk is:

Rα(h |x) = Ey∼P(y |x) [`α(y, h)] = 2α(1− η)Jh = 1K + 2(1− α)ηJh = 0K .

Let h∗α ∈ arg minh riskα(η, h). It is easy to check that one of possible solutions is

h∗α = Jη > αK . (A.7)

The α-conditional cost-sensitive regret is

regα(h |x) = Rα(h |x)−Rα(h∗α |x).

If h = h∗α, then regα(η, h) = 0, otherwise, regα(η, h) = 2|η − α|, so

regα(h |x) = 2Jh 6= h∗αK|η − α|.

In the statement of the theorem, we assume h(x) = Jη̂(x) > αK, for some η̂(x) ∈
[0, 1], that is, h(x) has the same form as h∗α(x) in (A.7). For such h(x) we have:

regα(h |x) ≤ 2|η − η̂| .

This statement trivially holds when h = h∗α. If h 6= h∗α, then η and η̂ are on the
opposite sides of α, hence |η − α| ≤ |η − η̂|.

The unconditional statement is obtained by taking the expectation with re-
spect to x of both sides of the above equation:

regα(h) = Ex∼P(x)[regα(h |x)] ≤ 2Ex∼P(x)[|η(x)− η̂(x)|] .

The second result is a modified version of Proposition 1 from [Kotłowski and
Dembczyński, 2017], which in turn generalizes Proposition 6 in [Puthiya Param-
bath et al., 2014].

A.4 Proofs of the results from Section 5.3 115

Proposition A.4. Let Ψ be a linear-factorial function as defined in (3.1) with the de-
nominator bounded away from 0 by γ as in (3.2). Take any real values FP, FN and FP∗,
FN∗ in the domain of Ψ such that:

Ψ(FP∗,FN∗)−Ψ(FP,FN) ≥ 0 .

Then, we obtain:

Ψ(FP∗,FN∗)−Ψ(FP,FN) ≤ C(α∗Ψ(FP− FP∗) + (1− α∗Ψ)(FN− FN∗))

where:
α∗Ψ =

Ψ(FP∗,FN∗)b1 − a1

Ψ(FP∗,FN∗)(b1 + b2)− (a1 + a2)
,

and
C =

1

γ
(Ψ(FP∗,FN∗) (b1 + b2)− (a1 + a2)) > 0 .

Proof. For the sake of clarity, we use a shorthand notation Ψ∗ = Ψ(FP∗,FN∗),
Ψ = Ψ(FP,FN), A = a0 +a1FP+a2FN, B = b0 +b1FP+b2FN, for the numerator
and denominator of Ψ, and analogously A∗ and B∗ for Ψ∗. With this notation,
we have:

Ψ∗ −Ψ =
Ψ∗B −A

B
=

Ψ∗B −A−
=0︷ ︸︸ ︷

(Ψ∗B∗ −A∗)
B

=
Ψ∗(B −B∗)− (A−A∗)

B

=
(Ψ∗b1 − a1)(FP− FP∗) + (Ψ∗b2 − a2)(FN− FN∗)

B

≤ (Ψ∗b1 − a1)(FP− FP∗) + (Ψ∗b2 − a2)(FN− FN∗)

γ
, (A.8)

where the last inequality follows from the assumptions thatB ≥ γ and Ψ∗−Ψ ≥ 0.
Since Ψ is non-increasing in FP and FN, we have:

∂Ψ∗

∂FP∗
=
a1B

∗ − b1A∗

(B∗)2
=
a1 − b1Ψ∗

B∗
≤ 0

and similarly ∂Ψ∗

∂FN∗ = a2−b2Ψ∗

B∗ ≤ 0. This and the assumption B∗ ≥ γ implies that
both Ψb1 − a1 and Ψ∗b2 − a2 are non-negative. If we normalize them by defining:

α∗Ψ =
Ψ∗b1 − a1

Ψ∗(b1 + b2)− (a1 + a2)
,

we obtain then from (A.8):

Ψ∗ −Ψ ≤ C(α∗Ψ(FP− FP∗) + (1− α∗Ψ)(FN− FN∗))

with C being 1
γ (Ψ∗ (b1 + b2)− (a1 + a2)).

With the above results we can prove the main theorems of Section 5.3.

116 A Omitted proofs

Theorem 5.7. Let τ∗j = arg maxτ Ψ(hj,τ), for each j ∈ L, and τ ∗ = (τ∗1 , τ
∗
2 , . . . , τ

∗
m).

For any tree T and distribution P(x,y), the classifier hτ∗ achieves the following upper
bound on its Ψmacro-regret:

regΨmacro
(hτ∗) ≤

√
2

m
√
λ

∑
v∈V

√
P(zpa(v) = 1)reg`c(fv)

∑
j∈Lv

Cj ,

where Cj = 1
γ (Ψ(h∗Ψ, j)(b1 + b2)− (a1 + a2)), for each j ∈ L, with γ defined in (3.2),

P(zpa(rT) = 1) = 1 for the root node, and reg`c(fv) is the expected `c-regret of fv taken
over P(x, zv | zpa(v) = 1).

Proof. From the definitions of the macro-average performance measure (3.3)
and the regret of Ψmacro (5.7), as well as from Proposition A.4 we have for any
h(x) = (h1(x), h2(x), . . . , hm(x)) that:

regΨmacro
(h) ≤ 1

m

m∑
j=1

Cj(α
∗
Ψ(FPj − FP∗j) + (1− α∗Ψ)(FNj − FN∗j)) ,

with FPj and FNj being the false positives and false negatives of hj . It can be
easily notice (α∗Ψ(FPj−FP∗j)+(1−α∗Ψ)(FNj−FN∗j)) is half of the α∗Ψ-regret (A.6)
for label j. Therefore, we can write:

regΨmacro
(h) ≤ 1

2m

m∑
j=1

Cjregα∗Ψ(hj) .

If we now take hj = hj,α∗Ψ,j , then by using Proposition A.3 and the bound (5.5)
from Theorem 5.6 we obtain:

regΨmacro
(hα∗Ψ) ≤ 1

m

m∑
j=1

CjEx∼P(x))[|η(x)− η̂(x)|]

≤
√

2

m
√
λ

∑
v∈V

√
P(zpa(v) = 1)reg`c(fv)

∑
j∈Lv

Cj .

Finally, since

τ ∗ = arg max
τ

Ψmacro(hτ) = arg min
τ

regΨmacro
(hτ) ,

we have that regΨmacro
(hτ∗) ≤ regΨmacro

(hα∗Ψ).

Theorem 5.8. Let hτ = (h1,τ , h2,τ , . . . , hm,τ) be a classifier which shares the same
threshold τ over all labels j ∈ L. For any tree T , distribution P(x,y), and τ∗ =

arg maxτ Ψmicro(hτ), classifier hτ∗ achieves the following upper bound on its Ψmicro-
regret:

regΨmicro(hτ∗) ≤
C

m

√
2

λ

∑
v∈V
|Lv|

√
P(zpa(v) = 1)reg`c(fv) ,

where C = 1
γ (Ψmicro(h∗Ψ)(b1 + b2)− (a1 + a2)) with γ defined in (3.2), P(zpa(rT) =

1) = 1 for the root node, and reg`c(fv) is the expected `c-regret of fv taken over

A.5 Proofs of the results from Section 5.5 117

P(x, zv | zpa(v) = 1).

Proof. Using Proposition A.4, which applies to any real values FP, FN, FP∗, FN∗,
and from definitions of the micro-averaged performance measure (3.4) and the
regret of Ψmicro (5.8), we can write for any h(x) = (h1(x), h2(x), . . . , hm(x)) that:

regΨmicro
(h) = Ψ(F̄P(h∗α∗Ψ

), F̄N(h∗α∗Ψ
))−Ψ(F̄P(h), F̄N(h))

≤ C
(
α∗Ψ(F̄P(h)− F̄P(h∗α∗Ψ

)) + (1− α∗Ψ)(F̄N(h)− F̄N(h∗α∗Ψ
))
)

=
C

m

m∑
j=1

α∗Ψ(FPj(hj)− FPj(h
∗
α∗Ψ

)) + (1− α∗Ψ)(FNj(hj)− F̄Nj(h
∗
α∗Ψ

)) .

Further from α-cost-sensitive risk (A.5) and regret (A.6), we have:

regΨmicro
(h) ≤ C

2m

m∑
j=1

(
Rα(hj)−Rα(h∗α∗Ψ

)
)

=
C

2m

m∑
j=1

regα(hj) .

If we now take hj = hj,α∗Ψ , for all j ∈ L, then by using Proposition A.3 we obtain:

regΨmicro
(hα∗Ψ) ≤ C

m

m∑
j=1

Ex[|η(x)− η̂(x)|].

By using the bound (5.6) from Theorem 5.6 we have:

regΨmicro
(h) ≤ C

m

√
2

λ

∑
v∈V
|Lv|

√
P(zpa(v) = 1)reg`c(fv) .

The theorem now follows from noticing that

τ∗ = arg max
τ

Ψmicro(hτ) = arg min
τ

regΨmicro
(hτ) ,

we have that regΨmicro
(hτ∗) ≤ regΨmicro

(hα∗Ψ).

A.5 Proofs of the results from Section 5.5

Theorem 5.11. For any distribution P(y |x) and classifier h ∈ Hm the following
holds:

regD@k(h@k |x) =
∑
i∈L∗k

ηi(x)g(π−1
i (h∗D@k))−

∑
j∈L̂k

ηj(x)g(π−1
j (h@k))

≤ 2 max
j
|ηj(x)− η̂j(x)| IDCG@k(k) ,

118 A Omitted proofs

where IDCG@k(k) =
∑k

r=1 g(r), L∗k is the set of labels on first k ranks in ranking
π(h∗D@k), and L̂k is the set of labels on first k ranks in ranking π(h).

Proof. Let us add and subtract the following two terms,
∑

i∈L∗k
η̂i(x)g(π−1

i (h∗D@k))

and
∑

j∈L̂k η̂j(x)g(π−1
j (h@k)), to the regret and reorganize the expression in the

following way:

regD@k(h |x) =
∑
i∈L∗k

ηi(x)g(π−1
i (h∗D@k))−

∑
i∈L∗k

η̂i(x)g(π−1
i (h∗D@k))︸ ︷︷ ︸

≤
∑
i∈L∗

k
|ηi(x)−η̂i(x)|g(π−1

i (h∗D@k))

+
∑
j∈L̂k

η̂j(x)g(π−1
j (h))− 1

k

∑
j∈L̂k

ηj(x)g(π−1
j (h))

︸ ︷︷ ︸
≤ 1
k

∑
j∈L̂k

|η̂j(x)−ηj(x)|g(π−1
j (h))

+
∑
i∈L∗k

η̂i(x)g(π−1
i (h∗D@k))−

1

k

∑
j∈L̂k

η̂j(x)g(π−1
j (h))

︸ ︷︷ ︸
≤0

≤
∑
i∈L∗k

|ηi(x)− η̂i(x)| g(π−1
i (h∗D@k)) +

∑
j∈L̂k

|ηj(x)− η̂j(x)| g(π−1
j (h))

Next we bound each L1 error, |ηj(x)− η̂j(x)|, by maxj |ηj(x)− η̂j(x)|. Notice
that |L̂k| = k and each label in L̂k appears at only one, unique, rank in π(h).
Therefore

∑
j∈L̂k g(π−1

j (h)) =
∑k

r=1 g(r). The same reasoning applies to L∗k and
π(h∗D@k). Therefore

regD@k(h |x) ≤ 2 max
j
|ηj(x)− η̂j(x)|

k∑
r=1

g(r) .

Theorem 5.12. For any tree T and distribution P(x,y), classifier h(x) achieves the
following upper bound on its DCG@k regret:

regD@k(h) ≤ IDCG@k(k)
2
√

2√
λ

∑
v∈V
|Lv|

√
P(zpa(v) = 1)reg`c(fv) .

where IDCG@k(k) =
∑k

r=1 g(r), P(zpa(rT) = 1) = 1 for the root node, and reg`c(fv)

is the expected `c-regret of fv taken over P(x, zv | zpa(v) = 1).

Proof. By taking expectation over P(x) of the bound from Theorem 5.11 and
replacing the max operator by sum, that is, max(a, b) ≤ a + b, for a, b ≥ 0, we

A.6 Proofs of the results from Chapter 6 119

obtain:

regD@k(h) = Ex∼P(x)[regD@k(h@k |x)]

≤ Ex∼P(x)[2 max
j
|ηj(x)− η̂j(x)|

k∑
r=1

g(r)]

≤ 2

k∑
r=1

g(r)Ex∼P(x)[max
j
|ηj(x)− η̂j(x)|]

≤ 2IDCG@k(k)
m∑
j=1

Ex∼P(x) |ηj(x)− η̂j(x)|] .

Next, by applying (5.6) from Theorem 5.6, we get the statement:

regD@k(x)) ≤ IDCG@k(k)
2
√

2√
λ

∑
v∈V
|Lv|

√
P(zpa(v) = 1)reg`c(fv) .

A.6 Proofs of the results from Chapter 6

Proposition 6.1. For any tree T and vector y it holds that:

c(T,y) ≤ 1 + ‖y‖1 · depthT · degT ,

where depthT = maxv∈LT lenv − 1 is the depth of the tree, and degT = maxv∈VT degv
is the highest degree of a node in T .

Proof. First notice that a training observation is always used in the root node,
either as a positive observation (x, 1), if ‖y‖1 > 0, or as a negative observation
(x, 0), if ‖y‖1 = 0. Therefore the cost is bounded by 1. If ‖y‖1 > 0, the training
observation is also used as a positive observation in all the nodes on paths from
the root to leaves corresponding to labels j for which yj = 1 in y. As the root has
been already counted, we have at most depthT = maxv lenv − 1 such nodes for
each positive label in y. Moreover, the training observation is used as a negative
observation in all siblings of the nodes on the paths determined above, unless it is
already a positive observation in the sibling node. The highest degree of a node in
the tree is degT . Taking the above into account, the cost c(T,y) is bounded from
above by 1 + ‖y‖1 · depthT · degT . The bound is tight, for example, if ‖y‖1 = 1

and T is a perfect degT -ary tree (all non-leaf nodes have an equal degree and the
paths to the root from all leaves are of the same length).

Theorem 6.4. For Algorithm 3 with all thresholds τv, v ∈ VT , set to τ and any x ∈ X ,
we have that:

cτ (T,x) ≤ 1 + bP̂ /τc · depthT · degT , (6.2)

120 A Omitted proofs

where P̂ is a constant upper-bounding
∑m

j=1 η̂j(x), depthT = maxv∈LT lenv − 1, and
degT = maxv∈VT degv.

Proof. The proof is similar to the one of Theorem 6.1 in [Busa-Fekete et al., 2019].
As stated before the theorem, we assume that the estimates are properly normal-
ized, that is, they satisfy:

η̂v(x) ≤ min

1,
∑

v′∈Ch(v)

η̂v′(x)

 , (A.9)

and
max

{
η̂v′(x), v′ ∈ Ch(v)

}
≤ η̂v(x) . (A.10)

Consider the subtree T ′ of T , which consists of all nodes v ∈ VT for which
η̂v(x) ≥ τ . If there are no such nodes, from the pseudocode of Algorithm 3,
we see that only the root classifier is called. The upper-bound (6.2) in this case
obviously holds. However, it might not be tight as η̂v(x) < τ does not imply
P̂ ≤ τ because of (A.9).

If T ′ has at least one node, Algorithm 3 visits each node of T ′ (calls a corre-
sponding classifier and adds the node to a stack), since for each parent node we
have (A.10). Moreover, Algorithm 3 visits all children of nodes T ′ (some of them
are already in T ′). Let the subtree T ′′ consist of all nodes of T ′ and their child
nodes. Certainly T ′ ⊆ T ′′ ⊆ T . To prove the theorem we count first the number
of nodes in T ′ and then the number of nodes in T ′′, which gives as the final result.

If the number of nodes in T ′ is greater than or equal to 1, then certainly
rT is in T ′. Let us consider next the number of leaves of T ′. Observe that∑

v∈LT ′
η̂v(x) ≤ P̂ . This is because

∑
v∈LT ′

η̂v(x) ≤
∑

v∈LT η̂v(x) ≤ P̂ , that is,
v ∈ LT ′ might be an internal node in T and its η̂v(x) is at most the sum of
probability estimates of the leaves underneath v according to (A.9). From this we
get the following upper bound on the number of leaves in T ′:

|LT ′ | ≤ bP̂ /τc . (A.11)

Since the degree of internal nodes in T ′ might be 1, to upper-bound the number
of all nodes in T ′ we count the number of nodes on all paths from leaves to the
root, but counting the root node only once:

|VT ′ | ≤ 1 +
∑
v∈LT ′

(lenv − 1) .

Next, notice that for each v ∈ T ′ its all siblings are in T ′′ unless v is the root node.
This is because if a non-root node v is in T ′ then its parent is also in T ′ according
to (A.10) and T ′′ contains all child nodes of nodes in T ′. The rest of nodes in T ′′

are the child nodes of leaves of T ′, unless a leaf of T ′ is also a leaf of T . Therefore,
we have

|VT ′′ | ≤ 1 +
∑
v∈LT ′

degT (lenv − 1) +
∑
v∈LT ′

degT Jv 6∈ LT K ,

A.6 Proofs of the results from Chapter 6 121

with degT being the highest possible degree of a node. Since (A.11) and

lenv − 1 + Jv 6∈ LT K ≤ depthT ,

that is, the longest path cannot be longer than the depth of the tree plus 1, we
finally get:

|VT ′′ | ≤ 1 + bP̂ /τc · depthT · degT .

This ends the proof as the number of nodes in T ′′ is equivalent to the number of
calls to the node classifiers, that is, cτ (T,x).

Theorem 6.6. Using the notation above, it holds that

CP(x),τ (T) ≤ 1

τ

(
CP(T)+

∑
v∈VT

Ex

[
ηpa(v)(x) · |η(x, v)− η̂(x, v)|

]
·|Vv\Lv|·degv

)
−1− τ

τ
.

Proof. We can upper bound the expected inference cost as follows:

Ex [cτ (T,x)] = Ex

[
1 +

∑
v∈VT

I {η̂v(x) ≥ τ} degv

]
(A.12)

≤ Ex

[
1 +

∑
v∈VT

η̂v(x)

τ
degv

]

≤ 1 +
∑
v∈VT

Ex [ηv(x) + |η̂v(x)− ηv(x)|]
τ

degv

≤ 1

τ

1 +
∑
v∈VT

Ex

[
ηv(x) +

∑
v′∈Path(v)

ηpa(v′)(x) · |η(x, v)− η̂(x, v)|
]
· degv

− 1− τ
τ

(A.13)

≤ 1

τ

(
CP(T) +

∑
v∈VT

Ex

[
ηpa(v)(x) · |η(x, v)− η̂(x, v)|

]
· |T (v)| · degv

)
− 1− τ

τ
,

(A.14)

where (A.13) follows from Lemma 5.1.

Theorem 6.7. For Algorithm 4 retrieving k top-scoring labels and any x ∈ X we have
that:

ck(T,x) ≤ 1 + (k + c− 1) · depthT · degT ,

where c, c ≥ 1, is an integer for which η̂πk(η̂(x))(x) > 1
c

∑m
i=k+1 η̂πi(η̂(x))(x), η̂(x)

denotes the vector of estimates of conditional label probabilities using the normaliza-
tion (4.9), depthT = maxv∈LT lenv − 1, and degT = maxv∈VT degv.

Proof. The prediction cost ck(T,x) of Algorithm 4 is the number of calls to the
node classifiers. Algorithm 4 calls the classifiers in the root and in all the children
of internal nodes v such that η̂v(x) is greater than or equal to the k-th highest
conditional probability estimate η̂πk(η̂(x))(x). We denote the set of such internal
nodes as A,

A = {v ∈ VT \ LT : η̂v(x) ≥ η̂πk(η̂(x))(x)} .

122 A Omitted proofs

Algorithm 4 visits calls the classifier in the root, and in the children of nodes in
A. Therefore, to upper-bound the cost ck(T,x) we upper-bound the number of
nodes in A, upper-bound the number of children of nodes from A, and add 1 to
the count to account for the root.

If η̂v(x) are properly normalized, then η̂v(x) is less than or equal to the sum
of η̂j(x) in leaf nodes Lv, i.e. η̂v(x) ≤

∑
j∈Lv η̂j(x) for each v ∈ VT . Estimate

η̂v(x) is greater than or equal to η̂πk(η̂(x))(x) only if
∑

j∈Lv η̂j(x) ≥ η̂πk(η̂(x))(x).
Let Ŷk denote the set of k highest scoring labels retrieved by Algorithm 4, Ŷk =

{πr(η̂(x)) : r = 1, . . . , k}.
Consider an internal node v. Node v may have a predicted label in its subtree

labels, Lv ∩ Ŷk 6= ∅, or may not have, Lv ∩ Ŷk = ∅. In the first case, if the node
v is a predecessor of a top-k scoring label, η̂v(x) ≥ η̂πk(η̂(x))(x) always holds, as
η̂v(x) ≥ η̂j(x) for each j ∈ Lv. In the second case,

∑
j∈Lv η̂j(x) ≥ η̂πk(η̂(x))(x) is

a necessary condition for η̂v(x) > η̂πk(η̂(x))(x) to hold. Consider internal nodes
on a single tree level. There are at most k predecessors of top-k scoring labels
on a single tree level. Those nodes are always included in A. Consider the
nodes on this tree level that are not predecessors of s top-k scoring label. Let
us denote the sum of η̂v(x) for these nodes as P . From the assumption that
η̂πk(η̂(x))(x) > 1

c

∑m
i=k+1 η̂πi(η̂(x))(x), we have P < c · η̂πk(η̂(x))(x) (notice the

strict inequality). Therefore, on a single tree level there are at most c− 1 nodes
not being predecessors of top-k labels for which η̂v(x) ≥ η̂πk(η̂(x))(x). Therefore
in total on a single tree level, there are at most k + c − 1 nodes included in the
set A. There are depthT internal tree levels. Therefore |A| ≤ (k + c− 1) · depthT .
Given the set A, the number of nodes with classifiers called by Algorithm 4 is
upper-bounded by: 1+ |A| ·degT ≤ 1+(k+ c−1) ·depthT ·degT , what concludes
the proof.

Theorem 6.10. For Algorithm 5 with beam B and any x ∈ X , we have that:

cB(T,x) ≤ 1 +B · degT ·depthT

where depthT = maxv∈LT lenv − 1, and degT = maxv∈VT degv.

Proof. Algorithm 5 visits the root and all the children of the root (there are up
to degT such children). Then, among the degT children of the root, it selects
B highest scoring ones, and visits B degT children of these nodes on the next
level. Such operation is repeated (depthT − 1) times, until B degT leafs are finally
evaluated. Therefore we get: cB(T,x) ≤ 1 + degT +B · degT ·(depthT − 1) ≤
1 +B · degT ·depthT .

The prediction cost bounds could possibly be made tighter by considering the
level of root’s children separately. However, such formulation of the bounds and
the proofs is less clear, and makes the bounds harder to interpret and compare
with each other. Therefore we present the bounds this way, and only mention
this possibility.

A.7 Proofs of the results from Chapter 7 123

A.7 Proofs of the results from Chapter 7

Theorem 7.3 concerns two properties, the properness and the efficiency, of an
OPLT algorithm. We first prove that the OPLT algorithm satisfies each of the
properties in two separate lemmas. The final proof of the theorem is then straight-
forward.

Lemma A.5. OPLT is a proper OPLT algorithm.

Proof. We need to show that for any S and t the two of the following hold. Firstly,
that the set LTt of leaves of tree Tt built by OPLT correspond to Lt, the set of all
labels observed in St. Secondly, that the set Ht of classifiers trained by OPLT
is exactly the same as H = IPLT.TRAIN(Tt, Aonline,St), that is, the set of node
classifiers trained incrementally by Algorithm 6 on D = St and tree Tt given as
input parameter. We will prove it by induction with the base case for S0 and the
induction step for St, t ≥ 1, with the assumption that the statement holds for
St−1.

For the base case of S0, tree T0 is initialized with the root node rT with no
label assigned and set H0 of node classifiers with a single classifier assigned to
the root. As there are no observations, this classifier receives no updates. Now,
notice that IPLT.TRAIN, run on T0 and S0, returns the same set of classifiers
H that contains solely the initialized root node classifier without any updates
(assuming that initialization procedure is always the same). There are no labels
in any sequence of 0 observations and also T0 has no label assigned.

The induction step is more involved as we need to take into account the
internal loop which extends the tree with new labels. Let us consider two cases.
In the first one, observation (xt,Lxt) does not contain any new label. This
means that the tree Tt−1 will not change, that is, Tt−1 = Tt. Moreover, node
classifiers from Ht−1 will get the same updates for (xt,Lxt) as classifiers in
IPLT.TRAIN, therefore Ht = IPLT.TRAIN(Tt, Aonline,St). It also holds that lj ∈
LTt iff j ∈ Lt, since Lt−1 = Lt. In the second case, observation (xt,Lxt) has
m′ = |Lxt \ Lt−1| new labels. Let us make the following assumption for the
UPDATETREE procedure, which we later prove that it indeed holds. Namely, we
assume that the set Ht′ of classifiers after calling the UPDATETREE procedure is
the same as the one being returned by IPLT.TRAIN(Tt, Aonline,St−1), where Tt is
the extended tree. Moreover, leaves of Tt correspond to all observed labels seen
so far. If this is the case, the rest of the induction step is the same as in the first
case. All updates to classifiers in Ht′ for (xt,Lxt) are the same as in IPLT.TRAIN.
Therefore Ht = IPLT.TRAIN(Tt, Aonline,St).

Now, we need to show that the assumption for the UPDATETREE procedure
holds. To this end, we also use induction, this time on the number m′ of new
labels. For the base case, we take m′ = 1. The induction step is proved for m′ > 1

with the assumption that the statement holds for m′ − 1.
For m′ = 1 we need to consider two scenarios. In the first scenario, the new

label is the first label in the sequence. This label will be then assigned to the

124 A Omitted proofs

root node rT . So, the structure of the tree does not change, that is, Tt−1 = Tt.
Furthermore, the set of classifiers also does not change, since the root classifier
has already been initialized. It might be negatively updated by previous obser-
vations. Therefore, we have Ht′ = IPLT.TRAIN(Tt, Aonline,St−1). Furthermore,
all observed labels are appropriately assigned to the leaves of Tt. In the second
scenario, set Lt−1 is not empty. We need to consider in this scenario the three
variants of tree extension illustrated in Figure 7.1.

In the first variant, tree Tt−1 is extended by one leaf node only without
any additional ones. ADDNODE creates a new leaf node v′′ with the new label
assigned to the tree. After this operation, the tree contains all labels from St. The
new leaf v′′ is added as a child of the selected node v. This new node is initialized
as η̂(v′′) = INVERSECLASSIFIER(θ̂(v)). Recall that INVERSECLASSIFIER creates a
wrapper that inverts the behavior of the base classifier. It predicts 1− η̂, where η̂ is
the prediction of the base classifier, and flips the updates, that is, positive updates
become negative and negative updates become positive. From the definition
of the auxiliary classifier, we know that θ̂(v) has been trained on all positives
updates of η̂(v). So, η̂(v′′) is initialized with a state as if it was updated negatively
each time η̂(v) was updated positively in sequence St−1. Notice that in St−1 there
is no observation labeled with the new label. Therefore η̂(v′′) is the same as if it
was created and updated using IPLT.TRAIN. There are no other operations on
Tt−1, so we have that Ht′ = IPLT.TRAIN(Tt, Aonline,St−1).

In the second variant, tree Tt−1 is extended by internal node v′ and leaf node
v′′. The internal node v′ is added in INSERTNODE. It becomes a parent of all child
nodes of the selected node v and the only child of this node. Thus, all leaves of
the subtree of v do not change. Since v′ is the root of this subtree, its classifier
η̂(v′) should be initialized as a copy of the auxiliary classifier θ̂(v), which has
accumulated all updates from and only from observations with labels assigned
to the leaves of this subtree. The addition of the leaf node v′′ can be analyzed as
in the first variant. Since nothing else has changed in the tree and in the node
classifiers, we have that Ht′ = IPLT.TRAIN(Tt, Aonline,St−1). Moreover, the tree
contains the new label, so the statement holds.

The third variant is similar to the second one. Tree Tt−1 is extended by two
leaf nodes v′ and v′′ being children of the selected node v. Insertion of leaf v′

is similar to the insertion of node v′ in the second variant, with the difference
that v does not have any children and its label has to be reassigned to v′. The
new classifier in v′ is initialized as a copy of the auxiliary classifier θ̂(v), which
contains all updates from and only from observations with the label assigned
previously to v. Insertion of v′′ is exactly the same as in the second variant.
From the above, we conclude that Ht′ = IPLT.TRAIN(Tt, Aonline,St−1) and that
Tt contains all labels from Tt−1 and the new label. In this way we prove the base
case.

The induction step is similar to the second scenario of the base case. The only
difference is that we do not extend tree Tt−1, but an intermediate tree with m′ − 1

new labels already added. Because of the induction hypothesis, the rest of the
analysis of the three variants of tree extension is exactly the same. This ends the

A.7 Proofs of the results from Chapter 7 125

proof that the assumption for the inner loop holds. At the same time, it finalizes
the entire proof.

Lemma A.6. OPLT is an efficient OPLT algorithm.

Proof. The OPLT maintains one additional classifier per each node in comparison
to IPLT. Hence, for a single observation there is at most one update more for
each positive node. Furthermore, the time and space cost of the complete tree
building policy is constant per a single label, if implemented with an array list. In
this case, insertion of any new node can be made in amortized constant time, and
the space required by the array list is linear in the number of nodes. Concluding
the above, the time and space complexity of OPLT is in constant factor of Ct and
Cs, the time and space complexity of IPLT respectively. This proves that OPLT is
an efficient OPLT algorithm.

Theorem 7.3. OPLT is a proper and efficient OPLT algorithm.

Proof. The theorem directly follows from Lemma A.5 and Lemma A.6.

B
Implementation and experimental setup

B.1 Batch uniform-cost search

We include a simplified pseudocode of batch uniform-cost search algorithm,
published originally in [Jasinska, 2018]. This algorithm retrieves k highest scored
labels for Ntest test instances, processing all of them at once. It is useful if the
time of evaluation of a single classifier scales sublinearly with the number of
instances for which it is evaluated. This is the case of the PARABEL [Prabhu et al.,
2018] implementation of the PLTs model, which transforms a linear model from
a sparse format to a dense format before evaluating it. PARABEL originally uses
batch beam search. The introduced method shows how to efficiently implement
uniform-cost-search-based prediction in the batch setting. Its advantage over the
batch beam search is that it delivers exact top k predictions.

The proposed prediction algorithm, given in Algorithm 14, runs uniform-cost
search simultaneously for all examples in a batch. It uses an additional data
structure, designed for this application, named MULTIQUEUE. This structure
stores Ntest priority queues and keeps track of the frequency of top elements
among them. The pseudocode of this data structure is given in Algorithm 13.
We firstly briefly describe how the MULTIQUEUE works, and secondly, give the
details of the batch uniform-cost search algorithm.

The MULTIQUEUE consists of Ntest priority queues Qi, and a master priority
queue Q, aggregating the top elements from all the Ntest queues. Each queue
Qi sorts elements according to some criterion i. The master queue Q sorts the
elements from queues Qi according to the number of criteria on which they are
on-top and is capable of providing a list of their indices. In case of use of this
data structure as a part of the batch prediction algorithm, Ntest is the number
of instances in a batch, each Qi is related to a single test instance and tracks the
state of the uniform-cost search for this instance. The elements in the queues are
nodes of the label tree, and the priority is the intermediate probability product in

128 B Implementation and experimental setup

Algorithm 13 MULTIQUEUE

function INIT (n, t) . Initialize with the number of instances n and the number of
nodes t
for i = 1, . . . n do
Qi = ∅ . Initialize n priority queues

Q = PRIORITYQUEUEWITHRANDOMACCESS() . Initialize one priority queue
allowing for random access
function PUSH (i, v)
eprevTop = Qi.top()
Qi.push(v)
ecurrTop = Qi.top()
DECREASEPRIORITY(eprevTop, i)
INCREASEPRIORITY(ecurrTop, i)
function POP (i)
eprevTop = Qi.top()
Qi.pop()
ecurrTop = Qi.top()
DECREASEPRIORITY(eprevTop, i)
INCREASEPRIORITY(ecurrTop, i)
function TOPANDPOP (i)
top = Q.top()
Q.pop()
E = ∅
for i ∈ top.queues do
E .add(Qi.pop())

return E
function DECREASEPRIORITY (v, i)
Qv.remove(i)
Q.decrease(v)
function INCREASEPRIORITY (v, i)
Qv.add(i)
Q.increase(v)
function REMOVE (v)
delete Qv
Q.remove(v)

a given node. Therefore, Q sorts the nodes of the tree according to the number of
instances with the highest intermediate product in this node at this step of the
search. However, this is just one of possible sorting criteria.

The exact batch inference Algorithm 14 works as follows. The batch size Ntest

defines how many instances are processed at once. For each batch the prediction
algorithm creates a MULTIQUEUE of size Ntest. Initially, the root node is added
to the queues Qi of all the instances. Then, until for all instances top k labels are
retrieved, the prediction algorithm queries the MULTIQUEUE for the node v to
process and a list of instances (queues Qi) with this node on-top, Iv. If v is a leaf
node, the algorithm predicts the corresponding label for all the instances from
the list. Otherwise, for each child v′ of the node v, it evaluates the child node
classifier for all elements in Iv to obtain a vector of predictions η̂(v′).Finally, the
child nodes and their intermediate estimates η̂v,i · η̂(v′)i, i ∈ Iv are added to the
relevant queues Q〉 in the MULTIQUEUE. This algorithm visits exactly as many
nodes as, or in other words, calculates as many node classifier instance-wise

B.2 Synthetic data 129

Algorithm 14 PLT.PREDICTBATCHUCSEARCH(T,H, k,Ntest, X)

1: Ŷ = [0]n

2: MQ = MULTIQUEUE(Ntest, |V |)
3: for i = 1, . . . , Ntest do
4: MQ.PUSH(i, (1, 0, false))

5: cretrieved = [0]n . Set the retrieved count for each instance to zero
6: Iremoved = ∅. . Set the set of processed instances to an empty set
7: while |Iremoved| 6= Ntest do
8: Idelete = ∅
9: v, Iv , Ev =MQ.TOPANDPOP()

10: η̂v is the η̂v for each instance from Iv , extracted from Ev
11: if v is a leaf then
12: for i ∈ Iv do
13: Ŷi,v = 1
14: cretrieved[i] + +
15: if cretrieved[i] = k then
16: Idelete.add(i)

17: for i ∈ Idelete do
18: Iremoved.add(i)
19: MQ.REMOVE(i)

20: else
21: for v′ ∈ Ch(v) do . For all its child nodes
22: η̂(v′) = BATCHPREDICT(v′, X, Iv) . Evaluate v′ for all instances from Iv
23: for i ∈ Iv do . For each instance from Iv
24: η̂v′ = η̂v,i × η̂(v′)i . Compute its intermediate probability product
25: MQ.PUSH((i, (η̂v′ , v

′, J′v is a leafK)) . And push to the queue.
26: return Ŷ .

predictions as, the online uniform-cost search applied Ntest times.

B.2 Synthetic data

All synthetic models use linear models parameterized by a weight vector w of
size d. The values of the vector are sampled uniformly from a d-dimensional
sphere of radius 1. Each observation x is a vector sampled from a d-dimensional
disc of the same radius. To create the multi-class data, we associate a weight
vector wj with each label j ∈ {1, . . . ,m}. This model assigns probabilities to
labels at point x using softmax,

ηj(x) =
exp(w>j x)∑m
j′=1 exp(w>j′x)

,

and draws the positive label according to this probability distribution.
The multi-label data with conditionally independent labels are created sim-

ilarly to the multi-class data. The difference lays is normalization as the condi-
tional probabilities do not have to sum up to 1. To get a probability of the j-th

130 B Implementation and experimental setup

label, we use the logistic transformation:

ηj(x) =
exp(w>j x)

1 + exp(w>j x)
.

Then, we assign a label to an observation by:

yj = Jr < ηj(x)K,

where the random value r is sampled uniformly and independently from range
[0, 1], for each instance x and label j ∈ {1, . . . ,m}.

Generation of the multi-label data with conditionally dependent labels is
more involved. We follow the mixing matrix model previously used to a sim-
ilar purpose in [Dembczyński et al., 2012]. This model is based on m latent
scoring functions generated by W = (w1, . . . ,wm). The m ×m mixing matrix
M introduces dependencies between noise ε, which stands for the source of
randomness in the model. The models wj are sampled from a sphere of radius 1,
as in previous cases. The values in the mixing matrixM are sampled uniformly
and independently from [−1, 1]. The random noise vector ε is sampled from
N(0, 0.25). The label vector y is then obtained by element-wise evaluation of the
following expression:

y = JM(W>x+ ε) > 0K

Notice that ifM was an identity matrix the model would generate independent
labels.

In the experiments, we used the following parameters of the synthetic models:
d = 3, n = 100000 instances (with a 1 : 1 split to training and test subsets), and
m = 32 labels.

B.3 Hyperparameters

In this section, we report all the hyperparameters values used for all the reported
experiments.

hyperparameter description values

c LIBLINEAR cost co-efficient, inverse regularization {1}
ε LIBLINEAR tolerance of termination criterion {0.01}
∆ threshold value for pruning linear classifiers weights {0.01}

Table B.1: Hyperparameters of algorithms used in the experiments in Chapter 9 for
DISMEC.

B.3 Hyperparameters 131

hyperparameter description values

t number of trees {50}
c SVM weight co-efficient {1.0}
l number of label-probability pairs to retrain in a leaf {100}
m maximum allowed instances in a lead node {10}

γ γ parameter in tail label classifier (PFASTREXML only) {30}
α trade-off parameter between PFASTREXML and tail clas-

sifier scores (PFASTREXML only)
{0.8}

A parameter of the propensity model (PFASTREXML only) {0.5, 0.55, 0.6}
B parameter of the propensity model (PFASTREXML only) {0.4, 1.5, 2.6}

Table B.2: Hyperparameters of algorithms used in the experiments in Chapter 9 for
FASTXML and PFASTREXML.

hyperparameter description values

λ1 L1 regularization weight {0.01, 0.1, 1}
c cost of each sample {1}
τ degree of asynchronization {0.1, 1, 10}
m maximum number of iterations allowed {30}

Table B.3: Hyperparameters of algorithms used in the experiments in Chapter 9 for
PPDSPARSE.

hyperparameter description values

ensemble number of trees in ensemble {1, 3}
k-means ε tolerance of termination criterion of the k-means cluster-

ing used for the tree building procedure
{0.0001}

max leaves maximum degree of pre-leaf nodes {25, 100, 400}

c LIBLINEAR cost co-efficient, inverse regularization
strength (PARABEL, NXC only)

{1, 8, 16, 32}

ε LIBLINEAR tolerance of termination criterion (PARABEL,
NXC only)

{0.1}

∆ threshold value for pruning weights (PARABEL, NXC
only)

{0.1, 0.2, 0.3, 0.5}

max iter maximum iterations of LIBLINEAR (PARABEL only) {20}

arity arity of tree nodes, k for k-means clustering (XT, NXC
only)

{2, 16, 64}

η learning rate for SGD or Adagrad (XT, NXC only) {0.02, 0.2, 0.5, 1}
epochs number of passes over data set when training with incre-

mental algorithm (XT, NXC only)
{1, 3, 10}

AdaGrad ε determines initial learning rate (NXC only) {0.01, 0.001}

λ2 L2 regularization weight (XT only) {0.001, 0.002, 0.003}
dim size of hidden representation (XT only) {500, 1000}

Table B.4: Hyperparameters of different PLTs implementations: PARABEL, EXTREME-
TEXT (XT) and NAPKINXC PLT and OPLT (NXC), used in the experiments in Chapter 9
.

132 B Implementation and experimental setup

B.4 Tree depth impact for the squared hinge loss

We present additional results concerning different tree shapes, namely the tree
depth, for the squared hinge loss.

Arity 2 16 64 2 16 64

p@1 [%] T/Ntest [ms]

EurLex-4K 80.17±0.27 81.62±0.15 81.68±0.24 0.24±0.02 0.18±0.01 0.27±0.02
AmazonCat-13K 92.40±0.04 92.39±0.06 92.46±0.07 0.19±0.00 0.23±0.01 0.31±0.03
Wiki10-30K 84.17±0.10 84.30±0.07 84.62±0.07 2.87±0.08 2.95±0.20 4.14±0.28
DeliciousLarge-200K 46.30±0.07 46.19±0.08 46.31±0.06 10.07±0.23 12.59±0.51 11.83±0.48
WikiLSHTC-325K 62.78±0.03 64.17±0.05 64.61±0.04 0.86±0.06 0.90±0.07 1.42±0.05
WikipediaLarge-500K 66.77±0.08 68.16±0.10 68.02±0.01 2.86±0.07 4.41±0.12 5.55±0.00
Amazon-670K 43.31±0.03 43.88±0.05 44.03±0.05 1.32±0.08 1.73±0.15 2.68±0.17
Amazon-3M 46.23±0.01 46.98±0.01 47.33±0.00 1.96±0.05 2.39±0.09 2.56±0.00

Ttrain [h] Msize [GB]

EurLex-4K 0.01±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00
AmazonCat-13K 0.29±0.00 0.38±0.04 0.47±0.03 0.19±0.00 0.18±0.00 0.18±0.00
Wiki10-30K 0.11±0.00 0.16±0.00 0.36±0.02 0.06±0.00 0.05±0.00 0.04±0.00
DeliciousLarge-200K 5.51±0.29 9.07±0.76 12.23±0.78 1.82±0.00 1.77±0.00 1.74±0.00
WikiLSHTC-325K 1.60±0.06 2.18±0.07 3.85±0.17 0.97±0.00 0.90±0.00 0.88±0.00
WikipediaLarge-500K 9.48±0.33 15.91±0.55 28.68±0.74 1.78±0.00 1.52±0.00 1.49±0.00
Amazon-670K 0.40±0.01 0.64±0.02 1.57±0.04 0.63±0.00 0.55±0.00 0.52±0.00
Amazon-3M 5.44±0.13 9.82±0.23 20.82±0.00 9.86±0.00 9.36±0.00 9.24±0.00

Table B.5: Precision@k1, average prediction time per example, training time and model
size for k-means trees of different depths, with squared hinge loss. Results for arity equal
to 2, 16 or 64 and pre-leaf node degree equal to 100.

Pre-leaf degree 25 100 400 25 100 400

p@1 [%] T/Ntest [ms]

EurLex-4K 80.31±0.19 80.17±0.27 79.21±0.56 0.09±0.01 0.24±0.02 0.54±0.02
AmazonCat-13K 92.36±0.04 92.40±0.04 92.53±0.08 0.12±0.02 0.19±0.00 0.51±0.06
Wiki10-30K 83.72±0.12 84.17±0.10 83.90±0.14 1.92±0.17 2.87±0.08 6.46±0.27
DeliciousLarge-200K 46.24±0.06 46.30±0.07 46.37±0.10 4.53±0.46 10.07±0.23 17.12±1.12
WikiLSHTC-325K 61.96±0.03 62.78±0.03 63.19±0.03 0.51±0.03 0.86±0.06 1.78±0.03
WikipediaLarge-500K 66.01±0.10 66.77±0.08 66.90±0.06 2.29±0.03 2.86±0.07 6.14±0.11
Amazon-670K 42.93±0.02 43.31±0.03 43.25±0.04 1.12±0.06 1.32±0.08 2.43±0.08
Amazon-3M 45.84±0.02 46.23±0.01 46.72±0.01 1.27±0.10 1.96±0.05 5.61±0.23

Ttrain [h] Msize [GB]

EurLex-4K 0.00±0.00 0.01±0.00 0.02±0.00 0.00±0.00 0.00±0.00 0.00±0.00
AmazonCat-13K 0.17±0.02 0.29±0.00 0.70±0.05 0.21±0.00 0.19±0.00 0.18±0.00
Wiki10-30K 0.10±0.00 0.11±0.00 0.30±0.02 0.12±0.00 0.06±0.00 0.08±0.00
DeliciousLarge-200K 3.08±0.13 5.51±0.29 8.03±0.57 2.30±0.00 1.82±0.00 1.56±0.00
WikiLSHTC-325K 1.54±0.03 1.60±0.06 2.28±0.10 1.20±0.00 0.97±0.00 0.84±0.00
WikipediaLarge-500K 7.41±0.14 9.48±0.33 19.32±0.31 2.23±0.00 1.78±0.00 1.49±0.00
Amazon-670K 0.39±0.01 0.40±0.01 0.68±0.02 0.80±0.00 0.63±0.00 0.51±0.00
Amazon-3M 4.80±0.29 5.44±0.13 12.45±0.74 11.80±0.00 9.86±0.00 8.60±0.00

Table B.6: Precision@k1, average prediction time per example, training time and model
size for k-means trees of different depths, with squared hinge loss. Results for arity equal
to 2 and pre-leaf node degree equal to 25, 100, or 400.

B.5 Weight pruning 133

B.5 Weight pruning

In all the experiments, we used a threshold of 0.1 for weight pruning. We present
results for higher values of threshold and analyze their impact on the predictive
and computational performance of PLTs. Tables B.7 and B.8 report results for
logistic and squared hinge loss.

0.1 0.3 0.5 0.1 0.3 0.5

p@1 [%] p@5 [%]

EurLex-4K 80.51±0.16 80.48±0.13 80.13±0.17 53.33±0.68 53.23±0.69 52.80±0.69
AmazonCat-13K 93.04±0.02 93.02±0.02 92.94±0.03 63.70±0.02 63.67±0.01 63.58±0.02
Wiki10-30K 85.36±0.09 85.46±0.07 85.35±0.06 63.84±0.07 63.75±0.06 63.62±0.09
DeliciousLarge-200K 49.55±0.05 48.60±0.11 46.35±0.18 39.90±0.02 39.55±0.04 38.31±0.15
WikiLSHTC-325K 61.96±0.03 61.95±0.03 61.82±0.03 30.19±0.02 30.18±0.02 30.11±0.02
WikipediaLarge-500K 66.20±0.05 65.95±0.11 65.52±0.07 36.83±0.01 36.65±0.04 36.40±0.02
Amazon-670K 43.54±0.01 43.23±0.02 42.67±0.02 35.15±0.03 34.81±0.03 34.16±0.02
Amazon-3M 46.09±0.02 45.94±0.01 45.57±0.01 40.98±0.01 40.82±0.01 40.35±0.01

T/Ntest [ms] Msize [GB]

EurLex-4K 0.39±0.03 0.38±0.05 0.38±0.04 0.02±0.00 0.01±0.00 0.01±0.00
AmazonCat-13K 0.32±0.03 0.21±0.01 0.17±0.01 0.35±0.00 0.17±0.00 0.10±0.00
Wiki10-30K 5.35±0.32 3.95±0.14 2.80±0.11 0.58±0.00 0.17±0.00 0.09±0.00
DeliciousLarge-200K 9.89±0.89 5.25±0.27 3.03±0.30 0.95±0.00 0.18±0.00 0.06±0.00
WikiLSHTC-325K 1.77±0.11 1.21±0.09 1.02±0.04 2.73±0.00 1.38±0.00 0.89±0.00
WikipediaLarge-500K 6.67±0.23 4.71±0.15 4.15±0.03 8.89±0.00 2.90±0.00 1.55±0.00
Amazon-670K 4.13±0.28 2.53±0.06 2.20±0.11 2.26±0.00 0.77±0.00 0.42±0.00
Amazon-3M 3.26±0.08 2.54±0.11 2.03±0.09 20.84±0.00 8.54±0.00 4.61±0.00

Table B.7: Precision@k for k = 1, 5, average prediction times, and model sizes with
different thresholds of weight pruning for logistic loss.

0.1 0.2 0.3 0.1 0.2 0.3

p@1 [%] p@5 [%]

EurLex-4K 80.17±0.27 78.32±0.19 74.52±0.44 53.01±0.87 50.45±0.97 45.99±0.96
AmazonCat-13K 92.40±0.04 92.11±0.03 90.99±0.13 63.88±0.02 63.37±0.02 61.49±0.05
Wiki10-30K 84.17±0.10 79.33±0.24 76.47±0.47 63.12±0.04 59.75±0.16 49.12±0.44
DeliciousLarge-200K 46.30±0.07 43.63±0.19 37.75±0.40 36.54±0.07 35.14±0.03 31.65±0.64
WikiLSHTC-325K 62.78±0.03 60.77±0.06 56.83±0.13 30.25±0.02 29.12±0.02 27.05±0.05
WikipediaLarge-500K 66.77±0.08 63.88±0.00 59.62±0.13 36.94±0.02 34.95±0.00 32.25±0.05
Amazon-670K 43.31±0.03 40.59±0.02 35.67±0.06 34.31±0.03 31.14±0.04 26.49±0.04
Amazon-3M 46.23±0.01 44.74±0.00 39.87±0.02 41.41±0.01 39.67±0.00 35.16±0.02

T/Ntest [ms] Msize [GB]

EurLex-4K 0.24±0.02 0.24±0.02 0.28±0.02 0.00±0.00 0.00±0.00 0.00±0.00
AmazonCat-13K 0.19±0.00 0.14±0.02 0.11±0.01 0.19±0.00 0.07±0.00 0.03±0.00
Wiki10-30K 2.87±0.08 1.69±0.05 1.17±0.06 0.06±0.00 0.01±0.00 0.01±0.00
DeliciousLarge-200K 10.07±0.23 4.06±0.25 1.59±0.18 1.82±0.00 0.38±0.00 0.15±0.00
WikiLSHTC-325K 0.86±0.06 0.55±0.02 0.45±0.01 0.97±0.00 0.24±0.00 0.10±0.00
WikipediaLarge-500K 2.86±0.07 1.99±0.00 2.05±0.07 1.78±0.00 0.39±0.00 0.17±0.00
Amazon-670K 1.32±0.08 1.01±0.02 1.17±0.02 0.63±0.00 0.18±0.00 0.10±0.00
Amazon-3M 1.96±0.05 1.09±0.00 0.95±0.02 9.86±0.00 2.31±0.00 0.89±0.00

Table B.8: Precision@k for k = 1, 5, average prediction times, and model sizes with
different thresholds of weight pruning for squared hinge loss.

We observe that for logistic loss a more aggressive pruning can be beneficial.
Precision@k decreases only slightly, while testing time can be reduced almost by
two, and the model size even by 4. For squared hinge loss, precision@k drops
more substantially, but the model size can be even reduced by a factor of 10.

134 B Implementation and experimental setup

Weight pruning has also been investigated by Prabhu et al. [2018], with similar
outcomes to those presented here.

B.6 Precision@1, 3, 5 of state-of-the-art methods

Table B.9 gives the precision@1, 3, 5 of methods compared in Table 9.13. It addi-
tionally includes the precision@1, 3, 5 of other state-of-the-art methods discussed
in Section 1.2. Besides the results of decision-tree-based FASTXML, PFASTREXML,
CRAFTML, and LDSM, and PLT-based PARABEL and NAPKINXC, we include
the results of smart 1-VS-ALL PPDSPARSE, DISMEC, and PROXML, embedding-
based ANNEXML and GLAS, and deep-learning-based X-BERT and ATTEN-
TIONXML. For these methods we present the best performance results found in
the literature [Guo et al., 2019, You et al., 2019, Tagami, 2017, Chang et al., 2019,
Majzoubi and Choromanska, 2019, Siblini et al., 2018, Babbar and Schölkopf, 2018,
Bhatia et al., 2016].

p@1 [%] p@3 [%] p@5 [%] p@1 [%] p@3 [%] p@5 [%]

EurLex-4K AmazonCat-13K

FASTXML 71.26 59.80 50.28 93.03 78.22 63.38
PFASTREXML 70.21 59.26 50.59 85.62 75.31 62.83
CRAFTML 78.81 65.21 53.71 92.78 78.48 63.58
LDSM − − − 93.87 75.41 57.86

PPDSPARSE 83.83 70.72 59.21 92.72 78.14 63.41
DISMEC 83.67 70.70 59.14 92.72 78.11 63.40
PROXML 83.40 70.90 59.10 − − −

ANNEXML 79.66 64.94 53.52 93.55 78.38 63.32
GLAS 77.50 65.01 54.37 94.21 79.70 64.84

PARABEL-T=3 81.80 68.67 57.45 93.24 79.17 64.51
NXC-T=3 81.94 68.94 57.49 93.37 79.01 64.27

X-BERT 86.00 74.52 62.64 95.17 80.65 65.19
ATTENTIONXML 87.12 73.99 61.92 95.92 82.41 67.31

Wiki10-30K DeliciousLarge-200K

FASTXML 82.97 67.58 57.68 43.17 38.70 36.22
PFASTREXML 75.58 64.38 57.25 17.44 17.28 17.19
CRAFTML 85.19 73.17 63.27 47.87 41.28 38.01
LDSM 83.74 71.74 61.51 45.26 40.53 38.23

PPDSPARSE 73.80 60.90 50.40 45.05 38.34 34.90
DISMEC 85.20 74.60 65.90 45.50 38.70 35.50
PROXML − − − − − −

ANNEXML 86.50 74.28 63.19 46.66 40.79 37.64
GLAS − − − 46.40 40.49 38.10

PARABEL-T=3 84.49 72.57 63.66 46.62 39.78 36.37
NXC-T=3 85.90 74.45 64.84 49.65 43.18 39.97

X-BERT 85.75 75.19 65.13 − − −
ATTENTIONXML 87.47 78.48 69.37 − − −

B.6 Precision@1, 3, 5 of state-of-the-art methods 135

p@1 [%] p@3 [%] p@5 [%] p@1 [%] p@3 [%] p@5 [%]

WikiLSHTC-325K WikipediaLarge-500K

FASTXML 49.85 33.16 24.49 49.32 33.48 25.84
PFASTREXML 58.50 37.69 27.57 59.58 40.26 30.73
CRAFTML 56.57 34.73 25.03 − − −
LDSM − − − − − −

PPDSPARSE 64.13 42.10 31.14 70.16 50.57 39.66
DISMEC 64.94 42.71 31.50 70.20 50.60 39.70
PROXML 63.60 41.50 30.80 68.80 48.90 37.90

ANNEXML 63.36 40.66 29.79 64.22 43.15 32.79
GLAS 65.46 45.44 34.51 69.91 49.08 38.35

PARABEL-T=3 64.95 43.21 32.01 68.66 49.48 38.60
NXC-T=3 65.57 43.64 32.33 69.24 49.82 38.81

X-BERT − − − 67.87 46.73 35.97
ATTENTIONXML − − − 76.95 58.42 46.14

Amazon-670K Amazon-3M

FASTXML 36.90 33.22 30.44 45.26 41.96 39.80
PFASTREXML 36.97 34.18 32.05 32.62 32.67 32.35
CRAFTML 37.34 33.31 30.62 − − −
LDSM 42.63 38.09 34.70 − − −

PPDSPARSE 45.32 40.37 36.92 − − −
DISMEC 45.37 40.40 36.96 47.77 44.96 42.80
PROXML 43.50 38.70 35.30 − − −

ANNEXML 42.09 36.65 32.76 49.30 45.55 43.11
GLAS 46.38 42.09 38.56 − − −

PARABEL-T=3 44.70 39.66 35.85 47.52 44.69 42.57
NXC-T=3 45.10 40.00 36.22 47.83 45.08 42.98

X-BERT − − − − − −
ATTENTIONXML 47.58 42.61 38.92 50.86 48.04 45.83

Table B.9: Precision of PLTs compared to state-of-the-art algorithms. We separate the
deep learning based methods which use raw text data. We mark with bold the best result
among non-deep methods, and underline the best result among all methods. For clarity,
we skip the standard errors.

Let us first focus on the non-deep methods. While there is no single best
performing method, notice that some methods tend to obtain better results
than other. Decision-tree-based methods under-perform compared to methods
designed under other principles. Smart 1-VS-ALL methods, modern embed-
ding based methods, and PLTs obtain highest precision, with no single method
outperforming others. Deep-learning-based methods advantage from raw text
representation and usually outperform methods using sparse features.

C
Notation

Observations

m number of labels
L set of m possible labels
j a label
X an instance space
x an instance
Lx a set of positive labels
y a label vector
||y||1 number of positive labels in y, |Lx|
yj if label j is positive or not
Y = {0, 1}m all possible label vectors
(x,y) an observation
P(y|x) conditional (given x) joint probability of a label vector
ηj(x) conditional probability of label j, P(yj = 1 |x)
η̂j(x) estimate of ηj(x)
D training set {(xi,yi)}ni=1

n number of observations in D
S sequence of training observations in online setting

Losses, risks, regrets

` loss
`c strongly proper composite loss
R`(h) risk of h under `
reg`(h) regret of h under `
reg`(h|x) conditional regret of h under `
ψ link function

138 C Notation

Tree

T tree
VT the set of tree nodes
I(T) set of internal nodes of tree T
LT the set of tree leafs
v tree node
rT the root of tree T
lj the leaf node corresponding to label j
Lv the set of leafs in the subtree of T rooted in an inner node v
Lv the set of labels corresponding to leaf nodes in Lv
Ch(v) children of node v
pa(v) parent of node v
Path(v) the path from node v to the root
ηj(x) conditional probability of label, P(yj = 1|x)
lenv length of the path, the number of nodes on the path
degv degree of node v, |Ch(v)|
degT maxv∈VT degv
depthT depth of the tree, depthT = maxv∈LT lenv − 1

PLT

z vector of length |VT | corresponding to y in which zv = J
∑

j∈Lv yj ≥ 1K
η(x, v) P(zv = 1|zpa(v) = 1,x) for non-root nodes, P(zv = 1 |x) for the root
η̂(v) node classifier
HT set of classifiers
θ(v) an auxiliary node classifier in OPLT
ΘT set of auxiliary classifiers
A learning algorithm
Aonline online learning algorithm

Prediction algorithms, predictions, computational cost

k number of predicted labels with highest scores
L̂x set of predicted labels
π(s) ranking of labels according to diminishing scores s
πj(s) rank of label j in ranking π(s)
π−1
r (s) label at rank r in ranking π(s)
B beam width
c(T,y) training cost per observation
CP(T) expected training cost
cτ (T,x) prediction cost per observation using Algorithm 3
CP(x),τ (T) expected prediction cost using Algorithm 3
ck(T,x) prediction cost per observation using Algorithm 4
cB(T,x) prediction cost per observation using Algorithm 5

Evaluation

Ttrain training time
T/Ntest average prediction time per example
Msize model size
avg. |Lx| average number of positive labels per example

Streszczenie

Uczenie maszynowe to dziedzina nauki z pogranicza informatyki, teorii infor-
macji i statystyki. Rozwój uczenia maszynowego dotyczy zarówno jego aspek-
tów teoretycznych, jak i praktycznych, a kolejne obszary zastosowania uczenia
maszynowego otwierają nowe obszary badań teoretycznych. Wyróżnia się trzy
główne obszary uczenia maszynowego: uczenie nadzorowane, uczenie nienad-
zorowane oraz uczenie ze wzmocnieniem. Niniejsza rozprawa dotyczy problemu
klasyfikacji, będącego obiektem badań uczenia nadzorowanego.

W problemach klasyfikacji zadaniem jest poprawne wskazanie etykiety (lub
zbioru etykiet) dla instancji, będącej reprezentacją pewnego obiektu, na pod-
stawie jej cech. Poprawność tego wskazania określa się za pomocą funkcji straty.
Aby rozwiązać problem klasyfikacji zazwyczaj trenuje się klasyfikator będący
funkcją przypisującą instancjom etykiety na podstawie ich cech. Taki klasy-
fikator jest wynikiem wykonania algorytmu uczącego, działającego na danych
treningowych, składających się z zaobserwowanych instancji z przypisanymi
etykietami. Pożądaną własnością algorytmu uczącego jest to, że mając do dys-
pozycji coraz większą próbkę danych treningowych dostarcza on klasyfikator
ze stratą coraz bliższą najniższej możliwej stracie, osiąganej przez tak zwany
klasyfikator bayesowski. Taką własność określamy statystyczną zgodnością.

Klasyfikacja ekstremalna

W standardowych problemach klasyfikacji liczba istniejących etykiet jest nieduża.
Jednak w wielu nowoczesnych obszarach zastosowania uczenia maszynowego
mogą istnieć nawet miliony etykiet. Problemy z tak dużą liczą etykiet rozważane
są w dziedzinie klasyfikacji ekstremalnej. Przykładowymi problemami klasy-
fikacji ekstremalnej są tagowanie dokumentów tekstowych [Dekel and Shamir,
2010], rekomendacja słów kluczowych dla reklam internetowych [Prabhu and
Varma, 2014], rekomendacja wideo [Weston et al., 2013], czy predykcja kole-

140 Streszczenie

jnego słowa w zdaniu [Mikolov et al., 2013]. Aby lepiej zrozumieć jak te prob-
lemy można przedstawić jako problem klasyfikacji przeanalizujmy następujące
przykłady. W przypadku tagowania dokumentów tekst stanowi cechy, a kat-
egorie to etykiety. W przypadku rekomendacji słów kluczowych dla reklam
internetowych, cechy są tworzone na podstawie strony docelowej reklamy, a za-
pytania do wyszukiwarki stanowią etykiety. W przypadku rekomendacji wideo,
użytkownik i wideo mogą być zamiennie używane jako cechy i etykiety. We
wszystkich tych problemach liczba możliwych etykiet jest bardzo duża.

Celem klasyfikacji ekstremalnej jest predykcja określonej liczby k adek-
watnych etykiet lub stworzenie ich rankingu dla danej instancji. Jakość
predykcji często jest mierzona za pomocą precyzji na k-tym miejscu (precision@k),
zdefiniowanej jako udział pozytywnych etykiet wśród k przewidzianych, czy
NDCG@k, będącej miarą typową dla problemów rangowania, która przyp-
isuje poprawnie przewidzianym etykietom zysk malejący wraz z rangą etykiety.
Innymi miarami używanymi w klasyfikacji ekstremalnej są czułość na k-tym
miejscu i makro-uśredniana miara F1.

Z uwagi na liczbę istniejących etykiet, efektywność obliczeniowa algoryt-
mów uczenia i predykcji w klasyfikacji ekstremalnej odgrywa większą rolę niż
w problemach mniejszej skali. W klasyfikacji ekstremalnej nawet algorytmy
skalujące się liniowo z liczbą etykiet mogą być zbyt wolne aby mogły być
użyteczne. Przykładem takiego algorytmu jest standardowe rozwiązanie prob-
lemów wieloetykietowych, polegające na nauczeniu niezależnego klasyfikatora
dla każdej etykiety z osobna. Takie podejście nazywane jest 1-VS-ALL (jeden
przeciwko wszystkim/innym). Charakteryzuje się ono liniową wobec liczby
etykiet złożonością czasową i pamięciową. Taka złożoność jest zbyt duża w
wielu praktycznych zastosowaniach. Przykładowo, rozważmy problem z 106

etykietami. Załóżmy, że pojedynczy klasyfikator można wytrenować w jedną
sekundę. W takim przypadku trening 106 klasyfikatorów zająłby ponad 11
dni. Zauważmy również, że w sytuacji gdy w zbiorze treningowym znajduje
się bardzo wiele cech i obserwacji, zakładany czas treningu wynoszący jedną
sekundę może być zdecydowanie zbyt niski. Również predykcja z użyciem tego
podejścia jest czasochłonna, ponieważ wymaga ewaluacji 106 klasyfikatorów.
Ponadto, gdy rozważymy również rozmiar modelu, przy założeniu istnienia
105 cech i użycia gęstych klasyfikatorów liniowych, łatwo uzyskujemy rozmiary
modelu rzędu setek gigabajtów. Widzimy, że konieczne jest stworzenie bardziej
zaawansowanych rozwiązań, cechujących się dobrą jakością predykcji i niższą
od liniowej złożonością.

Zauważmy, że klasyfikacja ekstremalna stawia również inne, nie tylko
obliczeniowe, wyzwania nieobecne w standardowych problemach uczenia.
Przykładowo, dla wielu etykiet w zbiorach uczących znajduje się bardzo mało
obserwacji. Spotyka się również problemy, w których etykiety nie posiadają
żadnych obserwacji w zbiorze uczącym. Jest to tak zwany problem uczenia z
zera próbek. Ponadto, dane treningowe są zazwyczaj niskiej jakości, ponieważ
jest niemożliwe aby ręcznie zweryfikować wszystkie możliwe etykiety nawet
dla pojedynczej obserwacji. Często dane uczące są uzyskiwane nie wprost, co

Streszczenie 141

prowadzi do całego spektrum problemów. W niniejszej pracy skupiamy się
jednak przede wszystkim na jakości predykcji oraz efektywności obliczeń, a nie
na wyżej wymienionych wyzwaniach.

Istniejące metody

W dziedzinie klasyfikacji ekstremalnej zaproponowanych zostało wiele metod
mających na celu osiągnięcie wysokiej jakości predykcji przy niskich czasach
uczenia i predykcji. Standardowym podejściem cechującym się dużą wydajnością
i jakością predykcji są drzewa decyzyjne. Jednakże w klasyfikacji ekstremalnej
nie można zastosować standardowych drzew decyzyjnych właśnie ze względu
na ich koszty obliczeniowe, wysokie w przypadku problemów ekstremalnych
[Agrawal et al., 2013], wynikające z konieczności obliczenia kryterium podziału
wierzchołka. Algorytm FASTXML [Prabhu and Varma, 2014] redukuje ten koszt
przez użycie klasyfikatorów liniowych we wierzchołkach decyzyjnych drzewa.
Te klasyfikatory są wynikiem naprzemiennej optymalizacji specyficznej wielokry-
terialnej funkcji celu. FASTXML używa wielu drzew w celu poprawy jakości
predykcji. Idea FASTXML została rozszerzona w PFASTREXML [Jain et al., 2016]
i CRAFTML [Siblini et al., 2018], które modyfikują optymalizowane kryterium
lub sposób jego optymalizacji. W pełni przyrostową metodę budowy drzewa
dla problemów wieloklasowych rozważono w [Choromanska and Langford,
2015], proponując LOMTREE. Z kolei w [Majzoubi and Choromanska, 2019]
zaproponowano algorytm LDSM dla problemów wieloklasowych, budujący
drzewo wierzchołek po wierzchołku w częściowo przyrostowy sposób. Przez
długi czas metody oparte na drzewach decyzyjnych osiągały najlepsze wyniki
pod względem jakości predykcji i wydajności obliczeniowej.

Innym podejściem stosowanym w klasyfikacji ekstremalnej są zanurzenia.
Metody tego typu redukują oryginalną przestrzeń wyjść do przestrzeni o
mniejszej liczbie wymiarów i tworzą modele regresyjne w tej zredukowanej
przestrzeni [Tai and Lin, 2012], a następnie transformują predykcje z przestrzeni
zredukowanej do oryginalnej. Różnią się one sposobem wykonania tej kompresji
i dekompresji. W [Bhatia et al., 2015] zaproponowano rzadkie lokalne zanurzenia
(sparse local embeddings, SLEEC) używające klasyfikatora k najbliższych sąsiadów
w przestrzeni zredukowanej do dekompresji predykcji. Jakość predykcji algo-
rytmu SLEEC na zbiorach porównawczych jest porównywalna z jakością innych
algorytmów. Jednak istotną wadą tej metody są duże rozmiary modeli i długie
czasy treningu i predykcji. ANNEXML [Tagami, 2017] poprawia efektywność
predykcji przez użycie grafu k najbliższych sąsiadów. Ostatnio, GLAS [Guo
et al., 2019] osiągnął konkurencyjną jakość predykcji i zredukował czas potrzebny
na ich uzyskanie poprzez użycie informacji o współwystąpieniach etykiet oraz
szybkich metod wyszukiwania największego iloczynu skalarnego.

Jakość predykcji metody 1-VS-ALL długo była uważana za trudną do os-
iągnięcia metodami mniej kosztownymi obliczeniowo. Tak zwane sprytne

142 Streszczenie

metody 1-VS-ALL trenują jeden binarny klasyfikator dla każdej etykiety, ale
redukują koszty obliczeniowe przez użycie rozproszonych obliczeń i ucinania
wag (DISMEC, [Babbar and Schölkopf, 2017]), odpowiednich metod optymal-
izacji i predykcji (PD-SPARSE, [Yen et al., 2016]; PPD-SPARSE, [Yen et al., 2017]),
czy obu (PROXML, [Babbar and Schölkopf, 2019]). Te metody osiągają bardzo
wysoka jakość predykcji, jednak ich czasy obliczeń i treningu nadal pozostają
znacznie dłuższe niż czasy osiągane przez inne metody.

Model probabilistycznych drzew etykiet (probabilistic label trees, PLT), będący
pierwszą metodą wieloetykietowej klasyfikacji ekstremalnej opartą na drzewach
etykiet, został zaproponowany w [Jasinska et al., 2016]. Drzewa etykiet
umożliwiają efektywne przybliżenie modelu 1-VS-ALL, przy krótszych czasach
predykcji i treningu. Drzewa etykiet różnią się znacznie od drzew decyzyjnych,
ponieważ w drzewie etykiet każda ścieżka odpowiada dokładnie jednej etykiecie,
a nie fragmentowi przestrzeni cech. Podejście oparte na modelu PLT zostało
później wykorzystane w takich algorytmach jak EXTREMETEXT Wydmuch et al.
[2018], PARABEL [Prabhu et al., 2018], BONSAI TREE [Babbar and Schölkopf,
2019], czy ATTENTIONXML [You et al., 2019]. Powyższe algorytmy należą do
najbardziej popularnych i uznanych algorytmów wieloetykietowej klasyfikacji
ekstremalnej.

Metody oparte na uczeniu głębokim również zostały zastosowane do klasy-
fikacji ekstremalnej. Metody te, zastosowane do danych tekstowych, używają ory-
ginalnej reprezentacji danych, podczas gdy pozostałe metody używają rzadkich
reprezentacji tekstu. Z tego względu trudno wprost porównać jakość predykcji
tych metod do jakości predykcji pozostałych. Również ze względu na uży-
cie obliczeń na kartach graficznych, czasy treningu i predykcji nie są wprost
porównywalne. Pierwszą metodą tego typu w wieloetykietowej klasyfikacji ek-
stremalnej jest XML-CNN [Liu et al., 2017]. Nie dość, że osiąga on gorszą jakość
predykcji niż inne metody, to charakteryzuje się bardzo długimi czasami treningu
i predykcji. Wspomniany wcześniej ATTENTIONXML [You et al., 2019] używa
płytkiego PLT i specyficznego mechanizmu wieloetykietowej uwagi. Również
X-BERT [Chang et al., 2019] może być traktowany jako PLT z klasyfikatorami
we wierzchołkach wewnętrznych opartymi o sieci głębokie, a dokładniej o przed-
trenowany model BERT [Devlin et al., 2018], oraz liniowe w liściach.

Wiele metod zostało zaproponowanych w celu rozwiązania problemów staw-
ianych przez wieloetykietową klasyfikację ekstremalną. Jakkolwiek te metody
pozwalają osiągnąć wysoką jakość predykcji szybciej niż naiwnie zaaplikowana
metoda 1-VS-ALL, to niewiele z nich zostało przeanalizowanych pod względem
statystycznej zgodności ze względu na optymalizowane miary oceny, czy ze
względu na złożoność obliczeniową.

Streszczenie 143

Motywacje

Motywację zaproponowanych probabilistycznych drzew etykiet stanowi prosta
obserwacja: okazuje się, że optymalne predykcje, czyli tak zwane klasyfikatory
bayesowskie, ze względu na precyzję na k-tym miejscu i inne popularne metryki,
można określić za pomocą prawdopodobieństw warunkowych (ze względu na
cechy) etykiet. A zatem, estymacja tych prawdopodobieństw i użycie odpowied-
niej reguły decyzyjnej mogłyby zagwarantować statystyczną zgodność zapro-
ponowanej metody. Z tej perspektywy, problem wieloetykietowej klasyfikacji
ekstremalnej wydaje się problemem efektywnej estymacji prawdopodobieństw i
efektywnego wnioskowania.

Taka efektywność estymacji prawdopodobieństw warunkowych etykiet może
być uzyskana przez zorganizowanie etykiet w drzewo, w którym każdej etykiecie
odpowiada jeden liść, czyli w tak zwane drzewo etykiet. Tego typu metody
są używane w klasyfikacji wieloklasowej. Przykładem jest hierarchiczny soft-
maks [Morin and Bengio, 2005], używany w sieciach głębokich, między innymi
w przetwarzaniu języka naturalnego [Mikolov et al., 2013]. Co ciekawe, podobne
algorytmy były zaproponowane niezależnie w innych dziedzinach. W statystyce
znane są jako nested dichotomies [Fox, 1997], w wieloklasowej regresji jako drzewa
prawdopodobieństw warunkowych [Beygelzimer et al., 2009b], a w rozpoznawa-
niu wzorców jako wieloetapowe klasyfikatory [Kurzynski, 1988]. Jednakże to
podejście nie zostało wcześniej zastosowane w wieloetykietowej klasyfikacji
ekstremalnej.

Cel i kontrybucje

Ze względu na przedstawione wcześniej motywacje, sformułowano następującą
hipotezę rozprawy:

Istnieje klasa statystycznie zgodnych algorytmów uczenia dla wieloe-
tykietowej klasyfikacji ekstremalnej charakteryzujących się podliniową
złożonością obliczeniową względem liczby etykiet.

Poniżej opisany jest główny wkład przedstawiony w rozprawie.

Postaci klasyfikatorów bayesowskich

W rozprawie dokonujemy przeglądu miar oceny jakości klasyfikacji używanych
w ekstremalnej klasyfikacji wieloetykietowej. Dowodzimy, że klasyfikatorem
bayesowskim dla precyzji na k-tym miejscu jest wskazanie k etykiet z na-
jwyższym prawdopodobieństwem warunkowym. Podobnie pokazujemy postaci
klasyfikatora bayesowskiego dla miar DCG@k oraz NDCG@k. Dodatkowo na

144 Streszczenie

podstawie literatury omawiamy postaci klasyfikatora bayesowskiego dla uogól-
nionych miar oceny jakości klasyfikacji [Kotłowski and Dembczyński, 2017] oraz
czułości na @k-tym miejscu [Menon et al., 2019]. W ten sposób pokazujemy, dla
których miar oceny jakości klasyfikacji optymalne predykcje mogą być określone
na podstawie warunkowych prawdopodobieństw etykiet.

Model PLT

Proponujemy i opisujemy model probabilistycznych drzew etykiet (en. proba-
bilistic label trees, PLT). Probabilistyczne drzewa etykiet używają drzewa etykiet
do rozkładu prawdopodobieństwa warunkowego etykiet poprzez zastosowanie
reguły łańcuchowej wzdłuż ścieżki od korzenia drzewa do liścia odpowiada-
jącego etykiecie. W ten sposób redukują one oryginalny problem wieloetykietowy
do wielu problemów klasyfikacji (estymacji) binarnej. Z tego punktu widzenia
PLT jest przedstawicielem redukcji uczenia [Beygelzimer et al., 2016]. PLT używa
probabilistycznych klasyfikatorów binarnych we wszystkich wierzchołkach
drzewa do estymacji odpowiednich czynników, będących prawdopodobieńst-
wami warunkowymi. Iloczyn estymat prawdopodobieństwa na ścieżce od
korzenia do liścia jest estymatą prawdopodobieństwa warunkowego etykiety
odpowiadającej liściowi. Do efektywnej predykcji PLT używa odpowiednich
procedur opartych na przeszukiwaniu drzewa.

Rozważamy dwa sposoby uczenia PLT: trening wsadowy lub przyrostowy
przy danej strukturze drzewa etykiet, oraz trening w pełni przyrostowy, w
którym drzewo jest konstruowane jednocześnie z treningiem klasyfikatorów.
Dowodzimy specyficzną tożsamość klasyfikatora PLT nauczonego przyrostowo
oraz w pełni przyrostowo. Analizujemy trzy sposoby przeszukiwania drzewa w
celu predykcji. Pierwszy odnajduje wszystkie etykiety o estymowanym praw-
dopodobieństwie warunkowym przekraczającym wskazany próg. Drugi z nich,
oparty na przeszukiwaniu ze strategią jednolitego kosztu odnajduje wskazaną
liczbę etykiet o najwyższych estymatach prawdopodobieństwa warunkowego.
Trzeci, oparty na przeszukiwaniu wiązkowym, odnajduje przybliżone etykiety z
najwyższą estymatą.

Zgodność i ograniczenia na żal

Wyniki teoretyczne związane z PLT dotyczą jego zgodności ze względu na
wspomniane wcześniej miary oceny jakości klasyfikacji. Zgodność wykazu-
jemy zgodnie z metodyką redukcji uczenia [Beygelzimer et al., 2016], ogranicza-
jąc błąd L1 estymacji prawdopodobieństw warunkowych etykiet za pomocą
funkcji żalu klasyfikatorów wierzchołkowych, wyrażonego ze względu na silnie
właściwy złożony błąd zastępczy. W tym celu wpierw ograniczamy błąd L1

estymacji prawdopodobieństwa warunkowego etykiety za pomocą błędów L1

estymacji prawdopodobieństw warunkowych związanych z wierzchołkami na
ścieżce od korzenia do liścia odpowiadającego etykiecie. Następnie wyrażamy
błąd L1 każdego wierzchołka za pomocą silnie właściwego złożonego błędu

Streszczenie 145

zastępczego [Agarwal, 2014]. To pozwala nam połączyć żal klasyfikatorów wierz-
chołkowych z błędem L1 estymacji prawdopodobieństw warunkowych etykiet.
Ten wynik stanowi podstawę kolejnych ograniczeń ze względu na różne miary
oceny jakości klasyfikacji, dla których optymalne predykcje można określić za
pomocą prawdopodobieństw warunkowych etykiet.

Za pomocą wyprowadzonego ograniczenia na błąd L1, pokazujemy
ograniczenia żalu ze względu na uogólnione miary oceny jakości klasyfikacji.
Do tej klasy funkcji należy między innymi strata Hamminga oraz mikro- i
makro- uśredniana miara F1. Wyprowadzone ograniczenia bazują na wynikach
z [Kotłowski and Dembczyński, 2017] dotyczących metody 1-VS-ALL. Następnie
rozważamy precyzję na k-tym miejscu. Definiujemy żal oraz ograniczamy go za
pomocą błędu L1 estymacji prawdopodobieństw etykiet. W ten sposób pokazu-
jemy, że PLT używające dokładnej metody predykcji k etykiet z najwyższym
estymowanym prawdopodobieństwem warunkowym, jest dostosowane do op-
tymalizacji precyzji na k-tym miejscu. W podobny sposób analizujemy miarę
DCG@k, pokazując analogiczne wyniki dla tej miary.

Analizujemy także związek pomiędzy PLT i hierarchicznym softmaksem.
Pokazujemy, że PLT jest poprawnym uogólnieniem hierarchicznego softmaksu
do problemów wieloetykietowych. Oznacza to, że dla danych wieloklasowych
model PLT redukuje się do modelu hierarchicznego softmaksu. Ponadto pokazu-
jemy, że inna popularna metoda uogólnienia hierarchicznego softmaksu, sto-
sująca heurystykę wyboru jednej etykiety, stosowana przykładowo w FAST-
TEXT [Joulin et al., 2017] i LEARNED TREE [Jernite et al., 2017], nie jest zgodna ze
względu na estymację prawdopodobieństw warunkowych etykiet przy błędzie
L1 i ze względu na precyzję na k-tym miejscu.

Złożoność obliczeniowa algorytmów uczących i predyk-
cyjnych

Analizujemy złożoność obliczeniową algorytmów PLT służących do uczenia i
predykcji. Pokazujemy, że uczenie klasyfikatorów PLT przy określonej struk-
turze drzewa, przy pewnych dodatkowych założeniach dotyczących struktury
drzewa oraz maksymalnej liczby pozytywnych etykiet na obserwację, może
być wykonany w czasie logarytmicznym ze względu na liczbę etykiet. Pon-
adto, pokazujemy, że przy dodatkowych założeniach dotyczących estymat praw-
dopodobieństw, również czas predykcji jest logarytmiczny, lub podliniowy,
we względu na liczbę etykiet. Wyniki te nie są trywialne, ponieważ metody
przeszukiwania drzewa na których bazuje predykcja w najgorszym przypadku
mogą przeszukać całe drzewo, co prowadziłoby do złożoności liniowej.

Ocena empiryczna

Poza wynikami teoretycznymi analizujemy istniejące implementacje ogólnego
schematu PLT, takie jak XMLC-PLT [Jasinska et al., 2016], PLT-VW1, PARA-

1https://github.com/VowpalWabbit/vowpal_wabbit

https://github.com/VowpalWabbit/vowpal_wabbit

146 Streszczenie

BEL [Prabhu et al., 2018], BONSAI TREE [Khandagale et al., 2019], EXTREME-
TEXT [Wydmuch et al., 2018], ATTENTIONXML [You et al., 2019], oraz NAP-
KINXC [Jasinska-Kobus et al., 2020a]. W analizie koncentrujemy się na możli-
wych sposobach implementacji ze względu na reprezentację cech i modeli oraz
metody treningu i predykcji.

W części eksperymentalnej przede wszystkim koncentrujemy się na imple-
mentacjach NAPKINXC oraz PARABEL. Za ich pomocą analizujemy różne in-
stancje modelu PLT i porównujemy uzyskiwane przez nie wyniki do powszech-
nie uznanych metod bazujących na drzewach decyzyjnych oraz metodach 1-VS-
ALL. Empirycznie wykazujemy, że PLT jest konkurencyjne wobec najlepszych
metod, i uzyskuje najwyższe wartości precyzji na pierwszym miejscu na więk-
szości zbiorów porównawczych, będąc jednocześnie trzy rzędy wielkości szybsze
od metod 1-VS-ALL.

Przegląd prac stanowiących podstawę rozprawy

Poniżej dokonujemy przeglądu prac dotyczących PLT stanowiących podstawę
rozprawy. Pierwsza praca dotycząca PLT [Jasinska and Dembczyński, 2015]
została przedstawiona na warsztacie Extreme Classification Workshop przy kon-
ferencji ICML 2015. Ten artykuł wprowadzał model PLT oraz inny model,
BRT, również będący drzewem etykiet. PLT wraz z prostymi metodami
treningu i predykcji zostało następnie opublikowane w [Jasinska et al., 2016].
Ta praca dotyczy użycia PLT dla optymalizacji precyzji na k-tym miejscu oraz
makro-uśrednianej miary F1. Następnie w [Jasinska, 2018] zaproponowano
wsadowy wariant predykcji używającej przeszukiwania ze strategią jedno-
litego kosztu. Następnie w [Wydmuch et al., 2018] przeanalizowano błąd
L1 estymacji oraz ograniczono żal ze względu na precyzję na k-tym miejscu.
Złożoność obliczeniowa PLT została przeanalizowana w [Busa-Fekete et al.,
2019]. Niniejsza rozprawa zawiera część wyników z tej pracy, dotyczących
ograniczeń kosztów treningu i predykcji. W pełni przyrostowe PLT zostało
zaproponowane w roku 2016, a opublikowane w [Jasinska-Kobus et al., 2020c,d].
Większość wyników teoretycznych przedstawionych w niniejszej rozprawie znaj-
duje się w [Jasinska-Kobus et al., 2020a]. Niniejsza rozprawa zawiera również
rezultaty niezależne od PLT. W [Jasinska and Karampatziakis, 2016] przedstaw-
iono inny algorytm klasyfikacji ekstremalnej nazwany LTLS. Wyniki dotyczące
NDCG@k zostały przedstawione w [Jasinska and Dembczyński, 2018].

	Introduction
	Extreme classification
	Related work
	Motivations
	Aim and scope
	Bayes classifiers
	Probabilistic label trees model
	Consistency and regret bounds
	Computational complexity of training and prediction
	Empirical evaluation

	Personal contribution to development of PLTs
	Outline

	Theoretical background
	Binary classification
	Strongly proper composite losses
	Multi-label classification
	Statistical consistency

	Multi-label classification metrics
	Generalized classification performance metrics
	Precision at k and recall at k
	Pick-one-label heuristic
	Comparison of the optimal classifiers

	DCG at k and NDCG at k
	NDCG at different ranks
	Comparison of the optimal classifiers

	Conclusions

	Probabilistic label trees (PLTs)
	Probabilistic label trees
	Training
	Prediction

	Statistical analysis of PLTs
	L1 estimation error
	Strongly proper composite losses
	Generalized classification performance metrics
	Precision at k
	DCG at k
	Relation to hierarchical softmax

	Computational complexity of PLTs
	Training complexity
	Prediction complexity
	Memory complexity

	Online PLT
	Online and incremental training of PLTs
	Online tree building and training of node classifiers
	Theoretical analysis of OPLT

	Implementation
	Popular PLT packages
	Training of node classifiers
	Sparse features
	Dense features
	Prediction
	Tree structure
	Ensemble of PLTs
	Node probabilities via multi-class classification

	Empirical validation of PLTs
	Experimental setting
	PLTs with different design choices
	Batch and incremental learning
	Prediction methods
	Sparse and dense representation
	Tree structure
	Ensemble of PLTs

	Generalized classification performance metrics
	Comparison to hierarchical softmax
	Online PLTs
	PLT vs. state-of-the-art

	Discussion and open research directions
	Other proposed methods
	BR-trees
	Log-Time Log-Space

	Tree structure
	Spectral tree
	FastPLT
	Online PLT tree building policies

	epsilon-approximate prediction
	Limitations of PLTs in the context of other extreme classification challenges
	The problem of rare labels
	The positive-unlabeled labels problem

	Open research directions

	Summary
	Bibliography
	Omitted proofs
	Proofs of the results from Sections 3.2 and 3.3
	Proofs of the results from Section 5.1
	Proofs of the results from Chapter 5.2
	Proofs of the results from Section 5.3
	Proofs of the results from Section 5.5
	Proofs of the results from Chapter 6
	Proofs of the results from Chapter 7

	Implementation and experimental setup
	Batch uniform-cost search
	Synthetic data
	Hyperparameters
	Tree depth impact for the squared hinge loss
	Weight pruning
	Precision at 1, 3, 5 of state-of-the-art methods

	Notation
	Streszczenie

