
Design patterns and code smells.
Relationships and impact on selected

software quality metrics

Tarek Alkhaeir
Faculty of Computing and Telecommunications

Poznań University Of Technology

Doctoral dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

Supervisor
Andrzej Jaszkiewicz, Ph.D., Dr Habil, Assoc. Prof.

Supporting supervisor
Bartosz Walter, Ph.D.

Poznań, 2021

Contents
1 Abstract 4

2 Abstract (PL) 4

3 Introduction 5

4 Design patterns 7
4.1 Concepts, meaning and characteristics of design patterns in soft-

ware development . 7
4.2 Detection of design patterns . 10

5 Code smells 11
5.1 Concept, meaning and characteristics of code smells in software

development . 11
5.2 Detection of code smells . 13

6 Literature overview 14
6.1 Design patterns and code smells 14
6.2 Design patterns and changeability 15
6.3 Code smells and changeability . 15
6.4 Design patterns and defects . 16
6.5 Code smells and defects . 16

7 Notation 17

8 The relationship between design patterns and code smells 18
8.1 Experimental design . 18

8.1.1 Questions . 18
8.1.2 Notation . 19
8.1.3 Analyzed systems . 19
8.1.4 Analyzed smells and patterns 20
8.1.5 Matching pattern and smell classes 20

8.2 Results . 20
8.3 EXP1-RQ1- Are design pattern classes affected by fewer smells

than other classes? . 21
8.3.1 JFreeChart . 21
8.3.2 Apache Maven . 24

8.4 EXP1-RQ2- Does the relative number of smelly classes without
design patterns to smelly classes with design patterns change dur-
ing the evolution of a system? . 27
8.4.1 JFreeChart . 27
8.4.2 Apache Maven . 28

8.5 EXP1-RQ3- Which code smell-design pattern pairs display signi-
ficant relationships? . 29

8.6 Discussion . 35

1

8.7 EXP1-RQ1- Do design pattern classes display fewer smells than
other classes? . 35

8.8 EXP1-RQ2- Does the relative number of smelly classes without
design patterns to smelly classes with design patterns change dur-
ing the evolution of a system? . 36

8.9 EXP1-RQ3- Which code smell-design pattern pairs display signi-
ficant relationships . 37

8.10 Conclusion . 38

9 The effect of code smells on the relationship between design
patterns and defects 39
9.1 Experimental design . 39

9.1.1 Questions . 39
9.1.2 Notation . 40
9.1.3 Analyzed systems . 40
9.1.4 Analyzed smells, patterns and defects 40
9.1.5 Matching pattern, smell and defect classes 41

9.2 Results . 41
9.2.1 EXP2-RQ1 What is the impact of code smells on the

presence/absence of defects in classes involved in design
patterns? . 41

9.2.2 EXP2-RQ2 What is the impact of code smells on the
defect distribution (number of defects) in classes involved
in design patterns? . 42

9.3 EXP2-RQ3 What is the effect of code smells on the relationship
between specific design patterns and defects? 48
9.3.1 The binary relationship 48
9.3.2 The distribution of defects 48

9.4 Discussion . 50
9.4.1 EXP2-RQ1 What is the impact of code smells on the

presence/absence of defects in classes involved in design
patterns? . 50

9.4.2 EXP2-RQ2 What is the impact of code smells on the
defect distribution (number of defects) in classes involved
in design patterns? . 52

9.4.3 EXP2-RQ3 What is the effect of code smells on the rela-
tionship between specific design patterns and defects? . . 53

9.4.4 The binary relationship 54
9.4.5 The distribution of defects 55

9.5 Conclusion . 55

10 What is the impact of code smells on the relationship between
design patterns and changeability 57
10.1 Experimental design . 57

10.1.1 Questions . 57
10.1.2 Notation . 58

2

10.1.3 Analyzed systems . 58
10.1.4 Analyzed smells, patterns and change-related metrics . . . 58
10.1.5 Matching patterns, smells and change metrics 59

10.2 Results . 60
10.2.1 How the presence, absence and interaction between design

patterns and code smells in a class affect the frequency of
changes made to this class? 60

10.2.2 How the presence, absence and interaction between design
patterns and code smells in a class affect the change size? 63

10.2.3 How the presence, absence and interaction between spe-
cific design patterns and specific code smells in a class
affect both change-related metrics (size and frequency)? . 66

10.3 Discussion . 69
10.3.1 EXP3-RQ1 How the presence, absence and interaction

between design patterns and code smells in a class affect
the frequency of changes made to this class? 70

10.3.2 EXP3-RQ2 How the presence, absence and interaction
between design patterns and code smells in a class affect
the change size? . 71

10.3.3 EXP3-RQ3 How the presence, absence and interaction
between specific design patterns and specific code smells
in a class affect both change-related metrics (size and fre-
quency)? . 71

10.4 Conclusion . 74

11 Thesis conclusion 74

12 Contributions 75
12.1 Contributions for the research . 75
12.2 Contributions for the practice . 76

13 Limitations 77

14 Future work 79

3

1 Abstract
Design patterns are recommended generic solutions to common design prob-
lems. They have a complex relationship with various code quality character-
istics. While several papers reported the positive impact of patterns on main-
tainability, changeability, and defects, other papers provided opposite conclu-
sions, lessened the patterns effect or related their impact with various contextual
factors. In this work, we investigate the relationship between design patterns
and code smells and study the effect of code smells as a confounding variable in
the patterns relationship with changeability and defects.

We start by analyzing two medium-size, mature Java systems with the aim
of investigating if the existence of design patterns impacts the presence of code
smells and examine how the association between the two phenomena evolve over
time. After that, we used non-parametric statistical tests to explore the rela-
tionship between design patterns and changeability, and to measure the impact
of code smells on this relationship with regards to 13 design patterns and 9 code
smells in three medium-size, long-evolving open-source Java systems. Finally,
we inspect the link between patterns and defects and capture the difference in
the impact on defects between pattern classes with/without smells in 10 Java
systems from the PROMISE dataset.

The results show that design pattern classes are more immune to code smells
than other classes. However, the strength of this immunity varies between dif-
ferent patterns. Our results also suggest that the evolution of pattern classes
through different releases of the same system slightly decrease their association
with smells. Furthermore, our analysis concluded that code smells is a valid con-
textual factor that affects the relationship between design patterns with regards
to both defects and changeability as in one hand, smelly patterns tend to receive
smaller, but more frequent changes than other classes, and on the other hand,
smelly pattern classes are positively associated with defects and also attract
more defects than both non-pattern and non-smelly-pattern classes.

2 Abstract (PL)
Wzorce projektowe stanowią polecane ogólne rozwiązania typowych problemów
związanych z projektowaniem oprogramowania. Użycie wzorców wpływa na
różne właściwości i charakterystyki kodu źródłowego. O ile wiele prac wskazuje
na pozytywny związek z wzorców z pielęgnowalnością, zmiennością oprogramo-
wania oraz gęstością defektów, o tyle część wyników prowadzi do odmiennych,
czasem nawet przeciwnych wniosków: wpływ wzorców okazuje się dużo słabszy
lub powiązany z rozmaitymi czynnikami kontekstowymi. W tej pracy podjęto
temat związku pomiędzy wzorcami projektowymi oraz tzw. przykrymi zapa-
chami w kodzie programów, oraz zbadano wpływ tych zależności na zmienność
kodu oraz jego gęstość defektów w nim zawartych.

Na początku pracy przedstawiono wyniki analizy dwóch średniej wielkości,
dojrzałych systemów napisanych w języku Java pod kątem związków pomiędzy

4

klasami uczestniczącymi we wzorcach projektowych oraz obarczonych przykrymi
zapachami, a także ewolucji tych związków w czasie. Następnie, za pomocą nie-
parametrycznych testów statystycznych, przeprowadzono badanie wzajemnego
wpływu wzorców oraz przykrych zapachów na zmienność oprogramowania w
trzech podobnych systemach. Wreszcie, badanie związku tych zjawisk z gęsto-
ścią defektów, wykorzystując istniejące dane ze zbioru PROMISE.

Wyniki wskazują, że klasy uczestniczące na wzorce projektowe rzadziej są
obciążone przykrymi zapachami niż pozostałe klasy, jednak związek ten zmie-
nia się w zależności od konkretnego wzorca. Obserwacje dotyczące zmian tego
związku w czasie pokazują także, że w toku ewolucji udział przykrych zapachów
w klasach pełniących role we wzorcach nieznacznie spada.

Ponadto, wykonana analiza pozwala na stwierdzenie, że obecność przykrych
zapachów jest czynnikiem wpływającym na zmienność kodu i gęstość defektów
w we wzorcach projektowych. Klasy obarczone zapachami są zmieniane częściej,
jednak same zmiany są mniejsze niż w przypadku innych klas, natomiast klasy
wzorców posiadające przykre zapachy posiadają błędy częściej i w większej licz-
bie zarówno niż klasy nieuczestniczące we wzorcach, jak i klasy uczestniczące
we wzorcach, ale pozbawione zapachów.

3 Introduction
Design patterns are reusable solutions to frequent design problems. They were
first introduced to software engineering by the Gang of Four’s book [42] and
since their introduction they seized researchers’ interest in a quest to explore
and measure their impact on several code quality metrics. Researchers reported
the benefit of using design patterns with regard to communication, implement-
ation and documentation [95, 30]. They also documented the positive impact
of patterns on maintainability [50], understandability [70], reusability [9] and
reducing defect rate [105]. On the other hand, several other studies linked
the effect of patterns on quality metrics with many contextual factors or even
concluded that patterns have a negative impact on various code quality charac-
teristics. For example, Wendorff et al. [108] reported that the usage of design
patterns does not guarantee a better design and may lead to maintainability
issues. A similar conclusion stating the negative impact of patterns on main-
tainability and code evaluation was reported by Khomh et al. [63]. The same
author reported that Abstract Factory, Composite, and Flyweight patterns do
not improve expandability [66]. Furthermore, Prechelt et al. [92] argued that
different patterns have different effect on maintainability and that alternative
simpler solutions may lead to a less error-prone code and decrease the cost of
maintainability. The inconsistent impact of patterns on modularity, flexibility,
and resusability based on their type was also reported by Wydaeghe [110].

The incompatible findings from those studies suggest that the relationship
between patterns and code quality metrics is not decisively identified, and that
there is a need to evaluate the effect of patterns on other code quality metrics.
The inconsistent conclusions also drive us to think that undiscovered contextual

5

factors may have played a role in the patterns’ relationship with those quality
metrics. Those factors shaped our direction throughout this thesis. In this
thesis, we will investigate the relationship between design patterns and code
smells. Next, we study the effect of code smells as a confounding variable in the
relationship between patterns on one hand and defects or changeability on the
other.

Code smells [40] are surface indicators that usually correspond to deeper
problems in the system. As in the cases of patterns, a number of studies eval-
uated the relationships between code smells and code quality metrics, such as:
maintainability [111, 72, 10], understandability [41], security issues [5], de-
fects [32, 73, 23, 22] and changeability [86, 77, 45, 58]. Those research papers
often reported mixed or contradictory conclusions suggesting that the relation-
ship between code smells and quality metrics is more complicated than it is
initially perceived.

Design patterns and code smells represent two different approaches to assure
code quality. Design patterns are perfective solutions, which positively impact
some quality attributes which have been empirically validated. On the other
hand, eliminating smells are defensive, concentrating on detecting and remov-
ing elements that could be harmful for a software system, or that could make it
insufficiently effective. Moreover, the preventive methods also include mechan-
isms that can identify symptoms of anomalies before their negative impact on
quality grows and could become destructive for the system.

Thus, patterns and smells not only represent contrasting concepts with re-
gards to code quality, but also the way they are introduced to the code is
different. While design patterns are intentionally implemented in the code to
achieve specific design objectives, smells get introduced inadvertently. One more
notable fact, that patterns and smells are not mutually exclusive, which means
that a class can be part of a design pattern while at the same time affected by
code smells. For example, the Subject object in the Observer design pattern is
a potential suspect to have a God class code smell in it. As the evolution of the
Subject could gradually increase its size, complexity, dependents and the num-
ber of the notification sent to the observer objects. This may lead to turning
it to a God class. Those observations, along with the fact that the relationship
between the two phenomena was not heavily investigated in the literature, drove
us to investigate the link and possible interactions between the two phenomena,
and to examine if this interaction could be considered as a potential confound-
ing variable in the individual relationship between patterns on one hand on one
hand and quality attributes such as defects and changeability on the other.

Defects are conditions in software products which do not meet the require-
ments or the customers’ expectations. The process of detecting and removing
software defects is an important step in the process of fulfilling the end user sat-
isfaction [44] and reducing the economic liability associated with releasing flawed
software products [56]. Furthermore, the effect of code defects on maintainab-
ility and maintainability effort was reported in many studies [1, 89]. Thus, the
automatic detection of defects was heavily studied in the literature and many
proposals were established, such as detecting defects based on metric-based

6

rules [81] or based on the deviation from good practices [61]. Additionally, the
necessity of predicting the future defects based on the current ones, and identi-
fying the defect-prone modules drove researchers to investigate the possibility of
building an accurate and effective defect prediction model [68, 13, 38]. Because
of the importance of eliminating defects on code quality and their link with
maintainability, it is important to investigate the link between design patterns
and defects and explore how the presence of code smells affects this relationship.

Beside defects, the other dependent variable which was chosen to be evalu-
ated is changeability. The ISO 9126 model for software product quality considers
software changeability as a subcharacteristic of maintainability [27], as it meas-
ures the ability of code to evolve and to be changed. Change requests in any
system could be triggered by many conditions, such as a change of requirements,
a shift in the technologies or even features enhancements. A modular design
with a solid implementation should promise an effective fulfillment of those
changes within strict limits of resources like time and budgets [51]. Over the
years, many metrics were developed to measure code changeability [26, 25, 114].
In this work, we used change size and change frequency to measure it.

The remainder of this thesis is structured as follows. In Sec. 4 and Sec. 5,
we describe the list of patterns and smells analyzed in this work, their char-
acteristics and our motivation behind including them in the analysis. Next in
Sec. 6 we list several research papers that study the relationship between pat-
terns and smells. We also report the conclusions of studies which examine the
effect of smells or patterns on both defects and changeability. Following that we
allocate three sections to describe and report the findings of three experiments
we conducted in this thesis. Those experiments investigate:

1. Sec. 8 The relationship between patterns and smells

2. Sec. 9 The effect of smells on the relationship between patterns and defects

3. Sec. 10 The effect of smells on the relationship between patterns and
changeability

After that, in Sec. 12, we report our scientific and practical contributions. Fi-
nally, in Sec. 11 we conclude the findings and propose the directions of our
future work.

4 Design patterns

4.1 Concepts, meaning and characteristics of design pat-
terns in software development

Gamma et al. [42] defined design patterns as recommended generic solutions to
frequently occurring design problems. They identified 23 design patterns and
cataloged them into 3 different types; creational, structural and behavioral.

• Creational patterns: Handle the process of creating objects by encapsu-
lating the creation logic.

7

• Structural patterns: Handle composition of classes and objects and organ-
ize the relationships between entities.

• Behavioral patterns: Organize the communication between objects and
define their responsibilities.

In Table 1 we present the original list of design patterns identified in [42].
The analyses presented in the thesis embrace some of those patterns. The se-
lection depends on the capabilities of the detecting tool at the time of each
experiment. It is also important to point that throughout the thesis, State
and Strategy patterns are reported as the same pattern, as they have the same
structure and the detection tool was not able to differentiate between them.
The same applies to Adapter and Command patterns.

Name (Category) Description
Composite (S) Composes objects in tree-like structures to represent

part-whole hierarchies. It is used when the requirement
is to treat a single object in a similar manner to a group
of objects.

Prototype (C) Clones an already existing object. It is used when cre-
ating a new object is a costly operation, so that cloning
it is more affordable.

State-Strategy (B) State: allows a class for changing its behavior in re-
sponse to changing its state. Strategy: encapsulates a
family of algorithms and make them interchangeable.

Factory Method (C) Encapsulates an object creation logic behind a well
defined common interface.

Template Method (B) An abstract class which exposes base templates for ex-
ecuting its methods and postponing the implementation
of those methods to its sub-classes.

Decorator (S) Allows adding functionalities to an existing object
without altering its structure. It achieves that by wrap-
ping the decorated object and adding new features to
it.

Singleton (C) Creates a single instance of a class and ensures its
uniqueness.

Proxy (S) Provides a substitute object for another object. It con-
trols access to the original object by intercepting re-
quests sent to it and performs specific operations before
or after the original object handles those requests.

8

Adapter (S)–Command
(B)

Adapter: Works as a bridge between two incompatible
interfaces. Command: Wraps the operations as object
commands and sends them to the appropriate invoker
objects.

Observer (B) Defines a one-to-many relationship between a subject
and its observers. When the subject changes its state,
its observers are notified accordingly.

Visitor (B) Changes the execution of an algorithm based on a vis-
ited object. The element object should accept and allow
the visited object to operate on it.

Chain Of Responsibility
(B)

Creates a chain of handling objects to serve a single
request. If a handling object was able to handle the re-
quest, it answers with a response. If it is not, it forwards
the request to the next object in the chain.

Bridge (S) Decouples abstraction from its implementation, so that
the two can be changed independently.

Abstract Factory (C) Produces families of related objects without specifying
their concrete classes.

Facade (S) Hides the complexity of a system by providing a simpli-
fied interface to it with a limited set of functions.

Builder (C) Allows the users to construct complex objects in a step-
by-step manner. It also enables producing different
types and representations of an object using the same
construction code.

Flyweight(S) Minimizes memory footprint by sharing data between
similar objects and reusing those objects instead of cre-
ating new ones.

Mediator (B) Provides a coordinator class which handles the commu-
nications between different classes.

Memento (B) Stores the internal state of an object so it can be restored
later.

Iterator (B) Provides a standardized, uniform way for traversing a
collection of objects.

Interpreter (B) Defines a grammatical representation for a language and
provides an interpreter to translate the grammar into a
target form based on a specific context.

Table 1: List of design patterns presented in [42]. Category: C–Creational,
B–Behavioral, S–Structural

Gamma et al. promoted design patterns as paradigm-specific best practices
to solve design problems. They claimed that design patterns are built atop of
two object oriented principles [42]:

• Program to an interface not an implementation,

• Favor object composition over inheritance.

9

The relationship between design patterns and various quality characteristics
was heavily investigated in the literature. In Sec. 3 and Sec. 6 we referred to
several studies that showed both the positive and the negative impact of patterns
on several quality characteristics.

4.2 Detection of design patterns
With the increasing interest in design patterns we have been observing in the
last two decades, methods of reliable pattern detection become a key issue for
researchers from both academia and industry. As a result, several approaches
have been proposed to automatically identify design pattern instances in object
oriented source code. However, those approaches differ with respect to their
input, methodology, detected types, accuracy and validation methods.

The detection approaches could be categorized into four main groups [4]: (i)
database query approaches, (ii) metrics-based approaches, (iii) UML, Graph,
and matrix-based approaches and finally, (iv) miscellaneous approaches. Fol-
lowing, we explain each of them:

• Database query approaches: In this approach, the source code is trans-
formed into an intermediate representation, such as an AST or XMI. Next,
SQL queries are used against the generated representation to retrieve in-
formation about the detected patterns. This approach can be used to
detect structural or creational patterns. However, it can not detect beha-
vioural patterns.

• Metrics-based approaches: This approach relies on source code metrics
referring to aggregations, associations and dependencies. The calculated
values are compared with values specific for a given pattern. When the
similarity between the two metrics exceeds a certain threshold, a pattern
is considered as detected.

• UML, Graph, and Matrix-Based approaches: These approaches repres-
ent the structural and behavioral information of the subject system as a
UML structure, a graph or a matrix. The majority of those approaches
have good precision and recall rates, but they usually cannot detect non-
canonical implementations of the design patterns.

• Miscellaneous approaches: Those approaches could not be categorized un-
der any of the other approaches. For example: Kraemer et al. [69] rep-
resented patterns as Prolog rules, which then used to query a repository
of C++ codes. The tool implementing that approach was tested against
several software systems and was able to detect only five structural design
patterns: Adapter, Bridge, Composite, Decorator and Proxy, with a re-
ported precision of 14-50 % based on the tested system.

Throughout the analyses presented in this thesis, we used a pattern-detection
tool written by Tsantalis1. This tool uses the Similarity Scoring Approach

1https://users.encs.concordia.ca/~nikolaos/pattern_detection.html

10

(SSA), which belongs to the graph and matrix-based category. SSA calculates
the similarity between the subject code and graphs representing canonical pat-
terns. If the score exceeds a defined threshold value, the pattern is positively
identified [103].

The tool was verified against several Java systems with a reported precision
of 100% and a recall of 66.7-100% [4], which makes its performance compar-
able to other approaches that use exact/inexact graph matching, e.g., Discovery
Matrix (DP-Miner) [35], the sub-patterns approach [112], or metrics-based ap-
proaches, e.g., MAISA [90] and FUJABA [85].

5 Code smells

5.1 Concept, meaning and characteristics of code smells
in software development

Code smells [40] have been proposed by K. Beck as indicators of design issues
that could hinder the future maintenance of a software system. Code smells may
originate from sub-optimal design- or coding solutions, by making emergency
fixes, by employing what is called anti-patterns [12] or as consequence of the
technical debt [100]. Code smells should not be confused with defects as they
refer to two distinct quality characteristics: defect affect reliability, while smells
indicate maintainability-related flaws.

Code smells could be organized in different ways. Mäntylä [80] proposed a
taxonomy that categorized code smells into five major groups:

• Bloaters: Classes or methods that have grown excessively, making them
difficult to understand or maintain.

• Object-Orientation Abusers: Incorrect implementation of the object-oriented
principles.

• Change Preventers: A change in one place in the code triggers sequences
of changes in other places. This makes a potentially minor change an
expensive operation.

• Dispensables: They represent code structures that are not needed. Re-
moving those elements would make the code easier to understand and
maintain.

• Couplers: They results from tight coupling between classes.

In Table 2 we present a list of well-known code smells. Like in the case
of patterns, the experiments listed in this thesis analyze only some of those
smells. The selection depends on the capability of the tool at the time of each
experiment and the number of detected smells in the analyzed systems.

11

Name (Acronym, Cat-
egory, Level)

Description

God Class (GC, B, C) A complex class with too many responsibilities. This
could be reflected by having too many methods, attrib-
utes or lines of code. It plays the role of a complex
controller and it is usually tightly coupled with several
other classes which creates maintainability issues.

Feature Envy (FE, C,
M)

References members of other objects more frequently
than the members of its own object.

Message Chains (MC,
C, C)

Violates the Law of Demeter [75] by featuring depend-
ency on a chain of calls that connect objects.

Data Clumps (DCl, B,
M)

A set of variables that frequently appear together as
method parameters or class attributes. Those attributes
should be grouped together inside an entity on their
own.

Data Class (DC, D, C) A class has no responsibility but contains some data
items and crude methods to handle them (setters and
getters).

External Duplication
(ED, D, M)

Duplication of code in different classes.

Schizophrenic Class
(SC, CP, C)

A class with several unrelated responsibilities, which are
used by several client classes in different contexts.

Tradition Breaker(TB,
CP, C)

A subclass that breaks the inherited signatures by
providing a new set of services which are not related
to those provided by its base class.

Primitive Obsession
(OP, B, C/M)

An excessive use of primitive types instead of small ob-
jects.

Internal Duplication
(ID, D, M)

Duplication of code in a single class.

Sibling Duplication(SD,
D, M)

Duplication of code in classes with the same super class.

Switch Statements (SS,
OA, M)

A complex conditional statement with several branches.

Refused Bequest (RB,
OA, C)

A subclass uses only some of the methods and properties
inherited from its base class.

Divergent Change (DA,
CP, C)

A small change to a class leads to a series of changes in
unrelated methods.

Dead Code (DCo, D,
C/M)

A variable, field, method or class is no longer used in
the code.

Table 2: List of well-known code smells. Categories: B–Bloaters, C–
Couplers, D–Dispensables, CP–Change Preventers, OA–Object-Orientation Ab-
users. Levels: C–Class, M–Method

.

12

5.2 Detection of code smells
In order to apply the metaphor of code smells in practice, accurate smell de-
tection tools are needed. Many detection techniques have been developed and,
according to [46], the majority of the currently known code smells could be
detected automatically.

Code smells detection techniques could be classified into seven broad cat-
egories [62]:

• Metric-based approach: Code smells are defined by rules, based on a set
of metrics and respective thresholds. The core challenge in this approach
is to find optimal threshold values for each metric. This is a complicated
issue and requires a significant standardization effort [62].

• Search-based approaches: This approach uses Search-Based Software En-
gineering (SBSE) [48] to solve engineering problems by applying optimiza-
tion techniques. This approach requires significant knowledge and expert-
ise, as most techniques in this approach apply ML algorithms to detect
smells.

• Symptom-based approaches: In this approach, symptoms refer to certain
notions, like class roles and structures. Those symptoms are translated
into the detection rules. The accuracy of this approach is low due to
different possible interpretations of the same symptoms. Moreover, the
effort needed to translate the symptoms into detected rules is significant.

• Visualization-based approaches: It is a semiautomatic technique to detect
smells, where data is visualized and enriched using the metric-based ap-
proach and then presented to the developer/observer to identify smells.
However, the inevitable human involvement makes it error prone and
effort-/time consuming.

• Probabilistic approaches: This approach evaluate the probability of a class
to be affected by a smell. Most techniques in this approach considers the
detection process as a fuzzy-logic problem.

• Cooperative approaches: This approach was proposed by Boussaa et al. [19]
and it depends on the evolution of two populations in parallel. One popu-
lation evolves a set of detection rules and the other one detects the other
code smells which were not covered by the detection rules of the first
population.

• Manual approaches: It depends on the human expertise in detecting the
smells. The techniques in this approach are error prone and time consum-
ing.

In this thesis we used the InCode tool to automatically detect smells.InCode
is a proprietary Eclipse plugin that detects smells based on the static code
analysis. The tool employs a technique called detection strategies [81], which

13

relies on Boolean expressions composed of selected code metrics and respective
thresholds. As in other metrics-based approach, the chosen threshold values
strongly affect the accuracy of the method. In this thesis, the default settings
of inCode were used, following the recommendation by Lanza et al. [71].

inCode has several advantages. First, the approach it implements to detect
smells is commonly used and accepted; additionally, the detection strategies are
fairly accurate in detecting smells (≈ 70%, according to [81]), and a comparative
study by Arcelli Fontana et al. [39] found inFusion, a commercial version of
inCode that employs the same detection rules, to report the lowest number of
false positives among four analyzed smell detectors.

6 Literature overview

6.1 Design patterns and code smells
Investigating the relationship between design patterns and code smells is a rel-
atively new topic, compared to the other studies that explore the link between
patterns and many other code quality metrics. Sousa et al. [102] performed an
exploratory study on five Java systems and concluded that the use of design
patterns does not prevent the presence of code smells in them. The results
also suggest that the association between patterns and smells varies between
different patterns. For example, Composite, Factory method, and Singleton
could be more useful in creating a smell-free code. On the the hand, Adapter-
Command, Proxy, and State-Strategy tend to attract a high number of smells.
Another exploratory study was presented by Cardoso et al. [24], who found two
pattern-smell links; First, the co-occurrences between Command pattern and
God Class and second, the co-occurrences of Duplicated Code inside Template
pattern classes. The study also presented cases where the patterns were misused
or overused, and provided recommendations of how to use those patterns more
effectively.

Furthermore, a recent study by Alfadel et al. [6] found that design pattern
classes are less smell-prone than other classes. However, classes participating
in the Command pattern appeared to be associated with God Class, Blob and
External Duplication smells.

Finally, Sousa et al. presented a systematic mapping study on the rela-
tionship between patterns and smells [101]. They identified 16 papers and
concluded that inaccurate planning of a system together with the inappropri-
ate application of certain patterns are the main causes of the presence of code
smells in the patterns. The authors also found that the Command pattern is
highly correlated with several smells and that other patterns, like Composite
and Template Method, could be also linked with some smells.

14

6.2 Design patterns and changeability
Classes involved in design patterns tend to evolve in a different way than regular
classes. Bieman et al. [18] studied five systems and found that in four out of five
analyzed systems, the pattern classes were more change-prone than other classes.
On the other hand, the study reported also that in the fifth system the pattern
classes were less change-prone than other classes. Furthermore, Aversano et
al. [15] performed an empirical study on three open source systems in an attempt
to monitor the evolution of design pattern classes. They concluded that patterns
which support the application purpose tend to change more frequently than
other classes. A similar conclusion was also reported by Rossi et al. [96].

Ampatzoglou et al. [8] presented a study conducted on about 65,000 open
source Java classes and concluded that the roles of design patterns classes can
predict their stability. The results of the study also showed that classes playing
exactly one role in a design pattern were more stable than classes playing more
than one role or not involved in any pattern. Furthermore, the study found
that some design patterns are less susceptible to changes coming from other
classes than other patterns. Another empirical study performed by Di Penta et
al. [34] investigated the relationship between design pattern roles and the class
change proneness. The results also show that the role played by a class in a
design pattern is a valid factor for predicting its changeability. For example, in
the Adapter pattern, the class with the Adapter role changes more frequently
than the Adaptee class. Also, in Composite pattern, classes that play the role
of Composite tend to be more complex than expected and thus receive a higher
number of changes.

Furthermore, Gatrell et al. [43] reported that design patterns classes are
more change-prone than other classes and a similar conclusion is reported by
Bieman et al. [17], who also reported that this conclusion hold up after adjusting
the results for the class size.

6.3 Code smells and changeability
The relationship between code smells and change proneness was also investigated
in the literature. For example, Palomba al. [91] conducted a large scale empirical
study on 30 open source projects and found that smelly classes are more change-
prone than smell-free classes. Another study conducted by Khomh et al. [65]
on 9 releases of Azureus and in 13 releases of Eclipse found that smelly classes
are more change-prone than other classes and that specific smells are more
correlated with change than other smells.

Furthermore, Liu et al. [77] investigated the relationship between smells and
fine-grained structural change-proneness. They conducted an experiment on 11
open source projects and concluded that smelly classes are more prone to struc-
tural changes than non-smelly classes, and classes infected by several smells tend
to receive more extensive structural changes. However, after adjusting it for the
class size, the effect of some smells on change-proneness decreased or even dis-
appeared. A similar observation was made by Olbrich et al. [87]. They analyzed

15

data from three open source software systems and found that classes affected
by smells, namely God and Brain Classes, change more frequently than other
classes. However, after adjusting the result for the class size, they appeared less
change-prone than any other classes.

Additionally, experiments using machine learning conducted by Kaur et
al. [58, 59] indicated that code smells, in particular God Class and Long Method,
are more accurate predictors of change-proneness than static metrics.

6.4 Design patterns and defects
Several studies exploring the relationship between design patterns and defects
delivered mixed and sometimes contradictory conclusions. In order to com-
pare the defect rates between classes participating in design patterns and other
classes, Vokáč et al. [105] monitored the weekly maintenance and evolution of
a large industrial product for three years and concluded that Observer and
Singleton patterns tend to have a higher defect rates than other classes. On
the other hand, Factory patterns had a lower number of defects and the results
for the Template Method were inconclusive. Furthermore, Aversano et al. [14]
presented an empirical study on three open source systems and concluded that
the number of defects in pattern classes is higher if the implementation of those
patterns include crosscutting concerns. The study also asserted that the nature
of the pattern significantly affects its defect-proneness.

Moreover, Gatrell et al. [43] studied a large, proprietary, commercial system
for two years and found that classes participating in design patterns are more
fault-prone than the non-pattern classes. The authors also provided an explana-
tion behind this observation that design pattern classes are more open to change
than other classes and they introduced more defects during the evolution of the
system. Additionally, the study asserted that some patterns, namely Adaptor,
Template Method and Singleton, are more defect-prone than others.

On the other hand, other studies lessened the effect of design patterns on
defects. For example, Elish and Mohammed [36] found no difference in the fault
density between classes participating in the creational or behavioural patterns
and classes without patterns. Nevertheless, structural patterns appeared to have
a lower fault density than other classes. A detailed analysis for specific patterns
reported also in this study showed that the relationship between patterns and
defects varies between different patterns. Furthermore, Onarcan and Fu. [88]
investigated the relationship between patterns and defects in a number of open
source software projects and concluded that there is a little correlation between
the number of pattern instances in those projects and the number of defects.
They also concluded that individual design patterns may have either positive
or negative impact on defect-proneness.

6.5 Code smells and defects
The connection between code smells and defects has also attracted the atten-
tion of researchers. Li et al. [74] investigated on the class level the relationship

16

between code smells and defects in an industrial, open source system and re-
ported that the presence of some code smells, e.g., God Class, God method and
Shotgun Surgery, is positively correlated with defect proneness, while there is
no such correlation for other smells, e.g., Data Class and Feature Envy. The
authors also suggested that identifying and refactoring classes with code smells
during the development could be used systematically to decrease the number of
reported defects. Furthermore, Jaafar et al. [53] conducted an empirical study
on three open source systems: Azureus, Eclipse and JHotDraw, and reported
that the majority of classes affected by code smells tend to be more fault-prone
than other classes. Another large scale empirical investigation was performed
by Palomba et al. [91]. The results show that smelly classes have a higher
fault-proneness than non-smelly classes. Similar conclusions were reported by
Nascimento et al. [84] and Bán and Ferenc [21].

On the other hand, Hall et al. [47] argued that the presence of code smells
in some circumstances may indeed indicate a fault-prone code. However, the
impact of those smells on the defects is rather minor. The authors also suggested
that refactoring smelly classes is unlikely to reduce the number of defects in the
effected code. A similar observation was reported by D’Ambros et al. [33], who
concluded that none of the studied smells could be considered more harmful
with respect to software defects.

Tufano et al. [104] investigated the reasons behind the introduction of smells,
and to this end they studied the change history of 200 open source projects and
concluded that in many cases the refactoring and bug-fixing activities lead to
the introduction of smells.

Finally, Caior et al. [22] performed a systematic literature review on 18
studies in an attempt to analyze the impact of code smells on defects. They
concluded that 16 studies showed the presence of code smells to affect the num-
ber of defects and that this impact could be positive or negative based on the
study and the smell and only two studies concluded that code smells have no
relationship with defects.

7 Notation
In the thesis, we use the following notation (unless stated otherwise) to denote
specific sets in the data.

• ALL: All classes,

• DP : classes which participate in designs pattern(s),

• S : classes which contain code smell(s),

• SDP : classes with a design pattern(s) that are also affected by at least one
code smell,

• nSDP : classes with a design pattern(s) that are not affected by any code
smell(s),

17

• SnDP : classes which are not participating in a pattern, but are affected
by at least one code smell,

• nSnDP : classes which do not participate in a design pattern and are not
affected by code smell(s).

Relationships among S , nS , DP , nDP , SDP , nSDP , SnDP and nSnDP sets
are presented in Figure 1.

Figure 1: Relationships among the analyzed datasets

8 The relationship between design patterns and
code smells

The relationship between patterns and smells was not heavily investigated in
the literature. Although, we can intuitively expect that the presence of patterns
is correlated with the absence of code smells. There is insufficient existing
empirical evidence supporting this claim. To address that and to define this
relationship, we conducted an experiment on two medium-size, open source
Java systems aiming to investigate how design patterns impact the presence of
code smells and how the link between the two phenomena evolve over time. This
experiment was published in Information and Software Technology journal [107].

8.1 Experimental design
8.1.1 Questions

In this section, we present the list of specific questions which this experiment is
dedicated to answer:

1. EXP1-RQ1- Are design pattern classes affected by fewer smells than other
classes?

2. EXP1-RQ2- Does the relative number of smelly classes without design
patterns to smelly classes with design patterns change during the evolution
of a system?

3. EXP1-RQ3- Which code smell-design pattern pairs display significant re-
lationships?

18

8.1.2 Notation

Adding to the the list of notations presented in Sec 7, we used the following
notation:

• SDPp: the percentage of smelly classes participating in a design pattern:
SDPp = |SDP |/|DP |, where |m|: is the number of classes in group m

• SnDPp: the percentage of smelly classes that do not participate in a design
pattern: SnDPp = |SnDP |/|nDP |

• r : ratio of SnDPp to SDPp: r = SnDPp/SDPp.

8.1.3 Analyzed systems

The analysis in this experiment was conducted on two long-evolving, open source
Java systems: Apache Maven2 and JFreeChart3. They were selected for the
study due to their relatively long evolution, a large number of releases, and
comparatively high popularity among programmers. Table 3 summarizes basic
statistics about those two systems.

System lang timespan releases classes %SC %PC kLOC
Apache Maven Java 57 months 32 290-838 10.0-9.4 33.4-39.9 53-57
JFreeChart Java 155 months 55 101-629 20.8-20.0 18.8-45.2 9-162

Table 3: The Analyzed Systems in the first experiment. %SC is the percentage
of smelly classes to all the system classes. %PC the percentage of pattern classes
to all other classes

Maven is a software project management and comprehension tool. It auto-
mates building software projects by defining and resolving dependencies between
different artifacts. Maven helps its users not only to manage, but also share the
artifacts in public repositories, so that they can be automatically referenced and
acquired by various projects. At he time of this experiment, Maven has had 48
releases in three different development lines (versions 1.x, 2.x and 3.x); two of
them have already reached their End-of-Life statuses. The most recent version
is 3.2.3, which have 717 classes and ca. 92 kLOC.

JFreeChart is a framework for creating, managing and processing various
types of charts that visualize data of different kinds. It also supports numerous
output formats for presenting the data. The project was founded in 2000, and is
currently the most widely used chart-rendering and processing library for Java.
At the time of this experiment, JFreeChart had 57 releases. Its latest version is
1.0.19 which counts 629 classes and ca. 226 kLOC.

2https://maven.apache.org
3https://www.jfree.org/jfreechart/

19

The analysis presented in this experiment have been conducted on selected
releases of the subject systems. For Maven, we restricted the analyzed set to
32 subsequent releases between 2.2.0 (the earliest version compatible with Java
5.0) and 3.2.1 (the most recent at the time of writing this experiment). In
case of JFreeChart, the analyzed set includes 55 releases, starting with the first
publicly available release (0.5.6), and finishing with version 1.0.17, which was
also the last one at the moment of conducting the study.

8.1.4 Analyzed smells and patterns

For this experiment, the analyzed design patterns are: Factory Method, Pro-
totype, Singleton, Composite, Decorator, Proxy, Adapter-command, Observer,
State-strategy and Template Method. Information about the chosen patterns
can be found in Sec 4. The decision about including/excluding patterns was
governed by the capability of the chosen tool at the time of the experiment and
the total number of detected instances of the patterns.

The analyzed code smells are: Data class, External duplication, Data clumps,
Feature envy, God class, Schizophrenic class, Message chains. Information about
the smells in Sec 5. Similar to patterns, our choice of the analyzed smells also
depended on the capability of the chosen detection tool.

8.1.5 Matching pattern and smell classes

We collected the classes in the ALL dataset, by identifying the fully qualified
class names inside specific system releases. Then, based on the results of the
design pattern and code smell detection, described in Sec 4 and Sec 5, we iden-
tified DP and S datasets.

The granularity for the detection of smells and patterns are not the same
as the code smells can be attributed to classes or methods, while patterns are
detected on the class level. To confront this issue, we had to adjust the granu-
larity of the datasets to the class level by re-assigning the method-level smells
to the enclosing classes.

In the next step we identified intersections of the sets to produce SDP , SnDP ,
nSDP and nSnDP . The resulting datasets were disjoint and complete, i.e., each
class was reported exactly once in all datasets, and no class was omitted.

This procedure for generating the pattern-smell datasets would not only be
used in this experiment but throughout all the experiments described in this
thesis.

8.2 Results
In this section, we explain the procedure we used to answer every question from
the questions defined in Sec 8.1.1. We also report the results together with a
brief description about the findings. The results will be discussed in details in
the discussion section.

20

8.3 EXP1-RQ1- Are design pattern classes affected by
fewer smells than other classes?

We want to determine if design pattern classes are linked with fewer smells than
other classess. For that we can formulate the following hypotheses:

• null hypothesis H01 : SDPp = SnDPp

• alternative hypothesis Ha1 : SDPp! = SnDPp

• alternative hypothesis H11 : SDPp < SnDPp

• alternative hypothesis H21 : SDPp > SnDPp

and to answer this question, we followed this next procedure for both sys-
tems.

1. Calculate SDP and nSDP for all releases in each system

2. Test the normality of SDP and nSDP distributions with the Shapiro-Wilk
test

3. Apply t-test or Wilcoxon test (depending on the normality of the samples)
to accept or reject reject the hypotheses defined above.

8.3.1 JFreeChart

Table 4 presents the values of the metrics defined in Sec. 7. In this table, we
only present a selective representative of the analyzed releases of JFreeChart.

Table 5 reports some descriptive statistics for SDPp and SnDPp.

parameter SDPp SnDPp

mean value 0.174 0.205
median 0.148 0.209
std dev 0.088 0.047
variance 0.008 0.002

Table 5: Distribution parameters for SDPp and SnDPp for JFreeChart

Next, we test the normality of distribution for SDPp and SnDPp values.
From the data presented in the QQ-plots in Fig. 2 and Fig. 3, the normality of
the distribution for SDPp and SnDPp cannot be directly determined. There-
fore, we conducted a Shapiro-Wilk normality test. We chose this test as it
was found to demonstrate the highest statistical power for a given significance,
outperforming other normality tests [94].

21

release |classes| |DP| |S| |SDP| |nSDP| SDPp |nDP| |SnDP| SnDPp r

0.5.6 101 19 21 2 17 0.105 82 19 0.232 2.210
0.6.0 89 18 25 4 14 0.222 71 21 0.296 1.333
0.7.0 111 24 29 4 20 0.167 87 25 0.287 1.719
0.7.1 133 28 34 5 23 0.179 105 29 0.276 1.542
0.7.2 134 28 12 2 26 0.071 106 10 0.094 1.324
0.7.3 135 33 39 14 19 0.424 102 25 0.245 0.578
0.7.4 139 35 40 15 20 0.429 104 25 0.240 0.559
0.8.0 148 29 37 8 21 0.276 119 29 0.244 0.884
0.8.1 174 31 51 12 19 0.387 143 39 0.273 0.705
0.9.0 210 26 64 10 16 0.385 184 54 0.293 0.761
0.9.1 233 26 61 10 16 0.385 207 51 0.246 0.639
0.9.2 244 28 63 11 17 0.393 216 52 0.241 0.613
0.9.3 349 57 76 13 44 0.228 292 63 0.216 0.947
0.9.4 373 57 75 15 42 0.263 316 60 0.190 0.722
0.9.5 476 62 75 9 53 0.145 414 66 0.159 1.097
0.9.6 479 62 76 9 53 0.145 417 67 0.161 1.110
0.9.7 587 74 84 10 64 0.135 513 74 0.144 1.067
0.9.8 594 74 89 10 64 0.135 520 79 0.152 1.126
0.9.9 617 122 81 12 110 0.098 495 69 0.139 1.418
0.9.10 602 125 88 14 111 0.112 477 74 0.155 1.384
0.9.11 628 129 93 14 115 0.109 499 79 0.158 1.450
0.9.12 656 140 101 14 126 0.100 516 87 0.169 1.690
0.9.13 675 143 106 15 128 0.105 532 91 0.171 1.629
0.9.14 706 145 127 20 125 0.138 561 107 0.191 1.384
0.9.15 726 147 132 20 127 0.136 579 112 0.193 1.419
0.9.16 739 152 140 21 131 0.138 587 119 0.203 1.471
0.9.17 794 163 147 22 141 0.135 631 125 0.198 1.467
0.9.18 816 171 147 22 149 0.129 645 125 0.194 1.504
0.9.19 855 176 147 22 154 0.125 679 125 0.184 1.472
0.9.20 868 176 151 23 153 0.131 692 128 0.185 1.412
0.9.21 650 180 109 23 157 0.128 470 86 0.183 1.430
1.0.0 773 212 201 16 196 0.075 561 185 0.330 1.397
1.0.1 775 212 116 24 188 0.113 563 92 0.163 1.347
1.0.2 831 213 106 29 184 0.136 618 77 0.125 1.156
1.0.3 508 209 97 31 178 0.148 299 66 0.221 1.070
1.0.4 518 215 102 33 182 0.153 303 69 0.228 1.087
1.0.5 523 217 101 34 183 0.157 306 67 0.219 4.400
1.0.6 534 218 102 35 183 0.161 316 67 0.212 1.442
1.0.7 561 226 106 36 190 0.159 335 70 0.209 0.919
1.0.8 561 226 106 36 190 0.159 335 70 0.209 1.493
1.0.8a 561 226 106 36 190 0.159 335 70 0.209 1.490
1.0.9 561 226 106 36 190 0.159 335 70 0.209 1.395
1.0.10 567 236 107 37 199 0.157 331 70 0.211 1.344
1.0.11 583 249 119 42 207 0.169 334 77 0.231 1.367
1.0.12 585 249 121 42 207 0.169 336 79 0.235 1.391
1.0.13 610 258 127 43 215 0.167 352 84 0.239 1.431
1.0.14 619 275 124 44 231 0.160 344 80 0.233 1.456
1.0.15 623 275 125 45 230 0.164 348 80 0.230 1.402
1.0.16 626 279 126 45 234 0.161 347 81 0.233 1.447
1.0.17 629 284 126 45 239 0.158 345 81 0.235 1.487

Table 4: Values of metrics for some the analyzed JFreeChart releases. Where
|m|: is the number of classes in group m

22

Figure 2: The normal QQ plot for JFreeChart SDPp

Figure 3: The normal QQ plot for JFreeChart SnDPp

Results are mixed: for SDPp (W=0.719, p-value=6.02e-09) they allow for
rejecting the null hypothesis about the normality, but for SnDPp (W=0.986, p-
value=0.787) they lead to the opposite conclusion. Effectively, the assumption
that both variables have normal distribution is not valid.

After that, we verify H01 hypothesis concerning the difference between the
variables. From the visual inspection of the respective mean and medians values
of SDPp and SnDPp, and additionally based on the diagram presented in Fig. 4,
we expect that for most of the analyzed releases of JFreeChart, the number of
smelly classes among the classes which participate in design patterns is smaller
than for the remaining classes. However, this assumption still requires strict
verification.

One of the compared variables (namely SDPp) is not normally distributed,
which prevents us from applying the t-test for paired samples. Therefore, we
use a non-parametric one-tailed Wilcoxon signed-rank test [109], which is recom-
mended as an effective replacement for a t-test, used for normal distributions.

23

Figure 4: The values of SDPp and SnDPp for JFreeChart

The sample size n is 55 (it is assumed that for n > 20 the test statistic W
can be approximated as a normal one with a mean calculates as µw = n(n+1)

4

and a standard deviation of σw =
√

(n+1)(2n+1)
24). Based on that, both W-value

and z-region were calculated.
The results (W=364.5, z=-3.398, p-value=0.00034, significant at <0.05) al-

low for rejecting the hypothesis H01. Next, by comparing the medians for both
variables (SnDPp: 0.209, SDPp: 0.148), we can accept H11 (SDPp <SnDPp)
instead. Therefore, it is valid to conclude that in case of JFreeChart the classes
which participate in design patterns exhibit fewer code smells than the other
classes.

8.3.2 Apache Maven

Table 7 provides descriptive statistics for SDPp and SnDPp for Maven. The
complete data for all Maven’s analyzed releases is available in Table 6.

Out of the 33 analyzed releases of the system, version 3.2.0 appeared signific-
antly different in size and in the number of classes from both neighbour versions
(the preceding and the following ones). These differences could not be explained
by the changes made to the source code in this release, and probably resulted
from faulty or incomplete files made available for download by programmers.
Therefore, this release was excluded from further analysis.

parameter SDPp SnDPp

mean value 0.089 0.140
median 0.079 0.128
std dev 0.020 0.037
variance 0.001 0.001

Table 7: Descriptive statistics for SDPp and SnDPp in Apache Maven

24

release |classes| |DP| |S| |SDP| |nSDP| SDPp |nDP| |SnDP| SnDPp r

2.2.0 290 97 29 12 85 0.124 193 17 0.088 0.710
2.2.1rc1 293 98 29 12 86 0.122 195 17 0.087 0.713
2.2.1rc2 293 98 29 12 86 0.122 195 17 0.087 0.713
2.2.1 293 98 29 12 86 0.122 195 17 0.087 0.713
3.0.0 787 307 124 36 271 0.117 480 88 0.183 1.564
3.0.1rc1 694 309 74 24 285 0.078 385 50 0.13 1.667
3.0.1 694 309 88 23 286 0.074 385 65 0.169 2.284
3.0.2rc1 709 320 76 25 295 0.078 389 51 0.131 1.679
3.0.2 809 320 128 36 284 0.113 489 92 0.188 1.664
3.0.3rc1 712 321 76 24 297 0.075 391 52 0.133 1.773
3.0.3 812 322 128 34 288 0.106 490 94 0.192 1.811
3.0.4rc3 713 323 73 24 299 0.074 390 49 0.126 1.703
3.0.4rc4 713 323 73 24 299 0.074 390 49 0.126 1.703
3.0.4rc5 713 323 73 24 299 0.074 390 49 0.126 1.703
3.0.4 821 323 131 34 289 0.105 498 97 0.195 1.857
3.0.5 821 323 131 34 289 0.105 498 97 0.195 1.857
3.0a3 564 254 54 16 238 0.063 310 38 0.123 1.952
3.0a4 564 254 55 17 237 0.067 310 38 0.123 1.836
3.0a5 571 255 57 19 236 0.075 316 38 0.12 1.600
3.0a6 582 259 60 21 238 0.081 323 39 0.121 1.494
3.0a7 593 268 60 20 248 0.075 325 40 0.123 1.640
3.0b1 626 299 63 19 280 0.064 327 44 0.135 2.109
3.0b2 637 303 69 24 279 0.079 334 45 0.135 1.709
3.0b3 676 298 72 25 273 0.084 378 47 0.124 1.476
3.0rc1 686 304 73 24 280 0.079 382 49 0.128 1.620
3.0rc2 686 304 73 24 280 0.079 382 49 0.128 1.620
3.0rc3 686 304 73 24 280 0.079 382 49 0.128 1.620
3.1.0a1 730 331 75 25 306 0.076 399 50 0.125 1.645
3.1.0 838 331 150 36 295 0.109 507 114 0.225 2.064
3.1.1 838 331 148 36 295 0.109 507 112 0.221 2.028
3.2.0 740 111 79 6 105 0.054 629 73 0.116 2.148
3.2.1 740 334 79 25 309 0.075 406 54 0.133 1.773

Table 6: Values of metrics for the analyzed Apache Maven releases. Where |m|:
is the number of classes in group m

25

Figure 5: The normal QQ plot for Apache Maven SDPp

As follows from Fig. 5, the SDPp distribution is likely to be not normal,
which is validated by the Shapiro-Wilk test of normality (W=0.837, p-value<0.001).

Figure 6: The normal QQ plot for Apache Maven SnDPp

Next, we examined the SnDPp distribution. In this case also, both the QQ-
plot and the results of Shapiro-Wilk test (W=0.855, p-value <0.001) suggest
that the values are not normally distributed for this variable.

Similar to jfreechart the assumption of the normal distribution of both com-
pared variables is not met which lead us to use Wilcoxon signed-rank test. The
sample size (N=32) allows us to approximate the obtained distribution with a
normal one, and using the z-value instead. The z-value is -4.750, and since the
p-value for the computed z-value <0.00001 (which is significant at α = 0.05),
the hypothesis concerning equality of variables for Apache Maven is rejected,
and one of the alternative hypotheses can be accepted instead.

As follows from the diagram in Fig. 7 and from the comparison of medians
for SnDPp (=0.128) and SDPp(=0.079), SnDPp >SDPp. Additionally, the W

26

Figure 7: The values of SDPp and SnDPp for Apache Maven

statistic calculated for the one-tailed test corroborates the observation, as it just
halves the obtained p-value of the two-tailed test presented above. We assert
that for Apache Maven the number of smell-infected classes is lower among those
which participate in design patterns than for the other classes.

The results for both systems (Maven and JFreechart) are consistent. As they
suggest that design pattern classes tend to have fewer smells than other classes.

8.4 EXP1-RQ2- Does the relative number of smelly classes
without design patterns to smelly classes with design
patterns change during the evolution of a system?

8.4.1 JFreeChart

In this section, we are interested in how the r parameter, r = SnDPp/SDPp,
is affected by the evolution of the analyzed systems. With this parameter we
can observe how much the relation between SDPp and SnDPp changes in the
subsequent releases of each system. Stating that the following hypotheses can
be formulated:

• null hypothesis H02: r is approximately constant throughout the evolution
of a system,

• alternative hypothesis Ha2: there is a trend (non-null) in the values of r
for subsequent releases of the system,

• alternative hypothesis H12: the trend for r is positive,

• alternative hypothesis H22: the trend of r is negative.

and to answer this question, we tested those hypotheses by applying the
following procedure for all releases of both systems:

1. calculate the value of r,

2. test if there a trend exists for the subsequent values of r, and determine
its monotonicity.

27

The calculated values of r for all JFreeChart releases are presented in Table 4,
and visualised in Fig. 8.

Figure 8: The values of r for JFreeChart in the subsequent releases

For the statistical verification of the hypothesis we applied a two-tailed
Mann-Kendall non-parametric trend test [79]. The test was chosen because
of its insensitivity to the magnitude of data and the missing data, which made
it suitable in this case. The results are presented in Table 8.

parameter value

Kendall’s τ 0.192
stat. S 285.000
variance(S) 18966.333
p-value (two-tailed) 0.039

Table 8: Results of Mann-Kendall trend test for JFreeChart

As the p-value is lower than the significance level α = 0.05, the null hypo-
thesis, stating that no trend exists, can be rejected, but with a narrow margin.
It should be noted, however, that the obtained p-value is relatively high and
could exceed smaller α values, which makes the result for JFreeChart uncertain.

To identify the monotonicity of the trend, a one-tailed test was applied
with an alternative hypothesis H12 stating that the trend is positive. The
obtained approximation of p-value=0.02 is still lower than α = 0.05, so the null
hypothesis can be rejected and the alternative accepted instead. However, the
above objections are still valid. Therefore, the conclusion that the trend is a
stable or slightly positive for JFreechart.

8.4.2 Apache Maven

For Apache Maven we followed the same procedure as for JFreeChart. First, the
r values for all 32 releases of the system were calculated (Table 9) and visualized

28

(Fig. 9).

Figure 9: The values of r for Apache Maven

In order to verify the monotonicity of r, we conducted the Mann-Kendall
two-tailed test again; the results are presented in Table 9.

parameter value

Kendall’s τ 0.457
stat. S 210.00
variance(S) 3448.667
p-value (two-tailed) <0.001

Table 9: Results of the Mann-Kendall trend test for Apache Maven

The obtained p-value (0.001) is smaller than the assumed α=0.05, so we
reject the null hypothesis H0, and one of the alternative hypotheses can be
accepted instead. As a result, and additionally based on the Fig. 9, we conclude
that for Apache Maven there exists a positive trend for subsequent r values.

The results from both analyzed systems are inconclusive: for Apache Maven
the r parameter displays positive monotonicity, whereas in case of JFreeChart
the trend of r is uncertain. We cannot provide a conclusive answer to EXP1-
RQ2, but we can assert that the trend for r is stable or increasing.

8.5 EXP1-RQ3- Which code smell-design pattern pairs
display significant relationships?

In this section, we are interested in discovering the association between in-
dividual design patterns and code smells. In particular, we are interested in
extracting rules which display significant relationships between patterns and
smells. In order to do that and possibly discover other new findings, we decided
to mine the dataset.

29

The number of classes exhibiting both smells and patterns in each release
is relatively small, which makes it not suitable for data mining. To mitigate
that, we decided to extend the dataset by analyzing all identified instances in
all releases, for both systems. That increased the size of the dataset, but also
posed a risk that instances found in different releases could depend one each
other. We attempted to reduce the hazard and avoid counting the same class
in different releases several times, by removing duplicates from the dataset. In
this context, a duplicate is a class with a set of the same code smells, existing in
more than one release. It should be noticed that this procedure could still leave
duplicates, if the class was simply renamed. However, the manual inspection
we performed on a random sample of classes, did not reveal such a case. As a
result, the extended data set included 2105 classes with at least one code smell
and being a part of at least one design pattern.

By examining the description of the patterns, we can expect some of their
links with smells. For example:

• The Strategy pattern defines a set of algorithms as objects which are sep-
arated from the data. This separation could result in introducing Feature
Envy smell in the dependent classes that hold the data, as the decoupled
algorithm objects still needs the data.

• The Observer pattern is founded on the relation between a subject class
and observers that are notified if the subject changes its state. Gradual
evolution of the subject may increase the number of the notifications, and
eventually, making the subject a God Class.

• Proxy pattern is a smart facade to another class, which can also introduce
a God Class smell to the proxy. Additionally, a stack of proxies that
includes several intermediate layers could be also a manifestation of a
Middle Man smell.

By scanning Table 10 which presents data about the identified pattern-smell
pairs, some conclusions could be drawn directly:

• Composite and Singleton classes contain only 0 and 1 instance of a code
smell, respectively. These two patterns have a simple construction and
precisely define the responsibilities of the participating classes. This could
provide a possible explanation for the observation. It is worth to say, that
this is in contradiction with the common critique of the Singleton pattern,
which is claimed to negatively affect the design.

• Classes participating in the Template Method pattern contain only God-
and Schizophrenic Class smells.

4Pattern and smelly classes
5All classes which participate in design patterns
6Classes with smells and patterns
7All detected smell instances (both participating and not participating in patterns)

30

pattern
↓/code
smell →

DC GC FE SC MC DCl ED Sum4 Total5

Observer 0 68 0 30 0 0 0 98 451
Composite 0 0 0 0 0 0 0 0 54
Singleton 1 0 0 0 0 0 0 1 5364
Proxy 0 20 0 0 0 0 0 20 591
Prototype 95 215 7 27 0 0 1 345 3441
State-
Strategy

26 390 78 69 2 0 0 565 7117

Adapter-
Command

55 347 50 68 0 0 0 520 4928

Template
Method

0 19 0 18 0 0 0 37 474

Decorator 0 0 0 20 0 0 0 20 935
Factory
Method

0 0 0 16 0 0 0 16 836

Sum6 177 1059 135 248 2 0 1 1622 24191
Total7 1977 1359 353 409 14 6 683 4801

Table 10: Relationships of individual code smells and design patterns. DC –
Data Class, GC – God Class, FE – Feature Envy, SC – Schizophrenic Class,
MC – Message Chains, DCl – Data Clumps, and ED – External Duplication.

31

• Classes with Decorator and Factory Method contain only instances of the
Schizophrenic Class smell.

• Proxy and Observer patterns are collocated with God Class smell.

• Virtually no design pattern was found to co-exist with the Data Clumps
and Message Chains smells. This result from an overall small number of
classes with these smells.

• External Duplication was detected only in a single class participating in
a Prototype

• Prototype, State-Strategy and Adapter-Command display numerous rela-
tions with some code smells, in particular Data Class, God Class, Feature
Envy and Schizophrenic Class.

We are primarily interested in identifying relationships that strongly connect
individual patterns and code smells. In order to extract them, we employed
association rules, which express the dependencies between attributes in a data
set. In our case, the attributes correspond to the presence of code smells and
design patterns. Specifically, we used the Weka’s 8 implementation of the Apriori
algorithm [3].

Extracted association rules can be evaluated with different measures reflect-
ing their practical properties. The most popular measures include support and
confidence [3], which are an intuitive way reflect how important and accurate a
given rule is. Support measures how important a rule is with respect to the en-
tire dataset, whereas confidence reflects its accuracy. Both metrics have values
from range (0; 1), and higher values indicate more significant rules. However,
these measures were found not to be suitable for rules which are extracted from
relatively small, highly sparse datasets like in the case of our dataset. Addi-
tionally, our dataset contains only Boolean values that denote the presence or
absence of a pattern or a smell. This prevent the support and confidence metrics
to be convenient measures of the rules’ significance [16]. Instead, we decided
to use conviction [20] to evaluate the rules. Conviction combines support and
confidence in a single measure, showing how often an analyzed rule would be
incorrect if the analyzed association could be attributed to a random chance.
Conviction takes values from range (0.5;∞): 1 indicates that antecedent and
consequent are independent, values smaller than 1 – indicate negative depend-
ency, whereas values greater than 1 – a positive dependency between both sides
of the rule. It should be noted that the conviction is sensitive to changes of both
confidence and support, which means that a given value could be interpreted in
various ways.

The imbalanced distribution of data in our dataset (dominance of zeros over
ones on all attributes) would produce several strong, but uninteresting rules of
the form (attrn = 0) ⇒ (attrm = 0), where 0 code smells and patterns could
appear on both sides of the rule. As we are interested in finding associations

8http://www.cs.waikato.ac.nz/ml/weka/

32

between a design pattern as an antecedent and a smell instance as a consequent,
we decided to analyze the associations for every pattern and code smell separ-
ately, and to ignore rules with code smells on the left-hand-side. The minimum
support and confidence levels in Weka was set to very small values, so that even
weak rules could be identified for further analysis.

Based on that, 261 association rules have been extracted. As some of them
display very low conviction, which makes them not interesting, below we present
43 rules with conviction ≥ 2.0, ordered by the descending value of this measure.
The threshold was chosen arbitrally as a value slightly greater than the border
value of 1. As a result, the reduced set contains rules that exhibit at least
moderately positive dependency between the antecedent and consequent.

33

rule confidence conviction

Singleton =⇒ ¬ GC 1 346.62
Singleton =⇒ ¬ DC 1 252.12
State-Strategy =⇒ ¬ ED 1 231.13
Singleton =⇒ ¬ ED 1 174.2
Adapter-Command =⇒ ¬ ED 1 160.04
Singleton =⇒ ¬ SC 1 104.32
Singleton =⇒ ¬ FE 1 90.03
Decorator =⇒ ¬ DC 1 87.89
FactoryMethod =⇒ ¬ DC 1 78.59
Decorator =⇒ ¬ GC 1 60.42
Prototype =⇒ ¬ ED 1 55.87
Proxy =⇒ ¬ DC 1 55.56
FactoryMethod =⇒ ¬ GC 1 54.02
TemplateMethod =⇒ ¬ DC 1 44.56
Observer =⇒ ¬ DC 1 42.4
Decorator =⇒ ¬ ED 1 30.36
FactoryMethod =⇒ ¬ ED 1 27.15
State-Strategy =⇒ ¬ DC 1 24.78
State-Strategy =⇒ ¬ TB 1 21.66
Proxy =⇒ ¬ ED 1 19.19
Singleton =⇒ ¬ TB 1 16.32
Decorator =⇒ ¬ FE 1 15.69
TemplateMethod =⇒ ¬ ED 1 15.39
Adapter-Command =⇒ ¬ TB 1 15
Observer =⇒ ¬ ED 1 14.65
FactoryMethod =⇒ ¬ FE 1 14.03
Proxy =⇒ ¬ SC 1 11.49
Prototype =⇒ ¬ TB 1 10.47
Proxy =⇒ ¬ FE 1 9.92
Adapter-Command =⇒ ¬ DC 0.99 8.27
TemplateMethod =⇒ ¬ FE 1 7.96
Observer =⇒ ¬ FE 1 7.57
Prototype =⇒ ¬ FE 1 7.22
Composite =⇒ ¬ DC 1 5.08
Singleton =⇒ ¬ MC 1 3.57
Composite =⇒ ¬ GC 1 3.49
Prototype =⇒ ¬ DC 0.97 3.37
Adapter-Command =⇒ ¬ MC 1 3.28
Decorator =⇒ ¬ TB 1 2.85
FactoryMethod =⇒ ¬ TB 1 2.54
Prototype =⇒ ¬ SC 0.99 2.39
Prototype =⇒ ¬ MC 1 2.29
State-Strategy =⇒ ¬ DCl 1 2.03

Table 11: Extracted association rules combining design patterns and code smells

34

As expected, all extracted rules combine the presence of a design pattern
and the absence of a code smell. The rules that involve the presence of a code
smell, have a negligible support.

8.6 Discussion
In this section, we provide explanations to our results reported in the result
section and we relate the findings to other studies.

8.7 EXP1-RQ1- Do design pattern classes display fewer
smells than other classes?

The main finding of our experiment is that there exists a link between design
patterns and code smells. Classes participating in design patterns display smells
less frequently than other classes. This general observation was further cor-
roborated in the answer to EXP1-RQ3, where we identified several negative
relationships between individual patterns and code smells.

As follows from Tables 4 and 6, smelly classes are not prevalent: they affect
only 9.0–30.5% of classes in JFreeChart and 9.6–17.9% for Maven. Moreover,
classes that have smells and participate in patterns are also very infrequent: they
make only ca. 1.5–7.2% of all classes in JFreeChart, and 0.8–4.6% in Maven.

The relation between SnDPp and SDPp for JFreeChart, presented in Fig. 4,
varies in time. For majority of releases the observed relationship is in line with
our final conclusion (SDPp < SnDPp), but for releases 0.7.3–0.9.4 it is reversed.
Manual inspection of the code revealed that in release 0.7.3 a large number of
classes with Data Clumps were introduced, and several of them participated also
in Adapter-Command, State-Strategy and Template Method patterns. These
smells were subsequently removed from the release 0.9.4 onwards. Release 1.0.0
is another special case, for which SnDPp peaks, and SDPp drops down. We
do not observe these changes in further releases, which suggests that it was a
one-time event resulting from sub-optimal design choices, and the smells were
quickly eradicated in the next releases.

We observe a similar phenomenon in case of Maven. As follows from Fig. 7,
the relationship between SDPp and SnDPp also changes in time: for releases
3.0.0a-3.2.1, SDPp is smaller than SnDPp, which supports our conclusion; how-
ever, for releases 2.2.0-2.2.1 the results are reversed and the initial order is
restored in the next releases. Manual inspection showed that this behaviour res-
ulted from the introduction of numerous instances of Data Clumps, God Class,
Feature Envy and Data Class smells, located mainly in classes with Adapter-
Command, State-Strategy and Factory Method patterns. It is important to
notice that absolute values for SDP and SnDP (36 and 88, respectively) are
higher in release 3.0.0 than for the first analyzed release. However, this effect is
compensated by an increase in the total number of classes (from 293 in release
2.2.1 to 787 in 3.0.0), which results in reversed order for SDPp and SnDPp
variables.

35

By analyzing the presence of individual smells in the code, we can identify
the most frequent ones: Data Clumps and God Class for JFreeChart, which
dominate over other smells from very early releases of the system, and are later
accompanied by a few instances of Feature Envy and Schizophrenic Class. Simil-
arly, the design patterns are also not uniformly distributed: Adapter-Command,
State-Strategy, Prototype and Observer are among the most commonly used.
Collocations of these patterns and smells make up 88% of all smelly classes that
participate in patterns for JFreeChart, and 91% for Maven.

8.8 EXP1-RQ2- Does the relative number of smelly classes
without design patterns to smelly classes with design
patterns change during the evolution of a system?

The results obtained in response to EXP1-RQ2 do not lead to a single conclusion.
Diagrams in Fig. 8 and Fig. 9 present the values of r in all the analyzed releases.
The parameter r is a ratio of SnDPp to SDPp, and it measures the relation
between smelly classes that do and do not participate in design patterns. The
data in diagrams exhibit significant variability of the analyzed parameter.

The chart in Fig. 8 presents a peak for release 1.0.0 of JFreeChart, which is
the first major officially released version. This event cannot be easily explained
based only on the aggregated data, so we manually inspected the code. The main
finding is that in this release the number of smelly classes is substantially higher
than in other releases, while the number of the smelly design pattern classes
is lower. It is a consequence of the fact that some classes (e.g., PolarPlot,
PiePlot and ChartPanel), which had smells and patterns in previous versions,
have been removed from the codebase in this release. However, this change
resulted in proliferation of smells (in particular Feature Envy) in other classes:
the number of classes having this smell increased from 10 in release 0.9.21 to 117
in 1.0.0, and then decreased back to 10 in release 1.0.1. That could result from
the eradicating effect of design patterns reported by [52], which are applied to
remove a code smell, and which are then removed altogether.

In case of JFreeChart, a clear trend for r could not be determined due to a
relatively high p-value obtained from the statistical test, which makes the result
questionable for relatively higher α values. We can, however, make a conser-
vative conclusion that the r value is approximately stable or slightly increasing,
although the latter conclusion should be verified in larger experiments.

The analogous observation for Maven is more clear, as the positive trend
has been statistically validated. The peaks in releases 3.0a3, 3.0b1 and 3.0.1 are
much smaller, and do not alter significantly the general trend for the variable.

Data collected in this study are insufficient to provide a well-supported inter-
pretation of the results for EXP1-RQ2. One possible explanation is that patterns
precisely define roles and interactions of their participating classes, and provide
some guidance for developers on the recommended design solutions. As a result,
developers may want to prefer patterns that help removing a code smell than
to apply alternative design choices, and do that throughout the evolution of the

36

design pattern cum. conviction

Singleton 987.18
State-Strategy 279.60
Adapter-Command 186.59
Decorator 197.21
FactoryMethod 176.33
Prototype 81.61
Proxy 96.16
TemplateMethod 67.91
Observer 64.62
Composite 8.57

Table 12: Cumulative conviction of rules that include specific design patterns

software system, possibly even with increasing frequency.

8.9 EXP1-RQ3- Which code smell-design pattern pairs
display significant relationships

Looking for an answer to EXP1-RQ3, we focused on extracting the relationships
between individual smells and patterns, represented by association rules. Within
a rule, the presence of a pattern is an antecedent, and a code smell serves as
a consequent. Noticeably, all significant rules we found combine the presence
of a design pattern, and the absence of a code smell, which indirectly supports
the finding for EXP1-RQ1. Some rules, however, represent patterns connected
with smells, but their significance (expressed by conviction) is almost negligible,
and have not been reported in Table 11. As we see in Table 12, Singleton,
State-Strategy, Adapter-Command, Factory Method and Decorator are among
patterns that are usually not collocated with smells, whereas for Composite this
relationship is considerably weaker.

In order to evaluate the impact of particular design patterns on the signific-
ance of the rules (measured by conviction), we calculated the cumulative convic-
tion of all rules that include a given design pattern. The results are presented in
Table 12. State-Strategy, Decorator, Adapter-Command and Factory Method
are the strongest patterns that are present in the extracted rules, with cumu-
lative conviction over 170, but they are far outperformed by Singleton, which is
peaking with the cumulative conviction at 987.18. On the other hand, the cu-
mulative conviction for Composite is just 8.57, which suggests that the presence
of this pattern is not a strong factor that affects the presence of code smells.

In a similar manner, we can identify the smells that are usually not collocated
with patterns (see Table. 13). In this case, External Duplication, Data Class
and God Class exhibit highest cumulative conviction, whereas Data Clumps has
the lowest value for this measure.

37

code smell acronym cum. conviction

External Duplication ED 727.98
Data Class DC 602.62
God Class GC 464.55
Schizophrenic Class SC 118.20
Tradition Breaker TB 68.84
Feature Envy FE 52.42
Message Chains MC 9.14
Data Clumps DCl 2.03

Table 13: Cumulative conviction of rules that include specific code smells

8.10 Conclusion
In this experiment we analyzed the relationships between design patterns and
code smells. Based on the evidence collected from the analysis of two medium-
size Java systems, our findings generally support the intuitive hypothesis that
the presence of design patterns correlates with the absence of code smells in the
same classes.

The experiment contributions are threefold:

• We found that the presence of design patterns is linked with the absence
of code smells in the same classes. The systematic literature review on the
effectiveness of patterns[113] concludes that knowledge about the presence
of patterns could be used as a factor for building a framework that supports
maintenance. As a result of our experiment, the framework could be
extended to include also code smells. This fact could be exploited by
developers in constructing more effective smell detectors, which utilize the
knowledge of patterns to concentrate the analysis on the parts of code that
deserve more thorough examination. The presence of patterns appears to
be one of the contextual variables in this case.

• The significance of the relationships between design patterns and code
smells varies with respect to the specific patterns and smells. What is
noteworthy that all extracted significant pairs combine the presence of
a design pattern as an antecedent, and the absence of a code smell as
a consequent, which means that both phenomena are usually disjoint.
Specifically, we identified patterns, which are more likely not to be related
with code smells than others: State-Strategy, Adapter-Command, and
Factory Method. To our surprise, these patterns are outperformed in this
context by the Singleton, which is not in line with the findings reported in
other studies. The conclusion concerning diversity of the patterns’ impact
on smells could also be used by tools vendors for enhancing capabilities
of code smell detectors and tuning the analysis process with respect to
individual patterns. Additionally, these differences between patterns could

38

provide recommendations for developers concerning the choice of a pattern
in a given context.

• The ratio of smelly classes that don’t and do participate in a design pat-
tern, appears stable or slightly increasing in subsequent releases of both
analyzed systems. The obtained results are mixed: in one of the system
the ratio is increasing, whereas appears rather stable in the other system.
It means that the number of smelly classes that are not a part of design
patterns is either growing proportionally to the number of other smelly
classes, or slightly faster. We could conclude that the frequency of smells
within classes with patterns is lower or equal during the code evolution
than for other classes.

The results confirm the intuitive hypothesis on the mutually exclusive nature
of smells and patterns. They represent different approaches to assuring code
quality, but they appear negatively correlated. These observations supplement
our knowledge about code smells by introducing a new factor that can affect
their presence, and confirm several previous conclusions about the context-
sensitive nature of smells.

9 The effect of code smells on the relationship
between design patterns and defects

The relationship between patterns and defects was investigated in the literature,
but with mixed results. While the majority of studies found the presence of pat-
terns to be positively correlated with defects, other works reported the opposite
conclusions. This may suggest that contextual factors affect this relationship.
One of those contextual factors could be code smells. In order to investigate
the confounding effect of smells on code that contains design patterns, in terms
of the resulting defects, we designed and performed an experiment on 10 me-
dium size Java systems from the PROMISE dataset [2]. This experiment was
published in IEEE Access journal [7].

9.1 Experimental design
9.1.1 Questions

This experiment considers three questions that examine the defect-proneness of
pattern classes, depending on the presence/absence of code smells in them.

1. EXP2-RQ1 What is the impact of code smells on the presence/absence of
defects in classes involved in design patterns?

2. EXP2-RQ2 What is the impact of code smells on the defect distribution
(number of defects) in classes involved in design patterns?

3. EXP2-RQ3 What is the effect of code smells on the relationship between
specific design patterns and defects?

39

System Description

Ant-1.7 Java library and command-line tool to compile, assemble, test
and run Java applications.

JEdit-4.2 A modular and extensible text editor with hundreds of cus-
tomizable plugins.

Lucene-2.4 Java library for performing advanced indexing and searching.
Camel-1.6 A message-oriented middleware and integration framework

that provides an object-based implementation of the enterprise
integration patterns.

Log4j-1.2 An extensible logging framework for Java applications.
Xalan-2.7 An XML processor for applying XSL transformations and

XPath queries.
Poi-3.0 A library for manipulating MS Office documents.
Ivy-2.0 An extensible dependency manager.
Xerces-2.0 An XML parser.
Velocity-1.6 A template engine with a built-in expression language.

Table 14: List of subject systems analyzed in experiment 2

9.1.2 Notation

In addition to notation defined in Sec 7. We define the following notation:

• DEF : Classes with at least one defect;

• DEF-DP : Classes involved in design pattern(s) and with at least one de-
fect;

• DEF-nDP : Classes not involved in design pattern(s) and with at least one
defect;

9.1.3 Analyzed systems

We performed our analysis on 10 small- and medium-size Java systems from
the PROMISE [2] dataset, one of the largest public repositories of empirical
software data. We used one of the datasets that provides information about
defects. The original dataset includes 14 open source java systems: Ant, Camel,
Ckjm, Forrest, Ivy, JEdit, Log4J, Lucene, PBeans, Poi, Synapse, Velocity, Xalan
and Xerces. We decided to exclude four systems: Ckjm, PBeans, Synapse and
Forrest, due to the negligible number of patterns (< 5) in them.

Table 14 presents the list of the analyzed systems

9.1.4 Analyzed smells, patterns and defects

In this experiment, we studied 13 design patterns. The analyzed design pat-
terns are: Factory Method, Prototype, Singleton, Composite, Decorator, Proxy,

40

Adapter-command, Observer, State-strategy, Chain Of Responsibility, Visitor
and Template Method. Information about the chosen patterns can be found in
Sec 4. The pattern detection strategy and tool are presented in Sec 4.2.

For smells, we analyzed 10 code smells:Data class, External duplication,
Data clumps, Feature envy, Internal Duplication, Tradition Breaker, Sibling
Duplication, God class, Schizophrenic class and Message chains. Information
about the smells in Sec 5. The smells algorithm and tool are presented in Sec 5.2.

In this experiment defects were acquired from the PROMISE repository.
PROMISE has used Buginfo tool to collected data about defects; Buginfo is
a tool which evaluates every commit in the repository of the analyzed system.
The tool labels the commit as a bug fix if it solves an issue reported as a bug in
the bug tracking system. For each analyzed project, the bug fixes commenting
guidelines were discovered and formalized as regular expressions. Buginfo com-
pares the regular expressions with the comment associated with the commit. If
the comment matches the regular expression, Buginfo reports detecting a defect
and increases the defect count for every class modified in the commit [57].

The PROMISE dataset has been validated and used several times in different
research papers, e.g., concerning bug prediction [38, 37].

9.1.5 Matching pattern, smell and defect classes

First, we collected the classes in the ALL dataset, by identifying the fully qual-
ified class names inside specific system releases within the source PROMISE
dataset. Then, based on the results of the design pattern and code smell detec-
tion, described in 4.2 and 5.2, we identified DP and S datasets.

Since the code smells can be attributed to classes or methods, while patterns
involve classes, we had to adjust the granularity of the datasets to the class level
by re-assigning the method-level smells to the enclosing classes.

In the next step we identified intersections of the sets to produce SDP ,
SnDP , nSDP and nSnDP . The detailed procedure is described in Sec 8.1.5. In
the resulting datasets each class was reported exactly once in all datasets, and
no class was omitted. However, defects in the PROMISE dataset are assigned
to files, which can contain one or more classes. To address the issue of several
classes being included in a single file, but assigned to different datasets, we
manually verified and excluded such cases.

9.2 Results
9.2.1 EXP2-RQ1 What is the impact of code smells on the pres-

ence/absence of defects in classes involved in design patterns?

First, we evaluate if design pattern classes are associated with the presence or
absence (considered as a binary value) of defects in them. For this purpose, we
used the Odds Ratio (OR) test [99] to find the associations between the presence
of patterns as an exposure and the presence of defects as an outcome. The OR
function is specified as follows: OR = a/c

b/d where:

41

System ALL DEF DP nDP SDP DEF-DP DEF-nDP

Ant-1.7 745 166 110 635 12 38 128
JEdit-4.2 366 47 66 300 11 15 32
Lucene-2.4 335 198 164 171 12 105 93
Camel-1.6 964 187 188 776 13 75 112
Log4j-1.2 205 189 44 161 5 43 146
Xalan-2.7 904 893 151 753 23 151 742
Poi-3.0 442 281 57 385 11 39 242
Ivy-2.0 350 38 101 249 13 18 20
Xerces-2.0 586 435 110 476 19 74 361
Velocity-1.6 229 78 89 140 8 40 38

Table 15: Numbers of classes that belong to respective datasets

• a = number of exposed cases

• b = number of exposed non-cases

• c = number of unexposed cases

• d = number of unexposed non-cases

The result of the OR test is interpreted as follows:

• OR = 1 The exposure does not affect the odds of the outcome,

• OR > 1 The exposure is associated with higher odds of the outcome,

• OR < 1 The exposure is associated with lower odds of the outcome.

Next, we use Fisher’s exact test (FET) to determine if the OR results are signi-
ficant [97]. The results are presented in Table 16 and the extracted association
rules are summarized in Table 17.

The extracted rules indicate that patterns are positively associated with the
presence of defects. This is in line with the results of other studies , e.g., [43],
and in contradiction to the common understanding of patterns in terms of their
positive impact on code quality [93]; on the other hand, they reinforce our con-
jectures concerning contextual factors that may play a role in this association.
Our next step is to investigate the role of code smells as a confounding factor.
Table 18 presents the results from the OR and FET tests and the extracted
rules are listed in Table 19.

9.2.2 EXP2-RQ2 What is the impact of code smells on the defect
distribution (number of defects) in classes involved in design
patterns?

For this question we are interested whether the presence of patterns in classes
is associated with a higher/lower number of defects, and what is the effect of

42

OR log(OR)

System DP nDP DP nDP FET

Ant-1.7 2.09 0.478 0.737 −0.737 Significant (p = 0.002)
JEdit-4.2 2.463 0.406 0.901 −0.903 Significant (p = 0.014)
Lucene-2.4 1.664 0.669 0.509 −0.401 Not significant (p = 0.076)
Camel-1.6 3.935 0.254 1.370 −1.370 Significant (p < 0.001)
Log4j-1.2 4.417 0 1.485 −∞ Not significant (p = 0.202)
Xalan-2.7 ∞ 0 - −∞ Not significant (p = 0.227)
Poi-3.0 1.280 0.781 0.247 −0.247 Not significant (p = 0.463)
Ivy-2.0 2.483 0.403 0.909 −0.909 Significant (p = 0.013)
Xerces-2.0 0.654 1.527 −0.424 0.423 Not significant (p = 0.070)
Velocity-1.6 2.192 0.456 0.785 −0.785 Significant (p = 0.007)

Table 16: Results of the OR test and FET

System Extracted Rules

Ant-1.7 DP =⇒ Defects, nDP =⇒ ¬ Defects
JEdit-4.2 DP =⇒ Defects, nDP =⇒ ¬ Defects
Lucene-2.4 No significant rules
Camel-1.6 DP =⇒ Defects, nDP =⇒ ¬ Defects
Log4j-1.2 No significant rules
Xalan-2.7 No significant rules
Poi-3.0 No significant rules
Ivy-2.0 DP =⇒ Defects, nDP =⇒ ¬ Defects
Xerces-2.0 No significant rules
Velocity-1.6 DP =⇒ Defects, nDP =⇒ ¬ Defects

Table 17: Summarized findings from the OR test and FET

43

System SDP nSDP
OR FET OR FET

Ant-1.7 5.054 Significant; p = 0.007 1.755 Significant; p = 0.026
JEdit-4.2 6.210 Significant;p = 0.007 1.646 Not significant; p = 0.195
Lucene-2.4 1.4 Not significant;p = 0.767 1.431 Not significant; p = 0.119
Camel-1.6 3.646 Significant; p = 0.025 3.701 Significant; p < 0.001
Log4j-1.2 ∞ Not significant; p = 1 3.775 Not significant; p = 0.317
Xalan-2.7 ∞ Not significant; p = 1 ∞ Not significant; p = 0.383
Poi-3.0 ∞ Significant; p = 0.009 0.879 Not significant; p = 0.747
Ivy-2.0 11.516 Significant; p < 0.001 1.243 Not significant; p = 0.557
Xerces-2.0 ∞ Significant; p = 0.006 0.462 Significant; p = 0.002
Velocity-1.6 17.788 Significant; p = 0.002 1.573 Not significant; p = 0.144

Table 18: The OR test and FET results, considering the effect of code smells

System Extracted rules

Ant-1.7 SDP =⇒ DEF
nSDP =⇒ DEF

JEdit-4.2 SDP =⇒ DEF
Lucene-2.4 no significant rules

Camel-1.6 SDP =⇒ DEF
nSDP =⇒ DEF

Log4j-1.2 no significant rules
Xalan-2.7 no significant rules
Poi-3.0 SDP =⇒ DEF
Ivy-2.0 SDP =⇒ DEF

Xerces-2.0 SDP =⇒ Defects
nSDP =⇒ ¬ DEF

Velocity-1.6 SDP =⇒ DEF

Table 19: The findings from the OR test and FET, considering the effect of
code smells

44

System DP nDP
Mean Median Mean Median

Ant-1.7 0.772 0 0.399 0
JEdit-4.2 0.772 0 0.18 0
Lucene-2.4 2.158 1 1.228 1
Camel-1.6 1.345 0 0.307 0
Log4j-1.2 2.909 2 2.298 2
Xalan-2.7 1.311 1 1.338 1
Poi-3.0 2.403 1 0.942 1
Ivy-2.0 0.277 0 0.096 0
Xerces-2.0 5.618 1.5 1.974 1
Velocity-1.6 1.146 0 0.628 0

Table 20: Descriptive statistics for the number of defects inside pattern and
non-pattern classes

smells as a contextual factor in this relationship is. To answer this, we first
tested the normality of defect distributions in the subject datasets. In Table 20
we present the descriptive statistics of the datasets and in Table 34 we report
the results of the Shapiro-Wilk test [98]. They show that both pattern and
non-pattern values are not normally distributed.
Since all values are not normally distributed, we used a nonparametric Wilcoxon-
Mann test (WMW) [78] to verify if two populations have different medians
of defect distributions. In this section we verify the hypothesis that pattern
and non-pattern classes do not differ with respect to defects. Analogously,
similar hypotheses are used when comparing any other two groups using WMW
throughout this analysis.

1. H0: DP = nDP w.r.t. defects

2. Ha: DP 6= nDP w.r.t. defects

3. Ha1: DP < nDP w.r.t. defects

4. Ha2: DP > nDP w.r.t. defects

The results of the WMW test are presented in Table 22.
As follows from the results, DP > nDP for 9 out of the 10 analyzed systems,

and the only remaining case is inconclusive. We repeated the same steps to
measure the effect of smells on these results. In Table 23 we summarize the
WMW test results between the smelly- and non-smelly pattern classes, and
between the classes in those two groups and the non-pattern classes. We also
present the extracted rules from this analysis in Table 24.

To assess the significance of our extracted rules, we performed an effect
size analysis to measure the mean difference between the different groups. We

45

System DP nDP
Wcrit σ W p Wcrit σ W p

Ant-1.7 0.976 1.566 0.540 ≈ 0 0.995 1.040 0.441 ≈ 0
JEdit-4.2 0.963 2.044 0.431 ≈ 0 0.990 0.634 0.312 ≈ 0
Lucene-2.4 0.983 2.706 0.768 ≈ 0 0.984 1.591 0.766 ≈ 0
Camel-1.6 0.985 3.276 0.440 ≈ 0 0.996 1.084 0.308 ≈ 0
Log4j-1.2 0.947 1.697 0.622 ≈ 0 0.983 1.435 0.847 ≈ 0
Xalan-2.7 0.948 1.736 0.673 ≈ 0 0.995 0.743 0.571 ≈ 0
Poi-3.0 0.958 4.105 0.580 ≈ 0 0.992 1.263 0.601 ≈ 0
Ivy-2.0 0.974 0.680 0.463 ≈ 0 0.988 0.346 0.298 ≈ 0
Xerces-2.0 0.976 9.515 0.619 ≈ 0 0.993 3.039 0.545 ≈ 0
Velocity-1.6 0.971 2.086 0.584 ≈ 0 0.981 1.485 0.473 ≈ 0

Table 21: Results of the Shapiro-Wilk test

System DP vs. nDP Conclusion Hedges’ g

Ant-1.7 z = −3.406, p < 0.001 DP > nDP 0.330 (small)
JEdit-4.2 z = −2.782, p = 0.005 DP > nDP 0.570 (medium)
Lucene-2.4 z = −3.091, p = 0.001 DP > nDP 0.420 (small)
Camel-1.6 z = −8.104, p < 0.001 DP > nDP 0.595 (medium)
Log4j-1.2 z = −2.202, p = 0.027 DP > nDP 0.407 (small)
Xalan-2.7 z = 0.599, p = 0.548 none
Poi-3.0 z = −2.391, p = 0.016 DP > nDP 0.775 (medium)
Ivy-2.0 z = −2.745, p = 0.006 DP > nDP 0.386 (small)
Xerces-2.0 z = −2.106, p < 0.035 DP > nDP 0.736 (medium)
Velocity-1.6 z = −2.780, p = 0.005 DP > nDP 0.295 (small)

Table 22: Results of WMW and Hedges’ g tests

46

used the Hedges’ g test [49] with a corresponding 95% confidence interval (CI).
Hedges’ g provides a measure of the effect size weighted by the relative size
of each sample. The results are interpreted according to Cohen’s d conven-
tions [29]:

• Negligible effect < 0.2

• Small effect = 0.2

• Medium effect = 0.5

• Large effect = 0.8

The results and interpretation are reported in Tables 22 and 24.

System SDP vs. nSDP SDP vs. nDP nSDP vs. nDP

Ant-1.7 z = −2.557, p = 0.010 z = −3.764, p < 0.001 z = −2.460, p = 0.013
JEdit-4.2 z = −2.323, p = 0.020 z = −3.823, p < 0.001 z = −1.601, p = 0.109
Lucene-2.4 z = −0.724, p = 0.468 z = −1.702, p = 0.088 z = −2.916, p = 0.003
Camel-1.6 z = −0.059, p = 0.952 z = −3.049, p = 0.002 z = −2.232, p = 0.025
Log4j-1.2 z = 0.535, p = 0.592 z = −0.392, p = 0.695 z = −2.786, p = 0.005
Xalan-2.7 z = −4.991, p < 0.001 z = −3.945, p < 0.001 z = −2.289, p = 0.022
Poi-3.0 z = −2.839, p = 0.004 z = −3.801, p < 0.001 z = −0.923, p = 0.355
Ivy-2.0 z = −3.783, p < 0.001 z = −5.489, p < 0.001 z = −1.267, p = 0.204
Xerces-2.0 z = −4.769, p < 0.001 z = −6.246, p < 0.001 z = 0.305, p = 0.760
Velocity-1.6 z = −2.307, p = 0.021 z = −3.519, p < 0.001 z = −2.129, p = 0.033

Table 23: Results of the WMW test for specific patterns, considering the effect
of code smells

System SDP vs. nSDP SDP vs. nDP nSDP vs. nDP

Ant-1.7 SDP > nSDP. H’g=1.327 (large) SDP > nDP. H’g=1.878 (large) nSDP > nDP. H’g=0.156 (negligible)
JEdit-4.2 SDP > nSDP. H’g=1.319 (large) SDP > nDP. H’g=2.765 (large) not significant
Lucene-2.4 not significant not significant nSDP > nDP.H’g=0.420 (small)
Camel-1.6 not significant SDP > nDP. H’g=0.284 (small) nSDP > nDP.H’g=0.624 (medium)
Log4j-1.2 not significant not significant nSDP > nDP. H’g=0.404 (small)
Xalan-2.7 SDP > nSDP.H’g=1.379 (large) SDP > nDP. H’g=0.926 (large) nSDP > nDP. H’g=-0.224 (small)
Poi-3.0 SDP > nSDP. H’g=1.328 (large) SDP > nDP. H’g=3.245 (large) not significant
Ivy-2.0 SDP > nSDP. H’g=1.321 (large) SDP > nDP. H’g=2.149 (large) not significant
Xerces-2.0 SDP > nSDP. H’g=0.976 (large) SDP > nDP. H’g=2.992 (large) not significant
Velocity-1.6 SDP > nSDP. H’g=1.229 (large) SDP > nDP. H’g=1.559 (large) nSDP > nDP. H’g=0.195 (negligible)

Table 24: The extracted rules from the WMW test results presented in Table
23 together with Hedges’ g results

47

Pattern ALL DEF SDP nSDP def-SDP def-nSDP

(Object) Adapter 417 232 55 362 39 193
Bridge 18 12 3 15 3 9
Chain of Responsibility 3 3 1 2 1 2
Composite 16 10 1 15 1 9
Decorator 103 65 1 102 1 64
Factory Method 79 36 2 77 1 35
Observer 14 9 2 12 2 7
Prototype 14 10 2 12 2 8
Proxy 29 26 3 26 3 23
Singleton 80 39 7 73 6 33
State 202 116 37 165 30 86
Template Method 60 25 8 52 4 21
Visitor 38 12 5 33 5 7

Table 25: The total number of classes for each pattern in each group

9.3 EXP2-RQ3 What is the effect of code smells on the
relationship between specific design patterns and de-
fects?

9.3.1 The binary relationship

In this section we investigate the binary relationship between individual patterns
and defects and how the presence of smells impacts this relationship. As the
number of specific patterns is too low in each system, we merged the datasets.
In Table 25 we present the descriptive data on the resultant dataset.

Next, we performed again the OR test for each pattern and applied FET to
measure the significance of the results (see Table 26).

From the results we can conclude that the classes involved in Adapter, Dec-
orator, Proxy and State are more defect-prone than non-pattern classes. The
Visitor pattern appears to be associated with the absence of defects, but due to
a large p-value we consider the result to be uncertain.

We followed these steps by measuring the effect of smells on these extracted
associations and for that we repeated the same tests taking into consideration
the effect of smells (see Table 27). The results suggest that the positive asso-
ciation between Adapter, State, and Visitor patterns with defects exists only if
they are affected by smells.

9.3.2 The distribution of defects

In this section we investigate whether specific patterns attract more or fewer
defects than non-pattern classes, and how the introduction of smells affects this
distribution.

48

Pattern OR log(OR) FET

(Object)Adapter 1.336 0.289 p=0.004
Bridge 2.086 0.735 p=0.159
Chain of Responsibility ∞ ∞ p=0.117
Composite 1.737 0.552 p=0.323
Decorator 1.800 0.587 p=0.003
Factory Method 0.883 −0.124 p=0.571
Observer 1.897 0.640 p=0.292
Prototype 2.607 0.958 p=0.111
Proxy 9.102 2.208 p<0.001
Singleton 0.989 −0.011 p=1.000
State 1.423 0.352 p=0.014
Template Method 0.740 −0.301 p=0.298
Visitor 0.477 −0.740 p=0.034

Table 26: Results of the OR test and FET for the specific patterns

Pattern SDP nSDP

OR Log(OR) FET OR Log(OR) FET

Adapter 2.634 0.968 p = 0.001 < 0.05 1.204 0.185 p = 0.091
Decorator ∞ ∞ p = 0.490 1.772 0.572 p = 0.006 < 0.05
Proxy ∞ ∞ p = 0.117 8.042 2.084 p = 0 < 0.05
State 4.501 1.504 p = 0.0001 < 0.05 1.137 0.128 p = 0.429
Visitor ∞ ∞ p = 0.028 < 0.05 0.278 -1.280 p = 0.001 < 0.05

Table 27: Results of OR test and FET for specific patterns, considering the
effect of code smells

49

Pattern DP vs. nDP Conclusion Hedges’ g

(Object)Adapter z = −5.284, p < 0.001 DP > nDP 0.574 (medium)
Bridge z = −1.598, p = 0.109 H0 cannot be rejected
Chain Of Resp z = −1.758, p = 0.078 H0 cannot be rejected
Composite z = −1.839, p = 0.065 H0 cannot be rejected
Decorator z = −2.907, p = 0.003 DP > nDP 0.146 (negligible)
Factory Method z = −0.308, p = 0.757 H0 cannot be rejected
Observer z = −1.925, p = 0.054 H0 cannot be rejected
Prototype z = −2.331, p = 0.019 DP > nDP 0.351 (small)
Proxy z = −4.761, p < 0.001 DP > nDP 0.517 (medium)
Singleton z = −1.921, p = 0.054 H0 cannot be rejected
State z = −4.385, p < 0.001 DP > nDP 0.629 (medium)
Template Method z = 0.117, p = 0.906 H0 cannot be rejected
Visitor z = 1.857, p = 0.063 H0 cannot be rejected

Table 28: Results of the WMW test for specific patterns, together with Hedges
’g results

In Table 28, we present the results of the WMW test that compare the
distribution of defects for specific patterns with the distribution of defects in
non-pattern classes.

According to the results, the Adapter, Decorator, Prototype, Proxy and
State patterns are more defect-prone than non-pattern classes, while the results
for the other patterns are inconclusive. We also performed a Hedges’ g test and
the results show that the extracted rules have a different significance depending
on the pattern type. They report that none of the extracted rules has a large
effect size and that the significance varies between medium, small or negligible,
depending on the type of the pattern.

To investigate the effect of smells on the previous rules, we performed a
similar analysis for the classes with code smells. In Table 29 we present the
results of the WMW test that compares the defects distribution in the smelly
and non-smelly classes involved in patterns, with a distribution of defects in
non-pattern classes. Table 30 reports the extracted rules from the WMW test
and the significance of those extracted rules based on the results of the Hedges’
g test.

9.4 Discussion
9.4.1 EXP2-RQ1 What is the impact of code smells on the pres-

ence/absence of defects in classes involved in design patterns?

If we consider the binary relationship between patterns and defects (i.e., defect-
ive and defect-free classes) the results show that in five of the analyzed systems
(Ant-1.7, JEdit-4.2, Camel-1.6, Ivy-2.0 and Velocity-1.6), the presence of pat-

50

Pattern SDP vs. nSDP SDP vs. nDP nSDP vs. nDP

(Object) Adapter z = −3.35, p < 0.001 z = −5.323, p < 0.001 z = −3.716, p < 0.001
Bridge z = −2.594, p = 0.009 z = −2.991, p = 0.002 z = −0.416, p = 0.677
Chain Of Resp insufficient data insufficient data z = −1.702, p = 0.088
Composite insufficient data insufficient data z = −1.468, p = 0.141
Decorator insufficient data insufficient data z = −2.786, p = 0.005
Factory Method z = 0.171, p = 0.863 z = 0.182, p = 0.855 z = −0.341, p = 0.732
Observer z = −2.167, p = 0.030 z = −2.657, p = 0.007 z = −0.996, p = 0.318
Prototype z = −1.613, p = 0.106 z = −2.235, p = 0.025 z = −1.607p = 0.107
Proxy z = −1.779, p = 0.075 z = −2.658, p = 0.007 z = −4.131, p < 0.001
Singleton z = −2.183, p = 0.028 z = −2.858, p = 0.004 z = −1.135, p = 0.256
State z = −3.987, p < 0.001 z = −5.656, p < 0.001 z = −2.199, p− 0.027
Template Method z = −0.536, p = 0.591 z = −0.566, p = 0.570 z = 0.347, p = 0.728
Visitor z = −3.269, p = 0.001 z = −1.987, p = 0.046 z = 2.767, p = 0.005

Table 29: Results of WMW test for specific patterns, considering the effect of
code smells

terns is positively associated with the presence of defects. For the other five
systems we could not find any significant rules. It is also important to point
that no rule that contradicts the extracted rules was identified, so in no system
could we relate patterns to the absence of defects. After the introduction of the
effect of smells to the analysis, we found that three out of five systems that were
found to have a positive relationship between patterns and defects exhibit this
relationship only if the patterns are affected by smells (JEdit-4.2, Camel-1.6,
Ivy-2.0 and Velocity-1.6), and for the other two (Ant-1.7 and Camel-1.6) the
relationship exists regardless of the presence of smells in the patterns.

In the remaining five systems, for which we initially could not reject the null
hypothesis, patterns in Poi-3.0 were found to be positively related with defects
only if they were smelly; in Xerces-2.0 the effect was even more evident: smelly
patterns have been positively associated with defects, while the association for
non-smelly patterns was negative.

By including code smells we did not only extract more rules, but we also
found that in the majority of systems, patterns are positively associated with
defects only when they are smelly. On the other hand, the results for non-smelly
patterns are mixed, so while they are positively associated with defects in a
couple of systems, they also have negative or no relationship with defects in other
systems. This observation provides a possible explanation for the mixed [106]
or small relationship [88] reported in the literature between design patterns
and defect-proneness. The presence of code smells appears to be a factor that
interacts with design patterns and has a decisive impact on defects in the subject
code by amplifying the previously existing defect-proneness. Consequently, it
has a practical consequence for software developers. The intense use of patterns

51

Pattern SDP vs. nSDP SDP vs. nDP nSDP vs. nDP

(Object) Adapter SDP > nSDP. H’g=0.429(small) SDP > nDP. H’g= 1.730(large) nSDP > nDP. H’g=0.475(small)
Bridge SDP > nSDP. H’g= 2.120(large) SDP > nDP. H’g= 9.72(large) not significant
Chain Of Resp not significant not significant not significant
Composite not significant not significant not significant
Decorator not significant not significant nSDP > nDP. H’g=0.14(negligible)
Factory Method not significant not significant not significant
Observer SDP > nSDP. H’g=4.294(large) SDP > nDP. H’g=5.163(large) not significant
Prototype not significant SDP > nDP. H’g=1.349(large) not significant
Proxy not significant SDP > nDP. H’g=1.349(large) nSDP > nDP. H’g=0.421(small)
Singleton SDP > nSDP. H’g=0.6(medium) SDP > nDP. H’g=1.708(large) not significant
State SDP > nSDP. H’g=0.813(large) SDP > nDP. H’g= 2.135(large) nSDP > nDP. H’g=0.334(small)
Template Method not significant not significant not significant
Visitor SDP > nSDP. H’g=1.476(large) SDP > nDP. H’g=1.469(large) nSDP < nDP.H’g=-0.308(small)

Table 30: The conclusions from the WMW test results presented in Table 29,
together with the Hedges’ g effect size test results

can lead to their interactions and the proliferation of cross-cutting effects [14],
resulting in some types of code smells. That, in turn, could effectively diminish
or revert the expected advantages of applying design patterns, even if the pattern
classes attract fewer smells than the non-pattern ones [107].

9.4.2 EXP2-RQ2 What is the impact of code smells on the defect
distribution (number of defects) in classes involved in design
patterns?

The results for nine out of ten of the analyzed systems indicate that design
pattern classes are linked with a higher number of defects than the non-pattern
classes. Only in the case of Xalan-2.7 no significant rules were identified. The
effect size analysis reported that the mean difference between the smelly and
non-smelly patterns in terms of defects is between [0.2-0.5] of standard deviation,
which entails that the significance of those extracted rules are either small or
medium, depending on the system.

By introducing information about code smells into the analysis, we obtained
new insights into those results. First, in the majority of systems (seven out
of ten), smelly patterns have a higher number of defects than the non-smelly
patterns, and no system produced contradictory results. The effect size for the
majority of those extracted rules is large, indicating that the difference between
the two groups is of a large significance.

With regard to the effect of smells on the relationship between pattern vs.
non-pattern classes with defects, the extracted rules were difficult to interpret,
because while smelly patterns are associated with more defects than non-pattern
classes in eight systems, the non-smelly patterns also have more defects than
non-pattern classes in six systems. Those results initially suggested that the
smelliness of a pattern is not a valid contextual factor for analyzing defect-
proneness. A thorough analysis of the extracted rules shows that the extracted
rules for the relationship between smelly patterns and defects are stronger than
those which show the relationship between non-smelly patterns and defects. All
the rules extracted for the smelly patterns are significant at α = 0.01, while

52

only two rules are significant at the same level for the non-smelly patterns. The
effect size analysis also strengthens this conclusion, since for the smelly pattern
rules the mean difference is large enough to be of a practical significance, while
the effect size for the non-smelly pattern rules is either small or even negligible.

To have a more comprehensive understanding of the results and to isolate
the effect of smells, we again performed a WMW test to compare the smelly
vs. non-smelly patterns with smelly vs. non-smelly non-pattern classes. The
results are summarized in Table 31.

System SDP vs. SnDP SDP vs. nSnDP nSDP vs. SnDP nSDP vs. nSnDP

Ant not significant SDP > nSnDP (large) not significant nSDP > nSnDP (small)
JEdit not significant SDP > nSnDP (large) not significant not significant
Lucene not significant not significant not significant nSDP > nSnDP (small)
Camel not significant not significant nSDP > SnDP (small) nSDP > nSnDP (medium)
Log4j not significant not significant not significant nSDP > nSnDP (small)
Xalan SDP > SnDP (small) SDP > nSnDP (large) SnDP > nSDP (small) not significant
Poi SDP > SnDP (large) SDP > nSnDP (large) not significant not significant
Ivy SDP > SnDP (large) SDP > nSnDP (large) not significant not significant
Xerces SDP > SnDP (large) SDP > nSnDP (large) SnDP > nSDP (negligible) not significant
Velocity SDP > SnDP (large) SDP > nSnDP (large) not significant not significant

Table 31: The extracted rules from the WMW test, together with the effect size
interpretation of the Hedges’ g test

The results confirm our initial observations that smelly patterns, in the ma-
jority of systems, have a higher defect distribution than the non-pattern classes,
regardless of whether those classes are smelly or not. On the other hand, the
comparison of non-smelly patterns with smelly and non-pattern classes showed
that they have similar defect distribution in the majority of the systems and
that non-smelly patterns have a higher defect distribution only in case of Camel,
while they have a lower number of defects in case of Xalan and Xerces. This
may suggest that the effect of smells and patterns on defects is cumulative and
the results of comparing data that belong to only one group (smells or patterns)
could be attributed to other contextual factors. It is also worth mentioning that
the effect size analysis of the relationship between nSDPvs.SnDP shows that
the significance of the mean difference between those two groups is small or even
negligible. The results also suggest that classes which are not participating in a
pattern and are not affected by smells tend to attract fewer defects than pattern
classes.

Finally, the results of the effect size analysis strengthen our conclusion, as
they show the large significance of the extracted rules related to smelly design
patterns, while they demonstrate the small significance of the rules related to
the non-smelly patterns.

9.4.3 EXP2-RQ3 What is the effect of code smells on the relation-
ship between specific design patterns and defects?

In the subsequent sections we discuss the binary and the cumulative relation-
ships between specific patterns and defects, and the effect of smells on these
relationships.

53

9.4.4 The binary relationship

We are interested in analyzing the binary relationship between specific patterns
and defects, and in describing how the presence of smells affects this relationship.
However, the dataset has a very small number of instances for some patterns,
e.g., Chain of Responsibility (3 instances, all of them are smelly), Bridge (18
instances, only three of them are smelly), Observer and Prototype (14 instances
each, only 2 instances in each case are smelly). Because of the small sample
size, FET reported the insignificance of the extracted rules even if they were
supported in 100% of cases. Nevertheless, the detailed analysis reported some
significant associations such as the Adapter, Decorator, Proxy and State pat-
terns are positively related with the presence of defects, while the presence of
the Visitor pattern is associated with the absence of defects. The Visitor case
contradicts our findings reported in Sec. 9.2.1 and contradicts our findings for
all other patterns in this section.

The case of Visitor is unique: among 38 instances, 12 of them are defective
and 26 are defect-free. All of them come from a single system, velocity-1.6, and
are located in a single package org.apache.velocity.runtime.
parser.node. All instances represent objects that visit and parse a specific type
of a node. As the amount of the code inside the Visitor pattern is minimal, and
its logic is clear and simple, no defects were reported for the majority of those
instances. In the remaining classes, defects were cosmetic or related to special
cases which have not been covered.

After introducing the effect of smells to our analysis, the results showed
that in the case of Adapter, State and Visitor, smelly patterns are positively
associated with the presence of defects. However, the Decorator and Proxy
patterns require the investigation to be replicated on a larger dataset: although
the presence of smells in the pattern classes was associated with defects in 100%
of the cases, the small number of smelly classes (1 for Decorator and 3 for Proxy)
invalidated the FET results. Furthermore, we found that the non-smelly Visitor
classes are associated with the absence of smells. These results are consistent
with the findings reported in Sec. 9.2.1.

On the other hand, for both the Decorator and Proxy patterns, the results
suggest that smell-free pattern classes are also associated with the presence
of defects, which compels us to conduct further investigation. For the other
patterns, the small number of detected instances prevented us from extracting
any rules.

For the Decorator pattern, the majority of defective non-smelly instances
belong to two systems, Xalan-2.7 and Camel-1.6. In both systems the evolution
of the Decorator pattern scattered its functionalities into many small objects
representing crosscutting concerns, which in turn became hard to comprehend
and maintain, and as a consequence, produced defects.

With regards to the Proxy pattern, there are 23 defective non-smelly in-
stances, and 16 of them belong to Xalan-2.7. Almost all Visitor instances in
this system belong to a single package org.apache.xalan.xsltc.compiler.
Those instances parse specific types of instructions before passing the parsed

54

segments to a converter object. Those instances extend a single parent class,
Instruction, and their tight coupling with this shared parent causes them to
also share the same defects.

9.4.5 The distribution of defects

The results of the detailed analysis are consistent with our findings reported
in 9.2.2. They indicate that the Adapter, Decorator, Prototype, Proxy and State
patterns are linked with more defects than non-pattern classes. While we could
not extract any rules for other patterns, no extracted rules in any of the patterns
contradicted our findings. The introduction of smells into our analysis resulted
in the observation that, in case of the Adapter, Bridge, Observer, Singleton,
State and Visitor patterns, smelly patterns attract more defects than non-smelly
patterns. For all other patterns, we could not extract any rules that contradict
our findings.

With respect to the effect of smells on the relationship between patterns
and defects we found that for the majority of pattern types (Adapter, Bridge,
Observer, Prototype, Proxy, Singleton, State and Visitor), the smelly design
patterns attracted more defects than non-pattern classes. The effect size ana-
lysis reported that the mean difference between those smelly patterns and non-
pattern classes is greater than the 0.8 of standard deviation, which indicates
the large significance of those extracted rules. For the non-smelly patterns, we
found that only in the case of Adapter, Decorator, Proxy and State did the
non-smelly patterns attract more smells than the non-pattern classes and those
extracted rules have a small significance. Moreover, in case of the Visitor pat-
tern, we concluded that non-smelly patterns have fewer defects than non-pattern
classes.

The defect proneness of specific smells and patterns has also been studied in
the literature. Our findings partially confirm the results reported by Aversano
et al. [14], Vokac [106] and [88] with respect to the Singleton and Observer
patterns and their positive association with defects. Our results show that for
both of them the presence of smells additionally amplified the defect proneness
of the affected classes. For other patterns, the results differ, which may also
indicate the confounding role of code smells addressed in our work.

9.5 Conclusion
In this experiment we investigated the links between design patterns and defects,
and how the presence/absence of smells affects these relationships. Our analysis
included 10 small- and medium-size Java systems. The findings suggest that
pattern classes are associated with more defects than non-pattern classes, and
that smells could be considered as a contextual factor in this relationship since
smelly pattern classes attract more defects than both non-smelly pattern and
non-pattern classes.

The experiment findings are three-fold:

55

• Investigating the binary relationship between patterns and defects showed
that patterns are positively associated with the presence of defects, thus
validating the results reported in previous studies. However, by includ-
ing the presence of smells as a confounding variable in this relationship,
our results indicate that only smelly patterns have a unanimously pos-
itive association with defects, while non-smelly patterns delivered mixed
results.

• Our results show that pattern classes have a greater number of defects
than non-pattern classes. Introducing the effect of smells into the analysis
reveals that smelly classes attract more defects than non-smelly classes,
and that both smelly- and non-smelly pattern classes have, in a different
rate, a higher defect distribution than non-pattern classes. The findings
also suggest that the relationship between smelly patterns and defects is
more significant than the relationship between non-smelly patterns and
defects.

• The relationship between specific patterns and defects varies, both in
terms of the binary and quantitative relationships. This variation still
holds true if smells are introduced into this relationship.

Nevertheless, there are some common findings between all the patterns.
For example, our analysis did not reveal a pattern that attracts a lower
number of defects than non-pattern classes. In contrast, the Adapter, Dec-
orator, Prototype, Proxy and State patterns tend to have a higher defect
distribution than non-pattern classes. The introduction of smells into the
analysis showed that the majority of smelly pattern classes attract more
defects than non-pattern classes, and that non-smelly patterns attract
more or fewer defects, depending on their type. For example, the non-
smelly Adapter, Decorator, Proxy and State classes attract more defects
than the non-pattern classes. On the other hand, smelly Visitor classes
are linked with a lower defect distribution than non-pattern classes.

What is also noticeable in our results is that no non-smelly pattern attracts
a higher defect number than a smelly pattern. On the contrary, smelly
Adapter, Bridge, Observer, Singleton, State and Visitor classes tend to
have more defects than non-smelly pattern classes.

Furthermore, the binary association between different patterns and defects
also varies between patterns. The Adapter, Decorator, Proxy and State
patterns are associated with the presence of defects, while the Visitor
pattern is associated with the absence of defects. Taking into consideration
the effect of smells on the previous findings showed that the majority of
smelly patterns tend to have positive associations with defects, but with
a different confidence and significance.

The results, albeit preliminary, can inspire and foster further research on the
contextual factors that affect defect-proneness, changeability and other import-

56

ant software properties. Understanding their role may help in isolating their
individual impact and the interactions they play a role in.

The findings can have an impact on the development of practice. Design
patterns promote good practices. However, if pattern classes are affected by
code smells, the advantages of patterns could be challenged by defects resulting
from their interaction with smells. Therefore, we conclude that preventing and
removing code smells may reduce the defect-proneness of the code, so we advise
programmers to take this possibility into account.

10 What is the impact of code smells on the rela-
tionship between design patterns and change-
ability

The relationships between design patterns or code smells on one hand and
changeability on the other hand were studied in the literature. However, the
interaction effect between patterns and smells on changeability was not invest-
igated. As design patterns and code smells represent different design concepts,
our hypothesis that the presence, absence or interaction between the two phe-
nomena can affect the code changeability. To study that, we conducted an
experiment to analyze these properties and their impact on two change-related
metrics: frequency and change size. The experiment was performed on three
medium size, long evolving Java systems with regard to 13 design patterns and
9 code smells.

10.1 Experimental design
10.1.1 Questions

The experiment reports the individual impact of patterns or smells on two
change-related metrics frequency and change size and how the interaction between
the two studied phenomena affects the change related metrics. Specifically, the
experiment answers the following questions:

1. EXP3-RQ1 How the presence, absence and interaction between design
patterns and code smells in a class affect the frequency of changes made
to this class?

2. EXP3-RQ2 How the presence, absence and interaction between design
patterns and code smells in a class affect the change size?

3. EXP3-RQ3 How the presence, absence and interaction between specific
design patterns and specific code smells in a class affects both change-
related metrics (size and frequency)?

57

10.1.2 Notation

In addition to the notation defined in Sec 7. We define the following notation:

• (rel) of the file (F) : is a sequence of revisions from revN+1 to revrel,
where N is a tagged revision included in the previous release. Thus, rel is
the tag attached to the last revision in the release.

10.1.3 Analyzed systems

We analyze three small- and medium-size open source Java systems; JHotDraw
(JHD), ArtOfIllussion (AOI) and JEdit (JE). Those systems have evolved for a
long time and had several public releases. Additionally, they are also curated
under the Qualitas Corpus9 umbrella.

JHotDraw10 is a framework for developing structured editors of 2D graphics.
It started in 1996 as a playground project for implementation of design patterns.
However, it underwent a major rewrite since release 7.0. The most recent public
release is 7.6, which includes 679 classes and 80 kLOC. Data has been collected
for 9 releases of the system, which span over 648 revisions.

ArtOfIllusion11 is a tool for modeling, processing and rendering images from
scene-describing files. We analyze 16 releases of the system, from 2.4.1 to 3.0.2,
which include 426 revisions; the 3.0.2 release includes 500 classes and 118 kLOC.

JEdit12 is a highly-customizable text editor, with more than 150 specialized
plug-ins. In this experiment we analyze 11 releases of the system, from 4.0 to
5.4, that span over 21207 revisions.

10.1.4 Analyzed smells, patterns and change-related metrics

We studied 13 design patterns; Factory Method, Prototype, Singleton, Com-
posite, Decorator, Proxy, Adapter-command, Observer, State-strategy, Chain
Of Responsibility, Visitor, Bridge and Template Method. Information about
the chosen patterns can be found in Sec 4. The pattern detection strategy and
tool are presented in Sec 4.2.

For smells, we analyzed 9 code smells:Data class, External duplication,
Data clumps, Feature envy, Internal Duplication, Tradition Breaker, God class,
Schizophrenic class and Message chains. Information about the smells in Sec 5.
The smells algorithm and tool are presented in Sec 5.2.

With regards to changeability, we consider two metrics of changeability:
change frequency (change-proneness) and change size.

As a proxy construct for measuring change size, we used code churn [83]
(CHURN), defined as a sum of lines added and lines deleted in all revisions rev
of the file f that belong to a given release.

9http://qualitascorpus.com
10http://jhotdraw.sf.net
11http://aoi.sf.net
12http://www.jedit.org

58

CHURN(frelease(f)) =
∑

rev∈frelease

linesadded(rev) + linesdeleted(rev)

Churn is a cumulative measure, and may be biased by the size of the subject
class and the number of revisions in the analyzed release. To address this, we
adjusted the code churn values for both class size and the number of revisions
in the respective release. Our metric reflects the size of an average change made
to a single line of code in a single revision of the subject class.

The other metric, FREQ , counts the revisions in the repository log that
affected the given class. This metric is commonly used as a primary measure of
the change-proneness of the source code [58, 64]. In response to the issues men-
tioned for the change size, we adjusted the metrics for the number of revisions
in the subject release.

Both metrics capture different dimensions of changeability and are language-
agnostic, which can help in replicating this experiment in different settings. It
is also worth mentioning that in this analysis we consider all changes to be
equal, ignoring their cause and the maintenance activity that triggered them:
corrective, perfective, adaptive or preventive [76].

To improve the readability of the results, the presented values of CHURN
and FREQ have been multiplied by a factor of 100.

10.1.5 Matching patterns, smells and change metrics

First we identified the intersections between the S and DP sets. Similar to the
previous experiments, there was a mismatch in granularity as patterns usually
involve a number of classes, while smells affect a method or a class. To address
that, we adjusted the granularity of both sets to the class level: method-level
smells have been assigned to the classes that include the subject methods, and
design patterns are consistently assigned to one of the classes playing one of
the roles. Then, the fully-qualified class names (i.e., including their package
names) in sets ALL, S and DP are textually matched to produce the following
respective datasets SDP , nSDP , SnDP , and nSnDP .

After identifying those datasets, we matched their classes to the change
related metrics defined in sec 10.1.4. It is important to address that we do not
analyze classes as single datapoints, as they could change their statuses (S/nS)
or (DP/nDP) in time. Instead, we consider releases as sequences of revisions, in
which the subject classes have not changed their (S/nS) or (DP/nDP) statuses.
In order to validate this approach, we manually analyzed a stratified sample
of the classes that changed their status and conducted statistical analysis on
the entire dataset. Results indicate that releases can be effectively used as an
approximation for such sequences

59

10.2 Results
For every question, the results of the tests together with the direct findings
from those results are presented. A detailed justification behind the results is
presented in sec 10.3 To answer the first and the second questions, we applied
the same following procedure:

(1) Identify all public releases (Rel) of the system.

(2) For each release (Rel), identify sets S and DP by using the respective
detectors for code smells and design patterns.

(3) For each release (Rel), identify datasets SDP , nSDP , SnDP , and nSnDP
as respective intersections of S and DP .

(4) For each class (C) in each Rel, collect CHURN and FREQ values.

(5) For each analyzed dataset, test if its distribution is normal, using Shapiro-
Wilk test [98].

(6) Test if the datasets have the same distribution (with respect to the subject
metric CHURN or FREQ).

(7) If the distributions are different, perform post-hoc tests to identify the
pair-wise relationships between the datasets.

10.2.1 How the presence, absence and interaction between design
patterns and code smells in a class affect the frequency of
changes made to this class?

Following the procedure presented in 10.2, first we identify the public releases
Rel of all the systems; the following releases of the subject systems were identi-
fied. For JHD: 5.4b1, 6.0b1, 7.0.9, 7.2, 7.3, 7.3.1, 7.4.1, 7.5.1, 7.6. For AOI: 2.4,
2.4.1, 2.5, 2.5.1, 2.6, 2.6.1, 2.7, 2.7.1, 2.7.2, 2.8, 2.9, 2.9.1, 2.9.2, 3.0, 3.0.1,and
3.0. For JE: 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 5.0, 5.1, 5.2

The choice of releases was conditioned by the availability of proper revision
tags in the repository.

System Number of releases Number of classes
JHD 9 5137
AOI 16 1305
JE 9 4044

Table 32: Statistics regarding the size of the experiment

Next, in Table 33 we present descriptive statistics of S, nS, DP, nDP, SDP,
nSDP, SnDP and nSnDP datasets for FREQ metric of all the the systems.

60

JHD AOI JE
Dataset N µ µ̃ N µ µ̃ N µ µ̃
S 838 3.979 3.279 328 4.856 2.500 552 0.687 0.188
nS 4299 3.653 2.703 977 3.406 2.222 3492 0.556 0.188
DP 808 4.119 3.279 391 4.081 2.469 754 0.717 0.188
nDP 4329 3.629 2.703 914 3.638 2.326 3290 0.542 0.188
SDP 167 4.424 3.289 193 4.931 3.704 175 0.976 0.188
SnDP 671 3.868 2.703 135 4.748 2.326 377 0.552 0.188
nSDP 641 4.039 3.226 198 3.251 2.326 579 0.639 0.188
nSnDP 3658 3.585 2.703 779 3.445 2.222 2913 0.540 0.188

Table 33: Descriptive statistics for FREQ in all the systems. N is the number
of classes. µ̃ is the median and µ is the mean value

In Table 34, the results of the Shapiro-Wilk test of normality are presented
for the values of FREQ metric. Based on them, we conclude that none of the
datasets in all the systems is normally distributed, which affects the subsequent
analyses.

JHT AOI JE
Dataset Wcrit σ W p Wcrit σ W p Wcrit σ W p
S 0.996 2.921 0.835 ≈ 0 0.991 4.677 0.693 ≈ 0 0.995 2.339 0.243 ≈ 0
nS 0.999 2.871 0.796 ≈ 0 0.996 2.871 0.796 ≈ 0 0.999 1.589 0.295 ≈ 0
DP 0.996 3.330 0.803 ≈ 0 0.992 3.731 0.717 ≈ 0 0.996 2.305 0.265 ≈ 0
nDP 0.996 2.783 0.806 ≈ 0 0.996 4.020 0.597 ≈ 0 0.999 1.542 0.293 ≈ 0
SDP 0.983 3.298 0.830 ≈ 0 0.985 4.238 0.727 ≈ 0 0.984 3.669 0.231 ≈ 0
SnDP 0.995 2.811 0.835 ≈ 0 0.980 5.256 0.644 ≈ 0 0.992 1.316 0.378 ≈ 0
nSDP 0.995 3.337 0.791 ≈ 0 0.986 2.941 0.704 ≈ 0 0.995 1.687 0.336 ≈ 0
nSnDP 0.999 2.776 0.799 ≈ 0 0.996 3.735 0.591 ≈ 03 0.999 1.569 0.285 ≈ 0

Table 34: Results of Shapiro-Wilk test of normality for FREQ values for all the
systems

Next, we tested if the datasets have the same distribution. Since they are not
normally distributed, for each system we used Kruskal-Wallis non-parametric
test with the following hypotheses:

• H0 : values in SDP, nSDP, SnDP and nSnDP datasets (for FREQ
metric) have the same distribution,

• H1 : values in the datasets have different distributions.

61

Datasets for FREQ metric Hcrit H p-value
JHD 7.815 24.147 < .050
AOI 7.815 63.798 < .050
JE 7.815 9.388 < .050

Table 35: Results of the Kruskal-Wallis test for FREQ values in all the systems

Results presented in Table 35 show that in all systems the H0 is rejected,
which indicates that distributions of datasets are different with respect to FREQ
metric.

Following that and to identify the specific pair-wise relationships between
datasets, we applied the post-hoc, non-parametric Wilcoxon-Mann-Whitney
(WMW) test to all pairs of datasets. As an example, below we present the
hypotheses, reasoning process and conclusions based on the comparison of SDP
and nSnDP with respect to the FREQ metric in JHD system.

We formulate the following hypotheses:

1. H0: nSnDP = SDP w.r.t. FREQ

2. Ha: nSnDP != SDP w.r.t. FREQ

3. Ha1: nSnDP < SDP w.r.t. FREQ

4. Ha2: nSnDP > SDP w.r.t. FREQ

The compared datasets are large enough (N=3658 for nSnDP and N=167
for SDP) to use Z-value instead of the W statistic. The result of a two-tailed
non-parametric Wilcoxon test at α = 0.05 (z = −3.63, p < 0.00) indicates
that H0 should be rejected and based on the result of the one-tail test, and by
comparing the medians (2.703 for nSnDP and 3.289 for SDP), we conclude that
Ha1 should be accepted instead.

We applied this procedure to test all pairs of datasets in all the systems.
Results of WMW tests and conclusions are presented in Tables 36 and 37.

JHD AOI
Datasets Result and conclusion Result and conclusion
DP/nDP z = −3.40, p = .007 ⇒ DP > nDP z = −3.90, p = .001 ⇒ DP > nDP
S/nS z = −3.68, p < .001 ⇒ S > nS z = −7.47, p < .001 ⇒ S > nS
nSDP/SDP z = −1.88, p = .060 ⇒ H0 not rejected z = −6.00, p < .001 ⇒ SDP > nSDP
nSDP/nSnDP z = −2.64, p = .004 ⇒ nSDP > nSnDP z = −2.86, p = .004 ⇒ SnDP > nSDP
nSDP/SnDP z = 0.15, p = .880 ⇒ H0 not rejected z = −0.52, p = .603 ⇒ H0 not rejected
SnDP/SDP z = −1.89, p = .058 ⇒ H0 not rejected z = −2.673, p = .003 ⇒ SDP > SnDP
SnDP/nSnDP z = −2.95, p = .003 ⇒ SnDP > nSnDP z = −7.56, p < .001 ⇒ SDP > nSnDP
SDP/nSnDP z = −3.63, p < 0.001 ⇒ SDP > nSnDP z = −3.01, p = .002 ⇒ SnDP > nSnDP

Table 36: Results of pair-wise WMW tests for FREQ metric in JHD and AOI

62

(a) JHD (b) AOI

SDP nSnDP

SnDP

nSDP

(c) JE

Figure 10: Relationships identified among datasets for FREQ metric in all the
systems. The arrows are pointing to the groups with the biggest FREQ

JE
Datasets Result and conclusion
DP/nDP z = −2.95; p = .003 ⇒ DP > nDP
S/nS z = −1.17; p = .242 ⇒ H0 not rejected.
nSDP/SDP z = −0.22, p = .826 ⇒ H0 not rejected.
nSDP/nSnDP z = 1.22, p = .222 ⇒ H0 not rejected.
nSDP/SnDP z = −2.62, p = .008 ⇒ nSDP > nSnDP
SnDP/SDP z = −1.11, p = .267 ⇒ H0 not rejected.
SnDP/nSnDP z = −1.77, p = .077 ⇒ H0 not rejected.
SDP/nSnDP z = −0.81, p = .418 ⇒ H0 not rejected.

Table 37: Results of pair-wise WMW tests for FREQ metric in JE

All identified relationships (with regard to FREQ metric) among the four
intersected datasets are depicted as arrows in Fig. 10. Based on Fig. 10, we con-
clude that classes in nSnDP dataset have the lowest values of FREQ , compared
to all other datasets.

10.2.2 How the presence, absence and interaction between design
patterns and code smells in a class affect the change size?

Following the procedure presented in 10.2, in Table 38 we present descript-
ive statistics of S, nS, DP, nDP, SDP, nSDP, SnDP and nSnDP datasets for
CHURN metric of all the systems.

63

JHD AOI JE
Dataset N µ µ̃ N µ µ̃ N µ µ̃
S 838 0.868 0.302 328 0.611 0.170 552 0.124 0.021
nS 4299 1.624 0.575 977 1.487 1.485 3492 0.144 0.038
DP 808 2.020 0.793 391 1.249 0.549 754 0.152 0.032
nDP 4329 1.404 0.491 914 1.274 0.841 3290 0.139 0.035
SDP 167 1.113 0.561 193 0.532 0.156 175 0.113 0.018
SnDP 671 0.807 0.283 135 0.724 0.194 377 0.129 0.024
nSDP 641 2.257 0.872 198 1.947 1.612 579 0.163 0.040
nSnDP 3658 1.513 0.547 779 1.370 1.359 2913 0.140 0.037

Table 38: Descriptive statistics for CHURN in all the systems. N is the number
of classes. µ̃ is the median and µ is the mean value

Next, in Table 39 we present the results of Shapiro-Wilk test of normality
for the values of CHURN metric. Based on them, we also conclude that none
of the datasets in all the systems is normally distributed.

JHT AOI JE
Dataset Wcrit σ W p Wcrit σ W p Wcrit σ W p
S 0.996 1.224 0.679 ≈ 0 0.991 1.323 0.363 ≈ 0 0.995 0.288 0.422 ≈ 0
nS 0.999 3.755 0.332 ≈ 0 0.996 2.454 0.441 ≈ 0 0.999 0.348 0.354 ≈ 0
DP 0.996 4.954 0.309 ≈ 0 0.992 2.473 0.380 ≈ 0 0.996 0.441 0.275 ≈ 0
nDP 0.996 3.122 0.349 ≈ 0 0.996 2.158 0.455 ≈ 0 0.999 0.313 0.401 ≈ 0
SDP 0.983 1.371 0.773 ≈ 0 0.985 0.760 0.691 ≈ 0 0.984 0.289 0.359 ≈ 0
SnDP 0.995 1.178 0.649 ≈ 0 0.980 1.849 0.292 ≈ 0 0.992 0.287 0.445 ≈ 0
nSDP 0.995 5.495 0.315 ≈ 0 0.986 3.248 0.391 ≈ 0 0.995 0.477 0.266 ≈ 0
nSnDP 0.999 3.347 0.350 ≈ 0 0.996 2.194 0.468 ≈ 0 0.999 0.316 0.395 ≈ 0

Table 39: Results of Shapiro-Wilk test of normality for CHURN values for all
the systems

Following that, we tested if the analyzed datasets have the same distribution
with regards to CHURN metric. Since they are not normally distributed, we
also used Kruskal-Wallis non-parametric test for every system with the following
hypotheses:

• H0 : values in SDP, nSDP, SnDP and nSnDP datasets (for CHURN
metric) have the same distribution,

• H1 : values in the datasets have different distributions.

64

Datasets for FREQ metric Hcrit H p-value
JHD 7.815 105.656 ≈ 0
AOI 7.815 128.846 < .050
JE 7.815 11.751 < .050

Table 40: Results of the Kruskal-Wallis test for CHURN values in all the systems

Results presented in Table 40 show that H0 is rejected in all the systems,
which indicates that the distributions of datasets are different with regards
to CHURN metric. To identify the specific pair-wise relationships between
datasets, we applied the post-hoc, non-parametric Wilcoxon-Mann-Whitney
(WMW) test and the results are presented in Table 41 and Table 42

JHD AOI
Datasets Result and conclusion Result and conclusion
DP/nDP z = −4.65, p < .001 ⇒ DP > nDP z = 1.18, p = .238 ⇒ H0 not rejected
S/nS z = 8.91, p < .001 ⇒ nS > S z = 10.46, p < .001 ⇒ nS > S
nSDP/SDP z = 3.68, p < .001 ⇒ nSDP > SDP z = 9.61, p < .001 ⇒ nSDP > SDP
nSDP/nSnDP z = −4.57, p < .001 ⇒ nSDP > nSnDP z = −4.34, p < .001 ⇒ nSDP > nSnDP
nSDP/SnDP z = −9.52, p < .001 ⇒ nSDP > SnDP z = 7.764, p < .001 ⇒ nSDP > SnDP
SnDP/SDP z = −2.17, p = .030 ⇒ SDP > SnDP z = −1.28, p = .200 ⇒ H0 not rejected
SnDP/nSnDP z = 8.44, p < .001 ⇒ nSnDP > SnDP z = 5.70, p < .001 ⇒ nSnDP > SnDP
SDP/nSnDP z = 1.7, p = .089 ⇒ H0 not rejected z = 8.08, p < .001 ⇒ nSnDP > SDP

Table 41: Results of pair-wise WMW tests for CHURN metric in JHD and AOI

JE
Datasets Result and conclusion
DP/nDP z = −0.16; p = .873 ⇒ H0 cannot be rejected.
S/nS z = 3.18; p < .002 ⇒ nS > S
nSDP/SDP z = 2.69, p = .007 ⇒ nSDP > SDP
nSDP/nSnDP z = −1.03, p = .300 ⇒ H0 not rejected.
nSDP/SnDP z = 2.45, p = .014 ⇒ nSDP > SnDP
SnDP/SDP z = 0.75, p = .450 ⇒ H0 not rejected.
SnDP/nSnDP z = 2.13, p = .033 ⇒ nSnDP > SnDP
SDP/nSnDP z = 2.37, p = .018 ⇒ nSnDP > SDP

Table 42: Results of pair-wise WMW tests for CHURN metric in JE

All identified relationships (with regard to CHURN metric) among the four
intersected datasets are depicted as arrows in Fig. 11 and based on the Fig. 11,
we conclude that churn is the highest in nSDP.

65

SDP nSnDP

SnDP

nSDP

(a) JHD

SDP nSnDP

SnDP

nSDP

(b) AOI

SDP nSnDP

SnDP

nSDP

(c) JE

Figure 11: Relationships identified among datasets for CHURN metric in all
the systems. The arrows are pointing to the groups with the biggest CHURN .

10.2.3 How the presence, absence and interaction between specific
design patterns and specific code smells in a class affect both
change-related metrics (size and frequency)?

In this section we present results for specific smells and patterns. Due to a
different data collection and analysis scheme, we followed a different procedure.
The procedure is described in the following steps:

(1) Identify all public releases Rel of the system.

(2) For each specific code smell (Ssmell) in each release (Rel), identify classes
that are simultaneously involved in design patterns (set SDPsmell) or not
involved (set SnDPsmell) in design patterns.

(3) For each specific design patternDPm, in each public release identify classes
that are simultaneously affected (set SDPpattern) or not affected by any
code smells (set nSDPpattern).

(4) Repeat steps 5 and 7 from the procedure described in sec 10.2.

10.2.3.1 Specific patterns

In Table 43 we present descriptive statistics of CHURN and FREQ met-
rics for classes involved in specific patterns and affected/not affected by code
smells. Numbers in parentheses indicate smelly/non-smelly instances. There
were no instances of Visitor and Chain Responsibility patterns, so they have
been removed.

66

Pattern DPi FREQ CHURN
nSDPi SDPi nSDPi SDPi

µ̃ µ µ̃ µ µ̃ µ µ̃ µ
Composite (17/34) 3.704 5.195 3.636 4.066 0.831 2.188 0.207 0.757
Prototype (9/100) 4.301 4.970 3.289 3.819 1.197 2.451 0.381 0.778
Singleton (21/121) 0.595 1.318 0.281 4.338 0.144 0.547 0.154 0.493
State-Strategy (246/672) 1.974 3.088 2.524 3.688 0.500 1.960 0.199 0.724
Template Method (58/144) 1.276 2.257 0.564 2.361 0.162 0.985 0.069 0.410
Decorator (11/84) 2.225 3.545 2.222 3.649 1.574 2.531 0.163 1.049
Proxy (37/26) 1.235 2.139 2.469 4.842 0.133 0.639 0.138 0.428
Adapter-Command (252/499) 1.235 2.770 2.326 3.720 0.198 1.334 0.098 0.458
Observer (42/87) 1.235 2.962 2.274 4.162 0.383 1.233 0.118 0.422
Visitor (0/4) 1.724 2.019 n/a n/a 0.537 1.206 n/a n/a
Bridge (21/163) 2.703 4.020 4.651 5.897 0.818 2.309 0.163 0.706
Chain of Responsibility (0/4) 1.659 1.486 n/a n/a 0.274 0.825 n/a n/a
Factory Method (14/59) 1.149 1.999 4.234 3.619 0.421 1.921 0.177 0.860

Table 43: Descriptive statistics for CHURN and FREQ metrics in SDPi and
nSDPi datasets. Numbers next to pattern name indicate smelly/non-smelly
instances. µ̃ is the median and µ is the mean value.

First, we performedWMW test to identify the pair-wise relationships between
specific patterns and the non-pattern classes (Table 44).

Design pattern DPi CHURN (nDP/DPi) FREQ (nDP/DPi)
State/Strategy nDP < DPi (p<.001) nDP < DPi (p<.001)
Visitor H0 not rejected (p=.360) H0 not rejected (p=.737)
Adapter/Command nDP > DPi (p=.028) nDP < DPi (p=.006)
Singleton nDP > DPi (p=.008) nDP > DPi (p<.001)
Prototype nDP < DPi (p<.001) nDP < DPi(p=.001)
Observer H0 not rejected (p=.468) H0 not rejected (p=.115)
Decorator nDP < DPi (p=.001) nDP < DPi (p<.001)
Factory Method nDP < DPi (p=.001) H0 not rejected (p=.914)
Bridge nDP < DPi (p<.001) nDP < DPi (p<.001)
Chain of Responsibility H0 not rejected (p=.678) H0 not rejected (p=.894)
Template Method nDP > DPi (p=.003) H0 not rejected (p=.263)
Proxy H0 not rejected (p=.453) nDP < DPi (p=.005)
Composite nDP < DPi (p=.003) nDP < DPi (p<.001)

Table 44: Results of WMW tests for CHURN and FREQ metrics for specific
design patterns

Next, we performedWMW test to identify the pair-wise relationships between
smelly and non-smelly patterns (Table 45).

67

Pattern DPi CHURN (nSDPi/SDPi) FREQ (nSDPi/SDPi)
Composite nSDPi > SDPi (p=.025) H0 not rejected (p=.270)
Prototype H0 not rejected (p=.128) H0 not rejected (p=.262)
Singleton H0 not rejected (p=.711) H0 not rejected (p=1)
State-Strategy nSDPi > SDPi (p<.001) nSDPi < SDPi (p=.026)
Template Method nSDPi > SDPi (p=.047) H0 not rejected (p=.271)
Decorator nSDPi > SDPi (p=.031) H0 not rejected (p=.810)
Proxy H0 not rejected (p=.496) nSDPi < SDPi (p=.001)
Adapter-Command nSDPi > SDPi (p<.001) nSDPi < SDPi (p<.001)
Observer nSDPi > SDPi (p=.003) H0 not rejected (p=.066)
Visitor (not found) (not found)
Bridge nSDPi > SDPi (p=.018) nSDPi < SDPi (p=.012)
Chain of Responsibility (not found) (not found)
Factory Method H0 not rejected (p=.140) nSDPi < SDPi (p<.001)

Table 45: Results of WMW tests of CHURN and FREQ metrics for SDPi and
nSDPi datasets

10.2.3.2 Specific smells

In Table 46 we reverse the settings and report results for specific smells in
classes involved/not involved in design patterns. Like for patterns, we provide
the number of classes involved/not involved in a pattern for each specific smell.

Code smell Si FREQ CHURN
SinDP SiDP SinDP SiDP
µ̃ µ µ̃ µ µ̃ µ µ̃ µ

Data Clumps (12/68) 0.595 1.911 0.489 2.135 0.117 0.484 0.097 0.383
Schizophrenic Class (134/327) 2.703 3.518 2.703 3.914 0.159 0.464 0.162 0.740
Sibling Duplication (180/249) 4.255 4.733 3.636 4.781 0.238 0.714 0.257 0.830
Tradition Breaker (13/33) 4.255 4.582 3.279 4.314 0.427 0.788 0.588 1.074
External Duplication (36/252) 1.818 1.877 0.394 1.384 0.157 0.550 0.066 0.359
Internal Duplication (62/86) 3.279 4.604 4.545 6.493 0.225 0.894 0.118 0.379
Feature Envy (65/79) 2.368 3.959 3.704 5.996 0.133 0.616 0.099 0.424
God Class (223/152) 2.374 4.401 2.500 4.277 0.124 0.406 0.093 0.429
Data Class (12/68) 1.235 2.129 2.398 2.583 0.494 1.093 0.761 1.205

Table 46: Descriptive statistics for CHURN and FREQ metrics in SiDP and
SinDP datasets. Numbers next to smell name indicate pattern/non-pattern
instances. µ̃ is the median and µ is the mean value.

In Table 47 we present the results of WMW test to identify the pair-wise
relationships between specific smells and the non-smelly classes.

68

Code smell Si CHURN (nS/Si) FREQ (nS/Si)
Feature Envy nS > Si (p<.001) nS < Si (p<.001)
Schizophrenic Class nS > Si (p=.003) nS < Si (p<.001)
God Class nS > Si (p<.001) nS < Si (p<.001)
Tradition Breaker nS < Si (p=.017) nS < Si (p<.001)
External Duplication nS > Si (p<.001) H0 not rejected (p=.668)
Internal Duplication H0 not rejected (p=.369) nS < Si (p=0)
Sibling Duplication nS < Si (p<.004) nS < Si (p<.001)
Data Clumps nS > Si (p<.001) nS > Si (p<.001)
Data Class nS < Si (p<.001) H0 not rejected (p=.652)

Table 47: Results of WMW tests for CHURN and FREQ metrics for specific
code smells

Next, in Table 48, we present the results of WMW test, performed to de-
termine the pair-wise relationship between specific smells in the context of par-
ticipating in any pattern.

Smell Si CHURN (SinDP/SiDP) FREQ (SinDP/SiDP)
Data Clumps H0 not rejected (p=.471) H0 not rejected (p=.912)
Schizophrenic Class H0 not rejected (p=.689) H0 not rejected (p=.960)
Sibling Duplication H0 not rejected (p=.675) H0 not rejected (p=.653)
Tradition Breaker H0 not rejected (p=.575) H0 not rejected (p=.880)
External Duplication SinDP > SiDP (p=.018) SinDP > SiDP (p=.021)
Internal Duplication SinDP > SiDP (p=.008) H0 not rejected (p=.065)
Feature Envy H0 not rejected (p=.638) SinDP < SiDP (p=.012)
God Class H0 not rejected (p=.327) H0 not rejected (p=.787)
Data Class H0 not rejected (p=.718) H0 not rejected (p=.073)

Table 48: Results of WMW tests of CHURN and FREQ metrics for SinDP
and SiDP datasets

10.3 Discussion
The first observation concerns the low number of classes with smells and pat-
terns. As follows from Table 33 only 16.31% of classes in JHD, 25.13% in AOI
and 13.65% in JE are affected by smells, and 15.73% in JHD, 29.92% in AOI
and 18.65% in JE involve in a pattern. Moreover, there are only 3.27% in JHD,
1.48% in AOI and 4.33% in JE of classes with both smells and patterns. These
values show that interactions between smells and patterns cannot be easily ob-
served.

69

10.3.1 EXP3-RQ1 How the presence, absence and interaction between
design patterns and code smells in a class affect the frequency
of changes made to this class?

According to the literature, classes with code smells [64, 67] or involved in
design patterns [18] are more change-prone than other classes, and our analysis
confirms those results. If we consider only datasets DP/nDP, and S/nS, then
the following relationships are true:

1. FREQ(S) > FREQ(nS) (for JHD and AOI; for JE the H0 is not
rejected)

2. FREQ(DP) > FREQ(nDP) (for all the subject systems)

However, In this experiment we are particularly interested in observing res-
ults of interactions between code smells and patterns, and their impact on the
changeability of the affected code.

Results concerning change frequency are presented in Fig. 10. Although not
identical, they are consistent for all systems: a significant difference between
datasets identified in one system is confirmed or, at least, not rejected in re-
maining systems.

As follows from the post-hoc tests, the nSnDP dataset either has the lowest
change frequency among all datasets (in JHD), or is one of such datasets (in JE
and AOI). In AOI, in turn, the SDP classes have the highest change frequency,
followed by SnDP classes, and finally by nSDP or nSnDP. In other systems,
nSDP classes change more frequently than in nSnDP. Additionally, the nSnDP
dataset changes less frequently in JE than nSDP, which is the only significant
relationship identified in this system. These observations indicate that change
frequency is lowest in nSnDP classes and highest in SDP. The relationship
between datasets of classes with either a smell or a pattern, i.e., SnDP and
nSDP is unclear.

As the subject datasets are not normally distributed, we could not apply
ANOVA method to quantitatively identify the effects of interaction between
smells and patterns. However, we can observe that presence of smells and
patterns has an additive effect on the change frequency of the affected classes:
changes in nSnDP classes are less frequent than in classes that have either smells
or patterns, but not both. Consequently, the SDP classes also appear to change
more frequently than nSDP and SnDP classes.

Classes in the datasets with smells, i.e., SDP and SnDP, change more often
than in the non-smelly datasets, regardless of the presence of design patterns
(in JHD: SDP >nSnDP and SnDP >nSnDP ; in AOI: SDP >nSDP nSnDP
SnDP ; in JE nSDP >nSnDP). The presence of design patterns becomes signi-
ficant only if both subject datasets include smelly classes (in AOI: SDP >SnDP ;
in JHD and JE: nSDP >nSnDP). These observations suggest that the presence
of code smells has a stronger impact on change frequency than the presence
of design patterns, but this observation needs to be verified on a larger code
sample.

70

10.3.2 EXP3-RQ2 How the presence, absence and interaction between
design patterns and code smells in a class affect the change
size?

Like for change frequency, the results for change size, aggregated for all smells
and patterns vary across the subject systems (see Fig. 11). However, they are
consistent: if a significant difference between subject datasets is identified in
one system, it is confirmed or, at least, not rejected in remaining systems.

Changes for smelly classes S are smaller than for non-smelly classes nS
(WMW test; for JHD: z = 8.91, p < 0.001; for AOI: z = 10.46, p < 0.001;
and for JEdit: z = 3.18; p < 0.002;). A similar effect for smelly classes was
previously reported by Counsell et al. [31]. They found that developers prefer
to make only superficial changes to smelly classes, instead of applying a com-
plex refactoring aimed at eradicating a root cause of the smell. The authors
explained this effect by development economics: smaller changes require less
effort, even though they usually need to be applied several times and bring only
short-term gains. Our results also show that classes involved in any design
pattern receive larger changes than non-pattern classes (for JHD: WMW test:
Z = −4.65, p < 0.001). This effect could be attributed, e.g., to improved flex-
ibility resulting from pattern implementation, which allows for applying more
extensive updates in one go [28, 55, 60, 54]. However, this conclusion is not
directly supported in AOI and JE, as the null hypothesis could not be rejected
for them.

Investigating the interaction effect between the two code properties on the
change size CHURN , we found that in AOI, nSDP classes received the largest
changes, followed by nSnDP then by SnDP and SDP . For JHD, the nSDP
received the largest changes, followed by SDP or nSnDP ; on the other hand,
changes made to SnDP classes were the smallest. In JE, classes in nSDP and
nSnDP received larger changes than the other datasets. The aggregated results
for all systems indicate that nSDP classes receive the largest changes, while
changes in the SnDP dataset are the smallest (in JHD) or are among the smallest
(in AOI and JE).

The presence of code smells also appears a stronger predictor of change size
than the presence of patterns: classes in non-smelly datasets (i.e., nSDP and
nSnDP) receive larger changes (in JHD and AOI: (nSDP >SDP , nSDP and
SnDP) and in JE: (nSDP >SDP and SnDP)), and the presence of patterns is
meaningful only if the compared datasets do not differ with respect to smells
(in JHD: nSDP >nSnDP and SDP >SnDP ; in AOI: nSDP >nSnDP).

10.3.3 EXP3-RQ3 How the presence, absence and interaction between
specific design patterns and specific code smells in a class af-
fect both change-related metrics (size and frequency)?

In Tables 44 and 47, we present results for specific patterns and smells. Spe-
cifically, we test if classes with a a pattern DPi and a smell Si, respectively,
change more frequently or have larger changes than classes without any smell

71

(dataset nS) or any pattern (dataset nDP).
With regard to FREQ , if we consider specific patterns, we find that only

Singleton classes appear to be less change-prone than classes that are not in-
volved in any pattern. Classes participating in State-Strategy, Adapter-Command,
Prototype, Decorator, Bridge, Proxy and Composite are in line with the ag-
gregated results and change more frequently than non-pattern classes, while
there is no difference in frequency of changes made to Visitor, Observer, Fact-
ory Method, Chain of Responsibility and Template Method classes, compared
to non-pattern classes. For specific smells, only Data Clumps classes change
less frequently than non-smelly classes, and there is no difference for External
Duplication and Data Classes. Classes with other smells consistently exhibit
increased change-proneness.

With regard to CHURN , the detailed analysis also identified three pat-
terns to exhibit a different behaviour with respect to change size: Adapter-
Command, Singleton and Template Method receive smaller changes than non-
pattern classes. In our case, Singleton instances appear to be rather stable
classes, each providing an instance of a global variable that is unlikely to be
changed. For example, a JHD Singleton class org.jhotdraw.gui.plaf.paletter.
PaletterButtonUI represents a ButtonUI for palette components. Throughout
the release 7.6 it received only 2 changes comprising 6 lines, and the changes
were merely cosmetic. Also classes participating in Template Method pattern
are not intensively changed. A class org.gjt.sp.jedit.gui.EditAction rep-
resents a menu-installable command. It was modified only once, and only two
lines were changed. These two cases could be explained by programming eco-
nomics: rather than modifying the classes, programmers prefer to extend the
system by adding new classes. This is in line with the Open-Closed principle [?
], and is a recommended solution for adding new features to code. The Detailed
results presented in Table 47 show that classes affected by Tradition Breaker,
Sibling Duplication and Data Class received larger changes than non-smelly
classes, which is also in conflict with the aggregated results for all smells. Spe-
cifically, Data Classes have not been found to be related with increased main-
tenance effort [?] or correlated with increased change proneness [64]. In fact,
the net.n3.nanoxml.XMLValidationException class from JHD stores only a
set of properties and performs no processing on it. As such, it has been modified
only once, and most of its functionality was added in one revision. Additionally,
the changes were larger than the average.

On the other hand, Tradition Breaker was found to increase change-proneness [64].
However, no clear pattern was identified for the change frequency of duplic-
ates: they could be more stable, indifferent and more change-prone than other
classes [?]. For example, an affected JHD class org.jhotdraw.samples.svg.
figures.SVGImageFigure has one superclass and implements two interfaces. It
underwent changes in 24 revisions, comprising 461 lines, which is well above the
average for all classes. The changes affected both the overridden methods and
other methods, usually by extending their functionality or adapting them to
API variations. Also some changes made in the superclass had to be overridden
in the subject class; this triggered additional updates, which could explain the

72

observed variations in the inherited contracts.
Next, we discuss the results reported when investigating the intersection

effect between smells and patterns on change metrics; Results for the specific
patterns presented in Table 45 show that classes participating in State-Strategy,
Proxy, Adapter-Command, Bridge and Factory Method tend to change more
frequently when they are affected by smells, while there are no major differences
for other patterns.

As an example of Adapter/Command pattern, we can consider two classes
from JHD: org.jhotdraw.draw.DefaultDrawingEditor (non-smelly) and
org.jhotdraw.draw.DefaultDrawingView (affected by a God Class). Func-
tionally they are similar (both are Commands to be run within a framework),
and they play the role of a Subject (Receiver) in the Command pattern. The
DefaultDrawingView class received 15 changes in releases 7.0.x, while the
DefaultDrawingEditor was changed 7 times. Manual analysis revealed that
actual responsibility of DefaultDrawingView is scattered and includes man-
aging the view, read/write capabilities and handling incoming events. Changes
made to this class throughout its life affected various functional parts of the
class. However, even if the changes do not directly affect the pattern-related
parts, they trigger subsequent fixes to all parts, which could explain the in-
creased change frequency of the class. On the other hand, changes made to
DefaultDrawingEditor that provides only the editing functions, were more
systematic and focused, which is reflected in lower change proneness of that
class.

Regarding the size of changes, CHURN values for smelly instances of Com-
posite, State/Strategy, Template Method, Decorator, Adapter/Command, Ob-
server and Bridge patterns are lower than for the non-smelly classes involved
in the same patterns. To discuss that, we consider two classes participating in
State-Strategy pattern: org.jedit.gjt.sp.jedit.syntax.TokenMarker rep-
resenting a line-splitting element, affected by a God Class smell, and a smell-free
org.jedit.gjt.sp.jedit.ActionListHandler.TokenMarker received smaller,
but more frequent changes concerning its text-splitting capabilities implemen-
ted in two methods, markTokens() and handleRuleStart(). The changes were
linked: extensions in one of them frequently resulted in subsequent fixes made
to the other one, which affected the frequency and the size of changes. On the
other hand, in ActionListHandler the main functionality has been included in
a single method that was changed more cohesively and only once per extension.
Based on these examples, we may conjecture that design patterns affected by
some smells, e.g., ones related to dispersed responsibility assignment, display a
different change behaviour than properly implemented patterns.

If we reverse the setting discussed above, i.e., analyze changes in smelly
classes, depending if they are involved in a pattern or not (Table 48), no signi-
ficant difference in change proneness exists. Only classes affected by External-
and Internal Duplication smells receive smaller changes if they are also parts
of design patterns. Additionally, classes with External Duplication also change
less frequently. This observation corroborates findings reported by Mondal et
al. [82], who noticed that clones are generally more unstable than other code,

73

subject also to other factors. Our results indicate that the presence of design
patterns, which decreases both frequency and the change size of duplicated code,
can be such a factor.

10.4 Conclusion
To answer the questions presented in this section, we conducted an exploratory
study on the impact of code smells and design patterns and their interactions
on two change-related metrics.

Both smells and patterns were found to affect change frequency and change
size of the affected classes. Specifically, our results corroborate previous findings
concerning the change proneness of smells and patterns. In general, classes with
either code smells or design patterns were found to receive more changes than
other classes. There are few exceptions: classes with Singleton pattern or Data
Clumps code smell change less frequently than other classes. Moreover, the
observed effect for all smells and patterns is additive, i.e., the effect is the
largest for classes with both smells and patterns, and the smallest for classes
without any of the elements. If both factors are considered, the impact of smells
on change frequency is stronger than the one for design patterns.

With respect to change size, we observed the largest changes in classes with
patterns, but without smells, while smelly classes not involved in patterns are
subject to the smallest changes. Again, it is not unanimous, and some smells
and patterns display a different behaviour: classes with Tradition Breaker, Sib-
ling Duplication and Data Class smells have larger changes, while classes with
Adapter-Command, Singleton and Template Method receive smaller changes.

Interactions among collocated smells and patterns may additionally affect
their change frequency and change size. In particular, classes involved in some
patterns are more sensitive to code smells with respect to changeability. That
could provide some hints for programmers on how to prioritize classes for re-
factoring, based on the predicted changeability.

The results, albeit preliminary, foster the discussion concerning contextual
factors that affect practical properties of software systems. Additionally, the
identified impact of smells and patterns on changeability could be also practic-
ally exploited: it helps to improve predictions of change-proneness and to fo-
cus attention of developers on specific categories of classes, because they could
change in a different way than other classes.

11 Thesis conclusion
The objectives of this thesis have been reached. We performed three experiments
and concluded their outcome that helped us to answer the research questions.
In the first experiment we investigated the relationship between design patterns
and code smells; we found that pattern classes tend to be affected by fewer smells
than other classes. We also found that the throughout the different releases of
the analyzed systems the patterns classes are affected less frequently by smells

74

than other classes. Finally, we concluded that none of the analyzed patterns
could be linked with the presence of any smells. On the other hand, we were
able to extract significant pairwise relationships between specific patterns as
antecedent and the absence of specific code smells as consequent. For example,
Singleton pattern could be linked with the absence of God class and Data class
smells. The list of the extracted rules could be found in Table 11 and a full
discussion of the experiment’s results can be found in Sec 8.6.

In the second experiment, we investigated the effect of code smells as a con-
founding factor in the relationship between design patterns and defects. Our
results suggest that code smells could be considered as a contextual factor:
smelly design pattern classes tend to attract a higher defect rates than other
classes, while non-smelly pattern classes have no or slightly negative correlation
with defects. Our analysis also shows which specific design patterns have pos-
itive relationship with defects or are affected more frequently by defects, and
how the smelliness of those patterns affects those relationships. For example,
the Adapter, Visitor and State patterns are positively related with the presence
of defects only when they are affected by smells. Our results are discussed in
detail in Sec 9.4.

The third experiment reported in this thesis investigates how the presence,
absence and mutual interactions between patterns and smells affect the size
and the frequency of the changes in the code. Our findings suggest that the
frequency and the size of changes for pattern classes are bigger than for the
non-pattern classed. On the other hand, the frequency of changes for smelly
classes is higher than the frequency of changes for the non-smelly classes, while
the size of changes is smaller for the smell-effected classes. The detailed analysis
showed that the majority of both specific patterns and specific smells exhibit
the same results. Regarding the churn (size of the changes), the churn for smelly
classes is lower than the churn for the non-smelly classes.

When studying the interaction between patterns and smells, we found that
classes with both smells and patterns receive smaller, but more frequent changes
than other classes. Detailed analysis for specific patterns showed that the ma-
jority of patterns exhibit the same results, while specific code smells presented
mixed results. The individual patterns and smells relationships with change
metrics are listed and discussed in Sec 10.3.

12 Contributions
In this section, we summarize the contributions of this thesis for the practice
and research.

12.1 Contributions for the research
• Our thesis investigated the relationship of design patterns with the pres-

ence of code smells and found that pattern classes tend to be affected by
fewer smells than other classes. This finding is particularly important for

75

understanding the nature of both phenomena and their associations with
other properties and structures in the code.

• Understanding the difference in evolution between smell-free and smelly
pattern classes gives us another insight into how pattern classes change
over time and how confounding variables, smells in this case, affect the
default behaviour.

• Our findings support what several studies have already shown: pattern
classes tend to have more defects than other classes. However, our findings
assert that only smelly pattern classes have a positive relationship with
defects, while non-smelly patterns have no or slightly negative relationship
with defects. This is important to understand the circumstances which
make the patterns more defect prone than other classes.

• The frequency and the size of changes which pattern classes receive through
the evolution of a system is affected by confounding variables; in our case
it is the presence of code smells in the subject classes. Similar to pat-
terns, the size and the frequency of changes in classes which are affected
by smells differ when those classes are part of a pattern and when they
are not.

• The studied change-related metrics CHURN and FREQ are mostly inde-
pendent. We conjecture that the two measures identify different aspects
of change, and should be considered as complementary. By focusing solely
on the change frequency, we may ignore an important aspect, describing
the ability of a class to accept large chunks of code in a single commit.

• In two of our experiments, we studied code smells as a confounding variable
in the pattern relationships with defects and with change-related metrics.
In both cases we were able to identify such an effect. This suggest that
confounding variable analysis should be considered when studying the
relationship between code properties.

12.2 Contributions for the practice
• Automated smell detection: The presence of patterns could become an-

other factor that automated detection tools consider as the link between
patterns and smells can serve as a hint concerning the likely distribution
of smells in a software system.

• When identifying the classes that participate in patterns, the code re-
viewers could focus their efforts on finding smells in the remaining parts
of code, which could improve their productivity and effectiveness of the
review.

• Defect prediction tools: Our findings suggest that mainly smelly design
patterns have a positive relationship with defects, while non-smelly pat-
terns have no or slightly negative relationship. Data about the distribution

76

of both patterns and smells and their intersections could become another
input to incorporate.

• Programmers could be advised that preventing pattern classes from be-
coming smelly may reduce the defect-proneness of those classes.

• The identified impact of both patterns and smells and their interaction
on changeability may help the programmers to improve the prediction of
the change-proneness and to focus on specific categories of classes as they
change differently than other classes.

• Classes involved in some patterns are more susceptible to code smells than
others, and this interaction affects both the size and the frequency of their
changes. This finding my help software developers in prioritizing classes
for refactoring, based on their predicted changeability.

13 Limitations
In this section, we identify and discuss threats that affect the validity of results.

Construct validity is concerned with the definitions of the measured quant-
ities and their relationships to the actual constructs. In our case, these threats
apply to both independent and dependent variables.

• For the first experiment, the independent variables (IVs) indicate if indi-
vidual classes are part of any pattern, while dependent variables (DVs)
refer to classes with smells. The main issue is related to the improper as-
signment of the classes to the respective categories. Although the detectors
we applied for identification of smells and patterns have high precision and
recall, the reliability of the results directly depends on the accuracy of the
detection process. While a manual verification of a small data sample did
not reveal false positives, using other tools to identify the subject smells
and patterns could alter the results. Additionally, we assumed that classes
are affected by at most one smell and a single pattern. This simplifica-
tion is not true in some cases and could have affected the results, e.g.,
collocated smells have been found to have even more detrimental impact
on quality than individual smells [11]. Furthermore, the size of classes
was not evaluated as the results were not normalized against the LOC of
each class. Finally, for EXP1-RQ1 and EXP1-RQ2 we assumed that the
different releases of the same system are independent. This assumption
may not be accurate and could have affected the results.

• For the second experiment, together with the issue mentioned above re-
lated to the improper assignment of pattern and smell classes, and the
lack of normalization against classes’ LOC, we could also mention that
the defects reported in the PROMISE dataset was adopted without any
validation from our side.

77

• In the third experiment, the same threat related to the possible improper
assignment of both pattern and smell classes is still valid. However, two
more issues refer to definitions of the dependent variables should also be
mentioned. We extracted the values of CHURN and FREQ using own-
developed scripts, which have not been extensively tested and could be
subject to defects. Moreover, the definitions of metrics are adjusted for
the class size and the number of revisions within releases. That allows for
comparing different classes, but may also bias the results. Furthermore,
In our analysis, we ignore the cause of the changes and treat all changes
equally. We are aware that the purpose of change could affect some of
its properties, e.g., new features result in adding large portions of code,
while bug fixes usually address and change only little fragments. This
simplification limits our ability to explain why the code is modified.

Internal validity refers to the causal relationship between IVs and DVs.
Throughout the thesis, the IVs have been aggregated into disjoint datasets

(SDP , nSDP , DP and nDP). We examined the relationships between those
datasets and DVs. However, the collected evidence concerning these relation-
ships is not unequivocal, as the extracted differences between subject datasets
are insignificant in some systems. As a result, the observed variation in DVs
could be also attributed to some unknown latent factors.

External validity is the extent, to which results could be extrapolated beyond
the experimental setting.

The size and the number of the studied systems in all the experiments need
to be highlighted here. In the first experiment we analyzed only two medium-size
Java systems. In the second experiment, we collected data for 10 Java systems
from the PROMISE repository [2] and in the third experiment we analyze three
non-industrial Java systems of similar size, complexity, history and several other
characteristics.

Additionally, we analyze only a subset of the known patterns and smells,
and the total number of detected instances for some patterns is relatively small.
Therefore, our conclusions should be interpreted carefully.

Conclusion validity is concerned with drawing invalid conclusions based on
the collected evidence.

In the three experiments presented in this thesis, we analyzed the data using
non-parametric tests due to the non-normal distributions of the data samples.
That affects the results in two ways: first, the power of the tests is lower than
for respective parametric tests and secondly, we could not determine the effect
size of the identified differences among the subject datasets.

One more threat refers to the EXP1-RQ2, which is related to evaluating the
trend of the ratio r. During the evolution of one of the subject systems the ratio
r displayed positive monotonicity, whereas for the other system the trend could
not be definitely determined, due to relatively high p-value. Based on that,
evaluating the ratio r deserves further examination and the conclusion should
be interpreted cautiously.

78

14 Future work
The presented results indicate that interactions between patterns and smells
reveal interesting behaviour and can explain some of the contradictory results
reported in the literature. However, we are aware that our findings need rep-
licating and extending in several directions. We are planning to continue our
current work with an objective to mitigate the limitations reported in Sec 13.
In order to achieve that, we plan to look for answers to the following questions:

• Does the role played by a class in a design pattern affect its relation-
ship with smells and, subsequently, its impact on both changeability and
defects?

• What is the impact of collocated code smells affecting a single design
pattern, with respect to the changeability and defect-proneness?

• Can we effectively use the simultaneous presence of smells and patterns
as an effective predictor of changeability?

References
[1] Prioritizing maintainability defects based on refactoring recommenda-

tions. 22nd International Conference on Program Comprehension, ICPC
2014 - Proceedings, 06 2014.

[2] The promise repository of empirical software engineering data, 2015.

[3] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu
Toivonen, A Inkeri Verkamo, et al. Fast discovery of association rules.
Advances in knowledge discovery and data mining, 12(1):307–328, 1996.

[4] Mohammed Al-Obeidallah, Miltos Petridis, and Stelios Kapetanakis. A
survey on design pattern detection approaches. 7:41–59, 12 2016.

[5] Mamdouh Alenezi and Mohammed Akour. Exploring the connection
between design smells and security vulnerabilities. International Journal
of Innovative Technology and Exploring Engineering, 9:449–452, 06 2020.

[6] Mahmood Alfadel, Khalid Aljasser, and Mohammad Alshayeb. Empirical
study of the relationship between design patterns and code smells. PLOS
ONE, 15:e0231731, 04 2020.

[7] T. Alkhaeir and B. Walter. The effect of code smells on the relationship
between design patterns and defects. IEEE Access, 9:3360–3373, 2021.

[8] Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Sofia Charalampidou,
and Paris Avgeriou. The effect of gof design patterns on stability: A case
study. IEEE Transactions on Software Engineering, 41, 08 2015.

79

[9] Apostolos Ampatzoglou, Apostolos Kritikos, George Kakarontzas, and
Ioannis Stamelos. An empirical investigation on the reusability of design
patterns and software packages. Journal of Systems and Software,
84:2265–2283, 12 2011.

[10] Bente Anda. Assessing software system maintainability using structural
measures and expert assessments. pages 204 – 213, 11 2007.

[11] Francesca Arcelli Fontana, Alessandro Marino, and Vincenzo Ferme. Is
it a Real Code Smell to be Removed or not? In RefTest2013 – Int’l Ws.
Refactoring & Testing (co-located with XP), 2013.

[12] Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. Lin-
guistic antipatterns: what they are and how developers perceive them.
Empirical Software Engineering, 21, 01 2015.

[13] Ishani Arora, Vivek Tetarwal, and Anju Saha. Open issues in software
defect prediction. Procedia Computer Science, 46:906–912, 12 2015.

[14] L. Aversano, Luigi Cerulo, and Massimiliano Di Penta. Relationship
between design patterns defects and crosscutting concern scattering de-
gree: An empirical study. Software, IET, 3:395 – 409, 11 2009.

[15] Lerina Aversano, Gerardo Canfora, Luigi Cerulo, Concettina Del Grosso,
and Massimiliano Di Penta. An empirical study on the evolution of design
patterns. In Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, ESEC-FSE ’07, pages 385–394,
New York, NY, USA, 2007. ACM.

[16] Paulo J. Azevedo and Alípio M. Jorge. Comparing rule measures
for predictive association rules. In Joost N. Kok, Jacek Koronacki,
Raomon Lopezde Mantaras, Stan Matwin, Dunja Mladenič, and Andrzej
Skowron, editors, Machine Learning: ECML 2007, volume 4701 of Lecture
Notes in Computer Science, pages 510–517. Springer Berlin Heidelberg,
2007.

[17] James Bieman, Dolly Jain, and Helen Yang. Oo design patterns, design
structure, and program changes: An industrial case study. pages 580–589,
02 2001.

[18] James M. Bieman, Greg Straw, Huxia Wang, P. Willard Munger, and
Roger T. Alexander. Design patterns and change proneness: An exam-
ination of five evolving systems. In Proceedings of the 9th International
Symposium on Software Metrics, METRICS ’03, pages 40–, Washington,
DC, USA, 2003. IEEE Computer Society.

80

[19] Mohamed Boussaa, Wael Kessentini, Marouane Kessentini, Slim Bechikh,
and Soukeina Ben Chikha. Competitive coevolutionary code-smells detec-
tion. In Günther Ruhe and Yuanyuan Zhang, editors, Search Based Soft-
ware Engineering, pages 50–65, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[20] Sergey Brin, Rajeevand Motwani, Jeffrey D. Ullman, and Shalom Tsur.
Dynamic itemset counting and implication rules for market basket data. In
SIGMOD 1997, Proceedings ACM SIGMOD International Conference on
Management of Data, pages 255–264, Tucson, Arizona, USA, May 1997.

[21] Dénes Bán and Rudolf Ferenc. Recognizing antipatterns and analyzing
their effects on software maintainability. pages 337–352, 06 2014.

[22] Aloisio Cairo, Glauco Carneiro, and Miguel Monteiro. The impact of code
smells on software bugs: A systematic literature review. Information,
9:273, 11 2018.

[23] Aloisio Cairo, Glauco Carneiro, Antonio Resende, and Fernando Abreu.
The influence of god class and long method in the occurrence of bugs
in two open source software projects: An exploratory study (s). pages
199–204, 07 2019.

[24] Bruno Cardoso and Eduardo Figueiredo. Co-occurrence of design patterns
and bad smells in software systems: An exploratory study. In Proceedings
of the annual conference on Brazilian symposium on information systems:
Information systems: A computer socio-technical perspective, pages 347–
354, 2015.

[25] Gemma Catolino, Fabio Palomba, Andrea Lucia, Filomena Ferrucci, and
Andy Zaidman. Developer-related factors in change prediction: An em-
pirical assessment. 05 2017.

[26] M. Chaumun, Hind Kabaili, Rudolf Keller, and F. Lustman. A change
impact model for changeability assessment in object-oriented software sys-
tems. volume 45, pages 130–138, 01 1999.

[27] Bee Bee Chua and Laurel Evelyn Dyson. Applying the iso 9126 model to
the evaluation of an e-learning system. In Proc. of ASCILITE, pages 5–8,
2004.

[28] Mel O Cinnéide. Automated application of design patterns: a refactoring
approach. PhD thesis, Trinity College Dublin, 2001.

[29] Jacob Cohen. Statistical power analysis for the behavioral sciences. SER-
BIULA (sistema Librum 2.0), 2nd, 01 1988.

[30] James Coplien, Ron Crocker, Motorola Inc, Lutz Dominick, Gerard Mesz-
aros, Frances Paulisch, and Kent Beck. Industrial experience with design
patterns. 11 1997.

81

[31] Steve Counsell, R. M Hierons, H Hamza, Sue Black, and M Durrand. Is a
strategy for code smell assessment long overdue? In Ws. Emerging Trends
in Softw. Metrics, 2010.

[32] Marco D’Ambros, Alberto Bacchelli, and Michele Lanza. On the impact
of design flaws on software defects. pages 23–31, 07 2010.

[33] Marco D’Ambros, Alberto Bacchelli, and Michele Lanza. On the Impact
of Design Flaws on Software Defects. In Int’l Conf. Quality Softw., pages
23–31, 2010.

[34] Massimiliano Di Penta, Luigi Cerulo, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. An empirical study of the relationships between design pattern
roles and class change proneness. pages 217 – 226, 11 2008.

[35] Jing Dong, Dushyant Lad, and Yajing Zhao. Dp-miner: Design pattern
discovery using matrix. pages 371–380, 03 2007.

[36] Mahmoud Elish and Mawal Mohammed. Quantitative analysis of fault
density in design patterns: An empirical study. Information and Software
Technology, 66, 10 2015.

[37] Ezgi Erturk and Ebru Sezer. Iterative software fault prediction with a
hybrid approach. Applied Soft Computing, 49, 08 2016.

[38] Rudolf Ferenc, Zoltan Toth, Gergely Ladányi, István Siket, and Tibor
Gyimóthy. A public unified bug dataset for java. pages 12–21, 10 2018.

[39] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. Automatic
detection of bad smells in code: An experimental assessment. Journal of
Object Technology, 11(2):5: 1–38, 2012.

[40] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[41] Martin Fowler, Kent Beck, J Brant, and William Opdyke. Refactoring:
improving the design of existing code. 1999. Google Scholar Google Scholar
Digital Library Digital Library.

[42] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley, 1994.

[43] Matt Gatrell and Steve Counsell. Design patterns and fault-proneness a
study of commercial software. pages 1–8, 05 2011.

[44] Robert B. Grady. Practical Software Metrics for Project Management and
Process Improvement. Prentice-Hall, Inc., USA, 1992.

[45] Latifa Guerrouj, Zeinab Kermansaravi, Venera Arnaoudova, Foutse
Khomh, Giuliano Antoniol, Yann-Gaël Guéhéneuc, and Benjamin Fung.
Investigating the relation between lexical smells and change-and fault-
proneness: An empirical study. Software Quality Journal, 05 2016.

82

[46] Aakanshi Gupta, Bharti Suri, and Sanjay Misra. A systematic literature
review: Code bad smells in java source code. pages 665–682, 07 2017.

[47] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. Some code smells have
a significant but small effect on faults. ACM Transactions on Software
Engineering and Methodology, 23:1–39, 09 2014.

[48] M. Harman. The current state and future of search based software en-
gineering. In Future of Software Engineering (FOSE ’07), pages 342–357,
2007.

[49] Larry Hedges. Estimation of effect size from a series of independent ex-
periments. Psychological Bulletin, 92:490–499, 09 1982.

[50] Péter Hegedüs, Dénes Bán, Rudolf Ferenc, and Tibor Gyimóthy. Myth or
reality? analyzing the effect of design patterns on software maintainability.
volume 340, pages 138–145, 01 2012.

[51] ISO Iso. Iec 9126-1: Software engineering-product quality-part 1: Quality
model. Geneva, Switzerland: International Organization for Standardiza-
tion, 21, 2001.

[52] Fehmi Jaafar, Yann-Gaël Guéhéneuc, Sylvie Hamel, and Foutse Khomh.
Analysing anti-patterns static relationships with design patterns. ECE-
ASST, 59, 2013.

[53] Fehmi Jaafar, Angela Lozano, Yann-Gaël Guéhéneuc, and Kim Mens. On
the analysis of co-occurrence of anti-patterns and clones. 07 2017.

[54] Adam C. Jensen and Betty H.C. Cheng. On the use of genetic program-
ming for automated refactoring and the introduction of design patterns.
In Proceedings of the 12th Annual Conference on Genetic and Evolution-
ary Computation, GECCO ’10, pages 1341–1348, New York, NY, USA,
2010. ACM.

[55] Sang-Uk Jeon, Joon-Sang Lee, and Doo-Hwan Bae. An automated refact-
oring approach to design pattern-based program transformations in java
programs. In Ninth Asia-Pacific Software Engineering Conference, 2002.,
pages 337–345, 2002.

[56] Capers Capers Jones. Software Quality: Analysis and Guidelines for Suc-
cess. Thomson Learning, 1st edition, 1997.

[57] Marian Jureczko and Lech Madeyski. Towards identifying software project
clusters with regard to defect prediction. volume 9, page 9, 12 2010.

[58] Arvinder Kaur, Kamaldeep Kaur, and Shilpi Jain. Predicting software
change-proneness with code smells and class imbalance learning. pages
746–754, 09 2016.

83

[59] Kamaldeep Kaur and Shilpi Jain. Evaluation of machine learning ap-
proaches for change-proneness prediction using code smells. In Proceedings
of the 5th International Conference on Frontiers in Intelligent Computing:
Theory and Applications - FICTA 2016, Volume 1, pages 561–572, 2016.

[60] Joshua Kerievsky. Refactoring to Patterns. Pearson Higher Education,
2004.

[61] Marouane Kessentini, Stephane Vaucher, and Houari Sahraoui. Deviance
from perfection is a better criterion than closeness to evil when identifying
risky code. pages 113–122, 01 2010.

[62] Wael Kessentini, Marouane Kessentini, Houari Sahraoui, Slim Bechikh,
and Ali Ouni. A cooperative parallel search-based software engineering
approach for code-smells detection. Software Engineering, IEEE Trans-
actions on, 40:841–861, 09 2014.

[63] F. Khomh and Y. Gueheneuce. Do design patterns impact software quality
positively? In 2008 12th European Conference on Software Maintenance
and Reengineering, pages 274–278, April 2008.

[64] Foutse Khomh, Massimiliano Di Penta, and Yann-Gaël Guéhéneuc. An
Exploratory Study of the Impact of Code Smells on Software Change-
proneness. In Working Conf. Reverse Eng., pages 75–84. IEEE, 2009.

[65] Foutse Khomh, Massimiliano Di Penta, and Yann-Gaël Guéhéneuc. An ex-
ploratory study of the impact of code smells on software change-proneness.
pages 75–84, 01 2009.

[66] Foutse Khomh and Yann-Gaël Guéhéneuc. Perception and reality: What
are design patterns good for? 01 2007.

[67] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Gi-
uliano Antoniol. An exploratory study of the impact of antipatterns on
class change- and fault-proneness. Empirical Softw. Engg., 17(3):243–275,
June 2012.

[68] Akif Koru and Hongfang Liu. An investigation of the effect of module
size on defect prediction using static measures. ACM SIGSOFT Software
Engineering Notes, 30:1–5, 07 2005.

[69] C. Kramer and L. Prechelt. Design recovery by automated search for
structural design patterns in object-oriented software. In Proceedings of
WCRE ’96: 4rd Working Conference on Reverse Engineering, pages 208–
215, 1996.

[70] Danny Lange and Yuichi Nakamura. Interactive visualization of design
patterns can help in framework understanding. volume 30, pages 342–
357, 10 1995.

84

[71] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in Practice:
Using Software Metrics to Characterize, Evaluate, and Improve the Design
of Object-Oriented Systems. Springer Publishing Company, Inc., 2005.

[72] Michele Lanza and Radu Marinescu. Object-oriented metrics in practice.
01 2006.

[73] Wei Li and Raed Shatnawi. An empirical study of the bad smells and
class error probability in the post-release object-oriented system evolution.
Journal of Systems and Software, 80:1120–1128, 07 2007.

[74] Wei Li and Raed Shatnawi. An empirical study of the bad smells and
class error probability in the post-release object-oriented system evolution.
Journal of Systems and Software, 80:1120–1128, 07 2007.

[75] K. Lieberherr, I. Holland, and A. Riel. Object-oriented programming: An
objective sense of style. In Conference Proceedings on Object-Oriented
Programming Systems, Languages and Applications, OOPSLA ’88, page
323–334, New York, NY, USA, 1988. Association for Computing Ma-
chinery.

[76] Bennett P. Lientz and E. Burton Swanson. Software Maintenance Man-
agement. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1980.

[77] Huihui Liu, Bixin Li, Yibiao Yang, Wanwangying Ma, and Ru Jia. Explor-
ing the impact of code smells on fine-grained structural change-proneness.
International Journal of Software Engineering and Knowledge Engineer-
ing, 28:1487–1516, 10 2018.

[78] H. B. Mann and D. R. Whitney. On a test of whether one of two ran-
dom variables is stochastically larger than the other. Ann. Math. Statist.,
18(1):50–60, 03 1947.

[79] Henry B. Mann. Nonparametric Tests Against Trend. Econometrica,
13(3):245–259, July 1945.

[80] Mika V Mäntylä. An experiment on subjective evolvability evaluation of
object-oriented software: explaining factors and interrater agreement. In
Int’l Conf. Softw. Eng., pages 277–286, 2005.

[81] Radu Marinescu. Detection startegies: Metrics-based rules for detecting
design flaws. pages 350– 359, 10 2004.

[82] Manishankar Mondal, Md Saidur Rahman, Chanchal Roy, and Kevin
A. Schneider. Is cloned code really stable? Empirical Software Engin-
eering, 23, 07 2017.

85

[83] J. C. Munson and S. G. Elbaum. Code churn: A measure for estimating
the impact of code change. In Proceedings of the International Conference
on Software Maintenance, ICSM ’98, pages 24–, Washington, DC, USA,
1998. IEEE Computer Society.

[84] Rogeres Nascimento and Claudio Sant’Anna. Investigating the relation-
ship between bad smells and bugs in software systems. pages 1–10, 09
2017.

[85] J. Niere, W. Schafer, J. P. Wadsack, L. Wendehals, and J. Welsh. Towards
pattern-based design recovery. In Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002, pages 338–348, 2002.

[86] Steffen Olbrich, Daniela Cruzes, Victor Basili, and Nico Zazworka. The
evolution and impact of code smells: A case study of two open source
systems. pages 390–400, 10 2009.

[87] Steffen M Olbrich, Daniela S Cruzes, and Dag I K Sjøberg. Are all code
smells harmful? A study of God Classes and Brain Classes in the evolution
of three open source systems. In IEEE Int’l Conf. Softw. Maintenance,
pages 1–10, 2010.

[88] Ozan Onarcan and Yongjian Fu. A case study on design patterns and
software defects in open source software. Journal of Software Engineering
and Applications, 11:249–273, 01 2018.

[89] Ali Ouni, Marouane Kessentini, Houari Sahraoui, and Mounir
Boukadoum. Maintainability defects detection and correction: A multi-
objective approach. Automated Software Engineering, 20, 03 2012.

[90] Jukka Paakki, Anssi Karhinen, Juha Gustafsson, Lilli Nenonen, and
A. Inkeri Verkamo. Software metrics by architectural pattern mining.
2000.

[91] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano,
Rocco Oliveto, and Andrea Lucia. On the diffuseness and the impact
on maintainability of code smells: a large scale empirical investigation.
Empirical Software Engineering, pages 1–34, 08 2017.

[92] L. Prechelt, B. Unger, W.F. Tichy, P. Brossler, and L.G. Votta. A con-
trolled experiment in maintenance: comparing design patterns to sim-
pler solutions. Software Engineering, IEEE Transactions on, 27(12):1134–
1144, Dec 2001.

[93] Lutz Prechelt, Barbara Unger-Lamprecht, Michael Philippsen, and Wal-
ter Tichy. Two controlled experiments assessing the usefulness of design
pattern documentation in program maintenance. Software Engineering,
IEEE Transactions on, 28:595–606, 07 2002.

86

[94] Nornadiah Razali and Yap B. Wah. Power comparisons of Shapiro-Wilk,
Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of
Statistical Modeling and Analytics, 2(1), June 2011.

[95] Dirk Riehle. Lessons learned from using design patterns in industry pro-
jects. Transactions on Pattern Languages of Programming, 2:1–15, 01
2011.

[96] Bruno Rossi and Barbara Russo. Evolution of design patterns: A replica-
tion study. In Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM ’14, pages
38:1–38:4, New York, NY, USA, 2014. ACM.

[97] Guogen Shan and Shawn Gerstenberger. Fisher’s exact approach for post
hoc analysis of a chi-squared test. PLOS ONE, 12(12):1–12, 12 2017.

[98] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality
(complete samples). Biometrika, 52(3-4):591–611, 1965.

[99] David J. Sheskin. Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman Hall/CRC, 4 edition, 2007.

[100] F. Shull. Perfectionists in a world of finite resources. IEEE Software,
28(2):4–6, 2011.

[101] Bruno Sousa, Mariza Bigonha, and Kecia A. M. Ferreira. A systematic
literature mapping on the relationship between design patterns and bad
smells. pages 1528–1535, 04 2018.

[102] Bruno Sousa, Mariza Bigonha, and Kecia A. M. Ferreira. An exploratory
study on cooccurrence of design patterns and bad smells using software
metrics. Software: Practice and Experience, 05 2019.

[103] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis.
Design pattern detection using similarity scoring. IEEE Transactions on
Software Engineering, 32(11):896–909, Nov 2006.

[104] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto,
Massimiliano Di Penta, Andrea Lucia, and Denys Poshyvanyk. When
and why your code starts to smell bad. 05 2015.

[105] M. Vokac. Defect frequency and design patterns: An empirical study of
industrial code. Software Engineering, IEEE Transactions on, 30:904 –
917, 01 2005.

[106] Marek Vokáč. Defect frequency and design patterns: an empirical study of
industrial code. Software Engineering, IEEE Transactions on, 30(12):904–
917, Dec 2004.

87

[107] Bartosz Walter and Tarek Alkhaeir. The relationship between design pat-
terns and code smells: An exploratory study. Information & Software
Technology, 74:127–142, 2016.

[108] Peter Wendorff. Assessment of design patterns during software reengineer-
ing: lessons learned from a large commercial project. In Software Mainten-
ance and Reengineering, 2001. 5th European Conference on, pages 77–84,
2001.

[109] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics
Bulletin, 1(6):80–83, 12 1945.

[110] B. Wydaeghe, K. Verschaeve, B. Michiels, I. Van Bamme, E. Arckens, and
V. Jonckers. Building an omt-editor using design patterns: an experience
report. In Technology of Object-Oriented Languages, 1998. TOOLS 26.
Proceedings, pages 20–32, Aug 1998.

[111] Aiko Yamashita and Leon Moonen. Do code smells reflect important
maintainability aspects? pages 306–315, 09 2012.

[112] Dongjin Yu, Yanyan Zhang, and Zhenli Chen. A comprehensive approach
to the recovery of design pattern instances based on sub-patterns and
method signatures. Journal of Systems and Software, 103:1 – 16, 2015.

[113] Cheng Zhang and David Budgen. What do we know about the effective-
ness of software design patterns? IEEE Transactions on Software Engin-
eering, 38(5):1213–1231, 2012.

[114] Xiaoyan Zhu, Yueyang He, Long Cheng, Xiaolin Jia, and Lei Zhu. Soft-
ware change-proneness prediction through combination of bagging and
resampling methods. Journal of Software: Evolution and Process, 30, 10
2018.

88

