
PARALLELIZATION OF USER-DEFINED FUNCTIONS
IN AN ETL WORKFLOW

Author:
Syed Muhammad Fawad Ali

Supervisor:
Prof. Robert Wrembel

April 13, 2021

POZNAN UNIVERSITY OF TECHNOLOGY

Abstract

ETL workflows are important components in all data integration architectures, in-
cluding data warehouses (DWs), data lakes, and data science applications. They are
responsible for: 1) ingesting data from data sources (DSs), 2) transforming hetero-
geneous data into a common data model and schema, 3) cleaning, normalizing, and
eliminating data duplicates, 4) loading data into a central repository - a DW.

An ETL workflow moves large volumes of data between DSs and a DW, and
executes complex cleaning and data transformation tasks. Its execution is time con-
suming and typically takes hours to complete. Moreover, the volume, variety, and
velocity of data are growing at a record rate, making data very large and complex
to the point that storage and analysis of massive and complex data sets exceeds the
capacity of conventional computer systems and algorithms. Especially the variety
of today’s data but also the wide range of different analytical use cases increasingly
exceed the expressiveness of ETL tools. Therefore, most ETL tools provide the func-
tionality to write custom code as the so-called User-Defined Functions (UDFs), which
may be written by the ETL developer. A UDF can be used to perform aggregations
or any kind of run-time intensive computations on a data set that may be necessary
before loading it into a DW. However, a UDF written by the ETL developer may be
more prone to errors and less efficient due to its poor code and high computational
complexity. As a result, a poorly coded UDF may result in a performance bottleneck
for an overall ETL workflow.

To this end, the focus of this study is on the optimization of a computing-intensive
UDF or a set of UDFs in an ETL workflow by means of parallelization. To reach our
goal, first we carried out a comprehensive analysis of the state-of-the-art methods and
techniques intended for each stage in the ETL development life cycle, i.e., from the
conceptual and the logical design of an ETL workflow to its semantically equivalent
physical implementation. Then we further extended our analysis to the state-of-the-
art methodologies for the optimization of ETL workflows. We evaluated the existing
methodologies for each stage with respect to their pros, cons, and challenges based

on selected metrics, such as, 1) autonomous behavior, 2) support for various data
formats, 3) supports for UDFs, 4) consideration for quality metrics, 5) capability to
monitor ETL workflows and to recommend an efficient alternative ETL workflow in
case of a poor efficiency.

Based on our analysis we drew the following conclusions.

• Most of the methods are not fully autonomous and require ETL developers to
provide a lot of input at each stage of the ETL life cycle, thus it can be error
prone, time consuming, and inefficient.

• Most of the methods are designed only for structured data and the support for
semi-structured and unstructured data is very limited. Since the variety of data
formats is growing rapidly and most of data are unstructured, it is important
to extend the support for unstructured data in an ETL workflow.

• Almost all of the discussed design methods are based on the traditional ETL
tasks (e.g., join, union, sort, aggregate, lookup, and convert) and they mostly
do not consider UDFs as ETL tasks. Moreover, not much research has been
done on the optimization of UDFs as ETL tasks. As UDFs are commonly used
in an ETL workflow to overcome the limitations of traditional ETL tasks, it is
important to optimize UDFs along with traditional ETL tasks. Since a UDF is
typically considered as a black box task and its semantics is unknown, it is very
difficult to optimize its execution.

• A few methods put emphasis on the issues of efficient, reliable, and improved ex-
ecution of an ETL workflow using quality metrics, however, most of the methods
in practice do not capture or track these quality metrics.

• Currently, there is no such framework that autonomously monitors an ETL
workflow to find out which ETL tasks hinder its performance and gives recom-
mendations to the ETL developer how to increase its performance.

The outcome of the comprehensive analysis of the state-of-the-art methods was
used to formulate the following research challenges, which we have addressed in this
thesis:

• The first research challenge is to design an ETL framework to facilitate
ETL developers to write efficient UDFs by separating parallelization concerns
from the code and reducing potential error sources in the otherwise manual and
cumbersome parallelization process.

• The second research challenge is to construct a cost model that generates
parallelizable UDFs by first determining the feasibility and degree of parallelism
for a UDF to be executed in a parallel distributed environment.

In response to the aforementioned challenges, we proposed a framework as a first
step towards the fully autonomous ETL framework, which consists of four modules
namely: 1) the UDFs Component, 2) the Cost Model, 3) the Recommender, and 4)
the Monitoring Agent.

The UDFs Component is designed and developed specifically addressing the
first challenge. The idea behind implementing this component is to assist the ETL
developer to implement parallelizable UDFs without worrying about the complexities
and technicalities of the implementation details for parallelizing and optimizing the
code. The component provides a library of parallelizable code templates a.k.a Parallel
Algorithmic Skeletons (PASs) designed to be executed in a distributed (or parallel) en-
vironment. The library of PASs consist of two types of parallelizable code templates:
1) the generic PASs (e.g., worker-farm model, divide and conquer, branch and bound,
systolic, MapReduce) and 2) the case-based PASs i.e., already parallelizable code for
the list of commonly used big data tasks (e.g., sentiment analysis, de-duplication of
rows, outlier detection). In case of the generic PASs, the ETL developer has to provide
the basic program for the chosen PAS, an execution time constraint to run the ETL
workflow, and distributed machine specifications. For example, for the MapReduce
paradigm as a PAS, only Map and Reduce functions would be required. The MapRe-
duce configurations (i.e., partitioning parameters, number of nodes) will be provided
by the UDFs Component. In case of the case-based reasoning, the ETL developer
only has to provide the input and output data formats, execution time constraint to
run the ETL workflow (e.g., the ETL job must complete execution within x number
of hours. We used the so-called Orchestration Style Sheet (OSS) processor that gener-
ates the parallelizable code and multiple possible distributed machine configurations
(variants) for the parallelizable code to be executed in a distributed environment.

We showed with experiments that the proposed ETL framework reduces about
50-65% of the effort required by the ETL developer to write parallel code and ensures
an error free code by replacing otherwise manual steps in writing parallelizable UDFs.
We also carried out experiments to understand the impact of parallelizing computing-
intensive UDFs on the performance of an ETL workflow. We found out that the
non-computing-intensive code normally does not affect the overall performance of
an ETL workflow when it is executed either in a distributed or a non-distributed
environment. However, the computing-intensive tasks may become a bottleneck in an
ETL workflow and must be optimized, because even a small change in the distributed
factor can make a big difference in improving the execution performance of an overall
ETL workflow.

Once the multiple variants are generated, the framework hands over the gener-
ated variants to the Cost Model component. The Cost Model along with the
Recommender and the Monitoring Agent addresses the solution to our second
challenge. The Cost Model is based on the Decision Optimization and the Machine

Learning techniques in order to generate a (sub-) optimal configuration to optimize
the execution of parallelizable UDFs in an ETL workflow. The Decision Optimization
technique is used to find an optimized configuration for the case-based PASs, where
we mapped our problem to Multiple Choice Knapsack Problem (MCKP) in order
to select the optimal PAS from a set of multiple PASs (variants). For example, in
this case, suppose an ETL workflow consists of m different computationally intensive
UDFs, and the UDFs Component may generate n parallel variants of each UDF,
which results in nm combinations of code variants. Therefore, finding an optimal UDF
is mapped to MCKP. The Machine Learning technique (one of the future works) is
designed to handle the generic PASs. The Machine Learning models will be trained
on historical data and fine-tuned, and then will be applied to find the (sub-) optimal
machine configuration to execute UDFs based on the generic PASs. Moreover, if the
Decision Optimization technique of the cost model fails to find the (sub-)optimal so-
lution, the Machine Learning technique will then be used to find the solution. The
Recommender module utilizes a library of cost models and retrieves information
from the Monitoring Agent in order to provide recommendations to the ETL de-
veloper. The Monitoring Agent module is proposed to assist the Recommender
as well as an end-to-end monitoring of ETL workflows.

To showcase how the Cost Model works, we carried out an experimental eval-
uation, where we implemented the Set-Similarity Join use case as an ETL workflow,
to detect similar records in a large data set. The ETL workflow consisted of three
computing-intensive UDFs, that needed to be parallelized to be executed in a dis-
tributed environment. We used a cluster of 2,4,8, and 10 nodes on Amazon Web
Services to calculate the execution time of the computing-intensive UDFs. Our ex-
periments showed that the Cost Model selected the best possible configuration for a
set of ETL tasks (implemented as UDFs) to be executed in a distributed environment.
We executed the Cost Model on a local 2,6 GHz 6-Core Intel Core i7 machine to
further prove that it was capable to provide the optimal solution in a fraction of a
second. Moreover, we proposed the extension of the Cost Model to enable data
scientists to choose the best possible machine learning model in a Machine Learning
pipeline, based on the user-defined performance metrics, e.g., model accuracy, pre-
cision, or recall, along with the maximum execution time and maximum monetary
execution costs.

Streszczenie

Przepływy ETL (zwane także procesami) są jednym z najważniejszych komponen-
tów wszystkich architektur integracji danych, m.in. systemów hurtowni danych (ang.
data warehouse - DW), jezior danych (ang. data lake) i aplikacji przetwarzania da-
nych przez data science. Przepływy te są odpowiedzialne za: 1) pobieranie danych z
różnorodnych źródeł (ang. data sources - DSs), 2) transformowanie heterogenicznych
danych do wspólnego modelu i schematu, 3) czyszczenie danych, normalizowanie war-
tości i eliminowanie duplikatów, 4) wczytywanie danych do centralnego repozytorium,
jakim jest DW.

Procesy ETL transportują duże wolumeny danych pomiędzy źródłami a DW i re-
alizują złożone zadania transformacji danych. Z tych powodów, czasy ich wykonania
są długie - typowo procesy ETL wykonują się w ciągu kilku godzin. Ponadto, wolu-
men, różnorodność i szybkość napływania danych do systemu stale wzrastają. Jest
to przypadek tzw. gigadanych (ang. big data), co powoduje problemy z wydajno-
ścią standardowych architektur przetwarzania danych. W szczególności, różnorodność
gigadanych i sposoby ich przygotowania do analizy przez różnego rodzaju aplikacje
(m.in. uczenia maszynowego) wymagają rozszerzenia funkcjonalności rozwiązań ETL.
Tego typu rozszerzenia w praktyce są realizowane za pomocą tzw. funkcji użytkownika
(ang. user-defined functions - UDFs). UDFs są implementowane przez projektanta
procesu ETL w językach dostępnych w środowisku projektowym ETL. UDF może
realizować dowolną operację na danych, np. eliminowanie duplikatów zestawem algo-
rytmów adekwatnym do przetwarzanych danych, analizę sentymentu. Projektowanie
złożonych UDF nie jest łatwe, a powstały kod może być niewydajny lub niewystar-
czająco dobrze przetestowany.

Z tego powodu, w niniejszej rozprawie adresujemy problem wydajnego przetwa-
rzania kosztownych obliczeniowo UDF poprzez zastosowanie przetwarzania równole-
głego. Prace badawcze rozprawy zostały poprzedzone szczegółową analizą istniejących
rozwiązań w zakresie budowania procesów ETL, tj. modelowania konceptualnego i
logicznego procesów oraz ich implementowania, a także w zakresie optymalizowania

wykonania tych procesów.
Na podstawie powyższej analizy wyciągnęliśmy następujące wnioski.

• Większość zaproponowanych metod projektowania procesów ETL wymaga du-
żego nakładu pracy ze strony projektanta, co czyni je nieodpornymi na błędy,
czasochłonnymi i niewydajnymi.

• Większość metod umożliwia projektowanie procesów ETL dla danych o dobrze
określonych strukturach (np. relacyjnych), przy niewielkim wsparciu przetwa-
rzania danych częściowo ustrukturyzowanych (ang. semi-structured) lub nie-
ustrukturyzowanych (ang. unstructured). Ponieważ różnorodność formatów
integrowanych danych się zwiększa (szczególnie w przypadku gigadanych), więc
zachodzi konieczność wspierania projektowania procesów ETL także dla nowych
typów danych.

• Zdecydowana większość metod wykorzystuje standardowe zadania ETL, tj. m.in.
operacje łączenia tabel, sumy zbiorów, sortowanie, agregowanie, selektywne się-
gnięcie do innej tabeli (ang. lookup), konwersję danych. Nie wspierają one jed-
nak efektywnego wykonania procesów ETL z UDF. Tego typu funkcjonalność
wydaje się konieczna, ponieważ UDF są w praktyce wykorzystywane bardzo czę-
sto do implementowania niestandardowych zadań. Optymalizowanie procesów
ETL z UDF jest bardzo trudnym wyzwaniem badawczym i nierozwiązanym do
tej pory, ponieważ UDF są najczęściej traktowane jako tzw. czarne skrzynki,
tj. ich semantyka nie jest znana.

• Większość metod projektowych ETL w ogóle nie uwzględnia w procesie projek-
towania jakości danych produkowanych przez procesy ETL.

• Wśród analizowanych rozwiązań brakuje takich, które umożliwiałyby automa-
tyczne monitorowanie wydajności poszczególnych komponentów procesu ETL i
wskazywałyby w jaki sposób zwiększyć wydajność zadań takiego procesu.

Powyższe wnioski posłużyły do sformułowania następujących wyzwań badawczych
zaadresowanych w niniejszej rozprawie.

• Pierwszym wyzwaniem badawczym jest zaprojektowanie podejścia wspie-
rającego projektanta procesu ETL w implementowaniu wydajnych UDF po-
przez przetwarzanie równoległe. Jest to możliwe dzięki odseparowaniu właści-
wego kodu UDF od części definiującej sposób jego równoległego przetwarzania.
Zmniejsza się w ten sposób prawdopodobieństwo postania błędów w oprogra-
mowaniu i zwiększa produktywność projektanta.

• Drugim wyzwaniem badawczym jest konstruowanie modelu kosztów, który
umożliwi zdefiniowanie (sub-)optymalnych parametrów architektury przetwa-
rzania równoległego, dla zadanej UDF.

W podpowiedzi na ww. wyzwania badawcze, w ramach rozprawy zapropono-
waliśmy architekturę i techniki umożliwiające zbudowanie w pełni autonomicznego
systemu do zarządzania procesami ETL. W ramach tej architektury opracowaliśmy
cztery rozwiązania, tj. 1) Komponent UDF (the UDF Component), 2) Model Kosztów
(the Cost Model), 3) Rekomender (the Recommender), 4) Monitor (the Monitoring
Agent) (w dalszej części będziemy stosowali nazwy anglielskie).

UDF Component adresuje pierwsze wyzwanie badawcze. Głównym zadaniem
tego komponentu jest wspieranie projektanta w implementowaniu wykonywanych rów-
nolegle UDF, w taki sposób, aby zapewnić wydajne uruchamianie kodu. W tym
celu, UDF Component dostarcza predefiniowaną bibliotekę szablonów przetwarza-
nia równoległego (ang. Parallel Algorithmic Skeletons - PASs). Dostępne są dwa
rodzaje szablonów, tj. 1) generyczny PASs (ang. generic PASs), np. worker-farm
model, divide and conquer, branch and bound, systolic, MapReduce i 2) case-based
PASs. Oba rodzaje szablonów zawierają gotowe zrównoleglone kody częstych zadań
wykonywanych w procesach ETL dla gigadanych, np. analiza sentymentu (ang. senti-
ment analysis), deduplikowanie danych (ang. deduplication, entity resolution, entity
matching), wykrywanie odchyleń (ang. outlier detection). Dla generycznego PAS,
projektant pisze tylko właściwy program, specyfikuje ograniczenie czasowe na jego
wykonanie i specyfikacje komputerów w środowisku rozproszonym. Przykładowo, dla
szablonu MapReduce, wymagane jest podanie jedynie funkcji Map i funkcji Reduce, a
konfiguracja (m.in., parametry partycjonowania, liczba węzłów) zostaną automatycz-
nie uzupełnione przez UDF Component. Implementacja tego mechanizmu bazuje na
tzw. procesorze Orchestration Style Sheet, który generuje kod w wersji do wykonania
równoległego i alternatywne konfiguracje komputerów w architekturze rozproszonej
dla wykonania tego kodu.

Ocena eksperymentalna omówionego rozwiązania umożliwia skrócenie od 50% do
około 65% czasu koniecznego do zaimplementowania kodu równoległego. Ponadto,
przeprowadziliśmy eksperymenty pozwalające zrozumieć wpływ zrównoleglania wy-
konania kosztownych obliczeniowo UDF na wydajność całego procesu ETL zawie-
rającego takie UDF. Stwierdziliśmy, że zrównoleglenie tanich obliczeniowo UDF nie
wpływa na zwiększenie wydajności procesu ETL, w porównaniu ze scenariuszem, w
którym ta sama UDF jest wykonywana bez zrównoleglenia. Natomiast, zrównoleglenie
kosztownych obliczeniowo UDF może znacząco zwiększyć wydajność całego procesu
ETL.

Wygenerowane warianty kodu i konfiguracji równoległego środowiska uruchomie-
niowego są wykorzystywane przez komponent Cost Model, który wraz z kompo-
nentami Recommender i Monitoring Agent rozwiązuje drugie zadanie badawcze.
Cost Model wykorzystuje techniki optymalizacji kombinatorycznej i uczenia maszy-
nowego w procesie generowania (sub-)optymalych konfiguracji środowiska uruchomie-
niowego dla ETL z UDF. Optymalizacja kombinatoryczna jest wykorzystywana dla

case-based PAS. Wykorzystujemy tu Multiple Choice Knapsack Problem (MCKP) do
wyboru optymalnego PAS spośród wielu jego wariantów. Przykładowo, rozważmy
proces ETL złożony z m kosztownych obliczeniowo UDF. Dla każdej UDF, UDFs
Component może wygenerować n jej równoległych wariantów, dając w wyniku nm

możliwych kombinacji wariantów kodu.
Z tego powodu, problem znalezienia optymalnego sposobu wykonania UDF zo-

stał odwzorowany w MCKP. Jako dalszy rozwój opracowanej tu koncepcji, propo-
nujemy zastosowanie technik uczenia maszynowego (ang. machine learning - ML)
w celu optymalizacji wykonania UDF opartych o generic PASs. Model uczenia ma-
szynowego zostanie zbudowany w oparciu o historyczne dane z wykonania UDF, a
następnie wykorzystany do znalezienia (sub-)optymalnych konfiguracji komputerów
w środowisku uruchomieniowym, w sytuacji gdy techniki optymalizacji kombinato-
rycznej nie znajdą zadowalającego rozwiązania. Moduł Recommender bazując na
bibliotece modeli kosztów i danych otrzymanych z Monitoring Agent, rekomenduje
rozwiązania projektowe procesu ETL. Monitoring Agent umożliwia gromadzenie
danych z monitorowania wykonania procesów ETL.

Zaproponowane w rozprawie rozwiązanie bazujące na modelu kosztów, zostało
ocenione eksperymentalnie. Jako przypadek użycia zastosowano znany i kosztowy al-
gorytm Set-Similarity Join, służący do eliminowania duplikatów, zaimplementowany
jako proces ETL. Proces zawierał m.in. 3 kosztowne obliczeniowo UDF, podlegające
optymalizacji poprzez zrównoleglenie ich wykonania. W eksperymentach wykorzy-
stano klaster Amazon Web Services z 2, 4, 8 i 10-cioma węzłami. Eksperymenty po-
kazały, że zaproponowany model kosztów umożliwił znalezienie najbardziej wydajnej
konfiguracji klastra dla testowanego procesu ETL, przy ograniczeniu budżetu mone-
tarnego na obliczenia. Ten sam model kosztów zaimplementowany na komputerze PC
(2,6 GHz 6-Core Intel Core i7) także umożliwił znalezienie tego samego rozwiązania w
czasie ułamków sekundy. Na koniec, zaproponowaliśmy rozszerzenie modelu kosztów
o zadane miary, tj. dokładność modelu, prcesion, recall i monetarny koszt wykonania
procesu.

Contents

Abstract 1

Streszczenie 5

1. Introduction 13
1.1. Background and Motivation . 13
1.2. Scope . 15
1.3. Research Problems and Challenges . 16
1.4. Contributions . 16
1.5. Thesis Overview . 17

2. State-of-the-Art in ETL Workflow Design 19
2.1. Introduction . 19
2.2. Conceptual Model . 21

2.2.1. Graph-based conceptual model 22
2.2.2. UML-based conceptual model 23
2.2.3. Ontology-based conceptual model 23
2.2.4. BPMN-based conceptual model 25
2.2.5. Summary . 26

2.3. Logical Model . 29
2.3.1. Graph-based logical model . 29
2.3.2. From conceptual to logical model 31
2.3.3. Summary . 32

2.4. Physical Implementation . 33
2.4.1. Reusable templates-based implementation 33
2.4.2. BPEL-based implementation 34
2.4.3. XML-based implementation . 34
2.4.4. Summary . 35

2.5. Conclusions . 37
2.5.1. ETL workflow development: summary 37
2.5.2. Open issues . 38

3. State-of-the-Art and Current Trends in ETL Optimization 39
3.1. Introduction . 39

3.1.1. Running example . 40
3.2. State-space Approach for ETL Workflow optimization 41
3.3. Dependency Graph for ETL Workflow Optimization 43
3.4. Scheduling Strategies for ETL workflow Optimization 46
3.5. Reusable Patterns for ETL Workflow Optimization 47
3.6. Parallelism for ETL Workflow Optimization 47

3.6.1. Parallelism in traditional dataflow 48
3.6.2. Parallelism in an ETL workflow 52

3.7. Quality Metrics for ETL Workflow Optimization 55
3.8. Statistics for ETL Workflow Optimization 58
3.9. Commercial ETL Tools . 59
3.10. Summary . 60
3.11. Conclusions . 63

3.11.1. ETL workflow optimization: summary 64
3.11.2. Open issues . 64

4. The Next-Gen ETL Framework 67
4.1. Introduction . 67
4.2. The Extendable ETL Framework . 68

4.2.1. The UDFs Component . 69
4.2.2. The Recommender . 70
4.2.3. The Cost Model . 70
4.2.4. The Monitoring Agent . 71

4.3. Conclusions . 71

5. Parallelizing User-defined Functions in an ETL Framework 73
5.1. Introduction . 73
5.2. Running Example . 74
5.3. Orchestration Style Sheets (OSS) . 75
5.4. Generating Parallelizable UDFs for an ETL Workflow 77
5.5. Using Map-Reduce OSS for Sentiment Analysis UDF 77
5.6. Experimental Evaluations . 81
5.7. Conclusions . 86

6. The Cost Model 87
6.1. Introduction . 87
6.2. Overview of the Cost Model . 89

6.2.1. Stage 1 - feasibility . 89
6.2.2. Stage 2 - degree of parallelism 90
6.2.3. Stage 3 - optimal code generation 90

6.3. Optimal Code Generation for Case-based PASs 92
6.3.1. Use case for running example 93
6.3.2. Optimal code generation . 93
6.3.3. Experimental evaluations . 95

6.4. Optimal Code Generation for Generic PASs 96
6.5. Extending the Cost Model for a Machine Learning Pipeline 98

6.5.1. Optimal selection of a machine learning model 98
6.5.2. Experimental evaluations . 99

6.6. Discussion on Experimental Evaluations 100
6.7. Conclusions . 101

7. Conclusions and Future Directions 103
7.1. Conclusions . 103
7.2. Future Directions . 105

Bibliography 107

Chapter 1

Introduction

1.1. Background and Motivation

An industry accepted architecture for integrating data sources (DSs) is a data ware-
house (DW) architecture [97]. The integration is implemented by means of the
Extract-Transform-Load (ETL) layer where the so-called ETL workflows (processes)
are run. ETL workflows (a.k.a. data processing workflows, data processing pipelines,
or data wrangling) are important components in all data integration architectures,
including data warehouses [48, 97], data lakes [70, 93, 18, 77], and data science applica-
tions [47, 56, 75, 93]. They are responsible for: 1) ingesting data from data sources, 2)
transforming heterogeneous data into a common data model and schema, 3) cleaning,
normalizing, and eliminating data duplicates, 4) loading data into a central repository
- a DW. An ETL workflow has to finish its work within a given time window. Since,
1) such a process moves large volumes of data between DSs and a DW, 2) executes
complex cleaning and de-duplication algorithms, its execution is time consuming and
typically takes hours to complete.

Since early 2000s, the volume of produced, collected, and stockpiled digital data
has been continuously growing exponentially [32] to the point that storage and analysis
of massive and complex data sets exceeds the capacity of conventional computer
systems and algorithms. Moreover, the velocity (the speed at which the data are
generated and analyzed), veracity (quality and uncertainty), and value (potential
business value of the data) [92] of this big data provides great opportunities and
harnessing that leads to great benefits in science and business. Big data technology
adoption is an imperative need for most organisations to gain competitive advantage
or even survive in today’s world. Thus, having the right technological basis to exploit
the potential of big data, to harness it, and to extract the value out of it is essential
for the companies. Hence, business intelligence and analytics and the related field of
big data analytics has become increasingly important areas of research over the past
decade.

14 1. Introduction

Big data itself requires a great scientific contribution to deal with it. For example,
the volume, variety, and velocity of data are growing at a record rate making data
very large and complex. Thus, single machine and existing technologies can no longer
effectively store and process such an unprecedented data. This results in more and
more sophisticated methods and technologies for data storage and processing. Espe-
cially the variety of today’s data but also the wide range of different analytical use
cases increasingly exceed the expressiveness of ETL tools [33].

As an example from the data cleansing side, the messy and noisy nature of big data
demands new types of cleansing tasks (a.k.a activities or operators), such as outlier
detection or de-duplication that specifically fit the ever-changing characteristics of the
data. The same applies to the data analytics side where we find a zoo of algorithms
such as classification, regression, clustering, collaborative filtering, and many more.

To overcome the limited expressive power provided by the standard ETL tasks,
most ETL tools provide the functionality to write custom code as User-Defined Func-
tions (UDFs). A UDF is a software program written in any programming or scripting
language. These UDFs allow the ETL developer to extend the functionality of an ETL
tool that is outside a scope of the already provided built-in ETL tasks. For example,
an UDF can be used to perform aggregations or any kind of run-time intensive com-
putations on a data set that may be necessary before loading it into a DW. A UDF
may be written by the ETL developer who is developing a data pipeline (ETL) or by
any third-party. Therefore, it may be more prone to errors and less efficient, which
may result in a performance bottleneck due to its poor code and high computational
complexity.

There are a few techniques to optimize the performance of an ETL workflow by
reducing its execution time and/or monetary costs. State-of-the-art for optimizing
ETL workflow starts from modeling ETL workflows at a conceptual, logical, and phys-
ical level. The research on conceptual modeling of ETL workflows focuses on easy
and semi-automated design of ETL workflows e.g., ontology-based [89, 90] and UML-
based [95] conceptual design of ETL workflows among others. There exists a work
based on scheduling the ETL tasks in an ETL workflow using different scheduling
policies e.g., ’fair scheduling policy’, ’empty the largest input queue of the workflow
first’ and ’the activity with maximum tuple’ [50]. More extensive research is based
on modeling ETL workflows as a ’State Space Search’ problem [85] and then apply-
ing different algorithms such as ’Exhaustive Search’, ’Greedy Search’ and ’Heuristic
Search’ to construct the search space in order to find the optimal execution of an ETL
workflow [80, 84, 96] . Moreover, there exist multiple methods that revolve around
data flow parallelism e.g., the most prominent one is the MapReduce framework [24],
PACT [12] based on the Parallelization Contracts, and Selinger-style SQL optimizer
[79]. These techniques are further discussed in Chapter 2 and 3. Another approach is
to scale the computing systems vertically or horizontally. Scaling up vertically means

1.2. Scope 15

to raise single machine’s (single node’s) performance level by adding more resources
(typically they are CPUs and memory). Scaling up horizontally means to add nodes
to the system, such as adding a new computer to distributed software application.
However, it requires an army of technical resources and huge amount of investment
in terms of cost, time, and energy for a company to build or possess its own compu-
tational resources. Moreover, it is not a permanent fix, because at some point in time
the hardware will stop supporting the processing of a compute-intensive workflows or
tasks.

From the industry point of view, IBM InfoSphere DataStage [59] and Informatica
PowerCenter [2], provide some simple means of optimizing ETL workflows based
on balanced optimization and pushdown optimization respectively, further discussed
in Chapter 2. Other tools, including AbInitio, Microsoft SQL Server Integration
Services, and Oracle Data Integrator support only parallelization of ETL tasks, with
a parameterized level of parallelism.

Besides introducing parallelism in ETL Workflows, there exist an unaddressed
problem of the parallelization of UDFs, which is the basis and motivation of this
thesis.

1.2. Scope

The focal point of this study is on the parallelization of a compute-intensive UDF or
a set of UDFs (as user defined ETL tasks) in an ETL workflow. A few use cases may
include a set of UDFs in an ETL workflow, for example 1) computing sentiments on
a real-time news feed, 2) implementing entity matching algorithms, 3) performing de-
duplication of a large natural language data-set [6]. In such scenarios, the UDFs may
consume a large portion of execution time, which deteriorate the overall performance
of an ETL workflow. Hence, optimizing the compute-intensive UDFs is required to
optimize the execution of an ETL workflow.

The scope of the thesis is two fold:

• First, designing and developing a framework that enables developers to exploit
parallelization of UDFs in an ETL workflow by either writing parallelizable
code with the help of parallel algorithmic templates or by choosing already
parallelizable UDFs for a given use-case.

• Second, developing a cost function to check the feasibility to exploit parallelism
in user-defined ETL tasks. The feasibility for parallelism is described as follows:

– Is an UDF parallelizable?

– If an UDF is parallelizable, will it profit from parallel processing to satisfy
user-defined performance metrics (execution time, monetary cost)?

16 1. Introduction

– If an UDF profits from parallel processing, what will be the adequate
(sub-optimal, optimal) parallelization parameters e.g., data partitions and
configuration of a distributed framework.

1.3. Research Problems and Challenges

In an ETL workflow, an UDF is normally considered as a black-box activity i.e., it is
difficult to assess the run-time and space complexity of an UDF. However, if an UDF
is already optimized in terms of execution time, or is configurable to be optimized by
an ETL framework without changing its code, it may help ETL developers to optimize
the compute-intensive UDF activities within an ETL workflow. As mentioned above,
one of the techniques to optimize execution performance of UDFs is to parallelize
compute-intensive UDFs in an ETL workflow.

To exploit parallelism, the ETL developer has to explicitly write UDFs that can
be executed in a parallel manner e.g., in a distributed environment. And since writ-
ing efficient parallelizable programs require training and expertise in distributed and
parallel programming, there is a possibility that the developer may not be able to
leverage the benefit of parallelism and therefore miss performance opportunities [87].

At this point, the first research challenge is to design an ETL framework to
facilitate ETL developers to write efficient UDFs by separating parallelization con-
cerns from the code and reducing potential error sources in the otherwise manual and
cumbersome parallelization process.

To optimize the execution of parallelizable UDFs in an ETL workflow, one has to
consider two core aspects of parallelization:

• to determine whether it is feasible to parallelize an UDF to optimize the execu-
tion time and monetary cost;

• if it is feasible, then determine the right degree of parallelism, e.g., choosing the
appropriate number of partitions to distribute the data to be transformed in
parallel.

Therefore, the second research challenge is to construct a cost model that gen-
erates parallelizable UDFs by first determining the feasibility and degree of parallelism
for an UDF to be executed in a parallel distributed environment.

1.4. Contributions

The first aforementioned research challenge consists in designing an ETL framework
that would help ETL developers to write efficient parallelizable UDFs without worry-
ing about the technicalities of parallelization in order to execute them in a distributed
environment leveraging the full benefits of parallelism.

1.5. Thesis Overview 17

As a response to this challenge, we designed and developed configurable paral-
lelizable UDF generator the UDFs Component to provide the ETL developer with
out-of-the-box functionality in an ETL framework to write efficient parallel custom
programs. The UDFs Component converts a non-parallelized code into a parallel code
and can easily be integrated into any open-source ETL framework e.g., Pentaho Data
Integration (Spoon) as a third-party tool. To assist the ETL developer to write paral-
lelizable code of an UDF, we provided different Parallel Algorithmic Skeletons (PAS)
or code skeletons that can be executed in a distributed environment. For example,
worker-farm, divide and conquer, branch and bound, systolic, MapReduce or Spark
code skeleton, where the ETL developer has to insert his/her code for a particular
UDF into the provided skeleton. Currently, the UDFs Component supports Hadoop
as a distributed framework to execute UDFs in a parallel environment. However, it is
extensible and can be integrated with other parallel and distributed frameworks, e.g.,
Flink and HPC clusters.

Our second research challenge is specifically related to the parallelization concerns.
As a response to this challenge, we created a cost-model that enables the optimization
of already parallelizable (e.g., MapReduce-based or Spark-based) UDFs in an ETL
workflow. Our optimization approach draws upon determining the right degree of
parallelism for an UDF (or a set of UDFs) to satisfy performance metrics such as
execution time and monetary cost of an UDF in an ETL workflow.

1.5. Thesis Overview

The main focus of the thesis is to help future researchers to effectively use methods
for the parallelization of user-defined tasks in an ETL workflow to achieve maximum
performance. The methodology proposed in this thesis may also be useful for the
ETL industry working on parallelization of ETL tasks and ETL tools.

The key methods to conduct this thesis consisted of theoretical study as well as
empirical research. A thorough literature review was conducted to help finding the
open issues in this field and to develop solutions of the problems addressed in this
dissertation. The following steps were followed as a key research methods of this
thesis:

• A thorough systematic literature review was conducted to understand the state-
of-the-art for the topic of this thesis and open issues in the related studies.

• A prototype of the proposed solution for the parallelization of user-defined tasks
was developed as a proof of concept.

• Empirical assessment of the developed prototype was conducted by testing it
for several scenarios.

18 1. Introduction

Chapters (2-6) of this dissertations are based on the results reported in the fol-
lowing publications:

• P1: Ali, Syed Muhammad Fawad, and Wrembel, Robert: From conceptual
design to performance optimization of ETL workflows: current state of research
and open problems. The VLDB Journal 26(6) (2017), pp. 777-801.

• P2: Ali, Syed Muhammad Fawad: Next-generation ETL Framework to Address
the Challenges Posed by Big Data In International Workshop on Design, Opti-
mization, Languages and Analytical Processing of Big Data (DOLAP) (2018).

• P3: Ali, Syed Muhammad Fawad, and Mey, Johannes, and Maik Thiele: Par-
allelizing user-defined functions in the ETL workflow using orchestration style
sheets. International Jounral of Applied Mathematics and Computer Science
(AMCS) 29(1)(2019), pp. 69-79.

• P4: Ali, Syed Muhammad Fawad, andWrembel, Robert: Towards a Cost Model
to Optimize User-Defined Functions in an ETLWorkflow Based on User-Defined
Performance Metrics In European Conference on Advances in Databases and
Information Systems (ADBIS) (2019), LNCS 11695, pp. 441-456.

• P5: Ali, Syed Muhammad Fawad, and Wrembel, Robert: Framework to Op-
timize Data Processing Pipelines Using Performance Metrics In International
Conference on Big Data Analytics and Knowledge Discovery (DaWaK) (2020),
LNCS 12393, pp. 131-140.

Chapter 2 and 3 correspond to P1, where in Chapter 2 we presented the overview
of DW architecture and in Chapter 3, we presented the the state-of-the-art and cur-
rent trends in ETL, with a special focus on optimization. Chapter 4 corresponds to
P2, where we proposed a next-generation ETL framework to address the challenges
posed by big data. Chapter 5 corresponds to P3, where we extended our discussion
on the proposed solution for the parallelization of user-defined tasks. Chapter 6 cor-
responds to P4 and P5, where we presented the cost model to generate parallelizable
UDFs after determining the right-degree of parallelism for the user-defined programs.
Chapter 7 discusses the conclusion and the future work.

Chapter 2

State-of-the-Art in ETL
Workflow Design

In this chapter, we discuss the architecture of Data Warehouse and a state of the
art and current trends in designing ETL workflows. We briefly explain the existing
techniques for: constructing a conceptual and a logical model of an ETL workflow,
and its corresponding physical implementation, illustrated by examples. The discussed
techniques are analyzed w.r.t. their advantages, disadvantages, and challenges in the
context of metrics such as: autonomous behavior, support for quality metrics, and
support for ETL tasks as user-defined functions. We draw conclusions on still open
research and technological issues in the field of ETL.

2.1. Introduction

A traditional Data Warehouse (DW), while allows the integration of various types of
data usually from transactional and operational data sources, it ensures the availabil-
ity of business-specific, nonvolatile, time-variant, and not normalized data for analysis
and decision making process [35]. The data originating from different data sources,
may require treatment for its poor quality ranging from simple spelling errors, missing
or inconsistent values, to conflicting or redundant data. The aforementioned process
is called data integration process a.k.a Extract-transform-Load (ETL), which takes
place between data sources and a DW, as shown in Figure 2.1. The first task of an
ETL workflow is to extract data from multiple heterogeneous Data Sources (DSs), the
second phase is to perform data quality checks and transformations in order to make
data clean and consistent with the structure of a target DW. Finally, the third phase
is to load data into a DW, which is eventually used for further analysis and reporting
by mean of the dimensional modeling technique - a widely accepted technique for a
DW presentation [55].

The variety of big data in terms of structured, unstructured, or semi-structured
data from multiple heterogeneous data sources, as well as the volume and velocity
of big data, exceeds the ability of traditional tools to extract, process, store, manage

20 2. State-of-the-Art in ETL Workflow Design

Figure 2.1: A traditional data warehouse (DW) architecture

and analyse the data [78]. This gives birth to a different DW architecture to sup-
port large volumes structured, semi-structured, and unstructured data in parallel and
distributed fashion, which may or may not complement the traditional DW. To face
the challenges of big data and to overcome the limitations of traditional DW, one of
the new concepts was introduced, called data lakes [68]. A data lake is designed as
a massively scalable storage to hold large amount of unstructured data which could
further be used to derive insights.

However, simply pushing the data into a data lake cannot be readily used for
analysis or further explorations e.g., machine learning. There is a need to build
workflows to transform the data resided in a data lake when it is required. Unlike ETL,
where data is transformed before it is loaded into a data warehouse, Extract-Load-
Transform (ELT) process is typically implemented as a workflow. The motivation
behind the ELT is that data lakes are not dependent on the structure of the incoming
data, therefore there is no need for the data transformation before the data is stored
into a data lake. The transformations are applied on the data on a need basis [74].

An ETL/ELT process is typically implemented as a workflow, where various tasks
(a.k.a. activities or operators), which process data, are connected by data flows [7, 73]
(note: in this thesis we refer to ETL and ELT as a same process). The tasks executed
in an ETL workflow include among others: 1) extracting and filtering data from data
sources, 2) transforming data into a common data model, 3) cleaning data in order to
remove errors and null values, 4) standardizing values, 5) integrating cleaned data into
one common consistent data set, 6) removing duplicates, 7) sorting and computing
summaries, and 8) loading data into a DW. These tasks can be implemented by means
of SQL commands, predefined components, or user-defined functions (UDFs) written
in multiple programming languages.

There are several proprietary, cf., [4] and open source, cf., [3] ETL tools available
in a business sector for designing and developing ETL workflows. The tools provide

2.2. Conceptual Model 21

proper documentation and graphical user interfaces to design, visualize, implement,
deploy, and monitor execution of an entire ETL workflow. However, these tools have a
very limited support for designing and developing efficient workflows, since automatic
optimization and fine-tuning of an ETL workflow is not available. Hence, the ETL
developer him/herself is responsible for producing an efficient workflow. This is one of
a few reasons that make numerous organizations incline towards in-house development
of such ETL tools that best suit their business needs [9, 101].

The ETL research community has proposed several methods for designing a con-
ceptual model of an ETL workflow, which led to its semantically equivalent logical
model, physical implementation, and its optimized run-time version. The set of guide-
lines formulated for the design of a conceptual and a logical model of an ETL work-
flow [83, 101], prompts the automation of a design process, in order to facilitate the
development life cycle of the whole DW architecture.

Since there exist multiple methods and techniques for conceptual, logical, and
physical design of an ETL workflow, there is a need of developing a uniform ETL
framework, which would: 1) facilitate the ETL developer designing an efficient ETL
workflow, by providing hints for optimizing the workflow and 2) allow the ETL devel-
oper to validate and benchmark some alternative workflow designs for given quality
objectives.

In this chapter, we discuss the state of the art and current trends in designing an
ETL workflow. First, we discuss the techniques to construct a conceptual and a logical
model, and its corresponding physical implementation of an ETL workflow as well as
to evaluate them on the basis of some metrics that we proposed (cf. Section 2.2.5).
Second, we identify open research and technological issues in the field of designing
and implementing an ETL workflow.

This chapter is divided into five sections, each of which starts with an intro-
duction and concludes with the summary of open research and technological issues.
Section 2.2 discusses the findings on a conceptual modeling of an ETL workflow. Sec-
tion 2.3 overviews works carried out on designing a logical model of an ETL workflow
and approaches to convert a conceptual model into its corresponding logical design.
Section 2.4 introduces techniques for the physical implementation of an ETL work-
flow. Finally, Section 2.5 concludes this chapter with a summary of open research
and technological issues.

2.2. Conceptual Model

A Conceptual model of a DW serves a purpose of representing business requirements
and clearly identifies all business entities participating in a DW. A Conceptual model
and its documentation helps in understanding and identifying data schema and fa-
cilitating the ETL developer in transformation and maintenance phase of an ETL

22 2. State-of-the-Art in ETL Workflow Design

workflow.
Until 2002, design, development, and deployment of an ETL workflow was done

in an ad-hoc manner due to the non-existence of specific design and development
guidelines and standards. The ETL research community has put a lot of effort in
formulating the required guidelines, methods, and standards.

This section highlights these methods existing in literature for a conceptual model
of an ETL workflow including graph, UML, ontology, and BPMN-based conceptual
models.

2.2.1. Graph-based conceptual model

A graph-based customizable and extensible conceptual model [101] is among the first
approaches in providing formal foundations for the conceptual design of an ETL work-
flow. The proposed model focuses on the internal structure of the elements involved,
inter-relationships among sources, target attributes of the elements, and transforma-
tions required during loading a DW. The idea behind the proposed framework is to
provide the ETL developer with different kind of transformations required for differ-
ent ETL scenarios, which cannot be anticipated. Therefore, instead of providing a
limited set of transformations, an extensible framework is developed so that the ETL
developer can define transformations as required. The paper presents a three-layer
architecture for a conceptual model of an ETL workflow that consists of Schema Layer
(SL), Meta-model Layer (ML), and Template Layer (TL).

SL contains a specific ETL scenario and all the elements in this layer are instances
of ML. ML is a set of generic entities that are able to represent any ETL scenario.
Finally, TL enables the generic behavior of the framework, by providing the ETL
developer with customizable ETL templates, which he/she can enrich according to
different business requirements.

The work in [101] describes only the formal foundations for a conceptual model
of an ETL workflow. However, much needed design methods and standards were not
addressed until [83] proposes a set of steps in order to construct a conceptual model
in a managed, customizable, and extensible manner. The set of steps are as follows:

1. Step 1: identify participating data stores and relationships between them.

2. Step 2: identify candidates and active candidates for the involved data stores.
The idea is to include only active candidates in order to keep a conceptual model
simple.

3. Step 3: identify the need of data transformation. If a transformation is required,
define mapping rules between source and target concepts. A transformation can
be a surrogate key assignment, conversion of units, or just a simple mapping of
attributes.

2.2. Conceptual Model 23

4. Step 4: annotate the model with run-time constraints. Annotation can be
done using notes, which correspond to a particular operation, concept, or a
relationship in a conceptual model.

2.2.2. UML-based conceptual model

The Unified Modeling Language (UML) [76] is a standard modeling language in the
field of software engineering in order to visualize the design of systems in a standard-
ized way. [95] points out that methods [101] and [83], discussed in Section 2.2.1, may
result in a complex ETL workflow design due to the absence of a standard modeling
language and treating attributes as "first-class citizens" in the model. Therefore, UML
is used as a standard modeling language for defining the most common ETL tasks (in-
cluding among others: data integration, transformation of attributes between source
and target data stores, as well as generation of surrogate keys). The ETL tasks are
represented by UML packages to model a large ETL workflow as multiple packages,
thus, simplifying the complexity of an ETL workflow for the ETL developer.

2.2.3. Ontology-based conceptual model

The approaches discussed in Sections 2.2.1 and 2.2.2 require the ETL developer to
manually derive the ETL transformations and inter-attribute mappings at a concep-
tual level of an ETL workflow. The work in [89] proposes a semi-automatic method
for designing a conceptual model of an ETL workflow, leveraging an ontology-based
approach. The proposed approach uses ontology instead of UML because ontology
is capable of deriving ETL transformations automatically using ontology ‘reasoners’.
The proposed solution facilitates the construction of an ETL workflow at a conceptual
level and deals with the problem of semantic and structural heterogeneity.

As the first step towards creating an ontology, a common vocabulary is con-
structed. To this end, the ETL developer has to provide the information about
the application domain and user requirements about a DW. For example, primitive
concepts and their attributes, possible values of the attributes and relationship among
the concepts and attributes. Using the information provided by the ETL developer,
the vocabulary is formulated.

After the common vocabulary is formulated, the second step is to annotate the
data sources-based on the constructed vocabulary.

Once the application vocabulary and the annotations are described, the third
step is to construct an application ontology. It describes the application domain,
relationships, as well as mappings between sources and a target. The application
ontology consists of: 1) a set of primitive classes similar to the specified concepts, 2)
representation formats, and 3) ranges or sets of values as defined in the vocabulary.
Finally, the constructed ontology is used to generate a conceptual model automatically

24 2. State-of-the-Art in ETL Workflow Design

using the OWL ’reasoner’. This solution enables the ETL developer to explicitly and
formally represent a conceptual model using Ontology Web Language-Description
Logic (OWL-DL).

OWL [66] helps in creating a flexible model that can be redefined and reused
during different stages of a DW design. The well-defined semantics allows automated
reasoning. This solution is applicable to the relational databases only, however, a DW
may also contain semi-structured and unstructured data.

To provide the support for semi-structured data, [90] proposes a solution, which is
an extension of the work presented in [89] to cater both structured and semi-structured
data sources. The proposed approach uses graphs to represent a conceptual model
for data sources in order to handle both structured and semi-structured data in a
uniform way. The schema presented as a graph is called a Data-Store Graph (DSG).
For a relational schema a DSG is designed as follows: 1) nodes represent elements
of a schema, 2) edges represent relationships among the elements, 3) labels on each
edge represent min and max cardinalities of a reference, and 4) leaf nodes represent
elements containing data. The ontology graph and a DSG are then used to annotate
each data store by defining mappings between these two graphs. Finally, the semantic
annotations are used along with an application ontology to infer a set of generic
transformations to construct a conceptual model of an ETL workflow.

In the preceding approaches [89, 90] related to an ontology-based conceptual
model, the ETL developer is responsible for manually sketching the required mappings
and transformations of schema from a source to a target data store.

To reduce the manual work required by the ETL developer, [91] proposes a semi-
automatic approach to build an ETL workflow in a step-by-step manner through
a series of customizable and extensible set of graph transformations rules. These
rules are based on the already provided ontology in order to determine which ETL
tasks are applicable in the initial graph i.e., a graph generated after converting a semi-
structured data. The final graph i.e., a graph generated after applying transformation
rules depicts a conceptual model of an ETL workflow with an appropriate choice of
ETL tasks.

Another approach presented in [14] proposes a semi-automatic approach to extract
and transform data in an ETL workflow, as opposed to manually creating an ontology
to generate a conceptual ETL workflow model. For a semi-automatic extraction of
data from different sources, the proposed method exploits and extends the already
existing systems, Mediator EnvirOnment for Multiple Information Sources (MOMIS)
[13] and RELEVANT [15].

MOMIS is a semi-automatic data integration system. Data, whether structured
or semi-structured, are extracted and then annotated in a semi-automatic environ-
ment i.e., facilitated by a tool with the consent of the ETL developer. Then, data are
logically converted into a common language in order to generate a vocabulary using a

2.2. Conceptual Model 25

knowledge engine in MOMIS. The vocabulary is then forwarded to the RELEVANT
data analysis system to perform data pre-processing, similarity computations, clus-
tering, and decision making to generate mappings between source data stores and a
DW.

The RELEVANT computes similarity between a source and a DW attribute values
and forms clusters using clustering algorithm defined in a system. Finally, clusters
are validated by developers in order to find the matching data source and target at-
tributes. To automate the transformation process, a set of common transformation
functions such as ‘Retrieve’, ‘Project’, ‘Union’, ‘Join’, ‘Convert’, ‘Filter’, and ‘Aggre-
gate’ and a set of rules are formulated. First, a transformation function checks for
the compatibility of data source values with target values using a similarity measure.
Then, if they are compatible, the function directly maps the source values to the
target values. Otherwise, the ETL developer needs to define the transformation of
non-compatible attribute values.

2.2.4. BPMN-based conceptual model

Besides the aforementioned approaches proposing conceptual models (cf. Sections
2.2.1, 2.2.2, and 2.2.3), the work presented in [28] proposes a Business Process Model
Notation (BPMN) to create a platform independent conceptual model of an ETL
workflow. This paper points out that existing tools for designing an ETL workflow
use vendor specific models. As a result, the ETL developer needs to be cautious
about the implementation details while implementing an ETL workflow. Therefore,
Business Process Model Notation (BPMN) can be used to construct a platform inde-
pendent conceptual model. This approach implements the BPMN conceptual model
into Business Process Execution Language (BPEL) that is an XML-based language
and is a standard executable language for specifying interactions with web services.

The paper discusses several BPMN tasks to represent various ETL tasks. For
example, BPMN gateways represent the sequence of tasks in an ETL workflow, based
on conditions and constraints; BPMN events represent start, end, and error handling
events; BPMN connection objects represent the flow of tasks; BPMN artifacts describe
the semantics of an ETL task.

After the BPMN design is completed, the model is translated into a Business
Process Execution Language (BPEL), which we will discuss in Section 2.4. This
work enables the design developed in BPMN to be compatible across multiple tools
and easy to extend to fit the requirements of a particular application. The BPMN
approach was then adapted by [29, 72, 106] to construct a conceptual model of an
ETL workflow.

The work in [106] proposes a layered method that starts with business require-
ments and systematically converts a conceptual model into its semantically equivalent

26 2. State-of-the-Art in ETL Workflow Design

physical implementation. The entire method is based on the QoX - suit of quality
metrics [87] to construct an optimal ETL workflow. The QoX metrics are considered
during the design and development of ETL workflows ranging from quantitative to
qualitative metrics (e.g., performance, recoverability, and freshness). [106] fills the
gap between different stages (conceptual, logical, and physical) of an ETL workflow
design. Once the conceptual design is expressed in BPMN, it is converted into XML
to translate a conceptual design into its semantically equivalent logical model. The
logical model is then used to optimize an ETL workflow design and for creating the
corresponding physical model.

The approach presented in [29] uses BPMN and model driven development to
specify an entire ETL workflow in a vendor-independent way and to automatically
generate the corresponding code in different commercial tools. Once an ETL workflow
code is generated, a 4GL grammar is used in order to generate a vendor-specific
code. This approach is so far the only one in the literature to specify the design and
implementation phases of the ETL workflow in a vendor-independent manner and the
automatic code generation for specific commercial ETL tools.

The work in [72] complements and extends the work of [29, 106] by incorporating
specific conceptual model constructs as BPMN patterns for ETL tasks like ‘change
data capture’, ‘slowly changing dimensions’, ‘surrogate key pipelining’, or ‘data qual-
ity coverage’. This foundation can be extended to build more BPMN patterns covering
all the tasks of an ETL workflow, which results in helping develop high quality, error
free, and an efficient ETL workflow.

2.2.5. Summary

In Section 2.2 we have discussed different techniques and methods for representing
a conceptual model of an ETL workflow, which include graphs, UML, ontology, and
BPMN. Below, we summarize the approaches on the basis of the following criteria:

• Autonomous behavior - whether a design is manual, automatic, or semi-
automatic (i.e., how much input it requires from the ETL developer);

• DSs format - what kind of data sources are supported, i.e., structured, un-
structured, or semi-structured;

• UDF support - whether user-defined functions are supported;

• Quality metrics - whether quality metrics guide the design of an ETL work-
flow;

• Unified model - whether an ETL design is easily translated from a concep-
tual model into its semantically equivalent logical model and whether it can be
implemented using any ETL framework.

2.2. Conceptual Model 27

1. Graph-based approaches [83, 101]

Pros:

• Widely accepted graph-based models are used, which help the ETL devel-
oper to outline a conceptual model of an ETL workflow in a standardized
way.

• They present the first steps towards translating a conceptual model of an
ETL workflow into its semantically equivalent logical model.

Cons:

• No autonomous behavior - the ETL developer has to manually derive
ETL transformations and inter-attribute mappings at a conceptual level.

• Structured data only - only the structured input data sources are sup-
ported, and there is no discussion on how to handle unstructured or semi-
structured data sources.

• No UDF support and quality metrics - the tasks and templates for
traditional ETL tasks are proposed; there is no support for UDFs; quality
metrics are not taken into consideration while constructing a conceptual
model.

• Challenges - an ETL design may become complex due to the absence of a
standard modeling language and treating attributes as ‘first-class citizens’
in the model.

2. UML-based approach [95]

Pros:

• Unified model - a method is proposed to standardize the conceptual
design of an ETL workflow (UML is a standard modeling language).

Cons:

• No autonomous behavior - the ETL developer has to provide input at
each step of the conceptual design.

• Structured data only - only the structured input data sources are sup-
ported.

• No UDF support and quality metrics - no support for user-defined
functions and quality metrics.

3. Ontology-based approaches [82, 89, 90, 91]

Pros:

28 2. State-of-the-Art in ETL Workflow Design

• Semi-autonomous behaviour - the ontology-based models propose semi-
automatic methods to design a conceptual model of an ETL workflow in
a step-by-step manner (based on reasoners on ontologies, it is possible to
derive ETL transformations automatically).

• Structured & semi-structured data - [89, 91] focus on structured data
only and [90] focuses also on semi-structured data.

Cons:

• No UDF support and quality metrics - UDFs are not supported; qual-
ity metrics are not taken into consideration while constructing a conceptual
ETL model.

• Unified model - an ontology-based conceptual design cannot be directly
translated into its semantically equivalent logical model. It requires a fair
amount of effort from the ETL developer to translate the design.

• Challenges - manually creating an ontology and defining the relation-
ships among the ontology elements is a difficult and time-consuming task.
Constructing an ontology manually requires high correctness and detailed
description of data sources, thus if an ontology is created manually it be-
comes more prone to errors.

4. BPMN-based approaches [28, 29, 72, 106]

Pros:

• Semi-autonomous behaviour - [72] introduces various BPMN patterns
as constructs for frequently used ETL tasks and activities.

• Quality metrics & unified model - [106] proposes a systematic method
to translate business requirements into a conceptual model and conceptual
model into its semantically equivalent logical model, based on quality met-
rics. [29] uses BPMN and model driven development approach to develop
vendor independent design of an ETL workflow.

Cons:

• No UDF support.

• Challenges - converting conceptual model into its equivalent logical and
physical implementation requires ETL developers to have specific knowl-
edge and hands-on experience in BPMN and BPEL.

To conclude, the graph-based models can be used to represent a complex concep-
tual design of an ETL workflow by using standard notations, whereas, for simpler
ETL workflows, approaches based on UML, ontology, and BPMN are well suited.

2.3. Logical Model 29

Such models reflect business requirements as well as provide technical perspective of
the problem. Nonetheless, there is a need for a single agreed unified model, easy
to validate and benchmark an ETL design for its quality objectives. Also all the
discussed approaches require the ETL developer to extensively provide some input
during the design phase of an ETL workflow, as well as require technical knowledge
from business users to understand and validate an ETL design. Furthermore, despite
the fact that multiple approaches have been proposed, the research community has
not yet agreed upon the standard notation for representing a conceptual model of an
ETL workflow.

2.3. Logical Model

The next step in ETL development life cycle is a logical design of an ETL workflow. A
logical design describes detailed description of an ETL workflow such as, relationships
among the involved processes with participating data sources, a description of primary
data flow from source data stores into a DW, including an execution order of ETL
tasks as well as an execution schedule of an entire ETL workflow. A recovery plan
and a sequence of steps in case of recovery from a failure are also devised during a
logical design of an ETL workflow.

In this section we will discuss approaches to a logical design of an ETL workflow.

2.3.1. Graph-based logical model

Initial approaches to designing a logical model of an ETL workflow are based on
graphs. The work presented in [102], proposes a formal logical model as a graph, where
an ETL workflow is designed such that the nodes in the graph represent ETL tasks,
record sets, and attributes, whereas the edges represent different types of relationships
among ETL tasks.

[102] proposes the following steps to construct a logical model of an ETL workflow
as a Graph:

1. Incorporate structured entities i.e., activities and record sets in a graph along
with all the attributes. For example, Figure 2.2 illustrates S2.PARTSUPP as
a structured entity along with its attributes i.e., DEPT, COST, QTY, DATE,
SUPPKEY, and PKEY.

2. Connect ’Activity nodes’ with their respective attributes through a part-of re-
lationship. For example, in Figure 2.2 ’Activity nodes’ ’SK_T’ and ’$2e’ are
connected with their respective attributes as the part-of relationship that is
depicted as a connector with a diamond. The ’IN’ and ’OUT’ labels on an ac-

30 2. State-of-the-Art in ETL Workflow Design

Figure 2.2: Graph of an ETL workflow

tivity represent that the attributes belong to the input and output schema of
an activity, respectively.

3. Incorporate data and function types using instance-of relationships. For exam-
ple, data types ’US_Date’ and ’US_Dollar’ are connected to their respective
attributes ’DATE’ and ’COST’ as instance-of relationships, depicted in Fig-
ure 2.2.

4. Construct the regulator relationships. For example, in Figure 2.2, regulator
relationships among the parameters of the activities and attributes are depicted
with simple dotted edges.

5. Establish provider relationships that capture the flow of data from source to tar-
get. For example, the data flow from source attributes towards target attributes
are depicted as bold solid arrows in Figure 2.2.

The proposed graph is considered as a formal logical model of an ETL workflow.
In [100], the authors used the aforementioned model along with a formal Logical Data
Language (LDL) to define the semantics of each ETL task. [100] also mentions the
re-usability framework to compliment the generic behavior of the proposed model,
which is achieved through a Meta-model Layer (ML) and a Template Layer (TL)
as discussed in [101] (cf. Section 2.2.1). The authors also propose a user friendly
graphical tool to facilitate the ETL developer to design an ETL workflow.

2.3. Logical Model 31

[106] proposes to construct a logical model of an ETL workflow using a method
to parameterize a Directed Acyclic Graph (DAG), called here Parameterized DAG
(DAG-P). The DAG is created by translating a BPMN-based conceptual model, as
mentioned in Section 2.2.4. DAG-P operations, transformations, and data stores are
represented as vertices of the graph. Edges represent data flows from a source data
store to a target data store. The parameters in DAG-P are used to incorporate busi-
ness requirements [87], physical resources (needed for an ETL workflow execution),
and other generic characteristics (such as visualization) of an ETL workflow.

2.3.2. From conceptual to logical model

The work presented in [84] proposes a set of steps to transform a conceptual model of
an ETL workflow to its corresponding logical model. The models are represented by
graphs called Conceptual Graph and Architecture Graph, respectively. The following
steps map a conceptual model into a logical model:

1. Identify data stores and transformations required in an ETL workflow, and
describe inter-attribute mappings between source and target data stores.

2. Determine ’Stages’ to identify the proper order of tasks in a conceptual model
to assure a proper placement of tasks in a logical model.

3. Follow the following five-step method in order to translate a conceptual model
into its corresponding logical model:

(a) Simplify a conceptual model such that only required elements are present
in the model.

(b) Map the concepts of a conceptual model into data sources in a logical
model such that part-of relationships do not change. The part-of relation-
ship denotes the relationship between attributes and tasks, record set, or
function.

(c) Map transformations defined in a conceptual model to logical tasks and
then determine the order of execution of the ETL tasks.

(d) Represent ETL constraints with separate tasks in a logical model and de-
termine their execution order.

(e) Generate a schema involved in a logical model using the algorithm proposed
in [86] in order to assure that semantics of the involved concepts does
not change even after changing the execution order of tasks in an ETL
workflow.

As discussed in Section 2.2.4, the work in [106] proposes a method that covers
all stages of an ETL workflow design, i.e., from gathering business requirements to

32 2. State-of-the-Art in ETL Workflow Design

designing a conceptual model and finally translating it into an XML-based logical
model as a DAG-P. The reason behind choosing XML is its ability to easily transform
one XML model (conceptual) into another XML model (logical).

In Section 2.2.4, we presented an ETL conceptual design based on BPMN [28]. The
authors then extended their work to transform BPMN based conceptual model into
its corresponding logical format using Relational Algebra (RA) [10], which essentially
translates data tasks automatically into semantically equivalent SQL queries to be
executed over a Relational Database Management Systems. The authors provided
a mapping of different BPMN data tasks e.g., data input, column functions, join,
lookup, sort, to be expressed as a RA expression. For example, the ’Aggregation’
task is translated as an ’Aggregate’ operation, and a ’Drop Column’ operation is
expressed in RA as a projection off all columns except the ones to be dropped. The
approach showcased an easy way to translate the BPMN based conceptual model into
its SQL based implementation.

2.3.3. Summary

In this section we have discussed a graph-based logical representation of an ETL
workflow and steps to translate a conceptual model into its semantically equivalent
logical model. We have outlined step-by-step methods to formulate a graph-based
logical model of an ETL workflow. The discussed methods are not trivial to adopt
and require a substantial amount of manual effort and background knowledge from
the ETL developers. Below, we summarize the approaches on the basis of the criteria
described in Section 2.2.5.

1. Graph-based approaches [99, 100, 102, 106]

Pros:

• Quality metrics - [106] proposes annotations to incorporate quality met-
rics in an ETL workflow for its efficient and reliable execution.

• Unified model - [100] proposes a reusable framework that supplements a
generic behavior of a logical model by defining semantics of each ETL task
in a graph. [106] proposes a logical model as a graph, which is implemented
in XML, and can be used in any XML-based framework.

Cons:

• No autonomous behavior - the discussed methods either require the
ETL developer to manually construct a logical model from a given concep-
tual model or to provide an extensive amount of input to the system, to
generate a logical model from a conceptual model.

• No UDF support.

2.4. Physical Implementation 33

• Challenges - the discussed approaches demand a substantial amount of
input from the ETL developer. For example, such an input is required in:
1) the task of identifying stages (c.f. Section 2.3.2) to make sure the ETL
tasks are in a proper order, and 2) the task of defining the mappings to
translate a conceptual model to its equivalent logical model. Such tasks
are not trivial in nature and are prone to errors.

From the above discussion we can conclude that there still exists a need to develop
a fully- or semi-automatic intelligent system that would guide the ETL developer
to produce a logical design of an ETL workflow satisfying some predefined quality
criteria. One such work to take inspiration from is Consolidation Algorithm [49],
where data-intensive workflows are represented as DAG to generate executable data-
intensive workflows. The proposed solution works at the logical level and is therefore
applicable to a variety of approaches that generate logical data flows from informa-
tion requirements expressed either as high level business objects or in engine specific
languages.

2.4. Physical Implementation

Having developed a conceptual and a logical model of an ETL workflow, its physical
model has to be produced. A physical model describes and implements the specifica-
tions and requirements presented in a conceptual and a logical model.

2.4.1. Reusable templates-based implementation

The work in [96] proposes a method for mapping a logical model of an ETL workflow
into its corresponding physical model. A logical model is formulated as a state-space
problem, where states are a set of physical level scenarios and each state has a different
cost. An initial state of the state-space problem is generated by converting each logical
task to its corresponding physical task using a library of re-usable templates. The
library consists of both logical and physical level templates. The templates include a
set of properties and require some input parameters, thus are capable to be customized
according to a particular ETL scenario.

Multiple versions of the solution can be generated by selecting different physical
templates, provided all constraints and conditions of the selected physical template
are satisfied.

Another non-traditional ETL approach [71] uses high-level ETL constructs to
integrate semantic data sources. The integration process is designed in two layers
namely design layer and execution layer. The design layer serves as an overview
of the entire integration process in the form of a mapping file which, consists of

34 2. State-of-the-Art in ETL Workflow Design

transformations from source to target. The mapping file is then fed to the ETL
operations orchestrated in the execution layer to automatically generate ETL data
flows. This approach not only supports physical integration but may be extended
to support virtual data integration as well as can be extended to create integration
process in a big data and data lake environment.

2.4.2. BPEL-based implementation

A BPMN approach [28] discussed in Section 2.2.4 implements a BPMN-based concep-
tual model into Business Process Execution Language (BPEL). BPEL is a standard
executable language for specifying interactions with Web services, based on XML.
BPEL has four main sections: ‘partnerLinks’, ‘variables’, ‘faultHandlers’, and ‘pro-
cess’. In order to translate BPMN into BPEL, first the basic attributes are mapped
such as business process name and related namespaces are mapped to the ‘process
name’ in BPEL. Then, ETL tasks in a BPMN are represented as the type of ‘services’
and are mapped into the ‘partnerLinks’ in BPEL.

2.4.3. XML-based implementation

[106] proposes to model an ETL workflow as an ETL graph encoded in XML repre-
sentation (as described in Sections 2.2 and 2.3). To translate an XML-based logical
model to its corresponding physical implementation the authors use an appropriate
parser. For example, an XML encoded logical model can be translated into a phys-
ical implementation format understandable by Pentaho Data Integration (PDI), as
follows:

1. element < design/ > maps into ‘job’ task, and if < design/ > element is nested,
then it maps into ‘transformation’ task in PDI,

2. element < node/ > maps into ‘step’,

3. elements < name/ > and < optype/ > map into ‘name’ and ‘type’ of ‘step’,
respectively,

4. element < type/ > of node describes the type of an ETL task, e.g., a data store
or an ETL task in ‘step’,

5. element < edge/ > specifies the order and interconnection of ‘step’,

6. element < properties/ > specifies the physical properties of the ‘step’.

’job’, ’step’, ’name and type of step’ are artifacts in PDI. Hence, using the aforemen-
tioned mapping rules and the appropriate parser, the physical implementation of a
XML encoded logical model is easily generated.

2.4. Physical Implementation 35

Another approach presented in [11], extends the work of designing the ETL concep-
tual model as BPMN [28], by introducing an XML based interchange format (BEXF)
to translate BPMN 2.0 model information across tools. BEXF provides mapping of
BPMN attributes to the corresponding BEXF representation, e.g., start/end event,
process, task and supports common tasks within an ETL workflow e.g., Data Input,
Lookup, Union, Column Operations, Aggregation. Hence, BEXF is an XML inter-
change format and can be translated into various ETL tools e.g., Microsoft SISS,
Pentaho Data Integration and as well as to different SQL dialects.

2.4.4. Summary

In this section we have examined the methods and techniques to translate logical
models of an ETL workflow into their corresponding physical implementations using
reusable templates, engine specific XML parser, and BPEL. The advantages and
disadvantages of the discussed approaches can be summarized based on the metrics
described in Section 2.2.5 as follows.

1. Re-usable templates approach [96]

Pros:

• Semi-autonomous behavior - the techniques that physically implement
a graph-based logical model use a library of reusable (possibly error free
and efficient) templates; a number of an ETL workflow variants may be
generated by selecting different physical templates.

• UDF support - UDFs are supported as black-box ETL tasks and are
considered during implementation and performance optimization.

Cons:

• Structured data - only structured data sources are supported.

• Quality metrics - only execution and performance cost as quality metrics
are considered.

• Unified model - the ETL developer has to manually translate a logical
model into its corresponding physical implementation if a template is not
already provided for a certain ETL task. Furthermore, the templates are
platform dependent, which limits their application.

• Challenges - a limited set of logical and physical templates is provided.

2. BPEL-based approach [28]

Pros:

36 2. State-of-the-Art in ETL Workflow Design

• Semi-autonomous behaviour -BPEL is used to physically implement
a BPMN-based logical model; mapping rules are required to implement a
BPMN-based model into BPEL.

• Unified model - the physical implementation is done using BPEL, thus
is platform independent as an ETL workflow can be exposed as a Web
service.

Cons:

• Structured data - only structured data sources are supported.

• No UDF support.

• Challenges - the ETL developer must have prior knowledge of BPEL and
tools that support BPEL-based ETL workflows.

3. XML-based approach [106]

Pros:

• Semi-autonomous behavior - a step-by-step method is proposed to
generate a physical implementation of an XML-based logical model us-
ing engine specific XML parser, but the ETL developer has to provide the
mapping rules to implement an ETL workflow.

• Quality metrics - the performance, freshness, recoverability, and reliabil-
ity quality metrics are addressed.

• Unified model - the logical design is created in the XML format. Since
most of the ETL tools support XML, it is easy to generate a corresponding
physical implementation using existing tools.

Cons:

• Structured data - only structured data sources are supported.

• No UDF support.

• Challenges - generating a physical implementation of a workflow from its
XML-based logical model requires a set of carefully defined rules.

To conclude, the discussed methods require extensive amount of input from the
ETL developer to execute a translation of a logical model into its physical represen-
tation. Although a few approaches have been proposed in this field, there is a need
for a framework that automatically or semi-automatically translates a logical model
into its physical implementation with minimum or no human support.

2.5. Conclusions 37

2.5. Conclusions

An ETL workflow comprises numerous tasks, e.g., data extraction, validation, trans-
formation, cleaning, conversion, de-duplication, and loading. All these tasks can be
represented and executed in many distinctive ways, e.g., using relational operators or
user-defined functions (implemented in various programming languages). Workflows
deployed in business architectures typically includes hundreds of tasks, this designing
an error-free and efficient ETL workflow is a complex and expensive task. For this
reason, the research community has contributed a significant amount methods for the
design, development, deployment, and optimization of an ETL workflow.

2.5.1. ETL workflow development: summary

There exist multiple techniques for an ETL workflow development. At the conceptual
level there are methods involving graphs, semantic Web ontology, UML notation, and
BPMN. All these methods propose diverse approaches to design an ETL conceptual
model in a precise and productive way. Then, at a logical level, there exist approaches
using graphs, which supplement a generic behavior of a logical design. Additionally,
there are methods to incorporate quality metrics in an ETL workflow for its efficient
and reliable execution. For a physical implementation of a logical design of an ETL
workflow, there exist methods that give detailed account on translating a logical model
into its corresponding physical implementation. Table 2.1 summarizes the discussed
methods for each development stage, i.e., conceptual modeling, logical modeling, and
physical implementation. Based on the analysis of the presented methods for each
development stage, we draw the following conclusions.

1. There are diverse methods for constructing a conceptual model of an ETL work-
flow e.g., graph-based [83, 101], UML-based [95], ontology-based [14, 82, 89, 90,
91], and BPMN [28, 29, 72, 106], from which we can conclude that the research
community has not yet concurred upon the standard notation and model for
representing an ETL conceptual design. As a consequence, it is difficult to
develop guidelines for validating an ETL design.

2. The discussed graph-based [83, 101] and UML-based [95] methods require the
ETL developer to extensively provide input during the modeling and design of
an ETL workflow, thus it can be error prone, time consuming, and inefficient.

3. Most of the methods are designed only for structured data [28, 83, 95, 101, 106]
and the support for semi-structured and unstructured data is very limited. Since
the variety of data formats is growing rapidly and most of data are unstructured,
it is important to extend the support for unstructured data in an ETL workflow.

38 2. State-of-the-Art in ETL Workflow Design

Table 2.1: Summary of an ETL workflow design methods

Development
Stage

Method Used Autonomous
Behavior

Data Source
Format

UDF
Supp.

Quality
Met-
rics

Conceptual
Model

Graph [83, 101] Manual Str. No No

UML [95] Manual Str. No No

Ontology [82, 89,

90, 91]

Semi-Auto Str. & Semi-Str. No No

BPMN [28, 29, 72,

106]

Semi-Auto Str. No Few

Logical
Model

Graph
[99, 100, 102, 106]

Manual Str. & Semi-Str. No Few

Physical
Imple-
menta-
tion

Reusable tem-
plates [96]

Manual Str. No Few

XML repre-
sent. using
Parser [106]

Semi-Auto Str. No Few

BPEL [28] Manual Str. & Semi-Str. No No

4. Almost all of the discussed design methods are based on the traditional ETL
tasks (e.g., join, union, sort, aggregate, lookup, and convert) and they mostly
do not consider UDFs as ETL tasks.

5. Few methods [88, 106] put emphasis on the issues of efficient, reliable, and
improved execution of an ETL workflow using quality metrics, as described in
[87]. However, most of the methods in practice do not capture or track these
quality metrics.

2.5.2. Open issues

On the basis of this literature review, we can conclude this chapter with the following
open issues.

1. There is a need for a unified model for an ETL workflow, so that it is easier to
validate an ETL design for its quality metrics.

2. There is a need to consolidate and fully support UDFs in an ETL workflow
along with traditional ETL tasks.

Chapter 3

State-of-the-Art and Current
Trends in ETL Optimization

In this chapter, we discuss the state of the art and current trends in optimizing ETL
workflows. We explain the existing techniques for its optimization, illustrated by ex-
amples. The discussed techniques are analyzed w.r.t. their advantages, disadvantages,
and challenges in the context of metrics such as: autonomous behavior, support for
quality metrics, and support for ETL tasks as user-defined functions. We draw con-
clusions on still open research and technological issues in the field of ETL.

3.1. Introduction

As discussed in Chapter 2, the design of an ETL workflow may become complex, as
it consists of multiple tasks and each of the ETL task has its execution cost, which
increases with the increase of the volume of data being processed. As a result of a
varying cost and a complex design, an ETL workflow may fail amid execution or may
not be able to finish its execution within a specified time window. In consequence,
a DW becomes outdated and cannot be utilized by its stakeholders. In order to in-
crease the productivity, quality, and performance of ETL workflows some ETL design
methods and optimization methods have been proposed e.g., the research community
has been focusing on techniques for optimizing the execution of an ETL workflow
[51]. The most common techniques are based on tasks rearranging and moving more
selective tasks towards the beginning of a workflow, e.g., [38, 57, 86]. On top of that,
the existing research proves that applying processing parallelism at a data level or
at task level, or both, is a known approach to attain better execution of an ETL
workflow.

In this chapter, we discuss the state of the art and current trends in optimizing
ETL workflows. First, we study and understand the existing techniques to optimize
ETL workflows as well as to evaluate them on the basis of some metrics that we
proposed (cf. Section 3.10). Second, we identify open research and technological
issues in the field of optimizing ETL workflows.

40 3. State-of-the-Art and Current Trends in ETL Optimization

The next sections of this chapter discusses different optimization techniques. Sec-
tions 3.2, 3.3, 3.4, and 3.5 discusses the State-space, the Dependency graph, the
Scheduling strategies, and the Reusable patterns approaches for ETL workflow opti-
mization, respectively. Section 3.6 discusses the Parallelism for ETL workflow opti-
mization. Section 3.7 discusses the Quality metrics for ETL workflow optimization.
Section 3.8 discusses the statistics for ETL workflow optimization, Section 3.9 talks
about different commercial ETL tools, and Sections 3.10 and 3.11 concludes this
chapter with the summary and conclusion of open research and technological issues
in optimizing ETL workflow, respectively.

3.1.1. Running example

To begin our discussion on the existing literature, we will be using the example de-
scribed in [101], which involves two data sources S1.PARTSUPP (PKEY, SUPPKEY,
QTY, COST) and S2.PARTSUPP (PKEY, SUPPKEY, DATE, DEPT, QTY, COST)
and a central DW.PARTSUPP (PKEY, SUPPKEY, DATE, QTY, COST). PKEY is
the part number, SUPPKEY is the supplier of the part, QTY and COSTas are the
available quantity and cost of parts per supplier, respectively.

Data are propagated from S1.PARTSUPP and S2.PARTSUPP into a DW table
DW.PARTSUPP, as shown in Figure 3.1.

Figure 3.1: An ETL workflow for the running example

The example assumes that source S1 stores everyday data about supplies in the
European format and source S2 stores the month to month data about supplies in the
American format. The DW stores monthly data on the available quantity of parts per
supplier in the European format, which means that data coming from S2 need to be
converted into the European format and data coming from S1 need to be rolled-up at
the month level in order to be accepted by the DW. S1 joins data from two separate
sources PS1 and PS2, and later the data are transformed into a format accepted by
the DW. Data from sources S1 and S2 undergo several transformations, denoted as
A11, . . . , A1n and A21, . . . , A2n, respectively. Finally, data from S1 and S2 are merged
at task Ann to be finally loaded into the DW.

3.2. State-space Approach for ETL Workflow optimization 41

3.2. State-space Approach for ETL Workflow
optimization

In order to reduce the execution cost, [86] presents a concept of optimizing ETL
workflows by decreasing the total number of tasks or by changing the order of tasks
in an ETL workflow. To this end, a state-space search problem is defined, where
each state in a search space is a Directed Acyclic Graph (DAG). In a DAG, tasks
are represented as graph nodes and relationships among nodes are represented as
directed graph edges. To find an optimal ETL workflow, new states are generated
that are semantically equivalent to the original state. A transition from an original
state to a new state may involve swapping two tasks, factorizing/distributing two
tasks, merging, or splitting tasks.

To illustrate the generation of a semantically equivalent new state using operation
distribute (i.e., to distribute the data flow in an task into different data flows rather
than operating over a single data flow), consider a conceptual model of the running
example as depicted in Figure 3.2. The data is propagated into a DW in two parallel
flows passing through different tasks and is finally unified at task 10. Then, in task 11,
the flow checks for the value of attribute QTY before loading data into a DW. This
task is highly selective, therefore it is beneficial to push the task to the beginning of
the flow and distribute the task into two parallel flows. Figure 3.3 shows Task 11_1
and Task 11_2 after applying the distribute operation to Task 11 in Figure 3.2. This
approach reduces the total cost of the flow without changing the semantics of the
ETL workflow.

[88] extends [86] w.r.t. generating an optimal ETL workflow in terms of per-
formance, fault-tolerance, and freshness, as described in [87]. In order to achieve
quality objectives, the approach applies 3 new transitions, namely: partition,
add_recovery_point, and replicate. partition is used to parallelize an ETL work-
flow to achieve better performance. add_recovery_point and replicate are used to

Figure 3.2: ETL workflow before applying operation distribute

42 3. State-of-the-Art and Current Trends in ETL Optimization

Figure 3.3: ETL workflow after applying operation distribute

Figure 3.4: Part of the ETL workflow after applying ‘Performance Heuristic’

provide a workflow persistence and recovery in case of a failure.
To generate a search space, the ’Exhaustive Search algorithm (ES)’ is used [86].

Next, the search space is pruned by using a cost model and different heuristics for
performance, reliability, and recoverability metrics. Once the state-space search prob-
lem is constructed using the ES algorithm, heuristics and greedy algorithms are used
to reduce and explore the search space to get an optimal ETL workflow.

For example, we want to apply the ’Performance Heuristic’ (i.e., more restrictive
tasks should be placed at the beginning of the flow) on the upper level flow of Fig-
ure 3.2. Task 11, which filters the data on the basis of attribute QTY should be
pushed before Task 3, as shown in Figure 3.4.

Consider another example, one of the ’Recoverability Heuristic’ states ‘add re-
covery at the end of an ETL phase, e.g., after extraction or transformation phase’.
Figure 3.5 shows recovery point (RP) after data is extracted from S1.PARTSUPP.

[96] also models an ETL workflow as a state-space search problem and applies
sorters in a graph node. Sorters change the order of input tuples, because in some
cases the order plays an important role in an improved execution of an ETL task.
In order to obtain the optimal solution, the ‘Exhaustive Ordering (EO)’ algorithm
is used. EO takes a logical design of an ETL workflow as an input in the form of a
DAG and computes its signature and its computing cost. The signature is a string
representation of a physical design of an ETL workflow. To represent a workflow

3.3. Dependency Graph for ETL Workflow Optimization 43

Figure 3.5: Addition of Recovery Point (RP) according to ’Recoverability
Heuristic’

(i.e., a graph) as a string, the following rules are proposed: a@p - the physical
implementation of ‘p’ of logical task ‘a’, . (dot) - names of tasks forming a linear path
separated by dot (.), // - concurrent tasks delimited by ‘//’ and each path enclosed in
parenthesis, a_b(A,B) - a sorter placed among tasks ‘a’ and ‘b’ based on attributes
‘A’ and ‘B’, V!A - a sorter on table ‘V’ based on attribute ‘A’. Based on the rules,
an ETL workflow shown in Figure 3.2 can be represented in terms of the following
signature:

((1.3.4@DT.5@NN) // (2.6.7@PO.8.9)) . 10@NL.11.12

In the signature, tasks 1, 3, 4, and 5 (in Figure 3.2) form a linear path in the upper
level flow and tasks 2, 6, 7, 8, and 9 form a linear path in the lower level flow. Both
the upper and the lower level flows are concurrent and therefore are separated by ’//’.
((1.3.4@DT.5@NN) denotes that task 4 is aggregated based on the date function ’DT’
and task 5 performs a not null check ’NN’. (2.6.7@PO.8.9)).10@NL.11.12 denotes
that task 7 applies projection ’PO’ on attribute DEPT as it is not required by a DW.
Finally, both flows are merged based on nested loop ’NL’ at task 10.

Once the signature is computed, the EO algorithm generates all possible states
by placing sorters at all possible positions. The EO algorithm then uses all possible
combinations of different physical implementations for each task. Finally, it chooses
a state with minimum execution cost as the optimal physical implementation.

3.3. Dependency Graph for ETL Workflow
Optimization

The optimization concept contributed in [57] draws upon the idea of rearranging tasks
in an ETL workflow (as proposed in [86]), in order to construct a more efficient variant
of this workflow. The following assumptions are made in [57]:

• an ETL workflow is represented as a DAG,

44 3. State-of-the-Art and Current Trends in ETL Optimization

• every task has associated a selectivity (defined as a ratio: output/input data
volume),

• every task has associated a cost, which is a function of an input data size,

• a workflow is rearranged by means of operations: swap, factorize/distribute,
merge/un-merge (as in [86]),

• a workflow rearrangement is guided by an optimization rule that moves (if pos-
sible) more selective tasks to the beginning of the workflow.

[57] introduced a dependency graph - a structure that represents dependencies
between tasks in a workflow. The graph is constructed by applying the ‘swappability
test’, proposed in [86]. Two given tasks are considered independent of each other if
they are swappable, i.e., if they conform to the following four rules:

1. the tasks to swap must be adjacent to each other in the dependency graph,

2. the tasks to swap must have a single in/output schema, and must have exactly
one consumer of the output schema,

3. the tasks must have the same name for attributes in their in/output schema,

4. the tasks must generate the same schema before or after applying the swap
operation.

As an example, let us consider a linear flow shown in Figure 3.6. Recall, that:
1) data source S2 stores costs and dates in the US format, 2) function $2e (task 9)
converts USD into EUR, and 3) task 9_1 selects some rows based on the value of
attribute ‘cost’ (expressed in EUR). Since task 9_1 cannot be executed before task 9,
they are non-swappable. Therefore, tasks 9 and 9_1 are dependent on each other. On
the contrary, tasks 7 and 8 are swappable because they have non-intersecting schemas
and they are independent on each other. Task 6 is also independent. Such checks are
performed for each task in an ETL workflow and the dependency graph is created.

Figure 3.6: Swappable & non-swappable tasks in an ETL workflow

The dependency graph is used for narrowing possible space of allowed rearrange-
ments of tasks within a given workflow. To this end, the authors proposed a greedy

3.3. Dependency Graph for ETL Workflow Optimization 45

heuristic that is applicable only to linear flows. For this reason, a given complex ETL
workflow, with multiple splits and merges (joins) is divided into n linear flows.

As an example, let us consider a complex ETL workflow, as shown in Figure 3.7.
The workflow is divided into the three following linear flows: LFI with tasks (3,4,5),
LFII with tasks (6,7,8,9,10), and LFIII with tasks (12,13).

Figure 3.7: Logical linear division of a complex ETL workflow

Having divided a complex workflow into linear flows, each linear flow is optimized
by rearranging its tasks. To this end, an algorithm was proposed whose intuition is
as follows. Nodes of the dependency graph are ordered in a linear workflow by their
selectivities. Less selective tasks are placed closer to the end of the flow (the target).
This way, more selective tasks are moved towards the beginning of the flow (towards
a data source). Tasks that depend on another tasks T must be placed to the right of
T . This way, the dependencies between tasks represented in the dependency graph,
are respected.

Having optimized the linear flows, the final step is to combine the flows into
larger linear flows that include all the tasks processing data from the source to the
destination. For example, the linear flows from Figure 3.7 are combined into two
larger linear flows - the first one is composed of [LFI, LFIII] and the second one is
composed of [LFII, LFIII].

Next, each combined linear flow is optimized by rearranging its tasks, as described
above. There are tasks that may be moved from a given linear flow LFm to the next
linear flow LFn, i.e., in the direction towards the end of a workflow. Such tasks are
called forward-transferrable. There are also tasks that may be moved in the oppo-
site direction, i.e. towards the beginning of a workflow. They are called backward-
transferrable. An execution order within a combined linear flow is determined by the
order implied by the dependency graph.

For example, in Figure 3.7 tasks 5 and 9 have the same semantics (selecting rows
with not null costs). Therefore, they can be moved forward to the beginning of linear

46 3. State-of-the-Art and Current Trends in ETL Optimization

flow III, such that the linear flow will be composed of tasks (5_9, 12, 13). Task 5_9
is a new task created by the factorize task, having the same semantics as 5 and 9.
Similarly, task 12 (selecting rows based on the value of attribute QTY) can be moved
to LFI and LFII by applying the distribute task.

Having constructed the combined linear flows, each combined flow is optimized by
and algorithm whose intuition is as follows. All possible rearrangements of backward-
and forward-transferrable tasks are analyzed and for each of them an execution cost
of the combined linear flow is computed. Next, the rearrangement with the lowest
cost is selected.

3.4. Scheduling Strategies for ETL workflow
Optimization

[51] proposes a solution to optimize the performance of an offline batch ETL workflow
in terms of execution time and memory consumption without the loss of data. To this
end, a multi-threaded framework with incorporated ETL scheduler is presented, where
each node of an ETL workflow is implemented as a thread. The proposed framework
monitors, schedules, and guarantees the correct execution of an ETL workflow based
on the proposed scheduling strategies such as, ‘Minimum Cost Prediction (MCP)’,
‘Minimum Memory Prediction (MMP)’, and ‘Mixed Policy (MxP)’.

The MCP scheduling strategy is proposed to improve the performance of an ETL
workflow by reducing its execution time. The ETL scheduler prioritizes tasks to be
scheduled at each step that have the largest volume of input data to process at that
time. As a result, the task with the largest input queue is able to process all data
without any interruption from the ETL scheduler.

The MMP scheduling strategy is proposed to improve memory consumption by
scheduling tasks at each step that have the highest consumption rate (consumption
rate = number of rows consumed / processing time of input data). As a result, the
ETL scheduler maintains a data volume low in a system by scheduling the flow of
tasks whenever an input queue is exhausted due to higher memory consumption of
the task.

The MxP strategy is proposed to combine the benefits of MCP and MMP includ-
ing operating system’s default scheduling strategy (i.e., Round-Robin) by exploiting
parallelism within an ETL workflow.

A set of scheduling policies is assessed for the execution of an ETL workflow.
The results of incorporating scheduling policies are as follows: 1) MCP outperforms
other scheduling strategies w.r.t. execution time, 2) MMP is better w.r.t. average
memory consumption, 3) MxP, which incorporates multiple scheduling strategies (e.g.,
MCP, MMP, or Round-Robin) by splitting an ETL workflow, achieves better time

3.6. Parallelism for ETL Workflow Optimization 47

performance. The better time performance is achieved by either prioritizing memory
intensive tasks or by scheduling an ETL workflow to avoid blocking ETL operations.

3.5. Reusable Patterns for ETL Workflow
Optimization

[98] presents reusable patterns, as a mean to characterize and standardize the rep-
resentation of ETL tasks along with the strategy to improve the efficiency an ETL
workflow execution. The paper proposes to standardize the representation of fre-
quently used ETL tasks that involve a single transformation (e.g., surrogate key trans-
formation, checking null values, and primary key violations), called ETL Particles.
ETL tasks that perform exactly one job and involve exactly one transformation (e.g.,
$2e conversion) are called ETL Atoms. ETL Atoms that involve a linear flow of ETL
particles are called ETL Molecules and an ETL workflow is called ETL Compound.

The paper then presents a normal form of ETL tasks, e.g., the normal form of
task 8 in Figure 3.7 can be represented as follows:

I(πDEPT),A2E(DATE),O(NNCOST)

I is the input schema coming from task πDEPT , A2E is the specific template task that
converts the format of attribute DATE from American to European. O represents
the output of task 8 as an input to the next task NNCOST . Similarly, tasks 3 to 12
are ETL Molecules and the entire flow in Figure 3.7 including tasks and record sets
represent the ETL Compound.

3.6. Parallelism for ETL Workflow Optimization

Besides the aforementioned optimization strategies, incorporating parallelism in an
ETL workflow is another popular strategy to achieve better execution performance.
Parallelism can be achieved either by partitioning the data into N subsets and process
each subset in parallel sub-flows (data parallelism) or by using pipeline parallelism
(task parallelism) as shown in Figure 3.8.

For a simple ETL workflow, the data parallelism can work well. However, for
a complex ETL workflow (e.g., non-linear flows or flows with data and compute-
intensive tasks), combination of data and task parallelism is required. Hence, a mixed
parallelism is beneficial when either communication in a distributed environment is
slow or the number of processors is large [21].

48 3. State-of-the-Art and Current Trends in ETL Optimization

Figure 3.8: Data parallelism and task parallelism

3.6.1. Parallelism in traditional dataflow

Most of research on ETL workflow parallelism has focused on a traditional data-
flow parallelism, from which the most prominent one is the MapReduce framework
[24]. It uses a generic key/value data model to process large scale data in a parallel
environment. MapReduce provides two functions, Map and Reduce, both having two
input parameters i.e., 1) a set of input data set in a key/value format and 2) an
user defined function (UDF). Map assigns a key/value pair to its input data using an
UDF and produces a set of output key/value pairs. The Reduce function then groups
the key/value pairs of its input data on the basis of keys and finally each group is
processed using an UDF. Storage for MapReduce is based on distributed file system
called Hadoop Distributed File System (HDFS) [81].

The MapReduce framework has its limitations i.e., 1) it accepts a single set of
input data set at a time in a key/value format and 2) always executes in a strict
order, i.e., first Map and then Reduce, 3) the output data from Map have to be
stored into an intermediate file system, which makes data processing slow due to data
partitioning and shuffling, and 4) developers have to write a custom code for the Map
and the Reduce functions, which is hard to maintain and reuse.

Another parallel processing framework is PACT [12]. It is based on the Paral-
lelization Contracts (PACTs), which consists of an Input Contract and an optional
Output Contract. The Input Contract is the generalization of the Map and Reduce
functions and takes an UDF and one or more data sets as an input. It also provides
an extended set of Input Contracts i.e., ‘Cross’, ‘Math’, and ‘CoGroup’ functions,
which complements Map and Reduce functionality and overcomes the limitations of
MapReduce model i.e., The Input Contract does not need to be executed in a fixed
order and allows multiple inputs of key/value pairs. The Output Contract denotes
different properties of the output data, which are relevant to parallelization. These
properties can be either 1) preserving a partitioning property or 2) an ordering prop-
erty on data that is generated by an UDF. An input UDF contains the strategy (such

3.6. Parallelism for ETL Workflow Optimization 49

as partitioning, re-partitioning, or broadcasting) for parallelizing in PACT.
For example, let us introduce another concept in our running example, RE-

VIEWS (RID, PKEY, DEPT, REVIEW, SCORE, ENTRYDATE), which stores user
reviews along with its computed score for each ‘part’ stored in a department. Now
consider analytical query Q, which provides ‘parts’ from S1.PARTSUPP having COST
greater than some amount, let us say ‘c’. Query Q joins S1.PARTSUPP with RE-
VIEWS, keeping only ‘parts’ where the review score is greater than some threshold
‘s’, and reduces the result set to the ‘parts’, which are not present in S2.PARTSUPP
for some department ‘d’.

Figure 3.9 shows query Q as: (a) the MapReduce implementation and (b) the
PACT implementation. The MapReduce implementation requires two stages of
the MapReduce job. The first stage performs a join on the basis of PKEY in
S1.PARTSUPP (S1) and REVIEWS (R), and carries out the specific selection based
on S1. COST > ‘c’ and R.SCORE > ‘s’. The result from the first stage joins with the
selection on S2.PARTSUPP (S2) on the basis of S2.DEPT = ‘d’ in the Map function
of the second stage. The reducer in this stage performs an anti-join on the result set
(when no S2.PARTSUPP row with an equal key is found).

The PACT implementation for the same query Q requires three separate user-
defined functions (UDFs) attached to the Map contract to perform a selection on
data sources S1, R, and S2 instead of a single user-defined function in a MapReduce
scenario, such that each UDF is executed in parallel. The Match contract replaces
the Reduce contract in the original MapReduce implementation. It matches the
incoming key/value pairs from data sets with the same key and forms an independent
set based on the similar keys. The Match contract guarantees that the independent
set of key/value pairs is supplied to exactly one parallel instance of the user-defined
function so that each set is processed independently. Finally, the CoGroup contract
implements the anti-join by releasing the rows coming from the Match contract. The
CoGroup contract assigns the independent subsets with equal keys to the same group.
The PACT implementation allows the flexibility to parallelize tasks by giving parallel
hints using output contracts such as the SameKey contract. SameKey is the output
contract attached to the Map, Match, and Co-Group contracts, which assures that the
value and type of a key will not change even after applying the user-defied functions.
Such hints are later exploited by an optimizer that generates parallel execution plans.

The strategy for the generation of an efficient parallel data flow is implemented
in the Selinger-style SQL optimizer [79]. This kind of optimizer selects a globally
efficient plan by generating multiple plans, starting from data sources, and pruning
the costly ones based on partitioning and sort order properties. The plan with the
lowest cost is selected as an optimized query plan. A PACT program is executed on a
three-tier architecture [5] composed of: a PACT compiler, engine Nephele [105], and
a distributed file system. There are two steps to create a parallel data flow for the

50 3. State-of-the-Art and Current Trends in ETL Optimization

Figure 3.9: MapReduce vs PACT implementation

PACT program, which are as follows:

1. Once the execution plan for a PACT program is chosen, a PACT compiler trans-
forms the PACT program into a Nephele DAG where vertices represent UDFs
wrapped in a PACT code and edges show data flows between those vertices.

2. A DAG is then parallelized by creating multiple instances of each vertex depend-
ing on the required degree of parallelism for each PACT. That is, a number of
parallel instances of each vertex varies hence different parts of a PACT program
may have different degree of parallelism. This property of a parallelized DAG
can be exploited in order to get an optimal parallelized data flow.

[41] proposes a method to optimize a PACT program consisting of UDFs to process
input data into multiple subsets, as follows:

1. use a static code analysis of an UDF (UDFs are considered as black-box tasks
with unknown semantics) to obtain relevant properties required to order UDFs;

2. enumerate all valid re-orderings for a given PACT program [42];

3. compute all possible alternative re-orderings using a cost-based optimizer to
generate the execution plan by selecting execution strategies;

3.6. Parallelism for ETL Workflow Optimization 51

4. select and submit the plan with a minimum estimated cost for a parallel execu-
tion [12].

To overcome the aforementioned limitations of the MapReduce framework, an in-
memory parallel computing framework Spark [1] uses multi-pass computation, i.e.,
computing components several times, using a Direct Acyclic Graph pattern. It also
supports in-memory data sharing between multiple tasks. Spark allows the developers
to create applications using API based on Resilient Distributed Dataset (RDD). RDD
is a read-only multiset of data items distributed over a cluster of machines. RDD is
placed on top of a distributed file system (typically HDFS) to provide multi-pass com-
putations on data by rearranging the computations and optimizing data processing.

Another approach towards parallelizing a data flow is Structured Computations
Optimized for Parallel Execution (SCOPE) [20]. It supports analyzing massive
amount of data residing on clusters of hundreds or thousands of machines by means of
and extensible scripting language similar to SQL. SCOPE uses a transformation-based
optimizer which is a part of Microsoft’s distributed computing platform called Cos-
mos. Cosmos accepts SCOPE scripts, translates them using SCOPE compiler, and
finally invokes the SCOPE optimizer. The SCOPE optimizer introduces considerable
parallelism based on a cost function. As presented in [109], the SCOPE optimizer
generates a large number of execution plans by taking into account structural proper-
ties of data (e.g., partitioning, sorting, or grouping). The generated execution plans
are then pruned using a cost model. However, this approach is restricted to relational
operators (ROs) only, whereas in practice, it is important to optimize both ROs and
UDFs.

The work presented in [37] acknowledges the importance of optimizing both ROs
and UDFs. It extends the work presented in [109] by introducing parallelization
techniques for UDFs. An UDF is treated as a black box operation. In order to
describe an UDF behavior and provide means for its parallelization, a set of UDF
annotations were proposed. They describe pre- and post-conditions for partitioning
and hints for an optimizer. For example, annotations BEGIN and END keywords,
enclosed within annotations BEGIN PARALLEL and END PARALLEL mark the
beginning and end point of the user-defined code. A script (with annotations) similar
to SQLScript [16] is used to express complex data-flows containing ROs and UDFs
together. The main goal is to parallelize ROs and UDFs together, which is achieved by
directly translating a RO into the internal representation of the proposed cost-based
optimizer as described in [109] and by applying the ‘Worker-Farm’ pattern [36] on an
UDF. A complete set of annotations is described in [37]. The proposed approach has
two main limitations: 1) it supports UDFs implemented only as table functions and
2) it requires the ETL developer to annotate the custom code manually, i.e., in fact
optimize the code manually.

52 3. State-of-the-Art and Current Trends in ETL Optimization

3.6.2. Parallelism in an ETL workflow

Introducing parallelism into an ETL workflow is not a trivial task. The ETL devel-
oper has to decide which tasks to parallelize, how much to parallelize, and when to
parallelize before incorporating parallelism into an ETL workflow.
Task and code parallelism

[94] proposes a method to exploit parallelism at a code level by introducing strate-
gies for both task and data parallelism. A set of constructs is proposed in order to
enable the ETL developer to convert a linear ETL workflow into its corresponding par-
allel flow. The constructs are easy to use and do not require complicated modification
of a non-parallel ETL workflow. However, the proposed solution is code-based and
requires the ETL developer to configure the degree of parallelization. Furthermore,
this solution does not provide any cost model to estimate a performance gain.
Parallelizing by means of MapReduce

[61, 62] present a parallel dimensional ETL framework based on MapReduce called
ETLMR. The focus of ETLMR is on star schema, snowflake schema, slowly changing
dimensions (SCDs), and data intensive dimensions. The ETLMR processes an ETL
workflow in two stages. In the first stage, dimensions are processed using MapReduce
tasks. In the second stage, facts are processed using another MapReduce task. Di-
mensions can be processed by using either of the following strategies: One Dimension
One Task (ODOT) and One Dimension All Tasks (ODAT). In ODOT, dimensions
are processed by the Map task using an UDF and then the processed data are propa-
gated into a single Reduce task. In the Reduce task, user-defined transformations are
performed on rows and then loaded into a DW. In ODAT, an output of the Map task
is partitioned in a ‘round-robin’ fashion i.e., the output is processed by all the Reduce
tasks such that each Reduce task receives equal number of rows. The uniqueness of
dimension key/values is maintained by using a global ID generator and a ‘post-fixing’
method, which merges rows with the same values but different keys into a single row.
To optimize ODOT, keys with the same values are combined together in the Combiner
task, to reduce the communication cost between the Map and Reduce tasks. Using
the single Reduce task can become a bottleneck in case of a data intensive dimension,
therefore ODAT is used to overcome the bottleneck.

Fact processing in ETLMR requires looking up of dimension keys and aggregation
(if required). If aggregations are not applicable, only the Map task is used and the
Reduce task is dropped. Otherwise, only the Reduce task is used since aggregations
must be completed from all the data in the Reduce task. Once the fact data is
processed, it is loaded into a temporary buffer where it resides until the buffer is fully
loaded. The Map and Reduce tasks then perform bulk loading in parallel into a DW.

For example, consider DATE and PARTS dimension in a DW. The Map task gen-
erates key/value pairs for each dimension, such that, a key is the name of a dimension
(i.e., key = DATE for dimension DATE, and key = PARTS for dimension PARTS).

3.6. Parallelism for ETL Workflow Optimization 53

Figure 3.10: ETLMR - Dimension processing methods

All keys with the same name go to a single Reduce task i.e., a record with key=
DATE propagates to Reduce_DATE and record with key= PARTS propagates to
Reduce_PARTS, as shown in Figure 3.10(a).

For example, consider two Reduce tasks (REDUCE_001 and REDUCE_002) and
dimensions (DATE and PARTS). The DATE dimension has 50,000 rows and the
PARTS dimension has 150,000 rows (i.e., 200,000 rows in total). Each Reduce task
receives an equal number of rows (i.e., 100,000 rows) from the Map tasks to process,
as shown in Figure 3.10(b).

However, ODAT causes duplication of key values as the data for the dimension
table is processed by all tasks. ETLMR handles this situation by using one of two
methods, i.e., 1) a global ID generator and a post-fix method, which fixes duplicate
values in lookup attribute or by using private ID generator, 2) a post-fix method to fix
duplicate key values, which is applied after all the tasks of dimension processing have
finished. To optimize the processing of dimensions, ETLMR offers offline processing
of dimensions where dimensions are stored offline physically on all nodes. Thus, tasks
do not have to communicate with a DW to process online dimensions, which reduces
the communication cost. ETLMR also uses a hybrid of ODOT and ODAT. In this
approach, data intensive dimensions are partitioned based on business keys such that
rows with the same keys are sent to one mapper task. Finally, the global ID generator
is used to generate the dimension key values therefore, no post-fixing is required.

[63] presents a Hadoop based scalable dimensional ETL framework for Hive, called
CloudETL. The idea behind CloudETL is to allow ETL developers to write MapRe-
duce jobs to be executed on Hadoop without concerning the specific details of the
MapReduce configuration. The framework exposes a Java based library of commonly
used ETL constructs to the ETL developers to easily implement parallel ETL pro-
grams as well as increasing the productivity of developers.

The CloudETL’s workflow is designed in two sequential steps: 1) dimension pro-
cessing and 2) fact processing. For dimension processing, source data are first split

54 3. State-of-the-Art and Current Trends in ETL Optimization

and are assigned to the map tasks. A mapper processes source data that will go to
different dimensions. Data are then sent to different reducers to be written to the
HDFs. The dimension processing takes special care of Slowly Changing Dimensions
(SCDs) [54] by collecting different versions of the dimension values from both the in-
cremental incoming data and the existing data in the dimensions. For fact processing,
the CLoudETL reads and transforms the source data to retrieve the surrogate keys
from the referenced dimension table, called as lookup operations. Since, the lookup
operation is very slow in Hive, the CloudETL uses multi-way lookups to retrieve the
dimension key values through lookup indices, which consists of business key values,
dimension key values, and the SCD dates.

The experimental evaluation shows that the CloudETL outperforms ETLMR when
processing different dimension schemas as well as dimensional capabilities of Hive.
Partitioning and parallelization

[60] proposes ETL workflow partitioning and parallelization, as an optimization
method. Vertical and horizontal partitioning is suggested. Vertical partitioning is
impacted by tasks in an ETL workflow and the following tasks are distinguished:
row-synchronized - it processes row by row (e.g., filter, lookup, split, data format con-
version) and uses a shared cache to move data from task to task, block - processing
cannot start until all rows are received by the task (e.g., aggregation), semi-block -
receives rows from multiple tasks and merges them (e.g., join, set operators); pro-
cessing of the task starts no sooner than all expected rows are received. The authors
propose to partition and parallelize an ETL workflow at 3 levels. First, the whole
ETL workflow is vertically partitioned into multiple sub-workflows - called execution
trees. Second, execution trees are partitioned horizontally and each partition is run in
parallel. Third, single tasks in an execution tree are parallelized by multi-threading.

Vertical partitioning is executed as follows. An ETL workflow analysis is run
depth-first and it starts from a data source (the root of an ETL graph). All row-
synchronized components (i.e., the ones that use a shared cache) are added into a
new sub-workflow, so that their original order is preserved. If a block or semi-block
task is found, then it becomes a root of a new sub-workflow.

Figure 3.11 explains the workflow partitioning method. Analyzing the ETL graph
starts from data sources. For example S1 and S2 create two separate execution trees
T1 and T3, respectively. Task 3 is row-synchronized and it is added into T1, whereas
row-synchronized tasks 6,7,8, and 9 are added into T3. Since task 4 is a block task,
it becomes the root of a new execution tree T2 having task 5 as its only child. Task
10 is a semi-block task, which forms execution tree T4, composed of tasks 11 and 12.

Once the execution trees are constructed, internal parallelization is carried out
inside each of the execution trees. To this end, input data are partitioned horizontally
into n disjoint partitions (n is parameterized), where each partition is processed by
a separate thread. Finally, internal parallelization is carried out for tasks with a

3.7. Quality Metrics for ETL Workflow Optimization 55

Figure 3.11: ETL workflow partitioning

heavy computational load. To find such a task, time is measured during which a
task does not produce any output. If the time is greater than a given threshold then
the task becomes a candidate for internal parallelization. To parallelize a single task,
multi-threading is applied, i.e. an input of the task is divided into n equal splits,
each of which is run by a separate thread. Moving data between tasks within the
same execution tree is implemented by means of a shared cache, whereas moving data
between adjacent execution trees is implemented by means of coping data between
separate cache (cf. dotted arrows in Figure 3.11).

3.7. Quality Metrics for ETL Workflow Optimization

The goal of [87] is to reduce time and cost of ETL design, implementation, and
maintenance (DIM) by incorporating some quality metrics into an ETL workflow de-
sign. A layered approach is proposed for an ETL DIM, where each layer represents
a logical design, implementation, optimization, and maintenance. At each layer some
metrics are introduced (or refined from higher levels) that guide the ETL developer
to produce a high quality workflow. Furthermore, dependencies among metrics that
impact DIM are identified and discussed. The following metrics are proposed in the
so called QoX metric suite: performance, recoverability, reliability, and maintainabil-
ity - which characterize an ETL workflow as well as freshness - which characterizes
processed data.

Performance is represented by an elapsed execution time. The following tech-
niques for increasing performance are considered: 1) increasing the number of CPUs
and main memory, 2) reordering of tasks so that the most selective ones are placed at
the beginning of a workflow, as proposed in [57, 86], 3) data partitioning and paral-
lelization, as discussed in Section 3.6. The authors stress the importance of an ETL
engine parameters (features) to tune the engine, like: the number of CPUs assigned
to ETL processing, the size of main memory, a set of data partitioning algorithms, a

56 3. State-of-the-Art and Current Trends in ETL Optimization

set of workflow partitioning algorithms, detecting tasks to parallelize, a method for
determining where to split and merge parallel flows, and a method for determining
an optimal number of parallel flows.

Recoverability is defined as the ability of an ETL workflow to resume its execution
after an interruption and to restore the process to the point at which a failure occurred.
Recoverability can be achieved by: 1) restarting the ETL workflow from scratch or
2) inserting recovery points (RPs) to make a persistent copy of partial results of the
process. Implementing RPs requires thorough analysis to figure out where and how
many recovery points to set up, i.e., RP after extraction, RP after transformations,
RP after merging multiple flows, or RP after an operation that is costly or difficult
to undo (e.g., sort).

Reliability is defined as the resistance of an ETL workflow to execution errors.
It can be achieved by: 1) running in parallel multiple identical instances of an ETL
workflow (replication), 2) providing a pool of multiple identical and ready to use
instances of an ETL workflow (redundancy), e.g., in case of a failure of one instance,
its execution taken over by an instance from the pool, or 3) providing a pool of
multiple different implementations of an ETL workflow (diversity), e.g., in case of a
failure, the execution is taken over by another alternative workflow implementation
from the pool.

The authors identify the most important reliability measures, namely: a computa-
tion availability (i.e., an expected computation capacity of an ETL engine at a given
time), a computation reliability (i.e., a failure-free probability that an ETL engine will
execute a given task within a certain time window, without errors), a mean time to
failure, a mean computation before failure, a capacity threshold, and a computation
threshold.

Maintainability is defined as an effort to modify an ETL workflow. A workflow
needs to be modified as the result of: source structural changes, source software
changes, data warehouse structural changes, DW software changes, connecting or
disconnecting data sources.

Freshness is defined as a time difference between data appearance in a data source
and a corresponding data appearance in a data warehouse. It can be achieved by in-
creasing performance, improving an ETL design, or providing alternative implemen-
tation techniques for real-time processing (streaming).

The aforementioned QoX metrics are interrelated and interdependent, which may
lead to a contradictory behavior of a workflow. For example, on the one hand, in-
creasing performance by partitioning and parallelization may increase freshness but
on the other hand, it decreases maintainability due to a more complex workflow de-
sign. The authors stress that some metrics can be used only at certain levels of DIM.
For example, freshness and reliability can be handled at the physical level but at the
conceptual level their usefulness is questionable; conversely, performance is a perti-

3.7. Quality Metrics for ETL Workflow Optimization 57

nent metric at the conceptual, logical, and physical level of an ETL workflow design.
The interdependencies between the quality metrics have been confirmed by some ex-
periments. The authors report that: 1) increasing recoverability by means of recovery
points decreases performance, as additional disk operations are required to store RPs
and 2) the impact of some optimization techniques on the performance varies, e.g.,
increasing processing power does not improve performance linearly - there are parts
for an ETL workload whose parallelization impacts performance stronger than the
other parts.

As it requires a complete implementation and execution of the ETL workflow to
assess the aforementioned quality metrics, the authors in [27], propose a set of internal
metrics (a.k.a measures), that provide an ETL developer a set of guidelines to design
efficient ETL workflows even before writing a single line of programming code.

To define and devise the internal measures, the authors first depicted the ETL
workflows as directed graphs G(N,E), where N denotes the set of nodes representing
the data tasks, and E denotes the set of edges between the nodes. A node can be of one
of the several types e.g., ’data input’, ’data output’, ’filter’, ’field lookup’,’join’,’union’,
’aggregation’, ’sort’, ’pivot’, ’script’. Moreover, there are actions a node is able to
perform e.g., ’field manipulation’, ’field generation’, ’join’, ’lookup’, ’branching’, ’ex-
traction’, ’load’. The proposed internal measures are branched into two families: 1)
Size Family and 2) Cohesion Family.

The Size Family is based on the assumption that the efficiency of the ETL workflow
is based on the graph size (number of nodes), i.e., the larger the graph size, the lower
the efficiency, where the definition of efficiency comprises the execution time and/or
resource usage. Furthermore, different type of nodes have different type of impact on
the overall efficiency of the ETL workflow. For example, different node measures are
defined as follows:

• Branchin Nodes measure: cardinality of the nodes in the ’branching’ (filter)
category,

• Joining Nodes measure: cardinality of the nodes in the ’joining’ (join, union)
category,

• Lookup Nodes measure: cardinality of the nodes in the ’lookup’ (fieldlookup)
category,

• Script Nodes measure: cardinality of the nodes having a number of actions
greater than 2.

Moreover, the paper proposed further metrics depending on the type of incom-
ing data handled by a specific node e.g., Row-Set, Row-by-Row, and Input-output
measures.

58 3. State-of-the-Art and Current Trends in ETL Optimization

• Row-Set Nodes measure: cardinality of the nodes type [sort, pivot, aggrega-
tion].

• Row-by-Row Nodes measure: cardinality of the nodes type [fieldderivation,
fieldgeneration]

• Input-output Nodes measure: cardinality of the nodes type [datainput,
dataoutput]

The Cohesion Family is related to the amount of work processed by the graph
nodes. That is, the nodes performing more actions (low cohesion nodes) consume
more time and resources than noes performing less actions (high cohesion nodes),
which can be calculated as the proportion of low cohesion nodes in a graph i.e.,
cardinality of actions of low cohesion nodes divided by the sum of number of all
actions performed by the nodes in a graph.

The calculation and analysis of the aforementioned measures are helpful in point-
ing out to the ETL developers, which tasks within an ETL workflow may be time and
resource consuming in an ETL workflow.

3.8. Statistics for ETL Workflow Optimization

Most of ETL workload optimization methods rely on various statistics. In [38] the
authors provide a framework for gathering statistics for cost-based workload opti-
mization. To this end, a workload must be divided into parts, called sub-expressions
(SEs). The authors proposed to divide a workflow into SEs based on division points,
which are ETL tasks (activities). The following tasks are used as division points:
1) materialization of intermediate results, 2) transformation of values of an attribute
that is derived from the join of multiple relations and that is further used in another
join, 3) an UDF. Then, each SE is optimized independently. It must be stressed that
the proposed framework does not deal with generating execution plans or estimating
their costs, i.e., it is assumed that the set of SEs and their optimized execution plans
exists and are delivered by an ETL optimizer module.

Finding an optimal execution plan is based on: 1) identifying different possible
re-orderings of tasks (operators or activities) in a given SE and 2) estimating their
execution costs, in the spirit of [57, 86]. Each task has a cost function that is based
among others on: cardinalities of input relations (based on histograms), CPU and
disk-access speeds, memory availability. The following tasks are supported: select,
project, join, group-by, and transform.

There are multiple sets of statistics (called candidate statistics set - CSS) suitable
for optimizing a given SE. Some statistics can be computed from others, based on the
following computation rules:

3.9. Commercial ETL Tools 59

• the cardinality of the select task can be estimated if the data distribution on a
filtering attribute is known,

• for the project task, output cardinalities and distributions are identical to the
input ones,

• the cardinality of a join can be determined from the distributions of the input
tables on a join attribute,

• the cardinality of group by is identical to the number of distinct values of group-
ing attributes,

• for the transform task, output cardinalities and distributions are identical to
the input ones,

• if there exists a histogram on any set of attributes of table T, then the cardinality
of T can be computed by adding the values of buckets,

• if there exists a detailed histogram on attributes A and B, then a histogram for
A can be computed by aggregating buckets on B.

Each CSS may have a different cost of collecting its statistics (e.g., CPU and
memory usage). For this reason, a challenging task is to identify and generate a set
of statistics to be collected by an ETL engine during its execution, such that: 1)
the set of statistics can be used to estimate costs of all possible re-orderings of tasks
within a given SE and 2) time and resource overhead of collecting the statistics is
minimal. The authors identified that this is an NP-hard problem and to solve it they
proposed a linear programming algorithm. Finally, the authors suggested that the
whole ETL optimization method is divided into the 7 following steps: 1) identifying
optimizable blocks by dividing a workflow into sub-expressions, 2) generating opti-
mized sub-expressions by means of task reordering, 3) generating candidate statistics
sets, 4) determining a minimal set of statistics, 5) augmenting an optimized SE by
injecting into it a special component for collecting statistics, 6) running a SE and
gathering statistics, 7) optimizing the whole ETL workflow by means of cost-based
techniques.

3.9. Commercial ETL Tools

To the best of our knowledge, only 2 commercial ETL tools, namely IBM InfoS-
phere DataStage [59] and Informatica PowerCenter [2], provide some simple means of
optimizing ETL workflows.

60 3. State-of-the-Art and Current Trends in ETL Optimization

In IBM InfoSphere DataStage, the so-called balanced optimization is used. The
optimization is included in the following design scenario: 1) an ETL workflow is de-
signed manually (each task should be elementary, e.g., simple select from one table
instead of a join), 2) the workflow is compiled into an internal representation, 3) op-
timization options are defined by the ETL developer, 4) the balanced optimization
method is applied, and 5) the optimized workflow is produced to be run. The opti-
mization process is guided by some parameters/options/hints, including: 1) reduce
a data volume retrieved from a data source (if possible), i.e., move data transforma-
tions, aggregations, sorting, duplicate removal, joins, and lookups into a data source,
2) alternatively, if possible, move processing into a data target, 3) use bulk loading to
target, (4) maximize parallelism, and 4) use not more than a given number of nested
joins. Balanced optimization is supported for relational data sources, but its perfor-
mance for other data sources still needs to be assessed. In [17], the authors evaluated
effects of applying the balanced optimization to a streaming data source implemented
in Kafka Streams.

Informatica PowerCenter implements the so-called pushdown optimization. In this
optimization, some ETL tasks that can be implemeted as SQL commands are first
identified. Second, these tasks are converted into SQL and executed either at an
appropriate source or target database (depending on the semantics of the tasks).
This approach leverages the processing power of a database in which data reside.

Other tools, including AbInitio, Microsoft SQL Server Integration Services, and
Oracle Data Integrator support only parallelization of ETL tasks, with a parameter-
ized level of parallelism.

3.10. Summary

To sum up, we discussed various approaches to the performance optimization of an
ETL workflow, i.e., state-space search, dependency graphs, scheduling policies, and
reusable patterns to optimize and ETL workflow execution. We also presented strate-
gies that use parallelism in order to achieve execution performance in an ETL work-
flow. Finally, we presented optimization support available in commercial and open-
source ETL tools. Below, we summarize the approaches on the basis of the following
criteria:

1. Autonomous Behavior - whether an optimization method is automatic, semi-
automatic (i.e., requires input from the ETL developer), or manual;

2. UDF Optimization - whether a method supports the optimization of user-
defined functions;

3.10. Summary 61

3. Monitoring - whether a method or framework supports monitoring an ETL
workflow in order to identify performance bottlenecks;

4. Recommendation - whether a method or framework provides recommenda-
tions to improve the implementation of an ETL workflow.

1. State-Space-based approaches [38, 57, 86, 88, 96]

text

• Optimization techniques based on execution costs and tasks reordering
(similarly as query optimization techniques) are applied.

• Semi-autonomous behavior - an input is an ETL workflow in the form
of a graph. A given workflow is then transformed by an algorithm into a
more efficient but semantically equivalent workflow.

Cons:

• No UDF support - the proposed optimization algorithms support only
basic ETL tasks.

• No monitoring and recommendation - the proposed frameworks nei-
ther monitor ETL workflows for the performance bottlenecks nor provide
hints on how to improve the performance of a workflow.

• Challenges - one of the biggest challenges is the generation of an optimal
ETL workflow using the proposed algorithms. If an ETL workflow is large
and complex, the generation of an optimal workflow may take longer than
the actual time of execution of the ETL workflow itself. Moreover, [86, 88]
are limited to a few transition techniques from one state to another and
also do not give an account to translate an optimized logical model to its
semantically equivalent physical implementation.

2. Scheduling-based approach [51]

Pros:

• Scheduling policies are applied to optimize an ETL workflow execution
time and memory consumption.

• Semi-autonomous behavior - it is mainly focused on scheduling of ETL
tasks; the scheduling algorithm requires an ETL workflow as an input; the
scheduling is based on pre-defined policies.

• Monitoring - it monitors the entire ETL workflow, but only for the pur-
pose of scheduling ETL tasks at the right time; it does not monitor the
tasks to find out performance bottlenecks.

62 3. State-of-the-Art and Current Trends in ETL Optimization

Cons:

• No UDF optimization and recommendation - it does not specifically
optimize the behavior of an UDF task if it tends to be a bottleneck in an
ETL workflow; the scheduling algorithm does not provide any recommen-
dations to improve an input ETL workflow.

• Challenges - there is a possibility of losing data during scheduling, there-
fore, the approach will not be applicable to most of the traditional ETL
processing.

3. Parallelism-based approaches [60, 61, 62, 94]

Pros:

• Semi-autonomous behavior - the proposed approaches give a reason-
able account for parallelizing the ETL tasks, but the methods require a
considerable amount of input from the ETL developer to decide which
parts of an ETL workflow need to be parallelized, how much to parallelize,
and where to put split points in order to enable parallelism.

• UDF support - the methods proposed in [61, 62] support the ETL tasks
as UDFs but do not support their optimization.

Cons:

• No monitoring and recommendation - neither mechanisms for moni-
toring ETL workflows for bottlenecks nor recommendations to improve an
input ETL workflow are supported.

• Challenges - the proposed solutions do not provide any cost model to
identify the required degree of parallelism. Therefore, the ETL developer
has to either perform trial and error method or execute the ETL transfor-
mations using test data to figure out the required degree of parallelism.

4. QoX Suite [87]

Pros:

• Analyzes various quality metrics and their inter dependencies for an ETL
design (at a conceptual and logical level), implementation, optimization,
and maintenance. The metrics are used for assessing the quality of a work-
flow.

Cons:

• No autonomous behaviour - the approach provides only a theoretical
framework.

3.11. Conclusions 63

• UDF support - not discussed.

• No monitoring and recommendation - neither methods for monitoring
the performance of an ETL engine nor the functionality of improving an
ETL design based on analyzing quality metrics has been discussed.

• Challenges - the biggest challenge is how to efficiently guide the ETL
developer through subsequent stages of an ETL design, taking into account
current values of the proposed metrics.

To conclude, the state-space search approaches [86, 88] are considered among the
first ones towards the logical optimization of an ETL workflow. [86] models the prob-
lem as a state-space search problem, where each state in a search space is a DAG.
An optimal ETL workflow is achieved by choosing the optimal state from the number
of generated states that are semantically equivalent to the original state. [88] fo-
cuses on optimizing an ETL workflow for fault tolerance, performance, and freshness.
These approaches served as the premise for the optimization of an ETL workflow and
were later utilized by various researchers and specialists in this particular topic. [57]
proposes the dependency graph that is used for narrowing the space of allowed re-
arrangements of tasks within a given workflow. Most of ETL workload optimization
methods presented in this survey rely on various statistics. In [38] the authors provide
a framework for gathering statistics for cost-based workload optimization.

The second group of approaches focuses on strategies that use parallelism as a
mean for increasing ETL execution performance, but most of them focus on data
flow parallelism. [94] introduces a method to parallelize an ETL workflow (developed
in some programming language) by introducing both task parallel and data parallel
strategies. [61, 62] present an ETL framework based on MapReduce. Although [61,
62, 60, 94] give a reasonable account for parallelization, these methods require a
considerable amount of input from the ETL developer to decide which parts of an
ETL workflow need to be parallelized, how much to parallelize, and where to put the
split points in order to enable parallelism.

3.11. Conclusions

This chapter focused on the methods for the optimization of an ETL workflow and
afterwards narrowed down our point of interest to parallelization techniques. The
following ETL optimization approaches have been proposed so far: state-space search,
dependency graph, and scheduling policies. The state-space search approach serves
as the foundation for the optimization of an ETL workflow for other research. The
dependency graph approach focuses on the optimization of a linear and a non-linear
logical ETL workflow. The scheduling policies are proposed to optimize the ETL
workflow with respect to execution time and memory consumption.

64 3. State-of-the-Art and Current Trends in ETL Optimization

3.11.1. ETL workflow optimization: summary

Table 3.1: Summary of an ETL workflow optimization techniques

Optimization Tech-
nique

Autonomo-
us Behav-
ior

UDF Opti-
mization

Monitoring Recomme-
ndation

State-Space (DAG)
[38],[86],[88],[96]

Semi-Auto No No No

Dependency graph [57] Semi-Auto No No No
Scheduling [51] Semi-Auto No No No
Reusable Patterns [98] Semi-Auto No No No
Parallelism
[60],[61],[62],[94]

Semi-Auto Yes No No

In the literature, there exist multiple methods that revolve around data flow par-
allelism [12, 20, 24, 37, 41, 109]. However, research on an ETL workflow parallelism
has not appealed much consideration.

Table 3.1 summarizes methods on optimizing ETL workflows w.r.t. the criteria
described in Section 3.10 i.e., Autonomous Behavior, UDF Optimization, Monitoring,
and Recommendation.

The summary of Table 3.1 is as follows:

1. [51, 57, 60, 61, 62, 86, 88, 94, 96, 98] require extensive amount of input from
the ETL developer to optimize an ETL workflow, which makes his/her job very
complicated and time consuming. Furthermore, the proposed methods require
the ETL developer to be highly technical in programming as well as cautious in
order to understand the quality metrics and their impact on the performance.

2. The methods do not consider the optimization of UDFs in a comprehensive
manner. As UDFs are commonly used in an ETL workflow to overcome the
limitations of traditional ETL tasks, it is important to optimize UDFs along
with traditional ETL tasks. Since an UDF is typically considered as a black box
task and its semantics is unknown, it is very difficult to optimize its execution.

3. Currently, there is no such framework that autonomously monitors an ETL
workflow to find out which ETL tasks hinder its performance and gives recom-
mendations to the ETL developer how to increase its performance.

3.11.2. Open issues

On the basis of this literature review, we can conclude this chapter with the following
open issues.

3.11. Conclusions 65

1. There is a need for an ETL framework that shall reduce the work of the ETL
developer from a design and performance optimization perspective. The frame-
work should provide recommendations on: 1) an efficient design an ETL work-
flow according to the business requirements, 2) how and when to improve the
performance of an ETL workflow without conceding other quality metrics.

2. To improve the execution performance of an entire ETL workflow, techniques
based on task parallelism, data parallelism, and a combination of both for tra-
ditional ETL tasks as well as UDFs are required.

A new and yet almost unexplored area is handling structural changes in data
sources at an ETL layer. In practice, data sources change their structures (schema)
frequently. Typically after such changes, an ETL workflow cannot be executed and
must be repaired (cf. the maintainability metric in Section 3.7). Such a repair is done
manually by the ETL designer, as neither of commercial and open source ETL tools
supports (semi-)automatic repairs of ETL workflows. The tools support only impact
analysis.

So far, only two research approaches have been proposed that address this prob-
lem, namely Hecataeus [65] and E-ETL [107]. In [65], an ETL workflow is manually
annotated with rules that define the behavior of the workflow in response to a data
source change. In [107] a case-based reasoning is used to semi-automatically (or if
possible - automatically) repair an ETL workflow. Since both of the approaches do
not provide comprehensive solutions, this problem still needs substantial research.

A rapidly growing need for analyzing big data calls for novel architectures for
warehousing data, such as a data lake [93] or a polystore [25]. In both of the archi-
tectures, ETL workflows serve similar purposes as in traditional DW architectures.
Since big data exist in a multitude of formats and the relationships between data
often are very complex, ETL workflows are much complex than in traditional DW
architectures. Such architectures also need data transformations and cleaning (often
on-the-fly, i.e., when a query is executed). For these reasons, designing ETL work-
flows for big data challenging. Multiple, off-the-box ETL tasks are not suitable for
processing big data and such tasks have to be implemented by UDFs. Since a big data
ETL engine processes much complex ETL workflows and much larger data volumes,
the performance of the engine becomes vital.

The consequence of the aforementioned observation is that designing and opti-
mizing ETL workflows for big data is much more difficult than for traditional data.
Therefore, the open issues identified for traditional ETL workflows become even more
difficult to solve in the context of big data, which leads us to a development of the
next-generation ETL framework presented in next chapter.

Chapter 4

The Next-Gen ETL Framework

In this chapter, we discuss the architecture of the proposed extendable ETL framework
that addresses the challenges posed by big data discussed in Chapters 2 & 3. The pro-
posed consists of four modules named as: the UDFs Component, the Recommender,
the Cost Model, and the Monitoring Agent. The UDFs Component module addresses
the issue of no or minimal support for UDFs and their optimization in currently ex-
isting ETL frameworks, which is an integral part to develop ETL transformations
for big data. The Recommendation module utilizes the Cost Model component and
retrieves information from the Monitoring Agent in order to provide recommenda-
tions to the ETL developer. The Monitoring Agent module is proposed to assist the
Recommendation module as well as an end-to-end monitoring of ETL workflows.

4.1. Introduction

As discussed in Chapter 2 and 3, we carried out an intensive study on the existing
methods for designing, implementing, and optimizing ETL workflows. We analyzed
several techniques w.r.t their pros, cons, and challenges in the context of metrics such
as: autonomous behavior, support for quality metrics, and support for ETL tasks as
user-defined functions.

From the design and implementation point of view, we highlighted that most of
the design methods require ETL developers to extensively provide input during the
modeling and design phase of an ETL workflow, thus it can be error prone, time con-
suming, and inefficient. Hence, there is a need for an ETL framework that shall reduce
the work of the ETL developer from a design and performance optimization perspec-
tive. The framework should provide recommendations on: 1) an efficient design for
an ETL workflow according to the business requirements, 2) how and when to im-
prove the performance of an ETL workflow without conceding other quality metrics.
Moreover, there is a need to overcome the complexity of writing parallelizable UDFs
by incorporating the functionality in an ETL framework to allow ETL developers to

68 4. The Next-Gen ETL Framework

write parallelizable UDFs that tackle the range of different analytical use-cases.
From the optimization point of view, we discovered only a few methods empha-

sized on the issues of efficient, reliable, and improved execution of an ETL workflow.
Whereas, today’s need of real-time availability of data requires efficient ETL workflows
that can quickly process and analyze huge amount of data. Therefore, to improve the
execution performance of an entire ETL workflow, techniques based on task paral-
lelism, data parallelism, and a combination of both for traditional ETL tasks as well
as UDFs are required.

In this chapter, we proposed a three-layered architecture of the ETL Framework
that allows easy implementation of parallelizable UDFs to execute as an ETL task
powered by a distributed framework. Moreover, the proposed ETL framework uses a
cost-model to identify how and when to improve the performance of an ETL workflow
without conceding other quality metrics.

4.2. The Extendable ETL Framework

The extendable ETL framework is designed keeping in mind the limitations and short-
comings in the currently existing ETL methodologies and tools, and the challenges
posed by big data. The three-layered architecture of the proposed ETL Framework
is shown in Figure 4.1.

Figure 4.1: The overall architecture of the ETL Framework

The bottom layer is an ETL Workflow Designer, which may be any standard open
source ETL tool for designing ETL workflows. This layer communicates with the
middle layer, which is extendable and consists of the four components: 1) the UDFs
Component, 2) the Recommender, 3) the Cost Model, and 4) the Monitoring Agent,
described in detail in the following sub-sections.

The top layer in the architecture is the Distributed Framework. Its task is to

4.2. The Extendable ETL Framework 69

execute parallel codes of UDFs in a distributed environment, in order to improve the
overall execution performance of an ETL workflow.

4.2.1. The UDFs Component

The idea behind introducing this component is to assist the ETL developer in writing
a parallelizable UDF by separating parallelization concerns from the code.

The UDFs component contains a library of Parallel Algorithmic Skeletons (PASs)
or parallelizable code templates. These PASs are designed to be executed in a dis-
tributed environment, (e.g., a template for MapReduce or Spark to be executed in
Hadoop). The UDFs component requires a basic knowledge of distributed computing
and parallelization aspects from the ETL developer.

Figure 4.2 shows the working of the UDFs Component. The component provides
the already parallelizable code for the list of commonly used big data tasks (case-based
PASs) to the ETL developer (e.g., sentiment analysis, de-duplication of rows, outlier
detection) and a list of generic PASs (e.g., worker-farm model, divide and conquer,
branch and bound, systolic, MapReduce). The ETL developer either chooses the
Case-based PASs or the Generic PASs based on his/her requirements.

Figure 4.2: Extendable UDFs Component Architecture

As shown in Figure 4.2, a generic input to the UDFs Component is depicted as
[{usercode, case based PAS}, {(input format, output format)}, {max execution time
constraint}, {distributed machine specifications}]. For example, in case of the case-
based reasoning the ETL developer only has to provide the input and output data
formats {(input format, output format)}, execution time constraint to run the ETL

70 4. The Next-Gen ETL Framework

workflow (e.g., the ETL job must complete execution with in ’x’ number of hours
{max execution time}), and distributed machine specifications {distributed machine
specifications}, if known. In case of the generic PASs, the ETL developer has to pro-
vide the basic program for the chosen PAS {usercode}, an execution time constraint to
run the ETL workflow {max execution time}, and distributed machine specifications
{distributed machine specifications}. That is, for the MapReduce paradigm as a PAS,
only Map and Reduce functions would be required. The MapReduce configurations
(i.e., partitioning parameters, number of nodes) will be provided by the UDFs Compo-
nent. The Code Generator then generates the configuration and a paralellizable code
based on the ETL developer’s input to the component about the distributed machine
specifications, time constraints on the completion of the ETL workflow, and by the
recommendation of the Recommender component in the proposed ETL framework.
The specific configurations provided by this component are very critical to achieve
the right degree of parallelism.

Once the configurations are generated, the code provided by the ETL developer
and the distributed environment configurations will be executed in Distributed Frame-
work. The computed results are then returned to the ETL workflow for the next steps
in the workflow.

4.2.2. The Recommender

The Recommender includes an extendable set of machine learning algorithms to opti-
mize a given ETL workflow (based on metadata collected during past ETL executions)
and to generate a more efficient version of the workflow. Metadata may be collected
with the help of the Monitoring Agent, where it collects various performance statistics
of different ETL workflows and provide them to the Recommender. Since, there are a
few algorithms that can be applied to optimizing a workflow (e.g., Dependency Graph
approach) [88, 86], Scheduling Strategies [51], the ETL developer would then be able
to experiment with alternative algorithms and compare their optimization outcomes.

The Recommender component also helps the ETL developer to choose the best
possible PAS from the UDFs Component based on the developer’s input (c.f. Section
4.2.1) to the Recommender. To provide the optimal PAS to the UDFs Component, it
uses the Cost Model component.

4.2.3. The Cost Model

The algorithms used by the Recommender need cost models. The Recommender can
choose the appropriate cost model from a library of cost models in order to make
optimal decisions based on the ETL developer’s input to it.

The library of cost models may include cost models for monetary cost, performance
cost, and both cost and execution performance optimization. Since most of the big

4.3. Conclusions 71

data ETL workflows or UDFs for big data are executed in a cloud or a distributed
framework, there would be cost models to evaluate the performance of workflows
in a cloud computing environment [44, 46] and also to determine the best possible
configuration of virtual machines both in terms of execution time and monetary cost
[104].

Since the Recommender uses the Cost Model component to provide the optimal
PAS to the UDFs Component, the cost model would be able to select the optimal PAS
based on the Multiple Choice Knapsack Problem (MCKP) [43]. For example, suppose
an ETL workflow consists of n different computationally intensive UDFs and UDFs
component may generate m parallel variants of each UDF, there are mn combinations
of code variants. Therefore, finding an optimal UDF may be mapped to MCKP.

4.2.4. The Monitoring Agent

The Monitoring Agent allows to:

• monitor ETL workflow executions - e.g., number of input rows, number of output
rows, execution time of each step, number of rows processed per second.

• identify performance bottlenecks - e.g., which tasks are being delayed or aborted,
which tasks need to be optimized.

• report errors - e.g., task or workflow failures and the possible reasons.

• schedule executions - e.g., execution time of ETL workflows and creating a
dependency chart for ETL tasks and workflows.

• gather various performance statistics - execution time of each ETL task w.r.t
rows processed per second, execution time of the entire ETL workflow w.r.t rows
processed per second, memory consumption by each ETL task.

This is a standard component of any ETL engine. However, we would store all of
the aforementioned collected information in an ETL framework repository to be later
utilized by the Recommender and the Cost Model in order to make recommendations
to the ETL developer and to generate optimal ETL workflows.

4.3. Conclusions

Few research work has been proposed in literature on ETL frameworks specifically
for big data besides some cloud based distributed frameworks (e.g., Amazon Web
Services1 stack, Google Cloud Platform2, and Microsoft Azure3). These cloud based

1https://aws.amazon.com
2https://cloud.google.com/products
3https://azure.microsoft.com

72 4. The Next-Gen ETL Framework

distributed platforms provide several products that help in creating big data ETL data
pipelines and solutions. However, the provided products are not fully autonomous as
well as does not provide recommendations to the ETL developer for creating optimized
data pipelines at run-time.

In our proposed ETL framework, we addressed the issues like complex ETL work-
flows due to 3Vs of big data and how to solve the issues of compute-intensive UDFs.
Finally we also provided a fully automated framework to create ETL workflows.

In the next chapters, we discuss UDFs component and Cost Model module of
the proposed ETL framework to parallelize UDFs in an ETL workflow in detail with
experimental results.

Chapter 5

Parallelizing User-defined
Functions in an ETL

Framework
In this chapter we present the UDFs Component of the ETL framework, which allows
the ETL developer to choose a design pattern in order to write a parallelizable code
and to generate a configuration for the UDFs to be executed in a distributed environ-
ment. This enables ETL developers with minimum expertise of distributed and parallel
computing to develop UDFs without taking care of parallelization configurations and
complexities. We performed experiments on large-scale data sets based on TPC-DS
and BigBench. The results show that our approach significantly reduces the effort
of ETL developers and at the same time generates efficient parallel configurations to
support complex and data-intensive ETL tasks.

5.1. Introduction

In this chapter, we present a novel approach to incorporate a functionality in an ETL
framework, which assists the ETL developer in writing parallelizable UDFs to be
executed in a distributed environment e.g., Hadoop, Flink, etc. To achieve our goal, we
leverage the so-calledOrchestration Style Sheet (OSS) processor that encapsulates and
separates the parallelization concern from the development of UDFs. This processor
generates a parallelizable code and a set of configurations to execute a generated UDF
in a distributed environment.

In particular, our contributions highlighted in this chapter are the following:

• We provide a software application for the integration of any open source ETL
framework to facilitate the ETL developer in writing a UDF by separating
parallelization concerns from the code, thus reducing potential error sources in
the otherwise manual and cumbersome parallelization process. The choice of
open source ETL tool was made to use it as a sandbox for our approach, because
it provides more flexibility and control to the developers in order to develop
custom ETL tasks and alter currently existing ETL tasks. For example, we

74 5. Parallelizing User-defined Functions in an ETL Framework

used Pentaho Data Integration, which allows the developers to program user-
defined functions and generate them as any other built-in ETL task.

• We provide code skeletons or design patterns to be used by our application to
reduce the amount of effort required by the ETL developer in writing complex
and efficient programs.

• We present experiments on a large-scale data set based on BigBench [34], prov-
ing that optimizing the computing-intensive user-defined task improves the over-
all performance of an ETL workflow.

In Section 5.2 we describe the use case scenario of our running example, which we will
use throughout the chapter. We will then introduce Orchestration Style Sheet (OSS)
processor in Section 5.3. Our proposed framework and approach towards generating
parallelizable UDFs using OSS are described in Section 5.4. In Section 5.5, we dis-
cussed the use of Map-Reduce OSS for the sentiment analysis use case. Experimental
evaluation for the feasibility of our approach is discussed in Section 5.6. Conclusion
is included in Section 5.7.

5.2. Running Example

To motivate our discussion, we borrowed the product retailer use case of BigBench [34]
that covers 3Vs of big data. The data model consists of structured, semi-structured,
and unstructured components. The structured part of data is adopted from the TPC-
DS benchmark [69]. The semi-structured portion of data consists of user’s clicks on
the product retailer’s website. The unstructured portion of data comprises product
reviews submitted online in the English language.
As a use case for the remainder of the chapter we focus on an analytical scenario that
compromises the sentiment analysis of the product reviews. The data set contains one
or more reviews for each product submitted online by the users of the products. Since
it would be not acceptable to perform sentiment analysis over huge amount of data
every time during query processing, we want to pre-compute the sentiments. The
respective ETL workflow developed in Pentaho Data Integration (PDI) is depicted
in Figure 5.1. The ETL workflow sources data from tables INVENTORY, DATE
DIM, WAREHOUSE, ITEM, and PRODUCT_REVIEWS. The process fetches the
products that are in the inventory from year 2000 onward and are available in all the
warehouses located in the US. Then it applies the sentiment analysis algorithm on the
incoming data set in order to classify the unstructured product reviews as Negative or
Positive. This functionality is implemented as a UDF called CPUDF_DWH_OUT.
Finally, the computed result is exposed for analysis as a table that can be queried
later by the analyst.

5.3. Orchestration Style Sheets (OSS) 75

Figure 5.1: The ETL workflow for the running example

5.3. Orchestration Style Sheets (OSS)

To support multiple, potentially differently parallelized target platforms with as lit-
tle implementation overhead as possible, parallel algorithmic skeletons (PAS) can
be used. PAS are defined as algorithmic skeletons, or parallelism patterns, which
are high-level parallel programming models for parallel and distributed computing.
These can be provided as libraries working on specific data structures like vectors
and matrices as well as algorithms like MapReduce. However, these libraries are con-
strained to their supported data structures and algorithms, making them unsuitable
for problems not meeting these constraints.

In these cases, pragma languages offer a very flexible, yet low-level, alternative:
languages like OpenMP [23] support a wide range of target platforms while offering
high customizability. The price for this, however, is an increased implementation
overhead.

Pragma languages are also known as directive languages. These are described as a
construct that specifies how a compiler processes its input. Directives are not part of
the grammar of a programming language, and may vary from compiler to compiler.
They can be processed by a pre-processor to specify compiler behavior. Both in task-
and loop-based parallelization, the pragmas have to be repeated for every task or
loop, each time with slightly different parameters.

OSS [67] provide a way to combine the simplicity of skeleton libraries with the
flexibility of pragma languages using invasive software composition (ISC) [8]. Hence,
achieving language and platform independence. The central idea is to split the code
into reusable code fragments that can be woven into different variants of the source
code. Two aspects of this weaving process are particularly important.

76 5. Parallelizing User-defined Functions in an ETL Framework

First, the fragment specification and theweaving specification are performed
declaratively in style sheets and recipes. Style sheets contain styles consisting of code
fragments and addressing expressions determining the positions in the source code at
which they can be inserted. The code fragments themselves can contain variability
points, slots, that can serve as positions at which other fragments can be inserted.
The weaving specification is done with recipes that determine the selection and order
of styles to be applied to the code. Different recipes can be used to acquire different
code variants. Figure 5.2 gives an overview over the involved artifacts in OSS code
weaving.

Variant Two

Code.java

Variant One

Code.java

Orchestration
Style
Sheet

processor

Style
OpenACC.oss
Fragments

Style
OpenACC.oss
Fragments

styleA

Fragments

Style Sheets
Recipe
One

RecipesCode

algorithm code

Code.java

Recipe
Two

Figure 5.2: A workflow of the OSS processor showing the required and
generated artifacts

The second important aspect is that fragment specifications can contain at-
tributes, special code fragments that are not contained in the style definition but
rather computed using the program code. Using attributes, the results of problem-
specific, user-defined static analyses of the source code can be directly inserted into
the code.
In the presented use case, this analysis is used to reason about and transform data
types to adapt them to the interfaces provided by the distributed framework - Hadoop.

Furthermore, attributes can be used to specify application-specific variability
points. This permits all OSS-specific parts of the code to be hidden from the ap-
plication developer. Code fragments specified by him/her do not have to be included
in style files but can also be specified implicitly, e.g., as class members at specifically
defined positions. This method is used in the example as shown in Listing 5.1.

The source code composition of OSS including the fragment computation with
attributes is performed utilizing reference attribute grammars (RAGs) [39], a well-
known technology in compiler construction. OSS processor uses SkAT [52], a compo-
sition system built using the RAG tool JastAdd [26], that allows the type-safe and
well-formed composition of code fragments and the utilization of an extensible Java
compiler, ExtendJ. The OSS processor replaces the programmatic code composition
of SkAT with the presented declarative approach. The computed fragments used by
OSS are implemented as attributes of the attribute grammar, which in JastAdd are
simply specifically annotated methods added to language elements with an aspect

5.5. Using Map-Reduce OSS for Sentiment Analysis UDF 77

weaver [53]. Thus, writing new, user-defined, and problem-specific attributes is a fea-
sible task for a Java and Hadoop developer, enabling future extensible to distributed
frameworks and programming paradigms other than Hadoop, e.g., Spark, Flink.

5.4. Generating Parallelizable UDFs for an ETL
Workflow

In order to facilitate the ETL developer to write parallelizable UDFs without the
parallelization and optimization aspects of a program, we contribute the configurable-
parallelizable UDF generator called as the UDFs Component. The UDFs Component
can easily be integrated into an open source ETL framework e.g., Pentaho Data
Integration (Spoon) as a third-party tool. It utilizes OSS to generate parallelizable
code. In this approach we used OSS because it is a lightweight and extensible approach
that can be adopted to any target run-time on any High Performance Computing
(HPC) cluster. For example Graphics Processing Unit (GPU) or can be adopted by
parallel computing frameworks such as Hadoop and Spark.

Figure 5.3 shows the three-tier architecture of our proposed framework. The
top layer depicts Pentaho Data Integration (PDI), which provides a graphical user
interface to create ETL workflows. The middle layer comprises the UDFs Component
and the OSS composition system to provide parallel skeletons to the ETL developer,
thus enabling him/her to write parallelizable code without taking care of the critical
parallelization details (i.e., degree of parallelization - specified by the number of data
partitions, the number of map and reduce tasks in case of Hadoop as a distributed
framework). Subsequently, OSS is used to generate configurations for the user’s code,
which are finally executed in a distributed environment - Hadoop, as shown in the
bottom tier.

The involved artifacts and procedures are enumerated in Figure 5.3 and will be
explained in the following section to illustrate the process of generating optimized
UDFs to be executed in a distributed environment. We will explain the working of
the UDFs Component and application of the OSS processor with the help of our
running example described in Section 3.1.1.

5.5. Using Map-Reduce OSS for Sentiment Analysis
UDF

The running example in Section 3.1.1 discusses the use case of sentiment analysis
of product reviews as a UDF in an ETL workflow performed by a user-defined step
depicted as CPUDF_DWH_OUT in Figure 5.1 (c.f. Section 3.1.1). The idea is to

78 5. Parallelizing User-defined Functions in an ETL Framework

Figure 5.3: the UDFs Component high-level design for the generation of
parallelizable code using OSS

pre-compute the user sentiments during the ETL phase and propagate the computed
results into a data mart. This would help the data analysts to avoid executing the high
latency query every time they want to make decisions based on the user sentiments.

To assist the ETL developer to write parallelizable code for sentiment analysis, we
provide him/her with different Parallel Algorithmic Skeletons (PAS) or code skeletons
that can be executed in a distributed environment. For example, worker-farm, divide
and conquer, branch and bound, systolic, MapReduce or Spark code skeleton, where
the ETL developer has to insert his/her code for sentiment analysis into the provided
skeleton (Figure 5.3, Step 1).

Listing 5.1 shows the template for the Hadoop MapReduce use case with comments
highlighting the positions at which the user can include his/her code1.

As the template is a regular Java class, additional code like helper functions and
definitions of fields can be added, if necessary. The template is filled with the required
map and reduce code by the ETL developer and is sent to the UDFs Component, as
depicted in Figure 5.3, Step 2. The ETL developer only has to know the theoretical
detail of MapReduce paradigm so that he/she can logically divide the UDF code into
the map and the reduce functions.

The critical and the most important mode of parallelization i.e., deciding the opti-
mal number of mappers and reducers, the number of partitions to make, the processing
power of virtual machine to execute the UDF in order to achieve maximum perfor-
mance and all modifications to the code are denoted in style sheets (Runner Class

1In addition to the method bodies, the parameter types have to be adapted accordingly.

5.5. Using Map-Reduce OSS for Sentiment Analysis UDF 79

1 // #HADOOP_MAP_REDUCE#
2 public class Template {
3 public static class Map {
4 void setup () {
5 // add setup code here
6 }
7 void map(MapKeyType key , MapValueType value , Context context) {
8 // add map code here
9 }

10 }
11 public static class Reduce {
12 void setup () {
13 // add setup code here
14 }
15 public void reduce (ReduceKeyType key , Iterable<ReduceValueType>

values , Context context) {
16 // add reduce code here
17 }
18 }
19 void config () {
20 // add configuration code here
21 }
22 }

Listing 5.1: The empty template (PAS) provided to the user

1 style map:hadoop {
2 fragment MethodSlot ∗ i f (isMapMethod) {
3 slot KEYTYPE : mapKeyType
4 slot VALUETYPE : mapValueType
5 code :
6 <Method>
7 @Override
8 public void map(#KEYTYPE# key , #VALUETYPE# value , Context context)

throws IOException , InterruptedException {
9 #INNER#

10 }
11 </Method>
12 }
13 // other fragments
14 }

Listing 5.2: Excerpt of the Hadoop-MapReduce OSS style

80 5. Parallelizing User-defined Functions in an ETL Framework

1 recipe cpUDF {
2 map:hadoop
3 reduce : hadoop
4 runner :benchmark
5 }

Listing 5.3: OSS recipe used in the UDFs Component

in case of MapReduce paradigm) automatically provided by the UDFs Component.
Hence, separating the parallelization concerns from the code.

Therefore, the ETL developer does not have to provide the critical details of
parallelization. The UDFs Component will provide the best possible configuration for
executing the UDF in a distributed framework using recipes in a form of a Runner
class.

Listing 5.2 depicts the example of a Map style sheet, which modifies the map
method provided by the ETL developer in Listing 5.1, inserts the required data types
and returns values.

A recipe is used to trigger the composition (Figure 5.3, steps 3 and 4). A recipe
determines the selection and order of styles to be applied to the code. Listing 5.3
contains the used recipe, which first applies map and then reduce style sheets (cf.
line 2 and 3 respectively) on to the provided UDF code as well as append the runner
class to the UDF in order to specify the parallelization configuration. Finally, with
the provided skeleton code including the UDFs, the UDFs Component invokes the
OSS processor to build a parallelized version. The OSS processor is considered as
a black-box for the UDFs Component and we assume that the output of the OSS
processor will always be correct and accurate.

Using these input artifacts, OSS generates a MapReduce (parallelized) version
of the user-defined function (Figure 5.3, Step 5) that is subsequently processed by
Hadoop.

Currently in the proposed framework, we used a runner class (i.e., configuration
class for optimal parallelization) best suited for the available distributed environ-
ment. However, as a future work, we will introduce the mechanism in our proposed
framework to generate multiple recipes i.e., multiple parallel configurations, and then
to choose the optimal configuration for the distributed environment based on cost
and computation performance requirements. Furthermore, we will add more code
skeletons (PAS) e.g., for Spark, Flink, etc. in our library of skeletons.

5.6. Experimental Evaluations 81

5.6. Experimental Evaluations

In this section we discuss the execution performance (i.e., execution time of ETL
workflow) of the sentiment analysis code as a UDF generated by the UDFs Component
(i.e., parallelizable code). The generated parallelized UDF is executed in a cloud-based
distributed environment and a non-parallelizable UDF program executed in a cloud
based non-distributed environment.

We created two versions of the sentiment analysis algorithm in order to show two
different variants of the same algorithm, which are semantically equivalent.

The first exemplary variant of a sentiment analysis algorithm, called naïve, is a
handwritten custom code and is taken from [22]. It counts the number of positive
and negative words in a review by comparing them with positive and negative dictio-
naries loaded into the memory as a part of initial configuration2. For each positive
and negative word it increments a respective counter. Finally the sentiment score
is calculated by a formula: positivity=good / (good + bad). To categorize the user
review, each result above a THRESHOLD value is classified as Positive, otherwise as
Negative.
The second variant of the algorithm, called CoreNLP, is a long running, computing-
intensive program, which uses the Stanford CoreNLP framework [64]. It provides
natural language tools to annotate sentences to indicate parts of speech, named enti-
ties, word dependencies, and sentiment.

The idea behind testing different variants in different environments (i.e., cloud-
based distributed environment, pseudo-distributed environment (single node EMR
Cluster), and a non-distributed and a non-EMR environment) was to prove the fol-
lowing two assumptions:

• the non computing-intensive code (i.e., naïve) normally does not effect the over-
all performance of an ETL workflow whether it is executed in a distributed or a
non-distributed environment. In most of the cases, the non-compute intensive
program has an extra overhead if executed in a distributed environment. Nev-
ertheless, if execution performance is a strict requirement, it will cost a lot more
resources and the improvement of execution performance would still be much
lower than expected.

• The computing-intensive tasks become a bottleneck in an ETL workflow and
must be optimized. Because even a small change in the distributed factor can
make a big difference in improving the execution performance of an overall ETL
workflow.

To evaluate our approach, we used a BigBench [34] data set on around 20 Million

2The configuration can also be done in the setup method of the Map class

82 5. Parallelizing User-defined Functions in an ETL Framework

product review tuples. Each product has around 3 reviews and each review consists
of approximately 36 words.

Following are the details and learning of our experiment.
To carry out the evaluation, We used the M3.xlarge model of EC2 instances, each

having the similar specifications i.e., Intel processors with 4 cores vCPU and 15 GB
RAM. We evaluated the non-parallelizable version of the UDF on the non-distributed
EC2 instance with the same system configurations and specifications. We evaluated
our MapReduce UDFs on a single node (MR-SN) Amazon Elastic MapReduce (EMR)
cluster to depict a pseudo-distributed environment and on a six node EMR cluster
(MR-EMR) as a distributed environment. One node served as the master and the
rest as core workers. We tested the execution time of both parallel and non-parallel
UDFs with different sizes of data sets ranging from one thousand tuples to 20 million
tuples of unstructured data. Each test was executed at least five times and the results
presented are the average values of those test runs.

The Performance execution comparison of a non-parallelizable naïve sentiment
analysis program vs. semantically equivalent parallelizable MapReduce version is
shown in Figure 5.4 and Figure 5.5. The graph in Figure 5.4 shows 1) the execution
time of the non-parallelizable variant of the naïve code, 2) its corresponding MapRe-
duce version executed in a single-node (MR-SN) EMR cluster, and (3) the MapReduce
version executed in the six node Amazon EMR cluster (MR-EMR).

Figure 5.4: MapReduce vs. non-parallelizable naïve code exe. time

For a data set ranging from one thousand to less than one million tuples, the
naïve non-parallelizable program is more efficient in terms of execution performance
as compared to its MapReduce variants (MR-SN and MR-EMR). As the number of

5.6. Experimental Evaluations 83

tuples increases to more than one million, the execution time of MR-EMR reduces as
compared to MR-SN as well as the non-parallelizable program.

The graph in Figure 5.5 shows that the speedup of MR-EMR is small, i.e., by a
factor of two and the speedup of MR-SN is worse than the non-parallelizable variant
because of the Hadoop overhead.

The speedup is determined as the execution time of a MapReduce program divided
by the execution time of a non-parallelizable program.

Figure 5.5: Parallelizable MapReduce speedup for naïve code

Hence proves our first assumption that the non computing-intensive code normally
does not effect the overall performance of an ETL workflow whether it is executed in
a distributed or a non-distributed environment.

Performance execution comparison of a non-parallelizable CoreNLP sentiment
analysis program vs. semantically equivalent parallelizable MapReduce version is
shown in Figures 5.6 and 5.7.

Figure 5.6 shows the execution time of the CoreNLP variant of the sentiment
analysis program. The execution time for MR-SN and the non-parallelizable ver-
sion are similar. The execution time difference between the MR-EMR and the non-
parallelizable program is small for the number of rows less than or equal to 0.1 million.
However, as the data size increases, the MR-EMR execution performance increases
as the number of Map workers increases and computing intensive tasks are executed
in parallel.

Figure 5.7 shows a notable speedup for MR-EMR for 0.5 million tuples and above.
However, there is no speedup for MR-SN since there are only two Map workers in
a pseudo-distributed environment. Hence, the results prove our second assumption

84 5. Parallelizing User-defined Functions in an ETL Framework

Figure 5.6: MapReduce vs. non-parallelizable CoreNLP exe. time

Figure 5.7: Parallelizable MapReduce speedup for coreNLP code

5.6. Experimental Evaluations 85

that for computing-intensive ETL tasks, even a small change in the distributed factor
can make a big difference in improving the execution performance of an overall ETL
workflow.

We also analyzed the time saved by the programmers in developing or designing
such UDF’s using or not using the UDFs Component to address the second contribu-
tion i.e., code skeletons or design patterns to be used in the UDFs Component helps
to reduce the amount of effort required by the ETL developer in writing complex
and efficient programs. Figures 5.8(a) and 5.8(b) shows the effort required by the
ETL developer in terms of Line of Code (LOC) to write an efficient parallel sentiment
analysis program. The black portion of the figure shows the user-defined code weaved
together with the gray portion of the code, which is generated by the UDFs Compo-
nent using the OSS processor. In the naïve version, almost 50% of the code and in
case of the CoreNLP version almost 65% of the code is generated automatically by
the UDFs Component.

(a) Naïve version (b) CoreNLP version
code generated by the UDFs Component user-specified code

Figure 5.8: Estimate of effort required by the ETL developer to write a
MapReduce program using OSS in terms of LOC

Overall we can observe that the UDFs Component significantly reduces the effort
required by the ETL developer to write parallel code and ensures an error-free code
by replacing otherwise manual steps in the parallelization process with automatized
semantic analysis. Also it hides the low level details of parallel execution of a program
from the ETL developer, and in addition accomplishing considerable speedup without

86 5. Parallelizing User-defined Functions in an ETL Framework

worrying about controlling the costs occurred by processes, communication, and data
distribution. The directive code and parameterized attributes make OSS flexible and
extensible that can easily be adopted to other use cases with special, user-defined
analysis attributes and even to other languages (e.g, Python, Fortran).

5.7. Conclusions

As discussed in Chapter 3, there does not exist many approaches in literature focus-
ing on optimization of ETL workflows through parallelising UDFs. Moreover, writing
parallelizable UDFs require extensive knowledge of parallel and distributed program-
ming and therefore there lies a huge complexity of writing parallelizable UDFs as ETL
tasks.

The contribution presented in this chapter is threefold. First, we address the
optimization of the ETL workflow through parallelizing the UDFs. Second, we pro-
vide the ETL developer with out-of-the-box functionality in an ETL framework to
write efficient parallel UDFs. Third, we additionally focus on the UDFs that support
semi-structured and unstructured data sets to pre-compute the computing-intensive
analytic queries. We provide a component to assist ETL developers in writing paral-
lelizable UDFs for an ETL workflows. Although, most ETL tools provide the func-
tionality to write custom code as UDFs but a UDF to transform a large and partially
structured data can be very complex and may become a performance bottleneck if not
implemented optimally. One of the possible ways to implement an efficient program
is parallelizing its execution, which requires expertise and deep understanding and
knowledge of parallel and distributed programming. To provide the ETL developer
with out-of-the-box functionality in an ETL framework to write efficient parallel cus-
tom programs, we proposed the UDFs Component, which separates the parallelization
concerns from the development of UDF tasks for data-intensive ETL workflows. Cur-
rently, the UDFs Component supports Hadoop as a distributed framework to execute
UDFs in a parallel environment. However, it is extensible and can be integrated with
other parallel and distributed frameworks e.g., Flink and HPC clusters. On top of
that, we showed that the UDFs Component provides an easy, fast, and flexible way for
the ETL developer to write efficient and error-free parallel programs for data-intensive
tasks.

In the next chapter, we will present our contribution on the cost model for UDFs,
which are treated as black-box tasks. The cost model enables the optimization of
already parallelizable (e.g., MapReduce-based [24] or Spark-based [108]) UDFs in an
ETL workflow. Our optimization approach draws upon determining the right degree
of parallelism for an UDF (or a set of UDFs) to satisfy user-defined performance
metrics.

Chapter 6

The Cost Model

In this chapter we address the problem of the optimization of UDFs in data-intensive
workflows and presented our approach to construct a cost model to determine the
degree of parallelism for both case-based and generic parallelizable UDFs. Moreover,
we extend our cost model to enable data scientists to choose the best possible machine
learning model based on user-defined performance metrics.

6.1. Introduction

As mentioned in Chapter 4, the extendable ETL framework consists of four modules,
namely: 1) the UDFs Component, 2) the Cost Model, 3) the Recommender, and 4)
the Monitoring Agent, c.f., Figure 6.1.

Figure 6.1: The architecture of the Extendible ETL Framework

The UDFs Component allows ETL developers to write parallelizable UDFs by
separating parallelization concerns from the code. It contains a library of Parallel

88 6. The Cost Model

Algorithmic Skeletons (PASs), to be executed in a distributed environment like Map-
Reduce or Spark. The UDFs Component provides to the ETL developer: 1) the
already parallelizable code of some commonly used big data tasks (a.k.a Case-based
PASs) including: sentiment analysis, de-duplication of rows, outlier detection and
2) a list of Generic PASs (e.g., worker-farm model, divide and conquer, branch and
bound, systolic, MapReduce).

In this chapter, we present a cost model for UDFs, which are treated as black-
box tasks. First, we propose methods towards parallelization of UDF execution by
generating an optimized distributed machine configuration. Second, we extend our
cost model to enable data scientists to choose the best possible machine learning
model based on user-defined performance metrics e.g., accuracy, precision, or recall
of a model using decision optimization.

The Cost Model leverages Decision Optimization and Machine Learning tech-
niques in order to generate a (sub-)optimal configuration to optimize the execution of
parallelizable UDFs in an ETL workflow, cf., Figure 6.2. The Decision Optimization
technique is used to find an optimized configuration for the Case-based PASs (c.f.,
Section 6.3), fulfilling user-defined performance metrics: execution time and monetary
costs. The Machine Learning technique consists of machine learning models trained
on historical data and fine-tuned. They are applied to find the (sub-)optimal machine
configuration to execute UDFs based on the Generic PASs (c.f., Section 6.4). The
dotted line indicates that if the Decision Optimization fails to find the (sub-)optimal
solution, then the Machine Learning portion is used to find the solution.

Figure 6.2: High level design of the cost model

To determine the right degree of parallelism and to generate an optimal configu-
ration for an UDF to be executed in a distributed environment, the cost model must
provide the following functionality. First, it must answer the below questions.

• Is an UDF parallelizable?

• If an UDF is parallelizable, will it profit from parallel processing to satisfy user-
defined performance metrics?

6.2. Overview of the Cost Model 89

• If an UDF profits from parallel processing, what will be the adequate (sub-
optimal, optimal) parallelization parameters? In this research we consider the
following parameters: 1) the number of data partitions, 2) the number of mapper
and reducer tasks (in case of a MapReduce-based UDF), 3) the number of nodes
in a cluster, 4) a physical and software configuration of the cluster.

Second, the cost model must support generating an optimized configuration for
an already parallelizable UDF to be executed in a distributed framework. Notice that
the configuration may also support a sub-optimal execution plan.

This chapter is organized as follows. Section 6.2 presents the general overview
of the Cost Model. Sections 6.3 and 6.4 discusses the Case-based PASs specific ex-
planation and the Generic PASs specific explanation of the cost model respectively.
Section 6.5 discusses the extension to the Cost Model to enable data scientists to
choose the best possible machine learning model based on user-defined performance
metrics. Section 6.6 discusses the efficiency of the Cost Model by means of experi-
mental evaluation, and finally Conclusions is included in Section 6.7.

6.2. Overview of the Cost Model

To optimize the execution of parallelizable UDFs in an ETL workflow according to
some user-defined performance metrics, i.e., execution time and monetary costs, the
use of the cost model is as follows.

• Stage 1 - Feasibility : the cost model will first determine the feasibility to par-
allelize UDFs, i.e., whether it makes sense to parallelize an UDF, in order to
satisfy the user-defined performance metrics.

• Stage 2 - Degree of Parallelism: the cost model will reason on the right degree of
parallelism, i.e., how much to parallelize (e.g., choosing the appropriate number
of partitions to distribute the data to be transformed in parallel).

• Stage 3 - Optimal Code Generation: the cost model will guide the creation of
an efficient configuration for distributed machines, so that the UDF is executed
optimally in a distributed environment, adhering to the execution performance
and monetary cost constraints defined by the developer as an input to the UDFs
component.

6.2.1. Stage 1 - feasibility

The Cost Model is used by the Simulator to simulate an UDF execution in a non-
distributed parallel environment. The simulation helps in finding out if it makes
sense to execute the UDF in a non-distributed environment by comparing the actual

90 6. The Cost Model

execution time of the UDF with the user-defined performance metrics. If the execution
time is lower than or equal to the required execution time, the framework would
execute the UDF in the non-distributed environment.

Further extension is planned to the Simulator to be able to identify the core
aspects about an UDF such as: execution time of the UDF for a given data set,
the number of rows processed per second, the number of bytes processed per second,
the size of data, the used distributed machine configuration as well as memory, IO,
and CPU usage characteristics, in the spirit of [38]. The performance data extracted
from the simulator will then be used to predict the optimal configuration for an UDF
execution.

6.2.2. Stage 2 - degree of parallelism

The right degree of parallelism is to assure the user-defined performance metrics and
it can be achieved by tuning certain performance parameters depending on the dis-
tributed environment and programming paradigm. For example, performance tuning
of a MapReduce UDF to be executed in Hadoop is dependent on 190 configurations.
Optimal settings for these parameters depend upon a workflow, data characteristics,
and distributed machine configurations. However, a fraction of parameters play an
important role in achieving the performance optimization and a lack of knowledge of
these parameters is mostly the cause of performance problems [40].

The parameters that seem to be critical to the optimal execution of UDFs in a
distributed framework include:

• The number of partitions/shards: represents appropriate number of partitions
(neither too few nor too many) for the MapReduce and Spark jobs executing
on top of the Hadoop framework.

• Machine configurations: represents appropriate processing power of a dis-
tributed machine along with optimal configuration of the critical parameters.

• Parallel processing architecture: include a degree of parallelism, partitions shuf-
fling scheme (for Spark jobs), the number of Mapper and Reducer tasks (for
MapReduce jobs).

6.2.3. Stage 3 - optimal code generation

The critical parameters (described in Section 6.2.2), are of vital importance in order
to satisfy the user-defined performance metrics. The Cost Model uses obligatory user-
defined performance metrics: 1) maximum execution time for an ETL workflow (T)
and 2) maximum monetary cost for an ETL workflow to be executed in the distributed
environment (B), as an input from the ETL developer. Optional parameters include:

6.2. Overview of the Cost Model 91

1) the size of a data set (R) in terms of the number of rows and 2) configuration of a
distributed machine (M).

In order to find out the right degree of parallelism, the proposed cost model will
be used as follows (also shown in Figure 6.3).

Figure 6.3: The processing workflow of the cost model

• Step 1 : checks for a user code input either as the Generic PASs or Case-based
PASs, (c.f., Section 4.1). If the ETL developer selects the Generic PASs, the
cost model executes Step 2, otherwise it executes Step 4.

• Step 2 : if the ETL developer selects the Case-based PASs, where a user selects
a use case, the cost model tries to find the (sub-)optimal solution using decision
optimization (c.f., Section 6.3). If the optimal configuration solution is found,
the solution is handed over to the distributed machine to be executed in parallel,
otherwise the best possible solution with all the relevant statistics and machine
configuration is sent to Step 4 as an input, in order to generate a (sub-)optimal
solution.

• Step 3 : if the ETL developer selects the Generic PASs, then an UDF provided
by the ETL developer is first executed in the Simulator to collect run-time
execution statistics, e.g., execution time, estimated monetary cost, the number
of rows processed per second, the number of bytes processed per second, the size
of data, the current configuration of a distributed machine as well as memory,
CPU, and IO usage characteristics.

At this point, the cost model is only interested in the execution time and esti-
mated monetary cost. If both are within the user-defined performance metrics
constraints, then the processing is stopped, otherwise the processing continues
to Step 4.

• Step 4 : the output from the Simulator i.e., Step 3 will be used as an input
to this step. The details to generate optimal code/machine configuration for
Generic PASs are discussed in Section 6.4.

92 6. The Cost Model

6.3. Optimal Code Generation for Case-based PASs

In order to explain the optimal code generation for case-based PASs and to evaluate
the Cost Model, we leverage a Set-similarity joins using MapReduce (SSJ-MR) [103]
use case. It is one of the parallel approaches using the MapReduce framework to
detect similar records based on string similarity. SSJ-MR uses three components,
namely: join-attribute, set-similarity function, and a similarity threshold.

Figure 6.4 illustrates the workflow for SSJ-MR approach. The workflow is divided
into three stages and each stage processes data using MapReduce. Also each stage
can be solved by either of the two approaches, e.g., TO1 or TO2 - for the Token
Ordering stage, PG1 or PG2 - for the Pair Generation stage, and RJ1 or RJ2 - for
the Record Join stage.

Figure 6.4: Set-similarity join workflow

Stage 1 - Token Ordering (TO). It computes data statistics using MapReduce
in order to generate partitioning keys called signatures, which are used in Stage 2.
The signatures are generated by tokenizing the incoming record into a word set. For
example, the record string "Parallelizing the custom code" is tokenzied into word
set ["Parallelizing", "the", "custom", "code"]. Each element in the word set is a
signature, which is used as a partitioning key instead of using actual join attribute
value, because partitioning records using an entire string for partitioning (e.g., hash-
based partitioning) is a difficult task.

Stage 2 - RID pair Generation (PG). It extracts a record ID (RID) and join-
attribute value for each record, computes the similarity of the join-attribute values,
and propagates the RID pair of similar records to the next stage. The similarity is
computed in the Reduce phase of MapReduce, using signatures from the previous
stage as partitioning keys.

Stage 3 - Record Join (RJ). It uses the RID pair of similar records from the
previous stage and generates actual pairs of joined records.

The explanation of the use case clearly indicates that SSJ-MR is a
computationally-intensive process divided into multiple stages (considered as mul-
tiple UDFs).

6.3. Optimal Code Generation for Case-based PASs 93

6.3.1. Use case for running example

In the example, we use Pentaho Data Integration (PDI)1 to implement the SSJ-MR
algorithm as an ETL workflow to efficiently detect similar records in a large amount
of datasets. The SSJ-MR algorithm is divided into three stages and executed in
Amazon EMR Cluster2 - a Hadoop [19] managed framework that makes it feasible
to process vast amounts of data across dynamically scalable Amazon EC2 instances3.
Each stage of SSJ-MR may be executed in a differently configured Amazon EMR
cluster, if proposed by the cost model. Finally, data are stored in a data warehouse.

Figure 6.5: The running example scenario

Our example ETL workflow is shown in Figure 6.5. The first step - START
indicates the start of the ETL workflow in PDI. The next step - FetchData fetches
data from a data store. FetchConfig fetches the configuration for each of the Amazon
EMR jobs s1:TokenOrdering, s2:PairGeneration, and s3:RecordJoin (generated by
the cost model) to be executed in parallel in the Amazon EMR cluster. Finally,
StoreData step stores the resulted data set a DW.

6.3.2. Optimal code generation

For the Case-based PASs as shown in Figure 6.6, where a user selects a use case, e.g.,
SSJ-MR there exists m different stages, and the UDFs Component may generate
n parallel variants for each stage. Therefore, there are nm possible combination of
variants, which correspond to an NP-hard problem and can be mapped to Multiple
Choice Knapsack Problem (MCKP) [43] as a special case of our problem. The MCKP
is defined as follows:

Given m classes N1 ... Nm of items to pack in a knapsack of capacity c, where
each item j ∈ Ni, i = 1,2,....,m, has profit pij and weight wij, the problem is to choose

1https://github.com/pentaho/pentaho-kettle
2https://aws.amazon.com/emr/
3https://aws.amazon.com/ec2/

94 6. The Cost Model

Figure 6.6: Case-based PASs scenario

exactly one item from each class such that the sum of profits is maximized while the
sum of weights does not exceed capacity c.

In order to show MCKP as a special case of the running example, we introduce
the following terms. Let Minimize(Z) be an optimal solution containing exactly one
program from each stage with minimum execution time, while remaining within bud-
get B. Note that we want to calculate the execution time Tij of a program variant Nj

from each stage m, such that the total cost Cij of the entire ETL workflow is ≤ B.
According to the aforementioned definition of MCKP, we can map:

• m classes in MCKP definition to m stages in the running example,

• c weight constraint to B budget constraint,

• wij cost of item for class to cij cost of variant j at stage i,

• pij profit of each item to Tij execution time of each variant at each stage.

Then, we can find out the optimal solution as follows:

Minimize(Z)
m∑
i=1

∑
j∈N i

T i,j · xi,j

subject to
m∑
i=1

∑
j∈N i

C ij · xij ≤ B,∑
j∈N i

xij = 1, i = 1, . . . ,m,

xij ∈ {0, 1}, j ∈ Ni, i = 1, . . . ,m.

If the optimal configuration solution is found by the MCKP step, the solution is
handed over to the distributed machine to be executed in parallel, otherwise the best

6.3. Optimal Code Generation for Case-based PASs 95

possible solution with all the relevant statistics and machine configuration is sent to
Step 4 as an input, in order to generate a (sub-)optimal solution.

6.3.3. Experimental evaluations

As an experimental evaluation of our approach to select an optimal code variant for the
Case-based PASs, we used the running example (c.f., Section 6.3.1), where each stage
has two variants. For stage 1, i.e., Token Ordering, the first variant is called Basic
Token Ordering (BTO) and the second one is One Phase Token Ordering (OPTO).
For stage 2, i.e., RID Pair Generation, the first variant is called Basic Kernel (BK)
and the second one is Indexed Kernel (PK). For stage 3, i.e., Record Join, the first
variant is Basic Record Join (BRJ) and the second variant is One Phase Record Join
(OPRJ).

In Table 6.1, column Stage stores the number of the stage, cf. Sections 6.2.1,
6.2.2, and 6.2.3. Column Algorithm stores the aforementioned algorithm variants of
each stage. Column #Nodes [exec cost/h] represents the per hour execution cost
associated to a n-node micro-cluster configuration (Amazon Web Service applies per
hour billing cycle). For example, column 2 [0.4$/h] represents execution cost per
hour for a 2-nodes micro-cluster, 4 [0.8$/h] represents execution cost for a 4-nodes
micro-cluster, etc.

The costs are estimated based on a machine type mentioned in [103] and near
equivalent configuration available for Amazon EC2 instances4. We used the Linux
machine on t3.2xlarge, 4 vCPUs, and 16 GB RAM, at a main cost of $0.164/hour
plus $0.036/hour as a buffer cost, which eventually results in $0.2/hour per node.

Then, each cell under 2 [0.4$/h], 4 [0.8$/h], 8 [1.6$/h], and 10 [2.0$/h] stores
execution time in seconds of a given algorithm in a given micro-cluster in a given
stage. Thus, Table 6.1 includes 24 variants of execution times. The execution times
of each variant of each stage are taken from the already carried out evaluation in
[103].

In order to evaluate the correctness of our MCKP-based cost model, we mapped
our problem on to the Linear Integer Programming Model. The cost model is imple-
mented in Java, which utilizes the lp_solve5 library to generate the optimized (i.e.,
minimum execution time with respect to the allocated budget) combination of avail-
able machine configurations to execute each stage of our running example. lp_solve
is a mixed integer linear programming (MILP) solver based on the revised Simplex
method [30] and the Branch-and-bound method [58] for integers. The implementation
of the cost model is accessible via our online git repository6.

4https://calculator.s3.amazonaws.com/index.html
5http://lpsolve.sourceforge.net/
6https://github.com/fawadali/MCKPCostModel

https://github.com/fawadali/MCKPCostModel

96 6. The Cost Model

Table 6.1: Execution time in seconds of each stage for self-joining the DBLP
dataset on different cluster sizes

#Nodes [exec cost/h]
Stage Algorithm 2 [0.4$/h] 4 [0.8$/h] 8 [1.6$/h] 10 [2.0$/h]
1 BTO 191.98 125.51 91.85 84.02

OPTO 175.39 115.36 94.82 92.80
2 BK 753.39 371.08 198.70 164.57

PK 682.51 330.47 178.88 145.01
3 BRJ 255.35 162.53 107.28 101.54

OPRJ 97.11 74.32 58.35 58.11

The shaded cells in Table 6.1 represent execution costs of the selected algorithms
at each stage that are minimal (optimal) for a given maximum budget of $1.6. Thus,
for the first stage OPTO is suggested to be executed on 2 nodes, for the second stage
PK is selected to be executed on 4 nodes, and for the third stage OPRJ is selected to
be executed 2 nodes.

The blacked cells and the shaded one with value 97.11 represent execution costs of
the selected algorithms at each stage that are minimal (optimal) for a given maximum
budget of $4.0. That is, for the first stage BTO is suggested to be executed on 8 nodes,
for the second stage PK is selected to be executed on 10 nodes, and for the third stage
OPRJ is selected to be executed on 2 nodes.

The results show that the cost model provides the best possible configuration for
a set of ETL tasks to be executed in a cloud based pay-as-you-go environment. The
average execution time of the cost model to choose the best possible configuration was
2ms. The cost model was executed on a machine configuration of 2.6 GHz 6-Core
Intel Core i7, 16GB RAM.

In the future, we will conduct experiments with different use cases in order to
fine-tune the MCKP algorithm.

6.4. Optimal Code Generation for Generic PASs

The Cost Model requires obligatory user-defined performance metrics: 1) maximum
execution time for an ETL workflow (T) and 2) maximum monetary budget for an
ETL workflow to be executed in the distributed environment (B), as an input from
the ETL developer. Optional parameters include: the size of a data set (R) in terms
of the number of rows and a configuration of distributed machines (M).

When the ETL developer selects the Generic PASs as shown in Figure 6.7, then
an UDF provided by the ETL developer is first executed in a simulated environment
to collect run-time execution statistics.

6.4. Optimal Code Generation for Generic PASs 97

Figure 6.7: Generic PASs scenario

At this point, the Cost Model is only interested in the execution time and estimated
monetary cost. If both are within the user-defined performance metrics constraints,
the processing is stopped. Otherwise, it continues to Step 4. This step generates the
best possible machine configuration for an UDF based on Machine Learning tech-
niques using input from Step 3 and an integrated Knowledge Base (KB). The KB is
built on past executions of the UDFs in a distributed environment within the ETL
Framework and is updated after every execution. This KB also serves for the training
purposes of the machine learning model. The structure of KB is as follows:

ExecutionHistory(executionId, executionTime, rowsProcessed, bytesProcessed, sizeOfData,

rowsRead, rowsWrite, cpuUsage, machineId)

Machine(machineId, memory, numOfCPUs, operatingSystem, provider, price, costType,

otherCosts)

Attributes in table ExecutionHistory are the candidates for the feature set for
machine learning models, except machineId, which serves as a class label.

Predicting machineId, i.e., a class, is essentially a classification problem. The
configuration for the predicted value of machineId then can be obtained from the
Machine table. A sample response from the machine learning model is shown below:

"machineId":"m5.xlarge",
"memory":16,
"numOfCPUs":6,
"operatingSystem":"Linux",
"provider":"AWS",
"price":0.192,
"costType":hourly,
"otherCosts":10

As of now, the implementation of the machine learning model to predict the best
possible configuration is one of the future works mainly because of the unavailability of
sample data. To build such a model, there is a need to have some reasonable number
of samples per machineId (class), which are not readily available at the moment.

98 6. The Cost Model

6.5. Extending the Cost Model for a Machine
Learning Pipeline

In this section, we extend the use of the UDFs Component not only to the ETL
developers or the data engineers but to the data scientists as well to create an end-
to-end Machine Learning Pipeline (MLP). The MLP may comprise multiple steps,
such as data pre-processing, feature selection, and training & testing of a given ML
algorithm. The data scientist may select a MLP from the UDFs Component as a
Generic PASs, which may consist of a number of stages (data pre-processing, feature
selection, ML model), as shown in Figure 6.8.

Figure 6.8: An end-to-end machine learning pipeline

Besides providing the obligatory user-defined performance metrics i.e., 1) maxi-
mum execution time for an MLP (T) and 2) maximum monetary execution cost for
the MLP(B), the data scientist will need to provide the size of a data set (S) and the
performance metric for the ML model i.e., accuracy, precision, or recall (P). These
parameters are used by the Decision Optimization Module to provide the best possible
ML algorithm for the said MLP.

6.5.1. Optimal selection of a machine learning model

The problem of finding an optimal Machine Learning model is modeled as the Multiple
Choice Knapsack Problem that can be formulated as follows.

Let maximize(Z) be an optimal solution containing the best possible MLP, based
on P (i.e., accuracy, precision, or recall), such that: execution time E ≤ T and
execution cost C ≤ B. Note that we want to provide the maximum value of accuracy,
precision, or recall Pij of an UDF or a ML model variant Nj from each stage m, such
that the total cost Cij ≤ B and execution time of the entire MLP Eij ≤ T .

Our problem is mapped to the MCKP as follows: 1) n classes in MCKP definition
to m stages, 2) a weight constraint c to: B - budget constraint and E - execution
time constraint, 3) a cost of item for a class wij to Cij - a cost of variant j at stage i

6.5. Extending the Cost Model for a Machine Learning Pipeline 99

and Eij - execution time of variant j at stage i, 4) a profit of each item pi to Pi - a
maximum performance metric. Then, we can find out the optimal solution as follows:

Maximize(Z):
m∑
i=1

∑
j∈N i

P i,j · xi,j

subject to:
m∑
i=1

∑
j∈N i

C ij · xij ≤ B
m∑
i=1

∑
j∈N i

Eij · xij ≤ T∑
j∈N i

xij = 1; i = 1, . . . ,m; xij ∈ {0, 1}; j ∈ Ni; i = 1, . . . ,m

6.5.2. Experimental evaluations

In order to evaluate the correctness of our MCKP-based cost model, we mapped our
problem on to the Linear Integer Programming Model. The cost model is imple-
mented in Python using Google OR-Tools7. The implementation of the cost model is
accessible via our online git repository8.

As a preliminary evaluation of our approach to generate the best possible ML
model, we used the experimental test-bed and results on the sentiment analysis de-
scribed in [45] that include: 1) three different sentiment analysis ML models, namely:
Bernoulli Naïve Bayes (BNB), Multinomial Naïve Bayes (MNB), and Support Vector
Machine (SVM), where each model has two variants, 2) accuracy of each ML model,
3) execution time of each variant of the model in seconds. To generate preliminary
experimental results, we built an execution environment based on machines indicated
in [103] (2.6 GHz 6-Core Intel Core i7, 16GB RAM) and near equivalent configuration
available in Amazon EC2 instances9.

Table 6.2: Experimental results on finding the best possible ML Model. The
shaded row (MNB-1) indicates the model predicted by our extended cost model,

with execution time of 0.05s and an accuracy of 81.34%

ML Model Execution Time [s] Accuracy [%] Cost/hour [$]
BNB-1 0.24 75.21 1.6
BNB-2 0.61 65.18 2.0
MNB-1 0.05 81.34 1.6
MNB-2 0.11 72.14 2.0
SVM-1 4.22 77.16 1.6
SVM-2 12.95 69.95 2.0

Table 6.2 presents the obtained results, which we used as an input to our extended

7https://developers.google.com/optimization/mip/mip
8https://github.com/fawadali/MCKPCostModel/blob/master/ML-CostModel/
9https://calculator.s3.amazonaws.com/index.html

https://github.com/fawadali/MCKPCostModel/blob/master/ML-CostModel/

100 6. The Cost Model

cost model. Column ML Model represents the variants of the aforementioned ML
models i.e., {BNB-1, BNB-2, MNB-1, MNB-2, SVM-1, SVM-2}, Execution Time [s]
is the execution time of each variant in seconds, Accuracy [%] represents the accuracy
of the ML algorithm, and Cost/hour [$] represents execution cost in $ per hour, for
each sentiment analysis ML model. The average execution time of the cost model to
predict the best possible ML was 4ms. The shaded row in Table 6.2 indicates the
obtained result from the cost model as the best possible ML model for a given input
performance metric parameters:

Execution Time ≤ 1.0s; Cost per hour ≤ $2.0

At this point in time, the experiments were carried out on part of the machine
learning pipeline dedicated to finding an optimal ML model. In the future, we will
conduct experiments with different use cases and will also include the entire MPL ,i.e.,
data pre-processing, feature selection, and training & testing of a given ML algorithm,
in order to fine-tune the MCKP algorithm.

6.6. Discussion on Experimental Evaluations

MCKP is an NP-complete problem, however, in reality large instances can be opti-
mally solved in a short period of time [31]. Our problem is much smaller catering at
most two constraints i.e., execution time and execution cost.

In order to prove the efficiency of our cost model, we executed the lp_solve based
cost model (c.f. Section 6.3.3) and Google OR-Tools based cost model (c.f. Section
6.5.2) on a range of test data sets to measure the execution time of the cost models.
We used the same machine configuration for this experiment as mentioned in Section
6.5.2, i.e., 2.6 GHz 6-Core Intel Core i7, 16GB RAM.

Figure 6.9 shows the time in milliseconds the lp_solve based cost model took to
find the optimal solution from the possible number of variants starting from 24 to
more than 1000. For the number of variants under 400, the execution time of the cost
model is less than 100ms. As the number of variants increases to more than 1000, the
execution time of the cost model becomes almost 1 second. However, for our problem
we expect the number of variants to be less than 1000.

Figure 6.10 shows the time in milliseconds the Google OR-Tools based cost model
took to find the optimal solution from the possible number of variants starting from
six to more than 1000. Even if the number of variants increases to more than 1000,
the execution time of the Google OR-Tools based cost model remains under 20ms.

Based on the evaluation and our problem size, we can confidently conclude that
the proposed cost model is capable to provide the optimal solution in an acceptable
time (in the case of our experiments - in a fraction of a second).

6.7. Conclusions 101

Figure 6.9: Evaluation of efficiency of the lp_solve based Cost Model

Figure 6.10: Evaluation of efficiency of the Google OR-Tools based Cost Model

6.7. Conclusions

In this chapter, we presented our contribution towards a cost model to determine
the best possible configuration for an UDF generated either via the Generic PASs
or the Case-based PASs. In particular, this chapter contributes: 1) the cost model
for optimizing execution of an UDF (as a black-box), 2) the method for selecting a
(sub-)optimal configuration of a parallel execution environment for an UDF, and 3)
possibility to enable data scientists to choose the best possible machine learning model
based on user-defined performance metrics. The proposed method uses simulation,
recommendation, and prediction algorithms to generate the best possible configura-
tion for an UDF generated by means of the Generic PASs. For the Case-based PASs,
the cost model uses Multiple Choice Knapsack Problem (MCKP) along with the
recommendation and prediction algorithms (if required) to generate a (sub-)optimal

102 6. The Cost Model

configuration of a parallel run-time environment for an UDF.
Furthermore, We evaluated experimentally our Decision Optimization module

with the final goal to find the best possible ML model. The problem of finding
the model was mapped into the MCKP and implemented in Python using Google
OR-tools.

Chapter 7

Conclusions and Future
Directions

7.1. Conclusions

Data from different data sources require care for deprived quality, oscillating from
basic spelling mistakes, missing or varying values, toward contradictory or repeti-
tive data. Data warehouse and data lake architectures were developed to handle
heterogeneous data i.e., data coming from different sources like relational data from
operational databases and data from line of business applications, and non-relational
data like mobile apps, IoT devices, and social media. In these architectures, data
integration tasks in ETL workflows are executed through SQL directives, predefined
modules, or UDFs, implemented in several programming languages.

Since the basis of the thesis was to address the problems and challenges in the
field of ETL workflows, an extensive study was carried out on the state-of-the-art
and current trends in ETL workflows, specifically addressing the optimization of ETL
workflows. Workflows implemented in business architectures usually require hundreds
of tasks. Designing a fault free and effective ETL workflows is a costly process. For
this reason, a large number of approaches have been proposed by the research com-
munity. These approaches address the conceptual, logical, physical implementation,
and optimization of the ETL workflows.

For the conceptual design of an ETL workflow, one of the primary methods is to
design the workflow as a graph. At the abstract level, the ETL developer must physi-
cally develop the ETL transformations and inter-feature mappings. Other approaches
for the conceptual design of an ETL workflow involve semantic web ontology, UML
notation, and BPMN. All these methods suggest different approaches to the precise
and efficient design of an ETL conceptual model. However, there does not exist any
industry standard for validating an ETL design. Then, on a logical side, there are
methods using graphs that complement a logical design’s generic actions. Further-
more, there exists XML and BPEL based approaches to translate a logical model into
its corresponding physical implementation. However, if a template has not already

104 7. Conclusions and Future Directions

been given for a specific ETL task, the ETL developer must manually translate a
logical model into its corresponding physical implementation. To translate BPMN-
based conceptual model into its BPEL-based equivalent physical implementation, the
ETL developer is required to have a prior knowledge of BPEL and tools that support
BPEL-based ETL workflows. A few approaches have been proposed in this field so
far and, there is a need for an automatic or partially automatic system to translate a
logical model into its physical execution with minimal or no human intervention, in
the spirit of [75].

For the optimization of ETL workflows, several approaches ranging from state-
space search to scheduling strategies and the use of reusable patterns for the opti-
mization of ETL workflows were proposed. Other techniques to achieve better execu-
tion efficiency were largely based on introducing parallelism in an ETL workflow. For
example, Hadoop and MapReduce based solutions focusing on data flow parallelism
require code templates to allow ETL developers to write parallelizable code.

Based on our study on the state-of-the-art and current trends in the ETL workflow
design, implementation, and optimization, we identified the following key issues to
address in this thesis.

• Throughout the modeling, design, implementation, and optimization process of
an ETL workflow, most of the approaches involve ETL developers to provide
extensive amount of input to the ETL framework, which is very much error
prone and inefficient. Specifically, to optimize an ETL workflow, it is expected
from the ETL developers to be highly technical in programming as well as
cautious in order to understand the quality metrics and their impact on the
overall performance of an ETL workflow.

• The rise of big data has exposed the limited expressive power of ETL operators
or tasks provided by the ETL tools to deal with the complexity of big data.
Therefore, UDFs are normally used as ETL tasks in an ETL workflow for com-
plex transformations. However, methods discussed in the state-of-the-art did
not consider the optimization of UDFs in a comprehensive manner.

• Currently, there does not exist any ETL framework that autonomously monitors
an ETL workflow for performance issues and suggests the ETL developer the
ways to improve its performance.

In this thesis, we addressed and contributed to the aforementioned issues as fol-
lows:

• In Chapters 4 & 5, we proposed a next generation ETL framework that enables
the ETL developers to exploit parallelization for UDFs in an ETL workflow.
We provided a configurable-parallelizable UDF generator to facilitate the ETL

7.2. Future Directions 105

developer to implement parallelizable UDFs without concerning about the im-
plementation details for parallelizing and optimizing the code. To parallelize
UDFs in an ETL workflow, we addressed the UDF generator portion and Cost
Model module of the proposed ETL framework. In the framework, we have
implemented the mechanism that creates multiple variants, i.e., multiple paral-
lel configurations, and then select the optimal configuration based on cost and
computational efficiency requirements for the distributed environment.

We proved with experiments (c.f. Section 5.6) that enabling the ETL developers
to assist in writing parallelizable code can help in avoiding 50-65% of the human
effort in writing efficient parallelizable UDFs. Furthermore, we carried out ex-
periments to prove (c.f. Section 5.6) that: 1) the non computing-intensive code
normally does not effect the overall performance of an ETL workflow whether
it is executed in a distributed or a non-distributed environment and 2) the
computing-intensive tasks may become a bottleneck in an ETL workflow and
must be optimized, because even a small change in the distributed factor can
make a big difference in improving the execution performance of an overall ETL
workflow. Thus, suggesting that it is important to first check: 1) if an UDF is
parallelizable and 2) if it is parallelizable, will it profit from parallel processing
or not because there is always an extra cost overhead to execute programs in a
distributed environment.

• In Chapter 6, we implemented a cost model within the proposed ETL frame-
work. Once the ETL developer writes or chooses a desired UDF, the cost model
takes over the responsibility to efficiently execute the UDF based on the execu-
tion and monetary constraints provided by the ETL developer.

Our experiments showed that our cost model provides the best possible con-
figuration for a set of ETL tasks (implemented as UDFs) to be executed in a
distributed environment (c.f. Section 6.3.3). We further showed that the pro-
posed cost model is capable of providing the solution in a fraction of a second
(c.f. Section 6.6).

7.2. Future Directions

The proposed framework is one step towards the fully autonomous ETL framework
to address the challenges posed by big data. As mentioned in Section 6.1, the ETL
framework consists of four modules namely: 1) the UDFs component, 2) the Cost
Model, 3) the Recommender, and 4) the Monitoring Agent. In the following, we
provide future directions for each module separately.

• The UDFs Component: currently, this module provides MapReduce based
parallel algorithmic skeletons for Generic PASs and can easily be extended to

106 Conclusions and Future Directions

Spark or Python based parallel algorithmic skeletons. For the Case-based PASs,
the library of use cases can be extended to more broader range of use cases
ranging from financial services, oil and gas to health care.

• The Cost Model: we have devised the Cost Model as a MCKP problem imple-
mented as an integer programming model. In the future, the cost model library
can be extended with alternate implementation of MCKP e.g., using dynamic
programming.

• The Recommender: this module is specifically used in case of generic PASs.
The cost model at this point in time is capable of efficiently executing an ETL
workflow based on use-case specific UDFs without the use of a Recommender.
However, in order to address the generic UDFs, a machine learning based recom-
mender is yet to be built. To this end, there is a need to have some reasonable
amount of training data, which is not readily available at the moment. This is
also addressed in detail in Section 6.4.

• The Monitoring Agent: although, this is a standard component of any ETL
engine, the implementation of this module is also one of the future works. The
Monitoring Agent will be able to autonomously monitor an ETL workflow for
performance issues and suggests the ETL developer the ways to improve its
performance with the help of the Recommender module. The monitoring agent
will collect several metrics from the execution of the ETL workflows e.g., the
number of input rows, the number of output rows, the execution time of each
step, the number of rows processed per second, the execution time of each ETL
task w.r.t rows processed per second, the execution time of the entire ETL
workflow w.r.t rows processed per second, the memory consumption by each
ETL task. Such statistics will be stored in the knowledge base to be used by
the Recommender to make recommendations to the ETL developer to improve
the execution performance of an ETL workflow.

Bibliography

[1] Apache Spark - lightning-fast cluster computing. http://spark.apache.org/. (Ac-
cessed on 02/22/2021).

[2] How to achieve flexible, cost-effective scalability and performance through pushdown
processing. https://www.informatica.com/downloads/pushdown_wp_6650_web.pdf,
2007. (Accessed on 02/22/2021).

[3] 10 open source ETL tools. data science central. www.datasciencecentral.com/
profiles/blogs/10-open-source-etl-tools, 2015. (Accessed 02/20/2021).

[4] Gartner magic quadrant for data integration tools. https://www.talend.com/lp/
gartner-2020-dimq/, (2020). (Accessed 02/20/2021).

[5] Alexandrov, A., Heimel, M., Markl, V., Battré, D., Hueske, F., Nijkamp,
E., Ewen, S., Kao, O., and Warneke, D. Massively parallel data analysis with
pacts on nephele. VLDB Endowment 3 (2010), 1625–1628.

[6] Ali, S. M. F., Mey, J., and Thiele, M. Parallelizing user - defined functions in
the ETL workflow using orchestration style sheets. International Journal of Applied
Mathematics and Computer Science (AMCS) 29 (2019), 69–79.

[7] Andzic, J., Fiore, V., and Sisto, L. Extraction, transformation, and loading
processes. In Data Warehouses and OLAP: Concepts, Architectures and Solutions.
Idea Group Incorporation, 2007, pp. 847–865.

[8] Aßmann, U. Invasive software composition. In Invasive Software Composition.
Springer, 2003, pp. 107–145.

[9] Awad, M. M., Abdullah, M. S., and Ali, A. B. M. Extending ETL framework
using service oriented architecture. Procedia Computer Science 3 (2011), 110–114.

[10] Awiti, J., Vaisman, A., and Zimányi, E. From conceptual to logical ETL design
using BPMN and relational algebra. In Proceedings of the International Conference
on Big Data Analytics and Knowledge Discovery (DaWaK) (2019), pp. 299–309.

[11] Awiti, J., and Zimányi, E. An XML interchange format for ETL models. In
Proceedings of the Advances in Databases and Information Systems (ADBIS) (2019),
pp. 427–439.

http://spark.apache.org/
https://www.informatica.com/downloads/pushdown_wp_6650_web.pdf
www.datasciencecentral.com/profiles/blogs/10-open-source-etl-tools
www.datasciencecentral.com/profiles/blogs/10-open-source-etl-tools
https://www.talend.com/lp/gartner-2020-dimq/
https://www.talend.com/lp/gartner-2020-dimq/

108 Bibliography

[12] Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V., and Warneke, D.
Nephele/pacts: A programming model and execution framework for web-scale analyt-
ical processing. In Proceedings of the ACM Symposium on Cloud Computing (SOCC)
(2010), pp. 119–130.

[13] Beneventano, D., Bergamaschi, S., Guerra, F., and Vincini, M. Synthesizing
an integrated ontology. IEEE Internet Computing 7 (2003), 42–51.

[14] Bergamaschi, S., Guerra, F., Orsini, M., Sartori, C., and Vincini, M. A
semantic approach to ETL technologies. Data & Knowledge Engineering 70 (2011),
717–731.

[15] Bergamaschi, S., Sartori, C., Guerra, F., and Orsini, M. Extracting relevant
attribute values for improved search. IEEE Internet Computing 11 (2007), 26–35.

[16] Binnig, C., May, N., and Mindnich, T. SQLScript: Efficiently Analyzing Big
Enterprise Data in SAP HANA. In Proceedings of the Datenbanksysteme für Business,
Technologie und Web (BTW) (2013), pp. 363–382.

[17] Bodziony, M., Roszyk, S., and Wrembel, R. On evaluating performance of bal-
anced optimization of ETL processes for streaming data sources. In Proceedings of the
International Workshop on Design, Optimization,Languages and Analytical Processing
of Big Data (DOLAP) (2020), pp. 74–78.

[18] Bogatu, A., Fernandes, A. A. A., Paton, N. W., and Konstantinou, N.
Dataset discovery in data lakes. In Proceedings of the International Conference on
Data Engineering (ICDE) (2020), pp. 709–720.

[19] Borthakur, D. The hadoop distributed file system: Architecture and design. Hadoop
Project Website 11 (2007), 21.

[20] Chaiken, R., Jenkins, B., Larson, P.-Å., Ramsey, B., Shakib, D., Weaver,
S., and Zhou, J. Scope: easy and efficient parallel processing of massive data sets.
VLDB Endowment 1 (2008), 1265–1276.

[21] Chakrabarti, S., Demmel, J., and Yelick, K. Modeling the benefits of mixed data
and task parallelism. In Proceedings of the ACM Symposium on Parallel Algorithms
and Architectures (SPAA) (1995), pp. 74–83.

[22] Cloudera. Example: Sentiment analysis using MapReduce custom coun-
ters. https://docs.cloudera.com/documentation/other/tutorial/CDH5/topics/
ht_example_4_sentiment_analysis.html. (Accessed on 03/18/2019).

[23] Dagum, L., and Menon, R. OpenMP: an industry standard api for shared-memory
programming. IEEE Computational Science and Engineering 5 (1998), 46–55.

[24] Dean, J., and Ghemawat, S. MapReduce: simplified data processing on large
clusters. Communications of the ACM 51 (2008), 107–113.

[25] Duggan, J., Elmore, A. J., Stonebraker, M., Balazinska, M., Howe, B.,
Kepner, J., Madden, S., Maier, D., Mattson, T., and Zdonik, S. The Big-
DAWG Polystore System. SIGMOD Record 44 (2015), 11–16.

https://docs.cloudera.com/documentation/other/tutorial/CDH5/topics/ht_example_4_sentiment_analysis.html
https://docs.cloudera.com/documentation/other/tutorial/CDH5/topics/ht_example_4_sentiment_analysis.html

Bibliography 109

[26] Ekman, T., and Hedin, G. The JastAdd system - modular extensible compiler
construction. Science of Computer Programming 69 (2007), 14–26.

[27] El Akkaoui, Z., Vaisman, A. A., and Zimányi, E. A quality-based ETL design
evaluation framework. In Proceedings of the International Conference on Enterprise
Information Systems (ICEIS) (2019), pp. 249–257.

[28] El Akkaoui, Z., and Zimányi, E. Defining ETL worfklows using BPMN and BPEL.
In Proceedings of the ACM International Workshop on Data Warehousing and OLAP
(DOLAP) (2009), pp. 41–48.

[29] El Akkaoui, Z., Zimànyi, E., Mazón, J.-N., and Trujillo, J. A model-driven
framework for ETL process development. In Proceedings of the ACM International
Workshop on Data Warehousing and OLAP (DOLAP) (2011), pp. 45–52.

[30] Evans, J. P., and Steuer, R. E. A revised simplex method for linear multiple
objective programs. Mathematical Programming 5 (1973), 54–72.

[31] Furini, F., Monaci, M., and Traversi, E. Exact approaches for the knapsack
problem with setups. Computers & Operations Research 90 (2018), 208–220.

[32] Gantz, J. F. The expanding digital universe: A forecast of worldwide information
growth through 2010. International Data Corporation (IDC) White Paper.

[33] Gartner. Magic Quadrant for Data Integration Tools. https://blogs.bmc.com/
gartner-magic-quadrant-data-integration-tools/?print=pdf, 2020. (Accessed
on 03/31/2021).

[34] Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., and
Jacobsen, H.-A. Bigbench: towards an industry standard benchmark for big data
analytics. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (MOD) (2013), pp. 1197–1208.

[35] Gour, V., Sarangdevot, S., Tanwar, G. S., and Sharma, A. Improve perfor-
mance of extract, transform and load (etl) in data warehouse. International Journal
on Computer Science and Engineering 2 (2010), 786–789.

[36] Große, P., Lehner, W., and May, N. Advanced Analytics with the SAP HANA
Database. In Proceedings of the International Conference on DAta management Tech-
nologies and Application (DATA) (2013), pp. 61–71.

[37] Große, P., May, N., and Lehner, W. A study of partitioning and parallel UDF
execution with the SAP HANA database. In Proceedings of the ACM International
Conference on Scientific and Statistical Database Management (SSDBM) (2014), p. 36.

[38] Halasipuram, R., Deshpande, P. M., and Padmanabhan, S. Determining essen-
tial statistics for cost based optimization of an ETL workflow. In Proceedings of the
International Conference on Extending Database Technology (EDBT) (2014), pp. 307–
318.

[39] Hedin, G. Reference attributed grammars. Informatica (Slovenia) 24 (2000), 301–
317.

https://blogs.bmc.com/gartner-magic-quadrant-data-integration-tools/?print=pdf
https://blogs.bmc.com/gartner-magic-quadrant-data-integration-tools/?print=pdf

110 Bibliography

[40] Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F. B., and
Babu, S. Starfish: A self-tuning system for big data analytics. In Proceedings of the
Biennial Conference on Innovative Data Systems Research (CIDR) (2011), vol. 11,
pp. 261–272.

[41] Hueske, F., Peters, M., Krettek, A., Ringwald, M., Tzoumas, K., Markl,
V., and Freytag, J.-C. Peeking into the optimization of data flow programs with
mapreduce-style udfs. In Proceedings of the International Conference Data Engineering
(ICDE) (2013), pp. 1292–1295.

[42] Hueske, F., Peters, M., Sax, M. J., Rheinländer, A., Bergmann, R., Kret-
tek, A., and Tzoumas, K. Opening the black boxes in data flow optimization.
VLDB Endowment 5 (2012), 1256–1267.

[43] Ibaraki, T., Hasegawa, T., Teranaka, K., and Iwase, J. The multiple choice
knapsack problem. Journal of the Operations Research Society of Japan 21 (1978),
59–93.

[44] Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., and
Epema, D. H. J. Performance analysis of cloud computing services for many-tasks sci-
entific computing. IEEE Transactions on Parallel and Distributed Systems 22 (2011),
931–945.

[45] Ismail, H., Harous, S., and Belkhouche, B. A comparative analysis of machine
learning classifiers for twitter sentiment analysis. Research in Computing Science 110
(2016), 71–83.

[46] Jackson, K. R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf,
J., Wasserman, H. J., and Wright, N. J. Performance analysis of high perfor-
mance computing applications on the amazon web services cloud. In Proceedings of the
International Conference on Cloud Computing Technology and Science (CloudComm)
(2010), IEEE, pp. 159–168.

[47] Jarke, M., Jeusfeld, M. A., Quix, C., and Vassiliadis, P. Architecture and
quality in data warehouses. In Seminal Contributions to Information Systems Engi-
neering, 25 Years of CAiSE. Springer, 2013, pp. 161–181.

[48] Jarke, M., Lenzerini, M., Vassiliou, Y., and Vassiliadis, P. Fundamentals of
Data Warehouses. Springer, 2003.

[49] Jovanovic, P., Romero, O., Simitsis, A., and Abelló, A. Incremental con-
solidation of data-intensive multi-flows. IEEE Transactions on Knowledge and Data
Engineering 28 (2016), 1203–1216.

[50] Karagiannis, A. Macro-level scheduling of ETL workflows. In Proceedings of the
International Workshop on Quality in Databases (QDB) (2011).

[51] Karagiannis, A., Vassiliadis, P., and Simitsis, A. Scheduling strategies for effi-
cient ETL execution. Information Systems 38 (2013), 927–945.

[52] Karol, S. Well-formed and scalable invasive software composition. PhD thesis, Dres-
den University of Technology, 2015.

Bibliography 111

[53] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,
J.-M., and Irwin, J. Aspect-oriented programming. ECOOP Object-oriented pro-
gramming (1997), 220–242.

[54] Kimball, R. Slowly changing dimensions. Information Management 18 (2008), 29.

[55] Kimball, R., and Ross, M. The data warehouse toolkit: the complete guide to
dimensional modeling. John Wiley & Sons, 2011.

[56] Konstantinou, N., and Paton, N. W. Feedback driven improvement of data
preparation pipelines. Information Systems 92 (2020), 101480.

[57] Kumar, N., and Kumar, P. S. An efficient heuristic for logical optimization of ETL
workflows. In Proceedings of the International Conference on Very Large Data Bases
(VLDB) (2011), pp. 68–83.

[58] Lawler, E. L., and Wood, D. E. Branch-and-bound methods: A survey. Operations
Research 14 (1966), 699–719.

[59] Lella, R. Optimizing BDFS jobs using InfoSphere DataStage Balanced Optimization.
IBM Developer Works, (2014).

[60] Liu, X., and Iftikhar, N. An ETL optimization framework using partitioning and
parallelization. In Proceedings of the Annual Symposium on Applied Computing (SAC)
(2015), pp. 1015–1022.

[61] Liu, X., Thomsen, C., and Pedersen, T. B. ETLMR: A highly scalable di-
mensional ETL framework based on mapreduce. In Proceedings of the International
Conference on Data Warehousing and Knowledge Discovery (DaWaK) (2011), pp. 96–
111.

[62] Liu, X., Thomsen, C., and Pedersen, T. B. ETLMR: A highly scalable dimen-
sional ETL framework based on mapreduce. Transactions on Large-Scale Data-and
Knowledge-Centered Systems 8 (2013), 1–31.

[63] Liu, X., Thomsen, C., and Pedersen, T. B. CloudETL: scalable dimensional
ETL for hive. In Proceedings of the International Database Engineering & Applications
Symposium (IDEAS) (2014), pp. 195–206.

[64] Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., and Mc-
Closky, D. The Stanford CoreNLP natural language processing toolkit. In Proceed-
ings of the Association for Computational Linguistics System Demonstrations (ACL)
(2014), pp. 55–60.

[65] Manousis, P., Vassiliadis, P., and Papastefanatos, G. Impact analysis and
policy-conforming rewriting of evolving data-intensive ecosystems. Journal on Data
Semantics 4 (2015), 231–267.

[66] McGuinness, D. L., Van Harmelen, F., et al. Owl web ontology language
overview. W3C Recommendation 10 (2004), 2004.

[67] Mey, J., Karol, S., Aßmann, U., Huismann, I., Stiller, J., and Fröhlich,
J. Using semantics-aware composition and weaving for multi-variant progressive par-
allelization. In Proceedings of the International Conference on Computational Science
(ICCS) (2016), pp. 1554–1565.

112 Bibliography

[68] Miloslavskaya, N., and Tolstoy, A. Big data, fast data and data lake concepts.
Procedia Computer Science 88 (2016), 63.

[69] Nambiar, R. O., and Poess, M. The making of TPC-DS. In Proceedings of the
International Conference on Very Large Data Bases (VLDB) (2006), pp. 1049–1058.

[70] Nargesian, F., Zhu, E., Miller, R. J., Pu, K. Q., and Arocena, P. C. Data
lake management: challenges and opportunities. VLDB Endowment 12 (2019), 1986–
1989.

[71] Nath, R. P. D., Romero, O., Pedersen, T. B., and Hose, K. High-level ETL for
semantic data warehouses. Computing Research Repository abs/2006.07180 (2020).

[72] Oliveira, B., and Belo, O. BPMN patterns for ETL conceptual modelling and
validation. In Proceedings of the International Symposium on Foundations of Intelligent
Systems (ISMIS) (2012), pp. 445–454.

[73] Patil, P., Rao, S., and Patil, S. Data integration problem of structural and
semantic heterogeneity: data warehousing framework models for the optimization of
the ETL processes. In Proceedings of the ACM International Conference Workshop
on Emerging Trends in Technology (ICWET) (2011), pp. 500–504.

[74] Ravat, F., and Zhao, Y. Data lakes: Trends and perspectives. In Proceedings of
the International Conference on Database and Expert Systems Applications (DEXA)
(2019), pp. 304–313.

[75] Romero, O., and Wrembel, R. Data engineering for data science: Two sides of the
same coin. In Proceedings of the International Conference on Big Data Analytics and
Knowledge Discovery (DaWaK) (2020), pp. 157–166.

[76] Rumbaugh, J., Jacobson, I., and Booch, G. The Unified Modeling Language
Reference Manual. Pearson Higher Education, 2004.

[77] Russom, P. Data lakes: Purposes, practices, patterns, and platforms. https:
//info.talend.com/rs/talend/images/WP_EN_BD_TDWI_DataLakes.pdf, 2017. (Ac-
cessed 03/31/2021).

[78] Santoso, L. W., et al. Data warehouse with big data technology for higher educa-
tion. Procedia Computer Science 124 (2017), 93–99.

[79] Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and
Price, T. G. Access path selection in a relational database management system. In
Proceedings of the ACM SIGMOD International Conference on Management of Data
(MOD) (1979), pp. 23–34.

[80] Sellis, T. K., and Simitsis, A. ETL workflows: from formal specification to op-
timization. In Proceedings of the Advances in Databases and Information Systems
(ADBIS) (2007), pp. 1–11.

[81] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. The hadoop dis-
tributed file system. In Proceedings of the IEEE Mass Storage Systems and Tech-
nologies (MSST) (2010), pp. 1–10.

https://info.talend.com/rs/talend/images/WP_EN_BD_TDWI_DataLakes.pdf
https://info.talend.com/rs/talend/images/WP_EN_BD_TDWI_DataLakes.pdf

Bibliography 113

[82] Simitsis, A., Skoutas, D., and Castellanos, M. Representation of conceptual
ETL designs in natural language using semantic web technology. Data & Knowledge
Engineering 69 (2010), 96–115.

[83] Simitsis, A., and Vassiliadis, P. A methodology for the conceptual modeling of
ETL processes. In Proceedings of the Conference on Advanced Information Systems
Engineering (CAiSE) (2003).

[84] Simitsis, A., and Vassiliadis, P. A method for the mapping of conceptual designs
to logical blueprints for ETL processes. Decision Support Systems 45 (2008), 22–40.

[85] Simitsis, A., Vassiliadis, P., and Sellis, T. Optimizing ETL processes in data
warehouses. In Proceedings of the IEEE International Conference on Data Engineering
(ICDE) (2005), pp. 564–575.

[86] Simitsis, A., Vassiliadis, P., and Sellis, T. K. State-space optimization of ETL
workflows. IEEE Transactions on Knowledge and Data Engineering 17 (2005), 1404–
1419.

[87] Simitsis, A., Wilkinson, K., Castellanos, M., and Dayal, U. Qox-driven ETL
design: reducing the cost of ETL consulting engagements. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (MOD) (2009), pp. 953–
960.

[88] Simitsis, A., Wilkinson, K., Dayal, U., and Castellanos, M. Optimizing ETL
workflows for fault-tolerance. In Proceedings of the IEEE International Conference on
Data Engineering (ICDE) (2010), pp. 385–396.

[89] Skoutas, D., and Simitsis, A. Designing ETL processes using semantic web tech-
nologies. In Proceedings of the ACM International Workshop on Data Warehousing
and OLAP (DOLAP) (2006), pp. 67–74.

[90] Skoutas, D., and Simitsis, A. Ontology-based conceptual design of ETL processes
for both structured and semi-structured data. International Journal on Semantic Web
and Information Systems 3 (2007), 1–24.

[91] Skoutas, D., Simitsis, A., and Sellis, T. Ontology-driven conceptual design of
ETL processes using graph transformations. Journal on Data Semantics 13 (2009),
120–146.

[92] Stefanowski, J., Krawiec, K., and Wrembel, R. Exploring complex and big
data. International Journal of Applied Mathematics and Computer Science 27 (2017),
669–679.

[93] Terrizzano, I., Schwarz, P., Roth, M., and Colino, J. E. Data Wrangling:
The Challenging Journey from the Wild to the Lake. In Proceedings of the Biennial
Conference on Innovative Data Systems Research (CIDR) (2015).

[94] Thomsen, C., and Pedersen, T. B. Easy and effective parallel programmable ETL.
In Proceedings of the ACM International Workshop on Data Warehousing and OLAP
(DOLAP) (2011), pp. 37–44.

114 Bibliography

[95] Trujillo, J., and Luján-Mora, S. A UML based approach for modeling ETL
processes in data warehouses. In Proceedings of the International Conference on Con-
ceptual Modeling (ER) (2003), pp. 307–320.

[96] Tziovara, V., Vassiliadis, P., and Simitsis, A. Deciding the physical implemen-
tation of ETL workflows. In Proceedings of the ACM International Workshop on Data
Warehousing and OLAP (DOLAP) (2007), pp. 49–56.

[97] Vaisman, A. A., and Zimányi, E. Data Warehouse Systems - Design and Imple-
mentation. Springer, 2014.

[98] Vassiliadis, P., Simitsis, A., and Baikousi, E. A taxonomy of ETL activities.
In Proceedings of the ACM International Workshop on Data Warehousing and OLAP
(DOLAP) (2009), pp. 25–32.

[99] Vassiliadis, P., Simitsis, A., Georgantas, P., and Terrovitis, M. A frame-
work for the design of ETL scenarios. In Proceedings of the Conference on Advanced
Information Systems Engineering (CAiSE) (2003), pp. 520–535.

[100] Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M., and Skiadopou-
los, S. A generic and customizable framework for the design of ETL scenarios. In-
formation Systems 30 (2005), 492–525.

[101] Vassiliadis, P., Simitsis, A., and Skiadopoulos, S. Conceptual modeling for ETL
processes. In Proceedings of the ACM International Workshop on Data Warehousing
and OLAP (DOLAP) (2002), pp. 14–21.

[102] Vassiliadis, P., Simitsis, A., and Skiadopoulos, S. Modeling ETL activities as
graphs. In Proceedings of the International Workshop on Design and Management of
Data Warehouses (DMDW) (2002), pp. 52–61.

[103] Vernica, R., Carey, M. J., and Li, C. Efficient parallel set-similarity joins us-
ing mapreduce. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (MOD) (2010), pp. 495–506.

[104] Viana, V., De Oliveira, D., and Mattoso, M. Towards a cost model for schedul-
ing scientific workflows activities in cloud environments. In Proceedings of the IEEE
World Congress on Services (IEEE) (2011), pp. 216–219.

[105] Warneke, D., and Kao, O. Nephele: efficient parallel data processing in the cloud.
In Proceedings of the ACM International Workshop on Many-task Computing on Grids
and Supercomputers (MTAGS) (2009), pp. 1–10.

[106] Wilkinson, K., Simitsis, A., Castellanos, M., and Dayal, U. Leveraging busi-
ness process models for ETL design. In Proceedings of the International Conference
on Conceptual Modeling (ER) (2010), pp. 15–30.

[107] Wojciechowski, A. ETL workflow reparation by means of case-based reasoning.
Information Systems Frontiers 20 (2017), 21–43.

[108] Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A.,
Meng, X., Rosen, J., Venkataraman, S., Franklin, M. J., et al. Apache
spark: a unified engine for big data processing. Communications of the ACM 59
(2016), 56–65.

Bibliography 115

[109] Zhou, J., Larson, P.-A., and Chaiken, R. Incorporating partitioning and parallel
plans into the scope optimizer. In Proceedings of the IEEE International Conference
on Data Engineering (ICDE) (2010), pp. 1060–1071.

	Abstract
	Streszczenie
	1 Introduction
	1.1 Background and Motivation
	1.2 Scope
	1.3 Research Problems and Challenges
	1.4 Contributions
	1.5 Thesis Overview

	2 State-of-the-Art in ETL Workflow Design
	2.1 Introduction
	2.2 Conceptual Model
	2.2.1 Graph-based conceptual model
	2.2.2 UML-based conceptual model
	2.2.3 Ontology-based conceptual model
	2.2.4 BPMN-based conceptual model
	2.2.5 Summary

	2.3 Logical Model
	2.3.1 Graph-based logical model
	2.3.2 From conceptual to logical model
	2.3.3 Summary

	2.4 Physical Implementation
	2.4.1 Reusable templates-based implementation
	2.4.2 BPEL-based implementation
	2.4.3 XML-based implementation
	2.4.4 Summary

	2.5 Conclusions
	2.5.1 ETL workflow development: summary
	2.5.2 Open issues

	3 State-of-the-Art and Current Trends in ETL Optimization
	3.1 Introduction
	3.1.1 Running example

	3.2 State-space Approach for ETL Workflow optimization
	3.3 Dependency Graph for ETL Workflow Optimization
	3.4 Scheduling Strategies for ETL workflow Optimization
	3.5 Reusable Patterns for ETL Workflow Optimization
	3.6 Parallelism for ETL Workflow Optimization
	3.6.1 Parallelism in traditional dataflow
	3.6.2 Parallelism in an ETL workflow

	3.7 Quality Metrics for ETL Workflow Optimization
	3.8 Statistics for ETL Workflow Optimization
	3.9 Commercial ETL Tools
	3.10 Summary
	3.11 Conclusions
	3.11.1 ETL workflow optimization: summary
	3.11.2 Open issues

	4 The Next-Gen ETL Framework
	4.1 Introduction
	4.2 The Extendable ETL Framework
	4.2.1 The UDFs Component
	4.2.2 The Recommender
	4.2.3 The Cost Model
	4.2.4 The Monitoring Agent

	4.3 Conclusions

	5 Parallelizing User-defined Functions in an ETL Framework
	5.1 Introduction
	5.2 Running Example
	5.3 Orchestration Style Sheets (OSS)
	5.4 Generating Parallelizable UDFs for an ETL Workflow
	5.5 Using Map-Reduce OSS for Sentiment Analysis UDF
	5.6 Experimental Evaluations
	5.7 Conclusions

	6 The Cost Model
	6.1 Introduction
	6.2 Overview of the Cost Model
	6.2.1 Stage 1 - feasibility
	6.2.2 Stage 2 - degree of parallelism
	6.2.3 Stage 3 - optimal code generation

	6.3 Optimal Code Generation for Case-based PASs
	6.3.1 Use case for running example
	6.3.2 Optimal code generation
	6.3.3 Experimental evaluations

	6.4 Optimal Code Generation for Generic PASs
	6.5 Extending the Cost Model for a Machine Learning Pipeline
	6.5.1 Optimal selection of a machine learning model
	6.5.2 Experimental evaluations

	6.6 Discussion on Experimental Evaluations
	6.7 Conclusions

	7 Conclusions and Future Directions
	7.1 Conclusions
	7.2 Future Directions

	Bibliography

