
Automation of the multi-sensor system
calibration for mobile robotic applications

Automatyzacja procesu kalibracji systemu
wielosensorycznego dla aplikacji robotyki

mobilnej

by

Michał PEŁKA

Supervisor

Janusz BĘDKOWSKI, Ph.D., D.Sc,

Faculty of Electrical Engineering
Poznań University of Technology

2022

i

Abstract
Automation of the multi-sensor system calibration for mobile robotic applications

Michał PEŁKA

This dissertation addresses problems encountered in development of new robotic
mapping systems. It is a broad and interesting topic involving many fields, such as
system design, mechatronics, software development and requires interdisciplinary
knowledge. In the research concluded in this work the author focuses on methods
of automation calibration for various robotic mapping systems. What is essential in
building optimization problems are the chosen domain of the sensors, methods of
calibration, Field Of View (FOV), and their overlap. That was shown in work both
from a theoretical point of view and practical applications. First, existing knowledge
regarding Simultaneous Localisation and Mapping (SLAM), on-manifold optimization
was reviewed. Second, the methodology for automated calibration was presented.
Finally, multiple systems were presented with a detailed description of the method used
and their results. Shown approaches and methods are valuable tools in many fields
such as mobile mapping system design, robotic system design, or autonomous driving
perception.

ii

Abstrakt
Automatyzacja procesu kalibracji systemu wielosensorycznego dla aplikacji

robotyki mobilnej

Michał PEŁKA

Niniejsza rozprawa dotyczy problemów napotykanych podczas opracowywania
nowych robotycznych systemów mapowania. Jest to obszerny i interesujący temat
obejmujący wiele dziedzin, takich jak projektowanie złożonych systemów, mecha-
tronika, tworzenie oprogramowania i wymaga od projektanta wykazania się wiedzą
interdyscyplinarną. W badaniach zakończonych niniejszą pracą autor skupił się na
metodach zautomatyzowania kalibracji różnych robotycznych systemów mapowania.
Wybrana technologia czujników, sposób kalibracji, kształt pola widzenia i ich wza-
jemne relacje geometryczne są aspektami, które są kluczowe w budowaniu problemów
optymalizacyjnych. W pracy zostało to pokazane zarówno z teoretycznego punktu
widzenia, jak i zastosowań praktycznych. Przeanalizowano istniejącą wiedzę na temat
projektowania SLAM, optymalizacji z wykorzystaniem algebry Liego. Po czym sfor-
mułowano metodykę dotyczącą automatycznej kalibracji. Następnie przedstawiono
kilka systemów ze szczegółowym opisem zastosowanych metod i analizą wyników.
Przedstawione podejścia i metodyka są cennymi narzędziami w wielu dziedzinach,
takich jak projektowanie systemów mapowania mobilnego, projektowanie systemów
robotycznych czy rozwój technologii pojazdów autonomicznych.

iii

Acknowledgements
I would like to express my sincere gratitude to my supervisor D.Sc. Janusz Będ-

kowski for the continuous support of my Ph.D. study and research. This work was
partially supported by the following projects: NCBiR (Polish National Center for Re-
search and Development) project: "Research of Mobile Spatial Assistance System" Nr:
LIDER/036/659/L-4/12/NCBR/2013; European Community’s Seventh Framework
Programme (FP7/2007-2013) under Grant Agreement n° 285417 ICARUS project - Inte-
grated Components for Assisted Rescue and Unmanned Search operations; European
Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement
n° 284747 TIRAMISU project - Toolbox Implementation for Removal of Anti-personnel
Mines, Submunitions and UXO; NCBiR(Polish National Center for Research and Devel-
opment) PBS3/B3/25/2015: "Badanie nowej głowicy skanowania przestrzennego oraz
jej modyfikacji z przeznaczeniem dla robotów mobilnych do mapowania otoczenia";

iv

Contents

Abstract i

Acknowledgements iii

List of Figures vii

List of Tables xiv

List of Abbreviations xv

1 Introduction 1

1.1 Thesis outline . 2
1.2 Sensors in ground robotic mapping systems 2

1.2.1 LiDAR . 2
1.2.2 Cameras . 3

Spherical cameras . 4
Implementation of spherical camera 5

1.2.3 IMU . 10
1.2.4 Odometry . 12
1.2.5 GNSS . 12

RTK and DGPS . 13
GNSS+INS . 13

1.3 Map representation . 14
1.3.1 Dense representation . 14

Occupancy grid map . 14
Elevation map . 14

1.3.2 Sparse representation . 14
Topological map . 14
Semantic map . 15

1.3.3 High Definition map . 15

2 Problem formulation 17

3 Methodology 20

3.1 Time synchronization . 20
Hardware time synchronization 20

3.2 Trajectory . 21
3.2.1 Rotation representation . 21

Groups . 21
Lie Groups . 22

v

Special orthogonality group SO(3) 24
Lie algebra so(3) . 25
Rodrigues’ rotation formula for rotation matrix 26
Quaternions . 27
Quaternion interpolation . 32
Proper Euler angles and Tait-Bryan angles 34
Rigid body transformations in SE(3) and their Lie algebra 35

3.2.2 Motion model and smoothness . 35
Relative Pose . 35
Smoothness . 36

3.3 SLAM . 36
3.3.1 Factor graph . 38
3.3.2 Graph SLAM . 39
3.3.3 Bundle Adjustment . 40
3.3.4 Robust Nonlinear Least Squares 41
3.3.5 Map and trajectory accuracy assessment 45
3.3.6 Ground truth data sources . 46

Synthetic data sources . 46
Real data . 48

3.4 LiDAR observation equations . 49
3.4.1 Point to Point . 49

Jacobian matrix in SE(3) for point transformation 50
Iterative Closest Point . 51

3.5 Camera observation equations . 54
3.5.1 Line to line in equirectangular image 54

Curve fitting . 58
Extracting Plücker line from a point cloud 58
Extrinsic calibration of a spherical camera 59

3.5.2 Line to line in rectilinear image . 60

4 Experimental validation 63

4.1 Calibration of a high-volume mobile 3D scanner 63
Modeling a mechanical design as a factor graph 66

4.2 Calibration of multi planar reflectors . 73
Mechanical design . 73
Geometry of a reflected ray . 76
Calibration procedure . 78

4.3 Calibration of a rotated reflector . 83
Time synchronisation with a Livox Light Detection and Ranging

(LiDAR) . 83
Results . 89

4.4 Calibration of a lightweight 3D unit . 89
Mechatronic design . 89
Calibration pattern . 91
Calibration pattern - LiDAR’s intensity domain 93
Cost function . 94
Results . 95

vi

4.5 Calibration of a mobile backpack mapping system 97
Optimization of trajectory . 97
Optimization of an extrinsic laser scanner calibration 100
Quantitative and qualitative validation of extrinsic laser scanner

calibration . 101
Optimization of an extrinsic calibration of the spherical camera

against a laser scanner 103
4.6 Calibration of a 3D unit . 107

Mechatronical design . 107
Calibration . 107

4.6.1 Comparison of the equirectangular and perspective model 108

5 Robotic applications 113

5.1 Mining shaft mapping . 113
Calibration method . 114
Accuracy assessment . 118

5.2 Nuclear Power Plant Mapping . 120
5.3 Mobile robot localization . 125

Localization using sequential Monte-Carlo 125
Map building and trajectory ground truth 125
Localization algorithm . 127
Results . 129

6 Conclusions 131

6.1 Thesis contributions . 132
6.2 Further research directions . 133

Bibliography 134

vii

List of Figures

1.1 Coordinate system used in equirectangular image. 5
1.2 Simulated spherical camera rig with t = 0.05m. 7
1.3 Panorama rendered with an ideal equirectangular camera. 7
1.4 Panorama rendered with six camera rig from figure 1.2, projected on

sphere with radius 2 meters. Projected field of view boundaries are
marked in color. 8

1.5 Panorama rendered with six camera rig from figure 1.2, projected on
sphere with radius 10 meters. Projected field of view boundaries are
marked in color. 8

1.6 Local comparison of stitching errors. Left column is ground truth ob-
tained with the ideal equirectangular camera simulation. Next columns
are projections for sphere size: 1, 5, 10, 100 meters. Note that optimal
radius is different for those two patches. 9

1.7 Parallax error ’X’. Point P is projected to a point P ′
s in an idealized spheri-

cal model. In real camera point P is projected to P ′
c. That is caused by a

fact, that projection center for spherical image is Os and for perspective
camera is Oc. Those are t apart. 9

1.8 The value of parallax error in meters for given camera ε = 60◦ and t = 0.1m. 10

2.1 Examples of commercially available Mobile Mapping System (MMS)s. . 18

3.1 The example of applying non-valid (det(R) = 1.5) rotation matrix. Left:
original object, middle: proper rotation, right: non-SO3 quasi-rotation. It
is evident that the object is scaled. 25

3.2 An example of a left multiplication of quaternion [0, j] in a 3D projection.
A quaternion is a four-dimensional concept, but its properties can be
easily shown in a 3D space by projecting a 4D unit hyper-sphere to a 3D
sphere using a hyper-plane which is orthogonal to the real axis of the
quaternion and a stereographic projection. Note that due to the fact that
the shown space is a hyper-plane, the beginning of the coordinate system
is quaternion number [1, 0]. This representation is shown also in figure 3.3.
According to equations (3.27) through (3.30), point i left-multiplicated by
j goes to −k, point k left-multiplicated by j goes to i. Point 1, which lives
in the origin of the coordinate system, becomes j. 30

viii

3.3 An example of a right multiplication of quaternion [0,−j] in a 3D pro-
jection and left multiplication of quaternion [0, j] (already shown in
figure 3.2). According to equations (3.27) through (3.30), point i right-
multiplicated by −j goes to −k, point k right-multiplicated by −j goes
to i. Point 1, which lives in the origin of coordinate system, becomes −j.
The total effect of the multiplication of the left quaternion and the right
conjugate quaternion is canceled along the j axis, where the real value of
the projection center was entangled. Conversely, the effect in jk is doubled. 31

3.4 Sample SLAM problem modeled as a factor graph. Variable nodes are
marked as circles and factors as squares. Gray color marks hidden vari-
ables. 38

3.5 Figure is showing one edge of Graph SLAM. The xi and xj are poses,
which are hidden variables. There is an observation of pose xj from pose
xi with value zij and information matrix Ωij . The observation allows to
project an image x′

j of xj respect to location xi and observation (zij ,Ωij).
Gray ellipse is confusion ellipse that visualizes information matrix. Error
that this edge contributes is distance from image x′

j to location xj 39
3.6 Graph SLAM problem before optimization and after optimization.

Dataset is provided in [24] and software solution was used [2]. 40
3.7 The distribution of translation error for axes ’X’ and ’Y’ in residuals in

Graph SLAM problem shown in figure 3.6. Both of histograms presents
a bell-shaped distribution. Those are symmetric, but suffer from excess
kurtosis. The top distribution has kurtosis 3.76 and bottom 12.77. The
high kurtosis is caused by large number of outliers and very long and fat
tails. To summarize, those distributions are not Gaussian. 43

3.8 Robust kernel function and weight in function of residual value. 45
3.9 Simulated calibration scene for synthetic equivalent of system shown

in figure 4.6. Two cameras Red Green Blue Depth (RGBD) cameras are
marked. High Dynamic Range (HDR) map in background imitates real-
world illumination. 49

3.10 The plot of Root Mean Square Error (RMSE) after a finished iteration
of the Iterative Closest Point (ICP) on a synthetic data-set for multiple
initial condition. Various colors represent different initial errors. The
violet plot, which fails to optimize, represents the largest initial error. The
first method (top) uses a symbolically computed Jacobian using SymPy
[84]. The second one (bottom) uses an analytical Jacobian on a Lie algebra
with equation (3.103). Each initial error was introduced by increased
rotation. Thus, both methods converge only for the limited initial error.
For more significant errors, several iterations are too few. Otherwise, the
optimization fails to converge at all. Both methods are sufficient, but the
perturbation model Jacobian provides better stability and robustness. . . 52

ix

3.11 The plot of error after the finished iteration of the ICP on synthetic dataset.
The convergence of Levenberg-Marquardt ICP is compared for different
Jacobians. All these optimizers find a parameter which lives in se(3) space.
The red plot shows a RMSE during the optimization using an automatic
Jacobian [2]. The green and blue show the RMSE during optimization
using an analytical Jacobian. The first one is a symbolical differentiation of
Rodrigues formula (3.18) using SymPy [84]. The second one is a Jacobian
on a Lie algebra which is given in equation (3.103). The symbolic and
analytical Jacobian on a Lie algebra gives similar results, while analytical
on a Lie algebra is more computationally efficient. 53

3.12 The line segment with (yellow) and vectors that creates Plücker coor-
dinate. Moment vector m is marked in red and directional vector l is
marked in green. Note that m length is two times l length. That due to
fact of yellow line to be 2 units away from begin of coordinate system. . 55

3.13 The line segment in a 3D space is marked in yellow. There are two vectors
that create the Plücker coordinates: the moment is marked in red and
the directional vector is marked in green. The projection plane spans on
the center of the projection sphere (marked in green) and the observed
line (yellow). This plane contains a great circle (marked in blue) of the
projection sphere. A normal vector of the great circle is marked in blue. . 56

3.14 Great circle projection equation (3.115) for various values of inclination
and azimuth. 57

3.15 The line segment in a 3D space is marked in yellow. There are two vectors
that create the Plücker coordinate: the moment is marked in red and the
directional vector is marked in green. The projection plane spans on the
center of the projection (marked in green) and the observed line (yellow).
This plane contains an image of the line (marked in blue). A normal
vector to projection plane is marked in blue. 61

4.1 Mechanical structure of the high-volume mobile 3d scanner. Actuated
revolution joint u1, actuated prismatic joints: u2, u3. Revolution joints
with hidden configuration: c1,c2,c3,c4. 64

4.2 Processing of fiducial markers. 68
4.3 Detected fiducials before and after automatic calibration. 69
4.4 Factor graph modeling the calibrated system. U - controls (configuration

of actuated joints). x0, x1, x2, x4 - poses of calibrated camera. l1, l2 - ob-
served centroids. θ = {c1, c2, c3, c4} - calibrated parameters (configuration
of assembled joints). 70

4.5 One of the two scanning heads. There is a visible guiding system with a
timing belt in the back. In the front, there is an RGBD sensor with an Red
Green Blue (RGB) camera and LiDAR lens. 70

x

4.6 The complete calibrated system. The calibration field is a combination of
a large number of Augmented Reality (AR) markers. Mechanically, the
system consists of two guided rails with a timing belt linear transport for
two scanning heads marked in red. The arm on the bottom is rotated by a
Direct Current (DC)-servo motor (curved red arrow). The system can be
assembled in multiple ways to achieve the best coverage of the scanned
volume. 71

4.7 Converging cost with iterations of the Levenberg-Marquadt algorithm for
synthetic and real dataset. The cost is total distance. 14710 observations
were used in the real dataset. 1074 observations were used in the synthetic
one. 72

4.8 3D Computer Aided Design (CAD) model of assembly. 1- hexagonal
pyramid; 2-Livox LiDAR; 3- face plate; 4- one of six mirrors. 73

4.9 Reshaped field of view. A plot of vertical situation. 74
4.10 Reshaped field of view, plot of horizontal situation. 74
4.11 The impact of the mirror angle on the changing vertical field of view. . . 75
4.12 Geomerical interpretation of equation (4.9). bd is a unit vector represent-

ing the direction of the incident beam. rd is a unit vector representing the
direction of the reflected beam. Vpl represent a mirror’s normal vector.
The dot product of bd · Vpl is the length of the projection of bd on Vpl.
Finally, the sum of vectors −2(bd ·Vpl)Vpl and −bd results in rd vector. 77

4.13 The experimental prototype mounted onto a precise rotating table dur-
ing the data acquisition procedure. ’A’ marks the axis for changing the
rotation angle. 78

4.15 Result of calibration algorithm for single measurement station without
ground truth data (simplest scenario). 81

4.16 Result of the calibration algorithm for multiple measurement stations
with histogram of errors. 82

4.17 Synchronization registers and signals in synchronization solution for the
Livox Lidar. 84

4.18 Rotating mirror assembly. 1-Livox Mid-40, 2- incremental encoder, 3-
mirror support, 4- Motor housing, 6- top plate, 5-bottom plate, 7- pillars. 85

4.19 Quantitative evaluation of the calibration procedure. 86
4.20 Comparison of the calibration results of the redundant model which

optimizes [Rc tc01×3 1], [a, b, c, d] and extrinsic poses, and the reduced
model which optimizes [a, b, c, d] and extrinsic poses. The redundant
model is drawn in green and the reduced one is drawn in red. The
reduced model converges to a sub-optimal solution. 87

4.21 Drawing of the lightweight 3D scanning system. 90
4.22 Pulse Per Second (PPS) (yellow) and TX (violet) signal show in oscillo-

gram PPS signal is a short pulse with the frequency of 1 Hertz, TX is EIA
RS-232C transmission with 9600 baud-rate containing ’GPRMC’ National
Marine Electronics Association (NMEA) message with simulated times-
tamp and position. Velodyne VLP 16 laser scanner is synchronizing its
internal hardware timer to that signal. 91

xi

4.23 Block diagram of the system. Ethernet is marked in green, with different
physical layers marked. The user has direct access to Velodyne VLP-16
TCP/UDP ports. Velodyne VLP-16 consumes synchronization messages
from STM32F1 with pair of NMEA messages and PPS signal, that latches
transmitted timestamp. Physically, NMEA message is sent on one TX
line of EIA RS-232C with 9600 baud rate PPS signal is TTL square signal
with frequency of 1 Hertz with a duty smaller than one. Oscillogram
of such signal is shown in figure 4.22. The encoder output (quadrature
pair with reference) is connected to STM32F1’s timer-counter channels
and feedback input of the motor controller. In this application a single
encoder is used as measurement and control. Controller Area Network
(CAN) network of two nodes is marked in gray. Note that CAN network
is used only inside the device, so the device’s firmware implements only
some segments of CiA 301 standard. 92

4.24 Detailed view of not calibrated field measured by the system. Bright
colors correspond to the saturated points. Green points are the points
that were measured by the left side of the laser scanner. Red points are
points that were measured by the right side of the laser scanner (so-called
side "A" and "B"). The drawn coordinate system that is visible in the
middle is a coordinate system found by Principal Component Analysis
(PCA)/Singular Value Decomposition (SVD) of the saturated points, and
the quadrant of XY sub-system are marked. 93

4.25 Left - photo of the calibration pattern, right top - projection of detected pat-
terns using initial (CAD) calibration, right bottom - projection of detected
patterns using optimized calibration. 95

4.26 3D pointcloud before and after calibration. Red and green color represent
sides of laser scanner. 96

4.27 A mobile mapping system, mounted on the top turntable. 1-spherical
camera, 2-top laser scanner, 3-center laser scanner,4-side laser scanner,
4-IMU, 6-side laser scanner (transport protection was not removed in the
photo), 7-turntable with crank. 98

4.28 Steps of extrinsics calibration of a laser scanner. Top left - input data,
visible only TOP laser scanner. Top right - the optimized trajectory of
calibrated system. Bottom left - trajectory optimized, but non calibrated.
There is a large visible discrepancy between the scans marked in green
and red. Bottom right - the calibrated system. Control pads (retroreflec-
tor, marked with bright colors) are getting closer, which is a qualitative
improvement. 99

4.29 Calibration results. First row - camera image, middle row - CAD based
calibration, bottom row - calibrated data. Green - center laser, red - side
laser. Note that retroreflector images become more aligned along the
process of calibration. 101

4.30 Calibration results. Left column - uncalibrated data, right column - cal-
ibrated data. The histograms build on top of evaluation of calibrated
measurements are consistent in sense of variance and mean. 102

xii

4.31 Calibrated system in left. There is a visible structure from extrusions that
are easily detected by a laser scanner in the back. There is a point cloud
captured by a laser scanner on the right with detected lines marked in
colors. The gizmo manipulator shows the current state of calibration. . 104

4.32 Input image. Please note stiching error changing with depth. The effect is
similar to that shown in figure 1.6. Manually selected points are marked
with stars. The next projection curve was fitted and plotted with lines. . 104

4.33 Pre-calibrated image with projected lines feature which were detected in
the point-cloud. 105

4.34 Post-calibrated image with projected lines feature that were detected in
point-cloud. 105

4.35 Calibrated extrinsic of spherical camera used for applying texture to
point-cloud. 106

4.38 Color point-cloud, different stitching methods. 111
4.39 Projection of calibration line features on equirectangular image. 112

5.1 Photo and drawing of the shaft mapping probe. 115
5.2 Effect of trajectory constraint in automatic calibration. Both maps are reg-

istered, but differs in trajectory and recovered calibration. Left trajectory
is jagged, right is smooth. To successfully perform an automatic calibra-
tion of such system, trajectory constrains are needed. Those constraints
ensure that parameters regarding calibration will be optimized instead of
individual trajectory nodes. 116

5.3 Vertical intersection of shaft level, black - high-precision stationary scan,
red - Livox Tele-15, green - Velodcyne VLP-32C, purple - rotated Velodyne
VLP-16. 117

5.4 Horizontal intersection of shaft level, black - high-precision stationary
scan, red - Livox Tele-15, green - Velodyne VLP-32C, violet - rotated
Velodyne VLP-16. 117

5.5 Accuracy assessment of calibrated robotic mobile mapping system against
high-precision stationary scan. 119

5.6 Robotic mapping system used for the scenario. 121
5.7 Screenshot from the operator’s console during scenario. 121
5.8 3D map obtained with robotic mobile mapping system in Enrich 2021

trial with stop-scan. 122
5.9 Used factor graph. Factors from f1 to f6 are odometry factors. Factors

from f11 to f16 are observation factors. Factors from f31 to f36 Inertial
Measurement Unit (IMU) prior factors. Factors from f20 is a loop closure.
Note that observation factor that connects pose x3 and x4 not exists, due
to failed Normal Distributions Transform (NDT) matching. The variables
u1 to u6 are robot odometry readings. The variables s1 to s6 are scans
taken at near the corresponding poses. 123

5.10 Tool that builds and optimize factor graph for a SLAM problem. The
trajectory is not yet optimised. 123

5.11 3D map obtained with robotic mobile mapping system in Enrich2021 trial
with mobile mapping. 124

xiii

5.12 A robotic platform used. 1- Clearpath Jackal mobile robot, 2- Velodyne
VLP-16, 3- Livox Lidar with planar reflectors. 126

5.13 The result of mapping with the architectural blueprint. The trajectory is
marked. 127

5.14 Comparison of input data. The yellow points are obstacles in map, the
green are obstacles in incoming data from sensor, the white are ground
points in data from sensor. Grey dots are positions of particles. 129

5.15 Comparison of localization performance depending on input data. . . . 130

xiv

List of Tables

4.1 Comparison of cumulative error on four calibration datasets. For every
row, one dataset was used to obtain calibration and rest was used to
assess accuracy. 67

4.2 The optimized parameters (planar reflectors’ coefficients). 80
4.3 The optimized parameters before and after calibration. 96
4.4 Comparison of median error to ground truth before and after calibration. 103

5.1 Absolute Trajectory Error (ATE) for multiple localization method. 130

xv

List of Abbreviations

6-DOF Six Degree of Freedom
AHRS Attitude and Heading Reference Systems
AI Artifitial Intelligence
APD Avalanche Photodetectors
API Application Programming Interface
AR Augmented Reality
ARM Advanced RISC Machine
ATE Absolute Trajectory Error
BA Bundle Adjustment
BLDC Brushless Direct-Current Motor
BSDF Bidirectional Scattering Distribution Function
CAD Computer Aided Design
CAN Controller Area Network
CNC Computerized Numerical Control
CPU Central Processing Unit
CV Computer Vision
DC Direct Current
DEM Digital Elevation Model
DGPS Differential Global Positioning System
DLT Direct Linear Transform
DSLR Digital Single Lens Reflex Camera
DTM Digital Terrain Model
EKF Extended Kalman Filter
FDM Fused Deposition Modelling
FLANN Fast Library for Approximate Nearest Neighbors
FOG Fiber-Optic Gyroscope
FOV Field Of View
GLONASS Global’naya Navigatsionnaya Sputnikovaya Sistema
GNSS Global Navigation Satellite System
GPS Global Positioning System
GPU Graphics Processing Unit
GSM Global System for Mobile Communications
HD High Definition
HDR High Dynamic Range
ICP Iterative Closest Point
IMU Inertial Measurement Unit
INS Inertial Navigation System
IRLS Iteratively Reweighted Least Squares
IRU Inertial Reference Unit

xvi

ISO The International Organization for Standardization
IT Information Technology
KF Kalman Filter
LiDAR Light Detection and Ranging
LIO LiDAR Interial Odometry
LM Levenberg-Marquardt
LRG Laser Ring Gyros
MEMS Microelectromechanical System
MMS Mobile Mapping System
NDS Navigation Data Standard
NDT Normal Distributions Transform
NDVI Normalized Difference Vegetation Index
NMEA National Marine Electronics Association
NMT Network Managment

OEM Original Equipment Manufacturer
PCA Principal Component Analysis
PCL Point Cloud Library
PDF Probability Distribution Function
PF Particle Filter
PID Proportional Integral Derivative
PLA Polylactic Acid
PLD Pulse Laser Diodes
PLY Polygon File Format
PMMA Poly Methyl Methacrylate
PPS Pulse Per Second
PTP Precision Time Protocol
PWM Pulse Width Modulation
QR Quick Response
RADAR RAdio Detection And Ranging
RFID Radio Frequency IDentification
RGB Red Green Blue
RGBD Red Green Blue Depth
RMS Root Mean Square
RMSE Root Mean Square Error
RNN Recurrent Neural Network
ROI Region Of Interest
RPE Relative Pose Error
RPM Revolutions Per Minute
RSSI Received Signal Strength Indicator
RTK Real-Time Kinematics Positioning
SDK Software Development Kit
SDO Service Data Object
SI International System of Units
SLAM Simultaneous Localisation and Mapping
SLERP Spherical Linear Interpolation
SONAR SOund Navigation And Ranging

xvii

SVD Singular Value Decomposition
TLS Terrestial Laser Scanning
TOF Time of Flight
UART Universal Asynchronous Receiver Transmitter
UAV Unmanned Aerial Vehicle
UDP User Datagram Protocol
UGV Unmanned Ground Vehicle
UKF Unscented Kalman Filter
USAR Urban Search and Rescue
VO Visual Odometry
XGA Extended Graphics Array

1

Chapter 1

Introduction

This dissertation concerns automatic calibration of multi-sensor robotic mobile mapping
systems. Said calibration reduces the amount of expert knowledge required in the
process and increases the autonomy of mobile robots performing tasks in unknown
environments. The primary motivation for this dissertation is to provide a methodology
as complementary set of methods which enables building multi-sensor systems for
ground mobile robots. These methods focus mainly on fundamental problems such as
online data synchronization, automatic calibration, and multi-view data registration;
thus, the online capabilities extend the existing mobile mapping systems. In order to
verify the proposed methodology, several ground robotic mapping systems were built
and tested in realistic conditions, including a nuclear power plant inspection during
the European Robotics Hackathon: ENRICH [123]. This provided the opportunity to
explore the workings of a mapping system capable of processing data on-board a robot
and using it for additional tasks such as semi-autonomous navigation. It was, therefore,
possible to perform the mission remotely, which ensured safety of the personnel. The
primary practical benefit of the methodology is enabling the use of mobile mapping
data for ground robot navigation, which is what differentiates the operational capability
of this robotic mapping system from other state-of-the-art mobile mapping systems.
The direct positive impact on the mobile robotics domain has been verified as mobile
robot localization shows that the proposed methodology can be incorporated in various
mobile robotic applications. This research fills the gap in recent mobile robotics studies
by showing the importance of data synchronization and automatic calibration, which
yield highly accurate mobile mapping results. A formal definition of calibration given
by The International Organization for Standardization (ISO) in the Internal Vocabulary
of Basic and General Terms in metrology is: "Calibration (V-IM-1993) - set of operations
that establish, under specified conditions, the relationship between values of quantities
indicated by a measuring instrument or measuring system, or values represented by
a material measure or a reference material, and the corresponding values realized by
standards [98]". In Computer Vision (CV) there are multiple types of calibration [134]:

• intrinsic calibration,

• extrinsic calibration,

• hand-eye calibration,

• photometric calibration.

Intrinsic calibration is the model parameter of the sensor. This type of calibration
allows to remove undesirable effects on the captured image introduced by imperfections

Chapter 1. Introduction 2

in a lens. This collection of parameters describes a chosen model of lens distortion
(e.g. radial and tangential). Extrinsic calibration is related to relative poses between
sensors expressed in the local coordinate system of the measurement instrument. That
calibration parameter depends on the geometrical configuration of the system. It is
required by any sensors - IMUs, gyroscopes, Global Navigation Satellite System (GNSS)
antennas, cameras, laser scanners, range finders. It can be optimized during automatic
or manual procedures or obtained from the documentation. Hand-eye calibration is a
problem of determining a transformation between the end-effector, camera, and base of
the robot, and the world. It is an essential problem in tasks involving automated robotic
manipulation [121]. Photometric calibration is a function which converts the sensor’s
measurements (e.g. pixel value) to photometric quantities (e.g. International System of
Units (SI) light units). For a camera, these would be: color gain correction, vignetting
gain correction, or hot pixel correction.

To conclude, intrinsic and extrinsic calibration often require [112][133] the use of an
existing calibration field, patterns, or other objects with known geometrical properties.
An alternative approach [31] assumes no prior knowledge of calibration field or patterns,
as any data association is not available. Unfortunately, there is no general approach for
the automatic calibration of multi-sensor systems, which is the primary concern of this
thesis. Thus, the main focus is to discuss the sensors, then the methodology, and finally
the experimental validation. Additional assessments in real applications demonstrate
the added value of the approach.

1.1 Thesis outline

The thesis is organized into six chapters. Chapter Introduction is introductory and
presents addressed sensors and environment representations. The problem and theses
are formulated in chapter Problem formulation. The methodology for the automation of
the multi-sensor system calibration process is given in chapter Methodology. Above-
mentioned chapter contains detailed discussion of state of the art method and tools and
presents new introduced tools for automated calibration. The experimental validation of
proposed methodology is discussed in chapter Experimental validation, in which several
multi sensor prototypes are evaluated. Furthermore, important robotic applications are
described in chapter Robotic applications, which provides evidence for the added value
of the research. Chapter Conclusions concludes the dissertation and addresses future
directions of the research of robotic mobile mapping systems.

1.2 Sensors in ground robotic mapping systems

1.2.1 LiDAR

LiDAR is a method of measuring distance which implements Time of Flight (TOF)
technology. LiDAR is widely applied in road survey and underground mapping, as
well as in Digital Terrain Model (DTM) and Digital Elevation Model (DEM) generation
used for, among others, land survey. Multiple LiDARs solutions are used in robotics
and robotic mapping systems. In order to achieve a desired FOV, multiple measuring
devices may be used at once. The shape of FOV can be used to differentiate the design

Chapter 1. Introduction 3

of LiDAR sensors. One of such are 2D lasers, which are already in use in the 2D robot
navigation. The first mode of their operation is based on a rotating 1D laser scanner.
Such simple solution is used typically in consumer-grade household devices. The second
design method is based on a rotating planar reflector.

Another application for the devices is in safety equipment, in case of which strict
quality control is of utmost importance. They accurately detect any intrusion into the
hazardous zone and reliably trigger safety functions. LiDAR was developed more
than 20 years ago and it is considered a mature technology. A popular approach is a
rotating laser scanner where the head spins at a rate 100-200 Revolutions Per Minute
(RPM). The rotating head consists of a pair of Pulse Laser Diodes (PLD) and Avalanche
Photodetectors (APD). These are assembled on the focal plane of two lenses. A beam
produced by PLD travels through the lens, and having hit the target, it returns through
the second lens and is focused on APD. This approach gives an omnidirectional field
of view with limited azimuth. Conversely, another approach called retina-like is much
simpler to manufacture. It consists of a pair of Risley prisms that are placed next to
each other, assembled with Brushless Direct-Current Motor (BLDC). The prisms rotate
at slightly different rates. With a constantly changing phase shift, a beam is pointed in a
direction depending on the angular offset of two Risley prisms. The comparison of the
two methods is described in [77].

1.2.2 Cameras

There are multiple vision sensor and camera types that are used in the robotic mapping
system. The latter can be differentiated based on a number of criteria. The first division
focuses on the spectrum of detected light:

• visible light,

• near-infrared,

• infrared (thermografic),

• multimodal.

Visible light cameras detect wavelengths which match the abilities of the human’s eye
(400-700 nanometers). Cameras detecting the near-infrared (700 nm - 1100 nm) part
of the electromagnetic spectrum help capture image in poor-light conditions. Near-
infrared cameras find application in agriculture and vegetation studies to detect live
green vegetation. Output from these cameras can be provided as so-called Normalized
Difference Vegetation Index (NDVI), which expresses the ratio of red light to near-
infrared light. Healthy plants reflect large amounts of light in the near-infrared spectrum,
which is not used for photosynthesis, and absorb the visible part of the spectrum used
in photosynthesis. It is so due to a mechanism in plants which allows them to absorb as
large amount of useful energy as possible, thus limiting the increase in their temperature.
Inanimate objects, such as soil, snow, or dead plants, absorb the same amount of light
in the near-infrared and visible spectrum. NDVI is widely used in satellite imagery
and in specialized multi-modal cameras used in agriculture, e.g. in drone mapping
[16]. Infrared cameras - or thermographic cameras - detect wavelengths longer than it is
possible for near-infrared sensors, that is 750 nm - 14 000 nm. A black body produces

Chapter 1. Introduction 4

the electromagnetic radiation of that wavelength at a given temperature. Therefore,
thermographic cameras are often tuned to produce an output in temperature units of a
black body. This methodology finds application in military, civil engineering, firefighting
[119], medicine [18], or inspection tasks. Cameras can be differentiated also by the shape
of their field of view:

• perspective (rectilinear) model camera,

• fisheye model camera,

• omnidirectional model cameras.

An ideal rectilinear camera performs a projection of a point in the 3D world to a 2D pixel
plane. Camera parameters are optical lengths fx, fy. Rectilinear projection maintains
linearity - the line observed in the scene is projected as the line in the image. If the lens
is not ideal, a projected line is a curve. If a camera is ideally rectilinear (no distortion)
and optical length is common for fx and fy , the distance from the projection center is a
function of angle θ of incident light ray [10]:

r = f tan(θ) (1.1)

This equation shows that the rectilinear model has a field of view limited to 180 degrees.
What is more, the infinite size sensor is needed to observe the ray that enters the lens at
an angle close to 180 degrees. A model of an actual camera is not a perfect perspective
projection. For these cameras, the image requires undistortion. Pixels from the raw
image need to be shifted to obtain an undistorted image that follows the rectilinear
model. The distortion models and the methods to identify the model parameters are
discussed in [133][109]. Next, fish-eye is an ultra-wide lens producing a highly distorted
or hemispherical image. Its field of view is, in some cases, larger than 180 degrees [10].
The most popular fish-eye cameras follow two projection models. The first is equidistant:

r = fθ (1.2)

The second is equisolid:
r = 2f sin(θ/2) (1.3)

The first model is beneficial in celestial body observation - it allows for an efficient
computation of angles, which can be further preserved identically in all images [10]. An
omnidirectional camera (such as a spherical camera) has a field of view larger than fish-
eye cameras. The spherical camera produces an equirectangular image of a surrounding
scene. Limitations of those types of the sensor are discussed in chapter 1.2.2. Several
publications discuss usage of those type of sensors in various different domains, such
as heritage prevention [52] [118], or robotic SLAM [117]. An extensive discussion on
the limitation of a spherical image in surveying and photogrammetry was discussed in
[74].

Spherical cameras

The spherical camera model uses an equirectangular (or cylindrical) projection of the
observed scene. This model of the camera projects a terrain point to its spherical
coordinates. A row and a column in a spherical image (panorama) correspond to:

Chapter 1. Introduction 5

0 2π

0.5 π

φ

ϑ

−0.5 π

(A) Equirectangular coordinate system of
spherical image.

0 Uu

v

V

(B) Image coordinate system of spherical
image.

FIGURE 1.1: Coordinate system used in equirectangular image.

• ϑ as longitude,

• ϕ as latitude.

Typically, the spherical image is 2π in width and π in height. The angular coordinate
system used when such image is processed is shown in the figure 1.1a. The pixel
coordinate system is shown in 1.1b.

[
ϑ
ϕ

]

=

[
πu−0.5U

U
πv−0.5V

V

]

(1.4)

where: u, v - coordinates of the pixel; U, V - number of columns and rows in the
panoramic image.

The point is at a distance of R from the optical center of the spherical camera. Its
coordinates in R

3 are given in equation (1.5) [74]:







x
y
z
1






=







R sinϕ sinϑ
R sinϕ cosϑ
R cosϕ

1







(1.5)

Implementation of spherical camera

While the ideal equirectangular camera does not exist, there are three major techniques
for designing a spherical capture system:

• a single camera mounted on a gimbaled tripod or motorized platform, which may
be either simply a Digital Single Lens Reflex Camera (DSLR) or a specialized fully
calibrated system,

• multi-lens (dioptric) cameras system with two or more fish-eye lenses, e.g. cameras
such as Flir Ladybug 5/5+,

Chapter 1. Introduction 6

• mirror systems (catadioptric)[107].

There is a technical limitation that introduces a discrepancy between a model and
a real system, as it is impossible to bring the optical centers of the individual camera
to the optical center of the multicamera system. That limitation has several interesting
consequences. A multi-lens system contains multiple perspective cameras with wide
lenses. An example of such camera is Flir Ladybug 5/5+. It consists of six individual
wide FOV cameras, which are intrinsically and extrinsically calibrated. Rectification
is performed by a proprietary algorithm which is exposed by the provided Software
Development Kit (SDK). Manufacturer provides a local coordinate system for every
camera. Composing the panoramic image from multiple cameras is a straightforward
process. With known cameras’ extrinsic and intrinsic parameters, the point in 3D space
can be easily transformed to 2D sensor coordinates. Every point in a projection sphere
with a fixed radius of R has pair of spherical coordinates ϑ, ϕ. The equation (1.5) allows
to transform those coordinates to R

3. Equation (1.6) transforms point ϑ, ϕ on the sphere
with R radius to local coordinates system of certain perspective camera.







xnc
ync
znc
1






= Tne







R cosϑ sinϕ
R sinϕ sinϑ
R cosϕ

1







(1.6)

where: Tne ∈ SE(3) - extrinsics calibration of n-th camera. [xnc, ync, znc] ∈ R
3 - projected

point to local coordinate system of n-th camera.
Local coordinates of pixel in perspective camera are expressed in equations (1.7) and
(1.8).

u = fnx
xnc
znc

+ cnx (1.7)

v = fny
ync
znc

+ cny (1.8)

where:
u, v - the coordinates of the projected pixel in rectified image of n-th camera,
fnx, fny - optical length in x and y direction for n-th camera,
cnx, cny - principal point location for n-th camera.
It is evident that chosen value of R affects the result [74]. This effect can be observed in
figures 1.4 and 1.5 in relation with an ideal case shown in figure 1.3. Those three figures
are panoramas projected from a simulated six-camera rig shown in figure 1.2. Note that
simulated cameras are ideal pin-hole cameras with known extrinsics and intrinsics. The
method of simulation, the used software, its benefits and limitations are described in
chapter 3.3.6. Used scene with lighting, texture and meshes was obtained commercially
[14]. Figures 1.4 and 1.5 differ - especially on borders, and are both far from an ideal
equirectangular camera output shown in 1.3. Moreover, figure 1.6 demonstrates the
local comparison of the stitching errors. That parallax error is most visible on the
stitching line, but exists at every point of the panoramic image. The error disappears
when the projected sphere has a radius equal to the distance to the object. In figure
1.7 geometrical reasoning for the parallax error is shown. The value of the parallax
error in function of distance and radius of projection sphere is given with equation (1.9).

Chapter 1. Introduction 7

FIGURE 1.2: Simulated spherical camera rig with t = 0.05m.

FIGURE 1.3: Panorama rendered with an ideal equirectangular camera.

Chapter 1. Introduction 8

FIGURE 1.4: Panorama rendered with six camera rig from figure 1.2, pro-
jected on sphere with radius 2 meters. Projected field of view boundaries

are marked in color.

FIGURE 1.5: Panorama rendered with six camera rig from figure 1.2, pro-
jected on sphere with radius 10 meters. Projected field of view boundaries

are marked in color.

Chapter 1. Introduction 9

FIGURE 1.6: Local comparison of stitching errors. Left column is ground
truth obtained with the ideal equirectangular camera simulation. Next
columns are projections for sphere size: 1, 5, 10, 100 meters. Note that

optimal radius is different for those two patches.

FIGURE 1.7: Parallax error ’X’. Point P is projected to a point P ′

s in an
idealized spherical model. In real camera point P is projected to P ′

c. That
is caused by a fact, that projection center for spherical image is Os and

for perspective camera is Oc. Those are t apart.

Chapter 1. Introduction 10

The equation is obtained from the similarity of triangles P, P ′
s, P

′
c and P, S,Oc visible

in figure 1.7 [67]. In plot 1.8 it is visible that the parallax error becomes zero when the
radius of the projection sphere is equal to a distance to the object. The error is smaller
for larger distances. Note that the error becomes large and changes rapidly for objects
that are close to the camera.

X =
(D −R)t sin(ε)

D
(1.9)

where:
D - the distance to object, R - the radius of sphere, t - the distance of the optical center of
the camera and the spherical model, ε - the angular location in image.
Note that in presented simulated data wide lens cameras produced rectified images,

FIGURE 1.8: The value of parallax error in meters for given camera
ε = 60◦ and t = 0.1m.

which is not the case in the real world. The wide FOV lenses suffers from significant
distortions. The producer of Ladybug camera claims that their proprietary algorithm
can produce an undistorted image with the accuracy of 2 pixels in the border of the
picture. That error further contributes to the spherical projection error, especially on the
borders.

1.2.3 IMU

IMU is one of the major measurement instrument in mobile robotics and mobile mapping
systems. It consists of multiple sensors:

• accelerometers,

• gyroscopes.

and optionally:

• magnetometer for Attitude and Heading Reference Systems (AHRS),

• barometer (for height estimation),

Chapter 1. Introduction 11

• thermometer (for temperature compensation).

The range of application of IMU is extremely wide. Medical and biomedical applications
are especially interesting. Due to high measurement frequency and small sizes of
Microelectromechanical System (MEMS) and minimal power consumption, the wearable
IMU system can provide unique data. The system is used to analyze the gait of patients
[90] or performance of sportsmen [110]. The next application worth mentioning is for the
entertainment industry, where a small wearable system can replace the motion capture
setup in the studio. This allows to lessen the cost of outdoor motion capture sessions
[65]. Multiple commercial wearable solutions are available on the market for various
applications. IMU system is essential in Unmanned Aerial Vehicle (UAV) application
[40][39] for state estimation. Unmanned Ground Vehicle (UGV) navigation utilizes IMU
measurement in state estimation as well [87]. The specialized inertial system provides
measurements in Electronic Stability control in road vehicles. Specialized low-bias
inertial sensor systems are essential for Inertial Reference Unit (IRU) in aviation. Those
sensors allow performing inertial navigation of an aircraft using a self-contained system
that is entirely independent of radio navigation and GNSS. Small MEMS sensors are
essential in mobile devices [100] for virtual (and augmented) reality applications [85].

A part of IMU essential for state estimation of the orientation of a body in space
is the gyroscope. There are multiple technologies used for these sensors: Mechanical,
where a rotor is mounted on a low-friction gimbal; the direction of the spinning rotor is
preserved due to the law of the conservation of angular momentum. This kind of sensor
suffers from friction that introduces biases. In addition, the construction of the gimbal
can introduce a phenomenon called gimbal lock. Laser Ring Gyros (LRG) operates on
basis of the Sagnac effect [95]. It consists of a single laser that produces two light beams
pointing in opposite directions. These two beams are directed into the same point by
two mirrors and meet at a common point where they interfere with each other. One light
beam travels clockwise, the second one in counter-clockwise direction. When the system
is still, two beams travel precisely at the same speed. Thus, the traverse of both sides of
the ring takes identical time, and the interference image shows no phase shift. When the
system is under rotation, one beam must travel a greater distance than the other. The
speed of light is constant, so two beams "arrive" at a common point at a different moment.
That shows a phase shift in interference image [95]. The Fiber-Optic Gyroscope (FOG)
system also utilizes Sagnac’s effect. The construction of a light pathway is different - a
FOG IMU consists of multiple fiber optic cable loops. The main difference is that a phase
shift for the same rotation velocity would be multiple times larger in FOG than in LRG
[95]. MEMS introduces a lithographically constructed mechanism of vibrating masses.
It is a self-containing integrated circuit [95]. The choice of the technology depends
on the task. For example, LRG IMUs are found in applications, such as aviation and
aeronautics navigation. Those are cheaper and simpler than FOGs. On the other hand,
FOG IMUs are more complex and can be scaled to application. The bias stability for FOG
can be extremely small (even 0.00008 deg/h). Due to excellent stability, those sensors
find application in precise navigation (submarine, spacecraft), metrology, seismology,
structural sensing and calibration equipment [71]. MEMS sensors provide a small,
durable solution in the form of an integrated circuit. Those sensors, depending on their
type, have worse bias stability than FOG or LRG (1 - 1000 deg/h). MEMS technology has,
however, certain advantages: low production cost and insignificant energy consumption.

Chapter 1. Introduction 12

MEMS gyroscopes utilize the Coriolis effect and vibrating mass. A proof mass is induced
to vibrate. Under rotation, the mass is displaced by the Coriolis effect. This displacement
changes capacitance, which is measured by the electronics of the gyroscope. The exact
implementation of MEMS differs by implemented structure. MEMS technology is being
developed and gradually becomes a more preferable solution for applications that used
to utilize optic IMUs [34][47][29][50]. Bias instability causes IMU (especially MEMS) to
lose alignment, which manifests itself in every application. An IMU in a satellite needs
to be aligned periodically using celestial bodies [122]. Another approach is AHRS with
a magnetometer. The calibrated magnetometer detects direction to the Earth’s magnetic
North Pole. It is an absolute measurement of direction in 3D space. Accelerometers used
in IMU utilizes MEMS technology. It measures a displacement of a proof mass. Using a
sophisticated application of Extended Kalman Filter (EKF), a more reliable system can
be obtained [131].

1.2.4 Odometry

Odometry is a measurement of a change of position and orientation over time. The
word "odometry" is combination of Greek odos (meaning "route") and metron (meaning
"measurement"). Localizing a robotic platform in an environment requires the use of
dead reckoning, that is a technique in navigation that enables the estimation of a location
of a moving object from the knowledge that consists: previous localization, speed,
heading (course), and elapsed time. This simple method suffers from an unbounded,
cumulative error which needs to be minimized with other techniques, such as using
visual aids, celestial body navigation, radar stations or GNSS. Dead reckoning in ground
robotic systems is based on encoder sensors attached to the platform’s motors, which
are used to measure achieved velocity of robot’s wheels and, after applying simple
forward kinematics computations, provide an estimated location of a robotic platform
over time [82]. Terms such as "Visual Odometry (VO)" and "LiDAR odometry" appear
in literature. Those methods provide updates of relative position using data from other
domains. They also suffer from cumulative, unbounded error. Odometry measurement
can be fused with other sensors’ data (e.g. IMU), creating an inertial localization system
using EKF [87] or Unscented Kalman Filter (UKF)[38], algorithms which allow finding
an optimal solution to robot localization. Odometry is also functional in SLAM as an
initial guess and the relative poses which express constraints [73].

1.2.5 GNSS

GNSS is a constellation of artificial satellites which provides full coverage for the Earth.
It consists of:

• European Galileo,

• United States NAVSTAR Global Positioning System (GPS),

• Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS),

• China’s BeiDou Navigation Satellite System.

Chapter 1. Introduction 13

GNSS systems are critical for providing accurate location service and accurate time
sources. In a nutshell, a GNSS receiver obtains a signal with a timestamp from several
multiple geostationary satellites. The receiver needs to have a clear line of sight to satel-
lites. Having at least four messages from different satellites consisting of timestamps,
knowing the speed of light, time of arrival, the system can triangulate its locations. The
problem is complex because the receiver needs to have its time source synchronized with
the satelites. What is more, the location of every satellite needs to be corrected. Currently,
modern small Original Equipment Manufacturer (OEM) modules can provide the user
with 2 meters accuracy, but this number degrades to 15 - 20 meters under unfavorable
conditions [58]. The GNSS system can provide its user with centimeter-level accuracy,
but multiple techniques are required for the correction of so-called common errors in
GNSS. These errors include [68]:

• selective availability (limited clock correction for civilian use),

• satellite clock error, relativistic effects on satellite clock,

• receiver clock errors,

• ionosphere transport delay that varies on Sun’s activity, weather, and time of day,

• trophosphere errors that vary on humidity and weather,

• Sagnac effect on Earth rotation,

• multipath error, where receiver suffers from signal reflection from obstacles.

The abovementioned errors are some of the sources that degrade the GNSS localization.
Fortunately, mobile mapping and surveyor applications can rely on a solutions that
provide centimeter accuracy, described in next section.

RTK and DGPS

Real-Time Kinematics Positioning (RTK) and Differential Global Positioning System
(DGPS) are methods that use a precisely localized GNSS receiver called a base station,
which is localized using a different method (e.g. forward intersection). The second
receiver (called rover) is used to measure a surveyed position. Base station aggregates
measurements and distributes corrections over the radio, or Global System for Mobile
Communications (GSM) link to the rover. That way, some of the common errors, e.g.,
atmospheric transport delays, can be eliminated. While a converged RTK fix provides
centimeters accuracy, DGPS solution provides decimeter accuracy [75], which leads to
RTK being a more advanced approach that expands the concept of DGPS. In RTK base
and rover the receivers analyze phase shift of carrier frequency to improve accuracy
even further [41].

GNSS+INS

GNSS+Inertial Navigation System (INS) expands GNSS localization with the benefits
of IMU. It provides the user with a full Six Degree of Freedom (6-DOF) pose and can
provide dead reckoning localization during GNSS outages, e.g. temporarily GNSS

Chapter 1. Introduction 14

denied environments. It is more robust against GNSS spoofing and jamming. It is
a standard for GNSS solutions to use EKF, but Recurrent Neural Network (RNN) is
currently being researched [30].

1.3 Map representation

Map representation is a crucial design decision in autonomous mobile robots. Recent
advances in sensors and on-board processing allow to incorporate different approaches,
such as dense and sparse representations, that are elaborated in next sections.

1.3.1 Dense representation

Occupancy grid map

Occupancy grid map is a popular representation of environment used in SLAM and
localization approaches such as Particle Filter (PF). It is a 2D dense representation
used to quickly model the posterior probability of map state given robot trajectory
and measurements. Occupancy grid map is an image base container with metadata
that scales the occupancy grid map to represent the environment metrically. Typically,
bright pixels show free spaces, and dark pixels show obstacles. This representation is
discretized into cells, each of which acts as a single independent random variable [124].

Elevation map

2.5D map is a simplified grid-based model of environment that can incorporate 3D
measurements from depth camera or 3D laser scanners. Every cell contains the height of
the potential obstacle. It is also called the elevation model. Like occupancy grid map, it
can serve multiple purposes: localization, mapping or motion planning. It can be used
both in mobile ground robots and aerial robots [91].

1.3.2 Sparse representation

Topological map

A topological map is a simplified representation that lacks scale but shows interesting
entities and relations. Such representation can be a layer in a more sophisticated repre-
sentation (e.g., line-string in High Definition Map). Topological representation of the
environment is memory efficient and enables effective path planning. For example, some
authors claim that topological representation built from voxel occupancy grid map can
provide path planning an order of magnitude faster compared to dense representation
[15]. Topological maps can encode knowledge regarding the structure of more complex
environments, e.g. clustering available space to separate rooms, floors, or a particular
abstract region of interest, such as portals. Portals are places where a robot can safely
transit from one region to another. Topological map in robotic system is favorable due
to the following:

• it provides the knowledge that cannot be abstracted in other representation,

Chapter 1. Introduction 15

• in the past, lightweight representation was desired due to limited computational
resources [72],

• topological model with artificial neural network can provide robot localization
[32].

Semantic map

Semantic map can use previously described representations with an additional layer of
information. It can be organized as semantic net [94]. It is worth mentioning that using
the semantic information [4] extracted from the 3D laser data [93] was an interesting
research topic in mobile robotics. In [92] a semantic map for a mobile robot was described
as a map that contains assignments of mapped features to entities of known classes. In
[54] a model of a scene is implemented as a knowledge base that can be considered also
as a semantic net. Some researchers were focused on automatic feature extraction for
semantic conceptualization [23][42][128].

1.3.3 High Definition map

A High-Definition map represents an environment tailored for ego-vehicle localization,
motion planning, and autonomous vehicle safety [21]. Ego-vehicle is an automated
vehicle that is carrying sensors and is primary interest in scenario. It is designed to
support vehicle autonomy (from level 3 to level 5 of SAEJ 3016). This representation is a
concept that is implemented in a number of ways, depending on system architecture
and used solutions. It is a model that consists of multiple layers of abstraction. Multiple
formats exist and they depend on the provider. A popular format that is currently
used by several manufacturers is Navigation Data Standard (NDS) provided by NDS
Association. It is a wide, closed-source navigation database, developed jointly by the
users and map providers. In addition, NDS Association provides the users with standard
tools and certification solutions for new products [5]. Another example is Lanelet2, an
open-source solution provided as C++ library [99]. Lanelet2 uses following primitives
for capturing a road geometry:

• line-string,

• polygons,

• lanes,

• area (such as parking spots),

• regulatory elements (traffic lights).

Note that many map providers deliver their solutions offering different features and
data layers, more sophisticated than Lanelet2. An interesting aspect of several keys
is the concept of self-healing and knowledge sharing between agents, that uses High
Definition (HD) Map [59]. This solution allows to modify existing maps with real-time
observations. The concept is sufficient in situations such as rerouting due to accidents
or heavy traffic. HD Map building involves designing robotic mapping system and
mobile mapping system. It requires sensor calibration, solution for data acquisition and

Chapter 1. Introduction 16

registration, SLAM modeling and solving, Artifitial Intelligence (AI)-based and manual
labeling to provide raw content to be supplied as HD Map [125].

17

Chapter 2

Problem formulation

Robotics perception is essential to update the model of a robotics agent belief about its
environment. Updating the model of the environment can be done in various ways,
depending on the application. A single sensor or multi-sensory system can be calibrated
in advance, or the calibration parameters can be considered unknown variables in later
optimization, such as SLAM or Bundle Adjustment (BA).

Robotized mapping systems need to meet requirements different from those that are
set for mobile mapping systems. They are the following:

• a robotic systems need to be robust to withstand accelerations and impacts from
robotic platform locomotion solution,

• they need to be teleoperated, semi-autonomous, or fully autonomous,

• they need to operate with a small bandwidth and large communications delays,

• the same sensor for mapping and navigation should be used to limit power
consumption and mass,

• direct cooperation with the operator may be limited or not possible at all (e.g.
Urban Search and Rescue (USAR), exploration rovers, surveying),

• systems often need to perform pre-planned missions (e.g. unmanned aerial map-
ping),

• in some scenarios (e.g. USAR) a map delivery is needed on-demand during the
mission.

A MMS is a device or a whole system designed to maximize output map quality with
fewer constraints. The MMS has to be lightweight and ergonomic, and it needs to
provide a smooth experience to the operator. These systems are often a combination of
multiple sensors that measure the internal state of the system (e.g. IMU), and precept
external environment in a passive (e.g., monocular cameras, stereo cameras, spherical
cameras) or an active way (structure light, LiDAR, SOund Navigation And Ranging
(SONAR) and Radio Detection And Ranging (RADAR)). MMSs are designed to work in
both GNSS allowed and denied environments. The sensor suite is typically synchronized
with the onboard clock and provides data storage for the measurement. Specifically
designed and optimized algorithms similar to SLAM or BA are used to post-process
data acquired by the MMS.

An example of a commercially available MMS is shown in the figure 2.1. A key

Chapter 2. Problem formulation 18

(A) Leica Pegasus MMS. (B) Zeb Horizon MMS.

FIGURE 2.1: Examples of commercially available MMSs.

Chapter 2. Problem formulation 19

feature of all MMSs is the calibration of all intrinsic and extrinsic parameters. There is no
common methodology for doing so which can be formulated as an optimization problem.
The main thesis of the dissertation addresses this key aspect and it is stated as follows:
Automation of the calibration process of the mobile mapping allows to ob-

tain more accurate results from the mapping system, while reducing the ex-

pert knowledge required in the calibration process and increasing the au-

tonomy needed by applying those systems in the field using mobile robots.

Four more precise theses have been formulated to support the main thesis:

• automation of the calibration process reduces the need for expert knowledge re-
quired for accurate measurement of intrinsic and extrinsic calibration parameters,

• the new method for reshaping the field of view of modern Solid State LiDARs
enables customizing the robotic mobile mapping systems for various applications,

• the chosen rotation matrix parametrization enables robust optimization of the
calibration parameters,

• automatic calibration enables long term autonomous mobile robot inspection of
the unknown environment by reducing mechanical issues related to the robot’s
exploitation.

20

Chapter 3

Methodology

In this chapter a number of key aspects such as trajectory representation, observations
equations are presented as a core of proposed methodology. Those aspects are an
important part of system design and automatic calibration presented later in this thesis.
In this chapter some well-established method such as Levenberg-Marquardt (LM) and
factor graph are presented based on literature. Also there are addresses details that
are dependent on domain and applications, and, what is more, can be approached
in multiple ways. This chapter presents methodology that is implemented later for
real-world challenges that were presented in chapters 4 and 5.

3.1 Time synchronization

A complex robotic mapping system contains multiple sensors that can produce data
at different rates. Ideally, every measurement would be combined with an accurate
timestamp provided by the hardware. The problem of accurate synchronization of
trajectories is addressed in many applications [43][56].

Hardware time synchronization

There are multiple solutions for time synchronization in a mobile mapping system.
One of them is PPS. This signal traditionally produced by GNSS receiver can provide
hardware timestamp to a number of devices [130][79]. Chapters 4.3 and 4.4 discusses
the detailed implementations.

A vast number of other existing solutions utilize technologies from Information
Technology (IT). An example of one is Precision Time Protocol (PTP). This is a standard
which enables synchronizing devices in a local computer network. Some hardware is
PTP-enabled [79]. PTP is a standard for time synchronization in other industries, e.g.
financial transactions, communication or power grid equipment [132]. Many simpler
sensors used in robotic mapping systems are based on custom solutions for precise
time synchronization. For example, IMU outputs high-frequency data-stream over its
serial port. One of the synchronization strategies exposed to the user is the so-called
trigger indicator. For example, in a status word being a part of a serial transmission,
there is a bit which shows if IMU’s firmware detected a rising edge on one of the digital
inputs. With such a solution, the user can easily find the offset of the IMU internal
timer and other parts of the user’s system [89]. The importance of the hardware time
synchronization is one of the main theses of this dissertation.

Chapter 3. Methodology 21

3.2 Trajectory

The trajectory of the robotic system is a set of robot poses which represent the robot’s
movements. Most SLAM systems utilize a trajectory built from SE(3) or SE(2) members.
However, such trajectory can be more informative, which is the case with other systems,
e.g. the LiDAR Interial Odometry (LIO) algorithm [113]. In this approach, the trajectory
is not coming from the odometry of a robot but from the IMU itself. The pose is
integrated, which results in an initial guess for the trajectory. Both the accelerometer and
the gyroscope measurements contain bias. Estimation of this bias, along with the SE(3)
pose, composes the trajectory node. Therefore, SLAM front end not only performs scan
matching, but also estimates the current bias of IMU. This approach also effectively
integrates rotation velocity into the rotation matrix and acceleration into the linear
velocity. Wheel odometry, VO, or IMU can be represented in many ways. In the case of
factor graph SLAM, odometry is a factor function which utilizes the last pose, the next
pose, and the displacement reported by odometry. An excellent example of building
such a representation is available in [49]. Alongside other factors which utilize sensors
measurements and loop closure detection, such odometry provides a structure for factor
graph optimization. The pose graph SLAM approach is similar. Odometry is introduced
to the pose graph SLAM problem in the form of an equation which reports how much
the displacement measured by the odometry differs from the one estimated by the
subsequent trajectory nodes. The so-called relative pose constraint for pose graph SLAM
is discussed in section 3.2.2. Solving the SLAM problem results in the most probable
optimized trajectory given all information that SLAM utilizes. Trajectory is crucial for
mobile mapping systems since the map is reconstructed based on it. For this reason, the
accuracy of the trajectory has a direct impact on the final map. As it is shown, calibration
is another crucial factor in the process because it also contributes to map generation.

3.2.1 Rotation representation

Groups

A group is a term used to refer to several concepts that are used in robotics or in state
estimation. For a set to be called a group, it needs to have a binary operator, also called
the operation, which consumes two elements and yields a third one which satisfies the
following axioms:

• closure,

• associativity,

• identity (or neutral),

• and inverse element.

The first axiom means that the operator cannot yield an element that does not belong
to the group. A good example here is a finite set of integer numbers from -10 to 10:
Z1 = {−10 . . . , 0, . . . 10}. This set cannot be called a group under addition operation. It
can return an integer number that is more than 10 or less than -10, which is not in Z1.

Chapter 3. Methodology 22

The second axiom means that the condition (3.1) is satisfied for all a, b, c in the group
under operator ◦.

(a ◦ b) ◦ c = a ◦ (b ◦ c) (3.1)

It is worth mentioning that the commutativity of the operator ◦ is not needed, and often
non-existent.

The third axiom means that a set needs to contain some unique element that does
not change the result of the operator, e.g. identity matrix in matrix groups under
multiplication, or zero in groups under addition. In other words: a group needs to
contain an element I that for every a in some group under operator ◦, (a ◦ I) = a.

Finally, the fourth axiom means that there is always an element which provides
inverse action. In matrix groups, an inverse matrix satisfies this condition under multi-
plication. Note that groups of matrices need to be invertible in the first place. In groups
under addition that is a negative element. In other words: for every element a in the
group under ◦ needs to exist some element ai which satisfies: a ◦ ai = I and ai ◦ a = I
where I is the identity element.

Groups can be finite or infinite (continuous). They can consist of numbers, vectors,
or matrices. Some good examples used in robotics [115] are:

• unit complex numbers under multiplication S1,

• orthogonal three by three matrices under multiplication SO(3),

• normalized quaternion numbers under multiplication S3,

• n-D vector planes under addition.

Lie Groups

Some of the groups are Lie groups. A Lie group needs to have a differentiable manifold.
In other words, all available elements in the group should create some smooth hyper-
surface. An example of such is a circle created by all complex numbers with magnitude
that equals to one - the S1 group. Such circle is a unit circle, and every point on it is
locally differentiable. A smooth surface enables creating a chart, also called a tangent
space, at any given point. A tangent space and a manifold have only one point in
common. Therefore, only one tangent space can exist for a given point in the manifold.
The tangent space which is attached to the Identity element is called a Lie algebra. A Lie
algebra is a vector space. This greatly simplifies algebraic operations like differentiation
(both analytic and numeric). In other words, considering a Lie group SO(3), every point
on the manifold is a three by three rotation matrix. A Lie algebra is a vector space where
every point can be mapped back and forth the manifold.

Lie group theory provides one with a number of tools [115]:

• exponential map,

• logarithmic map,

• vee (.)∨,

• hat (.)∧.

Chapter 3. Methodology 23

An exponential map allows for a precise conversion of a point that lies on a tangent
space back on the manifold. A logarithmic map is an inverse operation to an exponential
map. It allows for converting a point on a manifold (in the group) to a Lie algebra. Those
two operations are the result of solving an ordinary differential equation for a manifold.

Let us look at group S1. It is a two-dimensional group whose manifold lives in the
form of a unit circle on a complex plane. A manifold constraint is:

z∗z = 1 (3.2)

Only a complex number which satisfies the equation (3.2) belongs to the S1 group. Its
algebra s

1 is simply a tangent line going through the point (1, i0) in a complex plane
parallel to the imaginary axis. Every point θ on this line can be mapped to a circle:

eiθ ∈ S1 (3.3)

This exponential mapping, which is the well-known Euler formula [88], always gives a
complex number with a module equal to one for every real θ. This property is extensible
to all Lie groups and algebras. In the application in which a Lie algebra is used for
working with a rotation of the rigid body, an exponential can be computed in a closed-
form solution (e.g. Euler formula or Rodrigues formula [45]). In the case of S1, it is
obtained as follows:

eiθ = sin θ + i cos θ (3.4)

An interesting practical fact pertaining to a Lie algebra properties is that algebra mem-
bers can be applied to group members directly. The above holds for tiny local dis-
placements: it is used for derivation and in the numerical Jacobian. A group element
multiplied by a small algebra member effectively takes only the first two elements of
the Taylor expansion given by equation (3.5).

eiθ = 1 + ix+
(ix)2

2!
+

(ix)3

3!
+ . . . (3.5)

This will be shown for the less trivial case and can be used effectively in some applica-
tions, e.g. numerical derivation.

Naturally, applying large displacements will give elements above the manifold,
e.g. non-unit complex numbers in case of S1. ’Hat’ and ’vee’ are commonly used
mathematical notations [45][115][11]. ’Hat’ is an isomorphism which maps a vector (τ)
in real space to a Lie algebra.

τ ∈ R
1; (τ)∧ ∈ s

1 (3.6)

A trivial case of S1 hat operator is:

(θ)∧ = iθ (3.7)

The isomorphism ’vee’ ((.)∨) is an opposite to ’hat’. It maps Lie algebra members into
a real vector space. A particularly elegant physical interpretation of a Lie algebra is
a velocity. The velocity vector has similar properties: the velocity vector is always
tangent to the trajectory. For this reason, terms such as "twist" are sometimes used for
a Lie algebra in the case of rigid body motion. A Lie algebra can be effectively used

Chapter 3. Methodology 24

for manipulating every element in the Lie group. It is also used as a tool that enables
easy manipulation of a group element X with operator ⊕ into another Y , where X and
Y belong to the Lie group. Operator ⊕ is defined with equation (3.8). This operator
converts applied vector τ into increment which lives in the Lie algebra.

Y = X ⊕ τ = X ◦ e(τ
∧) (3.8)

There is also a left implementation of ⊕ - equation (3.9).

Y = τ ⊕X = e(τ
∧) ◦X (3.9)

There is a linear relation of left ⊕ and right ⊕ operators. For the same starting point
X on the manifold, there exist vectors τ1 and τ2 which lead to the same result on the
manifold:

X ⊕ τ1 = τ2 ⊕X (3.10)

τ1 = Adxτ2 (3.11)

Where Adx is called the adjoint of the group at X .
For a simple group like S1 the adjoint is always unit, which is caused by commu-

tativity of the operator multiplication in complex number domain. There are left and
right operators ⊖ which for given two points in the manifold yield a displacement in
the algebra. More details on this can be found in [115].

Special orthogonality group SO(3)

A special orthogonality group SO(3) is a set of all available rotations. SO(3) under
multiplication is a Lie group. Group axioms are easily observable in the properties of a
rotations matrix. There is an identity matrix of 3× 3 which serves as a neutral element.
The group consists of orthogonal matrices which are always invertible. The closure
means that two rotations can be combined into one with multiplication. Rearranging
the parentheses in an expression does not alter the result, which is shown in equation
(3.12). Such property is a group axiom called associativity.

(X1X2)X3 = X1(X2X3) (3.12)

where: X1 ∈ SO(3),X2 ∈ SO(3),X3 ∈ SO(3).
Note that SO(3) group elements, like every representation of rotation in 3D space, have
no commutativity. SO(3) is a Lie group. It means that it is differentiable and it creates a
smooth manifold. The manifold does not have any singularities, which means that a
slight change of its elements should not cause a great rotation. The manifold constraint
ensures orthogonality. For every member of SO(3) the following holds:

R⊺R = I (3.13)

Matrix R describes rotation in a 3D space; it is orthogonal and has a determinant equal
to one. These properties need to be taken into consideration in the optimization process,
where an optimal solution is searched for. Note that the dimension of the rotation

Chapter 3. Methodology 25

matrix is 9, but it has only 3 degrees of freedom. It is difficult to operate with such a
representation without tools like a Lie algebra. Changing any element in the matrix
without coordination with its other elements leads to a matrix that is not orthogonal. The
effect on a rotated body is shown in figure 3.1. Note that rotation is not rigid anymore if
det(R) is not equal to 1; thus, the object is deformed after applying this non-orthogonal
matrix. Rotation matrices have the following properties which are a natural consequence
of group axioms:

• multiplication of two elements in the group yields another element group,

• an inverse of a group element is another element of the group.

FIGURE 3.1: The example of applying non-valid (det(R) = 1.5) rotation
matrix. Left: original object, middle: proper rotation, right: non-SO3

quasi-rotation. It is evident that the object is scaled.

Lie algebra so(3)

The so(3) is a set of all three by three skew-symmetric matrices. The so(3) algebra
allows for performing multiplication of SO(3) group member as summations on the
tangential space so(3). The important properties of every Lie algebra are exponential
and logarithmic mapping. These two operations allow for converting an algebra to the
corresponding group and vice versa. An exponential of an element of so(3) gives SO(3)
member as in equation (3.14).

exp









ωx

ωy

ωz





∧

 = exp









ωx

ωy

ωz





×



 = exp









0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0







 ∈ SO(3) (3.14)

where vector ω =
[
ωx ωy ωz

]⊺
is a vector isomorphic to a member of so(3). Operator

’hat’ on vector ω gives a so(3) member : (ω)∧ ∈ so(3). The Lie algebra member X ∈ so(3)
gives vector ω with operator ’vee’ : (X)∨ = ω. The physical representation of vector
ω is a rotation velocity vector. The latter property of Lie algebras of a Lie group is,
in this particular case, advantageous. It offers the possibility to perform optimization
in 3D vector space of so(3), where rotations are applied by addition by operators ⊕.
Furthermore, taking the Lie algebra property into account, there is a possibility to
compute a valid rotation matrix from optimized variables in every step. Note that
optimizing parameters in SO(3) space is non-trivial. It would require nine variables
which need to coexist in a combination of constraints to ensure they keep a valid rotation,
or rigid body motion. Every property of a Lie algebra discussed in the previous section

Chapter 3. Methodology 26

holds here and can be taken advantage of. It is worth mentioning that SO(3) does have
a non-identity adjoint matrix-equation (3.15), so operators ⊕ and ⊖ behave differently
when used as left and right. To keep both side of equations (3.16) equal, the Lie algebra
members τ1 and τ2 need to be in relation (3.17).

AdR = R (3.15)

R⊕ τ1 = τ2 ⊕R (3.16)

τ1 = AdRτ2 (3.17)

where: R ∈ SE(3), τ1 ∈ so(3) and τ2 ∈ so(3).

Rodrigues’ rotation formula for rotation matrix

Elements of so(3) need to be exponentiated to yield SO(3) Lie group elements (rotation
matrix). The exponential skew-symmetric matrix has a closed-form solution which
allows for computing exponential mapping without a Taylor expansion. The Rodrigues’
rotation formula (3.18) is a way for closed-form exponential in SO(3). It is equivalent to
Euler’s formula, which is closed-form exponential mapping in S1 or SO(2).

R = e(θK) = I + (sin θ)K + (1− cos θ)K2 (3.18)

where:

K =





0 −kz ky
kz 0 −kx
−ky kx 0



 (3.19)

R - rotation matrix, [kx, ky, kz] - axis of rotation vector, θ - rotation angle.
Rodrigues’ rotation formula formula can be inferred from known relation of so(3) and
SO(3). An exponential function has the following Taylor expansion equation (3.20).

eθK = I +
θK

1!
+

(θK)2

2!
+

(θK)3

3!
+ ... (3.20)

Matrix K is a skew-symmetric matrix. This matrix has the following property, provided
it is normalized k2x + k2y + k2z = 1:

K3 = −K (3.21)

The property given with the equation (3.21) can be explained by investigating the
substitution of individual vector elements into K3, which is given with equation (3.22).

K3 =





0 kz
(
k2x + k2y + k2z

)
−ky

(
k2x + k2y + k2z

)

−kz
(
k2x + k2y + k2z

)
0 kx

(
k2x + k2y + k2z

)

ky
(
k2x + k2y + k2z

)
−kx

(
k2x + k2y + k2z

)
0



 (3.22)

where:
[kx, ky, kz] = k - vector which builds skew-symmetric matrix K. Next powers can be

Chapter 3. Methodology 27

computed using recursion and knowledge of K3 = −K, e.g.:

K4 = K3K = −KK = −K2

K5 = K3K2 = −KK2 = −K3 = K

K6 = K3K3 = (−K)(−K) = K2

(3.23)

Based on the above, the multiplication exponential can be reformulated:

exp (θK) = I +
θK

1!
+

(θK)2

2!
+

(θK)3

3!
+

(θK)4

4!
+

(θK)5

5!
+ ... =

I + θK +
1

2!
θ2K2 +

1

3!
θ3K3 +

1

4!
θ4K4 +

1

5!
θ5K5 + ... =

I +

(

θK +
1

3!
θ3K3 +

1

5!
θ5K5 + ...

)

+

(

θ2K2 +
1

4!
θ4K4 +

1

6!
θ6K6 + ...

)

=

I +

(

θK −
1

3!
θ3K +

1

5!
θ5K + ...

)

+

(

θ2K2 −
1

4!
θ4K2 +

1

6!
θ6K2 + ...

)

=

I +

(

θ −
1

3!
θ3 +

1

5!
θ5 + ...

)

︸ ︷︷ ︸

sin(θ)

K +

(
1

2!
θ2 −

1

4!
θ4 +

1

6!
θ6 + ...

)

︸ ︷︷ ︸

1−cos(θ)

K2 =

I + sin(θ)K + (1− cos(θ))K2

(3.24)

Equation (3.24) is a further derivation of a Taylor expansion (3.20). It is grouped in a
way in which normalized skew symmetric is taken advantage of equations (3.23). These
summation elements are grouped in a way which allows for substituting groups of
summed elements with Taylor expansions of the following functions: sin(θ) and cos(θ).
Finally, Rodrigues’ rotation formula is obtained. Rodrigues’ rotation formula exists also
in a form which enables an efficient rotation of vector v to a new vector vrot using a
known axis of rotation k and angle of rotation:

vrot = v cos θ + (k × v) sin θ + k(k · v)(1− cos θ) (3.25)

Rodrigues’ rotation formula for vector rotation (3.25) has several applications in com-
puter graphics and game engines.

Quaternions

Complex number multiplication allows for describing rotation in S1. Multiplication of a
real positive number by i changes its polar coordinates in the direction of the positive
imaginary axis (counter-clockwise). It is an effective way to represent rotation in a 2D
space, e.g. sinusoidal electric signal in the time domain or a process value in the control
system, and it is an essential tool for describing processes in multiple engineering fields,
such as electronics, controls, robotics. A quaternion is an extension of this concept.
Complex numbers with the magnitude of 1 can represent all elements of SO(2) space.
Unit quaternions can represent all elements in SO(3) space. The quaternion number is:

q = q0 + iq1 + jq2 + kq3 (3.26)

Chapter 3. Methodology 28

For all quaternion numbers the following equations are always satisfied:

i2 = j2 = k2 = −1 (3.27)

ij = k, ji = −k (3.28)

jk = i, kj = −i (3.29)

ki = j, ik = −j (3.30)

Complex number multiplication is commutable. This property manifests itself in 2D
representations of rotations other than unit complex numbers; therefore SO(2) matrices
can be multiplied in any given order. Conversely, to complex number multiplication,
quaternion multiplication is not commutable. Multiple operations can be performed on
quaternion numbers. Quaternions can be represented as an ordered pair:

q = [s,v] = [s, xi+ yj + zk]; s, x, y, z ∈ R (3.31)

where :
s - the real part which lives in R

v - the vector part which lives in ijk space.

A quaternion number is called a pure quaternion when its real part is equal to zero.
A quaternion number is called real if its vector part, i.e. imaginary components, is
equal to zero. A quaternion product is not commutable and always results in another
quaternion, as seen in equation (3.32).

qa · qb = [sa,a][sb,b] = (sa + xai+ yaj + zak)(sb + xbi+ ybj + zbk) (3.32)

The above can be written using dot and cross products:

qa · qb = [sasb − v⊺
avb, sava + sbvb + va × vb]

⊺ (3.33)

Quaternion multiplication manipulates an element in 3D imaginary space according
to equations from (3.27) to (3.30). Imaginary components follow a circle in the rotation
plane and change into the opposition in the rotation axis. It is shown in example of the
left multiplication by a pure quaternion of [0, j] in the figure 3.2. A sum of quaternions
is similar to a complex number, where a sum of two quaternions is:

qa + qb = [sa,va] + [sb,vb] = sa + sb + (xa + xb)i+ (ya + yb)j + (za + zb)k (3.34)

The length of the quaterion is:

‖qa‖ =
√

s2a + x2a + y2a + z2a (3.35)

Chapter 3. Methodology 29

The length of the quaternion has the following property:

‖qaqb‖ = ‖qa‖ ‖qb‖ (3.36)

A unit quaternion (‖qa‖ = 1) stays unit when multiplied by another unit quaternion. A
conjugate is a negation of the vector part of a quaternion, such as:

q∗
a = [sa,−va] = (sa,−xai,−yaj,−zak) (3.37)

Inverting a quaternion is:

qa
−1 =

q∗
a

‖qa‖
(3.38)

To rotate point px into point p′
x using unit quaternion qa, first a pure quaternion repre-

sentation of point px ∈ R
3 must be created:

spx = [0,px]
⊺ (3.39)

A rotation using a quaternion is a combination of two multiplications in a four-
dimensional space.

sp′x = qaspxq
∗
a (3.40)

Chapter 3. Methodology 30

FIGURE 3.2: An example of a left multiplication of quaternion [0, j] in
a 3D projection. A quaternion is a four-dimensional concept, but its
properties can be easily shown in a 3D space by projecting a 4D unit
hyper-sphere to a 3D sphere using a hyper-plane which is orthogonal to
the real axis of the quaternion and a stereographic projection. Note that
due to the fact that the shown space is a hyper-plane, the beginning of
the coordinate system is quaternion number [1, 0]. This representation
is shown also in figure 3.3. According to equations (3.27) through (3.30),
point i left-multiplicated by j goes to −k, point k left-multiplicated by
j goes to i. Point 1, which lives in the origin of the coordinate system,

becomes j.

Chapter 3. Methodology 31

FIGURE 3.3: An example of a right multiplication of quaternion [0,−j]
in a 3D projection and left multiplication of quaternion [0, j] (already
shown in figure 3.2). According to equations (3.27) through (3.30), point i
right-multiplicated by −j goes to −k, point k right-multiplicated by −j
goes to i. Point 1, which lives in the origin of coordinate system, becomes
−j. The total effect of the multiplication of the left quaternion and the
right conjugate quaternion is canceled along the j axis, where the real
value of the projection center was entangled. Conversely, the effect in jk

is doubled.

Right multiplication with a conjugate q∗a, results in a similar behavior to left multi-
plication of qa. An example left multiplication with quaternion [0, j] and right multipli-
cation with quaternion [0,−j] results in the same behavior in the ik. Do note that the
behavior of real 1 affected by j and −j effectively cancels out, as shown in figure 3.3.
Also note that the rotation in the ik plane effectively doubles. A rotation is only applied
in the 2D plane in ijk space around a unit vector in ijk space. Quaternion spx is a pure
quaternion, what is given in equation (3.39). The resulting quaternion sp′x after rotation
is also a pure quaternion. That means the equation (3.40) is a function that R3 → R

3. To
construct a quaternion that will result in rotation of angle θ around normalized vector
v; ‖v‖ = 1:

qa = cos (θ/2) + sin (θ/2)(vxi+ vyj + vzk) (3.41)

Chapter 3. Methodology 32

This clearly shows the significance of division by two in the equation (3.41). Equation
(3.41) is derived from a generalized polar representation of complex number. A complex
number has one imaginary unit that is perpendicular to the real axis. A quaternion
has three imaginary (vector) units which are simultaneously perpendicular to the real
axis. Quaternions are effective means of representing rotation. They are minimal and
complete representations of 3D rotation prevalent in game development and animation.
They enable straightforward implementation of interpolation from one rotation to
another. Finally, they are memory and computationally efficient and can be used to
minimize throughput in applications where 3D rotation is measured or transferred,
e.g. IMU sensors, or Central Processing Unit (CPU)-Graphics Processing Unit (GPU)
communication in computer graphics.

Unit quaternions under multiplication are a Lie group S3 and has corresponding Lie
algebra s

3[115]. Unit quaternions group S3 under multiplication has following group
properties:

• identity element is quaternion number [1, 0],

• operator is multiplication given with equation (3.32),

• inverse element is conjugate given with equation (3.37).

The Lie algebra are all pure quaternions : [0,uφ] ∈ s
3 where ‖u‖ = 1. The exponential

of Lie algebra member [0,uφ] gives the unit quaterion as shown in equation (3.42).

exp([0,uφ]) = cos (φ) + u sin (φ); exp([0,uφ]) ∈ S3 (3.42)

Hat operator allows to convert a rotation vector θ ∈ R
3 to s

3. Such vector θ is isomorphic
to Lie algebra member:

(θ)∧ = [0,θ/2] (3.43)

Note that substituting [0,θ/2] with (θ)∧ in equation (3.42) results in equation (3.41).

Quaternion interpolation

Spherical Linear Interpolation (SLERP) is an excellent example for the application of
quaternions [114]. It utilizes a property of Lie algebra and Lie groups. In general,
SLERP is an interpolation of point movement along an arc. For the argument of 0, the
interpolation is the starting point of the arc. For argument 1, it is the ending point of the
arc. Equation (3.44) demonstrates a SLERP implementation for an unit quaternion.

slerp(q0,q1, t) = (q1q
−1
0)tq0 (3.44)

Function slerp(q0,q1, t) takes as input q0 as the start rotation, q1 as the end rotation.
For t = 0 the function slerp returns q0, and for t = 1 the function returns q1. The
initial rotation of q0 is left multiplied by an incremental rotation from q0 to q1, which is
q0q1

−1. The unit quaternion to the power of t is expressed using exponential map (3.42)
as shown in equation (3.45).

qt = exp(uφ)t = exp(tuφ) = cos(tφ) + u sin(tφ) (3.45)

Chapter 3. Methodology 33

SLERP Python implementation with all necessary elements of quaternion algebra is
shown in the listing 3.1. Functions quat_mul and quat_conj are implemented directly
from equations (3.32) and (3.37). Function quat_slerp is a direct implementation of
equation (3.44) and (3.45). Function quat_exp_map is implementation of equation (3.42).
Function quat_log_map is a logarithmic map of S1 that for given member of S1 returns
s
1 .

1 import numpy as np

2

3 def quat_len(q):

4 return np.sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3])

5

6 def quat_norm(q):

7 d = quat_len(q)

8 return [q[0]/d, q[1]/d, q[2]/d, q[3]/d]

9

10 def quat_conj(q):

11 return [q[0], -q[1],-q[2],-q[3]]

12

13 def quat_inv(q):

14 l = quat_len (q)

15 return [q[0]/l, -q[1]/l,-q[2]/l,-q[3]/l]

16

17 def quat_mul(q_a, q_b):

18 [s_a, x_a, y_a, z_a] = q_a

19 [s_b, x_b, y_b, z_b] = q_b

20 q = [0,0,0,0]

21 q[0] = s_a*s_b - x_a*x_b - y_a*y_b - z_a*z_b

22 q[1] = s_a*x_b + x_a*s_b + y_a*z_b - z_a*y_b

23 q[2] = s_a*y_b - x_a*z_b + y_a*s_b + z_a*x_b

24 q[3] = s_a*z_b + x_a*y_b - y_a*x_b + z_a*s_b

25 return np.array(q)

26

27 def quat_log_map(q):

28 phi = np.arccos(q[0])

29 sin_theta = np.sin(phi)

30 u = [q[1]/sin_theta,q[2]/sin_theta,q[3]/sin_theta]

31 return np.array([0,phi*u[0],phi*u[1],phi*u[2]])

32

33 def quat_exp_map(q):

34 phi = quat_len(q)

35 sin_phi = np.sin(phi)

36 u = quat_norm(q)

37 return np.array([np.cos(phi), sin_phi*u[1],sin_phi*u[2],sin_phi*u[3]])

38

39 def quat_slerp (q0,q1, t):

40 from_q0_to_q1 = quat_mul(q1, quat_conj(q0))

41 tan_from_q0_to_q1 = quat_log_map(from_q0_to_q1)

42 temp = quat_exp_map(t*tan_from_q0_to_q1)

43 return quat_mul(temp, q0)

LISTING 3.1: Python code for SLERP and necessary quaternion
operations.

Chapter 3. Methodology 34

Proper Euler angles and Tait-Bryan angles

Proper Euler and Tait-Bryan angles are another way to parameterize a rotation of a body
in a 3D space. They combine three sequentially applied simple rotations called intrinsic
rotations around the known basis. There are twelve combinations of these sequences.
A rotation sequence of 1-2-3 can serve as an example of this sequence. In this case, the
first rotation takes around the X-axis (α), the second one around the Y-axis (β), and the
last one around the Z-axis (γ). This type of sequence is called a Tait-Bryan angle (or
non-proper Euler angle). All twelve combinations are divided into two groups:

• proper Euler angles: 1− 2− 1, 1− 3− 1, 2− 1− 2, 2− 3− 2, 3− 2− 3, 3− 1− 3,

• Tait-Bryan angles: 1− 2− 3, 1− 3− 2, 2− 3− 1, 2− 1− 3, 3− 1− 2, 3− 2− 1.

Note that proper Euler angles use only two axes in their intrinsic rotations. Euler angles
cannot be thought of as charts on the manifold of SO(3). They also perform mapping,
but it is entirely different from so(3). First of all, Euler angles are not a Lie algebra. Small
angle values may correspond to large rotations in a 3D space and vice versa. Moreover,
not all elements of SO(3) can be reached by Euler angles.

For every sequence of Euler angles there are two particular rotations which suffer
from singularity. Take the Euler sequence of 1-2-1. It suffers from singularity at the
second angle being equal 0 or π. The rotation matrix for this sequence is written as
follows:

R = Rx(α)Ry(β)Rx(γ) (3.46)

where:
Rx(α) - rotation around X axis around by first angle (α),
Ry(β) - rotation around Y axis around by second angle (β),
Rx(γ) - rotation around X axis around by third angle (γ).
After substituting β with 0 or π in equation (3.46), the rotation degenerates to (3.47).

R =





1 0 0
0 cos (α) cos (γ)− sin (α) sin (γ) − sin (α) cos (γ)− cos (α) sin (γ)
0 sin (α) cos (γ) + cos (α) sin (γ) cos (α) cos (γ)− sin (α) sin (γ)



 (3.47)

This is a degenerated case. Utilizing sum formula for Sine and Cosine, equation (3.47)
can be simplified to equation (3.48).

R =





1 0 0
0 cos (α+ γ) − sin (α+ γ)
0 sin (α+ γ) cos (α+ γ)



 (3.48)

In equation (3.48) first α and the third γ rotation effectively affect the resulting rotation
in the exact same way. What is more (3.48) results in rotation around ’X’ axis. It is
visible that this representation for this particular configuration has only one degree of
freedom. This phenomenon occurs both in case of Euler angles and Tait-Bryan angles.
In the former, this effect appears when the second rotation angle is 0 or 180 degrees. In
the latter, it appears for 90 or -90 degrees. This phenomenon has multiple interesting
effects in engineering. One of them is the so-called gimbal lock. Assume a gyroscopic
system where a rotor is attached to three nested gimbals and the housing is attached

Chapter 3. Methodology 35

to a tracked body. The rotating body can affect those gimbals and keep the spinning
gyro in the same configuration as the reference frame due to the law of preservation
of angular momentum. The system can track the current orientation of the body by
measuring the angles of every gimbal. Depending on the construction, which dictates
the sequence of Euler angles, there is a possibility to configure the tracked body so that
two gimbals align and further tracking 3D orientation is impossible. A locked gimbal
will track 2D orientation. Fortunately modern optical and MEMS gyroscopes do not
suffer from gimbal lock. Mechanical gyroscopes need to utilize redundancy of fourth
axis, or need to be designed and operated carefully. Example of such careful operation
could be found in transcript of Apollo mission, where mechanical gimbal was used [3].

Rigid body transformations in SE(3) and their Lie algebra

SO(3) only represents the rotations of a rigid body. To define a full 6-DOF pose of the
rigid body, which is given by equation (3.49), SE(3) space needs to be used.

[
R t

01×3 1

]

∈ SE(3);R ∈ SO(3) (3.49)

SE(3) is a Lie group that consists of two elements:

• the translation part t ∈ R
3 that is a trivial Lie group that itself is its Lie algebra,

• the rotational part R ∈ SO(3).

Transitional part of SE(3) is a trivial Lie group under addition. Said Lie groups has
manifolds that are planes thus, the Lie algebras are identical. For the particular vector
group R

3 under ordinary addition exponential mapping is of Lie algebra element v is v
what is shown in. The same is true for logarithmic map what is shown in [115].

3.2.2 Motion model and smoothness

In this dissertation trajectory is understood as a set of consecutive 6-DOF poses. It
can be represented in the form of a graph. It is a common practice to use a trajectory
derived from odometry readings as a motion model. The motion model is built based
on the set of relative poses described in section Relative Pose. Such motion model
contributes constraints into graph-SLAM. For this reason it can be stated that trajectory
is a crucial component for mobile mapping application. Moreover, consecutive relative
poses can be used for building smoothness constraints. This is described in detail in
section Smoothness.

Relative Pose

Two consecutive poses have a transformation (3.50) which lives in SE(3) with Tt−1 and
Tt. Poses at time t and t − 1 are to be incrementally optimized by the solver. Thus,
to incorporate the knowledge that is carried by the relative pose of Tt−1 and Tt, the
following observation has to be added to the system.

T(t−1)→t = Tt−1
−1Tt (3.50)

Chapter 3. Methodology 36

Optimized poses are parameterized with σ∧
t−1 ∈ se(3) for time t and σ∧

t ∈ se(3) and for
time t− 1.

Therefore, to keep the relative pose constraint, the equation (3.51) needs to be
minimized.

argmin
σt−1,σt

∥
∥
∥
∥

(
log
(
T(t−1)→t

))∨
−
(

log
((

exp(σt−1
∧)
)−1

exp(σt
∧)
))∨

∥
∥
∥
∥

(3.51)

Smoothness

Three consecutive transformations belong in SE(3) with Tt−1, Tt, Tt+1. It is assumed
that the sampling of the trajectory is constant and the platform’s velocity is locally
constant. Based on this assumption, the relative pose from time moment t−1 to t should
be equal to the relative pose from time moment t to t+ 1. The first relative pose is given
with equation (3.52) and the second with (3.53). The final equation which needs to be
minimized to maintain smoothness is given with (3.54).

T(t)→(t+1) = Tt
−1Tt+1 (3.52)

T(t−1)→t = Tt−1
−1Tt (3.53)

Optimized poses are parameterized with σ∧
t−1 ∈ se(3) for time moment t− 1, σ∧

t ∈ se(3)
for time moment t, σ∧

t+1 ∈ se(3) for time moment t+ 1. Therefore, to keep relative pose
constraint, equation (3.54) needs to be minimized.

argmin
σt−1,σt,σt+1

∥
∥
∥
∥

[

log
((

exp(σt−1
∧)
)−1

exp(σt
∧)
)]∨

−
[

log
((

exp(σ∧
t

)−1
exp(σt+1

∧)
)]∨

∥
∥
∥
∥

(3.54)

3.3 SLAM

SLAM is a vital aspect of the robotic system that enables robotic agents to find an optimal
estimation of environment map and taken trajectory [138]. SLAM is formulated in many
papers [55][73] and books [124] as probabilistic problem. State of the robotic system is
described with multiple random variables:

x1:T = {x1, ...,xT } (3.55)

A robot moving in an environment receives consecutive odometry readings u1:T and set
of K perception measurements z1:K .

u1:T = {u1, ...,uT } (3.56)

z1:T = {z1, ..., zK} (3.57)

The SLAM problem is finding a posterior probability of robot’s trajectory x1:T , map m,
calibration of system c knowing a set of measurements z1:T , odometry u1:T and initial

Chapter 3. Methodology 37

pose of the system x0.
p(x1:T ,m, c|z1:K ,u1:T ,x0) (3.58)

This representation is universal. Robot poses can be represented as SE(3) or SE(2),
depending on the application. Maps can be represented in various ways: as spatial
landmarks, [86][35], a point cloud, or a dense 2D grid map. A Probability Distribution
Function (PDF) of multivariate Gaussian distribution is given with equation (3.59).

p(x) = det(2πΣ)1/2 exp

{

−
1

2
(x− µ)⊺Σ−1(x− µ)

}

(3.59)

where information matrix is given with Ω = Σ−1, the expected value with µ, and the
current value with x. Bayes theorem enables probability inference with equation (3.60):

p(x1:T , c,m|z1:K ,u1:T ,x0) =
p(z1:K ,u1:T ,x0|x1:T , c,m)p(x1:T , c,m)

p(z1:K ,u1:T ,x0)
(3.60)

p(z1:K ,u1:T ,x0) in equation (3.60) is a constant normalization term. Term
p(z1:K ,u1:T ,x0|x1:T , c,m) expresses the probability of observed measurement z1:K ,
odometry u1:T and initial pose x0 with given hidden variables (state). Equation (3.60)
can be factorized with omitting normalization terms giving equation (3.61).

p(x1:T , c,m|z1:K ,u1:T ,x0) ∝
∏

k=1..K

p(zk|x1:T , c,m) (3.61)

Equation (3.61) shows that probability of a hidden variables is proportional to the
measurement given value of that hidden variable. In later SLAM formulation it is
taken into consideration. To find a probability distribution of measurement zk given
state x the equation (3.59) has to be substituted. The expected value µ in that case
is the expected measurement ẑk. The result of this substitution is shown in equation
(3.62). Note that only the exponential part of multivariate Gaussian distribution density
function is present in equation (3.62).

p(zk|x1:T , c,m) ∝ exp(−(zk − ẑk)
⊺Ωk(zk − ẑk)) (3.62)

Finding the most probable state X∗ is the task of finding such X that maximizes the
probability given in equation (3.63). The state X is trajectory x1:T , calibration c and map
m.

X∗ = argmax
X

∏

k=1..K

p(zk|x1:T , c,m) = argmax
X

∏

k=1..K

exp(−
1

2
(zk − ẑk)

⊺Ωk(zk − ẑk)

(3.63)
After taking logarithm, equation (3.63) has the form (3.64).

X∗ = argmin
X

∑

k=1..K

1

2
(zk − ẑk)

⊺Ωk(zk − ẑk) (3.64)

Chapter 3. Methodology 38

Finally, the optimization problem has the form of equation (3.65).

X∗ = argmin
X

∑

k=1..K

1

2
ek(X)⊺Ωkek(X) (3.65)

where ek(X) is a difference between observation and prediction given by equation (3.66).

ek(X) = zk − ẑk (3.66)

3.3.1 Factor graph

The SLAM problem can be structured as a factor graph, which is a bipartite graph with
two type of nodes:

• variable nodes,

• factor nodes that relate a subset of variables.

The edges connect variables to factors. Such tool can easily model SLAM problems.
The problem modeled in figure 3.4 shows localization of robot in unknown map m.

x
0

x
1

x
2

x
3

u
1

u
2

u
3

f 1(x1 , x0 , u1) f 2(x2 , x1 , u2) f 3(x3 , x2 , u3)

M

f 4(x1 , M , z1) z
1

f 5(x3 , M , z3) z
3

FIGURE 3.4: Sample SLAM problem modeled as a factor graph. Variable
nodes are marked as circles and factors as squares. Gray color marks

hidden variables.

Trajectory of robot is based on four poses, where the first one x0 is known and x1, x2

and x3 are hidden variables. Robot obtains odometry measurements as variables u1

to u3. Measurement from other sensors (e.g. laser range finder) are variables z1 and
z3. Factors are functions that model conditional probability for given variables. Let
factor node f2 serves as example here. f2 models conditional probability of particular
pose of robot at time 2 given a pose at time 1 (x1), and relative movement measured
by odometry of the robot traveling in time between moments 1 and 2 (u2). Solving this

Chapter 3. Methodology 39

problem is to find the values of hidden variables (x1, x2 and x3 and m) that maximize a
total probability:

argmax
x1..3,m

∏

1..5

fi (3.67)

Factor graphs are universal frameworks for state estimation. They can model other
popular problems such as object tracking, structure from motion [33], calibration, or
optimal control [120].

3.3.2 Graph SLAM

Graph SLAM is a well established method in the domain of mobile robotics [8][73][55].
This algorithm utilizes raw measurements of sensors and poses where:

• nodes are poses x1:T ,

• edges (constraints) are measurements showing relative transformation between
two poses.

Edges can be introduced by odometry measurement creating relative pose constraint;
other classes of constraints can be introduced (based on observations). In the ideal
and optimized system of constraints would not conflict, but can do so in a real-world
scenario. Thus, a robust solution should be considered. The goal of Graph SLAM is
to find the configuration of poses (x1:T) given all constraints that minimize overall
residuals introduced by said constraints. Note that graph shown in 3.5 is a simple case.

x i x j

x ' j

e ij (x i , x j)

(z ij ,Ωij)

FIGURE 3.5: Figure is showing one edge of Graph SLAM. The xi and xj

are poses, which are hidden variables. There is an observation of pose xj

from pose xi with value zij and information matrix Ωij . The observation
allows to project an image x′

j of xj respect to location xi and observation
(zij ,Ωij). Gray ellipse is confusion ellipse that visualizes information
matrix. Error that this edge contributes is distance from image x′

j to
location xj .

In a real-world system Graph SLAM can introduce non-sequential constraints, which are
caused by loop-closure detection that introduces new constraints between poses located
next to each other. Loop closure is desired, since it can greatly reduce accumulated
registration errors. Solving Graph SLAM problem as pose graph is minimizing the

Chapter 3. Methodology 40

following equation:
argmin

X

F(X) (3.68)

where F(x) is the sum of all residuals:

F(X) =
∑

〈i,j〉∈C

e
⊺
ijΩijeij (3.69)

where eij is an error introduced by an edge connecting i-th and j-th pose and Ωij is an
information matrix (inverse of the covariance matrix). Figure 3.6 shows an example of
graph SLAM problem before and after optimization.

10 0 10

15

10

5

0

5

Original

0 5 10 15
15

10

5

0

5

10

15
Optimized

FIGURE 3.6: Graph SLAM problem before optimization and after opti-
mization. Dataset is provided in [24] and software solution was used

[2].

3.3.3 Bundle Adjustment

BA is a fairly similar problem to Graph SLAM. BA[73][2] is a problem that optimizes
camera location in SE(3), keypoint locations R

3, and, optionally, the model of the
camera itself (e.g., lens’s focal length and lens’s distortion coefficients). The BA problem
does not have to be limited to only one camera model, as multiple cameras can be
used. What is more, there is usually no temporal structure of cameras movement in

Chapter 3. Methodology 41

the scene. These two factors differentiate BA from Graph SLAM. BA can be considered
an essential part of every structure from motion solution [28]. The BA problem has
an assumption of data correspondences. Usually, it comes from matching the smallest
distance of descriptors of point of interest detected in the image. To make the selected
optimization method converge successfully, a robust approach is required [73]. The
comparison of such kernels can be found in [27]. In practice, many least-square solvers
come with a set of such kernels, called also loss functors (see section 3.3.4). The second
problem is the large size of the system. The selected solver needs to utilize the sparsity
of the Jacobian matrix in the least square method. The third problem is sparse because
cameras observe a small number of key points in the scene and it can be solved using
the Schur complement of the Hessian matrix [44]. BA is a step in many stereovision
pipelines that refines an initial calibration of the system [17][31].

3.3.4 Robust Nonlinear Least Squares

Both Graph SLAM and BA problems are solved using weighted least square method.
This method finds a configuration of parameter X which minimizes the sum of squared
error in an iterative manner. Error vector e(X) is given with equation(3.70).

e(X) = z − ẑ(X) (3.70)

where ẑ(X) is prediction, z is measurement. The optimized function is given with
equation (3.71).

argmin
X

1

2

∑

e⊺(X)We(X) (3.71)

e is a vector of individual errors given with (3.72).

e(X) =
[
e1(X) e2(X) . . . en(X)

]
(3.72)

Matrix W is a weight matrix. The weight matrix contains information about probabilistic
properties of the expected noise in measurement. Assuming uncorrelated noise in every
dimension of error e(X) weight matrix W is given with (3.73).

W =








w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wn








(3.73)

In equation (3.73) w1,w2 to wn represent weights of individual error of the solution. I-th
weight is given by an inverse of squared standard deviation (σi) of expected noise in
i-th error :

wi =
1

σ2i
(3.74)

Thus, the equation (3.71) can be rewritten as a sum of every individual error:

argmin
X

1

2

∑

i

e2i (X)

σ2i
(3.75)

Chapter 3. Methodology 42

The optimal X∗ is found in the iterative manner by computing new, optimal solution
X∗ as (3.76).

X∗ = X +∆X (3.76)

The ∆X is an update step and X is the solution from last iteration. For the initial step
X is an initial guess. In this thesis mainly the LM method is used. The update step in
LM method is given with equation (3.77) [55].

(J⊺WJ + λI)∆X = −J⊺We(X) (3.77)

where: λ is damping factor. J is Jacobian matrix of function e(X) given with equation
(3.78).

J =

[
∂e

∂x1
· · ·

∂e

∂xn

]

(3.78)

The damping factor modifies the behavior of the optimization process. LM implemen-
tations set λ to large values, so the algorithm performs small updates in the direction
of the steepest descent. If the step succeeds with the improvement of the cost function,
the λ is decreased. With smaller λ, LM behaves like Gauss-Newton, which results in
faster convergence [48]. The derivation of update step for LM and comparison to other
popular algorithms, such as Gauss-Newton and gradient descent, can be found in [48].
In the following chapters, different software solutions are used to optimize non-linear
least squares. In the case of complicated cost functions containing multiple chains of
transformations Ceres, a library for the general approach, was used [2]. For structured,
graph problems such SLAM the choice was specialized solutions: GTSAM [49] and g2o
[73].

LM and Gauss-Newton methods are sensitive to outliers. Outliers are individual
residual errors that does not follow Gaussian distribution. In SLAM an outlier can be
introduced by a loop closure which is wrong or non-existing in a real environment.
In BA outliers can be introduced by corrupted data association. An example of such
distribution is presented in figure 3.7. The plot represents a histogram of residuals that
were introduced by edges in sample Graph SLAM. The presented distribution does not
follow the Gaussian distribution. To avoid such a situation in which a few outliers alter
the results, robustifying kernels were introduced. Robustifying kernel is a non-linear
function ρ that replaces quadratic function from equation (3.79) resulting in (3.80).

argmin
X

∑

i

1

2
e2i (X) (3.79)

argmin
X

∑

i

ρ (ei(X)) (3.80)

where: ei(X) is individual i-th error.
Function ρ should be symmetric, positive define with a single, unique minimum at zero.
The increase of function ρ should be smaller than parabolic. Iteratively Reweighted
Least Squares (IRLS) is a method used to implement robust non linear least squares
[135]. The IRLS introduces one more step to classical non-linear least square whose

Chapter 3. Methodology 43

0.4 0.2 0.0 0.2 0.4
residual[m]

0

2

4

6

8

10

12

14

Co
un

t [
%

]

Histogram of error distribution in converged graph-SLAM problem - x direction

0.4 0.2 0.0 0.2 0.4
residual[m]

0

5

10

15

20

25

Co
un

t [
%

]

Histogram of error distribution in converged graph-SLAM problem - y direction

FIGURE 3.7: The distribution of translation error for axes ’X’ and ’Y’
in residuals in Graph SLAM problem shown in figure 3.6. Both of his-
tograms presents a bell-shaped distribution. Those are symmetric, but
suffer from excess kurtosis. The top distribution has kurtosis 3.76 and
bottom 12.77. The high kurtosis is caused by large number of outliers
and very long and fat tails. To summarize, those distributions are not

Gaussian.

Chapter 3. Methodology 44

purpose is to find weights of every residual - wri.

argmin
X

∑

i

wrie
2
i (X) (3.81)

Formula for wri can be obtained from relations of IRLS (3.80) and weighted least square
(3.81) optimization problem by comparing respective gradients at neighborhood of the
solution for i-th residual. Gradient of i-th error for weighted least squares (3.81) is given
with :

1

2

∂
(
wrie

2
i (X)

)

∂X
= wriei(X)

∂ei(X)

∂X
(3.82)

Gradient of i-th error for robust least squares (3.80) is given with :

∂ (ρ(ei(X)))

∂X
= ρ′(ei(X))

∂ei(X)

∂X
(3.83)

Assuming that gradients (3.82) and (3.83) are going to zero at the optimum, wri is given
with equation (3.84) [26].

wri =
1

ei(X)
ρ′(ei(X)) (3.84)

where ρ′(ei(X)) is first order derivative with respect to ei(X).
Finally, by substituting foundwri to equation (3.81), equation (3.85) is obtained. Equation

(3.85) is the sum minimized by the IRLS. Weight wri is obtained from e
(k−1)
i which is

error value from previous iteration of IRLS algorithm.

argmin
X

∑

i

1

e
(k−1)
i

ρ′
(

e
(k−1)
i

)

e2i (X) (3.85)

The IRLS implementation solves weighted least square problem with taking into con-
sideration the error values obtained in previous iteration of algorithm. The values of
the error from previous iteration are used to compute a set of new weights for the
current iteration. Initially the weights are set to one. Note that IRLS problem can utilize
noise model. Assuming that noise is independent for every error ei(X) and given with
standard deviation σi such IRLS problem is given with (3.86).

argmin
X

∑

i

σi

e
(k−1)
i

ρ′

(

e
(k−1)
i

σi

)

e2i (X)

σ2i
(3.86)

Note that if quadratic function was substituted as ρ(e) = e2

2 in equation (3.86) the
equation (3.86) would be identical to equation (3.75).

There are multiple robustifying kernels used for the implementation of the robust
least-squares algorithm [135]. The most popular robustifying kernels and their weight
impact are shown in figure 3.8. The blue plot is standard least-square implementation,
the weight for every residuum value is always one. Other functions modify the weight
in such a way so that only the residuals close to zero have the significant impact on the
solution. The Huber kernel, which is a popular design choice for a robust kernel, is
worth noticing here 3.8. Similarly to least square algorithm, Huber kernel is quadratic,

Chapter 3. Methodology 45

like standard least square, but only in the thresholded region close to zero. Outside the
thresholded region, the function is linear, which reduces the impact of outliers. The

4 2 0 2 4

residuum value : z

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

(
z
)

Robust kernel (z)

quadratic

Cauchy

Huber

Tukey

4 2 0 2 4

residuum value : z

0.0

0.2

0.4

0.6

0.8

1.0

w
(
z
)

Weight w(z)

FIGURE 3.8: Robust kernel function and weight in function of residual
value.

chosen robustifying kernel and its parameters need to fit the expected distribution of
residual values. Automatic solutions for adaptive robust kernel is a topic which has
recently become a subject of numerous research [6][26].

3.3.5 Map and trajectory accuracy assessment

The accuracy assessment of the robotic mapping system is a non-trivial task. Access
to the ground-truth data is always an issue. It is evident in the literature that for the
sake of benchmarks state-of-the-art data sets and methodologies were created. The first
such example is presented in work [116]. Data sets presented in this work consist of
measurements from RGBD cameras and high-framerate 6-DOF trajectory provided by
a motion capture setup. The recovered trajectory estimated by SLAM or localization
algorithm can be graded using two metrics: Relative Pose Error (RPE) and ATE. First
one is sufficient for evaluating the difference between estimated and desired motion. It
is used to assess the front-end of the SLAM algorithm, scan matching, optical, or even
wheel odometry. It can show introduced drift or loop closure accuracy over a fixed time
interval ∆.

Ei =
(
Q−1

i Qi+∆

)−1 (
P−1
i Pi+∆

)
(3.87)

Chapter 3. Methodology 46

The equation (3.87) returns drift value in time moment i as Ei ∈ SE(3) assuming ∆ as
fixed time interval. P1, ..,Pn ∈ SE(3) is estimated trajectory and Q1, ...,Qn ∈ SE(3) is
ground truth trajectory. To obtain scalar measurement of RPE, RMSE over translation
part can be computed by equation (3.88).

RPEtrans,∆
1:n = RMSE(E1:n,∆) =

(

1

m

m∑

i=1

|| trans(Ei)||
2

)0.5

(3.88)

where : m = n −∆. Alternatively a rotational RPE is formulated as mean of angular
errors [101] :

RPErot,∆
1:n =

1

m

m∑

i=1

∠ rot(Ei) (3.89)

where : ∠ rot(Ei) recovers angle between origin and a rotation part of Ei as in equation
(3.90). Ri is three by three upper left sub matrix of Ei.

∠ rot(Ri) = arccos

(
Tr (Ri)− 1

2

)

(3.90)

The second method, ATE, involves aligning the estimated trajectory with ground truth.
ATE metric is usable for the assessment of the global consistency of SLAM solution. The
estimated trajectory Q1, ...,Qn ∈ SE(3) and ground truth trajectory P1, ...,Pn ∈ SE(3)
do not need to be in the same coordinate frame. The first step is to recover rigid body
transformation using e.g. closed-form solution, Horn [62]. With recovered rigid body
transformation S that aligns a ground truth and estimated trajectory, ATE error for the
time moment i is formulated with equation (3.91).

Fi := Q−1
i SPi (3.91)

To obtain a scalar measurement, RMSE over translation part over the whole trajectory is
computed with equation (3.92).

RMSE(F1:n) =

(

1

n

n∑

i=1

|| trans(Fi)||
2

)0.5

(3.92)

3.3.6 Ground truth data sources

Synthetic data sources

A synthetic dataset is beneficial for the evaluation of the methods of calibration. Blender
[13] is used as a simulation tool the tests detailed later in the dissertation. Blender is
a powerful and universal open-source software for modeling, animation and video
production. An example render is shown in figure 3.9. Blender includes a modern,
robust, and configurable path tracing engine, as well as Python Application Program-
ming Interface (API), which is why both accurate ground truth depth and photo-realistic
images can be obtained easily.

Due to this fact, many researchers [25][69][19][83] create synthetic data sources
using Blender. It is often better suited for simulating depth ground truth than solutions

Chapter 3. Methodology 47

such as Gazebo [70], Carla [36] and other [104][22], in which a rasterization real-time
pipeline is used. Those solutions can produce acceptable results, but they are oriented
for real-time or near real-time data simulation. Those provide quality of image that can
be insufficient for many applications. The output resolution is limited by factors such
as graphic card memory. Depth output is limited and nonlinear due to limitations of
graphic card architecture. Rendered images has their dynamic range limited. That is
caused by underlying technology like Unity [126] or Unreal [127]. These are real-time
game engines optimized for fidelity and smooth animation with the highest possible
frame rate. However, these solutions scale poorly; it is not feasible to run those engines
in the cloud, headless, or containerized environment.

On the other hand, path tracing can produce floating-point ground truth images
with unlimited dynamic range and floating-point depth. The advantage of such solution
is a large number of camera models available. It is worth mentioning that path tracing
can produce detailed maps that are not available by other techniques, e.g. normal maps
with floating precision, optical flow, and segmentation masks. Some researchers decided
to take available open source community-made short animation videos, and repurpose
them as open data sets, for example 2012 MPI Sintel [19] for optical flow or 2016 Scene
Flow [83], designed for training artificial neural network for disparity estimation. Finally,
solutions like Blender scale very well due to the primary use case, i.e. massive rendering
of animated videos.

Blender offers a plethora of features which are useful in generating test data. First of
all, it utilises a number of camera models:

• standard pinhole model,

• orthographics camera,

• equirectangular,

• fish-eye.

In a path tracing or a ray tracing engine, every pixel of the simulated camera emits
some simulated samples which traverse the scene. When sample-path collides with an
object, the path tracing engine executes Bidirectional Scattering Distribution Function
(BSDF). This probabilistic function simulates physical light scattering or traversing. The
following sample travels until it meets the next object or light source. The results of
those collisions are collected and used to yield the final color of the pixel.

This method can be considered a Monte-Carlo class algorithm [63] as its results are
heavily dependent on the number of samples, complexity of the BSDF used, number
of light sources and the scene itself. A poor number of samples causes rendering noise.
Path tracing, real time ray tracing, light transport and rendering noise removal are all
vast topics which have been widely researched in recent years.

The Cycles rendering engine allows for the creation of multiple extra channels called
render layers:

• 32 bit floating point color,

• 32 bit depth - linear (Z-pass),

• material and objects index - a 16-bit integer that is output as a map,

Chapter 3. Methodology 48

• floating point normal vector 3D,

• floating point 2D pixel disparity to next frame (optical flow),

• number of other output that enables artists to post-process the render.

The output can be easily organized in multi-layer OpenEXR files which can be read
by existing libraries in Python or C++. Multiple technologies of depth acquisition are
available, e.g. an entirely passive system such as stereo pairs [31] or active LiDARs [78].
These depth acquisition sensors can have different FOV, which needs to be taken into
consideration during the simulation.

The sensors used in the evaluation part of this thesis are a good example. The first
one is Intel RealSense L515. It is a modern solid-state LiDAR which provides Extended
Graphics Array (XGA) (1024x768) resolution up to 4 meters with FOV 70◦ x 55 ◦. Its
output is very similar to stereo-vision, but it is obtained with TOF. Simulating such
sensor requires:

• a perspective camera with FOV ◦ x 55◦,

• output resolution 1024 x 768 pixels,

• export ’Z’ and ’RGB’.

Another interesting measurement instrument is Velodyne VLP-16. It is a popular and
affordable automotive-grade LiDAR that utilizes a rotating head (600 revolutions per
minute) consisting of 16 pairs of laser range finders. This sensor can be simulated in a
stationary or slow-moving situation with the given model:

• an equirectangular camera with FOV 16◦ x 360◦,

• output resolution 16x3600 pixels,

• export ’Z’.

The simple simulation used for producing synthetic results to validate a calibration
method is shown in figure 3.9. It consists of two simulated Intel L515 LiDARs rotating
around the calibration plane with fiducial markers. RGB and depth image are rendered
with a Blender-Cycles renderer.

Real data

Reliable and accurate data sources are used as a ground truth. Dominant data is GNSS
and geo-referenced point clouds. Due to the usage of precise surveyor equipment and
manual registration, the map derived from Terrestial Laser Scanning (TLS) has the
accuracy of even up to 3 milliliters. The map used for verification in chapter 4.5 was
obtained with Z+F Imager 5010 TLS, a device which has an even higher precision of
1 mm [64]. Other data sets used for benchmarking SLAM or localization algorithms
with ground truth trajectories were obtained using a calibrated, high frame-rate motion
capture system which retrieves the pose of the sensor moving through the scene [116].

Chapter 3. Methodology 49

FIGURE 3.9: Simulated calibration scene for synthetic equivalent of sys-
tem shown in figure 4.6. Two cameras RGBD cameras are marked. HDR

map in background imitates real-world illumination.

3.4 LiDAR observation equations

3.4.1 Point to Point

There are two sets of points Xs and Xt with one to one correspondences. The size of
pointclouds Xs and Xt are N . The registration problem expressed in equation (3.93) is
to find σ∧

t ∈ se(3) and σ∧
s ∈ se(3) parameters which minimize overall distance between

corresponding points in two registered point clouds:

argmin
σt,σs

N∑

i=0

∥
∥exp(σ∧

t)Xt(i)− exp(σ∧
s)Xs(i)

∥
∥ (3.93)

where Xt(i) is an i-th point in the target pointcloud and Xs(i) is an i-th point in the
source point cloud. The pose of point cloud Xs is parametrized with σs, and the pose of
point cloud Xt is parametrized with σt. The point to point registration problem has a
simple analytical Jacobian, which utilizes some properties of Lie algebra.

Chapter 3. Methodology 50

Jacobian matrix in SE(3) for point transformation

Point p is transformed via [R, t] to its new location with equation (3.94).

p′ =





x′

y′

z′



 = Rp+ t (3.94)

Partial derivatives of point p′ in respect to parameters ρ and σ are given with equation
(3.95). ρ are parameters that are related to translation and σ are parameters related to
rotation. The operator [.]× builds a 3×3 skew-symmetric matrix from a vector containing
3 elements.

[
δ(Rp+t)

δρ
δ(Rp+t)

δσ

]

=






δx′

δρ1
δx′

δρ2
δx′

δρ3
δx′

δσ1

δx′

δσ2

δx′

δσ3

δy′

δρ1
δy′

δρ2
δy′

δρ3
δy′

δσ1

δy′

δσ2

δy′

δσ3

δz′

δρ1
δz′

δρ2
δz′

δρ3
δz′

δσ1

δz′

δσ2

δz′

δσ3




 (3.95)

R = exp([σ]×) (3.96)

δf(X)

δϕ
= lim

ϕ→0

f(X ⊕ ϕ)− f(X)

ϕ
(3.97)

δ(Rp)r
δσ

= lim
σ→0

R exp([σ]×)p−Rp

σ
=

lim
σ→0

R(I+ [σ]×)p−Rp

σ
=

lim
σ→0

Rp+R([σ]×)p−Rp

σ
=

lim
σ→0

R[σ]×p

σ
= lim

σ→0

−R[p]×σ

σ
= −R[p]×

(3.98)

The Jacobian for rotation in (3.98) is a right Jacobian, general equation (3.97). It is
compatible with right-⊕ operator. Left Jacobian (general equation (3.99)) derivation is
shown in (3.100).

δf(X)

δϕ
= lim

ϕ→0

f(ϕ⊕X)− f(X)

ϕ
(3.99)

δ(Rp)l
δσ

= lim
σ→0

exp([σ]×)Rp−Rp

σ
=

lim
σ→0

(I+ ([σ]×)Rp−Rp

σ
=

lim
σ→0

Rp+ ([σ]×)Rp−Rp

σ
=

lim
σ→0

[σ]×(Rp)

σ
= lim

σ→0

−[Rp]×σ

σ
= −[Rp]×

(3.100)

In derivations (3.98) and (3.100) two properties are taken into account [115]:

Chapter 3. Methodology 51

• exp (σ)∧ ≈ I+ [σ]× (the Lie algebra is tangent to manifold locally),

• [a]×b = −[b]×a (the cross product is anti-commutative).

With equation (3.98) and (3.100) right three by three submatrix of Jacobian (3.95) was
found. The found submatrix of Jacobian (3.95) represents the partial derivative respec-
tive to rotation σ. To obtain the left block built from partial derivatives respective to
translation ρ from (3.95), one must formulate a derivative equation respective to the
translation. Translation is a trivial Lie group. ⊕ and ⊖ can be replaced with ordinary
addition and subtraction. The equation (3.97) can be formulated for the right Jacobian
of ρ (3.101).

δ(Rp+ t)r
δρ

= lim
ρ→0

R(p+ ρ) + t−Rp

ρ
= lim

ρ→0

Rρ+ t

ρ
= R (3.101)

The equation (3.99) can be formulated for the right Jacobian of ρ (3.102).

δ(Rp+ t)l
δρ

= lim
ρ→0

(Rp+ t) + ρ−Rp

ρ
= I (3.102)

Finally, the right Jacobian of (3.94) is given with equation (3.103), and the left Jacobian is
given with equation (3.104).

[
δ(Rp+t)r

δρ
δ(Rp+t)r

δσ

]

=
[
R −R[p]×

]
(3.103)

[
δ(Rp+t)l

δρ
δ(Rp+t)l

δσ

]

=
[
I −[Rp]×

]
(3.104)

Iterative Closest Point

The ICP algorithm [9] finds the transformation between the point clouds based on
the measured distances between the nearest neighboring points. Searching for the
nearest neighborhood is a well-known problem in computer graphics and robotics
[129][12]. In this dissertation the nearest neighborhood search is implemented using
Fast Library for Approximate Nearest Neighbors (FLANN). This allows for finding
the nearest neighborhood after building the kd-tree. Thus, for each query point, its
nearest neighbor is found and this pair is taken as an input for constructing a point
to point observation equation. The two initial experiments were performed for the
ICP investigation. The results of the first one are shown in figure 3.10. The goal of
the investigation was to compare the impact of the chosen Jacobian calculations on the
overall convergence. In case of the perturbation model Jacobian (3.103), the convergence
is much better than for a Jacobian using symbolic calculations. It shows the advantage
of the Lie algebra approach. The second experiment shown in figure 3.11 compares the
convergence of the ICP algorithm for different Jacobians. Using a Lie algebra gives the
fastest convergence. This observation leads to the decision that further investigation
related to the automatization of the calibration process shall use the Lie algebra for
optimization problems.

Chapter 3. Methodology 52

0 20 40 60 80 100
Levenberg-Marquardt iteration

0

2

4

6

8

10

12

14

RM
S

Er
ro

r [
m

]

RMSE error behavior using analytical Jacobian on rotation vector

0 20 40 60 80 100
Levenberg-Marquardt iteration

0

2

4

6

8

10

12

14

RM
S

Er
ro

r [
m

]

RMSE error behavior using analytical Jacobian on Lie algebra

FIGURE 3.10: The plot of RMSE after a finished iteration of the ICP on a
synthetic data-set for multiple initial condition. Various colors represent
different initial errors. The violet plot, which fails to optimize, repre-
sents the largest initial error. The first method (top) uses a symbolically
computed Jacobian using SymPy [84]. The second one (bottom) uses an
analytical Jacobian on a Lie algebra with equation (3.103). Each initial
error was introduced by increased rotation. Thus, both methods con-
verge only for the limited initial error. For more significant errors, several
iterations are too few. Otherwise, the optimization fails to converge at
all. Both methods are sufficient, but the perturbation model Jacobian

provides better stability and robustness.

Chapter 3. Methodology 53

0 20 40 60 80 100
Levenberg-Marquardt iteration

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

RM
S

Er
ro

r [
m

]

RMS Error during optimization with different Jacobians
Analytical Jacobian on Rodrigez-Euler formula
Analytical Jacobian on Lie algebra
Automatic Jacobian on Lie algebra

FIGURE 3.11: The plot of error after the finished iteration of the ICP
on synthetic dataset. The convergence of Levenberg-Marquardt ICP is
compared for different Jacobians. All these optimizers find a parameter
which lives in se(3) space. The red plot shows a RMSE during the opti-
mization using an automatic Jacobian [2]. The green and blue show the
RMSE during optimization using an analytical Jacobian. The first one
is a symbolical differentiation of Rodrigues formula (3.18) using SymPy
[84]. The second one is a Jacobian on a Lie algebra which is given in equa-
tion (3.103). The symbolic and analytical Jacobian on a Lie algebra gives
similar results, while analytical on a Lie algebra is more computationally

efficient.

Chapter 3. Methodology 54

3.5 Camera observation equations

3.5.1 Line to line in equirectangular image

This section describes novel approach to calibrate spherical camera using lines features.
There are utilized properties of projective plane, a properties of Plücker coordinates
[103]. Approach that utilizes line feature in SLAM are emerging [137][102][136]. Those
solutions tends to provide robust optimization in structured man-made environments.
In derivation of line to line observation equation in equirectangular image properties of a
great circle in equirectangular are utilized [60]. Lines have multiple interesting properties
in equirectangular images, which can be utilized in solving extrinsic calibration problems
and camera alignment. A line which is observed by the equirectangular camera forms
an arc in the output image. The line creates a plane that contains:

• a line,

• a projection center.

The last statement is true both for an equirectangular projection and a perspective
projection because these two projections satisfy the collinearity condition. A line in a 3D
scene is represented with Plücker coordinates [103]. A Plücker coordinates represent
a line in a 3D space with two orthogonal vectors: m and l, the first being a moment
vector, and the latter a directional vector. The vectors m and l described line are shown
in figure 3.12. The points x and y are lying on the same line, and are unit apart:

‖x− y‖ = 1 (3.105)

The directional vector l has unit length and can be obtained with:

l = x− y (3.106)

The moment vector m is defined as:

m = x× y (3.107)

Chapter 3. Methodology 55

FIGURE 3.12: The line segment with (yellow) and vectors that creates
Plücker coordinate. Moment vector m is marked in red and directional
vector l is marked in green. Note that m length is two times l length.
That due to fact of yellow line to be 2 units away from begin of coordinate

system.

A line with Plücker coordinate is given:

Lw =











mx

my

mz

lx
ly
lz











(3.108)

This 6D representation of a 3D line Lw can be transformed from the world coordinate
frame to a camera’s coordinate Lc frame with equation (3.109). Rwc ∈ SO(3) represents
rotation of the camera in world coordinate frame and twc ∈ R

3 represents translation of
the camera in world coordinate frame [76]. Operator [.]× is a skew symmetric matrix.

Lc =

[
ml

ll

]

=

[
R

⊺
wc −R

⊺
wc[twc]×

03x3 R
⊺
wc

]

Lw (3.109)

Chapter 3. Methodology 56

FIGURE 3.13: The line segment in a 3D space is marked in yellow. There
are two vectors that create the Plücker coordinates: the moment is marked
in red and the directional vector is marked in green. The projection plane
spans on the center of the projection sphere (marked in green) and the
observed line (yellow). This plane contains a great circle (marked in blue)
of the projection sphere. A normal vector of the great circle is marked in

blue.

Taking a normalized vector nl = ml/ ‖ml‖ from the local Plücker coordinate gives
a normal vector for a plane which goes through the observed line, and the projection
center of the camera in the camera’s coordinate frame. The intersection of the plane
expressed with normal vector nl and a projection sphere gives a circle. It is a great circle
if the plane contains the center of the sphere. It is always valid because the camera
projection center, every point on the projection sphere, and their respective points in
3D of the observed feature are collinear. All major vectors and geometries are shown in
drawing 3.13. Note that vector nl and opposite −nl give an identical great circle on the
sphere. For the plane with normal vector [a, b, c] and containing the origin, the equation
(3.110) is satisfied.

[
a b c 0

]







x
y
z
1






= 0 (3.110)

Chapter 3. Methodology 57

For the great circle with azimuth (α) and inclination (β), the equation (3.110) becomes
(3.111).

[
sin(α) sin(β) − cos(α) sin(β) cos(β) 0

]







x
y
z
1






= 0 (3.111)

The plane (given with equation (3.110)) is projected by equirectangular mapping on
spherical images using equation (1.5). The result of the substitution is given in equation
(3.112).

a sin (ϕ) sin (ϑ) + b sin (ϑ) cos (ϕ) + c cos (ϑ) = 0 (3.112)

The equation (3.112) can be solved for longitude ϑ, resulting in:

tan(ϑ) =
−c

a sin(ϕ) + b cos(ϕ)
(3.113)

Replacing a,b,c in equation (3.113) with (3.111) formula gives (3.114).

tan(ϑ) =
−1

tan(β)(sin(α) cos(ϕ)− sin(ϕ) cos(α))
(3.114)

Utilizing the sum of sine angles equation to equation (3.114) simplifies to equation
(3.115)

tan(ϑ) =
−1

tan(β)(sin(α− ϕ))
(3.115)

In other words, every line visible in a spherical image can be parameterized with
two angles: an azimuth α and an inclination β. The effect of those two angles on the
projection of a line is shown in figure 3.14. Given a normal vector of a great circle as

3 2 1 0 1 2 3
longitude[rad]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

la
tit

ud
e[

ra
d]

Great circle equirectangular projection
for different inclination angle
 and azimuth of -30 degree

0
30
45
70
90

3 2 1 0 1 2 3
longitude[rad]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

la
tit

ud
e[

ra
d]

Great circle equirectangular projection
for different inclination angle

 and azimuth of 30 degree

0
30
45
70
90

3 2 1 0 1 2 3
longitude[rad]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

la
tit

ud
e[

ra
d]

Great circle equirectangular projection
for different inclination angle

 and azimuth of 0 degree
0
30
45
70
90

FIGURE 3.14: Great circle projection equation (3.115) for various values
of inclination and azimuth.

nl = [nxl, nyl, nzl], the azimuth and the inclination can be found with the following
equations:

α = arccos (nzl) (3.116)

Chapter 3. Methodology 58

β = − arctan

(
nxl
nyl

)

(3.117)

Curve fitting

For a given set of points in a spherical image which belongs to the same line, parameters
α and β have to be found. A point with coordinates u1 and v1 in a spherical image can
be converted to respective longitude ϑ1 and latitude ϕ1 with formula:

ϑ1 = π
u1 − 0.5c

c
(3.118)

ϕ1 = −π
v1 − 0.5r

r
(3.119)

where: r is a number of rows in the spherical image and c is a number of columns
in the spherical image. The center of the image is a pixel with coordinates c

2 , r
2 . It

lies on the intersection of the equator of the projection sphere and the prime meridian.
Increasing v coordinate (vertical) goes towards the bottom of the image and moves the
projected point in the south direction, thus decreasing longitude. Increasing u coordinate
(horizontal) goes towards the left side of the image and moves the projected point in the
west direction, thus increasing latitude. To find a great circle projection with the azimuth
α and the inclination β for N points, the equation (3.120) needs to be minimized.

argmin
α,β

N∑

k=1

∥
∥
∥
∥

(

arctan

(
−1

tan(β)(sin(α− ϕk))

)

− θk

)∥
∥
∥
∥

(3.120)

Equation (3.120) can be minimized using the least square method with automatic differ-
entiation and the Levenberg-Marquardt algorithm [2]. Obtaining a normal vector of the
great circle is straightforward once parameters α and β are found.

Extracting Plücker line from a point cloud

If provided with a point cloud, extracting Plücker line is essential for an automatic
calibration of the camera’s extrinsic parameters. Points which build a line feature can be
easily classified using a closed form solution. The first step is the computation of the
centroid of the points forming the line feature. It is X̄ ∈ R

3, as seen in equation (3.121).

X̄ =
1

n

n∑

i=1

Xi (3.121)

The covariance matrix C of the points is computed with equation (3.122).

C =
1

n− 1

n∑

i=1

(Xi − X̄)(Xi − X̄)⊺ (3.122)

Chapter 3. Methodology 59

Matrix C is decomposed using SVD:

C = UΣV ⊺ (3.123)

The line fitting problem is solved by taking a directional vector of the first column of V .
The first column of V shows the direction of the greatest change in Xi. This vector is a
directional component of a Plücker coordinate.

l =





V (1, 1)
V (2, 1)
V (3, 1)



 (3.124)

Moment m is orthogonal to a l and x. Vector x is assembled from the centroid and
points from the origin to the centroid of line.

m = x× l (3.125)

where × is a vector cross product.

Extrinsic calibration of a spherical camera

Extrinsic calibration is parameterized using a Lie algebra se(3) so that there are six
parameters in total: ρ ∈ R

3 and σ ∈ R
3. Vector ρ represents a translational part of se(3)

and σ rotational part of se(3). Note that ρ is trivial Lie algebra, so exponential mapping
can be omitted. To obtain rotation Rwc and translation twc following mapping need to
be performed:

[
Rwc twc

]
=
[
exp(σ∧) ρ

]
(3.126)

The residual for this problem is built from:

• a 3D line detected in a laser scan, described with a Plücker coordinate which lives
in R

6, [m, l]⊺,

• a 2D line detected in a spherical image, described with a pair of angles (azimuth α
and inclination β) which is in R

2.

Plücker coordinates [m, l]⊺ of a line detected in a laser scan are transformed to the
currently estimated center of projection with formula (3.127). The formula (3.127) is
obtained by substitution of (3.126) to (3.109).

[
ml

ll

]

=

[
(exp(σ∧))⊺ −(exp(σ∧))⊺[ρ]×

03x3 (exp(σ∧))⊺

] [
m

l

]

(3.127)

Therefore, the moment ml can be taken from equation (3.127) resulting with equation
(3.128).

ml = (exp(σ∧))⊺(m− [ρ]×l) (3.128)

The great circle’s normal vector Ng is built from α and β with equation (3.129). The
equation (3.129) is result of taking [a, b, c] from equation (3.111).

Ng =
[
sin(α) sin(β) − cos(α) sin(β) cos(β)

]
(3.129)

Chapter 3. Methodology 60

Summarizing:

• ml is found from a line in a 3D space and the current orientation of the camera,

• Ng is obtained from azimuth α and inclination β with equation (3.129).

These vectors should be parallel, thus the optimization problem is defined by equa-
tion (3.130).

argmin
ρ,σ

∥
∥
∥
∥
∥
∥
∥

[
(exp(σ∧))⊺(m+ [ρ]×l)

]

︸ ︷︷ ︸

ml

×Ng

∥
∥
∥
∥
∥
∥
∥

(3.130)

Equation (3.130) gives zero when ml and Ng are parallel. That is a consequence of
property of a length of a cross product of two vectors. The cross product length is
proportional to sine of angle between those two vectors. Requesting the length to be
zero in observation equation (3.130), the parameters ρ and σ are found which makes ml

and Ng parallel requesting to angle between ρ and σ to be 0 degree or 180 degrees.

3.5.2 Line to line in rectilinear image

The method introduced in the previous sections can be adopted for rectilinear cameras.
Extrinsic calibration is parameterized using a Lie algebra se(3) so that there are six
parameters in total: ρ ∈ R

3 and σ ∈ R
3. Vector ρ represents a translational part of SE(3)

and σ rotational part of SE(3). To obtain rotation Rwc and translation twc the mapping
(3.126) need to be performed. A line in a 3D space is described by Plücker coordinates.
The moment vector m and direction vector l can be retrieved from pointcloud using
equations (3.121) to (3.125). The vector [ml, ll]

⊺ can be obtained transforming [m, l]⊺

from global coordinate frame to camera’s local coordinate frame using equation (3.109).
Taking a normalized vector nl = ml/ ‖ml‖ from the local Plücker coordinate gives a
normal vector for a plane which goes through the observed line, and the projection
center of the camera in the camera’s coordinate frame. All major vectors and geometries
are shown in drawing 3.15.

Chapter 3. Methodology 61

FIGURE 3.15: The line segment in a 3D space is marked in yellow. There
are two vectors that create the Plücker coordinate: the moment is marked
in red and the directional vector is marked in green. The projection plane
spans on the center of the projection (marked in green) and the observed
line (yellow). This plane contains an image of the line (marked in blue).

A normal vector to projection plane is marked in blue.

The line in the image is built by a set of 2D points with coordinates: px,1, py,1,px,2, py,2
... px,n, py,n. This line is presented as a vector vm. vm is normal to a plane which spans
on the line on the projection plane and the projection center. The projection of the plane
to the image space is given with equation (3.131).





a
b
c



 = Kvm (3.131)

Matrix K is a projection matrix given with equation (3.132) [7].

K = det(P)P−⊺ =





f 0 0
0 f 0

−cxf −cyf f2



 (3.132)

Chapter 3. Methodology 62

where : P is camera projection matrix. K and P contains the following camera parame-
ters: fx, fy - optical lengths, cx, cy - principal point. The proof for equation (3.132) can be
found [7]. To find a vm for given 2D points, the optimization problem is constructed as
equation (3.133).

argmin
vm

N∑

n=1

∥
∥
∥
∥
∥
∥

(Kvm)





px,n
py,n
1





∥
∥
∥
∥
∥
∥

(3.133)

Summarizing :

• vm is found from a line in the image from a set of points,

• ml is found from a line in a 3D space and the current SE(3) pose of the camera.

These vectors should be identical regarding the direction, thus the optimization problem
is defined by equation (3.134).

argmin
ρ,σ

∥
∥
∥
∥
∥
∥
∥

[
(exp(σ∧))⊺(m+ [ρ]×l)

]

︸ ︷︷ ︸

ml

×vm

∥
∥
∥
∥
∥
∥
∥

(3.134)

Equation (3.134) gives zero when ml and vm are parallel.
Finally, those observation equations are closing elaborated methodology. In the next

two chapters, the presented methodology will be verified against multiple real-world
challenges. Developed solutions and algorithms in chapters Experimental validation
and Robotic applications are direct implementation of the methodology. A prominent
example of such implementation is rotation representation that utilizes Lie algebra, or
LM algorithm that is mainly used for solving calibrations problems formulated as IRLS
optimization problems.

63

Chapter 4

Experimental validation

This chapter presents multiple usage scenarios for methods and tools presented in the
previous chapter. Calibration problems shown in the next few examples are real-world
systems which required automatization to operate. Solving these problems required
designing or adopting new techniques. In section 4.1 the calibration problem was
solved by designing factor-graph SLAM with extra hidden variables which represented
a geometrical configuration of the system. Other systems (4.2 and 4.3) required incor-
porating equations of a reflected ray into point to point ICP. Section 4.4 demonstrates
the approach to calibrating the mechanical imperfections of the system with a simple
calibration pattern utilizing design features of the sensor. The system described in
section 4.5 presents a challenges accompanying extrinsic calibration for the sensors that
do not have any overlaps in its FOV. Section 4.6 contains a description of a calibration
of a spherical camera.

4.1 Calibration of a high-volume mobile 3D scanner

The first calibrated system uses two RGBD (Intel RealSense L515) sensors which are
rotated using an arm. One of the scanning heads is shown in figure 4.5. The basic design
of the system is shown in schematic 4.1 and the system scanning calibration pattern is
shown in figure 4.6. The scanning heads are attached to linear actuators. Those actuators
are attached to the rotating arm. The whole assembly is rotated around the scanned
volume. The incremental encoder attached to the arm measures the current angle of
the revolution. The arm is motorized with a DC servo actuator. The sensors’ rig can be
rotated around a horizontal axis which goes through the center of the scanned volume.
The sensor can be moved parallelly (up and down) by a pair of motorized actuators.
The rig has been designed and assembled using CAD software and it has had known
dimensions, but it can be assembled in several different ways. Manual calibration or
even pre-calibration is not possible due to a complicated mechanical structure.

The RGBD scanner head (Intel RealSense L515) is composed of a visible light RGB
camera and a solid-state LiDAR camera. The manufacturer provides the following
calibration of these sensors:

• focal length and principal point for depth sensor fdx, fdy, cdx, cdy,

• rectification coefficients for Brown-Conrady (so called ’plumb-bob’) distortion
model K1,K2,K3,K4,K5 [57],

• focal length and principal point for RGB sensor fcx, fcy, ccx, ccy,

Chapter 4. Experimental validation 64

U
1
∈ℝ1

c
2
∈SE (3)

c
1
∈SE(3)

c
3
∈SE(3)

c
4
∈SE (3)

U
2
∈ℝ1

U
2
∈ℝ1

Scanned
Object

FIGURE 4.1: Mechanical structure of the high-volume mobile 3d scanner.
Actuated revolution joint u1, actuated prismatic joints: u2, u3. Revolution

joints with hidden configuration: c1,c2,c3,c4.

Chapter 4. Experimental validation 65

• extrinsic calibration of depth optical frame and RGB optical frame Tcd.

This information is enough to build a colored point cloud from the measurements
without any extra calibration [66]. A chain of these operations can be used to yield a 3D
point in color. First, an in-depth image ud, vd with known depth zd is projected in a 3D
space:





Xg
d

Y g
d

Zg
d



 =





zd(ud − cdx)/fdx
zd(vd − cdy)/fdy

zd



 (4.1)

The obtained point [Xg
d , Y

g
d , Z

g
d]

⊺ is in the depth’s camera local coordinate system. The
point needs to be transformed to a color camera coordinate system:







Xg
c

Y g
c

Zg
c

1






= Tcd







Xg
d

Y g
d

Zg
d

1







(4.2)

Finally, [Xg
c , Y

g
c , Z

g
c]⊺ is projected onto the color camera coordinates [uc, vc, 1].





suc
svc
s



 =





fcx 0 ccx
0 fcy ccy
0 0 1









Xg
d

Y g
d

Zg
d



 (4.3)

Color camera coordinates [uc, vc, 1] can be taken to find a color of point taking a pixel
color in a rectified image. The calibration procedure needs to give an exact geometrical
configuration of the system. Fiducial makers are used to solve this problem. The exact
type of markers and detection method, as well as implementation and processing details
are explained in [105] and [46]. Fiducial markers enable the system to accurately find
markers’ boundaries and, if intrinsic calibration of the camera is known, to find SE(3)
transform of the marker in a 3D space. In this approach, only the identification of
fiducials in the camera image is used. Fiducials detection solution allows for an accurate
and robust detection of the corners of a marker and its identification number. The
marker and its corners create a polygon. The processing of fiducial markers is shown in
figure 4.2.

Every point from the point cloud, provided by a LiDAR camera, is tested if it lays in
the polygon. If the point lays in the polygon, it is marked with the identification number
of the marker detected in the RGB image frame. In the figure 4.2 depth pixels which
belong to different markers are marked with different colors. The unique identification
numbers of the markers are marked in various colors.

Geometrical information about the location is robust enough to track given 3D
correspondences in multiple 3D scan poses. Geometrically, the collection of the point
which share the same identification number is collapsed to a single centroid, resulting
in a single 3D point. It is demonstrated in figure 4.3.

A corrupted observation may occur at this point, e.g. due to occlusion or extreme
observation angle. It can be eliminated by performing SVD and analyzing diagonal
matrix Σ. One application of SVD (e.g, in PCA) is change of basis of the dataset. In
case of pointcloud, it allows to recover new 3D coordinate system that axis spans into

Chapter 4. Experimental validation 66

direction of most significant variance. A correctly observed marker should not be
significantly distorted by perspective projection. The covariance matrix of points which
share the same identification number is computed. SVD decomposes the covariance
matrix into two orthogonal matrices and one diagonal. Two first elements of the diagonal
of Σ are limited to be in some tuned vicinity of 1.0. This means that only the markers
which have similar width and height are kept. The procedure is done for multiple
capture images resulting in sets of 3D points with an identification number. This method
is considered a part of the proposed methodology. Thus, it automates the calibration of
the multi sensor mapping system.

Modeling a mechanical design as a factor graph

This system can be represented with a mechanical diagram shown in figure 4.1. One of
the two scanning heads is shown in figure 4.5. The complete calibrated system is shown
in figure 4.6. The system consists of four rotation joints which are assembled by the
user and fixed in place, two prismatic joints which are actuated, and one rotation joint
which is actuated. The assembled joints are fixed and their configuration is unknown.
The electric motors move actuated joints and their current position is measured with
sufficient precision. Thus, it is negligible in the optimization problem. That means every
assembled joint contributes six degrees of freedom to the optimization problem. The
system has twenty-four degrees of freedom in total.

To recover the current state of the system (SE(3) configuration of c1,c2,c3,c4) after
the assembly of the device, some constraints and relations need to be utilized. The
problem partially fulfills the SLAM definition; the map is unknown and the trajectory
is partially known. It differs from the classical SLAM, as the trajectory is dependent
only on the calibration of the system. Said calibration has only twenty four degrees
of freedom, while a trajectory in a small SLAM problem can have a few hundred
degree of freedom. Such system can be represented as a factor graph, as shown in
figure 4.4. It results in a clear design of the optimization problem. Factors f0(x0, θ, U),
f1(x1, θ, U), f2(x2, θ, U), f3(x3, θ, U) show that poses x0,x1,x2,x3 are dependent on a
random variable θ and controls U . Note that, controls U , which are positions reported
by actuated joints, are not optimized parameters. Here the system differs from a
typical SLAM or self-calibrated graph-SLAM [111]. The crucial difference is that poses
x0,x1,x2,x3 are not linked by any factor with each other, what is typical in SLAM. Factors
f4(x0, l0),f5(x1, l0),f6(x2, l0),f7(x1, l1),f8(x2, l1),f9(x3, l1) are representing observations.
It is essential to point out that poses x0,x1,x2,x3 are not estimated in the final problem
of the likelihood maximization. They are dependent on one random variable θ and the
reported position of actuated joints. The position is treated as a constant parameter in
the optimization problem. The calibration method maximizes the likelihood related
to the projection of landmarks visible from multiple poses. The problem is optimized
with Levenberg-Marquardt non-linear least square method [80]. The method converges
on a sample calibration field 4.7. Final cost Root Mean Square (RMS) (per observation)
is 5.01 mm. The evaluation of the performance of this method is quantitative. Some
quantitative reasoning shows that optimized parameters give similar results for the
multiple datasets and captures (average error in millimeters): The table 4.1 shows an
average distance of the observation in millimeters. The rows represent the results on
calibration data-sets and test against other datasets. It is visible that the algorithm yields

Chapter 4. Experimental validation 67

TABLE 4.1: Comparison of cumulative error on four calibration datasets.
For every row, one dataset was used to obtain calibration and rest was

used to assess accuracy.

calib./test. Dataset 1 Dataset 2 Dataset 3 Dataset 4

Dataset 1 5.01 mm 7.34 mm 7.46 mm 5.58 mm
Dataset 2 7.93 mm 5.69 mm 10.15 mm 9.09 mm
Dataset 3 7.63 mm 9.58 mm 6.57 mm 6.69 mm
Dataset 4 5.80 mm 7.89 mm 6.90 mm 5.02 mm

the lowest error in tests performed on the data-set used for calibration (the diagonal
of the array contains the lowest value). Datasets 2 and 3 perform poorly and yield the
worst calibration (tested against datasets 1 and 2). Calibration provided by Datasets 1 or
2 has a significantly smaller score on the tests against datasets 2 and 3. It is so because
captures 2 and 3 were done with greater rotation speed. As a result, the number of
captured fiducials was smaller due to the motion blur. The method converges well both
on real and synthetic datasets obtained by Blender Cycles raytracing engine (described
in section 3.3.6). Synthetic data-set converges to negligible error. It is shown in figure
4.7.

Chapter 4. Experimental validation 68

(A) RGB image with with detected markers.

(B) Fiducial marker in RGBD pointcloud.

(C) Point-cloud classified with underlying AR marker code.

FIGURE 4.2: Processing of fiducial markers.

Chapter 4. Experimental validation 69

(A) Centroids of markers before calibration. (B) RGBD, before calibration .

(C) Centroids of markers after calibration. (D) RGBD, after calibration.

FIGURE 4.3: Detected fiducials before and after automatic calibration.

Chapter 4. Experimental validation 70

l
0 l

1

x
0

x
1

x
2 x

3

θ

f 0(x0 ,θ ,U) f 1(x1 ,θ ,U) f 2(x2 ,θ ,U) f 3(x3 ,θ ,U)

f 4(x0, l0) f 5(x1, l0) f 6(x2 , l0) f 7(x1 ,l1) f 8(x2 ,l1) f 9(x3 , l1)

FIGURE 4.4: Factor graph modeling the calibrated system. U - controls
(configuration of actuated joints). x0, x1, x2, x4 - poses of calibrated cam-
era. l1, l2 - observed centroids. θ = {c1, c2, c3, c4} - calibrated parameters

(configuration of assembled joints).

FIGURE 4.5: One of the two scanning heads. There is a visible guiding
system with a timing belt in the back. In the front, there is an RGBD

sensor with an RGB camera and LiDAR lens.

Chapter 4. Experimental validation 71

FIGURE 4.6: The complete calibrated system. The calibration field is a
combination of a large number of AR markers. Mechanically, the system
consists of two guided rails with a timing belt linear transport for two
scanning heads marked in red. The arm on the bottom is rotated by a
DC-servo motor (curved red arrow). The system can be assembled in

multiple ways to achieve the best coverage of the scanned volume.

Chapter 4. Experimental validation 72

FIGURE 4.7: Converging cost with iterations of the Levenberg-Marquadt
algorithm for synthetic and real dataset. The cost is total distance. 14710
observations were used in the real dataset. 1074 observations were used

in the synthetic one.

Chapter 4. Experimental validation 73

4.2 Calibration of multi planar reflectors

This system includes a Livox Mid-40 LiDAR laser scanner [79] (figure 4.8). This LiDAR
sensor is similar to a Velodyne VLP-16 [130], but it has a completely different field of
view. The Livox Mid-40 LiDAR has an initially conical field of view with the apex in
the optical center and the apex angle equal to 38.4 degrees. Conversely, the Velodyne
VLP-16 has a cylindrical field of view. The Livox Mid-40’s field of view has a smaller
coverage of the scene with greater angular resolution. The goal is to reshape the field of
view of the Livox Mid-40 to be similar to other classical rotating LiDARs. Therefore, the
calibration process is designed to cope with this new sensor. This device splits the Livox
Mid-40’s field of view into six separate beams, which allows for a broader coverage
of the scene. It is desired for slow-moving robotic agents in known environments for
localization purpose.

Mechanical design

The Livox LiDAR is oriented with its aperture pointing up. A pyramidal structure with
mirrors is installed on top of the Livox LiDAR. Three pillars support the structure. They
are assembled to a face plate which is screwed to the front piece of the Livox LiDAR, as
seen in the simplified construction drawing in figure 4.8.

FIGURE 4.8: 3D CAD model of assembly. 1- hexagonal pyramid; 2-Livox
LiDAR; 3- face plate; 4- one of six mirrors.

The field of view after the modification consists of six segments with the following
properties:

• the field of view (vertical) spreads from -12◦ to 9.4◦ (Fig. 4.9),

• the field of view (horizontal) has six segments orientated radially with angle up to
18.7◦ (Fig. 4.10).

Chapter 4. Experimental validation 74

FIGURE 4.9: Reshaped field of view. A plot of vertical situation.

FIGURE 4.10: Reshaped field of view, plot of horizontal situation.

The shape of the resulting field of view in the vertical plane depends mainly on the
angle between the central axis and the mirror surface (Fig. 4.11). The horizontal field of
view depends on the number of mirrors. A larger number of mirrors would result in
the larger number of radial segments. Unfortunately, every edge introduces artifacts
and causes some rays to point into the spacing between the mirrors. A hexagonal
pyramid (element 1 in figure 4.8) was 3D printed out of Polylactic Acid (PLA) using
a standard Fused Deposition Modelling (FDM) printer. This structure has multiple
embedded nuts used to screw in six triangular mirrors. Mirrors are made out of a
reflective Poly Methyl Methacrylate (PMMA) sheet that was cut using Computerized
Numerical Control (CNC). Each mirror is screwed to the hexagonal pyramid.

Chapter 4. Experimental validation 75

(A) Mirror angles 50◦.

(B) Mirror angles 52.5◦.

(C) Mirror angles 60◦.

FIGURE 4.11: The impact of the mirror angle on the changing vertical
field of view.

Chapter 4. Experimental validation 76

The pyramid is screwed to the three pillars supporting the structure. The pillars are
rods with a thread on each end. The construction is sturdy, but there is no way to ensure
the parallelism of the optical axis of the Livox Mid-40 and the axis of the hexagonal
pyramid. The manufacturer does not provide any dimensional or shape tolerance on
the optical center of the Livox Mid-40. As a result, the center of the pyramid is shifted
by an unknown value with respect to the optical center. This fact dictates the necessity
for calibration.

Geometry of a reflected ray

The Livox Mid-40 emits a bundle of rays in a conical pattern. Technically, it emits one
ray projected in the desired direction by two rotating prisms. The construction details of
this class of LiDARs can be found in [77]. The rays are reflected by a mirror with the
following properties:

• a plane equation (4.4), where Vpl is plane’s normal given (4.5) and is unit-length
(4.6)

• a three 2D corners which lay on a plane, which limits the dimension of the mirror.

ax+ by + cy + d = 0 (4.4)

Vpl =
[
a b c

]
(4.5)

∥
∥
∥V

pl
∥
∥
∥ = 1 (4.6)

First, the intersection of the ray and the mirror plane is found. The ray starts at [0, 0, 0]
and points in the direction of unit vector rb. This intersection point is a linear scaling
lint of vector rb, equation (4.7).

P int = lintrb (4.7)

This intersection point satisfies the equation (4.8).

[
a b c d

]
[
lintrb

1

]

= 0 (4.8)

The equitation (4.8) needs to be solved for lint. Having the exact value of lint for given
ray rb the intersection point P int can be obtained with equation (4.7). If the intersection
point p lays in the boundary of the mirror, it is projected on the mirror plane and the
2D point in the polygon test is performed. The mirror is a convex polygon, so the
winding number algorithm is used [61]. In other words, the algorithm computes the
angle subtended by each side of the convex polygon with the tested point P int. The
point lies outside the polygon if the sum of all angles adds up to 2π. If a given ray is
reflected by a given mirror, a direction of reflected ray rd is given with equation (4.9). A
geometrical interpretation of the equation (4.9) is shown in the figure 4.12.

rd = −2(bd ·Vpl)Vpl − bd (4.9)

Chapter 4. Experimental validation 77

FIGURE 4.12: Geomerical interpretation of equation (4.9). bd is a unit
vector representing the direction of the incident beam. rd is a unit vector
representing the direction of the reflected beam. Vpl represent a mirror’s
normal vector. The dot product of bd · Vpl is the length of the projection
of bd on Vpl. Finally, the sum of vectors −2(bd ·Vpl)Vpl and −bd results

in rd vector.

To get a point in a 3D space after reflection (Pr) having Pl ∈ R
3 in local coordinate

system one must employ equation (4.10):

Pr = −(Pint + rd(lp − lint)) (4.10)

where: lp =
∥
∥Pl

∥
∥ is the length of the beam from its origin to Pl, lint =

∥
∥Pint

∥
∥ is the

distance to the intersection from the origin.
Initially, the geometrical calibration was derived from a CAD design. The CAD

design used for manufacturing is exported to Blender, where a simplified mesh is
created. The simplified mesh consists of separate triangles, each of which represents
a mirror. The initial configuration is saved as a Polygon File Format (PLY) file. The
PLY file is loaded, and each mirror and its boundaries are found. The parsing of PLY
files is straightforward. A plane is fit for each triangle. The centroid and the covariance
matrix are computed. Next, the latter is decomposed using SVD. The third column of
U is taken as a normal vector. d coefficient is obtained by the substitution of centroid
coordinates to the equation (4.4) and solving for d. The SE(3) transform is found by
treating U as a rotation matrix and the centroid as a translation member of SE(3). The
inverse of this transform is used to project a ray-mirror intersection point back onto the
mirror plane and to perform a point-in-polygon test. Unfortunately, the CAD-derived
calibration is rather poor. To improve this calibration, the optimized plane coordinates
need to be found for each of the mirrors. Poor performance of CAD-derived calibration
is a result of:

• an imperfect alignment of the pyramid axis and the Livox Mid-40’s axis,

• the thickness of the mirror PMMA surface,

• an imperfection in manufacturing.

Chapter 4. Experimental validation 78

FIGURE 4.13: The experimental prototype mounted onto a precise rotat-
ing table during the data acquisition procedure. ’A’ marks the axis for

changing the rotation angle.

Calibration procedure

The calibration is performed in a stop-scan manner. The Livox Mid-40 with FOV
changing mirrors is mounted on the top of a turntable. The turntable allows for a precise
rotation angle with a resolution of 0.5◦. In addition, the sensor’s rotation enables multiple
overlapping of data reflected with different mirrors. The calibration data can be captured
in multiple stations. Thirty-six static measurements for each measurement station are
captured by rotating the table by 10 degrees (figure 4.13). Each static measurement
consists of three seconds of the recorded Livox Mid-40 data. The center of the rotated
system draws a circle. The circle is small if the sensor’s axis is aligned with the rotation
axis. In the calibration procedure a reflected point rd is transformed by a chain of SE(3)
transform to a global coordinate frame.

Going from left to right from the sensor’s frame to the world’s frame, equation (4.11):

•

[
Rlt tlt

01×3 1

]

∈ SE(3) - laser to turntable represents the imperfect placement of

the Livox LiDAR on the turning table. In a perfect scenario there should be
identity as the calibration algorithm optimizes this transformation. This parameter
is stationary for the experiment as the Livox LiDAR is not moving against the
turning tables attachment point.

•

[
Rtp ttp

01×3 1

]

∈ SE(3)- turntable to pose, this transformation, which is a simple

rotation around ’X’, represents an angle set on the turning table. This parameter is
not optimized by calibration algorithm.

•

[
Rpg tpg

01×3 1

]

∈ SE(3) - pose to global, this transformation transforms a measurement

station frame to the global world’s frame.

Chapter 4. Experimental validation 79

All transformations together transform point Pr
a to a point in global coordinate frame

P
g
a: [

P
g
a

1

]

=

[
Rpg tpg

01×3 1

] [
Rtp ttp

01×3 1

] [
Rlt tlt

01×3 1

] [
Pr

a

1

]

(4.11)

The optimized cost function for a corresponding of points Pg
a and other point in global

coordinate system P
g
b

cab = Pg
a −Pb

g (4.12)

For each of these parameters, a Lie algebra se(3) was used to parametrize the pose. In
the optimization problem the mirror was represented as a 4D vector. The coefficients of
the plane were optimized. Since the data was treated as not structured, an exhaustive
k-nearest neighborhood search had to be performed in search for correspondences.
Kd-tree algorithm was used (Point Cloud Library (PCL) in the implementation [108]).

Only one station is used in the example below. The best available calibration is taken
to construct a pointcloud from the raw data in the global coordinate system. In the
next step, a Kd-tree is built on top of the pointcloud. Using the Kd-tree, the algorithm
searches for pairs of the nearest neighborhood points with each individual point in a
pair reflected by a different mirror. For every found nearest neighborhood point pair
(Pg

a,P
g
b), a residual cab ∈ R

3 is created. The point P g
a was observed:

• with the measurement bd
a (direction of ray),

• with distance da,

• reflected by the mirror γ,

• while the laser scanner was at angle β.

The mirror γ was represented by its plane parameters via aγ , bγ , cγ , dγ ; the current
rotation of the rotating table was represented with homogeneous transformation,
[

R
tp
β

t
tp
β

01×3 1

]

∈ SE(3). Finally, the residual for the point pair (Pg
a,P

g
b) was given by

equation (4.12). Every found pair contributes a new residual. The number of equations
creates an optimization problem. The equation (4.12) is differentiated automatically
with respect to all optimized parameters, which were: Rt

l , t
t
l , aϕ, bϕ, cϕ, dϕ. The optimiza-

tion problem is solved using the Levenberg-Marquardt algorithm. The cost function is
modified with robust kernel to limit impact of outliers. The whole procedure is repeated
until the solution converges using Ceres solver [2].

The calibration procedure on each scan site showed a significant improvement. Pre-
calibrated data (with CAD initial calibration) showed multiple images of the floor in the
scan. This is clearly visible in figure 4.14a. This situation changes with the calibration
procedure and images converge into one 4.14b. The calibration method was validated
using the map of the known environment. The environment used in this scenario was
the same underground parking lot as in chapter 4.5. The obtained map, provided by the
high-precision TLS and manual registration, was treated as ground truth.

Two calibration scenarios were tested. The first one used only a single scanning
station, and the second one used multiple stations. Ground truth data was used for
quantitative evaluation. Figure 4.15 shows the results for the first, simpler scenario, and
figure 4.16 shows the results for the second one. The method introduces some outliers,

Chapter 4. Experimental validation 80

(A) Initial CAD-derived calibration of catadioptric system, registered against ground
truth.

(B) Optimized calibration registered against ground truth.

TABLE 4.2: The optimized parameters (planar reflectors’ coefficients).

Parameter Initial Calibrated

[a1, b1, c1, d1] [0.793,−0.304,−0.527,−0.075] [0.799,−0.311,−0.519,−0.044]

[a2, b2, c2, d2] [−0.793, 0.609,−0.000, 0.075] [−0.787, 0.614,−0.012, 0.049]

[a3, b3, c3, d3] [0.793,−0.304, 0.527,−0.075] [0.791,−0.301, 0.531,−0.049]

[a4, b4, c4, d4] [0.793, 0.304, 0.527,−0.075] [0.789, 0.311, 0.528,−0.049]

[a5, b5, c5, d5] [−0.793,−0.609,−0.000, 0.075] [−0.798,−0.605, 0.008, 0.045]

[a6, b6, c6, d6] [0.793, 0.304,−0.527,−0.075] [0.793, 0.291,−0.534,−0.047]

especially at the planar, horizontal structures near the sensor. It is clearly visible in 4.15.
The vertical structures were represented accurately.

The distribution of error (figure 4.15 and 4.16) suffered from a larger numbers of
outliers. They manifested as long-tail and positive skewness. The mode of error for a
single station was 7.6 centimeters. For multiple scans, the mode of error distribution
was 4.2 centimeters.

The amount of displacement which occurred during the presented calibration process
is an interesting phenomenon. The exact values for all six reflectors are shown in table
4.2. The displacements of planes were minor. For example, the first planar reflectors
rotated with calibration 0.65◦.

Chapter 4. Experimental validation 81

(A) Histogram of er-
rors for ROI1.

(B) Histogram of er-
rors for ROI2.

(C) Histogram of er-
ror for all point.

FIGURE 4.15: Result of calibration algorithm for single measurement
station without ground truth data (simplest scenario).

Chapter 4. Experimental validation 82

(A) Comparison between investigated LiDAR and ground truth.

(B) Histogram of errors for all points.

FIGURE 4.16: Result of the calibration algorithm for multiple measure-
ment stations with histogram of errors.

Chapter 4. Experimental validation 83

4.3 Calibration of a rotated reflector

The large number of outliers introduced by multiple planar reflectors discussed in previ-
ous section led to the research using only one planar reflector. This planar reflector can
be rotated in a controlled manner to achieve a larger FOV. It is a similar approach to the
3D unit discussed in section 4.6 which rotates the Velodyne VLP-16. The whole assembly
is simplified, as only a tiny and light planar reflector is rotated. This eliminates the need
for the high-torque motor solution, bearings, and a slip ring. The shared components
are hardware synchronization and motor driver. The hardware time synchronization is
essential for achieving a precise measurement.

Time synchronisation with a Livox LiDAR

The Livox Mid-40 LiDAR allows for hardware synchronization by a PTP protocol or a
PPS signal. The PPS signal is utilized in this design. This method of data synchronization
is less trivial than in the Velodyne VLP-16 because the timestamp reported by the Livox
Mid-40 LiDAR turnovers every second. Any system which synchronizes data must
consider this solution for attaching the timestamp. The electronic system is identical to
the one in chapter 4.4, but an extra algorithm for synchronization is introduced. The
microcontroller reports timestamps effectively from 0 to infinity, which is the top plot in
figure 4.17. The Livox Mid-40 LiDAR reports timestamps in range 0 - 1 second, which
is the third plot from top in figure 4.17). It reports in a fractional part of a second and
an arriving PPS pulse’s rising edge resets its internal timer (the second plot from the
top in figure 4.17). The program which collects data from the Livox LiDAR needs to
reconstruct the whole part of the timestamp robustly. It is done with a helper register, as
shown in the bottom plot in figure 4.17. The software running on a host machine, which
performs data acquisition, collects two User Datagram Protocol (UDP) streams from the
STM32 and the Livox LiDAR. The helper register is loaded with a value of the whole
part of the timestamp strictly in between two PPS pulses. The host software observes the
timestamp reported by the STM32 and loads the whole part of the reported timestamp
in an exact moment, which is shown as the initial jump in the bottom plot in figure 4.17.
Then, a falling edge is detected in the timestamp reported from the Livox LiDAR. The
edge detector triggers when the last reported timestamp is close to 1 second, but the
new one is close to zero. When such a case occurs, the helper register is incremented.
The value from the helper register can be used as a whole part of timestamp, while the
timestamp of a packet reported by the Livox LiDAR can be treated as fractional part
of timestamp. In other words a sum of fractional timestamp reported in the package
and a value stored in the helper register gives complete timestamp. In the operation, the
whole part of the timestamp reported by the STM32 should always be equal to the value
in the helper register in between two PPS pulses. If not, it means that the Livox LiDAR
did not reset its timer on the PPS edge, e.g. due to a disconnection of synchronization
wire.

The synchronization program is multi-threaded. The first task arranges incoming
data from the STM32 into associated data which is ordered by the timestamp container,
an implementation of a set from the standard C++ library. The data from the STM32
arrives with ascending timestamps, so inserting a new value to a set is computationally
efficient. The thread also removes data older than 1 second. The second task arranges

Chapter 4. Experimental validation 84

FIGURE 4.17: Synchronization registers and signals in synchronization
solution for the Livox Lidar.

Chapter 4. Experimental validation 85

incoming data from the Livox Mid-40 into a sequenced container, an implementation
of deque from the standard C++ library. It also reconstructs the whole part of the
timestamp. The third thread pops data from a list of measurements from the Livox. It is
done by keeping a minimum size of the list. The popped data from the front of the list
has its timestamp, which is a key to query the ordered container of the packet reported
by the STM32. With the query result, two nearest entries are found.

These two entries have the encoder’s angle reported, so a bi-linear interpolation is
executed to get the angle for the requested timestamp. Next, a geometrical transforma-
tion is done, and a packet is pushed to the output queue or a file. Mechanical design

FIGURE 4.18: Rotating mirror assembly. 1-Livox Mid-40, 2- incremental
encoder, 3- mirror support, 4- Motor housing, 6- top plate, 5-bottom plate,

7- pillars.

is presented in figure 4.18. The Livox Mid-40 LiDAR points to the direction of a tilted
mirror which is attached to a motor. The motor is a BLDC sensorless motor with an
incremental encoder attached. The mirror can spin at the speed of from 1 RPM to 200
RPM. The angle of the mirror tilt is constant, but it can be changed to obtain different
shapes of the field of view similarly to figure 4.11.

Most of the parts were 3D printed or otherwise manufactured (e.g. CNC machined),
but the whole assembly is far from perfect. As the software for data acquisition and
transform requires a calibration of the system, the construction was taken to a known,
previously mapped environment. The map obtained with a high-precision TLS was
treated as a ground truth. The transformed results from the system were registered with
the ground truth, and a histogram of error was built. If the calibration is derived from
a CAD model, the results are considered poor. The error tail in left part of the error
distribution is high (figure 4.19b).

The calibration method used here is slightly different from the approach presented
with multiple planar reflectors. As in the case of the multiple planar reflector, a rotation
of the sensor is necessary for the optimization of the mounting transformation of the
assembly on the turntable instead of the intrinsic parameters. The known environment
and deflect calibrated parameters were used to minimize the error between the known
map and the measurement.

Chapter 4. Experimental validation 86

(A) Black-ground truth, other colors - input point cloud.

(B) Histogram of errors before calibration.

(C) Black-ground truth, other colors - input point cloud.

(D) Histogram of errors after calibration.

FIGURE 4.19: Quantitative evaluation of the calibration procedure.

Chapter 4. Experimental validation 87

It is a calibration method with a calibration field. Plane coefficients of the planar
reflector and SE(3) location of the rotation axis are geometrically optimized against
the optical axis of the laser scanner. Two groups of degrees of freedom can accurately
describe the imperfections in the assembly:

• reflector plane’s coefficient [a, b, c, d] ∈ R
4 describes the location of the reflector

against the motor rotor, and it can compensate the angle of tilt, mirror thickness,
and the encoder offset,

•

[
Rc tc

01×3 1

]

∈ SE3 of the rotation axis compensates the non-coaxiality and shift of

the system, as well as it can compensate the encoder offset.

This description is somewhat redundant, and some of the degrees of freedom can act in
the opposite direction. Qualitative tests of the redundant description against reduced
plane (only mirror) show differences in favor of the redundant ones.

FIGURE 4.20: Comparison of the calibration results of the redundant
model which optimizes

[
R

c

t
c

0
1×3

1

]
, [a, b, c, d] and extrinsic poses, and the

reduced model which optimizes [a, b, c, d] and extrinsic poses. The redun-
dant model is drawn in green and the reduced one is drawn in red. The

reduced model converges to a sub-optimal solution.

The calibration technique also required the optimization of the
[

Rj tj

01×3 1

]

∈ SE(3) j-

th pose of scanning stations. At least two scanning stations were used. A non-optimized
parameter

[
Rr tr

01×3 1

]
∈ SE3 is a pure rotation reported by the encoder at the current

Chapter 4. Experimental validation 88

moment of time. The plane [ar, br, cr, dr] is given :

[
ar br cr dr

]
=
[
a b c d

]
[
Rc,r tc,r

01×3 1

]−1

(4.13)

where : [
Rc,r tc,r

01×3 1

]

=

[
Rc tc

01×3 1

] [
Rr tr

01×3 1

]

(4.14)

According to equation from (4.15) to further (4.18), the plane [ar, br, cr, dr] transforms a
point in the Livox Mid-40 LiDAR’s coordinate frame (P l) to a reflected point (P r).

rd = −2



bd ·





ar

br

cr













ar

br

cr



− bd (4.15)

The vector bd is direction of ray emitted by Livox LiDAR and rd is direction of reflected
ray. The intersection of plane [ar, br, cr, dr] with ray emitted by Livox LiDAR is given
by equations (4.16) . The point P int lays on a line created by vector rb : P int = lintrb,
where lint is distance of point P int from origin.

[
ar br cr dr

]
[
P int

1

]

= 0 (4.16)

[
ar br cr dr

]
[
lintrb

1

]

= 0 (4.17)

Solving equation (4.17) for lint and substitution to equation (4.16) gives intersection
point P int. The point P r is a point after reflection given with equation (4.18).

Pr = −(Pint + rd(lp − lint)) (4.18)

where: lp =
∥
∥Pl

∥
∥ is the length of the beam from its origin to Pl, lint =

∥
∥Pint

∥
∥ is the

distance to the intersection from the origin.
Finally, a global point for point Livox Mid-40 LiDAR’s coordinate frame (P l) cap-

tured at pose j-th is given:

[
P g

1

]

=

[
Rj tj

01×3 1

] [
P r

1

]

= ψr

([
Rj tj

01×3 1

]

,

[
Rc tc

01×3 1

]

,

[
Rr tr

01×3 1

]

, a, b, c, d,P l

)

(4.19)
The function ψr entangles all previous operations :

• the transformation of reflector plane with equation (4.13),

• revealing of intersection point ray emitted by Livox with a plane equation (4.17)
and (4.16),

• perform a reflected ray direction computation rd with equation (4.15),

• recovery a reflected point location P r with equation (4.18),

Chapter 4. Experimental validation 89

• a homogenous transformation of point P r to global coordinate frame from j-th
pose.

The point P g is matched with point P g
t in the ground truth map by the shortest distance.

The cost of that pair equals:

P g − P
g
t = ψr

([
Rj tj

01×3 1

]

,

[
Rc tc

01×3 1

]

,

[
Rr tr

01×3 1

]

, a, b, c, d,P l

)

− P
g
t (4.20)

Introducing Lie algebra parametrization to equation (4.20), a optimized equation (4.21)
can be build.

argmin
σj ,σc,a,b,c,d

[

ψr

(

(exp(σ∧
j), (exp(σ

∧
c),

[
Rr tr

01×3 1

]

, a, b, c, d,P l

)

− P
g
t

]

(4.21)

where σj ∈ se(3) is a Lie algebra map of j-th pose
[

Rj tj

01×3 1

]

and σc ∈ se(3) is Lie

algebra map of rotation axis compensation
[

Rc tc

01×3 1

]
. The system of equations (4.21) for

all nearest neighborhood correspondences is collected. It is then optimized using LM
algorithm. Because this algorithm is an iterative solution, the multiple iterations of the
nearest neighborhood search, cost function building, and LM optimization are needed.
The robust kernel are introduced to limit impact of outliers. The data is registered to
the ground truth map with optimized intrinsic parameters when the whole solution
converges similarly to ICP.

Results

Qualitative and quantitative results are shown in figure 4.19. Qualitative multiple image
of floor visible in figure 4.19a scene are aligned together what is shown in figure 4.19c.
The histogram of distances of uncalibrated is extremely skewed to right distribution
(figure 4.19b). The error before calibration is expected to be large and distribution of
observed error is flat. The histogram after calibration has much smaller righ-skew
(4.19d). There is still no perfectly symmetrical Gaussian distribution, and small skew
and fat tails in range of large error is visible. The source of those is mostly outliers, and
occlusions. The expected error is about 2.8 centimeter up to 5.2 centimeter.

4.4 Calibration of a lightweight 3D unit

Mechatronic design

This unit rotates a LiDAR for reaching full FOV. For its advanced features, the motor
controller needs sensor feedback, which is provided by the contactless incremental
encoder. Typically a BLDC motors application needs to have a Hall’s sensor which
provides a square signal shifted in phase by 90 magnetic degrees to the current direction
of the magnetic field. That signal is essential for the motor controller to shift energized
phases of the motor.

In the presented solution Hall’s sensors are absent. The motor controller allows
simulating those from the current rotation position measured by the encoder. This

Chapter 4. Experimental validation 90

FIGURE 4.21: Drawing of the lightweight 3D scanning system.

solution has a significant drawback, i.e. the Hall’s sensor is a low-resolution, but
absolute measure of an electric angle. However, the incremental encoder measures
only relative rotation. To operate the motor controller, a particular procedure must be
performed. The controller repetitively energizes motor coils with high current, similar to
how a stepper motor is controlled. As a result, the motor is rotated rapidly. The controller
measures the electromotive force on the idle phase and compares its derivative with the
current location measured by the encoder. After a few cycles, the motor controller is
entertained with the encoder-motor model. Finally, the motor starts rotating in a fully
controlled manner and searches for a ’0’ tick in the incremental encoder, which is called
homing. With the procedure complete, the motor is referenced and ready to operate.

The motor can be operated in three modes. The first one is a constant current mode,
not used in this design. In it, the controller manipulates Pulse Width Modulation (PWM)
duty cycle to stabilize current to a given set-point. In this mode a motor with no external
torque limitation will spin to the maximum velocity limited only with voltage supplied.
The second mode is a velocity controller. In this mode, the controller has two cascades,
where the current setpoint is produced by a Proportional Integral Derivative (PID)
controller that stabilize velocity. The motor will rotate with set velocity and react to
external torque with increased current. Finally, the third and the most advanced mode
of operation controls the position of the motor. In this mode, another control loop is
added whose output is setpoint to the velocity controller. This mode allows following
setpoint position accurately. With the limitation of electric current, this mode provides a
robust solution which allows the head to be rotated externally or blocked without the
risk of damaging the motor or the controller.

The main logic is designed in the STM32F1 chip. It is a simple, cost- and energy-
effective Advanced RISC Machine (ARM) chip with multiple valuable peripherals. The
firmware is developed in C language, with the following external libraries:

Chapter 4. Experimental validation 91

• STM Hardware abstraction layer which makes it convenient to access hardware
peripherals of the STM32F1,

• LwIP (lightweight IP), an open-source network stack intended embedded system,

• author’s CAN-Open stack introducing part of CiA 301 standard : Service Data
Object (SDO) and Network Managment (NMT).

FIGURE 4.22: PPS (yellow) and TX (violet) signal show in oscillogram PPS
signal is a short pulse with the frequency of 1 Hertz, TX is EIA RS-232C
transmission with 9600 baud-rate containing ’GPRMC’ NMEA message
with simulated timestamp and position. Velodyne VLP 16 laser scanner

is synchronizing its internal hardware timer to that signal.

The firmware is organized in a super loop design pattern, with heavily used interrupts.
The super loop updates the non-time-critical tasks of CAN-Open communication, LwIP
network stack, or Universal Asynchronous Receiver Transmitter (UART). Time-critical
tasks, such as detection of zero crossings of incremental encoder or simulation of UTC
second, are updated in hardware interrupts. The number of extra features is limited, but
a further development would incorporate a real-time operating system which would
provide better prioritization and advanced synchronization primitives. The chassis of
the system is 3D printable or it can be CNC milled. The device drawing is shown in
figure 4.21 and photo of whole assembly is shown in figure 4.25. A 3D printed chassis
with modified polymer is preferable for low mass applications. The block diagram of
system is shown in figure 4.23.

Calibration pattern

The calibration field consists of four square reflectors glued to a large plane. The reflec-
tors are built using micro prismatic reflective sheets. Dimensions of the individual sheet
are ten by ten centimeters. This material saturates laser scanner intensity measurements.
The scanner itself provides correct distance measurement. The Velodyne laser scanner

Chapter 4. Experimental validation 92

Main
microcontroller
(STM32F1)

VELODYNE
VLP16

Incremental
encoder

Motor controller
(mcDSA-E40)

Torque MotorU/V/W

A/B/0

CAN
125kbps

NMEA + PPS

Integrated ethernet switch

PHY
10 mbps

Ethernet
100 mbps

Ethernet
100 mbps

FIGURE 4.23: Block diagram of the system. Ethernet is marked in green,
with different physical layers marked. The user has direct access to
Velodyne VLP-16 TCP/UDP ports. Velodyne VLP-16 consumes synchro-
nization messages from STM32F1 with pair of NMEA messages and PPS
signal, that latches transmitted timestamp. Physically, NMEA message
is sent on one TX line of EIA RS-232C with 9600 baud rate PPS signal is
TTL square signal with frequency of 1 Hertz with a duty smaller than one.
Oscillogram of such signal is shown in figure 4.22. The encoder output
(quadrature pair with reference) is connected to STM32F1’s timer-counter
channels and feedback input of the motor controller. In this application
a single encoder is used as measurement and control. CAN network of
two nodes is marked in gray. Note that CAN network is used only inside
the device, so the device’s firmware implements only some segments of

CiA 301 standard.

Chapter 4. Experimental validation 93

is an instrument intended for automotive applications, as it correctly handles surfaces
with high reflectivity. In a similar design approach to Quick Response (QR) code or AR
markers (fiducial), the contrast is maximized by a matte black background surface. The
photo of calibration pattern is shown in figure 4.25.

Calibration pattern - LiDAR’s intensity domain

While calibrating, the procedure system detects a collection of saturated points which
lie on a single plane. At first, the step point cloud with an initial calibration is built. This
results in a distorted image of the calibration field. The dual image of the calibration
pattern is caused by the significant rotation of the Velodyne VLP 16 laser scanner around
its central axis. A PCA/SVD pipeline whose purpose is plane fitting is executed for
the found saturated points. Next, centroid c and the covariance matrix are found. The
covariance matrix is decomposed using an SVD. The V matrix and the centroid are
assembled into a homogeneous transformation matrix Tm.

Tm =







V

cx
cy
cz

0 0 0 1







(4.22)

The inverse of Tm transformation brings the calibration pattern to its local coordinate

1st quadrant

4th quadrant

2nd quadrant

3rd quadrant

Capture
side “B”
green

Capture side
“B”
(red)

FIGURE 4.24: Detailed view of not calibrated field measured by the
system. Bright colors correspond to the saturated points. Green points
are the points that were measured by the left side of the laser scanner.
Red points are points that were measured by the right side of the laser
scanner (so-called side "A" and "B"). The drawn coordinate system that is
visible in the middle is a coordinate system found by PCA/SVD of the

saturated points, and the quadrant of XY sub-system are marked.

system, which is spanned on its principal directions (suitable plots in figure 4.24). Next,
an orthographic projection is performed. Points that lie in given quadrants are the ones
which obtain quadrant numbers. Detected points are organized into multiple sets. For a
poor calibration of the system, there are two images of the calibration pattern visible
(top right corner in the image 4.24). Points in the sets that were captured with side A

Chapter 4. Experimental validation 94

do not align in the 3D space with points captured with side B. In total there are the
following eight sets of points:

• mn1a - n-th from N1a saturated points of the first quadrant of calibration pattern
captured by A side of the sensor,

• mn1b - n-th from N1b saturated points of the first quadrant of calibration pattern
captured by B side of the sensor,

• mn2a - n-th fromN2a saturated points of the second quadrant of calibration pattern
captured by A side of the sensor,

• mn2b - n-th fromN2b saturated points of the second quadrant of calibration pattern
captured by B side of the sensor,

• mn3a - n-th from N3a saturated points of the third quadrant of calibration pattern
captured by A side of the sensor,

• mn3b - n-th from N3b saturated points of the third quadrant of calibration pattern
captured by B side of the sensor,

• mn4a - n-th from N4a saturated points of the fourth quadrant of calibration pattern
captured by A side of the sensor,

• mn4b - n-th from N4b saturated points of the fourth quadrant of calibration pattern
captured by B side of the sensor.

Cost function

The cost function measures the distances between the centroids of the corresponding
sets observed with both sides of the sensor.

C1(Tt) =

N1a∑

n=1

Tr(mn1a)Ttmn1a

N1a
−

N1b∑

n=1

Tr(mn1b)Ttmn1b

N1b
(4.23)

C2(Tt) =

N2a∑

n=1

Tr(mn2a)Ttmn2a

N2a
−

N2b∑

n=1

Tr(mn2b)Ttmn2b

N2b
(4.24)

C3(Tt) =

N3a∑

n=1

Tr(mn3a)Ttmn3a

N3a
−

N3b∑

n=1

Tr(mn3b)Ttmn3b

N3b
(4.25)

C4(Tt) =

N4a∑

n=1

Tr(mn4a)Ttmn4a

N4a
−

N4b∑

n=1

Tr(mn4b)Ttmn4b

N4b
(4.26)

C(Tt) =
4∑

n=1

Cn(Tt) (4.27)

where: Tt ∈ SE(3) - the optimized configuration of laser scanner, Tr(s) - the rotation
of the rotating head in the moment of capturing point given with s. Finally, the sum

Chapter 4. Experimental validation 95

of cost contributions from every quadrant from (4.23) to (4.26) is given with equation
(4.27). Every cost is dependent on calibration Tt with parametrization (4.28) σ∧

t ∈ se(3).

Tt = exp(σ∧
t) (4.28)

The optimization problem can be stated as in equation (4.29).

argmin
σt

C
(
exp(σ∧

t)
)

(4.29)

The optimal calibration σt is found by applying LM method to equation (4.29) with
automatic differentiation. There is no need for robust kernel introduction, since the data
association is guaranteed.

FIGURE 4.25: Left - photo of the calibration pattern, right top - projec-
tion of detected patterns using initial (CAD) calibration, right bottom -

projection of detected patterns using optimized calibration.

Results

The algorithm effectively recovers geometrical correction. The image of calibration
pattern becomes consistent after optimization what is shown in figure 4.25. The impact
of the calibration for 3D pointcloud is shown in figure 4.26. The impact on calibrated
parameters is shown in table 4.3. The distance from initial is 4.6 centimeters and rotation
angle 15.4 degrees. The method is simple and robust but alters the extrinsic calibration.
It can be further expanded with some knowledge about calibration scene (e.g. exact
location of calibration marker against calibrated device).

Chapter 4. Experimental validation 96

(A) 3D pointcloud before calibration. (B) 3D pointcloud after calibration..

(C) 3D pointcloud before calibration. (D) 3D pointcloud after calibration.

FIGURE 4.26: 3D pointcloud before and after calibration. Red and green
color represent sides of laser scanner.

TABLE 4.3: The optimized parameters before and after calibration.

Parameter Initial Calibrated

translation [0, 0, 0] [−0.001,−0.011,−0.045]

rotation vector [0, 0, 0] [0.252, 0.047,−0.084]

Chapter 4. Experimental validation 97

4.5 Calibration of a mobile backpack mapping system

This system consists of three Velodyne VLP-16 laser scanners in a rigid configuration.
That rigid configuration includes:

• a top laser scanner whose main axis is horizontal,

• a side laser scanner whose main axis is vertical,

• a central laser scanner which is tilted by 30 degrees,

• a spherical camera in the top,

• an IMU.

The calibration of this system is challenging due to the minimal overlap of FOV of three
individual lasers scanner. Two stages are performed to find extrinsic calibration of every
device. The first stage recovers optimal trajectory of the movement system. The second
stage finds extrinsic calibration of laser scanners. Both methods require data acquisition
performed assuming slow and smooth motion, which is why the system is mounted on
a manually operated turntable. The tight tolerances of the location, e.g. coaxiality of the
rotation and main axes of the device, are not essential and not required. On the other
hand, the rigidity of the whole assembly is essential for the calibration to succeed. The
data acquisition procedure is simple: the user needs to start the data acquisition and
manually rotate the crank until the backpack performs a full revolution. The system
collects data from all of the sensors simultaneously.

The presented approach consists of two stages. In the first stage, a simple Graph
SLAM problem is constructed to recover exact rotation movement during data acquisi-
tion. It is essential because of two facts. Firstly, the axis of rotation is not obtained with
high precision and it can differ from the main axis of the calibrated system. Secondly,
yaw measurement of IMU is noisy and somewhat unreliable. Due to the abovemen-
tioned facts, the initial trajectory is sub-optimal and needs to be further improved. In
this Graph SLAM problem only data from two sensors, that is top LiDAR and IMU, is
utilized. Resolving such a problem allows for recovering the trajectory of the movement
of the system. An estimation of yaw angle is what is most challenging for IMU due to
the gyro drift, but it is not a significant issue here. First of all, data acquisition is swift,
and secondly, the IMU used here incorporates AHRS which allows for performing an
absolute measurement of yaw angle. It is achieved by utilizing a magnetometer coupled
with gyroscopes and an advanced real-time state estimator built into a device.

Optimization of trajectory

IMU is mounted at some distance from the rotation axis. Thus, a level arm is introduced.
Hence, the initial trajectory has a circular shape, as seen in figure 4.7 in the top left.
IMU introduces several hundred poses to be optimized in Graph SLAM. The problem is
formulated using relative pose observation between consecutive poses. This mechanism
allows for maintaining relative displacements between poses. Relative pose constraint
is explained in section 3.2.2.

Chapter 4. Experimental validation 98

FIGURE 4.27: A mobile mapping system, mounted on the top turntable.
1-spherical camera, 2-top laser scanner, 3-center laser scanner,4-side laser
scanner, 4-IMU, 6-side laser scanner (transport protection was not re-

moved in the photo), 7-turntable with crank.

Chapter 4. Experimental validation 99

Every IMU reading contributes six parameters to optimization represented as se(3)
and six dimensions residual. The initial IMU measurement for time moment t is
pi(t) ∈ SE(3). Optimized pose for time moment t is po(t) ∈ SE(3). The orienta-

FIGURE 4.28: Steps of extrinsics calibration of a laser scanner. Top left
- input data, visible only TOP laser scanner. Top right - the optimized
trajectory of calibrated system. Bottom left - trajectory optimized, but
non calibrated. There is a large visible discrepancy between the scans
marked in green and red. Bottom right - the calibrated system. Control
pads (retroreflector, marked with bright colors) are getting closer, which

is a qualitative improvement.

tion measurements in time t and the subsequent measurement in time t+ 1 produce a
residual in se(3):

r(t) = log
(
p−1
i (t)pi(t+ 1)

)∨
− log

(
p−1
o (t)po(t+ 1)

)∨
(4.30)

r(t) ∈ R
6 (4.31)

The first pose is disabled from optimization. The second part of the optimization
problem is related to the point cloud data from the top device. Due to its nature, the
laser scanner observes the same scene from different view points. Here a standard point
to point ICP metric from chapter 3.4.1 is used. In collected point-clouds sets of nearest
neighborhoods are found. Every neighbor contributes one three-dimensional residual
to the optimization problem:

r(X,Y) =
[
I3×3 03×1

]
[po(tx)c(2)X − po(ty)c(2)Y] (4.32)

where: X ∈ R
4,Y ∈ R

4 are two points which are neighborhoods to each other, in
homogeneous coordinate system. (tx, ty) ∈ R are the timestamps of point X and Y

Chapter 4. Experimental validation 100

acquisition, c(2) ∈ SE(3) is the calibration of the top laser, treated as a constant at this
stage. Note that optimized poses of trajectory po(t) for all time moments are represented
in vector form of Lie algebra se(3). Assuming that 1000 IMU measurements are taken
and 10 000 neighborhoods are found, the system contains:

• 5994 optimized parameters (pose for timestamp t=0 is constant),

• 999 · 6 + 10000 · 3 residual equations.

The problem is optimized using LM algorithm and automatic differentiation for the
relative pose, and an analytical Lie algebra Jacobian for point to point distance minimiza-
tion. After every iteration of the LM algorithm, the new set of nearest neighborhoods is
found. As a result, the trajectory which came from IMU is refined. It mainly manifests
itself with a change of the radius of rotation shown in the top row in the figure 4.28.
Note that due to the high redundancy of the data (the same scene), only a handful of
laser scans need to be processed, without any degradation of results. The intermediate
poses will be "interpolated" by incorporating relative pose observation.

Optimization of an extrinsic laser scanner calibration

The laser scanners in the configuration shown in figure 4.27 have a minimal overlap
with each other. This tiny overlap represent a challenge to automatic calibration. In the
previous section, the optimal trajectory, which entails the least square distance of points
in measurements collected by the top laser scanner, was found. This trajectory is used
as a rigid transformation for a given point in time. Non-rigid transformations are poses
of lasers between each other. This problem has twelve optimized parameters and six
rigid ones (two SE(3) poses of lasers scanners). A set of nearest neighborhoods is found
between all collected scans.

This set contributes two types of residuals:

• pairwise,

• mutual.

The first type are observations taken in a different or exact time moment by a different
laser scanner. They are residuals dependent on two poses, so its Jacobian is 12 by 3. The
second type of observation is taken in the different time moments but with the same
laser scanner. Its Jacobian is 6 by 3.

r(X,Y) =
[
I3×3 03×1

]
[p(tx)c(X)X − p(ty)c(Y)Y] (4.33)

where:
X ∈ R

4,Y ∈ R
4 - two points which are neighborhoods to each others in homogeneous

coordinate system.
(tx, ty) ∈ R - timestamps of point X and Y acquisition.
c(X) ∈ SE(3) - the pose of the laser which captured point X.
c(Y) ∈ SE(3) - the pose of the laser which captured point Y.
If c(X) = c(Y), it was the same laser which captured X and Y. In this case, the Jacobian
of residual equation (4.33) is smaller 12 by 3 version. This problem is optimized in a
similar way as previously. Imperatively nearest neighborhood and LM is executed.

Chapter 4. Experimental validation 101

Quantitative and qualitative validation of extrinsic laser scanner calibration

The calibration was verified using a known, mapped environment. Additionally, retrore-
flector patches were installed in the environment. Retroreflectors are detected with
significant intensity and are distinctive features in point clouds with intensity chan-
nels. For a well-calibrated system, these patches should create a consistent image with
multiple lasers views. This effect is clearly visible in image 4.28.

FIGURE 4.29: Calibration results. First row - camera image, middle row -
CAD based calibration, bottom row - calibrated data. Green - center laser,
red - side laser. Note that retroreflector images become more aligned

along the process of calibration.

The surveyor company mapped the environment before the calibration was validated
with a greater precision TLS (Z+F Imager 5010). That map is treated as ground truth.
The results from the calibrated system are compared with the ground truth. First of

Chapter 4. Experimental validation 102

all, the top laser was registered against ground truth. Simple point to point algorithm
were used here. Nearest neighborhoods were collected between every laser scanner and
ground truth. The distances of nearest neighborhoods were arranged in histograms, and
both variance and mean for collected nearest neighborhoods were computed. The last
row of figure 4.30 is a laser scanner used for registration of the system against ground
truth. This laser scanner was rigid during the initial calibration. Both the first and the
second laser scanner have significantly smaller mean and variances with the calibrated
system. The uncalibrated lasers’ histograms are inconsistent, while the calibrated lasers’
histograms have similar mean and variance.

FIGURE 4.30: Calibration results. Left column - uncalibrated data, right
column - calibrated data. The histograms build on top of evaluation of
calibrated measurements are consistent in sense of variance and mean.

Note that the probability distribution shown in 4.30 is far from the Gaussian proba-
bility distribution. However, both are unimodal, non-symmetric, and positively skewed
distributions. Also note that these histograms are long-tailed. This is caused by:

• the environment change between the moment of collecting ground truth data and
validation data, e.g. different parking spots were used,

• noise caused by occlusions; some segments of the scene are reachable by only one
laser scanner.

A common technique to eliminate these factors is hand-picking the desired control
points from ground truth and using only them in the evaluation. According to the table
4.4, the system provides results with a median error of 7.5 centimeters. According to
its manufacturer, the Velodyne VLP-16 LiDAR has an accuracy of 3 centimeters RMSE.
Note that the total distance of the nearest neighbor for the laser number 3 (the top one)
was minimized to find an optimal SE(3) transform between the ground truth point
cloud and the measurements. The median error is close to the ones found by other lasers,
which indicates that the method provided an optimal solution to extrinsic calibration
and confirms earlier qualitative observations.

Chapter 4. Experimental validation 103

TABLE 4.4: Comparison of median error to ground truth before and after
calibration.

Laser Median dist. to groundtruth Median dist. to groundtruth

number calibrated initial

1 7.57 cm 16.04 cm
2 7.75 cm 27.01 cm
3 7.59 cm 7.52 cm

Optimization of an extrinsic calibration of the spherical camera against a laser scan-

ner

A spherical camera (component number one in image 4.27) is mounted on the top of the
laser scanner (component number two in image 4.27). An approach which optimizes line
features is proposed to cope with that problem. Line features can be detected precisely
even in a sparse point cloud. The method used for this calibration is derived in chapter
3.5.1.

The calibration pattern which was used has three aluminum extrudes which con-
tribute three lines to detection. The problem can be solved effectively when several
observations are more significant than the number of the optimized parameters. It can
be done by incorporating an observation from another pose. There is no need for knowl-
edge of relative poses because the displacement between the camera and top Velodyne
laser scan is rigid. These residuals can be minimized using automatic differentiation
with the LM algorithm. In the sample capture, a structure was assembled using 40x40
mm aluminum extrusions arranged in a rectangular shape (left in image 4.31). These
extrusions can be easily detected both in camera and LiDAR data. The user needs to
manually mark the region of interest and trigger the algorithm which fits a line to the
pointed regions. The result of this detection is shown in right in the image 4.31. To
detect great circles projections in the spherical image, the user needs to mark more than
two points in the picture which belong to the same line. The selected points are marked
with stars in image 4.32. The projection obtained from initial calibration (from the CAD
model) in shown in image 4.33. The initial calibration is sub-optimal and used as a
starting value for further optimization using LM method. In this problem quality of
the initial calibration is important, because the cost space has multiple minima. This
is caused by the fact that the observation equation has two solutions, and only one is
valid. That was explained in the chapter 3.5.1. It is clearly visible that projected curves
miss the line features. Once the extrinsic calibration of spherical camera is optimized,
the projected curves are aligned with line features.

Chapter 4. Experimental validation 104

FIGURE 4.31: Calibrated system in left. There is a visible structure from
extrusions that are easily detected by a laser scanner in the back. There
is a point cloud captured by a laser scanner on the right with detected
lines marked in colors. The gizmo manipulator shows the current state of

calibration.

FIGURE 4.32: Input image. Please note stiching error changing with
depth. The effect is similar to that shown in figure 1.6. Manually selected
points are marked with stars. The next projection curve was fitted and

plotted with lines.

Chapter 4. Experimental validation 105

FIGURE 4.33: Pre-calibrated image with projected lines feature which
were detected in the point-cloud.

FIGURE 4.34: Post-calibrated image with projected lines feature that were
detected in point-cloud.

Chapter 4. Experimental validation 106

FIGURE 4.35: Calibrated extrinsic of spherical camera used for applying
texture to point-cloud.

Chapter 4. Experimental validation 107

4.6 Calibration of a 3D unit

Mechatronical design

This system contains a Velodyne VLP16 laser scanner equipped with a Ladybug 5
camera. The Ladybug 5 camera is composed of six wide-lens global shutter sensors.
This camera is widely used in land surveying and robotic applications [74]. The system
in its design is a variation on the described lightweight 3D unit (section 4.4). It differs
in regards to a rigid, low-play bearing, a high-resolution encoder, and a motor which
enables a wide range of rotation speed. The design is waterproof (IP65) and tailored for
a robotic mapping system. It consists of multiple system solutions:

• a construction able to withstand high shock,

• a construction able to withstand a wide range of mechanical vibration frequencies
and amplitudes,

• a torque limiting mechanism,

• a dual encoder: a low-resolution encoder attached to the motor and a high resolu-
tion one attached to the main shaft.

The large rotating mass, which results in a high moment of inertia, has to be powered by
a motor. Due to the cascading closed-loop control for motor and the geared reduction,
the system can achieve a wide range of rotation velocity with precision. Unfortunately,
the rapid rotation movement of the robotic base can cause the whole rotating head to
generate a destructive torque for the gearbox and motor. To cope with this issue, a
custom-designed torque limiting clutch was introduced. This mechanism allows for
selecting a maximal allowable torque possible to transfer by the gearbox. Moreover, the
clutch will release torque upon hitting an obstacle, thus preventing further damage.

The electronic design is almost identical to that presented in section 4.4 with two
differences:

• the BLDC motor is equipped with hall sensors, allowing for the procedure for
aligning motor’s magnetic field with encoder to be omitted ,

• separated encoders are used for motor feedback loop and measurement.

The two designs share the same printed board circuit and firmware.

Calibration

Calibration of the system consists of two parameters which belong to SE(3):

• a 6-DOF pose laser scanner,

• a 6-DOF pose of Ladybug camera.

The Ladybug 5 camera is fully internally calibrated by the manufacturer. Extrinsic and
intrinsic calibration parameters are available for every individual camera. The SDK
provided by the manufacturer allows the user to create a spherical image with a different

Chapter 4. Experimental validation 108

sphere projection radius. The SDK also allows for rectifying images and working on six
rectified images directly.

The calibration of the Velodyne VLP-16 laser scanner was conducted using a calibra-
tion field with retroreflectors in the same way as shown in section 4.4. The calibration of
the camera was conducted using line features which apply the method shown in chapter
3.5.1. For calibration of the equirectangular image observation equation (3.130) was
used. A modified version of the observation equation (3.134) that works on the rectified
rectilinear image was used as well. The least square problem was designed from set of
observation equations given in chapter 3.5.1. The sub-optimal calibration obtained from
CAD model was used as initial condition and least square method yielded optimized
parameters.

4.6.1 Comparison of the equirectangular and perspective model

A major flaw of the equirectangular camera model was described in chapter 1.2.2. The
model, which is parameterless and easy to use, can be calibrated effectively, but it suffers
from simplification which causes a parallax error on depths smaller or greater than the
sphere projection radius (e.g. shown in figure 1.8). This parallax error contributes to the
discrepancies which can be noticed while comparing sample results as shown in figure
4.38. There is a misalignment of the intensity image and the color image in the far part
of the scene (figure 4.38d) for a sphere projected on a radius of 2 meters. On the other
hand, the close part of the scene has no misalignment (figure 4.38c). The opposite occurs
for a sphere projected with a radius of 100 meters. The misalignment is visible in the
close part of scene (figure 4.38e).

The perspective model is more consistent for both far and close objects (figures 4.38g
and 4.38h). A similar observation can be inferred from figure 4.39. There is a clearly
visible misalignment of the line feature with line in image when the depth of this feature
is significantly different than the projected radius.

Chapter 4. Experimental validation 109

(A) Line features in 3D.

(B) Line feature from 3D projected on rectified images.

(C) Line feature in rectified images. Stars mark points used for the line detection.

Chapter 4. Experimental validation 110

(A) 3D unit mounted on top of mobile robot during simulated search and rescue scenario.

(B) Mechanical design. 1-VLP16, 2-Ladybug Camera, 3-Slip-ring, 4-High-resolution encoder,
5-Motor with low-resolution encoder, 6-Torque-limiting clutch.

Chapter 4. Experimental validation 111

(A) Intensity point-cloud, close. (B) Intensity point-cloud, far away.

(C) Image point-cloud, sphere stitched for
sphere 2m.

(D) Color point-cloud, sphere stitched for
sphere 2m.

(E) Color point-cloud, sphere stitched for
sphere 100m.

(F) Color point-cloud, sphere stitched for
sphere 100m.

(G) Color point-cloud, perspective stitched. (H) Color point-cloud, perspective stitched.

FIGURE 4.38: Color point-cloud, different stitching methods.

Chapter 4. Experimental validation 112

(A) Projection sphere radius 2 meters.

(B) Projection sphere radius 50 meters.

(C) Projection sphere radius 100 meters.

FIGURE 4.39: Projection of calibration line features on equirectangular
image.

113

Chapter 5

Robotic applications

5.1 Mining shaft mapping

This system is designed for a specialized mapping application in a technical shaft in
Wieliczka Salt Mine. The traditional approach to such a task is to perform a series of
stationary scans using a TLS, but due to the limited access granted by the environment,
it is not feasible for this challenge. Surveying work in such a shaft is expensive, time
consuming, and it exposes the staff to the risk resulting from working on great heights
and in areas of high pollution. The automation of mapping shafts reduces costs and the
overall inspection time, and increase the safety of the staff. An inspection of a typical
shaft with the depth of 650-1100 meters takes the surveyors from 24 up to 40 hours of
what is essentially downtime, which in turn generates huge costs to the mine owners.
The automation of shaft mapping can reduce the cost by at least 50% [1]. The mapped
shaft described in this chapter is a technical one. There is no elevator with a cage fit to
carry the surveyor and their equipment, so only a portion of the shaft can be accessed
by this way. Therefore, these circumstances creates a unique opportunity to provide
the mining industry with data not available before and without endangering the staff,
which motivated the design process of a small mapping probe. The complete sensor
solution comprises of:

• a rotated 3D unit with a Velodyne VLP-16,

• a tilted Velodyne VLP-32C,

• a Livox Tele-15 LiDAR,

• an AHRS IMU.

The sensors have been arranged closely so as to minimize the system’s footprint, as
shown in figure 5.1b.

This particular application is an excellent example of challenges that robotic mapping
systems are facing. This particular application required a solution which was:

• rigid enough to survive collision with the mine installation,

• able to operate unassisted,

• equipped with an automatic calibration procedure,

• possible to be assembled and dissembled easily.

Chapter 5. Robotic applications 114

The assembled system has a build in hardware time synchronization. The rotating
unit with the Velodyne VLP-16 provides the PPS signal for the rest of the system. The
main computer runs a process to execute multiple threads collecting and synchronizing
data and saving it as binary format. A wireless network access is provided with a web
application for handheld device for the operator to enable them to check the system
status.

The complete device is suspended on a cable attached to a winch. The winch is
powered by an asynchronous induction motor coupled with a worm gearbox. The
device’s sensor setup is pointed downwards, as shown in figure 5.1a. The mapping
process is conducted as follows:

• surveyors map the accessible parts of the shaft (e.g., its collar) using TLS with
geo-referenced,

• next the system is suspended on a winch’s cable,

• the data acquisition is initialized via a remote terminal,

• the operator of the winch carefully lowers the system with constant pace,

• once the system reaches the bottom of the shaft, the operator lifts the system,

• after the system is lifted the remote terminal is used to secure the data,

• once the operation concludes the system is dismantled.

The initial trajectory of the mapping system is a linear movement recovered from the
winch velocity and the rotation recovered by the AHRS IMU.

Calibration method

The shaft had been partially mapped using a precise TLS at multiple levels before these
levels were reached by the mapping system. To obtain the calibration after the assembly
of the mapping system the calibration procedure utilizing a high-precision map from
TLS was used.

The FOV of individual sensors do not overlap. For it to obtain the correct calibration,
the system needs to be moved and static environment assumption needs to be made.
The calibration problem utilizes a trajectory constraint (see section 3.2.2) and a point
to point metric (see section 3.4.1). Point to point observation equations are introduced
for the nearest neighborhood points. Every observation equation tangles the optimized
parameters. The nearest neighborhood search is performed between the high precision
TLS scan and data from every sensor of the mapping system. The optimized parameters
are:

• trajectory nodes (SE(3) every 0.1 second),

• calibration of every sensor (three optimized poses which belong to SE(3)),

• correction matrix against stationary scan (one optimized poses which belongs to
SE(3)).

Chapter 5. Robotic applications 115

(A) Multi-sensor robotic mapping system
suspended at the collar of mine shaft.

1

22

3

(B) Drawing of the multi-sensor robotic
mapping probe. 1- Livox Tele-15 LiDAR,
2- scanning head with Velodyne VLP-16, 3-

Velodyne VLP-32C.

FIGURE 5.1: Photo and drawing of the shaft mapping probe.

Chapter 5. Robotic applications 116

(A) Map of middle level, trajectory opti-
mized without relative pose constraint.

(B) Map of middle level, trajectory opti-
mized with relative pose constraint.

FIGURE 5.2: Effect of trajectory constraint in automatic calibration. Both
maps are registered, but differs in trajectory and recovered calibration.
Left trajectory is jagged, right is smooth. To successfully perform an
automatic calibration of such system, trajectory constrains are needed.
Those constraints ensure that parameters regarding calibration will be

optimized instead of individual trajectory nodes.

Chapter 5. Robotic applications 117

(A) Uncalibrated. (B) Calibrated.

FIGURE 5.3: Vertical intersection of shaft level, black - high-precision
stationary scan, red - Livox Tele-15, green - Velodcyne VLP-32C, purple -

rotated Velodyne VLP-16.

(A) Uncalibrated. (B) Calibrated.

FIGURE 5.4: Horizontal intersection of shaft level, black - high-precision
stationary scan, red - Livox Tele-15, green - Velodyne VLP-32C, violet -

rotated Velodyne VLP-16.

Chapter 5. Robotic applications 118

The need for trajectory constraints is shown in figure 5.2. The introduction of
trajectory constraints is an attempt at limiting the SLAM problem to solutions which
minimize optimized calibration. The pre-calibrated state of the system and the post-
calibrated system against a calibration field is shown in figures 5.3 and 5.4.

Accuracy assessment

A procedure for quantitative assessment was implemented to verify the method of
automatic calibration. As stated before, the environment had already been mapped
in several places with a TLS. To assess the accuracy of the mobile mapping system, a
calibrated scan performed by the device was registered against the result of stationary
TLS. Short trajectory of about two seconds was used in this optimization problem for the
accuracy assessment. The trajectory used for the calibration was 120 seconds. Three ROIs
were selected and histograms of distances to the nearest points in the stationary scan
were build. The ROI1 5.5b was observed from a distance of about 50 meter and it yielded
an error not greater than 10 centimeters. This large error resulted from localization
difficulties and the large leverage of other observation. Other ROIs yielded a smaller
error. There is no visible static error introduced by the calibrated system. Error in ROI2
and ROI3 is comparable with the Velodyne VLP-16 precision [130].

Chapter 5. Robotic applications 119

(A) High precision stationary scan against
calibrated scan (violet). ROIs are marked.

(B) Histogram of errors. The error on ROI1
is smaller than 10 cm. The error on ROI2

and ROI3 is smaller than 3.4 cm.

FIGURE 5.5: Accuracy assessment of calibrated robotic mobile mapping
system against high-precision stationary scan.

Chapter 5. Robotic applications 120

5.2 Nuclear Power Plant Mapping

These mapping exercises were carried out as part of three editions of the European
Robotic Hackathon, which took place in Zwentendorf Nuclear Power Plant in Austria
[123] in 2017, 2019, and 2021. The most significant challenges in this benchmark were:

• an unpredictable environment (positive and negative obstacles, stairs, low light),

• a limited time for exploration tasks (30 minutes),

• a limited time for data processing (15 minutes),

• the robotic mapping system operating in the vicinity of radiation sources,

• no line of sight communication with the robot.

The challenge called for a very robust robotic mapping system. What is more, the limited
communication bandwidth made teleoperation impossible, so partial autonomy was
needed.

During the event, the operator was presented with a traversability map rendered
using the robot’s odometry and 3D mapping system, shown in figure 5.7. If necessary,
the operator could obtain a spherical image providing them with important insight.
The operator’s task was to navigate the robot to the points of interest and to perform a
scan there. When the system reported the completion of data acquisition, the operator
could navigate to the next point of interest. When the robot’s mission was finished, the
operator began synchronizing data with the base station. After a few minutes, a map
registered using robot’s odometry and the onboard SLAM was transferred. Next, the
operator was able to start a process that performed additional refinement of the map,
resulting in map (5.8).

The second mode of operation to be performed by the system was mobile mapping.
In this scenario, the robot moved continuously. This mode did not provide the operator
with a color layer, and it had limited precision, but it could cover a larger area. Contrarily
to how it was done before, the operator did not stop the robot during scanning in this
mode.

Due to a larger amount of data, a different approach was used for data registration,
which called for a factor graph SLAM being built. The robot aggregated data for a short
period of about 2 seconds, which is the time required to perform a full revolution of
the scanning head. In the aggregation step, the incoming synchronized points from
the rotated laser scanner were transformed by the EKF estimation of the robot’s pose.
Scans were stored in their local coordinate system, which was the pose of the robot
when the aggregation had started. The system stored aggregated scans and poses for
optimization.

Two SLAM algorithms were used. The first is a factor graph SLAM. The hidden
variables are SE(3) poses of the robot. Multiple factors were introduced to factor graph
SLAM:

• the odometry factor - the odometry increment tying consecutive poses,

• the observation factor - the result of the scan registration, sometime called laser
odometry factors,

Chapter 5. Robotic applications 121

FIGURE 5.6: Robotic mapping system used for the scenario.

FIGURE 5.7: Screenshot from the operator’s console during scenario.

• the loop-closure factor - the result of the scan registration of the loop closure
candidates,

• IMU the prior factor - the factor which constrained the robot’s pitch and roll,

• the optional prior factor for poses, e.g. manual scan alignment.

These are the typical factors for factor graph SLAM [113]. The structure of the factor
graph is shown in figure 5.9. The factor graph approach was used because it allowed for
multiple types of constraints to be introduced easily, some of which were optional. For
scan registration the NDT algorithm was used. This approach is similar to a previously
presented ICP point to point, but in this application it provided more robust results.
The method was introduced in [81] and is often used in similar problem. The NDT
algorithm decomposes registered pointcloud to a voxel grid. A 3-dimensional multi-
variate Gaussian distribution is fitted to the points which lie in the individual voxels.
In other words, every voxel contains a mean value as the vector of a three and three
by three covariance matrix. The optimization algorithm tries to refine a pose in such

Chapter 5. Robotic applications 122

FIGURE 5.8: 3D map obtained with robotic mobile mapping system in
Enrich 2021 trial with stop-scan.

a way so it maximizes the likelihood of the matched scan against the NDT voxel map.
The converged NDT solution yields a relative pose which is added as a factor to factor
graph. The loop closure is performed when the distance of two non-consecutive poses
is smaller than the threshold. The scans which are connected in such a loop closure
candidate are registered with NDT. If NDT converges, such, a candidate is added to
factor graph. Finally the factor graph is optimized. A GTSAM library is used [49] for
modeling and optimization. As optional refining step multiview ICP is performed. It is
a time consuming step, but it improves the map consistency, especially with regards to
smaller features. It is the optimization problem build from the nearest neighborhood of
points in all scans. Such a nearest neighborhood contributes a point to point observation.
Such large problem further optimizes the trajectory and map similarly to BA. The raw
data before registration is shown in figure 5.10 where the accumulated odometry error
is clearly visible in top left corner. Optimized map is shown in figure 5.11.

Chapter 5. Robotic applications 123

x
0

x
1

x
2

x
3

f 1(x1 , x0 , u1) f 2(x2 , x1 , u2) f 3(x3 , x2 , u3)

x
3

x
5

x
4

x
6

f 4(x4 , x3 , u3) f 5(x5 , x 4 ,u5) f 6(x6 , x5 ,u6)

f 11(x1 , x 0 , s1, s0) f 12(x2 , x1 , s2 , s1) f 13(x3 , x2 , s3,s2) f 15(x5 , x4 , s5, s4) f 16(x6 , x5 , s6, s5)

f 20(x0 , x6 , s6 , s1)

f 31(x1 , u1) f 32(x2 , u2) f 33(x3 , u3) f 34(x4 ,u4) f 35(x5 ,u5) f 36(x6 , u6)

FIGURE 5.9: Used factor graph. Factors from f1 to f6 are odometry
factors. Factors from f11 to f16 are observation factors. Factors from f31
to f36 IMU prior factors. Factors from f20 is a loop closure. Note that
observation factor that connects pose x3 and x4 not exists, due to failed
NDT matching. The variables u1 to u6 are robot odometry readings. The

variables s1 to s6 are scans taken at near the corresponding poses. .

FIGURE 5.10: Tool that builds and optimize factor graph for a SLAM
problem. The trajectory is not yet optimised.

Chapter 5. Robotic applications 124

FIGURE 5.11: 3D map obtained with robotic mobile mapping system in
Enrich2021 trial with mobile mapping.

Chapter 5. Robotic applications 125

5.3 Mobile robot localization

Localization using sequential Monte-Carlo

The Sequential Monte Carlo (particle filter) method was introduced in 1993 [51]. Particle
filters are widely used to solve several filtering problems in signal processing. A particle
filter can observe the state of a dynamic, random system with a partial and noisy
observation. System noise and measurement noise do not have to be modeled by a
normal distribution. An efficient localization using a particle filter is a combination
of the following factors: several particles used to track state vector, a motion model, a
map, and a sensor model [124]. The particle filter presented in this chapter is used in
the application of localization of a mobile robot in a known and previously mapped
environment. The goal of this exercise is to asses usability and precision of such system
using multiple types of sensors. Three sensors solution were tested:

• a Velodyne VLP-16,

• a 3D Livox LiDAR with multi planar reflectors calibrated with method discussed
in chapter 4.2,

• a 3D Livox LiDAR with multi planar reflectors with CAD derived calibration.

The robotic platform used for the test was equipped with:

• a 3D LiDAR (Velodyne VLP-16) in classical horizontal configuration,

• a 3D Livox LiDAR with planar reflectors,

• an IMU,

• a wheel odometry.

The robotic system uses an EKF for IMU and odometry fusion. Because of that, the
combined odometry error is significantly reduced. The method used here, software
package and its configuration are described in [87].

The examination was carried as follows: the test environment was mapped with the
abovementioned robotic system. The robot was teleoperated and the data from both
sensor systems was collected. The data coming from Velodyne VLP-16 and odometry
were used to build a SLAM problem. Resolving SLAM results in two artifacts: a map
and a trajectory. The former is used as a map for the particle filter. The latter is a
ground truth trajectory for assessment of localization precision. The trajectory obtained
in SLAM can be treated as the ground truth because it represents true locations of the
robot during teleoperation.

Map building and trajectory ground truth

Both the Livox LiDAR and the Velodyne VLP-16 were assembled to have a common
optical axis. The Velodyne LiDAR was put on top of the Livox assembly. The whole
robotic system is shown in figure 5.12. As the robot was teleoperated through a given
environment, data from all sensors was collected. The data from the Velodyne LiDAR
was used to create a map of the test environment. The map was obtained using a factor

Chapter 5. Robotic applications 126

1

2

3

FIGURE 5.12: A robotic platform used. 1- Clearpath Jackal mobile robot,
2- Velodyne VLP-16, 3- Livox Lidar with planar reflectors.

graph SLAM introduced in a previous section. The data registration results were verified
against the architectural blueprint shown in figure 5.13. The registered and optimized
map yielded:

• a 3D point cloud map to be used as a representation of environment to test the
proposed localization algorithm,

• a trajectory containing the robot’s poses in the map’s coordinate system and
timestamps.

A limited number of frames was used in SLAM. Such frames are referred to as keyframes.
A keyframe was added to SLAM when a distance to the last keyframe was greater than
one meter. The obtained trajectory contains nodes which are approximately one meter
apart. Such sparse trajectory would introduce a bias to ATE and thus cannot be used.
To obtain a smooth trajectory, the second optimization problem in form of the factor
graph was build. All frames, not only keyframes, were introduced as a hidden variable
to a factor graph. All keyframes were fixed in place using prior factors. Those prior
factors introduced poses obtained by solving SLAM problem. The noise covariance
of prior factors was set to very low values. The frames between the keyframes were
connected to one another with the factors of the relative pose with significantly larger
noise covariance. Those factors were modeling measurements coming from robotic
platform odometry. Optimizing this factor graph yielded a smooth trajectory much
finer time sampling. Such trajectory could be later used to verify the performance of the
localization algorithm.

Chapter 5. Robotic applications 127

FIGURE 5.13: The result of mapping with the architectural blueprint. The
trajectory is marked.

Localization algorithm

Monte Carlo Localization method represents the probability distribution of the state of
the robotic system with a set of random samples. Depending on the state of the filter
iteration, the target distribution is represented by the density or weight of the samples.
Every sample carries the state vector hypothesis of the system in the given time step
k. The localization problem is a Bayesian filtering problem, where the filter needs to
find the posterior probability density of the system state given the measurements from
the robot’s sensor. As it is with every Bayesian filtering, the classical approach to this
problem is separating the estimation into two phases: prediction and update. For the
particle filter, the prediction step produces a new PDF in the form of a set of particles
drawn from the last step of the algorithm. This step involves the robot’s motion model.
The update phase, on the other hand, incorporates the robot’s sensor measurements
and weighs the samples according to the sensor’s model. The computed weight is
used to resample. The prediction phase expects on its input a set of particles from the
last iteration of the algorithm with weights updated using laser measurement. The
algorithm creates a new random set where the probability of drawing particle pi is
given with its weight wi. An algorithm called ’stochastic universal sampling’ was used
for this purpose [37]. The laser scanner model plays an important role in the particle
filter pipeline. The model produces a simulation of a real sensor measurement for every

Chapter 5. Robotic applications 128

particle. Unfortunately, it is the most computationally expensive part of the particle filter.
Because modern laser scanners can produce hundreds of thousands of points per second
and particle filters have to track possibly the largest number of particles, this aspect is
investigated heavily in many papers [20][53]. The problem can be parallelized so that
the GPGPU implementations can be found for 2D map localization, 3D map localization,
and object tracking. A simplistic, robust, and effective sensor model is introduced in
the implementation of the design. In the literature [124], researchers propose a sensor
model (Beam-base Proximity Model) able to cover the mixture probability density of:

• measurement Gaussian noise,

• unexpected obstacle,

• random measurement,

• maximum range.

That model can be found in some widely used open-source implementations of the
particle filter. AMCL implementation [106] uses this exact model, where the input is
taken from the ray-traced beam and probabilities are read from the configuration file.

A simplified solution has been evaluated in this chapter. The map is represented as
a grid of voxels with the configured dimension of the 3D cube. Those dimensions are
configurable. A map is loaded from a 3D point cloud. Next, the point cloud is voxelized
and stored in the GPU memory. The algorithm expects two inputs:

• an incoming laser scan from 3D laser scanner,

• a vector of 3D poses carried by particles.

The incoming point cloud is classified based on ground detection of local points height
and loaded to the GPU memory. The pointcloud is decomposed into a 2D grid and for
every cell the lowest point has a class of ground applied. The point which lies on the
larger height is classified as obstacle. Only points with the class applied are loaded to
GPU memory. Next, every 3D pose from the vector and every 3D point from the point
cloud is transformed by the 3D pose and is checked if hit in an occupied voxel in a
parallel manner. If so, the score counter for that pose is incremented. The pseudocode is
shown in algorithm 1. The algorithm has following properties:

• the algorithm computes the overlap between sensor data and the map,

• the algorithm performs very few operations in the parallel code,

• the algorithm uses atomic GPU calls to increment the score, so there is no need to
run time-consuming synchronization,

• the model is straightforward and non-physical.

The downside of this approach is the non-physical behavior of the model. The classical
approach is to simulate the laser scanner measurement in a pose given by a particle.
Simplified algorithm does not cover such phenomena as occlusion. Instead, it gives
false-positive for map regions not visible in that pose, e.g. another side of the wall. On

Chapter 5. Robotic applications 129

(A) Visualization of the particle filter con-
suming data from Velodyne

(B) Visualization of the particle filter con-
suming data from Livox with reflectors

FIGURE 5.14: Comparison of input data. The yellow points are obstacles
in map, the green are obstacles in incoming data from sensor, the white
are ground points in data from sensor. Grey dots are positions of particles.

the other hand, this approach is very computationally efficient. The input data for both
sensors systems is shown in figures 5.14a and 5.14b.

Algorithm 1: Simplified laser model implementation.

Data: Voxel Map is function M(x, y, z) which returns the class of a cell pointed
by the metric coordinates (x, y, z), point cloud P = pi, class of i-th points
in pointcloud is given with the ci, transformations matrices which is
carried by every particle T = {tj}

Result: Vector of Weights for every particle W = wj

1 initialization;
2 forall pi in P {parallel} do

3 forall tj in T do

4 pt = tjpi

5 if M(pt) == ci then

6 wj+ = 1

7 Get W from GPU memory

Results

The interpolated trajectory was treated as the ground truth and the localization algorithm
was expected to recover the trajectory. The localization algorithm initialized after a few
meters, which is faster for the Velodyne VLP-16 (fig. 5.15b) than for the Livox LiDAR
with planar reflectors (fig. 5.15a). The calibrated planar reflector assembly can localize a
robotic platform with precision similar to the Velodyne VLP-16. Localization algorithm
can work with a various number of particles. The number of particles does not affect the
error, as shown in table 5.1. A larger number of particles allows the filter to converge
faster to correct solution and renders the process more robust. A smaller number of

Chapter 5. Robotic applications 130

(A) Trajectory from localization system us-
ing Livox Lidar with planar reflectors (red),

ground truth trajectory (green)

(B) Trajectory from localization system us-
ing Velodyne Lidar (red), ground truth tra-

jectory (green)

FIGURE 5.15: Comparison of localization performance depending on
input data.

samples can be used when another trustworthy method of initialization is available (e.g.
beacons or tags). The calibrated system improves localization accuracy. It is caused
by the fact the calibrated system is more consistent with environment in challenging
places (e.g. narrow passages). Both calibrated and uncalibrated system can successfully
provide input data to localization algorithm, proving robustness of presented particle
filter implementation.

TABLE 5.1: ATE for multiple localization method.

Sensor type number of particles ATE RMSE in meters

Wheel odometry - 13.33
Velodyne VLP-16 5 000 0.461
Velodyne VLP-16 10 000 0.407
Velodyne VLP-16 50 000 0.397

Livox with planar reflectors 5 000 0.608
Livox with planar reflectors 10 000 0.611
Livox with planar reflectors 50 000 0.614

Livox with planar reflectors, uncalibrated 5 000 0.664
Livox with planar reflectors, uncalibrated 10 000 0.664
Livox with planar reflectors, uncalibrated 50 000 0.667

131

Chapter 6

Conclusions

The main thesis of the dissertation has been proven true since the automation of the
calibration process of a multi-sensor robotic mobile mapping system reduces the amount
of expert knowledge required within the context of autonomous mobile robots perform-
ing tasks in unknown environments and increase the autonomy of the system. The
expert knowledge required in the typical calibration procedure is that of the metrological
properties of the environment and other similarly important information required for
achieving accurate measurements. The proposed methodology is discussed in chapter 3.
It emphasizes the importance of time synchronization in section 3.1, the representation
of the rotation matrix and the motion model discussed in section 3.2. The approach to
SLAM was discussed in section 3.3. It introduces automatic tools whose purpose is to
improve the calibration procedure by incorporating LiDAR and camera observation
equations discussed in sections 3.4 and 3.5. Moreover, the proposed calibration proce-
dure can utilize the additional markers or reference data source. As shown in chapter
4, automatic calibration can be also performed using the multi view data registration
scheme. Furthermore, such calibration procedure is proposed for multi-sensor systems
where the overlap between sensors is insufficient, e.g. targeted autonomous mobile
robot applications whose mission is performed in an unknown environment. Thus, data
collected by a mobile robot can be used for calibration.

Since the possible mechanical issues are addressed, the thesis contributes to improve-
ment of the autonomous mobile robot system deployment and long-term exploitation.
Mechanical problems can occur during the transportation of the system as it was ob-
served in the practical application discussed in section 4.1. For instance, the high-volume
mobile 3D scanner is composed of joints which have to be dismantled for each deploy-
ment. Other potential mechanical difficulties are discussed in section 5.1 where the
mining shaft mapping application is detailed. In such a case, extreme environmental
conditions require the system to be re-calibrated for each measurement because of me-
chanical shocks which could occur due to the impact with unknown obstacles. This
particular application serves as a demonstration for the fact that a typical calibration pro-
cedure performed in laboratory can not be universally applied since the measurement
instrument is de-mounted for transportation and mounted on the site. Moreover, the
probability of impact with unknown obstacles is high; therefore, the extrinsic calibration
can change over time with exploitation of the system. The proposed method can be
extended for mobile mapping application such as nuclear power plant mapping (as
discussed in section 5.2). The direct positive impact into mobile robotics domain verified
as mobile robot localization, in section 5.3, shows that the proposed methodology can
be incorporated in various mobile robotic applications. The research fulfills the gap in

Chapter 6. Conclusions 132

recent mobile robotics studies by showing the importance of data synchronization and
automation of the calibration process for obtaining highly accurate mobile mapping
results.

6.1 Thesis contributions

The main contribution of the thesis is the methodology for the automation of the calibra-
tion process of the multi-sensor robotic mobile mapping system. The thesis demonstrates
the capability to increase the autonomy of the mobile robot performing the task in an
unknown environment based on many real world experiments. The direct impact is the
automation of the calibration procedure resulting in the reduction of required expert
knowledge. This work improves the deployment of the mobile robotic applications in
real world conditions. Four more precise theses supporting the main thesis have been
confirmed as follows:

• automation of the calibration process reduces the need for expert knowledge re-
quired for accurate measurement of intrinsic and extrinsic calibration parameters (
section Calibration of a high-volume mobile 3D scanner page 63, section Calibra-
tion of multi planar reflectors page 73, section Calibration of a rotated reflector
page 83, section Calibration of a lightweight 3D unit page 89, section Calibration
of a mobile backpack mapping system page 97, section Calibration of a 3D unit
page 107 and section Mining shaft mapping page 113),

• the new method for reshaping the field of view of modern Solid State LiDARs
enables customizing the robotic mobile mapping systems for various applications
(section Calibration of multi planar reflectors page 73 and section Calibration of a
rotated reflector page 83),

• the chosen rotation matrix parametrization enables robust optimization of the
calibration parameters (all solutions mentioned in chapter Experimental validation
page 63 and chapter Robotic applications page 113),

• automatic calibration enables long term autonomous mobile robot inspection of
the unknown environment by reducing mechanical issues related to the robot’s
exploitation (section Mining shaft mapping page 113).

Other relevant contributions are:

• the methodology for automation of the multi-sensor system calibration for mobile
robotic applications (section Methodology page 20),

• the open source projects related with multi planar [97] and rotated reflectors [96],

• the design and research of a high-volume mobile 3D scanner (section Calibration
of a high-volume mobile 3D scanner page 63),

• the design and research of a new 3D sensor for mobile robotic applications (section
Calibration of multi planar reflectors page 4.2 and section Calibration of a rotated
reflector page 83),

Chapter 6. Conclusions 133

• the design and research of a lightweight 3D unit (section Calibration of a
lightweight 3D unit page 89),

• the design and research of a mobile backpack mapping system (section Calibration
of a mobile backpack mapping system and 97),

• the design and research of a 3D unit composed of rotated LiDAR and a spherical
camera (section 4.6),

• the design and deployment of a mining shaft mapping system (section Mining
shaft mapping page 113),

• the evaluation of proposed methodology in various realistic conditions, includ-
ing nuclear power plant mapping, and navigation (section Nuclear Power Plant
Mapping page 120 and section Mobile robot localization page 125).

The implementation of the automatic calibration is scalable; thus, it can be used for
designing, developing and deploying other multi-sensor systems.

6.2 Further research directions

Implementation, development and deployment of mobile robotic systems are demand-
ing tasks. For this reason, the proposed methodology will be extended by other automa-
tion techniques which allow for decreasing of the need for human operations. Possible
interesting research direction is the use of AI techniques enabling image and point-cloud
interpretation. Such approach could improve calibration pattern recognition.

134

Bibliography

[1] Artur Adamek and Janusz Będkowski. Automated Mobile System for Mapping Mine
Shafts. https://www.gim-international.com/content/article/
automated-mobile-system-for-mapping-mine-shafts. [Online; ac-
cessed 31st March 2022].

[2] Sameer Agarwal, Keir Mierle, and Others. Ceres Solver. http : / / ceres -
solver.org. [Online; accessed 31st March 2022].

[3] Apollo 11 Air-to-ground voice transcription. https://www.hq.nasa.gov/
alsj/a11/a11transcript_tec.html. Page 337 [Online; accessed 31st
March 2022].

[4] Minoru Asada and Yoshiaki Shirai. “Building a world model for a mobile robot
using dynamic semantic constraints”. In: Proc. 11 th International Joint Conference
on Artificial Intelligence. 1989, pp. 1629–1634.

[5] Automated Vehicles Require Intelligent HD Maps for Reliable and Safe Driving. https:
//nds-association.org/hd-maps/. [Online; accessed 31st March 2022].

[6] Jonathan T. Barron. “A More General Robust Loss Function”. In: CoRR
abs/1701.03077 (2017). arXiv: 1701.03077. URL: http://arxiv.org/abs/
1701.03077.

[7] A. Bartoli and P. Sturm. “The 3D line motion matrix and alignment of line
reconstructions”. In: Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001. Vol. 1. 2001, pp. I–I. DOI:
10.1109/CVPR.2001.990488.

[8] Dominik Belter, Michał Nowicki, and Piotr Skrzypczyński. “On the Performance
of Pose-based RGB-D Visual Navigation Systems”. In: vol. 9004. Apr. 2015,
pp. 407–423. ISBN: 9783319168074. DOI: 10.1007/978-3-319-16808-1_28.

[9] P.J. Besl and Neil D. McKay. “A method for registration of 3-D shapes”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 14.2 (1992), pp. 239–256.
DOI: 10.1109/34.121791.

[10] Felix Bettonvil. “Fisheye lenses”. In: WGN, Journal of the International Meteor
Organization 33 (Jan. 2005), pp. 9–14.

[11] Jose-Luis Blanco. A tutorial on SE(3) transformation parameterizations and on-
manifold optimization. Tech. rep. 012010. University of Malaga, 2010. URL: http:
//ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D\

%5Ftechrep.pdf.

[12] Jose Luis Blanco and Pranjal Kumar Rai. nanoflann: a C++ header-only fork of
FLANN, a library for Nearest Neighbor (NN) with KD-trees. https://github.
com/jlblancoc/nanoflann. [Online; accessed 31st March 2022]. 2014.

Bibliography 135

[13] Blender : The Freedom to Create. https://www.blender.org/about/. [Online;
accessed 31st March 2022].

[14] Blender Market Classical Library for Blender Eevee and Cycles. https : / /

blendermarket.com/products/classic- library- for- blender-

eevee-and-cycles. [Online; accessed 31st March 2022].

[15] Fabian Blöchliger et al. “Topomap: Topological Mapping and Navigation Based
on Visual SLAM Maps”. In: CoRR abs/1709.05533 (2017). arXiv: 1709.05533.
URL: http://arxiv.org/abs/1709.05533.

[16] Ezekiel Bokolonga et al. “A compact multispectral image capture unit for deploy-
ment on drones”. In: May 2016, pp. 1–5. DOI: 10.1109/i2mtc.2016.7520445.

[17] Michael J Broxton and Larry J Edwards. “The Ames Stereo Pipeline: Automated
3D surface reconstruction from orbital imagery”. In: Lunar and planetary science
conference. 1391. 2008, p. 2419.

[18] Rafael Y Brzezinski et al. “Automated processing of thermal imaging to detect
COVID-19”. In: Scientific Reports 11.1 (Sept. 2021), p. 17489.

[19] D. J. Butler et al. “A naturalistic open source movie for optical flow evaluation”.
In: European Conf. on Computer Vision (ECCV). Ed. by A. Fitzgibbon et al. (Eds.)
Part IV, LNCS 7577. Springer-Verlag, Oct. 2012, pp. 611–625.

[20] Janusz Będkowski and Timo Röhling. “Online 3D LIDAR Monte Carlo localiza-
tion with GPU acceleration”. In: Industrial Robot: An International Journal 44.4
(2017), pp. 442–456.

[21] Janusz Będkowski et al. “A Novel Approach to Global Positioning System Ac-
curacy Assessment, Verified on LiDAR Alignment of One Million Kilometers
at a Continent Scale, as a Foundation for Autonomous DRIVING Safety Analy-
sis”. In: Sensors 21.17 (2021). ISSN: 1424-8220. DOI: 10.3390/s21175691. URL:
https://www.mdpi.com/1424-8220/21/17/5691.

[22] Yohann Cabon, Naila Murray, and Martin Humenberger. Virtual KITTI 2. 2020.
arXiv: 2001.10773 [cs.CV].

[23] H. Cantzler, Robert B. Fisher, and Michel Devy. “Quality Enhancement of Re-
constructed 3D Models Using Coplanarity and Constraints”. In: Proceedings of
the 24th DAGM Symposium on Pattern Recognition. London, UK: Springer-Verlag,
2002, pp. 34–41. ISBN: 3-540-44209-x.

[24] Luca Carlone and Andrea Censi. “From Angular Manifolds to the Integer Lattice:
Guaranteed Orientation Estimation With Application to Pose Graph Optimiza-
tion”. In: IEEE Transactions on Robotics 30.2 (2014), pp. 475–492. DOI: 10.1109/
tro.2013.2291626.

[25] João Cartucho et al. “VisionBlender: a tool to efficiently generate computer vision
datasets for robotic surgery”. In: Computer Methods in Biomechanics and Biomedical
Engineering: Imaging & Visualization (2020), pp. 1–8.

[26] Nived Chebrolu et al. “Adaptive Robust Kernels for Non-Linear Least Squares
Problems”. In: CoRR abs/2004.14938 (2020). arXiv: 2004.14938. URL: https:
//arxiv.org/abs/2004.14938.

Bibliography 136

[27] Nived Chebrolu et al. Adaptive Robust Kernels for Non-Linear Least Squares Problems.
2021. arXiv: 2004.14938 [cs.RO].

[28] Yu Chen, Yisong Chen, and Guoping Wang. Bundle Adjustment Revisited. 2019.
arXiv: 1912.03858 [cs.CV].

[29] D. Chulkovs, E. Grabs, and A. Ipatovs. “Comparison of MEMS and FOG Gyro-
scopes for Daily Use in Camera Stabilizing Systems”. In: 2020 24th International
Conference Electronics. 2020, pp. 1–4. DOI: 10.1109/ieeeconf49502.2020.
9141619.

[30] Hai fa Dai et al. “An INS/GNSS integrated navigation in GNSS denied environ-
ment using recurrent neural network”. In: Defence Technology 16.2 (2020), pp. 334–
340. ISSN: 2214-9147. DOI: https://doi.org/10.1016/j.dt.2019.08.
011. URL: https://www.sciencedirect.com/science/article/pii/
S2214914719303058.

[31] Thao Dang, Christian Hoffmann, and Christoph Stiller. “Continuous Stereo
Self-Calibration by Camera Parameter Tracking”. In: IEEE Transactions on Image
Processing 18.7 (2009), pp. 1536–1550. DOI: 10.1109/tip.2009.2017824.

[32] Povilas Daniušis et al. “Topological navigation graph framework”. In: Au-
tonomous Robots 45.5 (2021), pp. 633–646. ISSN: 1573-7527. DOI: 10 . 1007 /
s10514-021-09980- x. URL: https://doi.org/10.1007/s10514-
021-09980-x.

[33] Frank Dellaert and Michael Kaess. “Factor Graphs for Robot Perception”. In:
Found. Trends Robotics 6 (2017), pp. 1–139.

[34] Olaf Deppe et al. “MEMS and FOG Technologies for Tactical and Navigation
Grade Inertial Sensors–Recent Improvements and Comparison”. In: Sensors 17.3
(2017). ISSN: 1424-8220. DOI: 10.3390/s17030567. URL: https://www.mdpi.
com/1424-8220/17/3/567.

[35] M.W.M. Dissanayake et al. “A Solution to the Simultaneous Localization and
Map Building (SLAM) Problem”. In: Robotics and Automation, IEEE Transactions
on 17 (July 2001), pp. 229–241. DOI: 10.1109/70.938381.

[36] Alexey Dosovitskiy et al. CARLA: An Open Urban Driving Simulator. 2017. arXiv:
1711.03938 [cs.LG].

[37] R. Douc and O. Cappe. “Comparison of resampling schemes for particle filtering”.
In: ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal
Processing and Analysis, 2005. 2005, pp. 64–69. DOI: 10.1109/ispa.2005.
195385.

[38] Mamadou Doumbia and Xu Cheng. “State Estimation and Localization Based on
Sensor Fusion for Autonomous Robots in Indoor Environment”. In: Computers
9.4 (2020). ISSN: 2073-431x. DOI: 10.3390/computers9040084. URL: https:
//www.mdpi.com/2073-431X/9/4/84.

Bibliography 137

[39] S.P.H. Driessen et al. “Experimentally Validated Extended Kalman Filter for
UAV State Estimation Using Low-Cost Sensors”. In: IFAC-PapersOnLine 51.15
(2018). 18th IFAC Symposium on System Identification SYSID 2018, pp. 43–48.
ISSN: 2405-8963. DOI: https://doi.org/10.1016/j.ifacol.2018.09.
088. URL: https://www.sciencedirect.com/science/article/pii/
S2405896318317488.

[40] Hao Du et al. “Real-Time Onboard 3D State Estimation of an Unmanned Aerial
Vehicle in Multi-Environments Using Multi-Sensor Data Fusion”. In: Sensors 20.3
(2020). ISSN: 1424-8220. DOI: 10.3390/s20030919. URL: https://www.mdpi.
com/1424-8220/20/3/919.

[41] Yanming Feng and Jinling Wang. “GPS RTK Performance Characteristics and
Analysis”. In: Journal of Global Positioning Systems 7 (June 2008). DOI: 10.5081/
jgps.7.1.1.

[42] M. A. Fischler and R. Bolles. “Random sample consensus. A paradigm for model
fitting with apphcahons to image analysm and automated cartography”. In: Proc.
1980 Image Understandtng Workshop (College Park, Md., Apr i980) L. S. Baurnann,
Ed, Scmnce Apphcatlons, McLean, Va. 1980, pp. 71–88.

[43] Tully Foote. “tf: The transform library”. In: Technologies for Practical Robot Ap-
plications (TePRA), 2013 IEEE International Conference on. Open-Source Software
workshop. 2013, pp. 1–6. DOI: 10.1109/TePRA.2013.6556373.

[44] U. Frese. “A Proof for the Approximate Sparsity of SLAM Information Matrices”.
In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation.
2005, pp. 329–335. DOI: 10.1109/robot.2005.1570140.

[45] Xiang Gao et al. 14 Lectures on Visual SLAM: From Theory to Practice. Publishing
House of Electronics Industry, 2017.

[46] Sergio Garrido-Jurado et al. “Generation of fiducial marker dictionaries using
Mixed Integer Linear Programming”. In: Pattern Recognition 51 (Oct. 2015). DOI:
10.1016/j.patcog.2015.09.023.

[47] Deepak Gautam et al. “Comparison of MEMS-Based and FOG-Based IMUs
to Determine Sensor Pose on an Unmanned Aircraft System”. In: Journal of
Surveying Engineering 143.4 (2017), p. 04017009. DOI: 10.1061/(asce)su.
1943-5428.0000225. eprint: https://ascelibrary.org/doi/abs/
10.1061/(ASCE)SU.1943-5428.0000225. URL: https://ascelibrary.
org/doi/abs/10.1061/(ASCE)SU.1943-5428.0000225.

[48] Henri P. Gavin. “The Levenberg-Marquardt method for nonlinear least squares
curve-fitting problems”. In: Department of Civil and Environmental Engineering,
Duke University, 2013, pp. 1,19.

[49] Georgia Tech smoothing and mapping library. https://gtsam.org. [Online;
accessed 31st March 2022].

[50] C. Goodall et al. “The Battle Between MEMS and FOGs for Precision Guidance”.
In: [Online; accessed 31st March 2022]. 2013.

Bibliography 138

[51] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation”. In: IEE Proceedings F - Radar
and Signal Processing 140.2 (1993), pp. 107–113. ISSN: 0956-375x. DOI: 10.1049/
ip-f-2.1993.0015.

[52] Caterina Gottardi and Francesco Guerra. “Spherical Images For Cultural Her-
itage: Survey And Documentation With The Nikon Km360”. In: ISPRS - Inter-
national Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences Xlii-2 (May 2018), pp. 385–390. DOI: 10.5194/isprs-archives-
XLII-2-385-2018.

[53] Bhavya Goyal et al. “Implementation of Particle Filters for Single Target Tracking
Using CUDA”. In: Sept. 2015, pp. 28–32. DOI: 10.1109/icacc.2015.111.

[54] O. Grau. “A scene analysis system for the generation of 3-D models”. In: NRC ’97:
Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging
and Modeling. Washington, DC, USA: IEEE Computer Society, 1997, p. 221. ISBN:
0-8186-7943-3.

[55] Giorgio Grisetti et al. “A Tutorial on Graph-Based SLAM”. In: IEEE Intelligent
Transportation Systems Magazine 2.4 (2010), pp. 31–43. DOI: 10.1109/mits.
2010.939925.

[56] Carlos San Vicente Gutiérrez et al. “Time Synchronization in modular collabora-
tive robots”. In: CoRR abs/1809.07295 (2018). arXiv: 1809.07295. URL: http:
//arxiv.org/abs/1809.07295.

[57] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Second.
Cambridge University Press, ISBN: 0521540518, 2004.

[58] Bernd Heidtmann. GNSS receiver accuracy: Closing the gap between the datasheet and
reality. https://www.u-blox.com/en/blogs/tech/gnss-receiver-
accuracy-closing-gap-between-datasheet-and-reality. [Online;
accessed 31st March 2022].

[59] HERE HD Live Map Technical Paper. https : / / engage . here . com /

hubfs/Downloads/Tech%20Briefs/HERE%20Technologies%20Self-

healing%20Map%20Tech%20Brief.pdf. [Online; accessed 31st March 2022].

[60] Seon Ho Oh. and Soon Ki Jung. “A great circle arc detector in equirectangular im-
ages”. In: Proceedings of the International Conference on Computer Vision Theory and
Applications - Volume 2: VISAPP, (VISIGRAPP 2012). INSTICC. SciTePress, 2012,
pp. 346–351. ISBN: 978-989-8565-03-7. DOI: 10.5220/0003856303460351.

[61] Kai Hormann and Alexander Agathos. “The point in polygon problem for ar-
bitrary polygons”. In: Computational Geometry 20.3 (2001), pp. 131–144. ISSN:
0925-7721. DOI: https://doi.org/10.1016/S0925-7721(01)00012-
8. URL: https://www.sciencedirect.com/science/article/pii/
S0925772101000128.

[62] Berthold Horn, Hugh Hilden, and Shahriar Negahdaripour. “Closed-Form So-
lution of Absolute Orientation using Orthonormal Matrices”. In: Journal of the
Optical Society of America A 5 (July 1988), pp. 1127–1135. DOI: 10.1364/josaa.
5.001127.

Bibliography 139

[63] Qiqi Hou et al. Fast Monte Carlo Rendering via Multi-Resolution Sampling. 2021.
DOI: 10.48550/ARXIV.2106.12802. URL: https://arxiv.org/abs/
2106.12802.

[64] How we build reality Z+F IMAGER® 5010. https://www.hts- 3d.com/
techSheets/Z+F-IMAGER-5010-tech-sheet.pdf. [Online; accessed 31st
March 2022].

[65] Yinghao Huang et al. “Deep Inertial Poser: Learning to Reconstruct Human Pose
from Sparse Inertial Measurements in Real Time”. In: ACM Transactions on Graph-
ics, (Proc. SIGGRAPH Asia) 37 (Nov. 2018). Two first authors contributed equally,
185:1–185:15. DOI: https://doi.org/10.1145/3272127.3275108.

[66] Intel® RealSense™ Documentation. https://dev.intelrealsense.com/
docs. [Online; accessed 31st March 2022].

[67] Shunping Ji et al. “Comparison of Two Panoramic Sensor Models for Precise 3D
Measurements”. In: Photogrammetric Engineering & Remote Sensing 80 (Mar. 2014),
pp. 229–238. DOI: 10.14358/pers.80.3.229.

[68] Malek Karaim, Mohamed Elsheikh, and Aboelmagd Noureldin. “GNSS Error
Sources”. In: Multifunctional Operation and Application of GPS. Ed. by Rustam
B. Rustamov and Arif M. Hashimov. Rijeka: IntechOpen, 2018. Chap. 4. DOI:
10 . 5772 / intechopen . 75493. URL: https : / / doi . org / 10 . 5772 /
intechopen.75493.

[69] Faisal Khan et al. High-Accuracy Facial Depth Models derived from 3D Synthetic Data.
2020. arXiv: 2003.06211 [eess.IV].

[70] N. Koenig and A. Howard. “Design and use paradigms for Gazebo, an open-
source multi-robot simulator”. In: 2004 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Vol. 3. 2004, 2149–2154
vol.3. DOI: 10.1109/iros.2004.1389727.

[71] Y. N. Korkishko et al. “High-precision inertial measurement unit IMU-5000”. In:
2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL).
2018, pp. 1–4. DOI: 10.1109/isiss.2018.8358121.

[72] David Kortenkamp and Terry Weymouth. “Topological Mapping for Mobile
Robots Using a Combination of Sonar and Vision Sensing”. In: Proceedings of
the Twelfth National Conference on Artificial Intelligence (Vol. 2). Aaai’94. Seattle,
Washington, USA: American Association for Artificial Intelligence, 1994, 979–984.
ISBN: 0262611023.

[73] Rainer Kümmerle et al. “g2o: A general framework for graph optimization”. In:
2011 IEEE International Conference on Robotics and Automation. 2011, pp. 3607–3613.
DOI: 10.1109/icra.2011.5979949.

[74] Karol Kwiatek. “Imersyjny system mobilny do fotogrametrycznych pomi-
arów 3D”. In: Imersyjny system mobilny do fotogrametrycznych pomiarów 3D. Ed.
by Monika Filipek. Krakow: Wydawnicta Akademii Górniczo-Hutniczej im.
Stanisława Staszica w Krakowie, 2020. ISBN: 978-83-66016-92-7.

Bibliography 140

[75] Herbert Landau et al. “Trimble’s RTK And DGPS Solutions In Comparison With
Precise Point Positioning”. In: Observing our Changing Earth. Ed. by Michael G.
Sideris. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 709–718. ISBN:
978-3-540-85426-5.

[76] Thomas Lemaire and Simon Lacroix. “Monocular-vision based SLAM using
Line Segments”. In: Proceedings 2007 IEEE International Conference on Robotics and
Automation. 2007, pp. 2791–2796. DOI: 10.1109/ROBOT.2007.363894.

[77] Zheng Liu, Fu Zhang, and Xiaoping Hong. Low-cost Retina-like Robotic Lidars
Based on Incommensurable Scanning. 2020. arXiv: 2006.11034 [cs.RO].

[78] Zheng Liu, Fu Zhang, and Xiaoping Hong. “Low-cost Retina-like Robotic Lidars
Based on Incommensurable Scanning”. In: CoRR abs/2006.11034 (2020). arXiv:
2006.11034. URL: https://arxiv.org/abs/2006.11034.

[79] Livox Mid-series. https://www.livoxtech.com/mid-40-and-mid-100.
[Online; accessed 31st March 2022].

[80] Kaj Madsen, Hans Bruun Nielsen, and Ole Tingleff. “Methods for Non-Linear
Least Squares Problems (2nd ed.)” In: 2004.

[81] Martin Magnusson. “The Three-Dimensional Normal-Distributions Transform —
an Efficient Representation for Registration, Surface Analysis, and Loop Detec-
tion”. PhD thesis. Dec. 2009.

[82] Agostino Martinelli et al. “Simultaneous localization and odometry calibra-
tion for mobile robot”. In: Iros 2003. Vol. 2. Las Vegas, United States, Oct. 2003,
pp. 1499–1504. DOI: 10.1109/iros.2003.1248856. URL: https://hal.
archives-ouvertes.fr/hal-01015907.

[83] N. Mayer et al. “A Large Dataset to Train Convolutional Networks for Disparity,
Optical Flow, and Scene Flow Estimation”. In: IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR). arXiv:1512.02134. 2016. URL:
http://lmb.informatik.uni-freiburg.de/Publications/2016/

MIFDB16.

[84] Aaron Meurer et al. “SymPy: symbolic computing in Python”. In: PeerJ Computer
Science 3 (Jan. 2017), e103. ISSN: 2376-5992. DOI: 10.7717/peerj-cs.103. URL:
https://doi.org/10.7717/peerj-cs.103.

[85] Vu Trieu Minh, Nikita Katushin, and John Pumwa. “Motion tracking glove for
augmented reality and virtual reality:” in: Paladyn, Journal of Behavioral Robotics
10.1 (2019), pp. 160–166. DOI: doi:10.1515/pjbr-2019-0012. URL: https:
//doi.org/10.1515/pjbr-2019-0012.

[86] Michael Montemerlo et al. “FastSLAM: A Factored Solution to the Simultaneous
Localization and Mapping Problem”. In: Nov. 2002.

[87] T. Moore and D. Stouch. “A Generalized Extended Kalman Filter Implementation
for the Robot Operating System”. In: Proceedings of the 13th International Conference
on Intelligent Autonomous Systems (IAS-13). Springer, 2014.

[88] M. Moskowitz. A Course in Complex Analysis in One Variable. World Scientific,
2002. DOI: 10.1142/4836.

Bibliography 141

[89] MTi User Manual. [Online; accessed 31st March 2022]. URL: https://www.
xsens.com/hubfs/Downloads/usermanual/MTi_usermanual.pdf.

[90] Marion Mundt et al. “Estimation of Gait Mechanics Based on Simulated and
Measured IMU Data Using an Artificial Neural Network”. In: Frontiers in Bio-
engineering and Biotechnology 8 (2020), p. 41. ISSN: 2296-4185. DOI: 10.3389/
fbioe.2020.00041. URL: https://www.frontiersin.org/article/
10.3389/fbioe.2020.00041.

[91] Tae Hyeon Nam, Jae Hong Shim, and Young Im Cho. “A 2.5D Map-Based Mobile
Robot Localization via Cooperation of Aerial and Ground Robots”. In: Sensors
17.12 (2017). ISSN: 1424-8220. DOI: 10.3390/s17122730. URL: https://www.
mdpi.com/1424-8220/17/12/2730.

[92] Andreas Nüchter and Joachim Hertzberg. “Towards semantic maps for mobile
robots”. In: Robot. Auton. Syst. 56.11 (2008), pp. 915–926. ISSN: 0921-8890.

[93] Andreas Nüchter et al. “3D Mapping with Semantic Knowledge”. In: In Robocup
International Symposium. 2005, pp. 335–346.

[94] Andreas Nüchter et al. “Semantic Scene Analysis of Scanned 3D Indoor Envi-
ronments”. In: in: Proceedings of the Eighth International Fall Workshop on Vision,
Modeling, and Visualization (VMV 03). 2003, pp. 658–666.

[95] Vittorio M. N. Passaro et al. “Gyroscope Technology and Applications: A Review
in the Industrial Perspective”. In: Sensors 17.10 (2017). ISSN: 1424-8220. DOI:
10.3390/s17102284. URL: https://www.mdpi.com/1424-8220/17/
10/2284.

[96] Michal Pełka. Lidar spinning Mirror. https://github.com/michalpelka/
lidar_spinning_mirror. [Online; accessed 31st March 2022].

[97] Michał Pełka and Janusz Będkowski. “Calibration of Planar Reflectors Reshaping
LiDAR’s Field of View”. In: Sensors 21.19 (2021). ISSN: 1424-8220. DOI: 10.3390/
s21196501. URL: https://www.mdpi.com/1424-8220/21/19/6501.

[98] S. Phillips et al. “A Careful Consideration of the Calibration Concept”. In: Journal
of research of the National Institute of Standards and Technology 106,2 371-9 (2001).
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862813/.

[99] Fabian Poggenhans et al. “Lanelet2: A High-Definition Map Framework for the
Future of Automated Driving”. In: Proc. IEEE Intell. Trans. Syst. Conf. Hawaii,
USA, 2018. URL: http://www.mrt.kit.edu/z/publ/download/2018/
Poggenhans2018Lanelet2.pdf.

[100] Mr Prasad, Tadikonda Srinivasulu, and Ashok Yadav. “Embedded MEMS: A
New Era in Mobile Technology”. In: 3 (Mar. 2013), pp. 857–862.

[101] David Prokhorov et al. “Measuring robustness of Visual SLAM”. In: 2019 16th
International Conference on Machine Vision Applications (MVA). 2019, pp. 1–6. DOI:
10.23919/MVA.2019.8758020.

[102] Albert Pumarola et al. “PL-SLAM: Real-time monocular visual SLAM with points
and lines”. In: 2017 IEEE International Conference on Robotics and Automation
(ICRA). 2017, pp. 4503–4508. DOI: 10.1109/ICRA.2017.7989522.

Bibliography 142

[103] Sheng Qinghong et al. “Registration of Aerial Image with Airborne LiDAR
Data Based on Plücker Line”. In: Acta Geodaetica et Cartographica Sinica 44.7,
761 (2015), p. 761. DOI: 10.11947/j.AGCS.2015.20140123. URL: http:
//xb.sinomaps.com/EN/abstract/article\%5F6575.shtml.

[104] Weichao Qiu and Alan L. Yuille. “UnrealCV: Connecting Computer Vision to
Unreal Engine”. In: CoRR abs/1609.01326 (2016). arXiv: 1609.01326. URL:
http://arxiv.org/abs/1609.01326.

[105] Francisco Romero-Ramirez, Rafael Muñoz Salinas, and Rafael Medina-Carnicer.
“Speeded Up Detection of Squared Fiducial Markers”. In: Image and Vision Com-
puting 76 (June 2018). DOI: 10.1016/j.imavis.2018.05.004.

[106] ROS Planning/navigation. https : / / github . com / ros - planning /

navigation. [Online; accessed 31st March 2022].

[107] Marta Rostkowska and Piotr Skrzypczyński. “Hybrid field of view vision: From
biological inspirations to integrated sensor design”. In: 2016 IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). 2016,
pp. 629–634. DOI: 10.1109/MFI.2016.7849557.

[108] Radu Bogdan Rusu and Steve Cousins. “3D is here: Point Cloud Library (PCL)”.
In: 2011 IEEE International Conference on Robotics and Automation. 2011, pp. 1–4.
DOI: 10.1109/icra.2011.5980567.

[109] Joaquim Salvi, Xavier Armangué, and Joan Batlle. “A comparative review of
camera calibrating methods with accuracy evaluation”. In: Pattern Recognition
35.7 (2002), pp. 1617–1635. ISSN: 0031-3203. DOI: https://doi.org/10.
1016/S0031-3203(01)00126-1. URL: https://www.sciencedirect.
com/science/article/pii/S0031320301001261.

[110] Marcus Schmidt et al. “IMU- based Determination of Stance Duration During
Sprinting”. In: Procedia Engineering 147 (2016). The Engineering of SPORT 11,
pp. 747–752. ISSN: 1877-7058. DOI: https://doi.org/10.1016/j.proeng.
2016.06.330. URL: https://www.sciencedirect.com/science/
article/pii/S1877705816307779.

[111] Thomas Schneider et al. “Visual-inertial self-calibration on informative motion
segments”. In: May 2017, pp. 6487–6494. DOI: 10.1109/icra.2017.7989766.

[112] Gamal Seedahmed and Anton Schenk. “Direct Linear Transformation In The
Context Of Different Scaling Criteria”. In: Jan. 2001. DOI: 10.13140/2.1.3600.
4644.

[113] Tixiao Shan et al. “LIO-SAM: Tightly-coupled Lidar Inertial Odometry via
Smoothing and Mapping”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Ieee. 2020, pp. 5135–5142.

[114] Ken Shoemake. “Animating Rotation with Quaternion Curves”. In: SIGGRAPH
Comput. Graph. 19.3 (July 1985), 245–254. ISSN: 0097-8930. DOI: 10 . 1145 /
325165.325242. URL: https://doi.org/10.1145/325165.325242.

[115] Joan Solà, Jérémie Deray, and Dinesh Atchuthan. A micro Lie theory for state
estimation in robotics. Tech. rep. 2018. arXiv: 1812.01537. URL: http://arxiv.
org/abs/1812.01537.

Bibliography 143

[116] J. Sturm et al. “A Benchmark for the Evaluation of RGB-D SLAM Systems”. In:
Proc. of the International Conference on Intelligent Robot Systems (IROS). 2012.

[117] Shinya Sumikura, Mikiya Shibuya, and Ken Sakurada. “OpenVSLAM: A Ver-
satile Visual SLAM Framework”. In: CoRR abs/1910.01122 (2019). arXiv: 1910.
01122. URL: http://arxiv.org/abs/1910.01122.

[118] Zheng Sun and Yingying Zhang. “Accuracy Evaluation of Videogrammetry
Using A Low-Cost Spherical Camera for Narrow Architectural Heritage: An
Observational Study with Variable Baselines and Blur Filters”. In: Sensors 19 (Jan.
2019), p. 496. DOI: 10.3390/s19030496.

[119] A. Szajewska. “Development of the Thermal Imaging Camera (TIC) Technology”.
In: Procedia Engineering 172 (2017). Modern Building Materials, Structures and
Techniques, pp. 1067–1072. ISSN: 1877-7058. DOI: https://doi.org/10.
1016/j.proeng.2017.02.164. URL: https://www.sciencedirect.
com/science/article/pii/S1877705817306707.

[120] Duy-Nguyen Ta, Marin Kobilarov, and Frank Dellaert. “A factor graph approach
to estimation and model predictive control on Unmanned Aerial Vehicles”. In:
2014 International Conference on Unmanned Aircraft Systems (ICUAS). 2014, pp. 181–
188. DOI: 10.1109/icuas.2014.6842254.

[121] Amy Tabb and Khalil M. Ahmad Yousef. “Solving the Robot-World Hand-Eye(s)
Calibration Problem with Iterative Methods”. In: CoRR abs/1907.12425 (2019).
arXiv: 1907.12425. URL: http://arxiv.org/abs/1907.12425.

[122] Wenfeng Tan et al. “A Comprehensive Calibration Method for a Star Tracker
and Gyroscope Units Integrated System”. In: Sensors 18.9 (2018). ISSN: 1424-
8220. DOI: 10.3390/s18093106. URL: https://www.mdpi.com/1424-
8220/18/9/3106.

[123] The European Robotics Hackathon: ENRICH. https://enrich2021.european-
robotics.eu/. [Online; accessed 31st March 2022].

[124] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. Cam-
bridge, Mass.: MIT Press, 2005. ISBN: 0262201623 9780262201629. URL: http:
//www.amazon.de/gp/product/0262201623/102-8479661-9831324?

v=glance\&n=283155\&n=507846\&s=books\&v=glance.

[125] F. Tsushima et al. “Creation Of High Definition Map For Autonomous Driving”.
In: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences Xliii-b4-2020 (Aug. 2020), pp. 415–420. DOI: 10.5194/
isprs-archives-XLIII-B4-2020-415-2020.

[126] Unity Real-Time Development Platform. https://unity.com/. [Online; accessed
31st March 2022].

[127] Unreal Engine: The most powerful real-time 3D creation tool. https : / / www .
unrealengine.com. [Online; accessed 31st March 2022].

[128] N. Vaskevicius et al. “Fast Detection of Polygons in 3D Point Clouds from Noise-
Prone Range Sensors”. In: IEEE International Workshop on Safety, Security and
Rescue Robotics, SSRR. Ieee. Rome, 2007, pp. 1–6.

Bibliography 144

[129] Jordi Vermeulen, Arne Hillebrand, and Roland Geraerts. “A comparative study
of k -nearest neighbour techniques in crowd simulation”. In: Computer Animation
and Virtual Worlds 28 (May 2017), e1775. DOI: 10.1002/cav.1775.

[130] VLP-16 User Manual. https : / / velodynelidar . com / wp - content /
uploads/2019/12/63- 9243- Rev- E- VLP- 16- User- Manual.pdf.
[Online; accessed 31st March 2022].

[131] Li Wang, Zheng Zhang, and Ping Sun. “Quaternion-Based Kalman Filter for
AHRS Using an Adaptive-Step Gradient Descent Algorithm”. In: International
Journal of Advanced Robotic Systems 12.9 (2015), p. 131. DOI: 10.5772/61313.
eprint: https://doi.org/10.5772/61313. URL: https://doi.org/10.
5772/61313.

[132] Steve T. Watt et al. “Understanding and applying precision time protocol”. In:
2015 Saudi Arabia Smart Grid (SASG). 2015, pp. 1–7. DOI: 10.1109/sasg.2015.
7449285.

[133] Zhengyou Zhang. “A flexible new technique for camera calibration”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 22.11 (2000), pp. 1330–
1334. DOI: 10.1109/34.888718.

[134] Zhengyou Zhang. “Camera Calibration”. In: Computer Vision: A Reference Guide.
Ed. by Katsushi Ikeuchi. Boston, MA: Springer US, 2014, pp. 76–77. ISBN: 978-
0-387-31439-6. DOI: 10.1007/978-0-387-31439-6_164. URL: https:
//doi.org/10.1007/978-0-387-31439-6\%5F164.

[135] Zhengyou Zhang. “Parameter estimation techniques: a tutorial with application
to conic fitting”. In: Image and Vision Computing 15.1 (1997), pp. 59–76. ISSN:
0262-8856. DOI: https://doi.org/10.1016/S0262-8856(96)01112-
2. URL: https://www.sciencedirect.com/science/article/pii/
S0262885696011122.

[136] Lipu Zhou, Shengze Wang, and Michael Kaess. “DPLVO: Direct Point-Line
Monocular Visual Odometry”. In: IEEE Robotics and Automation Letters 6.4 (2021),
pp. 7113–7120. DOI: 10.1109/LRA.2021.3097052.

[137] Xingxing Zuo et al. “Robust Visual SLAM with Point and Line Features”. In:
CoRR abs/1711.08654 (2017). arXiv: 1711.08654. URL: http://arxiv.org/
abs/1711.08654.

[138] Krzysztof Ćwian et al. “Large-Scale LiDAR SLAM with Factor Graph Optimiza-
tion on High-Level Geometric Features”. In: Sensors 21.10 (2021), p. 3445.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Thesis outline
	Sensors in ground robotic mapping systems
	LiDAR
	Cameras
	Spherical cameras
	Implementation of spherical camera

	IMU
	Odometry
	GNSS
	RTK and DGPS
	GNSS+INS

	Map representation
	Dense representation
	Occupancy grid map
	Elevation map

	Sparse representation
	Topological map
	Semantic map

	High Definition map

	Problem formulation
	Methodology
	Time synchronization
	Hardware time synchronization

	Trajectory
	Rotation representation
	Groups
	Lie Groups
	Special orthogonality group SO(3)
	Lie algebra so(3)
	Rodrigues' rotation formula for rotation matrix
	Quaternions
	Quaternion interpolation
	Proper Euler angles and Tait-Bryan angles
	Rigid body transformations in SE(3) and their Lie algebra

	Motion model and smoothness
	Relative Pose
	Smoothness

	SLAM
	Factor graph
	Graph SLAM
	Bundle Adjustment
	Robust Nonlinear Least Squares
	Map and trajectory accuracy assessment
	Ground truth data sources
	Synthetic data sources
	Real data

	LiDAR observation equations
	Point to Point
	Jacobian matrix in SE(3) for point transformation
	Iterative Closest Point

	Camera observation equations
	Line to line in equirectangular image
	Curve fitting
	Extracting Plücker line from a point cloud
	Extrinsic calibration of a spherical camera

	Line to line in rectilinear image

	Experimental validation
	Calibration of a high-volume mobile 3D scanner
	Modeling a mechanical design as a factor graph

	Calibration of multi planar reflectors
	Mechanical design
	Geometry of a reflected ray
	Calibration procedure

	Calibration of a rotated reflector
	Time synchronisation with a Livox LiDAR
	Results

	Calibration of a lightweight 3D unit
	Mechatronic design
	Calibration pattern
	Calibration pattern - LiDAR's intensity domain
	Cost function
	Results

	Calibration of a mobile backpack mapping system
	Optimization of trajectory
	Optimization of an extrinsic laser scanner calibration
	Quantitative and qualitative validation of extrinsic laser scanner calibration
	Optimization of an extrinsic calibration of the spherical camera against a laser scanner

	Calibration of a 3D unit
	Mechatronical design
	Calibration

	Comparison of the equirectangular and perspective model

	Robotic applications
	Mining shaft mapping
	Calibration method
	Accuracy assessment

	Nuclear Power Plant Mapping
	Mobile robot localization
	Localization using sequential Monte-Carlo
	Map building and trajectory ground truth
	Localization algorithm
	Results

	Conclusions
	Thesis contributions
	Further research directions

	Bibliography

