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Abstract

The scientific aim of this Ph.D. dissertation is the analysis and development of
automated mechanism for highly efficient night-vision pedestrian detection on thermal
images. The research presented in this dissertation is focused to two main issues: region
of interest (ROI) generation based on thresholding and procedure of tuning object
classification stage. The author's motivation was to achieve the state-of-the-art accuracy
and real-time performance of pedestrian detection process in order to apply it in
vehicles (e.g. those equipped with driver assistance systems or in autonomous vehicles)
without using special hardware i.e., general-purpose computing on graphics processing
units.

The scientific thesis was formulated as follows: The developed approach of night-
vision pedestrian detection based on proposed ROI generation by thresholding of
thermal images and by properly tuned object classification procedure improves
detection accuracy and significantly increases computational efficiency of the
pedestrian detection process.

The structure of this dissertation is as follows: after the introduction, in Chapter 2,
the extended analysis of the research area (initially described in Chapter 1.1) is
presented along with a summary and detailed explanation of the motivation to undertake
this work.

Section 2.2 presents all the public recording datasets and benchmarks used in the
experiments. Subsequently, the proposed improvements to the pedestrian detection
process are presented in separated chapters.

The proposed ROI generation algorithm is described and tested in Chapter 3. In the
next Chapter 4, the problem of inaccurate matching of the edges of ROI to the outer
edges of the pedestrians is analysed with the proposed additional ROI area enlarging
technique. Chapter 5 describes the proposed procedure of tuning object classification
stage with universal performance index.

Chapter 6 presents the experiments on the proposed pedestrian detection algorithm
performed to compare the presented solution with the standard approaches based on the
sliding window segmentation technique and other solutions in the literature. Chapters 3
and 5 also include separated experiments and tests performed to verify the effectiveness
of the proposed modifications.

In the Chapter 7, the author also presents research on the possibility of using so-
called multi-spectral vision for scene analysis by monitoring operators. Performed
experiments show that this option shortens reactions and supports faster identification of
objects (e.g., pedestrians) at night.

The last chapter presents the conclusions, which indicate that the scientific goal of this
dissertation has been achieved and the scientific thesis has been proven. The author’s
approach to night-vision pedestrian detection achieved very high computational
efficiency, with up to 130 frames per second using the CPU only. Moreover, it was
possible to obtain the state-of-the-art detection accuracy for tested detectors, namely the
aggregated channel feature (ACF) and deep convolutional neural network (CNN).
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Streszczenie

Celem naukowym prezentowanej rozprawy doktorskiej jest analiza i opracowanie
automatycznego mechanizmu detekcji  pieszych na obrazach termowizyjnych
rejestrowanych w nocy. Badania przedstawione w niniejszej rozprawie koncentruja si¢
na dwoch glownych zagadnieniach: ekstrakcji obszaru zainteresowania w oparciu o
progowanie obrazu termowizyjnego oraz odpowiednim dopasowaniu procedury
klasyfikacji obiektoéw. Motywacja autora bylo osiagniecie wysokiej wydajnosci procesu
detekcji pieszych przy jednoczesnym zachowaniu wysokiej doktadnosci. Gléwnym
zastosowaniem systemu jest detekcja w pojazdach (w systemach czasu rzeczywistego)
bez konieczno$ci wykorzystania dedykowanego sprzetu, tj. procesory graficzne.

Zostata sformulowana nastepujaca teza naukowa pracy: Opracowane podejscie do
detekcji pieszych w nocy w oparciu o zaproponowany proces ekstrakcji obszaru
zainteresowania poprzez progowanie obrazow termowizyjnych oraz odpowiednio
dostrojong procedure klasyfikacji obiektow poprawia doktadnosé¢ detekcji i znaczaco
zwigksza wydajnos¢ obliczeniowa.

Struktura pracy jest nastepujgca: po wstepie w Rozdziale 2. przedstawiona jest
rozszerzona analiza obszaru badawczego (opisana wstepnie w Rozdziale 1.1.) wraz z
podsumowaniem i szczegdtowym wyjasnieniem motywacji do podjecia tej pracy.

Sekcja 2.2. przedstawia wszystkie wykorzystane w eksperymentach publiczne zbiory
danych. Nastepnie w osobnych rozdziatach przedstawiono proponowane usprawnienia
procesu detekcji pieszych.

Proponowany algorytm ekstrakcji obszaru zainteresowania zostal przedstawiony i
przetestowany w Rozdziale 3. W nastepujacym Rozdziale 4. przeanalizowano problem
niedoktadnego dopasowania wyodrebnionego obszaru do zewngtrznych krawedzi
pieszego wraz z proponowang technika jego powickszania. W rozdziale 5
przedstawiono i opisano proponowang procedure dostrajania etapu klasyfikacji
obiektéw z zaproponowanym przez autora uniwersalnym indeksem wydajnosci.

W rozdziale 6. przedstawiono eksperymenty z proponowanym algorytmem detekcji
pieszych uwzgledniajacym wprowadzone ulepszenia. Przedstawiono poréwnanie
proponowanego podejscia ze standardowym algorytmem detekcji opartymi na technice
przesuwnego okna oraz innymi rozwigzaniami prezentowanymi w literaturze. Rozdzialy
3. 1 5. zawieraja réwniez oddzielne eksperymenty i testy przeprowadzone w celu
sprawdzenia skutecznosci poszczegolnych modyfikacii.

W Rozdziale 7. autor przedstawia badania nad mozliwoscia wykorzystania przez
operatorOw monitoringu tzw. obrazowania wielospektralnego. Przeprowadzone
eksperymenty pokazuja, Zze proponowane rozwigzanie skraca reakcje 1 wspomaga
manualng identyfikacje pieszych w nocy.

W ostatnim rozdziale zawarto podsumowanie, ktore dowodzi ze cel naukowy
niniejszej rozprawy zostat zrealizowany, a teza naukowa udowodniona. Proponowane
przez autora podejscie do detekeji pieszych w nocy osiagneto bardzo wysoka wydajnosé¢
obliczeniowa przy uzyciu samego procesora. Ponadto udato si¢ uzyskaé¢ wysoka
doktadnos¢ detekcji dla testowanych detektorow.
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1. Introduction

1.1. Research area

The dynamic growth of motorization and the increased traffic volume, although
together help to develop our civilization, also increase the risk of accidents. According
to [1], 38% of fatal accidents in the European Union occur in darkness, despite the fact
that the traffic during nights is several times smaller than on days. About 20% of the
victims are pedestrians, while more than half of pedestrian deaths (51%) take place at
night [2]. Pedestrian fatalities that occur at night result from such factors as poor
visibility, drivers fatigue, driving speed, and alcohol [3].

In view of the above problems, many organizations set up preventive measures. With

the efforts undertaken by the European Union (e.g., the “Road Safety Program”
[4]), the total number of fatalities in car accidents is falling rapidly. It changed
from 54,000 in 2001 to 31,000 in 2010 [4]. The number of pedestrian-related
accidents was 9,100 in 2001 and 5,500 in 2010. This represents a global
downward trend in the average pedestrian mortality across the European Union,
but some exceptions are also noted [2]. In some countries, especially those of
rapid economic growth, e.g., in Poland and Romania, this trend is somehow
weaker, i.e., in Poland there were 1,866 pedestrian fatalities in 2001 vs. 1,236 in
2010 [2].

Thanks to new achievements in the technological sciences, it is now possible to offer
tools that can aid transportation safety. In the automotive-related areas, it could be
found such mechanisms as road planning, road security, assisting of drivers and their
capabilities, protection of drivers and passengers, protection of pedestrians, and many
others. Automotive companies offer advanced driver assistance systems (ADAS)
solutions that increase the safety of night traffic. Among the most popular are: adaptive
(intelligent) front lights, detection of weariness or intoxication of a driver, warning of
lane departure, recognition of traffic signs, information of a vehicle blind spot,
automatic braking (the last one typically works under the limited speed and is dedicated
to the city limits and traffic jams).

The car manufacturers also offer ADAS for night-vision. Such systems can improve
driver perception by offering more time to react. By this, they protect against accidents
with pedestrians, who are, in fact, defenceless in contact with vehicles. The first night-
vision system has been introduced to the market by General Motors in the year 2000
and applied in the Cadillac DeVille. The development of this project took 15 years of 70
person team and cost approximately $100 million [5]. In 2003, Toyota has introduced
the first commercial active night-vision system for Toyota Landcruiser and Lexus
LX470 and reached the range of 100 m. In 2004 Honda has introduced it in the Legend
model as an optional system named "Intelligent Night-vision" with the first option of
pedestrian detection. The system gained a range between 30 and 80 m [6]. Nowadays,
such systems are offered by most car manufacturers on the market, but they are still
dedicated to the premium level cars.



The night-vision systems can be classified twofold: as passive or active systems,
taking image acquisition methods into account. The passive systems capture far-
infrared, thermal radiation (thermo-vision) naturally emitted by any object with a
temperature above absolute zero. In contrast, the active systems are equipped with near-
infrared illuminators and capture the light reflected from the objects.

In passive systems, each object with a temperature greater than 0 K emits radiation,
but in practice, only the objects other than the surroundings become distinctive. Good
contrast for living beings is one of the significant advantages of the passive systems. A
range of detection is much more extensive than in active systems. For high-quality
cameras, it can reach 300 m. Thermal imaging cameras are also not blinded by the lights
of other vehicles. This feature is significant because it does not cause the distraction of a
driver.

With night-vision, it is possible to set up pedestrians detection feature for night-time
driving. This feature is essential in autonomous vehicles that are starting to appear on
roads worldwide. However, the detection of pedestrians is a challenging task. In
general, there are many approaches to solve this goal. A natural choice is a vision
because it is based on how people perceive humans. The solutions can be divided into
classic monocular vision systems [7], stereo vision systems [8], and infrared vision
systems [8—10]. Moreover, the vision systems are relatively inexpensive and easy to
interact with humans (drivers).

More advanced arrangements use ultrasonic sensors [12], conventional radar [13], or
LIDAR (Light Detection and Ranging) to retrieve a 3D map of the terrain and detect
pedestrians [14]. Nowadays, these sensors are often used simultaneously with vision
sensors (in a sensor fusion manner) in autonomous vehicles to increase the accuracy of
detection of objects, pedestrians, and threats on the road [15], [16].

The vision-based pedestrian detection systems usually perform in four main stages
(see Figure 1): first, the image acquisition, second, preparation of the so-called region of
interest (ROI), which separates objects of interest from the background for further
processing, third, the object classification, which distinguishes pedestrians from other
objects.

( ROI generation \ ( Object classification \

Acauired i Image - Features
cquired image —> segmentation £ extraction
Image C d'¢dt ¢

; andidates
preprocessing Selaction Validation
\
Decision:
Pedestrian

Non-pedestrian

Figure 1. The general pedestrian detection procedure



In the case of pedestrian detection with moving camera, i.e., in cars or autonomous
vehicles, the detection process should be both accurate and computationally efficient to
enable detection of pedestrians in a real-time manner.

For this reason, the pedestrian detection process should be well optimized at the ROI
generation and object classification stages. In the case of ROI generation, the choice of
segmentation technique significantly impacts accuracy and computational efficiency.

Currently, in the case of pedestrian detection on thermal images in night conditions,
similar image segmentation techniques are used as for color day-time imaging cameras,
i.e., sliding window-based techniques [11], [17], or region proposal neural networks
[18]-[20]. These techniques do not directly use information about thermal contrast
(pedestrians are usually brighter than their surroundings at night). Moreover, most of
these solutions require highly efficient hardware, i.e., GPGPU for real-time operation,
making it difficult to use in vehicles.

It is potentially possible to perform segmentation by thresholding. This approach
allows for a significant acceleration of the entire pedestrian detection process by
reducing the ROIs area in the image. It uses properties of the thermal images (the
pedestrians are usually warmer, therefore brighter than the surroundings). So far,
several techniques for the segmentation of thermal images based on thresholding have
been proposed [7], [21], [22]. However, these techniques are currently not widely used
due to lack of the state-of-the-art accuracy of pedestrian segmentation and operational
stability.

Figure 2. [llustrative example of infrared image with two pedestrians

The simple assumption that pedestrians are warmer than the surrounding at night is
not always valid. Many problems arise during segmentation, i.e., the uneven level of the
observed temperature of one pedestrian (see Figure 2) and the temporary loss of thermal
contrast between the pedestrian and the surroundings. All the above-mentioned
problems should be compensated to avoid the situation that a pedestrian is not being
detected at the segmentation stage. This raises the question of whether accurate and
stable pedestrian segmentation of thermal images through thresholding is possible.

In the case of the object classification stage (see Figure 1), the selection and tuning
of the appropriate technique also have a significant impact on overall detection



efficiency. Pedestrian detectors often use ready-made solutions as the so-called black
boxes by scaling the resolution of the recorded image to the resolution of the used
object detector [11], [23]. This is especially often practiced with deep convolutional
neural networks [24], [25]. Therefore, the computational performance of these detectors
is often very low and requires powerful hardware for real-time operation. For this
reason, it is essential to properly fit the algorithm to the image source properties — i.e.,
to the sensor type, camera perspective, and resolution of the image in order to increase
the computational efficiency of the pedestrian detector without affecting the accuracy.



1.2. Aim of work and scientific thesis

The initially described problems in previous Subsection 1.1 concern the process of
pedestrian detection: the possibility of using thresholding for accurate and efficient ROI
generation of thermal images at night and the necessity of proper tuning of the object
detection stage. These are important scientific problems, thus they require further
analysis and research.

The scientific aim of this Ph.D. dissertation is the analysis and development of
automated mechanism for highly efficient night-vision pedestrian detection on thermal
images. The research presented in this dissertation is focused to two main issues: ROI
generation based on thresholding and procedure of tuning object classification stage.
The author's motivation was to achieve the state-of-the-art accuracy and real-time
performance of pedestrian detection process in order to apply it in vehicles (such as
ADAS equipped cars or autonomous vehicles) without using special hardware i.e.,
general-purpose computing on graphics processing units (GPGPU).

The scientific thesis can be formulated as follows: The developed approach of night-
vision pedestrian detection based on proposed ROI generation by thresholding of
thermal images and by properly tuned object classification procedure improves
detection accuracy and significantly increases computational efficiency of the
pedestrian detection process.



1.3. Main scientific achievements

The main scientific achievements presented in this dissertation are innovative
modifications of the night-vision pedestrian detection process. They can be divided into
three main groups:

* a new ROI generation approach for the thermal images based on image
thresholding,

* a technique of additional ROI adjustment (slightly enlarging the ROI area of the
image) before the object classification stage,

* a proposition of procedure for tuning of object classification process with the
universal performance index.

The complete structure of the proposed pedestrian detection algorithm with the
introduced improvements is presented in the diagram in Figure 3 (cf. Figure 1 for the
author’s improvements).

s JObiect classification tu niné
with performance index
ROI generation / Object classification ™\

Image segmentation I Feature

« double/triple thresholding Ll D

+ region enlargement
« divide pedestrians

Acquired image
Image
preprocessing

Figure 3. The pedestrian detection scheme with proposed improvements (cf. with Figure 1)

"additional ROI | '
area enlarging |
; 71 «=» Validation

—

Set of candidates
selection techniques

Pre-trainted
classifier

At the ROI generation stage, the author proposed the image segmentation technique
of thermal images by multiple thresholding with two or three global thresholds. Then, to
compensate the imperfections of the thresholding process and to increase the accuracy,
the techniques of regions enlargement and dividing wide ROIs were proposed.
Moreover, in order to effectively accelerate the proposed ROI generation procedure, a
set of candidate selection techniques was proposed.

The technique of additional ROI area adjustment was proposed to increase the
accuracy of the object classification stage. It consists of analysing proportionally larger
areas from the image than those detected after the ROI generation stage. This technique
allows for increasing the accuracy of the entire pedestrian detection algorithm with a
negligible impact on processing time.

The specialized procedure of tuning the object classification stage also was proposed
to adjust the detector parameters. This procedure is based on a novel and universal
performance index. Using this procedure, the author demonstrates that properly tuning
of the object detection stage to the analysed image source properties - e.g., to the sensor
type, camera perspective and resolution of the image is important and significantly
affects the computational performance. The author proved that it is possible to
significantly reduce the processing time without affecting the accuracy. Moreover, the



presented approach is quite general, i.e., it may be applied not only to the considered
problem but it can be adapted to detection of any type of object with any classifier.

Finally, the proposed improvements made it possible to propose an efficient
pedestrian detection algorithm for thermal images in night conditions. The very high
computational efficiency of detection process was obtained, with up to 130 frames per
second using the CPU only. Moreover, it was possible to obtain the state-of-the-art
detection accuracy for tested detectors, namely the aggregated channel feature (ACF)
and deep convolutional neural network (CNN). This was confirmed by the sets of
experiments performed on two public benchmarks, i.e., CVC-14 [23] and KAIST [26].

The structure of this dissertation is as follows: after the introduction, in Chapter 2,
the extended analysis of the research area (initially described in Chapter 1.1) is
presented along with a summary and detailed explanation of the motivation to undertake
this work.

Section 2.2 presents description of all the public datasets of night-vision recordings
used in the experiments. Subsequently, the proposed improvements to the pedestrian
detection process are presented in separated chapters.

The proposed ROI generation approach is described and tested in Chapter 3. In the
next Chapter 4, the problem of inaccurate matching of the edges of ROI to the outer
edges of the pedestrians in the image was analysed with the proposed additional ROI
area adjustment technique. Chapter 5 presents and describes the proposed procedure of
tuning the object classification stage with universal performance index.

Chapter 6 presents the experiments on the proposed pedestrian detection algorithm
performed to compare the presented solution with the standard approaches based on the
sliding window segmentation technique and other solutions in the literature. This
chapter also presents software with multi-threaded architecture. Chapters 3 and 5 also
include separate experiments and tests performed to verify the effectiveness of the
proposed modifications.

In the last Chapter 7, the author also presents additional research on the possibility of
using so-called multi-spectral vision for scene analysis by monitoring operators. It
concerns thermo-vision merged with a standard camera as an option for CCTV
monitoring. Performed experiments show that this option shortens reactions and
supports faster identification of objects (e.g., pedestrians) at night. The dissertation is
closed with the conclusions.



2. State of the art

This chapter contains an extended analysis of the research area of night-vision
pedestrian detection. Firstly, the two basic night-vision image acquisition techniques are
discussed: near-infrared vision and far-infrared vision (thermal imaging) with their
advantages and disadvantages. Secondly, the analysis of existing approaches to ROI
generation is presented. Thirdly, the methods of object classification for final ROI
verification are discussed. In the last subsection, the necessity of introducing more
efficient and more adapted to image source methods is indicated.

2.1. Night-vision approaches

The night-vision systems can be classified twofold: as passive or active systems,
taking image acquisition methods into account. In both approaches, the infrared band of
an electromagnetic radiation is used.

There are several conventional divisions of the infrared band into sections depending
on the application and sensors sensitivity range [27]-[31]. One of the detailed infrared
division is presented in [29]:

Near-Infrared (NIR) with wavelength from 0,7 um to 1,4 pm,
Short-Wave Infrared with wavelength from 1,4 um to 3 um,
Mid-Wave Infrared with wavelength from 3 um to 8§ um,
Long-Wave-Infrared (LWIR) with wavelength from 8 um to 14 um,
Very Long-Wave-Infrared with wavelength from 14 um to 25 pum,
Far-Wave-Infrared with wavelength from 25 pm to 1000 pm.

In the field of Intelligent Transportation Systems (ITS) and automotive night-vision,
the term Far Infrared (FIR) is used concerning the LWIR band and thermal imaging
[11], [23], [27], [30]—[32]. Therefore, in this work, the term FIR is also used to define
the LWIR infrared band and refer to the range of sensitivity of thermal imaging
cameras.

In general, the passive systems capture FIR, thermal radiation (thermo-vision)
naturally emitted by objects, while the active systems are equipped with NIR
illuminators and capture the invisible to the human eye NIR light reflected from the
objects (see Figure 4).

In the case of active NIR systems, very often the typical silicon-based digital sensors
are used. They are sensitive not only to the visible-light spectrum in the range of 400-
700 nm but also to the NIR range [28], [31], [33]. These cameras are typically used with
a permanent IR cut-off filter in good lighting conditions. However, the CCTV day and
night (visible/NIR) cameras use a mechanical IR filter that switches depending on the
time of day. Since NIR imaging does not require significant investments (only
additional NIR illuminators), it is commonly used in stationary CCTV systems for
night-vision, e.g., in security applications.



Near-infrared camera

Figure 4. Typical location of components for NIR and FIR systems on the example of the automotive
night-vision system

In passive systems, the thermal imaging camera captures FIR radiation emitted by
objects. In the FIR range, the radiation power of objects in the environment depends on
their temperature. Each object with a temperature greater than absolute zero emits
radiation, but in practice, only the objects with temperatures other than the surroundings
become distinctive [31]. As a result, the internally heated objects such as pedestrians,
cars in motion (with engines, radiators, heated reflectors) are clearly visible (see Figure
5).

In general, two types of thermal detectors are used in thermal cameras: photon
detectors and thermal detectors [27], [31]. Photon detectors are based on photoeffect.
The absorption of photons in the material causes the emission of electrons that change
the current flowing through the detector. In the case of thermal detectors, the absorption
of FIR radiation changes the temperature of the detector, which causes a change in
electrical properties: electrical resistance in the case of microbolometers or electric
polarization in the case of ferroelectric detectors.

Nowadays, microbolometer detectors have been increasingly used. These detectors
do not require refrigeration, which makes them more compact and reduce the price. The
microbolometers cameras that are used for people detection typically use a range of 7 -
14 um [27], [29], [31].

The precise remote temperature measurement is very difficult to achieve. The
accuracy could be influenced by many factors, including the emissivity of the material
from which the object is made, the surrounding atmospheric conditions, i.e., fog or rain,
the distance from the camera, the transmission of radiation through the atmosphere [34].
Therefore, to precisely determine the temperature value on a given surface, it is
necessary to know many environment variables. This is well illustrated by the formula
for the total radiation power received by the detector [35], [36]:

Wtot=£'T'Wobj+(1_5)'T'Wamb'l'(l_r)'watma (1)

where: € is the emissivity of the object, 7 is the transmission through the atmosphere,
(1 — ¢) is the reflectance of the object, (1 — 1) is the emissivity of the atmosphere,
Wop; is radiation power of the observed object with a temperature Topj, Wamp is



radiation power reflected from the object and generated by ambient sources with
temperature Tymp, Watm 1S radiation power from the atmosphere with temperature Ty, .
In thermal imaging for the application of pedestrian detection, the thermal contrast
between objects and the environment is the most important feature since the detector
uses shapes in the image to classify the objects. Additionally, the difference between the
emissivity of the materials may result in additional, artificial edges in the image.

Figure 5. Illustrative examples of visible color images (not NIR, first column) with corresponding thermal
images recorded at night (marked temperature scale, second column)
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2.1.1. Comparison of NIR and FIR systems

The high contrast between living beings and their surroundings is one of the major
advantages of passive systems. A range of detection is much more extensive than in
active systems and for high-quality cameras, it can even reach 300 m at night for a
standard camera. Another important factor is that thermal imaging cameras are not
blinded by the lights of oncoming vehicles [30], [31].

The main disadvantage of the passive thermo-vision comes from the physical basis
of this type of imaging: the measured emission of an object strongly depends on the
source material and the covering of the object. It makes the calibration of the system
difficult and strongly context-dependent. Fortunately, the absolute calibration of the
camera in automotive night-vision applications is not as important as, e.g., for the
typical thermal imaging in the construction industry.

Among other disadvantages of thermal cameras are lower resolution and higher costs
than for the cameras used in the active systems. Because of a specific way of image
capture, they are characterized by a weak representation of the textures and low signal
dynamics (as presented in Figure 6) [30], [31]. Additionally, the FIR spectrum is more
difficult to interpret for a driver: e.g., tires are white (hot), and the rest of the car is
black. Other, typically high-contrast objects like horizontal lane markings or headlamps
(LED or rear lights) are not visible in the image. Another significant disadvantage is the
sensitivity to changes of thermal contrast: with the season, weather, humidity.

The main advantage of the active systems is high resolution. The image is easy to
interpret for the driver because of the proximity of NIR to the visible light (see Figure
6). It is possible to, e.g., see the lanes and the headlights of oncoming vehicles. The
relatively low cost of NIR cameras and their small size makes them attractive and
widely available. The cameras of this type can also be used in other systems and
successfully work in day light (e.g., CCTV cameras are often equipped with the
mechanically switched IR filter used as a day/night switch).

The active systems have a shorter detection range than their passive counterparts and
reach about 150 m. This distance strongly depends on the power of illuminators.
However, typically this disadvantage is compensated by a higher resolution of image
sensors. The NIR detectors can also be dazzled by the headlights (or illuminators) of
oncoming vehicles and operate significantly worse than the FIR cameras in fog. The
advantages and disadvantages for both systems are summarized in Table 1 (where “+”
denotes a slight advantage, and “++ denotes a significant advantage between NIR and
FIR systems).

Finally, both active and passive systems are used in various applications. Active
systems are cheaper and have better resolution than passive ones, but pedestrian
detection needs more complicated algorithms.

The videos obtained by these two types of systems differ a lot, and thus the video
processing algorithms should be optimized separately for each of these two types.
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Figure 6. Illustrative examples of NIR images (first column) recorded at night from TetraVision [37]
dataset with corresponding FIR images (second column)
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Table 1. Summarized advantages and disadvantages of NIR and FIR night-vision systems

FIR Feature NIR

Image quality
(resolution, textures)

++

+ View range
(range, angle)
Thermal contrast of living beings

++
(contrast to the background)

— Dazzling effect
(temporary blinding by oncoming vehicle)
Ability to operate in difficult conditions
(fog, rain)
Assembly and maintenance
(system integration, calibration)

+

System price
(camera, components)

2.2. Night-vision datasets

This section describes all the night-vision datasets that were used in the experiments
presented in this dissertation. These datasets are known in the analysed area of research
and were commonly used for benchmark tests in many papers, e.g., [26], [32], [38],
[39]. They are: CVC-09 (Computer Vision Center, FIR Sequence Pedestrian Dataset)
[40], CVC-14 (Computer Vision Center, Visible/FIR Day/Night Sequence Pedestrian
Dataset) [23], NTPD (Night-time Pedestrian Dataset) [41], LSI FIR (Laboratorio de
Sistemas Inteligentes, Intelligent System Lab Far Infrared Pedestrian Dataset) [27],
OSU (Ohio State University, Thermal Pedestrian Dataset) [42], KAIST (Korea
Advanced Institute of Science and Technology, Multispectral Pedestrian Detection
Benchmark) [26].

Table 2. Number of training and testing samples in night-vision datasets used for experiments
with object classification stage (in Chapter 5)

No. of training samples No. of testing samples
dataset positive samples negative samples positive samples negative samples
CVC-09 FIR 11,839 25,410 6711 75,308
Day-time
CVC-09 FIR 6998 30,030 7862 72,985
Night-time
Extended NTPD 1998 8730 2370 12,600 (*)
LSI FIR 10,208 43,390 5944 22,050
OSuU 1004 1932 964 1932

Tested datasets differ in resolutions, quality, and acquisition techniques. The CVC-
14 and KAIST datasets were used in the experiments with the proposed ROI generation
approach (in Chapter 3) and the final experiments with the proposed pedestrian
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detection procedure (Chapter 6) because they had images of the FIR spectrum and it
was possible to compare the achieved results with the literature. The other datasets
(OSU, NTPD, LSIFIR, and CVC-09) were used with the object classification stage (in
Chapter 5). For all of them, ROI samples were extracted for both training and testing
(Table 2).

2.2.1. CVC-09 Thermal Pedestrian Dataset

The CVC-09 (Computer Vision Center, FIR Sequence Pedestrian Dataset) consists
of two subsets of pedestrian thermal images: 5990 images recorded during the day and
5081 recorded at night. Their resolution is relatively high as for the FIR recordings and
equals 640%x480 pixels. The authors of this dataset inform that it was produced with the
FIR thermal imaging technology. However, they do not specify the camera type and the
temperature scale [40]. The images have some unknown static temperature scale, and
there is no contrast enhancement applied.

This dataset is very demanding as pedestrians occur with various sizes. Images
recorded on days have low contrast between pedestrians and the background. This
differs from other typical FIR recordings.

The dataset with positive samples was prepared by clipping pedestrians out of the
original images (see Figure 7). The resulting dataset was annotated automatically.
Therefore, there are some inaccuracies, e.g., not all pedestrians were correctly marked
(cf., Figure 7b - a figure in the third column contains parts of two pedestrians).

(a)

(d)

Figure 7. CVC-09 dataset of pedestrians: (a) day-time positive samples, (b) night-time positive samples,
(c) day-time negative samples, (d) night-time negative samples.
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Figure 8. Distribution of pedestrian heights (in pixels) in CVC-09 dataset

Due to the variety of distances between the camera and pedestrians, the obtained
positive samples have different resolutions (from 3x6 up to 190x458 pixels). The height
distribution of these samples is shown in Figure 8. Because all samples have to be
scaled to a given classifier resolution, they sometimes must be significantly enlarged
(up-scaled), and then they can be quite strongly blurred (cf., Figure 7a, 7b).

The dataset with negative samples was prepared by cutting out chosen areas with no
pedestrians. They were extracted with a window size equal to the largest used classifier
resolution (i.e., to 64x128 pixels). During the classifier training, the negative samples
were then scaled down again to the required resolution. The prepared dataset is large
enough for statistical analysis.

2.2.2. CVC-14 Visible/FIR Day/Night Sequence Pedestrian Dataset

The CVC-14 dataset contains of multimodal (FIR plus visible) video sequences [23].
This dataset is divided into two subsets: recordings captured by the FIR camera in a day
and at night. However, only night FIR recordings were used (see Figure 9). The CVC-
14 dataset is very demanding for testing of automatic image processing procedures:
pedestrians have various sizes, images are of low contrast between pedestrians and the
background. This is mainly due to the time and place of recordings — hot summer in
Spain. As a result, there are many hot regions, which had been heated up during the day.
Despite the drawbacks, the dataset was selected because it presents pedestrians in
different scales and enables extracting pedestrians straight from the images using
enough accurate ground truth.

For the training of classifiers, positive datasets of samples were prepared (images) by
cutting out pedestrians from the original frames (Figure 10). The negative samples were
prepared by cutting out areas, which do not contain pedestrians. They were extracted by
a window of size of the largest used classifier (i.e., 64x128 pixels).

The details about the training and testing sets of samples are presented in Table 3.
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Table 3. Training and testing subsets extracted from night-time CVC-14 FIR pedestrian dataset

CVC-14 night-time No. of samples
FIR dataset
o Pedestrian samples 2222
Training subset -
Negative samples 10,242
Testing subset Positive frames 703

Figure 10. Illustrative examples of pedestrian and non-pedestrian samples from the CVC-14 night-time
dataset
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2.2.3. Night-time Pedestrian Dataset

The NTPD (Night-time Pedestrian Dataset) [41] is divided into two sub-sets: training
and testing (details are presented in Table 2). It consists of images of pedestrians stored
with the NIR active system of resolution 64x128 pixels (cf., Figure 11). In this dataset,
to make the classification process realistic, the number of the negative samples was
extended similarly to those occurring in real situations of the automotive applications as
an asymmetric distribution (much more negative samples than the positive ones) is quite
typical. These negative samples were extracted from images, which contain no
pedestrians.

e

\
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Figure 11. Pedestrian (positive) samples from NTPD dataset

2.2.4. LSI FIR Pedestrian Dataset

In the LSI FIR (Laboratorio de Sistemas Inteligentes/Intelligent System Lab Far
Infrared Pedestrian Dataset) [27], the FIR images were acquired in outdoor urban
scenarios. The images are divided into two subsets: the classification dataset and the
detection dataset. The first one is divided in a train and a test sets. The train set contains
10208 positives and 43390 negatives, while the test set contains 5944 positives and
22050 negatives (as presented in Table 2). The images are scaled to 32x64 pixels and
include positive and randomly sampled negative images. The detection dataset includes
annotated original positive and negative images of 164x129 pixels resolution. In the
experiments, only the first subset was used.

2.2.5. OSU Thermal Pedestrian Dataset

The OSU (Ohio State University) Thermal Pedestrian Dataset consists of 10 daytime
video sequences captured on a university campus under various weather conditions (cf.,
Figure 12). These sequences were recorded using a passive thermal sensor Raytheon
300D [42]. Thus, the images have a resolution of 320x240 pixels.

Based on this dataset, several authors created their own, not standardized training
and test subsets [32], but with a small number of samples. Since pedestrians in the
original dataset have low resolution, it was decided to extract samples with a resolution
of only 32x64 pixels. From half of the images, pedestrians were selected who, together
with their mirror images (used to increase the number of samples), formed positive
training samples. From the second half of the images, in the same way, the training
samples were created. To obtain negative samples (those without pedestrians), frames
with the background only were cut with a window of size 32x64 pixels with a spacing
of 8 pixels.

Additionally, their number was increased by rotation and mirroring vertically and
horizontally. Finally, 3864 negative samples were obtained. Half of them were used for
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training and the other half for testing. The extended version of this dataset is also
available on [42].

Figure 12. Two illustrative images from the OSU dataset

2.2.6. KAIST Multispectral Pedestrian Detection Benchmark

The color-thermal KAIST dataset contains 95,328 aligned color-thermal image pairs,
with 103,128 dense annotations on 1,182 unique pedestrians. This dataset was recorded
with the PointGrey Flea3 color camera with a resolution of 640x480 pixels and a 103.6°
vertical field of view, and the FLIR-A35 thermal camera with a resolution of 320x256
pixels and a 39° vertical field of view (see Figure 13). The thermal image was aligned
with the color image by cropping an area of the color image. This dataset provides 20
frames per second. Details of the selected sequences are presented in Table 4.

The dataset consists of 12 (6 train and 6 test) image sequences recorded day and
night and in different areas (campus, road, and downtown, as presented in Table 4). In
the experiments, only thermal images captured at night were used.

This dataset is provided with the manually annotated, detailed ground truth for each
image frame. Annotations contain information about the pedestrian's position in the
image, the distance from the camera (or the size in the image), and scale: near, medium,
or far. Pedestrians are also marked with one of three occlusion tags: no occlusion
(78.6%), partial occlusion (12.6%), and heavy occlusion (8.8%).

Table 4. Details of the selected sequences from KAIST dataset (only night-time recordings
were used in experiments)

Sequence Area Frames Pedestrians
Set 03 (train)  campus 6 668 7418
Set 04 (train) road 7200 17 579
Set 05 (train) downtown 2 920 4 655
Set 09 (test) campus 3500 3577
Set 10 (test) road 8902 4 987
Set 11 (test) downtown 3 560 6 655
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Figure 13. Four illustrative images from the KAIST dataset (original images with increased brightness
and contrast)
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2.3. General procedure for pedestrian detection

The typical scheme of the procedure for pedestrian detection is presented in Figure 1
(the most general scheme), in Figure 3. The pedestrian detection scheme with proposed
improvements (cf. with Figure 1), and in Figure 14 (a more detailed scheme with the
indication of the most important approaches). Its first stage is the IR image acquisition
and then image preprocessing. For image preprocessing standard techniques are used in
order to reduce noise and enhance image contrast.

In the second stage, the ROIs are generated, covering all areas with pedestrian
candidates for further processing. The first step in ROI generation is image
segmentation performed to separate pedestrians from the background (or more
precisely, the desired areas of the IR image that potentially contain pedestrians called
pedestrian candidates or ROIs). Correctly segmented ROIs contain all objects to be
detected (pedestrians), but together have as few other objects (none pedestrians) as
possible. By such means, the amount of data that is transferred to the next stages is
reduced. There are plenty of solutions for proposing the pedestrian candidates, starting
from the sliding window approach in a multi-scale manner [11], [23] up to faster and
intelligent solutions [10], [43], [44], e.g., the specialized region proposal networks [45],
[46].

( ROI generation \ / Object classification \
' ' ™)

Image segmentation \ Feature extraction
Acquired image « sliding window B « handcrafted features i.e. HOG, ACF
»{ ¢ motion analysis « self-learned features i.e. CNN
¢ « thresholding ~ 7 J
Image . stefeovision - e ~
preprocessing L region proposal networKSJ Validation
- « SVM
Set of candidates A + Boosting algorithms
selection techniques = neural networks - fully-connected layers
1/ = combined classifiers
« depending on the image g J
segmentation technique \ /
\. J

A 4
Final decision
| Feedback

Figure 14. The general scheme of the pedestrian detection procedure with listed most important
approaches at each step

After the ROI generation, the next is the pedestrian classification stage. This is a
crucial stage as it strongly affects the final quality of pedestrian recognition. The object
classification stage consists of two steps: feature extraction and final validation with the
selected classifier. The feature extraction step brings the most valuable features and
reduces the amount of data that describes the object. In a validation step, the classifier
finally decides which objects are pedestrians and which are not.
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2.4. Region of interest generation

Image segmentation, which is also referred to as foreground segmentation or
candidate generation, extracts the so-called regions of interest from the image avoiding
as many background regions as possible. The segmentation is of remarkable importance
not only to reduce the number of candidates but also to avoid scanning outer regions
like the sky. This stage cannot miss pedestrians, otherwise, the consecutive modules,
e.g., the classifier will not be able to correct the failure.

The image segmentation used for pedestrian detection very often includes a selection
of candidates by pedestrian size constraints. These constraints refer to the aspect ratio,
size, and the position that candidate ROI must fulfill to be considered as a pedestrian
[71, [32].

This section provides an analysis of possible approaches to ROI generation. Then,
two basic thresholding techniques are presented: the global Otsu threshold and the
locally adaptive dual-threshold procedure. These algorithms are also discussed in the
next chapter, therefore a more detailed description is included in the following section.

2.4.1. Analysis of image segmentation approaches

Sliding window

A sliding window technique, as exhaustive scanning approach [11], [23] belongs to
the simplest segmentation procedures. The sliding window selects all possible
candidates in the image according to the pedestrian size constraints without explicit
segmentation. To find pedestrians at different sizes, the scanning window must be
scaled down (or up) after each scan.

The sliding window procedure has two drawbacks: it is very time-consuming and
produces a large number of candidates, which increases the potential number of false-
positive decisions.

An interesting solution to these problems is presented in [47]. The method uses a key
point-centric sliding window with a classifier. In [17], the sliding window operates on
the preprocessed image with luminance saliency, sharpening the edges. It also uses
energy symmetry to speed up calculations.

Another acceleration method [48] uses Markov Chain Monte Carlo sampling to
estimate the probabilistic density distribution of the classifier responses. Then the
search strategy can be adjusted according to the distribution. In [49], the step of the
sliding window is filtered on the optical flow images.

Stereovision

A stereovision was also proposed for IR pedestrian detection, e.g. in [8], [9], [11],
[50]. Stereo systems offer robust detection with such techniques as disparity map or
histogram and can be used to effectively find ROI [11]. However, at least two thermal
imaging cameras are not a viable option for many automotive designers as costs, power
consumption, and physical space are significant factors.

In the Protector system [51] the returned map is multiplexed into different discrete
depth ranges, which are then scanned with the window according to the pedestrian size
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constraints, taking into account the location of the ground plane. If the depth features in
one of the windows exceed a given ratio, the window is passed. Otherwise, it is
canceled. Some authors [9], [50] use the v-disparity representation [52] to identify the
ground and vertical objects. Like consumer monocular FIR cameras, other papers
combine a visual sensor and FIR, but in a stereovision manner. This approach, which
corresponds to sensor fusion, is worth mentioning because of its potential to widen the
range of working conditions, i.e., both in the daytime and night-time.

In [8], single thresholding by entropy maximization is performed, but the next step is
a disparity map calculation (from stereovision), which finally improves the results.

Motion detection

A motion feature in video processing contains practical and discriminative
information. Inter-frame motion and optical flow may be used for foreground
segmentation, primarily in the general context of moving obstacles detection [53].

In [54], the histograms of oriented gradients (HOG) feature on the optical flow
images was computed to get the Histogram of Oriented Flow feature. In [55], the
pedestrian motion information was utilized within an generalized expectation-
maximization framework to generate the candidate pedestrians.

However, the motion-based segmentation requires a fixed position of the camera,
limited background motion, and does not detect standing pedestrians.

Region proposal networks

Another group of image segmentation techniques is the region proposal networks
(RPN) [56], which are based on CNN. The vast majority of these currently developed
techniques are dedicated to color images [20], [45], [46], [57]. However, there are also
some implementations for FIR [18], [19] and multi-spectral imaging [56].

R-CNNs were initially developed in [57]. The high-capacity convolutional neural
networks were applied to bottom-up region proposals in order to localize and segment
objects. The Fast R-CNN proposed in [20] improves training and testing time with a
single-stage training and accelerated fully connected layers. The Faster R-CNN [45]
improves detection time even more by sharing full-image convolutional features with
the detection network to improve the time efficiency of pedestrian detection. Another
solution, YOLOV3 (You only look once) [46] apply a single neural network to the full
image. This network divides the image into regions and predicts bounding boxes and
probabilities for each region.

The authors of [19] proposed to augment thermal images with their saliency maps
and applied them to Faster R-CNN. In [18], a pre-trained YOLOvV3 pedestrian detector
is adapted to detection in the thermal-only domain generative with a data augmentation
strategy.

In general, RPN are very accurate but they are also computationally demanding and
need powerful hardware, e.g., graphic processing units (GPUs) or tensor processing
units (TPUs).
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Thresholding techniques

The last group of ROI generation techniques are techniques based on image
thresholding. They are designed mainly for FIR images, because pedestrians at night
conditions are usually warmer and hence appear brighter than the background in FIR
images. The simple thresholding of the image is a common starting point for extracting
pedestrian candidates. A brightness threshold is selected that separates the foreground
from the background. Then, each pixel is classified according to the selected threshold
value.

The global threshold (calculated once and used for all pixels) can be calculated as an
average value of the difference between the maximum and the minimum image
intensities. The method presented in [21] defines a bright pixel threshold as the
difference between the maximum image intensity and a given constant. A threshold
value is defined from the mean and the maximum image intensity values [22]. In [58], a
threshold value is chosen as the last local minimum of the image histogram before the
saturation point.

In [59], a static threshold is derived with the Bayes classifier performing on a set of
templates known to contain pedestrians.

A well-known adaptive method, called Otsu’s method after the inventor’s name [60],
belongs to the clustering-based image global threshold methods. It assumes a bi-modal
histogram (see Figure 15) with foreground pixels and background pixels and finds the
optimum threshold separating these two classes.

More advanced threshold methods are based on two thresholds. A region-growing
style threshold using two static thresholds is implemented in [61]. The lower threshold
is restricted to areas spatially connected to seed regions resulting from the higher
threshold. An algorithm in [62] also uses two different thresholds. Initially, a high
threshold is applied on the pixel values in order to get rid of cold or barely warm areas,
selecting only pixels corresponding to very warm objects. Then, pixels featuring a grey
level higher than the lower threshold are selected if they are contiguous to other already
selected pixels in a region-growing fashion.

Other types of thresholding solutions are based on locally adjustable thresholds. One
of them is the adaptive dual-threshold (ADT) [7] with a local adaptation facility. This
algorithm works adaptively under various lighting conditions and contrast levels. A
decision threshold is calculated for individual pixels with the knowledge of their
neighborhood.

In the FIR systems, the intensity of the pedestrian additionally depends on the
clothes, their thickness, and their texture. Thus the objects typically are not
homogeneous. To make the pedestrian body as uniform as possible, morphological
operations should be used with thresholding for distortion compensation. The
dimensions of the structuring elements of morphological operation must be adapted to
image resolution.
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Other image segmentation methods

In [63], grey-level symmetry, edge symmetry, and edge density are used and
analyzed to improve the segmentation process. A candidate generation method driven
by the search of the pedestrian head is considered in [64]. Detected ROIs are then
resized based on the distance to the camera and then filtered by its vertical edges
symmetry. In [65], the ROI is extracted based on discrete key points computed from the
phase coherence image using the maximum and minimum moment of covariance.

In [66], the statistical approach for ROI generation is presented. In this solution, a
statistical pixel classifier for head detection is used.

The adaptive fuzzy C-means algorithm is employed in the segmentation step in [43].
The method adaptively estimates the required number of clusters and fuses multiple
clusters to retrieve the ROI candidates. The second central moment's ellipse is used to
prune the set of candidates utilizing the human posture characteristics.

2.4.2. Otsu method
The Otsu (called Otsu after the inventor’s name) [60], [67] is a threshold selection
method from a gray-level histogram. The algorithm returns a single intensity threshold
that separates pixels into two classes (see Figure 15) or even more.
Let an image be divided into a two classes C, (background) and C; (foreground). The
optimal threshold T* is obtained by maximizing inter-class variance:
T* = arg max{a{(T)} @)

1<T<L

where L is the number of gray levels in the image and o?(T) represents inter-class
variance that is defined as follows:

o = Po(T) (o (T) — )% + Py (T) (s (T) — p)? 3)

where u represents the mean level of the image, u, represents the mean level of class
Co, U, represents the mean level of class C;, Py(T) and P;(T) denote the cumulative
probabilities:

T
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Finally, the T* threshold could be used to perform binarization of the image. The
Otsu technique belongs to the global thresholding techniques. Therefore the same
threshold value is used for each pixel.
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Figure 15. Illustrative histogram extracted from Fig. 2 with marked Otsu’s threshold

2.4.3. Locally adaptive dual-threshold
The locally adaptive dual-threshold technique (ADT) initially presented in [7]
(modified version presented in [68]) is a variant of locally adaptive thresholding with
two thresholds: T, (i, j) — lower threshold, T, (i, j) — upper threshold:

m=i+wy
1
T,(,)) = W F1 Z I(m, ) )]
m=i—wy

where wy, is horizontal scanning width (as presented in Figure 16), I(i, j) is a gray-level
input image, 6 is a standard deviation of the neighboring pixels, and 4 is the weight.

In order to produce uniform areas with clear edges, the thresholding algorithm passes
through neighboring pixels with values close to the threshold. A value of the upper
threshold T, (i, j) is defined as a sum of the lower threshold and the standard deviation &§
of the surrounding pixels:
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m=i+wy

1
0(i,j) = Wt 1 Z (I(m, j) — un)?, (10)

m=i—-wy

where: wy, is a scanning width and py, is the mean value of the horizontal neighborhood.

To control the impact of the standard deviation on the upper threshold the weight A is
added.

-
4

Figure 16. The illustrative figure of a pedestrian and the horizontal scanning line

Finally, the segmentation process is defined as follows:

0, ifI(i,j)<TyorlI(i,j) e (T, T,)NnI({i—1,j)=0
sen=f Y ST
1, if I(i,j) >Ty,orI(i,j) € (T, T,) nI(i—1,j) =1
where S(i,j) is the segmented binary image after thresholding. For the pixel values
greater than T, or less than T; (arguments i and j were omitted for simplicity) values 1
and 0 are assigned, respectively. If the pixel value is in the range (T;, T,) the output
value depends on the previous sample in line S(i — 1, j).

The algorithm translates the input gray scale image to the binary image, while white
objects are the potential candidates to be detected as pedestrians and the background is
black.

Examples of thresholding with the ADT method are presented in Figure 17 and
Figure 18. Figure 17 shows the image before and after thresholding using the ADT
procedure. The red plot with diamond-shaped markers in Figure 18 indicates the value
of the intensity (image brightness, temperature of real objects) of one line in the
analyzed frame. The blue and green plots show the lower and higher thresholds,
respectively. It can be seen that both thresholds adjust to the intensity value but with a
much lower frequency (similar to low-pass filtering).

The ADT procedure with horizontal scan lines and its local adaptation separates
objects in the horizontal direction (as shown in Figure 17).
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Figure 17. Thermal image before (left) and after (right) ADT segmentation with marked red line that
indicates the analyzed line in the graph presented in Figure 18
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2.5. Feature extraction

The object classification stage consists of two steps (see Figure 14): feature
extraction and final validation with the selected classifier. The feature extraction step
brings the most valuable features and reduces the amount of data that describes the
object. In a validation step, the classifier finally decides which objects are pedestrians
and which are not.

There are many efficient feature extractors used for detection of pedestrians, starting
with the basic handcrafted features like histograms of oriented gradients [69], local
binary patterns [70], shape context [71], 1D/2D Haar descriptors [72], to plenty of their
modifications [44], [71], [73], [74].

Recently, several efficient variants of the HOG were proposed: integral channel
features (ICF), for which the HOG descriptors are used together with luminance and
UV chrominance components (LUV) [75], the ACF [76] combining HOG channel
feature with the normalized gradient magnitude and LUV color channels, and the
Checkerboards [77], which are modifications of the ICF. They perform filtering of the
HOG+LUYV feature channels. The listed above feature extractors have become the state-
of-the-art approaches for night-vision pedestrian detection [32].

Contrary to the mentioned handcrafted features, CNNs are now very strongly
developed and widely used. The most important CNN models are: AlexNet/CaffeNet
[78], [79], VGG [80], ResNet [81]. They allow for self-learning of features and perform
significantly better than other approaches. On the other hand, due to their complex
structure, they need powerful hardware like e.g. GPUs for real-time computations
otherwise operate much slower.

2.5.1. Histogram of oriented gradients

The HOG feature extraction technique [69] was an important step in the development
of handcrafted features. Nowadays, it is often used as a part of more advanced solutions,
e.g., in the ACF or in the Checkerboards [76], [77]. This method calculates gradients
and forms histograms of the gradients orientation. To improve the reliability of the
HOG, a local normalization is performed. Finally, the ROI is represented by a locally
normalized feature vector constructed from the histograms of orientation.

The first step of this algorithm consists of the calculation of gradients G; and G; in
the horizontal and vertical axes, respectively, with i and j treated for a moment as
continuous variables

ol
. G; di
Vl(l.1)=(GJl,)= al (12)
aj
where
ol  I(i+Ai,j)—1(i — Ai,j)

— ~ 13
di 2Ai (1)
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ol _1(i,j +4)) —1(i,j = A))
aj 24j

(14)

Ai,Aj =1 (15)
The above formula is equivalent with a convolution operation on the image with
filter kernels %[—1 01] and %[—1 01]T (but the factor % can be omitted). After the

gradients are computed, the magnitude and orientation of gradients can be obtained

respectively as
|VI| = /G?+Gj2 (16)

()
6 = arctan| — (17)
Gj

The next step groups the pixels into cells (Figure 19, left-hand, green lattice), which
usually have a square shape. For such cells, the orientation histogram (Figure 19, right-
hand side) is created using orientation and magnitude. The histogram is divided into
nine bins ranging from 0 to 360 degrees or 0 to 180 degrees (the authors claim that for
nine bins, the algorithm works the best). Thus, for each pixel in the cell, based on its
gradient orientation 6, the magnitude |VI| is proportionally divided between two
adjacent bins of the histogram.

After the histograms are calculated, the four adjacent cells are grouped and create a
block (Figure 19, left-hand, red rectangle). In this block, a non-normalized vector v is
created, which contains all histograms in a given block (here in four cells).

10 30 30 70 9% 110 130 130 170

Figure 19. The illustrative image divided into cells and blocks (left) and a histogram of orientation (right)
Therefore, the vector v is locally normalized in blocks to get v, with a formula

\"%

Vhy = —F/——— 18
JIVIE + &2 (18)
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where e is a small constant. Finally, after the normalization, all vectors are combined
into a single feature vector v¢:

Ve = [Vn[11] Vapr 2 -+ Vot gn-1] Va[tm) -
=+ Vn[21], Vn[2 2]s =+ Vn[2 (m~1)]» Vn[2 m]» -
-+ Vn[(1-1)1], Yn[(-1) 2]» === Vn[(-1) (m-1)]» Vn[(1-1) m], --- (19)
< Vn[r 1] V[t 2] - Vall (m=1)) Vo[t m] }

where [, m are numbers of blocks on the image in the vertical and horizontal orientation
respectively.

2.6. Validation

As it was mentioned in the introduction, a typical approach to the validation process
is the use of a single classifier with fixed window size. As a result, all pedestrian
candidates must be resized to the classifier resolution before the validation process can
start [7], [25], [43], [82].

The most popular classifiers are SVM, AdaBoost (used in the ACF detector), neural
networks (including matrices of neurons, self-organizing maps [83], deep CNNs), and
various combinations of them. In paper [84], the AdaBoost classifier is used for initial
selection while the SVM classifier for the final verification. In [85], the combination of
the AdaBoost with the random vector functional link neural network was proposed. In
another work [86] a parallel connection of various classifiers was proposed, trained in a
complementary manner to each other. The result was high accuracy but low speed.

Three-branch structured SVM classifier based on HIK (histogram intersection
kernel) was proposed in [7]. As a result, they achieved increased performance of
detection for various heights of pedestrians. The author of this dissertation deeply
investigated this technique [7] and expanded it to a form of multi-branch classifiers
[87]. Different approach is presented in [88], where a combined classifier was trained
for various pedestrian poses composed of four independent AdaBoost classifiers.

The classification part in the CNN models can be realized with fully-connected
layers. However, others solutions are also used. In paper [39], CNN together with the
AdaBoost classifier is used. The method presented in [13] utilized the deep neural
network for classification purposes using multispectral information.
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2.7. Summary

In general, most modern approaches to night-vision FIR pedestrian detection are
designed similarly to those used for the standard color images. Therefore these
techniques achieve similar computational efficiency. However, in the case of pedestrian
detection with moving camera, i.e., autonomous vehicles, it is much better to achieve
real-time performance without the need of using costly and highly energy-consuming
equipment, like e.g., GPGPU.

At night conditions, it is potentially possible to use segmentation by thresholding.
This approach allows for a significant acceleration of the entire pedestrian detection
process by reducing the ROI area in the image. It uses properties of the FIR spectrum,
mainly in the night-time the pedestrians are warmer, therefore brighter than the
surroundings. Several techniques for the segmentation of thermal images based on
thresholding have been proposed [7], [21], [22], but these techniques do not offer the
state-of-the-art accuracy.

The simple assumption that pedestrians are warmer than the surrounding at night is
not always valid. Many problems arise with thermal images during segmentation, i.e.,
the uneven level of the observed temperature of one pedestrian, as well as the temporary
loss of thermal contrast between the pedestrian and the surroundings. All the above-
mentioned problems should be compensated to avoid the situation that a pedestrian is
missed in ROI and, in consequence, not being detected at the segmentation stage.
Therefore, there is a need to develop a highly efficient FIR image segmentation
algorithm that can offer high accuracy and can compensate common problems that are
associated with the thresholding of thermal images.

Regardless of the ROI generation technique used, the quality of the prepared ROIs is
very important and significantly affects the effectiveness of the object classification
stage. All the advanced segmentation techniques, besides the simplest one, i.e., the
sliding window technique, match the ROIs to the outer pedestrian edges in the image.
Inaccurate matching the edges of ROI to the outer edges of the pedestrian may lead to
ROI covering less than a whole pedestrian. Such too small ROIs may be rejected by the
classifier. This will finally increase the number of falsely negative results.

As mentioned in the Introduction, the selection and tuning of the object classification
technique also have a significant impact on overall pedestrian detection efficiency. For
classification purposes (not only in the context of pedestrian detection), the baseline
approach is the use of a single classifier with a fixed input resolution [11], [25], [43]. In
the simplest case, to detect pedestrians of various sizes with a single, fixed-size
classifier, the scanning window is scaled and shifted through an image. As a result, all
pedestrian candidates must be resized (upscaled or downscaled) to the classifier
resolution.

The classifiers are often used without an adaptation of the input resolution to the
resolution of the specific dataset or camera, which unfortunately is a common practice,
especially in the solutions with a complicated structure of the classifier. An example of
a very complicated structure of the pedestrian detector is a deep convolutional neural
network (CNN) [24], [25], [39], [43], [89]. In the case of CNN, any change in the
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resolution of the CNN input layer causes the necessity of adaptation in the other layers.
It is quite complicated, and therefore designers try to omit it. For example, in the
proposed deep CNN by Kim et al. [24], various grayscale pedestrian images were
resized (mainly upscaled, as the smallest pedestrians had 50 pixels in height only) and
artificially colorized (!) to fit the input size of the typical, pre-trained model of the CNN
detector, which required 224x224 pixels and the color RGB input image format. Such
solutions, although simple in implementation, are greatly ineffective.

In this context, it should be emphasized that the high-resolution classifiers often, but
not always, offer slightly higher detection performance but always impose additional
computational overhead. Formally increasing the pedestrian candidates’ resolution does
not increase the information content and may have a negative effect during the classifier
training. As a result, this can reduce efficiency, especially when there are largely
disproportionate pedestrian samples in the training set. Finally, in order to achieve more
efficient and faster solutions, there is a need to design an appropriate procedure for
tuning of the object classification stage parameters such as input resolution of the
classifier.
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3. ROI generation procedure for night-vision FIR images

This chapter presents a technique of ROI generation for night-vision FIR images.
The first section of this chapter presents the architecture of the proposed solution. The
following sections present: the technique of double and triple thresholding, the
technique of regions enlargement, which significantly increases the accuracy of the
segmentation process, and a set of proposed techniques for filtering ROI candidates for
their quick initial selection. Then, the calibration process of the proposed ROI
generation procedure is presented with experiments conducted on CVC-14 and KAIST
datasets: the selection of values of thresholds and the selection of parameters of the
candidate selection process. The summary is presented in the last section of this chapter.

3.1. Algorithm architecture

The algorithm of ROI generation, which is proposed by the author of this dissertation
is dedicated to infrared images at night and is based on the assumption that pedestrians
are usually brighter than their surroundings. The double and triple thresholding
techniques are used for image segmentation to ensure local adaptation in the image.
Thanks to the technique of regions enlargement and dividing wide objects, it is possible
to significantly increase pedestrian detection accuracy. In order to speed up the ROI
generation process and the entire pedestrian detection process (by reducing the number
of ROIs per image frame), a set of candidates selection techniques has been proposed. A
detailed diagram of the presented approach is shown in Figure 20.
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Figure 20. Diagram of the proposed ROI generation approach for thermal images at night
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In the procedure, the thresholding process is performed two or three times
(depending on the selected version) with various threshold values (see Section 3.2).
This process should first be done with a lower threshold and then with a higher one.
After each thresholding, an opening operation is performed to remove the smallest
objects. Then, objects that constitute inseparable areas in the image are detected.
Objects are then pre-selected to speed up the algorithm (described in Section 3.5).

After image segmentation, all ROIs are then summed up, and then duplicates are
removed from the set, which could be created by multiple thresholding of the same
image (see Section 3.4). Then the set of ROIs is extended with the new additional areas
obtained by the regions enlargement technique. It creates additional ROIs by joining all
pairs of regions with the same horizontal coordinates (this technique is described in
detail in Section 3.3). As a result, the set of ROIs is significantly expanded.

The resulting set of ROIs for a given image is filtered at the candidates selection step
using several techniques and parameters (described in Section 3.5). In order to improve
accuracy and detect groups of pedestrians, the wide regions (with a low height-to-width
ratio) are divided into smaller ROIs (as presented in Section 3.6).

3.2. Double and triple thresholding procedure
As mentioned in the introduction, the thresholding techniques can be divided into the
global techniques with one fixed threshold or locally adaptive techniques, where the
threshold is calculated separately for each pixel independently.
Several important problems are related to the thresholding process (some of them can
be seen in Figure 21). The most important are:

e splitting of objects into many smaller objects, mainly due to uneven infrared
radiation of clothed humans,

e connecting two or more pedestrians into one object, or stitching various
objects (e.g., pedestrians with non-pedestrians),

e variance in ambient temperature (the camera often automatically adjusts the
dynamic range, i.e., the minimum and the maximum values) to obtain the
full-scale image,

One fixed, global threshold, in most of the cases cases, is not enough to reach the

assumed pedestrian detection accuracy. It is because for a different part of the image,
also different thresholds should be used. The Otsu technique [60], which gives some
global adaptability, still does not offer local adaptation. To overcome this problem, a
local adapting threshold technique was proposed in [7]. However, the threshold is
calculated for each pixel, and in consequence, the algorithm performs slowly.

To achieve both: high accuracy and high computational efficiency of the image
segmentation, the author proposes a technique of multiple (double or triple) image
thresholding with Otsu-based global thresholds.

It is proposed to process the image twice (or three times with additional Ty
threshold): once with T global threshold and then with the Ty global threshold (as
presented in Figure 20). The thresholds should be calculated in the following manner:
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T, = Totsu + Acar — B, (20)
Tv = (T, +Ty)/2, (21)

Ty = Totsu + Acar + B, (22)

where: Tosy 18 Otsu threshold, a.,¢ — is a constant adjusting factor, f — is a difference
factor.

The Otsu technique is used to find a baseline threshold to adapt to changes in image
dynamics. Based on this threshold value, the thresholds T, and Ty are then calculated
with two additional factors a.,rand £ (their values are adjusted to the camera type
individually, as presented in section 3.8).

As a result, the proposed technique is a hybrid thresholding technique. Image
binarization is performed using one global threshold for all pixels, but it is performed
multiple times with different threshold values.

With this technique, thermal contrast is preserved in different parts of the image (see
Figure 21), allowing for more accurate pedestrian detection while maintaining high
computational efficiency.
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Figure 21. Illustrative examples of results of thresholding with lower (middle column) and higher
threshold (right column), original images (left column) were taken from the CVC-14 dataset
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3.3. Regions enlargement

A new regions enlargement technique is proposed to compensate problem with the
splitting of objects into many smaller objects, mainly due to uneven infrared radiation
of clothed humans (as can be seen in Figure 21). Background objects, such as buildings,
cars, animals, and lights, can be close to the temperature of pedestrians. The desirable
difference in magnitude of thermal energy between pedestrians and background objects
is also affected by the weather. In low ambient temperature, pedestrians typically wear
warmer clothes. This leads to lowering the measured thermal energy by the camera.

Additionally, it increases the variance of the thermal magnitude of a single
pedestrian. Parts of the bodies of pedestrians (Figure 22 and Figure 23a, especially
heads, arms, and legs) can have much higher intensities (due to relatively high body
temperature) than the rest of the bodies covered by cloths with a relatively cold surface.
Using typical segmentation methods may result in splitting the pedestrian bodies into
parts, putting them to separate samples (see Figure 23b and red rectangles in Figure 23c
and Figure 23d).

Taking into account that the pedestrians to be detected typically have vertical
postures (although exceptionally in abnormal situations, they may also have horizontal
postures), it is proposed to enlarge the number of the analyzed samples by additional
samples composed of all possible pairs of original samples aligned vertically. By this
means, for all pairs of samples, e.g., a pair s;(Xq,y1, Wy, hy) and s,(x5, Vo, Wy, hy),
which have a common part in the horizontal coordinate axis a new merged sample
S3(x3,y3, W3, h3) is created, which covers the areca of both samples and the area
between them (where Xx;,y; are image coordinates taken from the upper-left corner).
Assuming that x;,y; are the smallest coordinate values and w;, h; are the width and
height, respectively of the sample s;, i = 1,2, fore.g. x, > x; and y, > y;, w3 = x5, —
Xy +wy, and hy = y, —y; + h,. An example of vertical alignment is shown in Figure
22. Notice that yellow and green rectangles assign original samples, while the red
rectangles correspond to the new merged samples.

Figure 22. Two illustrate examples of regions enlargement idea: input frame (left), binary image after
thresholding (right) with marked component (green and yellow) and enlarged regions (red)
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Figure 23. Thresholding-based image segmentation with regions enlargement: (a) input frame, (b) binary
image after thresholding, (c) and (d) segments (after thresholding— red rectangles, after regions
enlargement — violet rectangles)

d)

3.4. Duplicate detection

After image segmentation with different thresholds, all detected ROIs are then
summed. Therefore, duplicate objects may appear in the ROI set.

To remove duplicates from the summed set of ROIs, all ROIs extracted after the
second and third thresholding are compared to the ROIs obtained after the first
thresholding (with the lowest threshold). For an object (objl) to be considered as a
duplicate of another object (obj2), the following conditions must be met:

Aobjinobj2
> Gsim (23)
obj2
and
A .
Usim <~ < 2 = Qi (24)
obj2

where Agpj1 and Aoy, are the areas of the compared objects (in pixels), Aopjinobjz 1S the
area of the intersection of these objects, a gy, 1s the similarity coefficient.

This technique is used before the regions enlargement but is also considered as a
candidates selection technique because it reduces the number of ROIs.

37



3.5. Candidates selection

To speed up the pedestrian detection process, a selection of the obtained ROIs is
performed. The use of proposed techniques of coarse selection of pedestrian candidates
can significantly reduce their number, having a minor impact on the pedestrian
detection accuracy of the segmentation process. At the same time, it is possible to
increase the precision of the object classification step by the fact that with a smaller set
of ROIs, the classifier will less frequently make erroneous, false-positive detection.

A set of techniques is proposed that is adapted to infrared images. The candidate
selection process is divided into two steps. Pre-selection of candidates is carried out
immediately after an image segmentation to eliminate a large number of the smallest
and flattest objects. This includes three filtering techniques: selection by a minimum
area of the object, minimum height-to-width ratio filtering, skew objects filtering.

The main candidates selection step is performed after the regions enlargement and
includes the following techniques: minimum and maximum height-to-width ratio,
selection by minimum height in relation to the object's position in the image
(perspective filtering), selection by minimum object area, and homogeneous areas
filtering.

The simplest selection techniques are performed first and the more computationally
expensive last to optimize the effectiveness of the candidate selection process. To
properly adjust these selection techniques, it is necessary to perform the calibration
process.

3.5.1. Height-to-width ratio filtering

Standing or walking pedestrians appear mostly as vertical regions in the image.
According to this, it is not necessary to accept ROIs, which are not vertical. In this case,
the candidates are filtered by the object aspect ratio ayyy (height to width ratio). For
pedestrians, this ratio is in the range of 1:1.3 to 1:4 according to their actual distribution
in a given dataset.

Despite the presented constant distribution, there is a need to calibrate parameters:
minimum (@uw,,,) and maximum height-to-width ratio (apw,, ) for each
segmentation technique. The detected bounding box of ROIs does not always accurately
reflect the pedestrian area in the image. In addition, detection of groups of pedestrians is
also performed in the proposed ROI generation technique. Therefore, lower values of
the height-to-width ratio are also accepted (see an explanation in Section 3.6).

3.5.2. Perspective filtering

In the discussed applications, the camera is mounted in the front of the vehicle. Thus
constraints relating to this perspective can be added.

There is no need to analyze very small objects near the camera. Pedestrians far away
from the camera appear smaller in the image. However, their vertical position in the
image depends on the distance from the camera, their height, focal length, and the angle
at which the camera is set. To avoid a need to set all these parameters, it is proposed to
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roughly limit the minimum possible height in relation to the object's position in the
image with the formula:

hmin = an - (y + h) (25)

where: (x,y) are coordinates of the upper left corner of a candidate in the image, h — is
the height of the object (in pixels), ay, - is the height coefficient.

As a result, the value of ay, should be selected at the calibration stage of the proposed
ROI generation algorithm.

3.5.3. Homogeneous regions filtering
Some of the ROIs can be easily removed due to their homogeneous appearance in the
image. Such regions often exist as a part of wide objects, not related to pedestrians.
Moreover, the thermal contrast between pedestrians and surroundings is usually high at
night. Thus, it is proposed to calculate a standard deviation of ROI (in the gray-scale,
taken from the original image) and remove some of them with the intensity below the
threshold:

— [Iyx+wyJth s N N2
The decision is taken using the formula:

o> a, 27)

where: N is the total number of pixels in the region, w, h are width and height of the
ROI, I(i,j) is the pixel's intensity in a gray-scale image, and pu is the mean value of
ROI. The homogenous coefficient a; needs to be selected at the calibration stage.

3.5.4. Skew objects filtering

In some cases, after the segmentation process, there are objects whose shape
significantly differs from the shape of a pedestrian. An example is the curbs in Figure
21. Their temperature is higher than the ambient temperature, and after the
segmentation process (even with a higher threshold), the areas of these objects remained
in the binary image. In the case of very flat objects, they could be rejected using a
height-to-width ratio. However, objects with a skew shape are not removed with this
parameter (due to a similar aspect ratio to the pedestrians).

Therefore, to detect skew objects, it is proposed to use scale and translation invariant
second-order normalized central moments 7,q, g2 [90], [91], which are obtained
according to the following formula:

Hpq -
—
#00(“%) .

Mpg =
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where u,, is a central moment calculated with the formula:
g = ). ) (X =D = DU (x,Y) 9)
x y

where X and y are components of the object centroid {x, ¥}, I(x,y) is the intensity of
the binary image pixel with coordinates {x, y}.
The final decision is taken using:

M20 > Ay N Noz > Qy (30)
and
Hoo

where a,, is the skew threshold for normalized central moments, ay is the threshold for
fill factor, w and 4 is the width and height of the object.

An additional condition related to the fill factor allows only thin objects to be
rejected. Its value was assumed to be ay = 1/3. If the above conditions are met, the
object is removed from the set of ROIs.

3.6. Division of wide regions

Segmented groups of pedestrians sometimes form a single region in the binary
image. This can be seen in Figure 21 (last row), where three pedestrians, after image
thresholding with a lower threshold form one object, and after an image thresholding
with a higher threshold, two of them still form a single object.

In some cases, the pedestrians are detected and included in the set of ROIs, but they
are incorrectly represented as one pedestrian candidate. Such ROI is wider than this
with a single pedestrian and therefore tends to have a much lower height-to-width ratio
and can be rejected with ayy ,  parameter. In addition, the classifier is usually trained
to classify single pedestrians, so classifying an object with several pedestrians may
return a negative result. Additionally, the scaling of the wide ROI to the classifier
resolution may result in a significant change of the aspect ratio of ROI (e.g., a change
from 0.7 to 2) and then in an incorrect classifier decision.

To solve this problem, it is proposed to divide the wide ROIs into smaller regions.
The division is made vertically according to the following rules:

e split into two ROIs for ayyy in the range of 1:1.8 to 1:1.2,
e split into three ROIs for ayyy in the range of 1:1.2 to agw,;, -

The boundary values (1.2 and 1.8) were selected experimentally on the basis of the
distribution of ROIs which included two or three pedestrians.

For ROI with a resolution of 90x100 (widthxheight), 3 additional ROIs with
resolutions of 30x100 each are created. In addition, the large ROI is not rejected and
remains in the set of ROIs. As a result, the value of the parameter ayw , should be
smaller than it results from the distribution of the height-to-width ratio of pedestrians.
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3.7. The adaptive limiting of the number of ROIs

The number of ROIs for the proposed ROI generation method may increase
significantly when a lot of warm objects appear in the infrared image. In this case, the
number of ROIs will be quite large, and with the regions enlargement technique applied,
it can even increase significantly. As a result, the pedestrian detection process may
temporarily slow down because the classifier (at object classification stage) has many
more ROIs to process.

To ensure better stability of the pedestrian detection algorithm, it is proposed to
optionally limit the maximum number of ROIs per one image frame along with the
lRois,,,, Parameter. With this parameter, it is possible to stabilize the computational
efficiency of the entire pedestrian detection process, if required. This minimize a
variation of the processing time per frame, what is especially important in the real-time
solutions.

After the ROI generation procedure, it is checked if the number of detected ROIs is
greater than lggs,. - If so, the candidates selection process is performed again.
However, this time with a changed, more restrictive values of parameters (smaller or
larger, depending on type) of candidates selection process by 10% (the full set of
changed parameters is presented in Table 6Table 5). As a result, more ROIs are rejected
with each step. The procedure is repeated until the required limit of ROIs is reached.

This procedure may reduce the pedestrian detection accuracy, so it should be used
carefully with a quite high value of the parameter lrois,,, (the impact of this technique
on the accuracy of the segmentation process is tested in Section 3.8).

3.8. Algorithm calibration

This section presents the calibration process of the proposed ROI generation
procedure for thermal images along with experiments for two datasets: CVC-14 and
KAIST (the datasets are described in detail in Section 2.2). These datasets were selected
because they offer thermal imaging sequences (with annotated pedestrians) recorded in
night conditions from the vehicle.

In the beginning of the experiments, thresholds were selected for each dataset
individually. In both cases, the proposed segmentation procedure with double and triple
thresholding was compared. Segmentation with one threshold was also added to the
comparison. Moreover, to measure the effectiveness of the regions enlargement
technique, each time the proposed ROI generation process was performed with and
without this technique.

In addition, thresholds calculated based on the Otsu method (as presented in Section
3.2) were also compared to the thresholds with fixed values.

Then, in the next step, the values of the parameters of the candidate selection process
were selected for each dataset. All parameters values of the proposed ROI generation
process are presented in Table 5.
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Table 5. Set of parameters of the proposed ROI generation technique

Type Name of the parameter Symbol
constant adjusting factor Qcaf
Otsu-based thresholds
difference factor B
Initial minimum object area Ainit
ROIs selection skew threshold a,
minimum ROI area ARror
minimum height-to-width ratio AHW i
maximum height-to-width ratio AHW oy
Candidates selection similarity coefficient Qgim
homogeneous coefficient Ay
height coefficient an

maximum number of ROIs per one image  lroisy,.,

3.8.1. Methodology for evaluating the results
To present the results of experiments, a standard Caltech methodology for pedestrian
detection was adopted from [92]. To measure the accuracy of detecting pedestrians, the
miss rate (MR) is used together with false-positives per image (FPPI), the number of
selected ROIs per frame (PR), mean calculation time (MCT), and frames per second
(FPS) metrics, which are calculated with the following manner:

MR = falsly rejected pC.)S‘L'tl've samples (32)
number of positive samples
_ total number of selected ROls (33)
"~ number of tested frames
FPP] = falsly accepted negative samples (34)

number of tested frames

total calculation time
MCT = (35)
number of tested frames

EPS = number of tested frames (36)
total calculation time

where positive samples are those related to pedestrians.

The miss rate efficiency of the tested ROI generation procedure was verified as
follows: a single pedestrian must be selected as one window, and the ROI bounding
rectangle must cover at least 40% of the pedestrian area (based on dataset annotations).
Additionally, it must not be stitched with other objects like other pedestrians, cars, trees,
houses, etc. Such low threshold value (40%) is acceptable, because the area of
pedestrians annotations (provided by the authors of dataset) is often significantly larger
than the real pedestrian area in the image. Moreover, pedestrians sometimes does not fit
perfectly into the ROI in total, and ROI could be a bit smaller than the pedestrian area
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(but it is still possible to correctly classify such ROI), this problem is discussed with
proposed solution in Chapter 4.

3.8.2. Calibration on CVC-14 dataset
The initial values of parameters of candidates selection were selected experimentally,
and their values are presented in Table 6. The performed tests required candidates
selection techniques from the very beginning because without these techniques, the
number of generated ROIs would be very large.

Table 6. Pre-selected parameters values for the CVC-14 dataset

Type Name of the parameter Symbol Initial values
Initial minimum object area Ainic 30 pixels
ROIs selection skew threshold a, 0.14
minimum ROI area ARror 250 pixels
minimum height-to-width ratio AHW i, 0.9
maximum height-to-width ratio AHW ax 6.5
Candidates selection similarity coefficient Qsim 0.65
homogeneous coefticient Qg 28
height coefficient an 0.45
maximum number of ROIs per one image  lrors .y 50

Selection of thresholds

The experiments with the selection of thresholds were performed for the proposed
ROI generation procedure.

The results of the single thresholding are shown in Figure 24 and Figure 25, and the
results for the double and triple thresholding are presented in Tables 7-14. The summary
of the best results for double and triple thresholding is presented in Table 15.
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Figure 24. Miss rate for various threshold values for the CVC-14 dataset with a single fixed threshold (in
legend: single — denotes segmentation without regions enlargement, single-RE — denotes segmentation
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Figure 25. Miss rate for various thresholds for the CVC-14 dataset with a single Otsu-based threshold (in
legend: single — denotes segmentation without regions enlargement, single-RE — denotes segmentation

with regions enlargement)
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Table 7. Miss rate [%] for various thresholds for the CVC-14 dataset with double fixed
thresholds and with regions enlargement

Ty
T,

120
125
130
135
14
145

o

15
155
16

o

o

165
17

o

175
18

o

Ty
T,

120
125
130
135
140
145
150
155
160
165
170
175
180

190 195 | 200 205 210 215 220 225

25.3 29.7 35.8 42.6

194 207 218 200 285 331 407 482

230
56.0
50.3
45.9
41.6
38.6
33.9

128(1311 153 17.0 205 247 300
14513212119 126 138 163 196 201 283

235
66.8
62.5
58.0
52.6
47.4
39.7
35.9

25.9

240
79.5
73.5
69.1
63.2
54.9
45.9
41.0
32.8
29.3

176 163 154 147 145 151 17.3 194 22.1 248 281
189 175 164 153 156 155 17.0 189 213 245 269

25.6

27.3

220212 202 192|194 187 208 217 237 252 268

Table 8. Miss rate [%] for various thresholds for the CVC-14 dataset with double fixed
thresholds and without regions enlargement

190
65.3
62.2
59.6
55.8
51.1
46.6
45.4
44.3
45.5
48.2
52.9
58.9
63.1

195
68.0
64.6
61.8
58.0
53.0
48.2
46.7
45.0
46.1
48.5
52.9
58.8
62.7

200
70.9
67.1
64.1
59.7
54.5
49.5
47.8
45.9
46.6
48.9
53.1
58.8
62.7

205 210 215 220

73.1
69.2
65.9
61.1
55.7
50.6
48.9
46.4
47.1
49.2
53.0
58.8
62.7

76.9
72.9
69.6
64.7
59.3
53.8
51.8
48.8
48.9
50.1
53.8
59.5
63.4

80.2
76.2
72.9
68.0
62.4
56.9
54.6
51.1
50.2
51.5
54.8
60.3
64.2

82.7
78.7
75.4
70.4
64.7
58.5
55.7
52.2
51.3
52.1
55.4
60.9
64.6

225
85.1
80.9
77.2
72.3
66.2
59.7
56.6
52.8
51.7
52.5
55.8
61.2
64.7

230
88.1
83.5
79.5
74.1
67.5
60.4
57.2
53.4
52.1
52.8
56.1
61.5
65.0

235
91.9
86.9
82.4
76.0
68.6
60.8
57.3
53.4
52.2
52.9
56.2
61.5
65.1

240
92.3
87.3
82.8
76.3
68.7
60.8
57.3
53.4
52.2
52.9
56.2
61.5
65.1

245
89.0
82.2
76.0
69.4
60.2
50.1
45.0
35.8
315
29.4
27.7
28.3
27.5

245
92.3
87.3
82.8
76.3
68.7
60.8
57.3
53.4
52.2
52.9
56.2
61.5
65.1

250
89.0
82.2
76.0
69.4
60.2
50.1
45.0
35.8
31.5
294
27.7
28.3
27.5

250
92.3
87.3
82.8
76.3
68.7
60.8
57.3
53.4
52.2
52.9
56.2
61.5
65.1

Scale

30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0

Scale

30.0

40.0

50.0

60.0

70.0

80.0

90.0
100.0
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Table 9. Miss rate [%] for various thresholds for the CVC-14 dataset with double Otsu-based
thresholds and with regions enlargement

Acaf

30
35
40
45
50
55
60
65
70
75
80
85

10

90

12

14

95

39.7

37.5

35.7

16

18 20 22 24 26 28 30 32

33.6 32.9 30.4 29.9 28.9 28.8 28.5 28.8 28.7

Scale

30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0

Table 10. Miss rate [%] for various thresholds for the CVC-14 dataset with double Otsu-based
thresholds and without regions enlargement

acafB 8 /10 12 14 16 18 (20 22 24 26 28 30 32 Scale
30 46.2 44.1 44.0 43.1 439 45.3 47.8 49.9 52.6 56.0 57.3 60.2 63.9
35 441 43.0 42.4 43.4 443 46.5 49.4 51.7 54.5 57.6 60.7 62.8 63.6
40 44.4 432 429 44.5 46.0 48.0 50.3 53.4 56.2 57.3 59.2 60.8 62.0
45 45.7 45.4 459 458 46.7 49.0 50.1 51.7 53.5 54.7 56.1 57.3 59.0 30.0
50 489 48.0 47.4 47.3 48.1 48.5 47.2 47.8 49.5 50.2 52.9 55.1 56.7 40.0
55 53.0 51.5 49.6 48.2 47.4 47.2 46.6 47.1 47.1 47.9 50.1 51.6 55.3 50.0
60 579 55.1 52.7 51.0 49.2 48.2 47.9 47.0 47.3 48.6 50.2 51.6 53.1 60.0
65 63.0 61.0 58.4 55.7 54.0 51.6 50.6 49.8 49.9 50.4 50.8 51.4 52.8 70.0
70 68.6 66.1 63.4 62.4 59.6 57.4 55.8 53.8 52.8 52.0 51.7 51.8 51.9 80.0
75 71.4 70.6 69.9 67.6 65.2 63.5 61.8 59.6 57.2 56.0 54.4 54.2 535 90.0
80 73.7 73.0 72.5 71.7 71.1 69.8 67.3 65.0 64.3 61.5 59.3 57.8 55.9 100.0
8 747 745 74.0 73.9 73.5 73.0 72.7 71.8 69.4 67.0 65.4 63.6 61.1
90 77.5 76.7 75.5 75.0 74.9 74.4 74.0 73.9 73.2 72.8 71.1 68.5 66.0
95 81.5 79.4 78.2 77.2 76.4 75.4 75.0 74.6 74.5 74.2 73.8 73.3 72.2
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Table 11. Miss rate [%] for various thresholds for the CVC-14 dataset with triple fixed
thresholds and with regions enlargement

Ty
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Scale
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Table 12. Miss rate [%] for various thresholds for the CVC-14 dataset with triple fixed
thresholds and without regions enlargement

Ty
T,

120
125
130
135
140
145
150
155
160
165
170
175
180

190
40.8
38.9
39.4
37.1
37.8
37.2
38.8
40.9
43.0
45.9
51.7
58.5
63.0

195
40.9
40.9
39.5
39.4
38.3
38.0
39.7
40.5
42.6
46.1
51.3
58.2
62.4

200
42.8
41.2
41.9
40.3
40.1
39.2
40.2
40.4
42.9
46.3
515
58.0
61.9

205 210 215 220

43.0
43.5
42.8
42.3
41.8
39.9
40.3
41.1
43.4
46.4
51.6
57.5
61.7

46.3
45.3
45.8
45.6
443
41.4
42.5
42.2
44.1
47.3
51.9
57.9
62.0

48.3
48.6
49.6
48.1
45.7
43.7
44.0
43.2
45.1
47.8
52.6
58.4
62.3

51.2
52.3
51.7
49.4
47.5
44.4
44.1
44.0
45.2
47.9
52.6
58.3
62.7

225
54.6
54.2
52.6
51.3
48.5
45.0
45.3
44.2
45.3
48.3
52.7
58.8
62.7

230
56.8
55.3
55.0
52.6
49.4
46.5
45.4
44.5
46.1
48.4
53.1
58.9
62.7

235
57.7
57.6
56.1
53.5
50.9
46.6
45.8
45.0
46.1
48.9
53.1
58.8
63.2

240
59.9
58.7
57.1
55.0
51.1
47.1
46.7
45.2
46.6
49.0
53.0
59.3
63.4

245
61.1
59.7
58.7
55.8
51.8
48.2
47.0
45.9
46.7
49.2
53.5
59.5
63.7

250
62.3
61.3
59.6
56.5
53.0
48.5
47.8
46.0
47.1
49.8
53.8
59.9
64.2

Scale

30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0
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Table 13. Miss rate [%] for various thresholds for the CVC-14 dataset with triple Otsu-based
thresholds and with regions enlargement

ol
Xcaf
30 -------------
35167 161157 150 146 146 137 136 123 116 116 114 114
40 150 144 139 130 125 115 107 103 105 99 |96 100 104
4 -=-----------

8 208203191 158 156 148 144 148
9 237230 221 211 205 196 190 180 17.2 168 162 160 151
245 202 233 221 214 204 203 194 183 177 172

95 26.7 25.5

10 12 14 16 18 20 22 24 26 28 30 32

Scale

30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0

Table 14. Miss rate [%] for various thresholds for the CVC-14 dataset with triple Otsu-based
thresholds and without regions enlargement

B
%8 10 12 14 16 18 20 22 24 26 28 30 32

30
35
40
45
50
55
60
65
70
75
80
85
90
95

38.8 39.5 40.9 40.8 41.8 43.6 45.1 45.2 45.2 443 44.6 449 448
39.5 39.9 409 41.6 42.4 42.1 41.8 42.2 42.7 43.2 43.4 43.6 444
38.8 39.3 39.4 40.1 39.9 40.7 40.8 41.3 41.3 42.4 43.0 44.1 45.1
38.8 38.7 38.6 39.0 39.4 39.9 41.2 42.0 42.5 43.4 44.2 449 46.0
39.2 39.9 39.2 39.9 40.6 41.0 42.0 42.8 43.9 45,5 46.6 47.2 48.2
42.2 41.7 41.3 42.1 42.0 43.4 44.6 45.6 46.3 47.5 48.6 50.2 51.4
44.2 43.7 44.0 44.3 439 44.2 45.8 459 47.8 49.0 50.1 51.8 52.7
47.7 46.5 46.6 46.0 45.8 46.8 46.8 47.2 48.5 49.4 51.2 53.0 54.2
51.3 49.8 48.4 47.7 46.9 46.0 46.2 47.1 47.3 46.9 47.4 49.1 50.1
58.1 55.3 53.5 51.3 50.2 48.5 47.5 47.2 46.9 46.5 47.0 46.6 47.2
63.2 62.3 59.3 56.9 55.0 52.5 50.9 49.5 48.5 47.8 47.0 47.0 47.5
69.4 67.1 64.5 62.8 61.0 58.5 55.7 53.8 51.6 50.6 49.2 48.4 48.3
72.471.6 71.0 69.3 66.5 64.0 62.9 59.9 57.7 55.8 53.5 52.2 51.0
73.8 73.6 73.0 72.1 71.5 70.4 68.1 65.4 63.7 61.8 59.4 56.7 55.3

Scale

60.0
70.0
80.0
90.0
100.0

48



Table 15. Best experimental results (based on lowest MR value) obtained for the CVC-14
dataset with the proposed ROI generation with double and triple thresholding and with region

enlargement
Double thresholding Triple thresholding
Ty, 155 155 150 155 130 135 135 120
f Ty 205 200 200 210 205 205 210 205
X MR [%] 11.9 121 129 129 80 83 84 84
]]; PR 19.2 19.1 19.8 18.6 27.1 26.7 299 27.7

MCT(*)[ms] 7 7 7 7 16 15 14 17

Acaf 60 60 60 65 45 40 45 50

B 24 20 24 22 40 42 44 40

MR [%] 146 147 15 151 94 96 96 9.7

cwn -0

PR 181 17.8 174 16.8 269 281 27.5 25.1
MCT(*) [ms] 7 7 6 6 18 21 18 17

(*) The mean calculation time MCT was calculated for single-core of Intel Core i7-870 CPU

Presented results of the selection of thresholds (Figure 24 and Figure 25 and Tables
7-14) show that the accuracy of the proposed ROI generation procedure with double and
triple thresholding is much higher than with the single thresholding. The difference in
the achieved MR values equals to 18.7% (between lowest MR values for single and
triple thresholding). Therefore, no further analysis for this dataset will be performed for
single thresholding.

The regions enlargement technique has also a significant impact on the MR
coefficient. Thanks to this technique, it was possible to lower significantly the MR
parameter, e.g. with double thresholding and fixed thresholds, the MR value decreased
from 46.4% to 11.9% for thresholds values T;, = 155 and Ty = 205 (see Table 7 and
Table 8), with triple thresholding and fixed thresholds, the MR value decreased from
42.8% to 8.0% for thresholds values T;, = 130 and Ty = 205 (see Table 11 and Table
12). A similar tendency can be observed in the case of Otsu-based thresholds.

The use of the triple thresholding also reduces MR compared to double thresholding.
The difference is approximately 3-5%, e.g., for the triple thresholding with fixed
thresholds, the MR decreased from 11.9% to 8.0% compared to the double thresholding,
and for the triple thresholding with Otsu-based thresholds, the MR decreased from
14.6% to 9.4% compared to the double thresholding (see Table 15). Moreover, it is also
important that the MR value is more stable, less dependent on the threshold values for
triple thresholding (see Tables 7-14). On the other hand, the mean processing time MCT
for the triple thresholding increases significantly compared to the double thresholding,
from approximately 7 ms to 17 ms, and the number of selected ROIs per frame
increases from approximately 18 to 27.
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The experiments also show that using the Otsu-based thresholds approach is slightly
less advantageous than the fixed-based thresholds approach, e.g., the MR value for
Otsu-based thresholds is higher for triple thresholds and equals to 9.4% compared to
8.0% for fixed-based thresholds (see Table 15). However, the use of Otsu-based
thresholds is a more reliable solution due to the possibility of adapting to changes in
image dynamics.

Candidates selection

In the next step, a plenty of experiments were conducted to verify the impact of
changes in the values of candidates selection parameters on the values of MR and MCT
metrics and to select sets of optimal parameters values for the double and triple
thresholding.

The initial values of tested parameters were selected experimentally and their values
are presented in Table 16Table 6. The results of the experiments are presented in the
graphs in Figure 26 and Figure 27.
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Figure 26. Miss rate [%] and mean calculation time [ms] for different values of candidates selection
parameters for CVC-14 dataset, part 1
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Figure 27. Miss rate [%] and mean calculation time [ms] for different values of candidates selection
parameters for CVC-14 dataset, part 2

Table 16. Selected parameters values for the CVC-14 dataset

Name of the parameter Symbol [Initial values balanced best accuracy
minimum object area Ainic 30 pixels 15 pixels 9 pixels
skew threshold ay, 0.14 0.13 0.14
minimum ROI area Aror 250 pixels 180 pixels 150 pixels
minimum height-to-width ratio AW, 0.9 0.9 0.9
maximum height-to-width ratio AHW 6.5 6.5 6.5
similarity coefficient Asim 0.65 0.65 0.8
homogeneous coefficient g 28 24 20
height coefficient an 0.45 0.4 0.35
maximum number of ROIs per one image  lrois,, 50 50 50
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Table 17. Best results obtained for CVC-14 dataset with proposed ROI generation with
adjusted values of candidates selection parameters and with various maximum number of ROIs
per one image

lRots ey = 50 Irots,,,, = 150
Double Triple Double Triple
thresholding thresholding thresholding thresholding
balanced best balanced best balanced best balanced best
accuracy accuracy accuracy accuracy

Ty, 155 155 130 130 155 155 130 130

l; Ty 205 205 205 205 205 205 205 205
X MR [%] 6.7 6.2 5.6 8.7 5.7 32 22 1.2
]]; PR 27.9 38.1 34.9 41.2 30.6 57.5 48.5 85.1
MCT [ms] 11 34 30 111 11 22 24 82
qcaf 60 60 45 45 60 60 45 45

(0] B 24 24 40 40 24 24 40 40
: MR [%] 7.3 6.6 6.7 9.9 6.8 4.1 29 1.4
U PR 26.9 38.2 35 40.1 28.5 53.4 49.4 85.8
MCT [ms] 11 27 32 104 10 18 24 73

(*) The mean calculation time MCT was calculated for single-core of Intel Core 17-870 CPU

Results presented in Figure 26 and Figure 27 show to what extent the values
parameters of candidates selection affect the MR and MCT coefficients. Typically,
lowering the MR value by changing one of the parameters of candidates selection
increases the values of MCT and PR parameters. However, only for the lpops, ..
parameter, reducing the maximum possible number of ROIs increases both the MR and
the MCT.

In many cases, the proposed parameter values were not perfectly matched, and the
MR value can be reduced. Therefore, two sets of parameters were proposed and
presented in Table 16 (based on the results presented in Figure 26 and Figure 27). The
first set of selected values (balanced) was selected to ensure both: high accuracy of
pedestrian detection (low MR parameter value) and high computational efficiency (low
MCT parameter value). The second set of parameters (best accuracy) was selected to
achieve the lowest possible MR.

After selecting new sets of values of parameters for the candidate selection,
experiments were repeated with the double and triple thresholding for the best threshold
values only and are presented in Table 17.

As a result, the value of the MR decreases significantly even to 5.6% (for the triple
thresholding with fixed threshold and balanced settings). On the other hand, the values
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of MCT increased significantly compared to the initial settings of the candidates
selection (from 16 ms to 30 ms).

The results are not better only with the triple thresholding with the best accuracy
settings. After performing additional tests with a higher value of lrgys,,, equal to 150,
the MR decreased also for the best accuracy settings reaching even a very low MR value
of 1.2% (for fixed triple thresholding with best accuracy settings). Moreover MR value
decreased significantly for all configurations.

It can also be seen that in all performed experiments conducted for CVC-14 dataset,
the segmentation with fixed thresholds still achieves lower MR values than the Otsu-
based thresholds, but the difference decreased to about 1%.

When evaluating the final results (for lroys,,, = 150, presented in Table 17), the

reasonable values of MR, PR and MCT are obtained using the triple thresholding
technique with balanced settings. The algorithm for these settings is several times faster
than for the best accuracy settings, MCT decreases from 82 ms to 24 ms, PR decreases
from 85.1 to 48.5, and the achieved MR value is equal to 2.2% and it is only 1% above
the lowest-achieved result (compared to the triple thresholding technique with the best
accuracy). Few illustrative images with marked ROIs obtained with the proposed ROI
generation approach are shown in Figure 28.
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Figure 28. Illustrative examples of proposed ROI generation stage on CVC-14 dataset, from the left: input
thermal image, image segmented with T;, threshold (with marked ROIs after first thresholding), image
segmented with Ty threshold (with marked ROIs after second thresholding), thermal image with marked
set of final ROIs after regions enlargement and candidates selection
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3.8.3. Calibration on KAIST dataset

Similar, as for the CVC-14 dataset, experiments were performed for the KAIST
dataset. Set 09 (campus) was selected as the most representative for the initial
experiments (from 3 available night-time test sets, as presented in Section 2.2.6) with
the selection of thresholds and parameters values for candidates selection. The results
for the remaining KAIST test sequences are also presented (with the finally selected
thresholds and sets of parameters of candidates selection process) at the end of the
section.

The initial values of candidates selection parameters for experiments were selected
experimentally and their values are presented in Table 18.

Table 18. Pre-selected parameters values for the KAIST dataset

Type Name of the parameter Symbol Initial values
Initial minimum object area Ainit 10 pixels
ROIs selection skew threshold a, 0.14
minimum ROI area Aror 40 pixels
minimum height-to-width ratio AHW 1, 0.7
maximum height-to-width ratio AHW ax 6.5
Candidates selection similarity coefficient Qgim 0.65
homogeneous coefticient Qg 3
height coefficient an 0.15
maximum number of ROIs per one image  lrois,,, 50

Selection of thresholds

A selection of thresholds was performed for the proposed ROI generation technique.
The results of the single thresholding experiments are shown in Figure 29 and Figure
30, and the results for the double and triple thresholding are collected in Tables 19-26.
The summary of the best results for the double and triple thresholding is presented in
Table 27.
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Miss rate [%]
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Threshold value

Figure 29. Miss rate for various thresholds for the KAIST dataset with a single fixed threshold (in legend:
single — denotes segmentation without regions enlargement, single-RE — denotes segmentation with
regions enlargement)

Miss rate [%]
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Constant adjusting factor

Figure 30. Miss rate for various thresholds for the KAIST dataset with a single Otsu-based threshold (in
legend: single — denotes segmentation without regions enlargement, single-RE — denotes segmentation
with regions enlargement)
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Table 19. Miss rate [%] for various thresholds for the KAIST dataset with double fixed
thresholds and with regions enlargement

Ty
T,

16
18
20
22
24
26
28
30
32
34
36
38
40

42 44 46 48

43.4
43.4
43.1
41.4
40.1
38.2
35.4
33.1
28.6
30.5
33.5
35.9
39.7

43.6
43.6
43.2
40.8
39.6
36.8
34.3
313
26.5
27.5
29.2
30.5
32.8

48.3
48.3
47.8
45.4
44.4
41.0
36.8
325
28.0
27.9
28.0
28.8
30.1

56.2
56.2
55.7
53.7
52.4
48.5
42.7
38.0
33.1
30.7
28.5
28.2
27.2

50
62.2
62.3
61.8
59.9
58.7
54.3
48.3
43.4
37.9
34.0
31.1
30.6
27.8

52
66.7
66.6
66.2
64.5
63.1
59.2
53.9
49.1
42.4
37.2
34.8
334
29.2

54
70.8
70.7
70.3
68.7
67.3
63.4
58.9
54.1
46.6
41.7
38.5
36.0
30.5

56
76.1
76.0
75.7
74.0
72.7
69.0
64.9
60.0
51.7
47.3
43.0
39.4
32.7

58 | 60 62

83.0
83.0
82.7
81.2
79.8
76.2
72.2
67.9
58.8
54.5
49.4
45.0
36.8

88.7
88.7
88.4
86.8
85.5
82.1
78.3
73.6
65.1
59.8
54.4
49.5
40.3

92.1
92.1
91.8
90.2
88.9
85.6
81.8
77.3
69.1
63.7
57.5
52.4
42.7

64
95.5
95.5
95.3
93.6
92.3
89.1
85.2
81.2
73.1
67.4
60.5
55.2
44.7

66
97.4
97.4
97.2
95.5
94.2
90.9
87.0
83.6
75.2
69.3
62.8
57.1
46.5

Scale

20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

Table 20. Miss rate [%] for various thresholds for the KAIST dataset with double fixed
thresholds and without regions enlargement

Ty
T,

16
18
20
22
24
26
28
30
32
34
36
38
40

42 44 46 48

56.8
56.8
56.6
55.2
53.9
51.1
48.8
48.5
47.4
48.2
48.5
49.5
52.1

56.0
55.9
55.7
54.3
53.0
50.2
47.9
47.6
46.2
46.2
44.9
44.8
45.2

60.7
60.6
60.5
59.1
57.8
54.9
52.6
52.2
50.2
48.9
45.8
44.2
42.7

68.3
68.2
68.1
66.7
65.4
62.6
60.3
59.5
57.3
53.8
48.7
46.3
42.3

50
76.8
76.7
76.5
75.2
73.9
71.0
68.7
67.8
65.6
61.2
55.5
52.0
45.7

52
84.5
84.4
84.3
82.9
81.6
78.8
76.5
75.6
73.3
68.8
62.4
57.7
50.1

54
91.0
90.9
90.8
89.4
88.1
85.3
82.9
82.1
79.8
75.2
68.4
63.1
54.5

56
96.1
96.0
95.8
94.4
93.2
90.3
88.0
87.1
84.8
80.3
73.5
67.5
58.1

58
99.4
99.3
99.1
97.8
96.5
93.6
91.3
90.4
88.2
83.6
76.8
70.7
60.7

60
99.9
99.9
99.8
98.4
97.1
94.2
91.9
91.0
88.8
84.2
77.4
71.2
61.1

62
99.9
99.9
99.8
98.4
97.1
94.2
91.9
91.0
88.8
84.2
77.4
71.2
61.1

64
99.9
99.9
99.8
98.4
97.1
94.2
91.9
91.0
88.8
84.2
77.4
71.2
61.1

66
99.9
99.9
99.8
98.4
97.1
94.2
91.9
91.0
88.8
84.2
77.4
71.2
61.1

Scale

20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0
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Table 21. Miss rate [%] for various thresholds for the KAIST dataset with double Otsu-based
thresholds and with regions enlargement

B
%12345678910111213

10
12
14
16
18
20
22
24
26
28
30
32
34
36

Table 22. Miss rate [%] for various thresholds for the

91.1
85.9
76.5
64.5
51.7
37.4
27.3
24.4
30.1
39.7
49.7
62.6
69.4
75.0

88.6
82.1
70.3
57.5
41.3
28.4
20.3
20.7
25.7
34.3
44.2
56.0
65.2
72.4

86.2
76.6
64.7
52.9
35.7
19.0
17.8
19.8
22.8
29.7
39.3
48.8
61.5
69.6

83.2
70.8
58.3
45.3
29.0
16.6
16.7
20.7
22.2
26.0
34.0
43.2
55.9
66.2

77.5
65.6
52.1
37.1
23.5
19.2
18.0
23.1
23.7
244
294
38.5
49.4
62.6

71.5
59.6
43.9
30.3
21.9
23.6
23.9
27.9
27.1
25.1
254
33.5
44.2
56.6

65.9
54.2
38.7
24.7
23.9
28.0
30.9
32.5
31.8
26.9
24.7
29.6
39.5
50.2

thresholds and without regions enlargement

B
%12345678

10
12
14
16
18
20
22
24
26
28
30
32
34
36

93.3
88.2
82.3
74.2
63.5
50.6
42.5
42.1
50.5
58.7
68.9
79.8
87.9
93.4

90.6
85.4
76.5
67.3
52.5
41.9
36.3
38.4
44.4
55.0
63.4
75.2
83.5
91.2

88.6
82.1
72.3
62.0
46.6
34.8
37.6
37.5
41.1
50.3
58.7
69.0
79.8
88.3

86.5
78.0
68.6
53.9
42.2
34.8
39.0
39.8
41.6
45.5
55.2
63.6
75.3
83.6

84.1
74.8
65.1
49.3
38.9
39.9
41.9
46.5
44.1
44.0
50.9
58.9
69.2
79.9

80.2
70.5
57.6
46.3
39.7
45.5
47.4
51.9
48.8
46.3
46.9
55.5
63.7
75.3

76.6
67.5
52.8
43.3
45.5
49.5
54.9
58.1
58.0
50.5
46.2
51.7
58.9
69.2

60.3
45.2
33.4
241
26.5
33.3
39.5
39.2
36.8
313
28.1
26.8
34.4
44.8

72.2
60.2
49.0
44.2
50.8
55.5
63.6
64.7
63.9
56.4
49.3
47.6
55.6
63.7

54.9
39.7
28.7
27.6
32.8
39.7
44.2
45.9
41.1
38.6
32.3
27.2
30.6
40.1

46.0
35.2
27.8
32.1
39.0
47.4
49.8
53.5
48.2
44.0
37.5
31.8
28.6
35.1

40.4
29.5
30.7
38.0
45.5
55.1
58.4
58.1
55.9
50.8
46.6
37.2
29.3
314

34.9
28.6
34.6
43.8
53.7
60.7
64.4
63.9
63.7
57.3
52.5
42.9
34.4
28.9

29.8
31.2
39.5
49.3
61.3
66.9
69.0
70.6
69.9
65.4
59.0
52.2
40.0
29.8

Scale
00
100
20.0
30.0
40.0
50.0
60.0
70.0
80.0

90.0
100.0

KAIST dataset with double Otsu-based

9
68.3
55.0
46.5
49.4
54.9
62.8
69.7
73.2
70.3
64.6
53.7
47.1
51.7
58.9

10
60.5
51.0
47.4
53.7
60.3
70.4
74.9
79.4
75.7
69.8
59.8
50.8
47.6
55.7

11
55.2
47.2
51.7
58.2
66.7
75.9
82.0
83.4
81.1
75.1
67.9
55.0
47.2
51.8

12
51.0
47.6
55.7
63.4
73.3
80.2
86.5
86.5
85.5
79.8
72.0
60.5
51.0
47.6

13
47.2
51.8
58.9
69.0
79.2
85.9
89.5
89.9
88.1
84.4
76.6
68.3
55.2
47.2

Scale
00
100
20.0
30.0
40.0
50.0
60.0
70.0
80.0

90.0
100.0
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Table 23. Miss rate [%] for various thresholds for the
thresholds and with regions enlargement

Ty
T,

16
18
20
22
24
26
28
30
32
34
36
38
40

42 44 46 48

33.8
32.8
294
28.1
28.0
29.8
29.4
29.5
25.8
29.0
32.2
36.0
40.2

30.9
27.2
26.1
26.7
25.9
26.1
26.0
24.7
21.2
23.9
27.4
29.3
33.5

28.7
27.7
28.0
26.7
25.7
26.5
24.4
226

33.0
32.3
29.8
27.2
26.2
26.0
23.9
19.6

50
36.2
33.6
30.7
29.5
28.2
27.2
23.2
19.4

52
37.1
35.5
33.5
31.7
30.5
27.0
23.1
194

54
39.5
38.0
35.7
33.8
29.1
25.9
23.3
20.0

184 159 153 153 168

21.8 18.6 17.5 17.9 19.2

24,5 21.8 204 21.1 225

26.8 23.8 22.5 23.1 24.2

29.4 26.2 25.2 25.7 26.4

56
42.6
40.2
38.0
324
29.5
27.1
23.5
22.2
18.8
211
23.3
25.0
254

58
46.2
44.6
38.3
345
323
29.3
27.1
25.6
22.6
243
25.7
26.3
26.1

Table 24. Miss rate [%] for various thresholds for the
thresholds and without regions enlargement

Ty
T,

16
18
20
22
24
26
28
30
32
34
36
38
40

42 44 46 48

49.2
48.5
46.2
45.9
46.1
43.7
41.5
42.3
41.4
44.4
45.7
48.8
52.4

47.6
45.2
45.9
45.2
43.9
40.3
38.2
37.3
36.9
38.3
39.8
41.6
45.0

49.7
50.1
50.0
473
44.1
41.1
37.1
36.6
34.4
36.0
36.5
38.9
40.7

57.3
56.4
53.5
48.6
46.2
41.9
38.6
35.8
33.6
35.0
36.3
37.2
37.6

50
64.1
61.1
57.1
53.9
50.5
46.4
39.9
37.8
36.1
37.4
37.2
37.3
37.5

52
68.8
64.5
62.2
58.0
54.8
46.7
42.2
40.3
39.3
40.1
39.3
39.7
38.8

54
70.9
68.4
65.0
61.5
54.3
48.8
44.4
43.9
42.7
43.2
42.6
42.3
41.7

56
73.5
70.1
67.3
59.7
55.1
49.7
46.8
46.1
44.9
46.4
45.2
45.2
42.1

58
73.5
70.6
63.9
59.1
54.5
50.8
47.6
47.5
47.7
48.8
47.2
46.3
43.6

KAIST dataset with triple fixed

60
49.1
43.4
39.0
36.8
33.8
314
28.9
28.6
24.5
27.3
27.0
28.4
27.4

62
45.6
42.1
40.3
36.5
34.8
32.5
32.1
30.1
30.0
29.6
29.1
30.7
28.3

64
44.2
42.5
40.0
37.6
36.7
36.8
34.8
34.7
32.6
31.8
311
32.2
29.4

66
43.5
41.5
40.8
39.0
40.6
39.4
40.0
37.8
35.9
34.0
33.0
33.5
29.7

Scale

20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

KAIST dataset with triple fixed

60
71.2
64.5
60.9
56.0
53.9
50.2
47.9
49.4
50.2
51.7
48.7
48.8
45.8

62
64.6
61.1
57.4
55.2
53.0
50.2
49.8
52.2
54.4
53.8
51.8
52.0
47.7

64
61.1
57.6
56.6
54.3
53.0
521
52.6
56.4
57.3
57.2
55.5
54.7
50.1

66
57.7
56.8
55.7
54.3
54.9
54.9
57.1
59.5
61.4
61.2
58.7
57.7
52.6

Scale

20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0
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Table 25. Miss rate [%] for various thresholds for the KAIST dataset with triple Otsu-based
thresholds and with regions enlargement

B
%12345678910111213

10
12
14
16
18
20
22

24244207 186 174 157 145 134 145 165 179 179 192 189

26
28
30
32
34
36

90.6/87.9/84.8 81.8 76.1 70.0 64.4 58.2 52.5 44.2 37.6 30.1-

85.5/80.9/75.6 70.0 65.1 58.5 52.9 44.9 37.5 30.8 ---

75.4 68.6 62.6 56.2 50.5 42.9 36.3 29.8 26.8

202 209
63.5 56.6 50.6 41.9 33.3 26.2 ------ 27.1

51.7 411 33.5 263 20.4 16.6 14.8 147 169 20.4 23.3 27.3 299

153 255 204 173 175 183 187 199 199 220 220 252 201
250 218 177 155 137 150 174 188 197 204 06 215 214

299 25.5 219 197 186 185 17.1 16.1 (148 167 195 224 23.3
157 34.2 296 253 20|20/ 1947 197 1851208 204 235 2.
219 214 217

49.7 44.1 39.1 33.6 28.5 26.1 27.8 29.1
62.5 55.8 48.7 42.8 38.0 32.9 28.7 25.1 24.9 27.0 30.1
69.3 65.0 61.3 55.3 48.9 43.6 38.7 33.6 294 26.1 25.1 26.4
74.8 72.0 68.8 65.1 61.3 55.3 48.6 43.2 38.3 33.1 29.0 25.4-

Scale

00
100,
200,
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0

Table 26. Miss rate [%] for various thresholds for the KAIST dataset with triple Otsu-based
thresholds and without regions enlargement

B
%12345678910111213

10
12
14
16
18
20
22
24
26
28
30
32
34
36

93.0/90.1/87.8 85.1 81.4 76.9 73.1 68.6 64.4 56.3 50.6 46.3 42.4
88.2/85.1/81.0 75.8 71.6 66.6 62.2 53.7 48.0 43.7 39.7 39.7 43.7
82.2/76.0/70.5 64.7 60.0 51.0 45.3 40.7 37.5 37.7 41.6 45.5 48.4
74.0 66.4 58.9 48.5 41.9 36.9 32.6 32.3 36.0 39.3 42.9 47.1 51.8
63.0 51.1 44.0 36.9 30.6 29.2 31.9 35.3 37.8 41.5 45.8 50.1 54.1
50.4 40.8 31.9 28.5 29.4 29.9 31.0 33.3 36.4 40.6 43.4 45.9 49.2
42.9 35.0 31.5 29.2 27.5 28.6 30.6 32.9 34.8 36.3 39.2 41.6 43.6
42.1 37.4 34.2 32.7 32.5 31.8 31.4 32.6 34.5 36.5 37.5 38.9 40.7
50.5 44.4 39.9 37.5 36.1 36.5 38.7 38.5 39.0 40.7 43.0 45.3 46.4
58.6 55.0 50.2 44.3 40.4 39.1 38.9 39.8 43.4 44.1 453 47.4 49.9
68.9 63.3 58.5 54.9 50.1 45.0 42.0 41.6 42.5 44.8 50.0 51.9 54.4
79.8 75.1 68.8 63.4 58.5 55.0 50.3 45.5 43.2 43.6 45.5 48.8 54.6
87.9/83.3/79.7 75.2 69.0 63.6 58.8 55.2 50.7 46.1 44.7 46.3 49.1
93.4/91.2/88.0 83.5 79.8 75.3 69.1 63.6 58.8 55.3 51.2 46.9 45.9

Scale

30.0
40.0
50.0
60.0
70.0
80.0
90.0
100.0

60



Table 27. Best experimental results (based on lowest MR value) obtained for the KAIST
dataset with the proposed ROI generation with double and triple thresholding and with region

enlargement
Double thresholding Triple thresholding

Ty, 32 40 34 40 32 32 32 32

f Ty 44 48 44 50 50 52 48 54
X MR[%] 265 272 275 278 153 153 159 16.8
]12 PR 147 133 154 125 19.1 182 199 17.6

MCT [ms] 2 1 2 1 3 2 3 2

Acaf 20 22 22 22 24 22 24 24

(0] B 4 4 3 5 7 5 6 8
: MR [%] 166 16.7 17.8 18 134 13.7 145 145
U PR 178 165 17.1 15,6 199 209 199 19.8

MCT [ms] 3 2 2 2 3 4 3 3

(*) The mean calculation time MCT was calculated for single-core of Intel Core 17-870 CPU

As in the case of the CVC-14 dataset, the presented results of the selection of
thresholds for the KAIST dataset (Figure 29 and Figure 30, Tables 19-26) show that the
accuracy of the proposed ROI generation procedure with the double and triple
thresholding is much higher than with the single thresholding. The difference in the
achieved MR values equals to 16.6% (between lowest achieved MR values for single
and triple thresholding). Therefore, no further analysis for this dataset will be performed
for the single thresholding.

It could be noticed also that the regions enlargement technique has the greatest
impact on the MR coefficient (similarly as in the case of CVC-14). With this technique
it was possible to lower the MR parameter, e.g. for double thresholding with fixed
thresholds, the MR value decreased from 46.2% to 26.5% for thresholds values T}, = 32
and Ty = 44 (see Table 19 and Table 20), for triple thresholding with fixed thresholds,
the MR value decreased from 36.1% to 15.3% for thresholds values T}, = 32 and Ty = 50
(see Table 23 and Table 24). A similar tendency can be observed in the case of Otsu-
based thresholds.

The use of the triple thresholding technique also reduces MR to some extent
compared to the double thresholding. The difference is equal to 11.2% (change from
26.5% to 15.3%) for fixed thresholds and equal to 3.2% (change from 16.6% to 13.4%)
for Otsu-based thresholds. In addition, it is also important that the MR value is less
dependent on the adjustment of the threshold values for the triple thresholding (see
Tables 19-26). Moreover, the mean processing time MCT for the triple thresholding
increases compared to the double thresholding, from approximately 2 ms to 4 ms, and
the number of selected ROIs per frame also increases from approximately 15 to 20.
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Contrary to the results obtained for the CVC-14 dataset, the experiments conducted
for KAIST show that the use of Otsu-based thresholds approach is more advantageous
than the fixed-based thresholds approach, e.g., the MR value for Otsu-based thresholds
is lower for triple thresholds and equals to 13.4% compared to 15.3% for fixed values of
thresholds (see Table 27).

Candidates selection

In the next step, experiments were conducted to verify the impact of changes in the
values of parameters of candidates selection process on the MR and MCT metrics and to
select sets of optimal parameters values for double and triple thresholding.

The initial values of tested parameters were selected experimentally and their values
are presented in Table 18. Results of the experiments are presented in Figure 31 and
Figure 32.
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Figure 31. Miss rate [%] and mean calculation time [ms] for different values of candidates selection
parameters for KAIST dataset, part 1
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Figure 32. Miss rate [%] and mean calculation time [ms] for different values of candidates selection
parameters for KAIST dataset, part 2

Table 28. Selected parameters values for the KAIST dataset

Name of the parameter Symbol [Initial values balanced best accuracy

minimum object area Ainic 10 pixels 16 pixels 6 pixels
skew threshold ay 0.14 0.16 0.16

minimum ROI area Aror 40 pixels 50 pixels 40 pixels
minimum height-to-width ratio AHW i 0.7 0.7 0.5
maximum height-to-width ratio AHW oy 6.5 6.5 6.5
similarity coefficient Ogim 0.65 0.6 0.6

homogeneous coefficient [ 3 4 4

height coefficient 1248 0.15 0.15 0.15

maximum number of ROISs per one image  lrois ., 50 50 80




Table 29. Final experimental results obtained for the KAIST dataset (set 09) with proposed
ROI generation with adjusted values of candidates selection parameters and with various
maximum number of ROIs per one image

Double Triple
thresholding thresholding
balanced best balanced best
accuracy accuracy
T, 32 32 32 32
f Ty 44 44 50 50
X MR [%] 26.4 25.5 15.1 11.9
]]; PR 12.1 15.1 14.7 22.1
MCT [ms] 2 3 3 4
Acaf 20 20 24 24
(0] B 4 4 7 7
: MR [%] 16.6 13.2 13.1 11.1
U PR 11.9 18.3 14.5 22
MCT [ms] 2 3 3 3

(*) The mean calculation time MCT was calculated for single-core of Intel Core 17-870 CPU

The results presented in Figure 31Figure 32 and Figure 32 show similar trends as in
the case of the CVC-14 dataset. Typically, lowering the MR value by changing one of
the parameters of candidates selection increases the values of MCT and PR parameters.
However, only for the lgpys,,,, parameter, reducing the maximum possible number of
ROIs increases the MR value.

In few cases, the proposed parameter values were not perfectly matched, and the MR
value can further be reduced. Therefore, two sets of parameters were proposed (as
before for the CVC-14 dataset, based on the results presented in Figure 32). The first set
of selected values (balanced) was selected to ensure both: high accuracy of pedestrian
detection (low MR parameter value) and high computational efficiency (low MCT
parameter value). The second set of parameters (best accuracy) was selected to achieve
the lowest possible MR.

After selecting new sets of candidate selection parameters (included in Table 28),
experiments were repeated with the double and triple thresholding for the best threshold
values only and are presented in Table 29.

As a result, the value of the MR decreases to 11.1% (for the Otsu-based triple
thresholding with the best accuracy settings). The values of MCT do not increase for
double thresholding or even decreased for triple thresholding compared to the results
obtained for the initial settings of the candidates selection.

The results does not improve significantly only for the double thresholding with
fixed thresholds. In addition, triple thresholding generally gives better results than
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double thresholding, e.g., the MR difference is equal to 2.1% for Otsu-based thresholds
(11.1% for the triple thresholding and 13.2% for the double thresholding) while
achieving slightly worse MCT, and PR values.

It can also be seen that in all performed experiments, the segmentation with Otsu-
based thresholds still achieves lower MR values than with the fixed thresholds, but the
difference decreased to about 1%.

In the next step, experiments were performed for all KAIST test sets (set 09, set 10,
and set 11 described in Chapter 3.6). These experiments were conducted for the triple
thresholding with Otsu-based thresholds. The results are presented in Table 30.

The obtained results for subset 09 (campus) and subset 10 (roadway) are similar (MR
=11.1% and 11.0% for the best accuracy settings). Higher MR values were obtained for
the city center, where the thermal contrast is lower due to the urban surroundings.
Therefore, additional tests were performed with a higher parameter value lrois,, . €qual

to 150. As a result, MR significantly decreased for set 10 (to 2.8%) and set 11 (from
31.1% to 12.7%) for the best accuracy settings.

When evaluating the final results (for lroys,,, = 150, presented in Table 30), the
most balanced values of MR, PR and MCT are obtained using the triple thresholding
technique with balanced settings. The algorithm for these settings is almost two times
faster, MCT decreases from 20 ms to 11 ms (for average results), PR decreases from
66.1 to 53.5, and the achieved MR parameter is equal to 10.1%, and is by 1.3% worse
than the best result (compared to the triple thresholding with the best accuracy settings).
Few illustrative images with marked ROIs obtained with the proposed ROI generation
are shown in Figure 33.

Table 30. Final experimental results obtained for all tests subsets: 9, 10, 11 from KAIST
dataset with the proposed ROI generation procedure for various maximum number of ROIs per

one image
lROlsmax =80 lROlsmax =150
Set no. Parameter  balanced best accuracy balanced best accuracy
MR [¢
Set [%] 13.1 11.1 12.8 11.1
09 PR 14.5 22.0 14.7 22.0
(€ampus) /T [ms] 2 3 3 4
MR [¢
Set [%] 14.5 11.0 4.1 2.8
10 PR 30.0 52.8 46.4 72.4
(roadway) 17 [ms] 7 11 7 10
0,
Set MR [%] 37.1 31.1 13.5 12.7
11 PR 32.6 56.2 99.5 103.9
(downtown) /o ims] 31 45 23 46
MR [%] 21.5 17.7 10.1 8.8
Average PR 25.7 43.6 53.5 66.1
MCT [ms] 14 20 11 20

(*) The mean calculation time MCT was calculated for single-core of Intel Core 17-870 CPU
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Figure 33. Illustrative examples of proposed ROI generation stage, from left: input thermal image, image
segmented with T}, threshold (with marked ROIs after first thresholding), image segmented with Ty
threshold (with marked ROIs after second thresholding), thermal image with marked set of final ROIs
after regions enlargement and candidates selection

66



3.9. Summary

The results obtained for both datasets, namely CVC-14 and KAIST allow to
conclude that it is possible to accurately and efficiently perform the ROI generation of
thermal images at night through the thresholding process. The best results for the
proposed ROI generation technique (based on MR value) are presented in Table 31 (for
KAIST dataset average results are presented, same as in Table 30). Very low MR values
were achieved: 1.2% for the CVC-14 dataset and 8.8% for the KAIST dataset with high
computational efficiency (varying from 44 to 347 FPS depending on the settings)
obtained using only the CPU.

Table 31. The best-obtained results for CVC-14 and KAIST datasets with the proposed ROI
generation procedure

CvC - 14 KAIST (average)

Parameter  balanced best accuracy balanced best accuracy

MR [%] 2.2 1.2 10.1 8.8
PR 485 85.1 535 66.1
MCT [ms] 24 82 11 20
FPS* 42 12 94 50
FPS** 155 44 347 185

(*) The FPS was calculated for single-core of Intel Core i7-870 CPU
(**) The FPS was calculated for four-core of Intel Core i7-870 CPU

The proposed ROI generation technique produces a very low number of samples per
frame compared to other techniques such as the sliding window. On the other hand, it is
possible to further increase the accuracy (decrease the MR parameter) of the algorithm,
limiting the candidates selection even more (see Table 32). However, even more than
thousands of samples per image are created in this case, which significantly slow down
the processing of the entire pedestrian detection algorithm. With such a large number of
samples for classification, the number of false detections increases at the object
classification stage. As a result, the classification threshold will have to be heightened
(to obtain a fixed FPPI value), and in consequence, the MR value will increase again.
This issue is also considered in Chapter 6.

The proposed ROI generation technique is the most accurate in night conditions.
However, when thermal contrast is lower, the accuracy begins to decline, e.g., for the
KAIST set 11 (downtown).

The triple thresholding achieves slightly lower MR values than the double
thresholding at the cost of slightly less efficiency. The proposed sets of candidates
selection (balanced and best accuracy) also significantly affect the MR, PR, and MCT
parameters. The most reasonable results are achieved by the triple thresholding with
balanced setting, offering a low MR value (slightly higher compared to the best
accuracy setting, Table 31) and very high computational efficiency (up to 347 FPS
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using only CPU). However, the choice of the final settings depends on the type of
application.

Image segmentation with Otsu-based thresholds gives better results than fixed-based
thresholds for the KAIST dataset but slightly worse for the CVC-14 base. However, the
use of Otsu-based thresholds is a more reliable solution due to the possibility of
adapting to changes in image dynamics.

Table 32. The MR, PR and MCT values obtained with and without candidates selection for
CVC-14 and KAIST datasets with balanced settings

CvC - 14 KAIST (set 09)
no candidates only initial W.lth no candidates only initial W,lth
. . candidates . . candidates
selection selection . selection selection .
selection selection
MR [%] 0.4 0.7 1.2 6.8 10.1 11,1
PR 1608.4 668.2 85.1 604.9 359.2 22.0
MCT [ms] 42 16 82 2 3 4

(*) The mean calculation time MCT was calculated for single-core of Intel Core 17-870 CPU

The experiments also show that some of the candidates selection parameters
(similarity coefficient, skew threshold, minimum and maximum height-to-width ratios)
are independent from the datasets and camera sensor. Other parameters should be
calibrated to the vision system used.

The proposed parameter of a maximum number of ROIs per one image lgoys,,,, also
significantly affects the operation of the proposed ROI generation algorithm. From the
plots of the value of the parameter lpqps,, presented in Figure 27 and Figure 32, it
follow that increasing this parameter above the value of 50 would not result in a
significant decrease in the MR value. However, changes of other parameters values
(especially for the best accuracy) resulted in a significant increase in the average
number of samples per image (PR value). It resulted in more frequent using of proposed
additional constraints for individual image frame (as presented in Section 3.7).

Therefore, the technique of limiting of the number of ROIs per frame (if needed)
should be used with the high lgoys,,, . value to prevent the entire pedestrian detection
algorithm from slowing down too much (by limiting the PR value and consequently the
classification time).
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4. Adjustment of segmented ROI in thermal night-vision

A quality of the prepared ROIs is very important and significantly affects the
effectiveness of classification. All the advanced segmentation techniques, besides the
simplest one, i.e., the sliding window technique, match the ROIs to the outer pedestrian
edges in the image. The image is divided into areas regarding the edges of objects. This
means that pedestrians are very closely matched to the ROIs. However, many problems
could arise during segmentation of thermal images, i.e., the uneven level of the
observed temperature of one pedestrian and the temporary loss of thermal contrast
between the pedestrian and the surroundings.

Inaccurate matching the edges of ROI to the outer edges of the pedestrian may lead
to cases of not a whole pedestrian covered with the ROI. Such too small ROIs may be
rejected by the classifier. This will finally increase the number of falsely negative

A

r!mr‘
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Figure 34. Illustrative examples of inaccurate segmented ROIs

»

Although the proposed ROI generation method (presented in previous Chapter 3)
could be very fast, accurate, and producing a low number of false candidates, it was
noticed that it sometimes produces ROIs that not including the whole pedestrian.
Examples of such ROIs are presented in Figure 34. In these cases, not all body parts of
the pedestrians are included in the ROI, whilst primarily the contour edges allow the
classifier to determine the shape of a pedestrian. This is especially important in thermal
imaging, where the images have few details, and the textures are very poor.

To solve this problem, it was proposed to adjust the segmented ROIs with a scale
factor k before the object classification stage. This is done by taking larger area from
the image, not just by resizing previously segmented ROI (as presented in Figure 35).

Assuming an original i-th pedestrian candidate obtained with the ROI generation
process and described by (x;, y;, w;, h;), where x;, y; are the coordinates of the top left
corner of i-th ROI and w;, h; are its width and height respectively, the new coordinates
of the rescaled ROI (by k scale factor) are calculated as follows:

Xivew = Xi + (L—k)/2-w; (37)
Yinew = Yi T (L =K)/2- by (38)
Wiew = K- Wi (39)

inew = K" Tti (40)
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As a result, instead of the pedestrian candidate with (x;, y;, w;, h;) coordinates, the

area of pedestrian candidate with the new coordinates (X; .., YVijew Winew’ Rinew) 15

taken from the input image. The proposed idea is depicted in Figure 35.
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Figure 35. Pedestrian detection procedure diagrams with single-resolution classifier: typical procedure
(upper diagram) and modified procedure with additional step of ROI adjustment (lower diagram)

It is important to emphasize that the proposed ROI enlargement will not significantly
affect the computational performance of the detection process because before the object
classification stage, all ROIs are then resized to the same classifier input resolution. In
addition, the number of ROIs that will be classified does not change.

The impact of the proposed method on the performance of the detection process has
been tested. The proposed method increases the accuracy of the overall pedestrian
detection procedure with little impact on computational performance. The detailed
results are presented in Chapter 6, along with the experiments on the proposed
pedestrian detection procedure.
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5. Tuning of the object classification process

This chapter presents an experimental evaluation of object classification algorithms
and their tuning using the proposed universal performance index.

As mentioned in Chapter 2.7, the baseline approach to object classification is to use a
classifier with a fixed input resolution. Such fixed classifiers are often used without an
adaptation to the resolution of the specific dataset or camera. This is unfortunately a
common practice especially in cases, where the structure of a classifier is complicated,
e.g., with a deep convolutional neural network (CNN).

To obtain the best results at the object classification stage, it is proposed to look for a
compromise input resolution with a proposed universal performance index. The speed
of detection and the classification accuracy is taken into account. Using this index, it is
possible to select the best input resolution for a particular classifier. The various
classifiers were tested with and the results are presented in this chapter. In the
experiments, three various baseline detectors were used, namely: histogram of oriented
gradients (HOG) with the support vector machine (SVM) classifier, the aggregated
channel feature (ACF) detector, and the deep convolutional neural network (CNN).

5.1. Performance Index

The classification stage is one of the crucial parts of the pedestrian detection
procedure. Especially in real-time applications with embedded systems (e.g., in cars)
this stage must be fast and accurate.

In the literature concerning machine learning, it is possible to find many parameters
describing the classifier effectiveness like sensitivity, miss rate, precision, F1 score, etc.
[93]. In this case, the weighted arithmetic mean, is the proper approach. Consequently,
after a series of many experiments, the concept of comparing the results was proposed
by introducing a novel and universal performance index to search for a compromise
image resolution between the speed and accuracy:

p=w,-a +(1—w,)-FPS, (41)
where w, € (0,1) weights the overall accuracy a and (1 — w,) weights the processing
speed expressed in frames per second (FPS). By this means, it is possible to control the
importance of accuracy versus FPS when designing the system. Using this performance
index, it is possible to evaluate classifiers but also to select the best input resolution for
a particular classifier taking the camera specificity (image resolution, camera type) into
account.

Very often, during the design process, it is assumed that the processing speed is
measured in FPS. It is a very important factor in the real-time processing, especially in
embedded systems. It characterizes the algorithms used, the computational platform,
and finally the computation costs.

However, direct use of the real FPS values makes the performance index related to
the speed of the used computational platform (both hardware and software-wise). That
is why, to omit this drawback, it was proposed to use the relative value FPS,,./FPSca,
where FPS_, is the calculated value of FPS with a given resolution and FPS,,,4 is the
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maximum value of FPS achieved over all possible resolutions. Therefore, the practical
version of the proposed normalized performance index formula is as follows:

pres = Wo 755 + (1= wp) FPSH:( (+2)
Thus, both a/100 and FPS,,,4/FPS ;) remain in the normalized (0,1) range
Moreover, an additional modified version of the performance index is proposed. It
will be used to evaluate the object classification stage itself (it is used in the
experiments performed in this chapter). For this purpose, the relative value t_}/tr L, is
used instead of the real FPS parameter, where t., is the mean calculation time of one
test sample with a given resolution (the time for extraction of the features plus the
classification time) and t,,;, is the minimum calculation time achieved over all possible
resolutions. Therefore, the third version of the proposed normalized performance index
dedicated to the assessment stage of the object classification formula is as follows:

a
Pn =W, 100 +(1_ p) “min (43)

al

Thus, both a/100 and t,,;,/t., remain in the normalized (0,1) range.

Figure 36 shows the resulting processing scheme with the proposed procedure of
tuning the pedestrian classification process using the introduced performance index.
There are the same processing stages in this scheme as those in Figure 1 and Figure 3,
i.e., acquisition of the IR image at the input, ROI generation, and pedestrian
classification. To tune the classifier and perform tests with various image resolutions,
after generating the ROI, all generated objects are resized (by upscaling or downscaling
them) to many various resolutions to match with the resolution of the classifier. The
following resolutions were adapted starting with 64x128 down to 16x32 in 13 steps.
Then, the classification quality is measured with the proposed performance index.
Finally, the best resolution of the classifier is selected for the given input data.
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Figure 36. Processing scheme for tuning of pedestrian classification with the proposed performance index
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5.2. Experiments with various input resolutions
In order to find the best resolution of the classifier applying the proposed
performance index, many experiments were performed with various scenarios and using
various night-vision video datasets containing pedestrians. For this purpose, a special
testbed was built (Figure 37). In the experiments, particularly an impact of the image
resolution was checked, classifier type, and the resulting number of features on the

classification accuracy and the computation time, using three detectors, namely: HOG +
SVM, ACF, and the deep CNN model.

Datasets (" Object classification )
CcvC-09 Testing samples Features extraction Dacision:
_ Pedestrian
i + Non-pedestrian
Validation
LSIFIR (~ Classifier training \ & - )
Training samples &
+ : Evaluation:

Trained Performance

Features extraction f—) classifier index
Training

Figure 37. Testbed for comparison of tested classifiers

5.2.1. Classifier training

The numbers of training and test samples in the prepared night-vision datasets are
quite varying, but statistically sufficient to conduct relevant experiments. All the
prepared datasets are intentionally unbalanced as they have much more negative
samples than the positive ones. This is because such relation is typical in reality for the
target application (i.e., detection of pedestrians from a car at night, where images with
no pedestrians occur much more often than those containing pedestrians). This however
can lead to problems with the proper training of the classifier. If the classifier is trained
to achieve the lowest possible learning error, this can lead to some reduction in the
false-positive rate [94]. This is related to the greater number of negative slack variables
that affect the objective function. To properly train the classifier with unbalanced data,
in both data classes the samples should be weighed as follows

C, =w,C, C, =w,C withw, +w, =1, (44)

where C determines the importance of the misclassification and is the Lagrange
multiplier upper bound, used as the penalty parameter [94].
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5.2.2. Resolution of the classifier

To perform experiments with different resolutions of the classifier, the initial images
were scaled into several sizes: 64x128, 56x120, 56x112, 56x104, 48x96, 40x88,
40x80, 40x72, 32x64, 24x56, 24x48, 24x40, 16x32 (7 of them are presented in Figure
38). From all of them, 13 sets of testing images were formed. These sets were prepared
separately for individual datasets.

As mentioned in Section 2.2.1, the CVC-09 dataset has the pedestrians captured with
many different sizes. In consequence, the initial resolutions varied a lot: from 3x6 pixels
up to 190x458 pixels. To match these resolutions to the resolution of the classifiers,
each image was scaled into the closest resolution of someone from the 13 listed above
resolutions. Due to a relatively large span of the assumed classification resolutions,
most of the images required slight scaling only.

On the other hand, in the rest of the used datasets, the initial resolutions were fixed.
In the NTPD dataset, it is 64x128 pixels, whereas in the LSI FIR and OSU datasets it is
32x64 pixels (after extraction, cf., Section 2.2). It was assumed that the images were
scaled down only (scaling up brings no additional information, but complicates the
calculation, thus it is unreasonable). Finally, 13 test sets were created from the NTPD
dataset, while 5 test sets (numbered from 9 to 13) were prepared from each of the LSI
FIR and OSU datasets. The bilinear interpolation technique was used.

Figure 38. Three positive samples in various resolutions: 64x128, 56x112, 48x96, 40x80, 32x64, 24x48,
16x32; original images are in the CVC-09 dataset
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5.2.3. Configuration of HOG+SVM and ACF detectors

While the resolution of images in different sets was varying, the rest of the
parameters for the HOG feature extractor was kept constant. For all test sets the number
of HOG orientation bins was set to 9, block size to 16x16 pixels, and the cell size to
8x8 pixels. For the SVM classifier, the linear kernel was used.

The ACF detector was implemented similarly as presented in [32]. In the case of
night-vision and gray-scale images (both passive and active ones) the ACF was adopted
to have 8 feature channels: 6 HOG orientation bins, one normalized gradient magnitude,
and one luminance channel (instead of three LUV color channels used in the source
solution [ref]). The AdaBoost was used as a classifier in the ACF detector to train and
combine 2048 depth-two trees.

For both feature extractors, various resolutions strongly affect the number of
features, which have to be analysed by the classifier (cf., Table 33).

5.2.4. Configuration of AlexNet/CaffeNet CNN

The original AlexNet/CaffeNet CNN architecture [78], [79] was prepared for images
of 224x224 resolution. This network is often used for classification purposes [25], [43].

The CNNs are often used without an adaptation of the network input resolution to the
resolution of the specific dataset or camera. Unfortunately, it is a common but
ineffective practice, especially in the networks with a complicated structure. In the case
of CNN, any change in the resolution of the CNN input layer causes the necessity of
adaptation in the other layers. In consequence, it is complicated, and therefore designers
try to omit it.

In this case, the CNN architecture and input resolution was adapted manually to the
lowest tested resolution, i.e., to 16x32 (from resolution of 224x224) by reducing the
size of the convolutional filters and the size of the maximum pooling. Then, this
modified structure was used for all tested input resolutions (and only this value was
changing in the structure of CNN) to ensure a fair comparison between carious
resolutions. presents the details.

According to the image resolution, the number of CNN parameters is very high and
varies from ca. 7 million to more than 38 million (cf., Table 33).

The datasets training sets for the training of CNNs were divided into two sets:
training set (70% of images) and validation set (30% of images).

Each time the network was trained in a maximum of 25 iterations. In addition, the
network training was stopped if 10 subsequent iterations did not increase validation
accuracy and in such case, the configuration of the best model was restored. It was the
so-called early stopping process.

Before each iteration, the training set was processed by slight random
transformations to improve the generalization process. Such random transformations are
often called in-place /on-the-fly data augmentation and are used to avoid network
overfitting. Following techniques were used: zooming, in the range within which the
random zooming to the images may be applied (value set to 0.1), and horizontal

flipping.
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Table 33. Number of features of HOG and ACF feature extractors, and number of parameters
in the adapted CNN for various resolutions

Number of features

Number of parameters

Input resolution

HOG ACF CNN
[px]
64x128 3780 4096 38 686 369
56x120 3024 3360 32 657 057
56x112 2808 3136 30 822 049
56x104 2592 2912 28 987 041
48x96 1980 2304 24 006 305
40x88 1440 1760 19 549 857
40x80 1296 1600 18 239 137
40x72 1152 1440 16 928 417
32x64 756 1024 13 520 545
24x56 432 672 10 636 961
24x48 360 576 9 850 529
24x40 288 480 9 064 097
16x32 108 256 7 229 089
Table 34. Proposed CNN structure
Layer Activation
number Layer type Elements function Remarks
maximum pooling, filter size
1 convolutional 48, 7x7 filters ReLU 2x2,
local response normalization
. 128, 5%5 maximum pooling, filter size
2 convolutional . ReLLU 2x2,
filters .
local response normalization
convolutional 19,2' 33 ReLU -
filters
convolutional 19.2' 33 ReLU -
filters
convolutional 12.8, 3x3 ReLU maximum pooling, filter size
filters 2x2
fully .
6 2048 neurons ReLU dropout ratio of 0.5
connected
fully .
7 2048 neurons ReLU dropout ratio of 0.5
connected
8 output 1 neuron sigmoid pedestrian detection score
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5.2.5. Classification accuracy and calculation time

At the beginning of the tests, the CVC-09 dataset was used, because, it presents a
very similar material to that occurring in real situations. The images were taken during
the day and at night. The pedestrian regions have various sizes and therefore the
analysed ROIs have various resolutions. In the next step, tests were performed with the
NTPD, LSI FIR, and the OSU datasets.

The obtained results are described in detail below, listed in Table 35 (which has the
following columns: dataset, set name, frame size, classification accuracy, and
calculation time). and are presented as graphs in Figure 39, Figure 40, and Figure 41.
For each test set, the classification accuracy was calculated and the mean calculation
time.

The calculated classification accuracy values constitute points with equal false and
miss detection probabilities. These points were computed with 180 test samples (90
positive and 90 negative).

The determined mean calculation times are composed of two phases: duration of the
feature extraction process and time needed for the classification of a single test sample.
The processing was implemented in the C# programming language with EmguCV v.
2.4.10 environment [95] and LIBSVM [96] as the SVM library. The CNN was
implemented with Keras and TensorFlow [97] using Python language. The training
process was performed with the GPGPU support in the Google Colab cloud
environment. The usage of GPU allows parallelization of processing and therefore
substantial speed-up of processing, but it strongly depends on many factors like the
algorithm and data structure, or architecture of the GPU. Therefore, in this dissertation,
the computations during the classification stage were made with a single CPU core to
make fair, hardware-independent comparisons between various methods and image
resolutions. The following hardware was used: CPU Intel Core 17-6950X, 8 GB of
RAM.

5.2.6. Discussion of results

The best classification accuracy was achieved with the CNN approach, but results
obtained by other classifiers are also fully acceptable (cf., Table 35 and Figure 39,
Figure 40 and Figure 41). In Table 35 the results of classification accuracy and
calculation time are highlighted, which are the best in the set of various resolutions of a
given dataset and those which are close to the maximum values but obtained with lower
resolutions. It should be noticed, that in almost all cases (especially for the CNN) the
results are good even for low-resolution input data.

For example, for the resolution of 24x40, the accuracy is almost as high (99.89%) as
for the highest resolution among all datasets. Furthermore, for the CVC-09 daytime and
NTPD datasets, the best accuracy is obtained for a lower resolution (40x72) than the
maximum 64x128. The right columns of Figure 39, Figure 40, and Figure 41 show that
for the CNN detector the graphs of the classification accuracy are almost flat.
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The resolution of a sample strongly affects the processing time. It is true for all the
classifiers. The CNN is the slowest solution (more than 20 times slower than the
HOG+SVM or the ACF detector). For low-resolution samples (e.g., 16x32) it needs ca.
5.5 ms and for high-resolution ones (e.g., 64x128), it needs ca. 25 ms to calculate the
result. The ACF detector is slightly slower than HOG+SVM, but achieves higher
accuracy, especially for the CVC-09 and NTPD datasets. For processing low-resolution
samples (e.g., 16x32), the HOG+SVM detector needs 0.08 ms only, while ACF needs
0.21 ms. For high-resolution samples (e.g., 64x128), the HOG+SVM needs about
0.75 ms to calculate the result while the ACF needs 1.15 ms (cf., Table 35).
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Table 35. Classification accuracy and calculation time for various resolutions and classifiers

Dataset Set Frame Size Classification accuracy (*) [%] Calculation time (**) [ms]
[px] HOG+SVM ACF CNN HOG+SVM ACF CNN
1 64x128 929 9812  99.56 0.74 117 24.41
2 56x120 93.4 9724 99.20 0.59 0.99 20.79
3 56x112 935 96.83  99.38 0.57 0.93 19.70
4 56x104 937 9672 99.32 0.52 0.85 18.48
5 48%96 93.6 96.88  99.12 0.49 0.79 15.53
6 40%88 94.2 9655  99.24 0.34 0.59 13.05
fﬁgzsg' 7 40x80 94.0 9643 9921 0.30 0.51 12.32
8 40%72 93.8 9618  99.34 0.27 0.45 11.35
9 32%64 93.8 9583  98.83 0.21 0.40 9.25
10 24x56 93.1 9434 9892 0.15 0.32 7.71
11 24x48 929 9448  98.75 0.13 0.28 7.39
12 24x40 923 93.89  98.93 0.11 0.26 6.83
13 16x32 90.7 91.83 9834 0.08 0.23 5.23
1 64x128 96.6 9853  98.28 0.73 115 24.60
2 56x120 955 97.77  98.71 0.59 0.95 20.62
3 56x112 953 97.75 9807 0.56 0.93 19.63
4 56x104 955 9750  98.61 0.55 0.84 18.54
5 48%96 94.8 97.14 9843 0.40 0.79 15.54
. 6 40%88 947 96.67 9831 0.36 0.59 12.97
C;/rifsgur;‘i}:t' 7 40%80 94.4 9672 9826 0.29 0.52 12.26
8 40%72 942 96.48  98.59 0.27 0.45 11.25
9 32%64 933 9634  98.14 0.21 0.39 9.34
10 24x56 932 9538 9842 0.14 0.30 7.72
11 24x48 925 9464 9815 0.13 0.29 7.42
12 24x40 922 93.82 9848 0.11 0.25 6.88
13 16x32 89.4 9167  97.85 0.08 0.23 5.46
1 64x128 98.94 9869  99.23 0.76 1.14 27.37
2 56x120 98.78 9870  99.16 0.60 0.98 20.53
3 56x112 98.61 9871  99.14 0.55 0.89 19.70
4 56x104 98.56 9874 9898 0.55 0.84 18.46
5 48%96 98.57 98.85  98.99 0.43 0.79 15.55
6 40%88 98.74 99.03  98.99 0.34 0.61 12.99
NTPD 7 40%80 98.91 99.03  98.96 0.31 0.52 12.29
8 40%72 98.78 9898  99.26 0.28 0.44 11.32
9 32x64 98.34 9861 9892 0.22 0.39 9.58
10 24x56 97.77 98.02 9861 0.16 0.32 7.70
11 24x48 97.65 97.43 9881 0.18 0.29 7.50
12 24x40 97.25 9721  98.94 0.14 0.23 6.93
13 16x32 95.02 9426 9848 0.09 0.21 5.50
9 32%64 98.74 9933 99.47 0.22 0.37 9.50
10 24x56 99.01 9896  99.33 0.19 0.35 7.75
LSI FIR 11 24x48 98.72 98.82  99.33 0.17 0.29 7.44
12 24x40 98.31 98.64  99.45 0.13 0.27 6.87
13 16x32 96.58 97.04  99.41 0.10 0.23 5.48
9 32%64 99.79 99.87  99.77 0.22 0.40 9.24
10 24x56 99.58 99.90  99.93 0.19 0.32 7.69
OSU 11 24x48 99.65 9931  99.96 0.18 0.31 7.45
12 24x40 99.27 98.83  99.89 0.13 0.25 6.86
13 16x32 95.03 97.81  98.87 0.09 0.24 5.53

(*) The classification accuracy is a point on the DET curve with equal false alarm miss
probabilities. (**) The presented mean calculation time takes a sum of the process of features
extraction and classification of one test sample mean times into account.
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Figure 39. Classification accuracy and processing time as functions of image resolution: HOG + SVM
classifier (first row), ACF detector (second row), CNN (third row) for the following datasets: LSIFIR
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80



100 0.8 w-—————+——+—————————10.8
— 07, 07.
<98 g e teea §
= 1063% 106 ¢
0 <0 g
£ 9 05{C 96 05 |
e ‘8 :
S o4 041 g4/ 04
oy - -
2 03715 037
o (T L <
8 92 02{g % 02§
2 €9 [ 7
© 90} 0.1 & 90! 101
O O
& &
100 12 100 12
11 11
<98 11 15 98 1
= 1095 1094
T 96 10815 gg| 081
3 107 {3 0.7 !
' ¢
894_ :061%94_ 061
s 0545 05
" 0315 04
o pajc 2 03 §
a2 O.ZE'G 026
& 90/ 101 D90 s
(2 0 @) 5
i ¥
& &
100 100
- 125 125 _
E,_-\°/‘9«‘.3 : gégs- g
g 1202 & 1203
S % T iE e T
=2 g: g
8 15 ¢ § 15 @
g % £ 5 g
2 110§ S 110 &
8 92| ¢ 8ozt &
= o= o
8 ikt #a
S 90 1 © 90 ]
O O

QD
6“+<§3+9;‘b+b‘b+ b?_;\' @‘\' blG\- b9+‘b‘]’+ q?;\' ‘],b;‘- ‘Lb;\‘ '{5\'

Figure 40. Classification accuracy and processing time as functions of image resolution: HOG+SVM
classifier (first row), ACF detector (second row), CNN (third row) for the following datasets: CVC-09
night-time (first column: a, c, e), CVC-09 day-time (second column: b, d, f)

It could be noticed that in the case of the CVC-09 datasets, the obtained
classification accuracy values are very good (above 90%) for all tested detectors (cf.,
Table 35, Figure 39, Figure 40 and Figure 41). It can also be seen that in the day-time
subset of the CVC-09, high effectiveness can be achieved with the HOG+SVM detector
with a relatively low resolution of samples, i.e., just 40x88. The ACF detector achieves
local optima with the resolution of 48x96. For the night-time subset of the CVC-09
dataset, both detectors (i.e., SVM and ACF) achieve mild local maxima of the
effectiveness with the resolution of samples equal to 56x104 (cf., Set 4 in Table 35 and
Figure 40). In the night-time sets the detectors achieve better results than those for the
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day-time sets. It is due to the fact, that the thermal contrast at night is higher than on a
day (cf., Figure 7). During the analysis of other datasets (i.e., NTPD, LS IFIR, and
OSU) the values of the obtained detection effectiveness are better than those for the
CVC-09 dataset (all of them are above 95%, in many cases larger than 98%). It is valid
for all the resolutions (even very low) and all the classifiers. For the LSI FIR and OSU
datasets the classification with the resolution equal to 24x48 achieves similar accuracies
to the best ones but with approximately 20% shorter time than this for the initial
resolution (cf., Figure 39). For the NTPD dataset, the classifier resolution can be
reduced to 40x80 while the effectiveness remains almost unchanged. By this reduction,
the classification time is shorter by approximately 60% (cf., Figure 41).
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Figure 41. Detection rate and processing time as functions of image resolution for NTPD dataset:
HOG+SVM classifier (left), ACF detector (middle), CNN (right)

Concluding, the classification effectiveness does not diminish significantly, even if
the image resolution substantially decreases. The upper limit of the classifier error is
related to the dimension of the features vector and the number of the training samples
[94]. This relation is visible in the experiments (cf., Table 35, Figure 39, Figure 40, and
Figure 41). Thus, it can be stated that, in general, the resolution of the classifier can be
lower than the original resolution of the analyzed images. However, the best resolution
should be chosen with the use of the proposed performance index.
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5.3. Performance index results

Using the results of experiments (Table 35) and equation (42), the performance
indices 1 were calculated for all datasets, resolutions, and tested classifiers. The results
are presented in Figure 42, where values in the x-axis refer to the testing sets presented
in Table 35 (a continuous type of chart was used for better readability, despite the
discontinuous x-axis domain).

As already mentioned in Section 5.1, the weighted sum of the relative accuracy
a/100 and the inverse of the relative time t.,;,/t. is the proper approach to define the
appropriate performance index p for experiments with an object classification step.

It could be noticed from the experiments that accuracy (a in formula (20)) is greater
than 90% for almost all configurations (cf., Table 35), whereas calculation time
(tct/tot)) varies in a large extent. Taking into account the type of the considered
detection system, i.e., the pedestrian detection, thus, the variation of accuracy should
have a significantly higher influence on the performance index than a variation of the
mean calculation time.

Therefore, three values of the weight w, were proposed for the performance index,
depending on the application. These values were selected experimentally and adjusted
as closely as possible to the three proposed application scenarios.

In the first scenario, where the processing time is assumed to be very important, e.g.,
in applications with low power processing units like vehicles, the weight should be set
to ca. w, = 0.92 (Figure 42a,b). In result, the performance index is higher for low
object resolutions.

In the second scenario, where the accuracy is assumed to be much more important,
e.g., for offline processing of CCTV recordings or safety and security systems, the
weight w, should be set ca. to w, = 0.98 (Figure 42¢,f). In result, the performance
index achieves the highest values for medium and high resolutions of the classifiers.

In the third scenario, in case of the balanced configuration, still with high accuracy
importance, and taking changes in the processing time into account, e.g., in automotive
and real-time security systems, the weight w, should be set ca. tow, = 0.95 (Figure
42c,d).

Most curves in Figure 42 have global and local maxima. They were selected to state
the best performance resolutions for the tested classifiers. The results are collected in
Table 36. Besides the best resolution, differences in accuracies and processing times are
presented (in percent), in relation to the classifier with the highest resolution. The
difference in accuracy varies from -2.22% to 0.97%, as the reduction of the processing
time reaches up to 74% (cf., Table 36).

For some cases (as presented in Table 36), both the time reduction and the increase
of the classification accuracy could be achieved (by means of the resolution reduction).
Classifiers, which are tuned for the best performance index can process data up to four
times faster than non-tuned classifiers with a slight decrease of the accuracy (merely by
about 1-2%).
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There is no universal best resolution for all cases, but the best performances are
achieved for resolutions between 24x40 and 48x96 pixels (cf., Table 35, testing sets
from No. 7 to 12).

With the proposed performance index, the best input resolution can be effectively
selected in a given dataset and classifier. With such newly reduced resolution, which is
typically much lower than the initial resolution (that of the input images), the processing
time needed for the classification could decrease by up to 74% (percentage difference
referred to the classifier with the highest resolution) with insignificant influence on the
accuracy.

Moreover, the presented approach is quite general, i.e., it is applicable not only to the
considered problem but also to the detection of any type of object with any classifier.

Table 36. Configuration sets, classification accuracy and processing time for testing subsets

Processing
Dataset Type of Best performance Difference in time
classifier resolution accuracy (*) [%] reduction (*)

[%]
SVM 24x56 +0.27 -13.64
LSIFIR ACF 24x40 -0.69 -65.56
CNN 16x32 -0.06 -42.31
SVM 24x48 -0.14 -18.18
OSsuU ACF 24x56 +0.03 -13.64
CNN 24x40 +0.12 -25.76
SVM 40x72 -0.16 -63.16
NTPD ACF 40x72 +0.29 -61.41
CNN 40%72 +0.03 -58.64
SVM 32x64 +0.97 -71.62
CVC09 Day- ACF 48x96 -1.06 -33.33

time
CNN 24x40 -0.63 -72.02
SVM 40%80 -2.28 -60.27
Cve-09 ACF 32x64 222 -66.09
Night-time

CNN 24x40 +0.21 -73.83

(*) Percentage difference referred to the classifier with the highest resolution.
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6. Experiments with the proposed pedestrian detection procedure

The general procedure of the proposed detection process with the introduced
improvements is presented in the diagram in Figure 3. These improvements increase the
computational efficiency and accuracy of pedestrian detection. More detailed diagrams
presenting individual stages are presented in the previous chapters: the ROI generation
procedure is presented in Figure 20 (in Chapter 3), the idea of ROI adjustment is
presented in Figure 35 (Chapter 4), and the procedure of tuning the pedestrian
classification with the proposed performance index is presented in Figure 36 (Chapter
5).

This chapter presents the experiments performed to evaluate the impact of the
proposed improvements on the accuracy and computational efficiency of the entire
pedestrian detection process.

Two baseline, commonly used detectors were used for this task, namely the ACF
[76] and CNN / AlexNet [78], [79] (details of settings and implementation are described
in Sections 5.2.3 and 5.2.4). These detectors are well suited for carrying out a large
number of experiments and are relatively easy to adapt to different input resolutions.
The adaptation is much more difficult with complex CNNs, where changing the input
resolution necessitates adjusting multiple layers of the network. It is difficult to compare
the results of such differently modified CNNs with each other (for various input
resolutions). In addition, the ACF and AlexNet detectors are well described in the
literature, which allows the results to be compared.

The tests were conducted on two datasets: CVC-14 and KAIST, which contain
thermal images recorded at night with annotated test sequences that allow to perform
experiments with pedestrian detection algorithm (both datasets are described in Section
2.2).

The first section of this chapter presents the description of the implementation of the
proposed algorithm created by the author of this dissertation. The following sections
present the initial experiments for the settings obtained with the proposed ROI
generation technique, the experiments with selecting the classifier resolution with the
proposed performance index, and experiments with adjustment of segmented ROIs.
Then, the obtained results are compared with some other pedestrian detection methods,
i.e. those based on segmentation with the sliding window and some selected from the
literature, in which similar detectors were used, i.e., ACF and CNN/AlexNet.
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6.1. Implementation

For the experiments, the proposed pedestrian detection algorithm was implemented
along with the tools that enabled the assessment of the proposed improvements. The
implementation was made in C# in the Visual Studio environment. The current
implementation uses the multicore CPU and can run in a multi-threaded architecture (as
presented in Figure 43).

The software has an object-oriented, modular architecture that allows for easy
attaching of new datasets, new ROI generation approaches, feature extractors, and a
variety of classifiers. The software includes the main proposed pedestrian detection
algorithm (divided into classes) and a demonstration application named
ThermalPDdemo (see Figure 44). This application is built as a WindowsForm
application and enables to:
set paths to datasets,
train/load ACF detector parameters,
load pre-trained CNN model with defined structure,
perform frame by frame detection with ACF detector or CNN,

evaluate pedestrian detection algorithm on entire dataset of images.
The software is based on the few main abstract classes: TDataset,

TFeatureExtractor, TClassifier, TSegmentator, which constitute an interface for the
implementation of individual algorithms. In addition, the software has the class
PedestrianDetectionModule, which is the main module for functions used inside the
pedestrian detection process.

The general structure of implemented software (most important classes) is as
follows:

o ThermalPDdemo — window application (presented in Figure 44),
o PedestrianDetectionModule — main pedestrian detection module,
o TSegmentator,

o Otsu_TSegmentator,

o Fixed TSegmentator,
e TDataset,

o CVC-14_TDataset,

o KAIST TDataset,
o TFeatureExtractor,

o ACF FeatureExtractor,

o CNN_FeatureExtractor,

o HOG FeatureExtractor,
o TClassifier,

o SVM Classifier,

o Boost Classifier,

o CNN Classifier.
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Figure 43. Block diagram of the multi-threaded implementation of the proposed pedestrian
detection algorithm
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Load CNN | ! iStep 2: single-frame
detector 1 detection

11 Step 3: detection tests

Train/Load
i for all frames in dataset

ACF detector

EStep 1
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+ select detector

Segmentation parameters:

(® Manual thresholds
Lower TH 165
Higher TH: 200

Detector parameters:

Classfification 0,5

threshold:
Width: 32
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! Detection tests results:
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(for 1TFPPW)
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Time (ms):
(per frame)

Samples:
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Path to CVC night FIR dataset: C\CVC-14\Night\FIR\
Path to pre-trained CNN model: CACNN models\CNNmodelCVC14_32_64_2048_V1.h5

Figure 44. Window of application ThermalP Ddemo for conducting experiments with the pedestrian
detection algorithm
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The software uses several external libraries, including EmguCV (C # version of
OpenCV library), Keras, and TensorFlow (to support CNNs) [97]. Libraries are
installed into a project via NuGet packages in Visual Studio (Project -> manage NuGet
packages) [98]. The list of all NuGet packages used in the project is as follows:
VDK.EmguCV.x64 —v. 2.4.10,

TensorFlow.NET —v. 0.14.0,
Keras.NET —v. 3.6.2.4,
Numpy.Bare —v. 3.7.1.20,
libsvm.net —v. 2.1.7,

e [KVM.OpenJDK.Core —v. 7.2.4630.5,
e IKVM.OpenJDK.Util —v. 7.2.4630.5.

6.2. Experiments

This section presents the experiments performed to verify the accuracy of the
proposed pedestrian detection procedure. The following subsections include the initial
experiments for the settings obtained with the proposed ROI generation technique,
experiments with selecting the classifier resolution with the proposed performance
index, and experiments with adjustment of segmented ROIs.

6.2.1. Methodology

The main metrics used in this chapter are MR, FPPI, and FPS, which are described in
Section 3.8.1.

The accuracy of the proposed pedestrian detection algorithm is assessed based on the
relation of MR to FPPI. These metrics are closely related to each other, as the MR value
decreases, the FPPI value increases and vice versa. On the one hand, it is important that
the MR should be as small as possible to detect pedestrians with a high accuracy. On the
other hand, it is also important that the FPPI value should also be low to ensure proper
operation of the system and to avoid frequent false detections. Presented MR values in
the experiments were achieved for the mean FPPI value equal to 1. However, in the
experiments also detection error trade-off (DET) curves (plots of MR values depending
on the FPPI values) will be presented.

During experiments, it was noticed that for both the CVC-14 and the KAIST
datasets, the pedestrians in the far distance from the camera were not always annotated
by the authors of the datasets. The pedestrians that are visible from a long distance but
not annotated become annotated on successive frames of the sequence as they were
approaching the camera. However, the proposed pedestrian detection algorithm very
often detected such not annotated pedestrians at long distances. Since pedestrians were
not annotated, the software comparing results with the ground-truth description,
classified the detected pedestrians as false-positives (but, in fact the pedestrians were
detected correctly). As a result, the average number of FPPI was even doubled (verified
for the CVC-14 dataset and set 09 from the KAIST dataset), and it was necessary to
increase the classification threshold to reduce the FPPI value (to achieve a value equal
to 1) at the expense of increasing the MR value.
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Therefore, two more precise objective metrics were proposed: MR, and MR, for
pedestrians at distances up to 150 m and 75 m respectively.

CVC-14 and KAIST datasets differ in resolution and in the field of view. For both of
them, minimum pedestrian heights (in pixels in the image) have been estimated. These
values correspond to the boundary distances (150 m from the camera for MRg,, and
75 m from the camera for MR,.,.). The estimated values of minimum pedestrian
heights are presented in Table 37.

The MR¢,, metric is used to limit detection of very distant pedestrians who often are
not annotated and to avoid incorrectly increasing the FPPI value. Moreover, considering
that the resolutions offered by the thermal imaging cameras are relatively low (320256
for the KAIST dataset and 640x470 for the CVC-14 dataset), it makes no need to detect
and classify pedestrians at very far distances. The sizes of such pedestrians in the image
are very low, e.g., even less than 8x16 pixels. For such small resolutions, the correct
classification is difficult even for a human.

As a result, the annotated pedestrians outside the MRg,, metric range are also not
included in the analysis. This metric achieves stable results and better reflects the
overall performance of the tested detector. Therefore, subsequent tests of the pedestrian
detection procedure with the proposed improvements were conducted in relation to the
MR¢,, and MR, metrics only.

The MR,q,r metric determines the accuracy of pedestrian detection close to the
camera (up to 75 m). For this range, pedestrians may be on a collision course with a
vehicle. Therefore, it is very important that the value of MR., should be as low as
possible.

Table 37. Minimum pedestrian heights (in pixels) estimated for the proposed metrics for
KAIST and CVC-14 datasets

CVC - 14 KAIST
Minimum  Included Minimum  Included
Distance height pedestrians height pedestrians
(pixels) (*) [%] (pixels) (*) [%0]
Far (MR¢.y) 50 80.3 20 76.9
Near (MR pear) 100 37.7 40 35.4

(*) Percentage value of annotated pedestrians included within the metric range

As shown in Table 37, 80.3% of annotated pedestrians from the whole CVC-14
dataset and 76.9% from the KAIST dataset are within the metric range of MR¢,, (up to
150 m). For the MR,q, metric (up to 75 m), there are 37.4% of all annotated
pedestrians included in the CVC-14 dataset and 35.4% in the KAIST dataset.

6.2.2. Initial tests
This section presents initial experiments with the proposed pedestrian detection
procedure that were conducted on the CVC-14 and KAIST datasets. Tests were
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performed with settings of the ROI generation process proposed in Chapter 3 and using
two baseline object classifiers ACF and AlexNet / CNN.

The tests for both detectors were performed for 32x64 input resolution. Initial and
subsequent experiments for the KAIST dataset were conducted on a representative 09
subset (campus). The results are shown in Table 38.

The lowest MRg,,. values were achieved with the balanced settings and double
thresholding for the CVC-14 dataset (MR¢,, = 24.0%) and with balanced settings and
triple thresholding for the KAIST dataset (MR¢, = 26.2%).

In the case of the MR, parameter, the achieved values are even lower than for the
parameter MRg,,. It also confirms that the accuracy of pedestrian detection increases as
the distance to the camera decreases.

In most cases, the CNN and ACF detectors achieved similar results. The biggest
difference was for the CVC-14 dataset with double thresholding and balanced settings
(for ACF, the value of MRg,, was equal to 29.1%, for CNN the value of MR¢,, was
equal to 24.0%).

Although the MR values of the proposed ROI generation step were very low (see
Section 3.9), at the object classification stage, the ACF and CNN detectors make
additional errors. If in a hypothetical situation, a classifier could classify the samples
without an error, the resulting MR values would be very low, equal to those obtained
after ROI generation stage (as presented in Chapter 3).

The relationship between MR and FPPI parameters is crucial to the operation of the
pedestrian detection system. The lower the value of the FPPI parameter is required, the
higher values of the MR, MR¢,, and MR ,.,,.parameters, will be achieved.

Table 38. MRg,, MRyear and FPS values obtained after the initial pedestrian detection
experiments with CVC-14 and KAIST datasets

Double thresholding Triple thresholding
balanced best accuracy balanced best accuracy
Dataset  Parameter

ACF CNN ACF CNN ACF CNN ACF CNN
C MR¢, [%]  29.1 24.0 31.8 312 342 31.2 322 41.5
\C/ MRpear [%0]  17.1 17.9 18.1 20.3 235 18.9 20.2 30.3

i FPS* 27.0 1.3 17.3 0.8 17.7 0.8 9.4 0.5

4 FPS** 91.0 4.5 59.6 23 604 23 32.1 1.5
K MR¢.r [%] 309 28.4 31.1 31.7 275 26.2 315 314
A MRpear [%0]  28.1 23.9 23.9 23.6  20.1 18.9 23.1 24.6

; FPS* 37.3 3.5 32.1 23 321 2.8 29.0 1.8

T FPS** 143.3 11.5 123.3 7.8 118.7 9.5 112.1 5.8

(*) The FPS was calculated for a single-core of Intel Core i17-870 CPU
(**) The FPS was calculated for a four-core of Intel Core i7-870 CPU
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In almost all cases, the achieved MR, values are lower for balanced settings than
for best accuracy settings. This is due fact that a much larger number of ROIs are
obtained from the ROI generation stage with the best accuracy settings. For these
settings, the ROI generation process is more accurate (lower MR values are achieved,
for the details see Section 3.9), but due to the larger number of generated ROIs, the
classifier makes more mistakes (false-positives detections), which increases the FPPI
value.

6.2.3. Selection of classifier resolution

In this section, the experiments were carried out with the proposed performance
index p (according to the formula (42)) in order to select the best input resolutions for
ACF and CNN detectors for the CVC-14 and KAIST datasets. The experiments were
performed for various resolutions, and the performance index was calculated taking into
account the effectiveness of the entire pedestrian detection algorithm (FPS parameter).
Complementary research for the object classification stage itself and in a broader
context (for both, NIR and FIR datasets) was carried out in the previous Chapter 5,.

To perform experiments with various resolutions of the classifier, the ROIs were
scaled into 13 sizes: 64x128, 56x120, 56x112, 56x104, 48x96, 40x88, 40x80, 40x72,
32x64, 24x56, 24x48, 24x40, 16x32 (similarly as in Chapter 5).

In both datasets, the pedestrians were captured with many different sizes. In
consequence, the initial resolutions of ROIs varied a lot. To match these resolutions to
the resolution of the classifiers, each ROI was scaled each time into the resolution of the
tested classifier.

For all of these 13 resolutions for the CVC-14 dataset, the ACF and CNN detectors
were trained and full detection tests were performed. In case of the KAIST dataset, the
detectors were trained only for the 5 lowest resolutions due to the low resolution of the
dataset (320x256 pixels). Experiments for both datasets were performed with double
thresholding and balanced settings.

The results of the experiments for various input resolutions of tested detectors are
presented in Table 39 and in Figure 45. Moreover, the set of finally selected resolutions
based on the performance index for both datasets are presented in Table 40.

In the case of the CVC-14 dataset, the lowest MR, value was achieved for both
detectors with a resolution of 32x64 (29.1% for ACF and 24% for CNN). Furthermore,
the highest performance index value was also obtained for this resolution (cf. Figure
45). As a result, the choice of the resolution of 32x64 allowed to almost double the
efficiency of the pedestrian detection algorithm (the FPS parameter increased by 26.1%
for the ACF detector and by 333.3% for the CNN) compared to the detector with the
highest tested resolution.

For the KAIST dataset, the lowest obtained values of MR¢,, for the ACF and CNN
detectors were similar: 29.6% for the ACF detector with a resolution of 24x56, and
28.4% for the CNN detector with a resolution of 32x64. However, the highest values of
the performance index parameter (see Figure 45) were obtained for much lower
resolutions for the ACF and CNN detectors, respectively: 16x32 and 24x40. With these
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resolutions, the effectiveness of the entire pedestrian detection algorithm increased by
89.3% with the ACF detector and by 85.7% with the CNN detector compared to the
classifier with the highest input resolution (see Table 40).

The results show that the detectors achieve good detection accuracy in all cases even
for relatively low resolutions, for which the computational efficiency is much higher. It
can be seen that increasing the input resolution of the classifier no longer reduces the
MR¢,r (due to the limited resolution of the analyzed image and the pedestrians
appearing on it), but it will significantly slow down the operation of the detection
algorithm.
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Table 39. MR¢,, MRyear and FPS values achieved for various input resolutions with ACF and
CNN detectors for CVC-14 and KAIST datasets

ACF CNN

MRfar MRnear FPS* MRfar MRnear
[%] [%0] [%0] [%0]

1 64x128 30.4 20.1 21.5 265 19.7 0.3

Dataset Set Resolution FPS*

2 56x120 31.6 20.8 224 263 19.6 0.5
3 56x112 31.5 204 224 243 17.1 0.5
4 56x104 31.0 20.9 23.6 237 17.6 0.5
5 48%96 30.3 20.3 25.0 265 19.6 0.5

S,- 6 40%88 31.2 19.9 26.0  26.7 19.1 0.8
(_j 7 40x80 313 19.8 265 255 17.4 0.8
‘1‘ 8 40x72 30.6 18.3 26.5 268 19.4 1.0
9 32x64 29.1 17.1 27.1  24.0 17.9 1.3
10 24%56 29.7 17.4 283 263 19.7 1.8
11 24x48 29.8 17.5 283  25.6 18.1 23
12 24x40 30.4 19.9 304 267 19.7 2.8
13 16x32 34.1 22.8 31.1 28.6 22.4 4.8
9 32x64 30.9 28.1 373 284 23.9 3.5
K 10 24x56 29.6 259 41.8 303 27.7 5.0
? 11 24x48 30.1 259 56.9 309 26.2 5.8
'i* 12 24%40 30.4 253 56.9 289 23.6 6.5

13 16%32 30.1 243 70.6  33.1 26.3 10.8

(*) The FPS was calculated for a single-core of Intel Core 17-870 CPU

Table 40. Best performance resolutions for ACF and CNN detectors obtained for CVC-14 and
KAIST datasets

Type of Best Performance Difference in FPS Acceleration
Dataset

Classifier Resolution MR, (*) [%] (*) [%]
ACF 32x64 -1.3 +26.1
CVC-14
CNN 32x64 -2.5 +333.3
ACF 16x32 -0.8 +89.3
KAIST
CNN 24x40 +0.5 +85.7

(*) Percentage difference referred to the classifier with the highest resolution.
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6.2.4. Adjustment of ROI area

In order to verify the impact of the proposed ROI adjustment method (presented in
detail in Chapter 4) on the pedestrian detection accuracy, the experiments were carried
out for the scale factor k changing from 1 to 1.4 with the step of 0.05. As a result, 36
measurements of MRy, were obtained for both datasets: CVC-14 and KAIST, 9 for
each object classifier, namely ACF and deep CNN. Similar to the previous section,
experiments for both datasets were performed with double thresholding and with
balanced settings.

The results are presented in Table 41 and Table 42. Figure 46 and Figure 47. It is
noticeable that including the full pedestrian shape in the ROI is important for the object
classification stage and for the best-chosen scale of ROI enlargement, MR, may be
significantly reduced. In all cases (for both tested detectors and datasets), it was possible
to find the minimum value of MR, for scale factor k greater than 1 (see Figure 46 and
Figure 47). However, it was achieved for different values of k.

. In case of CVC-14 dataset, the usage of scale factor with k = 1.2 decreased MR¢,,.
from 29.1% to 24.8% for the ACF classifier and with scale factor k = 1.3 applied for the
deep CNN classifier the change of MRg,, was smaller, but still noticeable, i.e. from
24.0% to 22.4%.

In addition, it can be seen that the CNN-based classifier is less sensitive to the
quality of the ROI: It offers more accurate results than the ACF classifier with the same
ROIs. The MR, improvement with the scale factor applied is smaller for the CNN. For
the ACF detector, any change in scale factor up to 1.4 results in an improvement in
MR¢,,. For the CNN-based classifier except the scale factor equal 1.05, all other scales
improve the detection accuracy.

In the case of the KAIST dataset, a significant reduction in the value of MRg,, was
obtained for the ACF detector (from 30.1% to 28.1%). However, in the case of the CNN
detector, only a slight improvement was obtained (from 28.9% to 28.7%) for the scale
factor value k = 1.05. Moreover, for all scale factor k values greater than 1, the ACF
detector performed better (achieved lower values of MRg,,). In the case of the CNN
detector, increasing the scale factor k above 1.05 worsened the results (see Table 42 and
Figure 47).

In Figure 48 and Figure 49, the modified ROIs with various scale factors are
presented. The pedestrian detection results obtained by the ACF classifier are denoted
with bounding boxes: red boxes denote no detection, while green boxes denote proper
detection. It can be noticed that there is no one optimal scale factor. The results strongly
depend on how much the pedestrians were cropped in the initial ROIs. If the mismatch
was small, also the small scale factor corrects the erroneous case. If the mismatch was
high also the scale factor should be high. Additionally, it could be noticed that for a
proper detection, the pedestrian does not have to fit into the ROI in total. However, if
the pedestrian in the ROI is too small, it could not be detected (see the case in the third
row and the last column in Figure 48).

Additionally, for both classifiers, the impact of the ROI area enlargement on the
performance of the entire pedestrian detection process was measured. The detection
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time of pedestrians within one image frame increased on average by 0.5 ms with
adjustment of segmented ROIs (on a typical PC, using the CPU only). In case of the
ACF classifier, the detection time increased by approximately 1.4%, and in case of
CNN classifier, the detection time increased by approximately 0.055%.

Finally, it was proved that the proposed solution has a negligible impact on the
efficiency of the detection process. This is mainly due to the fact that only the ROI area
is increased, not the object classifier input resolution (as presented in Chapter 4,
eventually for the classification stage each ROI is resized to one resolution).

Table 41. MR¢,, and MR ., for various scale factor k with ACF and CNN detectors for CVC-

14 dataset
ACF CNN

Scale MRy MRpear MRpar  MRpeqr
factor k. [%] [%] [%] [%]
1.4 26.8 19.2 232 14.6
1.35 26.5 19.1 23.0 13.2
1.3 26.4 18.2 22.4 13.4
1.25 25.8 17.5 23.0 13.4
1.2 24.8 15.9 22.9 14.7
1.15 25.9 15.6 23.5 15.1
1.1 26.5 15.4 23.5 15.5
1.05 273 16.4 24.4 16.4
1.0 29.1 17,1 24.0 17.9

Table 42. MRg,, and MR, for various scale factor k with ACF and CNN detectors for

KAIST dataset
ACF CNN

Scale MRy MRpear MRpyr  MRyeqr
factork  [%] [%] [%0] [%]
1.4 28.8 24.2 35.2 34.7
1.35 28.8 243 349 34.5
1.3 28.3 235 344 34.4
1.25 28.1 234 32.8 31.2
1.2 28.1 232 31.7 29.1
L.15 28.8 23.9 31.1 27.8
1.1 29.4 23.9 29.6 26.1
1.05 30.1 24.5 28.7 21.1
1.0 30.1 243 28.9 20.9

97



22 ; . ; : ;
1 1.05 1.1 1.15 1.2 1.25 13 1.35 1.4
scale factor k
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Figure 48. The illustrative examples of ROIs from the CVC-14 dataset for which increasing the ROI area
resulted in improved detection result (red bounding box - no detection, green bounding box - correct

detection)
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Figure 49. The illustrative examples of ROIs from the KAIST dataset for which increasing the ROI area
resulted in improved detection result (red bounding box - no detection, green bounding box - correct
detection)
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6.2.5. Final results

This section presents extended experiments with the proposed pedestrian detection
procedure that were conducted for finally selected settings: selected resolutions and
values of scale factor k (obtained in the previous sections), and for all test sequences of
KAIST dataset. In addition, the results of MR¢,, and MR, are presented in relation to
the FPPL

The tests were performed for double and triple thresholding for the balanced settings
of the ROI generation process due to fact that worse results in average were obtained
with the best accuracy settings in the initial experiments (presented in Table 38). The
results of the experiments are presented in Table 43 (for the CVC-14 dataset) and in
Table 44 (for the KAIST dataset). In addition, Figures 50-53 show graphs presenting the
achieved MR, and MR, values in relation to the FPPI for both datasets, and Figures
54 and 55 show illustrative examples of detection results obtained with the proposed
pedestrian detection approach.

Table 43. Final values of MR¢,,, MR, car and FPS obtained for the CVC-14 dataset with ACF
and CNN detectors

Double thresholding  Triple thresholding

Dataset Parameter

ACF CNN ACF CNN
C MR, [%] 24.8 22.4 289 28.2
X MRyear [%] 159 13.4 17.3 15.9
: FPS* 27.0 1.3 17.7 0.8
4 FPS** 91.0 45 60.4 2.3

(*) The FPS was calculated for single-core of Intel Core i7-870 CPU
(*) The FPS was calculated for four-core of Intel Core 17-870 CPU

In the case of the CVC-14 dataset, the obtained results of MRg,, and MR .q.r
improved compared to the results presented in Table 38. Detection with the double
thresholding method still achieves better results than detection with the tripe
thresholding (e.g., for double thresholding with an ACF detector, the value of MRg,,. =
24.8%, and for the triple thresholding, the value of MR¢,, =28.9%).

The graphs of the values of MR¢,, and MR, in relation to the FPPI presented in
Figures 50 and 51 show that for lower FPPI values the ACF detector achieves better
results than the CNN detector (despite worse values achieved for FPPI = 1). Moreover,
for the ACF detector, both values of MR, and MRg,, decreases evenly with increased
FPPI value. The situation is different in the case of the CNN detector: for very small
FPPI values, the MR¢,, is lower than MR ¢,

For the KAIST dataset (set 09 - campus), the final obtained results are much better
than the initial values (presented in table 38). For all settings, the values of MR, and
MR ear decrease (e.g., for double thresholding with ACF detector MRg,, decreases from
30.9% to 28.1%, and for triple thresholding with ACF detector MR ., decreases from
20.1% to 14).
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The results presented in Table 44 show that for all subsets of the KAIST dataset, the
detection with the triple thresholding reaches significantly lower values of MRg,, than
for the double thresholding.

It can also be seen that significantly better MR¢,, values are achieved for the subset
09 (campus) and the subset 10 (roadway) than for the subset 11 (downtown). This is
because the detection for the subset 11 is more difficult due to a greater traffic and a
lower thermal contrast. The averaged results for the entire KAIST dataset (weighted
average depending on the number of image frames) are also presented in the bottom of
Table 44.

In most cases, the ACF detector achieves better values than the CNN detector. The
graphs of MR¢,, and MR .., in relation to the FPPI (presented in Figures 52 and 53)
have similar waveforms for both detectors. However, for the CNN detector for low
FPPI values, the value of MR, ., is higher than the MRg,,.

For both datasets, the obtained values of FPS for the proposed pedestrian detection
algorithm are very high using CPU processing only (up to 91 FPS with ACF detector
for CVC-14 dataset and up to 261.2 FPS for the KAIST dataset). For the CNN detector,
the obtained FPS values are much lower than for ACF (due to the complex structure of
the detector), but still close to the real-time processing.

Table 44. Final values of MR¢,:, MRy, and FPS obtained for the KAIST dataset (all test
sequences) with ACF and CNN detectors

Double thresholding  Triple thresholding

Set no. Parameter

ACF CNN ACF CNN

MR¢,, [%] 28.1 28.1 272 26.1

%‘;t MR pear [%] 21.1 21.1 14.6 16.2
(campus) FPS* 70.6 6.5 59.4 52
FPS** 261.2 17.6 219.8 14.4

MR,y [%] 32.5 33.9 29.2 30.7

Set MR pear [%] 18.6 22.0 16.7 20.8
(mg:my) FPS* 37.0 3.5 32.7 2.5
FPS** 136.9 9.7 121.2 7.0

MRy [%] 47.6 49.3 443 46.2

Set MR ear [%] 372 38.6 27.7 32.8
(dowﬁown) FPS* 18.1 1.7 16.3 1.3
FPS** 67.0 4.8 60.3 3.6

MRy [%] 34.9 36.2 322 33.1

Average MR pear [%] 233 25.5 18.7 225
FPS* 40.2 3.8 34.9 2.8

FPS** 148.6 103 129.2 7.9

(*) The FPS was calculated for single-core of Intel Core i7-870 CPU
(*) The FPS was calculated for four-core of Intel Core 17-870 CPU
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Figure 50. MR¢,, and MR ., in relation to the FPPI parameter obtained with the optimal settings for
CVC-14 dataset with the ACF detector
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Figure 51. MRg,, and MR ¢, in relation to the FPPI parameter obtained with the optimal settings for
CVC-14 dataset with the CNN detector
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Figure 52. MR¢,, and MR ¢, in relation to the FPPI parameter obtained with the optimal settings for the
KAIST dataset (set 09) with the ACF detector

Hig % T 57

—MR__ KAISTICNN
| MR- KAIST/CNN
' near

90

80

70
60

1] —

Miss rate (in %)

e s el st N

TN R N3 1 T
10 : S BT S O | : [ R I
107 107" 10"

False positives per image (FPPI)

Figure 53. MR¢,, and MR ., in relation to the FPPI parameter obtained with the optimal settings for the
KAIST dataset (set 09) with the CNN detector
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Figure 54. The illustrative examples of pedestrian detection obtained with ACF detector for the CVC-14
dataset, from left: input thermal image, thermal image with marked ROIs (red boxes), thermal image with
marked detections (red boxes) and annotations (blue boxes)
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Figure 55. The illustrative examples of pedestrian detection obtained with ACF detector for the KAIST
dataset (set 09), from left: input thermal image, thermal image with marked ROIs (red boxes), thermal
image with marked detections (red boxes) and annotations (blue boxes)
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6.3. Comparison of results

This section compares the results obtained in the previous section with the other
techniques found in the literature for the CVC-14 and KAIST datasets. The primary
objective of the comparison was to verify whether the pedestrian detection algorithm
with the proposed improvements achieves better results than similar solutions (based on
the same detectors) but without the introduced improvements.

In the beginning, comparative tests were carried out on the pedestrian detection
process with the proposed ROI generation technique and with the sliding window
technique. The experiments were conducted for the same detectors: ACF and CNN, but
with different ROI generation techniques. The results of the comparison are presented in
Table 45.

Due to the same implementation, parameters values of tested detectors, and the same
methodology of evaluating the results, it was possible to objectively evaluate the
accuracy and performance of the detectors with and without the proposed
improvements.

The results presented in Table 45 show that for both the CVC-14 dataset and the
KAIST datasets, the values of the parameters MR, and MR ., are much lower for
pedestrian detection based on the proposed ROI generation technique (e.g. MRg,, =
22.4% for the CVC-14 dataset and MRg,, = 32.2% for the KAIST dataset) than for the
sliding window technique (MR¢,, = 44.7% for the CVC-14 dataset and MR¢,,. = 45.8%
for the KAIST dataset).

Although in general, the sliding window technique has low MR value at the ROI
generation stage (close to 0, for the assessment of the ROI generation stage itself, as
presented in Chapter 3), a very large number of ROIs obtained with this technique (on
average for one image frame it is 6132 ROIs for the CVC-14 dataset and 6321 for
KAIST dataset) causes that the classifier makes more false detections (false-positives).
As a result, in order to obtain the desired FPPI value, the detection threshold must be
heightened, which causes a significant increase in the values of MR¢,,. and MR ¢4

Table 45. Comparison of pedestrian detection results based on the proposed ROI generation
technique and the sliding window approach for CVC-14 and KAIST datasets

MRfar MRnear LAMRfar LAMRnear

Dataset ROI generation Detector [%] [%] [%] [%] FPS
C Sliding window ACF 44.7 38.9 68.9 573 2.7
X Proposed ACF 24.8 15.9 49.7 42.2 91.0
1 Sliding window CNN 45.1 36.7 73.1 72.8 0.2
4 Proposed CNN 22.4 13.4 64.1 64.5 4.5
K Sliding window ACF 45.8 42.4 72.4 66.2 4.1
A Proposed ACF 32.2 18.7 58.7 48.7 129.2
é Sliding window CNN 45.9 443 74.2 74.6 0.4
T Proposed CNN 33.1 22.5 61.6 62.2 7.9
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In addition, the computational efficiency of the pedestrian detection is much higher
(even faster by 125 FPS) based on the proposed ROI generation technique and reaches a
value up to 130 FPS. For this reason, it can be concluded that the operation of the
proposed pedestrian detection algorithm in the real-time is possible even in a vehicle or
an embedded system,

In the next step, pedestrian detection results were compared with similar solutions
presented in the literature. As mentioned earlier, the purpose of the comparison was to
verify whether the pedestrian detection algorithm with the proposed improvements
achieves better results than the detection algorithm without the introduced
improvements. Therefore only similar solutions were considered for the comparison
(based on the same or similar detectors, i.e., ACF and AlexNet/CNN).

In order to facilitate the comparison and to separate the parameters MRg,,. and
MRpear form the value of the FPPI parameter an additional parameter, called log-
average miss rate (LAMR), was used. This parameter is an average of the measured
miss rate in the range of 10~2 to 10° FPPI and is often used in the literature to compare
the overall detector performance. Its value was calculated for the proposed algorithm
and presented in Table 45. Finally, Table 46 and Table 47 present a comparison of
results based on the LAMR and FPS parameters for CVC-14 and KAIST datasets.

For the comparison presented in Table 46 and Table 47, the results of similar
implementations based on ACF detectors were selected. The comparison of the tested
CNN / AlexNet detector was not made due to the lack of results for the CNN detectors
based on this architecture for the KAIST and CVC-14 datasets. For thermal pedestrian
detection based on CNN in the literature, the results are mainly presented for the
VGG16 and ResNet-50 models [99], [100].

In the case of the KAIST dataset, the results presented in the literature refer to a
reasonable test set proposed in [26]. For this set only pedestrians with a height greater
than 55 pixels are taken into account. For this reason, the results from the literature
(presented in Table 46) should be compared with the values of the parameter LAMR ¢,
(for which the analysed pedestrians have height greater than 40 pixels) of proposed
pedestrian detection procedure than with the value of LAMRg,, (for which the analysed
pedestrians have height greater than 20 pixels).

The results presented in the literature for the closest version of the tested ACF
detector implemented in this study: "ACF + T" [23] are worse (LAMR = 74.5%) than
those obtained for the pedestrian detector with the proposed improvements (LAMR .=
48.7%). The LAMR value for the "ACF + T" detector is close to the values presented in
this work for the tested detector based on the sliding window technique (LAMR =
72.4%, cf. results presented in Table 45).

The remaining compared implementations achieve lower LAMR values (cf. Table 46)
but have different improvements in the object classification step. These include
multispectral pedestrian detection (mainly RGB + thermal), which significantly
improves the accuracy of pedestrian detection [99], [100]. However, also in this case the
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achieved LAMR value of ACF detector with proposed ROI generation technique is
lower or comparable to these multispectral solutions (cf. Table 46).

Table 46. Comparison of results with similar detectors for KAIST dataset (night-time test set)

Reference Pedestrian detector (L AM:‘{Q?J/IT..E{S[]RH%F) FPS

this work  Proposed ROI / ACF (58.7/48.7) 129.2 (CPU)

this work  Proposed ROI/ CNN (60.6/61.2) 7.9 (CPU)
[26] ACF+T 74.5 N.A.
[26] ACF+T+TM+TO 64.9 N.A.
[26] ACF+T+THOG 63.9 N.A.
[101] ACF-RGBT+THOG 61.5 N.A.
[102] ACF 56.2 0.4 (CPU)
[39] Multispectral ACF 48.2 N.A.

(*) N.A. — not available

Table 47. Comparison of results with similar detectors for CVC-14 dataset (night-time test set)

Reference Pedestrian detector (L AM;":‘I:II/I}J/[%O@]RMM) FPS

this work  Proposed ROI / ACF (49.7/42.2) 91.0 (CPU)

this work  Proposed ROI/ CNN (64.1/64.5) 4.5 (CPU)
[39] Multispectral ACF 65.4 N.A.
[103] &Tﬁ;ﬂiﬁgﬁgg 48.2 N.A.

(*) N.A. — not available

The computational efficiency of the pedestrian detection with the proposed ROI
generation technique is much higher than presented in [102] for the ACF detector (the
only cited paper with information about the computational efficiency), which is only 0.4
FPS. This value is also lower than the tested implementation of the detector based on the
sliding window technique (4.1 FPS, cf. Table 45), which is probably due to the
multispectral detection approach and the higher input resolution of the ACF detector.

In the case of the CVC-14 dataset, the comparison of the achieved LAMR values for
both detectors was possible only with solutions based on multispectral imaging (RGB +
thermal). As mentioned before, these solutions achieve lower LAMR values than
solutions based on a single input source. However, the achieved results for proposed
detector are better (LAMR = 49.7% for the ACF detector) than for the Multispectral
ACF [39] (LAMR = 65.4%) or close to results presented in [103] (LAMR = 48.2%). For
the compared detectors, it was not possible to obtain information about computational
efficiency from the papers [39], [103].

109



Concluding, the obtained detection accuracy for the ACF detector is comparable to
multispectral detectors (see Table 46 and Table 47). Further reduction of the LAMR
value could be possible by improving object detection stage by: additional data
augmentation, multispectral classification, additional tracking step, using better
detectors, e.g., Checkerboards [77] or more complex CNN models such as VGG16 or
ResNet-50 [99], [100]. However, the main aim in this chapter was to verify the
usefulness of the proposed improvements, and that was possible with the tested ACF
and AlexNet / CNN detectors (for the reasons described at the beginning of this
chapter).
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7. Multi-spectral imaging for CCTV operators

In this chapter, an additional option of multi-spectral imaging for CCTV operators is
presented. At the beginning of this chapter, a method of creating multi-spectral images
is described. Then the experiments with groups of observers are presented, performed to
test the efficiency of the proposed multi-spectral imaging.

7.1. Multi-spectral imaging

According to observations following from Figure 56, to facilitate analysis of CCTV
images at night by humans (for example, by CCTV operators), it is proposed to use the
multi-spectral image quality, which is obtained by merging the conventional camera
image with its thermal camera image counterpart [104]. Both cameras should operate in
parallel and observe the same scene. A similar idea was already proposed by Flir
company as the so-called “multi-spectral dynamic imaging function” offered in the
measurement cameras [105].

Due to a low number of other but important details in IR images (Figure 56b), for
manual scene analysis by e.g. the CCTV operators, more convenient are the multi-
spectral images (Figure 56c¢), which are obtained by merging conventional images with
their IR counterparts.

Indeed such important details, e.g. road lines, posts and signs, lights of upcoming
cars, etc., are altogether much better visible by humans in Figure 56¢ than in Figure 56a
or Figure 56b, separately.

a) b) ¢)

Figure 56. Illustrative images of the same scene recorded at night: (a) visual light image, (b) thermal

image, (c) multi-spectral image.

The proposed multi-spectral option for the CCTV visualization (see Figure 57) is
realized as follows: first, the thermal image is upsized to the resolution of the
conventional image (as typically IR cameras offer lower resolutions as the visible light
cameras), then the conventional image is taken as a background for the final multi-

111



spectral image. After that, all high luminance pixels in the thermal image (those
exceeding a certain threshold) replace the corresponding background pixels, but only if
their luminances are higher than in the conventional image.

7.2. Experiments

To study the effectiveness of the multi-spectral perception by humans, experiments
with a group of observers were performed. The observers had to count pedestrians in
images of three types: conventional, thermal, and multi-spectral. Additionally, they
should estimate the number of pedestrians located on the roadway. The first task was
proposed to evaluate the precision and speed of pedestrian detection using the analysed
image types, while the second task aimed to check the ability of correct environmental
location of the detected pedestrians.

A testing set consisted of 11 different monitoring scenes of resolutions 640x%320. For
each scene, images of three types were prepared: conventional, thermal, and multi-
spectral. Images of the first two types were taken directly from the USArmy Tetravision
dataset [37]. Images of the third type were generated using the approach described
above. Finally, the testing set was composed of 33 images.

The experiment participants were divided into two groups. The first group consisted
of 45 untrained persons (students), and the second group was constituted by 14 trained
observers (most of them from the academic staff). The experiment was performed with
specially prepared software and in similar lighting conditions.

With three scenes (rows in Figure 57), visibility enhancement using the multi-
spectral option is illustrated. The first example shows a single pedestrian at a short
distance from the camera. The second one presents pedestrians in a far distance (both
are invisible with the standard camera). The last example depicts two pedestrians in the
mid-range. Only one of them (the right one) is clearly visible in the standard camera
image.

The results of the performed experiments are presented in Table 48. It can be seen
that for precise counting of pedestrians, thermal images are much better than
conventional images (an improvement from 55-60% to ca. 98%) and even better than
multi-spectral images. However, the precise localization of pedestrians (in this case of
those present in the road) is the best using the proposed multi-spectral image quality (an
improvement from ca. 53% to ca. 87%).

The performed experiments with observers (presented in Table 48) show that the
proposed option of multi-spectral imaging (obtained by merging conventional and
thermal camera images) effectively improves the manual CCTV scene analysis at night,
shortens reactions and supports faster identification of objects.
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Table 48. Influence of type of night-vision imaging on precision and speed of analysis of
monitoring situations

Conventional Thermal  Multi-spectral
Description images images images

Analysis of the result

1 2 1 2 1 2

correct answers 55.2% 58.2% 98.1% 98.3% 89.9% 91.2%

General pedestrian
counting mean time

. 26s 20s 21s 1.7s 24s 21s
of counting

Pedestrian counting

correct answers 52.3% 53.0% 68.7% 71.6% 80.5% &87.3%
on the roadway

1 — Results obtained with untrained observers.
2 — Results obtained with trained observers.

a) b) c)

Figure 57. lllustrative examples of three scenes (in each row) from the prepared testing set: (a)
conventional camera image, (b) thermal image, (c) prepared multi-spectral image (yellow rectangle
denotes the field of view of the thermal camera).

113



8. Conclusions

In this dissertation, issues concerning night-vision pedestrian detection were
considered. The author proposed effective solutions in three parts: first, a new ROI
generation approach for the thermal images based on image thresholding, second, the
technique of additional ROI adjustment (slightly enlarging the ROI area of the image)
before the object classification stage, third, the procedure for tuning of the object
classification process with the universal performance index. These solutions were
designed to improve the accuracy of the pedestrian detection process and to achieve
real-time performance in order to apply it in vehicles (such as ADAS equipped cars or
autonomous vehicles).

At the beginning, it was pointed out that it is potentially possible to use segmentation
by thresholding on thermal images at night. For this reason, the new ROI generation
method was proposed. This method performs image segmentation multiple times with
different threshold values, then the set of ROIs is extended with new additional areas
with the regions enlargement technique and finally filtered with the proposed set of
candidates selection techniques.

The results obtained for both public datasets: CVC-14 and KAIST allow to conclude
that it is possible to accurately and efficiently perform the segmentation of thermal
images at night through the thresholding. Very low MR values were achieved: 1.2% for
the CVC-14 dataset and 8.8% for the KAIST dataset, still offering very high
computational efficiency (varying from 44 to 347 FPS depending on the settings)
obtained using only the CPU.

Next, the technique of additional ROI adjustment was proposed to address the
problem of inaccurate ROI adjustment. Inaccurate matching the edges of ROI to the
outer edges of the pedestrian may lead to cases of not a whole pedestrian covered with
the ROI. Such too small ROIs may finally be rejected by the classifier. The results
presented for this technique show that it was possible to value for tested datasets. For
example, in the CVC-14 dataset, with the ACF classifier MR¢,, decreased from 29.1%
to 24.8%. The proposed solution has a negligible impact on the computational time of
detection process mainly due to the fact that only the ROI area is increased, not the
object classifier input resolution.

In the third part of this dissertation, tuning of the object classification stage was
considered. It was pointed out that the classifiers are often used without an adaptation of
their input resolution to the resolution of the specific dataset or camera, especially in the
solutions with a complicated structure like deep convolutional neural networks.

The specialized procedure for tuning of the object classification stage was proposed.
This procedure is based on a novel and universal performance index. Using this
procedure, the author demonstrates that properly tuning of the object detection stage to
the analysed image source, e.g., to the sensor type, camera perspective and the
resolution of image is important and significantly affects the computational
performance. The results of experiments show that the properly tuned detectors achieve
good detection accuracy even for relatively low resolutions. It can be seen that
increasing the input resolution of the classifier above a certain level no longer increases
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the detection accuracy, but will significantly slow down the operation of detection
algorithm. Generally, the presented approach can be applied not only to the considered
problem but it can be adapted to detection of any type of object with any classifier.

In the fourth part of this dissertation, the whole pedestrian detection algorithm based
on the proposed improvements was tested. These tests were carried out for two object
detectors, namely ACF and AlexNet/CNN. The comparison of the results was
performed for the pedestrian detection based on the proposed ROI generation technique
with detection based on the sliding window technique and with the results presented in
the literature.

It was proved that the pedestrian detection based on proposed ROI generation
approach (based on thresholding of thermal images) is more accurate than detection
based on the sliding window technique and achieves much higher computational
performance (even several dozen times faster, with up to 130 FPS for using CPU only).
Furthermore, the comparison with similar object classification methods presented in the
literature shows that the proposed approach achieves better results (i.e. lower LAMR
value and much higher FPS). The obtained detection accuracy for the single ACF
detector is comparable to much complicated multispectral detectors.

The multi-spectral imaging as an option for CCTV operators was the last part of this
dissertation. The multi-spectral images were obtained by merging the conventional
camera image with its thermal camera image counterpart. The experiments performed
with observers show that the multi-spectral imaging effectively improves the manual
CCTYV scene analysis at night, shortens reactions and supports faster identification of
objects.

Concluding, the author’s proposed improvements of the night-vision pedestrian
detection procedure increase the detection accuracy and computational efficiency.
Therefore, the scientific aim of this Ph.D. dissertation has been accomplished and the
scientific thesis, namely: “The developed approach of night-vision pedestrian detection
based on proposed ROI generation by thresholding of thermal images and by properly
tuned object classification procedure improves detection accuracy and significantly
increases computational efficiency of the pedestrian detection process™ has been proven.

The proposed pedestrian detection system can be applied in various vehicles, driver
assistance systems, and autonomous cars. In case of safety-critical applications, it is
recommended to support the proposed system by some other detection systems
operating with different sensors in order to increase the final reliability of the system.
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