Politechnika Poznanska

Wydziat Inzynierii Mechanicznej

ROZPRAWA DOKTORSKA

Badanie i modelowanie proceséw
technologicznych opon na maszynach
VMI MAXX w celu uzyskania okreslonych

wynikow jednorodnosci

Wojciech Majewski

Promotor:

dr hab. inz. Ewa DOSTATNI, prof. PP
Promotor pomocniczy:

dr inz. Jacek DIAKUN

Poznan 2025



Spis tresci

SEIESZCZENMIC ... 4
SUMMIATY .ttt sa bt s b b e e bt e e b bt e ek bt e e b e e e bb e e ekt e e et b e e e nbe e e nnbeeenntes 5
1. WWPIOWAGAZENIE ...ttt kbbb bbbttt b bbbt 6
2. Budowa 0pon radialnyChl..........cooiiiiiiiie e 8
3. Proces produkcji opon radialNyCh ...........cccooieiieiiiic e 16
3.1 Przygotowanie MateriatOw ........cccovuiiiiiiiiiiie e 16
3.2  Konfekcja opon na maszynie VIMI MAXX .......cooeiieiiiieiieie s 19
3.3 WUIKANIZACIA OPON ...ttt bbb 28
3.4 INSPEKCIA KONCOWA ...ttt 31

4. Kontrola jakosci opon na tle wymagan Klienta ............cccooveeiiiiiieniiiieneee e 33
4.1  Podzial defektow opon oraz sposoby ich €liminacji.......cccccvereiiieniiniiicnie e 33
4.2 Specyfikacja wymagan KIenta..........coceriiiiiiiiieiii e 38
4.3 JednorodnoSC OPOM .......cciviiiiiieiiiiesie et 41
43.1 Zmienno$¢ sity promieniowej 1 jej wyzsze harmoniczne...........cocceecvverernnene 44
4.3.2 ZmienNOSC STY DOCZINE] ...cvvveiiiiiieiiii et 48
4.3.3 Balans statyczny i dyNamiCZny .........cccccoeieiiniiiiiiieieiee e 53
4.3.4 Bicie promieniowe i bicie DOCZNE ..o, 55
4.3.5 StoZKOWAtOSE 1 PLY STEET ..cvviieviiiiiiiiie e 56
4.3.6 Jednorodnos$¢ przy wysokich predkosciach ........cccocviiiiiiiiiciiii, 67

4.4 TEeStY SLACYJNE OPON .....iiueiiieiieiieiete sttt sttt st bttt sttt bbb 68
441 ANaliza Przekroju OPONY ....c..ocvoiiiiiieieieeee e 69
4.4.2 Odcisk 1zeZby bieZniKa ..........cccoviiiiiiiiiiii 75
443 Testy sity 1 ciSnienia osadzenia StOPKI .......coccevvveiiiiiiiiiiic 80
444 Testy biezne opon (wysokich 1 niskich predkosci) ..o, 83
4.4.5 Wyznaczenie Oporow tOCZENIA OPOMN......ccverrurierrerrreereesreesreeeree e sreesseeereees 85
4.4.6 OpOr leKINYCZNY OPON ...t 87
4.4.7 Wiasnosci fizyczne mieszanki bieZnika.........ccocvvviiiiiiniiiiii 88

4.5  TeSty NOMOIOGACYJNE .....ocuiiiiiieieiie ittt 89

5. Wspotczesne kierunki badan opon samochodowych ...........ccccvviiiiiiiini e 91
6. Modele UCZENIA MASZYNOWEGO.....c..ueirieiieeitesieeeieestee e e e stee e e st e sreesraeabe e s e e sseesreeanes 100
6.1 Rodzaje UCZenia MAaSZYNOWEGZO......cccueeireiiirerieeiieesieeeieesiee e esteeeseessaeabeesreeennee e 100
6.1.1 UCZENIE NAUZOTOWANE ...t 102




6.1.2 UCZENIe NIENAUZOIOWANE. ... .o 113

6.1.3 UCzenie Przez WZMACNHANIE .........oiuveieiieieieseesie sttt 114

6.2 Cykl zycia modelu UCZeNnia MAaSZYNOWEJO0.........eeveieerreerreeeesreesieaeesreessesseesseesseans 115
6.3 Ocena dziatania modelu dla problemu re€gresji......cvviiviiiiiieiiiieiiiieiee e 124

7. CZQEC DAAAWCZA.....c.vieiiiiiicitice e 127
7.1 Przedmiot Badan ... s 129
7.1.1 Pomiary komponentow sktadowych opony na maszynie VMI MAXX ....... 129
7.1.2 Pomiary wielko$ci opisujgcych jednorodno$¢ opon na maszynach TUO i Rim
Flow oraz dotychczasowy przeptyw danych..........cccoooiiiiiiiiiiiiiiciee, 132

7.2 Gromadzenie, przygotowanie i analiza danych............c.ccooeieiiniiincninesieee 134
7.2.1 Rejestracja 1 wstepne przetwarzanie danych.........cccoccoviiiieniiiiicicieesn 134
7.2.2 Eksploracyjna analiza danyCh ............cccccoveviiiicicie e 137

7.3 Trenowanie, ewaluacja i WybOr modelu .........cocvviiiiiiiiiiiiic e 154
7.3.1 Kryteria doboru miernikéw do oceny dzialania badanych modeli ................ 154
7.3.2 Analiza zastosowania regresji liniowej wielu zmiennych...........c..cccccoeene. 156
7.3.3 Analiza zastosowania modelu MLP ... 157
7.3.4 Analiza zastosowania modeli opartych na drzewach decyzyjnych................ 162
7.3.5 Analiza wynikOw 1 wybOr modelu .........ccoovvviiiiiiiiiic e 168

7.4 Walidacja MOdelU.........coveiiiiie e 174

8. CZESC WATOZENIOWA ......viiiiieiii ittt ettt ettt ettt sb et e be e e e nbe e e e e e beeenn e e nnneenns 178

8.1 Implementacja modelu do systemu informatycznego przedsigbiorstwa oraz maszyn

VIMIE IMLAXX ettt bbbttt b et b e b be e n e 178
8.2  Monitorowanie i utrzymanie modelu oraz potencjalne efekty wdrozenia ............ 181
9. WINHOSKI .. s 184
LIEEIATUIA ... 188




Streszczenie

W pracy skoncentrowano si¢ na opracowaniu modelu przewidujagcego w czasie
rzeczywistym wyniki stozkowatosci opon na okreslonym poziomie, ktérego wdrozenie obnizy
liczbe defektow opon w firmie Bridgestone Poznan. Omoéwiono budowe, stosowane
konstrukcje oraz komponenty sktadowe opon radialnych dedykowanych do samochodow
osobowych. Scharakteryzowano przebieg procesu produkcji opon, wyszczegolniajac
jego gtowne etapy, czyli: przygotowanie materialdéw, konfekcje, wulkanizacje i1 inspekcje
koncowsa. Szczegdlng uwage zwrocono na etap konfekcji, gdzie dodatkowo przyblizono
budowe maszyny VMI MAXX. Dokonano podziatu defektow opon na wizualne i zwigzane
z przekroczeniem limitow wtasnosci opisujacych jednorodnos¢ opon, a takze podano przyktady
kierunkow ich eliminacji. Przyblizono wielko$ci opisujace jednorodno$¢ opon z wyrdznieniem
zjawisk promieniowych (tj. zmiennos¢ sity promieniowej, balans statyczny i dynamiczny, bicie
promieniowe) i zjawisk bocznych (tj. zmiennos¢ sity bocznej, bicie boczne, ply steer) zwracajac
szczegblng uwage na stozkowato§¢. Wspomniano o pomiarze jednorodnosci opon
przy wysokich predkosciach. Omoéwiono przebieg testow opon (tj. analiza przekroju, odcisk
rzezby bieznika, testy biezne wysokich i niskich predkosci, wyznaczanie oporow toczenia,
pomiar sily i ci$nienia osadzenia stopki) pod katem wymagan klienta i przepisow
homologacyjnych. Sporzadzono przeglad wspotczesnych kierunkéw rozwoju przemystu
oponiarskiego, na podstawie ktérego zauwazono coraz czgstsze wykorzystywanie metod
uczenia maszynowego do poprawy procesu wytwarzania opon. Przedstawiono modele uczenia
maszynowego najczescie] wykorzystywane w przemysle. W toku badan porownano model
regresji liniowej wielu zmiennych, modele sztucznych sieci neuronowych (perceptron
wielowarstwowy) i modele oparte na drzewach decyzyjnych (XGBoost, FastTreeRegression
i LightGbmRegression). Algorytmy trenowano na rzeczywistych danych z historycznego
rejestru masowej produkcji opon. Mozliwie najlepsza metod¢ do rozwigzania problemu
wybrano na podstawie miernikow RMSE i R? oraz realiéw panujacych w firmie. Wybrany
model walidowano na szerszej grupie rozmiarO6w opon, ktore reprezentowaly spektrum
mozliwos$ci produkcyjnych maszyn VMI MAXX. Zaprezentowano obecny postep wdrozenia
rezultatow badan w systemie informatycznym przedsigbiorstwa oraz na maszynie VMI MAXX
jako narzedzia do wspomagania masowej produkcji opon. Wskazano kierunek dalszych dziatan

oraz opisano mozliwe efekty kontynuacji prac wdrozeniowych.




Summary

The dissertation focused on developing a real-time predictive model for tire conicity
at a specified level, aimed to reduce the number of tire defects in Bridgestone Poznan factory.
The work discusses the structure, constructions and components of radial tires for passenger
cars. The tire manufacturing process is outlined, with emphasis on its main stages: material
preparation, tire building, vulcanization, and final inspection. Particular attention is given
to the tire building stage, including a detailed description of the VMI MAXX machine.
Tire defects are classified into visual issues and those exceeding tire uniformity limits,
along with examples of elimination strategies. The study introduces parameters describing tire
uniformity, distinguishing between radial phenomena (radial force variation, static and dynamic
balance, radial runout) and lateral phenomena (lateral force variation, lateral runout, ply steer)
with special focus on conicity. High-speed uniformity measurements are also mentioned.
The course of tire testing is presented, including cross-section analysis, footprint evaluation,
high- and low-speed durability tests, rolling resistance measurement, and bead seating force
and pressure assessment, all in relation to customer requirements and homologation standards.
Conducted literature review of current researches in the tire industry highlights the growing
use of machine learning methods to improve tire manufacturing. The most commonly applied
machine learning models in the industry are presented. The research compares multiple linear
regression, artificial neural networks (multilayer perceptron) and decision tree-based models
(XGBoost, FastTreeRegression, LightGbmRegression). Algorithms were trained on real data
from the historical records of tire mass production. The most suitable method was selected using
RMSE and R? metrics, as well as the operational capabilities of the company. The chosen model
was validated across a wider group of tire sizes, representing the production capabilities
of the VMI MAXX machines. The study was concluded by presenting the progress
of implementation research results within the company’s IT system and on the VMI MAXX
machine as a tool to support large-scale tire production. Directions for further work

and potential effects of implementation continuation are outlined.




1. Wprowadzenie

W 2018 roku w zakladzie Bridgestone w Poznaniu wdrozono nowoczesne maszyny
konfekcyjne VMI MAXX, ktore umozliwiajg rejestracje danych wejsciowych procesu
konfekcji opon. Otworzylo to nowe perspektywy badawcze, zwigzane z mozliwoscig
zestawienia parametréw materiatdow wprowadzanych do procesu z wynikami pomiarow
jednorodnosci opon. Powstata tym samym mozliwos¢ predykcji wielkosci opisujacych
jednorodnos$¢ wyrobu gotowego =z wykorzystaniem nowoczesnych metod uczenia
maszynowego. Otwiera to droge do praktycznego wdrozenia narzedzi analitycznych,
ktére pozwola na zwigkszenie efektywnosci produkcji, ograniczenie ilosci odpadow
i podniesienie konkurencyjnosci przedsigbiorstwa.

Szerszy kontekst naukowy 1 przemystowy wskazuje, ze dla kazdej nowoczesnej organizacji
produkcyjnej, niezaleznie od branzy, istotne znaczenie maja redukcja kosztow oraz wzrost
produktywnosci. W przypadku producentow opon wyzwaniem jest minimalizacja odpadow
oraz spelnienie rosngcych wymagan $rodowiskowych i jako$ciowych. Problem emisji
dwutlenku wegla w procesach odzysku energii ze zuzytych opon jest szczegolnie istotny
w kontekscie wspotczesnej polityki klimatycznej. Recykling materiatowy i produktowy,
cho¢ intensywnie rozwijany, nie moze by¢ jedyna odpowiedziag na wyzwania zwigzane
z zagospodarowaniem surowcoéw gumowych. Nalezy doda¢ rowniez, ze rozwdj alternatywnych
systemOow napedowych i paliw niskoemisyjnych stawia przed przemystem oponiarskim nowe
wymagania w zakresie ograniczania oporOw toczenia, co przeklada si¢ na konieczno$é
konstruowania 1zejszych i coraz bardziej zaawansowanych technologicznie opon.

Kolejnym aspektem rynkowym sg znormalizowane etykiety UE, umozliwiajace klientom
poréwnanie kluczowych parametréw opon, takich jak przyczepno$¢ na mokrej nawierzchni,
efektywno$é paliwowa czy poziom generowanego hatasu. Swiadomi uzytkownicy moga w ten
sposOb wybiera¢ produkty spetniajace ich wymagania w zakresie bezpieczenstwa, ekonomiki
eksploatacji oraz komfortu jazdy. Rownoczes$nie intensyfikacja rozwoju pojazdow
elektrycznych, zwigzana m.in. z polityka transportu bezemisyjnego Unii Europejskiej
(Kamionka, 2023), wymusza opracowywanie nowych konstrukcji ogumienia. Konsekwencja
jest konieczno$¢ redukcji masy opon poprzez zmniejszanie ich przekroju poprzecznego,
co znaczaco utrudnia spelnienie stale zaostrzanych wymagan producentow samochodéw
w zakresie fizycznej jednorodnosci.

Wspomniane wyzwania potwierdzaja znaczenie i aktualno$¢ podjetej problematyki.

Niniejsza rozprawa doktorska wpisuje si¢ w dyscypling inzynieria mechaniczna w obszarze
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inzynierii produkcji poprzez nowe podejscie zastosowania maszyn VMI MAXX,
wyposazonych w system monitorowania i rejestracji parametrow materialowych, ktory stwarza
unikalng okazj¢ do przeprowadzenia pogiebionych badan nad relacjami pomig¢dzy jakoscig
materiatow wejsciowych a jednorodno$cig gotowego wyrobu. Analiza tych zalezno$ci
umozliwia bardziej precyzyjne przewidywanie wlasciwosci opon oraz moze prowadzié
do opracowania nowych metod wspomagajacych proces decyzyjny w produkcji.
Przeprowadzone badania pozwalaja réwniez na ocen¢ poprawnosci dotychczasowych
wytycznych i tolerancji stosowanych w zaktadzie oraz otwierajg droge do ich dalszej poprawy.

Dotychczasowe badania oraz przeglad literatury wskazuja, ze wickszo$¢ prac naukowych
koncentruje si¢ na analizie zachowania opon w warunkach eksploatacyjnych. Jest to podejscie
charakterystyczne rowniez dla rankingdéw konsumenckich, przeprowadzanych przez ADAC
czy Auto Bild. W niewielkim stopniu podejmowane s3 natomiast kwestie problemow stricte
produkcyjnych, w tym zagadnien zwigzanych z osigganiem wymaganej jednorodnosci wyrobu.
Nalezy podkresli¢, ze stozkowato$¢ opon stanowi jeden z najwazniejszych parametréw
jako$ciowych w hierarchii probleméw produkcyjnych w zaktadzie, w ktérym przeprowadzono
niniejsze badania. W literaturze brak jest natomiast doniesien na temat prob wykorzystania
danych wejsciowych z procesu konfekcji (np. szerokosci materiatdow czy ich centrowaniu
na bebnach) do predykcji wielkosci opisujacych jednorodnos$¢. Luka ta uzasadnia potrzebe
realizacji badan i1 potwierdza ich oryginalno$¢.

Zatozeniem rozprawy jest opracowanie i wdrozenie modelu uczenia maszynowego,
ktory umozliwi przewidywanie parametrow jednorodnosci opon na podstawie danych
wejsciowych z procesu konfekcji, a nastepnie zastosowanie tego modelu jako narzedzia
wspomagajacego masowa produkcje. Przyjete podejscie ma na celu ograniczenie iloSci
odpadow, obnizenie kosztow produkcji oraz zwigkszenie efektywno$ci catego procesu.
Badania oparte zostaly na analizie danych historycznych, obejmujacych szerokie spektrum
rozmiaréw opon produkowanych na maszynach VMI MAXX.

Przedmiotem rozwazan sg zatem: identyfikacja kluczowych elementéw procesu konfekcji
1 mozliwos$ci technologicznych maszyn, opracowanie i ocena modeli predykcyjnych opartych
na metodach uczenia maszynowego oraz analiza procesow technologicznych wytwarzania
opon w celu uzyskania wynikow jednorodnos$ci mieszczacych si¢ w granicach dopuszczalnych
limitow. Ostatecznym zamierzeniem jest wypracowanie rozwigzania, ktore umozliwi fabryce
uzyskiwanie produktow spelniajacych restrykcyjne wymagania producentéw samochodow,

a tym samym zwigkszy konkurencyjno$¢ przedsigbiorstwa na rynku globalnym.




2. Budowa opon radialnych

Badania realizowane na potrzeby niniejszej dysertacji zostaly przeprowadzone
w fabryce Bridgestone w Poznaniu, specjalizujacej si¢ w produkcji opon radialnych
do samochodow osobowych. W zwigzku z tym w biezacym rozdziale omoéwiono komponenty
sktadowe oraz stosowane konstrukcje charakterystyczne dla tego rodzaju opon. Istotnym
zagadnieniem, od ktorego nalezaloby rozpocza¢ charakterystyke opon radialnych jest sposob
opisu ich rozmiarow, ktore determinujg zarowno proces projektowania, jak i pdzniejsze

zastosowanie, co zostato przedstawione na Rysunku 2.1.

SZEROKOSC STRUKRURA / INDEKS
PRZEKROJU KONSTRUKCJA NOSNOSCI

225 / 50 R 17 94 w
WYSOKOSC SREDNICA INDEKS
PROFILU FELGI PREDKOSCI

Rysunek 2.1. Opis rozmiarow opon radialnych (opracowanie wlasne)

Za proces standaryzacji opon i felg na obszarze Europy odpowiada Europejska Organizacja
Techniczna ds. Opon i Felg - E-T.R.T.O. (ang. European Tires and Rims Technical
Organization). Instytucja ta petni funkcj¢ koordynatora w zakresie opracowywania, wdrazania
i aktualizacji norm dotyczacych wymiarow opon i felg, a takze powigzanych z nimi oznaczen
technicznych. Jej dziatalno$§¢ ukierunkowana jest na ujednolicenie parametrow
konstrukcyjnych, co umozliwia zapewnienie kompatybilnosci oraz bezpieczenstwa
eksploatacji opon i felg tworzacych zespot kota. Odnoszac si¢ do Rysunku 2.1. oraz (ETRTO,
2025):

1) Szerokos$¢ przekroju SW (ang. section width) — jej znaczenie zostalo wyjasnione

w Rozdziale 4.4.1., wyraza si¢ ja w [mm)].
2) Wysokos$¢ profilu (ang. aspect ratio) [%] — wyraza wysoko$¢ boku opony w stosunku

do jej szeroko$ci. Procentowe okreslanie profilu opony stanowi najbardziej




3)

4)
5)

6)

funkcjonalny i powszechnie akceptowany sposob jego zapisu. Stosowany obecnie
system przedziatow pigcioprocentowych umozliwia precyzyjng klasyfikacj¢ rozmiaréw
opon poprzez podzial catej ich populacji na kilkanascie grup rozmiarowych (dla danej
$rednicy felgi).

»R”’ — informuje o radialnej strukturze opony, co oznacza, ze warstwy jej kordow
tekstylnych utozone sa promieniowo (radialnie), czyli prostopadle do osi obrotu kota.
Dla porownania, opony diagonalne posiadajag w tym miejscu symbol ,,D” lub ,,-”.
Srednica felgi [cal] — $rednica osadzenia opony na feldze.

Indeks nosnosci — kod numeryczny zwigzany z maksymalnym obcigzeniem, jakie opona
moze przenosi¢ (z pewnymi wyjatkami przy predkosciach powyzej 210[km/h])
przy predkosci wskazanej przez indeks predkosci, w warunkach eksploatacyjnych
okreslonych przez producenta opony.

Indeks predkosci — kod literowy wskazujacy maksymalng predkosé, przy ktorej opona
moze przenosi¢ obcigzenie odpowiadajgce jej indeksowi nosnosci (z pewnymi
wyjatkami przy predkosciach powyzej 210[km/h]) w warunkach eksploatacyjnych

okreslonych przez producenta opony.

Bez wzgledu na konstrukcje lub zastosowanie, kazda opona radialna musi spetniaé

podstawowy zestaw funkcji (Rodgers i Waddell, 2005):

1)
2)
3)
4)
5)
6)
7)
8)
9)

Zapewnia¢ no$nosc.

Gwarantowa¢ amortyzacje¢ 1 thumienie drgan.

Przenosi¢ moment napedowy 1 hamujacy.

Zapewnia¢ przekazanie sity bocznej (do pokonywania zakretow).
Zapewnia¢ stabilno$§¢ wymiarowq.

Wykazywac si¢ odpornos$cig na §cieranie.

Generowac reakcje zadang przez uktad kierowniczy.
Charakteryzowac si¢ niskimi oporami toczenia.

Zapewnia¢ minimalny hatas i minimalne drgania.

10) Cechowa¢ si¢ trwatoscig i1 przewidywalnoscia pracy przez caly zatozony okres

eksploatacji.

Opony sa produktem, spetniajacym wszystkie powyzsze funkcje w gldwnej mierze dzieki

zastosowaniu gumy, ktora charakteryzuje si¢ znakomitymi wlasnosciami tlumigcymi,




elastycznymi  oraz  unikalng  zdolnoscia do  odksztalcania si¢ i  powrotu
do pierwotnego ksztattu.

Podstawowy podziat opony na 4 obszary (Rysunek 2.2.): bieznika, barku, boku i drutowki
umozliwia skuteczne zarzadzanie catym cyklem zycia ogumienia — od projektu i produkcji,
przez eksploatacje, az po recykling. Kazdy z obszaré6w ma do spetienia inne funkcje:

1) Obszar bieznika — kontakt z podtozem, zapewnienie trakcji, odporno$ci na $cieranie

i odprowadzania wody (tzw. aquaplaning).

2) Obszar barku — stabilizacja opony w zakretach, zapewnienie odpornosci na obcigzenia
poprzeczne.

3) Obszar boku — ochrona kordu tekstylnego (osnowy) przed uszkodzeniami
mechanicznymi i warunkami atmosferycznymi, tlumienie wibracji, przekazywanie
sit bocznych.

4) Obszar drutdbwki — zapewnienie szczelnoSci i stabilnoSci potaczenia z felga,

przenoszenie obcigzen osiowych i promieniowych.

OBSZAR BIEZNIKA

@,mﬂwmmw
73

OBSZAR DRUTOWKI

Rysunek 2.2. Obszary opony radialnej dedykowanej do aut osobowych (opracowanie wlasne)
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Konstrukcja nowego rozmiaru opony (Rysunek 2.3.) dobierana jest na podstawie:

1) Planowanej szerokosci i profilu.

2) Zastosowania oraz wymagan klienta dotyczacych warunkow jezdnych.

3) Ograniczen wynikajacych z mozliwosci technologicznych oprzyrzagdowania maszyny

konfekcyjnej.

Stosowane wspotczesnie rozwigzania konstrukcyjne mozna sklasyfikowaé wedlug sposobu

wzajemnego utozenia bieznika i boku opony (Rysunek 3.3.). Dwie gléwne konstrukcje, to:

1) SOT (Sidewall Over Tread) — konfiguracja, w ktorej boki sa wywijane na bieznik
w taki sposob, aby stworzyty potaczenie z minibokami bieznika, zapewniajac korzystne
warunki adhezji po zarolowaniu na zimno podczas procesu konfekcji;

2) TOS (Tread Over Sidewall) — uzyskany w wyniku odwrotnej do przedstawionej
powyzej sekwencji procesu konfekcji, w ktorej bieznik jest aplikowany po uprzednim
wywinigciu bokow, co skutkuje ich przykryciem przez pakiet. Specyficzng odmiang
konstrukcji TOS jest konstrukcja RGT (Rim Guard), charakteryzujaca si¢ minibokiem
siegajagcym niemal do wierzchotka rantu ochronnego felgi. Ze wzgledu na jej sztywno$¢
1 wytrzymatos¢ stosuje si¢ ja do szerokich opon z niskim profilem (20-35%) i wysokim
indeksem predkosci (W, Y, (Y)) o zastosowaniu sportowym (tzw. UHP — ultra high

performance).

B »iNiBok

BOK

TOS RGT SOT

Rysunek 3.3. Najczesciej stosowane konstrukcje opon (opracowanie wlasne)

Opony posiadajace wysokie profile (55-80%) moga by¢ produkowane zaréwno
jako TOS-y, jak i SOT-y. Majagc na uwadze obnizenie kosztow produkcji, zazwyczaj
dazy sie do wyboru tej drugiej opcji — cykl SOT jest zdecydowanie krotszy — opona zostaje
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ztozona w cato$¢ w trakcie jednego rolowania. W przypadku konstrukcji TOS nalezy najpierw

zarolowa¢ boki, natomiast po natozeniu pakietu dochodzi do osobnego rolowania bieznika

(szerszy opis konfekcji opon zamieszczono w Rozdziale 3.2.). Z tego wzgledu, opony

srednioprofilowe (40-50%) produkowane sa najcze¢sciej z wykorzystaniem konstrukeji SOT.

Do obowigzkowych komponentéw sktadowych opon radialnych dedykowanych

do samochodow osobowych naleza:

1)

d)

2)

3)

Bieznik — TT (ang. top tread) — uzyskiwany w wyniku procesu wytlaczania
czteroslimakowego, w ktorym kazdy §limak odpowiada za inny obszar jego przekroju
poprzecznego. W sklad bieznika wchodza:

Kapa bieznika (ang. cap) — wykonana z mieszanki gumowej odpowiednio dobranej
do zastosowania (typ pojazdu) oraz warunkéw eksploatacji opony (letnia, zimowa,
catoroczna).

Warstwa podbieznikowa — UT (ang. undertread) — jej zadaniem jest efektywne
odprowadzanie ciepta generowanego wskutek tarcia wewnetrznego podczas jazdy.
Miniboki — MSW (ang. minisidewalls) — wykonane z mieszanki gumowej zblizonej
sktadem chemicznym do mieszanki boku, co umozliwia uzyskanie potaczenia bieznik—
bok ,,na zimno” w procesie konfekcji, ktore ulega dalszemu umocnieniu podczas
procesu wulkanizacji.

Antena — ANT (ang. antenna) — wykonana z przewodzacej mieszanki gumowej,
odpowiadajagca za odprowadzanie tadunkow elektrostatycznych podczas eksploatacji

opony.

Warstwa spiralna — SL (ang. spiral layer / CP — ang. cap ply) — nawijana z waskich
paskow kalandrowanego kordu (PET, kevlar, nylon, aramid). Zwykle stosuje si¢ jedna
lub dwie warstwy, najczgéciej z dodatkowymi paskami nawinigtymi na brzegach —
ich szeroko$¢ kontrolowana jest poprzez ustawienie posuwu (predkosci przesunigcia
lewo-prawo [mm / obrét]) i liczby obrotow bebna BT.

Opasania — TP (ang. tread plies, czgsto nazywane takze ,breakers”) — skladaja
si¢ z kalandrowanego kordu stalowego, ktorego wigzki utozone sg pod okreslonym
katem (57-67°), co bezposrednio wptywa na wlasciwosci jezdne opony.
W celu sterowania tymi wlasciwo$ciami istnieje mozliwo$¢ doboru drutdw o rdznej
grubosci oraz o roznej ilosci drutow w pojedynczej wigzce. Brzegi opasan zakonczone

sg tzw. gumg krawedziowa (ang. edge gum), ktéra ma za zadanie chroni¢ sgsiadujgce
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4)

5)

b)

6)

b)

z opasaniami materiaty przed wystajacymi z nich drutami, aby w trakcie eksploatacji
nie doszto do ich przecigcia, co mogloby spowodowaé nagle zniszczenie opony
po uzyskaniu przez nig niewielkiego przebiegu.

Osnowa — BP (ang. body ply) — kalandrowany kord z PET lub wiskozy, ktérego
szerokos$¢ dedykowana do danej opony zalezy od wysokosci jej profilu, szerokoSci
oraz konstrukcji. Dhugos$¢ tego komponentu sprzgzona jest natomiast z jej calem.
Na osnowie rozmieszczane sg paski gumowe (tzw. squeegee), ktorych konfiguracja
oraz szerokos$¢ sg projektowane tak, aby pokrywac krawedzie zakonczen materiatow
1 wzmacnia¢ wewnetrzng strong obszaru barkowego, ktory jest najbardziej obcigzony
zarowno podczas formowania, jak 1 eksploatacji opony. Szczegdlnie istotnym
elementem jest TPI (ang. tread ply insert), zwany réwniez BUC (ang. belt under
cushion), stanowiacy ochrone osnowy przed przecieraniem przez krawegdzie opasan
w trakcie ruchu opony. Zastosowanie konstrukcji SOT zawsze implikuje obecnosé
TPI, natomiast w konstrukcji TOS pod opasaniami znajduje si¢ koncdéwka boku,
totez TPI jest zbedny. Opony do samochodéw osobowych zazwyczaj zawieraja jedng
lub dwie osnowy - stad rodzi si¢ kolejny podzial konstrukcyjny na opony
jednoosnowowe lub dwuosnowowe. Dobdr odpowiedniego kordu osnowy/osndéw
umozliwia ksztaltowanie sztywnos$ci, wytrzymalosci oraz wiasciwosci jezdnych
gotowego wyrobu. W istotnej mierze jest rowniez powigzany z wymaganym indeksem
no$nosci opony.

Skrzydetko — BB (ang. bead bundle) — sktadajace si¢ z:

Drutowki (ang. bead) - wykonanej ze stalowego drutu, nawinigtego
w okreslonej konfiguracji (zadana liczba warstw 1 kolumn w przekroju wiazki)
i owinietego tasma.

Wypetniacza drutowki BF (ang. bead filler) — aplikowanego ,na ciepto”
na przygotowanej wczesniej drutowce paska twardej gumy o przekroju trojkatnym,

wzmacniajgcego obszar drutowki.

Bok — SW (ang. sidewall) — najczgséciej wyttaczany z zastosowaniem dwoch mieszanek:
AGS (ang. abrasive gum strip) — twarda mieszanka chronigca obszar drutowki
przed przetarciem przez obrecz felgi.

Mieszanka boku — mieszanka opracowana z mysla o odpornosci na pekanie
spowodowane czynnikami §srodowiskowymi, takimi jak ozon, tlen, promieniowanie UV

czy temperatura.
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7) Wykladzina wewnetrzna — zapewnia szczelno$¢ w oponach bezdetkowych dzigki

zastosowaniu mieszanki butylowej o niskiej przepuszczalnosci gazow.

Do opcjonalnych komponentow sktadowych opon naleza:

1) Wzmocnienia tekstylne:

a) Chafer — CCH (ang. canvas chafer) — kalandrowany, utozony krzyzowo kord tekstylny
wzmacniajgcy obszar drutowki. Stosowany gtownie w oponach typu runflat, chronigc
felge i opong podczas jazdy awaryjnej (na przebitej oponie).

b) Flipper — FL —kalandrowany kord (PET lub Kevlar), utozony pod katem 45°, stosowany
w celu usztywnienia obszaru drutéwki i/lub boku, najcz¢$ciej w oponach UHP,

gdyz jego obecno$¢ poprawia wlasciwosci jezdne pojazdu.

2) Wzmocnienia gumowe — najczesciej stosowang forma jest wkladka runflatowa
RFI (ang. run flat insert), uzyskiwana przez wytlaczanie twardej mieszanki gumowej
(Xingyu i in., 2021). Zgodnie z deklaracjg producenta, zastosowana w obszarze boku
opony umozliwia pokonanie dystansu do 80[km] z predkoscia do 80[km/h] po przebiciu
opony.

Budowa typowej opony radialnej (bez dodatkowych wzmocnien tekstylnych i gumowych)

zostata przedstawiona na Rysunku 2.4.

BIEZNIK

WARSTWA
SPIRALNA

BOK OPASANIE #2 OPASANIE #1

OSNOWA

WYKPLADZINA
WEWNETRZNA

WYPELNIACZ
DRUTOWKI
DRUTOWKA

Rysunek 2.4. Komponenty skladowe opony (opracowanie wlasne)
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Interdyscyplinarny charakter projektowania opon wymaga integracji wiedzy z zakresu
wytwarzania polimeréw, inzynierii materialowej oraz mechaniki. Ostateczne witasciwosci
opony wynikajg z synergicznego dziatania wszystkich komponentow oraz precyzyjnego doboru

1 kontroli parametréw technologicznych podczas procesu produkcyjnego.
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3. Proces produkcji opon radialnych

W przedsigbiorstwie, w ktorym realizowano badania na potrzeby niniejszej pracy
doktorskiej, prowadzona jest wielkoseryjna produkcja na poziomie okoto 30 tys. opon dziennie,
co wymaga zatrudnienia okoto 2000 pracownikow. Do masowej produkcji wdrozonych
jest ponad 500 réznych rozmiarow opon w zakresie od 15 do 24 cali. Zaklad zajmuje
powierzchnie 260 tys. m?.

Proces produkcji opon zawsze sktada si¢ z czterech gldwnych etapow:

1) Przygotowanie materiatow.

2) Konfekcja opon surowych.

3) Wulkanizacja.

4) Inspekcja koncowa.

Ze wzgledu na wdrozeniowy charakter niniejszej rozprawy doktorskiej, w tym rozdziale
proces produkcji opon zostanie przedstawiony na podstawie jego faktycznego przebiegu
w zaktadzie Bridgestone Poznan (Rysunek 3.1.), w celu precyzyjnego umiejscowienia obszaru

przeprowadzonych badan.

3.1 Przygotowanie materiatow

Proces produkcji opon, zobrazowany na Rysunku 3.1., rozpoczyna si¢ w Magazynie
Surowcéw, gdzie kazda dostawa poddawana jest kontroli jakosciowej. Miksery, bedace sercem
Dziatlu Walcowni, odpowiadaja za wytwarzanie wszystkich mieszanek gumowych
stosowanych w zaktadzie produkcyjnym. Od wspotczesnych mieszanek gumowych wymaga
si¢ stabilno$ci wlasciwosci lepkosprezystych (co warunkuje ich przetwarzalnos$¢), relatywnie
krotkiego czasu wulkanizacji, a jednoczes$nie — zachowania satysfakcjonujacych wtasciwosci
mechanicznych wyrobu finalnego (Tardiff i in., 2017). Osiaggniecie tego kompromisu mozliwe
jest dzigki odpowiedniemu doborowi skladu chemicznego mieszanek oraz precyzyjnemu
sterowaniu procesem ich mieszania. W celu zapewnienia wysokiej jednorodnosci mieszanki
gumowej, Bridgestone Poznan wyposazone jest w dwa miksery tandemowe,
ktore sa zaawansowanym 1 rzadkim rozwigzaniem stosowanym w przemysle oponiarskim
w skali europejskiej. Mikser tandemowy to rodzaj miksera sktadajacego sie z dwoch zespotow
mieszadel zazebiajacych sig, rozmieszczonych w ukladzie gérnym i dolnym. Goérny mikser
stuzy do mieszania wsadowego oraz mieszania w stalej temperaturze. Dolny mikser zostat

zaprojektowany do mieszania w stalej temperaturze i1 charakteryzuje si¢ doskonata funkcja
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mieszania rozpraszajacego, precyzyjna kontrola temperatury, zoptymalizowang wentylacja
oraz duza powierzchnig chtodzenia. Produktem pracy miksera jest surowa, spaletyzowana
guma, ktora stanowi surowiec dla wytlaczarek, kalandra oraz maszyn do produkcji opasan
1 skrzydetek. Poszczegdlne miksery dedykowane sg okreSlonym grupom mieszanek
o zblizonym sktadzie chemicznym, co wynika z czasochtonnosci procesu czyszczenia komory

mieszania 1 walcow.

Magazyn Kordy Substraty fo Druty
. produkcji
SUrOWCoOwW tekstylne stalowe
gumy
| Miks
Maszyny Maszyny
Kaland Whytlaczani do do
ander e produkji produkji
Przygotowanie opasan drutdwek
materiatow m
Bieznik Maszyny
.. Bok X do
Ciecie Wiladka run flat ﬂpasanlal produkgji =
Wykt. wewn. skrzydefek

LY
Osnowa, Spiral,
Flipper, Chafer

| Opona surowa (GT) |

Opona l’
evtanizovers - |
(CT)
Inspekcja Maszy.ny do Kontrola
koncowa X-Ray pormiaru wizualna
jednorodnosci

Magazyn opon Wyrdb gotowy Q—I

Rysunek 3.1. Proces produkcji opon w Bridgestone Poznan (opracowanie wlasne)
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W procesie wytlaczania produkowane sa komponenty takie jak: bieznik, bok, wkiadka
runflatowa oraz wyktadzina wewnetrzna. Ksztaltt przekroju poprzecznego oraz rozmieszczenie
mieszanek gumowych w surowych profilach wytlaczanych nadawany jest przez ustniki
i wkitadki wytlaczarki (Costa, 2017). Przyktadowe kontury bieznika i boku zostaty
zaprezentowane na Rysunkach 3.2. 1 3.3.

ra

/ N\
WARSTWA KAPA
PODBIEZNIKOWA ANTENA BIEZNIKA

MINIBOK MINIBOK

Rysunek 3.2. Przykladowy przekroj surowego bieznika (opracowanie wlasne)

Bezposrednio po wytlaczaniu na bieznik nanoszone s3 linie kolorowe, ktorych
rozmieszczenie (pozycja wzgledem linii centralnej) 1 barwa sg unikalne dla kazdego rozmiaru
opony. Linie te ulatwiajg automatyczne sortowanie opon na zautomatyzowanej linii montazu
pojazdow. Bieznik jest nawijany na duze szpule z przekladkami minimalizujacymi
jego deformacje podczas transportu. Boki, wktadka runflatowa oraz wyktadzina wewnetrzna
umieszczane s3 na specjalistycznych wozkach zapewniajacych plynne podlaczenie
tych komponentow do maszyny konfekcyjnej. Cykliczna kontrola wymiarowa (Duvar i in.,
2012) profilu poprzecznego wytloczonych prefabrykatow (z wyjatkiem wyktadziny
wewnetrznej) realizowana jest w Konturowni. Na podstawie wynikow tej kontroli

podejmowana jest decyzja o dopuszczeniu materiatu do dalszej produkcji masowe;.

MIESZANKA BOKU

Rysunek 3.3. Przykladowy przekréj surowego boku (opracowanie wlasne)

Opasania wytwarzane sg na maszynie Bexter, ktora pobiera drut stalowy ze szpularnika,
nadaje mu odpowiedni kat, pokrywa mieszankg gumowa, przycina do wymaganej szerokosci
oraz naklada paski gumy krawedziowej. Gotowe opasania, podobnie jak bieznik, nawijane

sg na duze szpule z przektadkami i w takiej postaci transportowane do maszyny konfekcyjnej.
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Kordy tekstylne poddawane sa procesowi kalandrowania, w trakcie ktorego pokrywa
si¢ je odpowiednig mieszanka gumowa, zgodnie z wymaganiami dla danego rodzaju kordu.
Na §wiezo powstalg warstwe gumy nanoszone sg w okreslonych odstgpach nitki ulatwiajace
odprowadzenie powietrza z wngtrza opony w trakcie konfekcji 1 wulkanizacji (nie dotyczy
to kordow dedykowanych na warstwe spiralng). Kalandrowane kordy nawijane sa w duze
baloty i przekazywane do Dzialu Cigcia, gdzie nadawane sg im odpowiednie szerokosci
dla osnowy, flippera, chafera oraz spirali. W przypadku osndéw proces ciecia jest zintegrowany
z naktadaniem squeegee 1 TPI zgodnie z zadang specyfikacja. Przykladowy layout osnowy
zostat przedstawiony na Rysunku 3.4. Chafer, flipper i spiral nawijane sa na mate szpule,
natomiast osnowy transportowane s3 na dedykowanych wozkach, zapewniajacych

kompatybilno$¢ z maszyng konfekcyjna.

SQUEGEE GORNE

DN

T~

SNOW:
OSNOWA SQUEGEE DOLNE

Rysunek 3.4. Przykladowy schemat rozmieszczenia paskow gumowych na osnowie (opracowanie wlasne)

Owinigte tasma drutowki, umieszczane sg na maszynie RTB-DE, ktéra wytlacza
wypehiacz drutowki o okreslonych w specyfikacji jego konturu: wysokosci, szeroko$ci
podstawy i mieszance gumowej. Nastepnie taczy oba prefabrykaty, tworzac skrzydetka.
Gotowe skrzydetka wumieszczane s3 na specjalnych separatorach, co zapobiega

ich wzajemnemu sklejaniu, deformacji oraz zanieczyszczeniu cialami obcymi.

3.2 Konfekcja opon na maszynie VMI MAXX

Proces konfekcji realizowany na maszynach VMI MAXX, sktada si¢ z dwodch zasadniczych
faz 1 stuzy polaczeniu wszystkich wczesniej opisanych komponentow powstatych na etapie
przygotowania materiatow w odpowiedniej sekwencji, zgodnej z karta procesu
technologicznego. Dzigki zastosowanym technologiom maszyny VMI MAXX pracuja w trybie
automatycznym — od operatora wymagaja jedynie uzupetniania materialdéw do produkcji opon
oraz reakcji na biezace komunikaty. Charakteryzuja si¢ rowniez mozliwos$cia rejestracji danych

w trybie ciaglym dla kazdej wyprodukowanej opony tj. dtugos¢ i szerokos¢ uzywanych
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materiatdéw, centrowanie materiatbw na bgbnach, jako$¢ wykonanych zlagcz oraz bicie
promieniowe opony surowej. Budowa maszyny VMI MAXX zostala przedstawiona

na Rysunku 3.5.

Rysunek 3.5. Budowa zespolu maszyny konfekcyjnej VMI MAXX (materialy wlasne przedsiebiorstwa)

Elementy skladowe maszyny to:

1) System linii lasera (strona B&T) — system sterowania automatycznie ustawia linie lasera
tak, aby padaly na bgben B&T zgodnie z wyspecyfikowang szeroko$cig materiatu
naktadanego w danym etapie produkc;ji.

2) Urzadzenie do podnoszenia bgbna — umozliwia wymiang¢/demontaz cz¢Sci bebna B&T
1 bebna karkasu. Jest zamontowane pod rama bazowa, ktora z kolei jest przymocowana
w gbrnej czg$ci maszyny.

3) Jednostka zdejmowania opony surowej — stuzy do usuwania kompletnej opony surowe;j
z pier§cienia transferu i przekazuje ja na przednig stron¢ maszyny.

4) Pierscien transferowy — tzw. transferring, jest podzielony na 8 segmentow. Kazdy z nich
mozna przesuwaé promieniowo za pomocg sitownikdw pneumatycznych. Sitowniki
sg wyposazone w urzadzenie zaciskajace — gdy segment zetknie si¢ z pakietem B&T,

sitownik pneumatyczny zaciska pakiet B&T 1 utrzymuje go tak dtugo, jak to konieczne.
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Aby zapewni¢ wspotosiowosé, kazdy segment zaciska pakiet B&T z takg sama sita,
niezaleznie od S$rednicy pakietu. PierScien transferowy samoczynnie dostosowuje
si¢ do catkowitej srednicy opony.

5) Modut aplikatora skrzydetek — wspoétpracuje z zespotem robota, ktéry umieszcza
na nim skrzydetka. Modut aplikatora natomiast przytrzymuje drutowke podczas
wklejania jej w karkas.

6) Monitor zapasu materiatbw — wyswietla informacje o produkowanym aktualnie
rozmiarze opon oraz zapasie uzywanych materiatlow.

7) Zszywarka kombi — odpowiada za wykonywanie zlgcza bieznika.

8) System linii lasera (strona karkasu) — system sterowania automatycznie ustawia linie
lasera tak, aby padaly na begben karkasu zgodnie z wyspecyfikowang szerokoscia
materialu naktadanego w danym etapie produkcji.

9) Bgben karkasu — na nim odbywa si¢ I faza konfekcji.

10) Monitor karkasu CCMO (ang. carcass monitor) - stuzy do sprawdzania czy ztacza
materialdow s3a zgodne ze zdefiniowana specyfikacja. Moze kontrolowaé zlacza:
materialu zespotu wstepnego PA (ktéry tworza boki i wykladzina wewngtrzna),
materiatu osnowy / osnéw (BP1/BP2) i materiatu flippera (FL).

11) Obudowa karkasu — umieszczone w niej podzespoty odpowiadajg za sterowanie i ruch
bebna karkasu.

12)Loze maszyny (strona karkasu) - przeznaczone do przesuwania nhastepujacych
zespotow: obudowy karkasu, wozka catego modutu drutéwki, zszywarki kombi.

13) Zszywarka ztaczy PA — odpowiada za wykonanie szczelnego ztacza PA.

14) Panel interfejsu HMI — pozwala na biezace ustawianie parametréw i podglad pomiarow
przeprowadzanych przez maszyne.

15) Modut wozka skrzydetek — gtdéwng funkcja wozka drutowki jest precyzyjne ustawienie
drutowek na pakiecie karkasu zgodnie z zadanym rozstawem drutowek, ktory stanowi
najwazniejszy parametr procesu konfekcji.

16) Platforma opony surowej — miejsce inspekcji opony surowej przez operatora konfekcji.

17) Loze maszyny (strona BT) — stuzy do przesuwania bebna B&T.

18) Beben B&T — na nim odbywa sig¢ II faza konfekcji.

19) Monitor opasania i bieznika BTMO (ang. breaker & tread monitor) - stuzy
do kontrolowania nastepujacych kwestii: ocena ztagcz materiatu opasan i bieznika,
wykrywanie obecno$ci materiatu opasan i bieznika, pomiar szeroko$ci i centrowanie

materiatu bieznika, wykrywanie uszkodzen materiatu opasan i bieznika.
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20) Obudowa B&T — umieszczone w niej podzespoty odpowiadajg za sterowanie i ruch

bebna B&T.

Systemy prowadzenia materialdéw odpowiedzialne za rejestracj¢ danych, sg podzespotami
monitora karkasu (system prowadzenia karkasu) oraz monitora B&T (systemy prowadzenia
opasan i bieznika). Zasada ich dzialania oraz sposob zapisu danych zostaty szczegdtowo
opisane w Rozdziale 7.1.1.

Za transport (w obrebie maszyny) i aplikacj¢ (na dany beben) poszczegolnych materiatow
niezbednych do przeprowadzenia procesu konfekcji, odpowiadaja nastepujace podzespoty

(Rysunek 3.6.).

Rysunek 3.6. Zespol maszyny konfekcyjnej VMI MAXX wraz z peryferiami (materialy wlasne

przedsigbiorstwa)
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Podzespotami oznaczonymi na Rysunku 3.6. sa:

1)
2)
3)
4)
5)

6)

7)
8)

9

Zespot maszyny konfekcyjne;j.
Serwer flippera.

Serwer wktadki RFI.

Serwer chafera.

Automatyczny serwer karkasu — odpowiada za taczenie bokow i wyktadziny

wewnetrznej w zespot PA, podaje go wraz z osnowg / osnowami na beben karkasu.

Serwer bieznika.

Automatyczny serwer opasania.

Robot — jego zadaniem jest pobranie skrzydetka z separatora (z wozka na ktoérym

skrzydetka przedzielone separatorami przyjechaty z Dzialu Przygotowania Materiatow)

i zatozenie go na modut aplikatora skrzydetek.

Serwer spirala wraz z kompensatorem.

Przebieg procesu konfekcji dla konstrukcji SOT i TOS zostat objasniony w Tabelach 3.1.1 3.2,

Tabela 3.1. Przebieg konfekcji dla konstrukcji TOS (opracowanie wlasne na podstawie materialow

wlasnych przedsigbiorstwa)

Krok Opis Schemat

Krawedz poczatku PA (boki
+ wyktadzina), czyli A (C+B) A

. jest odbierana przez listwe ﬁ
przytrzymujaca na bebnie l
I poprzez obrét bebna karkasu
nastepuje aplikacja PA.
Osnowa 1 [D] (i opcjonalnie

5 osnowa 2 [E]) poprzez obrot T T
bebna karkasu Sg aplikowane
na PA. o 7
Modut wozka skrzydetek

3 lumieszcza skrzydetka na bebnie F— J ‘h‘_ F

————

karkasu [F].
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Zamki drutowki [G] blokuja

drutowki.

Beben karkasu zjezdza

si¢ do szeroko$ci wywijania.
Barki [H] przesuwaja sie w gore,
na skutek gdy karkas jest
pompowany do cisnienia

wywijania.

Palce wywijajace [I] zsuwaja
sie 1 wywijajg Wystajacy poza
drutowkami materiat bokow

i osnowy.

Beben karkasu rozsuwa

si¢ do szeroko$ci wstepnego
formowania, a do karkasu jest
podawane cisnienie wstepnego

formowania.

Karkas [J] przesuwa
si¢ pod pakiet B&T oczekujacy

w transferringu.

Beben karkasu zsuwa si¢ i wkleja
karkas w pakiet B&T.

_"_

10

Segmenty transferringu zwalniaja

pakiet B&T.
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11

Dochodzi do docisku pakietu
do karkasu na skutek dziatania
rolki centralnej pracujacej

Z zewnatrz oraz wewnetrznego

cisnienia karkasu.

12

Odbywa si¢ rolowanie bieznika.

13

Segmenty transferringu
podtrzymujg opone surowa [L].
Zamki drutéwki zwalniaja

drutowke. Jednostka

zdejmowania opony surowej [K]

chwyta opong surowa.

14

Segmenty transferringu zwalniaja
opong surowa [L]. Opona surowa
jest odbierana przez jednostke

usuwania opony surowej [K].

Tabela 3.2. Przebieg konfekcji dla konstrukcji SOT (opracowanie wlasne na podstawie materialow

wlasnych przedsi¢biorstwa)

Krok Opis Schemat

Krawedz poczatku PA (boki
+ wyktadzina), czyli A (C+B) A

. jest odbierana przez listwe ’B_'—C‘
przytrzymujaca na bebnie l
I poprzez obrét bebna karkasu
nastepuje aplikacja PA.
Osnowa 1 [D] (i opcjonalnie

5 osnowa 2 [E]) poprzez obrot T

bebna karkasu Sg aplikowane

na PA.
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Modut wozka skrzydetek
umieszcza skrzydetka na bebnie
karkasu [F].

F—» \« F

Zamki drutowki [G] blokuja

drutowki.

o te &' T

Beben karkasu zjezdza

si¢ do szeroko$ci wywijania.
Barki [H] przesuwaja sie w gore,
na skutek gdy karkas jest
pompowany do cisnienia

wywijania.

NS

Karkas [1] przesuwa si¢ pod
pakiet B&T oczekujacy

w transferringu.

Beben karkasu zsuwa si¢ i wkleja
karkas w pakiet B&T.

Segmenty transferringu zwalniajg

pakiet B&T.

Dochodzi do docisku pakietu
do karkasu na skutek dziatania
rolki centralnej pracujacej

z zewnatrz oraz wewnetrznego

ci$nienia karkasu.
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10 |Odbywa si¢ rolowanie bieznika.

Palce wywijajace [J] zsuwaja

Sie i wywijajg Wystajacy poza YN

11 drutéwkami materiat bokow J@\
I OSNOWY. —> <+—
Segmenty transferringu
podtrzymujg opone surowa [L]. i
Zamki drutowki zwalniaja _K’

L2 drutowke. Jednostka L
zdejmowania opony surowej [K] ¢l ll

chwyta opong surowa.

Segmenty transferringu zwalniaja

opone surowa [L]. Opona surowa \J'I;LLI

13 P
jest odbierana przez jednostke K
usuwania opony surowej [K]. L

Opisujac specyficzny przebieg procesu konfekcji opon, wyszczegodlnia si¢ jego dwie

zasadnicze fazy. Podczas I fazy na bebnie karkasu powstaje karkas opony, na ktory sktadaja
si¢: boki, wyktadzina wewngtrzna, osnowa (lub osnowy), skrzydetka i opcjonalnie doktadane
sa tekstylne (chafer, flipper) lub gumowe (wkladka runflatowa) materialy wzmacniajace.
Tymczasem |1 faza procesu konfekcji realizowana jest na bebnie B&T (ang. band transfer
drum). Rozpoczyna si¢ od natozenia pierwszego i drugiego opasania. Nast¢pnie nawijana jest
warstwa spiralna, w taki sposob, aby jej krawedzie zakrywaty krawedzie szerszego opasania
pierwszego. Kolejnym etapem jest aplikacja bieznika, ktorego zlacze dociskane jest przez rolke
Multidisc — urzadzenie sktadajgce si¢ ze stalowych krazkéw umozliwiajgcych precyzyjne
sterowanie silg docisku w wybranym segmencie na szeroko$ci bieznika. Efektem II fazy
jest powstanie pakietu B&T. Obie fazy (przygotowanie karkasu i pakietu B&T) odbywaja
si¢ na maszynie konfekcyjnej réwnolegle, dlatego nie nazywa si¢ ich np. etapami

(czyli czynno$ciami nastepujacymi jedna po drugiej). I faza trwa zdecydowanie krocej — pakiet
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B&T ,oczekuje” w transferringu na karkas. Z tego wzgledu, w tym czasie wazne
jest jego rownomierne podparcie w celu uniknigcia deformacji. Najwickszym wyzwaniem,
a jednoczesnie gtownym zamyslem procesu konfekcji jest budowanie opony z materiatoéw
ztozonych z niezwulkanizowanej, migkkiej mieszanki gumowej bez zmiany ich pierwotnego
ksztattu nadanego na etapie przygotowania.

Po przygotowaniu karkasu i pakietu B&T, maszyna konfekcyjna przechodzi do etapu
tzw. formowania opony surowej, ktory stanowi szereg operacji poczawszy od kroku 4, zar6wno
dla konstrukcji TOS, jaki i SOT wymienionych w Tabelach 3.1 i 3.2.

Na zakonczenie procesu konfekcji robot automatycznie nanosi indywidualny kod paskowy
na obszar drutdwki opony, w okreslonej odleglosci od ztacza boku. Gotowa opona surowa
(GT — ang. green tire) zostaje umieszczona przez operatora konfekcji na wozku (liczba opon
na wozie zalezy od ich gabarytu) lub przez automatyczny system wewngtrznego transportu
surowych opon (funkcjonuje juz dla cze$ci maszyn VMI MAXX), po czym przekazywana
jest do Dziatu Wulkanizacji.

3.3 Wulkanizacja opon

Przed rozpoczgciem procesu wulkanizacji, na wewnetrzng powierzchni¢ opony surowej
(od strony wyktadziny wewnetrznej) aplikowany jest srodek antyadhezyjny — zawiesina miki
lub silikon — majacy na celu zapobiezenie przywieraniu opony do membrany wulkanizacyjne;.

Funkcja membrany wulkanizacyjnej jest odpowiednie doci$nigcie opony surowej do formy
wulkanizacyjnej zgodnie z zadanym ci$nieniem oraz odprowadzenie powietrza z wngtrza
opony w trakcie trwania procesu. Pecherze powietrza zalegajace pomi¢dzy opong surowg
a membrang sa powodem powstawania defektow, np. ubytkow wyktadziny wewngtrznej
i przemieszczenia nitek osnowy. W celu eliminacji powietrza z tego obszaru, membrana jest
precyzyjnie dobierana do gabarytu danej opony i dodatkowo posiada dopasowang fakturg
umozliwiajagcg ucieczke gazow. Zazwyczaj osiggane jest to poprzez rozmieszczone
promieniowo rowki, ktorych gteboko§¢ wzrasta w kierunku od centrum do barku opony
(Rysunek 3.7.). Faktura wyktadziny wewnetrznej w oponie zwulkanizowanej jest negatywem
wzoru uzytej membrany wulkanizacyjnej.

Kluczowa rolg wulkanizacji w procesie produkcji opon jest osiggniecie odpowiedniego
stopnia usieciowania mieszanki gumowej (wytworzenie mostkow siarczkowych), zapewniajac
jej finalne wlasciwos$ci mechaniczne oraz nadaniu oponie surowej ostatecznej geometrii (Zhang
1in., 2016). W trakcie tego procesu odwzorowywana jest rzezba bieznika, stamping (oznaczenia

na boku opony) oraz ksztalt §cian bocznych. Najistotniejszymi parametrami procesu
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wulkanizacji sa: ci$nienie, czas i1 temperatura. Ich wlasciwy dobor zapewnia jednolite

1 kompletne usieciowanie mieszanki gumowej w catym przekroju opony (Wang i in., 2012).

7% /

///7// ///

7
/ 7

Rysunek 3.7. Faktury membran wulkanizacyjnych stosowane przez producentow opon tj.:

1 - Continental, 2 — Michelin, 3 — Yokohama, 4 — Hankook (opracowanie wlasne)

Poczatkowo opona surowa zostaje odlozona przez operatora na stét pozycjonujacy prasy
wulkanizacyjnej (Yu i in., 2021), w miejscu przeznaczonym do pobrania przez przenos$nik
zatadowczy. Faza ksztaltowania rozpoczyna si¢ od umieszczenia opony na membranie
wulkanizacyjnej, do ktorej podawana jest para wodna pod ci$nieniem ksztalttowania — stuzy
to wstepnemu naprezeniu i rozciggnieciu opony, aby wyeliminowa¢ deformacje powstate
podczas magazynowania na wozie od momentu konfekcji. W tej fazie rejestrowane jest jedynie
ci$nienie, czujnikiem umiejscowionym w membranie wulkanizacyjnej. W kolejnym kroku —
czyli w fazie zasadniczej wulkanizacji — uprzednio rozgrzana forma wulkanizacyjna zamyka
si¢ na oponie, a do wne¢trza membrany wtlaczane jest wysokie ci$nienie, ktore zapewnia
rownomierne dociskanie surowej opony do powierzchni formy (Rysunek 3.8.). Uskok

na wykresie pomigdzy fazami wynika z przej$cia na rejestracj¢ ci$nienia przez czujnik
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umieszczony w formie. Od tego momentu ciggly zapis temperatury rozpoczyna réwniez

termopara, osadzona takze w formie wulkanizacyjne;.

185 <kPa> 2. 50<MPA> ~ 220°C

KRZYWA CISNIENIA - =210

148 = 200
-1 190

111 — 180

1 170

cisnienie

KRZYWA TEMPERATURY

temperatura

07 — 160
. 150
— 140

- 130

10s 20s 30s| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 [15min

Faza

) Faza wulkanizacji
ksztaltowania

Rysunek 3.8. Zmiana temperatury i ciSnienia w czasie przykladowego cyklu procesu wulkanizacji

(opracowanie wlasne)

Po zakonczeniu procesu i rozformowaniu, zwulkanizowane opony — CT (ang. cured tires)
— przekazywane sg na taSmociag transportujacy je do stanowiska trymowania. Na tym etapie
nastgpuje maszynowe usuwanie wyptywek — pozostatosci gumy w miejscach odpowietrznikow
formy. Trymowanie jest bardzo ograniczone 1 przyspieszone w przypadku form
wykorzystujacych technologi¢ spring ventéw (samozamykajacych si¢ odpowietrznikéw
sprezynowych) (Stinga i in., 2020).

Dla niektorych rozmiaréw opon przewidziana jest dodatkowa faza stabilizacji
PCI (ang. post curing inflator), realizowana bezposrednio po zakonczeniu wulkanizacji. Polega
ona na swobodnym chtodzeniu opony w temperaturze otoczenia przy jednoczesnym
aplikowaniu do jej wnetrza ci$nienia za posrednictwem membrany. Stabilizacja zapobiega
powstawaniu deformacji (w szczego6lnosci zapadaniu si¢ §cian bocznych), a ponadto relaksacja
materiatow przebiega w tym przypadku w warunkach kontrolowanych, co wptywa korzystnie
na wybrane wlasciwos$ci uzytkowe gotowego wyrobu.

Nastepnie opony trafiaja do Dzialu Inspekcji Koncowej FI (ang. Final Inspection),

gdzie przechodza szczegdtowa kontrole zgodnosci ze specyfikacja techniczng.
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3.4 Inspekcja koncowa

Ze wzgledu na wysokie wymagania bezpieczenstwa stawiane przez rynek motoryzacyjny,
wszystkie opony opuszczajgce zaktad produkcyjny podlegaja obowigzkowej inspekcji
koncowej. Proces ten sktada si¢ z trzech podstawowych etapéw kontroli jakosci opon
zwulkanizowanych:

1) Wykrywanie defektéw metoda rentgenowska (ang. X-ray) — na tym etapie stosowane
sg systemy obrazowania radiograficznego stuzace do detekcji ciat obcych znajdujacych
si¢ w objetosci opony. Ich obecno$¢ stanowi istotne zagrozenie dla bezpieczenstwa
w czasie eksploatacji, poniewaz moze prowadzi¢ do niekontrolowanego przebicia
opony.

2) Pomiar wielko$ci opisujacych jednorodno$¢ — przeprowadzany na maszynach
Rim Flow oraz TUO (Tire Uniformity Grading Machine), ktora zostata zaprezentowana
na Rysunku 3.9. Jednorodno$¢ fizyczna jest jednym z aspektow jakoSciowych,
$wiadczacym o jednolitej strukturze opony, ktory jednoczesnie stanowi miare zdolnosci
opony do ptynnej pracy pozbawionej wibracji (Gent i Walter, 2006). Wielkosci
opisujace jednorodno$¢ zostaty szerzej opisane w Rozdziale 4.3.

3) Kontrola wizualna — wykonywana manualnie przez operatorow Dziatu Inspekcji
Koncowej. Przeprowadza si¢ ja pod katem wykrycia defektow, na stanowiskach
zapewniajacych odpowiednie natgzenie $wiatta, wyposazonych w zespo6l rolek
(utatwiajgcy obrot opony w celu jej ogledzin) i rozwieraki (umozliwiajg rozchylenie

bokow opony do oceny jej wnetrza).

W zaleznosci od indywidualnych wymagan jakosciowych klienta 1 specyfiki danego typu
opony, konieczne do przeprowadzenia mogga by¢ dodatkowe badania, tj. szerografia —
nieniszczgca metoda umozliwiajagca detekcje pecherzy powietrza uwiezionych w strukturze
opony. Technika ta znajduje zastosowanie gltownie w segmencie opon przeznaczonych
do zastosowan ekstremalnych, np. w samochodach sportowych.

Opony, ktore uzyskaja pozytywna ocen¢ na etapie inspekcji koncowej, zostaja
automatycznie przetransportowane za pomocg przenosnika rolkowego do Magazynu Opon,

skad sg kierowane do dalszej dystrybucji.

31



Rysunek 3.9. Maszyna TUO do pomiaru jednorodnos$ci opon (materialy wlasne przedsi¢biorstwa)

Jak wspomniano na poczatku biezacego podrozdzialu, wszystkie opony opuszczajace
zaktad produkcyjny podlegaja obowiazkowej inspekcji koncowej. Nie stanowi ona jednak
kompletnej kontroli jakos$ci, ktorej podlega opona jako produkt majacy spetnia¢ wymagania
Klienta, a takze restrykcje zwigzane z regulacjami danego rynku zbytu (homologacjami). Zakres
nadzoru jakos$ciowego (tj. liczba badanych probek, rodzaje testow oraz czgstotliwosé
ich przeprowadzania) ustalany jest indywidualnie dla kazdego rozmiaru opony w zaleznosci
od jej konstrukcji, homologacji oraz specyfikacji klienta. Specyfika tej czg¢sci kontroli jako$ci

opon zostata szerzej opisana w kolejnym rozdziale.
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4. Kontrola jakosci opon na tle wymagan klienta

Opona jako element odpowiadajacy bezposrednio za bezpieczenstwo, komfort jazdy
oraz efektywno$¢ paliwowg pojazdow, podlega szczegdlnie precyzyjnej ocenie jakosciowe;.
Proces kontroli jakosci w produkcji ogumienia nie ogranicza si¢ jedynie do spetnienia
wymogéw norm technicznych 1 regulacyjnych (np. homologacyjnych). Musi réwniez
uwzglednia¢ specyficzne, czesto zindywidualizowane wymagania klientow — zardwno
tych instytucjonalnych (producenci samochodéw osobowych), jak i detalicznych. Obejmuje
to miedzy innymi takie wtasciwosci jak wytrzymatosé, tatwos¢ montazu, poziom hatasu, opory
toczenia, zgodno$¢ z normami ekologicznymi, a nawet estetyke produktu. Celem niniejszego
rozdziatu jest przedstawianie procesu kontroli jakosci opon w kontekscie oczekiwan klienta,
ze szczegbdlnym uwzglednieniem metod oceny ich parametréw technicznych stosowanych

w przemysle oponiarskim.

4.1 Podziat defektéw opon oraz sposoby ich eliminacji

Efektywne zarzadzanie odpadami w przedsigbiorstwie zajmujacym si¢ produkcja opon
wymaga uprzedniego zidentyfikowania i sklasyfikowania przyczyn generowania odpadow
(Weyssenhoff i in., 2019). Jednym ze sposobow takiej klasyfikacji jest podziat na defekty
wizualne (ang. molding defects?) oraz defekty wynikajace z przekroczenia dopuszczalnych
limitow wlasnosci opisujacych jednorodnos$¢ opon. Do kategorii defektow wizualnych zalicza
si¢ m.in.:

1) Obecnos¢ ciat obcych, tj.: luzny drut opasania, odstajgcy drut drutdwki, papier, metal,

nici, drewno, spieki gumowe.

2) Wtracenia powietrza w przekroju poprzecznym opony (Rysunek 4.1. i 4.3))
zlokalizowane w obszarach, tj.: pod wykladzing wewngtrzng — w obrebie barku,
bieznika, boku, drutowki, a takze pomigdzy warstwami komponentéw budujacych
opong oraz na ich ztgczach.

3) Ubytki powierzchniowe, obejmujace m.in. bieznik, bark, bok (Rysunek 4.4.), drutéwke,
a takze lokalne i obwodowe ubytki wyktadziny wewnetrznej (Rysunek 4.3.).

4) Defekty zwigzane z kordami tekstylnymi, np.: widoczny chafer/osnowa na podstawie
drutowki, zmarszczka osnowy, wyptyniecie osnowy (Rysunek 4.4.), przemieszczenie

nitek osnowy (Rysunek 4.2.), widoczna nitka osnowy.

! Okreslenie najczesciej stosowane w jezyku branzowym.
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5) Nadlewki powstajace najczesciej na nosku drutowki, taczeniach segmentéw bieznika
oraz na linii podziatu formy MPL (ang. mold partition line) (Rysunek 4.2.).
6) Pcknigcia, np. wktadki RFT lub podstawy drutowki.

Rysunek 4.1. Powietrze pod wykladzina wewnetrzna w obszarze barku opony (opracowanie wlasne)

el

Rysunek 4.2. Nadlewka na linii podzialu formy (po lewej) oraz przemieszczenie nitek osnowy (po prawej)

(opracowanie wlasne)
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7) Znieksztalcenia, np.: deformacje drutéwki, bieznika, calej opony oraz zapadnigcie
bokow.

8) Separacje warstw, np. oddzielenie wyktadziny wewngtrznej od wktadki RFT.

9) Pe¢cherze powietrza na powierzchni zewngtrznej opony — w szczegdlnosci w obszarze
drutowki i boku.

10) Podwinigcia, np. chafera.

11) Defekty wynikajace z niewtasciwej jakoSci ztacz: rozejscia (przerwa w ciggtosci danego
materialu wynikajace ze zbyt malej zaktadki ztgcza), zbyt duze zlacza, psie ucho.

12) Uszkodzenia mechaniczne wynikajagce z przemieszczania podczas i pomigdzy
procesami produkcyjnymi, np.: przez przenosniki (wulkanizacja), trymowarke
(zacigcia), TUO (zgniecenie opony), przytarcia (transportery rolkowe).

13) Defekty zwiazane z niedoskonato$ciami formy lub membrany wulkanizacyjnej,
np.: zabrudzenia (negatyw ciala obcego odbity w oponie zwulkanizowanej),
zaglebiony/wystajacy odpowietrznik, brak wkiadki (element oddajacy odpowiednia
cze$¢ stampingu formy), btad cyklu wulkanizacyjnego (niezwulkanizowana opona),

uszkodzona/pegknigta/podwinigta/ zuzyta membrana.

Rysunek 4.3. Powietrze pod wykladzina wewnetrzna w polaczeniu z jej obwodowym ubytkiem

w obszarze barku opony (opracowanie wlasne)
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Rysunek 4.4. Ubytek boku (po lewej) oraz wyplynigcie osnowy (po prawej) (opracowanie wlasne)

Metodami i narzgdziami stuzacymi do identyfikacji wspomnianych defektow sa kontrola
wizualna, X-Ray i szerograf. Myslac o molding defects, mozliwe jest rowniez zaproponowanie
podzialu wedlug etapu procesu produkcyjnego w ktorym dany defekt powstaje
(czyli tzw. ,,podziatu procesowego”), tj. wady spowodowane nieprawidtowosciami w procesie
wytlaczania, konfekcji, wulkanizacji, etc.

Natomiast do defektéw zwigzanych z przekroczeniem limitoéw wlasnosci opisujacych
jednorodnos¢ opon zalicza si¢:

1) Wada RFV.

2) Wada RFV1H — RFVxH.

3) WadaLFV.

4) Wada CON.

5) Wada LRO.

6) Wada LRP — wybrzuszenie / wglgbienie.

7) Wada RRO.

8) Wada wywazenia dynamicznego.

9) Wada wywazenia statycznego.

Wymienione wyzej defekty wykrywane sa na podstawie pomiaru przeprowadzanego
przez maszyny Rim Flow i TUO. Odnalezienie Zrédta tych wad wymaga najczesciej
wieloetapowej analizy danych z rejestru masowej produkcji. Ich detekcja jest wazna, poniewaz
bicie promieniowe wywotane niejednorodnoscig masy opony moze powodowac¢ powstawanie

wyczuwalnych drgan, czesto bigdnie interpretowanych jako awaria czgSci zawieszenia
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lub uktadu kierowniczego samochodow osobowych (Bgczkowska i in., 2018). Znaczenie
jednorodnosci opon zostato szerzej opisane w Rozdziale 4.3.

Ztozonos¢ procesu produkcji opon stanowi istotne wyzwanie technologiczne, bedace
impulsem do cigglego rozwoju metod wspierajacych identyfikacje oraz eliminacje
wymienionych wyzej defektoéw. W literaturze przedmiotu mozna znalez¢ liczne sposoby,
koncentrujace si¢ na wykrywaniu oraz minimalizacji wad generowanych w toku wytwarzania
opon. Jednym z podstawowych podejs¢ wykorzystywanych w tym obszarze jest zastosowanie
Metody Elementéw Skonczonych (MES). Jak wykazano w pracy (Jeong i in., 2007), metoda
ta moze by¢ przydatna w analizie wplywu zmian sztywnos$ci oraz niedoskonalo$ci
wymiarowych opony radialnej na jej jednorodno$¢. Umozliwia ona uwzglednienie
rzeczywistych niedoskonatosci w trojwymiarowym modelu numerycznym, co z kolei pozwala
na przewidywanie parametrow jednorodnosci na podstawie nieregularnosci w rozktadzie masy
opony. Wnioski te zostaly potwierdzone réwniez przez autorow (Oertel i Wei, 2007,
Wei i Oertel, 2012), ktorzy dodatkowo wskazali, iz do estymacji sily stycznej mozliwe
jest wykorzystanie uproszczonych modeli obliczeniowych oraz technik analitycznych.
Kolejnym podejsciem jest wdrazanie narzedzi jakosciowych w strukturach przedsiebiorstw
przemystu oponiarskiego. Przyktadowo, dzigki implementacji metody rozwijania funkcji
jakosci QFD (ang. Quality Function Deployment) autorzy pracy (Hadi i in., 2017) byli w stanie
precyzyjnie zidentyfikowaé rzeczywiste potrzeby klienta, co bezposrednio przetozyto
si¢ na poprawe procesu produkcyjnego juz na etapie projektowania wyrobu.

Roéwnolegle prowadzone sg dzialania ukierunkowane na rozwo6j metod pomiarowych
w celu uzyskania wyzszej precyzji wynikdw, stanowigcych podstawe budowy 1 weryfikacji
modeli matematycznych. Przyktad stanowi publikacja (Li, 2021), w ktorej przedstawiono
poprawe dokladnosci pomiaru balansu dynamicznego opony poprzez zastosowanie metody
najmniejszych kwadratow. Z kolei w pracy (Zhu i Ai, 2018) opracowano algorytm
automatycznego wykrywania defektéw na podstawie obrazow rentgenowskich, umozliwiajacy
zwigkszenie doktadnosci kontroli jakos$ci 1 jednoczesne ograniczenie obcigzenia operatorow.
Do nowatorskich rozwigzan zalicza si¢ rdwniez technike wykorzystujaca otwarta sonde
falowodowa, zaprezentowang przez autorow (Sutthaweekul i in., 2016), ktéra w przysztosci
moze znalez¢ zastosowanie w wykrywaniu defektéw wewngtrznych opony. Postep
obserwowany jest rOwniez w zakresie automatyzacji kontroli wizualnej powierzchni
zewnetrznej opony. Przyktadowo, w pracy (Funahashi i in., 2015) opisano zastosowanie pasm
swietlnych, ktéore umozliwiaja identyfikacj¢ defektow o niewielkich rozmiarach dzigki

wyeksponowaniu ich na powierzchni badanego elementu.
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W celu lepszego zrozumienia zjawisk fizycznych zachodzacych w strukturze opony
opracowywane s3 réwniez nowe metody pomiarowe. Jednym z kierunkéw rozwoju
w tym zakresie jest wprowadzanie obowigzkowego pomiaru jednorodnosci przy wysokich
predkosciach HSU (ang. High-Speed Uniformity). W poréwnaniu do dotychczasowych metod
pomiaru jednorodnos$ci przy niskich predkosciach LSU (ang. Low-Speed Uniformity), pomiar
HSU pozwala na detekcj¢ fluktuacji momentéw obrotowych opony, co umozliwia bardziej
wiarygodne odwzorowanie jej zachowania w warunkach rzeczywistych (Du i in., 2020).

Coraz wigksze znaczenie w analizie danych produkcyjnych zyskuja réwniez techniki
sztucznej inteligencji, ktore pozwalaja na identyfikacj¢ wzorcéw i anomalii w duzych zbiorach
danych. Przyktadem takiego podejscia jest metoda opisana przez autorow (Strano i in., 2021),
w ktorej zastosowano modele uczenia maszynowego do prognozowania sit bocznych
generowanych przez opone w trakcie ruchu. W pracy (Barbosa i in., 2022) poréwnano rdzne
modele predykcyjne, wykazujac, ze proces Gaussowski charakteryzuje si¢ najwyzsza
doktadnos$cia, minimalizujac bledy wzgledem danych pozyskanych z akcelerometru. Zblizong
problematyke poruszono w badaniu (Xu i in., 2022), gdzie dane z przyspieszeniomierza
stanowily podstawe do nauczania sieci neuronowej, ktdra nastepnie zostata wykorzystana

do predykcji sit generowanych przez opon¢ w czasie rzeczywistym.

4.2 Specyfikacja wymagan klienta

Cykl zycia opony rozpoczyna si¢ na etapie zdefiniowania wymagan klienta, ktore stanowia
fundamentalny punkt wyjscia dla catego procesu rozwoju produktu. Wspdiczesne podejscie
do projektowania opon opiera si¢ na zasadzie ,,design to customer needs”, zgodnie
z ktora oczekiwania odbiorcy koncowego — w zakresie wilasciwosci technicznych
i funkcjonalnych — determinujg kluczowe =zatozenia konstrukcyjne. W odpowiedzi
na specyficzne potrzeby klienta czgsto konieczne jest opracowanie nowego rozmiaru opony,
ktory nie wystepuje w dotychczasowym portfolio producenta. Specyfikacja klienta (producenta
samochodéw osobowych) reguluje najczgsciej ponizsze wymagania dotyczace danego
rozmiaru opon:

1) Rozmiar (szerokosc¢ / profil / cal).

2) Typ opony (symetryczna / asymetryczna, kierunkowa / niekierunkowa).

3) Model auta, do ktorego jest dedykowana.

4) Rynek zbytu.

5) Limit oporu elektrycznego.

6) Twardos$¢ bieznika.
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7) Limity wlasnosci opisujacych jednorodno$¢ oraz warunki pomiarowe narzucone
do ich wyznaczania (szeroko$¢ i profil felgi pomiarowej / obcigzenie / ci$nienie).

8) Limity whasnosci opisujgcych jednorodno$¢ wysokich predkosci (HSU) oraz warunki
pomiarowe narzucone do ich wyznaczania (nie wystepuje dla kazdego klienta).

9) Masa opony.

10) Limity sity i ci$nienia osadzenia stopki.

11) Wymiary fizyczne.

12) Wymagane testy wysokich i niskich predko$ci wraz z limitami.

13) Homologacje oraz dodatkowe testy zwigzane z otrzymaniem certyfikacji.

14) Oznaczenia majace znalez¢ si¢ na boku opony (tzw. stamping) - Rysunek 4.5.

15) Obecnos¢ dodatkowych oznaczen, np. kod QR, RFID (Gao i in., 2010).

16) Etykieta opony, czyli wymagane klasy oporéow toczenia, przyczepnosci na mokrej
nawierzchni oraz emisji hatasu.

17) Linie kolorowe.

18) Dopuszczalno$¢ napraw po procesie produkc;ji.

19) Termin dostarczenia do Kklienta.

Nazwa producenta
Ozmaczenie jakosci opony Slowo 'TUBELESS' (bezdetkowa)
wg homologacji DOT

Strona opony Kraj pochodzenia

(wewnetrzna / zewnetrzna)

Piktogram sezonu
(zimowy, M+S)

Nazwa rzeiby bieinika

Indeks nosnosci
i predkosci

Profil
Szerokosé

Srednica felgi (cal) Numer homologacji DOT

AR DOT (tydzien i rok produkcji)
Dopuszczalne ci$nienie

i obciazenie Typ konstrukcji (material i ilos¢ warstw kordow)

Typ konstrukcji

. : Numer homologacji ECE
(np. radialna, kierunkowa)

Rysunek 4.5. Oznaczenia (stamping) na boku opony (opracowanie wlasne)
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Wdrozenie nowego rozmiaru opony stanowi wigc wynik §wiadome;j, wieloetapowej pracy
nad doborem komponentow sktadowych opony 0 odpowiedniej geometrii (tzw. design opony),
kordow tekstylnych 1 stalowych bedacych w stanie sprosta¢ zatozonym kryteriom,
a takze sktadu mieszanek gumowych w celu uzyskania produktu w petni zgodnego
z oczekiwaniami klienta oraz normami branzowymi.

Wymagania rynku kreuja coraz wigksza swiadomos¢ klienta o produkcie ktoéry nabywa,
czego przyktadem jest zwickszenie ilosci informacji na etykiecie UE od 01.05.2021
(Rysunek 4.6.). Etykieta opony zawiera 3 podstawowe parametry wyznaczane zgodnie
z rozporzadzeniem Regulaminu nr 117 Europejskiej Komisji Gospodarczej ONZ
(UNECE, 2025) oraz nastgpujacymi normami ISO:

1) Opodr toczenia (efektywnosé paliwowa) — przypisywana jest mu klasa od A (najnizszy
opor, najwigksza efektywnos¢ paliwowa) do E (najwyzszy opor). Norma (1SO, 2018)
okresla sposob pomiaru oporu toczenia w warunkach laboratoryjnych. Wyznaczanie
wspotczynnika oporu toczenia zostato szerzej opisane w Rozdziale 4.4.5.

2) Hamowanie na mokrej nawierzchni (przyczepnos¢ na mokro) - pomiar odbywa
si¢ w warunkach kontrolowanych, zgodnie z procedurg opisang w (ISO, 2024) jest
oceniane w klasach od A (najkrotsza droga hamowania) do E.

3) Emisja hatasu zewnetrznego — zgodnie z (1SO, 2003) mierzy si¢ hatas emitowany przez
opong podczas przejazdu bez przyspieszania. Wynik podawany jest w decybelach [dB]

1 oznaczany dodatkowo ikong z 1, 2 lub 3 falami (im mniej fal, tym cichsza opona).

° Producent / marka ENERG’ g
J{é) 1 [{% ] © Kod QR (bezposredni u.m.. [3
N dostep do publicznej bazy 205/554o =

B ilA danych produktu UE) Q
B ............. B - 0 u@a
[:T% g l e Identyfikacja typu opony B 6 =
_5, 7 (numer pozycji)

= o
g a ‘ 0 Rozmiar opony, indeks G =

nosnosci, indeks predkosci

(@", ]l e Piktogram zimowy: 3PMSF =0 G
G Piktogram przyczepnosci 7148 ))) _
,mnm ¢ na lodzie ABe

Stara etykieta Nowa etykieta

Rysunek 4.6. Informacje zawarte na etykiecie opony (Janiszewski, 2025)
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System etykietowania promuje produkcje i wybor opon o nizszych oporach toczenia,
co przeklada si¢ na zmniejszenie zuzycia paliwa i tym samym redukcj¢ emisji CO2. Opony
o niskim poziomie hatasu przyczyniaja si¢ rOwniez do ograniczenia zanieczyszczenia hatasem,
co ma istotne znaczenie w kontekscie ochrony zdrowia. Normatywne podejscie do oceny
parametroOw opon tworzy przejrzyste warunki konkurencji na rynku, sprzyjajace rozwojowi
zréwnowazonych produktow. Standaryzacja pomiaré6w umozliwia obiektywne poréwnanie
jakosci migdzy producentami, co podnosi jako$¢ oferowanych wyrobow. Deklaracje klas
wilasnos$ci opony zawarte na etykiecie (w szczegdlnosci emisja hatasu) sg $cisle zwigzane z jej

jednorodnoscia.

4.3 Jednorodnos¢ opon

Jednorodnos¢ (Polski Komitet Normalizacyjny, 2002) to stan, w ktorym kazda wiasciwosé¢
opony mierzona zarowno w warunkach statycznych, jaki i dynamicznych, jest niezmienna
wzdtuz jej obwodu biorac pod uwage faze i warto$¢ bezwzgledna. Jednorodnos¢ jest zwigzana
z symetrycznym rozmieszczeniem masy wzgledem osi, z jednorodno$cig geometryczna i sitami
wywolanymi ruchem masy. Brak jednorodnos$ci opony obracajacej si¢ wokol osi powoduje

wahania sit, ktore moga si¢ zmienia¢ w zalezno$ci od predkosci i odnosza si¢ do okreslonej osi.

Tabela 4.1. Zaleznosci pomiedzy jednorodno$cia opony a zjawiskami wibracyjnymi pojazdéw

(opracowanie wlasne na podstawie Nakajima, 2019)

Jednorodnos¢ Typ drgan Zjawiska w pojezdzie
o o Pionowe drgania
Bicie promieniowe | RFV Drgania przy duzej .
, . , nadwozia, fotela
Niewywazenie Unbalance | predkosci 80-160 [km/h]

i Kierownicy

Boczne drgania przy matej

Boczne drgania fotela
predkosci 30-50 [km/h]

Bicie boczne LFV i i
Shimmy? przy matej Boczne drgania
predkosci 20-60 [km/h] Kierownicy

Stozkowatos¢ CON - Scigganie pojazdu

2 Efekt shimmy - oscylacyjne drganie kierownicy odczuwalne podczas jazdy, wystepujace zazwyczaj w
okreslonym zakresie predkosci.
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Jednorodno$¢ fizyczna jest jednym z aspektow jakosciowych swiadczacych o jednorodne;j
strukturze opony, ktora jest rOwniez miarg jej zdolnosci do ptynnej pracy bez wibracji (Rodgers
i Waddell, 2005). Sktada si¢ z pakietu wielko$ci fizycznych mierzonych dla kazdej opony
przed opuszczeniem fabryki. Istniejg zjawiska promieniowe: zmienno$¢ sity promieniowe]
RFV (ang. radial force variation), wywazenie statyczne (ang. static balance), wywazenie
dynamiczne (ang. dynamic balance), bicie promieniowe RRO (ang. radial runout)
oraz zjawiska boczne: zmiennos¢ sity bocznej LFV (ang. lateral force variation), bicie boczne
LRO (ang. lateral runout), stozkowato$¢ CON (ang. conicity) i tzw. sita boczna strukturalna
(ang. ply steer). Opisuja one m.in. rtwnomierne roztozenie masy na obwodzie opony (Koketsu,
2017), co bezposrednio przektada si¢ na mechanizm jej zuzycia (Hosseini Salari, 2023). Oprocz
wplywu rzezby bieznika (Nakajima, 2019), sa one rowniez jednym z czynnikéw wpltywajacych
na emisj¢ hatasu opony podczas toczenia. Zalezno$ci pomigdzy jednorodno$cia opony
a zjawiskami wibracyjnymi pojazdow przedstawiono w Tabeli 5.1. Zapewnienie jednorodnosci
opon na poziomie zuzycia przyczynia si¢ zatem do zwigkszenia ich trwalosci
| przewidywalnego zachowania w ruchu drogowym przez caty okres eksploatacji.

W teorii wibracji, wymienione wczesniej zjawiska sg ze soba powigzane, dlatego kazda
decyzja projektowa wplywajaca na jeden z czynnikéw bedzie oddzialywaé réwniez
na pozostale - pozytywnie lub negatywnie. W rezultacie powstaje ztozony uktad sit
dziatajacych na toczaca si¢ opong zamontowang w pojezdzie (Rysunek 4.7.). Wiasciwosci
mechaniczne opony opisuja jej zachowanie pod wplywem obcigzenia, momentu obrotowego
1 dziatania ukladu kierowniczego, czego efektem jest powstawanie sit zewnetrznych
i odksztatcen (Rodgers i Waddell, 2005). Uktad osi opony odnosi si¢ do srodka styku opony
z nawierzchnig drogi, jak pokazano na Rysunku 4.7. O$ X to linia przecigcia ptaszczyzny kota
z plaszczyzna drogi, skierowana w stron¢ jazdy (kierunek dodatni do przodu).
O$ Z jest prostopadia do plaszczyzny drogi 1 skierowana w dot (kierunek dodatni). Oznacza
to, ze sita normalna wywierana przez opon¢ ma zwrot dodatni w dot, natomiast pionowa reakcja
obcigzenia — czyli sita, z jaka droga dziala na opon¢ — jest uznawana za ujemng.
O$ Y lezy w plaszczyznie drogi i jest skierowana w taki sposob, aby uklad tworzyl uktad
prawoskretny 1 ortogonalny. Takie przedstawienie uktadu osi opony odpowiada uktadowi osi

pojazdu, gdy opona znajduje si¢ na prawym przednim kole samochodu.
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Rysunek 4.7. Sily i momenty dzialajace na opone w centralnym punkcie jej styku z nawierzchnig
(Rodgers i Waddell, 2005)

W przypadku przedstawionym na Rysunku 4.7. pojazd skreca w lewo, a wiec wystepuje

dodatni moment samokierujacy (M;) oraz ujemna sita boczna. Sily dzialajace na opone mozna

zatem roztozy¢ na trzy podstawowe wektory:
1) Sity pionowe (normalne) — wpltywajg na komfort jazdy.

2) Sily boczne — maja wplyw na kontrole nad pojazdem.
3) Sity wzdtuzne (do przodu) — wptywajg na osiagi, takie jak opory toczenia.

Jednym z powodoéw, dla ktorych przeprowadza si¢ obowigzkowy pomiar jednorodnosci
opon jest zapobiegnigcie wypuszczenia na rynek produktu, w ktorym mogloby dojs¢
do wystgpienia mechanizmu nieregularnego zuzycia w trakcie eksploatacji (Rysunek 4.8.).
Kazda z sit wystgpujacych podczas ruchu opony odpowiada za swoisty sposob jej zuzycia.

Niektore z przestawionych nizej mechanizméw zostang omowione w niniejszym podrozdziale
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Rysunek 4.8. Przykladowe rodzaje nieregularnego zuzycia opon (opracowanie wlasne na podstawie
Nakajima, 2019)

4.3.1 Zmiennos¢ sity promieniowej i jej wyzsze harmoniczne

Warto$¢ calkowita zmiennos$ci sily promieniowej RFV to réznica migdzy wartoscia
maksymalng i minimalng mierzonego sygnalu w obrebie pasma okreslonej szerokosci,
wystepujaca podczas jednego obrotu. Nalezy ja rozumie¢ jako warto$¢ sily w kierunku
promieniowym (w osi Z) opony obcigzonej (Rysunek 4.9.), powtarzajacg si¢ dla kazdego
obrotu, przy zachowaniu statego promienia pod obcigzeniem i stalej predkosci, wyrazona
w niutonach [N] (Polski Komitet Normalizacyjny, 2002). Jej obecno$¢ jest spowodowana
wystepowaniem zlagcz komponentéw opony (miejsca o zwigkszonej lokalnej masie
na obwodzie w stosunku do sgsiadujacych z nimi miejscami) prowadzacych do wzrostu sity
promieniowej. Z kolei Izejsze miejsca w oponie, przyktadowo spowodowane rozejsciem kordu
osnowy, powodujg lokalny spadek sity promieniowej na obwodzie opony (Rodgers i Waddell,
2005). Wariacje sity i momentu powtarzaja si¢ przy kazdym obrocie opony, a zatem
sa okresowe wzgledem fizycznego potozenia na oponie. Rysunek 4.10. ilustruje, jak moze
wyglada¢ zmiennos¢ sity promieniowej przy niskiej predkosci. Gorna krzywa to skumulowany,
czyli catkowity sygnal zmiennos$ci sity promieniowej. Przeprowadzajac analize Fouriera,
mozliwe jest roztozenie sygnatu skumulowanego 1 uwidocznienie poszczegdlnych
harmonicznych, czyli rzedow drgan. Na Rysunku 4.10. przedstawiono pierwsze sze$¢
harmonicznych. Harmoniczne przyciagaja wigksza uwagg niz skumulowana zmiennos¢ sity,
poniewaz zazwyczaj latwiej jest powigza¢ wewnetrzng anomali¢ opony z jedng lub kilkoma
harmonicznymi niz z catkowitym przebiegiem falowym, co pozwala na skuteczniejsze

zidentyfikowanie i usunigcie problemu (Gent i Walter, 2006).
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Rysunek 4.9. Uklad osi odniesienia sil podczas pomiaru jednorodnos$ci opon m.in. na maszynie TUO;

gdzie: 1 — beben pomiarowy, 2 — opona (Polski Komitet Normalizacyjny, 2002)

N I
I\ A &

‘\/ b ety N .
\ Z \/ ! RFV -wektor sumacyjny
: wszystkich harmonicznych

\/NN/\
\ ~+ RFVI1H - pierwsza harmoniczna

RFV2H - druga harmoniczna

' / . .
% T 4 XT//\\ #~ RFV3H - trzecia harmoniczna

RFV4H - czwarta harmoniczna

\Hr \U—--— RFV5H - piata harmoniczna

s e RFV6H - szosta harmoniczna

Rysunek 4.10. Pierwsze sze$¢ harmonicznych oraz ich wektor sumacyjny (opracowanie wlasne na

podstawie Rodgers i Waddell, 2005)

Zgodnie z ta wiedza, pierwsza harmoniczna zmienno$ci sily promieniowej RFV1H
to amplituda warto$ci calkowitych sktadowej czestotliwo$ci podstawowej transformaty
(funkcji) Fouriera przedstawiajgcej wahania (Polski Komitet Normalizacyjny, 2002).

Natomiast wyzsze harmoniczne to amplituda wartosci catkowitych drugiej (lub wyzszego
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rzedu) sktadowej czestotliwosci transformaty Fouriera przedstawiajacej te wahania (Polski
Komitet Normalizacyjny, 2002). Na tej podstawie przeprowadzana jest analiza fali RFV, ktora
pomaga w dotarciu do przyczyny zbyt duzej wartoSci tej zmiennej opisujacej jednorodnos¢.
W tym celu zestawia si¢ fale reprezentatywnych opon problematycznego rozmiaru opon
na jednym wykresie (zmiana sily promieniowej w funkcji obrotu opony na bebnie
pomiarowym), a nastepnie wyznacza si¢ S$rednig falg badanej populacji, co zostato
zaprezentowane na Rysunku 4.11. Oceniana jest réwniez powtarzalno$¢ fali RFV,

ktora pozwala na stwierdzenie, czy istnieja dodatkowe czynniki wptywajace na jej zakldcenie.

RFV [N]

Obrot [°]
20
15 /A\
5 |10
£, Zz Y
> 045w L1 BP1 BP2 I
E 2 50 100 150 200 250 ; 35
i —
45
Obrot [°]

Rysunek 4.11. Analiza fali RFV (opracowanie wlasne)

Dzigki ustalonemu dla danego rozmiaru opony rozktadowi ztacz wiadomo, w ktorych
miejscach na obwodzie opony dochodzi do najwiekszych wahan sily (pozycje ztacz
materiatowych zostaly naniesione na dolnym wykresie Rysunku 4.11. na podstawie rozktadu
ztacz zastosowanego podczas procesu konfekcji). Widoczne sg zatem miejsca wystgpowania
najwyzszej 1 najnizszej wartosci sity. Pierwszym dziataniem dla osiggnigcia mozliwego

,»Splaszczenia” fali jest natozenie tych miejsc na siebie, czyli zmiana rozktadu ztgcz (Rysunek
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4.12.). Nastepnie dochodzi do powtornej analizy i weryfikacji, czy przeprowadzone dziatania

przyniosty zamierzony skutek, czy tez nalezy poszukiwa¢ innych rozwigzan obnizajacych

wartos¢ RFV.
L Bp2 L Bp2
BP1 - BP1
TT SL T SL
SW SW

Rysunek 4.12. Rozklad zlacz poprawiony na podstawie przeprowadzonej analizy fali RFV

(opracowanie wlasne)

Istnieje wiele potencjalnych przyczyn niejednorodnosci opony, jednakze istnieje rowniez
ogolna tendencja, ze okre$lone anomalie materiatowe lub konstrukcyjne maja wigkszy wpltyw
na zmienno$¢ sity w kierunku promieniowym lub wzdluznym. Anomalie wplywajace
na zmienno$¢ masy wokot obwodu opony majg istotne znaczenie dla zmienno$ci sily
promieniowej, natomiast anomalie wptywajace na sztywno$¢ lub bicie majg wigkszy wpltyw
na zmienno$¢ sity wzdtuznej (Pacejka, 2012). Tabela 4.2. zawiera poroéwnanie roéznych

potencjalnych zrodet zmiennosci sit.

Tabela 4.2. Potencjalne zrédla zmiennosci sit powodujace niejednorodno$é opon (opracowanie wlasne

na podstawie Gent i Walter, 2006)

Wplyw na Wplyw na
Zrédlo zmiennosS¢ sily zmiennos$¢ sity
promieniowej RFV wzdluznej
Zbyt ciezkie lub zbyt lekkie zlacze istotny niewielki
Rozrzedzenie lub spigtrzenie kordu istotny niewielki
Zmiennos$¢ grubosci bieznika istotny niewielki
Niesymetryczne osadzenie drutowek niewielki istotny
[Niedoskonatosci bebna karkasu i/lub B&T niewielki istotny
[Niedoskonalosci formy wulkanizacyjnej niewielki istotny
Bicie karkasu niewielki istotny

Przez wiele lat opony byly szlifowane na fabrycznych maszynach do pomiaru
jednorodnosci w celu zmniejszenia zmiennos$ci sity promieniowej (Nedley i Gearig, 1970).

Proces ten jest zazwyczaj najskuteczniejszy w przypadku pierwszej harmonicznej sily
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promieniowej, ktéra ma kluczowe znaczenie dla poprawy komfortu jazdy. Szlifowanie polega
na usuni¢ciu niewielkiej ilosci gumy z barku opony lub z catej powierzchni bieznika w miejscu
odpowiadajgcym punktowi o najwyzszej wartosci RFV1H. Szlifowanie nie jest jednak
akceptowane przez wszystkich producentéw samochodow.

,Dopasowywanie poprzez znakowanie” to kolejna technika stosowana w celu
zminimalizowania RFV1H. Metoda ta jest zazwyczaj stosowana na koncu linii montazowej
pojazdu lub w firmach outsourcingowych, gdzie opony sg zaktadane na felgi. W tym procesie
opona i felga sg ustawiane w taki sposob, aby punkt maksymalny RFV1H felgi (najczesciej
to miejsce montowania wentylu) pokrywat si¢ z punktem minimalnym pierwszej harmonicznej
opony. Z tego powodu wymaganiem wielu producentow samochoddéw jest oznaczanie na boku
opony jej najlzejszego punktu. Dzigki temu minimalizuje si¢ catkowitg pierwsza harmoniczng
zmiennosci sity promieniowej dla zespotu opona + felga tworzacego koto pojazdu.

Jednorodno$¢ opony jest najwazniejszym zrodtem wzbudzenia drgan powodujacych
podskakiwanie / boksowanie kota (ang. wheel hop), chociaz w pewnych warunkach moga
je réwniez wywota¢ nieréwnosci drogi. Gtownym czynnikiem jest pierwsza harmoniczna
zmiennosci sity promieniowej, a krytyczna predkos¢ jazdy to 80 km/h i wigcej. Gdy rezonans
boksowania zostaje wzbudzony, pojawia si¢ zaklocenie komfortu jazdy okreslane zwykle
jako drgania. Problem ten mozna kontrolowac na dwa sposoby (Gent i Walter, 2006):

1) RFV1H powinna by¢ niska w catym zakresie predkosci roboczych. Wymagany poziom
sity (limit) zalezy od wrazliwosci konkretnego pojazdu. Dlatego tez, bedac §wiadomym
autorskich technologii zaimplementowanych na etapie projektowania zawieszenia
pojazdu, kazdy producent aut narzuca wilasne limity pierwszej harmonicznej sily
promieniowej.

2) Nalezy mozliwie jak najbardziej przesuna¢ rezonans inicjacji boksowania ku wyzszym
czestotliwosciom. Po pierwsze, nalezy upewnic sie, ze predkosé przy ktorej boksowanie
jest najsilniej wzbudzane, znajduje si¢ powyzej normalnego zakresu predkosci jazdy.
Po drugie, ciato ludzkie jest mniej wrazliwe na drgania o czgstotliwosci 20 [Hz],
niz na te o czgstotliwosci 10 [Hz]. Dlatego podskakiwanie inicjowane przy wyzszej

czestotliwosci jest mniej dokuczliwe dla kierowcy i pasazerow.

4.3.2 Zmiennosé¢ sity bocznej

Generowanie sity bocznej przez uktad kierowniczy auta jest konieczne, poniewaz stanowi
to podstawe sterowania pojazdem. Jednak duze ruchy kierownicg sg zazwyczaj stosowane tylko

w niewielkim procencie czasu jazdy pojazdu, dlatego zmniejszenie oporéw toczenia podczas
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skrgcania ma niski priorytet. Szczegodlnie istotne sa odksztatcenia bieznika i opasan w obszarze
kontaktu z nawierzchnig podczas skretu, ktore nie tylko powoduja dodatkowe naprezenia
1 odksztalcenia, ale rowniez przyczyniaja si¢ do powstawania dodatkowego ciepta na skutek
zwigkszonej histerezy (powrdt opony po odksztalceniu do pierwotnego ksztattu) i $cierania
bieznika. Zmiennymi wplywajacymi na skale tego zjawiska sg czas trwania i szybkos¢ skretu
oraz kat poslizgu (zwany roéwniez katem znoszenia) podczas manewru. Sila boczna
jest nieliniowg funkcjg kata poslizgu i kata pochylenia kota (Gent i Walter, 2006).

Zmiennos$¢ sity bocznej LFV to warto$¢ wahania sity w kierunku bocznym (w osi Y) opony
obcigzonej (Rysunek 4.9.), powtarzajaca si¢ dla kazdego obrotu, przy zachowaniu statego
promienia pod obcigzeniem i statej predkosci, wyrazona w niutonach [N] (Polski Komitet
Normalizacyjny, 2002). Sita boczna Fy, to sita dziatajaca ze strony drogi na opon¢ wzdtuz
osi Y (Rysunek 4.7.), wymuszajaca ruch pojazdu w lewo lub w prawo, w zaleznosci od tego,
czy koto jest skrecone i/lub pochylone w lewo badz w prawo. Opona generuje site boczng
w odpowiedzi na dwie gtowne zmienne katowe a i y (Rysunek 4.7.). Jesli tor ruchu opony
ma bardzo duza krzywizne, czyli bardzo maty promien skr¢tu — sama krzywizna toru wyraznie
wplywa na generowanie silty bocznej oraz momentu wyréwnawczego.

W odniesieniu do punktu na wykresie, w ktorym Fy = 0 jak pokazano na Rysunku 4.13.,
sita boczna zazwyczaj nie jest zerowa dla kata poslizgu a = 0. Jak mozna si¢ spodziewac, sita
boczna przy zerowych katach pochylenia 1 znoszenia nie jest zerowa, ze wzgledu
na wspotistniejace sity Sciggajace. Jedna z tych sit — plysteer — jest zwigzana
z samosterowaniem indukowanym strukturalnie (tutaj w rozumieniu: konstrukcyjnie), a druga
(stozkowato$¢) z samopozycjonowaniem si¢ opony na skutek strukturalnych wlasciwosci.
Jest to istotna cecha zachowania opony, nawet w pozycji jej idealnego wycentrowania
(rozwinigcie tych zjawisk zostanie opisane w Rozdziale 4.3.5). Ujemna sita boczna
jest zwigzana z dodatnim katem poslizgu, a dodatnia sila boczna — z uyjemnym katem poslizgu.
W normalnym zakresie jazdy nachylenie krzywej sily bocznej wzgledem kata poslizgu
jest ujemne. Wartos¢ bezwzgledna nachylenia krzywej sity bocznej przy zerowym kacie
poslizgu jest powszechnie nazywana sztywnoscig boczng (Luty, 2009). Jest to bardzo wazny
parametr okreslajacy zachowanie pojazdow w zakresie liniowego zachowania Fy,
czyli w obszarze, w ktorym odbywa si¢ wigkszo$¢ czasu jazdy. Sztywno$¢ boczna zalezy
od obcigzenia (sity normalnej). Zazwyczaj rosnie do pewnej czgsci nominalnego obcigzenia
opony, a nastgpnie stopniowo maleje wraz ze wzrostem obcigzenia (Gent i Walter, 2006).
Miejsce, w ktorym sztywno$¢ boczna osigga maksimum zalezy od konstrukcji opony.

Dla dobrego prowadzenia pojazdu pozadane jest, aby maksimum wystepowato na poziomie
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nominalnego obcigzenia opony lub powyzej niego. Powoduje to dodatnig warto$¢ czutosci
na obcigzenie, ktora definiuje si¢ jako nachylenie krzywej sity bocznej pomiedzy 80% a 100%
nominalnego obcigzenia opony. Wzrost sily bocznej wraz z katem poslizgu jest ztozong
nieliniowg funkcja. Warto§¢ Fy przy okreSlonej wartosci kata poslizgu osiaga szczyt,
a nastepnie spada, podobnie jak w przypadku opony poddanej hamowaniu wzdluznemu.
Wraz ze wzrostem kata poslizgu coraz wigksza cz¢$¢ dostepnego obszaru styku bierze udziat
w poslizgu, przez co w pewnej wartosci kata poslizgu generowana jest maksymalna sita boczna.
Po przekroczeniu tej granicznej warto$ci kata, dalszy wzrost poslizgu powoduje systematyczny
spadek sity bocznej (dochodzi do poslizgu pojazdu) (Gent i Walter, 2006).
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Rysunek 4.13. Zalezno$¢ sily bocznej od kata znoszenia przy stalej sile normalnej (Gent i Walter, 2006)

W praktyce, poczatkowy zakres sity bocznej, az do kata poslizgu zwigzanego ze szczytem
sity Fy to zakres, w ktorym kierowca moze utrzyma¢ kontrol¢ nad pojazdem.
Prawdopodobienstwo utraty kontroli podczas pokonywania zakretu rosnie, gdy kat poslizgu
zbliza si¢ do warto$ci odpowiadajacej] maksymalnej sile bocznej dla normalnego obcigzenia F,
(Rysunek 4.7). Ogolnie rzecz biorac, zmniejszenie profilu opony powoduje, ze dane dotyczace
sity bocznej oraz innych sit i momentéw wykazuja wigksze poczatkowe nachylenia
oraz gwaltowniejszg zmiang¢ zachowania od tych poczatkowych nachylen, do zakresow
przy duzych katach poslizgu. Szeroko$¢ strefy przejSciowej pomigdzy dobrze kontrolowanym
zachowaniem a mozliwg utratg kontroli jest mniejsza pod wzgledem kata poslizgu dla opon

o nizszym profilu. Oznacza to, ze opony niskoprofilowe lepiej poradza sobie w ostrzejszym
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zakrecie, jednak zerwanie przyczepnosci moze nastgpi¢ w nagly sposob, co daje mniejszy czas
reakcji kierowcy na skontrowanie manewru.

Podobnie jak boczne niewspotosiowosci, zmiennosci w bocznej sztywnos$ci rowniez
prowadzg do niepozadanych wahan sity bocznej (LFV) w centrum kota oraz do bocznych drgan
kabiny pasazerskiej (Tabela 4.1.). Czestotliwosci wzbudzen, ktore sa wywotane brakiem
jednorodnosci, sa wielokrotnoscia predkosci obrotowej kotla, tzn. wielkos¢ wahan zalezy
bezposrednio od predkosci pojazdu. Drgania te powoduja dodatkowo zakldcenie mechanizmu
przewidywalnego zuzywania opony. Zuzycie schodkowe (ang. step-down wear) oraz zuzycie
typu "rzeka" (ang. river wear) przedstawione na Rysunku 4.8. to rodzaje nieregularnego
zuzycia, ktore zazwyczaj wystepuja w oponach toczacych si¢ stale po ptaskiej nawierzchni,
tj. autostrada. Rysunek 4.14. przedstawia genez¢ powstawania zuzycia schodkowego,
ktora przebiega w czterech etapach (Nakajima, 2019):

1) Slad nieregularnego zuzycia zaczyna si¢ tworzyé w biezniku opony pod wptywem sity

bocznej. Przekrdj poprzeczny zuzytych zeber ma zaokraglone krawedzie,
a na powierzchni bieznika pojawia si¢ obwodowe przetarcie. Poniewaz kierunek sity
zewnetrznej jest prostopadly do kierunku tego wzoru §cierania, oznacza to, Ze inicjacja
tego zuzycia wynika gtdownie na skutek dziatania sity boczne;.

2) Powstaje nieregularne zuzycie. Wytarty §lad zaczyna by¢ wyraznie widoczny

w Kierunku poprzecznym (bocznym), a zuzycie nasila si¢ poprzez dodatkowe dziatanie
sit wzdluznych, w szczegdlnosci podczas hamowania.

3) Degradacja post¢puje w kierunku srodka zebra bieznika pod wptywem sit wzdtuznych.

Na tym etapie zuzycie postgpuje w przyspieszonym tempie. Scieranie przebiega
réwniez poprzecznie, jednak w tym momencie propagacja zniszczenia wynika gtownie
z sit wzdhuznych. Stosunek powierzchni bieznika migdzy obszarem normalnego zuzycia
a obszarem zuzycia nieregularnego staje si¢ wigkszy, natomiast nachylenie startej
powierzchni w  kierunku boku opony robi si¢ bardziej strome.
Wyglad zuzytego bieznika pogarsza si¢ na tyle, ze moze prowadzi¢ do reklamacji
uzytkownika. W obszarze normalnego zuzycia $cieranie nie jest tak wyrazne, jednak
sity zewnetrzne zaczynaja dziala¢ na ten obszar bardziej intensywnie, ze wzgledu
na zmniejszanie si¢ powierzchni styku opony z podiozem.

4) Nieregularne zuzycie w koncu obejmuje cate zebro.
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1. Inicjacja

2. Powstanie zauwazalnego
sladu zuzycia

3. Gradacyjne powiekszanie
sie efektu zuzycia

\_/7””””””\ 4. Powstanie "schodka' na
calej szerokosci Zebra

Rysunek 4.14. Mechanizm powstawania zuzycia schodkowego wywolanego dzialaniem sily bocznej

(opracowanie wlasne na podstawie Nakajima, 2019)

Rysunek 4.15. podsumowuje wptyw katow pochylenia kota (ang. camber) oraz zbieznosci
/ rozbieznosci (ang. toe-in / toe-out) na nieregularne zuzycie opon (Nakajima, 2019):

1) Przy rozbieznosci — gdy przednia strona kot jest skierowana jest na zewnatrz wzglgdem
osi jazdy — bardziej zuzywa si¢ wewngtrzna strona opony. Dzieje si¢ tak, poniewaz sita
boczna dziata od wewnatrz opony.

2) Przy zbieznosci — gdy przednia strona kot jest skierowana jest do srodka — bardziej

Zuzywa si¢ zewnetrzna strona opony, poniewaz sita boczna dziata od zewnatrz opony.
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Rysunek 4.15. Mozliwe niedoskonalos$ci ukladu zawieszenia pojazdu potegujace nieregularne zuzycie opon

wywolane dzialaniem sily bocznej (Nakajima, 2019)

52



Podczas eksploatacji pojazdow bardzo czgsto dochodzi do utraty prawidtowej zbieznosci
zawieszenia. Z tego powodu niektorzy producenci samochodow uwzgledniaja kat pochylenia
opony w warunkach wymaganych przez nich testéw bgbnowych (wysokich predkosci).
Kat styku powierzchni bgbna pomiarowego i1 opony 0 wynosi zazwyczaj 5°, co zostato
zobrazowane na Rysunku 4.16. Stwarza to trudniejszg sytuacje dla osiggni¢cia pozytywnego
rezultatu, bo wymuszone jest dodatkowe dziatanie sily bocznej, a nie tylko normalnej
i wzdluznej, jak ma to miejsce w warunkach standardowego testu. Zuzycie jest bardziej
intensywne, przez co tatwiej moze dojs¢ do np. separacji warstw materiatow z ktorych ztozona

jest opona.
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Rysunek 4.16. Pozycja opony wzgledem bebna pomiarowego dla testu bebnowego przeprowadzanego
w standardowych warunkach (po lewej — kat 0°) i dla testu typu camber (po prawej — kgt 5°)

(opracowanie wlasne)

4.3.3 Balans statyczny i dynamiczny

Dla ciata obracajacego si¢ wokot osi w stanie roboczym mozliwe jest okres$lenie rozktadu

jego masy wzgledem osi obrotu. Niezréwnowazenie masy wirujacej

si¢ niewywazeniem. Niewywazenia generujg sity odsrodkowe, ktore z kolei wywoluja sity

nazywa

reakcji w elementach zawieszenia auta. Zte wywazenie wynika z elementéw o nieregularnych
wymiarach (réznica w polu przekroju opony, zwigzana np. z niestabilno$cig procesu
wytlaczania). Na wywazenie moga réwniez wplywaé nieregularne szeroko$ci zlacz
komponentow opony oraz ich niewlasciwe natozenie (Rodgers i Waddell, 2005). Czynniki
te s3 powodem nieregularnego roztozenia masy oraz sztywnosci na obwodzie opony.
Wywazenie kota ma istotny wplyw na jednorodno$¢ opony we wszystkich zakresach

predkosci. Zjawisko niewywazenia jest czgsto wykorzystywane do badania odpornosci
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zmeczeniowe] zawieszenia pojazdu. Niewywazenie rzedu 30 g w najwyzszym punkcie
pierwszej harmonicznej kota powoduje dodatkowe wzbudzenie sity wzdluznej w oponie
z powodu sit Coriolisa, ktore powstajg w wyniku zmiennej predkosci ugigcia opony (czyli ciata
ulegajgcemu deformacji). Wzbudzenie sity pionowej przez RFVIH jest ttumione przez sity
odsrodkowe przy danej predkosci, zapobiegajac tym samym silniejszemu ugieciu w najbardziej
migkkim punkcie opony. W takim przypadku druga harmoniczna RFV2H staje si¢ dominujaca
(Leister, 2015).

Jezeli opona obraca si¢ z predkoscig katowa w, niewywazenie statyczne wywotuje site
odsrodkowa F. prostopadta do osi obrotu, okres§long wzorem 4.1 (Polski Komitet
Normalizacyjny, 2002):

Fi=m x e x ®? 4.2)
gdzie:
Fx — sita odsrodkowa;
M — masa ciata;
e — odlegto$¢ §rodka masy od osi obrotu (mimos$rod);
o — predkos¢ katowa obrotu.
Opona pneumatyczna jest w rzeczywistosci brylg ulegajaca deformacji, co oznacza, ze rozktad
masy, a wigc mimosrodowos¢ srodka ciezkosci, moze zmienia¢ si¢ z predkoscig obrotowa.

Zatem w praktyce zaleca si¢ przyjecie, ze e jest funkcja w.

Jezeli opona obraca si¢ ze stalg predkoscig katowa w, niewywazenie dynamiczne wywotuje
moment zginajacy M, prostopadly do osi obrotu, okreslony wzorem 4.2 (Polski Komitet
Normalizacyjny, 2002):

M=, - L) x sin o x @ (4.2)
gdzie:
M — moment zginajacy wzgledem osi;
[, — gtbwny moment bezwtadnosci wzgledem osi gldwnej obrotu;
I — gléwny moment bezwtadno$ci wzgledem osi poprzecznej;
o — kat miedzy osig obrotu a osig gtdwng bezwladnosci;
o — predkos¢ katowa obrotu.
Opona pneumatyczna jest w rzeczywistosci bryta ulegajaca deformacji, co oznacza, ze I, i I,
czyli wzgledne niewywazenie dynamiczne, mogg zmienia¢ si¢ wraz ze zmiang predkosci

obrotowej. Zatem zaleca si¢ przyjecie, ze I, oraz I, sa funkcjami .
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W celu minimalizacji zjawiska niewywazenia Statycznego, przed kazdym montazem
na pojazd kota powinny zosta¢ wywazone. Niewywazenie statyczne mozna wykry¢
na nieruchomym kole. Precyzyjna wywazarka to urzadzenie pomiarowe, ktore pozwala okre$li¢
wielko$¢ oraz potozenie katowe niewywazenia opony. Podczas wywazania kota nalezy
stosowac¢ tylko jeden ci¢zarek wywazajacy na kazde obrzeze felgi lub ptaszczyzne wywazania.
Po natozeniu cigzarkow cate koto powinno by¢ ponownie przetestowane pod katem
pozostatego niewywazenia. Zaréwno w testach statycznych, jak 1 dynamicznych, pozostate
niewywazenie nie powinno przekraczaé¢ 5[g]. Laczna masa wszystkich cigzarkéw nie powinna
przekraczaé¢ 60[g], co odpowiada limitowi balansu statycznego zespotu opona + felga.

Kompensacja nierownomiernie roztozonych mas pomi¢dzy felga a opong jest rOwnie wazna
jak doktadne wywazenie osiowe i promieniowe, jesli chodzi o pltynne toczenie si¢ catego kota.
W tym celu kota samochodéw osobowych sa zazwyczaj mierzone pod katem balansu
dynamicznego. Niewywazenie dynamiczne mozna wykry¢ tylko na obracajgcym si¢ kole.
Ze wzgledu na istnienie wymiaru, ktorym jest szeroko$¢ felgi, pomiary wykonuje si¢ w dwoch
ptaszczyznach (wewngtrzne 1 zewngtrzne osadzenie opony). Na podstawie tych pomiarow
okresla si¢ niezbedng mas¢ wywazajaca, ktorg nastepnie umieszcza si¢ w miejscu wskazanym
przez maszyn¢ do wywazania kot. Obcigzniki wywazajace moga by¢ przyklejane, zaciskane
lub nabijane. Idealne miejsce na obcigzniki wywazajace na kotach wywazanych dynamicznie
to maksymalna odlegltos¢ od s$rodka felgi, na jak najwickszej Srednicy (zgodnie
z przedstawionymi powyzej wzorami). W wigkszosci pojazdow wystepuje blad wywazenia
wynoszacy okoto 5 g na kazdg plaszczyzne wywazania, zwany ,,nierownowaga resztkowa”.
Ta nierbwnowaga nie jest wyczuwalna w wigkszosci typow pojazdoéw 1 konfiguracjach
podwozia. Na kazdej plaszczyznie wywazania powinien by¢ umieszczony tylko jeden
obcigznik (Leister, 2015).

Im mniejsza masa obciaznika wywazajacego na kole, tym mniejsze ryzyko nierownowagi
resztkowej. Waskie kota (np. motocyklowe), s3 wywazane tylko na jednej plaszczyznie,
natomiast obcigzniki montowane sa w centrum felgi. Kota do pojazdow ci¢zarowych
oraz kompaktowe kota zapasowe z ograniczong maksymalng predkoscig nie sa3 wywazane.
Zazwyczaj niewywazenie statyczne jest bardziej odczuwalne na kierownicy niz niewywazenie

dynamiczne (Nakajima, 2019).

4.3.4 Bicie promieniowe i bicie boczne

Odstepstwa wymiarowe opon s3 S$ciSle zwigzane ze zmienno$cig sit wystepujaca

w ich ruchu tocznym. W przypadku ich wystgpienia pojawia si¢ bicie promieniowe i boczne.
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Bicie promieniowe to nieregularno$¢ w promieniu opony, czyli sytuacja, w ktorej opona
nie jest idealnie okragta. Ugiecie lub wybrzuszenia boczne opisuje nieregularno$¢ w odlegtosci
miedzy zewnetrzng strong opony a srodkowa plaszczyzng kota, co prowadzi do wahan sit
bocznych w centrum kota, ktore sg nastgpnie odczuwane przez pasazeréw jako kotlysanie
lub szarpnigcia o odpowiednich cechach (Leister, 2015). Przewaznie stosowane
sa trzy nastepujace miary nieregularno$ci wymiarowych:

1) Bicie promieniowe RRO - wahanie promienia opony mierzone prostopadle
do osi obrotu, wzdluz obwodu opony na powierzchni bieznika, w ktorym
nie uwzglednia si¢ wpltywu rowkow 1 wyplywek na biezniku gdy opona
jest zamontowana na feldze; jest wyrazone w [mm] (Polski Komitet Normalizacyjny,
2002). Moze by¢ rowniez okreslane jako ,,bicie wzgledem osi symetrii” (ang. centerline
runout) (Rodgers i Waddell, 2005).

2) Bicie boczne LRO - wahanie odleglo$ci miedzy przyjeta ptaszczyzng odniesienia
(przyp. pomiar wzgledny) prostopadta do osi obrotu a danym bokiem opony,
przy okreslonej odlegtos$ci od wymienionej osi, w ktorym nie uwzglednia si¢ wptywu
liter i innego cechowania na boku, gdy opona jest zamontowana na feldze; jest wyrazone
w [mm] (Polski Komitet Normalizacyjny, 2002). Wyznaczany najszerszym punkcie
kazdego boku opony (Rodgers i Waddell, 2005).

3) Najnizszy / najwyzszy punkt na boku opony (ang. LRP depression / LRP bump) -
bezwzgledny pomiar wysokosci punktu najwickszego lokalnego wybrzuszenia

lub glebokosci punktu najwiekszego lokalnego wglebienia na boku opony.

4.3.5 Stozkowatos¢ i ply steer

Sita boczna opony w obszarze jazdy na wprost jest podzielona na sitl¢ boczng stozkowa
(ang. conical lateral force) - stozkowatos$¢ i tzw. site boczng strukturalng (ang. structural
lateral force) — ply steer. Stozkowato$¢ to sktadowa sity bocznej, okreslonej z efektu
przesuni¢cia, ktéra nie zmienia znaku wraz ze zmiang kierunku obrotow; wyrazona
w niutonach [N] (Polski Komitet Normalizacyjny, 2002). Ply steer (tzw. efekt katowy)
to sktadowa sity bocznej, okreslonej z efektu przesunigcia, ktdra zmienia znak wraz ze zmiang
kierunku obrotéw; wyrazona w niutonach [N] (Polski Komitet Normalizacyjny, 2002). W celu
ich wyznaczenia wykonywane sg pomiary opony w kierunku zgodnym z ruchem wskazowek
zegara CW (ang. clockwise) oraz przeciwnym do ruchu wskazowek zegara CCW (ang.
counerclockwise) (Rysunek 4.17.) (Leister, 2015).
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Odnoszac si¢ do wielkosci opisujacych jednorodno$é, stozkowatos¢ (CON), nazywana
takze ,.efektem stozka” to tendencja opony do $ciggania pojazdu (w lewo lub w prawo)
z zamierzonej trajektorii. Poniewaz stozkowato$¢ wykazuje wihasciwosci podobne do sity
bocznej LFV wynikajacej z pochylenia kota (ang. camber), nazywa si¢ ja rdéwniez
pseudopochyleniem (ang. pseudo-camber).

Rysunek 4.17. Zasada wyznaczania stozkowato$ci opon na maszynie do pomiaru jednorodnosci

(opracowanie wlasne)

Wiaze si¢ to Z niesymetrycznym potozeniem komponentow sktadowych opony wzgledem
jej osi (Rysunek 4.18.) (Rodgers i Waddell, 2005). Brak mozliwo$ci pomiaru symetrii
wymiarowej materiatow uzytych w juz zwulkanizowanej oponie generuje potrzebe okreslenia

stozkowato$ci, o ktorej mozna powiedzie¢, ze jest wypadkowa symetrii elementdw opony.

tendencja do Sciggania w prawo

- Opasania

sila stozkowatosci

-
......

Rysunek 4.18. Schematyczne przedstawienie zjawiska stozkowatosci, gdzie obwéd opony nie jest rowny

po obu jej stronach (opracowanie wlasne na podstawie Nakajima, 2019)

Stozkowato$¢ opisuje zdolnos¢ opony do utrzymania toru jazdy wyznaczonego przez uktad
zawieszenia pojazdu. W zalezno$ci od rynku (kraju), dla ktérego przeznaczona jest dana opona,

stosowana jest odpowiednia sekwencja naktadania opasan (Rysunek 4.19.). W oponach
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radialnych do samochodéw osobowych najczeséciej wystepuje réznica 10-20 mm szerokosci
pomiedzy opasaniem 1 a opasaniem 2. Roéznica w gornej czgsci tego zakresu jest
wykorzystywana np. do kompensacji wplywu asymetrycznej rzezby bieznika. Celem takiej
procedury jest wymuszenie, aby pojazd zawsze byl $ciggany na pobocze. Jest to wazne
ze wzgledow bezpieczenstwa, np. w przypadku, gdy kierowca pusci kierownice lub zasnie
podczas jazdy. Dlatego stalowy kord szerszego opasania pierwszego jest zawsze skierowany
W stron¢ pobocza. Dla prawidlowego funkcjonowania tego zatozenia 1 faktycznego
zagwarantowania bezpieczenstwa podczas jazdy, stozkowato$¢ musi by¢ zapewniona
na okreslonym poziomie. Co wigcej, opona o zbyt wysokiej wartosci stozkowatosci bedzie
zuzywac si¢ nieregularnie (wigksza utrata masy mieszanki gumowej bieznika po lewej stronie
w poréwnaniu z prawa strong opony lub odwrotnie), wiec stozkowato$¢ okresla prawidtowy
mechanizm zuzycia opony podczas jej eksploatacji (Nakajima, 2019). Dlatego opona, ktdra
mies$ci si¢ w granicach tej zmiennej wyjsciowej, bedzie wykazywaé przewidywalne

1 bezpieczne zachowanie podczas uzytkowania.

OPASANIE #1

OPASANIE #2

Rysunek 4.19. Uklad opasania 1 i opasania 2 dla ruchu prawostronnego LHD (ang. left-hand drive)

oraz lewostronnego RHD (ang. right-hand drive) (opracowanie wlasne)

W rzeczywistos$ci istniejg dwie cechy opon, ktére powodujg powstawanie resztkowej sity
bocznej. Pierwsza z nich jest wspomniana juz stozkowato$¢, wynikajgca m.in. z nieznacznego
przesunigcia opasan opony wzgledem $rodka, co wynika z niedoskonatosci procesu konfekcji.
Powoduje to, ze promien toczenia po stronie opony, w ktdra przesuni¢to opasanie, jest nieco

mniejszy niz po stronie przeciwnej. Na skutek tego opona zachowuje si¢ tak, jakby miata
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przekroj stozkowy — generuje site boczng oraz moment prostujacy, tak jakby byta pochylona
(zbiezno$¢ katowa) w kierunku bardziej ograniczonej strony. Rozklad warto$ci pomiaru
stozkowato$ci dla tego samego rozmiaru opon ma plaski charakter, jak pokazano
schematycznie na Rysunku 4.20. Srednia wartos¢ jest bliska zeru, chociaz z powodu asymetrii
w procesie produkcyjnym moze si¢ nieco od niego rozni¢ (Gent i Walter, 2006). W srodowisku
produkcyjnym warto$¢ stozkowatosci musi miesSci¢ si¢ w granicach X + 40 [N],
gdzie X to warto$¢ (zwykle bliska 0 [N]) okreslona na podstawie Sredniego pomiaru z pierwszej
partii produkcyjnej nowego rozmiaru opony. Wielko$¢ tej partii jest ustalana zgodnie

z wymaganiami klienta (zazwyczaj 1000-5000 opon).

ply steer

Mumber of tires

conicity —_|
_r'""'/\‘—_ J ;3
0
Lateral force

Rysunek 4.20. Rozklad warto$ci pomiarow stozkowatosci i ply steer dla populacji jednego rozmiaru opon

radialnych (czyli jednoczes$nie o tej samej konstrukeji) (Nakajima, 2019)

Kolejny efekt to ply steer, pojawiajacy si¢ na skutek anizotropowe;j struktury opony (Gent
I Walter, 2006). Poniewaz ply steer ma podobne wlasciwosci do sity bocznej wynikajacej
z kata znoszenia, nazywa si¢ go roOwniez pseudo-znoszeniem (ang. pseudo-slip) (Nakajima,
2019). Powoduje, ze opasania ulega S$cinaniu w plaszczyznie, gdy zostaja zmuszone
do splaszczenia w obszarze kontaktu (styku z podtozem). Dodatkowe $cinanie w ptaszczyZnie
nastepuje roOwniez w wyniku zmian napigcia opasania w strefie kontaktu, co prowadzi
do wygiecia obszaru styku i powstania resztkowego momentu prostujgcego ply steer (Rysunek
4.21.). Efekt ply steer wynika z konstrukcji opony. Gdy opasanie 1 ulega wygieciu w obszarze
styku z nawierzchnig, na drugie opasanie (blizsze nawierzchni) dziala sila $ciskajaca,
w tym samym czasie na wewnetrzne, pierwsze opasanie dziata sila rozciggajaca. Te sily
zewngtrzne wywotuja naprezenia $cinajgce, ktore sg takie same w pierwszym 1 drugim

opasaniu. Rozktad wartosci ply steer ma skupiony charakter, skoncentrowany wokot estymacji
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projektowej, ktora moze mie¢ jednak wysoka warto$¢, co ilustruje Rysunek 4.20.
Podsumowujac: rozrzut ply steer jest niewielki i zalezy od konstrukcji opony, natomiast rozrzut
stozkowato$ci jest duzy i zalezy w glownej mierze od procesu produkcyjnego. Ply steer

powoduje efekt systematycznego odchylenia w produkcji opon, podczas gdy stozkowato$¢

(tension)

f I

ma tutaj charakter losowy.
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Rysunek 4.21. Przyczyna powstawania efektu ply steer (Nakajima, 2019)

Wazne jest réwniez poznanie punktu przytozenia tych sil. Strukturalna sita boczna
(ply steer) jest przytozona na wigkszym ramieniu, niz sita boczna wynikajaca z kata poslizgu
(LFV), za$ sita stozkowatosci jest przytozona na duzo mniejszym ramieniu (blisko punku
idealnego kontaktu kota z nawierzchnig). Zarowno stozkowatos$¢, jak i sita boczna wynikajaca
z pochylenia LFV maja to samo, niemal zerowe ramie¢ dziatania.

Dla zerowej warto$ci sity bocznej pojawia si¢ moment prostujacy RAT (ang. Residual
Aligning Torque), ktory skutkuje momentem na kierownicy. Moment prostujacy RAT,
nazywany jest rowniez momentem wyrownawczym (ang. aligning torque) — to moment
obrotowy dziatajacy na koto, ktory ,,wyrownuje” jego kierunek tak, aby wracato do pozycji
prostoliniowej. Powstaje gldwnie wskutek sit bocznych dziatajacych w obszarze styku opony

z nawierzchnig 1 pomaga stabilizowa¢ kierunek jazdy. Dla zerowego momentu prostujacego
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z kolei pojawia si¢ resztkowa sita boczna, ktéra powoduje znoszenie pojazdu (przy puszczonej
kierownicy) (Leister, 2015).

Rysunek 4.22. przedstawia rozne sytuacje podczas jazdy. Jak pokazano na rysunku, sity
wynikajace z efektu ply steer (skretu spowodowanego konstrukcja opasania opony) przy mocno
trzymanej kierownicy powoduja moment sterujacy (na drazku kierowniczym) oraz sit¢ boczna.
Dodatkowo, sity ply steer maja tendencj¢ do ciggnigcia kierownicy w jedng strone, gdy zostanie
ona puszczona. Wowczas ustala si¢ rownowaga sil. Poniewaz zardwno sifa ply steer, jak i sita
boczna powstala w wyniku kata poslizgu dziataja z tym samym ramieniem dzwigni,

nie powstajg sity wypadkowe. Pojazd porusza si¢ na wprost (Sytuacja I).

Plysteer, fixed control Plysteer, free control
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Rysunek 4.22. Mechanizmy $ciggania pojazdu z toru ruchu na skutek dzialania zjawisk bocznych

(opracowanie wlasne na podstawie Leister, 2015)
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W przypadku sity stozkowej (ang. conical force), gdy kierownica jest trzymana, sytuacja
jest podobna jak w przypadku ply steer, z tym ze moment sterujacy jest nieco mniejszy
przy tej samej warto$ci sily. Jednakze, gdy kierownica zostanie puszczona, sita stozkowa —
w przeciwienstwie do sity ply steer — Spowoduje dryfowanie pojazdu. Dzieje si¢ tak dlatego,
ze sity nie moga osiagnaé rownowagi przy zroOwnowazonych momentach, poniewaz sity
stozkowa 1 boczna nie oddziatuja w tym samym punkcie z powodu wystepujacego kata poslizgu
(sytuacja II).

Tendencja do dryfowania spowodowana réznicami w stozkowatos$ci jest proporcjonalna
do tej sity 1 maleje wraz ze wzrostem pneumatycznego wyprzedzenia (ang. pneumatic trail).
Pneumatyczne wyprzedzenie to odleglos¢ miedzy punktem przytozenia sity bocznej
generowanej przez opon¢ a punktem styku opony z nawierzchnig (przesunigcie zwrotu sity).
W rezultacie pojazd ma tendencj¢ do dryfowania w kierunku dodatniej sity stozkowej
(sytuacja IlI).

Moment dziatajacy na opon¢ przy zerowej sile bocznej RAT, powinien by¢ na tyle duzy,
aby zrekompensowa¢ moment powstajacy zazwyczaj z sity dziatajacej w dot (np. cigzaru
pojazdu), pomnozonej przez pneumatyczne wyprzedzenie. Podobnie, sita wzdluzna
(np. wynikajaca z napedu lub hamowania) wraz z odpowiadajacym jej ramieniem dzwigni
powinna by¢ réwniez uwzgledniona w bilansie momentéw. Z uwagi na rézne uklady
wspotrzednych uzywane w pomiarach opon i1 pojazdow, omawiajac zjawiska boczne nalezy
stosowac si¢ do nast¢pujacej konwencji znakow (Rysunek 4.23.) (Leister, 2015):

1) Ply steer dziata w prawo, patrzac w kierunku jazdy — dlatego ma ujemny znak

algebraiczny (-).

2) Moment RAT wzglgdem osi pionowe;j jest lewoskretny.

3) Stozkowato$¢ jest dodatnia (+), jesli sity dziataja ,,do $rodka” pojazdu.

Conicity positiv

Plysteer

Rysunek 4.23. Konwencja znakéw algebraicznych zjawisk bocznych

(opracowanie wlasne na podstawie Leister, 2015)
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Szczegolnie interesujace jest to, ze dodatnia sita stozkowa zmniejsza kat zbiezno$ci
na skutek efektow elasto-kinematycznych wystepujacych w oponie.

Warto$¢ stozkowatosci jest bardzo istotna dla tendencji do znoszenia lub odchylania
pojazdu, jesli warto$ci dla lewej i prawej jego strony sie roznig. Ten efekt ma szczegdlne
znaczenie gdy stan zuzycia ogumienia staje si¢ zauwazalny. Pomiar stozkowato$ci pomaga
oceni¢ jakos¢ wykonania opony. Inng osobliwoscig jest fakt, ze wartosci stozkowatosSci
zmieniajg si¢ w trakcie uzytkowania pojazdu. Zmiany te zachodzg w stosunkowo symetryczny
sposob, jesli geometria podwozia jest poprawnie ustawiona. Oznacza to, ze sama zmiana
stozkowatosci w trakcie eksploatacji nie ma negatywnego wplywu, co pokazano
na Rysunku 4.24. Oba efekty si¢ sumujg, tzn. stozkowatosci nie mozna "przesung¢ na zewnatrz"
przez zmiang centrowania opasania W oponie zwulkanizowanej, ale mozna ja zmienié

w wyniku eksploatacji, np. poprzez wymiang opony.
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Rysunek 4.24. Zmiana wartosci stozkowatosci w czasie eksploatacji opon zamontowanych na tym samym
pojezdzie; pomiary dotyczg opon: VL — przedniej lewej, VR - przedniej prawej, HL — tylnej lewej
i HR — tylnej prawej (Leister, 2015)

Na Rysunku 4.25. zostat przedstawiony uktad sit i momentow z zatozeniem, ze pojazd
porusza si¢ na wprost a opony wykazuja zjawiska ply steeru oraz stozkowatosci. Kat znoszenia
pojazdu oznaczono jako B, za$ kat skretu przednich kot jako o, natomiast pochylenie kot

1 zbieznos¢ sg zastosowane wylacznie na osi przednie;j.

63



Y
B
: direction of .
motion :
a ‘
C R ]
a S -
M/ M, C, C. M,
C = Nl
gl fT Cr
i ] aRMfR’ Mpf
/
~ / ” ‘
G :
(ipr M, ~ :
B - 3 C,
r Mpr COf Cpf C MCr
B R - C

Rysunek 4.25. Uklad sil w pojezdzie podczas jazdy na wprost (Nakajima, 2019)

Oznaczenia uzyte na rysunku:

I, It, I — odlegtos¢ od osi przedniej do osi tylnej oraz odlegtosci od srodka masy do osi przedniej
i tylnej;

Y, 0, B — kat zbieznosci, kat skretu, kat znoszenia pojazdu,

oL, or — kat znoszenia (lewe przednie koto, prawe przednie koto);

Cu, Cir — sita boczna (lewe przednie koto, prawe przednie koto);

M, Mir — moment prostujacy (lewe przednie koto, prawe przednie koto);

Ct — sita boczna (tylne koto);

M — moment prostujacy (tylne koto);

Crr1, Cpr — sita ply steer (przednie koto, tylne koto);
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Mpt, Mpr — moment od sily plysteeru (przednie koto, tylne koto);

Cof, Cor— sita stozkowato$ci (przednie koto, tylne koto);

Mof, Mor — moment od sity stozkowosci (przednie koto, tylne koto);
Kt, Kr— sztywno$¢ boczna (przednie koto, tylne koto);

Tt, Tr — sztywno$¢ momentu prostujacego (przednie koto, tylne koto);

Ct — sita od pochylenia kota.

Efekt S$ciggania kierownicy zalezy od wlasciwosci opony, geometrii zawieszenia
oraz pochylenia drogi, co zostalo zobrazowane na Rysunku 4.26.). Dla przemystu
oponiarskiego oznacza to, ze producenci samochodow ustalajg limity dotyczace sktadowych
sity $ciagajacej dla dostawcoéw opon (aby moc pomingé ich wplyw podczas eksploatacji
i w fazie projektowej pojazdu). Sytuacja z momentem prostujagcym ply steeru PRAT
(ang. plysteer residual aligning torque) jest bardziej skomplikowana (Mpf, Mpr Na Rysunku
4.25.). Kazdy producent samochodow OEM (ang. original equipment manufacturer) ustala
wlasny dopuszczalny zakres warto§ci momentu prostujacego ply steeru, zgodnie ze swoja
filozofig projektowa. Niektorzy producenci samochodéw wykorzystuja PRAT do kompensacji
pochylenia drogi, dlatego ich specyfikacje opon wymagaja konkretnych wartosci PRAT.
Inni z kolei zadaja zerowej wartosci PRAT (w waskiej tolerancji) i kompensuja wptyw
pochylenia drogi wylacznie poprzez geometri¢ zawieszenia. Prowadzi to do klopotliwych
réznic w konstrukcji opon, ktore producenci opon musza wprowadza¢ w identycznych
produktach (tych samych rozmiarach opon), aby spelni¢ wymagania réznych producentow
samochodoéw. Roznice te nie sg widoczne dla sprzedawcdéw opon ani dla kupujacych.
W rezultacie moga wystapi¢ problemy z S$cigganiem pojazdu, gdy oryginalne opony
OE (ang. original equipment) sa zastepowane innymi, poniewaz opony dostepne na rynku
wtornym moga nie spetnia¢ wtasciwosci okreslonych przez producenta auta. Moze si¢ wowczas
zdarzy¢, ze samochdd nie begdzie jechat prosto bez korekty kierownicg, nawet jesli zawieszenie
jest prawidtowo ustawione wedtug specyfikacji OEM (Nakajima, 2019).

Ogolny obraz zjawiska Sciagania pojazdu (Rysunek 4.26) jest zwigzany nie tylko z samym
samochodem, lecz takze z oponami i nawierzchnig drogi w ztozony sposéb.

Do czynnikoéw zwigzanych z samochodem naleza (Nakajima, 2019):

1) Roznice w pochyleniu kot.

2) Roznice w wyprzedzeniu sworznia zwrotnicy.

3) Rodznice w zbieznosci kot (ang. cross-scrub).
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Wymienione wyzej roznice wynikajg z asymetrycznego ustawienia geometrii zawieszenia

spowodowanego niedoktadno$cig produkcji lub nieprawidlowa konserwacja, a takze $rednig
warto$cig wyprzedzenia sworznia zwrotnicy (czyli jak linia wyznaczona przez sworzen
zwrotnicy lub oS

z boku pojazdu).

kolumny McPhersona jest pochylona wzgledem pionu patrzac

SREDNIE WYPRZEDZENIE
WYPRZEDZENIE SWORZNIA [
/ ROZNICA WYPRZEDZENIA
, / r
SAMOCHOD POCHYYLENIE KOEA ROZNICA POCHYLENIA
ZBIEZNOSC KOL ROZNICA ZBIEZNOSCI
ZGINANIE POZA
PLASZCZYZNA STYKU
KSZTALT KORONY
BIEZNIKA . ) -
STOZKOWATOSC
I/I
OPONA KONSTRUKCJA PLY STEER
A
1
N
\ PARA SIL WZDLUZNYCH
\ W WYNIKU
ZIAWISKO \ )
$CIAGANIA \ : : | PRZEMIESZCZENIA
: ! RZEZBA BIEZNIKA 1 POPRZECZNEGO
|\ | PARA SIL POPRZECZNYCH
DROGA POCHYLENIE JEZDNI \ \ W WYNIKU
PRZEMIESZCZENIA
— WZDLUZNEGO
PREDKOSC,
) PRZYSPIESZENIE, MOMENT
/ OBCIAZENIE SPOWODOWANY
| . ROZKLADEM SIL
INNE / CISNIENIE OPON 1 ZUZYCIE SCINAJACYCH W WYNIKU
PODSESPOLOW AUTA PRZEMIESZCZENIA
PIONOWEGO
TARCIE W UKLADZIE
KIEROWNICZYM

Rysunek 4.26. Przyczyny zjawiska $ciggania pojazdow (opracowanie wlasne na podstawie
Nakajima, 2019)

Do czynnikdéw zwigzanych z oponami nalezg:
1) Ksztalt czota opony.

2) Konstrukcja opasania (np. kat opasania).

3) Wzor bieznika (np. kat utozenia klockéw i ich ksztatt).
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Ksztalt czota opony wptywa na rozktad naprezen w opasaniach. Naprg¢zenia te powoduja
skretne odksztatcenie opasania wokot osi pionowe;j, co prowadzi do powstania efektu ply steer.
Kat opasania rowniez wptywa na ply steer - jezeli wzor bieznika o anizotropowej sztywnosci
klockow zostanie przesunicty w jakim$§ kierunku lub ulegnie S$ci$nieciu, powstaje
w nim moment obrotowy wskutek sprzezenia sit. Ten moment powoduje obrét opony wokot
0si pionowej.

Ponadto, pochylenie nawierzchni drogi rowniez powoduje $cigganie pojazdu wywotane
sktadowg sity grawitacji.

Na zjawisko $ciggania wptywaja roéwniez czynniki tj.:

1) Predkos¢.

2) Przyspieszenie.

3) Obcigzenie.

4) Cisnienie w oponach.

5) Zuzycie bieznika.

6) Opory uktadu kierowniczego.

Ogolnie rzecz biorac, ze wszystkich wymienionych powyzej czynnikoéw, to wiasnie
konstrukcja i wzor bieznika opony maja najwickszy wpltyw na zjawisko Sciggania pojazdu

(Nakajima, 2019).

4.3.6 Jednorodnosé przy wysokich predkosciach

Producenci samochodow (np. Mercedes-Benz Group AG oraz VOLVO) coraz czgsciej
wymagajg pomiaru HSU (Olazagoitia i in., 2020), ktory pozwala oceni¢ zachowanie opony
podczas jej eksploatacji przy wyzszych predkosciach, co bardziej odwzorowuje typowe
uzytkowanie. Pomiary eksperymentalne wykonywane na osi opony uwzgledniaja wplyw
jej rezonansow (Gent i Walter, 2006). Poniewaz badane jest dynamiczne zachowanie opony,
maszyny do pomiaru HSU musza by¢ starannie zaprojektowane, aby rezonanse samej maszyny
nie zaklocaly uzyskiwanych wynikow pomiarow. Pomiar przeprowadzany jest w ustalonych
warunkach cis$nienia 1 obcigzenia opony, przechodzac krokowo od niskich do wysokich
predkosci, przy ktorych wyznacza sig:

1) RH1, RH2 i RH3 - czyli pierwsze 3 harmoniczne sily promieniowe;j
przy predkosciach 30, 120 1 180[km/h].

2) TH1, TH2 i TH3 — czyli pierwsze 3 harmoniczne sit stycznych przy predkosciach
120 i 180[km/h].
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Sitami stycznymi sg zardwno sita boczna, jak i sita wzdhuzna — z tego wzgledu dla tej same;j
predkosci 1 rzedu harmonicznej limit sil stycznych jest wyzszy, niz w przypadku
sit promieniowych. Niektére maszyny rejestrujg dodatkowo jeden lub wigcej zmiennych
momentow (Leister, 2015).

Zbieranie danych pomiarowych dotyczacych wszystkich zjawisk przyblizonych
w tresci Rozdziatu 4.3, umozliwia okreslenie jednorodno$ci opon wlasnos$ciami jg opisujacymi,

CO ostatecznie pozwala na zapewnienie wyzszego poziomu kontroli jakosci wyrobu finalnego.

4.4 Testy stacyjne opon

Jednorodno$¢ jest $cisle powigzana z powodzeniem przeprowadzanych testow stacyjnych
opon. Przyktadowo w przypadku testow bieznych wysokich i niskich predkosci, wszelkie
niedoskonato$ci w budowie opony powodujace wystepowanie zmiennych sit promieniowych
I bocznych wzmacniajg si¢ i prowadza do powstawania wibracji, bgdacych przyczyna
nadmiernego nagrzewania si¢ materialdow tworzacych opong lub niestabilno$ci kierunkowe;j.
Z tego wzgledu, opona niejednorodna moze nie przejs¢ testu wysokich predkosci,
gdyz wystepowanie wewngtrznych nierownomiernosci spowoduje jej przegrzewanie
I w konsekwencji uszkodzenie. Jednorodnos¢ jest zatem jednym z czynnikow decydujacych
o trwalosci opony ocenianej podczas tego typu testow. W trakcie testOw homologacyjnych
natomiast, dostawca musi wykazaé, ze produkt seryjny utrzymuje jako$¢ zgodng z poziomem
deklarowanym na jego etykiecie. Jednorodno$¢ powigzana z teorig wibracji, wptywa posrednio
m.in. na poziom emisji hatasu opony.

Testy stacyjne opon przeprowadzane sg w nastepujacych przypadkach:

1) Kwalifikacja nowego rozmiaru opon do produkcji masowej.

2) Nadzor produkcji masowe;j.

3) Zmiany specyfikacji opony.

4) Restart produkcji danego rozmiaru opony po okresie dtuzszym niz 1 rok.

Wybrane testy opisywane w biezacym podrozdziale zostaty przeprowadzone specjalnie
na potrzeby niniejszej dysertacji przez jej Autora dla opon wymienionych w Tabeli 4.3.
Powodem wykonania testow byto zbadanie konkurencyjnych rozwigzan w zakresie réznic
wystepujacych w konstrukcjach opon, bezposrednio przektadajacych si¢ na ich wiasnosci.
Obecny podrozdziat ma na celu wskazanie na liczbe i rodzaj wymagan, ktore opony musza

spetnia¢ jako produkt.
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Tabela 4.3. Opony poddane wybranym testom stacyjnym (opracowanie wlasne)

Lp. Rozmiar i rzezba opony Producent Sezon
1 [185/55 R16 87T WinterContact TS 870 Continental zima
2 [195/55 R16 87H Winter i*cept RS3 W462 Hankook zima
3 [205/55 R16 91H ALPIN 6 Michelin zima
4 205/55 ZR16 (94Y) XL PILOT SPORT 4 Michelin lato
5 [225/50 R17 98W XL Advan Fleva V701 Yokohama lato
6 [225/50 R18 99W UltraContact NXT Continental lato
7 [235/45 R18 98Y XL FR CrossClimate 2 Michelin caty rok
8 [235/55 R18 104H XL UltraGrip Performance+ SUV Goodyear zima

4.4.1 Analiza przekroju opony

Podstawowym i zarazem najcze¢$ciej przeprowadzanym testem jest analiza przekroju opony

CSA (ang. Cut Section Analysis). Realizuje si¢ ja na dwoch przekrojach (tzw. probkach) opony

zwulkanizowanej, natomiast probki uzywane na jej potrzeby przygotowywane sg w sposob

uwzgledniajacy ponizsze zasady:

1)

2)

3)

4)

5)

Zaden przekroj nie moze zawieraé wskaznikéw zuzycia bieznika TWI (ang. tire wear
index).

Kazdy przekroj nalezy wycina¢ w pewnej odlegtosci od ztacz bieznika 1 wykladziny
wewnetrzne;j.

Kazdy przekrdj nalezy wycina¢ w sposob, ktory pozwoli wykona¢ peten pomiar barku
opony po obu mierzonych stronach.

Przekroje opon mierzy si¢ zawsze majac strone numerem seryjnym DOT po lewej
stronie (tzw. strona seryjna — SS, ang. serial side). Stron¢ z numerem seryjnym
DOT nalezy przed wykonaniem przekroju naznaczy¢ przy pomocy biatej kredki
w okolicy drutowki.

Kazdy przekrdj nalezy wycia¢ tak, aby miat od 20 do 50[mm] szerokosci i zeby
przekroje byly odlegle od siebie o okoto 180° na obwodzie opony. Powierzchnie

przekrojow powinny by¢ oszlifowane.

Obecnie analiz¢ przekroju przeprowadza si¢ na wysokiej jakosci skanach probek opon

przy pomocy oprogramowania przeliczajacego piksele na minimetry na podstawie
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wspotczynnika skali zadanemu skanerowi. Pomiarowi podlegaja grubo$ci warstw 1 materiatow
opony oraz odlegtosci pomigdzy zakonczeniami materiatdow widocznych na przekroju.
Ze wzgledu na istotno$¢, punkty pomiarowe podzielone sg na 3 grupy, ktére zostaty

przedstawione w Tabeli 4.4.

Tabela 4.4. Waznosci punktéow CSA (opracowanie wlasne)

Ranking Wazno$¢é Opis

Punkt moze mie¢ wplyw na osiggi opony i/lub na zgodnos$¢
B krytyczny o
z wymaganiami klienta.

) Brak wptywu osiagi opony i/lub na zgodno$¢ z wymaganiami
C nie krytyczny dlient
ienta.

Punkty, ktore nie majg przypisanej tolerancji, a ich pomiary
sa gromadzone z uwagi na pewne funkcje techniczne

(np. grubosci gldownych obszaroéw opony w celu doboru
najodpowiedniejszego cyklu wulkanizacyjnego). Wartos$ci
brak nie krytyczny tych punktow wyznaczane sg na etapie kwalifikacji i traktuje
si¢ je jako referencyjne w nadzorze regularnej produkcji.

Na ich podstawie nie wymaga si¢ jednak podejmowania
decyzji dotyczacych np. konieczno$ci zmian specyfikacji

opony.

Do wyznaczenia niektorych punktow pomiarowych niezbedne jest CTLO (ang. cured tire
layout) z naniesionymi indywidualnie dla kazdego rozmiaru opony punktami odniesienia.
Stanowi ono takze pierwsza weryfikacj¢, czy opona zostata wyprodukowana zgodnie
z narzuconymi zatozeniami. Przyktadowe CTLO zostato przedstawione na Rysunku 4.27.

Dla prawidlowego przeprowadzenia pomiarow przekroju poprzecznego opony
na CTLO zaznaczone sa strony seryjna SS (ang serial side) oraz przeciwna do seryjnej
OSS (ang. opposite to serial side). Punkty odniesienia majg nast¢pujgce znaczenie:

1) CL (ang. central line) — linia centralna przekroju poprzecznego. W przypadku

symetrycznych rzezb bieznika stanowi ona jednocze$nie o§ symetrii przekroju.
Jest odniesieniem do pomiaréw zakonczen materiatow znajdujacych si¢ w obszarze

korony bieznika, czyli warstwy spiralnej 1 opasan.
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2) S (ang. shoulder) — punkt na barku bieznika, ktorego odlegtos$¢ od linii centralnej
ustalana indywidualnie w zaleznosci o szerokosci opony oraz rzezby bieznika.

3) B (ang. buttress) —miejsce barku opony, w ktérym podczas wulkanizacji przebiega linia
podziatu formy (MPL, ang. mold partition line), czyli dochodzi do styku ptyt bocznych
z segmentami bieznika.

4) SW (ang. section width) — najszersze miejsce przekroju opon nieposiadajacych rantu
ochronnego. W tym punkcie dochodzi do pomiaru grubosci gumy boku.

5) L — umiejscowiony tuz ponizej ryski centrujgcej, bedacy zazwyczaj jednocze$nie
miejscem linii podziatowej mieszanek gumowych SW/AGS boku.

6) H (ang. heel) — potowa szerokosci stopki. Stanowi odniesienie do pomiaréw zakonczen
materialdw znajdujacych si¢ po zewnetrznej stronie osnowy np. wysokosci wypetniacza
drutowki, wywinigcia osnowy/osnow (dla konstrukcji SOT), gérnego i dolnego punktu
linii podzialowej mieszanek SW/AGS boku, zakonczen flippera i chafera (jesli
wystepuja).

7) BT (ang. bead toe) — zakonczenie noska drutowki. Stanowi odniesienie do pomiarow

zakonczen materialow znajdujacych si¢ po wewnetrznej stronie osnowy np. wyktadziny

wewnetrznej, gumy AGS i chafera (jesli wystepuje).

Rysunek 4.27. Przykladowe CTLO z naniesionymi punktami odniesienia.

Na CTLO okreslona jest rowniez wartos¢ TTP (ang. toe to toe periphery), czyli odlegtos¢
pomiedzy noskami drutowki mierzona po linii osnowy. Warto$¢ ta stanowi podstawe

do okreslenia rozstawu drutéwek BLW (ang. bead lock width lub BSEE, ang. bead set external
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edge), ktory jest najwazniejszym parametrem procesu konfekcji opon, decydujacym o doborze
szerokosci wykorzystywanych materiatbw w danym rozmiarze opon oraz O jego napigciu
0sSnowy.

Na Rysunkach 4.28. — 4.35. przedstawiono przekroje opon wymienionych w Tabeli 4.3.

przygotowane w sposob zgodny ze standardem wykonywania probek do analizy przekroju

poprzecznego opony.

Rysunek 4.28. Przekroj poprzeczny opony 185/55 R16 87T Continental WinterContact TS 870

(opracowanie wlasne)

Rysunek 4.29. Przekro6j poprzeczny opony 195/55 R16 87H Hankook Winter i*cept RS3 W462

(opracowanie wlasne)
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Rysunek 4.30. Przekroj poprzeczny opony 205/55 R16 91H Michelin ALPIN 6 (opracowanie wlasne)

Rysunek 4.31. Przekroj poprzeczny opony 205/55 ZR16 (94Y) XL Michelin PILOT SPORT 4

(opracowanie wlasne)

Rysunek 4.32. Przekroj poprzeczny opony 225/50 R17 98W XL Yokohama Advan Fleva V701

(opracowanie wlasne)
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Rysunek 4.33. Przekroj poprzeczny opony 225/50 R18 99W Continental UltraContact NXT

(opracowanie wlasne)

Rysunek 4.34. Przekréj poprzeczny opony 235/55 R18 104H XL Goodyear UltraGrip Performance+ SUV

(opracowanie wlasne)
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Rysunek 4.35. Przekroj poprzeczny opony 235/45 R18 98Y XL FR Michelin CrossClimate 2

(opracowanie wlasne)

4.4.2 Odcisk rzezby bieznika

Odcisk rzezby bieznika (ang. footprint) pobierany jest z opony w celu okreslenia ksztattu
1 powierzchni jej styku z podlozem. Przeklada si¢ to bezposrednio na jej przyczepnos¢
oraz opory toczenia. Na etapie wdrozenia nowego rozmiaru opony, odcisk rzezby jest
wyznaczany aby wprowadzi¢ ewentualne zmiany szeroko$ci opasan, konstrukcji warstwy
spiralnej lub surowego profilu bieznika dla uzyskania poczatkowo zalozonego efektu. Podczas
dokonywania pomiaru, opona zakladana jest na felge dobrang zgonie z (ETRTO, 2025)
lub (WK, 2025) w zaleznosci od wymagan rynku / klienta. Parametry pomiaru, czyli cisnienie
1 obciazenie najczesciej dobierane sg zgodnie z Tabelg 4.5. W przypadku niektorych rozmiarow

opon narzucone sg wyjatkowe warunki pomiarowe (o czym decyduje centrum techniczne).

Tabela 4.5. Dobor parametréw pomiaru odcisku rzezby bieznika opon radialnych do samochodow

osobowych (opracowanie wlasne na podstawie materialow wlasnych przedsigbiorstwa)

Parametr Opony standardowe Opony wzmocnione

1.9 dla szerokosci 195 i ponizej
Cisnienie [bar] i 2.3 dla wszystkich szerokosci
2.0 dla szerokosci 205 i powyzej

Obciazenie [kg] 88% indeksu nosnosci opony

Na obszar bieznika, ktory ma zosta¢ odci$niety naktada si¢ tusz przy pomocy gagbki. Odciski
pobiera si¢ z trzech obszaréow odlegtych od siebie o 120° unikajac przy tym potaczen
segmentow formy wulkanizacyjnej. Pobrane na kartach do odciskow ,,stemple” obrysowuje

si¢ konturem, po czym mierzone sg dtugosci styku (w centrum i na barkach). Na tej podstawie
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uzywajac Rownan 4.3 lub 4.4 obliczany jest koncowy wynik testu, czyli wskaznik
prostokatnosci. Linie na ktorych mierzy si¢ dlugosci styku w zaleznosci od ksztaltu odcisku
zostaly schematycznie przedstawione na Rysunku 4.36.

Obliczanie wskaznika prostokatnosci dla odcisku o ksztalcie zblizonym do okregu
lub prostokata:

Wskaznik prostokgtnosci = (B1 + B2)/2A = 100 [%] (4.3

gdzie:

A — dhugos¢ odcisku na linii centralnej;

B1, B2 — dlugosci odcisku na barkach.

Obliczanie wskaznika prostokatnosci dla odcisku o ksztatcie motyla:

Wskazinik prostokgtnosci = (D1 + D2)/(C1 + C2) * 100 [%] (4.49)
gdzie:
C1, C2 — dhugosci odcisku w jego najwezszych miejscach;

D1, D2 — dtugosci odcisku w najszerszych miejscach na barkach.

o

C1 D1 D2 C2

Rysunek 4.36. Linie pomiaru dlugosci styku dla obu wariantow ksztaltu odcisku rzezby bieznika

W Tabeli 4.6. przedstawiono wyniki pomiaru wskaznika prostokatnosci wszystkich opon
poddanych badaniom. Zazwyczaj osigga on wartosci blizsze 100% dla opon sportowych,
gdzie priorytetem jest osiggnigcie wysokiej przyczepnosci. W przypadku opon o standardowym

zastosowaniu w ruchu drogowym, warto§¢ wskaznika prostokatnosci zawiera si¢ najczesciej
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w przedziale 70-85%, poniewaz obecnie opony tego typu projektowane sg w taki sposob,
aby charakteryzowaly si¢ jak najnizszymi oporami toczenia przy zachowaniu zadowalajacej

przyczepnosci do podtoza.

Tabela 4.6. Wskaznik prostokatnosci badanych opon (opracowanie wlasne)

Lp. Nazwa opony Wskatnik
prostokatnosci [%]
1 |[185/55 R16 87T Continental WinterContact TS 870 83.39
2 [195/55 R16 87H Hankook Winter i*cept RS3 W462 84.91
3 [205/55 R16 91H Michelin ALPIN 6 83.30
4 205/55 ZR16 (94Y) XL Michelin PILOT SPORT 4 79.76
5 [225/50 R17 98W XL Yokohama Advan Fleva V701 79.87
6 [225/50 R18 99W Continental UltraContact NXT 78.37
7 [235/45 R18 98Y XL FR Michelin CrossClimate 2 82.11
8 [235/55 R18 104H XL Goodyear UltraGrip Performance+ SUV 74.20

Na Rysunkach 4.37. — 4.44. przedstawiono zestawienia odciskow wykonanych na potrzeby

testu z fotografiami badanych rzezb bieznikow.

Rysunek 4.37. Odcisk oraz fotografia rzezby bieznika opony 185/55 R16 87T

Continental WinterContact TS 870 (opracowanie wlasne)
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Rysunek 4.38. Odcisk oraz fotografia rzezby bieznika opony 195/55 R16 87H

Hankook Winter i*cept RS3 W462 (opracowanie wlasne)

Rysunek 4.39. Odcisk oraz fotografia rzezby bieznika opony 205/55 R16 91H Michelin ALPIN 6

(opracowanie wlasne)
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Rysunek 4.40. Odcisk oraz fotografia rzezby bieznika opony 205/55 ZR16 (94Y) XL
Michelin PILOT SPORT 4 (opracowanie wlasne)

Rysunek 4.41. Odcisk oraz fotografia rzezby bieznika opony 225/50 R17 98W XL

Yokohama Advan Fleva V701 (opracowanie wlasne)

Rysunek 4.42. Odcisk oraz fotografia rzezby bieznika opony 225/50 R18 99W

Continental UltraContact NXT (opracowanie wlasne)
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Rysunek 4.43. Odcisk oraz fotografia rzezby bieznika opony 235/45 R18 98Y XL FR

Michelin CrossClimate 2 (opracowanie wlasne)

4

Rysunek 4.44. Odcisk oraz fotografia rzezby bieznika opony 235/55 R18 104H XL
Goodyear UltraGrip Performance+ SUV (opracowanie wlasne)

4.4.3 Testy sily i ciSnienia osadzenia stopki

Test sity osadzenia stopki (rozcigganie stopki, ang. bead fit force) (WdK, 2025)
przeprowadza si¢ w celu oceny sity kompresji drutéwki na obreczy. Niezachowanie
jej na odpowiednim poziomie moze wigzaé si¢ z utratg powietrza i/lub spadaniem opony

z obreczy w wyniku dziatania wysokich momentéw sity w czasie utrzymywania trakcji
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lub hamowania pojazdu. Pomiar sity osadzenia stopki przeprowadza si¢ w nastepujacy sposob

na oponach, dla ktérych uptyneto co najmniej 6 dni od momentu ich wulkanizacji:

1)

2)

3)

4)

5)

6)

7)

8)

Nastawi¢ maszyne pomiarowa Z zamontowanymi odpowiednimi segmentami obrgczy
(dopasowanymi do cala opony).

Wyczysci¢ obszary drutéwki po obu stronach opony przy uzyciu szmatki nasaczonej
alkoholem, a nastgpnie wysuszy¢ inng suchg szmatka.

Przed ulozeniem opony w celu pomiaru SS i przed ulozeniem w celu pomiaru
OSS wyczysci¢ dokladnie segmenty obreczy na obszarze, ktory ma kontakt z opona.
Nalozenie na obszar drutéwki opony testowej talku, smaru lub brak obecnosci
jakiejkolwiek substancji zalezny jest od indywidualnych wymagan klienta.

Utozy¢ opong strong, ktéra ma by¢ mierzona do dotu, w kontakcie z segmentami
obreczy.

Wykona¢ ,,faz¢ rozciggania” do okreSlonej $rednicy (zwigkszenie $rednicy obreczy
o 0.8mm, ktora stanowy punkt wyjsciowy do ustawiania segmentdw obrgczy w celu
przeprowadzania pomiarow).

Cofna¢ segmenty obrgczy do ujemnych warto$ci przesunigcia i dokona¢ pomiaru
(punkt pomiarowy ‘-0.29mm”).

Wykona¢ pomiar sity osadzenia stopki rozszerzajac segmenty obreczy przy okreslonej
predkosci testowej az do najwyzszego punktu pomiarowego S$rednicy

(punkt pomiarowy ‘+0.38mm”).

Wyniki pomiaru sity osadzenia stopki wszystkich opon poddanych badaniom zostaty

przedstawione w Tabeli 4.7. Dla opon dedykowanych na rynek wtdrny o rozmiarze

15-20” przyjmuje si¢, ze wartos$¢ sily osadzania stopki dla punktu pomiarowego ‘-0.29mm’

powinna by¢ wyzsza niz 1800N (tzw. limit bezpieczenstwa).
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Tabela 4.7. Wyniki pomiaréw sily osadzenia stopki dla wszystkich wymaganych punktéow pomiarowych

badanych opon (opracowanie wlasne)

Sila osadzenia stopki [N]

Lp. Nazwa opony -0.29mm/ | -0.29mm / |+0.38mm /| +0.38mm /
SS 0SS SS 0SS

185/55 R16 87T Continental
1 2060 1930 3340 3180
WinterContact TS 870

195/55 R16 87H Hankook
2 _ ) 2100 2150 3310 3350
Winter i*cept RS3 W462

205/55 R16 91H Michelin
3 3340 3100 4670 4380
ALPIN 6

205/55 ZR16 (94Y) XL Michelin
4 3380 3010 4610 4170
PILOT SPORT 4

225/50 R17 98W XL Yokohama
5 3220 2700 5180 4440
Advan Fleva V701

225/50 R18 99W Continental
6 2980 2750 4240 3990
UltraContact NXT

235/45 R18 98Y XL FR Michelin
7 ) 4330 4070 5750 5530
CrossClimate 2

235/55 R18 104H XL Goodyear
8 ] 4650 4580 6190 6120
UltraGrip Performance+ SUV

Test ci$nienia osadzenia stopki (ang. bead seating pressure) przeprowadza si¢ natomiast
w celu oceny montowalno$ci opony na przewidziang obrecz zgodng z wymaganiami klienta
dlarynku OE lub (ETRTO, 2025) dla rynku wtornego. Pomiar realizowany jest wedtug ponizej
procedury, na oponach ktore nigdy wczesniej nie zostalty poddane zadnym testom, ani operacji
montowania na obrecz / demontowania z obregczy:
1) Zamontowa¢ opon¢ na obrecz, a przed napompowaniem opony nalezy upewnié
si¢, ze jest obecny rdzen zaworu.
2) Napompowac opong ,jednym strzatlem” do pierwszego osadzenia stopki w dolnej
drutowce opony.
3) Nastepnie dopompowywaé opong zwigkszajac cisnienie stopniowo co 0.2[bar] czekajac
po 5[s] pomigdzy poszczegdlnymi krokami do kolejnego osadzenia stopki (wynik

pomiaru).
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Dla wickszosci klientow wartosci limitéw cisnienia osadzenia stopki zawieraja

si¢ w zakresie 3.0+3.5[bar].

4.4.4 Testy biezne opon (wysokich i niskich predkosci)
W niniejszym podrozdziale opisano zasady ogolnego podejscia do testow bieznych opon.
W zaleznosci od specyficznych wymagan danego klienta warunki testow (temperatura podczas
badania, ci$nienie opon, kondycjonowanie itp.) moga si¢ nieznacznie r6zni¢. Wyglad testu
bieznego zostal zilustrowany na Rysunku 4.45.
Podstawowymi warunkami testow niskich predkosci sa:
1) Szerokosc i profil obreczy (felgi) pomiarowe;.
2) Srednica bebna pomiarowego.
3) Temperatura podczas badania w komorze / pomieszczeniu w ktorym przeprowadzany
bedzie test (zazwyczaj 38+£3[°C]).
4) Kondycjonowanie co najmniej 3[h] w temperaturze pomieszczenia testow.
5) Cisnienie opony (zazwyczaj 3.0[bar] dla wszystkich rodzajow opon).
6) Predkosé (najczesciej 60[km/h]).

7) Obcigzenie (zazwyczaj 180+-200% indeksu nosnosci opony).

Rysunek 4.45. Opona podczas testu bieznego (materialy wlasne przedsigbiorstwa)
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Opona podczas takiego testu jest sprawdzana wizualnie i manualnie co najmnigj
raz na dobe. Test ulega zakonczeniu z pozytywnym rezultatem w momencie, gdy opona
osiggnie wymagany limit przejezdzajgc zadany dystans, ktory najcze$ciej wynosi 8000[km].
Test konczy si¢ wynikiem negatywnym w przypadku wczesniejszego Stwierdzenia
(przed osiggnigciem limitu) zewnetrznej wady wizualnej np. rys, peknieé, rozwarstwien,
separacji warstw lub wybrzuszen. Testy niskich predkosci pozwalaja zatem na oceng
wytrzymatosci opony w warunkach skrajnego obcigzenia, stosunkowo wysokiej temperatury
atmosferycznej oraz nienaturalnic wysokiego ci$nienia roboczego. Takie postepowanie
ma za zadanie zasymulowaé¢ (W znacznie krotszym czasie) proces zuzycia opony podczas
wieloletniej eksploatacji.

Natomiast podstawowymi warunkami testow wysokich predkosci s3:

1) Szerokosc i profil obreczy (felgi) pomiarowe;.

2) Srednica bebna pomiarowego.

3) Temperatura podczas badania w komorze / pomieszczeniu w ktorym przeprowadzany

bedzie test (zazwyczaj 38+3°C).

4) Kondycjonowanie co najmniej 3[h] w temperaturze pomieszczenia testow.

5) Cisnienie opony - dobierane w zaleznoéci od rodzaju opony (standardowa /

wzmocniona) i indeksu predkosci).

6) Obcigzenie (zazwyczaj 80% indeksu nosnosci opony).

Test polega na krokowym zwigkszaniu predkosci po uptywie czasu okreslonego dla danego
etapu. W Tabeli 4.8. przedstawiono przyktadowe postepowanie dla indeksu predkosci
V (dla ktorego 240km/h to maksymalna predkos¢, przy ktorej opona jest zdolna
do bezpiecznego przenoszenia obcigzenia okreslonego przez indeks nosnosci).

W celu rzetelnej oceny, trwajacy dhuzej krok 4 stuzy wyréwnaniu temperatury wewnatrz
opony tuz przed osiggni¢ciem predkosci narzuconej przez jej indeks. Pozwala to na uniknigcie
wystgpienia defektow wywotanych w efekcie szoku cieplnego. Jesli opona osiggnie Krok

6 bez ujawnienia jakiejkolwiek wady, test mozna uzna¢ jako zaliczony.
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Tabela 4.8. Przykladowy przebieg testu wysokiej predkosci dla indeksu V

(opracowanie wlasne na podstawie materialow wewnetrznych przedsi¢biorstwa)

Czas [min] 10

Krok 1
Predkos¢ [km/h] 120
Czas [min] 10

Krok 2
Predkos¢ [km/h] 150
Czas [min] 10

Krok 3
Predkos¢ [km/h] 180
Czas [min] 60

Krok 4
Predkos¢ [km/h] 220
Czas [min] 10

Krok 5
Predkos¢ [km/h] 230
Czas [min] 10

Krok 6
Predko$¢ [km/h] 240
Czas [min] 10

Krok 7
Predkos¢ [km/h] 250
Kontynuowaé¢ do | Czas [min] +10
uzyskania defektu | Predko$¢ [km/h] +10

4.4.5 Wyznaczenie oporow toczenia opon

Opdr toczenia opon wyznacza si¢ metoda momentu obrotowego zgodnie z wymaganiami
opisanymi w (ISO, 2018). Przed rozpoczeciem testu oporu toczenia nalezy zapewnic, ze zostaty
spetnione nastepujace warunki:

1) Badanie moze by¢ przeprowadzone tylko i wytacznie na oponie, ktora nigdy wczesniej
nie byta uzywana do testu podnoszacego jej temperatur¢ powyzej wartosci generowane;j
podczas testow oporu toczenia i1 nie powinna by¢ wczes$niej wystawiona na dzialanie
temperatury wyzszej niz 40[°C].

2) Zestaw montazowy musi by¢ wywazony.

3) Wyplywki w obszarze bieznika powinny zosta¢ otrymowane, a dopuszczalne
pozostatosci wyptywek powinny mie¢ wysokos¢ < 0.5[mm].

4) Nalezy uzywac obreczy pomiarowej dobranej wg (ETRTO, 2025) charakteryzujgce;j
si¢ nastepujaca doktadnoscig — maks. 0.5[mm] RRO i maks. 0.5[mm] LRO.
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5)

6)

7)

8)
9)

Kondycjonowanie — opona musi by¢ zamontowana na wymagang obrecz testowa
I zosta¢ napompowana do wymaganego ci$nienia testowego — tak przygotowany zestaw
powinien by¢ kondycjonowany przez minimum 3[h] w temperaturze pokojowej 25[°C].
Po kondycjonowaniu nalezy dopompowac opone¢ do cis$nienia testowego i sprawdzic¢
je 10[min] po pompowaniu (tolerancja to punkt wyjsciowy ci$nienia + 3[kPa]); nalezy
jednak unika¢ przypadkéw, w ktorych konieczne jest zwigkszenie ci$nienia w oponie
(np. w sytuacji gdy punkt wyjsciowy wynosi 210[kPa] i otrzymano rzeczywiste
207[kPa] po 3[h] kondycjonowania — nie nalezy zwieksza¢ ci$nienia).

Predkos¢ — 80[km/h].

Obcigzenie kontaktowe — 100[N] (dla pomiaru niepozadanej straty).

Wymagana temperatura pomieszczenia testow to 25[°C] + 2.5[°C] — mierzona

w odlegtosci nie mniejszej niz 0,15[m] i nie wigkszej niz 1[m] od boku opony.

10) Obcigzenie — 80% indeksu nos$nosci.
11) Czas dotarcia — 30[min].

Procedura testu:

1)
2)

3)

4)

5)

6)

Dotarcie powinno trwa¢ 30[min] przy testowej predkosci, obcigzeniu 0oraz cisnieniu.
Po dotarciu, utrzymujac opon¢ w tej samej predkosci testowej i z tym samym
obcigzeniem zmierzy¢ opodr toczenia RRgoy.
Po pomiarze RRgoyw dochodzi do zmiany obcigzenia testowego na kontaktowe
przy utrzymaniu opony w tej samej predkosci testowej, po czym dochodzi do pomiaru
oporu toczenia szacujac niepozadang strate RRioon.
Zgodnie z Rownaniem 4.5 opér toczenia opony bedzie stanowit rdznice pomigdzy
oporem toczenia zmierzonym w warunkach obcigzenia testowego a oporem toczenia
wynikajacym z niepozadane;j straty:

RR = RRgo% - RR1oon [N] (4.5)

Nastepnie oblicza si¢ wspotczynnik oporu toczenia RRc wedtug Rownania 4.6:
RRc = RR / Obcigzenie [N/ KN] (4.6)

Ostatecznie wyznacza si¢ klas¢ efektywnosci paliwowej zgodnie z Tabelg 4.9.
W literaturze czgsto spotykang jednostka dla RRc jest rowniez tozsama [kg/t]. Wybor

jednostki zalezny jest od sposobu zapisu obcigzenia przyjetego w toku obliczen,
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ktéry narzucony jest przez oprogramowanie wykorzystywanej maszyny pomiarowej
(Wiegand, 2016).

Tabela 4.9. Warto$ci graniczne wspélczynnika oporu toczenia dla danej klasy efektywnosci paliwowej

(opracowanie wlasne na podstawie UNECE, 2025)

Klasa efektywnosci paliwowej Warto$¢ graniczna RRe [N/KN]
B <77
C <9.0
D <105

Wspotczynniki oporu toczenia wyznaczone dla przebadanych opon zostaly zebrane

w Tabeli 4.10.

Tabela 4.10. Wspélczynnik oporu toczenia RRc badanych opon (opracowanie wlasne)

Wspoétcezynnik Klasa
Lp. Nazwa opony oporu toczenia | efektywnosci
RRc [N/kN] paliwowej
1 |185/55 R16 87T Continental WinterContact TS 870 8.1 C
2 |195/55 R16 87H Hankook Winter i*cept RS3 W462 9.3 D
3 [205/55 R16 91H Michelin ALPIN 6 8.6 C
4 205/55 ZR16 (94Y) XL Michelin PILOT SPORT 4 8.4 C
5 [225/50 R17 98W XL Yokohama Advan Fleva V701 7.2 B
6 [225/50 R18 99W Continental UltraContact NXT 6.1 A
7 [235/45 R18 98Y XL FR Michelin CrossClimate 2 7.3 B
o 235/55 R18 104H XL Goodyear UltraGrip 80 c
Performance+ SUV

4.4.6 Opor elektryczny opon

Ze wzgledu na to, ze bazg stosowanych obecnie w przemysle oponiarskim mieszanek

gumowych dedykowanych na kape bieznika jest nieprzewodzaca tadunki elektryczne
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krzemionka, konieczny jest pomiar oporu elektrycznego opon. Polega on na przylozeniu

elektrody dodatniej omomierza do mieszanki antenowej bieznika, natomiast elektrod¢ ujemna

zaciska si¢ na drutéwce opony. Dla zapewnienia odpowiedniego poziomu bezpieczenstwa

kazda opona powinna charakteryzowac si¢ oporem elektrycznym < 50 [MQ].

4.4.7 Witasnosci fizyczne mieszanki bieznika

Dla zagwarantowania przyczepnosci opony, jej trwatosci oraz przewidywalno$ci

zachowania w r6znych warunkach drogowych i temperaturowych na odpowiednim poziomie,

wyznacza si¢ nastepujace wlasnosci fizyczne mieszanki bieznika:

1) Twardos¢.

2) Moduly przy okreslonym wydtuzeniu.

3) Wytrzymalos¢ na rozcigganie.

4) Woydtuzenie catkowite przy zerwaniu probki.

W Tabeli 4.11. poréwnano wyniki pomiaréw twardos$ci mieszanki bieznika badanych opon.

Zgodnie z wewngtrzng procedurg przedstawione rezultaty to $rednia z 6 pomiaréw dla kazdej

opony.
Tabela 4.11. Twardo$¢ mieszanki bieznika badanych opon (opracowanie wlasne)
Twardos¢
Lp. Nazwa opony Sezon
[°Shore A]
1 [185/55 R16 87T Continental WinterContact TS 870 64.7 zima
2 [195/55 R16 87H Hankook Winter i*cept RS3 W462 70.7 zima
3 [205/55 R16 91H Michelin ALPIN 6 66.5 zima
4 [205/55 ZR16 (94Y) XL Michelin PILOT SPORT 4 68.7 lato
5 [225/50 R17 98W XL Yokohama Advan Fleva V701 68.9 lato
6 [225/50 R18 99W Continental UltraContact NXT 66.6 lato
7 [235/45 R18 98Y XL FR Michelin CrossClimate 2 65.5 caly rok
235/55 R18 104H XL Goodyear UltraGrip _
8 66.7 zima
Performance+ SUV

W procesie wytwarzania w fabryce opon najwickszy udziat ilo$ciowy w stosunku

do wszystkich produkowanych mieszanek gumowych

stanowi mieszanka

bieznika.
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Z tego wzgledu szczegodlnie istotne jest ciggle utrzymanie jej jakosci na wysokim poziomie.
Szybka identyfikacja odchylen od ustalonych limitow wlasciwosci fizycznych, pozwala
na biezgco monitorowac stabilno$¢ i efektywnos$¢ procesu mieszania i wulkanizacji. Dzigki
temu mozliwe jest wdrozenie dziatan korygujacych na stosunkowo wczesnym etapie,

co minimalizuje ryzyko wycofania partii opon zawierajacych wadliwa mieszanke.

4.5 Testy homologacyjne

W zaleznosci od rynku (kraju) na ktéry dedykowana jest opona, musi ona przejs¢
dodatkowe testy w celu otrzymania odpowiedniej certyfikacji (homologacji). Pakiet testow
sktadajacych si¢ na dang homologacje, zawiera zazwyczaj indywidualne podejscie
do warunkow (glownie: temperatury podczas przeprowadzania pomiaru, ci$nienia opony,
limitéw 1 zakresu tolerancji rezultatow) przeprowadzania wymienionych nizej pomiarow:

1) Wymiardéw fizycznych opony, na ktore sktadajg sig:

a) Srednica catkowita opony OD (ang. overall diameter) — mierzona posrodku

napompowanej opony (wzdluz linii centralnej) lub blisko linii centralnej
(w przypadku bieznika z rowkiem centralnym).

b) Szerokos¢ catkowita przekroju OW (ang. overall width) — liniowa odlegto$¢ pomigdzy
zewngtrznymi stronami bokow napompowanej opony wlaczajac 0znaczenia, dekoracje,
ranty ochronne i zebra.

C) Szerokos¢ przekroju SW (ang. section width) — liniowa odlegtos¢ pomigdzy
zewngtrznymi stronami bokOw napompowanej opony wytaczajac wypuklosci zwigzane
z oznaczeniami, dekoracjami, rantami ochronnymi 1 zebrami.

d) Glebokos¢ rowkow rzezby bieznika SK (ang. skid depth) — mierzona w najglebszym
rowku najblizszym linii centralnej napompowanej opony.

e) Wskaznik zuzycia bieznika TWI (ang. tire wear index) - poprzeczne mostki
w rowkach bieznika majace na celu wizualne wskazanie stopnia zuzycia bieznika.
Pomiar gliebokosci TWI otrzymuje si¢ z rdznicy pomig¢dzy glebokoscig rowka bieznika

(SK) 1 glebokoscia rowka mierzong na szczycie wskaznika zuzycia bieznika.

2) Cisnienia osadzania stopki.

3) Testow bieznych wysokich i niskich predkosci.

Niektore homologacje uwzgledniaja dodatkowe specyficzne testy, czego przykladem jest

amerykanska DOT zawierajgca w sobie test przebicia opony (ang. plunger). Opona zatozona
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na specjalng maszyn¢ pomiarowa (Rysunek 4.46.) w celu uzyskania pozytywnego rezultatu,
powinna ulec przebiciu przez znormalizowany wglebnik, dopiero po przekroczeniu sity
do niego przytozonej o wartosci przekraczajacej 5200N. Informacja o homologacji jakg posiada
dana opona, zawsze uwzgledniana jest w napisach naniesionych w obszarze boku

(tzw. stamping).

Rysunek 4.46. Maszyna do przeprowadzania testu przebicia opony (materialy wlasne przedsigbiorstwa)

Reasumujac, przedstawione w niniejszym rozdziale zagadnienia dotyczace eliminacji
defektow, spetniania wymagan klienta, zapewnienia jednorodno$ci opon na odpowiednim
poziomie oraz procedur testowych i homologacyjnych wskazuja, ze mimo osiagnigcia
wysokiego poziomu dojrzalosci technologicznej, obszary te wcigz pozostaja przedmiotem
intensywnych badan i doskonalenia. Dazenie do dalszej poprawy jakosci, niezawodnosci
i bezpieczenstwa opon stanowi istotny impuls rozwojowy. Determinuje to konieczno$¢
poszukiwania innowacyjnych rozwigzan w zakresie materiatdw, procesoéw produkcyjnych
oraz metod kontroli. W konsekwencji, dalsza czg$¢ pracy zostala poswiecona analizie
kierunkow badan opon samochodowych, ktore wyznaczajg perspektywy dla przysztych dziatan
badawczo-rozwojowych w tym obszarze.
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5. Wspébiczesne kierunki badan opon

samochodowych

Rozwigzania wdrazane w nowoczesnej logistyce 1 transporcie musza opierac
si¢ na okreslonym poziomie wydajnos$ci komponentow. Przyktadem jest przejecie TomTom
Telematics przez korporacj¢ Bridgestone w celu rozpoczecia §wiadczenia nowego typu ushug
(Bridgestone Europe Completes Acquisition of TomTom Telematics, 2024). W oparciu o baze
danych doswiadczen klientow flotowych, przewidywang zywotno$¢ opon, a takze rejestracje
przebiegu pojazdu za pomocg GPS, system bedzie automatycznie planowal wymiane opon.
Otworzy to mozliwos¢ stworzenia nowego rodzaju modeli biznesowych opartych na danych
i zaowocuje wiarygodnymi informacjami zwrotnymi dla producenta na temat eksploatacji
jego produktéw. Klient bedzie otrzymywal wszystkie wiadomo$ci o potrzebie wymiany
lub ewentualnego serwisowania opon za posrednictwem aplikacji mobilnej. Warto dodac,
ze za zgoda klienta dziatania te beda organizowane i wykonywane automatycznie.
Zdecydowanie utatwi to planowanie budzetu w przedsigbiorstwach. Opisane rozwigzanie
w niedalekiej przysztosci z powodzeniem wesprze floty sktadajace si¢ z autonomicznych
pojazdow, a nastepnie prawdopodobnie bedzie dostepne rowniez dla klientéw prywatnych.

Opony jako produkty, ktorych zakup zwigzany jest z przemyslang decyzja (przecigtny klient
bedzie przeciez eksploatowa¢ jeden komplet opon przez kilka sezondéw), nieustannie
sg przedmiotem zestawien i rankingéw (Auto Bild, 2024). Osiagnigcie statusu marki
konkurencyjnej na rynku jest zadaniem wielowatkowym i trudnym (Chicu i in., 2020),
ktorego baza jest obserwacja trendow rynku 1 umiejetnos¢ szybkiego wprowadzania zmian
(Brusoni, 2021). Moga one dotyczy¢é modeli biznesowych, zwigkszania precyzyjnosci
stosowanego oprzyrzadowania maszynowego (Guo i in., 2009), a takze wprowadzania
innowacyjnych mieszanek gumowych (Rucinska i in., 2022).

Jednym z najczesciej poruszanych wspoétczesnie aspektéw dotyczacych rozwoju branzy
oponiarskiej jest estymacja sil wystepujacych w oponie (Xu i in., 2013). Badania
(Xu 1 in., 2021) koncentruja si¢ na problemie estymacji kata znoszenia opon, ktory odgrywa
kluczowa role¢ w dynamice i sterowaniu pojazdu. Autorzy zaproponowali innowacyjna metode
taczaca technologi¢ inteligentnej opony z algorytmami uczenia maszynowego. W tym celu
zastosowano akcelerometry MEMS zamocowane wewnatrz opony, rejestrujace przyspieszenia
w trzech kierunkach. Zgromadzone dane poddano analizie zarowno w dziedzinie czasu,

jak 1 czestotliwosci, a nastgpnie wykorzystano do trenowania pigciu metod uczenia
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maszynowego. Najwazniejszym wynikiem pracy bylo wykazanie, ze analiza w dziedzinie
czestotliwosci — szczegdlnie z uzyciem sieci neuronowej opartej na algorytmie Rprop —
pozwala na znacznie doktadniejszg estymacj¢ kata znoszenia w poroéwnaniu z metodami
opartymi na analizie czasowej czy modelach fizycznych. Doktadnos¢ predykcji utrzymywata
si¢ na wysokim poziomie nawet dla katow do 10° (Rysunek 5.1.), co wykracza poza mozliwosci
tradycyjnych metod, ktore zazwyczaj zawodza powyzej 4-5°. Co istotne, zaproponowane
podejscie okazato si¢ stosunkowo odporne na zmiany predkosci jazdy i obcigzenia pionowego

opony, co zwigksza jego potencjal aplikacyjny w rzeczywistych warunkach eksploatacyjnych.

Estymowany kat poslizgu
—  Zmuierzony kat poslizgu

Kat poilizgu [<]

U] = 1] 100 150 20 250 300 350 400

Obroty opony

Rysunek 5.1. Szacowany kat znoszenia wzgledem zmierzonego kata znoszenia w warunkach wymuszenia

trojkatnego (opracowanie wlasne na podstawie Xu i in., 2021)

Nowatorski model kinematyczny opony skretnej, przedstawiony w (Vo i in., 2017) pozwala
bada¢ moment Kingpina® podczas manewrdéw przy niskich predkosciach i duzym kacie skretu.
W artykule podkreslono ograniczenia tradycyjnych modeli opon w precyzyjnej analizie
dynamiki pojazdu w ekstremalnych warunkach skrecania, szczeg6lnie w kontekscie interakcji
opony z uktadem kierowniczym. Proponowany model umozliwia doktadng ocene momentu
Kingpina i1 zachowania opony, co ma istotne znaczenie dla bezpieczenstwa 1 sterownosci
pojazdu.

Prace nad modelowaniem opon coraz czesciej integruja interaktywne narzedzia
oraz zaawansowane procedury przetwarzania danych, np. TRIP-ID (Farroni i in., 2018),
aby sprosta¢ wymaganiom precyzji 1 adaptacyjnosci w dynamicznych warunkach

rzeczywistych (Farroni, 2016). W artykule (Arat i in., 2013) przedstawiono badania

¥ Moment Kingpina — pojecie z dynamiki pojazdow odnoszace sie do momentu obrotowego dzialajacego wokot
osi Kingpina w zawieszeniu kot skretnych. Chodzi o moment, ktory ,,probuje skregci¢” zwrotnicg lub koto
na pionowej osi obrotu w uktadzie kierowniczym.

92



nad wykorzystaniem technologii inteligentnych opon (ang. smart tire technology) w celu
optymalnej alokacji sit dziatajacych na opony pojazdu. Autorzy wychodza z zatozenia,
Ze precyzyjna znajomos$¢ parametrow kontaktu opony z nawierzchnig, uzyskana dzigki
sensorom umieszczonym w strukturze opony, moze znaczgco poprawic¢ skutecznos¢ systemow
sterowania pojazdem, w szczegdlnosci systemow rozdziatu sit w pojazdach wielonapedowych
(Boada i in., 2009). W opracowaniu (Bastiaan, 2018) (Rysunek 5.2.) zaprezentowano
algorytmy sterowania wykorzystujace dane z inteligentnych opon do dynamicznego
rozdzielania sit napedowych i hamujacych, tak aby maksymalizowa¢ przyczepnos¢ i stabilno$¢
pojazdu. Wyniki symulacji wykazaly, ze zastosowanie tej technologii pozwala na istotng
poprawe bezpieczenstwa oraz efektywnosci jazdy, zwlaszcza w warunkach zmiennej
przyczepno$ci. W pordwnaniu do tradycyjnych metod rozdzialu sit, rozwigzanie oparte
na ‘smart tire technology’ charakteryzuje si¢ wigksza adaptacyjnoscia i mozliwoscig reakcji

W czasie rzeczywistym.

U, Magnitude

+1.95e-02
+1.7%9e-02
+1.62e-02
+1.46e-02
= +1.30e-02
-~ +1.14e-02
| +9.75e-03
+8.12e-03
+6.50e-03
+4.88e-03
+3.25e-03
+1.63e-03
+0.00e+00

Rysunek 5.2. Analiza Metoda Elementow Skonczonych opony przy obciazeniu pionowym; ,,Magnitude”

to wielko$¢ konturéw przemieszczen okreslonych przez oprogramowanie ABAQUS (Bastiaan, 2018)

Praca (Beauchamp i in.,, 2016b) koncentruje si¢ na analizie zalezno$ci pomiedzy
charakterystyka $ladéw opon (ang. striations) a generowanymi sitami opon, co stanowi
zagadnienie o istotnym znaczeniu zarowno w rekonstrukcji wypadkéw drogowych,
jak 1 w badaniach nad interakcja opony z nawierzchnig. Autorzy przeprowadzili eksperymenty
z wykorzystaniem kontrolowanych manewréw pojazdu, podczas ktérych rejestrowano
zardbwno powstajace $lady na nawierzchni, jak i parametry sit dziatajacych na opong. Wyniki
wskazuja, ze regularnos¢, gestos¢ i1 kierunek pozostawionych $ladow sa bezposrednio

powigzane z poziomem sit poprzecznych i wzdluznych dziatajacych na opong. Oznacza

93



to, ze analiza wizualna i geometryczna §ladéw opon moze dostarcza¢ informacji o warunkach
pracy opony i wielko$ci oddziatujacych na nig obcigzen. Co istotne, badania dowiodly, iz $lady
opon nie sg jedynie artefaktem tarcia, lecz niosg ze sobg istotne dane diagnostyczne, ktore moga
by¢ wykorzystywane w inzynierii bezpieczenstwa oraz sgdownictwie technicznym. Whnioski
autorow podkres$laja, ze doktadne modelowanie zalezno$ci miedzy $ladami opon a sitami
wymaga dalszych badan, jednak uzyskane juz wyniki stanowia podstawe do rozwijania
narzedzi analitycznych wspomagajacych identyfikacj¢ dynamiki pojazdu na podstawie sladow
pozostawionych na nawierzchni (Beauchamp i in., 2016a).

W artykule (Chotodowski i Dudzinski, 2015) przedstawiono innowacyjng metode
eksperymentalnej identyfikacji deformacji opon pojazdow, koncentrujac si¢ na opracowaniu
nowatorskiego przetwornika zdolnego do pomiaru trzech skladowych deformacji opon.
Autorzy wskazuja na ograniczenia dotychczas stosowanych metod pomiaru, w ktorych czesto
brakuje petnej charakterystyki deformacji w trzech wymiarach, co ogranicza doktadno$¢
analizy dynamicznej zachowania opony.

Badania wplywu deformacji opony na aerodynamike pojazdow z odkrytymi kotami (Eder
11in., 2020) obejmowaty symulacje przeptywu powietrza z uwzglednieniem odksztatcen opony,
co pozwolito oceni¢, w jaki sposob zmiany jej ksztaltu wplywaja na charakterystyki
aerodynamiczne. Autorzy wykazali, ze deformacja opon istotnie modyfikuje strukturg
przeptywu powietrza wokot kota (Rysunek 5.3.), a tym samym ma znaczacy wptyw na opor
aerodynamiczny oraz stabilno$¢ pojazdu. Wnioski z pracy wskazuja, ze uwzglednianie
deformacji opon w analizach aerodynamicznych jest kluczowe dla doktadnego przewidywania
zachowania pojazdoéw wyscigowych 1 sportowych, gdzie wptyw aerodynamiki ma szczegolne
znaczenie.

Publikacja (Matsubara 1 in., 2022) przedstawiaja system wizualizacji rozktadu odksztatcen
1 pomiaru deformacji klockéw bieznika opon podczas szybkiego obracania si¢ kot pojazdu.
W pracy podkreslono ograniczenia tradycyjnych metod pomiarowych, ktére nie pozwalajg
na doktadne uchwycenie dynamicznych odksztatcen bieznika (Kan 1 in., 2020) przy duzych
predkosciach obrotowych. Zaproponowany system umozliwia doktadng obserwacje 1 analize
rozktadu odksztalcen w czasie rzeczywistym, co pozwala lepiej zrozumie¢ interakcje opony
z nawierzchnia w warunkach dynamicznych. Artykut ten wypelia luke¢ w badaniach
nad dynamicznymi wlasciwos$ciami bieznika opony. Podobnie, praca (Angrick i in., 2014)
oceniala wpltyw temperatury rdzenia i powierzchni opony na jej charakterystyki boczne,

koncentrujac si¢ na zmianach sil 1 momentéw generowanych podczas skretu kot. W pracy
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podkreslono, ze temperatura opony (Rysunek 5.4.) istotnie wplywa na przyczepno$¢ boczna,

deformacje bieznika oraz moment samonastawny.

Rysunek 5.3. Struktura przeplywu wokol $ciezki kontaktu opony nieodksztalconej (a) oraz odksztalconej

(b) przy pochyleniu opony o 4° (Eder i in., 2020)

Publikacje (Hsiao i Yang, 2016; Hu i in., 2017) oceniajg interakcj¢ opony z nawierzchnig
poprzez opracowanie metod szacowania wspolczynnika tarcia. Watek tarcia uzupelniaja
(Lu 1 in., 2022), zajmujac si¢ wyznaczaniem tego wspdtczynnika dla nawierzchni. Artykut
(Luty, 2018) traktuje o analizie wplywu masy pojazdu na droge hamowania
z wykorzystaniem metod symulacyjnych. Badania obejmowaly modelowanie dynamiczne
pojazdu w roznych wariantach masy oraz symulowanie scenariuszy awaryjnego hamowania
w celu oceny zmian dhugosci drogi zatrzymania. Autor podkresla, ze wzrost masy pojazdu
prowadzi do znaczacego wydtuzenia drogi hamowania, co ma bezposrednie konsekwencje
dla bezpieczenstwa ruchu drogowego. Wnioski ptynace z badan wskazuja, ze masa pojazdu
jest jednym z kluczowych czynnikow determinujacych skuteczno$¢ hamowania,
a jej uwzglednienie jest niezbedne przy projektowaniu systemow hamulcowych oraz ocenie
ryzyka w ruchu drogowym. Studium skuteczno$ci hamowania obejmuje réwniez ewaluacje

uktadéw hamulcowego (Dobaj, 2022) oraz zawieszenia (LukoSevicius i in., 2021) pojazdu.
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Rysunek 5.4. Wyniki badan nad wplywem temperatury opony na jej charakterystyki boczne

(opracowanie wlasne na podstawie Angrick i in., 2014)

Kolejnym aspektem, ktory stanowi aktualny przedmiot badan jest akustyka opony.
Autorzy (Cao i Bolton, 2015) przedstawili udoskonalony model sprz¢zonych trybow
strukturalno-akustycznych opon, majacy na celu doktadniejszg analiz¢ drgan i emisji hatasu
generowanego przez opony podczas jazdy. Autorzy skupili si¢ na modelowaniu
wspoétzaleznosci migdzy deformacjami strukturalnymi a efektami akustycznymi, co pozwala
na lepsze przewidywanie zachowania opony w warunkach rzeczywistych oraz projektowanie
cichszych i bardziej komfortowych opon. Badania (Gautam i in.,2017) skupiaty si¢ natomiast
na opracowaniu statystycznego model przewidujacy hatas opon przy réznych predkosciach.
Badania koncentrowaly si¢ na analizie danych eksperymentalnych dotyczacych emisji hatasu
toczenia, z uwzglednieniem wplywu predkosci pojazdu na poziom generowanego dzwigku.
Okazato si¢, ze model statystyczny pozwala na precyzyjne prognozowanie hatasu opon,
co moze wspiera¢ projektowanie cichszych opon oraz polepszenie warunkéw komfortu
akustycznego w pojazdach. W (Yoon i in., 2022) opracowano model predykcyjny hatasu
dla danego wzoru bieznika opon z wykorzystaniem konwolucyjnych sieci neuronowych
oraz algorytmu RMSProp. Celem pracy byta automatyczna analiza i prognozowanie emisji
halasu generowanego przez rdzne uktady bieznika, co pozwala na szybszg i bardziej precyzyjna
ocen¢ akustycznych wlasciwosci opon juz na etapie projektowania. Autorzy wykazali,
ze podejscie oparte na sztucznej inteligencji moze skutecznie zastgpic tradycyjne, czasochtonne
metody eksperymentalne. Publikacja (Zhu i in., 2023) réwniez udowadnia kluczowy wplyw

rzezby bieznika na emisj¢ hatasu.
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Opracowania (Kuric i in., 2021; Kuric i in., 2022) skupiaja si¢ na analizie mozliwosci
inspekcji defektéw opon z wykorzystaniem metod uczenia nienadzorowanego oraz gltgbokiego
uczenia. Autorzy skupili si¢ na zastosowaniu algorytmow sztucznej inteligencji
do automatycznego wykrywania uszkodzen strukturalnych, ktore mogg wystepowaé w trakcie
produkcji lub eksploatacji opon. W pracy podkreslono potencjat technik glebokiego uczenia
do przetwarzania obrazoéw i sygnaldéw pomiarowych, co pozwala na zwickszenie skutecznosci
1 doktadnosci diagnostyki w poréwnaniu z tradycyjnymi metodami inspekcji. Wnioski z badan
wskazujg, ze integracja metod sztucznej inteligencji w procesie kontroli jakosci opon moze
znaczaco poprawi¢ bezpieczenstwo eksploatacyjne oraz efektywnos¢ produkcji, redukujac
ryzyko wystgpowania defektow w gotowych wyrobach.

Realizowany jest rowniez rozwoj metod pomiarowych, czego przyktadem jest praca (Lung
i in., 2016), gdzie autorzy zaproponowali system do pomiaru glebokosci bieznika opon oparty
na technologii laserowej i kamerze CMOS. System ten umozliwia bezkontaktowg i precyzyjna
ocen¢ zuzycia opon. Zastosowano tu model liniowy do kalibracji i analizy danych
pomiarowych. Podobnie w artykule (Mastrodicasa i in., 2021), autorzy skupili si¢ na analizie
hatasu 1 wibracji generowanych przez opony, szczegdlnie w kontekscie pojazdow
elektrycznych, gdzie brak silnika spalinowego sprawia, ze hatas opon staje si¢ dominujagcym
czynnikiem. W badaniach zastosowano nienalogowe metody pomiarowe, takie jak Digital
Image Correlation (DIC) oraz Laser Doppler Vibrometry (LDV), ktore pozwalajg na uzyskanie
pelnowymiarowych danych dotyczacych zachowania opony w warunkach statycznych. Analiza
obejmowata zar6wno opony w stanie swobodnym, jak i poddane statycznemu obcigzeniu.
Uzyskano pelnowymiarowe mapy odksztatcen i predkosci powierzchniowych opony
oraz wyodrebniono charakterystyki modalne opony, tj. czgstotliwosci wlasne, wspotczynniki
tlhumienia oraz ksztalty modéw. Te informacje moga by¢ wykorzystane do poprawy
doktadnosci modeli opon, zar6wno w kontekscie aktualizacji modeli opartych na metodzie
elementow skonczonych (FE), jak i w opracowywaniu modeli opartych na funkcjach
odpowiedzi (FRF).

Dzigki coraz powszechniejszemu zastosowaniu czujnikow monitorowania ci$nienia
w oponach typu TPMS (ang. Tire Pressure Monitoring System), autorzy (Schwall i in., 2016)
przeanalizowali dane czasowe ci$nienia w samochodach Tesla Model S, aby zrozumie¢ zmiany
ci$nienia spowodowane przez roézne czynniki, tj. przenikanie powietrza, powolne wycieki
oraz wahania temperatury w cyklu jazdy i w skali sezonowej. Autorzy wskazali, ze ciSnienie
w oponach zmienia si¢ w odpowiedzi na zmiany temperatury oraz na efekty przenikania

powietrza przez materiat opony.
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Nowatorskie badania prowadzi si¢ rowniez w kierunku uzyskania podobnego poziomu
wilasnosci jak dla opon pneumatycznych przez opony niepneumatyczne. W pracy (Jackowski
i in., 2023) dokonano poréwnawczej analizy matogabarytowych opon niepneumatycznych
oraz opon pneumatycznych, skupiajac si¢ na takich parametrach jak sztywno$¢ radialna,
histereza oraz wybrane cechy plamy kontaktu. Autorzy wskazali istotne rdznice
w charakterystyce pracy obu typow opon, podkreslajac zalety konstrukcji niepneumatycznych
w zakresie odpornosci na uszkodzenia 1 stabilno$ci parametréw eksploatacyjnych,
przy jednoczesnym zwroceniu uwagi na ograniczenia dotyczace wiasciwosci dynamicznych
I komfortu jazdy. Wnioski z pracy wskazuja, ze opony niepneumatyczne stanowig obiecujaca
alternatywe dla tradycyjnych opon pneumatycznych, szczegdlnie w zastosowaniach
specjalistycznych, jednak ich charakterystyka wymaga dalszych badan i poprawy. Natomiast
w artykule (Zhang i in., 2020) poroéwnano statyczne i dynamiczne wiasciwosci opony
niepneumatycznej z elastyczng strukturg szprychowa (Rysunek 5.5.). Badania obejmowaty
oceng sztywnosci, zdolno$ci ttumienia oraz parametréw dynamicznych w réznych warunkach
obcigzenia 1 predkosci. Autorzy wykazali, ze elastyczne szprychy wplywaja na poprawe
komfortu i whasciwosci ttumiacych opony, przy jednoczesnym zachowaniu jej odpornosci
na przebicia i stabilnosci konstrukcyjnej. Wnioski z pracy wskazuja, ze opony
niepneumatyczne z elastycznymi szprychami stanowig perspektywiczng alternatywe
dla tradycyjnych opon pneumatycznych, szczegdlnie w zakresie zwigkszonej niezawodnos$ci
1 odpornosci na awarie.

Najczgsciej stosowane wspotczesnie metody eksploracji tematyki zwigzanej z rozwojem
przemystu oponiarskiego opieraja si¢ na uczeniu maszynowym. Swiadczy o tym chociazby
czestotliwos¢ wyboru tych metod w publikacjach przytoczonych w niniejszym rozdziale.
Dodatkowo, metody te znajduja zastosowanie w systemach pompowania opon (Choudhury
1in., 2017) 1 przewidywaniu ich zywotnosci (Zhu i in., 2021).

W analogii do niniejszej dysertacji, (Tamborski i in., 2023) analizuje wptyw sztucznej
inteligencji na procesy kontroli jakosci w przemysle oponiarskim, ze szczegdlnym
uwzglednieniem badan naukowych, rozwoju technologii oraz zastosowan praktycznych
w produkcji i eksploatacji opon. Analizie poddano metody takie jak cyfrowa szerografia
wspomagana uczeniem glebokim, inkrementalne modele YOLO do detekcji defektow,
segmentacja obrazoOw glebi oraz wykorzystanie cyfrowych blizniakow w procesach

projektowania i testowania opon.
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Rysunek 5.5. Rozklad naprezen i deformacji dla: a) opony pneumatycznej napelnianej powietrzem,
b) opony niepneumatycznej z plyta szprychowa, c¢) opony niepneumatycznej o strukturze plastra miodu
oraz d) opony niepneumatycznej o strukturze kratowej, przy obciazeniu nominalnym 3000[N]

(Zhang i in., 2020)

Badania wskazuja, ze zastosowanie Al znaczaco zwigksza skuteczno$¢ i precyzje
wykrywania defektow, redukuje czas inspekcji oraz umozliwia wczesng identyfikacje wad
produkcyjnych i eksploatacyjnych. Rozwigzania oparte na sztucznej inteligencji moga wspierac
takze predykcyjne utrzymanie opon oraz rozw¢] metod symulacyjnych w procesie
projektowania. Przeprowadzony przeglad literatury sugeruje zatem mozliwos¢ zastosowania
metod uczenia maszynowego do stozkowato$ci na bazie

predykcji pomiarow

przeprowadzanych podczas procesu konfekcji opon radialnych.
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6. Modele uczenia maszynowego

Sztuczna inteligencja Al (ang. artificial intelligence) to dziat informatyki i inzynierii
zajmujacy sie tworzeniem systemow (sprzgtowych lub programowych), ktére potrafig
wykonywa¢ zadania wymagajace inteligencji — takie jak rozumowanie, uczenie
si¢, interpretowanie danych ze S$rodowiska, podejmowanie decyzji czy dostosowywanie
si¢ do zmian. Systemy te przy wykorzystaniu algorytmow (np. uczenia maszynowego, sieci
neuronowych, logiki symbolicznej) mogg samodzielnie usprawnia¢ swoje dziatanie,
przewidywaé zachowania czy reagowac na nowe sytuacje (European Commission, 2019).

Uczenie maszynowe ML (ang. machine learning) to dziat sztucznej inteligencji zajmujacy
si¢ tworzeniem modeli i algorytmow, ktére na podstawie danych potrafig samodzielnie uczy¢
sie, wykrywa¢ wzorce 1 korelacje oraz poprawia¢ swoje dziatanie bez potrzeby wyraznego
instruktazu (“jawnego programowania”) kazdego kroku. Modele te sg trenowane na danych
historycznych, a nastgpnie uzywane do przewidywania, klasyfikowania lub podejmowania

decyzji w oparciu o nowe dane (Rogalski M., 2025).

6.1 Rodzaje uczenia maszynowego

Modele  uczenia ~maszynowego umozliwiaja eksploracje  wielowymiarowych
1 obszernych zbioréw danych w celu identyfikacji ukrytych struktur oraz zalezno$ci. Istotnym
aspektem analizy danych jest zdolno§¢ do transformacji danych surowych
w informacje uzyteczne, ktére moga stanowi¢ podstaw¢ do podejmowania decyzji
wspierajacych procesy biznesowe w organizacjach (Rosienkiewicz, 2021; Antunes Rodrigues
i in., 2022). Dobodr oraz implementacja odpowiedniego modelu uczenia maszynowego,
zdolnego do przeksztalcenia danych wejsciowych w wartosciowa wiedze, zalezy od szeregu
czynnikow — w gtownej mierze charakterystyki problemu analitycznego oraz jakosci i rodzaju
dostepnych danych.

Na Rysunku 6.1. zaprezentowano podstawowy podzial rodzajéw uczenia maszynowego
w zalezno$ci od stopnia nadzoru wykorzystywanego podczas trenowania, wraz z przyktadami
typowych metod stosowanych w poszczegolnych kategoriach modeli oraz reprezentatywnymi
problemami rozwigzywanymi z ich zastosowaniem. Wyr6znia si¢ m.in. nast¢pujace rodzaje
uczenia maszynowego (Burkov, 2019):

1) Nadzorowane (ang. supervised learning).

2) Nienadzorowane (ang. unsupervised learning).

3) Przez wzmacnianie (ang. reinforced learning).
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Nalezy jednak zauwazy¢, ze wiele modeli ma charakter uniwersalny i moze
by¢ wykorzystywana zaré6wno w zadaniach klasyfikacyjnych, jak i regresyjnych. Dobor
adekwatne] metody uczenia maszynowego warunkowany jest nie tylko ilo$ciowymi
1 jakosciowymi cechami dostepnych zbiorow danych, lecz rowniez charakterystyka problemu
badawczego, ktory podlega analizie. Istotne znaczenie majg m.in. klasa problemu (klasyfikacja,
regresja), rodzaj danych (np. dane numeryczne, tekstowe, szereg czasowy), obecno$¢ szumu
informacyjnego, a takze wymagania dotyczace interpretowalnosci modelu, jego wydajnosci
obliczeniowe] oraz mozliwosci generalizacji wynikow. W konsekwencji wybor konkretnej
metody ML powinien by¢ poprzedzony wnikliwa analiza kontekstu zastosowania

oraz specyfiki danych wej$ciowych.

6.1.1 Uczenie nadzorowane

Uczenie nadzorowane stanowi najbardziej rozwinigta i powszechnie stosowana galaz
uczenia maszynowego, ktorej istotg jest identyfikacja wzorcéw na podstawie zbiorow danych
zawierajacych znane, uprzednio oznaczone wyniki. Proces ten polega na budowaniu modeli
poprzez analiz¢ relacji pomigdzy zestawem zmiennych niezaleznych (atrybutoéw, zmiennych
objasniajgcych, cech — ang. features), oznaczanych jako X, a odpowiadajagcym im zbiorem
wartosci docelowych (zmiennych zaleznych, objasnianych), oznaczanych jako Y (Theobald,
2017). Algorytm uczenia nadzorowanego analizuje dane treningowe w celu identyfikacji
statystycznych zalezno$ci pomigdzy cechami a wynikami. W wyniku tego procesu generowany
jest model, ktory umozliwia generowanie wynikow dla nieznanych danych wejSciowych,
na podstawie wczesniej wyuczonych wzorcow. Trafno$¢ modelu oceniana jest za pomoca
odpowiednio dobranej funkcji straty (ang. loss function), ktéra wyznacza réznice pomiedzy
warto$ciami  przewidywanymi a rzeczywistymi. Proces trenowania modelu polega
na iteracyjnym minimalizowaniu wartosci tej funkcji, az do osiaggnigcia satysfakcjonujacego
poziomu doktadnosci (Theobald, 2017). Modele oparte na uczeniu nadzorowanym znajduja
zastosowanie w dwoch podstawowych klasach probleméw (Burkov, 2019):

1) Regresji — polegajacej na przewidywaniu zmiennych ciggltych, ktore mogg przyjmowaé

dowolne wartos$ci liczbowe w okreslonym zakresie.

2) Klasyfikacji — polegajacej na przypisywaniu danych wejsciowych do jednej z kategorii

dyskretnych ze skonczonego zbioru.

Modele regresyjne znajdujg swoje zastosowanie migdzy innymi w analizie informacji

produkcyjnych (Biyeme i in., 2023; Dharwadkar i in., 2022; Fertsch M., 2020), przewidywaniu
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rezultatow zastosowania nowych rozwigzan w rolnictwie (Gao 1 in., 2023), przewidywaniu

zapotrzebowania produktoéw i dobr (Kittichotsatsawat i in., 2022; Cieslik i Metelska, 2017),

estymacji cyklu zycia produktu (Viana i in., 2023; Su i in., 2021), czy predykcji terminu

przegladoéw technicznych (Owczarek i in., 2022; Kim, 2023). Metody, ktore sg stosowane
do rozwigzywania problemow regresji to m.in.:

1) Regresja liniowa - stanowi jedng z najczesciej stosowanych metod predykcyjnych

w analizie statystycznej oraz uczeniu maszynowym. Jej podstawy teoretyczne zostaty

sformutowane przez J. L. Lagrange’a oraz C. F. Gauss’a (Seal, 1967). Metoda ta opiera

si¢ na modelowaniu zaleznosci liniowej pomigedzy zmienng objasniang (wWyjsciowa)

Y, a jedng lub wieloma zmiennymi objasniajagcymi (wejSciowymi) X. W przypadku,

gdy model uwzglednia tylko jedng zmienng niezalezng mowi si¢ o prostej regresji

liniowej. Ilustracje dopasowania takiego modelu przedstawiono na Rysunku 6.2.

Natomiast w sytuacji, gdy w analizie bierze udzial wigksza liczba zmiennych

wejsciowych, mamy do czynienia z regresja liniowa wielokrotng (wielowymiarowa,

zwang rowniez wieloraka) (Brownlee, 2016; Szaleniec, 2008). Model prostej regresji

liniowej mozna zapisa¢ w postaci Rownania 6.1:

Y =bo+ b X1 +boXo+ ... +bnXn+ g (6.1)
gdzie:
Y — zmienna zalezna;
X1, X2,..., Xn— zmienne niezalezne;
bo — wyraz wolny (punkt przeciecia z osig Y);
b1,..., bn — wspotczynniki regresji (wagi zmiennych);

¢ — sktadnik losowy (reszta, biad).

Jedna z najczgsciej stosowanych metod estymacji parametrow modelu regres;ji liniowej
jest metoda najmniejszych kwadratéw. Polega ona na minimalizacji sumy kwadratow
odchylen obserwowanych wartosci zmiennej zaleznej od wartosci przewidywanych
przez model regresyjny. Innymi slowy, estymacja parametréw odbywa si¢ poprzez
dopasowanie prostej regresji w taki sposob, aby taczna kwadratowa odleglo$¢ punktow

empirycznych od tej prostej byla mozliwie najmniejsza.
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Rysunek 6.2. Dopasowanie modelu za pomocg prostej regresji liniowej (Skoneczny, 2025)

Regresja liniowa charakteryzuje si¢ prostota zarowno pod wzgledem koncepcyjnym,
jak 1 implementacyjnym. Czyni ja to jednym z najbardziej przystgpnych algorytmow
w analizie danych. Ponadto, cechuje si¢ relatywnie krotkim czasem obliczen
w poréwnaniu z bardziej zaawansowanymi metodami predykcyjnymi. Niemniej jednak,
model ten wykazuje wysoka wrazliwo$¢ na obserwacje odstajace (ang. outliers),
ktore moga znaczaco zaburzy¢ wyniki estymacji parametrow i tym samym obnizy¢

tratnos$¢ predykcji.

Regresja wielomianowa — metoda do modelowania nieliniowych zaleznosci pomigdzy
zmienng zalezng a jedng lub wieloma zmiennymi niezaleznymi. Polega
ona na aproksymacji danych empirycznych za pomoca funkcji wielomianowej
okreslonego stopnia, co umozliwia uchwycenie bardziej ztozonych, krzywoliniowych
relacji (Rysunek 6.3.) niz w przypadku klasycznej regresji liniowej (Filipow i in., 2023).

Ogodlna posta¢ modelu regresji wielomianowej stopnia N wyraza si¢ Réwnaniem 6.2.:

Y = bo+ biX + boX? +bsX3 + ... + bpXn (6.2)
gdzie:
Y — funkcja wielomianowa;
X — zmienna wejSciowa;

b — szukane wspolczynniki regresji.
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Rysunek 6.3. Dopasowanie modelu za pomoca prostej regresji wielomianowej

(Dopasowanie krzywej w Pythonie, 2025)

Model ten moze by¢ réwniez rozszerzony na przypadki wielowymiarowe,
poprzez uwzglednienie poteg i interakcji wielu zmiennych wejSciowych. Regresja
wielomianowa, dzicki swojej elastycznosci, znajduje zastosowanie w sytuacjach,
w ktorych dane nie spetniajg zatozen liniowos$ci, jednak jej stosowanie wymaga
ostrozno$ci ze wzgledu na mozliwo$¢ nadmiernego dopasowania modelu do danych

uczacych (ang. overfitting), zwlaszcza przy wysokich stopniach wielomianu.

Nawigzujac do podzialu zaproponowanego na Rysunku 6.1, do metod pozwalajacych

rozwigzywac zard6wno problemy regresji, jak 1 klasyfikacji nalezg m.in.:

1) Drzewa decyzyjne — nazywane rowniez CART (ang. classification and regression

b)

trees) to jedna z fundamentalnych metod stosowanych w analizie danych, zarowno
w konteks$cie problemow klasyfikacyjnych, jak i regresyjnych (Breiman, 1984). Drzewa
decyzyjne to struktury grafowe, ktorych architektura umozliwia modelowanie zbioru
regul decyzyjnych, wykorzystywanych do prognozowania warto$ci zmiennej
wyjsciowej na podstawie zestawu cech wejsciowych. Strukture drzewa decyzyjnego
tworza nastepujace elementy (Bujak, 2008; Hastie i in., 2009):

Korzen — reprezentuje punkt poczatkowy konstrukcji drzewa 1 obejmuje caly zbior
danych treningowych.

Wezly wewngtrzne — odpowiadaja za dokonywanie podzialéw zbioru danych
na podstawie wartosci wybranych atrybutéw. Kazdy wezet zawiera jedng ceche

lub ich kombinacje, na podstawie ktorej wykonywany jest podzial obserwacji

105



a)

na podzbiory. Wezly sa odzwierciedleniem regut decyzyjnych, wskazujacych
ktére obserwacje maja zosta¢ przekierowane do kolejnych czgséci drzewa.

Liscie (wezty koncowe) — zawierajg finalne decyzje klasytikacyjne lub predykcyjne.
Kazdy lis¢ reprezentuje wynik analizy — przypisang klas¢ (w przypadku klasyfikacji)

lub warto$¢ liczbowa (dla regresji).

Mechanizm dziatania drzewa decyzyjnego polega na iteracyjnym dzieleniu przestrzeni
danych na mniejsze, bardziej jednorodne podzbiory przy uzyciu wybranych atrybutow.
Proces ten trwa do momentu spetnienia okreslonego ,,warunku stopu”, ktorym moze
by¢ osiggniecie maksymalnej dozwolonej glebokosci drzewa lub brak dalszego
przyrostu informacyjnego, czyli sytuacji gdy dalszy podziat nie przynosi znaczacej
poprawy w dopasowaniu modelu do danych. Podobnie jak w przypadku regresji
wielomianowej, nalezy podchodzi¢ z ostroznoscig do zbytniego dopasowania modelu
do danych uczacych (ang. overfitting), tak jak zostato to przedstawione na Rysunku 6.4.

dla drzewa o parametrze max_depth = 5.
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Rysunek 6.4. Odzwierciedlenie wartosci przez model za pomocg drzew decyzyjnych

(Decision Tree Regression , 2025)

W celu zwigkszenia efektywnosci modeli opartych na drzewach decyzyjnych, mozliwe
jest zastosowanie metod wzmocnienia, tj.:

Las losowy (ang. Random Forest) — metoda polegajaca na budowaniu wielu drzew
decyzyjnych, z ktérych kazde trenowane jest na losowo wybranym fragmencie danych

uczacych. Ostateczna decyzja klasyfikacyjna lub predykcyjna podejmowana
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jest na podstawie glosu wigkszosci sposrod wszystkich drzew. Metoda ta pozwala
zredukowac ryzyko nadmiernego dopasowania modelu (Cutler, 2011).

Wzmocnienie gradientowe (ang. gradient boosting) — metoda uczenia zespotowego,
w ktorej drzewa decyzyjne budowane sg w sposob sekwencyjny. Kazde kolejne drzewo
koncentruje si¢ na minimalizacji btedow popelnionych przez poprzednie modele,
wykorzystujac do tego informacje o kierunku najwigkszego spadku funkcji straty,
czyli gradient (Hastie i in., 2009). Do najbardziej znanych i szeroko stosowanych modeli
opartych na wzmocnieniu gradientowym nalezg m.in.: XGBoost (Extreme Gradient
Boosting) (Chen i Guestrin 2016), LightGBM (Light Gradient Boosting Machine)
(Microsoft Corporation, 2023) oraz CatBoost, ktore charakteryzuja si¢ wysoka
wydajnoscig obliczeniowa, odporno$cia na przeuczenie Oraz zdolnoscia do pracy

z duzymi i zr6znicowanymi zbiorami danych.

Sztuczne sieci neuronowe — podstawowa jednostke obliczeniowa Stanowi tutaj sztuczny
neuron, czg¢sto nazywany perceptronem. Jest to uproszczony model matematyczny
inspirowany funkcjonowaniem neuronu biologicznego (Mamczur, 2025). Perceptron
przetwarza dane wejsciowe poprzez obliczenie sumy wazonej sygnatow pochodzacych
od neuronéw warstwy poprzedniej, a nastepnie przekazuje wynik przeksztalcony
za pomocg funkcji aktywacji (Ramchoun, 2016). W Kklasycznym perceptronie
jednowarstwowym  wynik ten ma posta¢  wartosci  binarnej, jednak
w nowoczesniejszych sieciach warto$§¢ wyjsciowa moze by¢ ciaggla 1 zalezna od uzytej
funkcji aktywacji. Na Rysunku 6.5. przedstawiono matematyczny model neuronu
nawigzujacy do jego biologicznego odpowiednika — dendryty symbolizujg dane
wejsciowe, ciato komorki to funkcja sumujaca i1 aktywacji, natomiast akson
jest odzwierciedleniem danej wyjsciowej. Kazde z wej$¢ (xi) ma przypisang wage (Wi),
ktora jest wyznaczana na podstawie istotnosci danego wejscia w porownaniu do innych
danych wejsciowych. Dodatkowo uwzgledniany jest wspotczynnik b, zwany
odchyleniem (ang. bias). W wezle realizowana jest nieliniowa funkcja f (wazona suma
wejs¢) nazywana funkcja aktywacji. Zgodnie z przedstawionym opisem wyjscie

neuronu obliczane jest zgodnie z Réwnaniem 6.3 (Ducic i in., 2020):

Y = f(zwixi +b)
i=1 (6.3)
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Rysunek 6.5. Model matematyczny neuronu (Zajac, 2025)

Sie¢ neuronowa zbudowana jest z minimum trzech warstw funkcjonalnych
(Theobald, 2017):

Warstwa wejsciowa (ang. input layer) — odpowiedzialna za odbior danych wejsciowych
i ich przekazanie do kolejnych warstw przetwarzajacych. Sama warstwa nie realizuje
operacji obliczeniowych, lecz moze pehi¢ funkcje wstepnego przeksztalcenia danych,
takie jak normalizacja lub skalowanie.

Warstwy ukryte (ang. hidden layers) — stanowig gldowny komponent obliczeniowy sieci
neuronowej. Kazda warstwa sktada si¢ z zestawu neurondéw, ktére wykonuja operacje
sumy wazonej sygnalow wejsciowych, przeksztalcaja ja za pomocg nieliniowej funkcji
aktywacji, a nastepnie przekazuja wynik do kolejnej warstwy. W zaleznosci
od glebokosci sieci, liczba warstw ukrytych moze si¢ roézni¢. Sterowanie liczba
tych warstw umozliwia modelowi hierarchiczne wydobywanie coraz bardziej ztozonych
reprezentacji danych wejsciowych.

Warstwa wyjéciowa (ang. output layer) — generuje koncowy rezultat dziatania sieci
neuronowej. Liczba neuronow w tej warstwie oraz zastosowana funkcja aktywacji

sg uzaleznione od typu rozwigzywanego problemu (np. klasyfikacja, regresja).

Tlustrujgc powyzszy opis, na Rysunku 6.6. przedstawiono uproszczony schemat sieci

neuronowej uwzgledniajacy warstwy wejsciowa 1 wejsciowa oraz warstwy ukryte.
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Rysunek 6.6. Uproszczony schemat sieci neuronowej (Magnuski, 2024)

Najpopularniejsze funkcje aktywacji (Mamczur, 2024) przedstawiono na Rysunku 6.7.:
a) Funkcja sigmoidalna — zwraca wartosci w przedziale 0 i 1.
b) Tangens hiperboliczny — zwraca warto$ci w przedziale -1 i 1.

c) ReLU - zwraca warto$ci z przedziatu 0 i 1.

Sigmoid

o(z) = —

tanh
tanh(x) o "

10

RelLU
max (0, x)

=10 10

Rysunek 6.7. Najczesciej stosowane funkcje aktywacji (opracowanie wlasne

na podstawie Mamczur, 2024)
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Sztuczne sieci neuronowe znajduja zastosowanie w szerokim spektrum zagadnien
z zakresu uczenia maszynowego, obejmujac zarowno problemy regresji — polegajace
na estymacji wartosci liczbowych na podstawie danych wejSciowych —
jak 1 klasyfikacji, gdzie celem jest przypisanie obserwacji do jednej z okreslonych
kategorii. Jednym z najbardziej podstawowych, a jednoczesnie uniwersalnych modeli
sieci neuronowych jest perceptron wielowarstwowy MLP (ang. multilayer perceptron),
zaliczany do grupy sieci jednokierunkowych. Sktada si¢ on z co najmniej jednej
warstwy ukrytej, co pozwala mu modelowa¢ zaleznosci nieliniowe pomiedzy danymi
wejsciowymi a wyjsciem modelu. Dzigki swojej strukturze oraz wykorzystaniu
nieliniowych funkcji aktywacji, perceptron wielowarstwowy moze aproksymowac

dowolng funkcje ciagta (Mohammadi i in., 2018).

Algorytm SVM (ang. support vector machines) — jedna z fundamentalnych metod
uczenia maszynowego wykorzystywana zaré6wno w problemach regresyjnych,
jak i klasyfikacyjnych, jednak jego zastosowanie w kontekscie klasyfikacji jest bardziej
rozpowszechnione. SVM to metoda klasyfikacji binarnej, ktorej gtéwnym celem
jest wyznaczenie optymalnej hiperptaszczyzny separujacej dwie klasy obserwacji
w przestrzeni cech, zakladajac, ze dane sg liniowo separowalne (Halev-Shwartz
i Ben-David, 2014). Podstawowa koncepcja dziatania tego algorytmu opiera
si¢ na maksymalizacji marginesu, tj. odleglos$ci migdzy hiperptaszczyzng a najblizszymi
punktami danych obu klas. Punkty znajdujace si¢ najblizej wyznaczonej
hiperplaszczyzny 1 majace bezposredni wplyw na jej polozenie, okreslane s3 mianem
wektoréw nos$nych (ang. support vectors) — to wilasnie od nich pochodzi nazwa
algorytmu (Grus, 2018). Dziatanie algorytmu SVM skitada si¢ z kilku kluczowych
etapow, z ktorych kazdy ma istotne znaczenie dla skutecznosci procesu klasyfikacji.
W pierwszej fazie dane wejSciowe poddawane sg transformacji w taki sposob,
aby mozliwe bylo ich przedstawienie w postaci wektorow w przestrzeni
wielowymiarowej. Umozliwia to zastosowanie geometrycznych metod analizy danych.
Kolejnym etapem jest wyznaczenie hiperptaszczyzny separujacej dane nalezace
do roznych klas. W tym celu najczesciej stosuje si¢ dwie strategie: metode najwiekszego
marginesu (ang. maximal margin), ktora zaktada istnienie idealnej separacji liniowe;j,
oraz metode migkkiego marginesu (ang. soft margin) pozwalajaca na pewien stopien
btedu klasyfikacyjnego w celu uzyskania lepszej generalizacji modelu. W sytuacji,

gdy dane nie sg liniowo separowalne, SVM wykorzystuje przeksztalcenia przestrzeni
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cech za pomocg funkcji jadrowych (ang. kernel functions). Funkcje te umozliwiaja
rzutowanie danych do przestrzeni o wyzszej liczbie wymiardw, w ktorej mozliwe
staje si¢ liniowe oddzielenie klas. Po dokonaniu transformacji danych, model
przystepuje do procesu optymalizacji. Celem tego etapu jest wyznaczenie potozenia
hiperptaszczyzny maksymalizujacej margines mig¢dzy klasami oraz identyfikacja
wektorow nosnych (Rysunek 6.8.), ktore determinuja jej orientacj¢ w przestrzeni cech
(Bishop, 2006). Po wyznaczeniu hiperptaszczyzny decyzyjnej mozliwe
jest klasyfikowanie nowych obserwacji. SVM ocenia potozenie obserwacji wzgledem
hiperptaszczyzny i przypisuje jej odpowiednig etykiete klasowa. Dzigki tej wiasciwosci
model zapewnia wysoka skuteczno$¢ klasyfikacji, szczegélnie w przypadku danych
liniowo separowalnych. Z uwagi na swoja zasade dziatania oraz efektywnos$¢
obliczeniowa, SVM znajduje roéwniez zastosowanie w analizie danych o charakterze

liniowym (Hastie i in., 2009).

Rysunek 6.8. llustracja idei wektoréw nosnych (Metoda wektorow nosnych, 2025)

Algorytm K-najblizszych sgsiadow KNN (ang. K-nearest Neighbours) — model
stosowany zarowno w zadaniach klasyfikacyjnych, jak i regresyjnych. Jego dziatanie
opiera si¢ na zatozeniu, ze obiekty znajdujace si¢ w bliskim sgsiedztwie w przestrzeni
cech wykazujg tendencj¢ do posiadania podobnych warto$ci cechy wyjsciowe;,
co oznacza, ze obiekty podobne do siebie majg zwykle te samg etykiete (w przypadku
klasyfikacji) lub zblizong warto$¢ numeryczna (w przypadku regresji). W fazie
treningowej metoda KNN nie dokonuje bezposredniego modelowania danych — zamiast
tego przechowuje caty zbior treningowy jako referencyjny punkt odniesienia. W fazie
prognozowania, dla kazdej nowej obserwacji obliczana jest odlegto$¢ pomigdzy
punktem wejsciowym a wszystkimi przyktadami w zbiorze uczacym. Wykorzystywana

jest do tego wybrana metryka odlegtosci (Gokte, 2025), do ktérych nalezg m.in:
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Odlegtos¢ euklidesowa.
Odlegtos¢ Manhattan.
Odlegtos¢ Minkowskiego.

Na podstawie wybranej metryki identyfikowanych jest K najblizszych sgsiadow punktu
wejsciowego. W przypadku probleméw klasyfikacyjnych, model przypisuje nowemu
punktowi t¢ etykiete klasy, ktora dominuje wsrdd jego K sgsiadow, zgodnie z zasada
glosowania wigkszosciowego (ang. majority voting) (Srivastava, 2025). Natomiast
w kontekscie regresji, przewidywana warto$¢ obliczana jest jako §rednia (lub wazona

$rednia) warto$ci cech docelowych najblizszych sgsiadow (Rysunek 6.9.).
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Rysunek 6.9. Schematyczne przedstawienie zasady dzialania algorytmu K-najblizszych sasiadow

(opracowanie wlasne na podstawie Bukowski, 2025)

Model KNN cechuje si¢ wysoka intuicyjnos$cig i1 prostotg implementacyjna,
co przyczynia si¢ do jego szerokiego zastosowania w réznych dziedzinach analityki
danych. Warto jednak zauwazy¢, ze jego skuteczno$¢ 1 efektywnos$¢ sa silnie
uzaleznione od doboru liczby sgsiadéw (K) oraz od wybranej metryki odleglosci.
Nieodpowiednia konfiguracja tych parametrow moze prowadzi¢ do obnizenia zdolno$ci
predykcji / Kklasyfikacji, dlatego tez w praktyce niezbedna jest ich optymalizacja
(Srivastava, 2025).

Modele klasyfikacyjne natomiast, znajduja szerokie zastosowanie w przewidywaniu
przynaleznosci obiektow do okreslonych klas, kategorii lub grup. Wsréd modeli stosowanych
wylacznie do rozwigzywania probleméw klasyfikacyjnych wyrdznia si¢ m.in. naiwny
klasyfikator bayesowski NBC (ang. naive Bayes classifier). Znajduje on zastosowanie
np. w Kklasyfikacji tekstow 1 filtrowaniu spamu. Opiera si¢ na twierdzeniu Bayesa,

ktore umozliwia wyznaczenie prawdopodobienstwa przynaleznosci danej obserwacji
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do okreslonej klasy na podstawie znanych cech. Kluczowym zalozeniem modelu
jest niezalezno$¢ warunkowa cech, oznaczajaca, ze wystgpowanie jednej cechy nie wplywa
na wystgpowanie pozostalych. Pomimo, ze w rzeczywistych danych zalozenie to rzadko
jest w peti spelnione, znaczaco upraszcza ono model matematyczny i proces estymacji
prawdopodobienstw. Z uwagi wlasnie na t¢ wlasciwos¢, klasyfikator okreslany jest mianem
»haiwnego”. Dzigki swojej prostocie obliczeniowej, tatwosci implementacji oraz dobrej
skutecznos$ci wykorzystywany jest tam, gdzie interpretowalno$¢ oraz szybkos$¢ dziatania

sg istotnymi kryteriami (Hastie i in., 2009).

6.1.2 Uczenie nienadzorowane

Uczenie nienadzorowane stanowi podej$cie w uczeniu maszynowym, w ktorym modele
trenowane s3 na danych nieoznakowanych, tj. pozbawionych etykiet lub znanych wartosci
wyjsciowych. Celem tego typu uczenia jest wykrywanie ukrytych struktur, zaleznosci
lub regularnosci w danych bez nadzoru zwigzanego z oczekiwanym wynikiem (Mistak, 2025).
W ramach uczenia nienadzorowanego wyroznia si¢ dwie podstawowe klasy problemow (Guide
to Unsupervised Machine Learning: 7 Real Life Examples, 2025):

1) Analiza skupien (klasteryzacja) — polega na grupowaniu obiektow na podstawie stopnia
ich podobienstwa, w celu wyodregbnienia wzorcoOw oraz struktury wewnetrznej danych.
Modele klasteryzujace mogg rowniez stuzy¢ do wykrywania anomalii, czyli obserwacji
odstajacych od pozostatych, ktore nie naleza do zadnej z utworzonych grup (Sawka,
2020). Klasteryzacja danych to segmentacja obserwacji w homogeniczne grupy
za pomocg metod takich jak K-Means, DBSCAN czy Hierarchical Clustering. Metody
te sa wykorzystywane np. w poszukiwaniu tendencji rynkowych, analizie zachowan
uzytkownikéw czy eksploracji sieci spotecznych.

2) Redukcja wymiarowos$ci — umozliwia przeksztatcenie danych (uproszczenie zbiorow
danych) do przestrzeni o mniejszej liczbie zmiennych przy jednoczesnym zachowaniu
istotnych informacji. Analiza gléwnych sktadowych PCA (ang. principal component
analysis) jest stosowana do redukcji wymiarowo$ci danych poprzez identyfikacje
kierunké6w najwiekszej wariancji oraz eliminacje cech o niskiej wartosci informacyjne;.
Metody takie jak PCA czy jadrowa analiza glownych sktadowych (Kernel PCA)
sa szczegblnie przydatne w konteks$cie wysokowymiarowych zbioréw danych,

np. w bioinformatyce czy przetwarzaniu obrazow.
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6.1.3 Uczenie przez wzmacnianie

Uczenie przez wzmacnianie to jedna z fundamentalnych metod uczenia maszynowego,
w ktorej agent (model decyzyjny) uczy si¢ podejmowania sekwencji dziatan w dynamicznym,
interaktywnym srodowisku na podstawie sygnalow zwrotnych w postaci nagrod i kar. Celem
agenta jest wyksztatcenie strategii (polityki) postepowania, ktéra maksymalizuje skumulowang
warto$¢ oczekiwanych nagréd w dtuzszym horyzoncie czasowym. Podobnie jak w przypadku
uczenia nadzorowanego, uczenie przez wzmacnianie zaktada istnienie funkcji odwzorowujacej
dane wejsciowe na pozadane odpowiedzi. Roznica polega jednak na charakterze informacji
zwrotnej: w uczeniu nadzorowanym agent otrzymuje jawny, poprawny zestaw wyjs¢
dla danych wej$ciowych, natomiast w uczeniu przez wzmacnianie informacja zwrotna
ma posta¢ funkcji nagrody, wskazujacej czy podjete dziatanie byto korzystne z punktu widzenia
glownego celu. Uczenie przez wzmacnianie opiera si¢ na kilku kluczowych pojeciach
(Sinha, 2025):

1) Agent — model uczacy sig, ktory podejmuje decyzje i wptywa na srodowisko.

2) Sodowisko — zewnetrzny system (rzeczywisty lub symulowany), z ktérym agent

wchodzi w interakcje.

3) Nagroda / kara — informacja zwrotna ze srodowiska, oceniajaca jako$¢ podjetej decyzji.

4) Polityka — funkcja decyzyjna mapujaca stany srodowiska na dziatania.

5) Warto§¢ — oczekiwana skumulowana nagroda uzyskana z danego stanu

przy zastosowaniu danej polityki.

W odréznieniu od uczenia nienadzorowanego, ktérego celem jest identyfikacja struktur,
podobienstw i réznic w danych bez jawnych etykiet, celem uczenia przez wzmacnianie jest
opracowanie takiej sekwencji decyzji (w tym przypadku polityki), ktora maksymalizuje
dlugoterminowa korzy$¢ agenta. Agent podejmuje decyzje w $rodowisku, obserwuje
ich konsekwencje w postaci nagréd badz kar i iteracyjnie dostosowuje swoje dziatania,
eksplorujac przestrzen strategii oraz uczac si¢ na podstawie zgromadzonych doswiadczen
(Rysunek 6.10.). Dzigki swojej elastycznosci i zdolnos$ci do adaptacji w dynamicznych
warunkach, uczenie przez wzmacnianie znajduje szerokie zastosowanie w praktyce,
m.in. w robotyce, grach komputerowych, finansach oraz w optymalizacji procesow

technologicznych i decyzyjnych (Sinha, 2025).

114



stan

]

Agent )
R nagroda/ akeja
t kara A,
E_‘ R£+1 i
L' & Srodowisko |

Rysunek 6.10. Petla informacji zwrotnej ,,akcja-nagroda” modelu uczenia przez wzmocnienie

(opracowanie wlasne na podstawie Lorenzi, 2025)

6.2 Cykl zycia modelu uczenia maszynowego

Cykl zycia modelu uczenia maszynowego obejmuje zazwyczaj szereg kolejnych etapow,

ktorych realizacja stanowi warunek niezbedny do uzyskania poprawnego, wiarygodnego

oraz warto$ciowego rezultatu:

1)

2)

Zdefiniowanie problemu — stanowi fundamentalny etap procesu projektowania
modelu uczenia maszynowego, ktory determinuje zarowno wybor metod analizy,
jak ikierunek dalszych dziatan. Na tym etapie konieczne jest precyzyjne okreslenie celu
modelowania — czy problem ma charakter regresyjny (predykcja wartosci liczbowych),
czy tez klasyfikacyjny (przypisanie obserwacji do jednej z kategorii). Proces
ten wymaga rowniez analizy kontekstu dziedzinowego, w ktorym model bedzie
wykorzystywany. Nalezy uwzgledni¢ ograniczenia systemowe, wymagania zwigzane
z zastosowaniem modelu oraz potencjalne ryzyka spowodowane btedng predykcjg /
sklasyfikowaniem. Kluczowe jest zidentyfikowanie zmiennej objasnianej
oraz okreslenie dostgpnych danych wejsciowych, a takze ewentualnych czynnikow
zaktocajacych. Niedostateczna lub btedna definicja problemu moze skutkowac
nieprecyzyjnym doborem modeli, niewlasciwag konstrukcja zbioru danych,

czyli w konsekwencji ograniczong uzytecznoscig koncowego modelu.

Gromadzenie danych — w tym kroku istotne jest nie tylko zgromadzenie
wystarczajacej liczby obserwacji, lecz réwniez zapewnienie, ze dane pochodza

z wiarygodnych 1 spojnych Zrédet. Jakos¢, kompletnos¢ oraz reprezentatywno$¢
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3)

b)

d)

pozyskanych danych w sposob bezposredni wplywaja na zdolno$§¢ modelu
do uogdlniania oraz jego uzyteczno$¢ w zastosowaniach praktycznych. Dane powinny
by¢ reprezentatywne wzgledem populacji docelowej i obejmowac petlne spektrum

zmiennosci zjawiska, ktorego dotyczy modelowanie.

Przygotowanie i eksploracyjna analiza danych EDA (ang. exploratory data
analysis) — proces przygotowania danych, okreslany jako wstgpne przetwarzanie
danych (ang. data preprocessing) stanowigcy niezbe¢dny etap projektowania systemow
uczacych si¢. Obejmuje on szereg dziatan ukierunkowanych na dostosowanie surowych
danych do wymagan modelu uczenia maszynowego (Al.-jabery Khalid, 2020),
co zostato zobrazowane na Rysunku 6.11. Do podstawowych dziatan zalicza si¢ m.in.:

Usuwanie duplikatow — polega na eliminacji powtarzajacych si¢ rekordow, ktore moga

prowadzi¢ do przewartosciowania okreslonych obserwacji oraz zaburzaé rozklady

statystyczne cech.

Uzupehianie brakujacych warto$ci — braki danych mozna usuwaé (np. poprzez

eliminacje rekordow lub cech zawierajacych puste pola) badz imputowac, zastepujac

brakujace obserwacje wartoscig $rednig, mediang, dominantg lub estymata pochodzaca

z modelu.

Transformacja danych nienumerycznych — dane tekstowe muszg zosta¢ zakodowane

w sposob umozliwiajacy dopasowanie do modelu.

Usuwanie warto$ci odstajagcych — wartosci ekstremalne znaczaco odbiegajace

od rozktadu cech mogg zaktdcaé proces uczenia, prowadzac do btgdnego dopasowania

modelu 1 nadmiernej wrazliwosci na szum. Ich identyfikacja odbywa

si¢ m.in. za pomoca analizy rozktadow i testow statystycznych (Han i in., 2012).

Skalowanie danych — do przeprowadzenia tego procesu stosowane sg zazwyczaj

nastepujace techniki:

i) Normalizacja Min-Max (ang. Min-Max scaling) — polega na przeksztatceniu
warto$ci cechy wejsciowej w taki sposob, aby miescily si¢ one w okres§lonym
przedziale — najczesciej od 0 do 1. Metoda ta zachowuje relacje pomigdzy
oryginalnymi warto$ciami, jednoczesnie zapewniajac ich ujednolicong skale.

Transformacja ta wykonywana jest zgodnie z Réwnaniem 6.4:
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! £ — Tmin

Lmax — Lmin

(6.4)
gdzie:
x — warto$¢ oryginalna,
Xmin — minimalna warto$§¢ w zbiorze danych,
Xmax — maksymalna warto$¢ w zbiorze danych,

x" — znormalizowana warto$¢ po przeksztatceniu.

i) Normalizacja Z-score (standaryzacja) — polega na przeskalowaniu warto$ci zmiennej
w taki sposob, aby jej $srednia arytmetyczna wynosita 0, a odchylenie standardowe 1.
Proces ten umozliwia poréwnywanie wartosci pochodzacych z réznych rozktadow
lub cech o roznych skalach, co jest szczegolnie istotne w kontekscie metod
statystycznych oraz modeli uczenia maszynowego opartych na zalozeniu o normalnosci

rozktadu danych. Normalizacja Z-score wykonywana jest zgodnie z Rdwnaniem 6.5:

* (65)
gdzie:
x — warto$¢ oryginalna,
X — §rednia arytmetyczna zmiennej,
s — odchylenie standardowe zmiennej,

z — warto$¢ standaryzowana (Z-score).

f) Ekstrakcja i selekcja cech — obejmuje wydobycie nowych, bardziej przydatnych cech
(np. transformacje logarytmiczne, funkcje nieliniowe), a takze usuwanie cech
nieistotnych i tych silnie skorelowanych — nie wnoszacych wartosci analitycznej,

a jedynie zwigkszajacych wymiarowos¢ 1 ztozonos¢ obliczeniowa (Jafari, 2022).

Efektywnie przeprowadzony proces wstepnego przetwarzania danych zwigksza
stabilno§¢ modelu, poprawia jego zdolnos$¢ do uogodlniania oraz umozliwia osiagnigcie
wyzszych warto$ci metryk ewaluacyjnych. Bez niego niemozliwe jest osiggnigcie

wiarygodnych i powtarzalnych wynikow uczenia maszynowego.

117



Pozyskanie danych i wstepne
czyszczenie

« TAK

Czy wystepujg
Zamicr/Usuf brakujace wartosci?

brakujace wartosci

s NIE

r—

Zamien wartosci
nieliczbowe

Czy wartosci sg
liczbowe?

*TAK

Wykrywanie 1 usuwanie
zbednych cech

-

:

<TAK

. . . Przekodowanie
Czy wystepuja wartoscl ..
wartoscl
kategoryczne?
«NIE
[ Detekcja wartosci J
odstajacych .
\ r
Konsultacja ze +
specjalistg z dziedziny ,[ . ]
i statystykiem Normalizacja
Linie przerywane
= 5 reprezeniujq Sciezki
Selekcja/ekstrakcja opcjonalne
cech » Nastepna faza
J

Rysunek 6.11. Schemat postepowania w procesie przygotowania danych dla modeli ML

(opracowanie wlasne na podstawie Al.-jabery Khalid, 2020)

W statystyce eksploracyjna analiza danych EDA stanowi podejScie polegajace
na systematycznym badaniu zbiorow danych w celu identyfikacji i podsumowania
ich podstawowych charakterystyk. Analiza ta czgsto wykorzystuje wykresy
statystyczne oraz inne metody wizualizacji danych, umozliwiajace uchwycenie

istotnych wzorcow 1 zalezno$ci. Stosowanie modeli statystycznych w ramach EDA
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b)

jest opcjonalne — glownym celem tego podejscia jest natomiast poznanie informacji
zawartych w danych wykraczajacych poza formalne modelowanie. W ten sposob EDA
odroznia si¢ od tradycyjnego testowania hipotez, w ktorym wybor modelu nastepuje
przed przystgpieniem do analizy danych (Baillie i in., 2022). Znajduje zastosowanie
w metodach wspomagajacych redukcje wymiarowosci, tj.:

Skalowanie wielowymiarowe MDS (ang. multidimensional scaling).

Analiza gtownych sktadowych PCA.

Wieloliniowa analiza gtdwnych sktadowych (ang. multilinear PCA).

Nieliniowa redukcja wymiarowosci NLDR (ang. nonlinear dimensionality reduction).

Ikonografia korelacji (ang. iconography of correlations).

Podzial danych —w ramach tego etapu caty dost¢pny zbior danych zostaje rozdzielony
na podzbiory, z ktéorych kazdy petni odrgbng funkcje w procesie trenowania
i weryfikacji modelu. Podziat ten umozliwia ocen¢ uogdlniajacej zdolnosci modelu oraz
minimalizacje¢ bledow wynikajacych z nadmiernego lub niedostatecznego dopasowania.
W literaturze przedmiotu wyr6znia si¢ trzy podstawowe zbiory danych (Burkov, 2019):
Zbiér treningowy — wykorzystywany do wlasciwego procesu uczenia modelu.
Na jego podstawie model aktualizuje swoje parametry wewngtrzne (np. wagi),
identyfikuje wzorce 1 konstruuje funkcj¢ decyzyjna umozliwiajaca klasyfikacje
badZ prognozowanie.

Zbior walidacyjny (opcjonalny) — stosowany w celu strojenia hiperparametréw modelu
oraz do monitorowania jego ogoélnej zdolnosci generalizacji. Umozliwia wykrycie
1 przeciwdzialanie zjawiskom nadmiernego dopasowania oraz niedostatecznego
dopasowania do danych treningowych. Walidacja dziatania modelu na zbiorze
walidacyjnym, ktéry nie byl wykorzystywany w procesie trenowania, pozwala
na optymalizacje¢ jego architektury 1 parametrow.

Zbior testowy — przeznaczony do koncowej oceny wydajnosci modelu po zakonczeniu
procesu treningu 1 strojenia. Stuzy do oszacowania skuteczno$ci modelu na nowych

danych, co stanowi podstawe do oceny jego praktycznej przydatnosci.

Zastosowanie zbioru walidacyjnego staje si¢ szczegolnie istotne w przypadku modeli
o wysokiej ztozonosci i licznych hiperparametrach, gdzie ryzyko nadmiernego
lub niedostatecznego dopasowania jest zwigkszone (Rysunek 6.12.). Cho¢ uniwersalna

strategia podziatu danych nie istnieje, w praktyce czesto stosowanym schematem
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Klasyfikacja

jest proporcja: 70% — zbidr treningowy / 15% — zbior walidacyjny / 15% — zbior
testowy. W sytuacjach, w ktorych rezygnuje si¢ ze zbioru walidacyjnego

(np. przy prostszych modelach), dopuszczalny jest rowniez podziat: 70% — trening /
30% — test (Al’Aref i in., 2019).

Nadmierne Prawidtowe Niedostateczne
dopasowanie dopasowanie dopasowanie

[ L] [ L

P e o, *o o ® * 0,

Rysunek 6.12. Wizualizacja dopasowania do danych dla modeli klasyfikacyjnych i regresyjnych

5)

(opracowanie wlasne na podstawie What Is Overfitting?, 2025)

Wybér modelu — doboér odpowiednich modeli uczenia maszynowego uzalezniony jest
od szeregu czynnikow determinujacych zaréwno charakter zadania analitycznego,
jak 1 warunki jego realizacji. W$rod najwazniejszych aspektow wptywajacych na wybor
modelu mozna wymieni¢:

Klasa problemu (np. klasyfikacja, regresja, detekcja anomalii).

Rozmiar 1 dostepno$¢ zbioru danych.

Wiasciwosci danych (np. rozktad cech, liczba wymiaréw, obecno$¢ szumow).
Dostepnos¢ narzedzi i zasobdéw obliczeniowych.

Czas wymagany na proces trenowania modelu.

Stopien interpretowalnosci modelu.

Zalecang praktyka, powszechnie stosowang w procesie modelowania, jest rownolegle
trenowanie i testowanie wielu modeli (Tabaszewski, 2008). Podejscie to umozliwia
obiektywne poréwnanie ich wtasciwosci na wspolnym zbiorze danych oraz wybor

modelu, ktéry najlepiej spetnia zalozone kryteria.
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6)

7)

Trenowanie modelu — celem tego kroku jest umozliwienie modelowi identyfikacji
ukrytych wzorcow oraz zaleznosci w danych wejsciowych. Charakter tego procesu
rozni si¢ w zalezno$ci od wybranego paradygmatu uczenia.

W  przypadku uczenia nadzorowanego, model uczy si¢ poprzez iteracyjne
porownywanie generowanych prognoz z rzeczywistymi warto$ciami (etykietami),
dazac do minimalizacji funkcji bledu, ktoéra kwantyfikuje rozbiezno$¢ pomigdzy
warto$ciami przewidywanymi a obserwowanymi. Na tej podstawie model aktualizuje
swoje parametry, co umozliwia mu lepsze dopasowanie do wzorcow wystepujacych
w danych.

W uczeniu nienadzorowanym, proces trenowania przebiega bez dostepu do etykiet klas.
Celem modelu jest odkrycie wewnetrznej struktury danych, np. poprzez wykrywanie
skupien czy redukcje wymiarowosci. Przykladowo, algorytmy klastrowania grupuja
obserwacje w zbiory (klastry) na podstawie ich wzajemnego podobienstwa,
bez wczesniejszej wiedzy o przynaleznosci klasowej (Chen i Yan, 2015).

W przypadku uczenia przez wzmacnianie, model — okre§lany tutaj mianem agenta —
uczy si¢ poprzez interakcje z dynamicznym Srodowiskiem. W odpowiedzi na wykonane
dziatania agent otrzymuje sygnaty nagrody lub kary i przechodzi do kolejnych stanow
srodowiska. Mechanizm ten ma na celu maksymalizacj¢ dlugoterminowego zysku
(sumy skumulowanych nagréd), przy czym przejscia pomigdzy stanami czg¢sto maja
charakter stochastyczny i sa czgsciowo nieznane (Burkov, 2019).

Kazdy z wymienionych paradygmatow wymaga odmiennych metod treningu
oraz oceny skutecznosci modelu, dostosowanych do specyfiki problemu 1 rodzaju

dostepnych danych.

Ewaluacja — po zakonczeniu procesu trenowania modelu konieczne jest
przeprowadzenie jego ewaluacji, ktorej celem jest ocena zdolnosci modelu
do generalizacji, czyli poprawnego dziatania na wcze$niej niewidzianych danych.
Ocena ta pozwala okresli¢, w jakim stopniu model spelnia zatozenia problemu
I jak efektywnie go rozwigzuje. Do ewaluacji modeli wykorzystuje si¢ odpowiednie
metryki oceny, ktorych wybor zalezy od klasy problemu (np. klasyfikacja, regresja),
zastosowanego modelu oraz konkretnego celu analitycznego. Metryki te umozliwiaja
ilosciowe ujecie skutecznos$ci modelu, co stanowi podstawe do jego pordwnywania,

mozliwo$ciach poprawy oraz podejmowania decyzji o wdrozeniu w $rodowisku
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8)

9)

produkcyjnym. Miary oceny skutecznos$ci modeli dedykowanych problemom regresji

(wykorzystywanych w niniejszej dysertacji) zostaly opisane w Rozdziale 6.3.

Strojenie hiperparametrow — w zaleznosci od wynikow ewaluacji oraz stopnia
ztozono$ci modelu, dopuszczalne jest modyfikowanie warto$ci hiperparametrow,
a proces ten okresla si¢ mianem strojenia. Hiperparametry stanowia zewngtrzne
wzgledem procesu trenowania parametry sterujace przebiegiem uczenia si¢, ktore
nie podlegaja bezposredniej optymalizacji podczas treningu. Do typowych przyktadow
hiperparametrow naleza, np.: wspotczynnik szybko$ci uczenia, liczba warstw ukrytych
w sieciach neuronowych czy liczba okreslajaca glgbokos¢ drzew decyzyjnych.
Gléwnym celem optymalizacji hiperparametréw jest identyfikacja takiego zestawu
wartosci, ktory pozwoli na maksymalizacje efektywnosci dziatania modelu

oraz uzyskanie najlepszych wynikow (Mamczur, 2022).

Testowanie i walidacja koncowa — nastepnie model poddawany jest ocenie
na dedykowanym, wczesniej niewykorzystywanym zbiorze testowym. Celem
tego dziatania jest obiektywne oszacowanie zdolnosci modelu do generalizacji,
czyli jego skutecznosci w przewidywaniu wynikéw dla nowych, nieznanych danych.
Walidacja koncowa umozliwia identyfikacje ewentualnych probleméw 1 wiarygodnosci
modelu w kontek$cie jego praktycznego zastosowania. W tym etapie stosuje
si¢ r6znorodne metryki oceny, dostosowane do klasy problemu i rodzaju modelu,
z mys$la o jego finalnej ewaluacji. Ostateczne wyniki testowania i walidacji maja
fundamentalne znaczenie dla decyzji dotyczacych wdrozenia modelu w $rodowisku

produkcyjnym lub dalszej jego optymalizacji.

10) Wdrozenie — stanowi koncowy etap procesu projektowania i trenowania modelu,

ktorego celem jest jego integracja z rzeczywistym srodowiskiem operacyjnym. Oznacza
to przeniesienie modelu z fazy eksperymentalnej do zastosowan praktycznych,
w ktorych bedzie on przetwarzal nowe, naptywajace dane i generowal prognozy
lub decyzje wspierajace procesy biznesowe, technologiczne badz analityczne. Proces
wdrozenia moze obejmowacé szereg dziatan technicznych, tj.: eksport wytrenowanego
modelu do odpowiedniego formatu, przygotowanie interfejsow API (ang. application
programming interface) do komunikacji z innymi systemami, zapewnienie

infrastruktury obliczeniowej (np. serwery lokalne Ilub chmura obliczeniowa)
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oraz implementacj¢ mechanizméw monitorowania jego wydajnosci. Istotnym aspektem
wdrozenia jest rowniez zapewnienie stabilnosci, skalowalno$ci i bezpieczenstwa

dziatania modelu.

11) Monitorowanie i utrzymanie — wdrozony model powinien by¢ stale monitorowany
pod katem poprawnos$ci dziatania, a takze regularnie aktualizowany — szczegdlnie
w sytuacjach, gdy dane wejsciowe ulegajg zmianom, co moze negatywnie wpltywac
na skuteczno$¢ modelu. Dlatego proces wdrozenia nie konczy si¢ na uruchomieniu
modelu, lecz czesto stanowi poczatek jego cyklu zycia w srodowisku produkcyjnym,
ktéry wymaga biezacej kontroli i adaptacji. Obejmuje to $ledzenie takich aspektow
jak: doktadnos$¢ predykeji / klasyfikacji, rozktad danych wejsciowych, czestos¢ btedow,
czas odpowiedzi czy odsetek odrzuconych zapytan. Szczegdlne znaczenie
ma wykrywanie zjawisk, tj.:

a) Data drift — zmiana rozktadu danych wejsciowych.

b) Concept drift — zmiana relacji migdzy danymi a etykietami wynikowymi.

c) Model decay — stopniowy spadek poprawnosci dziatania modelu w czasie.

Utrzymanie modelu obejmuje dziatania naprawcze i adaptacyjne, np.. okresowe
ponowne trenowanie modelu na nowych danych, aktualizacja hiperparametrow,
dostosowanie architektury modelu, a takze zarzadzanie jego wersjami. Moze takze
wigzac si¢ z przeprowadzaniem audytoéw modelu pod katem zgodnosci z wymaganiami

regulacyjnymi 1 panujgcymi standardami.

Calos¢ przedstawionego cyklu (Rysunek 6.13), wskazuje na konieczno$¢ podejscia
systemowego 1 ciaglej iteracji, co pozwala zapewni¢ nie tylko wysoka skuteczno$¢
opracowanego rozwigzania mierzong odpowiednimi metrykami ewaluacyjnymi, lecz takze
jego stabilnos$¢ i odporno$¢ na zmieniajgce si¢ srodowisko. Rzetelnie przeprowadzony cykl
gwarantuje, ze model zachowuje swoja przydatnos¢ praktyczng oraz moze by¢ bezpiecznie
utrzymywany w $rodowisku produkcyjnym. Regularne monitorowanie oraz ponowne
dostrajanie sprawiajg, ze funkcjonowanie modelu pozostaje zgodne z zalozeniami

projektowymi.
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ZDEFINIOWANIE
PROBLEMU
MONITOROWANIE | GROMADZENIE

UTRZYMANIE DANYCH

PRZYGOTOWANIE
WDROZENIE 1 EKSPLORACYINA
ANALIZA DANYCH

TESTOWANIE

- PODZIAL DANYCH
1 WALIDACIA KONCOWA

STROJENIE
HIPERPARAMETROW

WYBOR MODELU

EWALUACIA TRENOWANIE MODELU

Rysunek 6.13. Cykl zycia modelu uczenia maszynowego (opracowanie wlasne)

6.3 Ocena dzialania modelu dla problemu regresji

Ze wzgledu na to, ze problem badawczy niniejszej dysertacji zostal okre$lony jako problem
regresyjny, podjeto decyzje o zastosowaniu i pordwnaniu metod dedykowanych modelowaniu
zaleznos$ci ilosciowych. Wybdr ten wynika z potrzeby przewidywania warto$ci zmiennej
objasnianej na podstawie zestawu zmiennych objasniajacych, co jest charakterystyczne
dla probleméw regresyjnych. Analiza poroéwnawcza réznych metod umozliwia oceng
ich skutecznosci w kontek$cie dopasowania modelu, odpornosci na warto$ci odstajace
oraz interpretowalnosci wynikow. Do oceny dziatania i porownania modeli rozwigzujacych
problemy regresji, stosuje si¢ nastgpujace mierniki (Chicco i in., 2021):

1) Btad sredniokwadratowy MSE (ang. Mean Squared Error) — suma kwadratow roznic

migdzy wartoscig rzeczywistg a prognozowang. Uzywana do mierzenia ogolnego btedu

predykcji w problemach regresji. Oblicza si¢ go z wykorzystaniem Réwnania 6.6:

1 wm .
MSE = — ¥, (y; — ¥,)?
(6.6)
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2)

3)

gdzie:
m — liczba obserwaciji;
yi — I-ta obserwowana warto$¢;

y:— odpowiadajaca jej warto$¢ prognozowana.

Pierwiastek btedu sredniokwadratowego RMSE (ang. Root Mean Squared Error) —
mierzy $rednig réznice pomigdzy przewidywanymi wartosciami a rzeczywistymi
warto$ciami docelowymi. Im nizsza wartos¢ RMSE, tym lepiej model radzi sobie
z aproksymacja rzeczywistych danych. Matematyczny zapis zostal przedstawiony

za pomocg Rownania 6.7:

RMSE = \/— m = Y2
(6.7)
gdzie:
m — liczba obserwaciji;
yi — I-ta obserwowana warto$¢;

y;— odpowiadajaca jej warto$¢ prognozowana.

Sredni blad bezwzgledny MAE (ang. Mean Absolute Error) — intuicyjny i tatwy
do interpretacji, traktujacy rownomiernie wszystkie odchylenia. Jest mato wrazliwy

na wartosci odstajace i oblicza si¢ go zgodnie z Réwnaniem 6.8:

1 n
MAE = — Elj yi — B
(6.8)
gdzie:
n — liczba obserwaciji;
Vi — i-ta obserwowana warto$¢;

y:— odpowiadajaca jej warto$¢ prognozowana.

4) Sredni bezwzgledny blad procentowy MAPE (ang. Mean Absolute Percentage Error)

— wyraza btad predykcji jako procent warto$ci rzeczywistej. Zastosowanie
go jest nieodpowiednie, gdy wartosci rzeczywiste sg bliskie zeru. Obliczany wedlug

Roéwnania 6.9:
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5)

6)

o . TL
MAPE — 100%

Yi — Ui ‘

Ui
(6.9)

gdzie:

n — liczba obserwaciji;

yi — I-ta obserwowana warto$¢;

y:— odpowiadajaca jej warto$¢ prognozowana.

Wspodtczynnik determinacji R? — okre$la jaka cze$é wariancji zmiennej zaleznej
jest wyjasniana przez model. Wyraza stopien dopasowania modelu do danych. Miara
R? przyjmuje warto$ci od 0 do 1, gdzie warto§¢ bliska 1 oznacza bardzo dobrg jako$é
modelu, natomiast 0 stabg jako$¢ modelu. Modele osiggajace wartosci >0.7 uznaje

si¢ za dobre. R? wyznaczany jest zgodnie z Réwnaniem 6.10:

R2—1— MSE (model)

MSE (odniesienie) (6.10)

gdzie:
MSE (model) — btad $redniokwadratowy predykcji do rzeczywistej wartosci;
MSE (odniesienie) — btad sredniokwadratowy $redniej predykcji do rzeczywistej

wartosci.

Skorygowany wspotczynnik determinacji ‘Adjusted R? — uwzglednia liczbe zmiennych
w modelu 1 wielko$¢ proby, zapobiegajac sztucznemu zawyzaniu wartosci R?

przy dodawaniu kolejnych predyktorow. Wyznaczany zgodnie z Rownaniem 6.11:

, . —1
Adjusted R2 =1 — (1 R?) — 2~
n—p-—1
(6.11)
gdzie:
n — liczba obserwacji;

p — liczba predyktorow.
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7.Czes¢ badawcza

W dotychczasowych rozdziatach pracy przedstawiono zagadnienia zwigzane z budowa,
technologia wytwarzania, metodami testowania oraz jednorodno$cig opon. Omowiono
takze aktualne kierunki badan opon samochodowych, ze szczegdélnym uwzglednieniem
rosngcego znaczenia metod uczenia maszynowego, a takze wskaznikow umozliwiajacych
oceng modeli predykcyjnych. Analiza ta stanowi podstawe do podjecia badan
ukierunkowanych na praktyczne wykorzystanie wspomnianych metod obliczeniowych

w doskonaleniu procesow produkcyjnych. Celem i hipoteza niniejszej rozprawy doktorskiej sg:

Cel:

Opracowanie modelu generujacego w czasie rzeczywistym wartosci stozkowatosci opon

na podstawie danych wej$ciowych z procesu ich konfekcji.

Hipoteza:
Na etapie pomiaru zmiennych wej$ciowych komponentow sktadowych danej opony podczas

procesu konfekcji mozliwa jest skuteczna predykcja jej stozkowatosci.

W czgséci badawczej skoncentrowano si¢ na dziataniach dgzacych do opracowania modelu
przewidujacego stozkowatos¢ opon stanowiacej istotny parametr jakosciowy. Przekroczenia
jej limitu znajduja si¢ wysoko w hierarchii probleméw produkcyjnych. Zmiennos¢ tej wielkosci
pozostaje w duzej mierze konsekwencja wtasciwosci 1 rozmieszczenia materiatdw uzywanych
na etapie konfekcji, co wskazuje na mozliwo$¢ prognozowania jej wartoSci na podstawie
pomiaré6w wykonywanych w trakcie tego procesu.

Celem badan jest opracowanie modelu predykcyjnego umozliwiajacego przewidywanie
stozkowato$ci opon na podstawie danych pomiarowych uzyskiwanych w procesie konfekcji.
Sformutowanie ,,skuteczna predykcja” w niniejszej rozprawie, jest rozumiane jako zdolnosé
modelu do prawidtowego przewidzenia, czy opona znajdzie si¢ w narzuconym indywidualnie
dla niej limicie stozkowatosci. W tej czesci pracy przedstawiono charakterystyke danych
wykorzystanych w badaniach, metodyke ich przetwarzania oraz zestaw modeli uczenia
maszynowego poddanych analizie poréwnawczej. Omowiono takze wyniki przeprowadzonych
badan oraz dokonano oceny praktycznych mozliwosci wdrozenia opracowanego rozwigzania

w warunkach przemystowych. Z mys$la o przedstawieniu logiki dziatan podejmowanych
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w czesci badawczej, w Tabeli 7.1. zaprezentowano poszczego6lne jej etapy dazace do uzyskania

zamierzonego celu.

Tabela 7.1. Etapy realizowanych dzialan czeSci badawczej pracy doktorskiej (opracowanie wlasne)

Lp. Etap prac Uzasadnienie postepowania
Omowienie sposobu rejestracji Przedstawienie przedmiotu badan
1 | danych wejsciowych i danych oraz okreslenie obszaru realizowanych prac
wejsciowych. na tle catego procesu produkcji opon.
Opis dotychczasowego przeptywu . o
o Zaprezentowanie stanu wejsciowego
danych wejsciowych ‘ ' '
2 | (przed rozpoczeciem badan 1 wdrozeniem
1 wyj$ciowych ‘
o ‘ opracowanego narzedzia).
w przedsiebiorstwie.
o o Witasciwy dobor zmiennych wejsciowych
Przedstawienie uzasadnienia - .
. o do modelu predykcji stozkowatosci
wyboru zmiennych wej$ciowych, _ ‘ ‘
3 o ) dla skrajnych rozmiaréw opon z portfolio
przygotowanie i eksploracyjna ' . .
_ . . mozliwos$ci produkcyjnych maszyn
analiza danych zbiorow 11 V.
VMI MAXX.
Poszukiwanie odpowiednich Rzetelna ocena trenowanych modeli,
A kryteriéw poréwnawczych odnalezienie miernikdw stanowigcych
dla modeli dedykowanych mianownik doboru modelu do dalszych
do probleméw regres;ji. krokéw badawczych.
. . 3 Okreslenie charakteru badanych powiagzan,
Analiza zastosowania regresji o . '
S | .. ) uzasadnienie uzycia metod do testowania
liniowej wielu zmiennych.
zaleznosci nieliniowych.
6 Analiza zastosowania modelu Obserwacja efektu modelowania uzyskanego
MLP. za pomocg sztucznych sieci neuronowych.
Zwigkszenie puli porownawczej
. Analiza zastosowania modeli zastosowanych metod poprzez uzyskanie
opartych na drzewach decyzyjnych. | rezultatu modelowania z wykorzystaniem
drzew decyzyjnych.
o Analiza dotychczasowych Ocena i wytypowanie najlepszego modelu
wynikéw z zastosowaniem 5 zmiennych wejsciowych.
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Osiagniecie szerszej informacji zwrotnej
Dodanie széstej zmiennej z procesu konfekcji opon, zwigkszenie precyzji
wejsciowej do modelowania. predykcji uzyskanych modeli, powtorna

weryfikacja osiggnigtych rezultatow.

Ocena dziatania modelu dla posrednich

) ) wielkos$ci rozmiardw opon i jego
Obserwacja zachowania modelu na
) ) uniwersalnosci w stosunku do charakteru
nieznanych zbiorach danych (I1, 11, . o o
10 | produkcji przedsigbiorstwa. Walidacja modelu
IV, VI) pochodzacych z produkcji )
‘ ' dedykowanego do wdrozenia
szerszej grupy rozmiarO6w opon. o ‘ o
w przedsigbiorstwie poprzez osiggnigcie

zsyntetyzowanych wnioskow.

7.1 Przedmiot badan

7.1.1 Pomiary komponentow skiadowych opony na maszynie
VMI MAXX

W tym podrozdziale przedstawiono sposob pomiaréw materiatow, ktorych rezultaty
sg istotne dla prawidtowego dzialania ostatecznej wersji modelu. Maszyna konfekcyjna
VMI MAXX wykonuje pomiary komponentéw sktadowych opony podczas I fazy konfekcji
W nastgpujacy sposob:

1) Zespot PA

Pomiar dlugosci i szerokosci zespotu PA odbywa si¢ na pasie przenosnika bezposrednio
przed jego natozeniem na beben karkasu (Rysunek 7.1.).

Za pomiar dtugo$ci odpowiada system wykrywania krawedzi poczatku 1 konca materiatu
sktadajacy si¢ z rolki detekcji oraz fotokomoérki mierzy dlugos¢ materiatu. Fotokomorka
wykrywa krawedzie materiatu, natomiast enkoder w trakcie ruchu przenosnika
z umieszczonym na nim materialem zlicza ilo$¢ obrotow rolki detekcji pomigdzy napotkanymi
krawedziami. Oprogramowanie maszyny przelicza obroty na dtugo$¢ liniowa [mm] materiatu,
ktora nastepnie zapisywana jest w Bazie Danych Produkcyjnych maszyny VMI MAXX.

Pomiar szeroko$ci natomiast przeprowadzany jest przez system prowadzenia karkasu
sktadajacy si¢ z czterech kamer zamontowanych w statych miejscach, ktére skanujg krawedzie

materialdéw. Probki pomiarowe pobierane sg podczas transportu materiatu zespotu PA
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z przenosnika noza na przeno$nik aplikujacy, ktdre nastepnie zapisywane sg w Bazie Danych
Produkcyjnych maszyny VMI MAXX. Dodatkowo, dzigki tym pomiarom system sterownika

prowadzenia karkasu moze prawidtowo zrowna¢ beben karkasu z aplikatorem.

Rysunek 7.1. Aplikator karkasu: 1 - rolka piankowa, 2 - detektor krawedzi poczatku i konca materiatu,
3 - system prowadzenia karkasu, 4 - silnik napedowy, 5 - pas przenosnika (opracowanie wlasne

na podstawie materialow wlasnych przedsiebiorstwa)

2) Opasania i bieznik

Pomiary dtugos$ci opasania 1, opasania 2 oraz bieznika odbywajg si¢ w analogiczny sposob
na dedykowanych dla nich przenosnikach. Za pomiar szerokos$ci opasania 1, opasania 2
oraz bieznika a takze ich prawidlowe wycentrowanie na bgbnie B&T odpowiedzialne
sa dedykowane im systemy prowadzenia. Ze wzgledu na podobienstwo zasady
przeprowadzania pomiaréw dla tych materialéw ponizej zostanie ona omdéwiona na przyktadzie
materialu bieznika.

Urzadzenie pomiaru dtugos$ci bieznika znajduje si¢ nad przeno$nikiem podajacym materiat
bieznika do przenos$nika noza (Rysunek 7.2.). Urzadzenie pomiaru dlugosci sktada si¢ z rolki

wykrywania krawedzi 1 fotokomorki. Przenos$nik noza jest wyposazony w silnik sterowany
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czestotliwosciowo, natomiast przenosnik podajacy jest wyposazony w serwonaped.
Za transport materialu do przenos$nika noza odpowiadaja pracujace razem dwa napedy.
Gdy krawedz materiatu styka si¢ z rolkg wykrywania krawedzi, fotokomorka aktywuje
si¢, a sterownik serwomotoru zaczyna zlicza¢ impulsy silnika do chwili osiggni¢cia wymaganej
dhugosci. Wynik dokladnego pomiaru zapisywany jest w Bazie Danych Produkcyjnych
maszyny VMI MAXX. W uproszczeniu: wymagana dtugos¢ = odlegto§¢ noz/fotokomorka
(stata) + impulsy silnika. Po osiggnieciu wymaganej nastawy transport materiatu

jest zatrzymywany, a ndz tnie materiat.

Rysunek 7.2. Zespol przeno$nikow bieznika: 1 — material, 2 - urzadzenie pomiaru dlugosci, 3- silnik
napedowy (przeno$nik podajacy), 4 - czujnik zblizeniowy, 5 - rolka wykrywania krawedzi, 6 — przenos$nik,
7 - silnik napedowy (przenos$nik noza) (opracowanie wlasne na podstawie materialéw wlasnych

przedsiebiorstwa)

System prowadzenia bieznika (Rysunek 7.3.A) odpowiada za pomiar szerokos$ci materiatu
bieznika oraz jego prawidlowe wycentrowanie na begbnie B&T. Na przeno$niku aplikujacym
znajduje si¢ mata szczelina, nad ktoérg zamontowana jest kamera, a pod nig — listwa LED.
Swiatto LED utatwia kamerze generowanie obrazow, ktore nastgpnie sa wykorzystywane

do wykrywania materialu na przenos$niku. Koder napgdzany tasmg przenosnika generuje
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impulsy informujace kamere o momencie zrobienia zdj¢cia. Dzieki temu kazde zdjecie jest
wykonywane w cyklicznie ustalonej odleglo$ci (zgodnie z narzucong czgstotliwoscia
probkowania). Wartosci zmierzone przez kamere s3 wysylane do kontrolera PLC
oraz zapisywane w Bazie Danych Produkcyjnych maszyny VMI MAXX. Kontroler
PLC wykorzystuje je do aktywnego centrowania materialu na bebnie B&T poprzez

przesuwanie go na boki (Rysunek 7.3.B).
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Rysunek 7.3. System prowadzenia bieznika (A): 1 — PLC, 2 — kamera, 3 — koder, 4 - listwa LED, 5 — beben
BT. Aktywne centrowanie materialu na bebnie B&T (B) (opracowanie wlasne na podstawie

materialow wlasnych przedsiebiorstwa)

7.1.2 Pomiary wielkosci opisujacych jednorodnos¢ opon
na maszynach TUO i Rim Flow oraz dotychczasowy
przeptyw danych

Po procesie wulkanizacji, opony transportowane s3 przenosnikami tasmowymi

bezposrednio do maszyn stuzgcych do pomiaru jednorodnosci (TUO i Rim Flow). Wielkos$ci
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opisujace jednorodno$¢ opon mierzone sg zgodnie z normg (Polski Komitet Normalizacyjny,
2002) w warunkach okreslonych wymaganiami klienta (opony OE) lub w aktualnej wersji
(ETRTO, 2025) (dla opon TRADE). Wszystkie rezultaty zapisywane sg w Bazie Danych UNIF.
Dotychczasowy przeptyw danych w przedsiebiorstwie zostal przedstawiony na Rysunku 7.4.
Przed zapisem w dedykowanych bazach danych zar6wno dane wej$ciowe jak i dane wyj$ciowe
ulegajg przetworzeniu do postaci narzuconej przez Dziat TS (Dziat Technologiczny)
aby sposob ich uporzadkowania odpowiadal biezagcym potrzebom przedsigbiorstwa,
np. w celu uzyskania jak najszybszej odpowiedzi i wypracowania $rodkow zaradczych

na napotkane problemy produkcyjne i pojawiajace si¢ defekty opon.

DANE WEJSCIOWE DANE WYJSCIOWE

. . . : . Pomiar wielkosci opisujacych
Pomiar wielkosci wymiarowej na

. . jednorodnosc na maszvnach Rim
maszynie WIMI MAZ Flow i TUO
Zapis pomiaru na serwerze Zapis pomiaru na serwerze
maszyny VMI MAXX maszyny Rim Flow ub TUO
Przetworzenie danych przez Przetworzenie danych przez
system CORTEXX do postaci wewnetrzyny system do postaci
skonfisurowanej przez dziat TS skonfisurowanej przez dziat TS
Zapis w Bazie Danych
Produkcyinych maszyny VMI Zapis w Barzie Danych UNIF
MAXX

Rysunek 7.4. Dotychczasowy przeplyw danych wejsciowych i wyjsciowych w przedsi¢ebiorstwie

(opracowanie wlasne)

Ze wzgledu na zaistnienie nowej mozliwo$ci rejestracji danych wejsciowych na maszynach

konfekcyjnych VMI MAXX, ktorymi sa rezultaty pomiarow wymiarowych komponentow
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sktadowych opony, jako wielko§¢ bedaca przedmiotem predykcji modelu stanowigcego
przedmiot badan niniejszej dysertacji przyjeto stozkowatos¢. Wynika to z faktu,
iz przekroczenia limitu tej wielkosci opisujacej jednorodno$¢ opon wynikaja goéwnie
z zaburzenia symetrii materialow wzgledem osi opony oraz niedotrzymania specyfikacji

ich szerokosci (Nakajima, 2019).
7.2 Gromadzenie, przygotowanie i analiza danych

7.2.1 Rejestracja i wstepne przetwarzanie danych

Dazac do rozwigzania problemu zdefiniowanego w celu i hipotezie badawczej niniejszej
pracy doktorskiej rozpoczgto od zweryfikowania doktadnosci pomiarowej czujnikow maszyny
VMI MAXX odpowiadajacych za zbior danych wejSciowych do budowanego modelu.
W przypadku wykrycia rozbiezno$ci pomigdzy pomiarem fizycznym a wynikiem podawanym
przez oprogramowanie, przeprowadzono kalibracje danego czujnika zgodnie z instrukcja
techniczng maszyny VMI MAXX.

Sposrod wszystkich wielkosci zapisywanych przez maszyng VMI MAXX dla kazdej sztuki
opony, wybrano 5 zmiennych wejsciowych (Tabela 7.2.) zasugerowanych przez eksperta
dziedzinowego. Zmienne te wybrano majac na uwadze istot¢ zjawiska stozkowatoSci,
ktoére opisuje utrzymanie zadanego toru jazdy podczas ruchu opony. W nowoczesnych
konstrukcjach opon odpowiadaja za to gldwnie bieznik (zapewniajacy kontakt opony
z podtozem) oraz opasania (zapewniajace sztywnos$¢ opony) (Rodgers i Waddell, 2005).
Zaburzenie symetrii tych materialow wzglgdem osi opony i niedotrzymanie specyfikacji
ich szerokosci to glowne powody przekraczania limitu stozkowato$ci (Nakajima, 2019).
Co wigcej, wymienione komponenty stanowig ok. 50% catkowitej masy opony o konstrukcji
standardowej*, zatem maja one znaczacy wpltyw na ewentualne przesuniccie jej $rodka masy.
Wzigto takze pod uwage szerszy sens fizyczny zjawiska stozkowato$ci, ktory zostat
juz przyblizony w Rozdziale 4.3.5 niniejszej dysertacji. Kluczowy wplyw zmiennych
wymienionych w Tabeli 7.2. zostat dodatkowo potwierdzony wieloletnim do§wiadczeniem
przedsigbiorstwa w codziennym eliminowaniu defektow oraz odnajdowania ich przyczyn
w duzej liczbie rozmiarow opon. Ponadto w celu uzasadnienia wyboru zmiennych,

przeprowadzono eksploracyjng analiz¢ danych.

4 W kontekscie rozwazan niniejszej rozprawy doktorskiej, ,.konstrukcja standardowa opony” wskazuje na opone
niezawierajaca w swojej budowie wzmacniajacej wktadki runflatowej, poniewaz tylko dla takiego typu rozmiar6w
opon realizowane byly badania.
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Tabela 7.2. Zmienne wejsciowe wybrane przez eksperta dziedzinowego (opracowanie wlasne)

ZMIENNA WEJSCIOWA

OPIS

BR1_WIDTH_MEASURED

Srednia warto§¢ pomiaru szerokosci
pierwszego opasania dedykowanego do danej
opony zmierzona przez system prowadzenia

opasan [mm]

BR2_WIDTH_MEASURED

Srednia warto§¢ pomiaru szerokosci drugiego
opasania dedykowanego do danej opony
zmierzona przez system prowadzenia

opasan [mm]

TD_WIDTH_MEASURED

Srednia warto§¢ pomiaru szerokosci bieznika
dedykowanego do danej opony zmierzona

przez system prowadzenia bieznika [mm]

1BAP_BODY_AVG_OFF_CENTER

Srednia warto§¢ przecentrowania pierwszego
opasania dedykowanego do danej opony

w odniesieniu do lasera centralnego

bebna B&T [mm]

2BAP_BODY_AVG_OFF_CENTER

Srednia warto$¢ przecentrowania drugiego
opasania dedykowanego do danej opony
w odniesieniu do lasera centralnego

bebna B&T [mm]

Do badan wykorzystano zbiory danych przedstawione w Tabeli 7.3.

Tabela 7.3. Zbiory danych uzywane do badan (opracowanie wlasne)

ZBIOR LICZBA REJESTROW | ZAKRES CZASU
DANYCH ROZMIAR OFONY (OPON) W ZBIORZE PRODUKCJI
[ 285/35 R22 106Y XL 7006 07-09.2021
I 285/35 R22 106Y XL 14352 03-06.2024
1 215/50 R18 92W 10239 02-06.2024
IV 235/55 R19 101T 10212 02-06.2024
V 205/55 R19 97V 6937 02-05.2024
Vi 225/45 R18 91W 10284 03.2024

135




Dane do wymienionych zbioréw zostaly pobrane z historycznego rejestru, powstalego

podczas rzeczywiste] produkcji masowej opon w przedsi¢biorstwie. Schemat rejestracji

1 przygotowania danych na tle przeptywu procesu produkcji opon przedstawiono

na Rysunku 7.5. Pomiary wymiaréw komponentow sktadowych opony z etapu konfekcji

(przeprowadzane przez maszyne VMI MAXX) oraz wyniki pomiaréw stozkowatosci opony

z etapu inspekcji koncowej (wykonywane przez maszyny Rim Flow i TUO) zostaty

zarejestrowane w dedykowanych bazach danych. Dla kazdego badanego rozmiaru opony

zintegrowano dane z tych baz poprzez zestawienie wybranych zmiennych wejsciowych

ze zmienng wyjsciowa dla danego kodu kreskowego (sztuki opony).

KONFEKCIA

Pomiar wielkosci
wymiarowych na maszynie
VIMI MAXX

Pomiar stozkowatosci na

maszynach Rim Flow i TUO

Baza Danych Produkecyjnych
maszyny VMI MAXX

\< Integracja baz danych >/

Baza Danych UNIF

Przygotowanie danych

MODEL

Rysunek 7.5. Schemat rejestracji i przygotowania danych na tle procesu produkcji opon

(opracowanie wlasne)
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Zmienne wejsciowe kazdego zbioru byly zawsze rejestrowane przez t¢ sama maszyng
konfekcyjng (dane produkcji z jednej maszyny dla danego rozmiaru opon). Niescistosci
w danych zostaly skorygowane (0czyszczanie danych) — usunieto warto$ci zduplikowane
(z powodu np. drugiego lub kolejnego pomiaru jednorodnos$ci) oraz wiersze zawierajace puste
komorki (pojawiajace si¢ dlatego, ze np. opona przez wzglad na inne defekty nie dotarta
do etapu pomiaru jednorodnosci). W przypadku danych o warto$ci dyskusyjnej, decyzje¢
0 naprawieniu / usunieciu rekordu podejmowano na podstawie analizy statystycznej
oraz znajomosci probleméw produkcyjnych lub jakosciowych wystepujacych w danym
okresie. Dla wszystkich testowanych metod dane (kazda zmienna wejsciowa i wyjsciowa)
zostaly znormalizowane do zakresu <O; 1>, poniewaz powinny charakteryzowaé
si¢ tym samym rzedem wielkosci, aby zapewni¢ wiarygodne poréwnanie réznych modeli.
Przygotowane w ten sposob dane zostaly implementowane do wszystkich modeli badanych

w ramach niniejszej dysertacji.

7.2.2 Eksploracyjna analiza danych

W Tabeli 7.4. zawarto limity stozkowato$ci dla badanych zbiorow danych, ktore sg zgodne

z wymaganiami klienta lub wewngtrznymi standardami przedsigbiorstwa.

Tabela 7.4. Limity stozkowatos$ci badanych zbioréw (opracowanie wlasne)

ZBIOR
BANYCH ROZMIAR OPONY LIMIT CON [N]

| 285/35 R22 106Y XL <-30; 30>

I 285/35 R22 106Y XL <-40; 20>

I 215/50 R18 92W <-35; 45>
v 235/55 R19 101T <-45; 35>

Vv 205/55 R19 97V <-95; 95>
VI 225/45 R18 91W <-38; 62>

W Tabeli 7.5. przedstawiono tolerancje wymiarowe zmiennych wejsciowych,
ktore sg zgodne z procesem konfekcji 1 majg zastosowanie we wszystkich badanych zbiorach

danych (I-VI).
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Tabela 7.5. Tolerancje wymiarowe zmiennych wej$ciowych (opracowanie wlasne)

ZMIENNA WEJSCIOWA [mm] TOLERANCJA [mm]
BR1_WIDTH_MEASURED +/-3
BR2_WIDTH_MEASURED +/-3
TD_WIDTH_MEASURED +/-3

1BAP_BODY_AVG_OFF CENTER +/-1
2BAP_BODY_AVG_OFF _CENTER +/-1

Przeprowadzono eksploracyjna analize danych nast¢pujgcych zbiorow:

1) | — dane dotyczg najszerszego i najciezszego rozmiaru opony sposrod wybranych.
W czasie jego produkcji dochodzito do problemow z utrzymaniem limitu stozkowatos$ci
(generowanie ztomow, duzo wartosci odstajgcych), dodatkowo w fabryce miat miejsce
przestdj wakacyjny.

2) V - dane dotycza najwezszego i najlzejszego rozmiaru opony sposrod wybranych;

podczas produkcji nie odnotowano wigkszych problemow.

Dane ze zbiorow 11 V zostaly wybrane jako przedmiot badan i analizy porownawcze;j
modeli ze wzglgdu na to, ze okre$laja spektrum rozmiaréw opon produkowanych na maszynach
VMI MAXX (dane w nich zawarte dotycza produkcji najwigkszego i najmniejszego rozmiaru
opon). W Tabeli 7.6. zaprezentowano wartosci specyfikacyjne komponentéw dla zbioréw
1 V. W tabeli nie uwzgledniono przecentrowania opasania 1 i 2, ktérego domyslna wartos¢

specyfikacyjna dla wszystkich omawianych w trakcie badan przypadkow wynosi 0.

Tabela 7.6. Wartosci specyfikacyjne zmiennych wejsciowych (opracowanie wlasne)

ZMIENNA WEJSCIOWA Zbiér 1 Zbiér V
BR1_WIDTH_MEASURED [mm] 251 181
BR2_WIDTH_MEASURED [mm] 241 171
TD_WIDTH_MEASURED [mm] 308 220

Obliczono nastepujace wartosci  podstawowych miar statystycznych zmiennych
wejsciowych i zmiennej wyjsciowej dla zbioréw 11 V: wartos¢ srednig (AVG), odchylenie
standardowe (STDEV), warto$ci maksymalng (MAX) i minimalng (MIN). Wyniki obliczen

zostaly zestawione w Tabeli 7.7.
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Tabela 7.7. Miary statystyczne zmiennych wejsciowych zbioréw Ii V (opracowanie wlasne)

Zmienna Miara Zbior 1 Zbior V

AVG 252.83 181.31
STDEV 1.62 0.80

BR1 WIDTH_MEASURED [mm]
MIN 245.83 176.37
MAX 257.46 183.73
AVG 241.85 171.00
STDEV 1.46 0.83

BR2 WIDTH_MEASURED [mm]
MIN 231.00 166.64
MAX 245.75 173.04
AVG 306.46 220.38
STDEV 1.12 0.93

TD_WIDTH_MEASURED [mm]
MIN 302.70 215.57
MAX 310.21 223.74
AVG 0.32 -0.51
1BAP _BODY_AVG_OFF CENTER STDEV 1.12 0.34
[mm] MIN -2.87 -1.54
MAX 2.65 0.32
AVG -0.20 -0.50
2BAP_BODY_AVG_OFF _CENTER STDEV 1.05 0.40
[mm] MIN -3.43 -1.66
MAX 2.29 1.41
AVG -21.05 -3.26
STDEV 15.54 5.04

Stozkowato$¢ (CON) [N]

MIN -66.00 -20.00
MAX 27.00 15.00

Na podstawie zestawionych warto$ci mozna stwierdzi¢, ze proces produkcji rozmiaru
ze zbioru V charakteryzowat si¢ wigksza stabilno$cig. Odchylenie standardowe szerokosci
opasan dla zbioru I jest ok. 2-krotnie wigksze, niz w zbiorze V. Przecentrowania opasan zbioru
V charakteryzujg si¢ ok. 3-krotnie mniejszg wartoscig odchylenia standardowego w stosunku
do =zbioru I. Podobna sytuacja ma miejsce dla pomiaru zmiennej wyjsSciowe;,

czyli stozkowatosci.
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Na Rysunkach 7.6. — 7.17. przedstawiono wykresy przebiegu procesu produkcji
oraz rozktady empiryczne warto$ci pomiaré6w zmiennych wejsciowych i zmiennej wyjsciowej
dla zbioru I. Analiza wskazuje, ze w obserwowanym okresie 27.6% pomiaréw stozkowato$ci
przekroczyto jej limity (Rysunki 7.6. i 7.7.). Warto$ci dodatnie stanowig jedynie 10.2%
wszystkich pomiaré6w |1 zawsze mieszczg si¢ W gornym limicie. Rozklad wynikow
jest stanowczo przesuniety w strone wartosci ujemnych. Warto zauwazy¢, ze 90.9% wynikow
koncentruje si¢ w obszarze od —40[N] do 20[N]. Widoczna jest wyrazna zmiennos$¢ sygnatu
w czasie — okresy fluktuacji przeplatajg si¢ z odcinkami o mniejszej zmiennosci, co moze
swiadczy¢ o wystepowaniu cyklicznych zmian w badanym procesie. Mozliwe jest
wystgpowanie trendow lokalnych oraz zmian losowych, ktore dodatkowo poglebiaja
niestabilno$¢ wzglegdem ustalonych limitow. Potwierdza si¢ zatem przypuszczenie,
ze wznowienie produkcji po przestoju wakacyjnym (zakres od probki nr 3836) daje inne wyniki
stozkowatosci. Obliczono, ze nastgpil wzrost $redniej wartosci do -19[N] w stosunku

do produkcji przed przestojem, ktora charakteryzowata si¢ §rednig -27[N].

+ CON e limit dolny e limit gorny
40

CON [N]

-80
0 1000 2000 3000 4000 5000 6000 7000

Numer prébki

Rysunek 7.6. Wyniki pomiaréw stozkowatosci dla przebiegu procesu produkcji opon ze zbioru I

(opracowanie wlasne)
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Rysunek 7.7. Rozklad empiryczny wartos$ci pomiarow stozkowatosci dla zbioru I (opracowanie wlasne)

Wyniki pomiaréw szerokosci opasan (Rysunki 7.8., 7.9., 7.10., 7.11.) wskazuja, ze byty

one produkowane w gornej granicy tolerancji —az 27.5% opasan 1 12.5% opasan 2 przekraczato
gorny limit narzuconej specyfikacji. Rozstep wynoszacy 11.63[mm] dla opasania 1

i 14.75[mm] dla opasania 2 sugeruja niestabilno$¢ procesu.

BR1 WIDTH MEASURED [mm]

- BR1 WIDTH MEASURED e specyfikacja e limit gérny e limit dolny
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Rysunek 7.8. Wyniki pomiaréw szerokosci opasania 1 dla przebiegu procesu produkcji opon ze zbioru |

(opracowanie wlasne)
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Rysunek 7.9. Rozklad empiryczny warto$ci pomiarow szerokosci opasania 1 dla zbioru |

(opracowanie wlasne)
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Rysunek 7.10. Wyniki pomiarow szerokosci opasania 2 dla przebiegu procesu produkcji opon ze zbioru |

(opracowanie wlasne)
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Rysunek 7.11. Rozklad empiryczny warto$ci pomiarow szerokos$ci opasania 2 dla zbioru |

(opracowanie wlasne)

Pomiary szerokos$ci bieznika (Rysunki 7.12 i 7.13.) natomiast wskazuja, ze byt wyttaczany
w dolnej granicy tolerancji — 9.7% pomiaréw miato warto$¢ ponizej dolnego limitu
specyfikacji. Rozdziat warto$ci pomiarowych jest jednak symetryczny wzgledem S$redniej

wartosci 306.46[mm)].

- TD_WIDTH _MEASURED  *specyfikacja  ® limit gorny  * limit dolny
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Rysunek 7.12. Wyniki pomiarow szerokosci bieznika dla przebiegu procesu produkcji opon ze zbioru |

(opracowanie wlasne)

143



900
800
700
600

500
40
30
: I II
10
. _mll I.I__

Liczba prébek
[=1 [=1 [=1 [=1

S T T o S T g g 9§ g g 9 g 2 g © g o g o o o o o
DW‘!‘OO\("IV\M-—qWI‘HDM‘OO\(‘\Ihm-—«vl“-cr\'\\ﬂo\(\!h
oD 2 8 T T ZT S OLOLOL L L L8 DN 8 g E 2 a3 3 S S S
o o o o S o o o o o o o o o o o o 8 8 & = =
Lo a TR o T - o TR o I oo N S o a T o TR o TR - TR o T - TR+ o TR o FON o TN o NN o TN o o TR o T o o TN o T +.o NN o 4 SN +.a BN o 4 TN o o §
o o o o o o o o o o o o o o o o o o o o o o o o o o
m S MM 8 & § v o ®w - 3 B 9 @M 8 6 o4 N e - F B~ S M 8 G 4
fo O T o T e S s o R UL an O S = S = N = = S v Sl sl - - S S = S~ S~ S | =
SR8 E8833888883883838838888¢88¢88¢8c¢8
Rl R R R R R R R R A R R R R R R R R R R A R S R R R
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Rysunek 7.13. Rozklad empiryczny warto$ci pomiarow szerokos$ci bieznika dla zbioru I

(opracowanie wlasne)

Najwicksze fluktuacje zauwazalne sa dla przecentrowania opasan 1 i1 2 (Rysunki
7.14.,7.15.,7.16.1 7.17.), ktorych rozktady empiryczne sa wyraznie rozdzielone na dwie grupy
dotyczace produkcji przed i po przerwie letniej, kiedy doszlo do §redniego przesunigcia
obu opasan w kierunku wartosci dodatnich (czyli w prawo na bebnie B&T). Tendencja
ta moze by¢ zwigzana z jednoczesnym przesuni¢ciem Sredniej wartoSci pomiardw
stozkowatosci po przestoju — rowniez w kierunku dodatnim. Srednie wartosci przecentrowania
opasania 1 i 2 przed przestojem wynoszg -0.59[mm] i -0.74[mm], natomiast po przerwie

wynoszg adekwatnie 1.46[mm] i 0.47[mm].

- IBAP_BODY AVG_OFF CENTER ¢ limitdolny  ® limit gomy
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Rysunek 7.14. Wyniki pomiarow przecentrowania opasania 1 dla przebiegu procesu produkcji opon ze

zbioru I (opracowanie wlasne)
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Rysunek 7.15. Rozklad empiryczny warto

(opracowanie wlasne)

Dla przecentrowania opasania 1 poza limitem znalazto si¢ 48.0% pomiarow a dla

przecentrowania opasania 2 zarejestrowano 40.8% przekroczen.
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Rysunek 7.16. Wyniki pomiarow przecentrowania opasania 2 dla przebiegu procesu produkcji opon ze

zbioru I (opracowanie wlasne)

145



1000
900
800
700
600

40

Liczba prébek
g £

30

=]

20

=

10

=

ol i B~ B v B S =B R e e Bl g B e S e e e B e e B v B e Y e B e ]

(-1.23.-1.03
(-1.03.-0.83
(-0.83.-0.63
(-0.63,-0.43
(-0.43,-0.23

Przedzialy klasowe 2BAP BODY AVG _OFF_CENTER [mm]

Rysunek 7.17. Rozklad empiryczny warto§ci pomiarow przecentrowania opasania 2 dla zbioru I

(opracowanie wlasne)

Wystgpienie 27.6% wartoSci pomiarOw stozkowato$ci ponizej limitu dolnego
jednoznacznie wskazuje na problem jakosciowy. Zrodta tego odchylenia moga by¢ zardwno
systemowe (np. niewlasciwe ustawienia maszynowe), jak i losowe (zaktocenia w procesie
wynikajace z innych przyczyn). Na skutek analizy przeprowadzonej przez Dziat TS,
dziataniami korygujacymi dla tego rozmiaru byto m.in. wynegocjowanie u klienta zmiany
limitow stozkowato$ci z <-30[N]; 30[N]> na <-40[N]; 20[N]>. Jest to widoczne dla zbioru Il
(jego limity oraz zakres produkcji zostaly przedstawione w Tabelach 7.3 i 7.4), ktory zostat
dodany do grupy badanych zbioréw, w celu potwierdzenia wypracowanych wnioskow
(a takze dziatania modelu) dla tego samego rozmiaru opon, produkowanego jednak w innych
warunkach i okresie.

Dla zbioru I wykonano dodatkowo macierz wykreséw punktowych badanych zmiennych
wejsciowych i zmiennej wejsciowe;j, ktorg zaprezentowano na Rysunku 7.18. Kazda kolumna
i kazdy wiersz odpowiada jednej zmiennej (np. we brl width measured,
we_1lbap_body avg_off center, wy con itd.). Na histogramach umieszczonych po przekatne;j
rysunku, pokazano rozktady poszczegdlnych zmiennych. Poza przekatng widoczne sg wykresy
punktowe, ktore ilustruja zaleznosci liniowe migdzy parami zmiennych. Czerwona linia
to dopasowana liniowa regresja trendu, ktora pozwala oceni¢ kierunek korelacji. Wigkszos$¢
zalezno$ci wyglada na stabe — chmury punktow sg szeroko rozproszone, a linie regresji maja

niewielkie nachylenie. Pojawiajg si¢ zar6wno korelacje dodatnie (linia rosngca, np. migedzy
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we_brl_width_measured a we_br2_width_measured), jak i ujemne (linia malejaca, np. migdzy
we_1lbap_body avg_off center a we_td_width_measured). Niektore zmienne praktycznie
nie wykazujg zwigzku (linie poziome, gesta ,,chmura” punktow). Wida¢ spory rozrzut —
korelacje sg raczej stabe, trudno zatem mowic o silnych zaleznos$ciach liniowych. Oznacza to,
ze badane zaleznoS$ci nie s3 oczywiste 1 sugeruje to zastosowanie ztozonych metod
analitycznych w toku badan. Korelacje wybranych zmiennych objas$niajacych nie pokrywaja
si¢ pomigdzy sobg, co rokuje korzystnie dla procesu trenowania modelu i uniknigcia

jego przeuczenia.

Korelacje (dane_czyszczone 7v*6987c)
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.__E!!llu_ uEWI
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S e I
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___llIIIl_
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_.-Illll_

we_td_width_measured

wy_con

Rysunek 7.18. Macierz wykresow punktowych zmiennych wejsciowych i zmiennej wejSciowej zbioru I

(opracowanie wlasne)

Na Rysunkach 7.19. — 7.30. przedstawiono wykresy przebiegu procesu produkcji
oraz rozklady empiryczne wartosci pomiarow zmiennych wejsciowych, a takze zmiennej
wyjsciowej dla zbioru V. Obserwacja wykresow wskazuje, ze wartosci pomiarow

stozkowatosci w tym zbiorze (Rysunki 7.19. i 7.20.) koncentruja si¢ wokot wartosci O
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z symetrycznym rozktadem populacji. W poréwnaniu ze zbiorem I nie wystepuja tu zmienno$ci

sygnatu w czasie, co $wiadczy o zdecydowanie wickszej stabilno$ci procesu zbioru V.
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Rysunek 7.19. Wyniki pomiarow stozkowatosci dla przebiegu procesu produkcji opon ze zbioru V

(opracowanie wlasne)
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Rysunek 7.20. Rozklad empiryczny warto$ci pomiarow stozkowatosci dla zbioru V (opracowanie wlasne)
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Szerokosci opasan (Rysunki 7.21., 7.22., 7.25., 7.26.) oraz bieznika (Rysunki 7.29. 1 7.30.)

podczas produkcji zachowuja si¢ bardzo powtarzalnie. Dochodzi jedynie do sporadycznych

przekroczen limitéw zadanych w specyfikacji. Srednie wartosci oscyluja wokoét

specyfikacyjnych i rozdziat catej populacji jest wzgledem nich symetryczny. Podobnie mozna

skomentowa¢ wartosci przecentrowania opasan 1 i 2 (Rysunki 7.23., 7.24., 7.27. 1 7.28.),

gdzie dochodzi jedynie do pojedynczych impulsow przekraczajacych limity.
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Rysunek 7.21. Wyniki pomiarow szerokosci opasania 1 dla przebiegu procesu produkcji opon ze zbioru V
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Rysunek 7.22. Rozklad empiryczny warto$ci pomiarow szerokosci opasania 1 dla zbioru V

(opracowanie wlasne)
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Rysunek 7.23. Wyniki pomiarow przecentrowania opasania 1 dla przebiegu procesu produkcji opon ze
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zbioru V (opracowanie wlasne)
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Rysunek 7.24. Rozklad empiryczny warto$ci pomiarow przecentrowania opasania 1 dla zbioru V

(opracowanie wlasne)
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Rysunek 7.25. Wyniki pomiarow szerokosci opasania 2 dla przebiegu procesu produkcji opon ze zbioru V

(opracowanie wlasne)
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Rysunek 7.26. Rozklad empiryczny warto$ci pomiarow szerokosci opasania 2 dla zbioru V

(opracowanie wlasne)
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Rysunek 7.27. Wyniki pomiarow przecentrowania opasania 2 dla przebiegu procesu produkcji opon

ze zbioru V (opracowanie wlasne)
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Rysunek 7.28. Rozklad empiryczny warto$ci pomiarow przecentrowania opasania 2 dla zbioru V

(opracowanie wlasne)
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Rysunek 7.29. Wyniki pomiarow szerokosci bieznika dla przebiegu procesu produkcji opon ze zbioru V

(opracowanie wlasne)
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Rysunek 7.30. Rozklad empiryczny warto

(opracowanie wlasne)
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Zachowanie powtarzalnosci procesu oraz jako$ci materialtbw na poziomie
jaki reprezentowal zbidér V, poskutkowato catkowitym brakiem odpadow z powodu
przekroczenia limitu stozkowato$ci. Szeroki limit CON tego rozmiaru wynika
z tego, ze jest on dedykowany na rynek TRADE (wtérny). Ze wzgledu na mniejszy gabaryt
tego rozmiaru opon i jego podzespotow, utrzymanie wynikow stozkowatosci nawet w zakresie
<-20[N]; I15[N]> bylo zdecydowanie tatwiejsze, niz w przypadku rozmiaru ze zbioru L.

Przeprowadzona eksploracyjna analiza danych pozwolita na zrozumienie struktury,
wlasciwosci 1 informacji ukrytych w badanych zbiorach. Wptynelo to na lepsze poznanie
danych, identyfikacje trendow, wykrycie anomalii i przygotowanie danych do dalszej analizy

oraz dziatan ukierunkowanych na wybor odpowiedniego modelu dla opisywanego problemu.
7.3 Trenowanie, ewaluacja i wybér modelu

7.3.1 Kryteria doboru miernikbw do oceny dzialania badanych

modeli

Wybierajac najlepszy mozliwy model do rozwigzania problemu produkcyjnego
stanowigcego przedmiot niniejszej dysertacji, nalezy wzig¢ pod uwage mozliwosé
jego wdrozenia do istniejacej infrastruktury IT. Wazne jest dopasowanie wymaganej mocy
obliczeniowej do sprzetu uzywanego w przedsiebiorstwie. Istotne sg rowniez przewidywane
koszty wdrozenia. Kluczowym jest zdefiniowanie pojecia ,,doktadnosci” dla kazdego
indywidualnego przypadku w celu okreslenia modelu, ktory bedzie najbardziej odpowiedni
dla charakteru problemu. Ponadto czas reakcji modelu na podstawie danych otrzymanych
online powinien gwarantowa¢ ptynno$¢ przebiegu procesu produkcji.

Dobierajac mierniki oceny skutecznosci badanych modeli, odniesiono si¢ do roznych typoéw
probleméw poruszanych w literaturze, zwracajgc uwage na zastosowanie odpowiednich miar
ewaluacyjnych dostosowanych do ich specyfiki. Autorzy (Badora i in., 2021) zamierzajac
przewidywa¢ dtugos¢ peknie¢ zmeczeniowych turbin gazowych, pordéwnali wielokrotng
regresj¢ liniowg i wielomianowa, las losowy, metody kernel-based, AdaBoost, XGBoost
1 sztuczne sieci neuronowe w kontek$cie matego zestawu danych (okoto 30 obserwacji).
Okazato sie, ze model regresji wielomianowej byt najlepszym modelem, bioragc pod uwage
wynik walidacji krzyzowej i znormalizowany RMSE oceniony w stosunku do zestawu
testowego. Niemniej jednak nie byl on wystarczajagco wrazliwy na zmiany parametrow
wejsciowych. Nie doszacowat réwniez najdtuzszych obserwacji, co bylo najczestszg wada

wszystkich utworzonych modeli. Model regresji AdaBoost przewidziat te pekniecia
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znajnizszym znormalizowanym RMSE. Badanie omawiajace kontrol¢ wymiarowg spawanych,
ttoczonych ramion stalowych (Kadnar i in.,2023) doprowadzitlo do podobnych wnioskow.
Najmniejszy $redni bezwzgledny btad procentowy MAPE osiggni¢to dla ANN i zauwazono,
ze doktadno$¢ modelu wzrastala wraz ze wzrostem rozmiaru zestawu danych treningowych;
tymczasem zwigkszenie liczby danych ma odwrotny efekt w przypadku regresji liniowe;.
W (Biyeme i in., 2023) wybrano algorytmy regresji i sieci neuronowe w celu okreslenia
wartosci  przeptywu informacji w modelu tancucha produkcyjnego. Kryteriami
poréwnawczymi w tym badaniu byty MAE, MSE, RMSE i R?. Zauwazono, ze wielko$¢
i charakter produkcji firmy miaty znaczacy wptyw na wybdr czynnikéw oceny do analizy
porownawczej. Kolejne badanie zajmujace si¢ podobnym obszarem tematycznym
(Rosienkiewicz, 2021) koncentrowato si¢ na hybrydowych modelach prognozowania
dla systemow produkcyjnych — konkretnie w odniesieniu do trzech obszarow systemu
produkcyjnego: planowania produkcji, konserwacji i kontroli jako$ci. Potwierdzito ono,
ze firmy produkcyjne sa sktonne wybra¢ wilasciwg metode prognozowania dla swoich
konkretnych potrzeb. Oceng¢ doktadno$ci analizowanych metod prognozowania oparto
na $redniej R?, ktéra obliczono dla kazdego studium przypadku osobno. W innym badaniu,
dotyczacym prognozowania niezawodnosci silnikow Diesla (Viana i in., 2023), poréwnano
las losowy i MLP. Wybrano RMSE, argumentujac ze jest on metrykg powszechnie stosowang
w procedurze walidacji krzyzowe;.

Na podstawie analizy literatury traktujacej o budowaniu modeli uczenia maszynowego,
wybrano dwa® mierniki oceny: R? i RMSE. Wyniki uzyskane z modeli, ktorych dziatanie
zweryfikowano w niniejszej pracy doktorskiej poréwnano i zestawiono ze soba majac rowniez
na wzgledzie wydajno$¢ koncowego systemu. Biorgc pod uwage rozne mechanizmy dziatania
metod stosowanych w badaniach, trudno byto sprowadzi¢ uzyskane za ich pomoca rezultaty
do ,,wspdlnego mianownika”, aby wiarygodnie porownaé ich skuteczno$¢ (mozliwos¢
rozwigzania opisanego problemu). Wybrane mierniki postuzyly do oceny zdolnos$ci
generalizacyjnych modelu. Zdecydowano, ze wybor odpowiedniej metody ML do rozwigzania
problemu regresji w tym przypadku, nie powinien by¢ sztywno oparty tylko na jednym

mierniku.

% Analizujac zastosowanie modelu MLP dodano wspotczynnik korelacji liniowe;j r jedynie dla oceny poprawnosci
wytrenowania sieci neuronowych.
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7.3.2 Analiza zastosowania regres;ji liniowej wielu zmiennych

W poczatkowej fazie badan zastosowano regresj¢ liniowa wielu zmiennych jako narzgdzie
wspomagajace potwierdzenie wnioskow ptynacych z eksploracyjnej analizy danych.
Jej wykorzystanie bylo uzasadnione kilkoma wzgledami. Po pierwsze, model ten Shuzy
uzyskaniu stosunkowo prostych zaleznosci pomi¢dzy zmienng objasniang a zestawem
zmiennych niezaleznych, co pozwala na identyfikacj¢ potencjalnych predyktorow o istotnym
znaczeniu. Po drugie, regresja liniowa pozwala na ocen¢ kierunku oraz przyblizonej sily
zwiazkow, co wspiera weryfikacje wstepnych hipotez badawczych. Dodatkowo, model liniowy
stanowi punkt odniesienia (tzw. model bazowy), wzgledem ktéorego mozna porownywac
efektywnos$¢ 1 trafno$¢ uzytych na pdzniejszych etapach bardziej ztozonych metod.
W konsekwencji, wykorzystanie regresji liniowej sprzyja wykrywaniu problemow
diagnostycznych, np. wspotliniowos¢ zmiennych, co z kolei dostarcza informacji niezb¢dnych
do dalszego planowania badan (Puchalski i Warsza, 2022).

W celu przeprowadzenia analizy z zastosowaniem regresji liniowej wielu zmiennych
zastosowano podzial na podzbiory treningowy (70%) i testowy (30%), bazujac na danych
zbioréw 1 1 V. Wyniki aplikacji modelu regresji liniowej wielu zmiennych przedstawiono
w Tabeli 7.8.

Tabela 7.8. Wartosci RMSE i R2 dla modelu regresji liniowej wielu zmiennych wykorzystujacego dane

ze zbioréw 1 i V (opracowanie wlasne)

ZBIOR 1 ZBIOR V
RMSE R? RMSE R?
0.16 0.02 0.14 0.04

Uzyskane wyniki wskazuja na bardzo ograniczona zdolno$¢ modelu liniowego
do wyjasniania zmienno$ci w badanych zbiorach danych. W przypadku zbioru I wartos¢
wspotczynnika determinacji R? oznacza, iz model thumaczy zaledwie 2% catkowitej wariancji,
podczas gdy dla zbioru V wynik pozostaje rownie niski. Otrzymane rezultaty wskazuja,
iz regresja liniowa nie jest w stanie odzwierciedli¢ kluczowych zalezno$ci migdzy badanymi
zmiennymi. Niska jako$¢ dopasowania oraz obecno$¢ niewyjasnionej zmienno$ci stanowig
silne przestanki do siggnigcia po bardziej zaawansowane techniki modelowania, umozliwiajace
badanie zwigzkow nieliniowych 1 interakcji wyzszego rzedu, ktore potencjalnie moga lepiej

oddawac¢ ztozono$¢ analizowanego procesu.
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7.3.3 Analiza zastosowania modelu MLP

Ze wzgledu na sposob postawienia celu badawczego niniejszej dysertacji, do uzyskania
odpowiedzi na pytanie badawcze mozna uzy¢ perceptronu wielowarstwowego MLP, ktory jest
stosunkowo mato skomplikowang 1 szybka metoda uczenia maszynowego. Stuzy
on do budowania modeli przy uzyciu oprogramowania naukowego, ktore sg automatycznie
optymalizowane w celu uzyskania mozliwie najlepszego wyniku pod wzgledem doktadnosci,
minimalizacji RMSE i szybkiego osiagnig¢cia zbieznosci algorytmow (przy jak najkrétszym
czasie obliczen i potautomatycznej opinii podawanej przez modele / system). Nalezy tutaj takze
podkresli¢ jego zdolno$¢ do uczenia si¢ nieliniowych modeli niemal w czasie rzeczywistym
(nauka online). Perceptron wielowarstwowy reprezentuje algorytm uczenia nadzorowanego,
ktory identyfikuje wzorce poprzez trening na zestawie danych, a jego uniwersalnos¢ obejmuje
mozliwo$¢ uczenia si¢ aproksymatora funkcji nieliniowej dla problemow klasyfikacji
lub regresji. MLP uczy si¢ na podstawie spadku gradientowego, gdzie gradient obliczany
jest za pomoca propagacji wstecznej, nastepnie klasyfikuje minimalizujgc funkcje straty,
co daje wektor oszacowan prawdopodobienstwa jako wynik. Warto doda¢, ze charakteryzuje
si¢ wszechstronno$cig zastosowan — z powodzeniem proponowany jest do rozwigzan
wspomagajacych np. utrzymanie tempa produkcji (Mohammadi i in., 2018) i jej ciagtosci
(Janikova i Bezak, 2016) oraz do prognozowania jakosci i efektywnosci eksploatacji pojazdow
samochodowych w systemie ustug transportowych (Swiderski i in., 2018).

Dla kazdej badanej kombinacji funkcji aktywacji w warstwach ukrytej 1 wyjsciowej
testowanie i uczenie sieci oparto na jednej ukrytej warstwie, poniewaz propagacja wsteczna
ma wysoka ztozonos¢ czasowg. W niniejszym badaniu zastosowano algorytm optymalizacyjny
Broydena—Fletchera—Goldfarba—Shanno  (L-BFGS), gdyz zbiega si¢ on szybciej
dla mniejszych zestawoéw danych niz Stochastic Gradient Descent (SGD), ktéry wymaga
co najmniej 10 000 probek. Struktura sieci MLP z pigcioma wej$ciami, 16zng liczbg neurondéw
w warstwie ukrytej i jednym wyjSciem zostata przedstawiona na Rysunku 7.31. Liczba
neurondw warstwy ukrytej 1 parametry sieci zostalty wybrane eksperymentalnie. Obejmowato
to przetestowanie kilkudziesieciu modeli sieci neuronowych MLP z uzyciem réznej liczby
neuronéw w warstwie ukrytej (w zakresie od 6 do 20, ale zwigkszenie liczby neuronow
nie poprawilo jakosci modeli), roznych kombinacji funkcji aktywacji w warstwie ukrytej

i wyjSciowej oraz roznych czaséw uczenia dla tych sieci.
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WARSTWA WEJSCIOWA WARSTWA UKRYTA WARSTWA WYJSCIOWA
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Rysunek 7.31. Struktura sieci MLP opracowana w toku badan z piecioma wej$ciami, rozng liczbg

neuronéw w warstwie ukrytej oraz jednym wyjsciem (opracowanie wlasne)

Badania modeli MLP realizowane byly z wykorzystaniem danych ze zbioréw I i V,
dokonujac podzialu na 3 podzbiory: treningowy (70%), walidacyjny (15%0) i testowy
(15%). Pomiedzy warstwami wejSciowa i wyjsciowa istnieje jedna warstwa nieliniowa,
tzw. warstwa ukryta, ktora przeksztalca warto$ci z warstwy wej§ciowej za pomoca wazonego
sumowania liniowego, po ktorym nastepuje nieliniowa funkcja aktywacji (Popescu i in., 2009;
Ramchoun i in., 2016). W wyborze funkcji aktywacji zardbwno w warstwie ukrytej,
jak 1 w warstwie wyjSciowej priorytetem byla ich duza elastycznos¢, ze wzgledu na charakter
badanych danych (istotnym byto, aby funkcje charakteryzowaly si¢ nieliniowoscia, ciggtoscia
i rozniczkowalno$cig). Dla lepszego zobrazowania przebiegu doboru funkcji aktywacji w toku
badan dla warstw ukrytej i wyjSciowej, przedstawiono je w Tabeli 7.9. W tej i kolejnych
tabelach ujeto tylko te sieci MLP, dla ktorych udato si¢ uzyskac¢ najlepsze rezultaty.

Najlepsza strukturg sieci wykorzystujacej perceptron wielowarstwowy do rozwigzania
postawionego problemu okazata si¢ sie¢ MLP 5-8-1, czyli zawierajaca 8 neuronéw w warstwie
ukrytej, z funkcjami aktywacji w warstwie ukrytej bedacymi tangensami hiperbolicznymi
1 warstwg wyjsciowa z funkcja wyktadniczg. Moze to wskazywa¢ na znaczng nieliniowo$¢
w relacji miedzy zmiennymi wejSciowymi 1 wyjSciowymi, a takze potwierdza wnioski

z przeprowadzonej eksploracyjnej analizy danych.
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Tabela 7.9. Funkcje aktywacji w warstwach ukrytej i wyjSciowej testowanych sieci MLP

(opracowanie wlasne)

| Funkcja aktywacji w warstwie Funkcja aktywacji w warstwie
Struktura sieci )
ukrytej wyjSciowej

MLP 5-9-1 logarytmiczna tangens hiperboliczny
MLP 5-9-1 tangens hiperboliczny tangens hiperboliczny
MLP 5-6-1 tangens hiperboliczny liniowa

MLP 5-9-1 logarytmiczna liniowa

MLP 5-8-1 tangens hiperboliczny wykladnicza

Proces uczenia si¢ sieci neuronowej polegat na powtarzaniu wzorcow i modyfikowaniu wag
do momentu, gdy sie¢ osiggata satysfakcjonujacy rzad wielkosci RMSE po nie wigcej niz 1000
epok (Rysunek 7.32.).

RMSE [-]

109‘l

107}
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10
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10

10°F

10-7 1 L 1 1 1 1 1 1 L
100 200 300 400 500 600 700 800 900 1000
Epochs [-]

Rysunek 7.32. Zmiana RMSE podczas uczenia sieci (opracowanie wlasne)

Jednym z powszechnie stosowanych i mozliwych do wyznaczenia dla sieci MLP miernikow
oceny jest wspotczynnik korelacji liniowej r (Tabela 7.10. i 7.11.), ktory umozliwia oceng
stopnia liniowej zalezno$ci pomiedzy rzeczywista warto§cia zmiennej wyjsciowej
a jej estymacja dokonang przez sie¢. Dzigki temu mozliwe jest nie tylko okreslenie kierunku,
ale takze sity zwigzku pomig¢dzy warto$ciami przewidywanymi a obserwowanymi, co stanowi
cenne uzupetnienie wczesniej wybranych miernikow oceny. Przyjmuje on wartosci z zakresu

<—1; 1>, gdzie ,,1” oznacza doskonatg zgodnos$¢. Wartos¢ wspotczynnika korelacji r bliska 1
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nie zawsze jednak oznacza doskonate dopasowanie — model moze przewidywaé wartosci
proporcjonalne, ale przesuniete (np. wszystkie sg zanizone o stalg wartos¢). Dlatego czgsto
dodatkowo stosuje si¢ miary takie jak R?, MSE, RMSE czy MAE (Hejmanowski i Witkowski
2015).

Tabela 7.10. Wspoélczynnik korelacji r dla roznych struktur sieci MLP wykorzystujacych dane ze zbioru |

(opracowanie wlasne)

Wspolcezynnik Wspolezynnik Wspolczynnik

Struktura sieci korelacji r korelacji r korelacji r

(trenowanie) (testowanie) (walidacja)
MLP 5-9-1 0.537 0.532 0.570
MLP 5-9-1 0.569 0.542 0.567
MLP 5-6-1 0.522 0.505 0.519
MLP 5-9-1 0.528 0.544 0.568
MLP 5-8-1 0.545 0.550 0.555

Tabela 7.11. Wspélczynnik korelacji r dla roznych struktur sieci MLP wykorzystujacych dane ze zbioru V

(opracowanie wlasne)

Wspolczynnik Wspolezynnik Wspolezynnik

Struktura sieci korelacji r korelacji r korelacji r

(trenowanie) (testowanie) (walidacja)
MLP 5-9-1 0.547 0.542 0.560
MLP 5-9-1 0.577 0.551 0.577
MLP 5-6-1 0.529 0.515 0.523
MLP 5-9-1 0.539 0.555 0.580
MLP 5-8-1 0.566 0.573 0.585

Dane wykorzystane w badaniu sg wynikami pomiarow — zawierajg zatem pewng ilos¢
szumu pomiarowego (dla pomiarowej aparatury elektronicznej nazywanego rowniez ,,szumem
dynamicznym”). W zwigzku z tym wspdtczynnik korelacji obliczony poprawnie
dla przypadkow treningowych nie powinien by¢ bliski 1 (chyba, Ze szum jest bardzo staby).
W przypadku bardzo wysokiego r mozna podejrzewaé, ze sie¢ zostala przeuczona.
Takie podej$cie jest podstawowym sposobem weryfikacji poprawnego dziatania sieci.
Przewidywania przetrenowanej sieci bgda mialy zawyzony wspotczynnik korelacji probie
treningowej. W tym przypadku wspotczynnik korelacji r dla nowych danych podczas treningu
byt daleki od 1. Dlatego tez, przy wyborze sieci nalezy wzigé pod uwage jego wartoSci
dla zestawow testowych 1 walidacyjnych. Niski (ale nie ujemny) wspotczynnik korelacji
nieckoniecznie wskazuje na slabg zdolno$¢ sieci do rozwigzania narzuconego problemu,

ale np. moze odzwierciedla¢ wysoki poziom szumu w danych, z ktorym sie¢ radzi sobie
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tak dobrze jak jest to mozliwe dla danego przypadku. Wspodtczynnik korelacji r, ktory
w tym badaniu oscyluje wokot wartosci przedstawionych w Tabelach 7.10 i 7.11 wskazuje,
ze sieCi zostaly prawidlowo wytrenowane. Wartosci wspotczynnika Kkorelacji r osiagaja
wiekszg warto$¢ dla zbioru V, co moze by¢ zwigzane z wigksza stabilnoscig rejestrowanego
procesu oraz z wystepowaniem mniejszej liczby warto$ci odstajacych.

Jak juz wspomniano, dla wiarygodnej oceny modeli, nalezy w konsekwencji odnies¢
siec do miernikéw ich oceny. R? to procent wariancji zmiennej zaleznej wyjasniony
przez zmienne niezalezne. R? przyjmuje wartoéci z zakresu <0; 1>, gdzie 1 jest wartoscia
najlepiej dopasowana. W niektorych systemach obliczeniowych R? moze by¢ ujemne, np. gdy
sie¢ nie odzwierciedla trendu zmian. Wartoéci R? i RMSE dla najlepszych sieci neuronowych

MLP uzyskanych w badaniach przedstawiono w Tabeli 7.12.

Tabela 7.12. Warto$ci RMSE i R2 dla najlepszych sieci neuronowych MLP uzyskanych badaniach

wykorzystujacych dane ze zbioréw Ii V (opracowanie wlasne)

ZBIOR 1 ZBIOR V
Struktura sieci RMSE R? RMSE R?
MLP 5-9-1 1.266 0.298 1.115 0.415
MLP 5-9-1 1.074 0.312 1.032 0.379
MLP 5-6-1 0.411 0.265 0.388 0.335
MLP 5-9-1 0.953 0.298 0.923 0.368
MLP 5-8-1 0.177 0.302 0.158 0.436

Blad $redniokwadratowy RMSE mierzy réznice miedzy wartosciami przewidywanymi
przez model a wartosciami obserwowanymi w  modelowanym  $Srodowisku.
RMSE jest pierwiastkiem kwadratowym straty kwadratowej przypisujacym wigksza wage
wigkszym roznicom, powszechnie stosowanym w prognozowaniu i analizie regresji w celu
weryfikacji wynikow eksperymentow. Jest zawsze nieujemny, a im jego wartos¢ jest blizsza 0,
tym wyzsza jako$¢ modelu. RMSE jest miarg doktadnos$ci stosowang do porownywania biedow
przewidywan roznych modeli dla danego zestawu danych, ale nie pomiedzy roéznymi
zestawami danych, poniewaz zalezy od skali (rzgdu wielkosci). W celu wykorzystania
go jako miernika poroOwnujacego rézne zestawy danych nalezy zatem zadbal, aby rzad
wielkosci wartosci wykorzystywanych przez model w tych zbiorach byt taki sam
(jak postapiono w przedstawionym toku niniejszych badan). Mozna zatem powiedzie¢,

ze hiperbolizuje on bledy opracowanych modeli.
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7.3.4 Analiza zastosowania modeli opartych na drzewach
decyzyjnych

Podczas badan opisanych w niniejszym podrozdziale niezmiennie bazowano na zbiorach

I 1V podzielonych na 3 podzbiory: treningowy (70%0), walidacyjny (15%b) i testowy (15%b).

Wykorzystano dwie metody stuzace do budowania modeli opartych na drzewach decyzyjnych:

1) Modele XGBoost

XGBoost to zaawansowany model z aplikacjami komercyjnymi dziatajagcymi
w $rodowiskach Python (Johansson, 2021) i R. Stanowi on rozwigzanie po$rednie w$rod metod
uzytych w niniejszej pracy pod wzgledem doktadno$ci i czasu obliczen. XGBoost
to skalowalny system wzmacniajacy typu end-to-end, ktory jest szeroko stosowany w wielu
wyzwaniach stawianych przed uczeniem maszynowym. Charakteryzuje si¢ paralelizacjg —
to znaczy, ze wykorzystuje réwnolegla implementacj¢ do uruchomienia sekwencyjnego
procesu budowania drzewa. Jest to mozliwe dzigki wymiennym cechom petli uzywanych
do tworzenia ,,podstawowych komorek™ uczacych si¢. Petla wewnetrzna zlicza cechy, podczas
gdy petla zewnetrzna pozyskuje wezly (powigzania) lisci drzewa. Zagniezdzanie petli
ogranicza paralelizacjg, poniewaz nie mozna uruchomi¢ petli zewnetrznej bez zakonczenia petli
wewnetrznej. Rownolegle 1 rozproszone przetwarzanie przyspiesza nauke, co umozliwia
szybszg eksploracje modelu. XGBoost posiada réwniez zaimplementowang regularyzacje,
czyli rodzaj ,kary” nakladanej na model, jesli w drzewie decyzyjnym jest zbyt wiele
koncowych segmentéw obserwacji lub lisci. Ztozono$¢ modelu jest tutaj kontrolowana
za pomocg technik Ridge i LASSO. Ogdlna forma modelu XGBoost sktada si¢ z dwoch czesci.
Pierwszy skladnik — nazywany funkcja straty lub funkcja kosztu — odpowiada
za minimalizacj¢ btedu. Druga cze$¢ — regularyzacja — pomaga zapobiega¢ nadmiernemu
dopasowaniu i kontroluje ztozono$¢ modelu. XGBoost wykorzystuje dodatkowo metode
walidacji krzyzowej zaimplementowang w kazdej iteracji. Eliminuje to potrzebg rozleglego
programowania i okreslania doktadnej liczby iteracji stymulacji potrzebnych do wykonania
jednego przebiegu. Ponadto korzysta z innych ulepszen, np. obliczen ,,poza rdzeniem”
(ang. out of core), ktore wykorzystuja przestrzen dyskowag i obstuguja ramki danych
nie mieszczace si¢ w pamieci gtownej komputera.

Na potrzeby badan przeprowadzonych w niniejszej dysertacji, model XGBoost zostat
wytrenowany dla roznych wartosci parametru ‘maximum depth’ (w zakresie 2+15) — okresla

on maksymalna glgbokos¢ drzewa decyzyjnego w procesie uczenia modelu XGBoost.
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Dla obu wykorzystywanych zbiorow danych najlepsze wyniki udato si¢ uzyska¢ dla maximum
depth réwnego 8 (Tabele 7.13. i 7.14., Rysunki 7.33. i 7.34.).

Tabela 7.13. Wyniki modelu XGBoost uzyskane dla przebadanego zakresu parametru maximum depth

z wykorzystaniem danych ze zbioru | (opracowanie wlasne)

o Maximum depth
Miernik
2 3 4 5 6 7 8 9 10 11 12 15
RMSE | 01266 | 01214 | 01209 | 0.1199 | 0.1176 | 0.1156 | 0.1156 | 0.1160 | 0.1159 | 0.1177 | 0.1187 | 0.1225
R? 04225 | 04690 | 0.4730 | 04818 | 0.4903 | 05014 | 0.5182 | 05151 | 05161 | 0.5007 | 0.4924 | 0.4588
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Rysunek 7.33. Wyniki modelu XGBoost uzyskane dla przebadanego zakresu parametru maximum depth

z wykorzystaniem danych ze zbioru I (opracowanie wlasne)
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Tabela 7.14. Wyniki modelu XGBoost uzyskane dla przebadanego zakresu parametru maximum depth

z wykorzystaniem danych ze zbioru V (opracowanie wlasne)

Maximum depth
Miernik
2 3 4 5 6 7 8 9 10 11 12 15
RMSE 0.1033 | 0.1015 | 0.0998 | 0.0987 | 0.0976 | 0.0949 | 0.0924 | 0.0933 | 0.0941 | 0.0958 | 0.0968 | 0.1002
R? 0.5977 | 0.6255 | 0.6310 | 0.6423 | 0.6566 | 0.6759 | 0.6811 | 0.6802 | 0.6789 | 0.6711 | 0.6624 | 0.6487
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Rysunek 7.34. Wyniki modelu XGBoost uzyskane dla przebadanego zakresu parametru maximum depth

z wykorzystaniem danych ze zbioru V (opracowanie wlasne)

Czes¢ przykladowego drzewa wygenerowanego przez model XGBoost przedstawiono

na Rysunku 7.35.
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Najlepszy model XGBoost dla problemu omawianego w pracy zbudowano przy uzyciu
hiperparametrow (Chen i Guestrin, 2016) wymienionych ponize;j:

a) max_depth = 8.

b) learning_rate = 0.1.

€) n_estimators = 1000.

d) objective = “reg:squarederror”.

e) booster = “gbtree”.

Kluczowa zaletg drzew decyzyjnych jest mozliwo$¢ szybkiego okreslenia wagi danej cechy
w opracowywanym modelu. XGBoost zidentyfikowat istotnosci cech (Rysunek 7.36)
wskazujac, ze czynnikiem majacym najwickszy wplyw na przewidywanie stozkowatosci
(a w zasadzie na warto$¢ tej wielkosci opisujacej jednorodnos¢ opon) ma szerokos¢ opasania
pierwszego (BR1_WIDTH_MEASURED). Wptyw pozostalych zmiennych niezaleznych
jest o okoto 30+45% nizszy. Ponadto jego przewaga nad uzywang w kolejnym punkcie badan
bibliotekg ML.NET jest mozliwo$¢ precyzyjnej analizy przebiegu obliczen w sposéb ,.krok
po kroku” (podobnie jak w przypadku MLP), ze wzglgdu na $rodowisko w ktorym
jest wykorzystywany. Przektada si¢ to na lepsze zrozumienie zasady dziatania zbudowanego

modelu.

Feature importance

BR LWV D TH M E A S U R D e e e 2 0200

1IBAP BODY _AVG _OFF _CEN TR e e e e 7004 3.0

BR WD TH M E A S U R D e e e e 173410

Features

T WD TH M EA S U R E D e e e e 1 000 7+ 0

2BAP BODY _AVG OFF _CEN TER e e e 1 5097.0

T T T T T
0 5000 10000 15000 20000 25000
F score

Rysunek 7.36. Istotnos$ci cech wyznaczone przy pomocy modelu XGBoost (opracowanie wlasne)
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2) Modele FastTreeRegression i LightGbmRegression

Kolejng metoda, ktorej dziatanie zostalo zweryfikowane w toku badan jest srodowisko
zautomatyzowanego doboru modelu, oparte na bibliotece ML.NET. Dla pozyskanych danych,
rozwigzania mozna wybiera¢ sposréd ponad 120 modeli (czas trenowania: do 1000s).
Oferowane modele generuja interfejs programowania aplikacji APl (ang. application
programming interface) i kod w jezyku C# do podzniejszego wykorzystania w systemie.
Skupiajac si¢ na pracy z FastTreeRegression — wydajnej implementacji algorytmu gradientu
wzmacniajgcego o nazwie wlasnej Multiple Additive Regression Trees (MART), podczas badan
ustalano wartosci nastepujacych przyktadowych hiperparametrow:

a) BIAS: warto$¢ dodana do wazonej sumy wynikow wszystkich drzew.

b) TREES: iteracja RegressionTreeBase (klasa ilosci zapgtlen) w drzewach.

c) TreeWeights: waga i-tego RegressionTreeBase (petli/powtorzenia) w drzewach.

Zmiana tych parametrow prowadzi do zwigkszenia efektywnosci lub wydajnosci
budowanego modelu. Struktura oprogramowania ML.NET wykorzystuje narzedzie AutoML,
ktore wspiera prace z uczeniem maszynowym poprzez automatyczne wybieranie najlepszych
modeli i hiperparametrow dla badanego zestawu danych (automatyczna optymalizacja
modelu). Takie rozwigzanie jest przydatne do osiggni¢cia wysokich pozioméw efektywnosci
modelu 1 oszcz¢dzania czasu na recznym dostrajaniu tworzonych modeli. Po uruchomieniu
eksperymentu, przez okreslony czas AutoML tworzy modele z réoznymi kombinacjami
algorytmow 1 hiperparametrow w celu uzyskania najlepszego mozliwego wyniku dla
wskazanego miernika oceny (propozycja dla kazdej takiej kombinacji jest pojedynczg proba).
Jedng z najmocniejszych cech biblioteki jest jej wysoki poziom wydajnosci — to z pewnos$cia
wazne kryterium podczas podejmowaniu decyzji o wyborze narzgdzia uczenia maszynowego
do zastosowania w $rodowisku produkcyjnym. Podczas Kkorzystania z ML.NET
zaproponowano dwa typy drzew decyzyjnych z gradientem wzmacniajagcym (GBDT) —
LightGbmRegression i FastTreeRegression. Modele te wykorzystuja dwie metody
(Keiin., 2017):

a) Jednostronne probkowanie gradientowe GOSS (ang. gradient-based one-side sampling)

— Zachowuje wystgpienia o duzych gradientach (tj. wigkszych niz wstepnie
zdefiniowany prog) lub wybiera sposréd najwyzszych percentyli i losowo usuwa
tylko wystapienia o matych gradientach, aby zachowaé dokladno$¢ szacowania
wzmocnienia informacji. Jest to zwigzane z faktem, ze r6zne wystgpienia danych

odgrywajg roézne role w obliczaniu wzmocnienia informacji, tj. instancje z wigkszymi

167



gradientami (instancje niedotrenowane) przyczyniaja si¢ w wigkszym stopniu do ,,zysku
informacji”. Skutkuje to doktadniejszym oszacowaniem zysku niz W przypadku
zastosowania jednorodnego losowego probkowania.

b) Ekskluzywne pakietowanie funkcji EFB (ang. exclusive feature bundling) — powoduje
bezpieczne tgczenie cech wykluczajacych sie w jedna ceche, czyli w tzw. zestaw cech
wykluczonych. Ztozono$¢ konstrukeji histogramu zmniejsza sig, przy czym szybkos¢
struktury trenujacej poprawia si¢ bez uszczerbku dla doktadnosci danych. Wynika
to z faktu, ze dane wielowymiarowe wystepuja rzadko, co stwarza mozliwos$¢ niemal
bezstratnej (w stosunku do wyniku koncowego) redukcji liczby cech, szczegdlnie

gdy wiele cech wzajemnie si¢ wyklucza.

Na podstawie przeprowadzonych prob (132 proby dla zbioru 11 127 préb dla zbioru V),
biblioteka ML.NET wskazala dwa najlepsze modele do rozwigzania opisywanego problemu.
Uzyskane dla nich rezultaty wskaznikow RMSE i R? zaprezentowano w Tabelach 7.15 i 7.16.

Tabela 7.15. Rezultaty dla najlepszych modeli zidentyfikowanych przez bibliotek¢e ML.NET dla zbioru |

(opracowanie wlasne)

Numer proby Model R? RMSE
26 FastTreeRegression 0.7163 0.085
24 LightGbmRegression 0.7070 0.086

Tabela 7.16. Rezultaty dla najlepszych modeli zidentyfikowanych przez bibliotek¢ ML.NET dla zbioru V

(opracowanie wlasne)

Numer proby Model R? RMSE
32 FastTreeRegression 0.7233 0.079
18 LightGbmRegression 0.7150 0.082

7.3.5 Analiza wynikéw i wybo6r modelu

Podsumowujac dotychczasowy przebieg badan, mozna stwierdzi¢, ze modelem
ktory osiagnat najlepsze rezultaty byt FastTreeRegression. Charakteryzowatl si¢ najnizsza
$rednig warto$cia RMSE (ocena btedu) oraz najwyzsza $rednig warto$cig R? (ocena jakosci
predykcji) dla przebadanych zbioréw danych. W zastosowaniach rzeczywistych
(czyli jak dla opisywanego przypadku), wartoéci R? przekraczajace warto$é 0.7 wskazuja
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na duza zgodno$¢ pomiedzy warto$§ciami generowanymi przez model a warto$ciami
rzeczywistymi. Przetestowano rézne rozwigzania modelowe i zadne z nich nie przyniosto
wyzszej warto$ci tego miernika. Oznacza to, ze w chcgc poprawié¢ otrzymane rezultaty
wymagana jest interwencja w dane, a nie w sam model. R? mozna réwniez zwigkszy¢
poprawiajac jako$¢ danych, jest to jednak trudne w systemach czasu rzeczywistego
(dziatajacych on-line), poniewaz wstepne przetwarzanie i poczatkowy wybodr danych zajmuja
cenny czas obliczeniowy.

W celu poszukiwania mozliwe najlepszego rozwigzania, zdecydowano si¢ na dodanie
odpowiednich zmiennych, ktére moglyby przyczyni¢ si¢ do poprawy wyniku R2
Zastosowanie takiego postgpowania moze pozwoli¢ na wychwycenie wigkszej liczby szumow
i losowych fluktuacji w danych — postanowiono zatem podjaé¢ kolejne kroki badawcze
w kierunku tej idei.

Kontynuujac analize, dodano wiec kolejnag (szésta) zmienng wejsciowa, na ktérg wybrano
PA_WIDTH_MEASURED, czyli s$rednia wartos¢ pomiaru szerokosci zespolu PA
dedykowanego do danej opony, zmierzong przez system prowadzenia karkasu (Rozdziat 7.1.1),
wyrazong w [mm]. Na zespo6t PA sktadaja si¢ boki oraz wyktadzina wewnetrzna. Dodatkowe
uwzglednienie tej zmiennej wejsciowej W modelu, daje wyrazniejszy obraz przesunigcia srodka
masy opony — w tym momencie model na wej$ciu zawiera komponenty stanowigce ok. 75%
catkowitej masy opony (o konstrukcji standardowej — bez wzmacniajacej wktadki runflatowe;j
— czyli takiej, dla ktorej przeprowadzane sg badania w niniejszej pracy). Dodanie tej zmiennej
jest rowniez uzasadnione fizycznym znaczeniem zjawiska stozkowatosci. Tolerancja
szerokosci PA dla wszystkich produkowanych rozmiar6w opon wynosi £6[mm]. Warto$ci
specyfikacyjne szerokosci PA dla zbiorow 11V zostaly przedstawione w Tabeli 7.17. W Tabeli
7.18. natomiast, zestawiono wyniki obliczen miar statystycznych dotyczacych szerokosci PA

dla zbiorow 11 V.

Tabela 7.17. Wartos$ci specyfikacyjne szerokosci PA dla zbiorow 1i V (opracowanie wlasne)
ZMIENNA WEJSCIOWA Zbior 1 Zbior V
PA_WIDTH_MEASURED [mm] 632 624
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Tabela 7.18. Miary statystyczne szerokos$ci PA dla zbiorow I i V (opracowanie wlasne)

Zmienna Miara Zbior 1 Zbior V
AVG 631.19 623.49
STDEV 2.53 1.67
PA_WIDTH_MEASURED [mm]
MIN 621.95 615.17
MAX 639.97 631.69

Na Rysunkach 7.37. — 7.40. przedstawiono wykresy przebiegu procesu produkcji

oraz rozkltady empiryczne warto$ci pomiaréw szerokosci zespotu PA dla zbioréw 11 V.

Dla zbioru I, 2.3% pomiardéw przekracza zadane limity specyfikacji. Najwigcej przekroczen

ma miejsce bezposrednio po wznowieniu produkcji po przestoju wakacyjnym (zakres od probki

nr 3836), co jest widoczne na Rysunku 7.37. Srednia wartos¢ szerokosci PA jest jednak bliska

specyfikacyjnej i rozktad wartosci jest wzgledem niej symetryczny (Rysunek 7.38.).
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Rysunek 7.37. Wyniki pomiarow szerokosci zespotu PA dla przebiegu procesu produkcji opon ze zbioru I

(opracowanie wlasne)
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Rysunek 7.38. Rozklad empiryczny warto$ci pomiarow szerokosci zespotu PA dla zbioru |

(opracowanie wlasne)

Zbiér V dla nowej zmiennej wykazuje poréwnywalnos¢ i stabilno$¢ poréwnywalng,
jak dla zmiennych wej$ciowych opisywanych poprzednio — wystepuja jedynie pojedyncze
przekroczenia zadanej tolerancji (Rysunek 7.39.). Srednia warto$¢ oscyluje wokot
specyfikacyjnej 1 rozdzial wszystkich warto$ci jest wzgledem niej symetryczny
(Rysunek 7.40.).
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Rysunek 7.39. Wyniki pomiarow szerokosci zespotu PA dla przebiegu procesu produkcji opon ze zbioru V

(opracowanie wlasne)
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Rysunek 7.40. Rozklad empiryczny warto$ci pomiaréw szerokosci zespotu PA dla zbioru V

(opracowanie wlasne)

W Tabelach 7.19. i 7.20 poréwnano rezultaty RMSE i R? uzyskane dla wszystkich badanych

metod z wykorzystaniem pigciu i szeSciu zmiennych wejsciowych dla zbioru 1'i V.

Tabela 7.19. Efekt dodania szerokosci PA jako zmiennej wejsciowej dla zbioru I (opracowanie wlasne)

5 zmiennych | 6 zmiennych | 5 zmiennych | 6 zmiennych
wejsciowych | wejsciowych | wejsciowych | wejSciowych
0.177 0.156 0.302 0.374
0.116 0.083 0.518 0.719
0.086 0.085 0.707 0.719
0.085 0.084 0.716 0.726
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Tabela 7.20. Efekt dodania szerokosci PA jako zmiennej wejsciowej dla zbioru V (opracowanie wlasne)

5 zmiennych | 6 zmiennych | 5 zmiennych | 6 zmiennych
wejsciowych | wejsciowych | wejsciowych | wejSciowych

0.158 0.141 0.436 0.497
0.092 0.080 0.681 0.742
0.082 0.088 0.715 0.704
0.079 0.086 0.723 0.711

Na podstawie danych uzyskanych z poszczegolnych modeli i przedstawionych w Tabelach
7.19. 1 7.20 stwierdzono, ze najlepszym rozwiazaniem okazal si¢ model XGBoost,
ktory charakteryzuje sic najnizszym RMSE i najwyzsza wartoscig R%. Wyniki badan
potwierdzaja zasadno$¢ stosowania uzyskanego modelu w warunkach przemystowych.
Moze on potencjalnie przyczyni¢ si¢ do zmniejszenia ilosci odpadéw opon poprzez
wyeliminowanie komponentow, ktore nie spetniajg wymagan jakosciowych na wczesnych
etapach procesu produkcyjnego, a tym samym znaczaco obnizy¢ koszty produkcji,
co jest niezwykle wazne dla nowoczesnych przedsiebiorstw. Godnym zainteresowania jest,
ze modele oferowane przez bibliotek¢ ML.NET po dodaniu kolejnej zmiennej obnizyly swoja
zdolnos¢ predykcji, natomiast wyniki osiagnicte przez model MLP wciaz znaczaco odbiegaly
od mozliwosci zastosowania go W warunkach rzeczywistej produkcji. Uzycie stosunkowo
prostej i szybkiej metody XGBoost jest jednym ze sposobow rozwigzania problemu,
przy niewielkim wysitku obliczeniowym i uniknigciu definiowania regul od podstaw.
Moze to by¢ istotne w momencie wdrazania nowych rozmiarow opon do produkcji masowe;.
Ponadto model ten wykazal istotne mozliwosci poprawy zarowno pod wzgledem
funkcjonowania, jak i poprawy uzyskanych wartosci miernikow oceny. Na tej podstawie,
w kolejnym kroku przystapiono do walidacji modelu wytrenowanego na zbiorze | w celu
oceny jego zachowania na danych szerszej grupy rozmiaréw opon. Zatozono, ze jesli trening
odbywat si¢ na danych charakteryzujacych si¢ wigkszym rozrzutem w stosunku do zbioru V,
model uzyskany na podstawie nauki na danych zbioru I bedzie wykazywat si¢ wigksza
zdolnoscig do przewidywania wartosci odstajagcych (poza zakresowych, czyli poza limitem

stozkowato$ci), co jednoczesnie stanowi gtdéwny cel jego implementaciji.
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7.4 Walidacja modelu

W trakcie walidacji opracowanego modelu XGBoost wykorzystano 4 pozostate zbiory
danych, czyli I, 11, IV i VI. Celem takiego podejscia jest obicktywne oszacowanie zdolno$ci
modelu do generalizacji, czyli jego skutecznosci w przewidywaniu wynikow dla nowych,
nieznanych danych. Walidacja koncowa powinna umozliwi¢ identyfikacje ewentualnych
problemoéw 1 wiarygodnos$ci modelu w kontekscie jego praktycznego zastosowania. Ostateczne
wyniki testowania i walidacji majg fundamentalne znaczenie dla decyzji dotyczacych
wdrozenia modelu w §rodowisku produkcyjnym.

Jak juz wspomniano, zbior II dotyczy produkcji tego samego rozmiaru co zbior I,
jednak produkowanego w innym okresie i po zmianie limitow stozkowato$ci. Ma on postuzy¢
weryfikacji dziatania modelu dla tego samego rozmiaru, na ktérego danych byt trenowany.
Zbiory 11, IV i VI zawierajg rejestr produkcji rozmiaréw posrednich gabarytowo pomiedzy
rozmiarami zbioréow | i V, réznigcymi si¢ rowniez wysokoscig profilu oraz konstrukcja.
Posiadaja rowniez wigkszg liczbe rekordow w porownaniu do poczatkowo wykorzystywanych
zbioréw. Dzigki takiemu podejsciu, bedzie mozliwe przeprowadzenie bardziej precyzyjnej
oceny dziatania modelu dla catego zakresu rozmiarow konfekcjonowanych na maszynach
VMI MAXX.

W Tabeli 7.21. zaprezentowano wartosci specyfikacyjne komponentow niezbgdnych

do prawidtowej pracy modelu dla zbioréw I, 11, IV i VI.

Tabela 7.21. Wartosci specyfikacyjne zmiennych wejsciowych zbiorow IL IIL IV i VI

(opracowanie wlasne)

ZMIENNA WEJSCIOWA Zbior 11 | Zbior III | Zbior IV Zbior VI
BR1_WIDTH_MEASURED [mm] 251 196 191 181
BR2_WIDTH_MEASURED [mm] 241 186 181 171
TD_WIDTH_MEASURED [mm] 308 248 240 222
PA_WIDTH_MEASURED [mm] 632 618 728 580

W Tabeli 7.22. zestawiono wyniki obliczen nast¢pujacych miar statystycznych: warto$¢
srednia (AVG), odchylenie standardowe (STDEV), wartosci maksymalna (MAX) i minimalna

(MIN) badaych zmiennych wejsciowych i zmiennej wyjsciowej dla wymienionych zbiorow.
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Tabela 7.22. Miary statystyczne zmiennych wejSciowych zbiorow 11, 111, IV i VI (opracowanie wlasne)

) ) Zbior Zbior Zbior | Zbior
Zmienna Miara
11 11 v Vi

AVG 250.95 196.62 | 191.23 | 181.95
STDEV 1.04 0.93 0.97 0.80

BR1 WIDTH_MEASURED [mm]
MIN 247.79 19255 | 187.21 | 175.49
MAX 254.61 199.07 | 193.73 | 184.06
AVG 240.87 185.85| 180.88 | 171.61
STDEV 1.04 0.82 1.02 0.85

BR2_ WIDTH_MEASURED [mm]
MIN 234.50 182.03 | 173.57 | 166.53
MAX 244.40 188.51 | 184.27 | 173.88
AVG 306.71 249,11 | 242.32 | 222.23
STDEV 1.19 0.95 1.11 0.78

TD_WIDTH_MEASURED [mm]
MIN 302.20 24553 | 233.79 | 218.47
MAX 311.02 252.80 | 246.41 | 225.58
AVG 0.15 0.63 -0.85 0.00
1BAP_BODY_AVG _OFF CENTER | STDEV 0.13 0.27 0.24 0.14
[mm] MIN -1.72 -0.02 -2.42 -0.44
MAX 1.09 2.24 -0.11 0.59
AVG 0.04 0.73 -0.88 0.12
2BAP_BODY_AVG_OFF_CENTER | STDEV 0.34 0.12 0.72 0.11
[mm] MIN -3.71 0.30 -3.83 -0.24
MAX 0.97 1.85 1.51 0.43
AVG 631.32 618.83 | 727.18 | 580.84
STDEV 2.10 1.52 1.80 1.54

PA WIDTH_MEASURED [mm]
MIN 623.07 613.04 | 716.25| 572.93
MAX 639.43 625.21 | 735.49 | 589.21
AVG 0.93 4,70 -7.93 -2.51
STDEV 14.21 6.96 17.30 4,53

Stozkowato$¢ (CON) [N]

MIN -66.00 -25.00 | -88.00 | -24.00
MAX 116.00 31.00 68.00 27.00
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Zbiory danych wuzywane do walidacji opracowanego modelu przygotowano
w taki sam sposob, jak przeprowadzono to dla wczesniej przygotowywanych danych,
co opisane zostalo w Rozdziale 7.2.1. Zastosowano rowniez ten sam podzial danych
na trzy podzbiory: treningowy (70%), walidacyjny (15%) i testowy (15%).
W tym postepowaniu uzyskano wyniki RMSE i R?, ktére zestawiono w Tabeli 7.23.

Tabela 7.23. Wyniki RMSE i R? uzyskane podczas walidacji modelu XGBoost (opracowanie wlasne)

Miernik Zbior 11 | Zbior 111 | Zbior IV Zbior VI
RMSE 0.085 0.078 0.081 0.071
R? 0.725 0.746 0.732 0.751

Etap walidacji byl przeprowadzany ze Swiadomoscia, ze zwickszenie liczby probek
powyzej 10 000 moze wymagac ponownego dostrojenia modelu lub nawet modyfikacji uzytego
algorytmu (Longwic i in., 2012). Zmiany hiperparametrow uzywanego modelu W czasie
testowania go na nowych zbiorach danych nie przyniosty juz jednak dalszej poprawy wynikow
stosowanych miar poréwnawczych. Model XGBoost zostal zatem finalnie wybrany
do wdrozenia w przedsigbiorstwie — uzyskat najlepszy wynik po dodaniu zmiennej wejsciowej
od zespotu PA i wykazal najlepsza $redniag wynikow miernikow oceny dla wszystkich
przebadanych rozmiaréw opon, co dodatkowo wskazuje na jego uniwersalnos¢. Wnioskujac
na podstawie uzyskanych rezultatow przyjmuje si¢ jednak mozliwos¢, ze dla roznych grup
rozmiarOw w przyszlosci mogg zosta¢ zastosowane rozne modele, ze wzgledu na zmiennos¢
zbiorow danych — o czym $wiadczy m.in. roéznica warto$ci charakteryzujacego je odchylenia
standardowego.

W niniejszych badaniach warto zwrdci¢ uwage na kluczowy problem: tradycyjne metody
regresji — zarowno liniowe (np. regresja liniowa, Lasso, ridge) — jak i nieliniowe (np. Support
Vector Regression, drzewa decyzyjne) maja swoje ograniczenia w modelowaniu funkcji
nieliniowych. Liniowe modele bywajg zbyt uproszczone, SVR wymaga kosztownego doboru
jadra i czasu obliczeniowego, natomiast drzewa decyzyjne bywaja niestabilne (Chen
i in., 2020). Przed wdrozeniem wymagana jest weryfikacja, czy drzewa decyzyjne moga
efektywnie aproksymowa¢ funkcje nieliniowe i przewidywac realne dane. Jest to istotne,
poniewaz w $rodowisku produkcyjnym istnieje wysokie prawdopodobienstwo wystapienia
wejsciowych warto$ci poza zakresowych. Ponadto, gtownym zadaniem implementowanego
modelu jest predykcja odstajgcych warto$ci stozkowatosci, na ktorych wystapienie model musi

reagowa¢ w prawidlowy sposob. Podstawag do osiggnigcia tego celu jest odpowiednie
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zbalansowanie glgbokosci drzewa. Nadmierna albo zbyt mata glebokos¢ moglyby prowadzié
do duzego btedu predykcji. Dlatego tez model XGBoost zostat przebadany w szerokim zakresie
parametru gtebokosci drzewa ‘max_depth’.

Nalezy zauwazy¢, ze odpowiedni dobor danych treningowych (tj. zestawdw parametrow
wejsciowych 1 wyjsciowych) ulatwil identyfikacj¢ nieoczywistych, nieznanych lub wcze$niej
niekompletnych regut, a tym samym uzupehit ich opis matematyczny i mozliwg analiz¢ innymi
metodami. Moze to by¢ przydatne w przypadku pojawienia si¢ niezweryfikowanych
baz danych, nowo wdrozonych maszyn (pracujgcych nawet na wezesniejszym etapie produkcji
opon, niz konfekcja) lub rozmiaréw opon, ktore nie byly jeszcze analizowane metodami
obliczeniowymi.

Dodatkowa zaleta modelu, ktora sprawia, ze nadaje si¢ do wykorzystania w masowej
produkcji opon, jest jego natychmiastowa reakcja na warto$ci zmiennych wejSciowych
(poza zakresem tolerancji). Pozwala to na przewidywanie i oceng jakosci produkcji w trybie
ciggltym (Bai i in., 2017). Ta cecha moze utatwi¢ natychmiastowe wycofanie partii wadliwych
komponentéw opon (minimalizacja strat materiatowych) 1 ograniczy¢ ilo$¢ powstawania ztomu
obiegowego (Kosmela i in., 2021) w przedsi¢biorstwie. Przyspieszy to réwniez ustalanie
przyczyn zrodtowych usterek / bledow powstajacych w procesie produkcyjnym (eliminacja
strat czasu), co stanowi jeden z glownych czynnikoéw wptywajacym na utrzymanie cigglosci
produkcji opon (Krishnan i in., 2018). Gwarantowana szybko$¢ reakcji, poprawi zdolno$é
krotkoterminowego planowania oraz elastyczno$¢ produkcyjng firmy (Krynke, 2021),
co stanowi jedno z gldéwnych zalozen Przemystu 4.0. W rezultacie mozliwa jest terminowa
modyfikacja ustawien maszyny, co zatrzyma przeptyw wadliwego produktu do kolejnych
etapoéw procesu produkcyjnego (eliminacja ztomu) (Kim i in., 2019). Nalezy w tym miejscu
rowniez podkresli¢ pozytywny wptyw na aspekty srodowiskowe, poniewaz odpady gumowe
ktére sa wykorzystywane jako paliwo alternatywne (odzysk energii), odpowiadaja
za 6% globalnej emisji CO2 (Skrzyniarz, 2020). Ma to tym wigksze znaczenie w przypadku
opon wyrzucanych bezposrednio po procesie produkcyjnym, ktore nigdy nie trafiajg
do normalnej eksploatacji, co stanowi powazne marnotrawstwo (Skarbek-Zabkin i Kaminska,
2015).

177



8. Czes¢ wdrozeniowa

Gloéwnym celem niniejszej pracy doktorskiej byto opracowanie modelu przewidujacego
w czasie rzeczywistym wyniki stozkowatosci opon na okre§lonym poziomie, na podstawie
danych wejsciowych z procesu konfekcji. Kolejnym etapem jest wdrozenie opracowanego
modelu uczenia maszynowego, jako narzedzia wspomagajacego masowa produkcje opon
radialnych w przedsiebiorstwie. W niniejszym rozdziale zostanie przedstawiony efekt
wdrozenia modelu do systemu informatycznego przedsi¢biorstwa oraz maszyn VMI MAXX.

Zostang rowniez omowione perspektywy rozwoju tego narzedzia w przedsigbiorstwie.

8.1 Implementacja modelu do systemu
informatycznego przedsiebiorstwa oraz maszyn
VMI MAXX

Dla poprawnego dzialania modelu w $rodowisku produkcyjnym przeprowadzono

juz nastgpujace dziatania w kierunku implementacji modelu do systemu informatycznego:

1) Zwigkszono czgstotliwos¢ kalibracji aparatury pomiarowej, czyli CCMO (monitora
karkasu) oraz BTMO (monitora b¢bna B&T). Dotychczas realizowana byta raz do roku,
obecnie interwat kalibracji ustalono na 6 miesigcy.

2) Wyrownano wyglad interfejsu CORTEXX wszystkich maszyn VMI MAXX w fabryce.
Dodano przy tym konieczno$¢ zapisu newralgicznych zmiennych wejSciowych,
niezbednych do prawidtowej pracy modelu. W Bazie Danych Produkcyjnych maszyny
VMI MAXX uwzgledniono réwniez dopisywanie ustalonych limitow stozkowatosci
dla kazdego rozmiaru opon W celu ich konsolidacji z wynikiem wygenerowanym
przez model i w konsekwencji wyswietleniem prawidtowego komunikatu.

3) Utworzono baze danych integrujacag dane wejSciowe i wyjsciowe w celu cigglego
douczania algorytmu. Dane wejsciowe sg automatycznie odpowiednio przetwarzane
(przygotowywane w analogiczny sposob, jak mialo to miejsce w toku badan)
do wymaganego formatu i zasilaja model. Dane wyjsciowe stuzg weryfikacji

poprawnosci dziatania po pomiarze jednorodnosci.

Nowy schemat rejestracji i przeptywu danych zostat przedstawiony na Rysunku 8.1.
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Zmiany na maszynach VMI MAXX po wdrozeniu modelu:

1)

2)

Pomiary wymiaré6w opasan, bieznika i PA sg wysytane on-line do zintegrowanej bazy
danych, przygotowywane i przetwarzane przez model. Model dokonuje predykcji
wartos$ci stozkowatosci.

Rezultatem wdrozenia ptynacego z niniejszej pracy doktorskiej jest pojawienie
si¢ komunikatu ,,con out of tolerance” widocznego na Rysunku 8.2. Wyswietla
si¢ on tylko i wytacznie w przypadku, kiedy model przetworzy istotne dla jego dziatania
zmienne wejSciowe oraz zidentyfikuje je jako potencjalng przyczyne przekroczenia
limitu stozkowatosci (informacja zwrotna — predykcja przekroczenia limitu

stozkowatos$ci).

Rysunek 8.2. Komunikat wywolany dzialaniem modelu (opracowanie wlasne)

3) Juz w tym momencie mozliwe jest zareagowanie na otrzymang informacj¢. Poszukujgc

przyczyny wystgpienia komunikatu, na podstawie pomiaréw wykonanych
przez maszyn¢ mozna rozpocza¢ od sprawdzenia, czy wymiar ktorego$ z materiatow,

ktérego dane zasilajag model przekroczyl swoja tolerancj¢. Nalezy wzig¢ pod uwage
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4)

wyznaczong przez model XGBoost istotnos¢ cech, ktérag mozna bezposrednio przetozy¢
na kolejno$¢ podejmowanych krokoéw podczas poszukiwania przyczyny zrodtowej
problemu (rozpoczynajagc od materialu majacego najwigkszy wplyw na wynik
generowany przez model).

W celu potwierdzenia przypuszczen, mozna przygotowaé¢ nowy odcinek
newralgicznego materiatu (jesli odnaleziono przekroczenie dotyczace materiatu opasan,
bieznika lub PA). Maszyna przeprowadza pomiar i natozenie kolejnego odcinka. Dane
wejsciowe od uzupelianego materiatu zostaja zestawiane z danymi materiatlow
aktualnie znajdujacymi si¢ na maszynie I czekajacymi na uzycie do biezacej sztuki

opony. Dochodzi do interpretacji aktualnej sytuacji przez model.

Przedstawione powyzej funkcjonalnosci i osiggni¢te dotychczas rezultaty wdrozenia

stanowig czg¢$¢ wiekszego projektu, co zostanie scharakteryzowane w kolejnym podrozdziale.

8.2 Monitorowanie i utrzymanie modelu

oraz potencjalne efekty wdrozenia

Wdrazane rozwigzanie wymaga ustalenia kilku kwestii wewnatrz przedsigbiorstwa:

1)

2)

3)

Dziatania zaprezentowane w Rozdziale 8.1. realizowane sg na razie tylko na najnowszej
maszynie VMI MAXX nr X08, ze wzgledu na jej obecny status ,testowy” (pracuje
jedynie na potrzeby prob i przeprowadzania badan). Dalo to mozliwos¢ realizacji
dzialan zwigzanych 2z niniejszag dysertacja bez zaklocania planu produkcji
przedsi¢biorstwa. Produkcja masowa na tej maszynie wystartuje jednak dopiero
w drugiej potowie 2026 (aktualna prognoza).

Biorac pod uwage sposob dziatania modelu opisany w Rozdziale 8.1, nalezy opracowac
standard postepowania z wadliwym materiatem na szpuli / wozku. Wycofanie materiatu
na pewno bedzie wymagalo wykonania wigkszej liczby pomiaréw — do dyspozycji
nie bedzie moglo dojs¢ na podstawie tylko jednego odcinka komponentu
dedykowanego do 1 sztuki opony.

Identyfikacja odpadéw spowodowanych stozkowatoscia juz na poziomie pomiarow
materiatowych eliminuje powstawanie wadliwych opon surowych. Dzigki

pojawiajacemu si¢ komunikatowi, konfekcja wadliwej opony zostaje zatrzymana.
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4)

5)

6)

7)

W roku 2024 z powodu przekroczenia limitu CON przerobkom musiato ulec 6000szt.
opon wyprodukowanych tylko przez maszyny VMI MAXX. Przyjmuje
si¢, ze wymagany poziom prawidlowych przewidzen wdrozonego narzedzia to 70% -
0 tyle zatem powinien spas¢ poziom przerobek / zlomow opon z przyczyny
przekroczenia limitu stozkowatosci w masowej produkcji opon. Potwierdzito
si¢ to juz podczas prob wdrazania nowych rozmiarow opon realizowanych na maszynie
nr X08. W trakcie produkcji probnej zliczano pojawiajgce si¢ komunikaty i zestawiono
ich liczb¢ z faktycznymi przekroczeniami limitu stozkowatosci opon probnych.
Dotyczyto to réoznych rozmiarow opon o roznej konstrukeji, dla ktérych realizowane
byly proby wdrozeniowe.

Zgodnie ze wstepnymi zatozeniami, do weryfikacji poprawno$ci dziatania modelu w
trakcie masowej produkcji opon bedzie dochodzito w nastgpujacy sposob:

10 opon zidentyfikowanych przez zaimplementowane narzedzie jako potencjalne ztomy
(a dokfadnie: zawierajace w sobie wadliwy komponent), bedzie nalezalo
zwulkanizowac¢ i dedykowa¢ do pomiaru jednorodnosci.

Jesli mniej niz 7 opon przekroczy limit CON, bedzie musiato doj$¢ do korekty
hiperparametréw / wywotania manualnego douczania algorytmu.

Czestotliwos¢ powyzszej weryfikacji pozostaje jeszcze kwestig otwarta.

Wdrozone rozwigzanie ulegnie faktycznej weryfikacji dopiero po rozpoczeciu
regularnej produkcji na maszynie nr X08. Wtedy tez implementacja tego rozwigzania
zostanie rozszerzona na pozostate maszyny VMI MAXX. Bedzie mozna wowczas
w sposOb bardziej precyzyjny okresli¢ realny wptyw narzedzia na poziom ziomow
oraz oceni¢ jego faktyczny poziom predykcji. Dotyczy to takze podejscia do tolerancji
wymiarowych uzywanych materialdw — narzedzie utrzymujace poziom przewidzen
na okreslonym poziomie, bgdzie mozna dopusci¢ pewne (okreslone wewngtrznymi
restrykcjami / zakresami) odstepstwa, jesli np. przekroczenia centrowania opasan 112
skompensuja si¢ 1 wedlug modelu zaowocuja rezultatem pomiaru stozkowatosci
zawartym w limicie.

Mozna stwierdzi¢, ze przy modelach wytrenowanych na zebranych danych
1 wymaganym progu dokladno$ci szacowania ustalonym na podstawie biezacych
btedow, rozwigzania oparte na sztucznej inteligencji moga generowa¢ nieprawidtowe

rozpoznania (dobrych produktow jako wadliwych i1 odwrotnie). W przypadku
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watpliwosci konieczna begdzie decyzja (ekspercka) cztowieka, podejmowana w procesie
kontroli technicznej.

8) Dodatkowg zaletg maszyny nr X08 w stosunku do pozostatych maszyn, jest jej zdolnos¢
do przeprowadzania pomiaru przecentrowania materiatu bieznika. Istniejg uzasadnione
przypuszczenia (przeprowadzone dotychczas badania, fizyczny sens zjawiska $sciggania
pojazdoéw), ze dodanie tego pomiaru do danych wejsciowych modelu moze istotnie
poprawic¢ jako$¢ jego predykciji.

9) Sposob dziatania wdrozonego rozwigzania mozna replikowaé¢ do innych fabryk
produkujacych opony, przy zalozeniu, ze pomiary komponentow niezbgdne
do prawidtowej pracy algorytmu w toku produkcji bedg realizowane i rejestrowane,
z kolei lokalna infrastruktura informatyczna bedzie w stanie zasila¢ model. Moze

ono by¢ takze stosowane przez producentdw maszyn konfekcyjnych, tj. VMI GROUP.

Powyzsze stwierdzenia mozna podsumowac jako kolejny z aspektow rozwoju przemystu

oponiarskiego, ktory nakresla niedalekg przysztos¢ fabryki Bridgestone Poznan.
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1)

b)

d)

9)

9. Whnioski

Whnioski poznawcze

Przyjete w toku badan zmienne wejsciowe, bedace wynikami pomiarow wymiarowych
materialdéw sktadowych opony na etapie konfekcji, pozwolity na skuteczng predykcje
stozkowato$ci opon przy zastosowaniu modelu uczenia maszynowego. Dobér danych
wejsciowych byl rowniez zgodny z fizycznym sensem zjawiska stozkowatosci opon.
Potozenie materiatow i1 rozktad ich masy wzgledem osi symetrii opony ma zatem
bezposredni wptyw na powstawanie efektu stozka.

Na podstawie wykonanej eksploracyjnej analizy danych oraz przeprowadzonej rowniez
regresji liniowej wielu zmiennych mozna stwierdzi¢, iz badane zalezno$ci pomigdzy
zmiennymi wejsciowymi a zmienng wyjsciowg maja charakter nieliniowy.
Najlepszym rozwigzaniem okazal si¢ model XGBoost, charakteryzujacy
si¢ najnizszym RMSE i najwyzsza wartoécia R?, gwarantujagcym co najmniej 70%
poprawnych przewidzen, co mozna stwierdzi¢ na podstawie wynikéw badan
oraz przeprowadzonych po jego implementacji proéb wdrozeniowych nowych
rozmiar6w opon.

Modele FastTreeRegression i LightGbmRegression po dodaniu kolejnej (szdstej)
zmiennej wejsciowej, obnizyly swoja jakos¢ predykcji, co wigcej poziom osiggniety
przez model MLP wciaz znaczaco wowczas odbiegat od mozliwosci zastosowania
go w warunkach rzeczywistej produkcji.

Opracowany model XGBoost potrafi generowaé w czasie rzeczywistym wartosci
stozkowato$ci opon na podstawie zasilajacych go danych wejsciowych z procesu
ich konfekcji — cel badawczy pracy zostal zatem osiagnigty.

Na podstawie przedstawionego w czesci wdrozeniowej przyktadu dziatania modelu
mozna stwierdzi¢, ze na etapie pomiaru zmiennych wejsciowych komponentow
sktadowych danej opony podczas procesu konfekcji mozliwa jest skuteczna predykcja
jej stozkowatosci. Potwierdza to hipotez¢ badawcza postawiong w niniejszej rozprawie
doktorskiej.

Jakos¢ uzyskiwanych wynikéw predykcji moze by¢ zakldécana poprzez wplyw
pozostatych etapéw procesu produkcji opon, ktore odbywaja sie pomiedzy pomiarami

wielko$ci wejsciowych i wyjsciowych modelu.
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2)

b)

d)

9)

Whioski utylitarne

Uzyskane wyniki i przebieg wdrozenia wskazuja na mozliwos¢ zastosowania
otrzymanego modelu w warunkach przemystowych.

Wykorzystanie modelu opartego na SNN do bezposredniej identyfikacji wadliwosci
parametréw / cech w oponach dla rzeczywistych danych testowych (z kontroli
technicznej) jest mozliwe.

Uzyskane rezultaty oraz dane zbicrane w czasie rzeczywistym daja mozliwo$¢
szybkiego reagowania, np. poprzez natychmiastowe wycofanie z uzycia materialu
bedacego powodem powstawania defektow lub wprowadzenie korekty do procesu,
co ma znaczacy wplyw na obnizenie kosztoéw produkcji (eliminacja straty czasu,
minimalizacja strat materialowych, zmniejszenie liczby ztomow opon).

Zastosowanie opisywanego modelu wptynie na zwigkszenie elastyczno$ci
krotkoterminowego planowania produkcji materiatow i opon dzigki szybkiej informacji
zwrotnej o zaistnieniu wadliwych prefabrykatow. Jest to tym bardziej kluczowe podczas
realizacji krotkich partii produkcyjnych, wymuszajacych czeste zmiany rozmiaru
na maszynach konfekcjonujacych opony i przygotowujacych materiaty.

Identyfikacja odpadéw spowodowanych stozkowato$cig juz na poziomie pomiarow
materialowych 1 dzigki mozliwosci wstrzymania procesu konfekcji, eliminuje
powstawanie wadliwych opon surowych (ktére w domysle po procesie wulkanizacji
nie zawartyby sie w limicie CON). Zmniejszenie ilosci odpadoéw opon poprzez
wyeliminowanie komponentow, ktére nie spetniaja wymagan jakosciowych
na wczesnych etapach procesu produkcyjnego obnizy jego koszty, co jest niezwykle
wazne dla wspotczesnego przedsigbiorstwa.

Wdrozone narzedzie zapewnia kontrolg jakosci produkcji on-line, co wspiera koncepcje
Przemystu 4.0. Przyczynia si¢ to réwniez do wytwarzania produktow bardziej
przewidywalnych w eksploatacji.

Poprawie ulegnie roéwniez utrzymanie ciaglosci produkcji, dzigki przyspieszeniu
ustalania przyczyn zroédlowych usterek / bledow powstajacych w procesie
produkcyjnym za pomocg sugestii z interfejsu maszyny VMI MAXX
po pojawiajagcym si¢ komunikacie o mozliwym przekroczeniu limitu stozkowatos$ci.
Whiosek ten dodatkowo poparty jest wyznaczong przez model XGBoost istotno$cig
cech, ktéra mozna przelozy¢ na kolejnos¢ podejmowanych krokéw podczas
poszukiwania przyczyny zrodlowej problemu (rozpoczynajac od materiatu majacego

najwigkszy wplyw na wynik generowany przez model).
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h)

3)

b)

d)

Problem rozwigzany poprzez model opracowany podczas prac realizowanych
na potrzeby niniejszej rozprawy doktorskiej pozwala na biezace korygowanie procesu
produkcji, co w praktyce przektada si¢ na ograniczenie liczby odpadow, redukcje
kosztow oraz podniesienie jakosci wyrobow. Efekty te majg istotne znaczenie
dla rozwoju metod stosowanych w inzynierii mechanicznej, a w szczegolnosci
W obszarze inzynierii produkcji i wpisujg si¢ w ide¢ Przemystu 4.0, dazaca

do zwigkszenia efektywnosci 1 konkurencyjnosci przedsigbiorstw.

Whioski do dalszych badan

Zbudowany model pozwoli na powtdrng weryfikacje stosowanych obecnie standardow
i tolerancji procesu produkcji opon — wptynie on na bardziej precyzyjne dopasowanie
jakosci wyrobow do faktycznych potrzeb klienta. Po weryfikacji w masowej produkciji,
narzedzie utrzymujace poziom predykcji na wypracowanym poziomie, bedzie mogto
dopusci¢ pewne (okreslone wewnetrznymi restrykcjami) odstgpstwa od narzuconych
w standardach tolerancji, jesli np. przekroczenia centrowania opasan 1 i 2 skompensuja
si¢ 1 wedtug modelu zaowocuja rezultatem pomiaru stozkowatosci zawartym w limicie.
Douczanie algorytmdéw w oparciu o aktualne dane oraz okreslenie wymaganego progu
doktadno$ci oszacowania na podstawie obecnych btgdow jest niezbedne,
aby rozwigzania oparte na sztucznej inteligencji przetozyly si¢ na zmniejszenie liczby
btednych rozpoznan (produktow dobrych jako wadliwych i odwrotnie). W czeSci
sytuacji (watpliwych) o wynikach kontroli technicznej bedzie musial decydowac
cztowiek.

Rozwigzanie bedace przedmiotem przeprowadzonych badan moze by¢ potencjalnie
wdrozone w kazdej firmie produkujacej opony radialne do samochodéw osobowych
pod warunkiem, Ze ma ona mozliwo$¢ rejestrowania zmiennych wejsciowych
I wyjSciowych istotnych dla dziatania modelu.

Przeprowadzone badania stanowig (w zakresie ograniczonym przez zmienne / cechy
wejsciowe 1 wyjSciowe) cyfrowy model opony, ktéory moze by¢ uzywany
jako podstawa do cyfrowego rozpoznawania dobrej opony i opony ztomowanej,
a takze zmian prowadzacych do naturalnego lub przedwczesnego zuzycia opony.
Takie modele mozna budowaé, wykorzystujac proces automatycznego tadowania
danych w ramach Przemystowego Internetu Rzeczy (IloT). W ten sposéb mozna
testowaé przyszte modyfikacje bez koniecznos$ci przelaczania, np. catej linii

produkcyjnej.
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€)

9)

Uzycie stosunkowo prostej i szybkiej metody XGBoost stanowi sposob rozwigzania
problemu przy niewielkim wysitku obliczeniowym i unikni¢ciu definiowania regut
od podstaw. Moze to by¢ istotne w momencie wdrazania nowych rozmiarOw opon
do produkcji masowe;j.

Istniejg przestanki badawcze (przeprowadzone dotychczas badania, fizyczny sens
zjawiska $ciggania pojazdow), ze dodanie pomiaru przecentrowania materiatu bieznika
do danych wejéciowych modelu moze istotnie poprawi¢ poziom jego predykcji,
co moze by¢ zweryfikowane tylko na maszynie nr X08.

Opracowane rozwigzanie moze zosta¢ zastosowane przez producentdéw maszyn

konfekcyjnych, tj. VMI GROUP.
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