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Streszczenie 

W pracy skoncentrowano się na opracowaniu modelu przewidującego w czasie 

rzeczywistym wyniki stożkowatości opon na określonym poziomie, którego wdrożenie obniży 

liczbę defektów opon w firmie Bridgestone Poznań. Omówiono budowę, stosowane 

konstrukcje oraz komponenty składowe opon radialnych dedykowanych do samochodów 

osobowych. Scharakteryzowano przebieg procesu produkcji opon, wyszczególniając  

jego główne etapy, czyli: przygotowanie materiałów, konfekcję, wulkanizację i inspekcję 

końcową. Szczególną uwagę zwrócono na etap konfekcji, gdzie dodatkowo przybliżono 

budowę maszyny VMI MAXX. Dokonano podziału defektów opon na wizualne i związane  

z przekroczeniem limitów własności opisujących jednorodność opon, a także podano przykłady 

kierunków ich eliminacji. Przybliżono wielkości opisujące jednorodność opon z wyróżnieniem 

zjawisk promieniowych (tj. zmienność siły promieniowej, balans statyczny i dynamiczny, bicie 

promieniowe) i zjawisk bocznych (tj. zmienność siły bocznej, bicie boczne, ply steer) zwracając 

szczególną uwagę na stożkowatość. Wspomniano o pomiarze jednorodności opon  

przy wysokich prędkościach. Omówiono przebieg testów opon (tj. analiza przekroju, odcisk 

rzeźby bieżnika, testy bieżne wysokich i niskich prędkości, wyznaczanie oporów toczenia, 

pomiar siły i ciśnienia osadzenia stopki) pod kątem wymagań klienta i przepisów 

homologacyjnych. Sporządzono przegląd współczesnych kierunków rozwoju przemysłu 

oponiarskiego, na podstawie którego zauważono coraz częstsze wykorzystywanie metod 

uczenia maszynowego do poprawy procesu wytwarzania opon. Przedstawiono modele uczenia 

maszynowego najczęściej wykorzystywane w przemyśle. W toku badań porównano model 

regresji liniowej wielu zmiennych, modele sztucznych sieci neuronowych (perceptron 

wielowarstwowy) i modele oparte na drzewach decyzyjnych (XGBoost, FastTreeRegression  

i LightGbmRegression). Algorytmy trenowano na rzeczywistych danych z historycznego 

rejestru masowej produkcji opon. Możliwie najlepszą metodę do rozwiązania problemu 

wybrano na podstawie mierników RMSE i R2 oraz realiów panujących w firmie. Wybrany 

model walidowano na szerszej grupie rozmiarów opon, które reprezentowały spektrum 

możliwości produkcyjnych maszyn VMI MAXX. Zaprezentowano obecny postęp wdrożenia 

rezultatów badań w systemie informatycznym przedsiębiorstwa oraz na maszynie VMI MAXX 

jako narzędzia do wspomagania masowej produkcji opon. Wskazano kierunek dalszych działań 

oraz opisano możliwe efekty kontynuacji prac wdrożeniowych. 
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Summary  

The dissertation focused on developing a real-time predictive model for tire conicity  

at a specified level, aimed to reduce the number of tire defects in Bridgestone Poznań factory. 

The work discusses the structure, constructions and components of radial tires for passenger 

cars. The tire manufacturing process is outlined, with emphasis on its main stages: material 

preparation, tire building, vulcanization, and final inspection. Particular attention is given  

to the tire building stage, including a detailed description of the VMI MAXX machine.  

Tire defects are classified into visual issues and those exceeding tire uniformity limits,  

along with examples of elimination strategies. The study introduces parameters describing tire 

uniformity, distinguishing between radial phenomena (radial force variation, static and dynamic 

balance, radial runout) and lateral phenomena (lateral force variation, lateral runout, ply steer) 

with special focus on conicity. High-speed uniformity measurements are also mentioned.  

The course of tire testing is presented, including cross-section analysis, footprint evaluation, 

high- and low-speed durability tests, rolling resistance measurement, and bead seating force 

and pressure assessment, all in relation to customer requirements and homologation standards. 

Conducted literature review of current researches in the tire industry highlights the growing  

use of machine learning methods to improve tire manufacturing. The most commonly applied 

machine learning models in the industry are presented. The research compares multiple linear 

regression, artificial neural networks (multilayer perceptron) and decision tree-based models 

(XGBoost, FastTreeRegression, LightGbmRegression). Algorithms were trained on real data 

from the historical records of tire mass production. The most suitable method was selected using 

RMSE and R² metrics, as well as the operational capabilities of the company. The chosen model 

was validated across a wider group of tire sizes, representing the production capabilities  

of the VMI MAXX machines. The study was concluded by presenting the progress  

of implementation research results within the company’s IT system and on the VMI MAXX 

machine as a tool to support large-scale tire production. Directions for further work  

and potential effects of implementation continuation are outlined. 
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1. Wprowadzenie 

W 2018 roku w zakładzie Bridgestone w Poznaniu wdrożono nowoczesne maszyny 

konfekcyjne VMI MAXX, które umożliwiają rejestrację danych wejściowych procesu 

konfekcji opon. Otworzyło to nowe perspektywy badawcze, związane z możliwością 

zestawienia parametrów materiałów wprowadzanych do procesu z wynikami pomiarów 

jednorodności opon. Powstała tym samym możliwość predykcji wielkości opisujących 

jednorodność wyrobu gotowego z wykorzystaniem nowoczesnych metod uczenia 

maszynowego. Otwiera to drogę do praktycznego wdrożenia narzędzi analitycznych,  

które pozwolą na zwiększenie efektywności produkcji, ograniczenie ilości odpadów  

i podniesienie konkurencyjności przedsiębiorstwa. 

Szerszy kontekst naukowy i przemysłowy wskazuje, że dla każdej nowoczesnej organizacji 

produkcyjnej, niezależnie od branży, istotne znaczenie mają redukcja kosztów oraz wzrost 

produktywności. W przypadku producentów opon wyzwaniem jest minimalizacja odpadów 

oraz spełnienie rosnących wymagań środowiskowych i jakościowych. Problem emisji 

dwutlenku węgla w procesach odzysku energii ze zużytych opon jest szczególnie istotny  

w kontekście współczesnej polityki klimatycznej. Recykling materiałowy i produktowy,  

choć intensywnie rozwijany, nie może być jedyną odpowiedzią na wyzwania związane  

z zagospodarowaniem surowców gumowych. Należy dodać również, że rozwój alternatywnych 

systemów napędowych i paliw niskoemisyjnych stawia przed przemysłem oponiarskim nowe 

wymagania w zakresie ograniczania oporów toczenia, co przekłada się na konieczność 

konstruowania lżejszych i coraz bardziej zaawansowanych technologicznie opon. 

Kolejnym aspektem rynkowym są znormalizowane etykiety UE, umożliwiające klientom 

porównanie kluczowych parametrów opon, takich jak przyczepność na mokrej nawierzchni, 

efektywność paliwowa czy poziom generowanego hałasu. Świadomi użytkownicy mogą w ten 

sposób wybierać produkty spełniające ich wymagania w zakresie bezpieczeństwa, ekonomiki 

eksploatacji oraz komfortu jazdy. Równocześnie intensyfikacja rozwoju pojazdów 

elektrycznych, związana m.in. z polityką transportu bezemisyjnego Unii Europejskiej 

(Kamionka, 2023), wymusza opracowywanie nowych konstrukcji ogumienia. Konsekwencją 

jest konieczność redukcji masy opon poprzez zmniejszanie ich przekroju poprzecznego,  

co znacząco utrudnia spełnienie stale zaostrzanych wymagań producentów samochodów  

w zakresie fizycznej jednorodności. 

Wspomniane wyzwania potwierdzają znaczenie i aktualność podjętej problematyki. 

Niniejsza rozprawa doktorska wpisuje się w dyscyplinę inżynieria mechaniczna w obszarze 
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inżynierii produkcji poprzez nowe podejście zastosowania maszyn VMI MAXX, 

wyposażonych w system monitorowania i rejestracji parametrów materiałowych, który stwarza 

unikalną okazję do przeprowadzenia pogłębionych badań nad relacjami pomiędzy jakością 

materiałów wejściowych a jednorodnością gotowego wyrobu. Analiza tych zależności 

umożliwia bardziej precyzyjne przewidywanie właściwości opon oraz może prowadzić  

do opracowania nowych metod wspomagających proces decyzyjny w produkcji. 

Przeprowadzone badania pozwalają również na ocenę poprawności dotychczasowych 

wytycznych i tolerancji stosowanych w zakładzie oraz otwierają drogę do ich dalszej poprawy. 

Dotychczasowe badania oraz przegląd literatury wskazują, że większość prac naukowych 

koncentruje się na analizie zachowania opon w warunkach eksploatacyjnych. Jest to podejście 

charakterystyczne również dla rankingów konsumenckich, przeprowadzanych przez ADAC 

czy Auto Bild. W niewielkim stopniu podejmowane są natomiast kwestie problemów stricte 

produkcyjnych, w tym zagadnień związanych z osiąganiem wymaganej jednorodności wyrobu. 

Należy podkreślić, że stożkowatość opon stanowi jeden z najważniejszych parametrów 

jakościowych w hierarchii problemów produkcyjnych w zakładzie, w którym przeprowadzono 

niniejsze badania. W literaturze brak jest natomiast doniesień na temat prób wykorzystania 

danych wejściowych z procesu konfekcji (np. szerokości materiałów czy ich centrowaniu  

na bębnach) do predykcji wielkości opisujących jednorodność. Luka ta uzasadnia potrzebę 

realizacji badań i potwierdza ich oryginalność. 

Założeniem rozprawy jest opracowanie i wdrożenie modelu uczenia maszynowego,  

który umożliwi przewidywanie parametrów jednorodności opon na podstawie danych 

wejściowych z procesu konfekcji, a następnie zastosowanie tego modelu jako narzędzia 

wspomagającego masową produkcję. Przyjęte podejście ma na celu ograniczenie ilości 

odpadów, obniżenie kosztów produkcji oraz zwiększenie efektywności całego procesu. 

Badania oparte zostały na analizie danych historycznych, obejmujących szerokie spektrum 

rozmiarów opon produkowanych na maszynach VMI MAXX. 

Przedmiotem rozważań są zatem: identyfikacja kluczowych elementów procesu konfekcji 

i możliwości technologicznych maszyn, opracowanie i ocena modeli predykcyjnych opartych 

na metodach uczenia maszynowego oraz analiza procesów technologicznych wytwarzania 

opon w celu uzyskania wyników jednorodności mieszczących się w granicach dopuszczalnych 

limitów. Ostatecznym zamierzeniem jest wypracowanie rozwiązania, które umożliwi fabryce 

uzyskiwanie produktów spełniających restrykcyjne wymagania producentów samochodów,  

a tym samym zwiększy konkurencyjność przedsiębiorstwa na rynku globalnym. 
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2. Budowa opon radialnych  

Badania realizowane na potrzeby niniejszej dysertacji zostały przeprowadzone  

w fabryce Bridgestone w Poznaniu, specjalizującej się w produkcji opon radialnych  

do samochodów osobowych. W związku z tym w bieżącym rozdziale omówiono komponenty 

składowe oraz stosowane konstrukcje charakterystyczne dla tego rodzaju opon. Istotnym 

zagadnieniem, od którego należałoby rozpocząć charakterystykę opon radialnych jest sposób 

opisu ich rozmiarów, które determinują zarówno proces projektowania, jak i późniejsze 

zastosowanie, co zostało przedstawione na Rysunku 2.1. 

 

Rysunek 2.1. Opis rozmiarów opon radialnych (opracowanie własne) 

 

Za proces standaryzacji opon i felg na obszarze Europy odpowiada Europejska Organizacja 

Techniczna ds. Opon i Felg - E.T.R.T.O. (ang. European Tires and Rims Technical 

Organization). Instytucja ta pełni funkcję koordynatora w zakresie opracowywania, wdrażania 

i aktualizacji norm dotyczących wymiarów opon i felg, a także powiązanych z nimi oznaczeń 

technicznych. Jej działalność ukierunkowana jest na ujednolicenie parametrów 

konstrukcyjnych, co umożliwia zapewnienie kompatybilności oraz bezpieczeństwa 

eksploatacji opon i felg tworzących zespół koła. Odnosząc się do Rysunku 2.1. oraz (ETRTO, 

2025): 

1) Szerokość przekroju SW (ang. section width) – jej znaczenie zostało wyjaśnione  

w Rozdziale 4.4.1., wyraża się ją w [mm]. 

2) Wysokość profilu (ang. aspect ratio) [%] – wyraża wysokość boku opony w stosunku 

do jej szerokości. Procentowe określanie profilu opony stanowi najbardziej 
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funkcjonalny i powszechnie akceptowany sposób jego zapisu. Stosowany obecnie 

system przedziałów pięcioprocentowych umożliwia precyzyjną klasyfikację rozmiarów 

opon poprzez podział całej ich populacji na kilkanaście grup rozmiarowych (dla danej 

średnicy felgi). 

3) „R” – informuje o radialnej strukturze opony, co oznacza, że warstwy jej kordów 

tekstylnych ułożone są promieniowo (radialnie), czyli prostopadle do osi obrotu koła. 

Dla porównania, opony diagonalne posiadają w tym miejscu symbol „D” lub „-”. 

4) Średnica felgi [cal] – średnica osadzenia opony na feldze. 

5) Indeks nośności – kod numeryczny związany z maksymalnym obciążeniem, jakie opona 

może przenosić (z pewnymi wyjątkami przy prędkościach powyżej 210[km/h])  

przy prędkości wskazanej przez indeks prędkości, w warunkach eksploatacyjnych 

określonych przez producenta opony. 

6) Indeks prędkości – kod literowy wskazujący maksymalną prędkość, przy której opona 

może przenosić obciążenie odpowiadające jej indeksowi nośności (z pewnymi 

wyjątkami przy prędkościach powyżej 210[km/h]) w warunkach eksploatacyjnych 

określonych przez producenta opony. 

 

Bez względu na konstrukcję lub zastosowanie, każda opona radialna musi spełniać 

podstawowy zestaw funkcji (Rodgers i Waddell, 2005): 

1) Zapewniać nośność. 

2) Gwarantować amortyzację i tłumienie drgań. 

3) Przenosić moment napędowy i hamujący. 

4) Zapewniać przekazanie siły bocznej (do pokonywania zakrętów). 

5) Zapewniać stabilność wymiarową. 

6) Wykazywać się odpornością na ścieranie. 

7) Generować reakcję zadaną przez układ kierowniczy. 

8) Charakteryzować się niskimi oporami toczenia. 

9) Zapewniać minimalny hałas i minimalne drgania. 

10) Cechować się trwałością i przewidywalnością pracy przez cały założony okres 

eksploatacji. 

 

Opony są produktem, spełniającym wszystkie powyższe funkcje w głównej mierze dzięki 

zastosowaniu gumy, która charakteryzuje się znakomitymi własnościami tłumiącymi, 
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elastycznymi oraz unikalną zdolnością do odkształcania się i powrotu  

do pierwotnego kształtu. 

Podstawowy podział opony na 4 obszary (Rysunek 2.2.): bieżnika, barku, boku i drutówki 

umożliwia skuteczne zarządzanie całym cyklem życia ogumienia – od projektu i produkcji, 

przez eksploatację, aż po recykling. Każdy z obszarów ma do spełnienia inne funkcje: 

1) Obszar bieżnika – kontakt z podłożem, zapewnienie trakcji, odporności na ścieranie  

i odprowadzania wody (tzw. aquaplaning). 

2) Obszar barku – stabilizacja opony w zakrętach, zapewnienie odporności na obciążenia 

poprzeczne. 

3) Obszar boku – ochrona kordu tekstylnego (osnowy) przed uszkodzeniami 

mechanicznymi i warunkami atmosferycznymi, tłumienie wibracji, przekazywanie  

sił bocznych. 

4) Obszar drutówki – zapewnienie szczelności i stabilności połączenia z felgą, 

przenoszenie obciążeń osiowych i promieniowych. 

 

 

Rysunek 2.2. Obszary opony radialnej dedykowanej do aut osobowych (opracowanie własne) 

 

 

 



11 

Konstrukcja nowego rozmiaru opony (Rysunek 2.3.) dobierana jest na podstawie: 

1) Planowanej szerokości i profilu. 

2) Zastosowania oraz wymagań klienta dotyczących warunków jezdnych. 

3) Ograniczeń wynikających z możliwości technologicznych oprzyrządowania maszyny 

konfekcyjnej. 

 

Stosowane współcześnie rozwiązania konstrukcyjne można sklasyfikować według sposobu 

wzajemnego ułożenia bieżnika i boku opony (Rysunek 3.3.). Dwie główne konstrukcje, to: 

1) SOT (Sidewall Over Tread) – konfiguracja, w której boki są wywijane na bieżnik  

w taki sposób, aby stworzyły połączenie z minibokami bieżnika, zapewniając korzystne 

warunki adhezji po zarolowaniu na zimno podczas procesu konfekcji; 

2) TOS (Tread Over Sidewall) – uzyskany w wyniku odwrotnej do przedstawionej 

powyżej sekwencji procesu konfekcji, w której bieżnik jest aplikowany po uprzednim 

wywinięciu boków, co skutkuje ich przykryciem przez pakiet. Specyficzną odmianą 

konstrukcji TOS jest konstrukcja RGT (Rim Guard), charakteryzująca się minibokiem 

sięgającym niemal do wierzchołka rantu ochronnego felgi. Ze względu na jej sztywność 

i wytrzymałość stosuje się ją do szerokich opon z niskim profilem (20-35%) i wysokim 

indeksem prędkości (W, Y, (Y)) o zastosowaniu sportowym (tzw. UHP – ultra high 

performance). 

 

 

Rysunek 3.3. Najczęściej stosowane konstrukcje opon (opracowanie własne) 

 

Opony posiadające wysokie profile (55-80%) mogą być produkowane zarówno  

jako TOS-y, jak i SOT-y. Mając na uwadze obniżenie kosztów produkcji, zazwyczaj  

dąży się do wyboru tej drugiej opcji – cykl SOT jest zdecydowanie krótszy – opona zostaje 
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złożona w całość w trakcie jednego rolowania. W przypadku konstrukcji TOS należy najpierw 

zarolować boki, natomiast po nałożeniu pakietu dochodzi do osobnego rolowania bieżnika 

(szerszy opis konfekcji opon zamieszczono w Rozdziale 3.2.). Z tego względu, opony 

średnioprofilowe (40-50%) produkowane są najczęściej z wykorzystaniem konstrukcji SOT. 

 

Do obowiązkowych komponentów składowych opon radialnych dedykowanych  

do samochodów osobowych należą: 

1) Bieżnik – TT (ang. top tread) – uzyskiwany w wyniku procesu wytłaczania 

czteroślimakowego, w którym każdy ślimak odpowiada za inny obszar jego przekroju 

poprzecznego. W skład bieżnika wchodzą: 

a) Kapa bieżnika (ang. cap) – wykonana z mieszanki gumowej odpowiednio dobranej  

do zastosowania (typ pojazdu) oraz warunków eksploatacji opony (letnia, zimowa, 

całoroczna). 

b) Warstwa podbieżnikowa – UT (ang. undertread) – jej zadaniem jest efektywne 

odprowadzanie ciepła generowanego wskutek tarcia wewnętrznego podczas jazdy. 

c) Miniboki – MSW (ang. minisidewalls) – wykonane z mieszanki gumowej zbliżonej 

składem chemicznym do mieszanki boku, co umożliwia uzyskanie połączenia bieżnik–

bok „na zimno” w procesie konfekcji, które ulega dalszemu umocnieniu podczas 

procesu wulkanizacji. 

d) Antena – ANT (ang. antenna) – wykonana z przewodzącej mieszanki gumowej, 

odpowiadająca za odprowadzanie ładunków elektrostatycznych podczas eksploatacji 

opony. 

 

2) Warstwa spiralna – SL (ang. spiral layer / CP – ang. cap ply) – nawijana z wąskich 

pasków kalandrowanego kordu (PET, kevlar, nylon, aramid). Zwykle stosuje się jedną 

lub dwie warstwy, najczęściej z dodatkowymi paskami nawiniętymi na brzegach –  

ich szerokość kontrolowana jest poprzez ustawienie posuwu (prędkości przesunięcia 

lewo-prawo [mm / obrót]) i liczby obrotów bębna BT. 

3) Opasania – TP (ang. tread plies, często nazywane także „breakers”) – składają  

się z kalandrowanego kordu stalowego, którego wiązki ułożone są pod określonym 

kątem (57–67°), co bezpośrednio wpływa na właściwości jezdne opony.  

W celu sterowania tymi właściwościami istnieje możliwość doboru drutów o różnej 

grubości oraz o różnej ilości drutów w pojedynczej wiązce. Brzegi opasań zakończone 

są tzw. gumą krawędziową (ang. edge gum), która ma za zadanie chronić sąsiadujące  
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z opasaniami materiały przed wystającymi z nich drutami, aby w trakcie eksploatacji 

nie doszło do ich przecięcia, co mogłoby spowodować nagłe zniszczenie opony  

po uzyskaniu przez nią niewielkiego przebiegu.  

4) Osnowa – BP (ang. body ply) – kalandrowany kord z PET lub wiskozy, którego 

szerokość dedykowana do danej opony zależy od wysokości jej profilu, szerokości  

oraz konstrukcji. Długość tego komponentu sprzężona jest natomiast z jej calem.  

Na osnowie rozmieszczane są paski gumowe (tzw. squeegee), których konfiguracja  

oraz szerokość są projektowane tak, aby pokrywać krawędzie zakończeń materiałów  

i wzmacniać wewnętrzną stronę obszaru barkowego, który jest najbardziej obciążony 

zarówno podczas formowania, jak i eksploatacji opony. Szczególnie istotnym 

elementem jest TPI (ang. tread ply insert), zwany również BUC (ang. belt under 

cushion), stanowiący ochronę osnowy przed przecieraniem przez krawędzie opasań  

w trakcie ruchu opony. Zastosowanie konstrukcji SOT zawsze implikuje obecność  

TPI, natomiast w konstrukcji TOS pod opasaniami znajduje się końcówka boku,  

toteż TPI jest zbędny. Opony do samochodów osobowych zazwyczaj zawierają jedną  

lub dwie osnowy – stąd rodzi się kolejny podział konstrukcyjny na opony 

jednoosnowowe lub dwuosnowowe. Dobór odpowiedniego kordu osnowy/osnów 

umożliwia kształtowanie sztywności, wytrzymałości oraz właściwości jezdnych 

gotowego wyrobu. W istotnej mierze jest również powiązany z wymaganym indeksem 

nośności opony. 

5) Skrzydełko – BB (ang. bead bundle) – składające się z: 

a) Drutówki (ang. bead) – wykonanej ze stalowego drutu, nawiniętego  

w określonej konfiguracji (zadana liczba warstw i kolumn w przekroju wiązki)  

i owiniętego taśmą. 

b) Wypełniacza drutówki BF (ang. bead filler) – aplikowanego „na ciepło”  

na przygotowanej wcześniej drutówce paska twardej gumy o przekroju trójkątnym, 

wzmacniającego obszar drutówki. 

 

6) Bok – SW (ang. sidewall) – najczęściej wytłaczany z zastosowaniem dwóch mieszanek: 

a) AGS (ang. abrasive gum strip) – twarda mieszanka chroniąca obszar drutówki  

przed przetarciem przez obręcz felgi. 

b) Mieszanka boku – mieszanka opracowana z myślą o odporności na pękanie 

spowodowane czynnikami środowiskowymi, takimi jak ozon, tlen, promieniowanie UV 

czy temperatura. 
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7) Wykładzina wewnętrzna – zapewnia szczelność w oponach bezdętkowych dzięki 

zastosowaniu mieszanki butylowej o niskiej przepuszczalności gazów. 

 

Do opcjonalnych komponentów składowych opon należą: 

1) Wzmocnienia tekstylne: 

a) Chafer – CCH (ang. canvas chafer) – kalandrowany, ułożony krzyżowo kord tekstylny 

wzmacniający obszar drutówki. Stosowany głównie w oponach typu runflat, chroniąc 

felgę i oponę podczas jazdy awaryjnej (na przebitej oponie). 

b) Flipper – FL – kalandrowany kord (PET lub Kevlar), ułożony pod kątem 45°, stosowany 

w celu usztywnienia obszaru drutówki i/lub boku, najczęściej w oponach UHP,  

gdyż jego obecność poprawia właściwości jezdne pojazdu. 

 

2) Wzmocnienia gumowe – najczęściej stosowaną formą jest wkładka runflatowa  

RFI (ang. run flat insert), uzyskiwana przez wytłaczanie twardej mieszanki gumowej 

(Xingyu i in., 2021). Zgodnie z deklaracją producenta, zastosowana w obszarze boku 

opony umożliwia pokonanie dystansu do 80[km] z prędkością do 80[km/h] po przebiciu 

opony. 

Budowa typowej opony radialnej (bez dodatkowych wzmocnień tekstylnych i gumowych) 

została przedstawiona na Rysunku 2.4. 

 

Rysunek 2.4. Komponenty składowe opony (opracowanie własne) 
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Interdyscyplinarny charakter projektowania opon wymaga integracji wiedzy z zakresu 

wytwarzania polimerów, inżynierii materiałowej oraz mechaniki. Ostateczne właściwości 

opony wynikają z synergicznego działania wszystkich komponentów oraz precyzyjnego doboru 

i kontroli parametrów technologicznych podczas procesu produkcyjnego. 
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3. Proces produkcji opon radialnych 

W przedsiębiorstwie, w którym realizowano badania na potrzeby niniejszej pracy 

doktorskiej, prowadzona jest wielkoseryjna produkcja na poziomie około 30 tys. opon dziennie, 

co wymaga zatrudnienia około 2000 pracowników. Do masowej produkcji wdrożonych  

jest ponad 500 różnych rozmiarów opon w zakresie od 15 do 24 cali. Zakład zajmuje 

powierzchnię 260 tys. m2.  

Proces produkcji opon zawsze składa się z czterech głównych etapów: 

1) Przygotowanie materiałów. 

2) Konfekcja opon surowych. 

3) Wulkanizacja. 

4) Inspekcja końcowa. 

 

Ze względu na wdrożeniowy charakter niniejszej rozprawy doktorskiej, w tym rozdziale 

proces produkcji opon zostanie przedstawiony na podstawie jego faktycznego przebiegu  

w zakładzie Bridgestone Poznań (Rysunek 3.1.), w celu precyzyjnego umiejscowienia obszaru 

przeprowadzonych badań.  

3.1 Przygotowanie materiałów 

Proces produkcji opon, zobrazowany na Rysunku 3.1., rozpoczyna się w Magazynie 

Surowców, gdzie każda dostawa poddawana jest kontroli jakościowej. Miksery, będące sercem 

Działu Walcowni, odpowiadają za wytwarzanie wszystkich mieszanek gumowych 

stosowanych w zakładzie produkcyjnym. Od współczesnych mieszanek gumowych wymaga 

się stabilności właściwości lepkosprężystych (co warunkuje ich przetwarzalność), relatywnie 

krótkiego czasu wulkanizacji, a jednocześnie – zachowania satysfakcjonujących właściwości 

mechanicznych wyrobu finalnego (Tardiff i in., 2017). Osiągnięcie tego kompromisu możliwe 

jest dzięki odpowiedniemu doborowi składu chemicznego mieszanek oraz precyzyjnemu 

sterowaniu procesem ich mieszania. W celu zapewnienia wysokiej jednorodności mieszanki 

gumowej, Bridgestone Poznań wyposażone jest w dwa miksery tandemowe,  

które są zaawansowanym i rzadkim rozwiązaniem stosowanym w przemyśle oponiarskim  

w skali europejskiej. Mikser tandemowy to rodzaj miksera składającego się z dwóch zespołów 

mieszadeł zazębiających się, rozmieszczonych w układzie górnym i dolnym. Górny mikser 

służy do mieszania wsadowego oraz mieszania w stałej temperaturze. Dolny mikser został 

zaprojektowany do mieszania w stałej temperaturze i charakteryzuje się doskonałą funkcją 
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mieszania rozpraszającego, precyzyjną kontrolą temperatury, zoptymalizowaną wentylacją 

oraz dużą powierzchnią chłodzenia. Produktem pracy miksera jest surowa, spaletyzowana 

guma, która stanowi surowiec dla wytłaczarek, kalandra oraz maszyn do produkcji opasań  

i skrzydełek. Poszczególne miksery dedykowane są określonym grupom mieszanek  

o zbliżonym składzie chemicznym, co wynika z czasochłonności procesu czyszczenia komory 

mieszania i walców. 

 

 

Rysunek 3.1. Proces produkcji opon w Bridgestone Poznań (opracowanie własne) 
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W procesie wytłaczania produkowane są komponenty takie jak: bieżnik, bok, wkładka 

runflatowa oraz wykładzina wewnętrzna. Kształt przekroju poprzecznego oraz rozmieszczenie 

mieszanek gumowych w surowych profilach wytłaczanych nadawany jest przez ustniki  

i wkładki wytłaczarki (Costa, 2017). Przykładowe kontury bieżnika i boku zostały 

zaprezentowane na Rysunkach 3.2. i 3.3.   

 

Rysunek 3.2. Przykładowy przekrój surowego bieżnika (opracowanie własne) 

 

Bezpośrednio po wytłaczaniu na bieżnik nanoszone są linie kolorowe, których 

rozmieszczenie (pozycja względem linii centralnej) i barwa są unikalne dla każdego rozmiaru 

opony. Linie te ułatwiają automatyczne sortowanie opon na zautomatyzowanej linii montażu 

pojazdów. Bieżnik jest nawijany na duże szpule z przekładkami minimalizującymi  

jego deformację podczas transportu. Boki, wkładka runflatowa oraz wykładzina wewnętrzna 

umieszczane są na specjalistycznych wózkach zapewniających płynne podłączenie  

tych komponentów do maszyny konfekcyjnej. Cykliczna kontrola wymiarowa (Duvar i in., 

2012) profilu poprzecznego wytłoczonych prefabrykatów (z wyjątkiem wykładziny 

wewnętrznej) realizowana jest w Konturowni.  Na podstawie wyników tej kontroli 

podejmowana jest decyzja o dopuszczeniu materiału do dalszej produkcji masowej. 

 

Rysunek 3.3. Przykładowy przekrój surowego boku (opracowanie własne) 

 

Opasania wytwarzane są na maszynie Bexter, która pobiera drut stalowy ze szpularnika, 

nadaje mu odpowiedni kąt, pokrywa mieszanką gumową, przycina do wymaganej szerokości  

oraz nakłada paski gumy krawędziowej. Gotowe opasania, podobnie jak bieżnik, nawijane  

są na duże szpule z przekładkami i w takiej postaci transportowane do maszyny konfekcyjnej. 
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Kordy tekstylne poddawane są procesowi kalandrowania, w trakcie którego pokrywa  

się je odpowiednią mieszanką gumową, zgodnie z wymaganiami dla danego rodzaju kordu.  

Na świeżo powstałą warstwę gumy nanoszone są w określonych odstępach nitki ułatwiające 

odprowadzenie powietrza z wnętrza opony w trakcie konfekcji i wulkanizacji (nie dotyczy  

to kordów dedykowanych na warstwę spiralną). Kalandrowane kordy nawijane są w duże 

baloty i przekazywane do Działu Cięcia, gdzie nadawane są im odpowiednie szerokości  

dla osnowy, flippera, chafera oraz spirali. W przypadku osnów proces cięcia jest zintegrowany 

z nakładaniem squeegee i TPI zgodnie z zadaną specyfikacją. Przykładowy layout osnowy 

został przedstawiony na Rysunku 3.4. Chafer, flipper i spiral nawijane są na małe szpule, 

natomiast osnowy transportowane są na dedykowanych wózkach, zapewniających 

kompatybilność z maszyną konfekcyjną. 

 

Rysunek 3.4. Przykładowy schemat rozmieszczenia pasków gumowych na osnowie (opracowanie własne) 

 

Owinięte taśmą drutówki, umieszczane są na maszynie RTB-DE, która wytłacza 

wypełniacz drutówki o określonych w specyfikacji jego konturu: wysokości, szerokości 

podstawy i mieszance gumowej. Następnie łączy oba prefabrykaty, tworząc skrzydełka. 

Gotowe skrzydełka umieszczane są na specjalnych separatorach, co zapobiega  

ich wzajemnemu sklejaniu, deformacji oraz zanieczyszczeniu ciałami obcymi. 

3.2 Konfekcja opon na maszynie VMI MAXX 

Proces konfekcji realizowany na maszynach VMI MAXX, składa się z dwóch zasadniczych 

faz i służy połączeniu wszystkich wcześniej opisanych komponentów powstałych na etapie 

przygotowania materiałów w odpowiedniej sekwencji, zgodnej z kartą procesu 

technologicznego. Dzięki zastosowanym technologiom maszyny VMI MAXX pracują w trybie 

automatycznym – od operatora wymagają jedynie uzupełniania materiałów do produkcji opon 

oraz reakcji na bieżące komunikaty. Charakteryzują się również możliwością rejestracji danych 

w trybie ciągłym dla każdej wyprodukowanej opony tj. długość i szerokość używanych 
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materiałów, centrowanie materiałów na bębnach, jakość wykonanych złącz oraz bicie 

promieniowe opony surowej. Budowa maszyny VMI MAXX została przedstawiona  

na Rysunku 3.5. 

 

Rysunek 3.5. Budowa zespołu maszyny konfekcyjnej VMI MAXX (materiały własne przedsiębiorstwa) 

 

Elementy składowe maszyny to: 

1) System linii lasera (strona B&T) – system sterowania automatycznie ustawia linie lasera 

tak, aby padały na bęben B&T zgodnie z wyspecyfikowaną szerokością materiału 

nakładanego w danym etapie produkcji. 

2) Urządzenie do podnoszenia bębna – umożliwia wymianę/demontaż części bębna B&T 

i bębna karkasu. Jest zamontowane pod ramą bazową, która z kolei jest przymocowana 

w górnej części maszyny. 

3) Jednostka zdejmowania opony surowej – służy do usuwania kompletnej opony surowej 

z pierścienia transferu i przekazuje ją na przednią stronę maszyny. 

4) Pierścień transferowy – tzw. transferring, jest podzielony na 8 segmentów. Każdy z nich 

można przesuwać promieniowo za pomocą siłowników pneumatycznych. Siłowniki  

są wyposażone w urządzenie zaciskające – gdy segment zetknie się z pakietem B&T, 

siłownik pneumatyczny zaciska pakiet B&T i utrzymuje go tak długo, jak to konieczne. 
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Aby zapewnić współosiowość, każdy segment zaciska pakiet B&T z taką samą siłą, 

niezależnie od średnicy pakietu. Pierścień transferowy samoczynnie dostosowuje  

się do całkowitej średnicy opony. 

5) Moduł aplikatora skrzydełek – współpracuje z zespołem robota, który umieszcza  

na nim skrzydełka. Moduł aplikatora natomiast przytrzymuje drutówkę podczas 

wklejania jej w karkas.  

6) Monitor zapasu materiałów – wyświetla informacje o produkowanym aktualnie 

rozmiarze opon oraz zapasie używanych materiałów. 

7) Zszywarka kombi – odpowiada za wykonywanie złącza bieżnika. 

8) System linii lasera (strona karkasu) – system sterowania automatycznie ustawia linie 

lasera tak, aby padały na bęben karkasu zgodnie z wyspecyfikowaną szerokością 

materiału nakładanego w danym etapie produkcji. 

9) Bęben karkasu – na nim odbywa się I faza konfekcji. 

10) Monitor karkasu CCMO (ang. carcass monitor) - służy do sprawdzania czy złącza 

materiałów są zgodne ze zdefiniowaną specyfikacją. Może kontrolować złącza: 

materiału zespołu wstępnego PA (który tworzą boki i wykładzina wewnętrzna), 

materiału osnowy / osnów (BP1/BP2) i materiału flippera (FL). 

11) Obudowa karkasu – umieszczone w niej podzespoły odpowiadają za sterowanie i ruch 

bębna karkasu. 

12) Łoże maszyny (strona karkasu) - przeznaczone do przesuwania następujących 

zespołów: obudowy karkasu, wózka całego modułu drutówki, zszywarki kombi. 

13) Zszywarka złączy PA – odpowiada za wykonanie szczelnego złącza PA. 

14) Panel interfejsu HMI – pozwala na bieżące ustawianie parametrów i podgląd pomiarów 

przeprowadzanych przez maszynę. 

15) Moduł wózka skrzydełek – główną funkcją wózka drutówki jest precyzyjne ustawienie 

drutówek na pakiecie karkasu zgodnie z zadanym rozstawem drutówek, który stanowi 

najważniejszy parametr procesu konfekcji. 

16) Platforma opony surowej – miejsce inspekcji opony surowej przez operatora konfekcji. 

17) Łoże maszyny (strona BT) – służy do przesuwania bębna B&T. 

18) Bęben B&T – na nim odbywa się II faza konfekcji. 

19) Monitor opasania i bieżnika BTMO (ang. breaker & tread monitor) - służy  

do kontrolowania następujących kwestii: ocena złącz materiału opasań i bieżnika, 

wykrywanie obecności materiału opasań i bieżnika, pomiar szerokości i centrowanie 

materiału bieżnika, wykrywanie uszkodzeń materiału opasań i bieżnika. 
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20) Obudowa B&T – umieszczone w niej podzespoły odpowiadają za sterowanie i ruch 

bębna B&T.  

 

Systemy prowadzenia materiałów odpowiedzialne za rejestrację danych, są podzespołami 

monitora karkasu (system prowadzenia karkasu) oraz monitora B&T (systemy prowadzenia 

opasań i bieżnika). Zasada ich działania oraz sposób zapisu danych zostały szczegółowo 

opisane w Rozdziale 7.1.1.  

Za transport (w obrębie maszyny) i aplikację (na dany bęben) poszczególnych materiałów 

niezbędnych do przeprowadzenia procesu konfekcji, odpowiadają następujące podzespoły 

(Rysunek 3.6.). 

 

 

Rysunek 3.6. Zespół maszyny konfekcyjnej VMI MAXX wraz z peryferiami  (materiały własne 

przedsiębiorstwa) 
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Podzespołami oznaczonymi na Rysunku 3.6. są: 

1) Zespół maszyny konfekcyjnej. 

2) Serwer flippera. 

3) Serwer wkładki RFI. 

4) Serwer chafera. 

5) Automatyczny serwer karkasu – odpowiada za łączenie boków i wykładziny 

wewnętrznej w zespół PA, podaje go wraz z osnową / osnowami na bęben karkasu. 

6) Serwer bieżnika. 

7) Automatyczny serwer opasania. 

8) Robot – jego zadaniem jest pobranie skrzydełka z separatora (z wózka na którym 

skrzydełka przedzielone separatorami przyjechały z Działu Przygotowania Materiałów) 

i założenie go na moduł aplikatora skrzydełek. 

9) Serwer spirala wraz z kompensatorem. 

 

Przebieg procesu konfekcji dla konstrukcji SOT i TOS został objaśniony w Tabelach 3.1. i 3.2. 

 

Tabela 3.1. Przebieg konfekcji dla konstrukcji TOS (opracowanie własne na podstawie materiałów 

własnych przedsiębiorstwa) 

Krok Opis Schemat 

1 

Krawędź początku PA (boki  

+ wykładzina), czyli A (C+B) 

jest odbierana przez listwę 

przytrzymującą na bębnie  

i poprzez obrót bębna karkasu 

następuje aplikacja PA. 

 

2 

Osnowa 1 [D] (i opcjonalnie 

osnowa 2 [E]) poprzez obrót 

bębna karkasu są aplikowane  

na PA. 
 

3 

Moduł wózka skrzydełek 

umieszcza skrzydełka na bębnie 

karkasu [F]. 
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4 
Zamki drutówki [G] blokują 

drutówki. 
 

5 

Bęben karkasu zjeżdża  

się do szerokości wywijania. 

Barki [H] przesuwają się w górę, 

na skutek gdy karkas jest 

pompowany do ciśnienia 

wywijania. 

 

6 

Palce wywijające [I] zsuwają  

się i wywijają wystający poza 

drutówkami materiał boków  

i osnowy. 
 

7 

Bęben karkasu rozsuwa  

się do szerokości wstępnego 

formowania, a do karkasu jest 

podawane ciśnienie wstępnego 

formowania. 

 

8 

Karkas [J] przesuwa  

się pod pakiet B&T oczekujący  

w transferringu. 
 

9 
Bęben karkasu zsuwa się i wkleja 

karkas w pakiet B&T. 

 

10 
Segmenty transferringu zwalniają 

pakiet B&T.  
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11 

Dochodzi do docisku pakietu  

do karkasu na skutek działania 

rolki centralnej pracującej  

z zewnątrz oraz  wewnętrznego 

ciśnienia karkasu. 
 

12 Odbywa się rolowanie bieżnika. 

 

13 

Segmenty transferringu 

podtrzymują oponę surową [L]. 

Zamki drutówki zwalniają 

drutówkę. Jednostka 

zdejmowania opony surowej [K] 

chwyta oponę surową. 
 

14 

Segmenty transferringu zwalniają 

oponę surową [L]. Opona surowa 

jest odbierana przez jednostkę 

usuwania opony surowej [K].  

 

Tabela 3.2. Przebieg konfekcji dla konstrukcji SOT (opracowanie własne na podstawie materiałów 

własnych przedsiębiorstwa) 

Krok Opis Schemat 

1 

Krawędź początku PA (boki  

+ wykładzina), czyli A (C+B) 

jest odbierana przez listwę 

przytrzymującą na bębnie  

i poprzez obrót bębna karkasu 

następuje aplikacja PA. 

 

2 

Osnowa 1 [D] (i opcjonalnie 

osnowa 2 [E]) poprzez obrót 

bębna karkasu są aplikowane  

na PA. 
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3 

Moduł wózka skrzydełek 

umieszcza skrzydełka na bębnie 

karkasu [F]. 
 

4 
Zamki drutówki [G] blokują 

drutówki. 
 

5 

Bęben karkasu zjeżdża  

się do szerokości wywijania. 

Barki [H] przesuwają się w górę, 

na skutek gdy karkas jest 

pompowany do ciśnienia 

wywijania. 

 

6 

Karkas [I] przesuwa się pod 

pakiet B&T oczekujący  

w transferringu. 
 

7 
Bęben karkasu zsuwa się i wkleja 

karkas w pakiet B&T. 

 

8 
Segmenty transferringu zwalniają 

pakiet B&T.  

9 

Dochodzi do docisku pakietu  

do karkasu na skutek działania 

rolki centralnej pracującej  

z zewnątrz oraz  wewnętrznego 

ciśnienia karkasu. 
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10 Odbywa się rolowanie bieżnika. 

 

11 

Palce wywijające [J] zsuwają  

się i wywijają wystający poza 

drutówkami materiał boków  

i osnowy. 

 

 

12 

Segmenty transferringu 

podtrzymują oponę surową [L]. 

Zamki drutówki zwalniają 

drutówkę. Jednostka 

zdejmowania opony surowej [K] 

chwyta oponę surową. 
 

13 

Segmenty transferringu zwalniają 

oponę surową [L]. Opona surowa 

jest odbierana przez jednostkę 

usuwania opony surowej [K].  

 

Opisując specyficzny przebieg procesu konfekcji opon, wyszczególnia się jego dwie 

zasadnicze fazy. Podczas I fazy na bębnie karkasu powstaje karkas opony, na który składają 

się: boki, wykładzina wewnętrzna, osnowa (lub osnowy), skrzydełka i opcjonalnie dokładane  

są tekstylne (chafer, flipper) lub gumowe (wkładka runflatowa) materiały wzmacniające. 

Tymczasem II faza procesu konfekcji realizowana jest na bębnie B&T (ang. band transfer 

drum). Rozpoczyna się od nałożenia pierwszego i drugiego opasania. Następnie nawijana jest 

warstwa spiralna, w taki sposób, aby jej krawędzie zakrywały krawędzie szerszego opasania 

pierwszego. Kolejnym etapem jest aplikacja bieżnika, którego złącze dociskane jest przez rolkę 

Multidisc – urządzenie składające się ze stalowych krążków umożliwiających precyzyjne 

sterowanie siłą docisku w wybranym segmencie na szerokości bieżnika. Efektem II fazy  

jest powstanie pakietu B&T. Obie fazy (przygotowanie karkasu i pakietu B&T) odbywają  

się na maszynie konfekcyjnej równolegle, dlatego nie nazywa się ich np. etapami  

(czyli czynnościami następującymi jedna po drugiej). II faza trwa zdecydowanie krócej – pakiet 
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B&T „oczekuje” w transferringu na karkas. Z tego względu, w tym czasie ważne  

jest jego równomierne podparcie w celu uniknięcia deformacji. Największym wyzwaniem,  

a jednocześnie głównym zamysłem procesu konfekcji jest budowanie opony z materiałów 

złożonych z niezwulkanizowanej, miękkiej mieszanki gumowej bez zmiany ich pierwotnego 

kształtu nadanego na etapie przygotowania. 

Po przygotowaniu karkasu i pakietu B&T, maszyna konfekcyjna przechodzi do etapu  

tzw. formowania opony surowej, który stanowi szereg operacji począwszy od kroku 4, zarówno 

dla konstrukcji TOS, jaki i SOT wymienionych w Tabelach 3.1 i 3.2. 

Na zakończenie procesu konfekcji robot automatycznie nanosi indywidualny kod paskowy 

na obszar drutówki opony, w określonej odległości od złącza boku. Gotowa opona surowa  

(GT – ang. green tire) zostaje umieszczona przez operatora konfekcji na wózku (liczba opon  

na wozie zależy od ich gabarytu) lub przez automatyczny system wewnętrznego transportu 

surowych opon (funkcjonuje już dla części maszyn VMI MAXX), po czym przekazywana  

jest do Działu Wulkanizacji. 

3.3 Wulkanizacja opon 

Przed rozpoczęciem procesu wulkanizacji, na wewnętrzną powierzchnię opony surowej  

(od strony wykładziny wewnętrznej) aplikowany jest środek antyadhezyjny – zawiesina miki 

lub silikon – mający na celu zapobieżenie przywieraniu opony do membrany wulkanizacyjnej. 

Funkcją membrany wulkanizacyjnej jest odpowiednie dociśnięcie opony surowej do formy 

wulkanizacyjnej zgodnie z zadanym ciśnieniem oraz odprowadzenie powietrza z wnętrza 

opony w trakcie trwania procesu. Pęcherze powietrza zalegające pomiędzy oponą surową  

a membraną są powodem powstawania defektów, np. ubytków wykładziny wewnętrznej  

i przemieszczenia nitek osnowy. W celu eliminacji powietrza z tego obszaru, membrana jest 

precyzyjnie dobierana do gabarytu danej opony i dodatkowo posiada dopasowaną fakturę 

umożliwiającą ucieczkę gazów. Zazwyczaj osiągane jest to poprzez rozmieszczone 

promieniowo rowki, których głębokość wzrasta w kierunku od centrum do barku opony 

(Rysunek 3.7.). Faktura wykładziny wewnętrznej w oponie zwulkanizowanej jest negatywem 

wzoru użytej membrany wulkanizacyjnej. 

Kluczową rolą wulkanizacji w procesie produkcji opon jest osiągnięcie odpowiedniego 

stopnia usieciowania mieszanki gumowej (wytworzenie mostków siarczkowych), zapewniając 

jej finalne właściwości mechaniczne oraz nadaniu oponie surowej ostatecznej geometrii (Zhang 

i in., 2016). W trakcie tego procesu odwzorowywana jest rzeźba bieżnika, stamping (oznaczenia 

na boku opony) oraz kształt ścian bocznych. Najistotniejszymi parametrami procesu 
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wulkanizacji są: ciśnienie, czas i temperatura. Ich właściwy dobór zapewnia jednolite  

i kompletne usieciowanie mieszanki gumowej w całym przekroju opony (Wang i in., 2012). 

 

 

Rysunek 3.7. Faktury membran wulkanizacyjnych stosowane przez producentów opon tj.:  

1 – Continental, 2 – Michelin, 3 – Yokohama, 4 – Hankook (opracowanie własne) 

 

Początkowo opona surowa zostaje odłożona przez operatora na stół pozycjonujący prasy 

wulkanizacyjnej (Yu i in., 2021), w miejscu przeznaczonym do pobrania przez przenośnik 

załadowczy. Faza kształtowania rozpoczyna się od umieszczenia opony na membranie 

wulkanizacyjnej, do której podawana jest para wodna pod ciśnieniem kształtowania – służy  

to wstępnemu naprężeniu i rozciągnięciu opony, aby wyeliminować deformacje powstałe 

podczas magazynowania na wozie od momentu konfekcji. W tej fazie rejestrowane jest jedynie 

ciśnienie, czujnikiem umiejscowionym w membranie wulkanizacyjnej. W kolejnym kroku – 

czyli w fazie zasadniczej wulkanizacji – uprzednio rozgrzana forma wulkanizacyjna zamyka 

się na oponie, a do wnętrza membrany wtłaczane jest wysokie ciśnienie, które zapewnia 

równomierne dociskanie surowej opony do powierzchni formy (Rysunek 3.8.). Uskok  

na wykresie pomiędzy fazami wynika z przejścia na rejestrację ciśnienia przez czujnik 
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umieszczony w formie. Od tego momentu ciągły zapis temperatury rozpoczyna również 

termopara, osadzona także w formie wulkanizacyjnej. 

 

Rysunek 3.8. Zmiana temperatury i ciśnienia w czasie przykładowego cyklu procesu wulkanizacji 

(opracowanie własne) 

 

Po zakończeniu procesu i rozformowaniu, zwulkanizowane opony – CT (ang. cured tires) 

– przekazywane są na taśmociąg transportujący je do stanowiska trymowania. Na tym etapie 

następuje maszynowe usuwanie wypływek – pozostałości gumy w miejscach odpowietrzników 

formy. Trymowanie jest bardzo ograniczone i przyspieszone w przypadku form 

wykorzystujących technologię spring ventów (samozamykających się odpowietrzników 

sprężynowych) (Stinga i in., 2020). 

Dla niektórych rozmiarów opon przewidziana jest dodatkowa faza stabilizacji  

PCI (ang. post curing inflator), realizowana bezpośrednio po zakończeniu wulkanizacji. Polega 

ona na swobodnym chłodzeniu opony w temperaturze otoczenia przy jednoczesnym 

aplikowaniu do jej wnętrza ciśnienia za pośrednictwem membrany. Stabilizacja zapobiega 

powstawaniu deformacji (w szczególności zapadaniu się ścian bocznych), a ponadto relaksacja 

materiałów przebiega w tym przypadku w warunkach kontrolowanych, co wpływa korzystnie 

na wybrane właściwości użytkowe gotowego wyrobu. 

Następnie opony trafiają do Działu Inspekcji Końcowej FI (ang. Final Inspection),  

gdzie przechodzą szczegółową kontrolę zgodności ze specyfikacją techniczną. 



31 

3.4 Inspekcja końcowa 

Ze względu na wysokie wymagania bezpieczeństwa stawiane przez rynek motoryzacyjny, 

wszystkie opony opuszczające zakład produkcyjny podlegają obowiązkowej inspekcji 

końcowej. Proces ten składa się z trzech podstawowych etapów kontroli jakości opon 

zwulkanizowanych: 

1) Wykrywanie defektów metodą rentgenowską (ang. X-ray) – na tym etapie stosowane 

są systemy obrazowania radiograficznego służące do detekcji ciał obcych znajdujących 

się w objętości opony. Ich obecność stanowi istotne zagrożenie dla bezpieczeństwa  

w czasie eksploatacji, ponieważ może prowadzić do niekontrolowanego przebicia 

opony. 

2) Pomiar wielkości opisujących jednorodność – przeprowadzany na maszynach  

Rim Flow oraz TUO (Tire Uniformity Grading Machine), która została zaprezentowana 

na Rysunku 3.9. Jednorodność fizyczna jest jednym z aspektów jakościowych, 

świadczącym o jednolitej strukturze opony, który jednocześnie stanowi miarę zdolności 

opony do płynnej pracy pozbawionej wibracji (Gent i Walter, 2006). Wielkości 

opisujące jednorodność zostały szerzej opisane w Rozdziale 4.3. 

3) Kontrola wizualna – wykonywana manualnie przez operatorów Działu Inspekcji 

Końcowej. Przeprowadza się ją pod kątem wykrycia defektów, na stanowiskach 

zapewniających odpowiednie natężenie światła, wyposażonych w zespół rolek 

(ułatwiający obrót opony w celu jej oględzin) i rozwieraki (umożliwiają rozchylenie 

boków opony do oceny jej wnętrza). 

 

W zależności od indywidualnych wymagań jakościowych klienta i specyfiki danego typu 

opony, konieczne do przeprowadzenia mogą być dodatkowe badania, tj. szerografia – 

nieniszcząca metoda umożliwiająca detekcję pęcherzy powietrza uwięzionych w strukturze 

opony. Technika ta znajduje zastosowanie głównie w segmencie opon przeznaczonych  

do zastosowań ekstremalnych, np. w samochodach sportowych. 

Opony, które uzyskają pozytywną ocenę na etapie inspekcji końcowej, zostają 

automatycznie przetransportowane za pomocą przenośnika rolkowego do Magazynu Opon, 

skąd są kierowane do dalszej dystrybucji. 
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Rysunek 3.9. Maszyna TUO do pomiaru jednorodności opon (materiały własne przedsiębiorstwa) 

 

Jak wspomniano na początku bieżącego podrozdziału, wszystkie opony opuszczające 

zakład produkcyjny podlegają obowiązkowej inspekcji końcowej. Nie stanowi ona jednak 

kompletnej kontroli jakości, której podlega opona jako produkt mający spełniać wymagania 

klienta, a także restrykcje związane z regulacjami danego rynku zbytu (homologacjami). Zakres 

nadzoru jakościowego (tj. liczba badanych próbek, rodzaje testów oraz częstotliwość  

ich przeprowadzania) ustalany jest indywidualnie dla każdego rozmiaru opony w zależności  

od jej konstrukcji, homologacji oraz specyfikacji klienta. Specyfika tej części kontroli jakości 

opon została szerzej opisana w kolejnym rozdziale.  
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4. Kontrola jakości opon na tle wymagań klienta 

Opona jako element odpowiadający bezpośrednio za bezpieczeństwo, komfort jazdy  

oraz efektywność paliwową pojazdów, podlega szczególnie precyzyjnej ocenie jakościowej. 

Proces kontroli jakości w produkcji ogumienia nie ogranicza się jedynie do spełnienia 

wymogów norm technicznych i regulacyjnych (np. homologacyjnych). Musi również 

uwzględniać specyficzne, często zindywidualizowane wymagania klientów – zarówno  

tych instytucjonalnych (producenci samochodów osobowych), jak i detalicznych. Obejmuje  

to między innymi takie właściwości jak wytrzymałość, łatwość montażu, poziom hałasu, opory 

toczenia, zgodność z normami ekologicznymi, a nawet estetykę produktu. Celem niniejszego 

rozdziału jest przedstawianie procesu kontroli jakości opon w kontekście oczekiwań klienta,  

ze szczególnym uwzględnieniem metod oceny ich parametrów technicznych stosowanych  

w przemyśle oponiarskim.  

4.1 Podział defektów opon oraz sposoby ich eliminacji 

Efektywne zarządzanie odpadami w przedsiębiorstwie zajmującym się produkcją opon 

wymaga uprzedniego zidentyfikowania i sklasyfikowania przyczyn generowania odpadów 

(Weyssenhoff i in., 2019). Jednym ze sposobów takiej klasyfikacji jest podział na defekty 

wizualne (ang. molding defects1) oraz defekty wynikające z przekroczenia dopuszczalnych 

limitów własności opisujących jednorodność opon. Do kategorii defektów wizualnych zalicza 

się m.in.: 

1) Obecność ciał obcych, tj.: luźny drut opasania, odstający drut drutówki, papier, metal, 

nici, drewno, spieki gumowe. 

2) Wtrącenia powietrza w przekroju poprzecznym opony (Rysunek 4.1. i 4.3.) 

zlokalizowane w obszarach, tj.: pod wykładziną wewnętrzną – w obrębie barku, 

bieżnika, boku, drutówki, a także pomiędzy warstwami komponentów budujących 

oponę oraz na ich złączach. 

3) Ubytki powierzchniowe, obejmujące m.in. bieżnik, bark, bok (Rysunek 4.4.), drutówkę, 

a także lokalne i obwodowe ubytki wykładziny wewnętrznej (Rysunek 4.3.).  

4) Defekty związane z kordami tekstylnymi, np.: widoczny chafer/osnowa na podstawie 

drutówki, zmarszczka osnowy, wypłyniecie osnowy (Rysunek 4.4.), przemieszczenie 

nitek osnowy (Rysunek 4.2.), widoczna nitka osnowy. 

 

1 Określenie najczęściej stosowane w języku branżowym. 
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5) Nadlewki powstające najczęściej na nosku drutówki, łączeniach segmentów bieżnika 

oraz na linii podziału formy MPL (ang. mold partition line) (Rysunek 4.2.). 

6) Pęknięcia, np. wkładki RFT lub podstawy drutówki. 

 

Rysunek 4.1. Powietrze pod wykładziną wewnętrzną w obszarze barku opony (opracowanie własne) 

 

 

Rysunek 4.2. Nadlewka na linii podziału formy (po lewej) oraz przemieszczenie nitek osnowy (po prawej) 

(opracowanie własne) 
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7) Zniekształcenia, np.: deformacje drutówki, bieżnika, całej opony oraz zapadnięcie 

boków. 

8) Separacje warstw, np. oddzielenie wykładziny wewnętrznej od wkładki RFT. 

9) Pęcherze powietrza na powierzchni zewnętrznej opony – w szczególności w obszarze 

drutówki i boku. 

10) Podwinięcia, np. chafera. 

11) Defekty wynikające z niewłaściwej jakości złącz: rozejścia (przerwa w ciągłości danego 

materiału wynikające ze zbyt małej zakładki złącza), zbyt duże złącza, psie ucho. 

12) Uszkodzenia mechaniczne wynikające z przemieszczania podczas i pomiędzy 

procesami produkcyjnymi, np.: przez przenośniki (wulkanizacja), trymowarkę 

(zacięcia), TUO (zgniecenie opony), przytarcia (transportery rolkowe). 

13) Defekty związane z niedoskonałościami formy lub membrany wulkanizacyjnej,  

np.: zabrudzenia (negatyw ciała obcego odbity w oponie zwulkanizowanej), 

zagłębiony/wystający odpowietrznik, brak wkładki (element oddający odpowiednią 

cześć stampingu formy), błąd cyklu wulkanizacyjnego (niezwulkanizowana opona), 

uszkodzona/pęknięta/podwinięta/ zużyta membrana. 

 

 

Rysunek 4.3. Powietrze pod wykładziną wewnętrzną w połączeniu z jej obwodowym ubytkiem  

w obszarze barku opony (opracowanie własne) 
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Rysunek 4.4. Ubytek boku (po lewej) oraz wypłynięcie osnowy (po prawej) (opracowanie własne) 

 

Metodami i narzędziami służącymi do identyfikacji wspomnianych defektów są kontrola 

wizualna, X-Ray i szerograf. Myśląc o molding defects, możliwe jest również zaproponowanie 

podziału według etapu procesu produkcyjnego w którym dany defekt powstaje  

(czyli tzw. „podziału procesowego”), tj. wady spowodowane nieprawidłowościami w procesie 

wytłaczania, konfekcji, wulkanizacji, etc. 

Natomiast do defektów związanych z przekroczeniem limitów własności opisujących 

jednorodność opon zalicza się: 

1) Wada RFV. 

2) Wada RFV1H – RFVxH. 

3) Wada LFV. 

4) Wada CON. 

5) Wada LRO. 

6) Wada LRP – wybrzuszenie / wgłębienie. 

7) Wada RRO. 

8) Wada wyważenia dynamicznego. 

9) Wada wyważenia statycznego. 

 

Wymienione wyżej defekty wykrywane są na podstawie pomiaru przeprowadzanego  

przez maszyny Rim Flow i TUO. Odnalezienie źródła tych wad wymaga najczęściej 

wieloetapowej analizy danych z rejestru masowej produkcji. Ich detekcja jest ważna, ponieważ 

bicie promieniowe wywołane niejednorodnością masy opony może powodować powstawanie 

wyczuwalnych drgań, często błędnie interpretowanych jako awaria części zawieszenia  
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lub układu kierowniczego samochodów osobowych (Bęczkowska i in., 2018). Znaczenie 

jednorodności opon zostało szerzej opisane w Rozdziale 4.3. 

Złożoność procesu produkcji opon stanowi istotne wyzwanie technologiczne, będące 

impulsem do ciągłego rozwoju metod wspierających identyfikację oraz eliminację 

wymienionych wyżej defektów. W literaturze przedmiotu można znaleźć liczne sposoby, 

koncentrujące się na wykrywaniu oraz minimalizacji wad generowanych w toku wytwarzania 

opon. Jednym z podstawowych podejść wykorzystywanych w tym obszarze jest zastosowanie 

Metody Elementów Skończonych (MES). Jak wykazano w pracy (Jeong i in., 2007), metoda  

ta może być przydatna w analizie wpływu zmian sztywności oraz niedoskonałości 

wymiarowych opony radialnej na jej jednorodność. Umożliwia ona uwzględnienie 

rzeczywistych niedoskonałości w trójwymiarowym modelu numerycznym, co z kolei pozwala 

na przewidywanie parametrów jednorodności na podstawie nieregularności w rozkładzie masy 

opony. Wnioski te zostały potwierdzone również przez autorów (Oertel i Wei, 2007;  

Wei i Oertel, 2012), którzy dodatkowo wskazali, iż do estymacji siły stycznej możliwe  

jest wykorzystanie uproszczonych modeli obliczeniowych oraz technik analitycznych. 

Kolejnym podejściem jest wdrażanie narzędzi jakościowych w strukturach przedsiębiorstw 

przemysłu oponiarskiego. Przykładowo, dzięki implementacji metody rozwijania funkcji 

jakości QFD (ang. Quality Function Deployment) autorzy pracy (Hadi i in., 2017) byli w stanie 

precyzyjnie zidentyfikować rzeczywiste potrzeby klienta, co bezpośrednio przełożyło  

się na poprawę procesu produkcyjnego już na etapie projektowania wyrobu. 

Równolegle prowadzone są działania ukierunkowane na rozwój metod pomiarowych  

w celu uzyskania wyższej precyzji wyników, stanowiących podstawę budowy i weryfikacji 

modeli matematycznych. Przykład stanowi publikacja (Li, 2021), w której przedstawiono 

poprawę dokładności pomiaru balansu dynamicznego opony poprzez zastosowanie metody 

najmniejszych kwadratów. Z kolei w pracy (Zhu i Ai, 2018) opracowano algorytm 

automatycznego wykrywania defektów na podstawie obrazów rentgenowskich, umożliwiający 

zwiększenie dokładności kontroli jakości i jednoczesne ograniczenie obciążenia operatorów. 

Do nowatorskich rozwiązań zalicza się również technikę wykorzystującą otwartą sondę 

falowodową, zaprezentowaną przez autorów (Sutthaweekul i in., 2016), która w przyszłości 

może znaleźć zastosowanie w wykrywaniu defektów wewnętrznych opony. Postęp 

obserwowany jest również w zakresie automatyzacji kontroli wizualnej powierzchni 

zewnętrznej opony. Przykładowo, w pracy (Funahashi i in., 2015) opisano zastosowanie pasm 

świetlnych, które umożliwiają identyfikację defektów o niewielkich rozmiarach dzięki 

wyeksponowaniu ich na powierzchni badanego elementu. 
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W celu lepszego zrozumienia zjawisk fizycznych zachodzących w strukturze opony 

opracowywane są również nowe metody pomiarowe. Jednym z kierunków rozwoju 

 w tym zakresie jest wprowadzanie obowiązkowego pomiaru jednorodności przy wysokich 

prędkościach HSU (ang. High-Speed Uniformity). W porównaniu do dotychczasowych metod 

pomiaru jednorodności przy niskich prędkościach LSU (ang. Low-Speed Uniformity), pomiar 

HSU pozwala na detekcję fluktuacji momentów obrotowych opony, co umożliwia bardziej 

wiarygodne odwzorowanie jej zachowania w warunkach rzeczywistych (Du i in., 2020). 

Coraz większe znaczenie w analizie danych produkcyjnych zyskują również techniki 

sztucznej inteligencji, które pozwalają na identyfikację wzorców i anomalii w dużych zbiorach 

danych. Przykładem takiego podejścia jest metoda opisana przez autorów (Strano i in., 2021), 

w której zastosowano modele uczenia maszynowego do prognozowania sił bocznych 

generowanych przez oponę w trakcie ruchu. W pracy (Barbosa i in., 2022) porównano różne 

modele predykcyjne, wykazując, że proces Gaussowski charakteryzuje się najwyższą 

dokładnością, minimalizując błędy względem danych pozyskanych z akcelerometru. Zbliżoną 

problematykę poruszono w badaniu (Xu i in., 2022), gdzie dane z przyspieszeniomierza 

stanowiły podstawę do nauczania sieci neuronowej, która następnie została wykorzystana  

do predykcji sił generowanych przez oponę w czasie rzeczywistym.  

4.2 Specyfikacja wymagań klienta 

Cykl życia opony rozpoczyna się na etapie zdefiniowania wymagań klienta, które stanowią 

fundamentalny punkt wyjścia dla całego procesu rozwoju produktu. Współczesne podejście  

do projektowania opon opiera się na zasadzie „design to customer needs”, zgodnie  

z którą oczekiwania odbiorcy końcowego – w zakresie właściwości technicznych  

i funkcjonalnych – determinują kluczowe założenia konstrukcyjne. W odpowiedzi  

na specyficzne potrzeby klienta często konieczne jest opracowanie nowego rozmiaru opony, 

który nie występuje w dotychczasowym portfolio producenta. Specyfikacja klienta (producenta 

samochodów osobowych) reguluje najczęściej poniższe wymagania dotyczące danego 

rozmiaru opon: 

1) Rozmiar (szerokość / profil / cal).  

2) Typ opony (symetryczna / asymetryczna, kierunkowa / niekierunkowa). 

3) Model auta, do którego jest dedykowana. 

4) Rynek zbytu. 

5) Limit oporu elektrycznego. 

6) Twardość bieżnika. 
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7) Limity własności opisujących jednorodność oraz warunki pomiarowe narzucone  

do ich wyznaczania (szerokość i profil felgi pomiarowej / obciążenie / ciśnienie). 

8) Limity własności opisujących jednorodność wysokich prędkości (HSU) oraz warunki 

pomiarowe narzucone do ich wyznaczania (nie występuje dla każdego klienta). 

9) Masa opony. 

10) Limity siły i ciśnienia osadzenia stopki. 

11) Wymiary fizyczne. 

12) Wymagane testy wysokich i niskich prędkości wraz z limitami. 

13) Homologacje oraz dodatkowe testy związane z otrzymaniem certyfikacji. 

14) Oznaczenia mające znaleźć się na boku opony (tzw. stamping) - Rysunek 4.5. 

15) Obecność dodatkowych oznaczeń, np. kod QR, RFID (Gao i in., 2010). 

16) Etykieta opony, czyli wymagane klasy oporów toczenia, przyczepności na mokrej 

nawierzchni oraz emisji hałasu. 

17) Linie kolorowe. 

18) Dopuszczalność napraw po procesie produkcji. 

19) Termin dostarczenia do klienta. 

 

Rysunek 4.5. Oznaczenia (stamping) na boku opony (opracowanie własne) 
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Wdrożenie nowego rozmiaru opony stanowi więc wynik świadomej, wieloetapowej pracy 

nad doborem komponentów składowych opony o odpowiedniej geometrii (tzw. design opony),  

kordów tekstylnych i stalowych będących w stanie sprostać założonym kryteriom,  

a także składu mieszanek gumowych w celu uzyskania produktu w pełni zgodnego  

z oczekiwaniami klienta oraz normami branżowymi. 

Wymagania rynku kreują coraz większą świadomość klienta o produkcie który nabywa, 

czego przykładem jest zwiększenie ilości informacji na etykiecie UE od 01.05.2021  

(Rysunek 4.6.). Etykieta opony zawiera 3 podstawowe parametry wyznaczane zgodnie  

z rozporządzeniem Regulaminu nr 117 Europejskiej Komisji Gospodarczej ONZ  

(UNECE, 2025) oraz następującymi normami ISO: 

1) Opór toczenia (efektywność paliwowa) – przypisywana jest mu klasa od A (najniższy 

opór, największa efektywność paliwowa) do E (najwyższy opór). Norma (ISO, 2018) 

określa sposób pomiaru oporu toczenia w warunkach laboratoryjnych. Wyznaczanie 

współczynnika oporu toczenia zostało szerzej opisane w Rozdziale 4.4.5. 

2) Hamowanie na mokrej nawierzchni (przyczepność na mokro) - pomiar odbywa  

się w warunkach kontrolowanych, zgodnie z procedurą opisaną w (ISO, 2024) jest 

oceniane w klasach od A (najkrótsza droga hamowania) do E. 

3) Emisja hałasu zewnętrznego – zgodnie z (ISO, 2003) mierzy się hałas emitowany przez 

oponę podczas przejazdu bez przyspieszania. Wynik podawany jest w decybelach [dB] 

i oznaczany dodatkowo ikoną z 1, 2 lub 3 falami (im mniej fal, tym cichsza opona). 

 

Rysunek 4.6. Informacje zawarte na etykiecie opony (Janiszewski, 2025)  
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System etykietowania promuje produkcję i wybór opon o niższych oporach toczenia,  

co przekłada się na zmniejszenie zużycia paliwa i tym samym redukcję emisji CO₂. Opony  

o niskim poziomie hałasu przyczyniają się również do ograniczenia zanieczyszczenia hałasem, 

co ma istotne znaczenie w kontekście ochrony zdrowia. Normatywne podejście do oceny 

parametrów opon tworzy przejrzyste warunki konkurencji na rynku, sprzyjające rozwojowi 

zrównoważonych produktów. Standaryzacja pomiarów umożliwia obiektywne porównanie 

jakości między producentami, co podnosi jakość oferowanych wyrobów. Deklaracje klas 

własności opony zawarte na etykiecie (w szczególności emisja hałasu) są ściśle związane z jej 

jednorodnością. 

4.3 Jednorodność opon 

Jednorodność (Polski Komitet Normalizacyjny, 2002) to stan, w którym każda właściwość 

opony mierzona zarówno w warunkach statycznych, jaki i dynamicznych, jest niezmienna 

wzdłuż jej obwodu biorąc pod uwagę fazę i wartość bezwzględną. Jednorodność jest związana 

z symetrycznym rozmieszczeniem masy względem osi, z jednorodnością geometryczną i siłami 

wywołanymi ruchem masy. Brak jednorodności opony obracającej się wokół osi powoduje 

wahania sił, które mogą się zmieniać w zależności od prędkości i odnoszą się do określonej osi. 

 

Tabela 4.1. Zależności pomiędzy jednorodnością opony a zjawiskami wibracyjnymi pojazdów  

(opracowanie własne na podstawie Nakajima, 2019) 

Jednorodność Typ drgań Zjawiska w pojeździe 

Bicie promieniowe 

Niewyważenie 

RFV 

Unbalance 

Drgania przy dużej 

prędkości 80–160 [km/h] 

Pionowe drgania 

nadwozia, fotela  

i kierownicy 

Bicie boczne LFV 

Boczne drgania przy małej 

prędkości 30–50 [km/h] 
Boczne drgania fotela 

Shimmy2 przy małej 

prędkości 20–60 [km/h] 

Boczne drgania  

kierownicy 

Stożkowatość CON - Ściąganie pojazdu 

 

 

2 Efekt shimmy - oscylacyjne drganie kierownicy odczuwalne podczas jazdy, występujące zazwyczaj w 

określonym zakresie prędkości. 
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Jednorodność fizyczna jest jednym z aspektów jakościowych świadczących o jednorodnej 

strukturze opony, która jest również miarą jej zdolności do płynnej pracy bez wibracji (Rodgers 

i Waddell, 2005). Składa się z pakietu wielkości fizycznych mierzonych dla każdej opony  

przed opuszczeniem fabryki. Istnieją zjawiska promieniowe: zmienność siły  promieniowej  

RFV (ang. radial force variation), wyważenie statyczne (ang. static balance), wyważenie 

dynamiczne (ang. dynamic balance), bicie promieniowe RRO (ang. radial runout)  

oraz zjawiska boczne: zmienność siły  bocznej LFV (ang. lateral force variation), bicie boczne  

LRO (ang. lateral runout), stożkowatość CON (ang. conicity) i tzw. siła boczna strukturalna  

(ang. ply steer). Opisują one m.in. równomierne rozłożenie masy na obwodzie opony (Koketsu, 

2017), co bezpośrednio przekłada się na mechanizm jej zużycia (Hosseini Salari, 2023). Oprócz 

wpływu rzeźby bieżnika (Nakajima, 2019), są one również jednym z czynników wpływających 

na emisję hałasu opony podczas toczenia. Zależności pomiędzy jednorodnością opony  

a zjawiskami wibracyjnymi pojazdów przedstawiono w Tabeli 5.1. Zapewnienie jednorodności 

opon na poziomie zużycia przyczynia się zatem do zwiększenia ich trwałości  

i przewidywalnego zachowania w ruchu drogowym przez cały okres eksploatacji.  

W teorii wibracji, wymienione wcześniej zjawiska są ze sobą powiązane, dlatego każda 

decyzja projektowa wpływająca na jeden z czynników będzie oddziaływać również  

na pozostałe - pozytywnie lub negatywnie. W rezultacie powstaje złożony układ sił 

działających na toczącą się oponę zamontowaną w pojeździe (Rysunek 4.7.). Właściwości 

mechaniczne opony opisują jej zachowanie pod wpływem obciążenia, momentu obrotowego  

i działania układu kierowniczego, czego efektem jest powstawanie sił zewnętrznych  

i odkształceń (Rodgers i Waddell, 2005). Układ osi opony odnosi się do środka styku opony  

z nawierzchnią drogi, jak pokazano na Rysunku 4.7. Oś X to linia przecięcia płaszczyzny koła 

z płaszczyzną drogi, skierowana w stronę jazdy (kierunek dodatni do przodu).  

Oś Z jest prostopadła do płaszczyzny drogi i skierowana w dół (kierunek dodatni). Oznacza  

to, że siła normalna wywierana przez oponę ma zwrot dodatni w dół, natomiast pionowa reakcja 

obciążenia – czyli siła, z jaką droga działa na oponę – jest uznawana za ujemną.  

Oś Y leży w płaszczyźnie drogi i jest skierowana w taki sposób, aby układ tworzył układ 

prawoskrętny i ortogonalny. Takie przedstawienie układu osi opony odpowiada układowi osi 

pojazdu, gdy opona znajduje się na prawym przednim kole samochodu.  
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Rysunek 4.7. Siły i momenty działające na oponę w centralnym punkcie jej styku z nawierzchnią  

(Rodgers i Waddell, 2005) 

 

W przypadku przedstawionym na Rysunku 4.7. pojazd skręca w lewo, a więc występuje 

dodatni moment samokierujący (Mz) oraz ujemna siła boczna. Siły działające na oponę można 

zatem rozłożyć na trzy podstawowe wektory: 

1) Siły pionowe (normalne) – wpływają na komfort jazdy. 

2) Siły boczne – mają wpływ na kontrolę nad pojazdem. 

3) Siły wzdłużne (do przodu) – wpływają na osiągi, takie jak opory toczenia. 

 

Jednym z powodów, dla których przeprowadza się obowiązkowy pomiar jednorodności 

opon jest zapobiegnięcie wypuszczenia na rynek produktu, w którym mogłoby dojść  

do wystąpienia mechanizmu nieregularnego zużycia w trakcie eksploatacji (Rysunek 4.8.). 

Każda z sił występujących podczas ruchu opony odpowiada za swoisty sposób jej zużycia. 

Niektóre z przestawionych niżej mechanizmów zostaną omówione w niniejszym podrozdziale. 
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Rysunek 4.8. Przykładowe rodzaje nieregularnego zużycia opon (opracowanie własne na podstawie 

Nakajima, 2019) 

 

4.3.1 Zmienność siły promieniowej i jej wyższe harmoniczne 

Wartość całkowita zmienności siły promieniowej RFV to różnica między wartością 

maksymalną i minimalną mierzonego sygnału w obrębie pasma określonej szerokości, 

występująca podczas jednego obrotu. Należy ją rozumieć jako wartość siły w kierunku 

promieniowym (w osi Z) opony obciążonej (Rysunek 4.9.), powtarzającą się dla każdego 

obrotu, przy zachowaniu stałego promienia pod obciążeniem i stałej prędkości, wyrażona  

w niutonach [N] (Polski Komitet Normalizacyjny, 2002). Jej obecność jest spowodowana 

występowaniem złącz komponentów opony (miejsca o zwiększonej lokalnej masie  

na obwodzie w stosunku do sąsiadujących z nimi miejscami) prowadzących do wzrostu siły 

promieniowej. Z kolei lżejsze miejsca w oponie, przykładowo spowodowane rozejściem kordu 

osnowy, powodują lokalny spadek siły promieniowej na obwodzie opony (Rodgers i Waddell, 

2005). Wariacje siły i momentu powtarzają się przy każdym obrocie opony, a zatem  

są okresowe względem fizycznego położenia na oponie. Rysunek 4.10. ilustruje, jak może 

wyglądać zmienność siły promieniowej przy niskiej prędkości. Górna krzywa to skumulowany, 

czyli całkowity sygnał zmienności siły promieniowej. Przeprowadzając analizę Fouriera, 

możliwe jest rozłożenie sygnału skumulowanego i uwidocznienie poszczególnych 

harmonicznych, czyli rzędów drgań. Na Rysunku 4.10. przedstawiono pierwsze sześć 

harmonicznych. Harmoniczne przyciągają większą uwagę niż skumulowana zmienność siły, 

ponieważ zazwyczaj łatwiej jest powiązać wewnętrzną anomalię opony z jedną lub kilkoma 

harmonicznymi niż z całkowitym przebiegiem falowym, co pozwala na skuteczniejsze 

zidentyfikowanie i usunięcie problemu (Gent i Walter, 2006). 
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Rysunek 4.9. Układ osi odniesienia sił podczas pomiaru jednorodności opon m.in. na maszynie TUO;  

gdzie: 1 – bęben pomiarowy, 2 – opona (Polski Komitet Normalizacyjny, 2002) 

 

Rysunek 4.10. Pierwsze sześć harmonicznych oraz ich wektor sumacyjny (opracowanie własne na 

podstawie Rodgers i Waddell, 2005) 

 

Zgodnie z tą wiedzą, pierwsza harmoniczna zmienności siły promieniowej RFV1H  

to amplituda wartości całkowitych składowej częstotliwości podstawowej transformaty 

(funkcji) Fouriera przedstawiającej wahania (Polski Komitet Normalizacyjny, 2002). 

Natomiast wyższe harmoniczne to amplituda wartości całkowitych drugiej (lub wyższego 
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rzędu) składowej częstotliwości transformaty Fouriera przedstawiającej te wahania (Polski 

Komitet Normalizacyjny, 2002). Na tej podstawie przeprowadzana jest analiza fali RFV, która 

pomaga w dotarciu do przyczyny zbyt dużej wartości tej zmiennej opisującej jednorodność.  

W tym celu zestawia się fale reprezentatywnych opon problematycznego rozmiaru opon  

na jednym wykresie (zmiana siły promieniowej w funkcji obrotu opony na bębnie 

pomiarowym), a następnie wyznacza się średnią falę badanej populacji, co zostało 

zaprezentowane na Rysunku 4.11. Oceniana jest również powtarzalność fali RFV,  

która pozwala na stwierdzenie, czy istnieją dodatkowe czynniki wpływające na jej zakłócenie. 

 

Rysunek 4.11. Analiza fali RFV (opracowanie własne) 

 

Dzięki ustalonemu dla danego rozmiaru opony rozkładowi złącz wiadomo, w których 

miejscach na obwodzie opony dochodzi do największych wahań siły (pozycje złącz 

materiałowych zostały naniesione na dolnym wykresie Rysunku 4.11. na podstawie rozkładu 

złącz zastosowanego podczas procesu konfekcji). Widoczne są zatem miejsca występowania 

najwyższej i najniższej wartości siły. Pierwszym działaniem dla osiągnięcia możliwego 

„spłaszczenia” fali jest nałożenie tych miejsc na siebie, czyli zmiana rozkładu złącz (Rysunek 
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4.12.). Następnie dochodzi do powtórnej analizy i weryfikacji, czy przeprowadzone działania 

przyniosły zamierzony skutek, czy też należy poszukiwać innych rozwiązań obniżających 

wartość RFV. 

 

Rysunek 4.12. Rozkład złącz poprawiony na podstawie przeprowadzonej analizy fali RFV  

(opracowanie własne) 

Istnieje wiele potencjalnych przyczyn niejednorodności opony, jednakże istnieje również 

ogólna tendencja, że określone anomalie materiałowe lub konstrukcyjne mają większy wpływ 

na zmienność siły w kierunku promieniowym lub wzdłużnym. Anomalie wpływające  

na zmienność masy wokół obwodu opony mają istotne znaczenie dla zmienności siły 

promieniowej, natomiast anomalie wpływające na sztywność lub bicie mają większy wpływ  

na zmienność siły wzdłużnej (Pacejka, 2012). Tabela 4.2. zawiera porównanie różnych 

potencjalnych źródeł zmienności sił. 

 

Tabela 4.2. Potencjalne źródła zmienności sił powodujące niejednorodność opon (opracowanie własne  

na podstawie Gent i Walter, 2006) 

Źródło 

Wpływ na 

zmienność siły 

promieniowej RFV 

Wpływ na 

zmienność siły 

wzdłużnej 

Zbyt ciężkie lub zbyt lekkie złącze istotny niewielki 

Rozrzedzenie lub spiętrzenie kordu istotny niewielki 

Zmienność grubości bieżnika istotny niewielki 

Niesymetryczne osadzenie drutówek niewielki istotny 

Niedoskonałości bębna karkasu i/lub B&T niewielki istotny 

Niedoskonałości formy wulkanizacyjnej niewielki istotny 

Bicie karkasu niewielki istotny 

 

Przez wiele lat opony były szlifowane na fabrycznych maszynach do pomiaru 

jednorodności w celu zmniejszenia zmienności siły promieniowej (Nedley i Gearig, 1970). 

Proces ten jest zazwyczaj najskuteczniejszy w przypadku pierwszej harmonicznej siły 
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promieniowej, która ma kluczowe znaczenie dla poprawy komfortu jazdy. Szlifowanie polega 

na usunięciu niewielkiej ilości gumy z barku opony lub z całej powierzchni bieżnika w miejscu 

odpowiadającym punktowi o najwyższej wartości RFV1H. Szlifowanie nie jest jednak 

akceptowane przez wszystkich producentów samochodów. 

„Dopasowywanie poprzez znakowanie” to kolejna technika stosowana w celu 

zminimalizowania RFV1H. Metoda ta jest zazwyczaj stosowana na końcu linii montażowej 

pojazdu lub w firmach outsourcingowych, gdzie opony są zakładane na felgi. W tym procesie 

opona i felga są ustawiane w taki sposób, aby punkt maksymalny RFV1H felgi (najczęściej  

to miejsce montowania wentylu) pokrywał się z punktem minimalnym pierwszej harmonicznej 

opony. Z tego powodu wymaganiem wielu producentów samochodów jest oznaczanie na boku 

opony jej najlżejszego punktu. Dzięki temu minimalizuje się całkowitą pierwszą harmoniczną 

zmienności siły promieniowej dla zespołu opona + felga tworzącego koło pojazdu. 

Jednorodność opony jest najważniejszym źródłem wzbudzenia drgań powodujących  

podskakiwanie / boksowanie koła (ang. wheel hop), chociaż w pewnych warunkach mogą  

je również wywołać nierówności drogi. Głównym czynnikiem jest pierwsza harmoniczna 

zmienności siły promieniowej, a krytyczna prędkość jazdy to 80 km/h i więcej. Gdy rezonans 

boksowania zostaje wzbudzony, pojawia się zakłócenie komfortu jazdy określane zwykle  

jako drgania. Problem ten można kontrolować na dwa sposoby (Gent i Walter, 2006): 

1) RFV1H powinna być niska w całym zakresie prędkości roboczych. Wymagany poziom 

siły (limit) zależy od wrażliwości konkretnego pojazdu. Dlatego też, będąc świadomym 

autorskich technologii zaimplementowanych na etapie projektowania zawieszenia 

pojazdu, każdy producent aut narzuca własne limity pierwszej harmonicznej siły 

promieniowej. 

2) Należy możliwie jak najbardziej przesunąć rezonans inicjacji boksowania ku wyższym 

częstotliwościom. Po pierwsze, należy upewnić się, że prędkość przy której boksowanie 

jest najsilniej wzbudzane, znajduje się powyżej normalnego zakresu prędkości jazdy. 

Po drugie, ciało ludzkie jest mniej wrażliwe na drgania o częstotliwości 20 [Hz],  

niż na te o częstotliwości 10 [Hz]. Dlatego podskakiwanie inicjowane przy wyższej 

częstotliwości jest mniej dokuczliwe dla kierowcy i pasażerów. 

4.3.2 Zmienność siły bocznej 

Generowanie siły bocznej przez układ kierowniczy auta jest konieczne, ponieważ stanowi 

to podstawę sterowania pojazdem. Jednak duże ruchy kierownicą są zazwyczaj stosowane tylko 

w niewielkim procencie czasu jazdy pojazdu, dlatego zmniejszenie oporów toczenia podczas 
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skręcania ma niski priorytet. Szczególnie istotne są odkształcenia bieżnika i opasań w obszarze 

kontaktu z nawierzchnią podczas skrętu, które nie tylko powodują dodatkowe naprężenia  

i odkształcenia, ale również przyczyniają się do powstawania dodatkowego ciepła na skutek 

zwiększonej histerezy (powrót opony po odkształceniu do pierwotnego kształtu) i ścierania 

bieżnika. Zmiennymi wpływającymi na skalę tego zjawiska są czas trwania i szybkość skrętu 

oraz kąt poślizgu (zwany również kątem znoszenia) podczas manewru. Siła boczna  

jest nieliniową funkcją kąta poślizgu i kąta pochylenia koła (Gent i Walter, 2006). 

Zmienność siły bocznej LFV to wartość wahania siły w kierunku bocznym (w osi Y) opony 

obciążonej (Rysunek 4.9.), powtarzająca się dla każdego obrotu, przy zachowaniu stałego 

promienia pod obciążeniem i stałej prędkości, wyrażona w niutonach [N] (Polski Komitet 

Normalizacyjny, 2002). Siła boczna Fy, to siła działająca ze strony drogi na oponę wzdłuż  

osi Y (Rysunek 4.7.), wymuszająca ruch pojazdu w lewo lub w prawo, w zależności od tego, 

czy koło jest skręcone i/lub pochylone w lewo bądź w prawo. Opona generuje siłę boczną  

w odpowiedzi na dwie główne zmienne kątowe a i γ (Rysunek 4.7.). Jeśli tor ruchu opony  

ma bardzo dużą krzywiznę, czyli bardzo mały promień skrętu – sama krzywizna toru wyraźnie 

wpływa na generowanie siły bocznej oraz momentu wyrównawczego. 

W odniesieniu do punktu na wykresie, w którym Fy = 0 jak pokazano na Rysunku 4.13., 

siła boczna zazwyczaj nie jest zerowa dla kąta poślizgu α = 0. Jak można się spodziewać, siła 

boczna przy zerowych kątach pochylenia i znoszenia nie jest zerowa, ze względu  

na współistniejące siły ściągające. Jedna z tych sił – plysteer – jest związana  

z samosterowaniem indukowanym strukturalnie (tutaj w rozumieniu: konstrukcyjnie), a druga 

(stożkowatość) z samopozycjonowaniem się opony na skutek strukturalnych właściwości.  

Jest to istotna cecha zachowania opony, nawet w pozycji jej idealnego wycentrowania 

(rozwinięcie tych zjawisk zostanie opisane w Rozdziale 4.3.5). Ujemna siła boczna  

jest związana z dodatnim kątem poślizgu, a dodatnia siła boczna – z ujemnym kątem poślizgu. 

W normalnym zakresie jazdy nachylenie krzywej siły bocznej względem kąta poślizgu  

jest ujemne. Wartość bezwzględna nachylenia krzywej siły bocznej przy zerowym kącie 

poślizgu jest powszechnie nazywana sztywnością boczną (Luty, 2009). Jest to bardzo ważny 

parametr określający zachowanie pojazdów w zakresie liniowego zachowania Fy,  

czyli w obszarze, w którym odbywa się większość czasu jazdy. Sztywność boczna zależy  

od obciążenia (siły normalnej). Zazwyczaj rośnie do pewnej części nominalnego obciążenia 

opony, a następnie stopniowo maleje wraz ze wzrostem obciążenia (Gent i Walter, 2006). 

Miejsce, w którym sztywność boczna osiąga maksimum zależy od konstrukcji opony.  

Dla dobrego prowadzenia pojazdu pożądane jest, aby maksimum występowało na poziomie 
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nominalnego obciążenia opony lub powyżej niego. Powoduje to dodatnią wartość czułości  

na obciążenie, którą definiuje się jako nachylenie krzywej siły bocznej pomiędzy 80% a 100% 

nominalnego obciążenia opony. Wzrost siły bocznej wraz z kątem poślizgu jest złożoną 

nieliniową funkcją. Wartość Fy przy określonej wartości kąta poślizgu osiąga szczyt,  

a następnie spada, podobnie jak w przypadku opony poddanej hamowaniu wzdłużnemu.  

Wraz ze wzrostem kąta poślizgu coraz większa część dostępnego obszaru styku bierze udział 

w poślizgu, przez co w pewnej wartości kąta poślizgu generowana jest maksymalna siła boczna. 

Po przekroczeniu tej granicznej wartości kąta, dalszy wzrost poślizgu powoduje systematyczny 

spadek siły bocznej (dochodzi do poślizgu pojazdu) (Gent i Walter, 2006).  

 

 

Rysunek 4.13. Zależność siły bocznej od kąta znoszenia przy stałej sile normalnej (Gent i Walter, 2006) 

 

W praktyce, początkowy zakres siły bocznej, aż do kąta poślizgu związanego ze szczytem 

siły Fy to zakres, w którym kierowca może utrzymać kontrolę nad pojazdem. 

Prawdopodobieństwo utraty kontroli podczas pokonywania zakrętu rośnie, gdy kąt poślizgu 

zbliża się do wartości odpowiadającej maksymalnej sile bocznej dla normalnego obciążenia Fz 

(Rysunek 4.7). Ogólnie rzecz biorąc, zmniejszenie profilu opony powoduje, że dane dotyczące 

siły bocznej oraz innych sił i momentów wykazują większe początkowe nachylenia  

oraz gwałtowniejszą zmianę zachowania od tych początkowych nachyleń, do zakresów  

przy dużych kątach poślizgu. Szerokość strefy przejściowej pomiędzy dobrze kontrolowanym 

zachowaniem a możliwą utratą kontroli jest mniejsza pod względem kąta poślizgu dla opon  

o niższym profilu. Oznacza to, że opony niskoprofilowe lepiej poradzą sobie w ostrzejszym 
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zakręcie, jednak zerwanie przyczepności może nastąpić w nagły sposób, co daje mniejszy czas 

reakcji kierowcy na skontrowanie manewru.  

Podobnie jak boczne niewspółosiowości, zmienności w bocznej sztywności również 

prowadzą do niepożądanych wahań siły bocznej (LFV) w centrum koła oraz do bocznych drgań 

kabiny pasażerskiej (Tabela 4.1.). Częstotliwości wzbudzeń, które są wywołane brakiem 

jednorodności, są wielokrotnością prędkości obrotowej koła, tzn. wielkość wahań zależy 

bezpośrednio od prędkości pojazdu. Drgania te powodują dodatkowo zakłócenie mechanizmu 

przewidywalnego zużywania opony. Zużycie schodkowe (ang. step-down wear) oraz zużycie 

typu "rzeka" (ang. river wear) przedstawione na Rysunku 4.8. to rodzaje nieregularnego 

zużycia, które zazwyczaj występują w oponach toczących się stale po płaskiej nawierzchni,  

tj. autostrada. Rysunek 4.14. przedstawia genezę powstawania zużycia schodkowego,  

która przebiega w czterech etapach (Nakajima, 2019): 

1) Ślad nieregularnego zużycia zaczyna się tworzyć w bieżniku opony pod wpływem siły 

bocznej. Przekrój poprzeczny zużytych żeber ma zaokrąglone krawędzie,  

a na powierzchni bieżnika pojawia się obwodowe przetarcie. Ponieważ kierunek siły 

zewnętrznej jest prostopadły do kierunku tego wzoru ścierania, oznacza to, że inicjacja 

tego zużycia wynika głównie na skutek działania siły bocznej. 

2) Powstaje nieregularne zużycie. Wytarty ślad zaczyna być wyraźnie widoczny  

w kierunku poprzecznym (bocznym), a zużycie nasila się poprzez dodatkowe działanie 

sił wzdłużnych, w szczególności podczas hamowania. 

3) Degradacja postępuje w kierunku środka żebra bieżnika pod wpływem sił wzdłużnych. 

Na tym etapie zużycie postępuje w przyspieszonym tempie. Ścieranie przebiega 

również poprzecznie, jednak w tym momencie propagacja zniszczenia wynika głównie 

z sił wzdłużnych. Stosunek powierzchni bieżnika między obszarem normalnego zużycia 

a obszarem zużycia nieregularnego staje się większy, natomiast nachylenie startej 

powierzchni w kierunku boku opony robi się bardziej strome. 

Wygląd zużytego bieżnika pogarsza się na tyle, że może prowadzić do reklamacji 

użytkownika. W obszarze normalnego zużycia ścieranie nie jest tak wyraźne, jednak 

siły zewnętrzne zaczynają działać na ten obszar bardziej intensywnie, ze względu  

na zmniejszanie się powierzchni styku opony z podłożem. 

4) Nieregularne zużycie w końcu obejmuje całe żebro. 
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Rysunek 4.14. Mechanizm powstawania zużycia schodkowego wywołanego działaniem siły bocznej 

(opracowanie własne na podstawie Nakajima, 2019) 

 

Rysunek 4.15. podsumowuje wpływ kątów pochylenia koła (ang. camber) oraz zbieżności 

/ rozbieżności (ang. toe-in / toe-out) na nieregularne zużycie opon (Nakajima, 2019): 

1) Przy rozbieżności – gdy przednia strona kół jest skierowana jest na zewnątrz względem 

osi jazdy – bardziej zużywa się wewnętrzna strona opony. Dzieje się tak, ponieważ siła 

boczna działa od wewnątrz opony. 

2) Przy zbieżności – gdy przednia strona kół jest skierowana jest do środka – bardziej 

zużywa się zewnętrzna strona opony, ponieważ siła boczna działa od zewnątrz opony. 

 

Rysunek 4.15. Możliwe niedoskonałości układu zawieszenia pojazdu potęgujące nieregularne zużycie opon 

wywołane działaniem siły bocznej (Nakajima, 2019) 
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Podczas eksploatacji pojazdów bardzo często dochodzi do utraty prawidłowej zbieżności 

zawieszenia. Z tego powodu niektórzy producenci samochodów uwzględniają kąt pochylenia 

opony w warunkach wymaganych przez nich testów bębnowych (wysokich prędkości).  

Kąt styku powierzchni bębna pomiarowego i opony θ wynosi zazwyczaj 5°, co zostało 

zobrazowane na Rysunku 4.16. Stwarza to trudniejszą sytuacje dla osiągnięcia pozytywnego 

rezultatu, bo wymuszone jest dodatkowe działanie siły bocznej, a nie tylko normalnej  

i wzdłużnej, jak ma to miejsce w warunkach standardowego testu. Zużycie jest bardziej 

intensywne, przez co łatwiej może dojść do np. separacji warstw materiałów z których złożona 

jest opona.  

 

Rysunek 4.16. Pozycja opony względem bębna pomiarowego dla testu bębnowego przeprowadzanego  

w standardowych warunkach (po lewej – kąt 0°) i dla testu typu camber (po prawej – kąt 5°)  

(opracowanie własne) 

4.3.3 Balans statyczny i dynamiczny 

Dla ciała obracającego się wokół osi w stanie roboczym możliwe jest określenie rozkładu 

jego masy względem osi obrotu. Niezrównoważenie masy wirującej nazywa  

się niewyważeniem. Niewyważenia generują siły odśrodkowe, które z kolei wywołują siły 

reakcji w elementach zawieszenia auta. Złe wyważenie wynika z elementów o nieregularnych 

wymiarach (różnica w polu przekroju opony, związana np. z niestabilnością procesu 

wytłaczania). Na wyważenie mogą również wpływać nieregularne szerokości złącz 

komponentów opony oraz ich niewłaściwe nałożenie (Rodgers i Waddell, 2005). Czynniki  

te są powodem nieregularnego rozłożenia masy oraz sztywności na obwodzie opony. 

Wyważenie koła ma istotny wpływ na jednorodność opony we wszystkich zakresach 

prędkości. Zjawisko niewyważenia jest często wykorzystywane do badania odporności 
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zmęczeniowej zawieszenia pojazdu. Niewyważenie rzędu 30 g w najwyższym punkcie 

pierwszej harmonicznej koła powoduje dodatkowe wzbudzenie siły wzdłużnej w oponie  

z powodu sił Coriolisa, które powstają w wyniku zmiennej prędkości ugięcia opony (czyli ciała 

ulegającemu deformacji). Wzbudzenie siły pionowej przez RFV1H jest tłumione przez siły 

odśrodkowe przy danej prędkości, zapobiegając tym samym silniejszemu ugięciu w najbardziej 

miękkim punkcie opony. W takim przypadku druga harmoniczna RFV2H staje się dominująca 

(Leister, 2015). 

Jeżeli opona obraca się z prędkością kątową ω, niewyważenie statyczne wywołuje siłę 

odśrodkową Fₓ prostopadłą do osi obrotu, określoną wzorem 4.1 (Polski Komitet 

Normalizacyjny, 2002): 

Fₓ = m × e × ω²                                                      (4.1) 

gdzie: 

Fₓ – siła odśrodkowa; 

m – masa ciała; 

e – odległość środka masy od osi obrotu (mimośród); 

ω – prędkość kątowa obrotu. 

Opona pneumatyczna jest w rzeczywistości bryłą ulegającą deformacji, co oznacza, że rozkład 

masy, a więc mimośrodowość środka ciężkości, może zmieniać się z prędkością obrotową. 

Zatem w praktyce zaleca się przyjęcie, że e jest funkcją ω. 

 

Jeżeli opona obraca się ze stałą prędkością kątową ω, niewyważenie dynamiczne wywołuje 

moment zginający M, prostopadły do osi obrotu, określony wzorem 4.2 (Polski Komitet 

Normalizacyjny, 2002): 

M = (Iₐ - Iₓ) × sin α × ω²                                             (4.2) 

gdzie: 

M – moment zginający względem osi; 

Iₐ – główny moment bezwładności względem osi głównej obrotu; 

Iₓ – główny moment bezwładności względem osi poprzecznej; 

α – kąt między osią obrotu a osią główną bezwładności; 

ω – prędkość kątowa obrotu. 

Opona pneumatyczna jest w rzeczywistości bryłą ulegającą deformacji, co oznacza, że Iₐ i Iₓ, 

czyli względne niewyważenie dynamiczne, mogą zmieniać się wraz ze zmianą prędkości 

obrotowej. Zatem zaleca się przyjęcie, że Iₐ oraz Iₓ są funkcjami ω. 
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W celu minimalizacji zjawiska niewyważenia statycznego, przed każdym montażem  

na pojazd koła powinny zostać wyważone. Niewyważenie statyczne można wykryć  

na nieruchomym kole. Precyzyjna wyważarka to urządzenie pomiarowe, które pozwala określić 

wielkość oraz położenie kątowe niewyważenia opony. Podczas wyważania koła należy 

stosować tylko jeden ciężarek wyważający na każde obrzeże felgi lub płaszczyznę wyważania. 

Po nałożeniu ciężarków całe koło powinno być ponownie przetestowane pod kątem 

pozostałego niewyważenia. Zarówno w testach statycznych, jak i dynamicznych, pozostałe 

niewyważenie nie powinno przekraczać 5[g]. Łączna masa wszystkich ciężarków nie powinna 

przekraczać 60[g], co odpowiada limitowi balansu statycznego zespołu opona + felga. 

Kompensacja nierównomiernie rozłożonych mas pomiędzy felgą a oponą jest równie ważna 

jak dokładne wyważenie osiowe i promieniowe, jeśli chodzi o płynne toczenie się całego koła. 

W tym celu koła samochodów osobowych są zazwyczaj mierzone pod katem balansu 

dynamicznego. Niewyważenie dynamiczne można wykryć tylko na obracającym się kole.  

Ze względu na istnienie wymiaru, którym jest szerokość felgi, pomiary wykonuje się w dwóch 

płaszczyznach (wewnętrzne i zewnętrzne osadzenie opony). Na podstawie tych pomiarów 

określa się niezbędną masę wyważającą, którą następnie umieszcza się w miejscu wskazanym 

przez maszynę do wyważania kół. Obciążniki wyważające mogą być przyklejane, zaciskane 

lub nabijane. Idealne miejsce na obciążniki wyważające na kołach wyważanych dynamicznie 

to maksymalna odległość od środka felgi, na jak największej średnicy (zgodnie  

z przedstawionymi powyżej wzorami). W większości pojazdów występuje błąd wyważenia 

wynoszący około 5 g na każdą płaszczyznę wyważania, zwany „nierównowagą resztkową”.  

Ta nierównowaga nie jest wyczuwalna w większości typów pojazdów i konfiguracjach 

podwozia. Na każdej płaszczyźnie wyważania powinien być umieszczony tylko jeden 

obciążnik (Leister, 2015). 

Im mniejsza masa obciążnika wyważającego na kole, tym mniejsze ryzyko nierównowagi 

resztkowej. Wąskie koła (np. motocyklowe), są wyważane tylko na jednej płaszczyźnie, 

natomiast obciążniki montowane są w centrum felgi. Koła do pojazdów ciężarowych  

oraz kompaktowe koła zapasowe z ograniczoną maksymalną prędkością nie są wyważane. 

Zazwyczaj niewyważenie statyczne jest bardziej odczuwalne na kierownicy niż niewyważenie 

dynamiczne (Nakajima, 2019). 

4.3.4 Bicie promieniowe i bicie boczne 

Odstępstwa wymiarowe opon są ściśle związane ze zmiennością sił występującą  

w ich ruchu tocznym. W przypadku ich wystąpienia pojawia się bicie promieniowe i boczne. 
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Bicie promieniowe to nieregularność w promieniu opony, czyli sytuacja, w której opona  

nie jest idealnie okrągła. Ugięcie lub wybrzuszenia boczne opisuje nieregularność w odległości 

między zewnętrzną stroną opony a środkową płaszczyzną koła, co prowadzi do wahań sił 

bocznych w centrum koła, które są następnie odczuwane przez pasażerów jako kołysanie  

lub szarpnięcia o odpowiednich cechach (Leister, 2015). Przeważnie stosowane  

są trzy następujące miary nieregularności wymiarowych: 

1) Bicie promieniowe RRO – wahanie promienia opony mierzone prostopadle  

do osi obrotu, wzdłuż obwodu opony na powierzchni bieżnika, w którym  

nie uwzględnia się wpływu rowków i wypływek na bieżniku gdy opona  

jest zamontowana na feldze; jest wyrażone w [mm] (Polski Komitet Normalizacyjny, 

2002). Może być również określane jako „bicie względem osi symetrii” (ang. centerline 

runout) (Rodgers i Waddell, 2005). 

2) Bicie boczne LRO - wahanie odległości między przyjętą płaszczyzną odniesienia 

(przyp. pomiar względny) prostopadłą do osi obrotu a danym bokiem opony,  

przy określonej odległości od wymienionej osi, w którym nie uwzględnia się wpływu 

liter i innego cechowania na boku, gdy opona jest zamontowana na feldze; jest wyrażone 

w [mm] (Polski Komitet Normalizacyjny, 2002). Wyznaczany najszerszym punkcie 

każdego boku opony (Rodgers i Waddell, 2005). 

3) Najniższy / najwyższy punkt na boku opony (ang. LRP depression / LRP bump)  – 

bezwzględny pomiar wysokości punktu największego lokalnego wybrzuszenia  

lub głębokości punktu największego lokalnego wgłębienia na boku opony. 

4.3.5 Stożkowatość i ply steer 

Siła boczna opony w obszarze jazdy na wprost jest podzielona na siłę boczną stożkową 

(ang. conical lateral force) - stożkowatość i tzw. siłę boczną strukturalną (ang. structural 

lateral force) – ply steer. Stożkowatość to składowa siły bocznej, określonej z efektu 

przesunięcia, która nie zmienia znaku wraz ze zmianą kierunku obrotów; wyrażona  

w niutonach [N] (Polski Komitet Normalizacyjny, 2002). Ply steer (tzw. efekt kątowy)  

to składowa siły bocznej, określonej z efektu przesunięcia, która zmienia znak wraz ze zmianą 

kierunku obrotów; wyrażona w niutonach [N] (Polski Komitet Normalizacyjny, 2002). W celu 

ich wyznaczenia wykonywane są pomiary opony w kierunku zgodnym z ruchem wskazówek 

zegara CW (ang. clockwise) oraz przeciwnym do ruchu wskazówek zegara CCW (ang. 

counerclockwise) (Rysunek 4.17.) (Leister, 2015). 
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Odnosząc się do wielkości opisujących jednorodność, stożkowatość (CON), nazywana 

także „efektem stożka” to tendencja opony do ściągania pojazdu (w lewo lub w prawo)  

z zamierzonej trajektorii. Ponieważ stożkowatość wykazuje właściwości podobne do siły 

bocznej LFV wynikającej z pochylenia koła (ang. camber), nazywa się ją również 

pseudopochyleniem (ang. pseudo-camber). 

 

Rysunek 4.17. Zasada wyznaczania stożkowatości opon na maszynie do pomiaru jednorodności 

(opracowanie własne) 

 

Wiąże się to z niesymetrycznym położeniem komponentów składowych opony względem 

jej osi (Rysunek 4.18.) (Rodgers i Waddell, 2005). Brak możliwości pomiaru symetrii 

wymiarowej materiałów użytych w już zwulkanizowanej oponie generuje potrzebę określenia 

stożkowatości, o której można powiedzieć, że jest wypadkową symetrii elementów opony. 

 

 

Rysunek 4.18. Schematyczne przedstawienie zjawiska stożkowatości, gdzie obwód opony nie jest równy  

po obu jej stronach (opracowanie własne na podstawie Nakajima, 2019) 

 

Stożkowatość opisuje zdolność opony do utrzymania toru jazdy wyznaczonego przez układ 

zawieszenia pojazdu. W zależności od rynku (kraju), dla którego przeznaczona jest dana opona, 

stosowana jest odpowiednia sekwencja nakładania opasań (Rysunek 4.19.). W oponach 
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radialnych do samochodów osobowych najczęściej występuje różnica 10-20 mm szerokości 

pomiędzy opasaniem 1 a opasaniem 2. Różnica w górnej części tego zakresu jest 

wykorzystywana np. do kompensacji wpływu asymetrycznej rzeźby bieżnika. Celem takiej 

procedury jest wymuszenie, aby pojazd zawsze był ściągany na pobocze. Jest to ważne  

ze względów bezpieczeństwa, np. w przypadku, gdy kierowca puści kierownicę lub zaśnie 

podczas jazdy. Dlatego stalowy kord szerszego opasania pierwszego jest zawsze skierowany  

w stronę pobocza. Dla prawidłowego funkcjonowania tego założenia i faktycznego 

zagwarantowania bezpieczeństwa podczas jazdy, stożkowatość musi być zapewniona  

na określonym poziomie. Co więcej, opona o zbyt wysokiej wartości stożkowatości będzie 

zużywać się nieregularnie (większa utrata masy mieszanki gumowej bieżnika po lewej stronie 

w porównaniu z prawą stroną opony lub odwrotnie), więc stożkowatość określa prawidłowy 

mechanizm zużycia opony podczas jej eksploatacji (Nakajima, 2019). Dlatego opona, która 

mieści się w granicach tej zmiennej wyjściowej, będzie wykazywać przewidywalne  

i bezpieczne zachowanie podczas użytkowania. 

 

Rysunek 4.19. Układ opasania 1 i opasania 2 dla ruchu prawostronnego LHD (ang. left-hand drive)  

oraz lewostronnego RHD (ang. right-hand drive) (opracowanie własne) 

 

W rzeczywistości istnieją dwie cechy opon, które powodują powstawanie resztkowej siły 

bocznej. Pierwszą z nich jest wspomniana już stożkowatość, wynikająca m.in. z nieznacznego 

przesunięcia opasań opony względem środka, co wynika z niedoskonałości procesu konfekcji. 

Powoduje to, że promień toczenia po stronie opony, w którą przesunięto opasanie, jest nieco 

mniejszy niż po stronie przeciwnej. Na skutek tego opona zachowuje się tak, jakby miała 
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przekrój stożkowy – generuje siłę boczną oraz moment prostujący, tak jakby była pochylona 

(zbieżność kątowa) w kierunku bardziej ograniczonej strony. Rozkład wartości pomiaru 

stożkowatości dla tego samego rozmiaru opon ma płaski charakter, jak pokazano 

schematycznie na Rysunku 4.20. Średnia wartość jest bliska zeru, chociaż z powodu asymetrii 

w procesie produkcyjnym może się nieco od niego różnić (Gent i Walter, 2006). W środowisku 

produkcyjnym wartość stożkowatości musi mieścić się w granicach X ± 40 [N],  

gdzie X to wartość (zwykle bliska 0 [N]) określona na podstawie średniego pomiaru z pierwszej 

partii produkcyjnej nowego rozmiaru opony. Wielkość tej partii jest ustalana zgodnie  

z wymaganiami klienta (zazwyczaj 1000–5000 opon). 

 

Rysunek 4.20. Rozkład wartości pomiarów stożkowatości i ply steer dla populacji jednego rozmiaru opon 

radialnych (czyli jednocześnie o tej samej konstrukcji) (Nakajima, 2019) 

 

Kolejny efekt to ply steer, pojawiający się na skutek anizotropowej struktury opony (Gent 

i Walter, 2006). Ponieważ ply steer ma podobne właściwości do siły bocznej wynikającej  

z kąta znoszenia, nazywa się go również pseudo-znoszeniem (ang. pseudo-slip) (Nakajima, 

2019). Powoduje, że opasania ulega ścinaniu w płaszczyźnie, gdy zostają zmuszone  

do spłaszczenia w obszarze kontaktu (styku z podłożem). Dodatkowe ścinanie w płaszczyźnie 

następuje również w wyniku zmian napięcia opasania w strefie kontaktu, co prowadzi  

do wygięcia obszaru styku i powstania resztkowego momentu prostującego ply steer (Rysunek 

4.21.). Efekt ply steer wynika z konstrukcji opony. Gdy opasanie 1 ulega wygięciu w obszarze 

styku z nawierzchnią, na drugie opasanie (bliższe nawierzchni) działa siła ściskająca,  

w tym samym czasie na wewnętrzne, pierwsze opasanie działa siła rozciągająca. Te siły 

zewnętrzne wywołują naprężenia ścinające, które są takie same w pierwszym i drugim 

opasaniu. Rozkład wartości ply steer ma skupiony charakter, skoncentrowany wokół estymacji 
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projektowej, która może mieć jednak wysoką wartość, co ilustruje Rysunek 4.20. 

Podsumowując: rozrzut ply steer jest niewielki i zależy od konstrukcji opony, natomiast rozrzut 

stożkowatości jest duży i zależy w głównej mierze od procesu produkcyjnego. Ply steer 

powoduje efekt systematycznego odchylenia w produkcji opon, podczas gdy stożkowatość  

ma tutaj charakter losowy. 

 

Rysunek 4.21. Przyczyna powstawania efektu ply steer (Nakajima, 2019) 

 

Ważne jest również poznanie punktu przyłożenia tych sił. Strukturalna siła boczna  

(ply steer) jest przyłożona na większym ramieniu, niż siła boczna wynikająca z kąta poślizgu 

(LFV), zaś siła stożkowatości jest przyłożona na dużo mniejszym ramieniu (blisko punku 

idealnego kontaktu koła z nawierzchnią). Zarówno stożkowatość, jak i siła boczna wynikająca 

z pochylenia LFV mają to samo, niemal zerowe ramię działania. 

Dla zerowej wartości siły bocznej pojawia się moment prostujący RAT (ang. Residual 

Aligning Torque), który skutkuje momentem na kierownicy. Moment prostujący RAT, 

nazywany jest również momentem wyrównawczym (ang. aligning torque) – to moment 

obrotowy działający na koło, który „wyrównuje” jego kierunek tak, aby wracało do pozycji 

prostoliniowej. Powstaje głównie wskutek sił bocznych działających w obszarze styku opony 

z nawierzchnią i pomaga stabilizować kierunek jazdy. Dla zerowego momentu prostującego  
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z kolei pojawia się resztkowa siła boczna, która powoduje znoszenie pojazdu (przy puszczonej 

kierownicy) (Leister, 2015). 

Rysunek 4.22. przedstawia różne sytuacje podczas jazdy. Jak pokazano na rysunku, siły 

wynikające z efektu ply steer (skrętu spowodowanego konstrukcją opasania opony) przy mocno 

trzymanej kierownicy powodują moment sterujący (na drążku kierowniczym) oraz siłę boczną. 

Dodatkowo, siły ply steer mają tendencję do ciągnięcia kierownicy w jedną stronę, gdy zostanie 

ona puszczona. Wówczas ustala się równowaga sił. Ponieważ zarówno siła ply steer, jak i siła 

boczna powstała w wyniku kąta poślizgu działają z tym samym ramieniem dźwigni,  

nie powstają siły wypadkowe. Pojazd porusza się na wprost (sytuacja I). 

 

Rysunek 4.22. Mechanizmy ściągania pojazdu z toru ruchu na skutek działania zjawisk bocznych 

(opracowanie własne na podstawie Leister, 2015) 
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W przypadku siły stożkowej (ang. conical force), gdy kierownica jest trzymana, sytuacja 

jest podobna jak w przypadku ply steer, z tym że moment sterujący jest nieco mniejszy  

przy tej samej wartości siły. Jednakże, gdy kierownica zostanie puszczona, siła stożkowa –  

w przeciwieństwie do siły ply steer – spowoduje dryfowanie pojazdu. Dzieje się tak dlatego,  

że siły nie mogą osiągnąć równowagi przy zrównoważonych momentach, ponieważ siły 

stożkowa i boczna nie oddziałują w tym samym punkcie z powodu występującego kąta poślizgu 

(sytuacja II). 

Tendencja do dryfowania spowodowana różnicami w stożkowatości jest proporcjonalna  

do tej siły i maleje wraz ze wzrostem pneumatycznego wyprzedzenia (ang. pneumatic trail). 

Pneumatyczne wyprzedzenie to odległość między punktem przyłożenia siły bocznej 

generowanej przez oponę a punktem styku opony z nawierzchnią (przesunięcie zwrotu siły).  

W rezultacie pojazd ma tendencję do dryfowania w kierunku dodatniej siły stożkowej  

(sytuacja III). 

Moment działający na oponę przy zerowej sile bocznej RAT, powinien być na tyle duży, 

aby zrekompensować moment powstający zazwyczaj z siły działającej w dół (np. ciężaru 

pojazdu), pomnożonej przez pneumatyczne wyprzedzenie. Podobnie, siła wzdłużna  

(np. wynikająca z napędu lub hamowania) wraz z odpowiadającym jej ramieniem dźwigni 

powinna być również uwzględniona w bilansie momentów. Z uwagi na różne układy 

współrzędnych używane w pomiarach opon i pojazdów, omawiając zjawiska boczne należy 

stosować się do następującej konwencji znaków (Rysunek 4.23.) (Leister, 2015): 

1) Ply steer działa w prawo, patrząc w kierunku jazdy – dlatego ma ujemny znak 

algebraiczny (-). 

2) Moment RAT względem osi pionowej jest lewoskrętny. 

3) Stożkowatość jest dodatnia (+), jeśli siły działają „do środka” pojazdu. 

 

Rysunek 4.23. Konwencja znaków algebraicznych zjawisk bocznych  

(opracowanie własne na podstawie Leister, 2015) 
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Szczególnie interesujące jest to, że dodatnia siła stożkowa zmniejsza kąt zbieżności  

na skutek efektów elasto-kinematycznych występujących w oponie. 

Wartość stożkowatości jest bardzo istotna dla tendencji do znoszenia lub odchylania 

pojazdu, jeśli wartości dla lewej i prawej jego strony się różnią. Ten efekt ma szczególne 

znaczenie gdy stan zużycia ogumienia staje się zauważalny. Pomiar stożkowatości pomaga 

ocenić jakość wykonania opony. Inną osobliwością jest fakt, że wartości stożkowatości 

zmieniają się w trakcie użytkowania pojazdu. Zmiany te zachodzą w stosunkowo symetryczny 

sposób, jeśli geometria podwozia jest poprawnie ustawiona. Oznacza to, że sama zmiana 

stożkowatości w trakcie eksploatacji nie ma negatywnego wpływu, co pokazano  

na Rysunku 4.24. Oba efekty się sumują, tzn. stożkowatości nie można "przesunąć na zewnątrz" 

przez zmianę centrowania opasania w oponie zwulkanizowanej, ale można ją zmienić  

w wyniku eksploatacji, np. poprzez wymianę opony. 

 

Rysunek 4.24. Zmiana wartości stożkowatości w czasie eksploatacji opon zamontowanych na tym samym 

pojeździe; pomiary dotyczą opon: VL – przedniej lewej, VR - przedniej prawej, HL – tylnej lewej  

i HR – tylnej prawej (Leister, 2015) 

 

Na Rysunku 4.25. został przedstawiony układ sił i momentów z założeniem, że pojazd 

porusza się na wprost a opony wykazują zjawiska ply steeru oraz stożkowatości. Kąt znoszenia 

pojazdu oznaczono jako β, zaś kąt skrętu przednich kół jako δ, natomiast pochylenie kół  

i zbieżność są zastosowane wyłącznie na osi przedniej. 
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Rysunek 4.25. Układ sił w pojeździe podczas jazdy na wprost (Nakajima, 2019) 

 

Oznaczenia użyte na rysunku: 

l, lf, lr – odległość od osi przedniej do osi tylnej oraz odległości od środka masy do osi przedniej 

i tylnej; 

γ, δ, β – kąt zbieżności, kąt skrętu, kąt znoszenia pojazdu; 

αL, αR – kąt znoszenia (lewe przednie koło, prawe przednie koło); 

CtL, CtR – siła boczna (lewe przednie koło, prawe przednie koło); 

MtL, MtR – moment prostujący (lewe przednie koło, prawe przednie koło); 

Ct – siła boczna (tylne koło); 

Mr – moment prostujący (tylne koło); 

CPf, CPr – siła ply steer (przednie koło, tylne koło); 
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MPf, MPr – moment od siły plysteeru (przednie koło, tylne koło); 

Cof, Cor – siła stożkowatości (przednie koło, tylne koło); 

Mof, Mor – moment od siły stożkowości (przednie koło, tylne koło); 

Kf, Kr – sztywność boczna (przednie koło, tylne koło); 

Tf, Tr – sztywność momentu prostującego (przednie koło, tylne koło); 

Ct – siła od pochylenia koła. 

 

Efekt ściągania kierownicy zależy od właściwości opony, geometrii zawieszenia  

oraz pochylenia drogi, co zostało zobrazowane na Rysunku 4.26.). Dla przemysłu 

oponiarskiego oznacza to, że producenci samochodów ustalają limity dotyczące składowych 

siły ściągającej dla dostawców opon (aby móc pominąć ich wpływ podczas eksploatacji  

i w fazie projektowej pojazdu). Sytuacja z momentem prostującym ply steeru PRAT  

(ang. plysteer residual aligning torque) jest bardziej skomplikowana (MPf, MPr na Rysunku 

4.25.). Każdy producent samochodów OEM (ang. original equipment manufacturer) ustala 

własny dopuszczalny zakres wartości momentu prostującego ply steeru, zgodnie ze swoją 

filozofią projektową. Niektórzy producenci samochodów wykorzystują PRAT do kompensacji 

pochylenia drogi, dlatego ich specyfikacje opon wymagają konkretnych wartości PRAT.  

Inni z kolei żądają zerowej wartości PRAT (w wąskiej tolerancji) i kompensują wpływ 

pochylenia drogi wyłącznie poprzez geometrię zawieszenia. Prowadzi to do kłopotliwych 

różnic w konstrukcji opon, które producenci opon muszą wprowadzać w identycznych 

produktach (tych samych rozmiarach opon), aby spełnić wymagania różnych producentów 

samochodów. Różnice te nie są widoczne dla sprzedawców opon ani dla kupujących.  

W rezultacie mogą wystąpić problemy z ściąganiem pojazdu, gdy oryginalne opony  

OE (ang. original equipment) są zastępowane innymi, ponieważ opony dostępne na rynku 

wtórnym mogą nie spełniać właściwości określonych przez producenta auta. Może się wówczas 

zdarzyć, że samochód nie będzie jechał prosto bez korekty kierownicą, nawet jeśli zawieszenie 

jest prawidłowo ustawione według specyfikacji OEM (Nakajima, 2019). 

Ogólny obraz zjawiska ściągania pojazdu (Rysunek 4.26) jest związany nie tylko z samym 

samochodem, lecz także z oponami i nawierzchnią drogi w złożony sposób.  

Do czynników związanych z samochodem należą (Nakajima, 2019): 

1) Różnice w pochyleniu kół. 

2) Różnice w wyprzedzeniu sworznia zwrotnicy. 

3) Różnice w zbieżności kół (ang. cross-scrub). 
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Wymienione wyżej różnice wynikają z asymetrycznego ustawienia geometrii zawieszenia 

spowodowanego niedokładnością produkcji lub nieprawidłową konserwacją, a także średnią 

wartością wyprzedzenia sworznia zwrotnicy (czyli jak linia wyznaczona przez sworzeń 

zwrotnicy lub oś kolumny McPhersona jest pochylona względem pionu patrząc  

z boku pojazdu). 

 

 

Rysunek 4.26. Przyczyny zjawiska ściągania pojazdów (opracowanie własne na podstawie  

Nakajima, 2019) 

 

Do czynników związanych z oponami należą: 

1) Kształt czoła opony. 

2) Konstrukcja opasania (np. kąt opasania). 

3) Wzór bieżnika (np. kąt ułożenia klocków i ich kształt). 
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Kształt czoła opony wpływa na rozkład naprężeń w opasaniach. Naprężenia te powodują 

skrętne odkształcenie opasania wokół osi pionowej, co prowadzi do powstania efektu ply steer. 

Kąt opasania również wpływa na ply steer - jeżeli wzór bieżnika o anizotropowej sztywności 

klocków zostanie przesunięty w jakimś kierunku lub ulegnie ściśnięciu, powstaje  

w nim moment obrotowy wskutek sprzężenia sił. Ten moment powoduje obrót opony wokół 

osi pionowej. 

Ponadto, pochylenie nawierzchni drogi również powoduje ściąganie pojazdu wywołane 

składową siły grawitacji.  

Na zjawisko ściągania wpływają również czynniki tj.: 

1) Prędkość. 

2) Przyspieszenie. 

3) Obciążenie. 

4) Ciśnienie w oponach. 

5) Zużycie bieżnika. 

6) Opory układu kierowniczego. 

 

Ogólnie rzecz biorąc, ze wszystkich wymienionych powyżej czynników, to właśnie 

konstrukcja i wzór bieżnika opony mają największy wpływ na zjawisko ściągania pojazdu 

(Nakajima, 2019). 

4.3.6 Jednorodność przy wysokich prędkościach  

Producenci samochodów (np. Mercedes-Benz Group AG oraz VOLVO) coraz częściej 

wymagają pomiaru HSU (Olazagoitia  i in., 2020), który pozwala ocenić zachowanie opony 

podczas jej eksploatacji przy wyższych prędkościach, co bardziej odwzorowuje typowe 

użytkowanie. Pomiary eksperymentalne wykonywane na osi opony uwzględniają wpływ  

jej rezonansów (Gent i Walter, 2006). Ponieważ badane jest dynamiczne zachowanie opony, 

maszyny do pomiaru HSU muszą być starannie zaprojektowane, aby rezonanse samej maszyny 

nie zakłócały uzyskiwanych wyników pomiarów. Pomiar przeprowadzany jest w ustalonych 

warunkach ciśnienia i obciążenia opony, przechodząc krokowo od niskich do wysokich 

prędkości, przy których wyznacza się: 

1) RH1, RH2 i RH3 – czyli pierwsze 3 harmoniczne siły promieniowej  

przy prędkościach 30, 120 i 180[km/h]. 

2) TH1, TH2 i TH3 – czyli pierwsze 3 harmoniczne sił stycznych przy prędkościach 

120 i 180[km/h]. 
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Siłami stycznymi są zarówno siła boczna, jak i siła wzdłużna – z tego względu dla tej samej 

prędkości i rzędu harmonicznej limit sił stycznych jest wyższy, niż w przypadku  

sił promieniowych. Niektóre maszyny rejestrują dodatkowo jeden lub więcej zmiennych 

momentów (Leister, 2015). 

Zbieranie danych pomiarowych dotyczących wszystkich zjawisk przybliżonych  

w treści Rozdziału 4.3, umożliwia określenie jednorodności opon własnościami ją opisującymi, 

co ostatecznie pozwala na zapewnienie wyższego poziomu kontroli jakości wyrobu finalnego. 

4.4 Testy stacyjne opon 

Jednorodność jest ściśle powiązana z powodzeniem przeprowadzanych testów stacyjnych 

opon. Przykładowo w przypadku testów bieżnych wysokich i niskich prędkości, wszelkie 

niedoskonałości w budowie opony powodujące występowanie zmiennych sił promieniowych  

i bocznych wzmacniają się i prowadzą do powstawania wibracji, będących przyczyną 

nadmiernego nagrzewania się materiałów tworzących oponę lub niestabilności kierunkowej.  

Z tego względu, opona niejednorodna może nie przejść testu wysokich prędkości,  

gdyż występowanie wewnętrznych nierównomierności spowoduje jej przegrzewanie  

i w konsekwencji uszkodzenie. Jednorodność jest zatem jednym z czynników decydujących  

o trwałości opony ocenianej podczas tego typu testów. W trakcie testów homologacyjnych 

natomiast, dostawca musi wykazać, że produkt seryjny utrzymuje jakość zgodną z poziomem 

deklarowanym na jego etykiecie. Jednorodność powiązana z teorią wibracji, wpływa pośrednio 

m.in. na poziom emisji hałasu opony. 

Testy stacyjne opon przeprowadzane są w następujących przypadkach: 

1) Kwalifikacja nowego rozmiaru opon do produkcji masowej. 

2) Nadzór produkcji masowej. 

3) Zmiany specyfikacji opony. 

4) Restart produkcji danego rozmiaru opony po okresie dłuższym niż 1 rok. 

 

Wybrane testy opisywane w bieżącym podrozdziale zostały przeprowadzone specjalnie  

na potrzeby niniejszej dysertacji przez jej Autora dla opon wymienionych w Tabeli 4.3. 

Powodem wykonania testów było zbadanie konkurencyjnych rozwiązań w zakresie różnic 

występujących w konstrukcjach opon, bezpośrednio przekładających się na ich własności. 

Obecny podrozdział ma na celu wskazanie na liczbę i rodzaj wymagań, które opony muszą 

spełniać jako produkt.  

 



69 

Tabela 4.3. Opony poddane wybranym testom stacyjnym (opracowanie własne) 

Lp. Rozmiar i rzeźba opony Producent Sezon 

1 185/55 R16 87T WinterContact TS 870 Continental zima 

2 195/55 R16 87H Winter i*cept RS3 W462 Hankook zima 

3 205/55 R16 91H ALPIN 6 Michelin zima 

4 205/55 ZR16 (94Y) XL PILOT SPORT 4 Michelin lato 

5 225/50 R17 98W XL Advan Fleva V701 Yokohama lato 

6 225/50 R18 99W UltraContact NXT Continental lato 

7 235/45 R18 98Y XL FR CrossClimate 2 Michelin cały rok 

8 235/55 R18 104H XL UltraGrip Performance+ SUV Goodyear zima 

 

4.4.1 Analiza przekroju opony  

Podstawowym i zarazem najczęściej przeprowadzanym testem jest analiza przekroju opony 

CSA (ang. Cut Section Analysis). Realizuje się ją na dwóch przekrojach (tzw. próbkach) opony 

zwulkanizowanej, natomiast próbki używane na jej potrzeby przygotowywane są w sposób 

uwzględniający poniższe zasady:  

1) Żaden przekrój nie może zawierać wskaźników zużycia bieżnika TWI (ang. tire wear 

index). 

2) Każdy przekrój należy wycinać w pewnej odległości od złącz bieżnika i wykładziny 

wewnętrznej. 

3) Każdy przekrój należy wycinać w sposób, który pozwoli wykonać pełen pomiar barku 

opony po obu mierzonych stronach. 

4) Przekroje opon mierzy się zawsze mając stronę numerem seryjnym DOT po lewej 

stronie (tzw. strona seryjna – SS, ang. serial side). Stronę z numerem seryjnym  

DOT należy przed wykonaniem przekroju naznaczyć przy pomocy białej kredki  

w okolicy drutówki. 

5) Każdy przekrój należy wyciąć tak, aby miał od 20 do 50[mm] szerokości i żeby 

przekroje były odległe od siebie o około 180° na obwodzie opony. Powierzchnie 

przekrojów powinny być oszlifowane. 

 

Obecnie analizę przekroju przeprowadza się na wysokiej jakości skanach próbek opon  

przy pomocy oprogramowania przeliczającego piksele na minimetry na podstawie 
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współczynnika skali zadanemu skanerowi. Pomiarowi podlegają grubości warstw i materiałów 

opony oraz odległości pomiędzy zakończeniami materiałów widocznych na przekroju.  

Ze względu na istotność, punkty pomiarowe podzielone są na 3 grupy, które zostały 

przedstawione w Tabeli 4.4. 

 

Tabela 4.4. Ważności punktów CSA (opracowanie własne) 

Ranking Ważność Opis 

B krytyczny 
Punkt może mieć wpływ na osiągi opony i/lub na zgodność  

z wymaganiami klienta. 

C nie krytyczny 
Brak wpływu osiągi opony i/lub na zgodność z wymaganiami 

klienta. 

brak nie krytyczny 

Punkty, które nie mają przypisanej tolerancji, a ich pomiary  

są gromadzone z uwagi na pewne funkcje techniczne  

(np. grubości głównych obszarów opony w celu doboru 

najodpowiedniejszego cyklu wulkanizacyjnego). Wartości 

tych punktów wyznaczane są na etapie kwalifikacji i traktuje 

się je jako referencyjne w nadzorze regularnej produkcji.  

Na ich podstawie nie wymaga się jednak podejmowania 

decyzji dotyczących np. konieczności zmian specyfikacji 

opony. 

 

Do wyznaczenia niektórych punktów pomiarowych niezbędne jest CTLO (ang. cured tire 

layout) z naniesionymi indywidualnie dla każdego rozmiaru opony punktami odniesienia. 

Stanowi ono także pierwszą weryfikację, czy opona została wyprodukowana zgodnie  

z narzuconymi założeniami. Przykładowe CTLO zostało przedstawione na Rysunku 4.27. 

Dla prawidłowego przeprowadzenia pomiarów przekroju poprzecznego opony  

na CTLO zaznaczone są strony seryjna SS (ang serial side) oraz przeciwna do seryjnej  

OSS (ang. opposite to serial side). Punkty odniesienia mają następujące znaczenie: 

1) CL (ang. central line) – linia centralna przekroju poprzecznego. W przypadku 

symetrycznych rzeźb bieżnika stanowi ona jednocześnie oś symetrii przekroju.  

Jest odniesieniem do pomiarów zakończeń materiałów znajdujących się w obszarze 

korony bieżnika, czyli warstwy spiralnej i opasań.  
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2) S (ang. shoulder) – punkt na barku bieżnika, którego odległość od linii centralnej 

ustalana indywidualnie w zależności o szerokości opony oraz rzeźby bieżnika. 

3) B (ang. buttress) – miejsce barku opony, w którym podczas wulkanizacji przebiega linia 

podziału formy (MPL, ang. mold partition line), czyli dochodzi do styku płyt bocznych 

z segmentami bieżnika. 

4) SW (ang. section width) – najszersze miejsce przekroju opon nieposiadających rantu 

ochronnego. W tym punkcie dochodzi do pomiaru grubości gumy boku. 

5) L – umiejscowiony tuż poniżej ryski centrującej, będący zazwyczaj jednocześnie 

miejscem linii podziałowej mieszanek gumowych SW/AGS boku. 

6) H (ang. heel) – połowa szerokości stopki. Stanowi odniesienie do pomiarów zakończeń 

materiałów znajdujących się po zewnętrznej stronie osnowy np. wysokości wypełniacza 

drutówki, wywinięcia osnowy/osnów (dla konstrukcji SOT), górnego i dolnego punktu 

linii podziałowej mieszanek SW/AGS boku, zakończeń flippera i chafera (jeśli 

występują). 

7) BT (ang. bead toe) – zakończenie noska drutówki. Stanowi odniesienie do pomiarów 

zakończeń materiałów znajdujących się po wewnętrznej stronie osnowy np. wykładziny 

wewnętrznej, gumy AGS i chafera (jeśli występuje). 

 

Rysunek 4.27. Przykładowe CTLO z naniesionymi punktami odniesienia. 

 

Na CTLO określona jest również wartość TTP (ang. toe to toe periphery), czyli odległość 

pomiędzy noskami drutówki mierzona po linii osnowy. Wartość ta stanowi podstawę  

do określenia rozstawu drutówek BLW (ang. bead lock width lub BSEE, ang. bead set external 



72 

edge), który jest najważniejszym parametrem procesu konfekcji opon, decydującym o doborze 

szerokości wykorzystywanych materiałów w danym rozmiarze opon oraz o jego napięciu 

osnowy.  

Na Rysunkach 4.28. – 4.35. przedstawiono przekroje opon wymienionych w Tabeli 4.3. 

przygotowane w sposób zgodny ze standardem wykonywania próbek do analizy przekroju 

poprzecznego opony. 

 

Rysunek 4.28. Przekrój poprzeczny opony 185/55 R16 87T Continental WinterContact TS 870 

(opracowanie własne) 

 

 

Rysunek 4.29. Przekrój poprzeczny opony 195/55 R16 87H Hankook Winter i*cept RS3 W462 

(opracowanie własne) 
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Rysunek 4.30. Przekrój poprzeczny opony 205/55 R16 91H Michelin ALPIN 6 (opracowanie własne) 

 

Rysunek 4.31. Przekrój poprzeczny opony 205/55 ZR16 (94Y) XL Michelin PILOT SPORT 4 

(opracowanie własne) 

 

Rysunek 4.32. Przekrój poprzeczny opony 225/50 R17 98W XL Yokohama Advan Fleva V701 

(opracowanie własne) 



74 

 

Rysunek 4.33. Przekrój poprzeczny opony 225/50 R18 99W Continental UltraContact NXT  

(opracowanie własne) 

 

 

Rysunek 4.34. Przekrój poprzeczny opony 235/55 R18 104H XL Goodyear UltraGrip Performance+ SUV 

(opracowanie własne) 
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Rysunek 4.35. Przekrój poprzeczny opony 235/45 R18 98Y XL FR Michelin CrossClimate 2  

(opracowanie własne) 

4.4.2 Odcisk rzeźby bieżnika 

Odcisk rzeźby bieżnika (ang. footprint) pobierany jest z opony w celu określenia kształtu  

i powierzchni jej styku z podłożem. Przekłada się to bezpośrednio na jej przyczepność  

oraz opory toczenia. Na etapie wdrożenia nowego rozmiaru opony, odcisk rzeźby jest 

wyznaczany aby wprowadzić ewentualne zmiany szerokości opasań, konstrukcji warstwy 

spiralnej lub surowego profilu bieżnika dla uzyskania początkowo założonego efektu. Podczas 

dokonywania pomiaru, opona zakładana jest na felgę dobraną zgonie z (ETRTO, 2025)  

lub (WdK, 2025) w zależności od wymagań rynku / klienta. Parametry pomiaru, czyli ciśnienie 

i obciążenie najczęściej dobierane są zgodnie z Tabelą 4.5. W przypadku niektórych rozmiarów 

opon narzucone są wyjątkowe warunki pomiarowe (o czym decyduje centrum techniczne). 

 

Tabela 4.5. Dobór parametrów pomiaru odcisku rzeźby bieżnika opon radialnych do samochodów 

osobowych (opracowanie własne na podstawie materiałów własnych przedsiębiorstwa) 

Parametr Opony standardowe Opony wzmocnione 

Ciśnienie [bar] 
1.9 dla szerokości 195 i poniżej 

2.3 dla wszystkich szerokości 
2.0 dla szerokości 205 i powyżej 

Obciążenie [kg] 88% indeksu nośności opony 

 

Na obszar bieżnika, który ma zostać odciśnięty nakłada się tusz przy pomocy gąbki. Odciski 

pobiera się z trzech obszarów odległych od siebie o 120° unikając przy tym połączeń 

segmentów formy wulkanizacyjnej. Pobrane na kartach do odcisków „stemple” obrysowuje  

się konturem, po czym mierzone są długości styku (w centrum i na barkach). Na tej podstawie 



76 

używając Równań 4.3 lub 4.4 obliczany jest końcowy wynik testu, czyli wskaźnik 

prostokątności. Linie na których mierzy się długości styku w zależności od kształtu odcisku 

zostały schematycznie przedstawione na Rysunku 4.36. 

Obliczanie wskaźnika prostokątności dla odcisku o kształcie zbliżonym do okręgu  

lub prostokąta: 

𝑾𝒔𝒌𝒂ź𝒏𝒊𝒌 𝒑𝒓𝒐𝒔𝒕𝒐𝒌ą𝒕𝒏𝒐ś𝒄𝒊 = (𝑩𝟏 + 𝑩𝟐)/𝟐𝑨 ∗  𝟏𝟎𝟎 [%]                                           (4.3) 

gdzie: 

A – długość odcisku na linii centralnej; 

B1, B2 – długości odcisku na barkach. 

 

Obliczanie wskaźnika prostokątności dla odcisku o kształcie motyla: 

𝑾𝒔𝒌𝒂ź𝒏𝒊𝒌 𝒑𝒓𝒐𝒔𝒕𝒐𝒌ą𝒕𝒏𝒐ś𝒄𝒊 = (𝑫𝟏 + 𝑫𝟐)/(𝑪𝟏 + 𝑪𝟐)  ∗  𝟏𝟎𝟎 [%]                              (4.4) 

gdzie: 

C1, C2 – długości odcisku w jego najwęższych miejscach; 

D1, D2 – długości odcisku w najszerszych miejscach na barkach. 

 

Rysunek 4.36. Linie pomiaru długości styku dla obu wariantów kształtu odcisku rzeźby bieżnika 

 

W Tabeli 4.6. przedstawiono wyniki pomiaru wskaźnika prostokątności wszystkich opon 

poddanych badaniom. Zazwyczaj osiąga on wartości bliższe 100% dla opon sportowych,  

gdzie priorytetem jest osiągnięcie wysokiej przyczepności. W przypadku opon o standardowym 

zastosowaniu w ruchu drogowym, wartość wskaźnika prostokątności zawiera się najczęściej  
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w przedziale 70-85%, ponieważ obecnie opony tego typu projektowane są w taki sposób,  

aby charakteryzowały się jak najniższymi oporami toczenia przy zachowaniu zadowalającej 

przyczepności do podłoża. 

 

Tabela 4.6. Wskaźnik prostokątności badanych opon (opracowanie własne) 

Lp. Nazwa opony 
Wskaźnik 

prostokątności [%] 

1 185/55 R16 87T Continental WinterContact TS 870 83.39 

2 195/55 R16 87H Hankook Winter i*cept RS3 W462 84.91 

3 205/55 R16 91H Michelin ALPIN 6 83.30 

4 205/55 ZR16 (94Y) XL Michelin PILOT SPORT 4 79.76 

5 225/50 R17 98W XL Yokohama Advan Fleva V701 79.87 

6 225/50 R18 99W Continental UltraContact NXT 78.37 

7 235/45 R18 98Y XL FR Michelin CrossClimate 2 82.11 

8 235/55 R18 104H XL Goodyear UltraGrip Performance+ SUV 74.20 

 

Na Rysunkach 4.37. – 4.44. przedstawiono zestawienia odcisków wykonanych na potrzeby 

testu z fotografiami badanych rzeźb bieżników. 

 

 

Rysunek 4.37. Odcisk oraz fotografia rzeźby bieżnika opony 185/55 R16 87T  

Continental WinterContact TS 870 (opracowanie własne) 
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Rysunek 4.38. Odcisk oraz fotografia rzeźby bieżnika opony 195/55 R16 87H  

Hankook Winter i*cept RS3 W462 (opracowanie własne) 

 

 

Rysunek 4.39. Odcisk oraz fotografia rzeźby bieżnika opony 205/55 R16 91H Michelin ALPIN 6 

(opracowanie własne) 
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Rysunek 4.40. Odcisk oraz fotografia rzeźby bieżnika opony 205/55 ZR16 (94Y) XL  

Michelin PILOT SPORT 4 (opracowanie własne) 

 

 

Rysunek 4.41. Odcisk oraz fotografia rzeźby bieżnika opony 225/50 R17 98W XL  

Yokohama Advan Fleva V701 (opracowanie własne) 

 

 

Rysunek 4.42. Odcisk oraz fotografia rzeźby bieżnika opony 225/50 R18 99W  

Continental UltraContact NXT (opracowanie własne) 
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Rysunek 4.43. Odcisk oraz fotografia rzeźby bieżnika opony 235/45 R18 98Y XL FR  

Michelin CrossClimate 2 (opracowanie własne) 

 

 

Rysunek 4.44. Odcisk oraz fotografia rzeźby bieżnika opony 235/55 R18 104H XL  

Goodyear UltraGrip Performance+ SUV (opracowanie własne) 

 

4.4.3 Testy siły i ciśnienia osadzenia stopki 

Test siły osadzenia stopki (rozciąganie stopki, ang. bead fit force) (WdK, 2025) 

przeprowadza się w celu oceny siły kompresji drutówki na obręczy. Niezachowanie  

jej na odpowiednim poziomie może wiązać się z utratą powietrza i/lub spadaniem opony  

z obręczy w wyniku działania wysokich momentów siły w czasie utrzymywania trakcji  
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lub hamowania pojazdu. Pomiar siły osadzenia stopki przeprowadza się w następujący sposób 

na oponach, dla których upłynęło co najmniej 6 dni od momentu ich wulkanizacji: 

1) Nastawić maszynę pomiarową z zamontowanymi odpowiednimi segmentami obręczy 

(dopasowanymi do cala opony). 

2) Wyczyścić obszary drutówki po obu stronach opony przy użyciu szmatki nasączonej 

alkoholem, a następnie wysuszyć inną suchą szmatką. 

3) Przed ułożeniem opony w celu pomiaru SS i przed ułożeniem w celu pomiaru  

OSS wyczyścić dokładnie segmenty obręczy na obszarze, który ma kontakt z oponą. 

4) Nałożenie na obszar drutówki opony testowej talku, smaru lub brak obecności 

jakiejkolwiek substancji zależny jest od indywidualnych wymagań klienta. 

5) Ułożyć oponę stroną, która ma być mierzona do dołu, w kontakcie z segmentami 

obręczy. 

6) Wykonać „fazę rozciągania” do określonej średnicy (zwiększenie średnicy obręczy  

o 0.8mm, która stanowy punkt wyjściowy do ustawiania segmentów obręczy w celu 

przeprowadzania pomiarów). 

7) Cofnąć segmenty obręczy do ujemnych wartości przesunięcia i dokonać pomiaru  

(punkt pomiarowy ‘-0.29mm’). 

8) Wykonać pomiar siły osadzenia stopki rozszerzając segmenty obręczy przy określonej 

prędkości testowej aż do najwyższego punktu pomiarowego średnicy  

(punkt pomiarowy ‘+0.38mm’). 

 

Wyniki pomiaru siły osadzenia stopki wszystkich opon poddanych badaniom zostały 

przedstawione w Tabeli 4.7. Dla opon dedykowanych na rynek wtórny o rozmiarze  

15-20” przyjmuje się, że wartość siły osadzania stopki dla punktu pomiarowego ‘-0.29mm’ 

powinna być wyższa niż 1800N (tzw. limit bezpieczeństwa). 
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Tabela 4.7. Wyniki pomiarów siły osadzenia stopki dla wszystkich wymaganych punktów pomiarowych 

badanych opon (opracowanie własne) 

Lp. Nazwa opony 

Siła osadzenia stopki [N] 

-0.29mm / 

SS 

-0.29mm / 

OSS 

+0.38mm / 

SS 

+0.38mm / 

OSS 

1 
185/55 R16 87T Continental 

WinterContact TS 870 
2060 1930 3340 3180 

2 
195/55 R16 87H Hankook  

Winter i*cept RS3 W462 
2100 2150 3310 3350 

3 
205/55 R16 91H Michelin  

ALPIN 6 
3340 3100 4670 4380 

4 
205/55 ZR16 (94Y) XL Michelin 

PILOT SPORT 4 
3380 3010 4610 4170 

5 
225/50 R17 98W XL Yokohama 

Advan Fleva V701 
3220 2700 5180 4440 

6 
225/50 R18 99W Continental 

UltraContact NXT 
2980 2750 4240 3990 

7 
235/45 R18 98Y XL FR Michelin 

CrossClimate 2 
4330 4070 5750 5530 

8 
235/55 R18 104H XL Goodyear 

UltraGrip Performance+ SUV 
4650 4580 6190 6120 

 

Test ciśnienia osadzenia stopki (ang. bead seating pressure) przeprowadza się natomiast  

w celu oceny montowalności opony na przewidzianą obręcz zgodną z wymaganiami klienta  

dla rynku OE lub (ETRTO, 2025) dla rynku wtórnego. Pomiar realizowany jest według poniżej 

procedury, na oponach które nigdy wcześniej nie zostały poddane żadnym testom, ani operacji 

montowania na obręcz / demontowania z obręczy: 

1) Zamontować oponę na obręcz, a przed napompowaniem opony należy upewnić  

się, że jest obecny rdzeń zaworu. 

2) Napompować oponę „jednym strzałem” do pierwszego osadzenia stopki w dolnej 

drutówce opony. 

3) Następnie dopompowywać oponę zwiększając ciśnienie stopniowo co 0.2[bar] czekając 

po 5[s] pomiędzy poszczególnymi krokami do kolejnego osadzenia stopki (wynik 

pomiaru).  
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Dla większości klientów wartości limitów ciśnienia osadzenia stopki zawierają  

się w zakresie 3.0÷3.5[bar]. 

4.4.4 Testy bieżne opon (wysokich i niskich prędkości) 

W niniejszym podrozdziale opisano zasady ogólnego podejścia do testów bieżnych opon. 

W zależności od specyficznych wymagań danego klienta warunki testów (temperatura podczas 

badania, ciśnienie opon, kondycjonowanie itp.) mogą się nieznacznie różnić. Wygląd testu 

bieżnego został zilustrowany na Rysunku 4.45. 

Podstawowymi warunkami testów niskich prędkości są: 

1) Szerokość i profil obręczy (felgi) pomiarowej. 

2) Średnica bębna pomiarowego. 

3) Temperatura podczas badania w komorze / pomieszczeniu w którym przeprowadzany 

będzie test (zazwyczaj 38±3[°C]). 

4) Kondycjonowanie co najmniej 3[h] w temperaturze pomieszczenia testów. 

5) Ciśnienie opony (zazwyczaj 3.0[bar] dla wszystkich rodzajów opon). 

6) Prędkość (najczęściej 60[km/h]). 

7) Obciążenie (zazwyczaj 180÷200% indeksu nośności opony). 

 

 

Rysunek 4.45. Opona podczas testu bieżnego (materiały własne przedsiębiorstwa) 
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Opona podczas takiego testu jest sprawdzana wizualnie i manualnie co najmniej  

raz na dobę. Test ulega zakończeniu z pozytywnym rezultatem w momencie, gdy opona 

osiągnie wymagany limit przejeżdżając zadany dystans, który najczęściej wynosi 8000[km]. 

Test kończy się wynikiem negatywnym w przypadku wcześniejszego stwierdzenia  

(przed osiągnięciem limitu) zewnętrznej wady wizualnej np. rys, pęknięć, rozwarstwień, 

separacji warstw lub wybrzuszeń. Testy niskich prędkości pozwalają zatem na ocenę 

wytrzymałości opony w warunkach skrajnego obciążenia, stosunkowo wysokiej temperatury 

atmosferycznej oraz nienaturalnie wysokiego ciśnienia roboczego. Takie postepowanie  

ma za zadanie zasymulować (w znacznie krótszym czasie) proces zużycia opony podczas 

wieloletniej eksploatacji. 

Natomiast podstawowymi warunkami testów wysokich prędkości są: 

1) Szerokość i profil obręczy (felgi) pomiarowej. 

2) Średnica bębna pomiarowego. 

3) Temperatura podczas badania w komorze / pomieszczeniu w którym przeprowadzany 

będzie test (zazwyczaj 38±3°C). 

4) Kondycjonowanie co najmniej 3[h] w temperaturze pomieszczenia testów. 

5) Ciśnienie opony - dobierane w zależności od rodzaju opony (standardowa / 

wzmocniona) i indeksu prędkości). 

6) Obciążenie (zazwyczaj 80% indeksu nośności opony). 

 

Test polega na krokowym zwiększaniu prędkości po upływie czasu określonego dla danego 

etapu. W Tabeli 4.8. przedstawiono przykładowe postępowanie dla indeksu prędkości  

V (dla którego 240km/h to maksymalna prędkość, przy której opona jest zdolna  

do bezpiecznego przenoszenia obciążenia określonego przez indeks nośności). 

W celu rzetelnej oceny, trwający dłużej krok 4 służy wyrównaniu temperatury wewnątrz 

opony tuż przed osiągnięciem prędkości narzuconej przez jej indeks. Pozwala to na uniknięcie 

wystąpienia defektów wywołanych w efekcie szoku cieplnego. Jeśli opona osiągnie krok  

6 bez ujawnienia jakiejkolwiek wady, test można uznać jako zaliczony. 
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Tabela 4.8. Przykładowy przebieg testu wysokiej prędkości dla indeksu V  

(opracowanie własne na podstawie materiałów wewnętrznych przedsiębiorstwa) 

Krok 1 
Czas [min] 10 

Prędkość [km/h] 120 

Krok 2 
Czas [min] 10 

Prędkość [km/h] 150 

Krok 3 
Czas [min] 10 

Prędkość [km/h] 180 

Krok 4 
Czas [min] 60 

Prędkość [km/h] 220 

Krok 5 
Czas [min] 10 

Prędkość [km/h] 230 

Krok 6 
Czas [min] 10 

Prędkość [km/h] 240 

Krok 7 
Czas [min] 10 

Prędkość [km/h] 250 

Kontynuować do 

uzyskania defektu 

Czas [min] +10 

Prędkość [km/h] +10 

 

4.4.5 Wyznaczenie oporów toczenia opon 

Opór toczenia opon wyznacza się metodą momentu obrotowego zgodnie z wymaganiami 

opisanymi w (ISO, 2018). Przed rozpoczęciem testu oporu toczenia należy zapewnić, że zostały 

spełnione następujące warunki: 

1) Badanie może być przeprowadzone tylko i wyłącznie na oponie, która nigdy wcześniej 

nie była używana do testu podnoszącego jej temperaturę powyżej wartości generowanej 

podczas testów oporu toczenia i nie powinna być wcześniej wystawiona na działanie 

temperatury wyższej niż 40[°C]. 

2) Zestaw montażowy musi być wyważony. 

3) Wypływki w obszarze bieżnika powinny zostać otrymowane, a dopuszczalne 

pozostałości wypływek powinny mieć wysokość < 0.5[mm]. 

4) Należy używać obręczy pomiarowej dobranej wg (ETRTO, 2025) charakteryzującej  

się następującą dokładnością – maks. 0.5[mm] RRO i maks. 0.5[mm] LRO. 
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5) Kondycjonowanie – opona musi być zamontowana na wymaganą obręcz testową  

i zostać napompowana do wymaganego ciśnienia testowego – tak przygotowany zestaw 

powinien być kondycjonowany przez minimum 3[h] w temperaturze pokojowej 25[°C]. 

6) Po kondycjonowaniu należy dopompować oponę do ciśnienia testowego i sprawdzić  

je 10[min] po pompowaniu (tolerancja to punkt wyjściowy ciśnienia ± 3[kPa]); należy 

jednak unikać przypadków, w których konieczne jest zwiększenie ciśnienia w oponie 

(np. w sytuacji gdy punkt wyjściowy wynosi 210[kPa] i otrzymano rzeczywiste 

207[kPa] po 3[h] kondycjonowania – nie należy zwiększać ciśnienia). 

7) Prędkość – 80[km/h]. 

8) Obciążenie kontaktowe – 100[N] (dla pomiaru niepożądanej straty). 

9) Wymagana temperatura pomieszczenia testów to 25[°C] ± 2.5[°C] – mierzona  

w odległości nie mniejszej niż 0,15[m] i nie większej niż 1[m] od boku opony. 

10) Obciążenie – 80% indeksu nośności. 

11) Czas dotarcia – 30[min]. 

 

Procedura testu:  

1) Dotarcie powinno trwać 30[min] przy testowej prędkości, obciążeniu oraz ciśnieniu. 

2) Po dotarciu, utrzymując oponę w tej samej prędkości testowej i z tym samym 

obciążeniem zmierzyć opór toczenia RR80%. 

3) Po pomiarze RR80% dochodzi do zmiany obciążenia testowego na kontaktowe  

przy utrzymaniu opony w tej samej prędkości testowej, po czym dochodzi do pomiaru 

oporu toczenia szacując niepożądaną stratę RR100N. 

4) Zgodnie z Równaniem 4.5 opór toczenia opony będzie stanowił różnicę pomiędzy 

oporem toczenia zmierzonym w warunkach obciążenia testowego a oporem toczenia 

wynikającym z niepożądanej straty: 

RR = RR80%  -  RR100N  [N]                                             (4.5) 

 

5) Następnie oblicza się współczynnik oporu toczenia RRc według Równania 4.6: 

RRc = RR / Obciążenie  [N / kN]                                       (4.6) 

 

6) Ostatecznie wyznacza się klasę efektywności paliwowej zgodnie z Tabelą 4.9.  

W literaturze często spotykaną jednostką dla RRc jest również tożsama [kg/t]. Wybór 

jednostki zależny jest od sposobu zapisu obciążenia przyjętego w toku obliczeń,  
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który narzucony jest przez oprogramowanie wykorzystywanej maszyny pomiarowej 

(Wiegand, 2016). 

 

Tabela 4.9. Wartości graniczne współczynnika oporu toczenia dla danej klasy efektywności paliwowej 

(opracowanie własne na podstawie UNECE, 2025) 

Klasa efektywności paliwowej Wartość graniczna RRc [N/kN] 

A ≤ 6.5 

B ≤ 7.7 

C ≤ 9.0 

D ≤ 10.5 

E ≥ 10.6 

 

Współczynniki oporu toczenia wyznaczone dla przebadanych opon zostały zebrane  

w Tabeli 4.10. 

 

Tabela 4.10. Współczynnik oporu toczenia RRc badanych opon (opracowanie własne) 

Lp. Nazwa opony 

Współczynnik 

oporu toczenia 

RRc [N/kN] 

Klasa 

efektywności 

paliwowej 

1 185/55 R16 87T Continental WinterContact TS 870 8.1 C 

2 195/55 R16 87H Hankook Winter i*cept RS3 W462 9.3 D 

3 205/55 R16 91H Michelin ALPIN 6 8.6 C 

4 205/55 ZR16 (94Y) XL Michelin PILOT SPORT 4 8.4 C 

5 225/50 R17 98W XL Yokohama Advan Fleva V701 7.2 B 

6 225/50 R18 99W Continental UltraContact NXT 6.1 A 

7 235/45 R18 98Y XL FR Michelin CrossClimate 2 7.3 B 

8 
235/55 R18 104H XL Goodyear UltraGrip 

Performance+ SUV 
8.0 C 

 

4.4.6 Opór elektryczny opon  

Ze względu na to, że bazą stosowanych obecnie w przemyśle oponiarskim mieszanek 

gumowych dedykowanych na kapę bieżnika jest nieprzewodząca ładunki elektryczne 
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krzemionka, konieczny jest pomiar oporu elektrycznego opon. Polega on na przyłożeniu 

elektrody dodatniej omomierza do mieszanki antenowej bieżnika, natomiast elektrodę ujemną 

zaciska się na drutówce opony. Dla zapewnienia odpowiedniego poziomu bezpieczeństwa 

każda opona powinna charakteryzować się oporem elektrycznym ≤ 50 [MΩ]. 

4.4.7 Własności fizyczne mieszanki bieżnika  

Dla zagwarantowania przyczepności opony, jej trwałości oraz przewidywalności 

zachowania w różnych warunkach drogowych i temperaturowych na odpowiednim poziomie, 

wyznacza się następujące własności fizyczne mieszanki bieżnika: 

1) Twardość. 

2) Moduły przy określonym wydłużeniu.  

3) Wytrzymałość na rozciąganie. 

4) Wydłużenie całkowite przy zerwaniu próbki. 

 

W Tabeli 4.11. porównano wyniki pomiarów twardości mieszanki bieżnika badanych opon. 

Zgodnie z wewnętrzną procedurą przedstawione rezultaty to średnia z 6 pomiarów dla każdej 

opony.  

 

Tabela 4.11. Twardość mieszanki bieżnika badanych opon (opracowanie własne) 

Lp. Nazwa opony 
Twardość  

[°Shore A] 
Sezon 

1 185/55 R16 87T Continental WinterContact TS 870 64.7 zima 

2 195/55 R16 87H Hankook Winter i*cept RS3 W462 70.7 zima 

3 205/55 R16 91H Michelin ALPIN 6 66.5 zima 

4 205/55 ZR16 (94Y) XL Michelin PILOT SPORT 4 68.7 lato 

5 225/50 R17 98W XL Yokohama Advan Fleva V701 68.9 lato 

6 225/50 R18 99W Continental UltraContact NXT 66.6 lato 

7 235/45 R18 98Y XL FR Michelin CrossClimate 2 65.5 cały rok 

8 
235/55 R18 104H XL Goodyear UltraGrip 

Performance+ SUV 
66.7 zima 

 

W procesie wytwarzania w fabryce opon największy udział ilościowy w stosunku  

do wszystkich produkowanych mieszanek gumowych stanowi mieszanka bieżnika.  
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Z tego względu szczególnie istotne jest ciągłe utrzymanie jej jakości na wysokim poziomie. 

Szybka identyfikacja odchyleń od ustalonych limitów właściwości fizycznych, pozwala  

na bieżąco monitorować stabilność i efektywność procesu mieszania i wulkanizacji. Dzięki 

temu możliwe jest wdrożenie działań korygujących na stosunkowo wczesnym etapie,  

co minimalizuje ryzyko wycofania partii opon zawierających wadliwą mieszankę. 

4.5 Testy homologacyjne 

W zależności od rynku (kraju) na który dedykowana jest opona, musi ona przejść 

dodatkowe testy w celu otrzymania odpowiedniej certyfikacji (homologacji). Pakiet testów 

składających się na daną homologację, zawiera zazwyczaj indywidualne podejście  

do warunków (głównie: temperatury podczas przeprowadzania pomiaru, ciśnienia opony, 

limitów i zakresu tolerancji rezultatów) przeprowadzania wymienionych niżej pomiarów: 

1) Wymiarów fizycznych opony, na które składają się: 

a) Średnica całkowita opony OD (ang. overall diameter) – mierzona pośrodku 

napompowanej opony (wzdłuż linii centralnej) lub blisko linii centralnej  

(w przypadku bieżnika z rowkiem centralnym). 

b) Szerokość całkowita przekroju OW (ang. overall width) – liniowa odległość pomiędzy 

zewnętrznymi stronami boków napompowanej opony włączając oznaczenia, dekoracje, 

ranty ochronne i żebra. 

c) Szerokość przekroju SW (ang. section width) – liniowa odległość pomiędzy 

zewnętrznymi stronami boków napompowanej opony wyłączając wypukłości związane 

z oznaczeniami, dekoracjami, rantami ochronnymi i żebrami. 

d) Głębokość rowków rzeźby bieżnika SK (ang. skid depth) – mierzona w najgłębszym 

rowku najbliższym linii centralnej napompowanej opony. 

e) Wskaźnik zużycia bieżnika TWI (ang. tire wear index) - poprzeczne mostki  

w rowkach bieżnika mające na celu wizualne wskazanie stopnia zużycia bieżnika. 

Pomiar głębokości TWI otrzymuje się z różnicy pomiędzy głębokością rowka bieżnika 

(SK) i głębokością rowka mierzoną na szczycie wskaźnika zużycia bieżnika. 

 

2) Ciśnienia osadzania stopki. 

3) Testów bieżnych wysokich i niskich prędkości. 

 

Niektóre homologacje uwzględniają dodatkowe specyficzne testy, czego przykładem jest 

amerykańska DOT zawierająca w sobie test przebicia opony (ang. plunger). Opona założona 
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na specjalną maszynę pomiarową (Rysunek 4.46.) w celu uzyskania pozytywnego rezultatu, 

powinna ulec przebiciu przez znormalizowany wgłębnik, dopiero po przekroczeniu siły  

do niego przyłożonej o wartości przekraczającej 5200N. Informacja o homologacji jaką posiada 

dana opona, zawsze uwzględniana jest w napisach naniesionych w obszarze boku  

(tzw. stamping). 

 

Rysunek 4.46. Maszyna do przeprowadzania testu przebicia opony (materiały własne przedsiębiorstwa) 

 

Reasumując, przedstawione w niniejszym rozdziale zagadnienia dotyczące eliminacji 

defektów, spełniania wymagań klienta, zapewnienia jednorodności opon na odpowiednim 

poziomie oraz procedur testowych i homologacyjnych wskazują, że mimo osiągnięcia 

wysokiego poziomu dojrzałości technologicznej, obszary te wciąż pozostają przedmiotem 

intensywnych badań i doskonalenia. Dążenie do dalszej poprawy jakości, niezawodności  

i bezpieczeństwa opon stanowi istotny impuls rozwojowy. Determinuje to konieczność 

poszukiwania innowacyjnych rozwiązań w zakresie materiałów, procesów produkcyjnych  

oraz metod kontroli. W konsekwencji, dalsza część pracy została poświęcona analizie 

kierunków badań opon samochodowych, które wyznaczają perspektywy dla przyszłych działań 

badawczo-rozwojowych w tym obszarze. 
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5. Współczesne kierunki badań opon 

samochodowych 

Rozwiązania wdrażane w nowoczesnej logistyce i transporcie muszą opierać  

się na określonym poziomie wydajności komponentów. Przykładem jest przejęcie TomTom 

Telematics przez korporację Bridgestone w celu rozpoczęcia świadczenia nowego typu usług 

(Bridgestone Europe Completes Acquisition of TomTom Telematics, 2024). W oparciu o bazę 

danych doświadczeń klientów flotowych, przewidywaną żywotność opon, a także rejestrację 

przebiegu pojazdu za pomocą GPS, system będzie automatycznie planował wymianę opon. 

Otworzy to możliwość stworzenia nowego rodzaju modeli biznesowych opartych na danych  

i zaowocuje wiarygodnymi informacjami zwrotnymi dla producenta na temat eksploatacji  

jego produktów. Klient będzie otrzymywał wszystkie wiadomości o potrzebie wymiany  

lub ewentualnego serwisowania opon za pośrednictwem aplikacji mobilnej. Warto dodać,  

że za zgodą klienta działania te będą organizowane i wykonywane automatycznie. 

Zdecydowanie ułatwi to planowanie budżetu w przedsiębiorstwach. Opisane rozwiązanie  

w niedalekiej przyszłości z powodzeniem wesprze floty składające się z autonomicznych 

pojazdów, a następnie prawdopodobnie będzie dostępne również dla klientów prywatnych.  

Opony jako produkty, których zakup związany jest z przemyślaną decyzją (przeciętny klient 

będzie przecież eksploatować jeden komplet opon przez kilka sezonów), nieustannie  

są przedmiotem zestawień i rankingów (Auto Bild, 2024). Osiągnięcie statusu marki 

konkurencyjnej na rynku jest zadaniem wielowątkowym i trudnym (Chicu i in., 2020),  

którego bazą jest obserwacja trendów rynku i umiejętność szybkiego wprowadzania zmian 

(Brusoni, 2021). Mogą one dotyczyć modeli biznesowych, zwiększania precyzyjności 

stosowanego oprzyrządowania maszynowego (Guo i in., 2009), a także wprowadzania 

innowacyjnych mieszanek gumowych (Rucińska i in., 2022). 

Jednym z najczęściej poruszanych współcześnie aspektów dotyczących rozwoju branży 

oponiarskiej jest estymacja sił występujących w oponie (Xu i in., 2013). Badania  

(Xu i in., 2021) koncentrują się na problemie estymacji kąta znoszenia opon, który odgrywa 

kluczową rolę w dynamice i sterowaniu pojazdu. Autorzy zaproponowali innowacyjną metodę 

łączącą technologię inteligentnej opony z algorytmami uczenia maszynowego. W tym celu 

zastosowano akcelerometry MEMS zamocowane wewnątrz opony, rejestrujące przyspieszenia 

w trzech kierunkach. Zgromadzone dane poddano analizie zarówno w dziedzinie czasu,  

jak i częstotliwości, a następnie wykorzystano do trenowania pięciu metod uczenia 
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maszynowego. Najważniejszym wynikiem pracy było wykazanie, że analiza w dziedzinie 

częstotliwości – szczególnie z użyciem sieci neuronowej opartej na algorytmie Rprop – 

pozwala na znacznie dokładniejszą estymację kąta znoszenia w porównaniu z metodami 

opartymi na analizie czasowej czy modelach fizycznych. Dokładność predykcji utrzymywała 

się na wysokim poziomie nawet dla kątów do 10° (Rysunek 5.1.), co wykracza poza możliwości 

tradycyjnych metod, które zazwyczaj zawodzą powyżej 4–5°. Co istotne, zaproponowane 

podejście okazało się stosunkowo odporne na zmiany prędkości jazdy i obciążenia pionowego 

opony, co zwiększa jego potencjał aplikacyjny w rzeczywistych warunkach eksploatacyjnych. 

 

Rysunek 5.1. Szacowany kąt znoszenia względem zmierzonego kąta znoszenia w warunkach wymuszenia 

trójkątnego (opracowanie własne na podstawie Xu i in., 2021) 

 

Nowatorski model kinematyczny opony skrętnej, przedstawiony w (Vo i in., 2017) pozwala 

badać moment Kingpina3 podczas manewrów przy niskich prędkościach i dużym kącie skrętu. 

W artykule podkreślono ograniczenia tradycyjnych modeli opon w precyzyjnej analizie 

dynamiki pojazdu w ekstremalnych warunkach skręcania, szczególnie w kontekście interakcji 

opony z układem kierowniczym. Proponowany model umożliwia dokładną ocenę momentu 

Kingpina i zachowania opony, co ma istotne znaczenie dla bezpieczeństwa i sterowności 

pojazdu. 

Prace nad modelowaniem opon coraz częściej integrują interaktywne narzędzia  

oraz zaawansowane procedury przetwarzania danych, np. TRIP-ID (Farroni i in., 2018),  

aby sprostać wymaganiom precyzji i adaptacyjności w dynamicznych warunkach 

rzeczywistych (Farroni, 2016). W artykule (Arat i in., 2013) przedstawiono badania  

 

3 Moment Kingpina – pojęcie z dynamiki pojazdów odnoszące się do momentu obrotowego działającego wokół 

osi Kingpina w zawieszeniu kół skrętnych. Chodzi o moment, który „próbuje skręcić” zwrotnicę lub koło  

na pionowej osi obrotu w układzie kierowniczym. 



93 

nad wykorzystaniem technologii inteligentnych opon (ang. smart tire technology) w celu 

optymalnej alokacji sił działających na opony pojazdu. Autorzy wychodzą z założenia,  

że precyzyjna znajomość parametrów kontaktu opony z nawierzchnią, uzyskana dzięki 

sensorom umieszczonym w strukturze opony, może znacząco poprawić skuteczność systemów 

sterowania pojazdem, w szczególności systemów rozdziału sił w pojazdach wielonapędowych 

(Boada i in., 2009). W opracowaniu (Bastiaan, 2018) (Rysunek 5.2.) zaprezentowano 

algorytmy sterowania wykorzystujące dane z inteligentnych opon do dynamicznego 

rozdzielania sił napędowych i hamujących, tak aby maksymalizować przyczepność i stabilność 

pojazdu. Wyniki symulacji wykazały, że zastosowanie tej technologii pozwala na istotną 

poprawę bezpieczeństwa oraz efektywności jazdy, zwłaszcza w warunkach zmiennej 

przyczepności. W porównaniu do tradycyjnych metod rozdziału sił, rozwiązanie oparte  

na ‘smart tire technology’ charakteryzuje się większą adaptacyjnością i możliwością reakcji  

w czasie rzeczywistym.  

 

Rysunek 5.2. Analiza Metodą Elementów Skończonych opony przy obciążeniu pionowym; „Magnitude”  

to  wielkość konturów przemieszczeń określonych przez oprogramowanie ABAQUS (Bastiaan, 2018) 

 

Praca (Beauchamp i in., 2016b) koncentruje się na analizie zależności pomiędzy 

charakterystyką śladów opon (ang. striations) a generowanymi siłami opon, co stanowi 

zagadnienie o istotnym znaczeniu zarówno w rekonstrukcji wypadków drogowych,  

jak i w badaniach nad interakcją opony z nawierzchnią. Autorzy przeprowadzili eksperymenty 

z wykorzystaniem kontrolowanych manewrów pojazdu, podczas których rejestrowano 

zarówno powstające ślady na nawierzchni, jak i parametry sił działających na oponę. Wyniki 

wskazują, że regularność, gęstość i kierunek pozostawionych śladów są bezpośrednio 

powiązane z poziomem sił poprzecznych i wzdłużnych działających na oponę. Oznacza  
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to, że analiza wizualna i geometryczna śladów opon może dostarczać informacji o warunkach 

pracy opony i wielkości oddziałujących na nią obciążeń. Co istotne, badania dowiodły, iż ślady 

opon nie są jedynie artefaktem tarcia, lecz niosą ze sobą istotne dane diagnostyczne, które mogą 

być wykorzystywane w inżynierii bezpieczeństwa oraz sądownictwie technicznym. Wnioski 

autorów podkreślają, że dokładne modelowanie zależności między śladami opon a siłami 

wymaga dalszych badań, jednak uzyskane już wyniki stanowią podstawę do rozwijania 

narzędzi analitycznych wspomagających identyfikację dynamiki pojazdu na podstawie śladów 

pozostawionych na nawierzchni (Beauchamp i in., 2016a). 

W artykule (Chołodowski i Dudziński, 2015) przedstawiono innowacyjną metodę 

eksperymentalnej identyfikacji deformacji opon pojazdów, koncentrując się na opracowaniu 

nowatorskiego przetwornika zdolnego do pomiaru trzech składowych deformacji opon. 

Autorzy wskazują na ograniczenia dotychczas stosowanych metod pomiaru, w których często 

brakuje pełnej charakterystyki deformacji w trzech wymiarach, co ogranicza dokładność 

analizy dynamicznej zachowania opony.  

Badania wpływu deformacji opony na aerodynamikę pojazdów z odkrytymi kołami (Eder  

i in., 2020) obejmowały symulacje przepływu powietrza z uwzględnieniem odkształceń opony, 

co pozwoliło ocenić, w jaki sposób zmiany jej kształtu wpływają na charakterystyki 

aerodynamiczne. Autorzy wykazali, że deformacja opon istotnie modyfikuje strukturę 

przepływu powietrza wokół koła (Rysunek 5.3.), a tym samym ma znaczący wpływ na opór 

aerodynamiczny oraz stabilność pojazdu. Wnioski z pracy wskazują, że uwzględnianie 

deformacji opon w analizach aerodynamicznych jest kluczowe dla dokładnego przewidywania 

zachowania pojazdów wyścigowych i sportowych, gdzie wpływ aerodynamiki ma szczególne 

znaczenie. 

Publikacja (Matsubara i in., 2022) przedstawiają system wizualizacji rozkładu odkształceń 

i pomiaru deformacji klocków bieżnika opon podczas szybkiego obracania się kół pojazdu.  

W pracy podkreślono ograniczenia tradycyjnych metod pomiarowych, które nie pozwalają  

na dokładne uchwycenie dynamicznych odkształceń bieżnika (Kan i in., 2020) przy dużych 

prędkościach obrotowych. Zaproponowany system umożliwia dokładną obserwację i analizę 

rozkładu odkształceń w czasie rzeczywistym, co pozwala lepiej zrozumieć interakcje opony  

z nawierzchnią w warunkach dynamicznych. Artykuł ten wypełnia lukę w badaniach  

nad dynamicznymi właściwościami bieżnika opony. Podobnie, praca (Angrick i in., 2014) 

oceniała wpływ temperatury rdzenia i powierzchni opony na jej charakterystyki boczne, 

koncentrując się na zmianach sił i momentów generowanych podczas skrętu kół. W pracy 
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podkreślono, że temperatura opony (Rysunek 5.4.) istotnie wpływa na przyczepność boczną, 

deformacje bieżnika oraz moment samonastawny. 

 

Rysunek 5.3. Struktura przepływu wokół ścieżki kontaktu opony nieodkształconej (a) oraz odkształconej 

(b) przy pochyleniu opony o 4° (Eder i in., 2020) 

 

Publikacje (Hsiao i Yang, 2016; Hu i in., 2017) oceniają interakcję opony z nawierzchnią 

poprzez opracowanie metod szacowania współczynnika tarcia. Wątek tarcia uzupełniają  

(Lu i in., 2022), zajmując się wyznaczaniem tego współczynnika dla nawierzchni. Artykuł 

(Luty, 2018) traktuje o analizie wpływu masy pojazdu na drogę hamowania  

z wykorzystaniem metod symulacyjnych. Badania obejmowały modelowanie dynamiczne 

pojazdu w różnych wariantach masy oraz symulowanie scenariuszy awaryjnego hamowania  

w celu oceny zmian długości drogi zatrzymania. Autor podkreśla, że wzrost masy pojazdu 

prowadzi do znaczącego wydłużenia drogi hamowania, co ma bezpośrednie konsekwencje  

dla bezpieczeństwa ruchu drogowego. Wnioski płynące z badań wskazują, że masa pojazdu  

jest jednym z kluczowych czynników determinujących skuteczność hamowania,  

a jej uwzględnienie jest niezbędne przy projektowaniu systemów hamulcowych oraz ocenie 

ryzyka w ruchu drogowym. Studium skuteczności hamowania obejmuje również ewaluację 

układów hamulcowego (Dobaj, 2022) oraz zawieszenia (Lukoševičius i in., 2021) pojazdu. 
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Rysunek 5.4. Wyniki badań nad wpływem temperatury opony na jej charakterystyki boczne 

(opracowanie własne na podstawie Angrick i in., 2014) 

 

Kolejnym aspektem, który stanowi aktualny przedmiot badań jest akustyka opony. 

Autorzy (Cao i Bolton, 2015) przedstawili udoskonalony model sprzężonych trybów 

strukturalno-akustycznych opon, mający na celu dokładniejszą analizę drgań i emisji hałasu 

generowanego przez opony podczas jazdy. Autorzy skupili się na modelowaniu 

współzależności między deformacjami strukturalnymi a efektami akustycznymi, co pozwala  

na lepsze przewidywanie zachowania opony w warunkach rzeczywistych oraz projektowanie 

cichszych i bardziej komfortowych opon. Badania (Gautam i in.,2017) skupiały się natomiast 

na opracowaniu statystycznego model przewidujący hałas opon przy różnych prędkościach. 

Badania koncentrowały się na analizie danych eksperymentalnych dotyczących emisji hałasu 

toczenia, z uwzględnieniem wpływu prędkości pojazdu na poziom generowanego dźwięku. 

Okazało się, że model statystyczny pozwala na precyzyjne prognozowanie hałasu opon,  

co może wspierać projektowanie cichszych opon oraz polepszenie warunków komfortu 

akustycznego w pojazdach. W (Yoon i in., 2022) opracowano model predykcyjny hałasu  

dla danego wzoru bieżnika opon z wykorzystaniem konwolucyjnych sieci neuronowych  

oraz algorytmu RMSProp. Celem pracy była automatyczna analiza i prognozowanie emisji 

hałasu generowanego przez różne układy bieżnika, co pozwala na szybszą i bardziej precyzyjną 

ocenę akustycznych właściwości opon już na etapie projektowania. Autorzy wykazali,  

że podejście oparte na sztucznej inteligencji może skutecznie zastąpić tradycyjne, czasochłonne 

metody eksperymentalne. Publikacja (Zhu i in., 2023) również udowadnia kluczowy wpływ 

rzeźby bieżnika na emisję hałasu. 
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Opracowania (Kuric i in., 2021; Kuric i in., 2022) skupiają się na analizie możliwości 

inspekcji defektów opon z wykorzystaniem metod uczenia nienadzorowanego oraz głębokiego 

uczenia. Autorzy skupili się na zastosowaniu algorytmów sztucznej inteligencji  

do automatycznego wykrywania uszkodzeń strukturalnych, które mogą występować w trakcie 

produkcji lub eksploatacji opon. W pracy podkreślono potencjał technik głębokiego uczenia  

do przetwarzania obrazów i sygnałów pomiarowych, co pozwala na zwiększenie skuteczności 

i dokładności diagnostyki w porównaniu z tradycyjnymi metodami inspekcji. Wnioski z badań 

wskazują, że integracja metod sztucznej inteligencji w procesie kontroli jakości opon może 

znacząco poprawić bezpieczeństwo eksploatacyjne oraz efektywność produkcji, redukując 

ryzyko występowania defektów w gotowych wyrobach. 

Realizowany jest również rozwój metod pomiarowych, czego przykładem jest praca (Lung 

i in., 2016), gdzie autorzy zaproponowali system do pomiaru głębokości bieżnika opon oparty 

na technologii laserowej i kamerze CMOS. System ten umożliwia bezkontaktową i precyzyjną 

ocenę zużycia opon. Zastosowano tu model liniowy do kalibracji i analizy danych 

pomiarowych. Podobnie w artykule (Mastrodicasa i in., 2021), autorzy skupili się na analizie 

hałasu i wibracji generowanych przez opony, szczególnie w kontekście pojazdów 

elektrycznych, gdzie brak silnika spalinowego sprawia, że hałas opon staje się dominującym 

czynnikiem. W badaniach zastosowano nienałogowe metody pomiarowe, takie jak Digital 

Image Correlation (DIC) oraz Laser Doppler Vibrometry (LDV), które pozwalają na uzyskanie 

pełnowymiarowych danych dotyczących zachowania opony w warunkach statycznych. Analiza 

obejmowała zarówno opony w stanie swobodnym, jak i poddane statycznemu obciążeniu. 

Uzyskano pełnowymiarowe mapy odkształceń i prędkości powierzchniowych opony  

oraz wyodrębniono charakterystyki modalne opony, tj. częstotliwości własne, współczynniki 

tłumienia oraz kształty modów. Te informacje mogą być wykorzystane do poprawy 

dokładności modeli opon, zarówno w kontekście aktualizacji modeli opartych na metodzie 

elementów skończonych (FE), jak i w opracowywaniu modeli opartych na funkcjach 

odpowiedzi (FRF). 

Dzięki coraz powszechniejszemu zastosowaniu czujników monitorowania ciśnienia  

w oponach typu TPMS (ang. Tire Pressure Monitoring System), autorzy (Schwall i in., 2016) 

przeanalizowali dane czasowe ciśnienia w samochodach Tesla Model S, aby zrozumieć zmiany 

ciśnienia spowodowane przez różne czynniki, tj. przenikanie powietrza, powolne wycieki  

oraz wahania temperatury w cyklu jazdy i w skali sezonowej. Autorzy wskazali, że ciśnienie  

w oponach zmienia się w odpowiedzi na zmiany temperatury oraz na efekty przenikania 

powietrza przez materiał opony. 
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 Nowatorskie badania prowadzi się również w kierunku uzyskania podobnego poziomu 

własności jak dla opon pneumatycznych przez opony niepneumatyczne. W pracy (Jackowski 

i in., 2023) dokonano porównawczej analizy małogabarytowych opon niepneumatycznych  

oraz opon pneumatycznych, skupiając się na takich parametrach jak sztywność radialna, 

histereza oraz wybrane cechy plamy kontaktu. Autorzy wskazali istotne różnice  

w charakterystyce pracy obu typów opon, podkreślając zalety konstrukcji niepneumatycznych 

w zakresie odporności na uszkodzenia i stabilności parametrów eksploatacyjnych,  

przy jednoczesnym zwróceniu uwagi na ograniczenia dotyczące właściwości dynamicznych  

i komfortu jazdy. Wnioski z pracy wskazują, że opony niepneumatyczne stanowią obiecującą 

alternatywę dla tradycyjnych opon pneumatycznych, szczególnie w zastosowaniach 

specjalistycznych, jednak ich charakterystyka wymaga dalszych badań i poprawy. Natomiast 

w artykule (Zhang i in., 2020) porównano statyczne i dynamiczne właściwości opony 

niepneumatycznej z elastyczną strukturą szprychową (Rysunek 5.5.). Badania obejmowały 

ocenę sztywności, zdolności tłumienia oraz parametrów dynamicznych w różnych warunkach 

obciążenia i prędkości. Autorzy wykazali, że elastyczne szprychy wpływają na poprawę 

komfortu i właściwości tłumiących opony, przy jednoczesnym zachowaniu jej odporności  

na przebicia i stabilności konstrukcyjnej. Wnioski z pracy wskazują, że opony 

niepneumatyczne z elastycznymi szprychami stanowią perspektywiczną alternatywę  

dla tradycyjnych opon pneumatycznych, szczególnie w zakresie zwiększonej niezawodności  

i odporności na awarie. 

Najczęściej stosowane współcześnie metody eksploracji tematyki związanej z rozwojem 

przemysłu oponiarskiego opierają się na uczeniu maszynowym. Świadczy o tym chociażby 

częstotliwość wyboru tych metod w publikacjach przytoczonych w niniejszym rozdziale. 

Dodatkowo, metody te znajdują zastosowanie w systemach pompowania opon (Choudhury  

i in., 2017) i przewidywaniu ich żywotności (Zhu i in., 2021).  

W analogii do niniejszej dysertacji, (Tamborski i in., 2023) analizuje wpływ sztucznej 

inteligencji na procesy kontroli jakości w przemyśle oponiarskim, ze szczególnym 

uwzględnieniem badań naukowych, rozwoju technologii oraz zastosowań praktycznych  

w produkcji i eksploatacji opon. Analizie poddano metody takie jak cyfrowa szerografia 

wspomagana uczeniem głębokim, inkrementalne modele YOLO do detekcji defektów, 

segmentacja obrazów głębi oraz wykorzystanie cyfrowych bliźniaków w procesach 

projektowania i testowania opon.  
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Rysunek 5.5. Rozkład naprężeń i deformacji dla: a) opony pneumatycznej napełnianej powietrzem,  

b) opony niepneumatycznej z płytą szprychową, c) opony niepneumatycznej o strukturze plastra miodu 

oraz d) opony niepneumatycznej o strukturze kratowej, przy obciążeniu nominalnym 3000[N]  

(Zhang i in., 2020) 

 

Badania wskazują, że zastosowanie AI znacząco zwiększa skuteczność i precyzję 

wykrywania defektów, redukuje czas inspekcji oraz umożliwia wczesną identyfikację wad 

produkcyjnych i eksploatacyjnych. Rozwiązania oparte na sztucznej inteligencji mogą wspierać  

także predykcyjne utrzymanie opon oraz rozwój metod symulacyjnych w procesie 

projektowania. Przeprowadzony przegląd literatury sugeruje zatem możliwość zastosowania 

metod uczenia maszynowego do predykcji stożkowatości na bazie pomiarów 

przeprowadzanych podczas procesu konfekcji opon radialnych.  
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6. Modele uczenia maszynowego  

Sztuczna inteligencja AI (ang. artificial intelligence) to dział informatyki i inżynierii 

zajmujący się tworzeniem systemów (sprzętowych lub programowych), które potrafią 

wykonywać zadania wymagające inteligencji – takie jak rozumowanie, uczenie  

się, interpretowanie danych ze środowiska, podejmowanie decyzji czy dostosowywanie  

się do zmian. Systemy te przy wykorzystaniu algorytmów (np. uczenia maszynowego, sieci 

neuronowych, logiki symbolicznej) mogą samodzielnie usprawniać swoje działanie, 

przewidywać zachowania czy reagować na nowe sytuacje (European Commission, 2019). 

Uczenie maszynowe ML (ang. machine learning) to dział sztucznej inteligencji zajmujący 

się tworzeniem modeli i algorytmów, które na podstawie danych potrafią samodzielnie uczyć 

się, wykrywać wzorce i korelacje oraz poprawiać swoje działanie bez potrzeby wyraźnego 

instruktażu (“jawnego programowania”) każdego kroku. Modele te są trenowane na danych 

historycznych, a następnie używane do przewidywania, klasyfikowania lub podejmowania 

decyzji w oparciu o nowe dane (Rogalski M., 2025).  

6.1 Rodzaje uczenia maszynowego 

Modele uczenia maszynowego umożliwiają eksplorację wielowymiarowych  

i obszernych zbiorów danych w celu identyfikacji ukrytych struktur oraz zależności. Istotnym 

aspektem analizy danych jest zdolność do transformacji danych surowych  

w informacje użyteczne, które mogą stanowić podstawę do podejmowania decyzji 

wspierających procesy biznesowe w organizacjach (Rosienkiewicz, 2021; Antunes Rodrigues 

i in., 2022). Dobór oraz implementacja odpowiedniego modelu uczenia maszynowego, 

zdolnego do przekształcenia danych wejściowych w wartościową wiedzę, zależy od szeregu 

czynników – w głównej mierze charakterystyki problemu analitycznego oraz jakości i rodzaju 

dostępnych danych. 

Na Rysunku 6.1. zaprezentowano podstawowy podział rodzajów uczenia maszynowego  

w zależności od stopnia nadzoru wykorzystywanego podczas trenowania, wraz z przykładami 

typowych metod stosowanych w poszczególnych kategoriach modeli oraz reprezentatywnymi 

problemami rozwiązywanymi z ich zastosowaniem. Wyróżnia się m.in. następujące rodzaje 

uczenia maszynowego (Burkov, 2019): 

1) Nadzorowane (ang. supervised learning). 

2) Nienadzorowane (ang. unsupervised learning). 

3) Przez wzmacnianie (ang. reinforced learning). 
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Należy jednak zauważyć, że wiele modeli ma charakter uniwersalny i może  

być wykorzystywana zarówno w zadaniach klasyfikacyjnych, jak i regresyjnych. Dobór 

adekwatnej metody uczenia maszynowego warunkowany jest nie tylko ilościowymi  

i jakościowymi cechami dostępnych zbiorów danych, lecz również charakterystyką problemu 

badawczego, który podlega analizie. Istotne znaczenie mają m.in. klasa problemu (klasyfikacja, 

regresja), rodzaj danych (np. dane numeryczne, tekstowe, szereg czasowy), obecność szumu 

informacyjnego, a także wymagania dotyczące interpretowalności modelu, jego wydajności 

obliczeniowej oraz możliwości generalizacji wyników. W konsekwencji wybór konkretnej 

metody ML powinien być poprzedzony wnikliwą analizą kontekstu zastosowania  

oraz specyfiki danych wejściowych. 

6.1.1 Uczenie nadzorowane 

Uczenie nadzorowane stanowi najbardziej rozwiniętą i powszechnie stosowaną gałąź 

uczenia maszynowego, której istotą jest identyfikacja wzorców na podstawie zbiorów danych 

zawierających znane, uprzednio oznaczone wyniki. Proces ten polega na budowaniu modeli 

poprzez analizę relacji pomiędzy zestawem zmiennych niezależnych (atrybutów, zmiennych 

objaśniających, cech – ang. features), oznaczanych jako X, a odpowiadającym im zbiorem 

wartości docelowych (zmiennych zależnych, objaśnianych), oznaczanych jako Y (Theobald, 

2017). Algorytm uczenia nadzorowanego analizuje dane treningowe w celu identyfikacji 

statystycznych zależności pomiędzy cechami a wynikami. W wyniku tego procesu generowany 

jest model, który umożliwia generowanie wyników dla nieznanych danych wejściowych,  

na podstawie wcześniej wyuczonych wzorców. Trafność modelu oceniana jest za pomocą 

odpowiednio dobranej funkcji straty (ang. loss function), która wyznacza różnicę pomiędzy 

wartościami przewidywanymi a rzeczywistymi. Proces trenowania modelu polega  

na iteracyjnym minimalizowaniu wartości tej funkcji, aż do osiągnięcia satysfakcjonującego 

poziomu dokładności (Theobald, 2017). Modele oparte na uczeniu nadzorowanym znajdują 

zastosowanie w dwóch podstawowych klasach problemów (Burkov, 2019): 

1) Regresji – polegającej na przewidywaniu zmiennych ciągłych, które mogą przyjmować 

dowolne wartości liczbowe w określonym zakresie. 

2) Klasyfikacji – polegającej na przypisywaniu danych wejściowych do jednej z kategorii 

dyskretnych ze skończonego zbioru.  

 

Modele regresyjne znajdują swoje zastosowanie między innymi w analizie informacji 

produkcyjnych (Biyeme i in., 2023; Dharwadkar i in., 2022; Fertsch M., 2020), przewidywaniu 
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rezultatów zastosowania nowych rozwiązań w rolnictwie (Gao i in., 2023), przewidywaniu 

zapotrzebowania produktów i dóbr (Kittichotsatsawat i in., 2022; Cieślik i Metelska, 2017), 

estymacji cyklu życia produktu (Viana i in., 2023; Su i in., 2021), czy predykcji terminu 

przeglądów technicznych (Owczarek i in., 2022; Kim, 2023). Metody, które są stosowane  

do rozwiązywania  problemów regresji to m.in.: 

1) Regresja liniowa - stanowi jedną z najczęściej stosowanych metod predykcyjnych  

w analizie statystycznej oraz uczeniu maszynowym. Jej podstawy teoretyczne zostały 

sformułowane przez J. L. Lagrange’a oraz C. F. Gauss’a (Seal, 1967). Metoda ta opiera 

się na modelowaniu zależności liniowej pomiędzy zmienną objaśnianą (wyjściową)  

Y, a jedną lub wieloma zmiennymi objaśniającymi (wejściowymi) X. W przypadku,  

gdy model uwzględnia tylko jedną zmienną niezależną mówi się o prostej regresji 

liniowej. Ilustrację dopasowania takiego modelu przedstawiono na Rysunku 6.2. 

Natomiast w sytuacji, gdy w analizie bierze udział większa liczba zmiennych 

wejściowych, mamy do czynienia z regresją liniową wielokrotną (wielowymiarową, 

zwaną również wieloraką) (Brownlee, 2016; Szaleniec, 2008). Model prostej regresji 

liniowej można zapisać w postaci Równania 6.1: 

 

Y = b0 + b1X1 + b2X2 + … + bnXn + ε                                  (6.1) 

gdzie: 

Y – zmienna zależna; 

X1, X2,…, Xn – zmienne niezależne; 

b0 – wyraz wolny (punkt przecięcia z osią Y); 

b1,…, bn – współczynniki regresji (wagi zmiennych); 

ε – składnik losowy (reszta, błąd). 

 

Jedną z najczęściej stosowanych metod estymacji parametrów modelu regresji liniowej 

jest metoda najmniejszych kwadratów. Polega ona na minimalizacji sumy kwadratów 

odchyleń obserwowanych wartości zmiennej zależnej od wartości przewidywanych 

przez model regresyjny. Innymi słowy, estymacja parametrów odbywa się poprzez 

dopasowanie prostej regresji w taki sposób, aby łączna kwadratowa odległość punktów 

empirycznych od tej prostej była możliwie najmniejsza. 
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Rysunek 6.2. Dopasowanie modelu za pomocą prostej regresji liniowej (Skoneczny, 2025) 

 

Regresja liniowa charakteryzuje się prostotą zarówno pod względem koncepcyjnym,  

jak i implementacyjnym. Czyni ją to jednym z najbardziej przystępnych algorytmów  

w analizie danych. Ponadto, cechuje się relatywnie krótkim czasem obliczeń  

w porównaniu z bardziej zaawansowanymi metodami predykcyjnymi. Niemniej jednak, 

model ten wykazuje wysoką wrażliwość na obserwacje odstające (ang. outliers),  

które mogą znacząco zaburzyć wyniki estymacji parametrów i tym samym obniżyć 

trafność predykcji. 

 

2) Regresja wielomianowa – metoda do modelowania nieliniowych zależności pomiędzy 

zmienną zależną a jedną lub wieloma zmiennymi niezależnymi. Polega  

ona na aproksymacji danych empirycznych za pomocą funkcji wielomianowej 

określonego stopnia, co umożliwia uchwycenie bardziej złożonych, krzywoliniowych 

relacji (Rysunek 6.3.) niż w przypadku klasycznej regresji liniowej (Filipow i in., 2023). 

Ogólna postać modelu regresji wielomianowej stopnia n wyraża się Równaniem 6.2.: 

 

Y = 𝑏0 + 𝑏1X + 𝑏2X2 +𝑏3X3 + … + 𝑏𝑛X𝑛                                  (6.2) 

gdzie: 

Y – funkcja wielomianowa; 

X – zmienna wejściowa; 

b – szukane współczynniki regresji. 
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Rysunek 6.3. Dopasowanie modelu za pomocą prostej regresji wielomianowej  

(Dopasowanie krzywej w Pythonie, 2025) 

 

Model ten może być również rozszerzony na przypadki wielowymiarowe,  

poprzez uwzględnienie potęg i interakcji wielu zmiennych wejściowych. Regresja 

wielomianowa, dzięki swojej elastyczności, znajduje zastosowanie w sytuacjach,  

w których dane nie spełniają założeń liniowości, jednak jej stosowanie wymaga 

ostrożności ze względu na możliwość nadmiernego dopasowania modelu do danych 

uczących (ang. overfitting), zwłaszcza przy wysokich stopniach wielomianu. 

 

Nawiązując do podziału zaproponowanego na Rysunku 6.1, do metod pozwalających 

rozwiązywać zarówno problemy regresji, jak i klasyfikacji należą m.in.: 

1) Drzewa decyzyjne – nazywane również CART (ang. classification and regression 

trees) to jedna z fundamentalnych metod stosowanych w analizie danych, zarówno  

w kontekście problemów klasyfikacyjnych, jak i regresyjnych (Breiman, 1984). Drzewa 

decyzyjne to struktury grafowe, których architektura umożliwia modelowanie zbioru 

reguł decyzyjnych, wykorzystywanych do prognozowania wartości zmiennej 

wyjściowej na podstawie zestawu cech wejściowych. Strukturę drzewa decyzyjnego 

tworzą następujące elementy (Bujak, 2008; Hastie i in., 2009): 

a) Korzeń – reprezentuje punkt początkowy konstrukcji drzewa i obejmuje cały zbiór 

danych treningowych. 

b) Węzły wewnętrzne – odpowiadają za dokonywanie podziałów zbioru danych  

na podstawie wartości wybranych atrybutów. Każdy węzeł zawiera jedną cechę  

lub ich kombinację, na podstawie której wykonywany jest podział obserwacji  
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na podzbiory. Węzły są odzwierciedleniem reguł decyzyjnych, wskazujących  

które obserwacje mają zostać przekierowane do kolejnych części drzewa. 

c) Liście (węzły końcowe) – zawierają finalne decyzje klasyfikacyjne lub predykcyjne. 

Każdy liść reprezentuje wynik analizy – przypisaną klasę (w przypadku klasyfikacji) 

lub wartość liczbową (dla regresji). 

 

Mechanizm działania drzewa decyzyjnego polega na iteracyjnym dzieleniu przestrzeni 

danych na mniejsze, bardziej jednorodne podzbiory przy użyciu wybranych atrybutów. 

Proces ten trwa do momentu spełnienia określonego „warunku stopu”, którym może  

być osiągnięcie maksymalnej dozwolonej głębokości drzewa lub brak dalszego 

przyrostu informacyjnego, czyli sytuacji gdy dalszy podział nie przynosi znaczącej 

poprawy w dopasowaniu modelu do danych. Podobnie jak w przypadku regresji 

wielomianowej, należy podchodzić z ostrożnością do zbytniego dopasowania modelu 

do danych uczących (ang. overfitting), tak jak zostało to przedstawione na Rysunku 6.4. 

dla drzewa o parametrze max_depth = 5. 

 

Rysunek 6.4. Odzwierciedlenie wartości przez model za pomocą drzew decyzyjnych  

(Decision Tree Regression , 2025) 

 

W celu zwiększenia efektywności modeli opartych na drzewach decyzyjnych, możliwe 

jest zastosowanie metod wzmocnienia, tj.: 

a) Las losowy (ang. Random Forest) – metoda polegająca na budowaniu wielu drzew 

decyzyjnych, z których każde trenowane jest na losowo wybranym fragmencie danych 

uczących. Ostateczna decyzja klasyfikacyjna lub predykcyjna podejmowana  
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jest na podstawie głosu większości spośród wszystkich drzew. Metoda ta pozwala 

zredukować ryzyko nadmiernego dopasowania modelu (Cutler, 2011). 

b) Wzmocnienie gradientowe (ang. gradient boosting) – metoda uczenia zespołowego,  

w której drzewa decyzyjne budowane są w sposób sekwencyjny. Każde kolejne drzewo 

koncentruje się na minimalizacji błędów popełnionych przez poprzednie modele, 

wykorzystując do tego informacje o kierunku największego spadku funkcji straty,  

czyli gradient (Hastie i in., 2009). Do najbardziej znanych i szeroko stosowanych modeli 

opartych na wzmocnieniu gradientowym należą m.in.: XGBoost (Extreme Gradient 

Boosting) (Chen i Guestrin 2016), LightGBM (Light Gradient Boosting Machine) 

(Microsoft Corporation, 2023) oraz CatBoost, które charakteryzują się wysoką 

wydajnością obliczeniową, odpornością na przeuczenie oraz zdolnością do pracy  

z dużymi i zróżnicowanymi zbiorami danych. 

 

2) Sztuczne sieci neuronowe – podstawową jednostkę obliczeniową stanowi tutaj sztuczny 

neuron, często nazywany perceptronem. Jest to uproszczony model matematyczny 

inspirowany funkcjonowaniem neuronu biologicznego (Mamczur, 2025). Perceptron 

przetwarza dane wejściowe poprzez obliczenie sumy ważonej sygnałów pochodzących 

od neuronów warstwy poprzedniej, a następnie przekazuje wynik przekształcony  

za pomocą funkcji aktywacji (Ramchoun, 2016). W klasycznym perceptronie 

jednowarstwowym wynik ten ma postać wartości binarnej, jednak  

w nowocześniejszych sieciach wartość wyjściowa może być ciągła i zależna od użytej 

funkcji aktywacji. Na Rysunku 6.5. przedstawiono matematyczny model neuronu 

nawiązujący do jego biologicznego odpowiednika – dendryty symbolizują dane 

wejściowe, ciało komórki to funkcja sumująca i aktywacji, natomiast akson  

jest odzwierciedleniem danej wyjściowej. Każde z wejść (xi) ma przypisaną wagę (wi), 

która jest wyznaczana na podstawie istotności danego wejścia w porównaniu do innych 

danych wejściowych. Dodatkowo uwzględniany jest współczynnik b, zwany 

odchyleniem (ang. bias). W węźle realizowana jest nieliniowa funkcja f (ważona suma 

wejść) nazywana funkcją aktywacji. Zgodnie z przedstawionym opisem wyjście 

neuronu obliczane jest zgodnie z Równaniem 6.3 (Ducic i in., 2020): 

 

                                              (6.3) 
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Rysunek 6.5. Model matematyczny neuronu (Zając, 2025) 

 

Sieć neuronowa zbudowana jest z minimum trzech warstw funkcjonalnych  

(Theobald, 2017): 

a) Warstwa wejściowa (ang. input layer) – odpowiedzialna za odbiór danych wejściowych 

i ich przekazanie do kolejnych warstw przetwarzających. Sama warstwa nie realizuje 

operacji obliczeniowych, lecz może pełnić funkcje wstępnego przekształcenia danych, 

takie jak normalizacja lub skalowanie. 

b) Warstwy ukryte (ang. hidden layers) – stanowią główny komponent obliczeniowy sieci 

neuronowej. Każda warstwa składa się z zestawu neuronów, które wykonują operację 

sumy ważonej sygnałów wejściowych, przekształcają ją za pomocą nieliniowej funkcji 

aktywacji, a następnie przekazują wynik do kolejnej warstwy. W zależności  

od głębokości sieci, liczba warstw ukrytych może się różnić. Sterowanie liczbą  

tych warstw umożliwia modelowi hierarchiczne wydobywanie coraz bardziej złożonych 

reprezentacji danych wejściowych. 

c) Warstwa wyjściowa (ang. output layer) – generuje końcowy rezultat działania sieci 

neuronowej. Liczba neuronów w tej warstwie oraz zastosowana funkcja aktywacji  

są uzależnione od typu rozwiązywanego problemu (np. klasyfikacja, regresja). 

 

Ilustrując powyższy opis, na Rysunku 6.6. przedstawiono uproszczony schemat sieci 

neuronowej uwzględniający warstwy wejściową i wejściową oraz warstwy ukryte. 
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Rysunek 6.6. Uproszczony schemat sieci neuronowej (Magnuski, 2024) 

 

Najpopularniejsze funkcje aktywacji (Mamczur, 2024) przedstawiono na Rysunku 6.7.: 

a) Funkcja sigmoidalna – zwraca wartości w przedziale 0 i 1. 

b) Tangens hiperboliczny – zwraca wartości w przedziale -1 i 1. 

c) ReLU - zwraca wartości z przedziału 0 i 1. 

 

 

Rysunek 6.7. Najczęściej stosowane funkcje aktywacji (opracowanie własne  

na podstawie Mamczur, 2024) 
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Sztuczne sieci neuronowe znajdują zastosowanie w szerokim spektrum zagadnień  

z zakresu uczenia maszynowego, obejmując zarówno problemy regresji – polegające  

na estymacji wartości liczbowych na podstawie danych wejściowych –  

jak i klasyfikacji, gdzie celem jest przypisanie obserwacji do jednej z określonych 

kategorii. Jednym z najbardziej podstawowych, a jednocześnie uniwersalnych modeli 

sieci neuronowych jest perceptron wielowarstwowy MLP (ang. multilayer perceptron), 

zaliczany do grupy sieci jednokierunkowych. Składa się on z co najmniej jednej 

warstwy ukrytej, co pozwala mu modelować zależności nieliniowe pomiędzy danymi 

wejściowymi a wyjściem modelu. Dzięki swojej strukturze oraz wykorzystaniu 

nieliniowych funkcji aktywacji, perceptron wielowarstwowy może aproksymować 

dowolną funkcję ciągłą (Mohammadi i in., 2018). 

 

3) Algorytm SVM (ang. support vector machines) – jedna z fundamentalnych metod 

uczenia maszynowego wykorzystywana zarówno w problemach regresyjnych,  

jak i klasyfikacyjnych, jednak jego zastosowanie w kontekście klasyfikacji jest bardziej 

rozpowszechnione. SVM to metoda klasyfikacji binarnej, której głównym celem  

jest wyznaczenie optymalnej hiperpłaszczyzny separującej dwie klasy obserwacji  

w przestrzeni cech, zakładając, że dane są liniowo separowalne (Halev-Shwartz  

i Ben-David, 2014). Podstawowa koncepcja działania tego algorytmu opiera  

się na maksymalizacji marginesu, tj. odległości między hiperpłaszczyzną a najbliższymi 

punktami danych obu klas. Punkty znajdujące się najbliżej wyznaczonej 

hiperpłaszczyzny i mające bezpośredni wpływ na jej położenie, określane są mianem 

wektorów nośnych (ang. support vectors) – to właśnie od nich pochodzi nazwa 

algorytmu (Grus, 2018). Działanie algorytmu SVM składa się z kilku kluczowych 

etapów, z których każdy ma istotne znaczenie dla skuteczności procesu klasyfikacji.  

W pierwszej fazie dane wejściowe poddawane są transformacji w taki sposób,  

aby możliwe było ich przedstawienie w postaci wektorów w przestrzeni 

wielowymiarowej. Umożliwia to zastosowanie geometrycznych metod analizy danych. 

Kolejnym etapem jest wyznaczenie hiperpłaszczyzny separującej dane należące  

do różnych klas. W tym celu najczęściej stosuje się dwie strategie: metodę największego 

marginesu (ang. maximal margin), która zakłada istnienie idealnej separacji liniowej, 

oraz metodę miękkiego marginesu (ang. soft margin) pozwalającą na pewien stopień 

błędu klasyfikacyjnego w celu uzyskania lepszej generalizacji modelu. W sytuacji,  

gdy dane nie są liniowo separowalne, SVM wykorzystuje przekształcenia przestrzeni 
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cech za pomocą funkcji jądrowych (ang. kernel functions). Funkcje te umożliwiają 

rzutowanie danych do przestrzeni o wyższej liczbie wymiarów, w której możliwe  

staje się liniowe oddzielenie klas. Po dokonaniu transformacji danych, model 

przystępuje do procesu optymalizacji. Celem tego etapu jest wyznaczenie położenia 

hiperpłaszczyzny maksymalizującej margines między klasami oraz identyfikacja 

wektorów nośnych (Rysunek 6.8.), które determinują jej orientację w przestrzeni cech 

(Bishop, 2006). Po wyznaczeniu hiperpłaszczyzny decyzyjnej możliwe  

jest klasyfikowanie nowych obserwacji. SVM ocenia położenie obserwacji względem 

hiperpłaszczyzny i przypisuje jej odpowiednią etykietę klasową. Dzięki tej właściwości 

model zapewnia wysoką skuteczność klasyfikacji, szczególnie w przypadku danych 

liniowo separowalnych. Z uwagi na swoją zasadę działania oraz efektywność 

obliczeniową, SVM znajduje również zastosowanie w analizie danych o charakterze 

liniowym (Hastie i in., 2009). 

 

Rysunek 6.8. Ilustracja idei wektorów nośnych (Metoda wektorów nośnych, 2025) 

 

4) Algorytm K-najbliższych sąsiadów KNN (ang. K-nearest Neighbours) – model 

stosowany zarówno w zadaniach klasyfikacyjnych, jak i regresyjnych. Jego działanie 

opiera się na założeniu, że obiekty znajdujące się w bliskim sąsiedztwie w przestrzeni 

cech wykazują tendencję do posiadania podobnych wartości cechy wyjściowej,  

co oznacza, że obiekty podobne do siebie mają zwykle tę samą etykietę (w przypadku 

klasyfikacji) lub zbliżoną wartość numeryczną (w przypadku regresji). W fazie 

treningowej metoda KNN nie dokonuje bezpośredniego modelowania danych – zamiast 

tego przechowuje cały zbiór treningowy jako referencyjny punkt odniesienia. W fazie 

prognozowania, dla każdej nowej obserwacji obliczana jest odległość pomiędzy 

punktem wejściowym a wszystkimi przykładami w zbiorze uczącym. Wykorzystywana 

jest do tego wybrana metryka odległości (Gokte, 2025), do których należą m.in: 
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a) Odległość euklidesowa. 

b) Odległość Manhattan. 

c) Odległość Minkowskiego. 

 

Na podstawie wybranej metryki identyfikowanych jest K najbliższych sąsiadów punktu 

wejściowego. W przypadku problemów klasyfikacyjnych, model przypisuje nowemu 

punktowi tę etykietę klasy, która dominuje wśród jego K sąsiadów, zgodnie z zasadą 

głosowania większościowego (ang. majority voting) (Srivastava, 2025). Natomiast  

w kontekście regresji, przewidywana wartość obliczana jest jako średnia (lub ważona 

średnia) wartości cech docelowych najbliższych sąsiadów (Rysunek 6.9.). 

 

Rysunek 6.9. Schematyczne przedstawienie zasady działania algorytmu K-najbliższych sąsiadów 

(opracowanie własne na podstawie Bukowski, 2025) 

 

Model KNN cechuje się wysoką intuicyjnością i prostotą implementacyjną,  

co przyczynia się do jego szerokiego zastosowania w różnych dziedzinach analityki 

danych. Warto jednak zauważyć, że jego skuteczność i efektywność są silnie 

uzależnione od doboru liczby sąsiadów (K) oraz od wybranej metryki odległości. 

Nieodpowiednia konfiguracja tych parametrów może prowadzić do obniżenia zdolności 

predykcji / klasyfikacji, dlatego też w praktyce niezbędna jest ich optymalizacja 

(Srivastava, 2025). 

 

Modele klasyfikacyjne natomiast, znajdują szerokie zastosowanie w przewidywaniu 

przynależności obiektów do określonych klas, kategorii lub grup. Wśród modeli stosowanych 

wyłącznie do rozwiązywania problemów klasyfikacyjnych wyróżnia się m.in. naiwny 

klasyfikator bayesowski NBC (ang. naive Bayes classifier). Znajduje on zastosowanie  

np. w klasyfikacji tekstów i filtrowaniu spamu. Opiera się na twierdzeniu Bayesa,  

które umożliwia wyznaczenie prawdopodobieństwa przynależności danej obserwacji  
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do określonej klasy na podstawie znanych cech. Kluczowym założeniem modelu  

jest niezależność warunkowa cech, oznaczająca, że występowanie jednej cechy nie wpływa  

na występowanie pozostałych. Pomimo, że w rzeczywistych danych założenie to rzadko  

jest w pełni spełnione, znacząco upraszcza ono model matematyczny i proces estymacji 

prawdopodobieństw. Z uwagi właśnie na tę właściwość, klasyfikator określany jest mianem 

„naiwnego”. Dzięki swojej prostocie obliczeniowej, łatwości implementacji oraz dobrej 

skuteczności wykorzystywany jest tam, gdzie interpretowalność oraz szybkość działania  

są istotnymi kryteriami (Hastie i in., 2009). 

6.1.2 Uczenie nienadzorowane 

Uczenie nienadzorowane stanowi podejście w uczeniu maszynowym, w którym modele 

trenowane są na danych nieoznakowanych, tj. pozbawionych etykiet lub znanych wartości 

wyjściowych. Celem tego typu uczenia jest wykrywanie ukrytych struktur, zależności  

lub regularności w danych bez nadzoru związanego z oczekiwanym wynikiem (Miśtak, 2025). 

W ramach uczenia nienadzorowanego wyróżnia się dwie podstawowe klasy problemów  (Guide 

to Unsupervised Machine Learning: 7 Real Life Examples, 2025): 

1) Analiza skupień (klasteryzacja) – polega na grupowaniu obiektów na podstawie stopnia 

ich podobieństwa, w celu wyodrębnienia wzorców oraz struktury wewnętrznej danych. 

Modele klasteryzujące mogą również służyć do wykrywania anomalii, czyli obserwacji 

odstających od pozostałych, które nie należą do żadnej z utworzonych grup (Sawka, 

2020). Klasteryzacja danych to segmentacja obserwacji w homogeniczne grupy  

za pomocą metod takich jak K-Means, DBSCAN czy Hierarchical Clustering. Metody 

te są wykorzystywane np. w poszukiwaniu tendencji rynkowych, analizie zachowań 

użytkowników czy eksploracji sieci społecznych. 

2) Redukcja wymiarowości – umożliwia przekształcenie danych (uproszczenie zbiorów 

danych) do przestrzeni o mniejszej liczbie zmiennych przy jednoczesnym zachowaniu 

istotnych informacji. Analiza głównych składowych PCA (ang. principal component 

analysis) jest stosowana do redukcji wymiarowości danych poprzez identyfikację 

kierunków największej wariancji oraz eliminację cech o niskiej wartości informacyjnej. 

Metody takie jak PCA czy jądrowa analiza głównych składowych (Kernel PCA)  

są szczególnie przydatne w kontekście wysokowymiarowych zbiorów danych,  

np. w bioinformatyce czy przetwarzaniu obrazów.  
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6.1.3 Uczenie przez wzmacnianie 

Uczenie przez wzmacnianie to jedna z fundamentalnych metod uczenia maszynowego,  

w której agent (model decyzyjny) uczy się podejmowania sekwencji działań w dynamicznym, 

interaktywnym środowisku na podstawie sygnałów zwrotnych w postaci nagród i kar. Celem 

agenta jest wykształcenie strategii (polityki) postępowania, która maksymalizuje skumulowaną 

wartość oczekiwanych nagród w dłuższym horyzoncie czasowym. Podobnie jak w przypadku 

uczenia nadzorowanego, uczenie przez wzmacnianie zakłada istnienie funkcji odwzorowującej 

dane wejściowe na pożądane odpowiedzi. Różnica polega jednak na charakterze informacji 

zwrotnej: w uczeniu nadzorowanym agent otrzymuje jawny, poprawny zestaw wyjść  

dla danych wejściowych, natomiast w uczeniu przez wzmacnianie informacja zwrotna  

ma postać funkcji nagrody, wskazującej czy podjęte działanie było korzystne z punktu widzenia 

głównego celu. Uczenie przez wzmacnianie opiera się na kilku kluczowych pojęciach  

(Sinha, 2025): 

1) Agent – model uczący się, który podejmuje decyzje i wpływa na środowisko. 

2) Śodowisko – zewnętrzny system (rzeczywisty lub symulowany), z którym agent 

wchodzi w interakcję. 

3) Nagroda / kara – informacja zwrotna ze środowiska, oceniająca jakość podjętej decyzji. 

4) Polityka – funkcja decyzyjna mapująca stany środowiska na działania. 

5) Wartość – oczekiwana skumulowana nagroda uzyskana z danego stanu  

przy zastosowaniu danej polityki. 

 

W odróżnieniu od uczenia nienadzorowanego, którego celem jest identyfikacja struktur, 

podobieństw i różnic w danych bez jawnych etykiet, celem uczenia przez wzmacnianie jest 

opracowanie takiej sekwencji decyzji (w tym przypadku polityki), która maksymalizuje 

długoterminową korzyść agenta. Agent podejmuje decyzje w środowisku, obserwuje  

ich konsekwencje w postaci nagród bądź kar i iteracyjnie dostosowuje swoje działania, 

eksplorując przestrzeń strategii oraz ucząc się na podstawie zgromadzonych doświadczeń 

(Rysunek 6.10.). Dzięki swojej elastyczności i zdolności do adaptacji w dynamicznych 

warunkach, uczenie przez wzmacnianie znajduje szerokie zastosowanie w praktyce,  

m.in. w robotyce, grach komputerowych, finansach oraz w optymalizacji procesów 

technologicznych i decyzyjnych (Sinha, 2025). 
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Rysunek 6.10. Pętla informacji zwrotnej „akcja-nagroda” modelu uczenia przez wzmocnienie 

(opracowanie własne na podstawie Lorenzi, 2025) 

 

6.2 Cykl życia modelu uczenia maszynowego 

Cykl życia modelu uczenia maszynowego obejmuje zazwyczaj szereg kolejnych etapów, 

których realizacja stanowi warunek niezbędny do uzyskania poprawnego, wiarygodnego  

oraz wartościowego rezultatu: 

1) Zdefiniowanie problemu – stanowi fundamentalny etap procesu projektowania 

modelu uczenia maszynowego, który determinuje zarówno wybór metod analizy,  

jak i kierunek dalszych działań. Na tym etapie konieczne jest precyzyjne określenie celu 

modelowania – czy problem ma charakter regresyjny (predykcja wartości liczbowych),  

czy też klasyfikacyjny (przypisanie obserwacji do jednej z kategorii). Proces  

ten wymaga również analizy kontekstu dziedzinowego, w którym model będzie 

wykorzystywany. Należy uwzględnić ograniczenia systemowe, wymagania związane  

z zastosowaniem modelu oraz potencjalne ryzyka spowodowane błędną predykcją / 

sklasyfikowaniem. Kluczowe jest zidentyfikowanie zmiennej objaśnianej  

oraz określenie dostępnych danych wejściowych, a także ewentualnych czynników 

zakłócających. Niedostateczna lub błędna definicja problemu może skutkować 

nieprecyzyjnym doborem modeli, niewłaściwą konstrukcją zbioru danych,  

czyli w konsekwencji ograniczoną użytecznością końcowego modelu. 

 

2) Gromadzenie danych – w tym kroku istotne jest nie tylko zgromadzenie 

wystarczającej liczby obserwacji, lecz również zapewnienie, że dane pochodzą  

z wiarygodnych i spójnych źródeł. Jakość, kompletność oraz reprezentatywność 
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pozyskanych danych w sposób bezpośredni wpływają na zdolność modelu  

do uogólniania oraz jego użyteczność w zastosowaniach praktycznych. Dane powinny  

być reprezentatywne względem populacji docelowej i obejmować pełne spektrum 

zmienności zjawiska, którego dotyczy modelowanie. 

 

3) Przygotowanie i eksploracyjna analiza danych EDA (ang. exploratory data 

analysis) – proces przygotowania danych, określany jako wstępne przetwarzanie 

danych (ang. data preprocessing) stanowiący niezbędny etap projektowania systemów 

uczących się. Obejmuje on szereg działań ukierunkowanych na dostosowanie surowych 

danych do wymagań modelu uczenia maszynowego (Al.-jabery Khalid, 2020),  

co zostało zobrazowane na Rysunku 6.11. Do podstawowych działań zalicza się m.in.: 

a) Usuwanie duplikatów – polega na eliminacji powtarzających się rekordów, które mogą 

prowadzić do przewartościowania określonych obserwacji oraz zaburzać rozkłady 

statystyczne cech. 

b) Uzupełnianie brakujących wartości – braki danych można usuwać (np. poprzez 

eliminację rekordów lub cech zawierających puste pola) bądź imputować, zastępując 

brakujące obserwacje wartością średnią, medianą, dominantą lub estymatą pochodzącą 

z modelu. 

c) Transformacja danych nienumerycznych – dane tekstowe muszą zostać zakodowane  

w sposób umożliwiający dopasowanie do modelu.  

d) Usuwanie wartości odstających – wartości ekstremalne znacząco odbiegające  

od rozkładu cech mogą zakłócać proces uczenia, prowadząc do błędnego dopasowania 

modelu i nadmiernej wrażliwości na szum. Ich identyfikacja odbywa  

się m.in. za pomocą analizy rozkładów i testów statystycznych (Han  i in., 2012). 

e) Skalowanie danych – do przeprowadzenia tego procesu stosowane są zazwyczaj 

następujące techniki: 

i) Normalizacja Min-Max (ang. Min-Max scaling) – polega na przekształceniu 

wartości cechy wejściowej w taki sposób, aby mieściły się one w określonym 

przedziale – najczęściej od 0 do 1. Metoda ta zachowuje relacje pomiędzy 

oryginalnymi wartościami, jednocześnie zapewniając ich ujednoliconą skalę. 

Transformacja ta wykonywana jest zgodnie z Równaniem 6.4: 
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                                             (6.4) 

gdzie: 

𝑥 – wartość oryginalna, 

𝑥min – minimalna wartość w zbiorze danych, 

𝑥max – maksymalna wartość w zbiorze danych, 

𝑥′ – znormalizowana wartość po przekształceniu. 

 

ii) Normalizacja Z-score (standaryzacja) – polega na przeskalowaniu wartości zmiennej  

w taki sposób, aby jej średnia arytmetyczna wynosiła 0, a odchylenie standardowe 1. 

Proces ten umożliwia porównywanie wartości pochodzących z różnych rozkładów  

lub cech o różnych skalach, co jest szczególnie istotne w kontekście metod 

statystycznych oraz modeli uczenia maszynowego opartych na założeniu o normalności 

rozkładu danych. Normalizacja Z-score wykonywana jest zgodnie z Równaniem 6.5: 

 

                                                         (6.5) 

gdzie: 

𝑥 – wartość oryginalna, 

x̄ – średnia arytmetyczna zmiennej, 

s – odchylenie standardowe zmiennej, 

𝑧 – wartość standaryzowana (Z-score). 

 

f) Ekstrakcja i selekcja cech – obejmuje wydobycie nowych, bardziej przydatnych cech 

(np. transformacje logarytmiczne, funkcje nieliniowe), a także usuwanie cech 

nieistotnych i tych silnie skorelowanych – nie wnoszących wartości analitycznej,  

a jedynie zwiększających wymiarowość i złożoność obliczeniową (Jafari, 2022). 

 

Efektywnie przeprowadzony proces wstępnego przetwarzania danych zwiększa 

stabilność modelu, poprawia jego zdolność do uogólniania oraz umożliwia osiągnięcie 

wyższych wartości metryk ewaluacyjnych. Bez niego niemożliwe jest osiągnięcie 

wiarygodnych i powtarzalnych wyników uczenia maszynowego. 
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Rysunek 6.11. Schemat postępowania w procesie przygotowania danych dla modeli ML  

(opracowanie własne na podstawie Al.-jabery Khalid, 2020) 

 

W statystyce eksploracyjna analiza danych EDA stanowi podejście polegające  

na systematycznym badaniu zbiorów danych w celu identyfikacji i podsumowania  

ich podstawowych charakterystyk. Analiza ta często wykorzystuje wykresy 

statystyczne oraz inne metody wizualizacji danych, umożliwiające uchwycenie 

istotnych wzorców i zależności. Stosowanie modeli statystycznych w ramach EDA  
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jest opcjonalne – głównym celem tego podejścia jest natomiast poznanie informacji 

zawartych w danych wykraczających poza formalne modelowanie. W ten sposób EDA 

odróżnia się od tradycyjnego testowania hipotez, w którym wybór modelu następuje  

przed przystąpieniem do analizy danych (Baillie i in., 2022). Znajduje zastosowanie  

w metodach wspomagających redukcję wymiarowości, tj.: 

a) Skalowanie wielowymiarowe MDS (ang. multidimensional scaling). 

b) Analiza głównych składowych PCA. 

c) Wieloliniowa analiza głównych składowych (ang. multilinear PCA). 

d) Nieliniowa redukcja wymiarowości NLDR (ang. nonlinear dimensionality reduction). 

e) Ikonografia korelacji (ang. iconography of correlations). 

 

4) Podział danych – w ramach tego etapu cały dostępny zbiór danych zostaje rozdzielony 

na podzbiory, z których każdy pełni odrębną funkcję w procesie trenowania  

i weryfikacji modelu. Podział ten umożliwia ocenę uogólniającej zdolności modelu oraz 

minimalizację błędów wynikających z nadmiernego lub niedostatecznego dopasowania. 

W literaturze przedmiotu wyróżnia się trzy podstawowe zbiory danych (Burkov, 2019): 

a) Zbiór treningowy – wykorzystywany do właściwego procesu uczenia modelu.  

Na jego podstawie model aktualizuje swoje parametry wewnętrzne (np. wagi), 

identyfikuje wzorce i konstruuje funkcję decyzyjną umożliwiającą klasyfikację  

bądź prognozowanie. 

b) Zbiór walidacyjny (opcjonalny) – stosowany w celu strojenia hiperparametrów modelu 

oraz do monitorowania jego ogólnej zdolności generalizacji. Umożliwia wykrycie  

i przeciwdziałanie zjawiskom nadmiernego dopasowania oraz niedostatecznego 

dopasowania do danych treningowych. Walidacja działania modelu na zbiorze 

walidacyjnym, który nie był wykorzystywany w procesie trenowania, pozwala  

na optymalizację jego architektury i parametrów. 

c) Zbiór testowy – przeznaczony do końcowej oceny wydajności modelu po zakończeniu 

procesu treningu i strojenia. Służy do oszacowania skuteczności modelu na nowych 

danych, co stanowi podstawę do oceny jego praktycznej przydatności. 

 

Zastosowanie zbioru walidacyjnego staje się szczególnie istotne w przypadku modeli  

o wysokiej złożoności i licznych hiperparametrach, gdzie ryzyko nadmiernego  

lub niedostatecznego dopasowania jest zwiększone (Rysunek 6.12.). Choć uniwersalna 

strategia podziału danych nie istnieje, w praktyce często stosowanym schematem  
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jest proporcja: 70% – zbiór treningowy / 15% – zbiór walidacyjny / 15% – zbiór 

testowy. W sytuacjach, w których rezygnuje się ze zbioru walidacyjnego  

(np. przy prostszych modelach), dopuszczalny jest również podział: 70% – trening / 

30% – test (Al’Aref  i in., 2019). 

 

Rysunek 6.12. Wizualizacja dopasowania do danych dla modeli klasyfikacyjnych i regresyjnych 

(opracowanie własne na podstawie What Is Overfitting?, 2025) 

 

5) Wybór modelu – dobór odpowiednich modeli uczenia maszynowego uzależniony jest 

od szeregu czynników determinujących zarówno charakter zadania analitycznego,  

jak i warunki jego realizacji. Wśród najważniejszych aspektów wpływających na wybór 

modelu można wymienić: 

a) Klasa problemu (np. klasyfikacja, regresja, detekcja anomalii). 

b) Rozmiar i dostępność zbioru danych. 

c) Właściwości danych (np. rozkład cech, liczba wymiarów, obecność szumów). 

d) Dostępność narzędzi i zasobów obliczeniowych. 

e) Czas wymagany na proces trenowania modelu. 

f) Stopień interpretowalności modelu. 

 

Zalecaną praktyką, powszechnie stosowaną w procesie modelowania, jest równoległe 

trenowanie i testowanie wielu modeli (Tabaszewski, 2008). Podejście to umożliwia 

obiektywne porównanie ich właściwości na wspólnym zbiorze danych oraz wybór 

modelu, który najlepiej spełnia założone kryteria. 
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6) Trenowanie modelu – celem tego kroku jest umożliwienie modelowi identyfikacji 

ukrytych wzorców oraz zależności w danych wejściowych. Charakter tego procesu 

różni się w zależności od wybranego paradygmatu uczenia. 

W przypadku uczenia nadzorowanego, model uczy się poprzez iteracyjne 

porównywanie generowanych prognoz z rzeczywistymi wartościami (etykietami), 

dążąc do minimalizacji funkcji błędu, która kwantyfikuje rozbieżność pomiędzy 

wartościami przewidywanymi a obserwowanymi. Na tej podstawie model aktualizuje 

swoje parametry, co umożliwia mu lepsze dopasowanie do wzorców występujących  

w danych. 

W uczeniu nienadzorowanym, proces trenowania przebiega bez dostępu do etykiet klas. 

Celem modelu jest odkrycie wewnętrznej struktury danych, np. poprzez wykrywanie 

skupień czy redukcję wymiarowości. Przykładowo, algorytmy klastrowania grupują 

obserwacje w zbiory (klastry) na podstawie ich wzajemnego podobieństwa,  

bez wcześniejszej wiedzy o przynależności klasowej (Chen i Yan, 2015). 

W przypadku uczenia przez wzmacnianie, model – określany tutaj mianem agenta – 

uczy się poprzez interakcję z dynamicznym środowiskiem. W odpowiedzi na wykonane 

działania agent otrzymuje sygnały nagrody lub kary i przechodzi do kolejnych stanów 

środowiska. Mechanizm ten ma na celu maksymalizację długoterminowego zysku 

(sumy skumulowanych nagród), przy czym przejścia pomiędzy stanami często mają 

charakter stochastyczny i są częściowo nieznane (Burkov, 2019). 

Każdy z wymienionych paradygmatów wymaga odmiennych metod treningu  

oraz oceny skuteczności modelu, dostosowanych do specyfiki problemu i rodzaju 

dostępnych danych. 

 

7) Ewaluacja – po zakończeniu procesu trenowania modelu konieczne jest 

przeprowadzenie jego ewaluacji, której celem jest ocena zdolności modelu  

do generalizacji, czyli poprawnego działania na wcześniej niewidzianych danych. 

Ocena ta pozwala określić, w jakim stopniu model spełnia założenia problemu  

i jak efektywnie go rozwiązuje. Do ewaluacji modeli wykorzystuje się odpowiednie 

metryki oceny, których wybór zależy od klasy problemu (np. klasyfikacja, regresja), 

zastosowanego modelu oraz konkretnego celu analitycznego. Metryki te umożliwiają 

ilościowe ujęcie skuteczności modelu, co stanowi podstawę do jego porównywania, 

możliwościach poprawy oraz podejmowania decyzji o wdrożeniu w środowisku 
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produkcyjnym. Miary oceny skuteczności modeli dedykowanych problemom regresji 

(wykorzystywanych w niniejszej dysertacji) zostały opisane w Rozdziale 6.3. 

 

8) Strojenie hiperparametrów – w zależności od wyników ewaluacji oraz stopnia 

złożoności modelu, dopuszczalne jest modyfikowanie wartości hiperparametrów,  

a proces ten określa się mianem strojenia. Hiperparametry stanowią zewnętrzne 

względem procesu trenowania parametry sterujące przebiegiem uczenia się, które  

nie podlegają bezpośredniej optymalizacji podczas treningu. Do typowych przykładów 

hiperparametrów należą, np.: współczynnik szybkości uczenia, liczba warstw ukrytych 

w sieciach neuronowych czy liczba określająca głębokość drzew decyzyjnych. 

Głównym celem optymalizacji hiperparametrów jest identyfikacja takiego zestawu 

wartości, który pozwoli na maksymalizację efektywności działania modelu  

oraz uzyskanie najlepszych wyników (Mamczur, 2022). 

 

9) Testowanie i walidacja końcowa – następnie model poddawany jest ocenie  

na dedykowanym, wcześniej niewykorzystywanym zbiorze testowym. Celem  

tego działania jest obiektywne oszacowanie zdolności modelu do generalizacji,  

czyli jego skuteczności w przewidywaniu wyników dla nowych, nieznanych danych. 

Walidacja końcowa umożliwia identyfikację ewentualnych problemów i wiarygodności 

modelu w kontekście jego praktycznego zastosowania. W tym etapie stosuje  

się różnorodne metryki oceny, dostosowane do klasy problemu i rodzaju modelu,  

z myślą o jego finalnej ewaluacji. Ostateczne wyniki testowania i walidacji mają 

fundamentalne znaczenie dla decyzji dotyczących wdrożenia modelu w środowisku 

produkcyjnym lub dalszej jego optymalizacji. 

 

10) Wdrożenie – stanowi końcowy etap procesu projektowania i trenowania modelu, 

którego celem jest jego integracja z rzeczywistym środowiskiem operacyjnym. Oznacza 

to przeniesienie modelu z fazy eksperymentalnej do zastosowań praktycznych,  

w których będzie on przetwarzał nowe, napływające dane i generował prognozy  

lub decyzje wspierające procesy biznesowe, technologiczne bądź analityczne. Proces 

wdrożenia może obejmować szereg działań technicznych, tj.: eksport wytrenowanego 

modelu do odpowiedniego formatu, przygotowanie interfejsów API (ang. application 

programming interface) do komunikacji z innymi systemami, zapewnienie 

infrastruktury obliczeniowej (np. serwery lokalne lub chmura obliczeniowa)  
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oraz implementację mechanizmów monitorowania jego wydajności. Istotnym aspektem 

wdrożenia jest również zapewnienie stabilności, skalowalności i bezpieczeństwa 

działania modelu. 

 

11) Monitorowanie i utrzymanie – wdrożony model powinien być stale monitorowany 

pod kątem poprawności działania, a także regularnie aktualizowany – szczególnie  

w sytuacjach, gdy dane wejściowe ulegają zmianom, co może negatywnie wpływać  

na skuteczność modelu. Dlatego proces wdrożenia nie kończy się na uruchomieniu 

modelu, lecz często stanowi początek jego cyklu życia w środowisku produkcyjnym, 

który wymaga bieżącej kontroli i adaptacji. Obejmuje to śledzenie takich aspektów  

jak: dokładność predykcji / klasyfikacji, rozkład danych wejściowych, częstość błędów, 

czas odpowiedzi czy odsetek odrzuconych zapytań. Szczególne znaczenie  

ma wykrywanie zjawisk, tj.: 

a) Data drift – zmiana rozkładu danych wejściowych. 

b) Concept drift – zmiana relacji między danymi a etykietami wynikowymi. 

c) Model decay – stopniowy spadek poprawności działania modelu w czasie. 

 

Utrzymanie modelu obejmuje działania naprawcze i adaptacyjne, np.: okresowe 

ponowne trenowanie modelu na nowych danych, aktualizacja hiperparametrów, 

dostosowanie architektury modelu, a także zarządzanie jego wersjami. Może także 

wiązać się z przeprowadzaniem audytów modelu pod kątem zgodności z wymaganiami 

regulacyjnymi i panującymi standardami. 

 

Całość przedstawionego cyklu (Rysunek 6.13), wskazuje na konieczność podejścia 

systemowego i ciągłej iteracji, co pozwala zapewnić nie tylko wysoką skuteczność 

opracowanego rozwiązania mierzoną odpowiednimi metrykami ewaluacyjnymi, lecz także  

jego stabilność i odporność na zmieniające się środowisko. Rzetelnie przeprowadzony cykl 

gwarantuje, że model zachowuje swoją przydatność praktyczną oraz może być bezpiecznie 

utrzymywany w środowisku produkcyjnym. Regularne monitorowanie oraz ponowne 

dostrajanie sprawiają, że funkcjonowanie modelu pozostaje zgodne z założeniami 

projektowymi. 
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Rysunek 6.13. Cykl życia modelu uczenia maszynowego (opracowanie własne) 

 

6.3 Ocena działania modelu dla problemu regresji 

Ze względu na to, że problem badawczy niniejszej dysertacji został określony jako problem 

regresyjny, podjęto decyzję o zastosowaniu i porównaniu metod dedykowanych modelowaniu 

zależności ilościowych. Wybór ten wynika z potrzeby przewidywania wartości zmiennej 

objaśnianej na podstawie zestawu zmiennych objaśniających, co jest charakterystyczne  

dla problemów regresyjnych. Analiza porównawcza różnych metod umożliwia ocenę  

ich skuteczności w kontekście dopasowania modelu, odporności na wartości odstające  

oraz interpretowalności wyników. Do oceny działania i porównania modeli rozwiązujących 

problemy regresji, stosuje się następujące mierniki (Chicco i in., 2021): 

1) Błąd średniokwadratowy MSE (ang. Mean Squared Error) – suma kwadratów różnic 

między wartością rzeczywistą a prognozowaną. Używana do mierzenia ogólnego błędu 

predykcji w problemach regresji. Oblicza się go z wykorzystaniem Równania 6.6: 

 

                                          (6.6) 



125 

gdzie: 

m – liczba obserwacji; 

𝑦𝑖 – i-ta obserwowana wartość; 

ŷ𝑖 – odpowiadająca jej wartość prognozowana. 

 

2) Pierwiastek błędu średniokwadratowego RMSE (ang. Root Mean Squared Error) – 

mierzy średnią różnicę pomiędzy przewidywanymi wartościami a rzeczywistymi 

wartościami docelowymi. Im niższa wartość RMSE, tym lepiej model radzi sobie  

z aproksymacją rzeczywistych danych. Matematyczny zapis został przedstawiony  

za pomocą Równania 6.7: 

 

                                     (6.7) 

gdzie: 

m – liczba obserwacji; 

𝑦𝑖 – i-ta obserwowana wartość; 

ŷ𝑖 – odpowiadająca jej wartość prognozowana. 

 

3) Średni błąd bezwzględny MAE (ang. Mean Absolute Error) – intuicyjny i łatwy  

do interpretacji, traktujący równomiernie wszystkie odchylenia. Jest mało wrażliwy  

na wartości odstające i oblicza się go zgodnie z Równaniem 6.8: 

                                      (6.8) 

gdzie: 

n – liczba obserwacji; 

𝑦𝑖 – i-ta obserwowana wartość; 

ŷ𝑖 – odpowiadająca jej wartość prognozowana. 

 

4) Średni bezwzględny błąd procentowy MAPE (ang. Mean Absolute Percentage Error) 

– wyraża błąd predykcji jako procent wartości rzeczywistej. Zastosowanie  

go jest nieodpowiednie, gdy wartości rzeczywiste są bliskie zeru. Obliczany według 

Równania 6.9: 
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                                (6.9) 

gdzie: 

n – liczba obserwacji; 

𝑦𝑖 – i-ta obserwowana wartość; 

ŷ𝑖 – odpowiadająca jej wartość prognozowana. 

 

5) Współczynnik determinacji R2 – określa jaka część wariancji zmiennej zależnej  

jest wyjaśniana przez model. Wyraża stopień dopasowania modelu do danych. Miara  

R2 przyjmuje wartości od 0 do 1, gdzie wartość bliska 1 oznacza bardzo dobrą jakość 

modelu, natomiast 0 słabą jakość modelu. Modele osiągające wartości ≥0.7 uznaje  

się za dobre. R2 wyznaczany jest zgodnie z Równaniem 6.10: 

 

                                     (6.10) 

gdzie: 

MSE (model) – błąd średniokwadratowy predykcji do rzeczywistej wartości;  

MSE (odniesienie) – błąd średniokwadratowy średniej predykcji do rzeczywistej 

wartości. 

 

6) Skorygowany współczynnik determinacji ‘Adjusted R2 ‘– uwzględnia liczbę zmiennych 

w modelu i wielkość próby, zapobiegając sztucznemu zawyżaniu wartości R²  

przy dodawaniu kolejnych predyktorów. Wyznaczany zgodnie z Równaniem 6.11: 

 

                   (6.11) 

gdzie: 

n – liczba obserwacji; 

p – liczba predyktorów. 
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7. Część badawcza  

W dotychczasowych rozdziałach pracy przedstawiono zagadnienia związane z budową, 

technologią wytwarzania, metodami testowania oraz jednorodnością opon. Omówiono  

także aktualne kierunki badań opon samochodowych, ze szczególnym uwzględnieniem 

rosnącego znaczenia metod uczenia maszynowego, a także wskaźników umożliwiających 

ocenę modeli predykcyjnych. Analiza ta stanowi podstawę do podjęcia badań 

ukierunkowanych na praktyczne wykorzystanie wspomnianych metod obliczeniowych  

w doskonaleniu procesów produkcyjnych. Celem i hipotezą niniejszej rozprawy doktorskiej są: 

 

Cel: 

Opracowanie modelu generującego w czasie rzeczywistym wartości stożkowatości opon  

na podstawie danych wejściowych z procesu ich konfekcji. 

 

Hipoteza: 

Na etapie pomiaru zmiennych wejściowych komponentów składowych danej opony podczas 

procesu konfekcji możliwa jest skuteczna predykcja jej stożkowatości. 

 

W części badawczej skoncentrowano się na działaniach dążących do opracowania modelu 

przewidującego stożkowatość opon stanowiącej istotny parametr jakościowy. Przekroczenia  

jej limitu znajdują się wysoko w hierarchii problemów produkcyjnych. Zmienność tej wielkości 

pozostaje w dużej mierze konsekwencją właściwości i rozmieszczenia materiałów używanych 

na etapie konfekcji, co wskazuje na możliwość prognozowania jej wartości na podstawie 

pomiarów wykonywanych w trakcie tego procesu. 

Celem badań jest opracowanie modelu predykcyjnego umożliwiającego przewidywanie 

stożkowatości opon na podstawie danych pomiarowych uzyskiwanych w procesie konfekcji. 

Sformułowanie „skuteczna predykcja” w niniejszej rozprawie, jest rozumiane jako zdolność 

modelu do prawidłowego przewidzenia, czy opona znajdzie się w narzuconym indywidualnie 

dla niej limicie stożkowatości. W tej części pracy przedstawiono charakterystykę danych 

wykorzystanych w badaniach, metodykę ich przetwarzania oraz zestaw modeli uczenia 

maszynowego poddanych analizie porównawczej. Omówiono także wyniki przeprowadzonych 

badań oraz dokonano oceny praktycznych możliwości wdrożenia opracowanego rozwiązania 

w warunkach przemysłowych. Z myślą o przedstawieniu logiki działań podejmowanych  
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w części badawczej, w Tabeli 7.1. zaprezentowano poszczególne jej etapy dążące do uzyskania 

zamierzonego celu. 

 

Tabela 7.1. Etapy realizowanych działań części badawczej pracy doktorskiej (opracowanie własne) 

Lp. Etap prac Uzasadnienie postepowania 

1 

Omówienie sposobu rejestracji 

danych wejściowych i danych 

wejściowych. 

Przedstawienie przedmiotu badań  

oraz określenie obszaru realizowanych prac  

na tle całego procesu produkcji opon. 

2 

Opis dotychczasowego przepływu 

danych wejściowych  

i wyjściowych  

w przedsiębiorstwie. 

Zaprezentowanie stanu wejściowego  

(przed rozpoczęciem badań i wdrożeniem 

opracowanego narzędzia). 

3 

Przedstawienie uzasadnienia 

wyboru zmiennych wejściowych, 

przygotowanie i eksploracyjna 

analiza danych zbiorów I i V. 

Właściwy dobór zmiennych wejściowych  

do modelu predykcji stożkowatości  

dla skrajnych rozmiarów opon z portfolio 

możliwości produkcyjnych maszyn  

VMI MAXX.  

4 

Poszukiwanie odpowiednich 

kryteriów porównawczych  

dla modeli dedykowanych  

do problemów regresji. 

Rzetelna ocena trenowanych modeli, 

odnalezienie mierników stanowiących 

mianownik doboru modelu do dalszych 

kroków badawczych. 

5 
Analiza zastosowania regresji 

liniowej wielu zmiennych. 

Określenie charakteru badanych powiązań, 

uzasadnienie użycia metod do testowania 

zależności nieliniowych. 

6 
Analiza zastosowania modelu 

MLP. 

Obserwacja efektu modelowania uzyskanego 

za pomocą sztucznych sieci neuronowych. 

7 
Analiza zastosowania modeli 

opartych na drzewach decyzyjnych. 

Zwiększenie puli porównawczej 

zastosowanych metod poprzez uzyskanie 

rezultatu modelowania z wykorzystaniem 

drzew decyzyjnych. 

8 
Analiza dotychczasowych 

wyników 

Ocena i wytypowanie najlepszego modelu  

z zastosowaniem 5 zmiennych wejściowych. 
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9 
Dodanie szóstej zmiennej 

wejściowej do modelowania. 

Osiągnięcie szerszej informacji zwrotnej  

z procesu konfekcji opon, zwiększenie precyzji 

predykcji uzyskanych modeli, powtórna 

weryfikacja osiągniętych rezultatów. 

10 

Obserwacja zachowania modelu na 

nieznanych zbiorach danych (II, III, 

IV, VI) pochodzących z produkcji 

szerszej grupy rozmiarów opon. 

Ocena działania modelu dla pośrednich 

wielkości rozmiarów opon i jego 

uniwersalności w stosunku do charakteru 

produkcji przedsiębiorstwa. Walidacja modelu 

dedykowanego do wdrożenia  

w przedsiębiorstwie poprzez osiągnięcie 

zsyntetyzowanych wniosków. 

 

7.1 Przedmiot badań 

7.1.1 Pomiary komponentów składowych opony na maszynie  

VMI MAXX 

W tym podrozdziale przedstawiono sposób pomiarów materiałów, których rezultaty  

są istotne dla prawidłowego działania ostatecznej wersji modelu. Maszyna konfekcyjna  

VMI MAXX wykonuje pomiary komponentów składowych opony podczas I fazy konfekcji  

w następujący sposób: 

 

1) Zespół PA 

Pomiar długości i szerokości zespołu PA odbywa się na pasie przenośnika bezpośrednio 

przed jego nałożeniem na bęben karkasu (Rysunek 7.1.).  

Za pomiar długości odpowiada system wykrywania krawędzi początku i końca materiału 

składający się z rolki detekcji oraz fotokomórki mierzy długość materiału. Fotokomórka 

wykrywa krawędzie materiału, natomiast enkoder w trakcie ruchu przenośnika  

z umieszczonym na nim materiałem zlicza ilość obrotów rolki detekcji pomiędzy napotkanymi 

krawędziami. Oprogramowanie maszyny przelicza obroty na długość liniową [mm] materiału, 

która następnie zapisywana jest w Bazie Danych Produkcyjnych maszyny VMI MAXX. 

Pomiar szerokości natomiast przeprowadzany jest przez system prowadzenia karkasu 

składający się z czterech kamer zamontowanych w stałych miejscach, które skanują krawędzie 

materiałów. Próbki pomiarowe pobierane są podczas transportu materiału zespołu PA  
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z przenośnika noża na przenośnik aplikujący, które następnie zapisywane są w Bazie Danych 

Produkcyjnych maszyny VMI MAXX. Dodatkowo, dzięki tym pomiarom system sterownika 

prowadzenia karkasu może prawidłowo zrównać bęben karkasu z aplikatorem. 

 

Rysunek 7.1. Aplikator karkasu: 1 - rolka piankowa, 2 - detektor krawędzi początku i końca materiału,  

3 - system prowadzenia karkasu, 4 - silnik napędowy, 5 - pas przenośnika (opracowanie własne  

na podstawie materiałów własnych przedsiębiorstwa) 

 

2) Opasania i bieżnik 

Pomiary długości opasania 1, opasania 2 oraz bieżnika odbywają się w analogiczny sposób 

na dedykowanych dla nich przenośnikach. Za pomiar szerokości opasania 1, opasania 2  

oraz bieżnika a także ich prawidłowe wycentrowanie na bębnie B&T odpowiedzialne  

są dedykowane im systemy prowadzenia. Ze względu na podobieństwo zasady 

przeprowadzania pomiarów dla tych materiałów poniżej zostanie ona omówiona na przykładzie 

materiału bieżnika. 

Urządzenie pomiaru długości bieżnika znajduje się nad przenośnikiem podającym materiał 

bieżnika do przenośnika noża (Rysunek 7.2.). Urządzenie pomiaru długości składa się z rolki 

wykrywania krawędzi i fotokomórki. Przenośnik noża jest wyposażony w silnik sterowany 
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częstotliwościowo, natomiast przenośnik podający jest wyposażony w serwonapęd.  

Za transport materiału do przenośnika noża odpowiadają pracujące razem dwa napędy.  

Gdy krawędź materiału styka się z rolką wykrywania krawędzi, fotokomórka aktywuje  

się, a sterownik serwomotoru zaczyna zliczać impulsy silnika do chwili osiągnięcia wymaganej 

długości. Wynik dokładnego pomiaru zapisywany jest w Bazie Danych Produkcyjnych 

maszyny VMI MAXX. W uproszczeniu: wymagana długość = odległość nóż/fotokomórka 

(stała) + impulsy silnika. Po osiągnięciu wymaganej nastawy transport materiału  

jest zatrzymywany, a nóż tnie materiał. 

 

Rysunek 7.2. Zespół przenośników bieżnika: 1 – materiał, 2 - urządzenie pomiaru długości, 3- silnik 

napędowy (przenośnik podający), 4 - czujnik zbliżeniowy, 5 - rolka wykrywania krawędzi, 6 – przenośnik, 

7 - silnik napędowy (przenośnik noża) (opracowanie własne na podstawie materiałów własnych 

przedsiębiorstwa) 

 

System prowadzenia bieżnika (Rysunek 7.3.A) odpowiada za pomiar szerokości materiału 

bieżnika oraz jego prawidłowe wycentrowanie na bębnie B&T. Na przenośniku aplikującym 

znajduje się mała szczelina, nad którą zamontowana jest kamera, a pod nią – listwa LED. 

Światło LED ułatwia kamerze generowanie obrazów, które następnie są wykorzystywane  

do wykrywania materiału na przenośniku. Koder napędzany taśmą przenośnika generuje 
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impulsy informujące kamerę o momencie zrobienia zdjęcia. Dzięki temu każde zdjęcie jest 

wykonywane w cyklicznie ustalonej odległości (zgodnie z narzuconą częstotliwością 

próbkowania). Wartości zmierzone przez kamerę są wysyłane do kontrolera PLC  

oraz zapisywane w Bazie Danych Produkcyjnych maszyny VMI MAXX. Kontroler  

PLC wykorzystuje je do aktywnego centrowania materiału na bębnie B&T poprzez 

przesuwanie go na boki (Rysunek 7.3.B). 

 

Rysunek 7.3. System prowadzenia bieżnika (A): 1 – PLC, 2 – kamera, 3 – koder, 4 - listwa LED, 5 – bęben 

BT. Aktywne centrowanie materiału na bębnie B&T (B) (opracowanie własne na podstawie  

materiałów własnych przedsiębiorstwa) 

 

7.1.2 Pomiary wielkości opisujących jednorodność opon  

na maszynach TUO i Rim Flow oraz dotychczasowy  

przepływ danych 

Po procesie wulkanizacji, opony transportowane są przenośnikami taśmowymi 

bezpośrednio do maszyn służących do pomiaru jednorodności (TUO i Rim Flow). Wielkości 
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opisujące jednorodność opon mierzone są zgodnie z normą (Polski Komitet Normalizacyjny, 

2002) w warunkach określonych wymaganiami klienta (opony OE) lub w aktualnej wersji 

(ETRTO, 2025) (dla opon TRADE). Wszystkie rezultaty zapisywane są w Bazie Danych UNIF. 

Dotychczasowy przepływ danych w przedsiębiorstwie został przedstawiony na Rysunku 7.4. 

Przed zapisem w dedykowanych bazach danych zarówno dane wejściowe jak i dane wyjściowe 

ulegają przetworzeniu do postaci narzuconej przez Dział TS (Dział Technologiczny)  

aby sposób ich uporządkowania odpowiadał bieżącym potrzebom przedsiębiorstwa,  

np. w celu uzyskania jak najszybszej odpowiedzi i wypracowania środków zaradczych  

na napotkane problemy produkcyjne i pojawiające się defekty opon. 

 

Rysunek 7.4. Dotychczasowy przepływ danych wejściowych i wyjściowych w przedsiębiorstwie 

(opracowanie własne) 

 

Ze względu na zaistnienie nowej możliwości rejestracji danych wejściowych na maszynach 

konfekcyjnych VMI MAXX, którymi są rezultaty pomiarów wymiarowych komponentów 
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składowych opony, jako wielkość będącą przedmiotem predykcji modelu stanowiącego 

przedmiot badań niniejszej dysertacji przyjęto stożkowatość. Wynika to z faktu,  

iż przekroczenia limitu tej wielkości opisującej jednorodność opon wynikają gównie  

z zaburzenia symetrii materiałów względem osi opony oraz niedotrzymania specyfikacji  

ich szerokości (Nakajima, 2019).  

7.2 Gromadzenie, przygotowanie i analiza danych 

7.2.1 Rejestracja i wstępne przetwarzanie danych 

Dążąc do rozwiązania problemu zdefiniowanego w celu i hipotezie badawczej niniejszej 

pracy doktorskiej rozpoczęto od  zweryfikowania dokładności pomiarowej czujników maszyny 

VMI MAXX odpowiadających za zbiór danych wejściowych do budowanego modelu.  

W przypadku wykrycia rozbieżności pomiędzy pomiarem fizycznym a wynikiem podawanym  

przez oprogramowanie, przeprowadzono kalibrację danego czujnika zgodnie z instrukcją 

techniczną  maszyny VMI MAXX. 

Spośród wszystkich wielkości zapisywanych przez maszynę VMI MAXX dla każdej sztuki 

opony, wybrano 5 zmiennych wejściowych (Tabela 7.2.) zasugerowanych przez eksperta 

dziedzinowego. Zmienne te wybrano mając na uwadze istotę zjawiska stożkowatości,  

które opisuje utrzymanie zadanego toru jazdy podczas ruchu opony. W nowoczesnych 

konstrukcjach opon odpowiadają za to głównie bieżnik (zapewniający kontakt opony  

z podłożem) oraz opasania (zapewniające sztywność opony) (Rodgers i Waddell, 2005). 

Zaburzenie symetrii tych materiałów względem osi opony i niedotrzymanie specyfikacji  

ich szerokości to główne powody przekraczania limitu stożkowatości (Nakajima, 2019).  

Co więcej, wymienione komponenty stanowią ok. 50% całkowitej masy opony o konstrukcji 

standardowej4, zatem mają one znaczący wpływ na ewentualne przesunięcie jej środka masy. 

Wzięto także pod uwagę szerszy sens fizyczny zjawiska stożkowatości, który został  

już przybliżony w Rozdziale 4.3.5 niniejszej dysertacji. Kluczowy wpływ zmiennych 

wymienionych w Tabeli 7.2. został dodatkowo potwierdzony wieloletnim doświadczeniem 

przedsiębiorstwa w codziennym eliminowaniu defektów oraz odnajdowania ich przyczyn  

w dużej liczbie rozmiarów opon. Ponadto w celu uzasadnienia wyboru zmiennych, 

przeprowadzono eksploracyjną analizę danych. 

 

4 W kontekście rozważań niniejszej rozprawy doktorskiej, „konstrukcja standardowa opony” wskazuje na oponę 

niezawierającą w swojej budowie wzmacniającej wkładki runflatowej, ponieważ tylko dla takiego typu rozmiarów 

opon realizowane były badania. 
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Tabela 7.2. Zmienne wejściowe wybrane przez eksperta dziedzinowego (opracowanie własne) 

ZMIENNA WEJŚCIOWA OPIS 

BR1_WIDTH_MEASURED 

Średnia wartość pomiaru szerokości 

pierwszego opasania dedykowanego do danej 

opony zmierzona przez system prowadzenia 

opasań [mm] 

BR2_WIDTH_MEASURED 

Średnia wartość pomiaru szerokości drugiego 

opasania dedykowanego do danej opony 

zmierzona przez system prowadzenia  

opasań [mm] 

TD_WIDTH_MEASURED 

Średnia wartość pomiaru szerokości bieżnika 

dedykowanego do danej opony zmierzona  

przez system prowadzenia bieżnika [mm] 

1BAP_BODY_AVG_OFF_CENTER 

Średnia wartość przecentrowania pierwszego 

opasania dedykowanego do danej opony  

w odniesieniu do lasera centralnego  

bębna B&T [mm] 

2BAP_BODY_AVG_OFF_CENTER 

Średnia wartość przecentrowania drugiego 

opasania dedykowanego do danej opony  

w odniesieniu do lasera centralnego  

bębna B&T [mm] 

 

Do badań wykorzystano zbiory danych przedstawione w Tabeli 7.3. 

 

Tabela 7.3. Zbiory danych używane do badań (opracowanie własne) 

ZBIÓR 

DANYCH 
ROZMIAR OPONY 

LICZBA REJESTRÓW 

(OPON) W ZBIORZE 

ZAKRES CZASU 

PRODUKCJI 

I 285/35 R22 106Y XL 7006 07-09.2021 

II 285/35 R22 106Y XL 14352 03-06.2024 

III 215/50 R18 92W 10239 02-06.2024 

IV 235/55 R19 101T 10212 02-06.2024 

V 205/55 R19 97V 6937 02-05.2024 

VI 225/45 R18 91W 10284 03.2024 
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Dane do wymienionych zbiorów zostały pobrane z historycznego rejestru, powstałego 

podczas rzeczywistej produkcji masowej opon w przedsiębiorstwie. Schemat rejestracji  

i przygotowania danych na tle przepływu procesu produkcji opon przedstawiono  

na Rysunku 7.5. Pomiary wymiarów komponentów składowych opony z etapu konfekcji 

(przeprowadzane przez maszynę VMI MAXX) oraz wyniki pomiarów stożkowatości opony  

z etapu inspekcji końcowej (wykonywane przez maszyny Rim Flow i TUO) zostały 

zarejestrowane w dedykowanych bazach danych. Dla każdego badanego rozmiaru opony 

zintegrowano dane z tych baz poprzez zestawienie wybranych zmiennych wejściowych  

ze zmienną wyjściową dla danego kodu kreskowego (sztuki opony).  

 

 

Rysunek 7.5. Schemat rejestracji i przygotowania danych na tle procesu produkcji opon  

(opracowanie własne) 



137 

Zmienne wejściowe każdego zbioru były zawsze rejestrowane przez tę sama maszynę 

konfekcyjną (dane produkcji z jednej maszyny dla danego rozmiaru opon). Nieścisłości  

w danych zostały skorygowane (oczyszczanie danych) – usunięto wartości zduplikowane  

(z powodu np. drugiego lub kolejnego pomiaru jednorodności) oraz wiersze zawierające puste 

komórki (pojawiające się dlatego, że np. opona przez wzgląd na inne defekty nie dotarła  

do etapu pomiaru jednorodności). W przypadku danych o wartości dyskusyjnej, decyzję  

o naprawieniu / usunięciu rekordu podejmowano na podstawie analizy statystycznej  

oraz znajomości problemów produkcyjnych lub jakościowych występujących w danym 

okresie. Dla wszystkich testowanych metod dane (każda zmienna wejściowa i wyjściowa) 

zostały znormalizowane do zakresu <0; 1>, ponieważ powinny charakteryzować  

się tym samym rzędem wielkości, aby zapewnić wiarygodne porównanie różnych modeli. 

Przygotowane w ten sposób dane zostały implementowane do wszystkich modeli badanych  

w ramach niniejszej dysertacji.  

 

7.2.2 Eksploracyjna analiza danych 

W Tabeli 7.4. zawarto limity stożkowatości dla badanych zbiorów danych, które są zgodne  

z wymaganiami klienta lub wewnętrznymi standardami przedsiębiorstwa. 

 

Tabela 7.4. Limity stożkowatości badanych zbiorów (opracowanie własne) 

ZBIÓR 

DANYCH 
ROZMIAR OPONY LIMIT CON [N] 

I 285/35 R22 106Y XL <-30; 30> 

II 285/35 R22 106Y XL <-40; 20> 

III 215/50 R18 92W <-35; 45> 

IV 235/55 R19 101T <-45; 35> 

V 205/55 R19 97V <-95; 95> 

VI 225/45 R18 91W <-38; 62> 

 

W Tabeli 7.5. przedstawiono tolerancje wymiarowe zmiennych wejściowych,  

które są zgodne z procesem konfekcji i mają zastosowanie we wszystkich badanych zbiorach  

danych (I-VI). 
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Tabela 7.5. Tolerancje wymiarowe zmiennych wejściowych (opracowanie własne) 

ZMIENNA WEJŚCIOWA [mm] TOLERANCJA [mm] 

BR1_WIDTH_MEASURED +/-3 

BR2_WIDTH_MEASURED +/-3 

TD_WIDTH_MEASURED +/-3 

1BAP_BODY_AVG_OFF_CENTER +/-1 

2BAP_BODY_AVG_OFF_CENTER +/-1 

 

Przeprowadzono eksploracyjną analizę danych następujących zbiorów: 

1) I – dane dotyczą najszerszego i najcięższego rozmiaru opony spośród wybranych.  

W czasie jego produkcji dochodziło do problemów z utrzymaniem limitu stożkowatości 

(generowanie złomów, dużo wartości odstających), dodatkowo w fabryce miał miejsce 

przestój wakacyjny.  

2) V - dane dotyczą najwęższego i najlżejszego rozmiaru opony spośród wybranych; 

podczas produkcji nie odnotowano większych problemów. 

 

Dane ze zbiorów I i V zostały wybrane jako przedmiot badań i analizy porównawczej 

modeli ze względu na to, że określają spektrum rozmiarów opon produkowanych na maszynach 

VMI MAXX (dane w nich zawarte dotyczą produkcji największego i najmniejszego rozmiaru 

opon). W Tabeli 7.6. zaprezentowano wartości specyfikacyjne komponentów dla zbiorów  

I i V. W tabeli nie uwzględniono przecentrowania opasania 1 i 2, którego domyślna wartość 

specyfikacyjna dla wszystkich omawianych w trakcie badań przypadków wynosi 0. 

 

Tabela 7.6. Wartości specyfikacyjne zmiennych wejściowych (opracowanie własne) 

ZMIENNA WEJŚCIOWA Zbiór I Zbiór V 

BR1_WIDTH_MEASURED [mm] 251 181 

BR2_WIDTH_MEASURED [mm] 241 171 

TD_WIDTH_MEASURED [mm] 308 220 

 

Obliczono następujące wartości podstawowych miar statystycznych zmiennych 

wejściowych i zmiennej wyjściowej dla zbiorów I i V: wartość średnią (AVG), odchylenie 

standardowe (STDEV), wartości maksymalną (MAX) i minimalną (MIN). Wyniki obliczeń 

zostały zestawione w Tabeli 7.7. 
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Tabela 7.7. Miary statystyczne zmiennych wejściowych zbiorów I i V (opracowanie własne) 

Zmienna Miara Zbiór I Zbiór V 

BR1_WIDTH_MEASURED [mm] 

AVG 252.83 181.31 

STDEV 1.62 0.80 

MIN 245.83 176.37 

MAX 257.46 183.73 

BR2_WIDTH_MEASURED [mm] 

AVG 241.85 171.00 

STDEV 1.46 0.83 

MIN 231.00 166.64 

MAX 245.75 173.04 

TD_WIDTH_MEASURED [mm] 

AVG 306.46 220.38 

STDEV 1.12 0.93 

MIN 302.70 215.57 

MAX 310.21 223.74 

1BAP_BODY_AVG_OFF_CENTER 

[mm] 

AVG 0.32 -0.51 

STDEV 1.12 0.34 

MIN -2.87 -1.54 

MAX 2.65 0.32 

2BAP_BODY_AVG_OFF_CENTER 

[mm] 

AVG -0.20 -0.50 

STDEV 1.05 0.40 

MIN -3.43 -1.66 

MAX 2.29 1.41 

Stożkowatość (CON) [N] 

AVG -21.05 -3.26 

STDEV 15.54 5.04 

MIN -66.00 -20.00 

MAX 27.00 15.00 

 

Na podstawie zestawionych wartości można stwierdzić, że proces produkcji rozmiaru  

ze zbioru V charakteryzował się większą stabilnością. Odchylenie standardowe szerokości 

opasań dla zbioru I jest ok. 2-krotnie większe, niż w zbiorze V. Przecentrowania opasań zbioru 

V charakteryzują się ok. 3-krotnie mniejszą wartością odchylenia standardowego w stosunku 

do zbioru I. Podobna sytuacja ma miejsce dla pomiaru zmiennej wyjściowej,  

czyli stożkowatości. 
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Na Rysunkach 7.6. – 7.17. przedstawiono wykresy przebiegu procesu produkcji  

oraz rozkłady empiryczne wartości pomiarów zmiennych wejściowych i zmiennej wyjściowej 

dla zbioru I. Analiza wskazuje, że w obserwowanym okresie 27.6% pomiarów stożkowatości 

przekroczyło jej limity (Rysunki 7.6. i 7.7.). Wartości dodatnie stanowią jedynie 10.2% 

wszystkich pomiarów i zawsze mieszczą się w górnym limicie. Rozkład wyników  

jest stanowczo przesunięty w stronę wartości ujemnych. Warto zauważyć, że 90.9% wyników 

koncentruje się w obszarze od –40[N] do 20[N]. Widoczna jest wyraźna zmienność sygnału  

w czasie – okresy fluktuacji przeplatają się z odcinkami o mniejszej zmienności, co może 

świadczyć o występowaniu cyklicznych zmian w badanym procesie. Możliwe jest 

występowanie trendów lokalnych oraz zmian losowych, które dodatkowo pogłębiają 

niestabilność względem ustalonych limitów. Potwierdza się zatem przypuszczenie,  

że wznowienie produkcji po przestoju wakacyjnym (zakres od próbki nr 3836) daje inne wyniki 

stożkowatości. Obliczono, że nastąpił wzrost średniej wartości do -19[N] w stosunku  

do produkcji przed przestojem, która charakteryzowała się średnią -27[N]. 

 

 

 

Rysunek 7.6. Wyniki pomiarów stożkowatości dla przebiegu procesu produkcji opon ze zbioru I 

(opracowanie własne) 
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Rysunek 7.7. Rozkład empiryczny wartości pomiarów stożkowatości dla zbioru I (opracowanie własne) 

 

Wyniki pomiarów szerokości opasań (Rysunki 7.8., 7.9., 7.10., 7.11.) wskazują, że były  

one produkowane w górnej granicy tolerancji – aż 27.5% opasań 1 i 2.5% opasań 2 przekraczało 

górny limit narzuconej specyfikacji. Rozstęp wynoszący 11.63[mm] dla opasania 1  

i 14.75[mm] dla opasania 2 sugerują niestabilność procesu.  

 

 
Rysunek 7.8. Wyniki pomiarów szerokości opasania 1 dla przebiegu procesu produkcji opon ze zbioru I 

(opracowanie własne) 
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Rysunek 7.9. Rozkład empiryczny wartości pomiarów szerokości opasania 1 dla zbioru I  

(opracowanie własne) 

 

 

 

 

Rysunek 7.10. Wyniki pomiarów szerokości opasania 2 dla przebiegu procesu produkcji opon ze zbioru I 

(opracowanie własne) 
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Rysunek 7.11. Rozkład empiryczny wartości pomiarów szerokości opasania 2 dla zbioru I  

(opracowanie własne) 

 

Pomiary szerokości bieżnika (Rysunki 7.12 i 7.13.) natomiast wskazują, że był wytłaczany 

w dolnej granicy tolerancji – 9.7% pomiarów miało wartość poniżej dolnego limitu 

specyfikacji. Rozdział wartości pomiarowych jest jednak symetryczny względem średniej 

wartości 306.46[mm]. 

 

Rysunek 7.12. Wyniki pomiarów szerokości bieżnika dla przebiegu procesu produkcji opon ze zbioru I 

(opracowanie własne) 
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Rysunek 7.13. Rozkład empiryczny wartości pomiarów szerokości bieżnika dla zbioru I  

(opracowanie własne) 

 

Największe fluktuacje zauważalne są dla przecentrowania opasań 1 i 2 (Rysunki  

7.14., 7.15., 7.16. i 7.17.), których rozkłady empiryczne są wyraźnie rozdzielone na dwie grupy 

dotyczące produkcji przed i po przerwie letniej, kiedy doszło do średniego przesunięcia  

obu opasań w kierunku wartości dodatnich (czyli w prawo na bębnie B&T). Tendencja  

ta może być związana z jednoczesnym przesunięciem średniej wartości pomiarów 

stożkowatości po przestoju – również w kierunku dodatnim. Średnie wartości przecentrowania 

opasania 1 i 2 przed przestojem wynoszą -0.59[mm] i -0.74[mm], natomiast po przerwie 

wynoszą adekwatnie 1.46[mm] i 0.47[mm]. 

  

Rysunek 7.14. Wyniki pomiarów przecentrowania opasania 1 dla przebiegu procesu produkcji opon ze 

zbioru I (opracowanie własne) 
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Rysunek 7.15. Rozkład empiryczny wartości pomiarów przecentrowania opasania 1 dla zbioru I  

(opracowanie własne) 

 

Dla przecentrowania opasania 1 poza limitem znalazło się 48.0% pomiarów a dla 

przecentrowania opasania 2 zarejestrowano 40.8% przekroczeń. 

 

 

Rysunek 7.16. Wyniki pomiarów przecentrowania opasania 2 dla przebiegu procesu produkcji opon ze 

zbioru I (opracowanie własne) 
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Rysunek 7.17. Rozkład empiryczny wartości pomiarów przecentrowania opasania 2 dla zbioru I  

(opracowanie własne) 

 

Wystąpienie 27.6% wartości pomiarów stożkowatości poniżej limitu dolnego 

jednoznacznie wskazuje na problem jakościowy. Źródła tego odchylenia mogą być zarówno 

systemowe (np. niewłaściwe ustawienia maszynowe), jak i losowe (zakłócenia w procesie 

wynikające z innych przyczyn). Na skutek analizy przeprowadzonej przez Dział TS, 

działaniami korygującymi dla tego rozmiaru było m.in. wynegocjowanie u klienta zmiany 

limitów stożkowatości z <-30[N]; 30[N]> na <-40[N]; 20[N]>. Jest to widoczne dla zbioru II  

(jego limity oraz zakres produkcji zostały przedstawione w Tabelach 7.3 i 7.4), który został 

dodany do grupy badanych zbiorów, w celu potwierdzenia wypracowanych wniosków  

(a także działania modelu) dla tego samego rozmiaru opon, produkowanego jednak w innych 

warunkach i okresie. 

Dla zbioru I wykonano dodatkowo macierz wykresów punktowych badanych zmiennych 

wejściowych i zmiennej wejściowej, którą zaprezentowano na Rysunku 7.18. Każda kolumna 

i każdy wiersz odpowiada jednej zmiennej (np. we_br1_width_measured, 

we_1bap_body_avg_off_center, wy_con itd.). Na histogramach umieszczonych po przekątnej 

rysunku, pokazano rozkłady poszczególnych zmiennych. Poza przekątną widoczne są wykresy 

punktowe, które ilustrują zależności liniowe między parami zmiennych. Czerwona linia  

to dopasowana liniowa regresja trendu, która pozwala ocenić kierunek korelacji. Większość 

zależności wygląda na słabe – chmury punktów są szeroko rozproszone, a linie regresji mają 

niewielkie nachylenie. Pojawiają się zarówno korelacje dodatnie (linia rosnąca, np. między 
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we_br1_width_measured a we_br2_width_measured), jak i ujemne (linia malejąca, np. między 

we_1bap_body_avg_off_center a we_td_width_measured). Niektóre zmienne praktycznie  

nie wykazują związku (linie poziome, gęsta „chmura” punktów). Widać spory rozrzut – 

korelacje są raczej słabe, trudno zatem mówić o silnych zależnościach liniowych. Oznacza to, 

że badane zależności nie są oczywiste i sugeruje to zastosowanie złożonych metod 

analitycznych w toku badań. Korelacje wybranych zmiennych objaśniających nie pokrywają 

się pomiędzy sobą, co rokuje korzystnie dla procesu trenowania modelu i uniknięcia  

jego przeuczenia.  

 

 

Rysunek 7.18. Macierz wykresów punktowych zmiennych wejściowych i zmiennej wejściowej zbioru I 

(opracowanie własne) 

 

Na Rysunkach 7.19. – 7.30. przedstawiono wykresy przebiegu procesu produkcji  

oraz rozkłady empiryczne wartości pomiarów zmiennych wejściowych, a także zmiennej 

wyjściowej dla zbioru V. Obserwacja wykresów wskazuje, że wartości pomiarów 

stożkowatości w tym zbiorze (Rysunki 7.19. i 7.20.) koncentrują się wokół wartości 0  
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z symetrycznym rozkładem populacji. W porównaniu ze zbiorem I nie występują tu zmienności 

sygnału w czasie, co świadczy o zdecydowanie większej stabilności procesu zbioru V.  

 

 

Rysunek 7.19. Wyniki pomiarów stożkowatości dla przebiegu procesu produkcji opon ze zbioru V 

(opracowanie własne) 

 

 

Rysunek 7.20. Rozkład empiryczny wartości pomiarów stożkowatości dla zbioru V (opracowanie własne) 
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Szerokości opasań (Rysunki 7.21., 7.22., 7.25., 7.26.) oraz bieżnika (Rysunki 7.29. i 7.30.) 

podczas produkcji zachowują się bardzo powtarzalnie. Dochodzi jedynie do sporadycznych 

przekroczeń limitów zadanych w specyfikacji. Średnie wartości oscylują wokół 

specyfikacyjnych i rozdział całej populacji jest względem nich symetryczny. Podobnie można 

skomentować wartości przecentrowania opasań 1 i 2 (Rysunki 7.23., 7.24., 7.27. i 7.28.),  

gdzie dochodzi jedynie do pojedynczych impulsów przekraczających limity. 

 
Rysunek 7.21. Wyniki pomiarów szerokości opasania 1 dla przebiegu procesu produkcji opon ze zbioru V 

(opracowanie własne) 

 

 

Rysunek 7.22. Rozkład empiryczny wartości pomiarów szerokości opasania 1 dla zbioru V  

(opracowanie własne) 
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Rysunek 7.23. Wyniki pomiarów przecentrowania opasania 1 dla przebiegu procesu produkcji opon ze 

zbioru V (opracowanie własne) 

 

 

 

 

Rysunek 7.24. Rozkład empiryczny wartości pomiarów przecentrowania opasania 1 dla zbioru V  

(opracowanie własne) 
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Rysunek 7.25. Wyniki pomiarów szerokości opasania 2 dla przebiegu procesu produkcji opon ze zbioru V 

(opracowanie własne) 

 

 

 

 

Rysunek 7.26. Rozkład empiryczny wartości pomiarów szerokości opasania 2 dla zbioru V  

(opracowanie własne) 
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Rysunek 7.27. Wyniki pomiarów przecentrowania opasania 2 dla przebiegu procesu produkcji opon  

ze zbioru V (opracowanie własne) 

 

 

 

 

Rysunek 7.28. Rozkład empiryczny wartości pomiarów przecentrowania opasania 2 dla zbioru V  

(opracowanie własne) 
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Rysunek 7.29. Wyniki pomiarów szerokości bieżnika dla przebiegu procesu produkcji opon ze zbioru V 

(opracowanie własne) 

 

 

 

 

Rysunek 7.30. Rozkład empiryczny wartości pomiarów szerokości bieżnika dla zbioru V  

(opracowanie własne) 

 



154 

Zachowanie powtarzalności procesu oraz jakości materiałów na poziomie  

jaki reprezentował zbiór V, poskutkowało całkowitym brakiem odpadów z powodu 

przekroczenia limitu stożkowatości. Szeroki limit CON tego rozmiaru wynika  

z tego, że jest on dedykowany na rynek TRADE (wtórny). Ze względu na mniejszy gabaryt 

tego rozmiaru opon i jego podzespołów, utrzymanie wyników stożkowatości nawet w zakresie  

<-20[N]; 15[N]>  było zdecydowanie łatwiejsze, niż w przypadku rozmiaru ze zbioru I. 

Przeprowadzona eksploracyjna analiza danych pozwoliła na zrozumienie struktury, 

właściwości i informacji ukrytych w badanych zbiorach. Wpłynęło to na lepsze poznanie 

danych, identyfikację trendów, wykrycie anomalii i przygotowanie danych do dalszej analizy 

oraz działań ukierunkowanych na wybór odpowiedniego modelu dla opisywanego problemu. 

7.3 Trenowanie, ewaluacja i wybór modelu 

7.3.1 Kryteria doboru mierników do oceny działania badanych 

modeli 

Wybierając najlepszy możliwy model do rozwiązania problemu produkcyjnego 

stanowiącego przedmiot niniejszej dysertacji, należy wziąć pod uwagę możliwość  

jego wdrożenia do istniejącej infrastruktury IT. Ważne jest dopasowanie wymaganej mocy 

obliczeniowej do sprzętu używanego w przedsiębiorstwie. Istotne są również przewidywane 

koszty wdrożenia. Kluczowym jest zdefiniowanie pojęcia „dokładności” dla każdego 

indywidualnego przypadku w celu określenia modelu, który będzie najbardziej odpowiedni  

dla charakteru problemu. Ponadto czas reakcji modelu na podstawie danych otrzymanych 

online powinien gwarantować płynność przebiegu procesu produkcji.  

Dobierając mierniki oceny skuteczności badanych modeli, odniesiono się do różnych typów 

problemów poruszanych w literaturze, zwracając uwagę na zastosowanie odpowiednich miar 

ewaluacyjnych dostosowanych do ich specyfiki. Autorzy (Badora i in., 2021) zamierzając 

przewidywać długość pęknięć zmęczeniowych turbin gazowych, porównali wielokrotną 

regresję liniową i wielomianową, las losowy, metody kernel-based, AdaBoost, XGBoost  

i sztuczne sieci neuronowe w kontekście małego zestawu danych (około 30 obserwacji). 

Okazało się, że model regresji wielomianowej był najlepszym modelem, biorąc pod uwagę 

wynik walidacji krzyżowej i znormalizowany RMSE oceniony w stosunku do zestawu 

testowego. Niemniej jednak nie był on wystarczająco wrażliwy na zmiany parametrów 

wejściowych. Nie doszacował również najdłuższych obserwacji, co było najczęstszą wadą 

wszystkich utworzonych modeli. Model regresji AdaBoost przewidział te pęknięcia  
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z najniższym znormalizowanym RMSE. Badanie omawiające kontrolę wymiarową spawanych, 

tłoczonych ramion stalowych (Kadnár i in.,2023) doprowadziło do podobnych wniosków. 

Najmniejszy średni bezwzględny błąd procentowy MAPE osiągnięto dla ANN i zauważono,  

że dokładność modelu wzrastała wraz ze wzrostem rozmiaru zestawu danych treningowych; 

tymczasem zwiększenie liczby danych ma odwrotny efekt w przypadku regresji liniowej.  

W (Biyeme i in., 2023) wybrano algorytmy regresji i sieci neuronowe w celu określenia 

wartości przepływu informacji w modelu łańcucha produkcyjnego. Kryteriami 

porównawczymi w tym badaniu były MAE, MSE, RMSE i R2. Zauważono, że wielkość  

i charakter produkcji firmy miały znaczący wpływ na wybór czynników oceny do analizy 

porównawczej. Kolejne badanie zajmujące się podobnym obszarem tematycznym 

(Rosienkiewicz, 2021) koncentrowało się na hybrydowych modelach prognozowania  

dla systemów produkcyjnych — konkretnie w odniesieniu do trzech obszarów systemu 

produkcyjnego: planowania produkcji, konserwacji i kontroli jakości. Potwierdziło ono,  

że firmy produkcyjne są skłonne wybrać właściwą metodę prognozowania dla swoich 

konkretnych potrzeb. Ocenę dokładności analizowanych metod prognozowania oparto  

na średniej R2, którą obliczono dla każdego studium przypadku osobno. W innym badaniu, 

dotyczącym prognozowania niezawodności silników Diesla (Viana i in., 2023), porównano  

las losowy i MLP. Wybrano RMSE, argumentując że jest on metryką powszechnie stosowaną  

w procedurze walidacji krzyżowej.  

Na podstawie analizy literatury traktującej o budowaniu modeli uczenia maszynowego, 

wybrano dwa5 mierniki oceny: R2 i RMSE. Wyniki uzyskane z modeli, których działanie 

zweryfikowano w niniejszej pracy doktorskiej porównano i zestawiono ze sobą mając również 

na względzie wydajność końcowego systemu. Biorąc pod uwagę różne mechanizmy działania 

metod stosowanych w badaniach, trudno było sprowadzić uzyskane za ich pomocą rezultaty  

do „wspólnego mianownika”, aby wiarygodnie porównać ich skuteczność (możliwość 

rozwiązania opisanego problemu). Wybrane mierniki posłużyły do oceny zdolności 

generalizacyjnych modelu. Zdecydowano, że wybór odpowiedniej metody ML do rozwiązania 

problemu regresji w tym przypadku, nie powinien być sztywno oparty tylko na jednym 

mierniku.  

 

5 Analizując zastosowanie modelu MLP dodano współczynnik korelacji liniowej r jedynie dla oceny poprawności 

wytrenowania sieci neuronowych. 



156 

7.3.2 Analiza zastosowania regresji liniowej wielu zmiennych 

W początkowej fazie badań zastosowano regresję liniową wielu zmiennych jako narzędzie 

wspomagające potwierdzenie wniosków płynących z eksploracyjnej analizy danych.  

Jej wykorzystanie było uzasadnione kilkoma względami. Po pierwsze, model ten służy 

uzyskaniu stosunkowo prostych zależności pomiędzy zmienną objaśnianą a zestawem 

zmiennych niezależnych, co pozwala na identyfikację potencjalnych predyktorów o istotnym 

znaczeniu. Po drugie, regresja liniowa pozwala na ocenę kierunku oraz przybliżonej siły 

związków, co wspiera weryfikację wstępnych hipotez badawczych. Dodatkowo, model liniowy 

stanowi punkt odniesienia (tzw. model bazowy), względem którego można porównywać 

efektywność i trafność użytych na późniejszych etapach bardziej złożonych metod.  

W konsekwencji, wykorzystanie regresji liniowej sprzyja wykrywaniu problemów 

diagnostycznych, np. współliniowość zmiennych, co z kolei dostarcza informacji niezbędnych 

do dalszego planowania badań (Puchalski i Warsza, 2022). 

 W celu przeprowadzenia analizy z zastosowaniem regresji liniowej wielu zmiennych 

zastosowano podział na podzbiory treningowy (70%) i testowy (30%), bazując na danych 

zbiorów I i V. Wyniki aplikacji modelu regresji liniowej wielu zmiennych przedstawiono  

w Tabeli 7.8. 

 

Tabela 7.8. Wartości RMSE i R2 dla modelu regresji liniowej wielu zmiennych wykorzystującego dane  

ze zbiorów I i V (opracowanie własne) 

ZBIÓR I ZBIÓR V 

RMSE R2 RMSE R2 

0.16 0.02 0.14 0.04 

 

Uzyskane wyniki wskazują na bardzo ograniczoną zdolność modelu liniowego  

do wyjaśniania zmienności w badanych zbiorach danych. W przypadku zbioru I wartość 

współczynnika determinacji R2 oznacza, iż model tłumaczy zaledwie 2% całkowitej wariancji, 

podczas gdy dla zbioru V wynik pozostaje równie niski. Otrzymane rezultaty wskazują,  

iż regresja liniowa nie jest w stanie odzwierciedlić kluczowych zależności między badanymi 

zmiennymi. Niska jakość dopasowania oraz obecność niewyjaśnionej zmienności stanowią 

silne przesłanki do sięgnięcia po bardziej zaawansowane techniki modelowania, umożliwiające 

badanie związków nieliniowych i interakcji wyższego rzędu, które potencjalnie mogą lepiej 

oddawać złożoność analizowanego procesu. 
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7.3.3 Analiza zastosowania modelu MLP 

Ze względu na sposób postawienia celu badawczego niniejszej dysertacji, do uzyskania 

odpowiedzi na pytanie badawcze można użyć perceptronu wielowarstwowego MLP, który jest 

stosunkowo mało skomplikowaną i szybką metodą uczenia maszynowego. Służy  

on do budowania modeli przy użyciu oprogramowania naukowego, które są automatycznie 

optymalizowane w celu uzyskania możliwie najlepszego wyniku pod względem dokładności, 

minimalizacji RMSE i szybkiego osiągnięcia zbieżności algorytmów (przy jak najkrótszym 

czasie obliczeń i półautomatycznej opinii podawanej przez modele / system). Należy tutaj także 

podkreślić jego zdolność do uczenia się nieliniowych modeli niemal w czasie rzeczywistym 

(nauka online). Perceptron wielowarstwowy reprezentuje algorytm uczenia nadzorowanego, 

który identyfikuje wzorce poprzez trening na zestawie danych, a jego uniwersalność obejmuje 

możliwość uczenia się aproksymatora funkcji nieliniowej dla problemów klasyfikacji  

lub regresji. MLP uczy się na podstawie spadku gradientowego, gdzie gradient obliczany  

jest za pomocą propagacji wstecznej, następnie klasyfikuje minimalizując funkcję straty,  

co daje wektor oszacowań prawdopodobieństwa jako wynik. Warto dodać, że charakteryzuje 

się wszechstronnością zastosowań – z powodzeniem proponowany jest do rozwiązań 

wspomagających np. utrzymanie tempa produkcji (Mohammadi i in., 2018) i jej ciągłości 

(Janikova i Bezak, 2016) oraz do prognozowania jakości i efektywności eksploatacji pojazdów 

samochodowych w systemie usług transportowych (Świderski i in., 2018).  

Dla każdej badanej kombinacji funkcji aktywacji w warstwach ukrytej i wyjściowej 

testowanie i uczenie sieci oparto na jednej ukrytej warstwie, ponieważ propagacja wsteczna  

ma wysoką złożoność czasową. W niniejszym badaniu zastosowano algorytm optymalizacyjny 

Broydena–Fletchera–Goldfarba–Shanno (L-BFGS), gdyż zbiega się on szybciej  

dla mniejszych zestawów danych niż Stochastic Gradient Descent (SGD), który wymaga  

co najmniej 10 000 próbek. Struktura sieci MLP z pięcioma wejściami, różną liczbą neuronów 

w warstwie ukrytej i jednym wyjściem została przedstawiona na Rysunku 7.31. Liczba 

neuronów warstwy ukrytej i parametry sieci zostały wybrane eksperymentalnie. Obejmowało 

to przetestowanie kilkudziesięciu modeli sieci neuronowych MLP z użyciem różnej liczby 

neuronów w warstwie ukrytej (w zakresie od 6 do 20, ale zwiększenie liczby neuronów  

nie poprawiło jakości modeli), różnych kombinacji funkcji aktywacji w warstwie ukrytej  

i wyjściowej oraz różnych czasów uczenia dla tych sieci. 
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Rysunek 7.31. Struktura sieci MLP opracowana w toku badań z pięcioma wejściami, różną liczbą 

neuronów w warstwie ukrytej oraz jednym wyjściem (opracowanie własne) 

 

Badania modeli MLP realizowane były z wykorzystaniem danych ze zbiorów I i V, 

dokonując podziału na 3 podzbiory: treningowy (70%), walidacyjny (15%) i testowy 

(15%). Pomiędzy warstwami wejściową i wyjściową istnieje jedna warstwa nieliniowa,  

tzw. warstwa ukryta, która przekształca wartości z warstwy wejściowej za pomocą ważonego 

sumowania liniowego, po którym następuje nieliniowa funkcja aktywacji (Popescu i in., 2009; 

Ramchoun i in., 2016). W wyborze funkcji aktywacji zarówno w warstwie ukrytej,  

jak i w warstwie wyjściowej priorytetem była ich duża elastyczność, ze względu na charakter 

badanych danych (istotnym było, aby funkcje charakteryzowały się nieliniowością, ciągłością 

i różniczkowalnością). Dla lepszego zobrazowania przebiegu doboru funkcji aktywacji w toku 

badań dla warstw ukrytej i wyjściowej, przedstawiono je w Tabeli 7.9. W tej i kolejnych 

tabelach ujęto tylko te sieci MLP, dla których udało się uzyskać najlepsze rezultaty.  

Najlepszą strukturą sieci wykorzystującej perceptron wielowarstwowy do rozwiązania 

postawionego problemu okazała się sieć MLP 5-8-1, czyli zawierająca 8 neuronów w warstwie 

ukrytej, z funkcjami aktywacji w warstwie ukrytej będącymi tangensami hiperbolicznymi  

i warstwą wyjściową z funkcją wykładniczą. Może to wskazywać na znaczną nieliniowość  

w relacji między zmiennymi wejściowymi i wyjściowymi, a także potwierdza wnioski  

z przeprowadzonej eksploracyjnej analizy danych. 
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Tabela 7.9. Funkcje aktywacji w warstwach ukrytej i wyjściowej testowanych sieci MLP  

(opracowanie własne) 

Struktura sieci 
Funkcja aktywacji w warstwie 

ukrytej 

Funkcja aktywacji w warstwie 

wyjściowej 

MLP 5-9-1 logarytmiczna tangens hiperboliczny 

MLP 5-9-1 tangens hiperboliczny tangens hiperboliczny 

MLP 5-6-1 tangens hiperboliczny liniowa 

MLP 5-9-1 logarytmiczna liniowa 

MLP 5-8-1 tangens hiperboliczny wykładnicza 

 

Proces uczenia się sieci neuronowej polegał na powtarzaniu wzorców i modyfikowaniu wag 

do momentu, gdy sieć osiągała satysfakcjonujący rząd wielkości RMSE po nie więcej niż 1000 

epok (Rysunek 7.32.). 

 

Rysunek 7.32. Zmiana RMSE podczas uczenia sieci (opracowanie własne) 

 

Jednym z powszechnie stosowanych i możliwych do wyznaczenia dla sieci MLP mierników 

oceny jest współczynnik korelacji liniowej r (Tabela 7.10. i 7.11.), który umożliwia ocenę 

stopnia liniowej zależności pomiędzy rzeczywistą wartością zmiennej wyjściowej  

a jej estymacją dokonaną przez sieć. Dzięki temu możliwe jest nie tylko określenie kierunku, 

ale także siły związku pomiędzy wartościami przewidywanymi a obserwowanymi, co stanowi 

cenne uzupełnienie wcześniej wybranych mierników oceny. Przyjmuje on wartości z zakresu 

<−1; 1>, gdzie „1” oznacza doskonałą zgodność. Wartość współczynnika korelacji r bliska 1 



160 

nie zawsze jednak oznacza doskonałe dopasowanie – model może przewidywać wartości 

proporcjonalne, ale przesunięte (np. wszystkie są zaniżone o stałą wartość). Dlatego często 

dodatkowo stosuje się miary takie jak R², MSE, RMSE czy MAE (Hejmanowski i Witkowski 

2015). 

 

Tabela 7.10. Współczynnik korelacji r dla różnych struktur sieci MLP wykorzystujących dane ze zbioru I 

(opracowanie własne) 

Struktura sieci 

Współczynnik 

korelacji r  

(trenowanie) 

Współczynnik 

korelacji r 

(testowanie) 

Współczynnik 

korelacji r 

(walidacja) 

MLP 5-9-1 0.537 0.532 0.570 

MLP 5-9-1 0.569 0.542 0.567 

MLP 5-6-1 0.522 0.505 0.519 

MLP 5-9-1 0.528 0.544 0.568 

MLP 5-8-1 0.545 0.550 0.555 

 

Tabela 7.11. Współczynnik korelacji r dla różnych struktur sieci MLP wykorzystujących dane ze zbioru V 

(opracowanie własne) 

Struktura sieci 

Współczynnik 

korelacji r  

(trenowanie) 

Współczynnik 

korelacji r 

(testowanie) 

Współczynnik 

korelacji r 

(walidacja) 

MLP 5-9-1 0.547 0.542 0.560 

MLP 5-9-1 0.577 0.551 0.577 

MLP 5-6-1 0.529 0.515 0.523 

MLP 5-9-1 0.539 0.555 0.580 

MLP 5-8-1 0.566 0.573 0.585 

 

Dane wykorzystane w badaniu są wynikami pomiarów – zawierają zatem pewną ilość 

szumu pomiarowego (dla pomiarowej aparatury elektronicznej nazywanego również „szumem 

dynamicznym”). W związku z tym współczynnik korelacji obliczony poprawnie  

dla przypadków treningowych nie powinien być bliski 1 (chyba, że szum jest bardzo słaby).  

W przypadku bardzo wysokiego r można podejrzewać, że sieć została przeuczona.  

Takie podejście jest podstawowym sposobem weryfikacji poprawnego działania sieci. 

Przewidywania przetrenowanej sieci będą miały zawyżony współczynnik korelacji próbie 

treningowej. W tym przypadku współczynnik korelacji r dla nowych danych podczas treningu 

był daleki od 1. Dlatego też, przy wyborze sieci należy wziąć pod uwagę jego wartości  

dla zestawów testowych i walidacyjnych. Niski (ale nie ujemny) współczynnik korelacji 

niekoniecznie wskazuje na słabą zdolność sieci do rozwiązania narzuconego problemu,  

ale np. może odzwierciedlać wysoki poziom szumu w danych, z którym sieć radzi sobie  
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tak dobrze jak jest to możliwe dla danego przypadku. Współczynnik korelacji r, który  

w tym badaniu oscyluje wokół wartości przedstawionych w Tabelach 7.10 i 7.11 wskazuje,  

że sieci zostały prawidłowo wytrenowane. Wartości współczynnika korelacji r osiągają 

większą wartość dla zbioru V, co może być związane z większą stabilnością rejestrowanego 

procesu oraz z występowaniem mniejszej liczby wartości odstających.  

Jak już wspomniano, dla wiarygodnej oceny modeli, należy w konsekwencji odnieść  

się do mierników ich oceny. R2 to procent wariancji zmiennej zależnej wyjaśniony  

przez zmienne niezależne. R2 przyjmuje wartości z zakresu <0; 1>, gdzie 1 jest wartością 

najlepiej dopasowaną. W niektórych systemach obliczeniowych R2 może być ujemne, np. gdy 

sieć nie odzwierciedla trendu zmian. Wartości R2 i RMSE dla najlepszych sieci neuronowych 

MLP uzyskanych w badaniach przedstawiono w Tabeli 7.12. 

 

Tabela 7.12. Wartości RMSE i R2 dla najlepszych sieci neuronowych MLP uzyskanych badaniach 

wykorzystujących dane ze zbiorów I i V (opracowanie własne) 

 ZBIÓR I ZBIÓR V 

Struktura sieci RMSE R2 RMSE R2 

MLP 5-9-1 1.266 0.298 1.115 0.415 

MLP 5-9-1 1.074 0.312 1.032 0.379 

MLP 5-6-1 0.411 0.265 0.388 0.335 

MLP 5-9-1 0.953 0.298 0.923 0.368 

MLP 5-8-1 0.177 0.302 0.158 0.436 

 

Błąd średniokwadratowy RMSE mierzy różnicę między wartościami przewidywanymi 

przez model a wartościami obserwowanymi w modelowanym środowisku.  

RMSE jest pierwiastkiem kwadratowym straty kwadratowej przypisującym większą wagę 

większym różnicom, powszechnie stosowanym w prognozowaniu i analizie regresji w celu 

weryfikacji wyników eksperymentów. Jest zawsze nieujemny, a im jego wartość jest bliższa 0, 

tym wyższa jakość modelu. RMSE jest miarą dokładności stosowaną do porównywania błędów 

przewidywań różnych modeli dla danego zestawu danych, ale nie pomiędzy różnymi 

zestawami danych, ponieważ zależy od skali (rzędu wielkości). W celu wykorzystania  

go jako miernika porównującego różne zestawy danych należy zatem zadbać, aby rząd 

wielkości wartości wykorzystywanych przez model w tych zbiorach był taki sam  

(jak postąpiono w przedstawionym toku niniejszych badań). Można zatem powiedzieć,  

że hiperbolizuje on błędy opracowanych modeli. 
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7.3.4 Analiza zastosowania modeli opartych na drzewach 

decyzyjnych 

Podczas badań opisanych w niniejszym podrozdziale niezmiennie bazowano na zbiorach  

I i V podzielonych na 3 podzbiory: treningowy (70%), walidacyjny (15%) i testowy (15%). 

Wykorzystano dwie metody służące do budowania modeli opartych na drzewach decyzyjnych: 

 

1) Modele XGBoost  

XGBoost to zaawansowany model z aplikacjami komercyjnymi działającymi  

w środowiskach Python (Johansson, 2021) i R. Stanowi on rozwiązanie pośrednie wśród metod 

użytych w niniejszej pracy pod względem dokładności i czasu obliczeń. XGBoost  

to skalowalny system wzmacniający typu end-to-end, który jest szeroko stosowany w wielu 

wyzwaniach stawianych przed uczeniem maszynowym. Charakteryzuje się paralelizacją –  

to znaczy, że wykorzystuje równoległą implementację do uruchomienia sekwencyjnego 

procesu budowania drzewa. Jest to możliwe dzięki wymiennym cechom pętli używanych  

do tworzenia „podstawowych komórek” uczących się. Pętla wewnętrzna zlicza cechy, podczas 

gdy pętla zewnętrzna pozyskuje węzły (powiązania) liści drzewa. Zagnieżdżanie pętli 

ogranicza paralelizację, ponieważ nie można uruchomić pętli zewnętrznej bez zakończenia pętli 

wewnętrznej. Równoległe i rozproszone przetwarzanie przyspiesza naukę, co umożliwia 

szybszą eksplorację modelu. XGBoost posiada również zaimplementowaną regularyzację, 

czyli rodzaj „kary” nakładanej na model, jeśli w drzewie decyzyjnym jest zbyt wiele 

końcowych segmentów obserwacji lub liści. Złożoność modelu jest tutaj kontrolowana  

za pomocą technik Ridge i LASSO. Ogólna forma modelu XGBoost składa się z dwóch części. 

Pierwszy składnik – nazywany funkcją straty lub funkcją kosztu – odpowiada  

za minimalizację błędu. Druga część – regularyzacja – pomaga zapobiegać nadmiernemu 

dopasowaniu i kontroluje złożoność modelu. XGBoost wykorzystuje dodatkowo metodę 

walidacji krzyżowej zaimplementowaną w każdej iteracji. Eliminuje to potrzebę rozległego 

programowania i określania dokładnej liczby iteracji stymulacji potrzebnych do wykonania 

jednego przebiegu.  Ponadto korzysta z innych ulepszeń, np. obliczeń „poza rdzeniem”  

(ang. out of core), które wykorzystują przestrzeń dyskową i obsługują ramki danych  

nie mieszczące się w pamięci głównej komputera.  

Na potrzeby badań przeprowadzonych w niniejszej dysertacji, model XGBoost został 

wytrenowany dla różnych wartości parametru ‘maximum depth’ (w zakresie 2÷15) – określa 

on maksymalną głębokość drzewa decyzyjnego w procesie uczenia modelu XGBoost.  
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Dla obu wykorzystywanych zbiorów danych najlepsze wyniki udało się uzyskać dla maximum 

depth równego 8 (Tabele 7.13. i 7.14., Rysunki 7.33. i 7.34.). 

 

Tabela 7.13. Wyniki modelu XGBoost uzyskane dla przebadanego zakresu parametru maximum depth  

z wykorzystaniem danych ze zbioru I (opracowanie własne) 

Miernik 
Maximum depth 

2 3 4 5 6 7 8 9 10 11 12 15 

RMSE 0.1266 0.1214 0.1209 0.1199 0.1176 0.1156 0.1156 0.1160 0.1159 0.1177 0.1187 0.1225 

R2 0.4225 0.4690 0.4730 0.4818 0.4903 0.5014 0.5182 0.5151 0.5161 0.5007 0.4924 0.4588 

 

 

 

Rysunek 7.33. Wyniki modelu XGBoost uzyskane dla przebadanego zakresu parametru maximum depth 

z wykorzystaniem danych ze zbioru I (opracowanie własne) 
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Tabela 7.14. Wyniki modelu XGBoost uzyskane dla przebadanego zakresu parametru maximum depth  

z wykorzystaniem danych ze zbioru V (opracowanie własne) 

Miernik 
Maximum depth 

2 3 4 5 6 7 8 9 10 11 12 15 

RMSE 0.1033 0.1015 0.0998 0.0987 0.0976 0.0949 0.0924 0.0933 0.0941 0.0958 0.0968 0.1002 

R2 0.5977 0.6255 0.6310 0.6423 0.6566 0.6759 0.6811 0.6802 0.6789 0.6711 0.6624 0.6487 

 

 

 

Rysunek 7.34. Wyniki modelu XGBoost uzyskane dla przebadanego zakresu parametru maximum depth 

z wykorzystaniem danych ze zbioru V (opracowanie własne) 

 

Część przykładowego drzewa wygenerowanego przez model XGBoost przedstawiono  

na Rysunku 7.35. 
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Najlepszy model XGBoost dla problemu omawianego w pracy zbudowano przy użyciu 

hiperparametrów (Chen i Guestrin, 2016) wymienionych poniżej: 

a) max_depth = 8. 

b) learning_rate = 0.1. 

c) n_estimators = 1000. 

d) objective = “reg:squarederror”. 

e) booster = “gbtree”. 

 

Kluczową zaletą drzew decyzyjnych jest możliwość szybkiego określenia wagi danej cechy 

w opracowywanym modelu. XGBoost zidentyfikował istotności cech (Rysunek 7.36) 

wskazując, że czynnikiem mającym największy wpływ na przewidywanie stożkowatości  

(a w zasadzie na wartość tej wielkości opisującej jednorodność opon) ma szerokość opasania 

pierwszego (BR1_WIDTH_MEASURED). Wpływ pozostałych zmiennych niezależnych  

jest o około 30÷45% niższy. Ponadto jego przewagą nad używaną w kolejnym punkcie badań 

biblioteką ML.NET jest możliwość precyzyjnej analizy przebiegu obliczeń w sposób „krok  

po kroku” (podobnie jak w przypadku MLP), ze względu na środowisko w którym  

jest wykorzystywany. Przekłada się to na lepsze zrozumienie zasady działania zbudowanego 

modelu. 

 

 

Rysunek 7.36. Istotności cech wyznaczone przy pomocy modelu XGBoost (opracowanie własne) 
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2) Modele FastTreeRegression i LightGbmRegression 

Kolejną metodą, której działanie zostało zweryfikowane w toku badań jest środowisko 

zautomatyzowanego doboru modelu, oparte na bibliotece ML.NET. Dla pozyskanych danych, 

rozwiązania można wybierać spośród ponad 120 modeli (czas trenowania: do 1000s). 

Oferowane modele  generują interfejs programowania aplikacji API (ang. application 

programming interface) i kod w języku C# do późniejszego wykorzystania w systemie. 

Skupiając się na pracy z  FastTreeRegression – wydajnej implementacji algorytmu gradientu 

wzmacniającego o nazwie własnej Multiple Additive Regression Trees (MART), podczas badań 

ustalano wartości następujących przykładowych hiperparametrów: 

a) BIAS: wartość dodana do ważonej sumy wyników wszystkich drzew. 

b) TREES: iteracja RegressionTreeBase (klasa ilości zapętleń) w drzewach. 

c) TreeWeights: waga i-tego RegressionTreeBase (pętli/powtórzenia) w drzewach. 

 

Zmiana tych parametrów prowadzi do zwiększenia efektywności lub wydajności 

budowanego modelu. Struktura oprogramowania ML.NET wykorzystuje narzędzie AutoML, 

które wspiera pracę z uczeniem maszynowym poprzez automatyczne wybieranie najlepszych 

modeli i hiperparametrów dla badanego zestawu danych (automatyczna optymalizacja 

modelu). Takie rozwiązanie jest przydatne do osiągnięcia wysokich poziomów efektywności 

modelu i oszczędzania czasu na ręcznym dostrajaniu tworzonych modeli. Po uruchomieniu 

eksperymentu, przez określony czas AutoML tworzy modele z różnymi kombinacjami 

algorytmów i hiperparametrów w celu uzyskania najlepszego możliwego wyniku dla 

wskazanego miernika oceny (propozycja dla każdej takiej kombinacji jest pojedynczą próbą). 

Jedną z najmocniejszych cech biblioteki jest jej wysoki poziom wydajności – to z pewnością 

ważne kryterium podczas podejmowaniu decyzji o wyborze narzędzia uczenia maszynowego  

do zastosowania w środowisku produkcyjnym. Podczas korzystania z ML.NET 

zaproponowano dwa typy drzew decyzyjnych z gradientem wzmacniającym (GBDT) – 

LightGbmRegression i FastTreeRegression. Modele te wykorzystują dwie metody  

(Ke i in., 2017): 

a) Jednostronne próbkowanie gradientowe GOSS (ang. gradient-based one-side sampling) 

– zachowuje wystąpienia o dużych gradientach (tj. większych niż wstępnie 

zdefiniowany próg) lub wybiera spośród najwyższych percentyli i losowo usuwa  

tylko wystąpienia o małych gradientach, aby zachować dokładność szacowania 

wzmocnienia informacji. Jest to związane z faktem, że różne wystąpienia danych 

odgrywają różne role w obliczaniu wzmocnienia informacji, tj. instancje z większymi 
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gradientami (instancje niedotrenowane) przyczyniają się w większym stopniu do „zysku 

informacji”. Skutkuje to dokładniejszym oszacowaniem zysku niż w przypadku 

zastosowania jednorodnego losowego próbkowania.  

b) Ekskluzywne pakietowanie funkcji EFB (ang. exclusive feature bundling) – powoduje 

bezpieczne łączenie cech wykluczających się w jedną cechę, czyli w tzw. zestaw cech 

wykluczonych. Złożoność konstrukcji histogramu zmniejsza się, przy czym szybkość 

struktury trenującej poprawia się bez uszczerbku dla dokładności danych. Wynika  

to z faktu, że dane wielowymiarowe występują rzadko, co stwarza możliwość niemal 

bezstratnej (w stosunku do wyniku końcowego) redukcji liczby cech, szczególnie  

gdy wiele cech wzajemnie się wyklucza. 

 

Na podstawie przeprowadzonych prób (132 próby dla zbioru I i 127 prób dla zbioru V), 

biblioteka ML.NET wskazała dwa najlepsze modele do rozwiązania opisywanego problemu. 

Uzyskane dla nich rezultaty wskaźników RMSE i R2 zaprezentowano w Tabelach 7.15 i 7.16. 

 

Tabela 7.15. Rezultaty dla najlepszych modeli zidentyfikowanych przez bibliotekę ML.NET dla zbioru I 

(opracowanie własne) 

Numer próby Model R2 RMSE 

26 FastTreeRegression 0.7163 0.085 

24 LightGbmRegression 0.7070 0.086 

 

 

Tabela 7.16. Rezultaty dla najlepszych modeli zidentyfikowanych przez bibliotekę ML.NET dla zbioru V 

(opracowanie własne) 

Numer próby Model R2 RMSE 

32 FastTreeRegression 0.7233 0.079 

18 LightGbmRegression 0.7150 0.082 

 

7.3.5 Analiza wyników i wybór modelu 

Podsumowując dotychczasowy przebieg badań, można stwierdzić, że modelem  

który osiągnął najlepsze rezultaty był FastTreeRegression. Charakteryzował się najniższą 

średnią wartością RMSE (ocena błędu) oraz najwyższą średnią wartością R² (ocena jakości 

predykcji) dla przebadanych zbiorów danych. W zastosowaniach rzeczywistych  

(czyli jak dla opisywanego przypadku), wartości R2 przekraczające wartość 0.7 wskazują  
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na dużą zgodność pomiędzy wartościami generowanymi przez model a wartościami 

rzeczywistymi. Przetestowano różne rozwiązania modelowe i żadne z nich nie przyniosło 

wyższej wartości tego miernika. Oznacza to, że w chcąc poprawić otrzymane rezultaty 

wymagana jest interwencja w dane, a nie w sam model. R2 można również zwiększyć 

poprawiając jakość danych, jest to jednak trudne w systemach czasu rzeczywistego 

(działających on-line), ponieważ wstępne przetwarzanie i początkowy wybór danych zajmują 

cenny czas obliczeniowy.  

W celu poszukiwania możliwe najlepszego rozwiązania, zdecydowano się na dodanie 

odpowiednich zmiennych, które mogłyby przyczynić się do poprawy wyniku R2. 

Zastosowanie takiego postępowania może pozwolić na wychwycenie większej liczby szumów 

i losowych fluktuacji w danych – postanowiono zatem podjąć kolejne kroki badawcze  

w kierunku tej idei.  

Kontynuując analizę, dodano więc kolejną (szóstą) zmienną wejściową, na którą wybrano 

PA_WIDTH_MEASURED, czyli średnią wartość pomiaru szerokości zespołu PA 

dedykowanego do danej opony, zmierzoną przez system prowadzenia karkasu (Rozdział 7.1.1), 

wyrażoną w [mm]. Na zespół PA składają się boki oraz wykładzina wewnętrzna. Dodatkowe 

uwzględnienie tej zmiennej wejściowej w modelu, daje wyraźniejszy obraz przesunięcia środka 

masy opony – w tym momencie model na wejściu zawiera komponenty stanowiące ok. 75% 

całkowitej masy opony (o konstrukcji standardowej – bez wzmacniającej wkładki runflatowej 

– czyli takiej, dla której przeprowadzane są badania w niniejszej pracy). Dodanie tej zmiennej 

jest również uzasadnione fizycznym znaczeniem zjawiska stożkowatości. Tolerancja 

szerokości PA dla wszystkich produkowanych rozmiarów opon wynosi ±6[mm]. Wartości 

specyfikacyjne szerokości PA dla zbiorów I i V zostały przedstawione w Tabeli 7.17. W Tabeli 

7.18. natomiast, zestawiono wyniki obliczeń miar statystycznych dotyczących szerokości PA 

dla zbiorów I i V. 

 

Tabela 7.17. Wartości specyfikacyjne szerokości PA dla zbiorów I i V (opracowanie własne) 

ZMIENNA WEJŚCIOWA Zbiór I Zbiór V 

PA_WIDTH_MEASURED [mm] 632 624 
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Tabela 7.18. Miary statystyczne szerokości PA dla zbiorów I i V (opracowanie własne) 

Zmienna Miara Zbiór I Zbiór V 

PA_WIDTH_MEASURED [mm] 

AVG 631.19 623.49 

STDEV 2.53 1.67 

MIN 621.95 615.17 

MAX 639.97 631.69 

 

Na Rysunkach 7.37. – 7.40. przedstawiono wykresy przebiegu procesu produkcji  

oraz rozkłady empiryczne wartości pomiarów szerokości zespołu PA dla zbiorów I i V. 

Dla zbioru I, 2.3% pomiarów przekracza zadane limity specyfikacji. Najwięcej przekroczeń 

ma miejsce bezpośrednio po wznowieniu produkcji po przestoju wakacyjnym (zakres od próbki 

nr 3836), co jest widoczne na Rysunku 7.37. Średnia wartość szerokości PA jest jednak bliska 

specyfikacyjnej i rozkład wartości jest względem niej symetryczny (Rysunek 7.38.). 

 

 

Rysunek 7.37. Wyniki pomiarów szerokości zespołu PA dla przebiegu procesu produkcji opon ze zbioru I 

(opracowanie własne) 
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Rysunek 7.38. Rozkład empiryczny wartości pomiarów szerokości zespołu PA dla zbioru I  

(opracowanie własne) 

 

Zbiór V dla nowej zmiennej wykazuje porównywalność i stabilność porównywalną,  

jak dla zmiennych wejściowych opisywanych poprzednio – występują jedynie pojedyncze 

przekroczenia zadanej tolerancji (Rysunek 7.39.). Średnia wartość oscyluje wokół 

specyfikacyjnej i rozdział wszystkich wartości jest względem niej symetryczny  

(Rysunek 7.40.). 

 

Rysunek 7.39. Wyniki pomiarów szerokości zespołu PA dla przebiegu procesu produkcji opon ze zbioru V 

(opracowanie własne) 
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Rysunek 7.40. Rozkład empiryczny wartości pomiarów szerokości zespołu PA dla zbioru V  

(opracowanie własne) 

 

W Tabelach 7.19. i 7.20 porównano rezultaty RMSE i R2 uzyskane dla wszystkich badanych 

metod z wykorzystaniem pięciu i sześciu zmiennych wejściowych dla zbioru I i V. 

 

Tabela 7.19. Efekt dodania szerokości PA jako zmiennej wejściowej dla zbioru I (opracowanie własne) 

 

RMSE R2 

5 zmiennych 

wejściowych 
6 zmiennych 

wejściowych 
5 zmiennych 

wejściowych 
6 zmiennych 

wejściowych 

MLP 5-8-1 0.177 0.156 0.302 0.374 

XGBoost 0.116 0.083 0.518 0.719 

LightGbmRegression 0.086 0.085 0.707 0.719 

FastTreeRegression 0.085 0.084 0.716 0.726 
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Tabela 7.20. Efekt dodania szerokości PA jako zmiennej wejściowej dla zbioru V (opracowanie własne) 

 

RMSE R2 

5 zmiennych 

wejściowych 

6 zmiennych 

wejściowych 

5 zmiennych 

wejściowych 

6 zmiennych 

wejściowych 

MLP 5-8-1 0.158 0.141 0.436 0.497 

XGBoost 0.092 0.080 0.681 0.742 

LightGbmRegression 0.082 0.088 0.715 0.704 

FastTreeRegression 0.079 0.086 0.723 0.711 

 

Na podstawie danych uzyskanych z poszczególnych modeli i przedstawionych w Tabelach 

7.19. i 7.20 stwierdzono, że najlepszym rozwiązaniem okazał się model XGBoost,  

który charakteryzuje się najniższym RMSE i najwyższą wartością R2. Wyniki badań 

potwierdzają zasadność stosowania uzyskanego modelu w warunkach przemysłowych.  

Może on potencjalnie przyczynić się do zmniejszenia ilości odpadów opon poprzez 

wyeliminowanie komponentów, które nie spełniają wymagań jakościowych na wczesnych 

etapach procesu produkcyjnego, a tym samym znacząco obniżyć koszty produkcji,  

co jest niezwykle ważne dla nowoczesnych przedsiębiorstw. Godnym zainteresowania jest,  

że modele oferowane przez bibliotekę ML.NET po dodaniu kolejnej zmiennej obniżyły swoją 

zdolność predykcji, natomiast wyniki osiągnięte przez model MLP wciąż znacząco odbiegały  

od możliwości zastosowania go w warunkach rzeczywistej produkcji. Użycie stosunkowo 

prostej i szybkiej metody XGBoost jest jednym ze sposobów rozwiązania problemu,  

przy niewielkim wysiłku obliczeniowym i uniknięciu definiowania reguł od podstaw.  

Może to być istotne w momencie wdrażania nowych rozmiarów opon do produkcji masowej. 

Ponadto model ten wykazał istotne możliwości poprawy zarówno pod względem 

funkcjonowania, jak i poprawy uzyskanych wartości mierników oceny. Na tej podstawie,  

w kolejnym kroku przystąpiono do walidacji modelu wytrenowanego na zbiorze I w celu 

oceny jego zachowania na danych szerszej grupy rozmiarów opon. Założono, że jeśli trening 

odbywał się na danych charakteryzujących się większym rozrzutem w stosunku do zbioru V, 

model uzyskany na podstawie nauki na danych zbioru I będzie wykazywał się większą 

zdolnością do przewidywania wartości odstających (poza zakresowych, czyli poza limitem 

stożkowatości), co jednocześnie stanowi główny cel jego implementacji. 
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7.4 Walidacja modelu 

W trakcie walidacji opracowanego modelu XGBoost wykorzystano 4 pozostałe zbiory 

danych, czyli II, III, IV i VI. Celem takiego podejścia jest obiektywne oszacowanie zdolności 

modelu do generalizacji, czyli jego skuteczności w przewidywaniu wyników dla nowych, 

nieznanych danych. Walidacja końcowa powinna umożliwić identyfikację ewentualnych 

problemów i wiarygodności modelu w kontekście jego praktycznego zastosowania. Ostateczne 

wyniki testowania i walidacji mają fundamentalne znaczenie dla decyzji dotyczących 

wdrożenia modelu w środowisku produkcyjnym. 

Jak już wspomniano, zbiór II dotyczy produkcji tego samego rozmiaru co zbiór I,  

jednak produkowanego w innym okresie i po zmianie limitów stożkowatości. Ma on posłużyć 

weryfikacji działania modelu dla tego samego rozmiaru, na którego danych był trenowany. 

Zbiory III, IV i VI zawierają rejestr produkcji rozmiarów pośrednich gabarytowo pomiędzy 

rozmiarami zbiorów I i V, różniącymi się również wysokością profilu oraz konstrukcją. 

Posiadają również większą liczbę rekordów w porównaniu do początkowo wykorzystywanych 

zbiorów. Dzięki takiemu podejściu, będzie możliwe przeprowadzenie bardziej precyzyjnej 

oceny działania modelu dla całego zakresu rozmiarów konfekcjonowanych na maszynach  

VMI MAXX. 

W Tabeli 7.21. zaprezentowano wartości specyfikacyjne komponentów niezbędnych  

do prawidłowej pracy modelu dla zbiorów II, III, IV i VI.   

 

Tabela 7.21. Wartości specyfikacyjne zmiennych wejściowych zbiorów II, III, IV i VI  

(opracowanie własne) 

ZMIENNA WEJŚCIOWA Zbiór II Zbiór III Zbiór IV Zbiór VI 

BR1_WIDTH_MEASURED [mm] 251 196 191 181 

BR2_WIDTH_MEASURED [mm] 241 186 181 171 

TD_WIDTH_MEASURED [mm] 308 248 240 222 

PA_WIDTH_MEASURED [mm] 632 618 728 580 

 

W Tabeli 7.22. zestawiono wyniki obliczeń następujących miar statystycznych: wartość 

średnia (AVG), odchylenie standardowe (STDEV), wartości maksymalna (MAX) i minimalna 

(MIN) badaych zmiennych wejściowych i zmiennej wyjściowej dla wymienionych zbiorów. 
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Tabela 7.22. Miary statystyczne zmiennych wejściowych zbiorów II, III, IV i VI (opracowanie własne) 

Zmienna Miara 
Zbiór 

II 

Zbiór 

III 

Zbiór 

IV 

Zbiór 

VI 

BR1_WIDTH_MEASURED [mm] 

AVG 250.95 196.62 191.23 181.95 

STDEV 1.04 0.93 0.97 0.80 

MIN 247.79 192.55 187.21 175.49 

MAX 254.61 199.07 193.73 184.06 

BR2_WIDTH_MEASURED [mm] 

AVG 240.87 185.85 180.88 171.61 

STDEV 1.04 0.82 1.02 0.85 

MIN 234.50 182.03 173.57 166.53 

MAX 244.40 188.51 184.27 173.88 

TD_WIDTH_MEASURED [mm] 

AVG 306.71 249.11 242.32 222.23 

STDEV 1.19 0.95 1.11 0.78 

MIN 302.20 245.53 233.79 218.47 

MAX 311.02 252.80 246.41 225.58 

1BAP_BODY_AVG_OFF_CENTER 

[mm] 

AVG 0.15 0.63 -0.85 0.00 

STDEV 0.13 0.27 0.24 0.14 

MIN -1.72 -0.02 -2.42 -0.44 

MAX 1.09 2.24 -0.11 0.59 

2BAP_BODY_AVG_OFF_CENTER 

[mm] 

AVG 0.04 0.73 -0.88 0.12 

STDEV 0.34 0.12 0.72 0.11 

MIN -3.71 0.30 -3.83 -0.24 

MAX 0.97 1.85 1.51 0.43 

PA_WIDTH_MEASURED [mm] 

AVG 631.32 618.83 727.18 580.84 

STDEV 2.10 1.52 1.80 1.54 

MIN 623.07 613.04 716.25 572.93 

MAX 639.43 625.21 735.49 589.21 

Stożkowatość (CON) [N] 

AVG 0.93 4.70 -7.93 -2.51 

STDEV 14.21 6.96 17.30 4.53 

MIN -66.00 -25.00 -88.00 -24.00 

MAX 116.00 31.00 68.00 27.00 
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Zbiory danych używane do walidacji opracowanego modelu przygotowano  

w taki sam sposób, jak przeprowadzono to dla wcześniej przygotowywanych danych,  

co opisane zostało w Rozdziale 7.2.1. Zastosowano również ten sam podział danych  

na trzy podzbiory: treningowy (70%), walidacyjny (15%) i testowy (15%).  

W tym postępowaniu uzyskano wyniki RMSE i R2, które zestawiono w Tabeli 7.23. 

 

Tabela 7.23. Wyniki RMSE i R2 uzyskane podczas walidacji modelu XGBoost (opracowanie własne) 

Miernik Zbiór II Zbiór III Zbiór IV Zbiór VI 

RMSE 0.085 0.078 0.081 0.071 

R2 0.725 0.746 0.732 0.751 

 

 Etap walidacji był przeprowadzany ze świadomością, że zwiększenie liczby próbek 

powyżej 10 000 może wymagać ponownego dostrojenia modelu lub nawet modyfikacji użytego 

algorytmu (Longwic i in., 2012). Zmiany hiperparametrów używanego modelu w czasie 

testowania go na nowych zbiorach danych nie przyniosły już jednak dalszej poprawy wyników 

stosowanych miar porównawczych. Model XGBoost został zatem finalnie wybrany  

do wdrożenia w przedsiębiorstwie – uzyskał najlepszy wynik po dodaniu zmiennej wejściowej 

od zespołu PA i wykazał najlepszą średnią wyników mierników oceny dla wszystkich 

przebadanych rozmiarów opon, co dodatkowo wskazuje na jego uniwersalność. Wnioskując  

na podstawie uzyskanych rezultatów przyjmuje się jednak możliwość, że dla różnych grup 

rozmiarów w przyszłości mogą zostać zastosowane różne modele, ze względu na zmienność 

zbiorów danych – o czym świadczy m.in. różnica wartości charakteryzującego je odchylenia 

standardowego. 

 W niniejszych badaniach warto zwrócić uwagę na kluczowy problem: tradycyjne metody 

regresji – zarówno liniowe (np. regresja liniowa, Lasso, ridge) – jak i nieliniowe (np. Support 

Vector Regression, drzewa decyzyjne) mają swoje ograniczenia w modelowaniu funkcji 

nieliniowych. Liniowe modele bywają zbyt uproszczone, SVR wymaga kosztownego doboru 

jądra i czasu obliczeniowego, natomiast drzewa decyzyjne bywają niestabilne (Chen  

i in., 2020). Przed wdrożeniem wymagana jest weryfikacja, czy drzewa decyzyjne mogą 

efektywnie aproksymować funkcje nieliniowe i przewidywać realne dane. Jest to istotne, 

ponieważ w środowisku produkcyjnym istnieje wysokie prawdopodobieństwo wystąpienia 

wejściowych wartości poza zakresowych. Ponadto, głównym zadaniem implementowanego 

modelu jest predykcja odstających wartości stożkowatości, na których wystąpienie model musi 

reagować w prawidłowy sposób. Podstawą do osiągnięcia tego celu jest odpowiednie 
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zbalansowanie głębokości drzewa. Nadmierna albo zbyt mała głębokość mogłyby prowadzić 

do dużego błędu predykcji. Dlatego też model XGBoost został przebadany w szerokim zakresie 

parametru głębokości drzewa ‘max_depth’.  

Należy zauważyć, że odpowiedni dobór danych treningowych (tj. zestawów parametrów 

wejściowych i wyjściowych) ułatwił identyfikację nieoczywistych, nieznanych lub wcześniej 

niekompletnych reguł, a tym samym uzupełnił ich opis matematyczny i możliwą analizę innymi 

metodami. Może to być przydatne w przypadku pojawienia się niezweryfikowanych  

baz danych, nowo wdrożonych maszyn (pracujących nawet na wcześniejszym etapie produkcji 

opon, niż konfekcja) lub rozmiarów opon, które nie były jeszcze analizowane metodami 

obliczeniowymi.  

Dodatkową zaletą modelu, która sprawia, że nadaje się do wykorzystania w masowej 

produkcji opon, jest jego natychmiastowa reakcja na wartości zmiennych wejściowych  

(poza zakresem tolerancji). Pozwala to na przewidywanie i ocenę jakości produkcji w trybie 

ciągłym (Bai i in., 2017). Ta cecha może ułatwić natychmiastowe wycofanie partii wadliwych 

komponentów opon (minimalizacja strat materiałowych) i ograniczyć ilość powstawania złomu 

obiegowego (Kosmela i in., 2021) w przedsiębiorstwie. Przyspieszy to również ustalanie 

przyczyn źródłowych usterek / błędów powstających w procesie produkcyjnym (eliminacja 

strat czasu), co stanowi jeden z głównych czynników wpływającym na utrzymanie ciągłości 

produkcji opon (Krishnan i in., 2018). Gwarantowana szybkość reakcji, poprawi zdolność 

krótkoterminowego planowania oraz elastyczność produkcyjną firmy (Krynke, 2021),  

co stanowi jedno z głównych założeń Przemysłu 4.0. W rezultacie możliwa jest terminowa 

modyfikacja ustawień maszyny, co zatrzyma przepływ wadliwego produktu do kolejnych 

etapów procesu produkcyjnego (eliminacja złomu) (Kim i in., 2019). Należy w tym miejscu 

również podkreślić pozytywny wpływ na aspekty środowiskowe, ponieważ odpady gumowe 

które są wykorzystywane jako paliwo alternatywne (odzysk energii), odpowiadają  

za 6% globalnej emisji CO₂ (Skrzyniarz, 2020). Ma to tym większe znaczenie w przypadku 

opon wyrzucanych bezpośrednio po procesie produkcyjnym, które nigdy nie trafiają  

do normalnej eksploatacji, co stanowi poważne marnotrawstwo (Skarbek-Żabkin i Kamińska, 

2015). 
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8. Część wdrożeniowa 

Głównym celem niniejszej pracy doktorskiej było opracowanie modelu przewidującego  

w czasie rzeczywistym wyniki stożkowatości opon na określonym poziomie, na podstawie 

danych wejściowych z procesu konfekcji. Kolejnym etapem jest wdrożenie opracowanego 

modelu uczenia maszynowego, jako narzędzia wspomagającego masową produkcję opon 

radialnych w przedsiębiorstwie. W niniejszym rozdziale zostanie przedstawiony efekt 

wdrożenia modelu do systemu informatycznego przedsiębiorstwa oraz maszyn VMI MAXX. 

Zostaną również omówione perspektywy rozwoju tego narzędzia w przedsiębiorstwie. 

8.1 Implementacja modelu do systemu 

informatycznego przedsiębiorstwa oraz maszyn 

VMI MAXX 

Dla poprawnego działania modelu w środowisku produkcyjnym przeprowadzono  

już następujące działania w kierunku implementacji modelu do systemu informatycznego: 

1) Zwiększono częstotliwość kalibracji aparatury pomiarowej, czyli CCMO (monitora 

karkasu) oraz BTMO (monitora bębna B&T). Dotychczas realizowana była raz do roku, 

obecnie interwał kalibracji ustalono na 6 miesięcy. 

2) Wyrównano wygląd interfejsu CORTEXX wszystkich maszyn VMI MAXX w fabryce. 

Dodano przy tym konieczność zapisu newralgicznych zmiennych wejściowych, 

niezbędnych do prawidłowej pracy modelu. W Bazie Danych Produkcyjnych maszyny 

VMI MAXX uwzględniono również dopisywanie ustalonych limitów stożkowatości  

dla każdego rozmiaru opon w celu ich konsolidacji z wynikiem wygenerowanym  

przez model i w konsekwencji wyświetleniem prawidłowego komunikatu. 

3) Utworzono bazę danych integrującą dane wejściowe i wyjściowe w celu ciągłego 

douczania algorytmu. Dane wejściowe są automatycznie odpowiednio przetwarzane 

(przygotowywane w analogiczny sposób, jak miało to miejsce w toku badań)  

do wymaganego formatu i zasilają model. Dane wyjściowe służą weryfikacji 

poprawności działania po pomiarze jednorodności. 

 

Nowy schemat rejestracji i przepływu danych został przedstawiony na Rysunku 8.1. 
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Zmiany na maszynach VMI MAXX po wdrożeniu modelu: 

1) Pomiary wymiarów opasań, bieżnika i PA są wysyłane on-line do zintegrowanej bazy 

danych, przygotowywane i przetwarzane przez model. Model dokonuje predykcji 

wartości stożkowatości. 

2) Rezultatem wdrożenia płynącego z niniejszej pracy doktorskiej jest pojawienie  

się komunikatu „con out of tolerance” widocznego na Rysunku 8.2. Wyświetla  

się on tylko i wyłącznie w przypadku, kiedy model przetworzy istotne dla jego działania 

zmienne wejściowe oraz zidentyfikuje je jako potencjalną przyczynę przekroczenia 

limitu stożkowatości (informacja zwrotna – predykcja przekroczenia limitu 

stożkowatości).  

 

 

Rysunek 8.2. Komunikat wywołany działaniem modelu (opracowanie własne) 

 

3) Już w tym momencie możliwe jest zareagowanie na otrzymaną informację. Poszukując 

przyczyny wystąpienia komunikatu, na podstawie pomiarów wykonanych  

przez maszynę można rozpocząć od sprawdzenia, czy wymiar któregoś z materiałów, 

którego dane zasilają model przekroczył swoją tolerancję. Należy wziąć pod uwagę 
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wyznaczoną przez model XGBoost istotność cech, którą można bezpośrednio przełożyć 

na kolejność podejmowanych kroków podczas poszukiwania przyczyny źródłowej 

problemu (rozpoczynając od materiału mającego największy wpływ na wynik 

generowany przez model). 

4) W celu potwierdzenia przypuszczeń, można przygotować nowy odcinek 

newralgicznego materiału (jeśli odnaleziono przekroczenie dotyczące materiału opasań, 

bieżnika lub PA). Maszyna przeprowadza pomiar i nałożenie kolejnego odcinka. Dane 

wejściowe od uzupełnianego materiału zostają zestawiane z danymi materiałów 

aktualnie znajdującymi się na maszynie i czekającymi na użycie do bieżącej sztuki 

opony. Dochodzi do interpretacji aktualnej sytuacji przez model.  

 

Przedstawione powyżej funkcjonalności i osiągnięte dotychczas rezultaty wdrożenia 

stanowią część większego projektu, co zostanie scharakteryzowane w kolejnym podrozdziale. 

 

8.2 Monitorowanie i utrzymanie modelu  

oraz potencjalne efekty wdrożenia  

Wdrażane rozwiązanie wymaga ustalenia kilku kwestii wewnątrz przedsiębiorstwa: 

1) Działania zaprezentowane w Rozdziale 8.1. realizowane są na razie tylko na najnowszej 

maszynie VMI MAXX nr X08, ze względu na jej obecny status „testowy” (pracuje 

jedynie na potrzeby prób i przeprowadzania badań). Dało to możliwość realizacji 

działań związanych z niniejszą dysertacją bez zakłócania planu produkcji 

przedsiębiorstwa. Produkcja masowa na tej maszynie wystartuje jednak dopiero  

w drugiej połowie 2026 (aktualna prognoza). 

2) Biorąc pod uwagę sposób działania modelu opisany w Rozdziale 8.1, należy opracować 

standard postępowania z wadliwym materiałem na szpuli / wózku. Wycofanie materiału  

na pewno będzie wymagało wykonania większej liczby pomiarów – do dyspozycji  

nie będzie mogło dojść na podstawie tylko jednego odcinka komponentu 

dedykowanego do 1 sztuki opony.  

3) Identyfikacja odpadów spowodowanych stożkowatością już na poziomie pomiarów 

materiałowych eliminuje powstawanie wadliwych opon surowych. Dzięki 

pojawiającemu się komunikatowi, konfekcja wadliwej opony zostaje zatrzymana. 
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4) W roku 2024 z powodu przekroczenia limitu CON przeróbkom musiało ulec 6000szt. 

opon wyprodukowanych tylko przez maszyny VMI MAXX. Przyjmuje  

się, że wymagany poziom prawidłowych przewidzeń wdrożonego narzędzia to 70% -  

o tyle zatem powinien spaść poziom przeróbek / złomów opon z przyczyny 

przekroczenia limitu stożkowatości w masowej produkcji opon. Potwierdziło  

się to już podczas prób wdrażania nowych rozmiarów opon realizowanych na maszynie 

nr X08. W trakcie produkcji próbnej zliczano pojawiające się komunikaty i zestawiono 

ich liczbę z faktycznymi przekroczeniami limitu stożkowatości opon próbnych. 

Dotyczyło to różnych rozmiarów opon o różnej konstrukcji, dla których realizowane 

były próby wdrożeniowe. 

5) Zgodnie ze wstępnymi założeniami, do weryfikacji poprawności działania modelu w 

trakcie masowej produkcji opon będzie dochodziło w następujący sposób: 

a) 10 opon zidentyfikowanych przez zaimplementowane narzędzie jako potencjalne złomy 

(a dokładnie: zawierające w sobie wadliwy komponent), będzie należało 

zwulkanizować i dedykować do pomiaru jednorodności. 

b) Jeśli mniej niż 7 opon przekroczy limit CON, będzie musiało dojść do korekty 

hiperparametrów / wywołania manualnego douczania algorytmu. 

c) Częstotliwość powyższej weryfikacji pozostaje jeszcze kwestią otwartą. 

 

6) Wdrożone rozwiązanie ulegnie faktycznej weryfikacji dopiero po rozpoczęciu 

regularnej produkcji na maszynie nr X08. Wtedy też implementacja tego rozwiązania 

zostanie rozszerzona na pozostałe maszyny VMI MAXX. Będzie można wówczas  

w sposób bardziej precyzyjny określić realny wpływ narzędzia na poziom złomów  

oraz ocenić jego faktyczny poziom predykcji. Dotyczy to także podejścia do tolerancji 

wymiarowych używanych materiałów – narzędzie utrzymujące poziom przewidzeń  

na określonym poziomie, będzie można dopuścić pewne (określone wewnętrznymi 

restrykcjami / zakresami) odstępstwa, jeśli np. przekroczenia centrowania opasań 1 i 2 

skompensują się i według modelu zaowocują rezultatem pomiaru stożkowatości 

zawartym w limicie. 

7) Można stwierdzić, że przy modelach wytrenowanych na zebranych danych  

i wymaganym progu dokładności szacowania ustalonym na podstawie bieżących 

błędów, rozwiązania oparte na sztucznej inteligencji mogą generować nieprawidłowe 

rozpoznania (dobrych produktów jako wadliwych i odwrotnie). W przypadku 



183 

wątpliwości konieczna będzie decyzja (ekspercka) człowieka, podejmowana w procesie 

kontroli technicznej.  

8) Dodatkową zaletą maszyny nr X08 w stosunku do pozostałych maszyn, jest jej zdolność 

do przeprowadzania pomiaru przecentrowania materiału bieżnika. Istnieją uzasadnione 

przypuszczenia (przeprowadzone dotychczas badania, fizyczny sens zjawiska ściągania 

pojazdów), że dodanie tego pomiaru do danych wejściowych modelu może istotnie 

poprawić jakość jego predykcji. 

9) Sposób działania wdrożonego rozwiązania można replikować do innych fabryk 

produkujących opony, przy założeniu, że pomiary komponentów niezbędne  

do prawidłowej pracy algorytmu w toku produkcji będą realizowane i rejestrowane,  

z kolei lokalna infrastruktura informatyczna będzie w stanie zasilać model. Może  

ono być także stosowane przez producentów maszyn konfekcyjnych, tj. VMI GROUP. 

 

Powyższe stwierdzenia można podsumować jako kolejny z aspektów rozwoju przemysłu 

oponiarskiego, który nakreśla niedaleką przyszłość fabryki Bridgestone Poznań. 
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9. Wnioski 

1) Wnioski poznawcze 

a) Przyjęte w toku badań zmienne wejściowe, będące wynikami pomiarów wymiarowych 

materiałów składowych opony na etapie konfekcji, pozwoliły na skuteczną predykcję 

stożkowatości opon przy zastosowaniu modelu uczenia maszynowego. Dobór danych 

wejściowych był również zgodny z fizycznym sensem zjawiska stożkowatości opon. 

Położenie materiałów i rozkład ich masy względem osi symetrii opony ma zatem 

bezpośredni wpływ na powstawanie efektu stożka. 

b) Na podstawie wykonanej eksploracyjnej analizy danych oraz przeprowadzonej również 

regresji liniowej wielu zmiennych można stwierdzić, iż badane zależności pomiędzy 

zmiennymi wejściowymi a zmienną wyjściową mają charakter nieliniowy. 

c) Najlepszym rozwiązaniem okazał się model XGBoost, charakteryzujący  

się najniższym RMSE i najwyższą wartością R2, gwarantującym co najmniej 70% 

poprawnych przewidzeń, co można stwierdzić na podstawie wyników badań  

oraz przeprowadzonych po jego implementacji prób wdrożeniowych nowych 

rozmiarów opon. 

d) Modele FastTreeRegression i LightGbmRegression po dodaniu kolejnej (szóstej) 

zmiennej wejściowej, obniżyły swoją jakość predykcji, co więcej poziom osiągnięty 

przez model MLP wciąż znacząco wówczas odbiegał od możliwości zastosowania  

go w warunkach rzeczywistej produkcji. 

e) Opracowany model XGBoost potrafi generować w czasie rzeczywistym wartości 

stożkowatości opon na podstawie zasilających go danych wejściowych z procesu  

ich konfekcji – cel badawczy pracy został zatem osiągnięty. 

f) Na podstawie przedstawionego w części wdrożeniowej przykładu działania modelu 

można stwierdzić, że na etapie pomiaru zmiennych wejściowych komponentów 

składowych danej opony podczas procesu konfekcji możliwa jest skuteczna predykcja 

jej stożkowatości. Potwierdza to hipotezę badawczą postawioną w niniejszej rozprawie 

doktorskiej. 

g) Jakość uzyskiwanych wyników predykcji może być zakłócana poprzez wpływ 

pozostałych etapów procesu produkcji opon, które odbywają się pomiędzy pomiarami 

wielkości wejściowych i wyjściowych modelu. 
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2) Wnioski utylitarne 

a) Uzyskane wyniki i przebieg wdrożenia wskazują na możliwość zastosowania 

otrzymanego modelu w warunkach przemysłowych. 

b) Wykorzystanie modelu opartego na SNN do bezpośredniej identyfikacji wadliwości 

parametrów / cech w oponach dla rzeczywistych danych testowych (z kontroli 

technicznej) jest możliwe.  

c) Uzyskane rezultaty oraz dane zbierane w czasie rzeczywistym dają możliwość 

szybkiego reagowania, np. poprzez natychmiastowe wycofanie z użycia materiału 

będącego powodem powstawania defektów lub wprowadzenie korekty do procesu,  

co ma znaczący wpływ na obniżenie kosztów produkcji (eliminacja straty czasu, 

minimalizacja strat materiałowych, zmniejszenie liczby złomów opon). 

d) Zastosowanie opisywanego modelu wpłynie na zwiększenie elastyczności 

krótkoterminowego planowania produkcji materiałów i opon dzięki szybkiej informacji 

zwrotnej o zaistnieniu wadliwych prefabrykatów. Jest to tym bardziej kluczowe podczas 

realizacji krótkich partii produkcyjnych, wymuszających częste zmiany rozmiaru  

na maszynach konfekcjonujących opony i przygotowujących materiały. 

e) Identyfikacja odpadów spowodowanych stożkowatością już na poziomie pomiarów 

materiałowych i dzięki możliwości wstrzymania procesu konfekcji, eliminuje 

powstawanie wadliwych opon surowych (które w domyśle po procesie wulkanizacji  

nie zawarłyby się w limicie CON). Zmniejszenie ilości odpadów opon poprzez 

wyeliminowanie komponentów, które nie spełniają wymagań jakościowych  

na wczesnych etapach procesu produkcyjnego obniży jego koszty, co jest niezwykle 

ważne dla współczesnego przedsiębiorstwa.  

f) Wdrożone narzędzie zapewnia kontrolę jakości produkcji on-line, co wspiera koncepcję 

Przemysłu 4.0. Przyczynia się to również do wytwarzania produktów bardziej 

przewidywalnych w eksploatacji. 

g) Poprawie ulegnie również utrzymanie ciągłości produkcji, dzięki przyspieszeniu 

ustalania przyczyn źródłowych usterek / błędów powstających w procesie 

produkcyjnym za pomocą sugestii z interfejsu maszyny VMI MAXX  

po pojawiającym się komunikacie o możliwym przekroczeniu limitu stożkowatości. 

Wniosek ten dodatkowo poparty jest wyznaczoną przez model XGBoost istotnością 

cech, którą można przełożyć na kolejność podejmowanych kroków podczas 

poszukiwania przyczyny źródłowej problemu (rozpoczynając od materiału mającego 

największy wpływ na wynik generowany przez model). 
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h) Problem rozwiązany poprzez model opracowany podczas prac realizowanych  

na potrzeby niniejszej rozprawy doktorskiej pozwala na bieżące korygowanie procesu 

produkcji, co w praktyce przekłada się na ograniczenie liczby odpadów, redukcję 

kosztów oraz podniesienie jakości wyrobów. Efekty te mają istotne znaczenie  

dla rozwoju metod stosowanych w inżynierii mechanicznej, a w szczególności  

w obszarze inżynierii produkcji i wpisują się w ideę Przemysłu 4.0, dążącą  

do zwiększenia efektywności i konkurencyjności przedsiębiorstw. 

 

3) Wnioski do dalszych badań 

a) Zbudowany model pozwoli na powtórną weryfikację stosowanych obecnie standardów  

i tolerancji procesu produkcji opon – wpłynie on na bardziej precyzyjne dopasowanie 

jakości wyrobów do faktycznych potrzeb klienta. Po weryfikacji w masowej produkcji, 

narzędzie utrzymujące poziom predykcji na wypracowanym poziomie, będzie mogło 

dopuścić pewne (określone wewnętrznymi restrykcjami) odstępstwa od narzuconych  

w standardach tolerancji, jeśli np. przekroczenia centrowania opasań 1 i 2 skompensują 

się i według modelu zaowocują rezultatem pomiaru stożkowatości zawartym w limicie. 

b) Douczanie algorytmów w oparciu o aktualne dane oraz określenie wymaganego progu 

dokładności oszacowania na podstawie obecnych błędów jest niezbędne,  

aby rozwiązania oparte na sztucznej inteligencji przełożyły się na zmniejszenie liczby 

błędnych rozpoznań (produktów dobrych jako wadliwych i odwrotnie). W części 

sytuacji (wątpliwych) o wynikach kontroli technicznej będzie musiał decydować 

człowiek. 

c) Rozwiązanie będące przedmiotem przeprowadzonych badań może być potencjalnie 

wdrożone w każdej firmie produkującej opony radialne do samochodów osobowych 

pod warunkiem, że ma ona możliwość rejestrowania zmiennych wejściowych  

i wyjściowych istotnych dla działania modelu. 

d) Przeprowadzone badania stanowią (w zakresie ograniczonym przez zmienne / cechy 

wejściowe i wyjściowe) cyfrowy model opony, który może być używany  

jako podstawa do cyfrowego rozpoznawania dobrej opony i opony złomowanej,  

a także zmian prowadzących do naturalnego lub przedwczesnego zużycia opony.  

Takie modele można budować, wykorzystując proces automatycznego ładowania 

danych w ramach Przemysłowego Internetu Rzeczy (IIoT). W ten sposób można 

testować przyszłe modyfikacje bez konieczności przełączania, np. całej linii 

produkcyjnej. 
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e) Użycie stosunkowo prostej i szybkiej metody XGBoost stanowi sposób rozwiązania 

problemu przy niewielkim wysiłku obliczeniowym i uniknięciu definiowania reguł  

od podstaw. Może to być istotne w momencie wdrażania nowych rozmiarów opon  

do produkcji masowej.  

f) Istnieją przesłanki badawcze (przeprowadzone dotychczas badania, fizyczny sens 

zjawiska ściągania pojazdów), że dodanie pomiaru przecentrowania materiału bieżnika 

do danych wejściowych modelu może istotnie poprawić poziom jego predykcji,  

co może być zweryfikowane tylko na maszynie nr X08. 

g) Opracowane rozwiązanie może zostać zastosowane przez producentów maszyn 

konfekcyjnych, tj. VMI GROUP. 
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